
IBM Cúram Social Program Management
Version 6.0.5

Cúram Evidence Broker Developers
Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 21

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing with Evidence Broker. . . . 1
Introduction 1

Purpose 1
Audience 1
Prerequisites 1
Chapters in this Guide 1

Evidence Broker Architecture 2
Introduction 2
Architecture 2

Following are the key components of Evidence
Broker: 2
Evidence Sharing Steps 2

Evidence Broker Sharing Strategy 3
Evidence Compare Interface 3
Transfer Evidence. 4
Broadcast Evidence Hook 4
Integration with Evidence Generator 4
Evidence Broker Configuration 5

Implementing Evidence Compare Interface 5
Introduction 5
Identify Evidence Types Available for Sharing . . 5
Determine Classes which Implement Evidence
Compare Interface 5
Map Evidence Compare Classes to Evidence Type 6

Using Google Guice 6
Using Registrar 6

Provide Implementation for the Evidence
Compare Interface 6

Values 6
Labels 7
Domains. 7
Sample Implementation. 7

Implementing Transfer Evidence. 9
Introduction 9
Identify Evidence Types Requiring Specialized
Transfer Evidence Code. 9

Using the Broadcast Evidence Hook 11
Introduction 11
Identify Evidence Types with Pre or Post
Processing 11
Provide Implementation for the Evidence
Broadcast Hook 12
Register Custom Override of OOTB Broadcast
Evidence Hook 14

Using Google Guice 14
Using Registration 14

Evidence Broker Sharing Strategy 15
Introduction 15
Provide Implementation for the
EvidenceBrokerSharingStrategy Interface . . . 15

Map the Custom Strategy to a Case Type . . 15
Using Hook to skip Evidence Sharing on
Case/Case Member Creation 15
Provide Implementation for the
EvidenceSharingStrategy Interface 16

Using Evidence Activation Hook 16
Introduction 16
Provide Implementation for the Evidence
Activation Hook 16

Implementing Evidence Broker Task Generation
Strategy 16

Introduction 16
Implementing the
EvidenceBrokerTaskGenerationStrategy Interface . 16

Evidence Broker Web Service 17
Introduction 17
Receive Change Notification Service 17

Incoming Parameters 17
Incoming Parameter Descriptions 18

Notices 21
Privacy Policy considerations 23
Trademarks 24

© Copyright IBM Corp. 2012, 2014 iii

iv IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

Figures

1. Inbound Example : Share Evidence. 19

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

Tables

1. Minimum Requirements 17 2. Parameter Descriptions. 18

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

Developing with Evidence Broker

Use this information to learn about the Evidence Broker and how it is
implemented. The Evidence Broker enables flexible sharing of evidence between
programs and systems to ensure that the most up-to-date evidence changes are
available. Before evidence sharing can occur, it is necessary to define the evidence
types available for sharing and to configure how this sharing occurs.

Introduction

Purpose
The purpose of this guide is to provide a high level understanding of Cúram
Evidence Broker and its components. This guide also describes how custom
evidence can be shared using the Cúram Evidence Broker.

Audience
This guide is for architects and developers responsible for implementing evidence
sharing.

Prerequisites
The reader should be familiar with the business requirements for evidence sharing
and how the Cúram Evidence Broker works. For a high-level overview, see the
Cúram Evidence Broker Guide.

Chapters in this Guide
The following list describes the chapters within this guide:

Evidence Broker Architecture
This chapter provides a high level overview of the key technical aspects of
the Cúram Evidence Broker.

Implementing the Evidence Comparison Interface
This chapter outlines the steps for implementing the Evidence2Compare
interface.

Implementing Transfer Evidence
This chapter discusses the implementation of the transferEvidence evidence
interface operation and why it is required.

Using the Broadcast Evidence Hook
This chapter looks at the Broadcast Evidence hook which allows customers
route the evidence broadcast through their custom processing.

Implementing Evidence Sharing Strategy Interface
This chapter provides high level instructions on how to implement the
EvidenceSharingStrategy interface.

Evidence Broker Web Service
This chapter provides a high level overview of the evidence broker web
service that facilitates evidence sharing with remote systems.

© Copyright IBM Corp. 2012, 2014 1

Evidence Broker Architecture

Introduction
This chapter describes the architecture of the Cúram Evidence Broker.

Architecture
Evidence Broker enables flexible sharing of evidence between programs and
systems to ensure that the most up to date evidence changes are available to the
configured programs and systems improving the speed and accuracy at which
changes are propagated. The system and programs that share the evidence are
called source and the ones that receive these updates are called target. Source and
target could refer to the same system if the system supports multiple programs.

Following are the key components of Evidence Broker:
Change Notification Interface

This evidence broker web services interface is used to share and accept
evidence changes from and to remote systems. An API version of this
interface exists for more performant sharing if the source and target are the
same system.

Evidence Broker Sharing Configuration
Evidence broker sharing configuration allows systems to configure systems,
programs, and evidence types as the source and target for evidence
sharing.

Evidence Broker Sharing Strategy
A case type specific sharing strategy to allow organizations additional
flexibility in providing consent to sharing of evidence changes. A default
sharing strategy exists that uses evidence broker configuration data to
determine the sharing targets.

Evidence Broker Broadcast Hook
An evidence type specific hook that is invoked while applying evidence
changes to the target case.

Evidence Sharing Steps
Following are the high levels steps in the evidence sharing process.

Detect Change
The evidence sharing process starts after a change of evidence is detected,
typically when the user approves evidence, in the source system.

Apply Sharing Strategy
A case type specific sharing strategy is invoked to determine targets
configured for sharing and to notify the targets of the change. The default
sharing strategy uses evidence broker sharing configuration to determine
targets and to notify them of the change. The sharing strategy is executed
in a deferred process to avoid any performance impact on the evidence
approval process.

Notify Change
As part of the sharing strategy, the change is notified to the target system
via a web service call or an API depending on if the sharing is done across
systems or not.

If sharing is via web services, the sources system creates an XML
document containing the change details. In case the target system is the

2 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

same as the source system and API call to Evidence Broker with the
identifier of the changed source evidence is required for change
notification.

Process Change Notification
After receiving the change notification the target system validates the
details by applying the appropriate schema or loading the evidence details
from the database. Evidence broker then checks the configuration to see if
it is allowed to accept the specific evidence type changes from the target
system.

If an appropriate configuration exists, Evidence Broker determines the
cases in that might be impacted from the change and invokes the evidence
type specific hook (Broadcast Evidence hook) to process the evidence
application on the target case. Evidence type specific transferEvidence
operation on EvidenceInterface is called to map various keys from the
source to the target case.

Synchronize Change
A task is sent to the caseworker if an action is required in applying the
shared evidence. The caseworker then using the synchronization screens
applies the changes to the target case. The synchronization screens use the
Evidence Compare interface to return the data source and target evidence
data in a format that is conducive to presenting it on the screen in a user
friendly manner.

Evidence Broker Sharing Strategy
Each time evidence is shared from the source case Evidence Broker invokes the
case type specific Evidence Sharing Strategy. This allows, at a case type level,
flexibility in deciding how the sharing should take place. A default sharing
strategy that is appropriate for most situations is included out of the box. Custom
implementation of the sharing strategy can institute a consent model that uses
customer specific logic to determine if a particular evidence can be shared and also
decide on specific targets that it can be shared with. The transport mechanism of
changes from source to the target can also be modified using a custom strategy.

To facilitate easy creation of new strategies a helper class ProcessEvidenceHelper
has been provided. This class contains reusable code and provides various helper
functions thought to be useful in creating a new strategy.

Evidence Compare Interface
When a user selects the Compare link on the Synchronization screen of the
Evidence Broker, the Evidence2Compare interface identifies all the pieces of
evidence for comparison and returns the evidence comparison data in a format
that can be understood by the evidence comparison screen. The Evidence Broker
API determines which evidence records need to be returned for comparison. It has
been enhanced to transform the data returned from the Evidence2Compare
interface into xml format to be understood by the evidence comparison screens.

Evidence generated by the Cúram Evidence Generator will implement the
Evidence2Compare interface. Customers not using the Cúram Evidence Generator
need to ensure their custom evidence, which is being shared, implements the
interface. They also need to provide the necessary handcrafted functionality in its
implementation which builds up the comparison data to be transformed into xml
by the Evidence API.

Developing with Evidence Broker 3

Transfer Evidence
The transferEvidence operation, which is one of the functions on the Evidence
Interface, handles the foreign keys on a custom entity when evidence is broadcast
from one case to another. For example, if a custom entity has one or more case
participant role fields, code needs to exist in this function to manage the foreign
keys. This is so these fields on the new record on the target case do not point at
case participants on the source case. For evidence generated by the Cúram
Evidence Generator, the code for managing the foreign keys will be automatically
generated.

Note: It should be noted that the transferEvidence interface operation was
originally added for the transfer evidence functionality. The code, whether it be
generated or handcrafted, should cater for both the transferring and broadcasting
of evidence. The transferring of evidence can take place without the Evidence
Broker being installed.

Broadcast Evidence Hook
The Broadcast Evidence hook allows customers provide an alternative mechanism
for broadcasting evidence. Any time the evidence broker is triggered to look for
incoming evidence available for sharing, this hook will be called before the
evidence is broadcast to the target case. Customers can use this hook to call
processing that is usually invoked when evidence is added to a case. Customers
may want to invoke this same processing when evidence is shared on cases. For
example, a workflow may be invoked as part of an evidence insert, either pre or
post, which initiates other events.

The Cúram Evidence Generator automatically inserts in the create evidence service
layer functions a pre and post step for calling custom processing before and after
the evidence is created. These steps apply to general evidence creation and shared
evidence creation. When the Cúram Evidence Generator is not used, customers can
still implement a hook by handcrafting pre and post steps in their own create
evidence business processes. Customers should update their existing create
evidence processes to distinguish between evidence which is being shared and
evidence which is being inserted.

Integration with Evidence Generator
The Cúram Evidence Broker has been integrated with the Cúram Evidence
Generator to streamline the implementation of evidence sharing. When evidence is
generated, it can be shared without any custom code having to be written aside
from listing the classes of evidence types in the Evidence2Compare Registrar. The
Cúram Evidence Generator automatically implements the Evidence2Compare
interface on the generated service layer. It provides implementations for the
Evidence2Compare interface for every generated evidence type. The evidence
generator also provides implementations of the transferEvidence operation, where
required, on the entity layer. This generation saves a considerable amount of
development time.

From the perspective of the Evidence API, integration with the evidence generator
automatically makes the create evidence business process 'evidence sharing' aware.
The generated service layer create functions can recognize the difference between
inserted evidence and evidence broadcast from a source case. As described in the
previous section, this allows customers to use the same pre and post steps of the
insert evidence function for the broadcast evidence.

4 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

Evidence Broker Configuration
Evidence Broker configuration can be set up manually by an administrator. This is
done by enabling sharing when assigning evidence types to cases and by setting
up the source and target evidence types (as described in the Cúram Evidence
Broker Guide).

Implementing Evidence Compare Interface

Introduction
The purpose of this chapter is to provide instructions on how to implement the
Evidence2Compare interface. Most of the instructions in this chapter relate to
evidence sharing that is not generated. When evidence is generated, the only step
required is adding evidence type / class pairings to the Evidence2Compare
registrar.

Identify Evidence Types Available for Sharing
Before evidence sharing can occur, it is necessary to define the evidence types
available for sharing and to configure how this sharing will occur. More
specifically this includes defining the source and target evidence types and cases
(see the Cúram Evidence Broker Guide for more information).

Determine Classes which Implement Evidence Compare
Interface

The evidence generator implements the Evidence2Compare interface at the service
layer. Some custom evidence may not have a service layer, in which case it is
possible to implement the interface at the facade or entity layer. To implement at
the facade layer, it is necessary to have a separate facade for each evidence type
since a single implementation cannot cater for multiple evidence types. There are
no limitations for entities as the entity to evidence type relationship is one-to-one.

Here is a sample declaration of the Sample Sporting Activity Evidence2Compare
implementation which lives on the SampleMaintainSportingActivity facade layer:
/**

* Facade methods for the Sample Sporting Grant Activity
* product.
*/
public class SampleMaintainSportingActivity

extends curam.sample.facade.base.SampleMaintainSportingActivity
implements Evidence2Compare {
.
.
//___
/**
* Return details that will comprise the XML blob used to
* populate the evidence comparison screen inside the
* Evidence Broker.
*
* @param key Identifies an evidence entity
* @return Evidence entity details
*/
public EvidenceComparisonDtls getComparisonData(

EvidenceCaseKey key)
throws AppException, InformationalException {

}
}

Developing with Evidence Broker 5

Map Evidence Compare Classes to Evidence Type
After deciding the classes which implement the Evidence2Compare interface, it is
necessary to add these classes to the Evidence2Compare map that provides a look
up for the implementing class using the evidence type. This can be done in two
ways: using Google Guice module or by a registrar. Though both approaches
achieve the same goal, the Google Guice route is preferred over the registrar route.
Typically the registrar route should be used when overriding the OOTB
implementation. Both approaches are outlined below using the Sample Sporting
Activity evidence type referred to in the previous section:

Using Google Guice
This can be done by creating a Guice module class and adding a corresponding
entry in the MODULE table. A Guice module class is created by deriving a class
from com.google.guice.AbstractModule and overriding the configure method to
add the following statement:
MapBinder<String, Method> evidence2CompareMapBinder =

MapBinder.newMapBinder(binder(), String.class, Method.class,
new RegistrarImpl(RegistrarType.EVIDENCE_TO_COMPARE));

evidence2CompareMapBinder.addBinding(CASEEVIDENCE.SAMPLEADDRESS)
.toInstance(SampleAddressFactory.class.getMethod(

ReflectionConst.kNewInstance, new Class[0]));

Where 'RegistrarType.EVIDENCE_TO_COMPARE' is an annotation which is used
to differentiate between various registrar maps.

It is not necessary to create a new module for each of such hooks you have to
bind. Single module class per component will work well.

Using Registrar
Define the following method in a class:
public void registerEvidence2Compare() throws
AppException, InformationalException {

Evidence2CompareMap map = EvidenceController.
getEvidence2CompareMap();
map.putEvidenceType(CASEEVIDENCE.SAMPLEADDRESS,
SampleAddressFactory.class);

}

The class which implements the registrar must be added to the
ENV_EVIDENCE2COMPARE_REGISTRARS_LIST environment variable.
Out-of-the-box, for example the facade class
curam.sample.sl.fact.SampleSportingGrantEvidenceRegistrarFactory, is added to the
ENV_EVIDENCE2COMPARE_REGISTRARS_LIST variable. Further additions
should be added in a comma delimited fashion, with no space left between the
comma and the next addition to the list.

Provide Implementation for the Evidence Compare Interface
One of the main benefits of using the evidence generator is that developers do not
have to provide an implementation for the Evidence2Compare interface. Without
the evidence generator, this can be a time consuming task, particularly when
sharing a large number of evidence types.

Values
Developers must write code which gets the relevant values, i.e., attributes from the
evidence entity, and put them into a struct that can be transformed into xml by the
Evidence Broker API for evidence comparison purposes.

6 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

Labels
Developers must create an entity.properties file, <Entity>Labels.properties, per
evidence type. This should contain the attribute name and label for that name
which will be displayed on the evidence comparison screen. Like all property files,
the label is localizable.
readDtls.clientDtls.name=Client Name
readDtls.sportingActivityType=Sporting Activity Type
readDtls.sportingAwardType=Sporting Award Type
readDtls.paymentAmount=Payment Amount
readDtls.startDate=Start Date
readDtls.endDate=End Date
readDtls.comments=Comments

Domains
Customers don't need to implement domains with a resource bundle. They could
just as easily use java constants. Labels however, must be localizable, so it makes
sense for them to do it this way. The generated naming convention for domains is
<Entity>Domains.properties. These are generated to the service layer impl code
package (alongside the code that uses them). An example of a domains file is
shown below
readDtls.clientDtls.name=FULL_NAME
readDtls.sportingActivityType=SAMPLE_SPORT_ACT_TYPE
readDtls.sportingAwardType=SAMPLE_SPORT_AWRD_TYPE
readDtls.paymentAmount=CURAM_AMOUNT
readDtls.startDate=CURAM_DATE
readDtls.endDate=CURAM_DATE
readDtls.comments=COMMENTS

Sample Implementation
Here is a sample implementation of the Evidence2Compare interface
//__
/**
* Return details that will comprise the XML blob
* used to populate the evidence comparison screen
* inside the Evidence Broker.
*
* @param key Identifies an evidence entity
* @return Evidence entity details
*/
public EvidenceComparisonDtls getComparisonData(EvidenceCaseKey

key) throws AppException, InformationalException {

EvidenceComparisonDtls evidenceComparisonDtls =
new EvidenceComparisonDtls();

SampleSportingActivityKey sampleSportingActivityKey =
new SampleSportingActivityKey();

sampleSportingActivityKey.sportingActivityID =
key.evidenceKey.evidenceID;

SampleViewSportingActivityDtls readDtls =
readSampleSportingActivityEvidence(

sampleSportingActivityKey);

EvidenceDescriptorKey evidenceKey =
new EvidenceDescriptorKey();

evidenceKey.evidenceDescriptorID =
readDtls.evidenceDescriptorID;

EvidenceDescriptorDtls evidenceDtls =
EvidenceControllerFactory.newInstance()

.readEvidenceDescriptorDtls(evidenceKey);

Developing with Evidence Broker 7

evidenceComparisonDtls.descriptor.assign(evidenceDtls);

evidenceComparisonDtls.descriptor.updatedBy =
readDtls.updatedBy;

evidenceComparisonDtls.descriptor.updatedDateTime =
readDtls.updatedDateTime;

ResourceBundle domainTypes =
ResourceBundle.getBundle(
SampleSportingGrantConst.kSampleSportingActivityDomainsFile,

new Locale(TransactionInfo.getProgramLocale()));

ResourceBundle labels =
ResourceBundle.getBundle(
SampleSportingGrantConst.kSampleSportingActivityLabelsFile,

new Locale(TransactionInfo.getProgramLocale()));

Object[] valueObjects = {
readDtls.clientDtls.name

, readDtls.sportingActivityType
, readDtls.sportingAwardType
, readDtls.paymentAmount
, readDtls.startDate
, readDtls.endDate
, readDtls.comments
};

EvidenceComparisonHelper helper =
new EvidenceComparisonHelper();

// populate the return struct one attribute at a time
for (int i = 0;

i < SampleSportingGrantConst.kSampleSportingActivityNames
.length

&& i < valueObjects.length; i++) {

EvidenceAttributeDtls attribute =
new EvidenceAttributeDtls();

try {
attribute.domain =
domainTypes.getString(
SampleSportingGrantConst.kSampleSportingActivityNames[i]);

} catch (MissingResourceException mrException) {
// missing domain causes widget to fail
// insert SVR_STRING by default
attribute.domain = CuramConst.kDomainSVR_STRING;

}

try {
attribute.label =
labels.getString(
SampleSportingGrantConst.kSampleSportingActivityNames[i]);

} catch (MissingResourceException mrException) {
// labels are blank by default
attribute.label = CuramConst.gkEmpty;

}
attribute.value =

helper.objectToString(valueObjects[i]);
evidenceComparisonDtls.details.addRef(attribute);

}

return evidenceComparisonDtls;
}

8 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

Implementing Transfer Evidence

Introduction
The purpose of this chapter is to provide instructions on how to implement the
transferEvidence Evidence Interface function. This is only necessary when dealing
with handcrafted evidence as this function is automatically generated when using
the Cúram Evidence Generator.

Identify Evidence Types Requiring Specialized Transfer
Evidence Code

Some evidence entities contain one or more case participant role fields. These are
foreign keys to the Case Participant Role entity. When this evidence is broadcast to
one or more target cases, the evidence will initially be inserted with the case
participant roles of the source case. These must be handled by specialized code in
the transferEvidence Evidence Interface function so these fields are updated with
case participant roles on the target case. An example of such code is shown below:
// __
/*
* Method that does any entity adjustments for moving the
* evidence record to a new caseID
*
* @param details Contains the evidenceID / evidenceType
* pairings of the evidence to be transferred
* @param fromCaseKey The case from which the evidence is being
* transferred
* @param toCaseKey The case to which the evidence is being
* transferred
*/
public void transferEvidence(EvidenceTransferDetails details,

CaseHeaderKey fromCaseKey, CaseHeaderKey toCaseKey)
throws AppException, InformationalException {

EIEvidenceKey key = new EIEvidenceKey();

CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();

CaseParticipantRoleDtls caseParticipantRoleDtls;
CaseIDParticipantRoleKey caseIDParticipantRoleKey =

new CaseIDParticipantRoleKey();

CaseParticipantRoleDtlsList caseParicipantRoleDtlsList;
CaseParticipantRole caseParticipantRoleObj =

CaseParticipantRoleFactory.newInstance();

// Read the "from" Evidence entity details
key.evidenceID = details.fromEvidenceID;
key.evidenceType = details.fromEvidenceType;
fromClaimParticipantDtls =

(ClaimParticipantDtls)readEvidence(key);

// Read the "to" evidence entity details
key.evidenceID = details.toEvidenceID;
key.evidenceType = details.toEvidenceType;
toClaimParticipantDtls =

(ClaimParticipantDtls)readEvidence(key);

// Get the case participant details
curam.core.sl.intf.CaseParticipantRole

caseParticipantServiceLayerObj =
curam.core.sl.fact.CaseParticipantRoleFactory.newInstance();

Developing with Evidence Broker 9

CaseParticipantRoleDetails caseParticipantRoleDetails =
new CaseParticipantRoleDetails();

caseParticipantRoleDetails.dtls.caseID = toCaseKey.caseID;
caseIDParticipantRoleKey.caseID = toCaseKey.caseID;
caseParticipantRoleDetails.dtls.fromDate =

Date.getCurrentDate();
caseParticipantRoleDetails.dtls.recordStatus =

RECORDSTATUS.NORMAL;

if (fromClaimParticipantDtls.caseParticipantRoleID != 0L) {

// Find the ParticipantRoleID by using the existing
// CaseParticipantRoleID
caseParticipantRoleKey.caseParticipantRoleID =

fromClaimParticipantDtls.caseParticipantRoleID;

caseParticipantRoleDtls =
caseParticipantRoleObj.read(caseParticipantRoleKey);

// Need to search for the CaseParticipantRole that have the
// to CaseID and the existing ParicipantRoleID. There should
// only be one.
caseIDParticipantRoleKey.participantRoleID =

caseParticipantRoleDtls.participantRoleID;

caseParticipantRoleDtlsList =
caseParticipantRoleObj.searchByParticipantRoleAndCase(

caseIDParticipantRoleKey);

caseParticipantRoleDetails.dtls.participantRoleID =
caseParticipantRoleDtls.participantRoleID;

// If the list is empty, it means the participant to whom the
// evidence belongs is not a CPR on the toCase
if (caseParticipantRoleDtlsList.dtls.isEmpty()) {

// never create a PRIMARY in transferEvidence
if (caseParticipantRoleDtls.typeCode.equals(

CASEPARTICIPANTROLETYPE.PRIMARY)) {

caseParticipantRoleDetails.dtls.typeCode =
CASEPARTICIPANTROLETYPE.MEMBER;

} else {
// use the ’from’ type
caseParticipantRoleDetails.dtls.typeCode =

caseParticipantRoleDtls.typeCode;
}

// Create a new record
caseParticipantServiceLayerObj.insertCaseParticipantRole(

caseParticipantRoleDetails);

toClaimParticipantDtls.caseParticipantRoleID =
caseParticipantRoleDetails.dtls.caseParticipantRoleID;

} else {

// MEMBER takes precedence
if (fromClaimParticipantDtls.caseParticipantRoleID

== toClaimParticipantDtls.caseParticipantRoleID) {

for (int i = 0;
i < caseParticipantRoleDtlsList.dtls.size(); i++) {

if (caseParticipantRoleDtlsList.dtls.item(
i).typeCode.equals(CASEPARTICIPANTROLETYPE.MEMBER)

10 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

|| caseParticipantRoleDtlsList.dtls.item(
i).typeCode.equals(CASEPARTICIPANTROLETYPE.PRIMARY)) {

toClaimParticipantDtls.caseParticipantRoleID =
caseParticipantRoleDtlsList.dtls.item(

i).caseParticipantRoleID;
break;

}

}

}

// If there are still no matches, use the MEMBER type to
// create a new record
if (fromClaimParticipantDtls.caseParticipantRoleID

== toClaimParticipantDtls.caseParticipantRoleID) {

caseParticipantRoleDetails.dtls.typeCode =
CASEPARTICIPANTROLETYPE.MEMBER;

caseParticipantServiceLayerObj.insertCaseParticipantRole(
caseParticipantRoleDetails);

toClaimParticipantDtls.caseParticipantRoleID =
caseParticipantRoleDetails.dtls.caseParticipantRoleID;

}

}

}

claimparticipantKey.evidenceID = details.toEvidenceID;
modify(claimparticipantKey, toClaimParticipantDtls);

}

Using the Broadcast Evidence Hook

Introduction
The purpose of this chapter is to provide instructions on how to use the broadcast
evidence hook.

Identify Evidence Types with Pre or Post Processing
Some evidence types require pre and / or post processing when evidence is
created, whether through an insert or through sharing. The purpose of the
broadcast evidence hook is to allow developers to include this processing when
sharing evidence. Before using the broadcast evidence hook, developers must first
identify the evidence types with pre and / or post create processing which need to
be invoked as part of evidence sharing.

Developers then need to provide a second create business process whose signature
will accept the additional parameters required for evidence sharing. Keeping the
existing create business process will ensure there is no impact on existing
functionality and existing tests. The simplest way to achieve this is to move the
code from the original business process into the new business process and get the
original process to call the new one. Here is a sample of the signature for the new
business process:
//___
/**
* Creates a <custom> evidence record.

Developing with Evidence Broker 11

*
* @param dtls Contains <custom> evidence creation details
* @param sourceEvidenceDescriptorDtls If this function is
* called during evidence sharing, this parameter will be
* non-null and it represents the header of the evidence
* record being shared (i.e. the source evidence record)
* @param targetCase If this function is called during evidence
* sharing, this parameter will be non-null and it represents
* the case the evidence is being shared with.
* @param sharingInd A flag to determine if the function is
* called in evidence sharing mode. If false, the function
* is being called as part of a regular create.
*
* @return the new evidence ID and warnings.
*/
public ReturnEvidenceDetails create<Custom>Evidence(

<Custom>EvidenceDetails dtls,
EvidenceDescriptorDtls sourceEvidenceDescriptorDtls,
CaseHeaderDtls targetCase, boolean sharingInd)
throws AppException,InformationalException {

Provide Implementation for the Evidence Broadcast Hook
The Broadcast Evidence hook is used to route the processing for specific evidence
types to their respective create business processes. Here is a sample
implementation of the Broadcast Evidence hook which includes comments to
clearly describe what needs to be done:
/**
* Sample implementation of the Broadcast Evidence hook.
*/
public abstract class CustomBroadcastEvidence extends

custom.evidencebroker.sl.base.CustomBroadcastEvidence {

//___
/**
* Delegates the evidence broadcast through the custom service
* layer processing.
*
* @param sourceDescriptor The source evidence descriptor
* @param targetCase The case the evidence is being broadcast
* to
* @return The evidence descriptor of the broadcast record on
* the target case
*/
public EvidenceDescriptorDtls processBroadcast(

EvidenceDescriptorDtls sourceDescriptor, CaseHeaderDtls
targetCase) throws AppException, InformationalException {

if (sourceDescriptor.evidenceType.equals(
CASEEVIDENCE.ALIEN)) {

// Read the Alien evidence details (through the service
// layer)
AlienKey alienKey = new AlienKey();
alienKey.alienID = sourceDescriptor.relatedID;

ReturnAlienDetails alienDetails =
AlienFactory.newInstance().readAlienDetails(alienKey);

// Assign these details to the alien creation struct,
// e.g.
// Note: a number of assignments may be required here
// depending on the number of aggregated structs
// within ReturnAlienDetails and CreateAlienDetails
CreateAlienDetails createAlienDetails =

new CreateAlienDetails();

12 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

createAlienDetails.assign(alienDetails);

ReturnCreateAlien returnCreateAlien =
AlienFactory.newInstance().createAlienEvidence(

createAlienDetails,
sourceDescriptor,
targetCase,
true);

RelatedIDAndEvidenceTypeKey key =
new RelatedIDAndEvidenceTypeKey();

key.relatedID = returnCreateAlien.alienID;
key.evidenceType = CASEEVIDENCE.ALIEN;

// Read the EvidenceDescriptor and return the details
EvidenceDescriptor evidenceDescriptorObj =

EvidenceDescriptorFactory.newInstance();

return evidenceDescriptorObj.readByRelatedIDAndType(key);
}

// null will be returned for all other evidence types
return null;

}

}
/**

* Delegates the external evidence broadcast through the
* custom service layer processing.
*
* @param descriptorDetails Contains the evidence descriptor
* details received from remote system.
* @param targetCase Contains the case the evidence is being
* broadcast to.
*
* @return The evidence descriptor of the broadcast record on
* the target case.
*/

public EvidenceDescriptorDtls processExternalBroadcast(
SharedEvidenceDescriptorDetails descriptorDetails,
CaseHeaderDtls targetCase) throws AppException,
InformationalException {

if (descriptorDetails.details.evidenceType.
equals(CASEEVIDENCE.ALIEN)) {
EvidenceDescriptorDtls evidenceDescriptorDtls =
EvidenceControllerFactory.newInstance().
shareExternalEvidence(descriptorDetails, targetCase);

// Perform Alien evidence specific processing here
// . . .
// . . .

return evidenceDescriptorDtls;
}
// null will be returned for all other evidence types
return null;

}
/**

* Returns the structure with a true value set if the evidence being
* passed has been auto accepted onto the target case else false would
* be returned.
*
* @param sourceDescriptor
* Contains source evidence descriptor details.

Developing with Evidence Broker 13

* @param targetCase
* Contains the case identifier of the evidence is being
* broadcast to.
*
* @return True would be returned if the evidence being passed has
* been auto accepted onto the target case else false.
*/
public EvidenceAutoAcceptanceInd isAutoAccepted(

EvidenceDescriptorDtls sourceDescriptor,
CaseHeaderDtls targetCase) throws AppException,
InformationalException {

return null;
}

Register Custom Override of OOTB Broadcast Evidence Hook
The Cúram Evidence Broker comes with an OOTB Broadcast Evidence hook as
part of the Evidence Broker. After creating a custom version of the hook, it is
necessary to associate the custom version with the evidence type. The custom hook
is managed by a combination of the BroadcastEvidenceManager.

This can be done in two ways: using Google Guice module or by a registrar.
Though both approaches achieve the same goal, the Google Guice route is
preferred over the registrar route. Typically the registrar route should be used
when overriding the OOTB implementation. Both approaches are outlined below:

Using Google Guice
This can be done by creating a Guice module class and adding a corresponding
entry in the MODULE table. A Guice module class is created by deriving a class
from com.google.guice.AbstractModule and overriding the configure method to
add the following statement:
public void configure() {

MapBinder<String, Method> broadcastEvidenceHookMapBinder
= MapBinder.newMapBinder(binder(), String.class, Method.class,
new RegistrarImpl(RegistrarType.EVIDENCE_BROKER));

broadcastEvidenceHookMapBinder.addBinding(CASETYPECODE.
INTEGRATEDCASE).toInstance(BroadcastEvidenceFactory.class.
getMethod(ReflectionConst.kNewInstance, new Class[0]));
}

Where 'RegistrarType.EVIDENCE_BROKER' is an annotation which is used to
differentiate between various registrar maps.

It is not necessary to create a new module for each of such hooks you have to
bind. Single module class per component will work well.

Using Registration
This is done by adding the custom hook to the
ENV_BROADCASTEVIDENCE_REGISTRARS_LIST environment variable. The
BroadcastEvidenceRegistrar contains an interface which must be implemented by a
custom registrar class in order to register the class which implements the hook.
This is looked up via the BroadcastEvidenceManager class inside the Evidence
Broker.
/**
* Registers the custom evidence broadcast hook
*/
public class CustomBroadcastEvidenceRegistrar

extends custom.sl.base.CustomBroadcastEvidenceRegistrar
implements BroadcastEvidenceRegistrar {

14 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

public void register() {
HookMap map = BroadcastEvidenceManager.get();
map.addMapping(CASETYPECODE.INTEGRATEDCASE,

BroadcastEvidenceFactory.class);
}

}

Evidence Broker Sharing Strategy

Introduction
The purpose of this chapter is to provide high level instructions on how to
implement the EvidenceBrokerSharingStrategy and EvidenceSharingStrategy
interface and usage of hook which skips evidence sharing on case/case member
creation.

Provide Implementation for the
EvidenceBrokerSharingStrategy Interface

This interface needs to be implemented in scenarios where the customer wants to
change the conditions under which an evidence type for a specific case is shared or
the target systems it is shared with.

Please see the code of class
curam.evidencebroker.sl.infrastructure.impl.EvidenceBrokerSharingStrategyImpl as
an interface implementation sample.

Map the Custom Strategy to a Case Type
The Cúram Evidence Broker comes with an EvidenceBrokerSharingStrategy
implementation that acts as default strategy for all the case types without a specific
sharing strategy. After creating a custom strategy (for example,
CustomEvidenceBrokerSharingStrategyImpl) for a case type, it is necessary to bind
the strategy with the case type. This can be done by creating a Guice module class
and adding a corresponding entry in the MODULE table. A Guice module class is
created by deriving a class from com.google.guice.AbstractModule and overridding
the configure method to add the following statement:
public void configure() {

MapBinder<String, CaseTypeEvidence< mapbinder =
MapBinder.newMapBinder(binder(), String.class,

CaseTypeEvidence.class);
mapbinder.addBinding(CASETYPECODE.INTEGRATEDCASE).to(

IntegratedCaseTypeEvidence.class);

}

It is not necessary to create a new module for each of such hooks you have to
bind. Single module class per component will work well.

Using Hook to skip Evidence Sharing on Case/Case Member
Creation

The new hook is provided to stop evidence sharing on case/case member creation
process and restart at the later stage if required.The API stopSharing() and
restartSharing() in curam.evidencebroker.sl.intf.EvidenceBroker.java supports stop
and restarting evidence sharing process. Evidence Broker triggers evidence sharing
based on the 'StopEvidenceSharing' flag. stopSharing() API sets the

Developing with Evidence Broker 15

'StopEvidenceSharing' flag which skips evidence sharing in Evidence Broker and
the API should be called at the start of case/case member creation
process.Evidence sharing can be restarted by invoking restartSharing() API which
resets the 'StopEvidenceSharing' and allows the evidence sharing to proceed in
case/case member creation process.

Provide Implementation for the EvidenceSharingStrategy
Interface

A new hook is provided which would be called before evidence sharing in order to
filter/finalize on the evidences that should be shared on the target case. With this
hook the customer will be able to determine evidences they wish to share between
the source and the target cases. EvidenceSharingStrategy interface must be
implemented when the customer wants to filter/finalize the evidences for a
specific case type that must be shared between the source and the target case. On
customizing the strategy (for example, CustomEvidenceSharingStrategyImpl) for a
specific case type, it is necessary to bind the strategy with the case type. This can
be done by creating a Guice module class and adding a corresponding entry in the
MODULE table.

Using Evidence Activation Hook

Introduction
The purpose of this chapter is to provide instructions on how to use the evidence
activation hook.

Provide Implementation for the Evidence Activation Hook
A new hook is provided to determine the automation strategy of activating the
evidences. EvidenceActivation interface must be implemented if the customer
wishes to determine how the evidence was activated.On customizing the strategy
(for example, CustomEvidenceActivationImpl) for a specific case type, it is
necessary to bind the strategy with the case type. This can be done by creating a
Guice module class or adding a corresponding entry in the MODULE table..

Implementing Evidence Broker Task Generation Strategy

Introduction
The purpose of this chapter is to provide high level instructions on how to
implement the EvidenceBrokerTaskGenerationStrategy interface.

Implementing the EvidenceBrokerTaskGenerationStrategy
Interface

A hook has been provided to determine the strategy of generating tasks on
brokering of evidences. The interface EvidenceBrokerTaskGenerationStrategy must
be implemented, if the customer wishes to change the conditions under which
tasks are generated.

Customers who wish to customize the task generation has to implement
EvidenceBrokerTaskGenerationStrategy interface and bind the new implementation
in their corresponding Module class.

16 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

For example, in their own Module class,
bind(EvidenceBrokerTaskGenerationStrategy.class).toInstance(new
MockEvidenceBrokerTaskGenerationStrategy());

If a custom implementation class is bounded, the same will be called instead of the
default implementation. To load their own Module class, customers should add a
row to MODULECLASSNAME table in the database using a corresponding custom
DMX file of their own.

Evidence Broker Web Service

Introduction
This chapter provides a high level overview of the evidence broker web service
that facilitates evidence sharing with remote systems.

Receive Change Notification Service
Cúram Evidence Broker uses web services to accept change notifications from
remote systems. The web service calls are implemented on an Axis2 stack for
improved performance, security, and flexibility.

When a remote system calls the Receive Change Notification service
(EvidenceBrokerWS.receiveChangeNotification), the service layer class verifies that
the structure of the incoming XML is correct and then creates an
ExternalCaseHeader record with some basic information as a representation of the
source case that exists in the remote system. The incoming XML is translated into
structures and the sharing process starts based on the configured sharing strategy.

Incoming Parameters
The parameters are used to populate the internal struct:
curam.core.sl.struct.SharedEvidenceDescriptorDetails:

Table 1. Minimum Requirements

Intake Element Map to Parameter Schema Type

caseID caseID se:caseReference

participantNumber participantID se:personReference

evidenceType evidenceType se:evidenceType

caseType sourceType se:caseType

caseSubType sourceID se:caseSubType

sourceSystemName sourceSystemID se:sourceSystemName

sharedInstanceID sharedInstanceID se:sharedInstanceID

operation operation se:OperationName

receivedDate effectiveFrom se:date

effectiveDate effectiveDate se:date

dataObjects see below see below

The parameters caseID, participantID, sourceSystemID are internal ID determined
by querying the database using the attributes CaseHeader.caseReference,
ConcernRole.primaryAlternateID, TargetSystem.systemName.

Developing with Evidence Broker 17

The parameter sourceID is determined using the API
curam.core.sl.impl.CaseTypeEvidence.getSubTypeID(final String caseSubType)
using the caseSubType value.

Each Incoming Evidence schema has an object structure defined for the incoming
data. The dataObjects structure is:

v Data Item name: The name of the attribute within the struct that is passed to the
entity object.

v Value: The value to populate the struct field with. This will be passed to the
entity object.

Note: DataItem to struct mapping controls all data type conversions and checks.

Incoming Parameter Descriptions
Table 2. Parameter Descriptions

Parameter Domain Description

caseID CASE_ID This is the case identifier to
identify the case with which
this evidence is associated.

sourceType CASE_TYPE_CODE The source case type code
from which evidence being
shared. Code
table:CaseTypeCode

effectiveDate CURAM_DATE The date from which this
Evidence applies.
Format:ddMMyyyy

sharedInstanceID INTERNAL_ID Unique identifier that will be
common to all evidence
records which have been
shared from the same initial
piece of evidence.

evidenceType EVIDENCE_TYPE_CODE This is the evidence type
code to identify the type of
Evidence record. Code
table:EvidenceType

operation OPERATION_NAME This corresponds to evidence
create or remove operations.
Type:string

sourceID INTERNAL_ID The unique identifier of the
source product from which
evidence is being shared.

sourceSystemID INTERNAL_ID The unique identifier of the
source system from which
evidence is being shared.

participantID CONCERN_ROLE_ID Identifier of the participant
to whom the evidence
relates; this could be the
primary client of the case or
a member of the integrated
case.

<dataItem name="{data item name}"
>{value}</dataItem>

18 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

The following figure displays an example of the inbound Share Evidence xml
message:

Figure 1. Inbound Example : Share Evidence

Developing with Evidence Broker 19

20 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 21

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

22 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 23

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

24 IBM Cúram Social Program Management: Cúram Evidence Broker Developers Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing with Evidence Broker
	Introduction
	Purpose
	Audience
	Prerequisites
	Chapters in this Guide

	Evidence Broker Architecture
	Introduction
	Architecture
	Following are the key components of Evidence Broker:
	Evidence Sharing Steps

	Evidence Broker Sharing Strategy
	Evidence Compare Interface
	Transfer Evidence
	Broadcast Evidence Hook
	Integration with Evidence Generator
	Evidence Broker Configuration

	Implementing Evidence Compare Interface
	Introduction
	Identify Evidence Types Available for Sharing
	Determine Classes which Implement Evidence Compare Interface
	Map Evidence Compare Classes to Evidence Type
	Using Google Guice
	Using Registrar

	Provide Implementation for the Evidence Compare Interface
	Values
	Labels
	Domains
	Sample Implementation

	Implementing Transfer Evidence
	Introduction
	Identify Evidence Types Requiring Specialized Transfer Evidence Code

	Using the Broadcast Evidence Hook
	Introduction
	Identify Evidence Types with Pre or Post Processing
	Provide Implementation for the Evidence Broadcast Hook
	Register Custom Override of OOTB Broadcast Evidence Hook
	Using Google Guice
	Using Registration

	Evidence Broker Sharing Strategy
	Introduction
	Provide Implementation for the EvidenceBrokerSharingStrategy Interface
	Map the Custom Strategy to a Case Type

	Using Hook to skip Evidence Sharing on Case/Case Member Creation
	Provide Implementation for the EvidenceSharingStrategy Interface

	Using Evidence Activation Hook
	Introduction
	Provide Implementation for the Evidence Activation Hook

	Implementing Evidence Broker Task Generation Strategy
	Introduction
	Implementing the EvidenceBrokerTaskGenerationStrategy Interface

	Evidence Broker Web Service
	Introduction
	Receive Change Notification Service
	Incoming Parameters
	Incoming Parameter Descriptions

	Notices
	Privacy Policy considerations
	Trademarks

