
IBM Cúram Social Program Management
Version 6.0.5

Cúram Batch Processing Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 17

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing batch processes 1
Introduction 1

Overview 1
Prerequisites 1
Introduction 1

Batch Operations 1
Overview 1
Creating batch Operations 1
Restrictions 1
Available Data Types 2
Batch Process Output 2

The Batch Launcher 3
Overview 3
Invoking the Batch Launcher 3
Application Properties 4
Security 5
Batch Error Codes 5
Batch Launcher Output Directory 6

Debugging Batch Programs 6
Administration and Scheduling 6

Overview 6
Administration Interface 7
Batch Process Definitions and Descriptions . . . 7
Batch Process Groups 9
Batch Process Request 9
Batch Error Code Mapping 10

Accessing Application Server Functionality 10
Overview 10
How it works. 10
Properties 11
Deferred processing configuration required . . . 13
Security Considerations 14
Limitations of DB-to-JMS 15

Summary 15
Summary of Key Points 15

Notices 17
Privacy Policy considerations 19
Trademarks 20

© Copyright IBM Corp. 2012, 2014 iii

iv IBM Cúram Social Program Management: Cúram Batch Processing Guide

Figures

1. Batch database tables. 8
2. Using an SQL statement to setup the

DB-to-JMS deferred process 14

3. Using the data manager to setup the
DB-to-JMS deferred process 14

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Cúram Batch Processing Guide

Tables

1. String Representations of the Basic Server Types 2
2. Properties for launching a single Batch Process 3
3. Mandatory application properties specific to

Batch Launcher 4

4. Optional application properties specific to Batch
Launcher 4

5. Properties used by DB-to-JMS 11

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Batch Processing Guide

Developing batch processes

Use this information to learn how to specify, write, manage, configure, and run
batch processes. The batch processing framework allows an external task scheduler
to execute process class operations without user intervention. Users can request
that certain batch processes be ran on their behalf. When started by a task
scheduler, the batch launcher processes these requests and start the relevant batch
processes with the parameters specified by the user.

Introduction

Overview
This document describes the batch processing functionality of the IBM® Cúram
Social Program Management Server Development Environment (SDEJ). You will
learn how to specify, write, manage, configure, and execute batch processes.

Prerequisites
You should be familiar the Cúram Modeling Reference Guide and the Server
Development Environment (SDEJ).

Introduction
The SDEJ Batch Processing framework allows an external task scheduler to execute
process class operations without user intervention.

Client application users can request that certain batch processes be executed on
their behalf. A separate program, the Batch Launcher, when started by a task
scheduler, will process these requests and start the relevant batch processes with
the parameters specified by the user. This is particularly useful for such operations
as report generation.

Batch Operations

Overview
This chapter details how to define batch stereotyped operations for your IBM
Cúram Social Program Management Business Process Objects (BPOs).

Creating batch Operations
To create a batch process executable, simply designate an operation of a process
stereotyped class in your UML model to have the stereotype of batch and develop
the operation as you would normally do for any process class operation. The
generator will produce SQL which will allow this operation to be submitted for
execution by the Batch Launcher.

Restrictions
There are some restrictions on the use of the batch stereotype:
v There may be only one operation in a process class that uses the batch

stereotype.
v The operation may take only one parameter which must be a struct.

© Copyright IBM Corp. 2012, 2014 1

v The struct parameter must be “flat”. i.e. it must not aggregate any other structs.
v The operation return type should be void. Non-void return types are ignored i.e.

treated as void.

Available Data Types
The table below describes the string representations of the basic server types that
can be used in the struct parameter passed to a batch process operation.

Table 1. String Representations of the Basic Server Types

Type String Representation

SVR_CHAR The first character in the string is accepted as the
character value.

SVR_INT8 A number in the range of -128 to 127, for example, -100,
or 78.

SVR_INT16 A number in the range of -32768 to 32767, for example,
25601.

SVR_INT32 A number in the range of -2147483648 to 2147483647, for
example, 40101.

SVR_INT64 A number in the range of

-9223372036854775808 to 9223372036854775807, for
example 3456789012.

SVR_FLOAT A single precision floating point number. The maximum
positive value is 3.402823466e+38 and the minimum
positive value is 1.175494351e-38. For negative values, the
magnitudes are the same. The numbers can be expressed
in exponential form, -3.78123e3 or as a decimal -3781.23.

SVR_DOUBLE A double precision floating point number. The maximum
positive value is 1.7976931348623158e+308 and the
minimum positive value is 2.2250738585072014e-308. For
negative values, the magnitudes are the same. The
numbers can be expressed in exponential or decimal
form.

SVR_STRING As is.

SVR_DATETIME A date in ISO 8601:1988 format yyyymmddThhMMss.
For example, 6:49:02pm on December 9, 1999, would be
represented as 19991209T184902.

SVR_DATE A date in ISO8601:1988 format yyyymmdd. For example,
the previous date would be represented as 19991209.

SVR_MONEY Same as for SVR::Double.

SVR_BOOLEAN One of true or false. The value is case insensitive.

Batch Process Output
It is the responsibility of the batch operation to generate the output of the batch
process. There is, however, no restriction on what output a batch operation may
have: for example it might send its output to a printer, a database table, or
generate an output file in a specified location.

2 IBM Cúram Social Program Management: Cúram Batch Processing Guide

The Batch Launcher

Overview
The Batch Launcher is responsible for handling batch requests. It is a separate
program that does not require an entire application to be running and so may be
started by a task scheduler.

During normal operation batch requests are made using the Batch Administration
interface and are listed on the database. The Batch Launcher, when run, will
process all these requests, in the order in which they were added.

The Batch Launcher can also be configured to run a single request by passing
command line arguments to the Batch Launcher as detailed in “Invoking the Batch
Launcher.”

Since the Batch Launcher does not require the application server to be running, it
does not perform any application level authentication. Instead it uses the
data-source parameters to connect to the database.

Invoking the Batch Launcher
The Batch Launcher is invoked using Apache Ant to build target runbatch. For
example (on Microsoft Windows):

build runbatch

Alternatively the Batch Launcher can also be invoked by using Ant to build the
default target in %SERVER_DIR%/build.xml

The default operation as mentioned is that the Batch Launcher will read the batch
requests listed on the database. Alternatively, the following parameters can be
passed to the Batch Launcher to force it to launch a single batch program, as a Java
argument using “-D”:

Table 2. Properties for launching a single Batch Process

Property Name Purpose

batch.program The fully qualified name of a batch operation
(explained below).

batch.parameters (Optional) parameters for the batch process e.g.
structField1=param1, structField2=param2,
structField3=param3, etc. Note that there should be
no white space in this value.

batch.username A valid application user name. This is optional. See
“Security” on page 5 for more information.

The following describes how to specify the fully qualified name of a batch
operation for the batch.program property in “Invoking the Batch Launcher.” Note
that the database tables mentioned here are part of the internal infrastructure and
are subject to change without notice.

The fully qualified name of a batch operation can be expressed as: appname.
codepackage.intf. classname. operationname for operations in code packages or
appname.intf. classname. operationname for operations not in a code package
where:

Developing batch processes 3

v appname is the application name. Usually “curam”.
v codepackage is the code package of the class containing the operation.
v classname is the name of the class containing the operation.
v operationname is the name of the operation.

appname, classname and operationname can be obtained from the BatchProcDef
database table. codepackage must be looked up from the FunctionIdentifier table.
The key for looking up this table is fidName and is constructed as: classname.
operationname.

If any batch program fails then an email is sent to the recipient specified by the
property curam.batchlauncher.erroremail.recipient if set, the batch request is left on
the queue and the Batch Launcher will terminate immediately, i.e., it will not
attempt to process any other pending batch requests.

Note: Batch programs executing on IBM z/OS® require IBM WebSphere®

Application Server for z/OS to be installed.

Application Properties
The following properties must be set in the Application.prx file:

Table 3. Mandatory application properties specific to Batch Launcher

Property Name Purpose

curam.batchlauncher.erroremail.recipient The email address of the
recipient for error messages
from each batch job.

curam.mail.smtp.serverhost The host name of the Internet
email server to use for sending
error emails.

In addition it is necessary to specify data-source parameters to enable the Batch
Launcher to connect to the database. For more information on data-source
parameters, see the Cúram Server Developer's Guide.

The following properties are optional in the Application.prx file:

Table 4. Optional application properties specific to Batch Launcher

Property Name Purpose

curam.batchlauncher.erroremail.nostacktrace Prevents the stack trace from
being included in the email
which is sent in the event of an
un-handled exception occurring.
If set to true, only the top level
description of the exception will
be included in the body of the
email.

4 IBM Cúram Social Program Management: Cúram Batch Processing Guide

Table 4. Optional application properties specific to Batch Launcher (continued)

Property Name Purpose

curam.batchlauncher.default.error.code Specifies a default return code
for the Batch Launcher when no
code is found in the
BatchErrorCodes database table.
If not specified the value
defaults to 1.

Security
Since the Batch Launcher does not require the application server to be running, it
does not perform any application level authentication or authorization. It must
only authenticate against the database. The same credentials as used by the
application server (located in Bootstrap.properties) are used by the Batch
Launcher to connect to the database and run batch programs.

The property batch.username can be used to specify the user name for the
operations run by the Batch Launcher. Setting this property will affect the user
name recorded in the audit trails, the effective locale for the batch operation, and
the result of the TransactionInfo.getProgramUser() method.

The effective locale for the batch operations is the default locale for the IBM Cúram
Social Program Management server. If the batch.username property is specified, the
effective locale is the default locale for the user specified.

If the batch.username property is not specified, the result of the
TransactionInfo.getProgramUser() method will be null.

Batch Error Codes
Like most applications, the Batch Launcher returns an integer value to the
operating system upon ending. Typically a return value of zero indicates success,
and other value denotes an error condition. By default the return code from the
Batch Launcher in the event of an error is 1, or the value specified by property
curam.batchlauncher.default.error.code.

To give greater flexibility in error handling, it is also possible to map individual
application error messages to different error codes. This would enable a script
which runs the batch launcher to take different actions depending on the return
value from the Batch Launcher.

For example to map a run time exception with message
curam.util.message.infrastructure.ID_RECIP_EMAIL_ERROR to a return code 22
you simply need to add a record to table BatchErrorCodes, containing
infrastructure.ID_RECIP_EMAIL_ERROR and 22 in fields ErrorCodeID and
ErrorCode respectively.

This table can be administered using the Batch Administration interface.

If an error other than a subclass of AppException or AppRuntimeException occurs
during a Batch Launcher run this will be wrapped in a
curam.util.message.infrastructure.ID_UNHANDLED to allow for it to be
customized on the BatchErrorCodes database table.

Developing batch processes 5

Batch Launcher Output Directory
Since the Batch Launcher is a stand-alone Java™ program, its “current” or “base”
directory is determined by the location from which the Java VM is launched. This
in turn determines where any outputs produced by batch programs will be written
to. If required, this base location can be specified by setting the batch.base.dir
property when running the Batch Launcher, i.e.

build runbatch -Dbatch.base.dir=<Directory>

Where <Directory> is the new location required.

The default location from which the VM is launched is %SERVER_DIR%\buildlogs.
Where SERVER_DIR is your platform environment variable (e.g., %SERVER_DIR%
on Windows).

Output from the Batch Launcher is captured in the output directory via the Ant
<record> task in files that are named BatchLauncheryyyyMMddHHmmss.log; where "
yyyy " maps to the year, " MM " to the month, " dd " to the day, " HH " to the hour, "
mm " to the minute, and " ss " to the second. Thus, each output log file is named
based on when the Ant runbatch target is invoked and batch jobs that start at the
same time will write to the same file.

Debugging Batch Programs
The Batch Launcher can also be used as a way of running/debugging or testing
batch programs in your IDE.

Add a new Java class in EJBServer project which wraps the BatchLauncher class in
the CuramSDEJ project. This newly added class should have a main() method,
which delegates straight through to the main() method of the
curam.util.impl.BatchLauncher class in the CuramSDEJ project. For example:
public static void main(String[] args) {

try {
curam.util.impl.BatchLauncher.main(args);
} catch (org.apache.tools.ant.ExitException e) {
System.exit(e.getStatus());

}
}

This class takes up to three arguments which are listed in order in the table in
“Invoking the Batch Launcher” on page 3. If no arguments are passed, this class
will run all batch programs enqueued in table BatchProcRequest.

The advantages of using the Batch Launcher rather than a handcrafted test harness
to launch your program are:
v Database transactions are correctly handled.
v Other transaction information such asBusiness Date is correctly setup. For more

information on theBusiness Date see the Cúram Modeling Reference Guide

Administration and Scheduling

Overview
Batch Requests need to be submitted to be processed by the Batch Launcher
whenever it is run. This is done via the Batch Administration interface.

6 IBM Cúram Social Program Management: Cúram Batch Processing Guide

All you need to do then, is schedule the Batch Launcher to run when you want the
batch requests to be handled. You can use any third-party task scheduling tool of
your choice. None is provided with the IBM Cúram Social Program Management
SDEJ.

Administration Interface
The SDEJ provides an Administration interface for configuring and modifying the
batch administration database tables. This Administration interface is listed below
and more information on its methods and parameters can be found in the JavaDoc
of class curam.util.administration.intf.BatchAdmin

The database tables that this interface modifies are detailed in the following
sections.

Batch Process Definitions and Descriptions
When the model is generated, an XML file called <ProjectName>_batch.xml will be
generated which contains the definitions of your batch processes. In order for users
to issue batch process requests, this information must be loaded into the database
using the Data Manager.

Once the information has been loaded it is possible to use the Administration
interface to add further details about the batch processes and their parameters. The
information that should be added is as follows:
v A description of each of the batch processes;
v The type of each batch process;
v A description of each of the parameters to each of the batch process. These are

actually the fields of the respective batch operations struct fields;
v A default value for each of the parameters to each of the batch processes. This

value should represent a valid input.

This information is contained in a number of database tables as shown in the
following diagram. These tables are described in more detail below.

Developing batch processes 7

v BatchProcDef
The Batch Process Definition table contains the definitions of the batch processes
as output from the model generators. The information in this table is loaded
from the SQL file mentioned above. The fields in this table include:
– processDefName - The name of the batch process.
– appName - The name of your application. This is required to enable the fully

qualified name of the batch operation to be determined.1

– className - The name of the class containing the batch processing operation.
– opName - The name of the operation that performs the batch processing.

v BatchParamDef
The Batch Parameter Definition table contains the definitions of the parameters
associated with the different batch processes. The information on this table is
loaded from the SQL file mentioned above. The fields on this table include:
– paramName - The name of the parameter.
– processDefName - The name of the batch process.
– paramType - The datatype of the parameter.

v BatchProcDesc
The Batch Process Description table contains a user friendly description of the
batch process. The information should be added using the Batch Administration
interface. The fields on this table include:
– processDefName - The name of the batch process.
– processLongName - The descriptive name of the batch process.
– description - A description of the batch process.
– batchType - The type of batch process.

v BatchParamDesc

1. The fully qualified name of a batch operation is composed of the application name, the class name, and the operation name,
separated by dots. For example, curam.intf.Billing. generate

Figure 1. Batch database tables

8 IBM Cúram Social Program Management: Cúram Batch Processing Guide

The Batch Parameter Description table contains a user friendly description of the
parameters associated with a batch process. The information should be added
using the Batch Administration interface. The fields on this table include:
– paramName - The name of the parameter.
– processDefName - The name of the batch process.
– description - The description of the parameter.
– defaultValue - The default value for the parameter.

Batch Process Groups
You may also set up batch process groups and assign the processes to these
groups. The groups will be presented to the user in a tree widget so that related
batch process can be easily identified. For example, you might create a Reports
group to hold your reporting processes.

There are a few rules and restrictions associated with these administration
functions:
v A description must be added for a batch process before it can be added to a

group;
v When a batch process description is added, a set of default batch parameter

descriptions is added automatically. This is to ensure that the description and
definition tables always correspond. These parameter descriptions can then be
modified;

v A batch process can be added to multiple groups, but it cannot be added to the
same group twice.

The batch grouping information is contained in a number of database tables:
v BatchGroupDesc

The Batch Group Description table contains the descriptions of the batch process.
The fields in this table include:
– groupId - The ID of the batch group.
– groupName - A descriptive name of the batch group.

v BatchProcGrpAssoc
The Batch Process Group Association table contains the mapping between batch
processes and batch groups. The fields in this table include:
– groupId - The ID of the batch group.
– processDefName - The name of the batch process.

v BatchGrpGrpAssoc
This table is reserved for future use.

Batch Process Request
Batch Process Requests can be added using the Batch Administration interface and
the information in contained in two database tables for the Batch Launcher to
process.
v BatchProcRequest

The Batch Process Request table contains the requests awaiting execution. The
fields on this table include:
– processRequestId - The unique ID for the batch process request.
– processDefName - The name of the batch process to execute.
– username - The name of the requesting user.

Developing batch processes 9

– timeRequested - The time the batch process request was made.
– priority - The priority of the batch process request.

v BatchParamValue
The Batch Parameter Value table contains the parameter values that should be
passed to a batch process request. The fields on this table include:
– paramName - The name of the parameter.
– processRequestId - The unique ID for the batch process request.
– paramValue - The actual value of the parameter for the batch process request.

Batch Error Code Mapping
The Batch Error Codes table contains mappings from error codes to integers. See
“Batch Error Codes” on page 5 for more information about this feature.

Accessing Application Server Functionality

Overview
IBM Cúram Social Program Management batch programs are designed to run as
Java (rather than Java EE) applications as this simplifies deployment and reduces
licensing costs. However on occasion it is useful for a batch program to initiate
functionality that is typically associated with online programs - such as starting
workflows and deferred processes. In an online application these rely on the
presence of JMS (Java Message Service) which is not available to batch programs.
However batch programs do have access to the database, so for those parts of
workflow and deferred processing which put messages onto queues, a database
table is used to temporarily store the messages. At some later stage a
notification/trigger is sent to the online application. This triggers the online
application to transfer the messages from the DB to the JMS queue. Therefore this
mechanism is known as DB-to-JMS (short for Database-to-JMS).

How it works
DB-to-JMS works by intercepting messages sent to the IBM Cúram Social Program
Management JMS queues in batch processing mode, and instead writing them to a
database table. This means that the standard transactional behavior of messages
(they are not delivered until the originating transaction completes) is maintained.
Once the batch program transaction has been committed2, the application server
must be triggered to transfer the messages from the database table to their JMS
queue(s).

The application server can be triggered by a call from within the application server,
or by a call from a source outside the application server i.e. from the Batch
Launcher or a batch program. The call from outside the application server consists
of a single HTTP/HTTPS request which is handled by a servlet deployed in the
server. This means that the external source must know the host name of the
application server and the port number. This information is specified using
application properties which are detailed below.

The application server does not need to be running in order for batch programs to
use workflow or deferred processes. However it does need to be running in order
to trigger the transfer of messages from the database table to the JMS queue(s).

2. See the Cúram Server Developer's Guide for more information on Transaction Control.

10 IBM Cúram Social Program Management: Cúram Batch Processing Guide

This triggering can be performed in a number of ways:
v Automatically by the batch launcher at the end of each, or all batch programs.

This is controlled by property
curam.batchlauncher.dbtojms.notification.batchlaunchermode which provides
fine grain control on triggering and is explained below.
Depending on how this property is configured, this means that the application
server must be running when a batch job completes execution, or when the
batch launcher finishes processing all queued batch jobs.

v By a call from a batch program. By calling method
curam.util.resources.DBtoJMS. beginTransfer().
Any work completed by the batch program must be committed and the
application server must be running at the time of calling this method.

v By a call from an online program. By calling method DBtoJMS. beginTransfer().
Since this is an online program, the application server is guaranteed to be
already running and will therefore be capable of being triggered.

Once the application server has been triggered, it will start a deferred process to
transfer all messages from the database table to their target queues. To ensure that
the deferred process does not take too long and cause a transaction timeout when
processing a large number of messages, it will only process a fixed number of
messages per transaction. If, at the end of the transaction there are still messages
remaining, it will automatically start another deferred process to handle these, and
so on. The optimal number of messages which can be processed within the
duration of an EJB transaction is dependent on many factors such as hardware
configuration, machine load, etc and is therefore specified by means of an
application property: curam.batchlauncher.dbtojms.messagespertransaction. If
server tracing is switched on, messages will be written to the server log showing
the activities of the DB-to-JMS transactions complete with timings, which can be
used to determine the optimal number of messages per transaction.

Only one triggering is required to cause all messages to be processed. Multiple
triggering will result in multiple threads attempting to convert the same records
which is harmless apart from wasting resources. In the event of a two threads
attempting to process the same message, one of the threads will proceed, the other
will skip (or back-off from) the record and, if tracing is enabled, a message will be
written to the application log to this effect.

Properties
The following properties are used by DB-to-JMS:

Table 5. Properties used by DB-to-JMS

Property Name Type Description

curam.batchlauncher.dbtojms.enabled BOOLEAN Default value is false. When this value is set to true,
batch programs can use deferred processing and
workflow.

curam.batchlauncher.dbtojms.notification.host STRING Specifies the name of the host on which the
application server is running. This is the same as the
port on which the IBM Cúram Social Program
Management client is listening. Batch programs
require this information to trigger the DB-to-JMS
conversion by calling DBtoJMS. beginTransfer().

Developing batch processes 11

Table 5. Properties used by DB-to-JMS (continued)

Property Name Type Description

curam.batchlauncher.dbtojms.notification.port INTEGER Specifies the port number on which the application
server is listening. This is the same as the port on
which the client is listening. See property
curam.batchlauncher.dbtojms.notification.host for
more details.

curam.batchlauncher.dbtojms.notification.ssl BOOLEAN Default value is true. Specifies that the client
application is listening on SSL (that is, uses HTTPS).
This determines whether the Batch Launcher uses
HTTP or HTTPS to notify the application server to
begin a transfer. Note that if an HTTPS notification
fails, an HTTP notification is automatically attempted.
This is to simplify switching between production
mode, which uses SSL and development mode, which
does not, without having to change the value of this
property.

See property
curam.batchlauncher.dbtojms.notification.host for
more details.

curam.batchlauncher.dbtojms.notification.ssl.protocol STRING Default value is SSL. Specifies the SSL protocol name
(for example, SSL, TLS, and so on), which is
dependent on the support that is provided by your
JDK and application server. See the relevant
documentation for protocol names valid in your
environment. For this property to be used, the
curam.batchlauncher.dbtojms.notification.ssl
property must be set to true.

curam.batchlauncher.dbtojms.notification.encoding STRING Specifies the character encoding that is used on the
application server. This is only required if the
application server is using a different character
encoding to that of the batch launcher, and the batch
launcher or batch program triggers the DB-to-JMS
conversion by calling DBtoJMS. beginTransfer().

curam.batchlauncher.dbtojms.notification
.batchlaunchermode

INTEGER Default value is 0 (zero). Specifies the DB-to-JMS
notification mode for the batch launcher. The
following values are valid:

v 0

No DB-to-JMS notification is performed by the
batch launcher.

v 1

One DB-to-JMS notification is performed by the
batch launcher after all batch programs run, or if a
single standalone batch program was ran by
specifying the batch.program property.

v 2

A DB-to-JMS notification is performed by the batch
launcher after each batch program is run, or if a
single standalone batch program was ran by
specifying the batch.program property.

Note that if this property is set to 1 or 2 then
properties
curam.batchlauncher.dbtojms.notification.host and
curam.batchlauncher.dbtojms.notification.port must be
set.

12 IBM Cúram Social Program Management: Cúram Batch Processing Guide

Table 5. Properties used by DB-to-JMS (continued)

Property Name Type Description

curam.batchlauncher.dbtojms.notification.disabled.in
.standalone

BOOLEAN Default value is false. Specifies that the batch
launcher does not perform a DB-to-JMS notification
when run in standalone mode that is, when the batch
launcher is used to start a standalone operation by
specifying property batch.program.

curam.batchlauncher.dbtojms.messagespertransaction INTEGER Default value is 512. Specifies the maximum number
of messages to be processed per transaction when
transferring pending messages from the database
table to their JMS queues.

curam.batchlauncher.dbtojms.notification.test.stubtrigger BOOLEAN Default value is false. When this is set to true, calls
by batch programs or the Batch Launcher to DBtoJMS.
beginTransfer() are stubbed out and take no effect.
That is, this property prevents the method from
attempting to contact an application server. This is to
enable debugging of batch programs in the event of
an application server being unavailable.

curam.custom.deferredprocessing.dpcallback STRING Mandatory. Specifies the name of a custom callback
class that implements interface
curam.util.deferredprocessing.impl.DPCallback.
DB-to-JMS uses deferred processing, and this property
must be set if deferred processing is used anywhere
in the application. Method dpHandleError of this class
is called whenever the deferred process used by
DB-to-JMS fails. The developers implementation of
this method must take appropriate action in the event
of the deferred process failing, such as sending an
email or assigning a new task to a user.

Note: The property curam.test.stubdeferredprocessing, which is used internally by
the SDEJ, can interfere with the operation of DB-to-JMS and must not be set. For
more information about the Offline Unit-Testing of Deferred Processes, see the
Cúram Server Developer's Guide.

Note: When you switch the application between a production and deployment
environment, note that this can affect the host and port on which the application
listens. For example, WebSphere Application Server can use a different port than
Apache Tomcat. Therefore, you might need to change the
curam.batchlauncher.dbtojms.notification.host and
curam.batchlauncher.dbtojms.notification.port properties each time you change
environment.

Deferred processing configuration required
Since DB-to-JMS runs as a deferred process, the deferred process DB_TO_JMS must
be registered by adding an entry in the DPProcess table. This can be done by either
an SQL statement or by a Data Manager file. Examples of each are shown below.

Developing batch processes 13

Security Considerations
As mentioned above, the Batch Launcher or batch programs can optionally trigger
the application server to begin a DB-to-JMS transfer. This involves logging in and
invoking a method on the server, which in turn requires a valid Cúram username
and password. By default the DB-to-JMS transfer operation uses user 'DBTOJMS',
so this account must exist on the Cúram 'Users' table and must be enabled and
assigned the role 'SYSTEMROLE'.

It is also possible to configure a different user name and password for DB-to-JMS.
This is done by providing values for the following properties:
v curam.security.credentials.dbtojms.username - The username that Cúram uses

to process JMS messages created by batch programs.
v curam.security.credentials.dbtojms.password - The password that Cúram uses

to process JMS messages created by Batch programs. This password must be
encrypted.

The above credentials must exist on the Cúram 'Users' table, must be enabled, and
should be assigned the role 'SYSTEMROLE'.

-- Register the DB-to-JMS deferred process:
INSERT INTO DPPROCESS

(PROCESSNAME, INTERFACENAME, METHODNAME, TICKETTYPE, SUBJECT)
VALUES

(’DB_TO_JMS’,
’curam.util.internal.deferredprocessing.intf.DBtoJMSbpo’,
’continueTransfer’, ’INF’,
’Transfers messages from database to JMS queues.’);

Figure 2. Using an SQL statement to setup the DB-to-JMS deferred process

<!-- Register the DB-to-JMS deferred process: -->
<table name="DPPROCESS">

<column name="PROCESSNAME" type="text" />
<column name="INTERFACENAME" type="text" />
<column name="METHODNAME" type="text" />
<column name="TICKETTYPE" type="text" />
<column name="SUBJECT" type="text" />
<row>

<attribute name="PROCESSNAME">
<value>DB_TO_JMS</value>

</attribute>
<attribute name="INTERFACENAME">

<value>
curam.util.internal.deferredprocessing.intf.DBtoJMSbpo
</value>

</attribute>
<attribute name="METHODNAME">

<value>continueTransfer</value>
</attribute>
<attribute name="TICKETTYPE">

<value>INF</value>
</attribute>
<attribute name="SUBJECT">

<value>Transfers messages from database to JMS queues.
</value>

</attribute>
</row>

</table>

Figure 3. Using the data manager to setup the DB-to-JMS deferred process

14 IBM Cúram Social Program Management: Cúram Batch Processing Guide

The previous mechanism for providing custom DB-to-JMS credentials, via the
curam.omega3.DBtoJMSCredentialsIntf, APIs has been deprecated.

Limitations of DB-to-JMS
The DB-to-JMS mechanism has the following limitations:
v It is only used to put messages onto queues, not to take them off queues and

process them.
v Messages can only be seen by the application server after the batch program

transaction has been committed.
v The application server does not poll the table for messages, it must be notified

to do so.
v It is not a JMS implementation i.e. it only works for specific IBM Cúram Social

Program Management queues.

Summary

Summary of Key Points
v Batch processes can be specified by adding an operation with a stereotype of

batch to a process class in the IBM Cúram Social Program Management
application UML model.

v The batch operation may take only one parameter of some struct type whose
fields are of the simple server types.

v The return type of the batch operation should be void.
v The code generator will produce an XML file for input into the Data Manager to

load the definitions of the batch operations into the database. Once there,
descriptions need to be added to the operations and their parameters, and the
operations can be added to groups through the Batch Administration interface.

v The Batch Launcher is responsible for processing batch requests made by users
of the system. The launcher is configured via a combination of Java arguments
passed in and properties on the database.

v A limited set of deferred processing and workflow features are available to batch
programs (through DB-to-JMS, see “Accessing Application Server Functionality”
on page 10) even though these features normally require an application server
and batch programs do not run within an application server.

Developing batch processes 15

16 IBM Cúram Social Program Management: Cúram Batch Processing Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 17

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

18 IBM Cúram Social Program Management: Cúram Batch Processing Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 19

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks and logos are registered trademarks of Oracle
and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

20 IBM Cúram Social Program Management: Cúram Batch Processing Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing batch processes
	Introduction
	Overview
	Prerequisites
	Introduction

	Batch Operations
	Overview
	Creating batch Operations
	Restrictions
	Available Data Types
	Batch Process Output

	The Batch Launcher
	Overview
	Invoking the Batch Launcher
	Application Properties
	Security
	Batch Error Codes
	Batch Launcher Output Directory
	Debugging Batch Programs

	Administration and Scheduling
	Overview
	Administration Interface
	Batch Process Definitions and Descriptions
	Batch Process Groups
	Batch Process Request
	Batch Error Code Mapping

	Accessing Application Server Functionality
	Overview
	How it works
	Properties
	Deferred processing configuration required
	Security Considerations
	Limitations of DB-to-JMS

	Summary
	Summary of Key Points

	Notices
	Privacy Policy considerations
	Trademarks

