
IBM Cúram Social Program Management
Version 6.0.5

Business Object Module Development
Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 39

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing Business Object Modules
for Configuration Transport Manager . . 1
Introduction 1

Purpose 1
Target Audience 1
Pre-requisites 1
Terminology 1

Business Object Type 1
Business Object 1
Business Object Modules 2

Overview 2
BOM Overview 2
Implementing BOMs. 2
CTM Core Process Flow 3

The Release Operation 3
Apply Operation 3

BOM Infrastructure 5
AbstractEntityBOBuilder 5
Abstract BOM 5

The Range Aware Key Server 5
Runtime Data 5

Developing BOMs 6
The Example Application 6

Folder Screen 6
User Screen 8

BOM Development Methodology 11
Analyzing Business Object Types 12

Identifying the Configuration Entities. . . . 12
Group Entities into Business Objects Types . . 12
Define Business Object Identifiers 12
Ensure that the Configuration Entities use
RAKS generated identifiers 13

Analyzing the Folder Business Object Type . . . 13

Identifying the Configuration Entities. . . . 13
Identifying dependencies 14
Identifying the Mode of Deletion 17

Analyzing the User Business Object Type . . . 17
Identifying the configuration entities 17
Identifying dependencies 18
Identifying the Mode of Deletion 22

Implementing BOMs 22
Making Configuration Entities RAKS enabled 22
Business Object Classes 24
Developing Entity Business Object Builder
classes for the entities 24
Implementing the BOMs 27
Registering the BOM implementation. . . . 30
Optional BOM types 32

Testing the transport of Business Object Types . . 33
Pre-requisites 33
Testing the User Business Object Type via the
Administrative User Interface 33

Assumptions on the availability of classes 34
Assumptions 34

Availability of Facade APIs for managing user
operations 34
Availability of Adapter classes 35
Availability of Data Access Object classes . . 35
Availability of classes generated from Code
Tables 36

Customizing the construction of revert Change Set 36
Customization of a revert Change Set 36

Business Object Modules for Configuration
Transport Manager Glossary. 37
Bibliography 38

Bibliography 38

Notices 39
Privacy Policy considerations 41
Trademarks 42

© Copyright IBM Corp. 2012, 2014 iii

iv IBM Cúram Social Program Management: Business Object Module Development Guide

Figures

1. UML representation for folder screen entities 7
2. UML representation for user screen entities 9
3. Type-level relationship between Folder BOM

and CodeTable BOM 14
4. Type-level relationship between File BOM and

Folder BOM 15
5. Instance-level relationships between Folder

BOM and CodeTable BOM 16

6. Instance-level relationships between Folder
BOM and CodeTable BOM 17

7. Type-level relationships for User BOM . . . 19
8. Instance-level relationships for User BOM 20
9. Instance-level relationships for User BOM 22

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Business Object Module Development Guide

Tables

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Business Object Module Development Guide

Developing Business Object Modules for Configuration
Transport Manager

Use this information to learn how to transport business objects between systems. A
business object type is a logical grouping of administrative data that defines and
governs a particular set of functions. A business object module is a piece of code
responsible for performing the bespoke processing that is required to transport
instances a particular business object type.

Introduction

Purpose
This document provides details of the development activities that are necessary in
order to enable the transport of administrative Business Objects from one system to
another via CTM.

Target Audience
The document is intended to be used by any development community that wants
to enable the transport of the administrative Business Objects that they have
developed between different application systems using Configuration Transport
Manager (CTM).

Pre-requisites
The document assumes that the reader is familiar with the following. Refer
“Bibliography” on page 38 for more details.
v Cúram Server Modelling [“Bibliography” on page 38]
v Cúram Persistence Infrastructure [“Bibliography” on page 38]
v Cúram Configuration Transport Manager [“Bibliography” on page 38]
v Google Guice 2 [“Bibliography” on page 38]

Terminology
This section defines some of the key terms that are used throughout the document.

Business Object Type
A Business Object Type is a logical grouping of administrative data that defines
and governs a particular set of functionality. Each Business Object Type consists of
the collection of data (e.g. entities) that are required to configure the system to use
and/or act on the functionality that it represents.

For example, the set of administrative data related to a Benefit Product involves
grouping the entities related to Benefit Product such as Product,
ProductDeliveryPattern, ProductCategory, etc. So, Benefit Product is a Business Object
Type. For further examples, please refer to Appendix A of the Cúram Configuration
Transport Manager [“Bibliography” on page 38].

Business Object
A Business Object is an instance of a Business Object Type. For example, it's
possible that there are multiple Benefit Product configurations available on the
system. Each such configuration is a Business Object.

© Copyright IBM Corp. 2012, 2014 1

Business Object Modules
A Business Object Module (BOM) is a piece of code responsible for performing the
bespoke processing that is required in order to transport instances a particular
Business Object Type. Several types of BOM must be implemented for every
transportable Business Object Type, with each type of BOM being responsible for a
different part of the flow involved in transporting the Business Object.

Overview
This chapter provides an overview of the responsibilities of the various BOM
types, describes the supporting infrastructure available to assist in providing the
required functionality, and summarizes the other activities involved in making a
Business Object Type transportable.

BOM Overview
The core CTM Infrastructure is responsible for executing the transport operations
that are common to all Business Object Types. It co-ordinates the overall flow
involved in the transport of a Business Object, delegating to other components
where necessary. In particular, the CTM infrastructure delegates to the BOMs for
the specific Business Object Types that are being transported at points in the flow
where Business Object – specific activities must be performed. For example, when
an XML document containing the content of a particular Business Object is
required, the CTM infrastructure will invoke on the BOM responsible for
producing the XML document for the Business Object.

Implementing BOMs
In concrete terms, developing a BOM involves providing an implementation of the
BOM interfaces appropriate to the Business Object Type that is being made
transportable. There are in total eleven different types of BOM that may need to be
implemented for each Business Object type. However, note that it is not generally
necessary to provide implementations of all of the BOM types. Out-of-the-box
implementations are provided for five of the BOM types, and, provided these are
suitable, bespoke BOMs do not need to be provided for these.

The different BOM types are illustrated in the following table:

S.No Interface Responsibility
OOTB Implementation
Available

1 AuthorisationBOM Determine whether or not the
user is authorized to act on a
Business Object.

Y – OOTB implementation uses
SecurityBOM to determine
authorisation.

2 DeleteBOM Delete a Business Object. N

3 DependentBOM Provide a list of other Business
Objects upon which a Business
Object is dependent.

N

4 ExistenceBOM Determine whether or not there
is a Business Object already
present on the target system.

N

5 InformationalBOM Provide various information
about the Business Object

N

6 PostCommitActionBOM Perform a Business Object -
specific activity after the
transaction applying a Change
Set has been committed.

Y – No-Op OOTB
implementation provided.

7 PreCommitActionBOM Perform a Business Object -
specific activity immediately
before the transaction applying a
Change Set is committed.

Y - No-Op OOTB
implementation provided.

2 IBM Cúram Social Program Management: Business Object Module Development Guide

S.No Interface Responsibility
OOTB Implementation
Available

8 PreCommitAction TypeBOM Perform a Business Object Type -
specific activity immediately
before the transaction applying a
Change Set is committed.

Y - No-Op OOTB
implementation provided.

9 RevertChangeSetConstruction
HandlerBOM

Add extra Business Objects to a
Change Set being created for
revert purposes.

Y - No-Op OOTB
implementation provided.

10 ReadAndUpsertBOM Create an XML document with
the content of a Business Object;
Populate the database with the
content of the XML document.

N

11 SecurityBOM Provide the SIDs that a user is
required to have in order to read
and write the Business Object.

N – but if an AuthorisationBOM
is provided, then a SecurityBOM
does not need to be
implemented.

Details on how the BOMs are used are provided in the next section (“CTM Core
Process Flow”), which describes the CTM Core Process Flow. Additionally, for
more detailed technical information on each of the BOM types, please refer to the
Javadoc of the interfaces, which are all contained in the curam.util.ctm.bom package.
Finally, further details on implementing the BOM interfaces are provided in the
next chapter, “Developing BOMs” on page 6

CTM Core Process Flow
To illustrate where the BOM Infrastructure APIs are used and invoked, the two
core CTM flows which involve BOMs are now described. These are the Release
operation and the Apply operation.

The Release Operation
The Release operation captures and freezes the content of the Business Objects
contained in a Change Set.

The operation starts by performing a check to see whether or not a user is
permitted to read the relevant Business Objects. It then collects all of the Business
Object contents and converts them into XML fragments. It gathers the fragments
into a single Change Set XML document, and then saves the Change Set XML
document to a release area. All of these activities take place in a single transaction.

As part of the operation, BOMs are used as follows:
v AuthorisationBOM (if provided) or SecurityBOM : Check that the user has the

appropriate permissions to read each Business Object in the Change Set
v ReadAndUpsertBOM : Read the Business Object contents from the data store, and

convert to an XML document.

Apply Operation
The Apply operation provides the functionality to make a Released Change Set
"live". The actions that occur during the Apply operation broadly fall into three
categories:
v Pre Apply Phase
v Apply Phase
v Post Apply Phase

Developing Business Object Modules for Configuration Transport Manager 3

Both the Pre-Apply Phase and the Apply-Phase take place in the same transaction.
The Post-Apply phase takes place in a separate transaction, after the Pre-Apply /
Apply transaction has been committed. The phases are now described in more
detail.

Pre Apply Phase: The first step of the Pre-Apply phase is to validate the content
of the Change Set to see if the Change Set is eligible to be applied. As the Apply
operation involves both database read and write operations, the user performing
the operation must have the appropriate read and write permissions for each
Business Object defined in the Change Set. If the user does not have the
appropriate permissions, then the Apply process is terminated.

Next, the infrastructure creates a revert Change Set for undo purposes. It does so by
capturing the current state of the database with respect to each of the Business
Objects in the Change Set. That is, for each Business Object defined in the Change
Set, the infrastructure will identify if the Business Object already exists in the
target database. Since the business logic for determining the existence of a Business
Object is very specific to the Business Object type, the infrastructure delegates the
call to the ExistenceBOM in order to get the desired results.

As part of this phase, BOMs are used as follows:
v AuthorisationBOM (if provided) or SecurityBOM : Check that the user has the

appropriate permissions to read and write each Business Object in the Change
Set

v ExistenceBOM : Determine whether or not an instance of each Business Object
already exists on the target system.

Apply Phase: Once the Pre-Apply phase has successfully completed, processing
proceeds to the Apply Phase. In this phase, the infrastructure will iterate over each
Business Object and then invoke either an upsert or delete operation, depending on
whether the Business Object is to be upserted or deleted1. To perform these
operations, either the ReadAndUpsertBOM or DeleteBOM are invoked as
appropriate. After all Business Objects in the Change Set have been upserted or
deleted, the PreCommitActionBOM for each Business Object is invoked. This is in
order to perform any pre-commit activities that are required for the Business
Object. Following this, the PreCommitActionTypeBOM is invoked for every Business
Object Type which has at least one Business Object instance in the Change Set.

As part of this phase, BOMs are used as follows:
v ReadAndUpsertBOM : Add or update the Business Object in the target system

database.
v DeleteBOM : Delete the Business Object from the target system database.
v PreCommitActionBOM : Perform any pre-commit actions for the Business Object.
v PreCommitActionTypeBOM : Perform any pre-commit actions for the Business

Object Type.

Post-Apply Phase: Once the Apply Phase has successfully completed, the
transaction will be committed and the post apply phase will be executed. The
post-apply phase involves invoking on the PostCommitActionBOM for each
Business Object in the Change Set. This BOM can perform any activities that are
required after a Change Set has been committed.

1. Note that deletion of Business Objects is currently only supported in the revert Change Sets that are automatically created for
Undo purposes

4 IBM Cúram Social Program Management: Business Object Module Development Guide

As part of this phase, BOMs are used as follows
v PostCommitActionBOM : Perform any post-commit actions for the Business

Object.

BOM Infrastructure
A set of infrastructural classes, known as the BOM Infrastructure, are provided to
assist in implementing BOMs. This infrastructure provides default implementations
for some of the most common operations. The main classes provided are as
follows:

AbstractEntityBOBuilder
Classes known as Entity Business Object Builders need to be implemented for the
entities in a Business Object Type. These produce XML fragments for the entity and
also perform the low-level CRUD actions involved in upserting the entity's content.

The AbstractEntityBOBuilder class provides capabilities that are helpful in
implementing the ReadAndUpsertBOM. Essentially, it provides two pieces of
functionality:
v It is used to build entity instance information from XML fragments
v It acts as a wrapper, hiding the low level CRUD operations for an entity.

For more details, please refer the javadoc for
curam.ctm.bom.util.impl.AbstractEntityBOBuilder. Additionally, more detail on using
this class is provided in the “Developing BOMs” on page 6.

Abstract BOM
The AbstractBOM class provides functionality for a number of the BOM types. A
Business Object Module can extend from AbstractBOM to gain access to this
common functionality. For further information, please refer the javadoc for
curam.ctm.bom.util.impl.AbstractBOM. Additionally, more detail on using this class is
provided in the “Developing BOMs” on page 6.

The Range Aware Key Server
Another important piece of infrastructure used in integrating Business Object
Types with CTM is the Range Aware Key Server (RAKS). The standard Key Server
generates keys that are unique within a particular system, but which may be
duplicated across different systems. The RAKS is a new Key Server
implementation that is responsible for providing identifiers (e.g. primary keys) that
are unique across the set of systems that form a System Landscape (i.e. the set of
systems between which Business Objects may be transported).

Entities that are part of transportable Business Objects must use primary keys
generated by the RAKS instead of the standard Key Server. This is to ensure that
there are no key clashes when a Business Object is transported and applied on a
target system. It's worth noting that entities that already use the standard Key
Server can be changed to use the RAKS.

Runtime Data
An important point to note is that Business Object Types should not contain
entities that consist of runtime data. To avoid this scenario, entities should be
designed to either contain runtime data or administrative (configuration) data. The
former (runtime entities) should not be transported via CTM, and so should use
primary keys generated by the standard Key Server; that is, they should not use

Developing Business Object Modules for Configuration Transport Manager 5

primary keys generated by the RAKS. The latter (administrative entities) can be
transported, and so must use primary keys generated by the RAKS.

Developing BOMs
This chapter describes how to develop the BOMs for a Business Object Type from
scratch. To illustrate the process of developing a BOM, this chapter uses an
artificial example application that manages some pieces of configuration
information. Using this example application, the various steps involved in
analyzing the configuration entities are explained. Then, the content of the
Business Object Types is determined. Next, the BOMs for the Business Object Types
identified are implemented. Finally, the steps involved in testing the transport of
the Business Objects are explored.

The Example Application
Let us assume that there is a user interface for an application that mimics a
traditional Personal Information Management (PIM) application. Also, let us
assume that this functionality is available in the pim component. Usually, a PIM
application provides facilities to manage personal information about a user. Since
managing personal information is quite complex and what we will be discussing
here is just for illustration purposes, we will not be covering the complex details
that are involved in standard PIM application. Also let us assume that this
application provides the following higher level functionality:
v The application manages personal information about a user. This involves

creating, editing and destroying user information.
v The application also supports managing related personal information such as

to-do and note items.
v It is possible from the application to link user to multiple to-do and note items.
v Furthermore, while creating notes, it is possible to associate them with particular

folders.
v Folders can be separately managed and it is possible to assign multiple

permissions to a folder.

Imagine that the application has two separate screens to manage the above
configuration information:
v Folder Screen
v User Screen

Folder Screen
The following actions can be performed via the Folder Screen:
v Managing folder information – e.g. creation, modification and removal of folders.
v Managing permissions related to a folder – e.g. adding and removing the

permissions associated with a particular folder.

Let us imagine that the equivalent home page for folder is developed and available
in a UIM file named Folder_home.uim. This page accepts a mandatory page
parameter named folderID, whose value is used to identify and show the relevant
folder information in the home page.

Entities: For managing folder and its related permission functionalities, let us
assume that the following entities are involved:
v Folder

v FolderPermission

6 IBM Cúram Social Program Management: Business Object Module Development Guide

v FolderPermissionLink

The following diagram represents the entity relationship model for the folder
entities through UML.

The following sections describe the low level details of these entities – e.g. the set
of attributes, the code table associations, and the primary and foreign key details.

Folder

The entity Folder represents a standard folder object. The table below lists the
various attributes that make up the Folder object. Note that the attributes type and
statusCode have code table relationships to FolderType and RecordStatus respectively.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderID Y

name

description

type FolderType

statusCode RecordStatus

Figure 1. UML representation for folder screen entities

Developing Business Object Modules for Configuration Transport Manager 7

FolderPermission

The entity FolderPermission represents a permission object that can be assigned to a
folder. For simplicity, other than the primary key attribute, this entity has only one
attribute, name, which stores the name of the permission. Also note that this
attribute has a soft relationship with the code table FolderPermissionName.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderPermissionID Y

name FolderPermission Name

FolderPermissionLink

Since it is possible for a folder to have multiple permissions associated with it, the
association between a folder and its permissions are captured in this entity.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderPermissionLinkID Y

folderID Folder.folderID

folderPermissionID FolderPermission.
folderPermissionID

Code Tables: The Folder screen entities have dependencies on code tables. This
section lists the set of dependent code tables:

Code Table Name Code Description

FolderType FT_PR Private

FT_PU Public

FolderPermissionName FPN_FC Full Control

FPN_READ Read

FPN_WRITE Write

User Screen
The User Screen provides functionality for the following tasks:
v Managing user information – e.g. creation, modification and removal of users.
v Managing to-do and note items for users - i.e. creation, modification and removal

of to-do and note items.
v Associating to-do and note items with users.
v Assigning notes to folder objects.

Let us imagine that the equivalent home page for user is developed and available
in the UIM file User_home.uim. This page accepts a mandatory page parameter by
the name userID, whose value is used to identify and show the relevant user
information in the home page

Entities: The following entities are used to manage user and the related
functionality:
v User

v ToDo

v UserToDoLink

v Note

8 IBM Cúram Social Program Management: Business Object Module Development Guide

v UserNoteLink

v Category

The following diagram represents the entity relationship model for the user entities
through UML.

The following sections describe the low level details of these entities – e.g. the set
of attributes, the code table associations, and the primary and foreign key details.

User

The User entity represents the user whose personal information is being managed
by the application. The following table provides further details about this entity:

Figure 2. UML representation for user screen entities

Developing Business Object Modules for Configuration Transport Manager 9

Column Name Primary Key Column Foreign Key Details Code Table Association

userID Y

username

displayName

statusCode RecordStatus

ToDo

The ToDo entity represents the information that forms a to-do. For simplicity, this
entity contains the following information:

Column Name
Primary Key
Column Foreign Key Details

Code Table
Association

toDoID Y

description

startDate

endDate

categoryId Category. categoryID

percentageComplete

statusCode RecordStatus

groupName GroupName

Note that the attribute categoryID has a foreign key relationship with the entity
Category. Also, note that the columns statusCode and groupName have associations
with the RecordStatus and GroupName code tables respectively.

UserToDoLink

This link entity provides association between User and ToDo entities. Since there
exists a one-to-many relationship between a user and to-do items, the association
between them is captured in this entity:

Column Name
Primary Key
Column Foreign Key Details

Code Table
Association

userToDoLinkID Y

userID User.userID

toDoID ToDo.toDoID

The Note entity represents the standard note that contains information such as
subject, description, etc. The table below provides more information about this
entity:

Column Name
Primary Key
Column Foreign Key Details

Code Table
Association

noteID Y

subject

description

folderID Folder.folderID

10 IBM Cúram Social Program Management: Business Object Module Development Guide

Column Name
Primary Key
Column Foreign Key Details

Code Table
Association

statusCode RecordStatus

Also, it is possible to associate a note with a folder. This is implemented via a
foreign key relationship with the Folder entity, using the folderID attribute.

UserNoteLink

Since it is possible for a user to have many linked note items, the UserNoteLink
entity is introduced in order to maintain an association between the User and Note
entities:

Column Name
Primary Key
Column Foreign Key Details

Code Table
Association

userNoteLinkID Y

userID User.userID

noteID Note.noteID

Category

The ToDo, entity has a foreign key relationship with the Category entity through the
attribute categoryID. The following table lists the information available on the
Category entity:

Column Name
Primary Key
Column Foreign Key Details

Code Table
Association

categoryID Y

name CategoryName

displayName

description

Code Tables: The User screen entities have dependencies on code tables. This
section lists these code tables:

Code Table Name Code Description

CategoryName CN_BIZ Business

CN_PERS Personal

CN_HOLI Holiday

GroupName GN_PRIV Private

GN_SHARED Shared

BOM Development Methodology
This section describes the general steps involved in implementing BOMs. In broad
terms, this involves the following activities:
v Analyzing Business Object Types
v Implementing BOMs
v Testing BOMs

Developing Business Object Modules for Configuration Transport Manager 11

Analyzing Business Object Types
As part of analysis, the set of configuration entities have to be identified and then
grouped into logically separate Business Object Types. This process involves the
following steps:
v Identifying the Configuration Entities
v Group entities into Business Object Types
v Define Business Object Identifiers
v Ensure that the Configuration Entities use RAKS generated identifiers

Identifying the Configuration Entities
The aim of CTM is to transport configuration data. Therefore, the development
group must be able to identify all of the entities that constitute configuration
information in an application. Because CTM is not designed to support runtime
data, caution has to be exercised in order to ensure that the configuration entities
don't have dependencies upon runtime entities. That is, as part of the analysis, the
configuration entities have to be checked to ensure that there are no foreign key
constraints or any form of soft dependent relationship on runtime entities. If any
such cases are encountered, then the recommendation is to refactor the entity
design so that separate entities are used for configuration and runtime purposes.
That is, one set of entities to hold only configuration data and the other set of
entities to hold the runtime data. Note that the runtime entities can depend on
configuration data, but the reverse is not possible. Returning to the example PIM
application, all of the entities that make up the Folder and User screens are
configuration information.

Group Entities into Business Objects Types
A Business Object Type represents a logical grouping of related configuration data.
In the example application, it is clear that there are two concrete pieces of
information. They are as follows:
v Information pertaining to a folder and their related permissions

v Information specific to a user and its associated relative types such as to-do and
note items.

Hence, the entities that make up the PIM application can be logically grouped into
two categories – in other words, two Business Object Types. One is the Folder
Business Object Type, which contains information specific to folders and their
related permissions. The other is the User Business Object Type, which carries
information about users and other related details.

Define Business Object Identifiers
Each Business Object must have a unique identifier. This is required by CTM in
order to uniquely identify a Business Object within the system landscape. The
Business Object Identifier is comprised of the following elements:
v Business Object Type Identifier
v Business Object Key

Business Object Type Identifier: This is the identifier used by Business Object
Modules to determine the type of the Business Object. Therefore, it must be unique
for each Business Object Type and it must be possible for a Business Object
Module implementation to identify the type of the Business Object from the
identifier. It is important to ensure that this type name does not collide with any
other Business Object Types available in the system i.e., it should not collide with
the names of the Business Object Types provided out-of-the-box, or with any other
Business Object Types developed by customer organizations. To guarantee this, it is

12 IBM Cúram Social Program Management: Business Object Module Development Guide

recommended that Business Object Type names developed externally to the
application are prefixed with a short abbreviation or name identifying the
organization.

So, for an organization called "Sample Organization", the Business Object Type
Identifier for the Folder Business Object Type could be "so.Folder". Similarly, for the
User Business Object Type; it could be "so.User".

Business Object Key: This is the key used by Business Object Modules to
uniquely identify an instance of a Business Object of a particular type. Where the
Business Object supports versioning, the key should identify a particular version of
a Business Object. It must be unique within a Business Object Type, and it must be
possible for a Business Object Module to uniquely identify a Business Object in
persistent storage using the key. To identify the Business Object Key for a Business
Object, the implementation can choose to provide a combined value representing
the primary key attributes of the Initial Entity. The Initial Entity is the root entity
of a Business Object Type. For further information, please refer to “Analyzing the
Folder Business Object Type.”

The primary key attribute of the Folder Business Object Type's Initial Entity is
folderID. So, the value of the folderID attribute can be used as the Business Object
Key for Folder Business Objects. Similarly, the primary key attribute of the User
Business Object Type's Initial Entity User is userID. So, the value of this attribute
can be used as the Business Object Key for User Business Objects.

Note that it is also possible for an Initial Entity to have multiple primary key
attributes. For example, take the example of a Locale Business Object Type with
Initial Entity Locale. The Locale Entity includes the attributes language, country, and
variant. To uniquely identify a particular Locale, the combined value of the
attributes language, country and variant are required. So, the Business Object Key for
the Locale Business Object must contain the values of these three attributes.

Ensure that the Configuration Entities use RAKS generated
identifiers
As has been noted previously, it is mandatory for all configuration entities that
form part of transportable Business Object Types to make use of the new Range
Aware Key Server (RAKS) for the purposes of generating primary keys. The
“Making Configuration Entities RAKS enabled” on page 22 provides details of how
the RAKS is used.

Analyzing the Folder Business Object Type
This section details the various steps involved in analyzing the configuration
information for the Folder Business Object Type.

Identifying the Configuration Entities
The configuration entities that form the Folder Business Object Type are as follows:
v Folder

v FolderPermission

v FolderPermissionLink

Identifying the Initial Entity: The Initial Entity is the root entity of the Business
Object Type. In other words, through this Initial Entity, it will be possible to
identify all of the other entities in the logical grouping. For the Folder Business

Developing Business Object Modules for Configuration Transport Manager 13

Object Type, the Folder entity is the Initial Entity. This is because from this entity, it
is possible to identify the other entities in the Business Object, such as
FolderPermission and FolderPermissionLink.

Identifying the Child Entities: All other entities in the logical grouping,
excluding the Initial Entity are Child Entities. Hence, the entities FolderPermission
and FolderPermissionLink become the Child Entities.

Identifying the Relative Entities: A Relative Entity refers to an entity whose
information needs to be processed before processing a Child Entity. In this specific
case, there are no Relative entities identified for the Folder Business Object Type.

Identifying dependencies
This section illustrates the varying level of dependencies that need to be identified
as part of analysis for a Business Object Type. The dependencies generally fall into
two categories:
v Type-Level dependencies
v Instance-Level dependencies

Type-Level dependencies: Type-Level dependencies are applicable to
relationships that arise after considering the possible set of values that a particular
data field can contain. There is no need to examine the state of the data that
comprise a Business Object in order to identify this level of dependency. For
example, consider the type attribute defined on the Folder entity. The value for this
attribute comes from an entity called CodeTableItem which belongs to CodeTable
Business Object Type. Hence, there exists a static dependency between the Folder
and the CodeTable Business Object Types.The following diagram represents this type
level dependency in UML.

Another form of type-level dependency can be identified by examining the
attributes of all entities in the Business Object Type. If any of the attributes have a
foreign key relationship with the Initial Entity of another Business Object Type,
then there is a type-level dependency on that Business Object Type. For example,
assume that there is a Business Object Type called File. The Initial Entity of this
Business Object Type is the File entity, which in turn has an attribute folderID with
a foreign key relationship with the entity Folder. So, naturally, the File Business
Object Type is related to the Folder Business Object Type. In other words, File has a
type-level dependency on the Folder Business Object Type.Refer the following
diagram that represents this relationship in UML

Figure 3. Type-level relationship between Folder BOM and CodeTable BOM

14 IBM Cúram Social Program Management: Business Object Module Development Guide

Instance-Level dependencies: Instance-Level dependencies are identified by
examining the content of the Business Object. This is best explained using
examples:

Example 1: Consider a folder Business Object instance 'Documents/1' with the
following content:

After examining the data in each attribute, it is obvious that there are attributes
that have instance relationships with CodeTable Business Objects. These are
illustrated in the following table:

Attribute Name Attribute Value
Dependent Business Object
Instance

Folder.type FT_PR CodeTable/FolderType

Folder.statusCode RST1 CodeTable/RecordStatus

FolderPermission.name FPN_READ CodeTable/
FolderPermissionName

The equivalent UML representation is shown in the following diagram.

Figure 4. Type-level relationship between File BOM and Folder BOM

Folder(1, ’Documents’, ’Contains all documents’, ’FT_PR, ’RST1’)

FolderPermission(1, ’FPN_READ’)

FolderPermissionLink(1,1,1)

Developing Business Object Modules for Configuration Transport Manager 15

Example 2: Consider a folder Business Object instance 'Pictures/2' with the
following contents:

After examining the data in each attribute, it is obvious that there are attributes
that have instance relationships with CodeTable Business Objects. These are
illustrated in the following table:

Attribute Name Attribute Value
Dependent Business Object
Instance

Folder.type FT_PU CodeTable/FolderType

Folder.statusCode RST1 CodeTable/RecordStatus

FolderPermission.name FPN_FC CodeTable/
FolderPermissionName

Figure 5. Instance-level relationships between Folder BOM and CodeTable BOM

Folder(2, ’Pictures’, ’Contains all pictures’, ’FT_PU, ’RST1’)

FolderPermission(2, ’FPN_FC’)

FolderPermissionLink(2,2,2)

16 IBM Cúram Social Program Management: Business Object Module Development Guide

The equivalent UML representation is shown in the following diagram.

Note that based on the content of the Business Object, the dependency information
varies. Therefore, such dependencies are termed Instance-Level dependencies.

Identifying the Mode of Deletion
The Mode of Deletion refers to whether the Business Object Type is logically
deleted or physically deleted. This is identified from the Mode of Deletion that is
supported by the Initial Entity. In this case, the mode of deletion supported by the
Folder entity is logical deletion; hence, the Folder Business Object Type supports
logical deletion.

Analyzing the User Business Object Type
This section details the various steps that are involved in analyzing the
configuration information for the User Business Object Type.

Identifying the configuration entities
The following configuration entities form the User Business Object Type:
v User

v ToDo

Figure 6. Instance-level relationships between Folder BOM and CodeTable BOM

Developing Business Object Modules for Configuration Transport Manager 17

v UserToDoLink

v Note

v UserNoteLink

Identifying the Initial Entity: The entity User is the Initial Entity. This is because,
starting with this entity, it is possible to identify both the ToDo and Note entities
and the UserToDoLink and UserNoteLink link entities.

Identifying the Child Entities: All of the other entities in the logical grouping are
child entities. Therefore, the entities ToDo, Note, UserToDoLink and UserNoteLink are
all Child Entities.

Identifying the Relative Entities: A Relative Entity refers to an entity whose
information needs to be processed before processing a child entity. Identifying
Relative Entities involves the following steps:
v Examine all attributes in all child entities for foreign key constraints.
v Determine the other entity upon which there is a constraint. This entity is

known as the parent entity.
v Determine if the parent entity is a Relative Entity as follows:

– If the parent entity is included in the same Business Object Type as the
original entity, then identification of the Relative Entity can be ignored. This is
because the parent entity will be processed in any case as part of the Business
Object Type.

– If the parent entity is not in the same Business Object Type as the original
entity:
- If the parent entity is the Initial Entity of another Business Object Type,

then it is not a Relative Entity. Instead, the other Business Object Type has
to be made a dependent Business Object Type.

- If the parent entity is a Child Entity or a Relative Entity in another Business
Object Type, then it should be considered a Relative Entity.

In the example application, working through the above steps, it is clear that there
is only one Relative Entity for the User Business Object Type. This Relative Entity
is Category. This is because the attribute ToDo.categoryID has a foreign key relation
to the entity Category. However, let's imagine that there is a Category Business
Object Type which has Category as the Initial Entity; in this case, instead of Category
being a Relative Entity, the User Business Object Type should declare the Category
Business Object Type as a dependent Business Object Type.

Identifying dependencies
This section illustrates the dependencies that need to be identified when analyzing
the User Business Object Type.

Type-Level dependencies: After studying the attributes of all of the entities and
relationships, it is clear that the Business Object Type is dependent on the CodeTable
and Folder Business Object Types. The following table summarizes this information:

Attribute Name Relationship Type Dependent on

User.statusCode CodeTable RecordStatus

ToDo.statusCode CodeTable RecordStatus

ToDo.groupName CodeTable GroupName

Note.folderID Foreign Key Constraint Folder.folderID

18 IBM Cúram Social Program Management: Business Object Module Development Guide

Attribute Name Relationship Type Dependent on

ToDo.categoryID Foreign Key Constraint Category.categoryID

The following diagram shows the equivalent UML representation.

Instance-Level dependencies: Instance-Level dependencies are identified by
examining the content of the Business Object. This is best explained using
examples:

Example 1: Consider a user Business Object instance 'Admin/1', with the following
contents:

Figure 7. Type-level relationships for User BOM

User(1, ’Admin’, ’Admin’, ’RST1’)

Category(1, ’CN_BIZ’, ’Category denoting mail items’)

ToDo(1, ’Approve mails’, ’2011-11-11’, ’2011-12-12’, 1, ’45’,
’RST1’, ’GN_PRIV’)

UserToDoLink(1, 1, 1)

Note(1, ’Send follow up mail’, ’Send follow up mail’, 1, ’RST1’)

UserNoteLink(1, 1, 1)

Developing Business Object Modules for Configuration Transport Manager 19

After examining the data in each attribute, it is obvious that there are relationships
with CodeTable and Folder Business Objects. These are listed in the following table:

Attribute Name Attribute Value
Dependent Business Object
Type/Identifier

User.statusCode RST1 CodeTable/RecordStatus

Category.name CN_BIZ CodeTable/CategoryName

ToDo.statusCode RST1 CodeTable/RecordStatus

ToDo.groupName GN_PRIV CodeTable/GroupName

Note.folderID 1 Folder/1

The equivalent UML representation is shown in the following diagram.

Example 2: Consider a folder Business Object instance, 'SuperAdmin/2', with the
following contents.

Figure 8. Instance-level relationships for User BOM

20 IBM Cúram Social Program Management: Business Object Module Development Guide

In this case, there is a single instance level relationship, with a CodeTable Business
Object. Observe that for the Note entity, the value of the attribute folderID is set to
NULL. Therefore, in this case, the 'SuperAdmin/1' Business Object is not related to
the Folder Business Object.

Attribute Name Attribute Value
Dependent Business Object
Type/Identifier

User.statusCode RST1 CodeTable / RecordStatus

Category.name CN_BIZ CodeTable / CategoryName

ToDo.statusCode RST1 CodeTable / RecordStatus

ToDo.groupName GN_PRIV CodeTable / GroupName

The equivalent UML representation is shown in the following diagram.

User(2, ’SuperAdmin’, ’SuperAdmin, ’RST1’)

ToDo(2, ’Approve mails’, ’2011-11-11’, ’2011-12-12’, null, ’45’,
’RST1’, ’GN_PRIV’)

UserToDoLink(2, 2, 2)

Note(2, ’Send follow up mail’, ’Send follow up mail’, null, ’RST1’)

UserNoteLink(2, 2, 2)

Developing Business Object Modules for Configuration Transport Manager 21

Identifying the Mode of Deletion
The Mode of Deletion refers to whether the Business Object Type is logically
deleted or physically deleted. This is identified from the Mode of Deletion that is
supported by the Initial Entity. In this case, the mode of deletion supported by the
User entity is logical deletion; hence the User Business Object Type supports logical
deletion.

Implementing BOMs
This section describes the steps involved in implementing the BOMs for a Business
Object Type. The example User Business Object Type that was discussed in the
previous sections is used to illustrated the process. Broadly speaking,
implementing BOMs involves the following:
v Making Configuration Entities RAKS enabled
v Writing the Entity Business Object Builders for all the entities
v Writing the BOM implementation
v Registering the BOM implementation(s) with the BOM registry

Making Configuration Entities RAKS enabled
As discussed in previous sections, entities that form part of transportable Business
Object Types must use primary keys generated by the Range Aware Key Server
(RAKS).

Figure 9. Instance-level relationships for User BOM

22 IBM Cúram Social Program Management: Business Object Module Development Guide

The basic mechanism is to define a new Key Set for the Business Object Type, to
configure the Key Set to supply keys generated by the RAKS, and then to move all
entities in the Business Object Type to use keys from the Key Set. These keys will
be generated using the RAKS.

Further details on the steps involved are provided in the following subsections.
Again, the User Business Object Type that forms part of the example pim
component is used to illustrate the process.

Creating New Key Set Configuration: Create a new file called KeyServer.dmx in
the location EJBServer\components\pim\data\initial containing the key set definition
for the Business Object Type. Sample content for this file is provided below:

There are several things to be noted in the Key Set definition:
v The property strategy with the value KB1002 indicates to the Key Server that the

RAKS implementation should be used to generate key values.
v The property keySetCode specifies the name of the Key Set. In order that the

corresponding Business Object Type can be identified, it is recommended that
this name is based on the Business Object Type name. So, in the example, the
Key Set for the User BOM is named UserBOMKS

v The property Annotation is used to provide a description of the purpose of the
Key Set configuration.

v Other properties such as nextUniqueIdBlock, humanReadable and lastUpdated are
provided with sensible default values.

Ensure Entities use the new Key Set: All of the entities that form part of the
Business Object Type must use keys generated using the new Key Set. This
includes the Initial Entity, the Child Entities and the Relative Entities. So, in the
example, all of the entities that constitute the User Business object must use keys
generated using the UserBOMKS key set. This mechanism for achieving this
depends on whether the entity uses Auto ID Generation, or invokes the Key Server
directly.

<row>
<attribute name="strategy">
<value>KB1002</value>
</attribute>

<attribute name="keySetCode">
<value>UserBOMKS</value>
</attribute>

<attribute name="nextUniqueIdBlock">
<value>0</value>
</attribute>

<attribute name="humanReadable">
<value>1</value>
</attribute>

<attribute name="lastUpdated">
<value>SYSTIME</value>
</attribute>

<attribute name="Annotation">
<value>Key set for entities used in User BOM </value>
</attribute>

</row>

Developing Business Object Modules for Configuration Transport Manager 23

Auto ID Generation

Most entities use the key server implicitly – that is, keys are generated
automatically when insert operations are invoked. This is known as Auto ID
generation. In order to configure these entities to use the RAKS, use the following
procedure:
v Within the Rational® Software Architect modeling environment, identify all of

the insert operations on the relevant entities. That is, identify the operations with
the insert stereotype.

v For each insert operation, perform the following steps:
– Go to Properties; navigate to the Curam tab. Populate the property Auto ID

Field with the name of the primary key attribute. For example, for the sample
entity the value for the Auto ID Field will be userID.

– Following this, populate the property Auto ID Key with the name of the Key
Set for the Business Object Type. So, in the sample application, the field value
will be UserBOMKS.

Code that invokes the Key Server directly

The Key Server can also be invoked directly, in code. This is achieved by directly
invoking on the one of the curam.util.type.UniqueID class' static methods – usually
the nextUniqueID() method. Typically, code that invokes the standard Key Server
will be along the following lines:

In order to use the RAKS, this code should be changed as follows:

Business Object Classes
The following sub-sections of this document include several code snippets. These
snippets assume that the certain classes are available for the Business Object Type –
e.g. façade classes, DAO classes, etc. For full details of these classes, please refer
“Assumptions on the availability of classes” on page 34

Developing Entity Business Object Builder classes for the
entities
This section describes the steps involved in writing the Entity Business Object
Builder classes for all of the entities in the example User Business Object Type.
Please refer to “BOM Infrastructure” on page 5 for information on the purpose of
Entity Business Object Builder classes.

Category Entity Business Object Builder: The implementation of Entity Business
Object Builder for the Category entity is reasonable straightforward.

Class declaration

The class must extend from curam.ctm.bom.util.impl.AbstractEntityBOBuilder. The
primary key data type and the entity's Dtls data type are Long and CategoryDtls
respectively. Therefore, these types must be specified in the class declaration as

ToDoDtls toDoDtls = new ToDoDtls();
toDoDtls.toDoID = UniqueID.nextUniqueID();

UniqueIDKeySet uniqueIDKeySet = new UniqueIDKeySet();
uniqueIDKeySet.keySetName = "UserBOMKS";

ToDoDtls toDoDtls = new ToDoDtls();
toDoDtls.toDoId = UniqueID.getNextIDFromKeySet(uniqueIDKeySet);

24 IBM Cúram Social Program Management: Business Object Module Development Guide

follows:

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is
unique across the system - i.e. in this case, the string Category can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() will be called by the infrastructure in order to obtain
the entity's Adapter class to perform various operations on the entity. Hence this
method has to be overridden to return an instance of CategoryAdapter class.

Note Entity Business Object Builder:

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type
and the entity's Dtls data type are Long and NoteDtls respectively. Hence, these
types must be specified in the class declaration as follows,

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is
unique across the system - i.e. in this case, the string Note can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden in order to return an instance
of the adapter class - i.e. NoteAdapter.

User Note Link Entity Business Object Builder:

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type
and the entity's Dtls data type are Long and UserNoteLinkDtls respectively. Hence
these types must be specified in the class declaration as follows:

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is
unique across the system - i.e. in this case, the string UserNoteLink can be returned.

class CategoryEntityBOBuilder
extends AbstractEntityBOBuilder<Long, CategoryDtls>{
}

class NoteEntityBOBuilder extends
AbstractEntityBOBuilder<Long, NoteDtls>{
}

class UserNoteLinkEntityBOBuilder
extends AbstractEntityBOBuilder<Long, UserNoteLinkDtls>{
}

Developing Business Object Modules for Configuration Transport Manager 25

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the
adapter class - i.e. UserNoteLinkAdapter.

ToDo Entity Business Object Builder:

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type
and the entity's Dtls data type are Long and ToDoDtls respectively. Hence these
types must be specified in the class declaration as follows,

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is
unique across the system - i.e. in this case, the string ToDo can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the
adapter class - i.e. ToDoAdapter.

User ToDo Link Entity Business Object Builder:

Class declaration

The class must extend AbstractEntityBOBuilder. The primary key data type and the
entity's Dtls data type are Long and UserToDoLinkDtls respectively. Hence, these
types must be specified in the class declaration as follows:

getName() : Returning the name of the entity

The method getName() has to be overridden in order to return the name of the
entity that is unique across the system - i.e. in this case, the string UserToDoLink
can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the
adapter class, i.e. UserToDoLinkAdapter.

User Entity Business Object Builder: Details of the implementation of Entity
Business Object Builder for the User entity are provided below:

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type
and the entity's Dtls data type are Long and UserDtls respectively. Hence these

class ToDoEntityBOBuilder extends
AbstractEntityBOBuilder<Long, ToDoDtls>{

}

class UserToDoLinkEntityBOBuilder extends
AbstractEntityBOBuilder<Long, UserToDoLinkDtls>{

}

26 IBM Cúram Social Program Management: Business Object Module Development Guide

types must be specified in the class declaration as follows,

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is
unique across the system - i.e. in this case, the string User can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the
adapter class, i.e. UserAdapter.

Implementing the BOMs
This section describes the steps involved in implementing the various BOMs for a
Business Object Type. The most straightforward mechanism is to develop a single
BOM class for all of the BOM interfaces that are required for the Business Object
Type. That is, the class implements all of the required BOM interfaces. The
recommended means of doing this is to extend the BOM Infrastructure class
curam.ctm.bom.util.impl.AbstractBOM, which implements the BOM interfaces, and
provides out-of-the-box implementations of several of the methods. Note, however,
that it is also possible to implement all of the BOM interfaces directly if desired.

The process of implementing the BOM is now described through example, using
the sample User Business Object Type described above. In the example, the
recommended strategy of providing a single BOM implementation class is
followed.

Extend AbstractBOM: The first step is to extend the
curam.ctm.bom.util.impl.AbstractBOM class:

Singleton BOMs: An important factor to bear in mind when developing the class
is that BOM implementations are singletons. That is, a single BOM instance will be
created and used for all processing of a Business Object Type. So, if two Change
Sets containing instances if the same Business Object Type are being processed at
the same time, the same BOM instance will be used. BOM implementations must
therefore be capable of being used by multiple threads simultaneously – i.e. must
be thread-safe. The best mechanism for achieving this is to avoid storing Business
Object (instance) -specific state in BOM implementations.

AbstractBOM Method Implementations: The next step is to implement the BOM
methods. Details on how to do this are provided below. Note also that the Javadoc
for the BOM interfaces provides more information on each of the methods. These
interfaces are all members of the package curam.util.ctm.bom.

getName() : Retrieving the name of the Business Object Type

The method getName() should return the name of the Business Object Type. This
name will be displayed in the User Interface while searching for the set of Business

class UserEntityBOBuilder extends
AbstractEntityBOBuilder<Long, UserDtls>{
}

public class UserBOM extends AbstractBOM {

// Provide BOM implementation methods

}

Developing Business Object Modules for Configuration Transport Manager 27

Object Types available on a system. For example, the implementation for User
BOMs could return the BOM name User.

getInitialBO() : Provide the Entity Business Object Builder for the Initial Entity

The get InitialBO() method implementation should provide the Entity Business
Object Builder for the Initial Entity of the Business Object Type. For the sample
User Business Object Type, this is the User entity. The following code snippet
illustrates the process:

In the code snippet, a new instance of UserEntityBOBuilder is created and initiated
with the identifier obtained from the incoming BusinessObjectIdentifier. This instance
is then returned.

The BOTraits annotation: Specifying the Mode of Deletion

The class level annotation curam.util.ctm.bom.annotation.BOTraits is used to indicate
the Mode of Deletion supported by this Business Object Type. It needs to be
specified on the implementation of the curam.util.ctm.bom.InformationalBOM
interface. In the UserBOM example, a common implementation class is being
developed for all BOMs (i.e. the UserBOM class). So the annotation is specified on
this class. This is illustrated on the following code snippet:

The annotation in the example declares that the User Business Object Type
supports logical deletion. However, note that if the BOTraits annotation is not
specified, the infrastructure assumes that the Business Object Type uses Logical
deletion. Hence for a Business Object Type that uses Logical deletion, it is not
mandatory to provide this annotation. However, Business Object Types that are
physically deleted must specify the annotation, using the deletion mode
DeletionMode.PHYSICAL.

getDependentBusinessObjectIdentifiers() : Fetching the Dependent Business Object
identifiers

The getDependentBusinessObjectIdentifiers() method implementation should return
the set of Business Object identifiers on which the Business Object is dependent (if
any). The following code snippet illustrates the process:

protected AbstractBOBuilder getInitialBO(
final BusinessObjectIdentifier boIdentifier) {

final UserEntityBOBuilder userEntityBOBuilder
= userEntityBOBuilderProvider.get();

userEntityBOBuilder.setID(Long.parseLong(
boIdentifier.getBusinessObjectKey().get()));

return userEntityBOBuilder;

}

@BOTraits(deletionMode = DeletionMode.LOGICAL)
public class UserBOM extends AbstractBOM{

}

28 IBM Cúram Social Program Management: Business Object Module Development Guide

As previously noted, during the Business Object Type analysis, it was identified
that the User Business Object is dependent on the CodeTable and Folder Business
Objects. Therefore, the code snippet above adds the relevant CodeTable Business
Objects as dependencies. This is achieved by calling the method
addCodeTableBusinessTypeDependency(). Additionally, because the User entity can be
related to the Folder entity through Note entity, the code calls searchAllNotes() to
retrieve the set of Note entities related to a user. Then, for each Note, the
corresponding Folder Business Object is identified and added to the set to be
returned.

getReadSecurityIdentifier() : Retrieving the Read Security identifiers

The getReadSecurityIdentifier() method implementation has to return all of the
security identifiers (SIDs) required to read the Business Object content. This is used
to assess whether or not an administrative user using CTM has the required read
permissions for the Business Object. An example code snippet is provided below:

public Set<BusinessObjectIdentifier> getDependentBusinessObjectIdentifiers(
final BusinessObjectIdentifier boIdentifier){

final Set<BusinessObjectIdentifier> setOfDependantBOs
= new HashSet<BusinessObjectIdentifier>();

// Adding CodeTable dependencies.
addCodeTableBusinessTypeDependency(

setOfDependantBOs, RECORDSTATUSEntry.TABLENAME);
addCodeTableBusinessTypeDependency(

setOfDependantBOs, GroupNameEntry.TABLENAME);
addCodeTableBusinessTypeDependency(

setOfDependantBOs, CategoryName.TABLENAME);

// Add Folder dependencies
final User user = userDAO.get(Long.parseLong(

boIdentifier.getBusinessObjectKey().get()));

for (final Note note : userDAO.searchAllNotes(user)){

final Folder folder = note.getFolder();

setOfDependantBOs.add(
BusinessObjectIdentifierFactoryImpl.get().

createBusinessObjectIdentifier(
FolderBOMConstants.kFolderBusinessObjectType.
get(), String.valueOf(folder.getID())));

}
return setOfDependantBOs;

}

Developing Business Object Modules for Configuration Transport Manager 29

The above implementation gathers together all of the read operation SIDs from the
relevant Façade APIs. Refer to “Assumptions on the availability of classes” on page
34 for more details.

getWriteSecurityIdentifier() : Retrieving the Write Security identifiers

Similarly, the method getWriteSecurityIdentifier() needs to specify all of the security
identifies (SIDs) required to write the Business Object content. An example code
snippet is provided below:

The above implementation gathers together all of the write operation SIDs from
the relevant Façade APIs. Refer to “Assumptions on the availability of classes” on
page 34 for more details.

Registering the BOM implementation
The next step is to register the BOM implementation(s) with the BOM registry. The
BOM registry, implemented using Guice, acts as a central access point for the CTM
Infrastructure to obtain BOM implementations. So, the User BOM implementation
has to be registered with the BOM registry. The following sections detail the steps
involved in registering BOMs. Again, the process is illustrated by example, using
the sample UserBOM:

public public Set<String> getReadSecurityIdentifier() {

final Set<String> readSecurityIdentifiers
= new HashSet<String>();

readSecurityIdentifiers.add("UserManager.readUser");
readSecurityIdentifiers.add("UserManager.readAllNotes");
readSecurityIdentifiers.add("UserManager.readAllToDos");
readSecurityIdentifiers.add("UserManager.readAllToDos");
readSecurityIdentifiers.add("NoteManager.readNote");
readSecurityIdentifiers.add("ToDoManager.readToDo");

return readSecurityIdentifiers;

}

public Set<String> getWriteSecurityIdentifier() {

final Set<String> writeSecurityIdentifiers
= new HashSet<String>();

writeSecurityIdentifiers.add("UserManager.createUser");
writeSecurityIdentifiers.add("UserManager.editUser");
writeSecurityIdentifiers.add("UserManager.deleteUser");
writeSecurityIdentifiers.add("UserManager.associateNotes");
writeSecurityIdentifiers.add("UserManager.disassociateNotes");
writeSecurityIdentifiers.add("UserManager.associateToDos");
writeSecurityIdentifiers.add("UserManager.disassociateToDos");

writeSecurityIdentifiers.add("NoteManager.createNote");
writeSecurityIdentifiers.add("NoteManager.editNote");
writeSecurityIdentifiers.add("NoteManager.deleteNote");

writeSecurityIdentifiers.add("ToDoManager.createToDo");
writeSecurityIdentifiers.add("ToDoManager.editToDo");
writeSecurityIdentifiers.add("ToDoManager.deleteToDo");

return writeSecurityIdentifiers;
}

30 IBM Cúram Social Program Management: Business Object Module Development Guide

Create a new Guice Module class: Create a new Guice Module called
UserBOMModule that extends from com.google.inject.AbstractModule and provide an
implementation of the configure() method as follows,

Note that in the above code snippet, a new
com.google.inject.multibindings.Multibinder instance is created in order to hold
multiple implementations of the curam.util.ctm.bom.ReadAndUpsertBOM interface.
An object of type UserBOM is bound to this binder using the standard addBinding()
method. The process is repeated with binders for all of the other BOM types - i.e.
for curam.util.ctm.bom.InformationalBOM, curam.util.ctm.bom.SecurityBOM,
curam.util.ctm.bom.DeleteBOM, curam.util.ctm.bom.DependentBOM and
curam.util.ctm.bom.ExistenceBOM interfaces. Note that as a single implementation is
used for all of the BOM types, the same class is bound to each of the binders (i.e.
UserBOM).

Update the new Module class in the MODULECLASSNAME DMX file: Each
component can have a MODULECLASSNAME.dmx DMX file containing the
configuration information for the component's Module classes (if any). The
fully-qualified class name of the Module registering the BOMs must be placed in
this file. For the pim component, the file path of the DMX file will be
EJBServer\components\pim\data\initial\MODULECLASSNAME.dmx. This file will
need to contain the following information:

protected void configure() {

final Multibinder<ReadAndUpsertBOM> readAndUpsertBOMBinder
= Multibinder.newSetBinder(binder(),
ReadAndUpsertBOM.class);

readAndUpsertBOMBinder.addBinding().to(UserBOM.class);

final Multibinder<InformationalBOM> informationalBOMBinder
= Multibinder.newSetBinder(binder(),
InformationalBOM.class);

informationalBOMBinder.addBinding().to(UserBOM.class);

final Multibinder<SecurityBOM> securityBOMBinder
= Multibinder.newSetBinder(binder(),
SecurityBOM.class);

securityBOMBinder.addBinding().to(UserBOM.class);

final Multibinder<DeleteBOM> deleteBOMBinder
= Multibinder.newSetBinder(binder(),
DeleteBOM.class);

deleteBOMBinder.addBinding().to(UserBOM.class);

final Multibinder<DependentBOM> dependentBOMBinder
= Multibinder.newSetBinder(binder(),
DependentBOM.class);

dependentBOMBinder.addBinding().to(UserBOM.class);

final Multibinder<ExistenceBOM> existenceBOMBinder
= Multibinder.newSetBinder(binder(),
ExistenceBOM.class);

existenceBOMBinder.addBinding().to(UserBOM.class);

}

Developing Business Object Modules for Configuration Transport Manager 31

In the code snippet above, the value of the child element value must be the fully
qualified name of the Module class - i.e. sample.package.USERBOMModule in this
case.

Optional BOM types
This section covers the optional BOM types and briefly explains their purpose.

Any optional BOMs required for a Business Object Type should be implemented,
adhering to the appropriate contract described in the BOM Javadoc. The
implementations should then be registered with the BOM registry, using the same
pattern documented above, i.e. in the “Registering the BOM implementation” on
page 30.

Pre Commit Action BOM: This BOM is used to perform any pre-processing
actions on a Business Object during an Apply operation before the Change Set is
committed to the database. An example of an activity that could be implemented
in this BOM is validating the Business Object contents against other Business
Objects that may have been in the Change Set. This BOM can be implemented by
providing an implementation of the interface
curam.util.ctm.bom.PreCommitActionBOM. Please refer to the Javadoc for
curam.util.ctm.bom.PreCommitActionBOM for further information.

Pre Commit Action Type BOM: This BOM is used for pre-processing actions
required at a Business Object Type – level during an Apply operation before the
Change Set is committed to the database. This means that irrespective of the
number of the Business Object instances available for a particular Business Object
Type in a Change Set, the BOM implementation will be called only once. This
BOM can be implemented by providing an implementation of the interface
curam.util.ctm.bom.PreCommitActionTypeBOM. Please refer to the Javadoc for
curam.util.ctm.bom.PreCommitActionTypeBOM for further information.

Post Commit Action BOM: A BOM for performing any post processing actions
after the transaction for an Apply operation has been committed. This BOM can be
implemented by providing an implementation of the interface
curam.util.ctm.bom.PostCommitActionBOM. Note that unlike the other BOMs, a
separate transaction is used for curam.util.ctm.bom.PostCommitActionBOM
implementations, and that the BOMs are invoked after the Apply transaction has
been committed. Therefore, again, unlike the other BOMs, implementations of this
BOM cannot terminate the Apply process by rolling back the transaction. Please
refer to the Javadoc for curam.util.ctm.bom.PostCommitActionBOM for further
information on this BOM.

Revert Change Set Construction Handler BOM: Business Object Types that need
to customize the process of constructing a revert Change Set can achieve this by
providing an implementation of this BOM. This BOM can be implemented by
providing an implementation of the interface
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM. Please refer to both the
“Customizing the construction of revert Change Set” on page 36 in the Appendix
and to the Javadoc for curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM
for more details.

<row>
<attribute name="moduleClassName">
<value>sample.package.UserBOMModule</value>
</attribute>

</row>

32 IBM Cúram Social Program Management: Business Object Module Development Guide

Authorisation BOM: In order to verify whether or not an administrative user can
access a Business Object, it is generally sufficient to check that a user has the SIDs
that are required to read and write instances of the Business Object Type. As noted
above, the SIDs required for a particular Business Object are provided to CTM by
implementing the curam.util.ctm.bom.SecurityBOM.

However, some Business Object Types may have more advanced security
requirements, involving custom programmatic security checks. These checks can be
implemented in curam.util.ctm.bom.AuthorisationBOM for the Business Object Type.
If curam.util.ctm.bom.AuthorisationBOM is provided for a Business Object Type, it
will be used instead of the curam.util.ctm.bom.SecurityBOM to verify whether or not
a user can read or write instances of the Business Object Type.

This BOM can be implemented by providing an implementation of the interface
curam.util.ctm.bom.AuthorisationBOM. Please refer to the Javadoc for
curam.util.ctm.bom.AuthorisationBOM for further information.

Testing the transport of Business Object Types
This section discusses the common testing scenarios that are applicable to most
Business Object Types.

Pre-requisites
The following should be setup before testing commences:
v The source and the target systems should both be available, and should both be

configured to be in the same system landscape.
v The target system should be configured as a destination system for transport

purposes within the source system.
v Configuration data should be available for all of the entities that form the

Business Object Type being tested.

Testing the User Business Object Type via the Administrative
User Interface
It is important to carefully test the BOM implementations. In order to do this, a
comprehensive set of unit tests should be developed for the BOM implementations,
and the functionality should be thoroughly tested via the user interface.

The process of testing Business Object Types via the Administrative User Interface
is described in the following sub-sections. Again, the procedure is illustrated using
the example User Business Object Type.

Listing all active User objects: Create a new Change Set, locate the User Business
Object Type and search for the available Business Objects. The screen should only
list the User objects that are active.

Checking the dependent Business Objects: Populate a new Change Set with
sample User Business Objects. Expand the Change Set and select any of the User
Business Objects. Select the option Add Related Business Object. A pop-up window
showing the Related Business Objects will open and it should contain
CodeTable/RecordStatus, CodeTable/GroupName and CodeTable/CategoryName items. If
the selected Business Object has any dependency on a Folder Business Object, then
the Folder Business Object instance must also be listed.

Releasing the Change Set: Select the Release option for the Change Set. Ensure
that the Release operation completes successfully – i.e. without any errors.

Developing Business Object Modules for Configuration Transport Manager 33

Exporting the Change Set: Select the Export option on the released Change Set.
This export option will convert the contents of all of the Business Objects in the
Change Set into XML format. The Export operation must successfully complete
without any errors.

Transporting the Change Set: Select the Transport option of the release Change
Set. Specify the target machine as the destination to which the Change Set should
be transported. The Transport operation must successfully complete without any
errors. Navigate to the target system's CTM screens to verify that the transported
Change Set is available.

Apply the Change Set: Select the Apply option on the released Change Set on the
target system. This operation will commit the content of the Business Objects from
the Change Set to the target system. To check the availability of the Business
Objects, navigate to the home page of Folder and User to check if the Business
Objects transported from the source machine are listed.

Undoing the Change Set: Select the newly applied Change Set on the target
system. Choose the Undo operation. This operation will "undo" the Change Set -
i.e. the content of the Business Objects that were previously applied will instead be
reverted to their old values, or deleted if they were not already present on the
target system. The delete will either be a logical delete or a physical delete, as
appropriate to the Business Object Type. To verify the correctness of the Undo
operation, navigate to the home page of Folder and User to check if the Business
Objects are in the Inactive state – i.e. have been logically deleted.

Assumptions on the availability of classes

Assumptions
The examples in code assume that the following classes are available for the
Business Object type:
v “Availability of Facade APIs for managing user operations”
v “Availability of Adapter classes” on page 35
v “Availability of Data Access Object classes” on page 35
v “Availability of classes generated from Code Tables” on page 36

Availability of Facade APIs for managing user operations
It is assumed that there are Facade APIs which provide CRUD operations for the
user entity, and provide functionalities for associating/disassociating to-do and note
entities from users. Equivalent Facade APIs are also available for to-do and note
objects. The table below provides details of the operations:

Facade Name Operation Name Description

UserManager createUser Creates a new user

editUser Modify details on existing
user

readUser Reads and returns user
information

deleteUser Removes the user from the
system

associateNotes Associates note items to a
user

34 IBM Cúram Social Program Management: Business Object Module Development Guide

Facade Name Operation Name Description

disassociateNotes Dis-associates note items
from a user

readAllNotes Fetches all the notes for a
user

associateToDos Associates to-do items with a
user

disassociateToDos Disassociates to-do items
from a user

readAllToDos Fetches all the to-do items
for a user

NoteManager createNote Creates a new note

editNote Edits information from
existing note

deleteNote Removes the note

readNote Reads and returns note
information

ToDoManager createToDo Creates a new to-do

editToDo Edits information from
existing to-do

deleteToDo Removes the to-do

readToDo Reads and returns to-do
information

Availability of Adapter classes
It is assumed that the PI Adapter classes are generated and available for the Initial
Entity, Child Entities and Relative Entities. This means that for the User BOM, the
adapter classes described below are available:
v UserAdapter

v NoteAdapter

v UserNoteLinkAdapter

v ToDoAdapter

v UserToDoLinkAdapter

v CategoryAdapter

Availability of Data Access Object classes
In most cases, Adapter classes are sufficient to perform database related operations.
However, it's possible that there are entities related to other entities through
foreign key associations and, in such cases, it is desirable to provide Data Access
Classes to facilitate fetching data from multiple entities. For instance, for the User
Business Object Type, at least one Data Access Object class is required:
v UserDAO, to fetch related information for a user from to-do and note items

DAO Class name Operation Name Description

UserDAO searchAllUsers Searches all the users in the
system

searchAllToDos Search all the related to-do
items for a user

Developing Business Object Modules for Configuration Transport Manager 35

DAO Class name Operation Name Description

searchAllToDoLinks Search all the related to-do
item links for a user

searchAllNotes Search all the related note
items for a user

searchAllNoteLinks Search all the related note
item links for a user

searchAllCategories Search all the related
categories for notes that are
associated with a user

Availability of classes generated from Code Tables
The entities that form the User Business Object Type are dependent on several code
tables. Hence, it is assumed that the equivalent Java™ classes for these code tables
are also available. Refer to the table below for details of these classes:

Code Table Name Java Identifier

GroupName GroupNameEntry

CategoryName CategoryNameEntry

Customizing the construction of revert Change Set

Customization of a revert Change Set
As previously noted, it is sometimes desirable to customize the content of a revert
Change Set.

To illustrate a scenario in which this would be necessary, assume that there can
only be one active User entity in the system. This means that when a new User is
applied to the system, the previously active User entity will become inactive and
the current one will become active.

As an example, consider a Change Set containing a new Business Object User/X.
Also, assume that in the database, there is already an active User Business Object
instance, User/A. While applying the Change Set, the infrastructure creates a
corresponding revert Change Set. This revert Change Set will contain a Delete
instruction for the newly added User. Once the original Change Set is applied,
User/X will be active, and User/A will be inactive.

Now, when applied, the revert Change Set should ideally de-activate User/X (as
this was newly created through the Change Set) and re-activate User/A (as this was
previously active). However, this will only be possible if the revert Change Set
contains the following instructions:
v User/X-Delete

v User/A-Add

While the revert Change Set will automatically contain the instruction User/X-Delete
(as it has been newly created by applying the original Change Set), it will not
contain the instruction User/A-Add. This is because this Business Object was not in
the original Change Set, and is not directly related to the User/X Business Object in

36 IBM Cúram Social Program Management: Business Object Module Development Guide

the original Change Set. So, the implementer of the BOMs for User has to identify
the unrelated Business Object(s) (i.e. User-A in this case), and ensure that it is
placed in the revert Change Set.

In order to provide this functionality, an implementation of
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM must be developed. This
BOM requires an implementation of the constructBusinessObjectIdentifiers() method
that returns the identifiers of unrelated Business Object that are required for revert
purposes.

Note that there is no need for the implementation to specify the instruction type of
the unrelated Business Object(s), because the infrastructure knows how to identify
the instruction type for a given Business Object identifier

The code snippet below illustrates the implementation of the
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM 's
constructBusinessObjectIdentifiers() for the User Business Object Type:

Business Object Modules for Configuration Transport Manager
Glossary

Glossary

Term Meaning

Apply The process of applying the content of a
Change Set stored in the Destination System
Release Area to the Destination System live
database; making the Change Set content
"live".

public final Set<BusinessObjectIdentifier>
constructBusinessObjectIdentifiers(
BusinessObjectIdentifier boIdentifier,
Document boDocument) {

Set<BusinessObjectIdentifier> boIdentifiers
= new HashSet<BusinessObjectIdentifier>();

BusinessObjectIdentifier activeBO
= getActiveBusinessObjectIdentifier();

if (activeBO!= null) {

// If the identified active Business Object is equal
// to the incoming Business Object identifier, then
// we should not have to include it, because this
// Business Object identifier would have
// already undergone processing by the framework.

if (!activeBO.equals(boIdentifier)) {

// Active Business Object exists in the
// database. This needs to be included
// in the revert Change Set XML.

boIdentifiers.add(activeBO);
}
}
return boIdentifiers;

}

Developing Business Object Modules for Configuration Transport Manager 37

Term Meaning

Child Entity All other entities in the Business Object
Type, excluding the Initial Entity and the
Relative Entities are Child Entities.

Destination System The system installation on which a Change
Set is applied.

Entity The data-container objects that make up a
Business Object.

Initial Entity The root entity of a Business Object Type. It
is possible to identify the other entities in
the Business Object Type from this root
entity.

Relative Entity A Relative Entity is defined in the context of
a Child Entity. A Relative Entity refers to an
entity whose information needs to be
upserted/deleted before processing a Child
Entity. This is to ensure that foreign-key
constraints in the database for the Child
Entity are honored.

Release The process of capturing the data as defined
in a Change Set Definition from the live
Source System database, and placement of
the data in the Source System Release Area.

Source System The system installation where a Change Set
originates. That is, the system from which
the Change Set is released.

System Landscape A set of systems between which data will be
transported using CTM. Generally, each
system in the landscape has a defined role -
e.g. Development, UAT, Production.

Transport The process of copying a Change Set from
the Source System Release Area to the
Destination System Release Area.

Upsert An Upsert is an operation to merge an entity
instance into the database. It updates the
entity with new data if the entity already
exists in the database. If the entity does not
exist, it inserts the entity.

Bibliography

Bibliography
Cúram Server Modelling

[Cúram Modelling Reference Guide]

Cúram Persistence Infrastructure
[Cúram Persistence Infrastructure Guide]

Cúram Configuration Transport Manager (CTM)
[Cúram Configuration Transport Manager Guide]

Google Guice 2
Google[http://code.google.com/p/google-guice]

38 IBM Cúram Social Program Management: Business Object Module Development Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 39

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

40 IBM Cúram Social Program Management: Business Object Module Development Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 41

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Java and all Java-based trademarks and logos are registered trademarks of Oracle
and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

42 IBM Cúram Social Program Management: Business Object Module Development Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing Business Object Modules for Configuration Transport Manager
	Introduction
	Purpose
	Target Audience
	Pre-requisites
	Terminology
	Business Object Type
	Business Object
	Business Object Modules

	Overview
	BOM Overview
	Implementing BOMs
	CTM Core Process Flow
	The Release Operation
	Apply Operation
	Pre Apply Phase
	Apply Phase
	Post-Apply Phase

	BOM Infrastructure
	AbstractEntityBOBuilder
	Abstract BOM

	The Range Aware Key Server
	Runtime Data

	Developing BOMs
	The Example Application
	Folder Screen
	Entities
	Code Tables

	User Screen
	Entities
	Code Tables

	BOM Development Methodology
	Analyzing Business Object Types
	Identifying the Configuration Entities
	Group Entities into Business Objects Types
	Define Business Object Identifiers
	Business Object Type Identifier
	Business Object Key

	Ensure that the Configuration Entities use RAKS generated identifiers

	Analyzing the Folder Business Object Type
	Identifying the Configuration Entities
	Identifying the Initial Entity
	Identifying the Child Entities
	Identifying the Relative Entities

	Identifying dependencies
	Type-Level dependencies
	Instance-Level dependencies

	Identifying the Mode of Deletion

	Analyzing the User Business Object Type
	Identifying the configuration entities
	Identifying the Initial Entity
	Identifying the Child Entities
	Identifying the Relative Entities

	Identifying dependencies
	Type-Level dependencies
	Instance-Level dependencies

	Identifying the Mode of Deletion

	Implementing BOMs
	Making Configuration Entities RAKS enabled
	Creating New Key Set Configuration
	Ensure Entities use the new Key Set

	Business Object Classes
	Developing Entity Business Object Builder classes for the entities
	Category Entity Business Object Builder
	Note Entity Business Object Builder
	User Note Link Entity Business Object Builder
	ToDo Entity Business Object Builder
	User ToDo Link Entity Business Object Builder
	User Entity Business Object Builder

	Implementing the BOMs
	Extend AbstractBOM
	Singleton BOMs
	AbstractBOM Method Implementations

	Registering the BOM implementation
	Create a new Guice Module class
	Update the new Module class in the MODULECLASSNAME DMX file

	Optional BOM types
	Pre Commit Action BOM
	Pre Commit Action Type BOM
	Post Commit Action BOM
	Revert Change Set Construction Handler BOM
	Authorisation BOM

	Testing the transport of Business Object Types
	Pre-requisites
	Testing the User Business Object Type via the Administrative User Interface
	Listing all active User objects
	Checking the dependent Business Objects
	Releasing the Change Set
	Exporting the Change Set
	Transporting the Change Set
	Apply the Change Set
	Undoing the Change Set

	Assumptions on the availability of classes
	Assumptions
	Availability of Facade APIs for managing user operations
	Availability of Adapter classes
	Availability of Data Access Object classes
	Availability of classes generated from Code Tables

	Customizing the construction of revert Change Set
	Customization of a revert Change Set

	Business Object Modules for Configuration Transport Manager Glossary
	Bibliography
	Bibliography

	Notices
	Privacy Policy considerations
	Trademarks

