
IBM Cúram Social Program Management
Version 6.0.5

Cúram Case Audits Developers Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 17

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing with Case Audits. 1
Introduction 1

Purpose 1
Audience 1
Prerequisites 1
Chapters in this Guide 1

Registering a New Algorithm. 1
Introduction 1
Creating a New Algorithm. 2

Administratively Define the New Algorithm. . 2
Provide an Implementation for the Algorithm . 2
Add a Binding to the New Algorithm
Implementation 4

Utilizing Dynamic Selection Queries 4
What is a Dynamic Selection Query? 4
Why use a Dynamic Selection Query? 5

Implementing a Dynamic Selection Query . . . 5
The Case Audit Query Management API 5
Example: Implementing a Dynamic Selection
Query 6
Using Dynamic Selection Queries for Manual
Case Selection 14

Configuring Selection Queries 14
Introduction 14
Dynamic Selection Queries 14
Fixed Selection Queries 14
Creating a Selection Query 15

Adding Selection Criteria 15
Validating a Selection Query. 16
Publishing a Selection Query 16

Case Audits Web Service 16
Case Audits Web Service 16

Notices 17
Privacy Policy considerations 19
Trademarks 20

© Copyright IBM Corp. 2012, 2014 iii

iv IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

Figures

1. Defining the Algorithm 2
2. Algorithm Implementation 3
3. Binding the Algorithm 4
4. The Case Audit Query Management API . . . 6
5. UIM to allow the audit coordinator to enter

selection criteria 7

6. UIM to allow the audit coordinator choose how
much of the generated case sample to audit . . 9

7. UIM to allow the audit coordinator to specify
configurable parameters for the algorithm . . 11

8. Generating the list of cases for audit 13

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

Tables

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

Developing with Case Audits

Learn how to record new algorithms for producing random samples of cases for
audit. Dynamic selection queries can be used to generate a list of cases for audit.
There are a number of options available for selection queries. Case data from
external sources can be used to generate a list of cases for audit.

Introduction

Purpose
The purpose of this guide is to outline the available customization options for the
Case Audits component and to provide instructions on how to implement these
customizations.

Audience
This guide is intended for developers and architects intending to implement an
auditing solution by customizing Cúram Case Audits.

Prerequisites
Before reading this guide the reader should be familiar with the Cúram Case Audits
Guide. The reader should also be familiar with Google Guice.

Chapters in this Guide
The following list describes the chapters within this guide:

Registering a New Algorithm
This chapter describes how to add a new algorithm which provides a new
method of producing a random sample of cases for audit.

Utilizing Dynamic Selection Queries
This chapter describes how to use Dynamic Selection Queries to generate a
list of cases for audit.

Configuring Selection Queries
This chapter describes the configuration options available for Selection
Queries.

Case Audits Web Service
This chapter provides a brief overview on how case data from external
sources can be used to generate a list of cases for audit.

Registering a New Algorithm
You must provide an implementation which implements the SamplingStrategy
interface in order to register a new algorithm. Use Guice bindings to map the
algorithm to the correct algorithm implementation.

Introduction
The sample algorithm provided with Cúram uses a starting point and an interval
to determine the list of cases to be included in the case audit.

© Copyright IBM Corp. 2012, 2014 1

http://code.google.com/p/google-guice/

Creating a New Algorithm
An organization has the ability to add a new algorithm if the sample algorithm is
not suitable, ensuring that a different method is used when producing a random
sample of cases for audit.

The following example outlines how to add an algorithm 'Every Nth Case', which
adds every nth case to the list of cases to be included in the audit. N is a
parameter specified by the audit coordinator. “Utilizing Dynamic Selection
Queries” on page 4 describes how to include algorithm parameters in case audit
generation. The following sections describe in detail the steps required to create a
new algorithm and add it to the application. The steps required are -
v Administratively Define the New Algorithm
v Provide an Implementation for the Algorithm
v Add a Binding to the New Algorithm Implementation

Administratively Define the New Algorithm
Add a new custom entry to CT_SamplingStrategy.ctx called Every Nth Case.

Provide an Implementation for the Algorithm
The next step that is required to register a new algorithm is to provide the
implementation for the algorithm. This implementation must implement the
SamplingStrategy Interface. The SamplingStrategy Interface has one method
getRandomSample. This method takes a list of case identifiers and applies a
sampling strategy to the list to generate a random case sample for audit. It accepts
three parameters:
v masterList - the main list of cases that the sample is to be created from
v sampleSize - the number of cases that are to be included in the sample
v properties - a map of algorithm or configuration parameters that can be used in

the filtering process.

The SamplingStrategy Interface can be found in the package
curam.samplingstrategy.impl

<code
default="false"
java_identifier="EVERYNTHCASE"
status="ENABLED"
value="SAMPLEVALUE"

>
<locale

language="en"
sort_order="0"

>
<description>Every Nth Case</description>
<annotation/>

</locale>
</code>

Figure 1. Defining the Algorithm

2 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

/*
* Copyright 2011 Curam Software Ltd.
* All rights reserved.
*
* This software is the confidential and
* proprietary information of Curam Software, Ltd.
* ("Confidential Information"). You shall not
* disclose such Confidential Information and shall
* use it only in accordance with the terms of the
* license agreement you entered into with Curam Software.
*/
package curam.samplingstrategy.impl;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

public class EveryNthCase implements SamplingStrategy {

public List<Long> getRandomSample(List<Long> masterList,
int sampleSize, Map<String, Object> properties)
throws AppException, InformationalException {

List<Long> randomSampleList = new ArrayList<Long>();
Integer n = (Integer) properties.get("n");
int index = 0;

if (n <= masterList.size()) {

while (randomSampleList.size() < sampleSize) {
if (index + n < masterList.size()) {

index = index + n;

// If the element has been returned already,
// try the next element until one that hasn’t
// been returned is found
while (randomSampleList.contains(

masterList.get(index))) {
if (index < masterList.size() - 1) {

index++;
} else {

index = 0;
}

}

randomSampleList.add(masterList.get(index));
} else {

// Run out of elements, loop back to the
// start of the list
int elementsToStartOfList = masterList.size() - index;
index = n - elementsToStartOfList;

// If the element has been returned already,
// try the next element until one that hasn’t
// been returned is found
while (randomSampleList.contains(

masterList.get(index))) {
if (index < masterList.size() - 1) {

index++;
} else {

index = 0;
}

}

randomSampleList.add(masterList.get(index));
}

}
}
return randomSampleList;

Developing with Case Audits 3

Add a Binding to the New Algorithm Implementation
Guice bindings are used to map the algorithm to the correct algorithm
implementation.

The new algorithm is now ready to be associated with a Case Audit Configuration
in the Administration Application. For more information on Case Audit
Configuration see the Cúram Case Audits Business Guide.

Utilizing Dynamic Selection Queries
You can generate a random sample of cases with dynamic selection queries.
Dynamic selection queries require a UIM page that allows an audit coordinator to
enter selection criteria values. The case audit query management API is a public
API used to run selection queries.

What is a Dynamic Selection Query?
Dynamic Selection Queries are used to generate a random sample of cases and
contain the selection criteria that are used to search for and produce the list of
cases. They allow the audit coordinator to enter any combination of selection
criteria to be used when producing a list of cases.

/*
* Copyright 2011 Curam Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary
* information of Curam Software, Ltd.
* ("Confidential Information"). You shall not
* disclose such Confidential Information and shall
* use it only in accordance with the terms of the
* license agreement you entered into with Curam Software.
*/

package curam.samplingstrategy.impl;

import com.google.inject.AbstractModule;
import com.google.inject.multibindings.MapBinder;
import curam.codetable.impl.SAMPLINGSTRATEGYEntry;

/**
* Guice module for binding Sampling Strategies.
*
*/

public class Module extends AbstractModule {

@Override
public void configure() {

// register sampling strategies
final MapBinder<SAMPLINGSTRATEGYEntry, SamplingStrategy>

samplingStrategies = MapBinder.newMapBinder(binder(),
SAMPLINGSTRATEGYEntry.class, SamplingStrategy.class);

samplingStrategies.addBinding(
SAMPLINGSTRATEGYEntry.EVERYNTHCASE).to(EveryNthCase.class);

}
}

Figure 3. Binding the Algorithm

4 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

Why use a Dynamic Selection Query?
Four sample queries are provided for each of the standard case types: Integrated
Case, Benefit Product Delivery, Liability Product Delivery and Investigation Case.
If these queries do not contain sufficient criteria, custom selection queries can be
created.

Important: Complex queries are not suited to Dynamic Selection Queries as they
will not perform. If a complex query needs to be created consider using standard
practices followed in the application instead of using a Dynamic Selection Query.
The sample queries have been implemented in this way as they are quite complex.

Implementing a Dynamic Selection Query
For new dynamic selection queries a UIM page must be created so that an audit
coordinator can enter values for the new selection criteria. Similarly, if a new
algorithm requiring parameters is to be used, then this input screen must be
developed. See “Example: Implementing a Dynamic Selection Query” on page 6
for an example using the 'Every Nth Case' algorithm. The following outlines the
steps required to use a custom Dynamic Selection Query.
v Create a new UIM that contains the required selection criteria. The name of this

UIM must match the name that the systems administrator enters for the Random
Generation page name when configuring selection queries.

v Any other required input screens must also be developed, such as screens for
entering algorithm parameters, entering the number of cases to be returned etc.
If multiple screens are used they should be developed as a wizard. For more
information on wizards, please consult the Cúram Web Client Reference Manual.

v Create the necessary struct to cater for the selection criteria.
v Create and implement a new facade method that is responsible for generating

the list of cases for audit. Note that a Case Audit Query Management API is
available to help generate this list of cases.

v The systems administrator must create, validate and publish a new Selection
Query with the SQL required to retrieve the data and the selection criteria
associated with it. The selection query must then be associated with the relevant
case audit configuration.

An example of these steps is provided in “Example: Implementing a Dynamic
Selection Query” on page 6

The Case Audit Query Management API
The Case Audit Query Management API is a public API used to run selection
queries. To use this API a new Dynamic Selection Query must be created in the
systems administration application. The Selection Query should contain the SQL
that is required to perform the search. For example, if a new search that simply
contains a status is required, a dynamic selection query must be entered that
contains the selection criteria page name, along with the following SQL -

SELECT caseID INTO :caseID FROM CaseHeader WHERE statusCode =
:statusCode

The Case Audit Query Management API contains one main method of interest
runDynamicQueryCaseSearch. This method takes two arguments a selection query
identifier and a map of selection criteria (as entered by the audit coordinator). The
selection query is retrieved and the selection criteria entered by the audit
coordinator are substituted into the SQL. The query is then run against the

Developing with Case Audits 5

database and a list of CaseHeader records is returned.

Example: Implementing a Dynamic Selection Query
Step 1: Create a new UIM that contains the required selection criteria.

This screen allows the audit coordinator to enter selection criteria relating to the
dynamic query.

/**
* Executes a Case Audit dynamic selection query
* and returns a list of case header records
* that match the criteria specified in the
* dynamic query.
*
* @param selectionQueryID the unique identifier of the dynamic
* selection query
*
* @param parameterMap Map of all parameters
* in name value pairs.
* @return A list of Case Header records that satisfy the
* selection criteria
* @throws AppException
* @throws InformationalException
*/
public List<CaseHeader> runDynamicQueryCaseSearch(
final long selectionQueryID,
final HashMap<String, String> parameterMap)
throws AppException, InformationalException

Figure 4. The Case Audit Query Management API

6 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

<PAGE
PAGE_ID="exampleSelectionCriteria"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"

>

<PAGE_TITLE>
<CONNECT

<SOURCE
NAME="TEXT"
PROPERTY="PageTitle.Title"

/>
</CONNECT>

</PAGE_TITLE>

<SERVER_INTERFACE
CLASS="ExampleFacade"
NAME="ACTION"
OPERATION="validateCustomCriteria"
PHASE="ACTION"

/>

<PAGE_PARAMETER NAME="auditPlanID"/>
<PAGE_PARAMETER NAME="queryID"/>

<ACTION_SET
ALIGNMENT="CENTER"
TOP="false"

>
<ACTION_CONTROL

LABEL="ActionControl.Label.Cancel"
ALIGNMENT="LEFT"/>

<ACTION_CONTROL
DEFAULT="true"
IMAGE="NextButton"
LABEL="ActionControl.Label.Next"
TYPE="SUBMIT"

>
<LINK

SAVE_LINK="false"
DISMISS_MODAL="false"
PAGE_ID="exampleSelectAmount"

>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="auditPlanID"

/>
<TARGET

NAME="PAGE"
PROPERTY="auditPlanID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="ACTION"
PROPERTY="result$status"

/>
<TARGET

NAME="PAGE"
PROPERTY="status"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="queryID"

/>
<TARGET

NAME="PAGE"
PROPERTY="queryID"

/>

Developing with Case Audits 7

Step 2: If required, create a screen to allow the audit coordinator enter the number
of cases to audit.

8 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

<PAGE
PAGE_ID="exampleSelectAmount"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"

>

<PAGE_TITLE>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="PageTitle.Title"

/>
</CONNECT>

</PAGE_TITLE>

<SERVER_INTERFACE
CLASS="ExampleFacade"
NAME="ACTION"
OPERATION="validateNumberOfCases"
PHASE="ACTION"

/>

<PAGE_PARAMETER NAME="auditPlanID"/>
<PAGE_PARAMETER NAME="status"/>
<PAGE_PARAMETER NAME="queryID"/>

<CLUSTER
DESCRIPTION="Cluster.Description.Text"
LABEL_WIDTH="30">

<FIELD LABEL="Field.Label.Number">
<CONNECT>

<TARGET
NAME="ACTION"
PROPERTY="key$numberOfCases"

/>
</CONNECT>

</FIELD>
</CLUSTER>

<ACTION_SET
TOP="false"

>
<ACTION_CONTROL
LABEL="ActionControl.Label.Cancel"
ALIGNMENT="LEFT"/>
<ACTION_CONTROL

DEFAULT="true"
IMAGE="NextButton"
LABEL="ActionControl.Label.Next"
TYPE="SUBMIT"

>
<LINK

SAVE_LINK="false"
DISMISS_MODAL="false"
PAGE_ID="exampleConfigureAlgorithm"

>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="auditPlanID"

/>
<TARGET

NAME="PAGE"
PROPERTY="auditPlanID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="status"

/>

Developing with Case Audits 9

If required, create a screen to allow the audit coordinator enter algorithm
parameters.

10 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

<PAGE
PAGE_ID="exampleConfigureAlgorithm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"

>

<PAGE_TITLE>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="PageTitle.Title"

/>
</CONNECT>

</PAGE_TITLE>

<SERVER_INTERFACE
CLASS="ExampleFacade"
NAME="ACTION"
OPERATION="generateExampleCaseList"
PHASE="ACTION"

/>

<PAGE_PARAMETER NAME="auditPlanID"/>
<PAGE_PARAMETER NAME="status"/>
<PAGE_PARAMETER NAME="numberOfCases"/>
<PAGE_PARAMETER NAME="queryID"/>

<CONNECT>
<SOURCE

NAME="PAGE"
PROPERTY="auditPlanID"

/>
<TARGET

NAME="ACTION"
PROPERTY="key$auditPlanID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="status"

/>
<TARGET

NAME="ACTION"
PROPERTY="key$status"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="numberOfCases"

/>
<TARGET

NAME="ACTION"
PROPERTY="key$numberOfCases"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="queryID"

/>
<TARGET

NAME="ACTION"
PROPERTY="key$selectionQueryID"

/>
</CONNECT>

<CLUSTER LABEL_WIDTH="30">
<FIELD LABEL="Field.Label.Interval">

<CONNECT>
<TARGET

NAME="ACTION"

Developing with Case Audits 11

Step 3: Create the necessary struct to cater for the selection criteria.

This struct contains all selection criteria available for the selection query along with
any other required parameters.

ExampleSelectionCriteria
v long auditPlanID
v long selectionQueryID
v int numberOfCases
v int interval
v String status

Step 4: Create and implement a new façade method that is responsible for
generating the list of cases for audit.

This method uses the Case Audit Query Management API to execute the dynamic
query, using the supplied selection criteria. This returns the list of cases matching
the selection criteria. The relevant algorithm is then invoked to filter the case list.
Finally, case audit records are created for each case in the remaining list.

12 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

// Inject the map
@Inject
private Map<SAMPLINGSTRATEGYEntry, SamplingStrategy>

samplingStrategies;

/**
* Generates the sample list of cases for audit based on the
* supplied selection criteria. This method filters the list
* using the algorithm associated with the case type for this
* audit plan. The number of cases returned in the list is also
* restricted by the number of cases specified by the user.
*
* @param key The selection criteria, selection query
* identifier, the audit plan identifier,
* the number of cases to generate and any
* algorithm parameters.
*
* @throws AppException
* @throws InformationalException
*/
public void generateExampleCaseList(

ExampleSelectionCriteria key)
throws AppException, InformationalException {

AuditPlan auditPlan = auditPlanDAO.get(key.auditPlanID);

CaseAuditQueryManagement caseAuditQueryManagement =
new CaseAuditQueryManagement();

// Add all selection criteria to the map
HashMap<String, String> parameterMap =

new HashMap<String, String>();
parameterMap.put(":statusCode", key.status);

// Call the Case Audit Query Management API
// to run the selection query
List<curam.piwrapper.caseheader.impl.CaseHeader> caseList =

caseAuditQueryManagement.runDynamicQueryCaseSearch(
key.selectionQueryID, parameterMap);

// Get the algorithm/sampling strategy configured
// for this case type
final SamplingStrategy samplingStrategy =

samplingStrategies.get(
auditPlan.getAuditCaseConfig().getAuditAlgorithm());

List<Long> caseIDList = new ArrayList<Long>();

for (CaseHeader caseHeader : caseList) {
caseIDList.add(caseHeader.getID());

}

// Set up the algorithm parameters
Map<String, Object> params = new TreeMap<String, Object>();
params.put("n", new Integer(key.interval));

// Invoke algorithm to generate case sample,
// passing in the list of cases,
// the number of cases to return and the algorithm parameters
List<Long> caseIDs = samplingStrategy.getRandomSample(

caseIDList, key.numberOfCases, params);

curam.core.facade.intf.CaseAudit caseAuditObj =
curam.core.facade.fact.CaseAuditFactory.newInstance();

// for each case, create a case audit
for (int i = 0; i < caseIDs.size(); i++) {

CaseAuditDetails caseAuditDetails = new CaseAuditDetails();
caseAuditDetails.dtls.auditPlanID = key.auditPlanID;
caseAuditDetails.dtls.caseID = caseIDs.get(i);
caseAuditObj.createCaseAudit(caseAuditDetails);

}

Developing with Case Audits 13

Step 5: The systems administrator must create, validate and publish a new
Selection Query with the SQL required to retrieve the relevant data and the
selection criteria associated with it.

Important: Appropriate database indexing should be provided for any custom
dynamic selection queries. Also, if a significant case load is expected to be returned
from the selection query, it would be advisable to consider using Deferred
Processing to generate the random sample of cases. For more information on
Deferred Processing, please see the Cúram Server Developer Guide.

Using Dynamic Selection Queries for Manual Case Selection
Dynamic selection queries can also be used for manual case selection. A similar
process to the one described above can be used. A new UIM must be created that
contains the required selection criteria. Note, this new UIM must be created
because the resulting case list must be included in the page. This allows the audit
coordinator to manually select from the list of cases. The name of this UIM must
match the name that the systems administrator entered for the Manual Search page
name in the Selection Query configuration. The Case Audit Query Management
API can again be used to execute the query.

Configuring Selection Queries
You can configure selection queries. Two types of selection query exist: dynamic
queries and fixed queries. Selection queries must be published in order to be
associated with a case audit configuration.

Introduction
This chapter describes the configuration options available for Selection Queries.
Selection Queries are used to generate a sample of cases and contain the selection
criteria that are used to search for and produce the list of cases. Two types of
selection query exist, dynamic queries and fixed queries.

Dynamic Selection Queries
A dynamic selection query, when configured for audit, presents a page containing
selection criteria. An audit coordinator must enter values for the criteria which will
return a case sample. The audit coordinator can simply enter the parameters for
one criterion, or has the flexibility to enter parameters for any logical combination
of parameters. For example, to return all open cases for males starting 1-6 January,
the audit coordinator would enter values as follows: case status of open; case start
date range of 1-6 January; and gender of male.

Fixed Selection Queries
A fixed selection query provides a predefined set of selection criteria that is
defined through the entry of an SQL statement. The fixed selection query when
created by a systems administrator contains the values for the selection criteria
such as case status of open etc. An audit coordinator has the option to select this
fixed query when creating a case sample, however, no audit coordinator entry of
selection criteria is required as they have already been input as part of the query.

14 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

CAUTION:
There is no OOTB front-end for the fixed selection query functionality. Whilst
fixed selection queries might be valuable to some customers, any customer
utilizing the functionality would need to consider the security trade off that it
brings. Responsibility falls to the customer to:

v construct the front-end page

v ensure that no malicious content can be passed in and executed

v ensure that the SQL stored in the database is correct

Creating a Selection Query
Creating a selection query is a two step process; the first step allows the addition
of the basic selection query details, such as name and the query type, along with
the SQL. The second step allows the entry of the selection criteria associated with
the selection query.

The 'Name' of the selection query is what will be displayed to the administrator
when configuring a case audit and to the audit coordinator when generating a
random case sample, so it should have a meaningful and descriptive name.

'Query' represents the type of objects that the selection query will impact. In this
initial release there is one type of object, Case. Additional functionality is
envisaged in this area so that selection queries can be captured for any object. An
example usage of this might be participants, where an agency may want to poll all
employers to determine information on employee working patterns.

The 'Query Type' should be chosen depending on the type of selection query
required, Dynamic or Fixed. If the selection query is 'Dynamic', the 'Random
Generation' and 'Manual Search' page names must be entered. The page names
entered must match the name of the custom UIM that will be used to enter the
selection criteria.

The SQL text is the SQL statement that will be used to execute the selection query.
Every field on the custom selection criteria selection screen should be part of the
WHERE clause. Take the example outlined in “Utilizing Dynamic Selection
Queries” on page 4 a UIM has been created to allow the audit coordinator to select
a status, the SQL necessary for this query would be -

SELECT caseID INTO :caseID FROM CaseHeader WHERE statusCode =
:statusCode

Adding Selection Criteria
The next step is to enter the attribute names and values to be used in the SQL
query. These can be added using the 'Add Criteria' link on the second page of the
wizard.

For dynamic selection queries the values will only be used for validation purposes.
Validation of a selection query will be discussed in the next section. For fixed
selection queries the values entered will be the actual values used when executing
the query as the audit coordinator will not have the option to enter their own
values. 'Name' should contain the attribute as it appears in the WHERE clause of
the SQL statement. The 'Display Name' and 'Display Value' should be acceptable
representations of 'Name' and 'Value' that can be displayed to an audit coordinator.

Developing with Case Audits 15

Validating a Selection Query
Once a selection query has been created it can then be validated. The validation
performed checks that the SQL query is valid and that the statement is only
attempting to read data. Note, database integrity must be maintained so the SQL
statement should not modify or remove data. To minimize this risk, the SELECT
and INTO clauses are defaulted. As validation errors can be quite complex please
ensure that the SQL query provided adheres to these guidelines.

Publishing a Selection Query
A selection query must be published to make it available to administrators to
associate with a case audit configuration. This ensures that a query is validated
before being made available for use to an administrator. Finally, before the
selection query can be used by an audit coordinator as part of an audit plan, it will
need to be associated to a case audit configuration by the administrator.

Case Audits Web Service

Case Audits Web Service
A Case Audits Web Service has been provided to allow case data from external
sources to be audited. The Web Service can be invoked on by any capable Web
Service client, including tools such as the Business Intelligence and Reporting Tools
(BIRT) reporting tool. The Web Service receives a list of case identifiers to be used
in an audit along with an associated name to identify the data set, from an external
source. This data is stored in the ExternalCaseAuditData and
ExternalCaseAuditDataItem tables, ready to be included in an audit plan. The
audit coordinator will have the option to select case data from this source. If any of
the cases do not exist on the system, no data will be saved and a response
indicating an error has occurred will be returned. The Case Audit Web Service can
be found at curam.core.ws.convert.bs.impl.ExternalCaseAuditData

16 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 17

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

18 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 19

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

BIRT is a registered trademark of Eclipse Foundation.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

20 IBM Cúram Social Program Management: Cúram Case Audits Developers Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing with Case Audits
	Introduction
	Purpose
	Audience
	Prerequisites
	Chapters in this Guide

	Registering a New Algorithm
	Introduction
	Creating a New Algorithm
	Administratively Define the New Algorithm
	Provide an Implementation for the Algorithm
	Add a Binding to the New Algorithm Implementation

	Utilizing Dynamic Selection Queries
	What is a Dynamic Selection Query?
	Why use a Dynamic Selection Query?
	Implementing a Dynamic Selection Query
	The Case Audit Query Management API
	Example: Implementing a Dynamic Selection Query
	Using Dynamic Selection Queries for Manual Case Selection

	Configuring Selection Queries
	Introduction
	Dynamic Selection Queries
	Fixed Selection Queries
	Creating a Selection Query
	Adding Selection Criteria

	Validating a Selection Query
	Publishing a Selection Query

	Case Audits Web Service
	Case Audits Web Service

	Notices
	Privacy Policy considerations
	Trademarks

