
IBM Cúram Social Program Management
Version 6.0.5

Cúram Generic Search Server

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 41

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing with the Generic Search
Server 1
Introduction 1

Cúram Generic Search Server Guide 1
Prerequisites 1
Audience 1

Concepts and Definitions 1
Introduction 1
The Generic Search Server 1
Indices 1
Search Service 2
Field 3
Document 3
Lucene 3
Staging Database 3
Query 4
Term 4
Analyzer. 4
Mapper 4
Extractor. 4

Generic Search Server Overview 4
The Generic Search Server and Lucene. 4
Importing Data from Cúram 5
Search Server Synchronization 6
Search Controller 7
The Search Process 7
References 7

Generic Search Server enabled searches 8
Introduction 8
Generic Search Server related properties in the
Cúram application 8
Keeping Cúram data and search data
synchronized 8

Event-based synchronization 9
Staging Database Tables 9

Introduction 9
SearchService Table 10

searchServiceId 10
extKeyName 10
analyzer 10
frcdReidxTimeStmp. 10
mapperName. 10
dbLastWritten 10
prstBlobSize 10

SearchServiceField Table 10
srchServiceFldId 11
searchServiceId 11
name 11
type 11
indexed. 11
stored 12

entityName 12
untokenized 12
analyzerName 12

Getting Started with the Generic Search Server API 12
Introduction 12
Mappers 12
Search Controller 13
Search Service Connector 13
Queries 14
CuramTerm 14

Query Structure 15
Standard Terms 15
Date and Date Range Terms 16
Text 16

Generating Queries 16
Constructing a Query Builder 16
Adding Search Criteria 16
Generating Queries from a Struct 16
Specifying which search service fields to
return 17
Obtaining the Query Object 17

Dealing with Search Results 17
Data Types and String Conversion. 18

Implementing a Search with the Generic Search
Server 18

Overview 18
Person Search Example - Overview 18
Develop SearchService DMX files 19

Setup SearchService Record 19
Setup SearchServiceField Record 19

Implement Mapper Operations 19
Mapper.mapToStagingDb interface. 19
Mapper.getObjectList interface 20
Mapper.getExtKey interface 21
Mapper.remove interface 21
Mapper.getFieldValue Interface 21
Mapper newInstance() 22

Search Router and Implementation 22
Add Synchronization to each Search Entity . . . 22

Pull Mapper 23
Introduction 23
Pull Mapper Overview 23
Developing with the Pull Mapper 24

Enable Last Updated Field on your searchable
entities 24
Modelling the table scan 24
Defining your search service. 24
Writing your mapper class 25

Delete operations 25
Searches and Queries in Depth 26

Introduction 26
The Search Service - general guidelines 26
Mapping your database structure to an Index -
Denormalization. 26
Tokenized and Untokenized Fields 27
Wildcards 27

© Copyright IBM Corp. 2012, 2014 iii

Analyzers in Depth. 27
Running the Generic Search Server in Eclipse . . . 28

Introduction 28
Bootstrap.properties 28
Launching the Cúram Generic Search Server
from Eclipse 28

Deploying the Generic Search Server 29
Introduction 29
Deployment Options 29
Deployment Process 29
Clustering 30
Build Targets 30

weblogicEARGSS 30
websphereEARGSS 30
runExtractor 30
runPersist 30
startupSearchServer 31

Database Performance 31
Time Considerations 31

Performance 31
Introduction 31
Index types 31
Index Persistence 32

Persistence Operation Invocation 32
Testing and operational considerations 32

Performance Tuning 33
Max Merge Documents 33
Merge Factor 33
Enable Persistence 33
References 33

Searcher Pooling. 33
Overview 33
Pool configuration properties 34

RAM Limitations 34
Index Size Calculation 34

Recommended configuration 35
Recommended configuration for Production
Environment 35

Cúram Generic Search Server Configuration
Properties 35

Configuration Properties 35
Sample DMX Listings: PersonSearch 36

Search Service Record 36
Search Service Field Record 38

Notices 41
Privacy Policy considerations 43
Trademarks 44

iv IBM Cúram Social Program Management: Cúram Generic Search Server

Figures

1. Inverted Index Description 2
2. Database Extractor and Generic Search Server

Startup Process. 6

3. Data Synchronization 6

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Cúram Generic Search Server

Tables

1. Cúram Generic Search Server Related Properties 8
2. Mappings from basic Cúram Domain

Definitions to GSS Field data types. 11
3. Cúram Generic Search Server Basic

Configuration Settings 35

4. Cúram Generic Search Server Searcher Pool
Settings 36

5. Cúram Generic Search Server Persistence
Settings 36

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Generic Search Server

Developing with the Generic Search Server

Use this information to develop performant and scalable searches in the Cúram
application with the Cúram Generic Search Server. Searches can be implemented
with Cúram Generic Search Server and database searches. Database and Generic
Search Server searches can be enabled on a per-search basis with application
properties.

Introduction

Cúram Generic Search Server Guide
The Cúram Generic Search Server is a tool provided by IBM Corporation that can
be used to develop performant and scalable searches for your application solution.

This document describes the Cúram Generic Search Server and provides an
overview of its architecture. It is also a reference for the configuration of the
Generic Search Server and its database tables. Finally, it provides an end-to-end
example of how to implement a search using the Cúram Generic Search Server.

Prerequisites
Readers of the Cúram Generic Search Server Guide should be familiar with the
Cúram architecture, in addition to being familiar with Cúram modeling and
development constructs and processes.

Audience
This document is intended to be read by architects, designers and developers
interested in using the Cúram Generic Search server to implement search pages.

Concepts and Definitions

Introduction
This chapter introduces several important searching and indexing concepts, in
addition to definitions related to the Cúram Generic Search Server which are used
throughout this document.

The Generic Search Server
The Cúram Generic Search Server is a standalone application which supports
performant searching of application data via a number of APIs. Behind the scenes,
the Generic Search Server is implemented using the Apache Lucene API. Those
implementing GSS searches should use only the APIs exposed by GSS.

The Generic Search Server can be deployed as a plain Java™ Application (to ease
development-time testing) as well as a Java Platform, Enterprise Edition
application.

Indices
At the heart of the Generic Search Server is the concept of searching an Index,
which is a performant, non-database representation of a set of related searchable

© Copyright IBM Corp. 2012, 2014 1

data. A Generic Search Server Index is an “inverted index” that maps words to
database records that they appear in.

When searching an Index for a word, all matching records are retrieved without
having to search large datasets. As a result, such Indices scale well, and for large
systems it will be possible to run multiple Indices in parallel, allowing for excellent
search performance if the right deployment configuration and Index tuning
parameters are chosen.

Developers creating application searches do not manipulate or maintain Indices
directly - all of this is handled for them behind the scenes by the Generic Search
Server.

Search Service
A Search Service describes:-
1. Information relating to fields being searched
2. Analyzers used on each field, field datatypes
3. Entity information to populate a run-time index
4. Status of Search Service (whether up to date or requires synchronization)

When seen in this way a Search Service is simply meta-data, however this
document also uses the term to describe the run-time populated index.

There should be one Search Service defined for each discrete set of data to be
searched upon (e.g. Person Search, Payment Search,etc.). Each search performed
must specify which Search Service it is to operate on.

Figure 1. Inverted Index Description

2 IBM Cúram Social Program Management: Cúram Generic Search Server

Field
As mentioned above, Search Services are made up of sets of Fields. These can be
thought of as somewhat analogous to column definitions in database tables. A
Field has a name and a type, and if being returned from a search it will also have
a value, which is the result.

Fields may be marked as being 'Stored'. Fields marked in this way will cause the
Index to physically contain relevant values extracted (see “Extractor” on page 4)
from the database. This means that their values can be retrieved directly from the
Index after a search and returned to the caller without the need to access the
related record on the application database table. Note however that this does
increase the Index size and may impact the performance of the search.

Fields may also be marked as 'Indexed' or not. Fields marked as such are
searchable, and Fields not marked as such are not searchable. This feature is useful
for fields such as unique IDs that may be desirable to store in the Index but not
searched upon.

Note that Fields do not have to be marked as 'Stored' to be searchable.

Document
A Document is a record in an Index. A Document is in turn made up of a set of
Fields. Search results are returned from the Generic Search Server as sets of
Documents which can then be converted to Cúram struct objects. For example, a
Person search Document might consist of Firstname, Surname, Address, Gender,
etc. Fields, and performing a Person search/Query (see “Query” on page 4) based
on a number of input criteria will return zero or more such Documents.

Lucene
Lucene is an open-source project created by the Apache Software Foundation.
Behind the scenes, the Cúram Generic Search Server uses Lucene for its indexing
and searching functionality.

Note: Note that information on indexing and Lucene is provided purely for
background purposes - developers creating searches using the Generic Search
Server do not need to manipulate Indices or Lucene objects directly. These are all
wrapped by the Generic Search Server API.

Staging Database
The Generic Search Server staging database consists of a set of database tables
used for the following purposes:
v To store Search Service definitions - information about which Search Services are

available together with their structure
v To store values extracted from the operational database which will be used to

populate Indices corresponding to the Search Service Definitions.

The fundamental design rationales for using database tables as an intermediary are
as follows:
v They offload the searches from the main database which means that searches do

not impact on live system performance
v They persist appropriately for the search service - Data is persisted in a form

that is suitable for the purposes of building the search indices. The Application
data is transformed, scrubbed and consolidated before being stored in the

Developing with the Generic Search Server 3

staging database. Therefore, batch jobs will not have to be continually rerun to
re-extract the data each time a Generic Search Server instance is started.

Query
A Query is an object (a struct, to be precise) that is passed to the Generic Search
Server when a search is being performed.

Term
A Term is a part of a Query object. Currently, there are three different types of
Term - Standard terms for searching on regular text fields, Date terms for searching
on Date fields, and DateRange terms for specifying a range of dates on which to
search.

Analyzer
An Analyzer is a Lucene concept, representing a class that implements the Lucene
org.apache.lucene.analysis.Analyzer abstract class.

Analyzers prepare text for indexing and searching. For example, it doesn't make
sense that every word of a text field is indexed - stop words such as “and”, “of”
and “a” may be irrelevant during a search. If these are to be ignored during a field
search then the field is tokenized, ie. passed through an analyzer before writing the
field to the index and likewise for a term value being searched.

Analyzers are language-specific - what defines a word is not the same in all
languages. Some can be configured to ignore common stop-words (an, the, if, etc),
to ignore numbers, and so on. Analyzers used by the Generic Search Server are
configurable on a per-Search Service basis.

Mapper
A Mapper is a class which has to be written by developers of application searches
for each Search Service. Its function is to transform data from the application into a
format which can be written onto the staging database and imported into a Index.
The transformation involves identifying relevant Entity properties of interest to the
Search Service, constructing a list of these values and mapping them to a single
consolidated text value. This value, stored in the staging database, is used later in
the construction of a single search index Document. Every Search Service that is
written must provide its own Mapper implementation.

Extractor
The Extractor uses the Search Service metadata to obtain the relevant application
data necessary to populate the search indices. The extractor interrogates the
relevant Application Entities identified via the metadata and the required Entity
properties are mapped(with the mapper) to the staging database for indexing upon
Search Service startup.

Generic Search Server Overview

The Generic Search Server and Lucene
The concepts behind indexing and the Lucene API have already been introduced.
So why not just use Lucene directly in Cúram application?

4 IBM Cúram Social Program Management: Cúram Generic Search Server

Whereas Lucene is an excellent API for indexing and searching, it does not address
all of the requirements of a Cúram searching product:
v It does not address deployment issues - how to run multiple search servers, how

the application should communicate with the search servers, etc.
v It does not address the issue of how to import data into Indices
v It does not address the issue of keeping Index data synchronized with source

data in the running application.
v It does not address the issue of interpreting data returned from an Index search

as Cúram datatypes and structs.
v It does not address the more overarching application requirement of protecting

the Application Developer from in-depth knowledge of specific third-party
products; given that Lucene is only one potential searching solution, it would
seem to make more sense to provide a more generic searching API.

The Cúram Generic Search Server was developed to deal with these requirements.

Importing Data from Cúram
One implication of using an indexing technology is that, before being able to
search an Index, it must first be created. Because a lot of the hard work of
searching is essentially done up-front in Index construction, runtime searches
become fast; however, it is worth noting that the indexing process itself may take
some time, and this time increases proportionally with the amount of data to be
indexed.

Initialization of the Generic Search Server is done in two phases.

In the first phase, existing application data is exported from the application into a
set of database tables used by the Generic Search Server - the staging tables. This
export has been implemented as a batch process, called the Database Search
Extractor, and is provided as part of the Generic Search Server distribution. The
export only needs to be performed once, when the Generic Search Server is first
being used. Special helper classes called Mappers are needed for each Search
Service; these assist the extractor in preparing the data to be imported into the
Staging Tables.

In the second phase, an Index is constructed for every defined Search Service.
When the Generic Search Server is started up, a process is run to read the
appropriate data from the staging database tables and construct the Indices and
other data structures to be used to perform searches. Once the Indices are
constructed, the server will be in a position to respond to search requests.
Information on optimizing this performance is available in “Performance” on page
31

Developing with the Generic Search Server 5

Search Server Synchronization
Because the Generic Search Server searches not on the live data itself but on an
Index that is built from that data, updates to application data need to be replicated
on the Index. In Cúram implementations, it is essential that updates to searchable
data be reflected in the relevant Indices in a timely and predictable fashion. With
the Generic Search Server, the time lag is short (and configurable).

Similar to the initial import of data described above, there are two steps to the
synchronization process.

The first step in the process occurs when the application data (which is used in an
Index) changes, typically as a result of an insert, update or logical delete. When

Figure 2. Database Extractor and Generic Search Server Startup Process

Figure 3. Data Synchronization

6 IBM Cúram Social Program Management: Cúram Generic Search Server

this occurs, the application must write information about this data change to the
Generic Search Server staging tables. All new and updated items are marked with
a timestamp.

In the second step (which happens on a periodic basis), the Generic Search Server
synchronizes its Indices against the current contents of the staging database. To do
this, it reads all newly changed items since the last time it synchronized, and
imports these into the Indices; specifically, this is achieved by comparing
timestamps associated with each changed item to the latest timestamp used during
the last synchronization step.

Note: When writing unit tests that include calls to Generic Search Server searches,
it is important to bear in mind the delay in synchronizing data. In addition, as a
result of the fact that the Generic Search Server instance will be running in a
separate process to the unit tests, it will not be part of the same transaction.
Consequently, Generic Search Server synchronizations will not pick up any data
that has changed in the test transaction, unless it is explicitly committed.

Search Controller
The Search Controller is an important component of the synchronization
mechanism. It maintains a list of all the entities associated with each Search
Service.

When an entity changes, the Search Controller can be checked to see if that entity
is used by one or more Search Services. If it is used, the data in the staging
database should be updated in the same transaction as the entity update. The
Search Controller also provides an API for updating the staging database.

Note: A number of Cúram Platform entities (which appear in some Cúram
Platform searches) have been modified to allow for the implementation of such
synchronization updates in the future release. These modifications have taken the
form of the creation of pre- or post-operation exit points which contain
stubbed-out implementations; these pre- and post- exit points are reserved for
future implementation and should not be changed directly by customers.

The Search Process
The search process can be broken down into three phases.

In the first phase, the Cúram application constructs a valid Query to present to the
Generic Search Server. It populates this Query using search criteria entered by the
user.

In the second phase, the Cúram application contacts a running Generic Search
Server instance and performs the search as defined by the Query object.

In the final phase, the Cúram application interprets the results it receives back
from the Generic Search Server as Cúram datatypes, performs its usual security
checks regarding the sensitivity of the data, and displays them to the user.

References
Lucene website: http://lucene.apache.org/.

Developing with the Generic Search Server 7

http://lucene.apache.org/

Generic Search Server enabled searches

Introduction
IBM Corporation has introduced the Generic Search Server as an optional
searching mechanism for Platform and Solution Module searches. Several searches
have been implemented using both the Cúram Generic Search Server and database
searching, and some are available only as GSS searches. For the searches that are
available either as database or GSS searches customers may enable or disable
performant search on a per-search basis via setting application properties.

Generic Search Server related properties in the Cúram
application

These properties are the application system properties and can be administered in
the usual way via the property administration in the application. All of the
relevant properties are available under the Category called “Application - Lucene
enhanced search parameters”. A full list of these properties may be found in
“Configuration Properties” on page 35

Table 1. Cúram Generic Search Server Related Properties
Property Name Description

curam.lucene.luceneEnhancedSearchEnabled Default: “NO”. By default, all Generic Search Server
functionality is disabled. In order to enable it, you must
set this property to “YES” to turn on enhanced search.
Unless this is set to “YES”, no enhanced searches will be
available.

curam.lucene.luceneOnlineSynchronizationEnabled Default: “NO”. To enable the event publishing
mechanism that makes changes in searchable data
available to the Search Server you must set this property
to “YES”. Unless this is done, inserts and updates to
searchable data will not be propagated to the Search
Server.

curam.lucene.externalUpdateEventsEnabled Default: “NO”. To ensure that if any search service
related data is updated externally, then the external
system receives related update synchronization events to
synchronization the searchable data, in case if property
"curam.lucene.luceneOnlineSynchronizationEnabled" is
not enabled. Enabling this property has same impact as
enabling
“curam.lucene.luceneOnlineSynchronizationEnabled” on
the application. To enable property
“curam.lucene.externalUpdateEventsEnabled” set this
property to “YES”.

Finally, each search that supports Enhanced Search has a property that determines
whether it uses the Generic Search Server or the database. This allows each
organisation to choose on a per-search basis which enhanced searches to use.

Keeping Cúram data and search data synchronized
It is necessary to keep the live application data and the search index synchronized
if search results are to be accurate. The infrastructure that the GSS provides in
order to accomplish this has been described elsewhere (see “Search Controller” on
page 13).

However, there is also an onus on application developers to add calls to the
SearchController when relevant data changes in the application. This section
describes for information purposes the event-based approach used, and which we
recommend to customers implementing their own GSS-based searches.

8 IBM Cúram Social Program Management: Cúram Generic Search Server

As well as the event mechanism we also provide the Pull Mapper synchronization,
which is described in its own chapter in this guide, see “Pull Mapper” on page 23.

Event-based synchronization
Cúram provides events to allow loosely coupled parts of the application to provide
information to each other about changes of state. They are documented in the
Cúram Server Developer's Guide..

Each entity that contributes to a search service should have events raised when it
is created, deleted, or modified. The event handler then calls the SearchController
class to update the search server with the change.

Any entity that contributes to a search service must have postmodify, postinsert
and postremove operations added that raise the events.

Staging Database Tables

Introduction
The staging database tables are database tables on the operational database that are
used by the Generic Search Server. There are four such tables: SearchService,
SearchServiceField, SearchServiceRow, and SearchSrvcRowExt.

This chapter details the purpose and structure of the SearchService and
SearchServiceField tables. Developers creating search services do not need to access
the SearchServiceRow or SearchSrvcRowExt tables directly, nor write DMX files for
them.

The SearchService table defines Search Services known to the Generic Search
Server (see “Search Service” on page 2 for introduction to Search Services). As an
administration API for managing Search Services has not been provided, Search
Service records must currently be created and maintained by either accessing the
database table directly or by editing DMX files and rebuilding the application
database.

The SearchServiceField table defines a single Field of a Search Service - its name,
its data type, and several other attributes that are explained fully below. Each
SearchServiceField database row is associated with a single SearchService row. As
with Search Services, Search Service Field records must currently be created and
maintained by either accessing the database table directly or by editing DMX files
and rebuilding the application database.

SearchServiceRow is a table used to store searchable data from the application for
use in building Indexes. The Generic Search Server provides an API (see “Getting
Started with the Generic Search Server API” on page 12 and “Implementing a
Search with the Generic Search Server” on page 18) that is used to manipulate
SearchServiceRows - developers should interact with this database table only via
this API rather than accessing it directly.

There are two other GSS database tables: GSSMapperType and GSSEntity. These
are used only with the Pull Mapper feature - otherwise they can be ignored. These
tables are described in “Pull Mapper” on page 23.

Developing with the Generic Search Server 9

SearchService Table
Each Search Service must contain a record on the SearchService table. Together
with its SearchServiceField child rows, the SearchService table defines the schema
for each Search Service. A description of each column of the SearchService table is
provided below:

searchServiceId
The Search Service Identifier; a string used to uniquely identify a Search Service.

extKeyName
The name of a Search Service Field that will uniquely identify each record in an
Index created from this Search Service definition. It is essential that values in the
Index corresponding to this Search Service Field be unique, as when searchable
data is updated in the application database, the value of this field will be used to
identify the appropriate Document to be updated in the Index.

analyzer
The Search Service analyzer to be used when converting from the application
database text terms to Index terms. The contents of this column should denote one
of the predefined analyzer names provided by the Generic Search Server (see the
list below) or a fully qualified Java classname of a class that implements the
abstract class org.apache.lucene.analysis.Analyzer. This may be either a
standard Lucene analyzer or a third-party or custom implementation. Note that the
class must be available on the Generic Search Server classpath if it is not a
standard Lucene analyzer.

For a list of the analyzers supplied with GSS and a more in-depth discussion of
how to choose an analyzer, see “Analyzers in Depth” on page 27.

frcdReidxTimeStmp
Used by the Extractor to force the Generic Search Server to rebuild its Indices after
an extract has been run. When creating Search Service records, this should be
initially set to null.

mapperName
The name of the mapper implementation (see “Implement Mapper Operations” on
page 19). A Mapper implementation is a class that converts a set of application
entity data to a format suitable for indexing. The value of this column should be
the fully qualified classname of the Mapper class, and as with the Analyzer
implementation, this should be on the Generic Search Server runtime classpath (If
the Mapper is developed as part of the application it will be on the classpath by
default).

dbLastWritten
This is used in synchronization. It should not be initialized or updated by
application code or administrators.

prstBlobSize
This specifies the size of the blob associated with the table used to persist this
search service index. If not specified, the blob size defaults to 50M. The property
type is a String and the value should conform to the size specifier syntax of the
concerned database.

SearchServiceField Table
Each Field of a Search Service must contain a record on the SearchServiceField
table. Each Search Service Field represents a SearchService element that can be

10 IBM Cúram Social Program Management: Cúram Generic Search Server

either searched upon, returned from a search, or both. Search Service Field are
used in a number of places throughout the Generic Search Server - in Terms, in
Queries, in Documents. A description of each column of the SearchServiceField
table is provided below:

srchServiceFldId
The Unique Identifier of the Search Service Field.

searchServiceId
searchServiceId of the parent Search Service record.

name
The name associated with the Search Service Field. This is the name that is used to
reference the Field when performing searches or retrieving results. It does not need
to correspond exactly to Field names in Cúram entities and structs, although it
simplifies development if it does so.

type
The Cúram datatype of this field. The set of acceptable values is described in the
table below.

The process of exporting and synchronizing data to the Search Service involves
some conversion of operational data to strings and vice-versa, so it is important
that an accurate data type be defined for each Field. See the following table for
reference on this. If incorrect values are presented to the Generic Search Server, it
will throw an exception.

Table 2. Mappings from basic Cúram Domain Definitions to GSS Field data types
Domain Definition GSS Field data type

SRV_BOOLEAN boolean

SRV_DATE Date

SRV_DATETIME DateTime

SRV_INT8 byte

SRV_INT16 short

SRV_INT32 int

SRV_INT64 long

SRV_FLOAT float

SRV_DOUBLE double

SRV_MONEY Money

SRV_CHAR char

SRV_STRING String

SRV_UNBOUNDED_STRING String

Note: The type field is case sensitive, so ensure you use the type name exactly as
laid out above.

indexed
Indicates whether this Field is searchable. Sometimes it may be desirable to store a
value for a record in the Search Service but not to search on it (an example would
be the unique ID of a record, or perhaps it's sensitivity level). Not indexing values
that don't need to be indexed will minimize Index size and help performance, so it
is good practice to index only the fields your searches will use.

Developing with the Generic Search Server 11

stored
Indicates whether this field may be returned in a search result or not, i.e. whether
the value itself is stored in the Index. Note that stored fields will still only be
returned if the Query object passed to the Generic Search Server indicates that they
should be returned. Every field should be either indexed or stored or both - if a
field is neither then it is of no relevance to the Search Service. Again, not storing
values that your searches will not use will minimize index size and help
performance, so only store the fields your searches will use.

entityName
The name of the application entity associated with this Field, or to be more
specific, the name of the application Entity containing an attribute corresponding
to this Field which will be used to populate the Index based on the parent Search
Service definition. This information is needed for synchronization of application
data with the Generic Search Server - all entities that are listed as being related to
Search Service Fields will be registered with the SearchController (see “Search
Controller” on page 7) and monitored for inserts, updates, and deletions. It is
vitally important that the entityName attribute be populated with the appropriate
values; omitted or invalid entityName attributes may result in invalid Index
updates over time.

untokenized
This property indicates whether a field is to be tokenized and passed through the
analyzer or not. It is a boolean value. If set to true, no tokenizing will be done and
analysis will not be performed on this field before indexing or while searching.

analyzerName
This property specifies the analyzer to be used when tokenizing this field. The
contents of this field may be set to LUCENESTANDARD, STANDARD, SIMPLE,
STOP, WHITESPACE, KEYBOARD. (see analyzer in “SearchService Table” on page
10) If this field is not set then the default analyzer used will be that taken from the
analyzer field of the associated SearchService.

Getting Started with the Generic Search Server API

Introduction
This chapter is not intended to be an exhaustive description of the entire Generic
Search Server API - a full set of Javadoc is available as part of the installation. The
purpose of this chapter is to provide a short introduction to the most important
classes and operations in the API in order to allow Generic Search Server-based
searches to be rapidly developed.

Mappers
Mappers are classes which define how Search Service data is mapped from the
application database tables to the staging database tables. Each Search Service has
its own Mapper - the Mapper to use is specified in the SearchService database
table. For more details see “mapperName” on page 10.

This Mapper functionality is used in two processes:
1. When the Database Extractor is run, each Search Service Field is iterated over

for a particular Search Service. For each Field, the corresponding Entity
Attribute data is retrieved from the application database and populated into the
SearchServiceRow staging database table

12 IBM Cúram Social Program Management: Cúram Generic Search Server

2. When a create, update or remove operation is called for an entity that is used
in a Search Service, the relevant SearchServiceRow rows are updated with the
related entity modifications

In both of these processes, the relevant Mapper for each Search Service is invoked
to map data from the application database tables to the staging database tables.

On initialization of the Generic Search Server, the staging database information is
read and used to construct the Indices from the Search Service metadata. The
Search Server will periodically check the staging database for updates and keep the
service data up to date.

The following Mapper API methods require implementation by search developers
on a per-Search Service Basis:
SearchServiceRowDtlsList mapToStagingDb(

final SearchServiceKey id) throws AppException,
InformationalException;

List getObjectList(final SearchServiceKey serviceId,
final Object obj) throws AppException, InformationalException;

String getExtKey(final SearchServiceKey serviceId, List objList);

void remove(final SearchServiceKey serviceId, final Object objKey)
throws AppException, InformationalException;

Object getFieldValue(final SearchServiceKey serviceId,
final List objList, final SearchServiceFieldDtls field);

For more details see “Implement Mapper Operations” on page 19

Search Controller
The Search Controller is a singleton object available for use in the application. It is
responsible for keeping track of which entities are referenced in which Search
Services. In addition, it provides an API for synchronizing changes made to
application data with the relevant Indices on the Generic Search Server. Note that
from a Client-Server perspective, the Search Controller lives on the 'Client' (in this
case, the Cúram Application Server), not the 'Server' (in this case, the Generic
Search Server).

The SearchController API is composed of three methods which can be invoked if
any entity involved in populating an Index is modified. The search developer must
be aware of which application entity operations will result in such modifications
and invoke the appropriate methods on the SearchController. The methods
exposed in this API are:
void SearchController.insert(final Object objectDtls,

String entityName);
void SearchController.modify(final Object objectDtls,

String entityName)
void SearchController.remove(final Object objKey, final String entityName);

For more details see “Add Synchronization to each Search Entity” on page 22

Search Service Connector
The SearchServiceConnector is a utility class that allows searches to be performed.
The 'search' operation on this class is the only supported way for search
developers to invoke a search on a Generic Search Server Index.

Developing with the Generic Search Server 13

Behind the scenes, this class handles the details of connecting from the running
application to an instance of the Generic Search Server, wherever it may be
deployed.

Searches may be performed with the SearchServiceConnector using the method:
static SearchServerResults search(CuramQuery query)

Note: If the search index does not contain any data it will throw an
IndexEmptyException. Developers implementing searches should handle this
exception gracefully.

User credentials are required to connect to the Generic Search Server. The
connector picks up the details of the current user and uses those to communicate
with the Generic Search Server.

Note: Do not attempt to use the DoSearch method (or any Generic Search Server
method) directly - it will not work as it is running in the context of the Cúram
application, and not the context of a running Generic Search Server application

Queries
In order to do a search, a CuramQuery object must be constructed. The
CuramQuery class consists of:
v The searchServiceId of the SearchService whose Index you wish to search. See

“Search Service” on page 2 for more information on the concept of Search
Services and “searchServiceId” on page 10 for details of how the searchServiceId
is defined

v A list of CuramTerm objects or a Text attribute representing a Lucene query
string- these represent the search criteria. See below for more information on
Cúram Terms and the Text attribute

v A list of CuramField objects - values for these Fields will be returned as part of
the search results, but only if the fields have been marked as 'Stored' in the
SearchServiceField definition (see “stored” on page 12)

v An integer attribute maxHits indicating the maximum number of hits to be
returned for this query.

v A boolean flag maxHitsUnbounded indicating that the maximum number of hits
is not limited. If this flag is set the maxHits attribute value is ignored.

CuramTerm
CuramTerms are the part of the CuramQuery structure that represents search
criteria.

There are three types of Terms: StandardTerm, a DateTerm, or a DateRange term.
The CuramTerm object contains one of each of these types of these types, and has
termType attribute specifying which of the term subtypes should be used. Only of
one of the aggregated term subtypes is valid for each CuramTerm object.

For all term types, the 'field' attribute specifies the name of the Field in the Search
Service to be searched (see “Field” on page 3 and “name” on page 11). The 'value'
attribute is the search criterion to be used - the meaning of this varies for the
different types of terms and is described below.

14 IBM Cúram Social Program Management: Cúram Generic Search Server

Query Structure
Each term has a field called occurs. How this is set determines the structure of the
query - whether all the search terms must exist, only one, or some other
combination. The possible values for occurs are MUST, SHOULD, MUST_NOT, and
MUST_FIELD.

If MUST is specified for the occurs attribute for set of terms then a result will be
returned only if all of the terms are found. If SHOULD is specified for a set of terms
then a result will be returned if one or more of the terms are found. However,
mixing these in a single query will give an undefined result and should be
avoided. If you need to construct complex queries with AND and OR sub-queries
then you must use the text query attribute described in “Text” on page 16.

If MUST_NOT is specified for the occurs attribute then only documents that do not
match the term will be returned. Terms specifying this value may be mixed with
terms specifying other values for the occurs attribute.

Using the MUST_FIELD option allows you to construct a subquery testing a
particular index field for one of a set of values, i.e. an OR subquery within your
main query. You should set this as the occurs value for all the terms dealing with
that field and add a term for each acceptable value. Terms using MUST_FIELD can be
part of an overall query using either the MUST or SHOULD term options.

Standard Terms
A Standard term is used for all searches that do not involve Dates, so this is the
term type that you will use most frequently.

The most basic way to use a standard term is to simply specify the field name and
a single token as the value. The search server will return results where the field
value matches the search term exactly.

Another way to use a standard term is to specify a value that contains multiple
tokens, such as in address. Again, the search server will return results where the
field value matches the search term exactly.

If the search term specified is a single token containing a wildcard character then
the search server will return all matching results. Supported wildcard characters
are '*' which matches any string of characters, and '?' which matches a single
character. Example:- term = "Dub*"

A StandardTerm may be treated as a Prefix Search. This means that we are looking
for search results that contain the search criteria at the start. You specify a Prefix
Search by setting the isPrefixSearch attribute of the StandardTerm. It has the same
effect as specifying a '*' multi-character wildcard at the end of your search value. A
prefix search term may not contain any other wildcards.

Example 1: For a standard tokenized prefix term "abc" the underlying search is for
term = "abc*", for tokenized and prefixed multi-term searches, for instance, a
prefixed search term "abc def", the underlying search is for term = "abc* def*"

Example 2: For a standard tokenized non-prefix starting with abc the term value =
"abc*" must be specified. For tokenized, non-prefixed, multi-term searches starting
with "abc" and "def" the value "abc* def*" should be specified.

Developing with the Generic Search Server 15

Date and Date Range Terms
A Date term is similar to a Standard Term except that it is used to search fields
that are of type Date or DateTime.

A Date Range term can be used to search for values that are between a minimum
date (beginDate) and a maximum date (endDate). The 'isExclusive' Boolean
attribute determines if the begin and end dates are included in the search criteria.
If 'isExclusive' is set to true, the search is performed exclusive of the begin and end
dates. If 'isExclusive' is set to false, the search is performed inclusive of the begin
and end dates.

Note: When a query contains more than one term, the returned results are those
that match all search terms - there is currently no concept of OR or NOT in the
Generic Search Server API

Note: Bear in mind when using Dates for searching that it is your responsibility to
ensure that the Date in your search term refers to the same time zone as was used
when exporting the data to the Search Service

Text
The text attribute of the CuramQuery class can be used as an alternative to a set of
terms. Using the text attribute gives you more flexibility in specifying your search
criteria. However, use this method only if required because it is easy to introduce
bugs in your searches with this method. The format for specifying search criteria
that use this attribute is described in the Lucene documentation. Review the
queryparser documentation at http://lucene.apache.org/core/

You cannot combine CuramTerms and the use of the text attribute of the CuramQuery
class. If the text query string is present, then any CuramTerms present in the query
are ignored.

Generating Queries
The Generic Search Server API contains a utility class designed to allow you to
construct CuramQuery objects easily. This class is:
curam.core.impl.util.QueryBuilder.

Constructing a Query Builder
The QueryBuilder is not a static class, you must construct a new QueryBuilder
instance for each query you produce.

Use the setUnbounded(boolean unbounded) and setMaxHits(long maxHits) methods
to specify the number of hits your generated query should return.

Adding Search Criteria
The QueryBuilder provides a selection of methods of the form
addXXTerm(...parameters...) to add different types of search terms to your
generated query easily. These terms are AND-ed together to form a complex query.
These methods will not be described fully here but full details are available in the
GSS javadoc.

Generating Queries from a Struct
If you have a Cúram struct you wish to use to generate a query you can do so
using this method: setTerms(final Object key).

16 IBM Cúram Social Program Management: Cúram Generic Search Server

http://lucene.apache.org/core/

This expects a struct where each attribute XX has a corresponding boolean
attribute called searchByXX which specified whether that attribute should be used
to search. Each attribute XX will be assumed to correspond to a SearchServiceField
in your SearchService.

If the names of the attributes of your struct do not correspond to the names of the
Fields you have defined for your Search Service (see “Field” on page 3 and
“name” on page 11), then you can define a mapping between them using a
dictionary HashMap. The mapping is from the attribute names in the struct to the
SearchServiceField names. Simply add the pairs of strings to the HashMap, with
the name of the struct attribute as the key and the name of the Field as the value.
The dictionary can be specified in the constructor when you create your
QueryBuilder object or later using the setDictionary(HashMap<String, String>)
method.

Specifying which search service fields to return
In your query you can specify which subset of the search service's fields you
would like returned as results. Often you will want all of them returned, so you
can use the following convenience methods:
v includeAllFieldsInService()

v excludeField(String fieldName)

v excludeFields(String[] fieldNames)

Obtaining the Query Object
Use the getQuery() method to get the generated CuramQuery object.

Dealing with Search Results
Similar to the requirement to convert Cúram key structs to CuramQuery objects,
CuramDocument s returned from searches also need to be converted to Cúram structs
to be used in the application.

The SearchServiceConnector search method returns results in the form of a
SearchServerResults object. This consists of a list of CuramDocument s, and each
CuramDocument consists of a list of CuramField s. A utility class called
curam.core.impl.util.CuramDocToResultStruct is provided to convert between
CuramDocuments and Cúram structs.
static java.lang.Object convert(CuramDocument document,

java.lang.Object structObj,
java.util.HashMap dictionary)

This method takes a CuramDocument and a struct instance (via the parameter
structObj). For each Field in the CuramDocument, the method attempts to find an
attribute in the struct of the same name and datatype. A struct containing all
mapped values is returned, this should be cast to a struct of the correct type.

If the names of the attributes of your struct do not correspond to the names of the
Fields you have defined for your Search Service (see “Field” on page 3 and
“name” on page 11), then you can define a mapping between them using the
dictionary parameter. The mapping is from the Field names in the Search Service
to the attribute names in the struct - simply add the pairs of strings to the
HashMap, with the name of the Field as the key and the name of the struct
attribute as the value. The convert function will then match Field names to
attribute names using this HashMap

Developing with the Generic Search Server 17

Note: Note that the attributes in your results struct whose names correspond to
Fields in your document must have simple Cúram types, and not be aggregated
structs.

Data Types and String Conversion
The Generic Search Server contains an API for converting searchable Cúram
datatypes to Strings and vice versa. These may need to be used occasionally in
custom Mappers, or if parsing results directly rather than using the supplied utility
class curam.core.impl.util.CuramDocToResultStruct.

The converter class is curam.core.impl.search.datatypes.DataTypeConverter. This
class contains methods to convert Cúram datatypes to Strings and to convert
Strings back to Cúram datatypes (by means of passing in a struct and specifying
which attribute in the struct is to be set).

Implementing a Search with the Generic Search Server

Overview
This chapter provides a worked example of the implementation of a Generic
Search Server-based search within the Cúram application. The example worked
through here is a Person Search.

The implementation steps are as follows:
v Write the SearchService and SearchServiceField dmx files
v Implement Mapper interface
v Implement search routing and invocation functionality
v Add synchronization of application operations to search entities (or use the Pull

Mapper approach, see “Pull Mapper” on page 23
v Create a user interface and facade for the search - this is normal application

development.

Person Search Example - Overview
It is important to note that users of the Cúram Generic Search Server should notice
no functional difference between their searches and server searches implemented
using SQL; in addition, the screens and general user experience can remain the
same. As such, the following example assumes that readers will develop such
application functionality (along with the appropriate Facade classes, etc.) as
normal.

In our Person Search example, users will navigate to the relevant UIM page to
perform a Person Search. On this page, they will fill in one or more search criteria.
When they hit the 'Search' button, the search will be performed. The results will
consist of a list of records matching the search criteria.

In application searches, it is common for the search criteria and details returned in
the results list to be collated from multiple related entities. For the Person Search
the following entities and their attributes are either used as search criteria or
returned as result fields:
v Person - primaryAlternateID, personBirthName, motherBirthSurname,

dateOfBirth, gender
v ConcernRole - sensitivity, concernRoleID
v AlternateName - firstForeName, surname

18 IBM Cúram Social Program Management: Cúram Generic Search Server

v AddressElement - city, address.

Each of these entities is related by a foreign key association; concernRoleID is thus
the external key of the SearchService attribute for the PersonSearch Search Service
(see “SearchService Table” on page 10)

The following attributes will thus be used in the search - either as part of the
search criteria, or as a displayable part of the results list:
v referenceNumber
v forename
v surname
v address
v city
v dateOfBirth
v sex
v birthSurname
v motherSurname

As such, these will be the Fields stored in the SearchServiceField table for the
PersonSearch Search Service.

Develop SearchService DMX files

Setup SearchService Record
Please see “Search Service Record” on page 36 and “SearchService Table” on page
10

Setup SearchServiceField Record
Please see “Search Service Field Record” on page 38 and “SearchServiceField
Table” on page 10

Implement Mapper Operations
See “Mapper” on page 4 and “Mappers” on page 12 for an introduction to
Mappers.

The following sections describe the implementation of the Mapper interface
methods for each Search Service. An example for PersonSearch Search Service is
provided for each method of the interface. Comprehensive Javadoc is also available
for the Mapper interface and this should be read by all developers implementing a
Search Service.

Mapper.mapToStagingDb interface
/**
* Maps information in the Application database to the search
* service staging database for the specified search service id.
*
* @param id the identifier of the search service.
* @return the list of all mapped rows for the specified search
* service.
* @throws AppException application exception
* @throws InformationalException information exception.
*/
SearchServiceRowDtlsList mapToStagingDb(

final SearchServiceKey id) throws AppException,
InformationalException;

Developing with the Generic Search Server 19

This method is invoked during the Database Extraction batch process; for each
Search Service, mapToStagingDb is called to retrieve information from the source
entities and return them to the batch process.

A Cúram ReadmultiOperation needs to be written to process all records to be
stored on the staging database for each Search Service. A Generic Search Server
operation called ExtractReadMultiOperation needs to be invoked on each of these
records. Internally, this operation works out what other entities are required to
populate an entire SearchServiceRow based on this data, and also constructs a
SearchServiceRow object.

The result of this whole process is simply a list of SearchServiceRows, constituting
all initial data to be populated into the staging database. The Database Extraction
batch process then takes care of inserting these rows onto the staging database.

Mapper.getObjectList interface
/**
* Populates the list with all entity objects for the
* Search Service given any one of the entity objects used.
* @param searchServiceId. the search service identifier
* @param obj. The entity object from which all other are
* retrieved
* @return the list of all entity objects for the this search
* service given a specified object parameter.
*/
List getObjectList(final SearchServiceKey serviceId,

final Object obj) throws AppException,
InformationalException;

As mentioned earlier, it is possible for data in a Search Service to be gathered from
a number of different entities. It is also possible for these entities to be related by
complex foreign key relationships (for example, an Address record could be related
to a Person record via an addressID which is linked via a concernRoleAddressID
which is in turn linked via a concernRoleID).

Things are made more complex when one of these entities gets updated via the
application. When this happens, the Generic Search Server must be able to work
out which entity has just been affected, what Searches it is involved in, and how it
is related to every other entity included in each Search Service.

Ultimately, one or more Documents on one or more Search Service Indices will
need to be updated, and information in these Documents may be gathered from a
range of entities, not just the one that just got modified. However, given that
Search Services have one and only one Mapper, each Mapper implementation only
needs to worry about assembling information for its own Search Service.

The getObjectList interface method addresses this problem. Given a single updated
entity record, getObjectList assembles all other entity Dtls records which will be
required to update the corresponding Document in the current Search Service
Index. The getObjectList method needs to be coded in such a way that any of the
entities involved in a Search Service can be used as the starting point of this
process. getObjectList is responsible for:
v Working out what entity has been passed to it
v Working out all related entities for the Search Service in question
v Reading and assembling all related entity records based on the data in the

parameter entity

20 IBM Cúram Social Program Management: Cúram Generic Search Server

The mapper.getobjectList () method is called in the following processes:
v Database Synchronization insert
v Database Synchronization modify
v Initial Database Extraction

Note that for initial Database Extraction, the getObjectList interface method gets
invoked for every item fetched from the ReadmultiOperation; typically this will be
the top-level entity in this case (for example, for a Person Search Extract, all Person
records would be read in a readmulti; getObjectList will then be called for each to
retrieve all of the other information required to build a SearchServiceRow).

If this method is called for an input that isn't relevant to this search service, then
the implementation should simply return an empty list.

Mapper.getExtKey interface
/**
* Gets the Row external value for the specified object list.
* @param searchServiceId. the search service identifier
* @param objList the list of Search Service related entity
* objects.
* @return the externalKey.
*/
String getExtKey(final SearchServiceKey serviceId, List objList) ;

The getExtKey interface method returns a unique identifier for the specified Search
Service. This key is used as the key for each row in the SearchServiceRow table in
the staging database. Note that the objList parameter is the output of the
getObjectList interface method described above. For Example, calling getExtKey
for the PersonSearch Search Service should return the concernRoleID of the record
in question.

If this method is called for data that the search service doesn't care about then it
should return null.

Mapper.remove interface
/**
* Deletes the row identified by the specified key from the
* staging
* database.
* @param serviceId identifier of the service.
* @param objKey the Key.
* @throws AppException
* @throws InformationalException
*/
void remove(SearchServiceKey serviceId, Object objKey)

throws AppException, InformationalException;

Deletes the specified row object from the staging database.

Mapper.getFieldValue Interface
/**
* If a specialized field value can’t be covered by the
* <code>SearchServiceMapper.getValue()
* <code> functionality this method
* should be overridden in the mapper for the specific search
* service.
* @param objList list of entity objects for this specific
* mappers service id.
* @param field the field whose value is required.

Developing with the Generic Search Server 21

*/
Object getFieldValue(final SearchServiceKey serviceId,

final List objList, final SearchServiceFieldDtls fieldDtls);

The Generic Search Server infrastructure will try to retrieve an entity attribute
value from an object list by using Field metadata retrieved from the Search Service
Field table. Typically, objectLists will contain entity dtls structs, and in such cases it
is trivial for the Generic Search Server to use reflection to identify the correct
attribute and get its value - this is exactly what is done behind the scenes.

However, if the objectList contains something other than an entity dtls struct (as in
the case of Person Search, where an AddressElementDtlsList is present, itself
containing a single AddressElement struct) then the Mapper.getFieldValue interface
method should be implemented by search developers.

The Mapper.getFieldValue interface method should be implemented if a Mapper
cannot automatically map a specific attribute value. The relevant entity and field
name is passed in via the fieldDtls struct parameter, and the attribute value can be
retrieved from the objList using reflection. It is up to the search developer to
implement this method interface for the type or types to be catered for.

Empty strings should not be returned from this method - null should always be
returned.

Mapper newInstance()
If the mapper is modelled then the factory class should be specified for the
SearchService mapperName property. If the mapper is NOT modelled then the
mapper implementation must implement a
public static Mapper newInstance();

interface returning an new instance of this search service's mapper. In this case the
SearchService mapperName property will be the class name of this implementation
class.

Search Router and Implementation
As mentioned previously, searching currently uses SQL. In future versions, it is
likely that Platform and Solution searches will begin to use the Generic Search
Server as the searching method of choice. However, it is likely that SQL searching
will also continue to be supported as-is currently, both from an upgrade protection
perspective, and from a fallback/failover option perspective in case of network or
other deployment problems.

To facilitate this, a Search Router factory class should be implemented which
should returns a reference to either the database search implementation or the
Generic Search Server based implementation based on a property setting.

Add Synchronization to each Search Entity
As noted earlier, the Generic Search Server staging database must be updated in a
timely manner when modifications are made to Search Service related entities. A
single entity may well be being used in more than one Search Service, and each of
these Search Services must reflect changes to that entity.

The SearchController class is responsible for insuring that all staging database
information is up to date. The SearchController insert, modify and remove
methods must be called from the application when the corresponding Search

22 IBM Cúram Social Program Management: Cúram Generic Search Server

Service entity operation is executed. The insert and modify SearchController
operations modify the SearchServiceRow table information with the specified entity
details struct data. The remove interface requires a key identifying the entity object
being removed and the name of the entity.
/**
* Generic insertion of entity updates to the database.
*
* @param details the object details.
* @param entityName the name of the entity
* @throws AppException application exception retrieving the
* registrar
* or during Mapper insert.
* @throws InformationalException information exception.
*/

public final void insert(final Object details,
final String entityName)

throws AppException, InformationalException
/**
* Generic Modify of entity updates to the database.
*
* @param details the object details.
* @param entityName the name of the entity
* @throws AppException application exception retrieving the
* registrar
* or during Mapper modify.
* @throws InformationalException information exception.
*/
public final void modify(final Object details,

final String entityName)
throws AppException, InformationalException

/**
* Generic remove of entity from the database.
*
* @param key the object key.
* @param entityName the name of the entity
* @throws AppException application exception.
* @throws InformationalException information exception.
*/
public final void remove(final Object key,

final String entityName) throws AppException,
InformationalException

Pull Mapper

Introduction
In the previous chapter we described the events mechanism and how you can use
it to keep your data synchronized with your search service. The Generic Search
Server now provides another way to keep your search service up to date, called
the Pull Mapper. This chapter describes how the Pull Mapper works and how you
can use this with new searches you are developing.

Pull Mapper Overview
The event mechanism is by far the most efficient method of keeping your search
services up to date. However, if your searches are complex, developing and fully
testing your search service may be cumbersome. This is the problem the Pull
Mapper sets out to solve.

The pull mapper uses timestamps on application records to find records that have
been created or updated since the pull mapper or the extractor last ran. When it

Developing with the Generic Search Server 23

finds such records it hands them off to the Search Controller to update the search
services, and from here the process is exactly the same as the standard event
mechanism. This process requires that all database tables involved in a search
service are scanned, which does obviously require database resources. In essence
the Pull Mapper sacrifices some runtime performance to provide a quicker and
easier way to develop searches.

Developing with the Pull Mapper
This section will walk you through the process of developing a search service
using the Pull Mapper.

Enable Last Updated Field on your searchable entities
Timestamps are required on all your database entities that are involved in search
services and that use a Pull Mapper. These timestamp columns are automatically
added and kept up to date by infrastructure when you enable the Last Updated
Field feature for the entity in the model. The process for enabling this feature is
documented in the Server Modelling Guide.

Modelling the table scan
Another modelling requirement imposed by the Pull Mapper to model an
operation called searchByLastwritten (you must use this exact spelling/case.

This operation should be a nsmulti. The value for no generated SQL should be no.
The operation should take a struct called key. You should model your own struct as
a parameter, but it must have an attribute called datetime, which must be a
DateTime. Later you will specify the classname of this struct in the GSSEntity table,
as described below.

You need to provide SQL for the operation. Here is a simple example for a simple
entity called Customer:
Select Customer.customer_id, Customer.name,

recordStatus from Customer
WHERE Customer.lastwritten >= :datetime
INTO :customer_id :name :recordStatus

You must ensure you are selecting all the columns used by the search service.

In addition to the table scan method, you must have a standard read method on
all your searchable entities.

Defining your search service
Your search service should be defined in the usual way (see “Implementing a
Search with the Generic Search Server” on page 18

In addition to the SearchService and SearchServiceField tables you must add
definitions to the GSSMapperType and GSSEntity tables.

GSSMapperType: This table simply maps the Search Service name to a string
defining the mapper type. The default is the standard event mapper, which does
not need to be specified. To use the pull mapper with a particular search service, a
row should be added to this table mapping the Search Service name to the mapper
type “PULL”.

24 IBM Cúram Social Program Management: Cúram Generic Search Server

searchServiceId

The Search Service Identifier; a string used to uniquely identify a Search Service.
This is a foreign key of the SearchService table.

mapperType

Set this to 'PULL' (must be uppercase) to enable the Pull Mapper for the search
service.

GSSEntity: When the pull mapper is in use GSS requires more information about
the entities being used in the search services. For each unique entity listed in the
child searchServiceField records belonging to each SearchService using the Pull
Mapper, a GSSEntity record must be added (however if multiple fields belong to
the same entity, you don't need to repeat the information).

searchServiceId

The Search Service Identifier; a string used to uniquely identify a Search Service.
This is a foreign key of the SearchService table.

tblScanKeyStruct

This is the full classname of the struct that is the parameter to your modelled
searchByLastwritten method described here: “Modelling the table scan” on page
24.

entityKeyStruct

This is the full classname of the parameter struct to your entity's read method.

EntityFactClass

This is the full classname of the generated factory class for your entity.

Writing your mapper class
A SearchServiceMapper implementation with the PullMapper is very much like a
standard SearchServiceMapper implementation as described in the Implementing a
Search with GSS chapter of this guide. However, there are some additional
considerations.

When using the Pull Mapper with a complex search service that is composed of
several related entities, ensure that your SearchServiceMapper implementation will
behave appropriately when it has to deal with incomplete sets of entities, i.e. if
entities A, B and C together comprise a search service your mapper may get called
when only A and C exist. Depending on your search service the correct behaviour
may be to add the incomplete set of data to the search service, or to do nothing
until the set is complete.

Delete operations
The Pull Mapper cannot deal with standard delete operations. If you have a
searchable entity that can be deleted then you must use another mechanism to deal
with this operation (e.g the event based mechanism described in this guide).

However, the Pull Mapper can deal with standard logical delete operations, i.e.
where a recordStatus column is set using the RecordStatus codetable values.

Developing with the Generic Search Server 25

Searches and Queries in Depth

Introduction
Like any other piece of software, your GSS enabled searches must conform to
certain design constraints if they are to perform acceptably and work as users
expect. This chapter described in depth the process of designing a GSS search and
proper use of GSS queries.

The Search Service - general guidelines
Your first design task is to decide what data you want to be able to search. Which
fields do you want to be able to search on? What data do you want your search to
return? There are several tradeoffs here so it's worth thinking about these things
carefully.

Firstly, your index should contain as few fields as possible. Less fields mean a
smaller index at runtime, and less use of system resources. Don't put it in your
search service unless you need it.

Each field in your index can be indexed (i.e. searchable), stored (i.e. you can
retrieve its value), or both. The reasons you would want to index a field are
obvious - you want to be able to search based on it. However, some fields you
might not want to search on - such as non-human-readable IDs. You might wish to
add these to your search service as stored but non-indexed fields, so that you can
perform database lookups based on the results of your searches. If you don't need
to index a field, then don't - your extract processes will run faster and your index
will consume less system resources.

Likewise, you may choose to store field values or not. In general, the index does
not store the original value of a field, but keeps a searchable representation only. In
general, to be useful, a search must store at least one field (the corresponding
primary key of the database record).

After that, whether or not to store fields is a tradeoff. You could store all the fields
you need in order to display your search results, or you could store only the
database IDs and use these to retrieve the data from the database to display. The
first option will result in a much larger index, but a faster display of search results
because the database is not required.

Mapping your database structure to an Index -
Denormalization

You may wish to include data from several different entities in your search. Unlike
database searching, searching with indexes is not conducted using joins.
Remember, the main benefit of using an index is to allow the work of searching to
essentially happen up-front, when the index is created rather than when the search
is invoked. Accordingly, all database tables should be denormalized for indexing.
The alternative, which is to create separate indexes, search them separately, then
attempt to merge results is much more complex and inefficient.

Example say you have the following entities: Entity Person with attributes name,
date of birth, and a foreign key pointing to an Address entity Entity Address with
attributes street address, city, and country. You wish to create a search that allows
you to search for persons by name, DOB, street address, city and country. You
would create a searchable index that contains all the data from both tables.

26 IBM Cúram Social Program Management: Cúram Generic Search Server

When you have multiple entities contributing to a single search index, bear in
mind that updates to any of the tables concerned can lead to the search index
requiring an update.

Tokenized and Untokenized Fields
We have already briefly touched on the issue of tokenization of search fields. What
tokenization entails is essentially breaking up the indexed data into units called
tokens. This is done by use of an analyzer. Different analyzers behave differently,
some may break tokens at whitespace, some at punctuation, etc. The resulting
tokens are also usually transformed to lowercase. For tokenized fields query
strings are tokenized in the same way, so searches are case insensitive, among
other benefits.

For some fields it doesn't make sense to tokenize. Good examples of this are
computer generated values, such as codetable codes. In general, however, most of
your fields should be tokenized. In particular, the behaviour of multi-word
untokenized fields and searches is counterintuitive. If you find your searches are
not returning the data you expect consider whether this may be the case.

Example: Take an address field, with a document containing "Joyce Way Parkwest
Dublin". If this were a tokenized field using the standard analyzer, then the index
will contain four terms: joyce, way, parkwest and dublin. Any query string that
contains terms matching these terms (exactly or via a wildcard) will find this
document. For instance: "Dublin", "Joyce Way", "park*", etc.

However, if this field is untokenized and the same document is added, the index
will contain a single term: "Joyce Way Parkwest Dublin". Much fewer query strings
will match this, essentially only the string itself or the first part of the string as a
prefix search. The search will also be case sensitive.

Wildcards
GSS supports single character and multi-character wildcards. The question mark
symbol, “?” matches any single character. The asterisk symbol, “*” matches any
sequence of characters. Neither of these may be used as the first character in a
search term because this results in poor performance. When implementing a search
developers should consider whether users should be allowed enter these characters
in searches, and if so provide useful online help. Otherwise they can be escaped
with an escape character: “\”. It may also be useful to check that these characters
do not occur at the start of search terms and return a more specific error message
to the user than the GSS infrastructure is capable of doing (a generic exception to
indicate that the query is invalid will be returned, but the developer implementing
the search will be able to add more information regarding which field is invalid).

Analyzers in Depth
As previously introduced, Analyzers prepare your searchable text for indexing and
searching.

Your choice of analyzers is very important. Analyzers are concrete classes that
extend the class org.apache.lucene.analysis.Analyzer. The GSS comes complete with
several analyzers, and you can create and use your own. Sometimes when you are
tempted to define a field as untokenized you may want to consider your choice of
analyzer more carefully instead.

Developing with the Generic Search Server 27

Each Search Service has a default analyzer, and any Search Service Field can
override that analyzer to define a specific analyzer for use with that field (see
“analyzerName” on page 12) GSS will use the same analyzer both for indexing and
for searching.

The Generic Search Server provides the following predefined analyzers.

LUCENESTANDARD
Splits text at punctuation characters, removing punctuation. However, a
dot that's not followed by whitespace is considered part of a token. Splits
words at hyphens, unless there's a number in the token, in which case the
whole token is interpreted as a product number and is not split.
Recognizes email addresses and internet hostnames as one token.
Normalizes token text to lower case and removes common English stop
words.

STANDARD
Similar to LUCENESTANDARD analyzer but common stopwords are
removed from the tokenized terms and if the content to be tokenized is a
single number it will not be altered (making it suitable for processing
generated infrastructure IDs which may be negative numbers).

SIMPLE
Splits text at non-letter characters and normalizes token text to lower case.

STOP Splits text at non-letter characters, normalizes token text to lower case and
removes common English stop words.

WHITESPACE
Splits text at whitespace. Adjacent sequences of non-Whitespace characters
form tokens.

KEYWORD
"Tokenizes" the entire stream as a single token. This is useful for data like
zip codes, ids, and some product names.

Note that if you are using an analyzer other than a predefined GSS analyzer or
analyzers shipped with Lucene the class must be available on the Generic Search
Server classpath.

Running the Generic Search Server in Eclipse

Introduction
This chapter describes how to configure the development environment to run the
Generic Search Server in the Eclipse IDE for development and test purposes.

The Generic Search Server can be run in RMI mode for development purposes, in a
similar way to the Cúram application itself. This chapter details how to set this up.

Bootstrap.properties
Before starting development, the relevant settings should be added to your
Bootstrap.properties file, where necessary. See “Configuration Properties” on
page 35 for a description of the configuration properties.

Launching the Cúram Generic Search Server from Eclipse
Like the Cúram application, in development mode the Generic Search Server
requires a tnameserv process to be running on your machine.

28 IBM Cúram Social Program Management: Cúram Generic Search Server

In your development installation, navigate to the EJBServer/components/core/lib/
core.jar file in Eclipse:
v Right-click on the core.jar file and select Run as Java Application

v From the list of classes select SearchDataExtractor and click OK. This will build
your staging database.

v Right-click again on the core.jar file and select Run as Java Application

v From the list of classes select StartUpSearchServer and click OK. This will start
the GSS search server.

Run the SearchDataExtractor to build your staging database before
StartSearchServer. And run the StartSearchServer process whenever you need to
run a Search Server instance to test your search functionality. You should rerun
your SearchDataExtractor before you start your SearchServer if you have rebuilt
your application database.

Note: If any of your Search Services use third party or custom Analyzers (i.e.
Analyzers that do not come as part of the Lucene distribution), ensure that they
are added to the classpath of the EJBServer project.

Deploying the Generic Search Server

Introduction
This chapter describes the process of deploying the Cúram Generic Search Server
onto your application server. This chapter is aimed at administrators who will be
deploying the Search Server alongside Cúram application and who are familiar
with the relevant Cúram Deployment Guide.

Deployment Options
GSS is deployed as part of the Cúram ear file, which is useful for testing purposes
or small deployments. You can also deploy GSS in its own ear file for a higher
performant deployment configuration. There are build targets that will create a
SearchServer.ear file, which can then be deployed separately.

Deployment Process
The deployment process consists of the following steps:
v Set up your Bootstrap.properties with your configuration properties and any

properties related to your Search Server. See “Configuration Properties” on page
35 for a description of the configuration properties.

v Build your Cúram application ear file as usual (this will also build your GSS ear
file).

v Set up your database as usual.
v Run the Cúram Generic Search Server search database extractor.
v Deploy all your application ear files, including SearchServer.ear
v Log into the application as an administrator, and set up the system properties to

enable the GSS-supported searches that you wish to use and to enable the
synchronization mechanism. See “Generic Search Server enabled searches” on
page 8

v Run the generic search server startup process.

The Generic Search Server should then be available to respond to queries.

Developing with the Generic Search Server 29

Clustering
Deploying multiple instance of GSS is supported on a cluster environment.
Extended discussion of advanced cluster deployment topologies is beyond the
scope of this guide. However it is important to set the following properties in your
Bootstrap.properties file:
v curam.searchserver.server.host
v curam.searchserver.server.port
v curam.searchserver.sync.username
v curam.searchserver.sync.password

See “Configuration Properties” on page 35 for details of these and other
configuration properties. Also see “Recommended configuration for Production
Environment” on page 35.

Note: It is advised to deploy GSS in its own cluster.

Build Targets
The following build targets are specific to the Cúram Generic Search Server.

weblogicEARGSS
This target builds the SearchServer.ear file and copies it to the
EJBServer/build/ear/WLS/ directory, alongside your Cúram ear file. It is run
automatically as part of the weblogicEAR target. The SearchServer ear file must be
built after the Cúram ear file. After the SearchServer ear file has been build the
application is ready for deployment onto Oracle WebLogic Application Server
using the same build targets or manual processes as the Cúram ear file.

websphereEARGSS
This target builds the SearchServer.ear file and copies it to the
EJBServer/build/ear/WLS/ directory, alongside your Cúram ear file. It is run
automatically as part of the websphereEAR target. The SearchServer ear file must
be built after the Cúram ear file. After the SearchServer ear file has been build the
application is ready for deployment onto IBM®WebSphere® Application Server
using the same build targets or manual processes as the Cúram ear file.

runExtractor
This target must be run after your application database has been configured. By
default it extracts all data related to the CEF search services and any other search
services you have defined out of your application database and transforms it into a
format suitable for indexing. The length of time that this process will take will
increase with the amount of data to be extracted. This target may be rerun multiple
times if required.

This target may executed against a single search service by specifying the
“SERVICE” property. E.g: “build runExtractor -DSERVICE=PersonSearch”

runPersist
If you are using a persisted database index (see “Index Persistence” on page 32,
this target builds the index from the staging database tables. It should only be run
after your application database has been configured and the runExtract target has
been run. The runExtract target will build your persisted index if persistence is
configured, therefore this target only needs to be run separately if you have
changed your configuration since running the runExtractor target.

30 IBM Cúram Social Program Management: Cúram Generic Search Server

startupSearchServer
This target is optional. If it is to be run it must be run after your Generic Search
Server has been deployed onto your application server. It triggers the Search
Server to set up its indexes so that they are available for searching. The length of
time that this process will take will increase with the amount of data to be
indexed. If you don't run the startup target explicitly, the search server will
initialize its indexes on the first search request. This feature is primarily there for
ease of testing with small datasets. For large datasets the automatic startup feature
should not be used. You can disable the automatic startup by setting the property
“curam.searchserver.autostartup.disabled” to true in your Bootstrap.properties.
when you set up your ear file - this is recommended.

Database Performance
The Cúram application and the Search Server application share a common
database, but impose quite different demands on it. The SearchServiceRow table
will see the bulk of writes and accesses, and it will grow very large, as it
essentially contains a version of all the searchable data. The Cúram application will
write to this table as searchable entities are inserted or updated. Periodically, if
your Search Server is restarted or when it synchronizes, there will be a lot of reads
from this table. It may make sense to place the SearchServiceRow table in a
different tablespace to the rest of the application tables, depending on your
organizations resources and needs.

Time Considerations
If different machines are used to run instances of the Curam application and the
Generic Search Server then all systems must have their clocks in sync and remain
in the same time zone. We recommend that a software solution such as NTP
(depending on your deployment platform) is employed to ensure this remains the
case. If this is not done then there can be no guarantee that all updates to
application data will be accurately reflected by the Generic Search Server.

Performance

Introduction
This chapter describes Cúram Search Server performance and how various
deployment scenarios and configuration settings may influence it.

Index types
As described in “Indices” on page 1 an index is the data structure that powers GSS
searches. It can be a fairly sizable data structure (see “Index Size Calculation” on
page 34 and this begs the question: where to store it? GSS provides two options:
memory or file. For information on how to configure these properties see
“Configuration Properties” on page 35

RAM (in-memory) directories must be reconstructed each time an application
server is started (unless persistence is used, see “Index Persistence” on page 32.
They are fast to access but their memory requirements may exceed the resources
available. RAM directories may be very useful for testing however, as they do not
hold state.

File indexes use the local file system to store the index. Even though the Java
Platform, Enterprise Edition specification does not cover file system access in
practice this works with all supported versions documented in a separate

Developing with the Generic Search Server 31

document, Curam Supported Prerequisites document. Naturally the better the
performance of the underlying filesystem used the better the performance of GSS
will be.

Index Persistence
Each Search Service has an associated index that is queried during each search.
This index is generated from the staging database tables when the Search Server
initializes. A substantial amount of time may be required to read all the search
service data from the staging database tables and subsequently to generate the
relevant indices for this data.

The Generic Search Server provides the means to persist the current index on the
database so as to improve the startup time. When index persistence is enabled, and
before the staging tables are interrogated, the persisted index is loaded if available.
If it is not available, all data is read from the staging tables and startup will be
slower.

The persisted index has a timestamp associated with it and this is stored in the
appropriate Search Service table for that index. This timestamp indicates the time
that RAM index was last persisted to disk. Knowing this time enables the Generic
Search Server to retrieve any new or modified Search Service data from the staging
tables. The persisted index and the new/modified data from the staging tables
provide for a complete in-memory index ready for searching. Time is saved by
reducing the access to the staging tables and the associated processing during
index construction.

Persisted index data is stored in BLOB format, therefore performance of reading
and writing a large index from and to the database is optimal.

Persistence Operation Invocation
The Batch operation DataBaseIndexPersist.persistIndex() is executed to perform the
backup for all indices. The process for persisting each index is to:-
1. Read current persisted index
2. Read new or modified data from staging table data
3. Generate an in-memory index with 1) + 2) above.
4. Save newly generated in-memory index to the database.
5. Repeat 1) to 4) for each search service.

Testing and operational considerations
Persisted indexes, FILE indexes are designed to retain built indexes between server
resets.

The data also persists between database rebuild operations, and this may cause
issues for testers if index data becomes inconsistent with the current database.

Similarly, in an operational setting, if database updates occur without search index
updates being enabled in the application (via the
“curam.lucene.luceneOnlineSynchronizationEnabled” property) the data in the
index will become out of date and problems may occur.

In the event of either of the above scenarios, persisted data can be removed
manually from the database by dropping all database tables that begin with
“GSS_” (there will be one table for each Search Service). The persisted indexes will
be rebuilt as normal when an extract or persist operation is run.

32 IBM Cúram Social Program Management: Cúram Generic Search Server

In the case of a FILE index the file may be deleted, and in the event of a standard
RAM search service encountering such issues, rerunning the extract process will fix
the problems.

Performance Tuning
This section describes parameters that influence the performance of reading and
writing the search index. They determine how the index is constructed and how
new entries are to be written to it.

Max Merge Documents
curam.searchserver.luceneadaptor.searcher.index.maxmergedocs

This property improves search times for higher values and for lower values gives
better results when an index encounters frequent updating. Small values (e.g., less
than 10,000) are best if the index is frequently updated, however, search times
performance will be impacted. The default is 10000000. If the search performance is
most important this value should be large, for example the default value, or else if
the search data updating performance is more important then the value should to
a small value, for example 10,000.

Merge Factor
curam.searchserver.luceneadaptor.searcher.pool.mergefactor

This property has an impact on RAM used while updating an index. The index
requires updating as a result of search affecting application data updates. For small
values(less than 10), searches will be faster, however, search index updates will be
slower. With larger values(greater than 10), more RAM is used during index
updating, and while searches are slower, index updating is faster. The default
value is 10; If the search performance is most important this value should be less
than 10 or else if the search data updating performance is more important then the
value should be greater than 10.

Enable Persistence
curam.searchserver.server.index.persistence.enable

add curam.searchserver.server.index.persistence.enable=true to Bootstrap.properties
to enable index persistence.

Note:- If this property is enabled, during the Database extraction execution, the
new persisted indices will also be generated.

References
For more information of parameters discussed in this section refer to the javadoc
for Apache Lucene 2.2.0.

Searcher Pooling
This section describes the how to configure Search Pools and the influence this has
on search performance.

Overview
Lucene has an internal caching mechanism which makes searches using long-lived
IndexSearcher objects faster than searches with newly created IndexSearcher
instances. One shared IndexSearcher instance would be enough to get fast searches
in single-user environment, but a standard use case in a server environment is that
multiple clients search the index simultaneously. To avoid sequencing the search

Developing with the Generic Search Server 33

requests in this setting, which would degrade individual search performance, the
GSS uses an IndexSearcher pool that keeps a defined number of IndexSearcher
instances for reuse by simultaneous search requests.

An IndexSearcher will only see the index as of the "point in time" that it was
opened. Any updates to the index after the IndexSearcher was opened are not
visible until the IndexSearcher is re-opened. Each IndexSearcher instance can use a
very significant amount of memory depending on index size and whether the
index has been updated in the meantime or not. The IndexSearcher pool takes care
of closing and reopening IndexSearcher instances when an index update occurs.

Pool configuration properties
IndexSearcher pool has two basic options - initial size and maximum size. The
following parameter
curam.searchserver.luceneadaptor.searcher.pool.initialsize

specifies how many IndexSearcher instances will be open at startup and kept open
at all times for use by search clients. This is a required option and takes positive
integer values including 0. If not specified the default value is "0". Typically this
property should be set to the anticipated maximum number of simultaneous client
searches.
curam.searchserver.luceneadaptor.searcher.pool.maxsize

specifies what is the maximum number of IndexSearcher instances allowed to be
open at any given time. If more than this number of searches happens at any time
an exception will be thrown and logged for diagnostic purposes. This option takes
positive integer numbers, and if not specified the default value is "100". There is
also the associated
curam.searchserver.luceneadaptor.searcher.pool.maxsizeunbounded

option which means the maximum pool size is unlimited. The option accepts
values of "true" or "false". If not specified default is "true". If this option is set to
"true" the curam.searchserver.luceneadaptor.searcher.pool.maxsize option value will
be ignored. One of those two associated options is required.

RAM Limitations
The Global Search Server indices are stored in-memory if configured to do so. If
using a 32-bit JVM A memory limitation of ~3GB is encountered. However, this
figure is not only the memory available to GSS but also to all other system
processes. It is important to note that very large Search Service indices could
exceed the maximum RAM available to the GSS and other deployed processes.

Index Size Calculation
The index size is approximately 30% of the text indexed. The Search Service's
indexed and stored properties (these can be obtained from the SearchServiceField
attributes where indexed=true and stored=true) are used to estimate the index size.
v 1 million Person records. where 1 record = 1 index document.
v 1 document may contain the following indexed and stored properties

determined from the SearchServiceField table for a PersonSearch service:-
refnumber(10) forename(20), surname(20), AddressLine1(30), AddressLine2(30),
city(20), country(15), gender(10). where (*) = max value size in character for that
field.

v 1 document = (155 characters for stored value) + (66 characters for each
field/term name.) = 221.

34 IBM Cúram Social Program Management: Cúram Generic Search Server

v Memory 1M Person documents and Java using 16-bit unicode per character.
Total indexed and returned text 442MB * 30% = 132MB.

Recommended configuration
The recommended configuration for Cúram Generic Search server is the use of a
FILE index type with index persistence turned off as standard. This should provide
good performance without sizing worries. The search server should be deployed as
a separate application and not co-located with Cúram application (see “Deploying
the Generic Search Server” on page 29.

Recommended configuration for Production Environment
FILE index type is the only supported configuration in production environment.

Cúram Generic Search Server Configuration Properties

Configuration Properties
Before starting development, or deploying your Cúram Generic Search Server the
following settings should be added to your Bootstrap.properties file, where
necessary.

Table 3. Cúram Generic Search Server Basic Configuration Settings
Property name Description

curam.searchserver.sync.interval The interval in milliseconds between Generic Search
Server synchronization invocations. This is effectively the
maximum time between data being updated and it being
available for search. If this property is not set, the default
is to synchronize every 3 seconds.

curam.searchserver.sync.username The username used for logging into the application to
perform synchronization. The user must be authorized to
run the DoGSSSync.sync function identifier. Required
when running under WebSphere application server only.
Omitting to specify this property and the associated
password will not prevent the sync operation from
running but it will result in security warnings being
written to the logfiles on each synchronization.

curam.searchserver.sync.password Password associated with the
curam.searchserver.sync.username described in the entry
above. This password should be encrypted with the
standard Cúram encrypt build target.

curam.searchserver.environment.vendor This property should be set to “ITD”, “IBM”, or “BEA”
depending on whether you are using the Search Server in
development mode or deploying to WebSphere or
WebLogic. If this property is not set the Search Server
will default to using curam.environment.as.vendor
property.

curam.searchserver.server.host The domain name or IP address of the server on which
your Search Server is running. This must be set in order
for you to be able to run the server startup process from
the command line. If this property is not set the default is
localhost.

curam.searchserver.server.port The port on which your application server's RMI service
is available. This must be set in order for you to be able
to run the server startup process from the command line.

curam.searchserver.autostartup.disabled For testing and development purposes, the Search Server
will initialize its indexes on the first search request,
unless it has already been started up. In a deployment
scenario, you may want to disable this behaviour and
ensure that the startup process is run from the command
line, to give you more control over the process. Setting
this property to true disables the automatic startup
behaviour. Note that the search server will throw an
exception in response to any search attempts that occur
before the startup is complete.

Developing with the Generic Search Server 35

Table 3. Cúram Generic Search Server Basic Configuration Settings (continued)
Property name Description

curam.searchserver.
luceneadaptor.searcher.index.maxmergedocs

This property is used to tweak the performance of index
reading and writing. Larger values “1,000,000” are best
for batched index writing and speedier searches. Smaller
values “10,000” are best for interactive indexing where
numerous individual index updates occur.

curam.searchserver.luceneadaptor.document.flush.count Indicates the count of documents to update before
flushing to the index, when dealing with a large batch of
documents. If not specified, this defaults to 1000
documents. Tuning this property can reduce the time
required to build your index initially on index persistence
or server startup.

curam.searchserver.term.min.length Minimum allowable length of a search term. Defaults to
two characters. Using very short search terms will result
in poor search performance, and usually in poor quality
of search results.

curam.searchserver.directory.type This specifies the type of storage to use for search
services - may be RAM, FILE. RAM is the default index
type and suitable for smaller indexes that require very
fast performance. FILE setting provides storage for large
indices on the File System.

curam.searchserver.file.index.location This property indicates where to store the file index on
the File System if curam.searchserver.directory.type=FILE
with more data. If deploying to multiple machines the
file location should exist on each targeted machine.

Table 4. Cúram Generic Search Server Searcher Pool Settings
Property name Description

curam.searchserver.luceneadaptor.searcher.pool.initialsize This property initializes the number of searchers within
the searcher pool on startup. The default is 0.

curam.searchserver.luceneadaptor.searcher.pool.maxsize This property indicates the maximum number of
IndexSearchers within the searcher pool. The default is
100.

curam.searchserver.luceneadaptor
.searcher.pool.maxsizeunbounded

This property set to “true” overrides
curam.searchserver.luceneadaptor.searcher.pool.maxsize
and indicates there is no maximum number of
IndexSearchers allowed within the searcher pool. The
default is “true”.

curam.searchserver.luceneadaptor.searcher.pool.
mergefactor

This property is used to tweak the performance of index
reading and writing. The default value is “10”. Minimum
value is “2”. Higher values result in more RAM usage,
slower searching, but quicker index writing.

Table 5. Cúram Generic Search Server Persistence Settings
Property name Description

curam.searchserver.server.index.persistence.enable This property should be set to “true” to enable index
persistence. If this property is not set the default is
“false”.

curam.searchserver.custom.db.init This property should be set to “true” when customizing
index persistence database tables. It indicates that the
default index persistence tables are not to be used and
the CustomDBSearchServices.properties file should be
used to set up these tables.

Sample DMX Listings: PersonSearch

Search Service Record
<?xml version="1.0" encoding="UTF-8"?>

<table name="SEARCHSERVICE">

<column name="
searchServiceId

36 IBM Cúram Social Program Management: Cúram Generic Search Server

" type="text" />
<column name="

name
" type="text" />

<column name="
extKeyName
" type="text" />

<column name="
analyzer
" type="text" />

<column name="
locked
" type="bool" />

<column name="
forcedReindexTimeStamp
" type="timestamp" />

<column name="
mapperName
" type="text" />

<column name="
prstBlobSize
" type="text" />

<row>
<attribute name="searchServiceId">

<value>
PersonSearch
</value>

</attribute>
<attribute name="name">

<value>
PersonSearch
</value> </attribute>

<attribute name="extKeyName">
<value>
ConcernRoleID
</value> </attribute>

<attribute name="analyzer">
<value>
STANDARD
</value>

</attribute>
<attribute name="locked">

<value>
0
</value>

</attribute>
<attribute name="forcedReindexTimeStamp">

<value>
SYSTIME
</value>

</attribute>
<attribute name="mapperName">

<value>
curam.core.impl.PersonSearchMapper
</value>

</attribute>
<attribute name="prstBlobSize">

<value>
50M
</value>

</attribute>
</row>

</table>

Developing with the Generic Search Server 37

Search Service Field Record
<?xml version="1.0" encoding="UTF-8"?>

<table name="SEARCHSERVICEFIELD">

<column name="
searchServiceFieldId
" type="text" />

<column name="
searchServiceId
" type="text" />

<column name="
name
" type="text" />

<column name="
indexed
" type="bool" />

<column name="
type
" type="text" />

<column name="
stored
" type="bool" />

<column name="
entityName
" type="text" />

<column name="
analyzerName
" type="text" />

<column name="
untokenized
" type="bool" />

<row>
<attribute name="searchServiceFieldId">

<value>
field0
</value>

</attribute>
<attribute name="searchServiceId">

<value>
PersonSearch
</value>

</attribute><attribute name="name">
<value>
primaryAlternateID
</value>

</attribute><attribute name="indexed">
<value>
1
</value>

</attribute><attribute name="type">
<value>
String
</value>

</attribute><attribute name="stored">
<value>
1
</value>

</attribute>
<attribute name="entityName">

<value>
Person
</value>

</attribute>
<attribute name="analyzerName">

<value></value>

38 IBM Cúram Social Program Management: Cúram Generic Search Server

</attribute>
<attribute name="untokenized">

<value>
1
</value>

</attribute>
</row>

<row>
<attribute name="searchServiceFieldId">

<value>
field1
</value>

</attribute>
<attribute name="searchServiceId">

<value>
PersonSearch
</value>

</attribute><attribute name="name">
<value>
firstForename
</value>

</attribute><attribute name="indexed">
<value>
1
</value>

</attribute><attribute name="type">
<value>
String
</value>

</attribute>
<attribute name="stored">

<value>
1
</value>

</attribute>
<attribute name="entityName">

<value>
AlternateName
</value>

</attribute>
<attribute name="analyzerName">

<value>
STANDARD
</value>

</attribute>
<attribute name="untokenized">

<value>
0
</value>

</attribute>
</row>

......

</table>

Developing with the Generic Search Server 39

40 IBM Cúram Social Program Management: Cúram Generic Search Server

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 41

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

42 IBM Cúram Social Program Management: Cúram Generic Search Server

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 43

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Oracle, WebLogic Server, Java and all Java-based trademarks and logos are
registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

44 IBM Cúram Social Program Management: Cúram Generic Search Server

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing with the Generic Search Server
	Introduction
	Cúram Generic Search Server Guide
	Prerequisites
	Audience

	Concepts and Definitions
	Introduction
	The Generic Search Server
	Indices
	Search Service
	Field
	Document
	Lucene
	Staging Database
	Query
	Term
	Analyzer
	Mapper
	Extractor

	Generic Search Server Overview
	The Generic Search Server and Lucene
	Importing Data from Cúram
	Search Server Synchronization
	Search Controller
	The Search Process
	References

	Generic Search Server enabled searches
	Introduction
	Generic Search Server related properties in the Cúram application
	Keeping Cúram data and search data synchronized
	Event-based synchronization

	Staging Database Tables
	Introduction
	SearchService Table
	searchServiceId
	extKeyName
	analyzer
	frcdReidxTimeStmp
	mapperName
	dbLastWritten
	prstBlobSize

	SearchServiceField Table
	srchServiceFldId
	searchServiceId
	name
	type
	indexed
	stored
	entityName
	untokenized
	analyzerName

	Getting Started with the Generic Search Server API
	Introduction
	Mappers
	Search Controller
	Search Service Connector
	Queries
	CuramTerm
	Query Structure
	Standard Terms
	Date and Date Range Terms
	Text

	Generating Queries
	Constructing a Query Builder
	Adding Search Criteria
	Generating Queries from a Struct
	Specifying which search service fields to return
	Obtaining the Query Object

	Dealing with Search Results
	Data Types and String Conversion

	Implementing a Search with the Generic Search Server
	Overview
	Person Search Example - Overview
	Develop SearchService DMX files
	Setup SearchService Record
	Setup SearchServiceField Record

	Implement Mapper Operations
	Mapper.mapToStagingDb interface
	Mapper.getObjectList interface
	Mapper.getExtKey interface
	Mapper.remove interface
	Mapper.getFieldValue Interface
	Mapper newInstance()

	Search Router and Implementation
	Add Synchronization to each Search Entity

	Pull Mapper
	Introduction
	Pull Mapper Overview
	Developing with the Pull Mapper
	Enable Last Updated Field on your searchable entities
	Modelling the table scan
	Defining your search service
	GSSMapperType
	GSSEntity

	Writing your mapper class

	Delete operations

	Searches and Queries in Depth
	Introduction
	The Search Service - general guidelines
	Mapping your database structure to an Index - Denormalization
	Tokenized and Untokenized Fields
	Wildcards
	Analyzers in Depth

	Running the Generic Search Server in Eclipse
	Introduction
	Bootstrap.properties
	Launching the Cúram Generic Search Server from Eclipse

	Deploying the Generic Search Server
	Introduction
	Deployment Options
	Deployment Process
	Clustering
	Build Targets
	weblogicEARGSS
	websphereEARGSS
	runExtractor
	runPersist
	startupSearchServer

	Database Performance
	Time Considerations

	Performance
	Introduction
	Index types
	Index Persistence
	Persistence Operation Invocation

	Testing and operational considerations
	Performance Tuning
	Max Merge Documents
	Merge Factor
	Enable Persistence
	References

	Searcher Pooling
	Overview
	Pool configuration properties

	RAM Limitations
	Index Size Calculation

	Recommended configuration
	Recommended configuration for Production Environment

	Cúram Generic Search Server Configuration Properties
	Configuration Properties

	Sample DMX Listings: PersonSearch
	Search Service Record
	Search Service Field Record

	Notices
	Privacy Policy considerations
	Trademarks

