
IBM Cúram Social Program Management
Version 6.0.5

Cúram Security Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 51

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
Audience 1
Overview of Cúram Security 1

Chapter 2. Security 3
Authentication Overview 3

Authentication. 3
Authentication Architecture 4
Default Authentication 4
Alternate Login IDs 5
The Login Page 6
Customization of the Login Page 7
Cúram JAAS Login Module 7
Password Management 8
Default Configuration for WebLogic Server . . . 8
Default Configuration for WebSphere 8
Customization of the JAAS Login Module . . . 10
Verification Process for Authentication 11
Default Authentication. 11
Default Verification Process 11
Authentication Attempts 11
Customization of Default Authentication . . . 11
Identity Only Authentication 11
Customization of Identity Only Authentication 13
External Access Security Authentication 13
Custom Verifications 13

Authorization Overview 14
Users, Roles and Groups 14
Security Identifiers (SIDs). 15
Function Identifiers (FIDs) 15
Field Level Security Identifiers 15
User Defined SIDs 15
Runtime Authorization 16
Client Authorization Checks 16
Server Authorization Checks 16

Cryptography in Cúram 16
Ciphering 17
Digesting 17
Cryptography Properties 17
Cúram Cipher Settings 17
Cúram Digest Settings 18
Cipher-Encrypted Passwords 19

Security Data Caching 20
Cúram Security Cache 20
Cache Refresh 21
Cache Refresh Failure 21
WebSphere Caching Behavior 21

Security for Alternative Clients 21
Mandatory Cúram Users 21
Web Services 22
Batch Processing. 22

JMS Messaging 23
Deferred Processing 23

External User Applications 23
External User Applications 23
User Scope 24
Deployment of an External Application 24

Using Single Sign On 26
Single Sign On with WebSphere 26
Single Sign On for WebLogic Server 27

Other Security Considerations 27
SSL Settings for the Application 28
Using Cúram in a Secure Environment 28
Client Security Considerations 28

Customizing Authentication 29
Customizing the Login Page. 29
Applying Styling to the Login Page 29
Enabling Usernames With Extended Characters
for WebLogic Server 29
Changing the Case-Sensitivity of the Username 29
Adding Custom Verifications to the
Authentication Process 29
Configuring the Custom Authenticator 30
Configuring Identity Only Authentication . . . 30
Adding the Cache Refresh Failure Callback
Interface 30
Turning Off SSL Settings for the Application . . 30
Modifying the web.xml File for the Client
Application 31
Modifying the Application Server Configuration 31
Analyzing the AuthenticationLog Database Table 31

Customizing Authorization 32
Creating Authorization Data Mapping 32
Creating a New Security Role 33
Creating a New Security Group 33
Linking the Security Group to the Security Role 33
Creating the Security Identifier (SID) 33
Linking the Security Group to the SID 33
Linking the Security Role to the User 34
Loading Security Information onto the Database 34
Creating Function Identifiers (FIDs) 34
Switching Security off for a Process Method . . 34
Security Considerations During Development . . 34
Controlling the Logging of Authorization Failures
for the Client 35
Authorizing New SID Types. 35
Analyzing the AuthorisationLog Database Table 36

Customizing Cryptography 36
Cipher Customization 36
Key Management 37
How to Create a New Keystore. 37
Digest Customization 38
How to Specify a Digest Salt 38
How to Utilize the Superseded Digest Settings
for a Period of Migration 39
Modifying Your Crypto Configuration for a
Production System 40

© Copyright IBM Corp. 2012, 2014 iii

Customizing External User Applications 41
Creating an External User Application 41
Creating an External User Client Login Page . . 41
Creating an External User Client Automatic
Login Page 41
Extending the Public Access User Class 43
Authenticating an External User 43
Determine External User Details 44
Authorizing an External User 45
Determining the User Type 45
Preventing the Deletion of a Security Role: Role
Usage Count 46
Retrieving a Registered Username 46

Reading User Preferences. 47
Modifying User Preferences 47
Configuring External Access Security 48
Determining if a User is Internal or External
using the UserScope Interface 48
User Type Determination 48

Notices 51
Privacy Policy considerations 53
Programming Interface Information 54
Trademarks 54

iv IBM Cúram Social Program Management: Cúram Security Guide

Figures

1. Authentication Architecture 4
2. Default Authentication 5
3. Default Authentication Flow for WebSphere 9

4. Authentication Flow for WebSphere with User
Registry Enabled 10

5. Identity Only Authentication 13

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Cúram Security Guide

Tables

1. Contents of the Authentication Log 31
2. Contents of the Authorization Log 36

3. Relationship of keytool Command Arguments
to Cúram Crypto Properties 37

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Security Guide

Chapter 1. Introduction

This guide describes the aspects of security that must be considered when
developing and deploying a Cúram enterprise application. The term security is
used to describe many different areas. For the purpose of this document, the
following areas will be covered: authentication and authorization. This guide also
describes the securable elements of Cúram applications.

Audience
The first part of the guide contains an overview of the security areas and should
be read by all interested parties, both technical architects and developers. The
second part provides development "how to" information and examples for
application security.

There are two main audiences for this document:
v Technical Architects who need to consider integration with other systems at

deployment time, e.g., LDAP.
v Developers who must consider the type of application that will developed, i.e.,

is the application for internal users, external users, or both.

Note: Internal users are users that exist on the Cúram Users database table. They
are part of the organization and typically are there to manage claims for
participants. External users are all other types of users. External users are not part
of the organization. Their access is limited. An example of an external user would
be a provider that provides a service to the organization.

Overview of Cúram Security
Security is built into the infrastructure that underpins the development of Cúram
application. It supports the authentication of a user at login time, and provides
support for the authorization process. The design of an application is not complete
without first considering the implications of securing the application against
unauthorized access to sensitive data or functionality. Security is therefore one of
the key priorities during application development.

The following are the main concepts of Cúram security:
v Authentication
v Authorization

There is also the concept of location-based security. At the organization level,
location security limits a user's access to client and case information. Location data
security can also be configured to allow a user to access locations other than their
own. For more information about location-based security, see the Cúram Location
Administration Guide.

© Copyright IBM Corp. 2012, 2014 1

2 IBM Cúram Social Program Management: Cúram Security Guide

Chapter 2. Security

Authentication and authorization are two key components of application security.
The IBM Cúram webclient is configured to support form-based authentication.
Different authentication modes can be configured with the Cúram JAAS login
module. Functional elements in Cúram are secured by security identifiers. This
data is linked to a user and can be configured.

Authentication Overview
In Cúram, authentication is the process of determining if a user is who they say
they are. Authentication is needed where a user must be verified in order to access
a secure resource on a system.

Form-based authentication is where a user is presented with a form allowing them
to enter username and password credentials. These credentials are compared
against the credentials stored on the system for this username, if they match the
user is considered an authenticated user for the system. For security reasons the
password for authenticating a user is stored on the system in a digested form.

The Cúramweb client is configured to support form-based authentication, which
means that before a user can access any of the web client content, they will be
redirected to a login form to authenticate.

The authentication process involves the verification of the username and password,
and this is performed by default by a JAAS (Java™ Authentication and
Authorization Service) login module. HTTPS/SSL is turned on by default in the
web client ensuring the form-based login authentication mode is secure.

Authentication
Different authentication modes can be configured (depending on authentication
requirements) via the Cúram JAAS login module.

The following are the authentication modes supported:
v Default Authentication;
v Identity Only Authentication;
v External Access Security Authentication.

Each of these modes are described in detail in the sections below.

© Copyright IBM Corp. 2012, 2014 3

Authentication Architecture

“Authentication Architecture”, above, outlines the architecture for the
authentication process of a user. Out-of-the-box, default authentication is
performed for a user. This behavior can be customized for both internal and
external users, depending on the authentication requirements. The following
sections in this chapter describe in detail each of the functional areas that make up
the authentication architecture, indicating where customizations are possible.

Default Authentication
Default authentication for Cúram involves the user logging in through the login
screen, where the user is prompted for a username and password as credentials.
These credentials are then passed to the Cúram JAAS login module configured in
the application server.

The default authentication is invoked and the username and password entered are
checked against the username and password stored on the Cúram Users database
table. The Cúram username is immutable, but you have the option of configuring
your system to use a Cúram login ID instead, which is changeable. The login ID is
a logical extension of the Cúram user and the same verifications checked for the
username are also checked for the login ID. See “Alternate Login IDs” on page 5
for more information about alternate login IDs.

Authentication performs a number of verifications against the login credentials,
“Default Authentication” on page 11 should be consulted for details on the
verifications.

Figure 1. Authentication Architecture

4 IBM Cúram Social Program Management: Cúram Security Guide

Provided all verifications are successful, the user is considered to be authenticated
by the application.

Once the user is authenticated, the user is then added to the Cúram Security
Cache. The Cúram Security Cache stores the username and all related
authorization data for that user in order to optimize the authorization data
retrieval for a user. “Security Data Caching” on page 20 should be consulted for
further details on the Cúram Security Cache. Figure 2.3 below highlights the path
taken for default authentication.

Alternate Login IDs
By default, Cúram utilizes the username and digested password stored in the
Users table for authentication. This username is immutable, once created it cannot
be changed. This lack of flexibility may not meet requirements for some
installations. However, you have the option of using a login ID, which can be
updated, instead of the immutable username. The login ID functions as a logical
extension of the Cúram Users table. When the alternate login ID is used the
username still exists and is used internally by Cúram, but the user logs into Cúram
using the login ID.

Things to note when using the alternate login ID:
v The use of the alternate login ID is mutually exclusive with the username. That

is, you cannot have a mix of Cúram users logging in with usernames and login
IDs.

v The Cúram ExtendedUsersInfo table, where the login ID is stored, must be
populated before turning on the alternate login ID feature, which is explained in
more detail below.

Figure 2. Default Authentication

Chapter 2. Security 5

v When using login IDs authentication results are stored in the AuthenticationLog
table and the AltLogin column indicates whether the UserName column
represents a username (false) or login ID (true).

v Login IDs are only applicable to internal Cúram users; i.e., users stored on the
Cúram Users table. However, if you are using identity-only with alternate Login
IDs then wherever those IDs are stored (e.g. WebSphere® registry, LDAP, etc.)
must match the login IDs stored in the Cúram ExtendedUsersInfo table.

v When assigning login IDs you need to take care with IDs that are used
internally and/or have dependencies (e.g. with property values) outside of the
Cúram Users table. These are the usernames that would cause issues if its login
ID differed from the username without a corresponding change as indicated:
– SYSTEM - In WebSphere this username is associated with JMS processing

and is made part of the WebSphere configuration at application deployment
time. See “Mandatory Cúram Users” on page 21 and the appropriate
WebSphere Cúram Deployment Guide for information on changing this ID.

– DBTOJMS - this is the default DBtoJMS username used by batch processing
and is referenced by property curam.security.credentials.dbtojms.username.
See “Mandatory Cúram Users” on page 21, “JMS Messaging” on page 23,
“Deferred Processing” on page 23 and the Cúram Batch Processing Guide for
more information.

– WEBSVCS - this is the default web services username and is referenced by
property curam.security.credentials.ws.username. See “Mandatory Cúram
Users” on page 21, “Web Services” on page 22, and the Cúram Web Services
Guide for more information.

– unauthenticated - is the principal WebSphere uses for unauthenticated users
and this login ID should not be changed.

To enable the use of the alternate login ID, once you've populated the
ExtendedUsersInfo table, set the curam.security.altlogin.enabled property to
true (see the Cúram Server Developer's Guide for more information on Cúram
properties). This is a static property and Cúram must be restarted for it to take
effect.

To populate the ExtendedUsersInfo table before activating the feature you have a
number of options; for instance:
v With a simple SQL statement you can populate the table using the username in

the Users table; so, there is no immediate user impact: INSERT INTO
EXTENDEDUSERSINFO (USERNAME, LOGINID, UPPERLOGINID, VERSIONNO) (SELECT
USERNAME, USERNAME, UPPER(USERNAME), 1 FROM USERS); You can then roll-out
your modifications to the login IDs in a controlled manner.

v You can implement an SQL application that implements your username and
login ID mapping (e.g. LDAP common names).

Note: You must maintain the username foreign key relationship between the
Users and ExtendedUsersInfo tables.

The Login Page
The default out-of-box login page is represented by the logon.jsp file. This
logon.jsp represents the login page for the user to complete form-based login
authentication. By default, the logon.jsp file contains the username and password
fields. However, the logon.jsp file can be customized to pass an additional
parameter by adding the user_type field. This field determines the type of user

6 IBM Cúram Social Program Management: Cúram Security Guide

logging in, i.e., internal or external user. The username, password and user_type (if
present) are all passed to the Cúram JAAS login module as part of the
authentication process.

The default out-of-the-box logon.jsp file does not have the user_type property set.
If this property is omitted, the user is assumed to be internal. When this property
is set, it indicates that an external user is logging in. This property can be set to
any value other than 'INTERNAL'.

Customization of the Login Page
The logon.jsp file can be customized, i.e. the logon.jsp file can be completely
replaced by a custom logon.jsp file, for a number of reasons including the
following:

An external user client application is being developed;
If an external user client application is being developed, a new logon.jsp
file must be created, as the user type must be set to indicate an external
user is logging in. “Creating an External User Client Login Page” on page
41 should be referenced for further details.

Automatic login is needed;
Some external user client applications require no user authentication and
hence a username and password should not be requested, i.e. in the case of
a external public access application. It is not possible to disable
authentication, so the best way to achieve this requirement is to write an
automatic login script. This is done by customizing the logon.jsp file for
the external public access application. “Creating an External User Client
Automatic Login Page” on page 41 should be referenced for further details.

Different styling is required;
The section on Login Pages in the Cúram Web Client Reference Manual
should be referenced for further details on styling for the logon.jsp file.

A requirement exists for usernames to contain extended characters (valid only
for Oracle WebLogic Server).

WebLogic Server provides a proprietary attribute, j_character_encoding ,
which must be added to the logon.jsp file. “Enabling Usernames With
Extended Characters for WebLogic Server” on page 29 should be consulted
for further details.

Cúram JAAS Login Module
Authentication is performed by a JAAS login module. It is configured in the
application server and is invoked automatically by the application server as part of
the authentication process for any access to the Cúram application. The advantage
to this approach is that the default authentication mechanism can be used with, or
replaced by, a custom approach, without affecting the Cúram application.

As mentioned earlier, the Cúram JAAS login module can be configured to operate
in three modes. For more information on the configuration of the login modules
and any application server specific behavior, the section on Application Server
Configuration within the Cúram Server Deployment Guide for the application server
being used should be consulted for further details.

Project specific requirements may mean that more than one login module is
needed, e.g., a user may be required to enter more than the username and
password for verification purposes. It is possible to configure multiple login
modules in the application server. Each login module will be executed in the order

Chapter 2. Security 7

as determined by the settings in the application server. For more information on
these settings, the WebSphere or WebLogic Server documentation should be
consulted.

Once the user is successfully authenticated by all login modules that require
successful authentication of the user (this is configurable in the application server),
the user is considered authenticated by the application.

Password Management
The passwords for all Cúram internal and external users are stored in their digest
format on the Cúram Users and ExternalUsers database tables. When the Cúram
JAAS login module receives the password it is digested before being sent to the
login bean for comparison. Digesting is a one-way process to ensure the security of
the password. The password stored for the user on the database uses the same
digest algorithm, subject to your crypto settings, thereby ensuring the encrypted
passwords can be successfully compared to each other, but remain secure.

Users managed externally, e.g. via LDAP with Cúram identity-only configured, are
not subject to the above process. When authenticating against a third-party party
system (e.g., LDAP or a SSO Server), where there is a need for the Cúram
application to pass the user-entered credentials to the third-party system, the
custom implementation of curam.util.security.PublicAccessUser can be used, as
it will allow access to the credentials with plain-text password.

Default Configuration for WebLogic Server
The Cúram JAAS login module is configured as an authentication provider in
WebLogic Server . The Cúram authentication provider is the only provider
configured by the configuration scripts provided for WebLogic Server . As it is the
only configured authentication provider, the Cúram authentication provider is
responsible for authenticating and verifying the user. As mentioned previously, it is
possible there may be more than one authentication provider configured in
WebLogic Server , in this case the Cúram authentication provider may not be
responsible for authenticating and verifying the user. “Single Sign On for WebLogic
Server” on page 27 should be referenced for further details.

Default Configuration for WebSphere
The Cúram JAAS login module is configured as a system login module in
WebSphere . The default, scripted security configuration within WebSphere
involves the default file-based user registry and the Cúram system login module.
The user registry in WebSphere is the default authentication mechanism and can be
configured to be:
v A custom user registry;
v An LDAP directory server;
v The Local OS or;
v The WebSphere file-based repository.

There are multiple system login configurations for WebSphere . The Cúram system
login module is configured for the DEFAULT , WEB_INBOUND and RMI_INBOUND
configurations. The same login module is used for all three configurations.
WebSphere automatically invokes the login modules configured as system login
modules under certain circumstances:
v DEFAULT

8 IBM Cúram Social Program Management: Cúram Security Guide

The login modules specified for the DEFAULT configuration are invoked for
authentication of web services and JMS invocations. They are also invoked
during the startup phase of WebSphere ;

v WEB_INBOUND

The login modules specified for the WEB_INBOUND configuration are used for
authentication of web requests;

v RMI_INBOUND

The login modules specified for the RMI_INBOUND configuration are used for
authentication of Java clients.

The Cúram JAAS login module exists as a login module within a chain of login
modules set up in WebSphere . It is expected that at least one of these login
modules be responsible for adding credentials for the user. By default, the Cúram
login module adds credentials for an authenticated user. As a result of this, the
configured WebSphere user registry handled by a subsequent login module does
not add credentials. Therefore, it is not necessary to define Cúram users within the
WebSphere user registry. This behavior is configurable through the use of the
curam.security.user.registry.enabled property set in the AppServer.properties file.
The Cúram Deployment Guide for WebSphere Application Server or Cúram Deployment
Guide for WebSphere Application Server on z/OS should be consulted for further
details on setting this property.

This figure illustrates the default authentication flow for WebSphere.

Figure 3. Default Authentication Flow for WebSphere

Chapter 2. Security 9

As part of the security configuration there are certain users that are excluded from
authentication and for these users the configured user registry will be queried. This
list of users is configured automatically to be the WebSphere security user, as
specified by the security.username property in AppServer.properties and the
database user, as specified by the curam.db.username property in
Bootstrap.properties . These two users are classified administrative users and not
application users. It is possible to extend this list of excluded users manually, see
the Cúram Deployment Guide for WebSphere Application Server and Cúram Deployment
Guide for WebSphere Application Server on z/OS for more information.

Warning: The security.username and curam.db.username users are automatically
added to the WebSphere file-based user repository by the provided configuration
scripts. If the configured WebSphere user registry is not the default, these users
must exist in the alternate WebSphere user registry.

Customization of the JAAS Login Module
It is possible that the Cúram JAAS login module may not support the
authentication requirements for a particular custom solution. We strongly
recommend that when developing a custom login module, that the Cúram JAAS
login module be left in place and used with identity only authentication enabled.
However, if deemed necessary, the Cúram JAAS login module can be removed and
replaced by a custom solution. If this is the case Support must be consulted.

Warning: While it is possible to remove the Cúram JAAS login module completely,
it should be noted that users must still exist in the Cúram Users database table for
authorization reasons.

This figure illustrates the authentication flow for WebSphere where its user registry is also queried, i.e. where the
curam.security.user.registry.enabled property is set to true.

Figure 4. Authentication Flow for WebSphere with User Registry Enabled

10 IBM Cúram Social Program Management: Cúram Security Guide

The Cúram JAAS login module adds new users to the Cúram Security Cache
automatically, and when this Cúram JAAS login module is replaced by a custom
JAAS login module, this functionality is no longer present. If a custom JAAS login
module is completely replacing the Cúram JAAS login module, it is the
responsibility of the custom JAAS login module to ensure an update of the
Security Cache is triggered when a new user is added to the database.

Verification Process for Authentication
The type of verifications performed is dependent on the authentication mode being
used. Below is a list of the authentication modes/configurations and full details on
the verifications completed for each authentication mode.

Default Authentication
Default authentication is part of the out-of-the-box configuration and this mode of
authentication involves verifying the username and password specified during
login against the Cúram Users database table. All login information in this case is
maintained by the Cúram application.

Default Verification Process
The verifications performed by the Cúram login module during default
authentication are:
v username and password.
v account and/or password expiry.
v username synchronization with security cache.
v break-in detection, e.g. upper limit on password entry attempts, incorrect

usernames, password change failures.
v day and time access restrictions - day of the week and time range within the

day.

The authentication and authorization of usernames is case sensitive by default,
however it is possible to disable case sensitive authentication. If duplicate case
insensitive usernames exist (e.g. caseworker, CaseWorker), authentication will fail
due to an ambiguous username. “Changing the Case-Sensitivity of the Username”
on page 29 should be referenced for further details on this.

Authentication Attempts
Authentication failures are not reported directly to a client as this would provide
extra information to an intruder attempting to break into the system. For example,
reporting an incorrect password would indicate that the username is valid. All
authentication attempts (both success and failure) are instead logged in a database
table called the AuthenticationLog . “Analyzing the AuthorisationLog Database
Table” on page 36 should be consulted for further details.

Customization of Default Authentication
The default implementation can be customized to use a mutable login ID instead
of the Curam username and the ability to add extra verifications is available by
implementing the custom authenticator (“Custom Verifications” on page 13 should
be referenced for further details).

Identity Only Authentication
Authentication can be configured to perform identity-only verification, in place of
the default verifications listed in “Default Verification Process” above.

Chapter 2. Security 11

Identity only verification means that the authentication mechanism only ensures
that the username for the user logging in exists on the Cúram Users database table.
Full authentication must be completed by an alternative mechanism, to be
configured in the application server.

An example of an alternative mechanism is an LDAP directory server, which is
supported as an authentication mechanism by both the WebSphere and WebLogic
Server application servers. Another alternative is to use a Single Sign-On Solution
for authentication, or to implement a custom login module. For custom application
server solutions the IBM or Oracle documentation should be consulted.

With identity-only authentication (as for default authentication), entries are added
to the AuthenticationLog database table at the end of the authentication process.

For a successful login the following status is used:
v AUTHONLY

For a failure scenario, the following status is used:
v BADUSER

This is the only possible failure scenario where a user does not exist.

The loginFailures and lastLogin fields of the AuthenticationLog are not set. This
is true even if customized verifications are implemented.

When the password expiry information for a user is set (on the Cúram Users
database table), the password expiry warning will be displayed if it is about to
expire. With identity-only authentication this warning is misleading. It is
recommended that any fields relating to the authentication verifications, such as
password expiry or account enabled, are not used if identity-only authentication is
enabled.

When identity-only authentication is enabled, security is not used for
authentication but is still used for authorization purposes. As a result of this, all
users requiring access to the application must still exist in the Cúram Users
database table, as well as in the alternative authentication mechanism, e.g., LDAP.
It is important to note that there are two users that must exist in both locations, i.e.
the SYSTEM user and the DBTOJMS user. “Security for Alternative Clients” on
page 21 should be consulted for further details on these users.

“Configuring Identity Only Authentication” on page 30 should be consulted for
details on how to configure identity only for an application server.

12 IBM Cúram Social Program Management: Cúram Security Guide

Customization of Identity Only Authentication
The identity-only implementation cannot be customized, but extra verifications can
be added by implementing the custom authenticator. “Custom Verifications”
should be consulted for further details.

External Access Security Authentication
The architecture allows a developer to implement their own custom authentication
solution for external users by providing a “hook” into the existing authentication
and authorization infrastructure of the SDEJ.

To “hook” the custom solution into the application the
curam.util.security.PublicAccessUser class must be extended, which requires
implementing the curam.util.security.ExternalAccessSecurity interface. This
class is used during the authentication and authorization process to determine
required information relating to the External User. “Customizing External User
Applications” on page 41 should be consulted for further details.

Custom Verifications
Support is provided for adding custom verifications to the authentication process
e.g., a user may be required to answer a security question that must then be
verified. The custom code, if implemented, is invoked after the relevant Cúram
tverifications or identity assertion, and only if they have been successful.

After the custom verifications are invoked, the authentication process will update
the relevant fields on the Users database table.

Figure 5. Identity Only Authentication

Chapter 2. Security 13

“Adding Custom Verifications to the Authentication Process” on page 29 should be
consulted for further details.

Authorization Overview
In Cúram, authorization is the process of granting or refusing a user access to
functional elements of an application.

The functional element can be anything to which a unique identifier can be
attached, such as:
v a server process call,
v an element of the application that requires security checking, for example, a

series of registered welfare products.

Access to the functional element is controlled by a Security Identifier (SID) that
forms part of the Cúram authorization data. This data is linked to a user and can
be configured through the Cúram Administration screens or through the Data
Manager. For more information, see the Cúram Server Developer's Guide.

The security data that is created for authorization is central to the processing
performed during every client-server call, and it is important that access is
optimized for performance reasons. The Cúram Security Cache is responsible for
caching authorization data for a user. For more information, see “Cúram Security
Cache” on page 20.

The following topics describe the relationship for these authorization concepts and
how authorization works within Cúram.

Users, Roles and Groups
The security information associated with an application must first be organized
into security profiles before it can be utilized in a runtime environment. A security
profile consists of a security role, one or more security groups and the associations
between security identifiers (SIDs) and securable elements of an application.

Every authorized user is assigned a security role during security configuration and
these roles are associated with a number of security groups. Each security group is
associated with a number of security identifiers. The security identifier represents
the securable elements of Cúram, for example., a method or a field. The role,
groups and identifier information is stored on the database in a number of tables
and is configured using the application Data Manager or the Cúram
Administration screens.

This data structure makes it possible to authorize every user against any secured
element of an application. This is a powerful and flexible method of providing
authorization to Cúram users.

There is a minimum set of SIDs required for a user to operate the Cúram Platform
application. These SIDs are associated to the out-of-the-box
BASESECURITYGROUP group. The EJBServer/components/core/data/initial/
handcraftedscripts/Supergroup.sql file should be consulted to identify the list of
these SIDs. This file is responsible for linking the SIDs to the
BASESECURITYGROUP out-of-the-box.

14 IBM Cúram Social Program Management: Cúram Security Guide

A simple way to ensure that all users have the privileges from this set of SIDs is to
create a single security group for them and then associate that security group with
every security role in the system.

Security Identifiers (SIDs)
Every secured element in Cúram is given a security identifier (SID) that is unique
across the entire application.

The authorization process is built into the infrastructure and once the securable
elements have been identified, the rest is handled by code generators, scripts and
the Cúram Administration screens. The analysis of what elements must be
securable is a manual process that must be done by the developer or security
administrator. This section outlines the infrastructure available to set up
authorization.

The first type of authorization to consider is that of the process method(facade)
also known as function-level security . In the Cúram model, a developer may choose
if security is switched on or off at the process method level. The option applies
only to Business Process Objects (BPOs) since they encapsulate the calls exposed to
the client. Entity object methods are not included in the authorization process.

There are a number of types of SIDs and these include:
v Function Identifiers (FIDs)
v Field Level Security Identifiers
v User defined SID types.

Function Identifiers (FIDs)
Function identifiers (FIDs) are a specialized type of security identifier (SID) where
the type is set to FUNCTION. When a method is made publicly accessible (by
setting the stereotype as facade in the model), a FID is generated for that method
and security is automatically switched on.

It is possible to switch security off for a process method at design time. “Switching
Security off for a Process Method” on page 34 should be referenced for further
details on this.

Field Level Security Identifiers
The Field Level SID allows authorization to be applied to specific fields on a
publicly accessible method. At runtime, if a user does not have access rights to
view the field to be displayed, the contents of the field are displayed as a number
of asterisks (***). For more information on Field Level SIDs , the Cúram Modeling
Reference Guide should be consulted.

User Defined SIDs
In the previous sections, we have described

FIDs; An automatically generated SID of type function.

Field Level SID;
Security applied to specific fields on a method.

There is also the concept of a user defined SID. The authorization process is
sufficiently flexible to accommodate any securable element of an Cúram
application. The developer can effectively customize the authorization process by

Chapter 2. Security 15

defining new types of SIDs. The new types represent a conceptual element
requiring security. The following server interface method enables authorization to
be invoked directly on these new user defined SID types.

curam.util.security.Authorisation.isSIDAuthorised()

Out-of-the-box, the LOCATION and PRODUCT SIDs are SIDs of this type. Using
the above method there is effectively no limit to the SID types that can be defined.
“Authorizing New SID Types” on page 35 should be consulted for further details.

Runtime Authorization
The Cúram infrastructure performs authorization checks from both the web client
and server side.

Client Authorization Checks
Before a user can access a method or field, the web client performs authorization
checks before the page is initially loaded. If the user does not have access, the
client authorization check fails, and the server is not invoked. This check is
configurable in the curam-config.xml by setting the
SECURITY_CHECK_ON_PAGE_LOAD property. Section 3.12.13 General
Configuration in the Cúram Web Client Reference Manual should be consulted for
further details on this.

By default any such web client authorization failures are not recorded. This
behavior is configurable. “Controlling the Logging of Authorization Failures for the
Client” on page 35 should be consulted for further details.

Server Authorization Checks
To cater for other access to Cúram, and where the web client authorization check is
disabled, there is a second level authorization check made by the server. This
server side check will always log authorization failures, and the client property
does not affect this logging.

The log of all authorization failures is stored on the database to allow these failures
to be audited at a later stage. The AuthorisationLog table contains the User Name
and Security Identifier for the failed authorization, as well as a timestamp
indicating when the failure occurred. “Analyzing the AuthorisationLog Database
Table” on page 36 should be consulted for further details on the AuthorisationLog
table.

Cryptography in Cúram
In Cúram, cryptography refers broadly to ciphers and digests, two types of
functionality that are related to keeping your Cúram systems safe and secure.

You can use ciphers and digests as follows in Cúram:
v ciphers - for two-way encryption of passwords that are used at various

processing points
v digests - for one-way hashing (or digesting) of passwords; for example, used at

login

You can select the values for configuring cryptographic behavior with the
CryptoConfig.properties property file to provide you with the most control and
security possible for your Cúram installation. This flexibility provides the

16 IBM Cúram Social Program Management: Cúram Security Guide

capability to adjust to changing security standards. For more information about
configuring and customiziing cryptography, see “Customizing Cryptography” on
page 36.

If you are migrating for the first time to a level of Cúram that has this level of
cryptographic support, which was introduced in version 6.0.5.0, it is recommended
that you upgrade system (new cipher) and user (new digest) passwords from the
default values to improve your security.

Supported cryptographic configurations are:
1. AES: 128, 192, 256 (FIPS 140-2 and SP800-131a compliant);
2. Two-key Triple DES - DESede: 112 (FIPS 140-2 compliant);
3. Three-key Triple DES - DESede: 168 (FIPS 140-2 and SP800-131a compliant);
4. No cryptography configuration, which is configured by removing the

CryptoConfig.properties file, in which case Cúram reverts to its previous
default crypto settings.

In the environment where Cúram runs, the application server, database, and other
software, such as web server or LDAP software, has its own cryptographic support
and you can refer to the relevant vendor's documentation.

Ciphering
Ciphering refers to the process of encrypting passwords, which are listed in
“Cipher-Encrypted Passwords” on page 19. That is, this is a two-way process
representing decrypt-able values. There are about a dozen of these encrypted
passwords in various property files in Cúram and encrypting them helps keep
them secure and they are are decrypted at the necessary points for usage; e.g.
connecting to your database system.

Digesting
Digesting refers to the one-way process of handling passwords that do not require
decrypting, but is used for storing passwords for later comparison; e.g. Cúram user
logins. That is, this is a one-way process representing non-decryptable values.

Cryptography Properties
The Cúram CryptoConfig.properties file contains settings for cipher and digest
cryptography. Therefore, this file and all the files it refers to (i.e., keystore and salt)
should be considered critical items to the security of your system and should be
provided with adequate access controls (e.g., file permissions) and specifically
modified and segregated when used for production systems. That is, if the details
of these files were to become widely known, while not necessarily a security risk
themselves, would remove a level of protection that might necessitate a disruptive
crypto change (see “Cipher Customization” on page 36 and “Digest
Customization” on page 38).

Related topics:
v “Cúram Cipher Settings”
v “Cúram Digest Settings” on page 18

Cúram Cipher Settings
Various passwords within Cúram property files and configurations are stored in an
encrypted format out-of-the-box (OOTB).

Chapter 2. Security 17

The Cúram crypto configuration will work for you out-of-the box, but it is
recommended you modify these settings with respect to your local security
requirements. For instance, the OOTB settings may be adequate in development,
but for production environments it is strongly recommended that you modify them
(e.g. by changing the cipher secret key).

The cipher settings are stored in the CryptoConfig.properties file. The properties
and their values are as follows:
v curam.security.crypto.cipher.algorithm

– Valid values: In JCE documentation, for example: http://docs.oracle.com/
javase/6/docs/technotes/guides/security/StandardNames.html#Cipher. The
supported ciphers are AES and the various forms of Triple DES.

– Default: AES (FIPS 140-2 and SP800-131a compliant)
v curam.security.crypto.superseded.cipher.algorithm

– Valid values: See curam.security.crypto.cipher.algorithm

– Default: None
– Purpose: Provides for flexibility to support an upgrade/migration period for

Cúram user passwords with custom code (e.g. a batch program) via the
curam.util.security.EncryptionUtil.decryptSupersededPassword() API. The
use of an upgrade/migration period is explained in more detail in “How to
Utilize the Superseded Digest Settings for a Period of Migration” on page 39.

v curam.security.crypto.cipher.keystore.location

– Valid values: Path to keystore file containing secret key. This can be an
absolute path specification or relative to the classpath (e.g.
CuramSample.keystore).

– Default: None
v curam.security.crypto.cipher.keystore.storepass

– Valid values: As per the JDK keytool command.
– Default: password
– Purpose: Specify the password used to access the keystore.

v curam.security.crypto.cipher.provider.class

– Valid values: Fully-qualified name of a JCE cryptography provider class.
– Default: blank
– Purpose: Optional way to enable the use of an alternate standards-compliant

provider.

This ciphering functionality applies to the properties as described in
“Cipher-Encrypted Passwords” on page 19.

These Cúram cryptographic settings are enabled by default OOTB and represents
changes that existing Cúram installations must address as documented in the
Cúram Upgrade Guide.

Cúram Digest Settings
Cúram users, internal and external, when not invoked with identity-only, are
authenticated using form-based login and the password entered in the form is
digested and compared to the digest value stored in the database for the user.

Note: This processing does not apply to users authenticated in third party systems
like LDAP.

18 IBM Cúram Social Program Management: Cúram Security Guide

http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#Cipher
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#Cipher

The Cúram crypto configuration will work for you out-of-the box, but it is
recommended you modify these settings with respect to your local security
requirements. For instance, the OOTB settings may be adequate in development,
but for production environments it is strongly recommended that you modify them
(e.g. digest salt encrypted value).

The digest settings are stored in the CryptoConfig.properties file. The properties
and their values are as follows:
v curam.security.crypto.digest.algorithm

– Valid values: In JCE documentation, for instance: http://docs.oracle.com/
javase/6/docs/technotes/guides/security/
StandardNames.html#MessageDigest. The supported digests are the SHA
variants (1, 256, etc.) and MD5.

– Default: SHA-256 (FIPS 140-2 and SP800-131a compliant)
– Purpose: Specification of the digest algorithm.

v curam.security.crypto.digest.salt.location

– Valid values: A path identifying the file containing the encrypted secret
digest salt.

– Default: None
– Purpose: An optional file to specify the salt (encrypted) for digesting.

v curam.security.crypto.digest.iterations

– Valid values: 0 or a positive integer.
– Default: 0
– Purpose: Typically, higher values give better security, but at the cost of

processing (e.g. at login time).

There are a set of corresponding "superseded" properties to allow for flexibility
when migrating from one set of digest settings or standards to another. The
following have a similar function to their counterparts above, but are used by the
Cúram encryption functionality to support both old and new settings for a time of
migration:
v curam.security.crypto.superseded.digest.algorithm

v curam.security.crypto.superseded.digest.salt.location

v curam.security.crypto.superseded.digest.iterations

The usage and behavior of the superseded properties are controlled by the
curam.security.convertsupersededpassworddigests.enabled property as managed
by the Properties Administration user interface. See “How to Utilize the
Superseded Digest Settings for a Period of Migration” on page 39 for more
information on using the superseded properties.

Cipher-Encrypted Passwords
The following passwords are cipher-encrypted in Cúram:
v Bootstrap.properties:

– curam.db.password - database password
– curam.searchserver.sync.password - see Cúram Generic Search Server for more

information
v AppServer.properties: (typically this property file is used for configuring test

servers and is not appropriate for production systems)
– security.password - application server administration console password

Chapter 2. Security 19

http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest

– curam.security.credentials.async.password - replacing the runas.password
property

v Application.prx - individual property descriptions are as documented with the
properties in the Curam Property Administration user interface:
– curam.security.credentials.dbtojms.password - (in conjunction with

curam.security.credentials.dbtojms.username), which replaces the
curam.omega3.DBtoJMSCredentialsIntf interface APIs previously used to
provide custom credentials for DB-TO-JMS

– curam.security.credentials.ws.password (in conjunction with
curam.security.credentials.ws.username), which replaces the build-time
default web services default credential settings.

– curam.meeting.request.reply.password - (an SMTP password)
– curam.ldap.password

– curam.citizenworkspace.password.protection.key

v BIBootstrap.properties - BIRT users only; see the Cúram Business Intelligence
BIRT Developer Guide:
– curamsource.db.password

– central.db.password

– centraldm.db.password

v Web Services - See the Cúram Web Services Guide:
– ws_inbound.xml - <ws_service_password>
– services.xml - <parameter name="jndiPassword">

v CTM - Cúram Transport Manager:
– The Password column of the TargetSystemService table contains an encrypted

password

Security Data Caching
An overview of the Cúram Security Cache, which stores all authorization data for
a user. Details on the WebSphere cache and how this affects the authentication of a
user at login are also included.

Cúram Security Cache
Security information from the database tables supporting the profiles mentioned in
“Users, Roles and Groups” on page 14 is cached by the infrastructure. This is done
to optimize the search and retrieval of data during the authorization process.

To optimize performance, the cache is loaded on demand as security authorization
requests come into the application and is a shared resource. For application code,
the cache is a protected resource and cannot be accessed directly. It is accessible,
for queries only, through the authorization interface (
curam.util.security.Authorisation) which allows a developer to implement a
customized authorization procedure. “Authorizing New SID Types” on page 35
should be referenced for further details on this.

When the curam.security.casesensitive property is set to false the security cache
will store all usernames in upper case and all queries to the cache will
automatically change the specified username into the upper case equivalent. It is
also worth noting that the existence of duplicate case insensitive usernames will
cause a fatal error during the initialization of the security cache. “Changing the
Case-Sensitivity of the Username” on page 29 should be consulted for further
details on this.

20 IBM Cúram Social Program Management: Cúram Security Guide

Cache Refresh
As security data is so important to the operation of Cúram , the cache must be
refreshed whenever any changes have been made to security related database
tables. The refreshing of the Cúram Security Cache is an asynchronous process.

Cache Refresh Failure
The refreshing of the Cúram Security Cache is triggered by either an application
reboot, or by the system administrator (sysadmin) via the Cúram Administration
screens, therefore, the administrator receives no feedback if the cache reload fails.
Having to check the system logs or manually verify the application following a
refresh to verify its success can be cumbersome. It is therefore recommended that
the optional callback interface for providing feedback in the event of a cache reload
failure be implemented. “Adding the Cache Refresh Failure Callback Interface” on
page 30 should be consulted for further details.

WebSphere Caching Behavior
WebSphere caches user information and credentials in its own security cache. The
Cúram login module will not be invoked while a user entry is valid in this cache.
The default invalidation time for this security cache is ten minutes, where the user
has been inactive for ten minutes.

For example, the first time a user logs into the application from the web client they
will be requested for their username and password. The Cúram login module will
be invoked, and will authenticate the information specified. If the same user opens
a second new web browser and attempts to access the application, they will again
be requested for their username and password. When WebSphere receives this
information it will query the security cache to determine if the username and
password are already in the cache. If they are, and the password matches,
WebSphere will not query the login modules.

The impact of this behavior is that any modifications to a user's account
restrictions or password will not take effect until the user has been invalidated
from the WebSphere security cache.

For more information see the appropriate WebSphere Application Server Information
Center.

Security for Alternative Clients
Certain processes cannot be associated with a specific logged-in user. These include
alternative clients, for example, non-web processes such as batch processing, web
services, and deferred processing. As any process that interacts with a Cúram
application must be authenticated, a valid user must exist for each of these
processes. These topics provide details on the users that must exist on the Cúram
Users table and details on the processes that depend on these users.

Mandatory Cúram Users
A number of users must always exist in the Cúram Users database table. These
users are necessary for application processes such as deferred processing and
workflow. If these users do not exist, then authentication will fail and subsequently
these processes will fail.

Chapter 2. Security 21

The usernames and passwords for each of the processed below are the default
out-of-the-box credentials and it is recommended that these credentials be changed
for security reasons.

These users include:
v SYSTEM

The SYSTEM user is the user under which JMS messages are executed. This user
must exist and the username is case sensitive. “JMS Messaging” on page 23
should be referenced for further details.

v DBTOJMS
The DBTOJMS user is the default user under which the Database to JMS
(DBToJMS) trigger for batch processing is executed. This user must exist and the
username is case sensitive. “Batch Processing” should be referenced for further
details.

v WEBSVCS
The WEBSVCS user is the default user under web services are executed. This
user must exist and the username is case sensitive. “Web Services” should be
referenced for further details.

Web Services
For Apache Axis2 (the recommended implementation for web services) there are
default credentials for authentication. A user has the ability to change these
credentials at a global level or per service if required. To ensure that web services
are not vulnerable to a security breach this default user is not authorized to access
web services by default. For authorization, a web service must be associated with a
security group and in turn a security role that is linked to the user (e.g. WEBSVCS)
in order to access it. Ensuring the user is authorized is a manual process. Please
see the Customizing Receiver Runtime Functionality section in the Cúram Web Services
Guide for further details on web services and also the chapter on Authorization in
this book.

For Apache Axis 1.4, i.e. legacy web services, once a process is modeled as a web
service, this web service will automatically be logged into the application using
default credentials. This default user is set up for authorization automatically, i.e.
the user will have access to the web service created. Therefore caution is advised
when making a class visible as a web service. Please see the Legacy Inbound Web
Services section within the Cúram Web Services Guide.

There are a number of other topics related to the security of web services - for
example, encrypting data - using Rampart. The Cúram Web Services Guide should be
consulted for further details on these.

Batch Processing
Since the Batch Launcher does not require the application server to be running, it
does not perform any application level authentication or authorization. It must
only authenticate against the database. The same credentials as used by the
application server (located in %SERVER_DIR%/project/properties/
Bootstrap.properties) are used by the Batch Launcher to connect to the database
and run batch programs.

The Batch Launcher or batch programs can optionally trigger the application server
to begin a DB-to-JMS transfer. This involves logging in and invoking a method on
the server, which in turn requires a valid username and password. By default the

22 IBM Cúram Social Program Management: Cúram Security Guide

DB-to-JMS transfer operation uses default credentials; therefore, the DBTOJMS
account must exist on the Cúram Users table and must be enabled and assigned
the role 'SYSTEMROLE' to allow authorization. The locale DB-to-JMS transfer is the
default locale for this user as specified in field 'defaultLocale' on the Users table.

The Security Considerations section in the Cúram Batch Processing Guide guide
should be consulted for further details on changing the user for the DB-to-JMS
transfer.

The property batch.username can be used to specify the user name for the
operations run by the Batch Launcher. This is set using the -D parameter. For
example: build runbatch -Dbatch.username=admin

JMS Messaging
JMS messages are used for communication purposes by deferred processes and
Workflow. Since JMS messages are triggered by the application server and need to
interact with the Cúram application, valid Cúram credentials must exist. The
SYSTEM user account must exist on the Cúram Users table and must be enabled
and assigned the role 'SYSTEMROLE' to ensure authorization. The locale for JMS
messages is the default locale for this user as specified in field 'defaultLocale' on
the Users table.

It is possible to change the SYSTEM username during or after the deployment of
the application. For more information the Cúram Server Deployment Guide for the
relevant application server should be consulted.

Deferred Processing
A deferred process in Cúram is a business method that is invoked asynchronously.
As deferred processes interact with the application, valid Cúram credentials must
exist. The SYSTEM user account must exist on the Cúram Users table and must be
enabled and assigned the role 'SYSTEMROLE' to ensure authorization. The locale
for deferred processes is the default locale for this user as specified in field
'defaultLocale' on the Users table. In the case of offline unit-testing of deferred
processes, the username is blank and the effective locale is the default locale for
the Cúram server.

External User Applications
Typically, there are users outside the organization with limited access who needs to
securely access parts of the Cúram application. These users are considered external
users and authentication for these users is completely customizable through the
use of the External Access Security hook point provided. As external users are
processed differently to internal users, a specific web application is required for
external users.

The default Cúram application is enabled for internal users. Internal users are
users that exist on the Cúram Users database table. A typical internal user would
be a case worker who creates and manages claims for participants and has full
access to the application. The infrastructure provides functionality for
authenticating and authorizing these internal users.

External User Applications
When developing an application for an external user, the following must be
implemented:

Chapter 2. Security 23

v An external user client application, i.e., a separate EAR file containing the web
client application.

v A custom logon.jsp , where the external application must pass in a parameter
user_type indicating an external user is logging in.

v A custom class that extends curam.util.security.PublicAccessUser, which
requires implementing the curam.util.security.ExternalAccessSecurity
interface, must be provided. This abstract class contains methods responsible for
the authentication and authorization of an external user.

As well as there being internal and external user types. There can also be different
types of external users. For example, there may be an external user of type
'PUBLIC' who could have limited access to an external application. There could be
another external user of type 'PROVIDER' who is a registered external user. The
ability to have different types of external users provides more flexibility within an
external application, allowing finer grained control over authentication of the
external user based on the external user type.

User Scope
There are two different types, or scopes, of users within the Cúram application:
internal and external. The type of a user is determined in one of the following
ways:
v By the Cúram Security Cache;

If the user exists in the Cúram Security Cache, the type is assumed to be in
internal. If the user does not exist in the cache, the type is assumed to be
external. In this case, (which is the default behavior) all usernames, internal and
external, must be unique.

v By the UserScope custom interface;
If the UserScope custom interface is implemented. This custom interface, takes
precedence over the check for a user in the Cúram Security Cache to determine
the user type. Consult “Determining if a User is Internal or External using the
UserScope Interface” on page 48 for further details.

When the type of a user is external the implementation of the
curam.util.security.ExternalAccessSecurity.getSecurityRole() method will be
used to determine the user role instead of the internal security roles. “Authorizing
an External User” on page 45 should be consulted for further details on this
method.

To support alternative methods for determining if a user is internal or external the
custom interface, UserScope , is available. Consult “Determining if a User is
Internal or External using the UserScope Interface” on page 48 for more details.

Deployment of an External Application
When deploying an application to an application server, the security configuration
for the application server is applicable to all Cúram applications deployed to that
application server instance. Therefore, care must be taken when considering the
deployment architecture for more than one application. This is important when
deciding if an internal and external application will be deployed to the same
application server instance.

An example of some considerations to think about are:
v Is identity only being used for internal users?
v Is an alternative authentication mechanism used , e.g., LDAP;

24 IBM Cúram Social Program Management: Cúram Security Guide

v Will both internal and external users be authenticated by LDAP?

The answers to the considerations above will affect the setting of the application
server properties (i.e. properties specified in the AppServer.properties file), that
affect the behavior of the Cúram JAAS login module. These considerations will
also drive the implementation of the curam.util.security.PublicAccessUser class
and curam.util.security.ExternalAccessSecurity interface for external users.

The application server properties in the Cúram JAAS login module allow for finer
grained control over the authentication of user types. External users and internal
users can be authenticated differently, as can different types of external users, in a
situation where the internal and external applications are deployed to the same
application server. These properties include the following:
v curam.security.user.registry.disabled.types ;

Set this property to a comma separated list of user types for which the
application server user registry will not be queried, i.e. the implementation
within the PublicAccessUser.authenticate() method is responsible for
authenticating the external user of this type. For example, LDAP could be
configured to be the user registry.

v curam.security.user.registry.enabled.types.
Set this property to a comma separated list of user types for which the user
registry will be queried, i.e., the implementation within the
PublicAccessUser.authenticate() method does not have to fully authenticate
the user. The user registry will be responsible for authenticating this type of
external user. For example, LDAP could be configured as the user registry, and
in this case, LDAP could be responsible for the authentication of these external
user types.

These properties are dependent on the implementation of the
curam.util.security.PublicAccessUser class and ExternalAccessSecurity
interface.

Consider the following example project requirements:
v An internal user must authenticate with LDAP.
v An external user of type 'EXT_PUBLIC' must authenticate with Cúram and not

LDAP;
v An external user of type, 'EXTERNAL' must authenticate with LDAP only and

not Cúram.
v Both the internal and external applications are deployed to the same application

server instance.

The following settings could cater for the example above:
v curam.security.check.identity.only set to true ;
v curam.security.user.registry.disabled.types=EXT_PUBLIC.

As well as the properties being set, the PublicAccessUser extension (and
curam.util.security.ExternalAccessSecurity implementation) must have the
logic to cater for the different types of external users and how they will be
authenticated.

Chapter 2. Security 25

Using Single Sign On
Single sign-on (SSO) allows users to access multiple secure applications by
authenticating only once. Single sign-on is supported for the Cúram supported
application servers, by allowing alternative mechanisms to be used alongside the
Cúram login module. Cúram application server properties allow use of an SSO
solution.

The number of applications in an enterprise often results in an increase in the
number of user names and passwords in use, resulting in poor user experience and
extra maintenance costs. Multiple user names and passwords also compromise
security as users either choose very simple passwords or write down their
passwords in easy to find locations. For the system administrators, additional
applications result in an increased directory maintenance effort and fielding
increased help desk calls to reset passwords. Some of the problems that are caused
by multiple applications can be resolved by using single sign-on (SSO).

Note: Secure refers to applications that require users to be authenticated before
they can access the application.

The implementation of an SSO solution is the responsibility of the custom
implementation. It is recommended that an IBM or third-party tool is used. For
example, IBM Tivoli tools or CA SiteMinder.

Single Sign On with WebSphere
When SSO is required with WebSphere, it can be achieved using the WebSphere
lightweight third-party authentication mechanism (LTPA) and additional custom
login modules. The LTPA protocol results in a token being created for an
authenticated user. In WebSphere, a token is generated once credentials are added
for an authenticated user. This token is then used to retrieve identity information
for an authenticated user in an SSO environment.

Security is implemented as a Cúram login module within a chain of login modules
set up in WebSphere. It is expected that at least one of these login modules be
responsible for adding credentials for the user. By default, the Cúram login module
adds credentials for an authenticated user. As a result of this, the configured
WebSphere user registry handled by a subsequent login module does not add
credentials. The recommended approach to implementing an SSO solution is to
add a custom login module somewhere along the chain of login modules.

The ability to disable the addition of credentials for an unauthenticated user is
provided, thus enabling an SSO solution to be implemented.

The Cúram JAAS login module for WebSphere checks if an LTPA token exists
within WebSphere using the WSCredTokenCallbackImpl callback for WebSphere. If
this token exists and is valid, then no authentication is performed by the Cúram
login module.

Credentials may be added to the WebSphere user registry. Credentials include
authentication information on the user logging in, including the unique identifier
for the user. WebSphere checks that credentials exist for a user after all configured
system login modules have executed, if the credentials exist, then the WebSphere
user registry is not queried. Credentials are not added by the Cúram JAAS login
module if the following settings are in place:
v curam.security.check.identity.only property is set to true.

26 IBM Cúram Social Program Management: Cúram Security Guide

v curam.security.user.registry.enabled property is set to true.

As mentioned in “Deployment of an External Application” on page 24, there are
properties relating to the type of external user that control if credentials are added
to WebSphere for a specific external user type. These include:
v curam.security.user.registry.enabled.types property.
v curam.security.user.registry.disabled.types property.

These properties provide fine grained control over authentication for external user
types.

In the case where the Cúram JAAS login module does not add credentials, the
WebSphere user registry will be queried to attempt to add credentials for the user.

Single Sign On for WebLogic Server
When SSO is required with WebLogic Server , it can be achieved by using the
WebLogic Server authentication provider or a custom authentication provider.
Consult the WebLogic Server documentation for further information on
authentication providers. WebLogic Server expects credentials/principals and the
group the user belongs to, to be added by the configured authentication provider.
For an SSO solution the Cúram JAAS login module does not add credentials to the
JAAS subject to allow for an alternative authentication provider to be responsible
for adding credentials.

Credentials are not added if the following settings are in place:
v curam.security.check.identity.only is set to true.
v curam.security.user.registry.enabled is set to true.

As mentioned in “Deployment of an External Application” on page 24, there are
properties relating to the type of external user that control if credentials are added
to WebLogic Server for a specific external user type. These include:
v curam.security.user.registry.enabled.types property.
v curam.security.user.registry.disabled.types property.

These properties provide fine grained control over authentication for external user
types.

The responsibility for adding credentials is left to another authentication provider,
i.e., the main authentication provider for authenticating the user. In an SSO
scenario, only one of the authentication providers needs to add credentials to the
JAAS subject during the commit() method of the login module for a user

Other Security Considerations
Another important security concern is protecting content as it is entered, displayed,
and transferred across the network for the Cúram application. The default
configuration uses SSL provided by the application server to secure content as it is
transferred.

In addition to this protection, industry-leading products are used during the
development lifecycle to regularly monitor for security vulnerabilities in the
application. Examples of such potential vulnerabilities include cross-site scripting,
and SQL injection. Such threats are resolved within the infrastructure when
discovered.

Chapter 2. Security 27

For the best security, customers must do similar security monitoring of their
application.

SSL Settings for the Application
SSL is on by default for access to the web application. This ensures a secure SSL
connection between the client and server and also ensures data is encrypted. SSL is
turned on for the client through settings in the web.xml file for the web client
application. SSL is turned on at the application server level by settings in
WebLogic Server and WebSphere . These settings for the application servers are
done through the Cúram configuration scripts.

Important: The configuration scripts ensure SSL is turned on by default, however,
this is a default configuration that must be updated and new certificates must be
established for the SSL protocol.

It is recommended to leave SSL on for access to the Cúram application, however
depending on specific project configurations, there may be a need to turn SSL off
for the application.

It is possible, but not recommended to turn off SSL. “Turning Off SSL Settings for
the Application” on page 30 should be consulted for further details.

Using Cúram in a Secure Environment
Cúram can be used in a secure server environment (e.g. FIPS-compliant) and is
dependent on the requirements and capabilities of that environment (e.g.
Websphere FIPS configuration). However there are a few specific areas where
Cúram-specific or related operation or configuration is required:
v When using the DB-to-JMS feature, which is enabled via the

curam.batchlauncher.dbtojms.notification.ssl property, described in the
Cúram Batch Processing Guide

v When using the Word Integration Control, used for the FILE_EDIT widget,
documented in the Cúram Web Client Reference Manual, which has two aspects to
consider:
– When needing to use it with a browser in a TLS v1.2 environment, which is

discussed in the "User Machine Configuration" topic of the Cúram Web Client
Reference Manual.

– The SP800-131a-compliant version of the supporting jar file can be used as
long as your browser JVM supports SHA2, regardless of whether the server
environment supports SP800-131a. To digitally sign the Word Integration jar
for SP800-131a compliance you must build your environment using the
enable-sha-2-signed-jars property (e.g. -Denable-sha-2-signed-jars=true)
when invoking the Cúram build targets (e.g. server, client, websphereEAR).

Client Security Considerations
Errors that occur on the client will result in HTML error pages being displayed.
The HTML error pages, by default, will contain a Java exception stack trace of the
errors that have occurred. This stack trace output is used in a development
environment for debugging purposes. However, as the HTML error pages that
contain the Java exception stack trace are not subject to the Cúram's application
malicious code and filtering checks, they could potentially leave the application
open to injection attacks, e.g. Cross-site scripting and link injection. To control this,
the client property errorpage.stacktrace.output exists to determine if the Java
stack trace should be written to the HTML error pages.

28 IBM Cúram Social Program Management: Cúram Security Guide

The property errorpage.stacktrace.output, when set to true, writes the Java
exception stack trace to the HTML error pages. This property is set to true by
default, however this property must be set to false in a production environment
to avoid any security vulnerabilities. Please consult the Cúram Web Client Reference
Manual for further details on this property.

Customizing Authentication
You can use the following customization points and development artifacts to
customize Cúram authentication.

Customizing the Login Page
The default out-of-box login screen is represented by the logon.jsp file located in
the lib/curam/web/jsp directory of the Client Development Environment for Java
(CDEJ). The logon.jsp file can be customized by creating a copy of the
out-of-the-box file and placing this in a webclient/components/<custom>/
WebContent folder, where <custom> represents the name of the custom web client
component.

The section on Login Pages in the Cúram Web Client Reference Manual has
guidelines on what needs to remain in place in the logon.jsp file and should be
referenced for further details.

Applying Styling to the Login Page
Styling changes can be applied to the logon.jsp in the usual way, i.e., by adding
the relevant CSS to any .css file in the custom component. The Cúram Web Client
Reference Manual should be consulted for details on styling.

Enabling Usernames With Extended Characters for WebLogic
Server

If the WebLogic Server application server is not being used, this section can be
ignored.

If you have Cúram user names or passwords with extended characters (e.g. "üßer")
WebLogic Server provides a proprietary attribute, j_character_encoding , which
must be added to the logon.jsp form-based login page. The WebLogic Server
documentation should be consulted for more information. The attribute must be
added to the table element in the logon.jsp file, as shown.
<input type="hidden" name="j_character_encoding" value="UTF-8"/>

Changing the Case-Sensitivity of the Username
The curam.security.casesensitive property controls the case sensitivity of
usernames. By default, this is set to true in the Application.prx file. When set to
false in the Application.prx file, this will result in the authentication and
authorization mechanisms ignoring the case of the username.

The Cúram Configuration Settings chapter in the Cúram Server Developer's Guide
should be consulted for further details on the Application.prx file.

Adding Custom Verifications to the Authentication Process
To add custom verifications, the curam.util.security.CustomAuthenticator
interface must be implemented. This interface contains one method -
authenticateUser() . The authenticateUser() method is invoked for both default

Chapter 2. Security 29

authentication and identity only authentication. The results of this method are
expected to be an entry from the curam.util.codetable.SECURITYSTATUS codetable.
In the case of successful authentication, the result must be
curam.util.codetable.SECURITYSTATUS.LOGIN

For authentication failures anything, including null, can be returned. It is
recommended though that another code from the
curam.util.codetable.SECURITYSTATUS codetable be used. This codetable can be
extended to include custom codes as detailed in the chapter on Code Tables in the
Cúram Server Developer's Guide.

After the custom verifications are invoked, the authentication process will update
the relevant fields on the Users database table. For example, if the result of the
customized verifications is not SECURITYSTATUS.LOGIN the number of login failures
is increased by 1, and if the break-in threshold is reached, the account will be
disabled. Alternatively, if the result is SECURITYSTATUS.LOGIN , the login failures are
reset to 0 and the last successful login field is updated.

Note: When identity-only authentication is enabled the fields of the Users database
table are not updated, irrespective of the result of the custom verification.

Configuring the Custom Authenticator
To configure the application to use this custom extension, the property
curam.custom.authentication.implementation in the Application.prx must be set to
the fully qualified name of the class implementing the CustomAuthenticator
interface.

The Cúram Configuration Settings chapter in the Cúram Server Developer's Guide
should be consulted for further details on the Application.prx file.

Configuring Identity Only Authentication
To configure identity-only authentication the curam.security.check.identity.only
property should be set to true in the AppServer.properties file before running the
configure target. It is also possible to set this property once the application is
deployed through the application server console. For more information on
configuring the application server the Cúram Server Deployment Guides for the
application server being used should be consulted.

Adding the Cache Refresh Failure Callback Interface
The new callback class must implement the interface:
curam.util.security.SecurityCacheFailureCallback in a class that has a public
default constructor. The implementation of the callback is registered by setting the
application property curam.security.cache.failure.callback to the name of the
implementation class. If the property is not set, no attempt is made to invoke a
callback handler.

Turning Off SSL Settings for the Application
SSL is on by default for access to the Cúram application. This ensures a secure SSL
connection between the client and server and also ensures data is encrypted. SSL
can be turned on and off for the client through settings in the web.xml file for the
web client application, and at the application server level by settings in WebLogic
Server and WebSphere . These settings for the application servers are configured
via the configuration scripts. It is recommended to leave SSL on for access to the

30 IBM Cúram Social Program Management: Cúram Security Guide

application, however depending on specific project configurations, there may be a
need to turn SSL off for the application. The following sections detail how to do
this.

Modifying the web.xml File for the Client Application
This can be modified by changing the <transport-guarantee> from CONFIDENTIAL to
NONE in the web.xml file. Note, this does not disable access to the web client over
HTTPS, but enables additional access via HTTP. For further details on modifying
the web.xml file, the section on Customizing the Web Application Descriptor in the
Cúram Web Client Reference Manual should be referenced. An example of setting this
property is shown.
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

Modifying the Application Server Configuration
Modifying the configuration for WebSphere can be done in one of two ways. The
first approach below being the recommended approach.
v Use the existing non-secure port, setup by default for Web Services

(recommended approach). This caters for both SSL and non-SSL connections.
1. Navigate to Environment -> Virtual Hosts -> client_host->Host aliases
2. Click New and enter * for host name and 9082 for port number, then click

OK
3. On the next page click Save to store your new value to the server

configuration. Please note that the port 9082 corresponds to the
CuramWebServicesChain configured in the default client application and this
port is now the port that can be used to access the application using HTTP

v Reuse the current SSL port of 9044 :
The current port can be set up as a non-secure port. The steps to do this are
described in the Cúram Deployment Guide for WebSphere Application Server -
Section A.2.11 Server Configuration - Set up port access. Follow Steps 7 to 11
inclusive. The only difference for Step 11, is that the Transport Chain Template
should be set to 'WebContainer' (and not WebContainer Secure).

v Complete the below steps after following any of the above step, to turn of SSL
in Global Security Settings :
1. Navigate to Security -> GlobalSecurity ->
2. Select Web and SIP Security -> Single Sign-On (SSO)
3. UnTick requires SSL , then click OK, save the server configuration.

Analyzing the AuthenticationLog Database Table
All authentication attempts (both successes and failures) are logged in the
AuthenticationLog database table. The following are the rows of interest on this
table:

Table 1. Contents of the Authentication Log

Field Meaning

timeEntered The timestamp of the entry in the log.

userName The username associated with the login attempt.

Chapter 2. Security 31

Table 1. Contents of the Authentication Log (continued)

Field Meaning

altLogin Boolean indication of whether the username represents
an alternate Login ID. When this column equals '1'
(true) the value in the userName column is an alternate
login ID as per “Alternate Login IDs” on page 5;
otherwise, the userName column represents the
userName from the Users or ExternalUser table.

loginFailures The number of login failures for this user since their last
successful login.

lastLogin The date and time of the last successful login.

loginStatus The status of the login attempt. This may be one of:

v LOGIN: Successful login.

v ACCDISABLE: The account has been explicitly
disabled.

v ACCEXPIRED: The password expiry date has been
reached.

v PWDEXPIRED: The number of days which the user
was given to change their password has been
exceeded.

v BADUSER: The user does not exist.

v AUTHONLY: This is used in the case of identity only
authentication and indicates that only authorization
verifications will be performed.

v BADPWD: The specified password was incorrect.

v BREAKIN: A specified number of incorrect passwords
has been reached. The account is disabled.

v RESTRICTED: The user is not allowed access the
system at this time.

v LOGEXPR: The number of login attempts which the
user was given to change their password has been
exceeded.

v AMBIGUOUS: The specified username is ambiguous
as it is a case insensitive duplicate of another
username.

The LogAdmin API can be used to query the AuthenticationLog database table. The
Java documentation for this class should be referenced for further details.

Customizing Authorization
Use this information to set up authorization for Cúram users.

Creating Authorization Data Mapping
The authorization data for a user can be set up through the use of the Data
Manager (DMX files) or through the Cúram Administration screens. The Cúram
System Configuration Guide should be consulted for details on identifying how to
group security from a business perspective.

To create a new security role for a user, the security identifiers (SIDs) that the user
must have access to, need to be identified. These SIDs should then be organized

32 IBM Cúram Social Program Management: Cúram Security Guide

into groups of SIDs. The role, groups and SIDs, once identified, need to be set up
on the security tables that these represent.

Security data is considered essential for the set up of a Cúram application. As
such, the examples below describe adding security data to the data/initial
directory within the component.

Creating a New Security Role
To create a new security role, a new entry must be added to the SecurityRole
database table, setting the rolename attribute.

To do this, create/add to the SecurityRole.dmx file in the %SERVER_DIR%/
components/<custom>/data/initial , where <custom> is any new directory created
under components that conforms to the same directory structure as
components/core.

Creating a New Security Group
To create a new security group, a new entry must be added to the SecurityGroup
database table setting the groupname attribute.

To do this, create/add to the SecurityGroup.dmx file in the %SERVER_DIR%/
components/<custom>/data/initial , where <custom> is any new directory created
under components that conforms to the same directory structure as
components/core.

Linking the Security Group to the Security Role
The security role must be linked to the security group. To do this, create a new
entry in the SecurityRoleGroup table, setting the rolename and groupname
attributes.

To do this, create/add to the SecurityRoleGroup.dmx file in the
%SERVER_DIR%/components/<custom>/data/initial , where <custom> is any new
directory created under components that conforms to the same directory structure
as components/core.

Creating the Security Identifier (SID)
The create a new SID, an entry must be added to the SecurityIdentifier table,
setting the sidname and sidtype attributes.

To do this, create/add to the SecurityIdentifier.dmx file in the
%SERVER_DIR%/components/<custom>/data/initial , where <custom> is any new
directory created under components that conforms to the same directory structure
as components/core.

Linking the Security Group to the SID
To link the security group with the SID, an entry must be added to the
SecurityGroupSID table, setting the groupname and sidname attributes.

To do this, create/add to the SecurityGroupSID.dmx file in the
%SERVER_DIR%/components/<custom>/data/initial , where <custom> is any new
directory created under components that conforms to the same directory structure
as components/core.

Chapter 2. Security 33

Linking the Security Role to the User
To associate authorization data to a user, the security role must be linked to the
user.

To do this, update the entry for the specified user in the Users.dmx file located in
the %SERVER_DIR%/components/<custom>/data/initial , where <custom> is any new
directory created under components that conforms to the same directory structure
as components/core , setting the rolename attribute to be the rolename as specified
on the SecurityRole table.

Loading Security Information onto the Database
Once all of the information has been entered in the various DMX files, the Data
Manager should be used to load the DMX data onto the database. The Data
Manager chapter in the Cúram Server Developer's Guide should be consulted for
further details.

Creating Function Identifiers (FIDs)
When a method is made publicly accessible; by setting the stereotype to be
<<facade>>, security is automatically switched on. This means a SID is
automatically generated for that method and the security enabled flag for the
method is set to true . The SID and its fidenabled flag are stored in the
database-independent <ProjectName>_Fids.xml file located in the
/build/svr/gen/ddl subdirectory. This file is used to insert the FID information
onto the database via the Data Manager.

A FID follows the naming convention of <classname>.<methodname> , and the
maximum length of a FID is 100 characters. For example, for a BPO called
ProductEligibility , with two methods called insertProduct and testProduct ,
two FIDs are created: ProductEligibility.insertProduct and
ProductEligibility.testProduct.

If security for a process method is switched off at design time in the model, a
SID/FID is still generated but the security enabled flag is set to false . Setting the
security enabled flag to false means that no authorization check is performed for
this method.

Switching Security off for a Process Method
Setting the Generate_Security option on the process method to false in the model
switches off security for a process method.

If security for a process method is switched off at design time in the model, a FID
is still generated but the security enabled flag is set to false . Setting the security
enabled flag to false means that no authorization check is performed for this
method.

Security Considerations During Development
It is important to consider the effect of these design options when implementing
security during the development of a Cúram application. They are the first and last
line of defense against unauthorized access to application process functionality.
Generally speaking, security will be switched on for almost all process methods.
Security may be switched off for a process method that does not need security, e.g.,
a login method that gets invoked when a user tries to login to an application. As a

34 IBM Cúram Social Program Management: Cúram Security Guide

user has not yet been authenticated or authorized, they need access to this method
in order to login, therefore switching off security for this method may be necessary.

During the initial design phase of an application the overhead of keeping the
security environment “in sync” with an evolving application can be tedious. It is
possible to disable the authorization check by setting the
curam.security.disable.authorisation property in the Application.prx file.

warning: Warning

The curam.security.disable.authorisation property should only be turned on at
design phase. This should never be set to true in a production environment.

Finally, it should be noted that once the code and scripts have been generated from
a working model, the information associated with a FID cannot be changed. To
change this information requires modifying the model, re-generating and
re-building the database.

Controlling the Logging of Authorization Failures for the
Client

By default, web client authorization failures are not recorded.

The curam.enable.logging.client.authcheck property controls whether the
authorization failures encountered by the web client are logged or not. This
property is false by default, meaning these failures will not be logged. When set
to true a log of these authorization failures is stored on the database table
AuthorisationLog . The Cúram Server Developers Guide , Application.prx - Dynamic
properties section should be consulted for more information on this property.

Authorizing New SID Types
A server interface method is provided to enable authorization to be performed
directly. This method may be added to a class that manipulates data on the
conceptual element being secured by the new SID type.

curam.util.security.Authorisation.isSIDAuthorised()

A usage example of the isSIDAuthorised() method is below:
// The SID associated with the conceptual element

// to be secured.
String someSID = "someSID";

// Get the logged in username
String loggedUser =

curam.util.transaction.TransactionInfo.getProgramUser();

// Check if the user has access rights
if (curam.util.security.Authorisation.isSIDAuthorised(

someSID, loggedUser)) {
// Do something sensitive that this user has rights to do
...

} else {
// Throw an exception indicating the user doesn’t have
// access to perform this action

AppException exception
= new AppException(MESSAGE.ERR_USER_NO_ACCESS);

throw exception;
}

Chapter 2. Security 35

Analyzing the AuthorisationLog Database Table
All authorization failures are logged in a database table called the
AuthorisationLog. The following are the rows of interest on this table:

Table 2. Contents of the Authorization Log

Field Meaning

timeEntered The timestamp of the entry in the log.

userName The username associated with the authorization attempt.

identifierName The security identifier (SID) or functional identifier
(FID) associated with the failure.

The LogAdmin API can be used to query the AuthorisationLog database table. The
Java documentation for this class should be referenced for further details.

Customizing Cryptography
Use this information to configure and customize cryptography for Cúram.

Cipher Customization
Modification of the default cipher settings is a relatively straightforward process,
but needs to be adequately planned and tested. You will require an application
restart for the changes to be implemented and depending on the size and topology
of your organization and deployments you need to choose a time when in-progress
changes won't be an impact. Also, consider any data (e.g., properties containing
encrypted passwords) managed by the Cúram Transport Manager (CTM) that will
either need to be updated or managed to prevent systems from being out of sync
with one another (see the Cúram Transport Manager Guide for more information).

Modification of the default cipher settings involves the following steps:
1. Choosing new settings for the CryptoConfig.properties and underlying

artifacts - see “Cúram Cipher Settings” on page 17
2. Depending on the settings, you may need to perform additional steps (e.g.

when modifying the keystore as per “How to Create a New Keystore” on page
37).

3. Modify the CryptoConfig.properties file; note the default location is
<SERVER_DIR>/project/properties.

4. Remove any existing CryptoConfig.jar files (these contain
CryptoConfig.properties) that are found in the <JAVA_HOME>/jre/lib/ext
directory ($JAVA_HOME/lib/ext on IBM® z/OS®). If any Cúram clients or servers
are running these will need to be terminated in order to be able to deploy an
updated CryptoConfig.jar file with the updated settings.

5. Re-encrypt the passwords in all existing property files as identified in
“Cipher-Encrypted Passwords” on page 19. The Apache Ant configtest,
configure, and installapp targets will place an updated CryptoConfig.jar file in
the Java lib/ext directory.

6. Test and verify your changes.

Testing of your changes should include verifying any functionality that would be
impacted; for example:
v Ensure the Ant configtest target still works.
v Ensure batch programs still work.

36 IBM Cúram Social Program Management: Cúram Security Guide

v If you utilize the Ant configure target ensure it still works.

Related topics:
v “Cúram Digest Settings” on page 18
v “Cipher-Encrypted Passwords” on page 19

Key Management
The management of the secret key for Cúram encrypted passwords is done via the
JDK-provided keytool command, or equivalent. You will need to make local
decisions about placement and isolation of the secret key for Cúram that are
compatible with your local organization and standards.

Keep in mind that some settings passed to the keytool command need to be
reflected in the CryptoConfig.properties settings, which needs to be coordinated
for successful deployment as discussed in “Cipher Customization” on page 36. The
following table shows the relationship between keytool command arguments and
the Cúram crypto properties.

Table 3. Relationship of keytool Command Arguments to Cúram Crypto Properties

Keytool argument CryptoConfig.properties property

-keyalg curam.security.crypto.cipher.algorithm

-alias curam.security.crypto.cipher.keystore.seckey.alias

-keystore curam.security.crypto.cipher.keystore.location

-storepass curam.security.crypto.cipher.keystore.storepass

Note: The secret key password defaults to the storepass password and should not
be changed.

See the JDK documentation for more information on using the keytool command.

Related topics:
v “Cúram Cipher Settings” on page 17
v “Cryptography Properties” on page 17
v “How to Create a New Keystore”

How to Create a New Keystore
Creating a new keystore to replace the Cúram default requires running the keytool
command provided with the JDK (or equivalent), modifying the
CryptoConfig.properties settings to correspond (necessary, only if the keystore
name and/or location is changed from the default, but changing the name can
make your customizations more obvious), and ensure the Curam Ant targets can
find the new keystore (necessary, only if the default location is changed).

For example:
keytool -genseckey -v -alias MySecretKey -keyalg AES -keysize 128
-keystore MyOrganization.keystore -storepass secretpw -storetype jceks

The section “Key Management” identifies the keytool command arguments that
relate to the CryptoConfig.properties settings.

The default location of the keystore file is the <SERVER_DIR>/project/properties
directory with a sub-directory structure that reflects the JDK in use: “ibm” for the

Chapter 2. Security 37

IBM JDK and “sun” for the Oracle JDK. So, when creating a keystore file the
Curam build scripts expect to find it in the case of the IBM JDK in:
<SERVER_DIR>/project/properties/ibm. If you desire to use a location different
from the default you can do one of two things:
1. Use an absolute location for the keystore file as described in “Cryptography

Properties” on page 17. In this case the Curam default keystore files in
CryptoConfig.jar will be ignored in favor of the absolute setting
CryptoConfig.properties.

2. Use the Ant crypto.prop.file.location property when you run any of the
targets, described in “Cipher Customization” on page 36, that create and copy
the CryptoConfig.jar to point to your alternate location. The location specified
will have to reflect the structure of your JDK - “ibm” or “sun”. For instance:
v Place the new keystore file in a location like this on Windows for the IBM

JDK: C:\Curam\keystore\ibm\MyOrganization.keystore
v Point to that location when running the build targets: ant configure

-Dcrypto.prop.file.location=C:\Curam\keystore

Note: In the example above the change of keystore file name to
MyOrganization.keystore will require a corresponding change to
CryptoConfig.properties as per “Cryptography Properties” on page 17.

Note: The only supported keystore type for Cúram cryptography is jceks.

Following the keystore creation you need to follow the steps in “Cipher
Customization” on page 36.

Related topics:
v “Key Management” on page 37
v “Cipher Customization” on page 36

Digest Customization
Modification of the default digest settings is a relatively straightforward process,
but needs to be adequately planned and tested. You will require an application
restart for the changes to be implemented and depending on the size and topology
of your organization and deployments you need to choose a time when in-progress
changes won't be an impact. Also, consider any data (e.g., User passwords)
managed by the Cúram Transport Manager (CTM) that will either need to be
updated or managed to prevent systems from being out of sync with one another
(see the Cúram Transport Manager Guide for more information).

The process is covered in detail in “How to Utilize the Superseded Digest Settings
for a Period of Migration” on page 39.

Related topics:
v “Cúram Digest Settings” on page 18
v “How to Specify a Digest Salt”

How to Specify a Digest Salt
While Cúram doesn't specify one out-of-the-box, specifying a salt for digested
passwords provides an additional level of protection against brute-force attacks.

To specify a salt for your digested passwords:
1. Choose a sufficiently long and random string.

38 IBM Cúram Social Program Management: Cúram Security Guide

2. Encrypt this string using the Ant encrypt target (as documented in the Cúram
Server Developer's Guide).

3. Place the encrypted string in a file.
4. Specify the location of the file containing the encrypted salt string using the

curam.security.crypto.digest.salt.location property in
CryptoConfig.properties and ensure that any deployed CryptoConfig.jar files
reflect the updated settings.

For manageability you should make these changes in conjunction with the steps in
“How to Utilize the Superseded Digest Settings for a Period of Migration.”

How to Utilize the Superseded Digest Settings for a Period of
Migration

Utilizing the superseded digest settings means you are migrating your existing
digested passwords to a new crypto configuration (e.g. new salt) and would like
Cúram user passwords automatically migrated for a period of time. This applies to
Cúram internal and external users, but does not apply to users managed by
third-party security systems such as LDAP.

The process to do this is:
1. Choose a time when your Cúram system can be down and with the Cúram

system not running.
2. Copy the existing digest property names and values in

CryptoConfig.properties and rename the properties to the new superseded
property names.

3. Modify the existing digest property names in CryptoConfig.properties.
4. Set the curam.security.convertsupersededpassworddigests.enabled property

to 'true'.
5. Set the curam.security.crypto.upgrade.start property to help you track when

you introduced the updated configuration. This value can be used below to
help manage unmigrated user passwords.

6. Restart the application server, but note the following.

Note: The Cúram default web services user (WEBSVCS), or any user not processed
via the CuramLoginModule, is not available for automatic password migration. You
must reset these users before restarting the application server. To do this:
1. Obtain the new digest password value via the Ant digest target (e.g. ant

digest -Dpassword=password).
2. Update the password value in the database, which is easily done via SQL (e.g.

UPDATE USERS SET PASSWORD='<new digest value>' WHERE
USERNAME='WEBSVCS';).

3. You can now start the application server

After a period of time (e.g. weeks or months) when you consider the migration
period to be over set the
curam.security.convertsupersededpassworddigests.enabled property to 'false'
and unset the curam.security.crypto.upgrade.start property.

Users who did not login during the migration period will now see their logins fail
due to password mismatches. You have two approaches for addressing the
passwords not updated during the migration period:

Chapter 2. Security 39

1. Require these users to contact your internal support to have their password
reset via the admin user interface.

2. Manually identify the users in the Cúram USERS table who were not updated
during the migration period and either manually set new default password
either via SQL (see the digest target described in the Cúram Server Developer's
Guide to obtain new digest password values) or via the admin user screens. For
example, using the following query: SELECT username FROM users WHERE
lastwritten between timestamp('2013-06-01 15:00:00') AND
timestamp('2013-09-01 00:00:00')

You should not leave curam.security.convertsupersededpassworddigests.enabled
set to true indefinitely because:
1. It's meaningless to have gone to the trouble of upgrading from configuration

'A' to configuration 'B' and leave the original 'A' configuration active;
2. It leaves potentially weaker crypto settings active in the system; and
3. In order to use this functionality for a future upgrade, say from configuration

'B' to 'C', you would have to have upgraded all the 'A' passwords to at least 'B'.

Note: Any files, e.g. DMX, with stored digests need to be considered with respect
to your migration strategy so they reflect the correct values.

Note: Any use of the Cúram Transport Manager (CTM) during a migration needs
to be considered in terms of ensuring compatible settings and expectations
between the source and target systems.

Related topics:
v “Cúram Cipher Settings” on page 17
v “Cúram Digest Settings” on page 18

Modifying Your Crypto Configuration for a Production System
While the out-of-the-box (OOTB) crypto settings are adequate for typical
development or test environments, they should be modified for production
environments to protect and provide isolation between these relatively low-risk
environments and high-risk production environments.

Some typical changes to the OOTB crypto configuration, in preparation for
production, might include:
v Providing a new secret key.

– Such a key can be generated using the JDK keytool utility; see “How to
Create a New Keystore” on page 37
- This secret key should be stored in a separate keystore.
- The properties for these secret key changes would be as described in “Key

Management” on page 37.
v Providing new digest settings

– New digest settings can include a new salt, iteration count, and/or algorithm.
- The properties for these digest changes would be as described in “Cúram

Digest Settings” on page 18 and “How to Specify a Digest Salt” on page 38
and the process described in “How to Utilize the Superseded Digest
Settings for a Period of Migration” on page 39.

40 IBM Cúram Social Program Management: Cúram Security Guide

Remember to keep your configuration files isolated from personnel who do not
absolutely have to access; specifically, keeping development, test, and production
configuration information isolated.

Customizing External User Applications
Use this information to customize external user applications. As external users are
processed differently to internal users, a separate Cúram web application is
required specifically for external users.

Creating an External User Application
A new web client application must be developed for external users. The Cúram
Web Client Reference Manual should be consulted for details on creating a new web
client application.

Creating an External User Client Login Page
A new logon.jsp must be created for an external user application. The Cúram
Platform ships with a default login page, logon.jsp , located in the
lib/curam/web/jsp directory of the CDEJ (Client Development Environment for
Java). This file should be copied to a webclient/components/<custom
component>/WebContent folder in the web client application and modified as
follows:

The table element should be extended to include a hidden input field user_type:
<input type="hidden" name="user_type"

value="EXTERNAL"/>

Where EXTERNAL indicates the type of external user. This can be set to any value,
excluding INTERNAL.

Creating an External User Client Automatic Login Page
Some external user client applications require no user authentication and hence a
username and password should not be requested. It is not possible to disable
authentication in Cúram , so the best way to achieve this requirement is to write
an automatic login script.

The automatic login script takes a hard coded username and password and
provides that as the authentication information when requested. This means that
all users for such an application will always execute under the same username.
Use of such a script should be limited to true open access applications.

When implementing applications that have a need for an automatic login, the
implications for session management must be considered. Session management in
Cúram maintains a user's session information to ensure when the user logs back
in, the relevant session information, i.e., their tabs and navigation opens to where
they left off for them. In the case of a user that has been automatically logged in,
this information must not be maintained, therefore session management may need
to be turned off in this scenario. The Cúram Web Client Reference Manual should be
referenced for further details on how to turn this off.

The following are examples of automatic login and logout JSP scripts.

Chapter 2. Security 41

Note: Security implementations and configurations differ across application server
vendors so these examples may not work in all cases or for all application server
versions.
<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:prefix="URI"
version="2.0">
<jsp:directive.page buffer="32kb"

contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" />

<jsp:text>
<![CDATA[

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>

</jsp:text>

<!-- Automatic redirect to login security check of user
details specified below -->

<html>
<head>

<script type="text/javascript">
function autoSubmit() {

document.getElementById("loginform").submit();
}

</script>
<meta content="text/html; charset=UTF-8"

http-equiv="Content-Type" />
</head>
<body class="logonBody"

style="visibility: hidden;"
onload="autoSubmit()">

<form id="loginform"
name="loginform"
action="j_security_check"
method="post">

<input type="hidden"
name="j_username"
value="generalpublic" />

<input type="hidden"
name="j_password"
value="password" />

<input type="hidden"
name="user_type"
value="EXTERNAL" />

</form>
</body>

</html>
</jsp:root>

Automatic Logout JSP
<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:prefix="URI"
version="2.0">
<jsp:directive.page buffer="32kb"

contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" />

<jsp:text>
<![CDATA[

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>

</jsp:text>
<html>

<head>

42 IBM Cúram Social Program Management: Cúram Security Guide

<script type="text/javascript">
function autoSubmit() {

document.getElementById("logout").submit();
}

</script>
<meta content="text/html; charset=UTF-8"

http-equiv="Content-Type" />
</head>
<body class="logoutBody"

style="visibility: hidden;"
onload="autoSubmit()">

<form id="logout"
name="logout"
action="servlet/ApplicationController"
method="post">

<input type="submit"
name="j_logout"
value="Log Out" />

<input type="hidden"
name="logoutExitPage"
value="redirect.jsp" />

</form>
</body>

</html>
</jsp:root>

Extending the Public Access User Class
To “hook” the custom solution into the application the
curam.util.security.PublicAccessUser abstract class must be extended, which
requires implementing the curam.util.security.ExternalAccessSecurity interface.
That concrete class will be used during the authentication and authorization
process to determine required information relating to the external user. This class
and its methods are described in detail below.

Authenticating an External User
The authenticate() method is responsible for authenticating an external user. It is
invoked during the authentication process if the user is identifier as an external
user. In the case of external users this method is invoked in place of the configured
authentication.

Note: If an alternative authentication mechanism, e.g. LDAP, is configured, the
external users must be able to authenticate against this mechanism.
/**

* The implementation of this method should validate the identifier and
* password and return the result of the validation. If the information is
* valid, the codetable code SecurityStatus.LOGIN should be returned.
*
* @param identifier The identifier of the external user.
* @param password The password as array of characters.
* @param userType The type of external user.
*
* @return The status of the authentication in the form of a codetable code.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/

public abstract String authenticate(String identifier,
char[] password, String userType)
throws AppException, InformationalException;

Chapter 2. Security 43

The input parameters to the method include an identifier, the digested password as
an array of characters, and the type of the external user to be authenticated.

The userType parameter is intended to allow for support of multiple types of
external users that require different authentication mechanisms. The use of this
parameter depends on the custom implementation.

The expected result of this method will be an entry from the
curam.util.codetable.SECURITYSTATUS codetable. In the case of successful
authentication the result must be:
curam.util.codetable.SECURITYSTATUS.LOGIN

For authentication failures this codetable contains a number of entries, including
BADUSER , BADPWD and PWDEXPIRED . This codetable can be extended to include
custom codes as detailed in the Cúram Server Developer's Guide.

The authentication result returned by this method is automatically logged in the
AuthenticationLog database table. For more information on this table see the
Cúram Server Developers Guide.

The abstract class PublicAccessUser also defines the following abstract methods
that any concrete subclass must implement:
v Method upgradeSafePasswordValidation() is required to allow for password

comparison and is defined as follows:
public final boolean upgradeSafePasswordValidation(
final String userName,
final String storedPasswordHash,
final String plaintextPassword)

v Method setPassword() is to allow the implementor to persist the password (e.g.
a new password) in the case of crypto upgrades. So this method gets called
when the upgradeSafePasswordValidation() method is called. Here is the
method definition:
public abstract void setPassword(String username, String hashedPassword)
throws AppException, InformationalException;

See the associated Javadoc of the PublicAccessUser class for more details regarding
the above methods.

Determine External User Details
Details for an external user are retrieved by calling the getLoginDetails() method
of the curam.util.security.ExternalAccessSecurity interface. These details are
returned directly after authentication to direct the external user to the correct
application homepage.
/**
* The implementation of this method should retrieve the
* details of the user required to redirect them to the correct
* application page. This information includes the name of the
* application home page for the user, the default locale for
* the user and a list of warnings/messages for the user.
*
* @param identifier The identifier of the external user.
*
* @return The user details, including the application
* home page.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.

44 IBM Cúram Social Program Management: Cúram Security Guide

*/
UserLoginDetails getLoginDetails(String identifier)

throws AppException, InformationalException;

An instance of the curam.util.security.UserLoginDetails class must be created
and returned from this method. The following information should be returned
using this class:
v UserLoginDetails . setApplicationCode(String code)

The code corresponding to the application homepage for the external user.
This must be a valid entry in the APPLICATION_CODE codetable.

v UserLoginDetails . setDefaultLocale(String defaultLocale)

The default locale for the external user.
This is the locale the application will be displayed in by default for the external
user.

v UserLoginDetails . addInformationals(InformationalManager
informationalManager)

Any informationals that must be displayed to the external user.
The curam.util.exception.InformationalManager class can be used to create a
number of informational or warning messages that will be displayed when the
external user logs in. For example, a warning to let the external user know that
their password is due to expire.

Authorizing an External User
The getSecurityRole() method is used during authorization to determine the
security role associated with the external user. The security roles used for external
users are configured in the same way as the security roles for internal users.
/**
* The implementation of this method should return the security
* role associated with the external user for authorization
* purposes. If the user does not exist null should be
* returned.
*
* @param identifier The identifier of the external user.
*
* @return The security role for authorization.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
String getSecurityRole(String identifier)

throws AppException, InformationalException;

The SDEJ will invoke an implementation of this method during the authorization
process if the user does not exist in the security cache. Only internal users can exist
in the security cache. This means that the identifiers used to identify external users
must be unique and not conflict with usernames setup for internal users, unless
the custom UserScope interface as described in “User Scope” on page 24, is
implemented. Otherwise, if any usernames conflict the access rights assigned to the
internal user will also be used for the external user.

If a role cannot be determined for the external user, null must be returned so that
the SDEJ can report the authorization error correctly.

Determining the User Type
The getUserType() method is used to determine if a user is an external user.

Chapter 2. Security 45

/**
* Return the type of the user. This is to allow support for
* different types of external user. If there is only one
* type of external user, simply return "EXTERNAL".
*
* @param identifier The identifier of the external user.
*
* @return The type of the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
String getUserType(final String identifier)

throws AppException, InformationalException;

The getProgramUserType() in curam.util.transaction.TransactionInfo will
invoke this method to return the type of user if the user is not recognized as an
internal user. For internal users “INTERNAL” is always returned.

For external users, there may be multiple types of external users, so this method
should return the specific type of external user.

Preventing the Deletion of a Security Role: Role Usage Count
The getRoleUsageCount() method is used to prevent the deletion of a security role
that is currently referenced by an external user.
/**
* Return the number of users using a particular role. This
* method is used to ensure that a role cannot be deleted when
* it is in use by an external user.
*
* @param role The security role name.
*
* @return The number of users currently using the
* specified role.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
int getRoleUsageCount(String role)

throws AppException, InformationalException;

Security roles that are referenced by any user, internal or external, cannot be
removed. This method should return a number of 1 or more if any external users
reference the specified role.

Retrieving a Registered Username
The getRegisteredUserName() method is used retrieve the correct case username,
which may be independent of the username typed during login.
/**
* Gets the correct casing for this user independent of mixed
* case which may have been typed in by the logged in user.
*
* @param identifier The identifier of the external user,
* whose casing may not match that of the persisted identifier
* for the user.
*
* @return The actual case for this user, before its case has
* been modified by external factors.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.

46 IBM Cúram Social Program Management: Cúram Security Guide

*/
public String getRegisteredUserName(final String identifier)

throws AppException, InformationalException;

The default implementation for this method should return the username that has
been provided. It is only if the curam.security.casesensitive has been set to false
that this method may need to change the case of the username returned.

Note: Where the curam.security.casesensitive property has been set to false and is
required for external users, it is the responsibility of all methods in this interface to
handle any case specific requirements.

Reading User Preferences
The getUserPreferenceSetID() method is used to retrieve the user preference set
ID associated with an external user. If no user preferences exist for an external
user, then the default preferences will be used for the external user. The User
Preferences chapter in the Cúram Server Developer's Guide should be referenced for
further details on user preferences.
/**
* This method is used to retrieve a set of user preferences
* associated with an external user. The userPrefSetID is a
* foreign key to the UserPreferenceInfo table.
* The UserPreferenceInfo table contains information on
* the user preferences.
*
* @param identifier The identifier of the external user.
*
* @return The userPrefSetID for the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
String getUserPreferenceSetID(final String identifier)

throws AppException, InformationalException;

The default implementation for this method should return the user preference set
ID for the user preferences associated with an external user.

Modifying User Preferences
The modifyUserPreferenceSetID() method is used to update the external user
details with a new set of user preferences. Please see User Preferences for further
details on user preferences.
/**
* This method updates the external user details with new user
* preferences.
*
* @param userPreferenceSetID The ID for the user preferences.
* @param username The identifier of the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
void modifyUserPreferenceSetID(
final String userPreferenceSetID, final String username)

throws AppException, InformationalException;

The default implementation for this method should update the user preference set
id associated with an external user.

Chapter 2. Security 47

Configuring External Access Security
The curam.custom.externalaccess.implementation property must be set in the
Application.prx to indicate the fully qualified name of the class which implements
the above interface.

Note: The curam.custom.externalaccess.implementation property is not dynamic,
and if changed the application must be restarted before the change will take effect.

Determining if a User is Internal or External using the
UserScope Interface

To support alternative methods for determining if a user is internal or external the
custom interface UserScope is available. For example, even though usernames must
be unique across the set of internal and external users, this custom interface can be
implemented to allow duplicate usernames across internal and external
applications in a limited way.

To provide a custom implementation for determining the type of user, the
curam.util.security.UserScope interface must be implemented. This interface has
one method isUserExternal() that determines the type of user. This method
should return true if the user is considered external or false indicating the user is
internal.

For example, an installation might have application1 deployed with userA, a
Cúram internal user, and application2 deployed with userA being external (e.g.
defined to LDAP). The ability for application1 to use internal userA and
application2 to use external userA would be controlled by different properties.
That is, Bootstrap.properties in properties.jar in the application1 EAR would
have a different custom property setting from application2 EAR and the
implementation of curam.util.security.UserScope.isUserExternal() would
interrogate this setting to decide if the user is internal or external.

To specify a custom implementation of the UserScope interface the
curam.custom.userscope.implementation property must be set in Application.prx.
This should be set to the fully qualified name of the class that implements the
UserScope interface.

Note: The curam.custom.userscope.implementation property is not dynamic, and
if changed the application must be restarted before the change will take effect.

The isUserExternal() method of the UserScope interface is detailed in “User Type
Determination.”

User Type Determination
The isUserExternal() method is invoked anywhere in the application where the
type of user is to be determined. This includes when the user logs into the
application and when they attempt authorization to access secured elements of
Cúram .
/**
* The implementation of this method should determine the type of
* User that is logged into the application. There are 2 types of
* users: INTERNAL and EXTERNAL. If the user is an EXTERNAL user,
* then this method should return true. If false is returned,
* then the user is considered INTERNAL.
*
* @param username - The username.

48 IBM Cúram Social Program Management: Cúram Security Guide

* @return A boolean value of true indicating an EXTERNAL user,
* false indicates an INTERNAL user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
boolean isUserExternal(String username)

throws AppException, InformationalException;

Chapter 2. Security 49

50 IBM Cúram Social Program Management: Cúram Security Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 51

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

52 IBM Cúram Social Program Management: Cúram Security Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 53

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Programming Interface Information
This publication documents intended programming interfaces that allow the
customer to write programs to obtain the services of IBM Cúram Social Program
Management.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Oracle, WebLogic Server, Java and all Java-based trademarks and logos are
registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

54 IBM Cúram Social Program Management: Cúram Security Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	Audience
	Overview of Cúram Security

	Chapter 2. Security
	Authentication Overview
	Authentication
	Authentication Architecture
	Default Authentication
	Alternate Login IDs
	The Login Page
	Customization of the Login Page
	Cúram JAAS Login Module
	Password Management
	Default Configuration for WebLogic Server
	Default Configuration for WebSphere
	Customization of the JAAS Login Module
	Verification Process for Authentication
	Default Authentication
	Default Verification Process
	Authentication Attempts
	Customization of Default Authentication
	Identity Only Authentication
	Customization of Identity Only Authentication
	External Access Security Authentication
	Custom Verifications

	Authorization Overview
	Users, Roles and Groups
	Security Identifiers (SIDs)
	Function Identifiers (FIDs)
	Field Level Security Identifiers
	User Defined SIDs
	Runtime Authorization
	Client Authorization Checks
	Server Authorization Checks

	Cryptography in Cúram
	Ciphering
	Digesting
	Cryptography Properties
	Cúram Cipher Settings
	Cúram Digest Settings
	Cipher-Encrypted Passwords

	Security Data Caching
	Cúram Security Cache
	Cache Refresh
	Cache Refresh Failure
	WebSphere Caching Behavior

	Security for Alternative Clients
	Mandatory Cúram Users
	Web Services
	Batch Processing
	JMS Messaging
	Deferred Processing

	External User Applications
	External User Applications
	User Scope
	Deployment of an External Application

	Using Single Sign On
	Single Sign On with WebSphere
	Single Sign On for WebLogic Server

	Other Security Considerations
	SSL Settings for the Application
	Using Cúram in a Secure Environment
	Client Security Considerations

	Customizing Authentication
	Customizing the Login Page
	Applying Styling to the Login Page
	Enabling Usernames With Extended Characters for WebLogic Server
	Changing the Case-Sensitivity of the Username
	Adding Custom Verifications to the Authentication Process
	Configuring the Custom Authenticator
	Configuring Identity Only Authentication
	Adding the Cache Refresh Failure Callback Interface
	Turning Off SSL Settings for the Application
	Modifying the web.xml File for the Client Application
	Modifying the Application Server Configuration
	Analyzing the AuthenticationLog Database Table

	Customizing Authorization
	Creating Authorization Data Mapping
	Creating a New Security Role
	Creating a New Security Group
	Linking the Security Group to the Security Role
	Creating the Security Identifier (SID)
	Linking the Security Group to the SID
	Linking the Security Role to the User
	Loading Security Information onto the Database
	Creating Function Identifiers (FIDs)
	Switching Security off for a Process Method
	Security Considerations During Development
	Controlling the Logging of Authorization Failures for the Client
	Authorizing New SID Types
	Analyzing the AuthorisationLog Database Table

	Customizing Cryptography
	Cipher Customization
	Key Management
	How to Create a New Keystore
	Digest Customization
	How to Specify a Digest Salt
	How to Utilize the Superseded Digest Settings for a Period of Migration
	Modifying Your Crypto Configuration for a Production System

	Customizing External User Applications
	Creating an External User Application
	Creating an External User Client Login Page
	Creating an External User Client Automatic Login Page
	Extending the Public Access User Class
	Authenticating an External User
	Determine External User Details
	Authorizing an External User
	Determining the User Type
	Preventing the Deletion of a Security Role: Role Usage Count
	Retrieving a Registered Username
	Reading User Preferences
	Modifying User Preferences
	Configuring External Access Security
	Determining if a User is Internal or External using the UserScope Interface
	User Type Determination

	Notices
	Privacy Policy considerations
	Programming Interface Information
	Trademarks

