
IBM Cúram Social Program Management
Version 6.0.5

Cúram Server Developer's Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 201

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures vii

Tables ix

Cúram Server Developer's Guide 1
Introduction 1

Introduction 1
Content Summary 1
Overview of Compliant Development Artifact
Changes 2

Directory Structure 4
Overview 4
Application Components 4

Component Folders 4
Component Order 4

Application Directory Structure 4
Source Artefacts of the Cúram Application . . 5
Cúram Application Build Structure 7

Artefacts of the SDEJ 9
Build Files and Their Targets 11

Overview 11
Performing the Build 11
Overriding default JUNIT JAR 11
Configuring the Build 11

Cúram Build Settings 11
Java Compiler Settings 14
Java Task Settings 15
Generator Settings 16
Other Environment Settings 17

What is happening under the hood 17
generated 17
implemented 21

Extra Targets 21
Clover Targets 25
Rules Targets 25
Classic IEG Targets 27
IEG2 Targets 31
Application Configuration Import and Export
Targets 31
Workflow Targets 32
Deployment Targets 33
Extending the Build 34

Introducing a new script 34
Overridden Targets 35
Application Targets 35

BI App 35
CREOLE 36
Evidence Generation 36

Cúram Configuration Settings 37
Overview 37
Application Properties 37

Application prx 37
Bootstrap.properties 40

Support for Multiple Time Zones 42
Dates and date/times in Cúram 43

Data Manager 44
Overview 44
Intended Data Manager Process 44

Planning for MBCS Data 44
Invocation 46
Database Artefacts 46

Data Definition XML Files 46
Data Contents DMX Files. 48

Database Object Naming 64
Short Name Substitution 64
Primary Key Indices 64
Primary Key Constraints 64
Tablespaces 65

Data Manager Configuration 66
Database Synchronization 67
Statistics 67
Lob Manager 68

SQL Checker 69
Overview 69
Under the Hood 69
Limitations 70

Eclipse 70
Overview 70
Curam Projects in Eclipse. 71
Eclipse Configuration Files 71

.project File 71

.classpath File 71

.settings Directory 72
Access Rules 72
Working Sets 73

Logging 74
Overview 74
Usage 74
Logging Hierarchy 74
Logging Level 75
Configuration 76
Statistics 79
Localization 80
Enabling Dynamic UIM Tracing 80

Using Exceptions 81
Overview 81
Constructing an Exception 82
Creating Messages with Argument Placeholders 83
Handling Exceptions 84
Logging Exceptions. 85
General Exception Guidelines 86
Coding Conventions for Exceptions 86
Using Record Not Found Indicator 87
Localized Output 88
Informational Manager 88

Message and Code Table Files 90
Overview 90
Message Files. 90

The Format of Message Files 91
Customizing a Message File 92
Artefacts Produced by msggen Build Target 95

© Copyright IBM Corp. 2012, 2014 iii

Retrieving Messages from Message Files. . . 96
Writing Messages To Server Logs 96
Localizing SDEJ Message Files 97

Code Table Files 97
The Format of Code Table Files 97
Customizing a Code Table File 101
Artefacts Produced by ctgen Build Target . . 108
Code Table Hierarchy 112
Retrieving Codes from Code Table Files . . 116
Localizing SDEJ Code Table Files 117

Specialized Readmulti Operations 118
Overview. 118
When to Use Readmulti Operations 118
How to Define Your Own Readmulti Operations 118
Extra Features of Readmulti Operations . . . 119
An Alternative 122
Summary. 122

Deprecation 122
Introduction 122
Overview. 122

Other Sources of Information 123
Effect of Deprecation on a Custom Application 123

Customizations and References 123
Support for Deprecated Artefacts 124
Effect of Deprecation on the User Interface 124

Scope 125
Artefact Types that can be Deprecated . . . 125
Limitations 125

Running a Deprecation Report 126
Configuring the Deprecation Report 126
Prerequisites for running the Deprecation
Report. 126
Generating the Deprecation build output . . 126
Identifying deprecation warnings in the build
output. 126
Notes on running the Deprecation Report 127

Analyzing Deprecation Warnings 127
Identifying overrides of deprecated artefacts 127
Identifying references to deprecated artefacts 128
Notes on analyzing deprecation warnings 129

User Preferences 129
Overview. 129
User Preferences Definition 130

Data definition XML file. 130
Properties files 131

Development Support 132
External Users 132
Localizing Display Names 132
Localizing Infrastructure Preferences Display
Names 134

Transaction Control 134
Overview. 134
Developer's View 135

Transactions and Method Invocations . . . 135
Optimistic Locking and the forUpdate Flag 135
General Guidelines 135

Underlying Design 135
DB2 136
Oracle 136

Transaction SQL Query Cache 136
Overview. 136

Populating the Cache. 136
Invalidating the Cache 137
Properties 138
SQLQueryCacheAdmin API 138
SQLQueryCacheUtil API 138
Logging 138

Deferred Processing 139
Objective 139
Prerequisites. 139
Introduction 139
Model Your Deferred Processes 139
Deferred Process Enactment 140

WMInstanceData 141
Offline Unit-Testing of Deferred Processes . . . 142
Configuration of Deferred Processing Table . . 142
TicketCallback.dpHandleError() 143
Security 144
Summary. 144

Timer Bean 145
Overview. 145
EJB Timer Bean Definition 145
Development Support 145

TimerInfo Class 145
TimerTask Class 146
TimerCallback Interface 147
Code sample: 147

Rules for using SDEJ Timers 147
Timer Behavior 148
FAQ 149

Events and Event Handlers. 150
Overview. 150
The Format of Event Files 150

Event Definition 150
Event Handler Registration 151

Merging Event Files 152
Rules of Event Definition Merges. 153
Rules of Event Handler Merges 153

Artefacts produced by generate events 153
Database Scripts 153
Java Code 154

Raising events 155
Event handlers 156
Event filters 156

Unique IDs 157
Overview. 157
What are Unique IDs? 157
What are Unique IDs for? 157
Can I run out of Unique IDs? 158
When should I use Unique IDs? 158
When should I not use Unique IDs? 158
Should my keys be human-readable? 158
What if I require contiguous human-readable
Unique IDs? 158
How do I use Unique IDs? 159
Range Aware Key Server 160

Overview. 160
How does the Range Aware Key Server
work? 160
Where is the Range Aware Key Server used? 161

Cúram Configuration Parameters. 161
Overview. 161

iv IBM Cúram Social Program Management: Cúram Server Developer's Guide

Bootstrap.properties 161
Database 161
Environment 165
Test. 166
Custom 166

Application.prx - Dynamic properties 167
Environment 167
JMX 168
Test. 170
Rules 171
IEG. 171
Custom 172
Trace 172
Security 174
SMTP 174
XMLServer 175
Database 176
KeyServer 176

BatchLauncher 177
Workflow. 179
CTM 179

Application.prx - Static properties 179
Custom 179
Security 180
Trace 181
Environment 181

Variable Property Settings 181
Transaction 182
Audit 182

Infrastructure Auditing Settings 183
Default table-level-audit setting 183

Notices 201
Privacy Policy considerations 203
Trademarks 204

Contents v

vi IBM Cúram Social Program Management: Cúram Server Developer's Guide

Figures

1. Cúram Application Structure 5
2. The Cúram Application Build Structure . . . 8
3. SDEJ Structure 10
4. Example Web Services Configuration 17
5. Before/After Target usage. 35
6. PRX Entry 37
7. SERVER_COMPONENT_ORDER example 38
8. Sample main Application.prx file 39
9. Sample merge Application.prx file 40

10. Resulting Application.prx File 40
11. Bootstrap.properties. 41
12. Bootstrap.properties in an EAR file. 41
13. Table Definitions 47
14. Foreign Key Constraints 47
15. Primary Key Constraints 47
16. Index Constraints 47
17. Unique Constraints 48
18. Batch Metadata 48
19. Security Metadata 48
20. Field Level Security Metadata 48
21. Data Contents File 49
22. Example 1 - Core DMX File. 53
23. Example 1 - Custom DMX file. 53
24. Example 1 - Resulting Merge DMX File. 54
25. Example 2: Core DMX file. 54
26. Example 2 : Custom DMX file. 55
27. Example 2 : Result merge file. 56
28. Example 3: Core DMX file. 57
29. Example 3 : Custom DMX file. 58
30. Example 3 : Result merge file. 59
31. Example 4: Core DMX file. 60
32. Example 4 : Custom DMX file. 60
33. Example 4 : Result merge file. 61
34. Locale Fallback Example 63
35. Set tracing for DMX files. 64
36. Data Manager Configuration 66
37. Blob Data Contents File 68
38. Clob Data Contents File 68
39. Clob Data Contents File in encoded format 69
40. Usage of the loggers 74
41. Tracing a Cúram Struct 74
42. Logging example in application code 76
43. Configuring log4j 77
44. Configuring log4j to log to a socket 78
45. Localizable logging example in application

code 80
46. Constructing an AppException 82
47. Using the arg method with a primitive type 83
48. Using the arg method with a complex type 83
49. Exception message with argument

placeholders 84
50. Incorrect usage of hard-coded literals 87
51. A typical read operation which may throw a

RecordNotFoundException 87

52. The overloaded version of the one above,
using the NotFoundIndicator 87

53. A typical read operation for update which may
throw a RecordNotFoundException 88

54. The overloaded version of the one above,
using the NotFoundIndicator 88

55. Use of LocalisableString 88
56. Use of the Informational Manager 89
57. Example of Message text file 91
58. SERVER COMPONENT ORDER example 93
59. Sample main message file 94
60. Sample merge message file 94
61. Resulting Message File 94
62. Java file produced from merged message file 95
63. Sample (UK) Properties produced from

message file 95
64. Message File Search 96
65. Sample Main Code Table File 1 103
66. Sample Merge Code Table File 1 104
67. Resulting Code Table File 1 105
68. Sample Main Code Table File 2 106
69. Sample Merge Code Table File 2 107
70. Resulting Code Table File 2 108
71. Sample Java file produced from code table file 110
72. Sample SQL file produced from code table file 111
73. CarMake_en_US.properties 112
74. CarMake_fr.properties. 112
75. CarMake_en_GB.properties 112
76. CarMake_lt.properties. 112
77. CarMake_en.properties 112
78. CarModel_en.properties 112
79. Usage of hierarchy_name attribute 113
80. Usage of parent_codetable attribute 113
81. Usage of parent_code attribute 113
82. Code Table Hierarchy Example. 115
83. Code File Search 116
84. Datamanager entry for the code table SQL

artefacts location 117
85. Specialized readmulti example 121
86. Getting a Summary Report 127
87. Example: override of a deprecated artefact 128
88. Example: reference to a deprecated artefact 129
89. Example of user preference definition 130
90. wmdpactivity stereotype method 140
91. Using DeferredProcessing startProcess 141
92. TicketCallback dpHandleError() 144
93. Event definition file 151
94. Event handler registration file 152
95. Generated event class database script 154
96. Generated event type database script 154
97. Generated event Java constants 155
98. Raising an event 155
99. Event handler interface 156

100. Event filter interface 157

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Server Developer's Guide

Tables

1. Cúram Development Artifact Compliant
Changes 3

2. Cúram Application Installation Structure . . . 5
3. Build Directory Structure 8
4. SDEJ Structure at Installation. 10
5. Build Configuration Settings 11
6. Java Compiler Settings 14
7. Java Task Settings 16
8. Generator Settings 16
9. Attributes of the table Element 49

10. Attributes of the column Element 49
11. Attributes of the row Element 50
12. Attributes of the attribute Element 50
13. Attributes of the value Element 51
14. Attribute Values 51
15. Transaction settings 71
16. Logging Hierarchy 75
17. Diagnostic Tracing Options 76
18. Statistics File Elements 79
19. Attributes of the messages Element 91
20. Attributes of the message Element 92
21. Attributes of the locale Element 92
22. Attributes of the codetables Element 98
23. Attributes of the codetable Element 98
24. Attributes of the codetabledata Element 99
25. Attributes of the locale Element 99
26. Attributes of the name Element 99
27. Attributes of the locale Element 100
28. Attributes of the code Element 100
29. Attributes of the locale Element 101
30. Address Hierarchy 113
31. Artefact Types that can be Deprecated 125
32. Out of the box user preferences 130
33. User Preference options 131

34. WMInstanceData Properties. 142
35. DPProcess Properties 143
36. Example DPProcess Table 143
37. Types of Timers 145
38. List of API's in TimerInfo Class 146
39. List of parameters from TimerTask Class 146
40. KeyServer Database Table 159
41. Database settings 161
42. Environment settings 165
43. Test settings 166
44. Custom settings. 167
45. Environment settings 167
46. JMX settings 168
47. Test settings 170
48. Rules settings 171
49. IEG settings 171
50. Custom settings. 172
51. Trace settings 173
52. Security settings 174
53. SMTP settings 174
54. XMLServer settings 175
55. Database settings 176
56. KeyServer settings 176
57. BatchLauncher settings 177
58. Workflow settings 179
59. CTM settings 179
60. Custom settings. 179
61. Security settings 180
62. Trace settings 181
63. Environment settings 181
64. Transaction settings 182
65. Audit settings 182
66. Audit settings 1 184
67. Audit settings 2 191

© Copyright IBM Corp. 2012, 2014 ix

x IBM Cúram Social Program Management: Cúram Server Developer's Guide

Cúram Server Developer's Guide

Use this information to learn about the server development environment, which
enables the development of high-quality, low-cost client/server applications
through model driven code generation. This generation facilitates client/server
development by taking a UML model and producing generated Java code; a data
definition language which describing the database entities in the model, and
support for remote invocation.

Introduction

Introduction
The Server Development Environment (SDEJ) of IBM® Cúram Social Program
Management enables the development of high-quality, low-cost client server
applications through model driven generation. This generation facilitates
client-server development by taking a Unified Modeling Language (UML) model
and producing the following:
v Generated Java™ code;
v Data Definition Language (DDL) describing the database entities in the model,

enabling instances of a database to be defined in a human and machine readable
form;

v Support for remote invocation

The Cúram Solution Architecture document provides an introduction to the Cúram
Generator and its outputs. While the fundamental elements of a server application
are supplied by the Cúram Generator, certain custom coding and configuration
tasks must be performed.

The Cúram Security Handbook document should be referenced for all aspects of
security that must be considered when developing and deploying a Cúram
enterprise application, e.g. authentication and authorization of users.

This document describes how to develop the custom code in Cúram server
applications, and how to build the resultant applications. It is a reference guide
that should be read by programmers wishing to develop custom code for Cúram
server applications using the SDEJ. It is not intended as an introductory document,
or as guide on how to deploy a Cúram application on an Application Server1(this
is described in the Cúram Deployment Guide for the appropriate application server).

Content Summary
This guide provides details on a number of topics which can be grouped under
three main headings:
v Building and Configuring a Cúram Application
v SDEJ Development and Application Programming Interfaces
v Cúram Runtime Behavior
v Building and Configuring a Cúram Application

1. IBM WebSphere® Application Server and Oracle WebLogic are the supported application servers. For exact information on
versions, please refer to the Cúram Supported Prerequisites document.

© Copyright IBM Corp. 2012, 2014 1

– “Directory Structure” on page 4 provides an introduction to the layout of the
application.

– “Build Files and Their Targets” on page 11 details the build support provided.
– “Cúram Configuration Settings” on page 37 enumerates the various

configuration settings supported by the infrastructure.
– “Data Manager” on page 44 details the Data Manager tool that can be used to

create a database to support the Cúram application.
– “SQL Checker” on page 69 details the SQL Checkera tool that can be used to

ensure the semantic and syntactic correctness of SQL which has been
hand-crafted by an Application Developer.

v SDEJ Development and Application Programming Interfaces
– “Eclipse” on page 70 describes relevant aspects of Eclipse usage, as well as

providing some tips and tricks.
– “Logging” on page 74 details the infrastructure support for the

logging/tracing of status and error information.
– “Using Exceptions” on page 81 details the infrastructure support for the

creation, tracing and display of exceptions.
– “Message and Code Table Files” on page 90 details the format of the message

files and code table files that are used within Cúram.
– “Specialized Readmulti Operations” on page 118 explains the usage of

Specialized Readmulti Operations which can be used to replace standard
readmulti operations with specialized processing.

– “Deprecation” on page 122 describes deprecation in Cúram: what it is, how it
can affect custom code, what it means for support and the associated build
infrastructure that helps pinpoint custom artefact dependencies on deprecated
Cúram artefacts.

– “User Preferences” on page 129 describe how to define and use User
Preferences for a Cúram application.

v Cúram Runtime Behavior
– “Transaction Control” on page 134 details the aspects of Transaction Control

within a Cúram application that must be understood by a developer.
– “Transaction SQL Query Cache” on page 136 outlines the details of a cache

that can store the results of any SQL queries that do a SELECT on a database
table for the duration of the transaction in which the operation was invoked.

– “Deferred Processing” on page 139 describes how to achieve deferred
processing in a Cúram application

– “Timer Bean” on page 145 describes the functionality that allows timers to be
defined to invoke client-visible methods at a specified time.

– “Events and Event Handlers” on page 150 describes Events, a mechanism for
loosely-coupled parts of the Cúram application to communicate information
about state changes in the system.

– “Unique IDs” on page 157 details the infrastructure support for Unique
Identifier numbers generated by the Cúram infrastructure for use as unique
database keys.

Overview of Compliant Development Artifact Changes
Aside from your new custom development (e.g. adding message files, code tables,
events, etc.) you may also need to modify Cúram out-of-the-box (OOTB). The
following summarizes the range of compliant changes you can make to the
out-of-the-box Cúram development artifacts:

2 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 1. Cúram Development Artifact Compliant Changes

Type of Change Initial Artifact(s) Reference

Change an existing
message file

Message file (externalized
server informational, warning,
and error messages - .xml files
in the message directory)

“Message Files” on page 90

Remove an existing
message

Message file (externalized
server informational, warning,
and error messages - .xml files
in the message directory)

“Message Files” on page 90

Add additional locale
(i.e. language) support
to an existing message

Message file (externalized
server informational, warning,
and error messages - .xml files
in the message directory)

“Localizing SDEJ Message
Files” on page 97

Change an existing code
table name

Code Table file (code value
pairs - .ctx files in the
codetable directory)

“Code Table Files” on page 97

Add a new code table
item into an existing
code table

Code Table file (code value
pairs - .ctx files in the
codetable directory)

“Code Table Files” on page 97

Change the description
of an existing code table

Code Table file (code value
pairs - .ctx files in the
codetable directory)

“Code Table Files” on page 97

Disable an existing code
table item

Code Table file (code value
pairs - .ctx files in the
codetable directory)

“Code Table Files” on page 97

Remove an existing
code table item

Code Table file (code value
pairs - .ctx files in the
codetable directory)

“Code Table Files” on page 97

Add additional locale
(i.e. language) support
to an existing code table

Code Table file (code value
pairs - .ctx files in the
codetable directory)

“Localizing SDEJ Code Table
Files” on page 117

Add an event
registration (to augment
Cúram OOTB
functionality

Event Definition file (.evx files
in the events directory) &
Event Handler Registration file
(handler_config.xml in the
events directory)

“Events and Event Handlers”
on page 150

Disable an existing
event handler

Event Definition file (.evx files
in the events directory) &
Event Handler Registration file
(handler_config.xml in the
events directory)

“Events and Event Handlers”
on page 150

Override an existing
user preference

User Preference file
(DefaultPreferences.xml file in
the userpreferences directory

“User Preferences Definition”
on page 130

Override an existing
application property

Application Property File
(Application.prx file in the
properties directory)

“Application prx” on page 37

Add initial, demo or test
data data (rows) to an
existing database table

DMX File (script for populating
the database with data - .dmx
files in the relevant data
subdirectory)

“Data Contents DMX Files” on
page 48

Cúram Server Developer's Guide 3

Directory Structure

Overview
The directory structure for the server side IBM Cúram Social Program
Management application, and the underlying Server Development Environment
(SDEJ) are described in this chapter.

Application Components

Component Folders
The Cúram server application is organized into collections of artifacts called
components. Each component has its own folder below the <EJBServer>/components
folder. The core component is always present. This contains all of the artifacts
needed for the core functionality of the Social Program Management Platform. The
name of the component folder is used as the name of the component.

Component Order
There can be any number of application components, but they are processed in a
strict component order. This order determines the priority that will be given to
artifacts that share the same name but appear in different components. This is
fundamental to the manner in which server artefacts are customized.

The component order is defined by the SERVER_COMPONENT_ORDER
environment variable. This is a comma-separated list of component names. Use
only commas; do not use spaces. You must place the component with the
highest-priority first in the list and continue in descending order of priority. The
core component always has the lowest priority and is implicitly assumed to be at
the end of the list; you do not need to add it explicitly.

For example, setting the component order to
“MyComponentOne,MyComponentTwo” will give the highest priority to artifacts
in the MyComponentOne folder within <EJBServer>/components, a lower priority to
artifacts in the MyComponentTwo folder, and the lowest priority to artifacts in the
core folder. Any component folder not listed in the component order will not will
automatically be added to the end of the component order in alphabetical order. If
you do not set the component order at all, the default component order will
include all components in alphabetical order.

Localized Components: Localized components contains translated artifacts for the
base components and are of the format “<component name>_<locale>”. It is not
necessary for these to be added to the SERVER_COMPONENT_ORDER
environment variable as the tooling that processes this environment variable will
prepend any available components that match entries in the
SERVER_LOCALE_LIST environment variable. Localized components are matched
both on complete locale entry and on the two-character, lower-case language code.
Localized components are prepended before the base component in the complete
component order.

Application Directory Structure
Two aspects of the Cúram application directory structure are described; the
structure related to the source artefacts associated with an application, and the
resultant structure when the application is built.

4 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Source Artefacts of the Cúram Application
“Source Artefacts of the Cúram Application” shows the directory structure for the
source artefacts of a Cúram application project i.e. the structure prior to
performing a build. “Source Artefacts of the Cúram Application” describes each
directory within the directory structure in more detail.

“Source Artefacts of the Cúram Application” includes the SERVER_DIR,
ProjectPackage and CodePackage as place holders.
v The SERVER_DIR is the root of the server directory structure; the location of the

EJBServer directory within the Cúram application.
v The ProjectPackage is a global setting, set at build time. It is set to Cúram in the

reference application which is shipped with Cúram.
v The CodePackage is based on a model setting which is described in the Cúram

Modeling Reference Guide. It allows individual components to be scoped within
their own logical packages. Any number of Code Packages may be nested inside
each other.

Table 2. Cúram Application Installation Structure

Name Contents

project A top level directory containing all information that is
relevant to the entire project rather than specific
components.

SERVER_DIR
+ project

+ config
+ properties

+ components
+ core

+ codetable
+ data
+ doc
+ events
+ lib
+ message
+ model
+ properties
+ rulesets
+ sample
+ webservices
+ workflow
+ wsdl

+ custom
+ source

+ <Project Package>
+ impl

+ <Code Package>
+ impl

+ wsdl
+ build.bat
+ build.sh
+ build.xml
+ buildhelp.bat
+ deprecationreport.xml
+ .classpath
+ .project

Figure 1. Cúram Application Structure

Cúram Server Developer's Guide 5

Table 2. Cúram Application Installation Structure (continued)

Name Contents

project/config Configuration information related to the project,
including top level configuration files for the data
manager and web services connector.

project/properties Properties that relate to the project as a whole.

components Each project is made up of a number of components.
This directory is simply a place holder for those
components.

components/core A pre-defined component which is used by all other
components.

components/core/codetable Codetable XML (ctx) files created by the developer are
kept here. These files are used to define codetables for a
Cúram application. The outputs produced from a
codetable file consist of an SQL script to populate the
code table in the database, and a Java file which
provides the necessary constants to the application. See
“Message and Code Table Files” on page 90 for more
information

components/core/data The Data Manager for this component.

components/core/doc The JavaDoc for this component.

components/core/events Event XML (evx) files created by the developer are kept
here. These files are used to define event classes and
event types for a Cúram application. The outputs
produced from an event file consist of an SQL script to
populate the event class and event type tables in the
database, and a Java file which provides the necessary
constants to the application. See “Events and Event
Handlers” on page 150 for more information

components/core/lib Contains the built component code packaged in a jar
e.g. core.jar.

Additionally, any third-party jar files specified here will
automatically be included in the classpath used during
compilation or a Batch Launcher run. Files listed here
will also be added to any EAR (Enterprise ARchive) file
created and an entry added to the manifest file to
reference this file.

components/core/message Message (.xml) files created by the developer are stored
here. The Java artefacts produced from a message file
are a Java file and a properties file. See “Message and
Code Table Files” on page 90 for more information

components/core/model The elements of a Cúram application UML model that
relate to this component are available here.

components/core/properties The component specific Application property definitions
are stored here.

components/core/rulesets Rules (.xml) files created by the developer are stored
here. These files may be hand-crafted or created via an
online client (Rules Editor). The Cúram Rules Editor
Guide describes how to create these files and the Cúram
Rules Definition Guide explains ruleset structure in some
detail.

6 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 2. Cúram Application Installation Structure (continued)

Name Contents

components/core/sample An optional directory containing a zip file of a set of
sample java source files matching the component built
code within the lib directory. Used for debugging or
reference,

components/core/webservices An optional directory containing the .xsd schema files
that are referenced by web services in this component.

components/core/workflow Workflow process definition (.xml) files created by the
developer are stored here. These files may be
hand-crafted or created via an online client (Process
Definition Tool). The Cúram Workflow Reference Guide
describes these files in some detail.

components/core/wsdl An optional directory containing the .wsdl (Web Service
Description Language) files that are invoked from this
component. A WSDL description can be spread over
several files that reference each other possibly in some
arbitrary directory structure. These references can be
resolved as long as they are relative

components/custom Any number of new components may be added. They
all have the same structure as the core component.

components/custom/source All handcrafted Java source code, produced by the
developer, is located here.

build.bat, build.sh A command file that builds your project. This wraps the
build.xml file (an Apache Ant build file) that is
contained within the EJBServer. The build structure and
use of this file is described in “Build Files and Their
Targets” on page 11

build.xml An Ant build file that extends the SDEJ build scripts to
enhance a number of targets.

deprecationreport.xml An Ant build file that provides deprecation reporting.

buildhelp.bat A command file that displays project help. This wraps
the build.xml file. The use of this file is described in
“Build Files and Their Targets” on page 11.

Cúram Application Build Structure
This section describes the directory structure created when a Cúram application is
built. “Cúram Application Build Structure” presents the new directories that are
created during the build process while “Cúram Application Build Structure” gives
more details on the contents of each directory.

Cúram Server Developer's Guide 7

Table 3. Build Directory Structure

Name Contents

build/datamanager Contains intermediate files produced by the Data
Manager and the resulting merge dmx files from the
initial, demo and test directories. The Data Manager
creates the intermediate files when translating the
database independent files into a format which can be
loaded onto the database. Five database dependent .sql
files are produced as well as one database independent
.xml file which is responsible for loading the Large
OBjects (LOBs) onto the database.

build/ear/WAS The .ear file produced for WebSphere Application
Server.

build/ear/WLS The .ear file produced for WebLogic.

build/jar Jar files created by the command line project build.

build/sqlcheck A database dependent sqlj file which contains a subset
of the dynamic SQL statements from the model and the
inserts from the Data Manager collated together.

build/svr All build artefacts for the server side.

build/svr/cls All of the compiled class files for the application.

build/svr/gen Generated server side sources.

build/svr/gen/ddl Database independent definition scripts that establish
the structure of a Cúram server application's database
tables are generated into this directory. Some
intermediate files (including a representation that is
used to build to database dependent sqlj file) are also
generated into this directory.

SERVER_DIR
+ build

+ datamanager
+ ear

+ WAS
+ WLS

+ jar
+ sqlcheck
+ svr

+ cls
+ codetable

+ cls
+ gen
+ scp
+ sql

+ events
+ cls
+ gen
+ scp

+ gen
+ message

+ cls
+ gen
+ scp

+ webservices
+ workflow
+ wsc
+ wsc2

+ buildlogs

Figure 2. The Cúram Application Build Structure

8 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 3. Build Directory Structure (continued)

Name Contents

build/svr/gen/<ProjectPackage> Root of the generated server source code hierarchy.

build/svr/gen/int Intermediate files produced during the build.

build/svr/codetable/cls The compiled codetable files.

build/svr/codetable/gen The generated codetable file artefacts.

build/svr/codetable/scp A copy of the results of merging the individual
codetable files according to the component order
(SERVER_COMPONENT_ORDER).

build/svr/events/cls The compiled event class and event type files. These
may be used as constants in the Cúram application.

build/svr/events/gen The generated events file artefacts which include the
.java files containing the event class and event type
constants and .dmx files to be used to populate the event
class and event type tables on the database.

build/svr/events/scp A copy of the results of merging the individual event
files according to the component order
(SERVER_COMPONENT_ORDER).

build/svr/message/cls The compiled message files.

build/svr/message/gen The generated message file artefacts.

build/svr/message/scp A copy of the results of merging the individual message
files according to the component order
(SERVER_COMPONENT_ORDER).

build/svr/webservices Compiled class files for the web service support
elements of the application.

build/svr/workflow A copy of the results of determining the individual
workflow process definition files to be loaded onto the
database according to the component order
(SERVER_COMPONENT_ORDER).

build/svr/wsc2 Compiled class files for the Apache Axis2 -generated
client stubs for each registered outbound web service
connector.

<app.xml> Extracted UML model contents, named as per model.

buildlogs A log file is created each time a build is performed and
is stored here. This can be used to investigate any
problems with the build process.

Artefacts of the SDEJ
“Artefacts of the SDEJ” shows the directory structure of the SDEJ when installation
is complete, while “Artefacts of the SDEJ” gives more details on the contents of
each directory. The CURAMSDEJ is the root of the directory structure; the name
given to wherever the SDEJ has been set up or installed.

Cúram Server Developer's Guide 9

Table 4. SDEJ Structure at Installation

Name Contents

bin This directory contains all Ant build scripts necessary to
build, verify and configure a Cúram application. The
build.bat script file delivered with the Cúram
application hooks into this directory to invoke the
build.xml file contained here. Use of this file is
described in “Build Files and Their Targets” on page 11

codetable This directory contains the set of codetable files shipped
by the SDEJ. These files use the file extension .itx. Each
of these files can be customized, see “Localizing SDEJ
Code Table Files” on page 117 for more details.

doc This directory contains the JavaDoc shipped with the
SDEJ.

drivers This directory contains the drivers used by the SDEJ to
access the database.

ear This directory contains the deployment descriptors and
templates necessary to build application ear (Enterprise
Archive) files for the chosen application server.

lib This directory contains the compiled SDEJ source, Third
Party JAR files, XML schemas and stylesheets necessary
to fulfill all SDEJ functionality.

message This directory contains the set of message files shipped
with the SDEJ. Unlike the Cúram application message
files these infrastructure message files use the file
extension .iml. Each of the files can be customized, See
“Localizing SDEJ Message Files” on page 97 for more
details.

rsa This directory contains the Eclipse plugin artefacts used
to provide Cúram functionality in IBM Rational®

Software Architect. See the Working with the Cúram Model
in Rational Software Architect for more details.

scripts This directory contains the database independent XML
files necessary to create the database required by the
SDEJ.

util This directory contains useful utilities shipped with the
SDEJ.

xmlserver This directory contains the artefacts and build scripts
necessary to run the xmlserver. See Cúram XML
Infrastructure Guide for more information

CURAMSDEJ
+ bin
+ codetable
+ doc
+ drivers
+ ear
+ lib
+ message
+ rsa
+ scripts
+ util
+ xmlserver

Figure 3. SDEJ Structure

10 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Build Files and Their Targets

Overview
The IBM Cúram Social Program Management Server Development Environment
(SDEJ) uses Ant to process its build files. These Ant build files are located in the
/bin directory of the SDEJ. The build files are invoked through build.bat and
buildhelp.bat.

This chapter explains how to build a Cúram application once it has been installed,
and the optional parameters which can be provided when performing a build.

Performing the Build
Invoking buildhelp at the command line (in SERVER_DIR) will show all available
targets. A single build target is required to build the Cúram application
out-of-the-box for development. The user should:
v Start a command prompt and change directory to the top level of the Cúram

project; the SERVER_DIR.
v Set up any environment variables that were not set as system properties during

the installation process as described in the Cúram Third Party Tools Installation
Guide (e.g., JAVA_HOME, J2EE_JAR and ANT_HOME).

v Set up SERVER_DIR to point to the top level of your Cúram project.
v Set up SERVER_MODEL_NAME to be the name of your Cúram project.
v Type build server and hit return to invoke this build target.

Overriding default JUNIT JAR
The junit.jar file is set by default relative to the JUNIT_HOME environment
variable, e.g. ${sysenv.JUNIT_HOME}/junit.jar. To override the location/naming
of the junit.jar file, a new system property JUNIT_JAR is available for this
purpose. If the JUNIT_JAR system property is set, this will take precedence over
the default. An example of its usage (e.g. Microsoft Windows): set JUNIT_JAR =
c:\junit-4.8.jar

Configuring the Build
This section describes the optional parameters that can be provided when building
the Cúram application.

Cúram Build Settings
A number of parameters may be passed when performing the build. They should
be passed in the following way build server -Dsome.setting=somevalue. These
parameters are:

Table 5. Build Configuration Settings

Parameter Values Description

dir.sde directory name The name of the directory containing the
installed SDEJ that you want to use for this
build. The default is the directory referred
to by the CURAMSDEJ environment
variable.

Cúram Server Developer's Guide 11

Table 5. Build Configuration Settings (continued)

Parameter Values Description

prp.loglevel info

warn

error

verbose

debug

The logging level used when recording
build progress to the build log. The default
is info.

prop.file.location directory name Override the location of the directory that
is used to pick up the property files. By
default the <ProjectName>/properties
directory is used.

prp.maxcodetable
codelength

number Override the maximum length of a code
table code. This is used for validation of
codetables during generation, where it is
desired to ensure that the code length
defined in the codetables being generated
do not exceed the length specified. This is
to ensure, you catch errors before entering
codetables onto the database. This does not
override the maximum length on the
database “Cúram Build Settings” on page
11.

prp.maxcodetable
namelength

number Override the maximum length of a code
table name. This is used for validation of
codetables during generation, where it is
desired to ensure that the name length
defined in the codetables being generated
do not exceed the length specified. This is
to ensure, you catch errors before entering
codetables onto the database. This does not
override the maximum length on the
database “Cúram Build Settings” on page
11.

prp.maxcodetable
descriptionlength

number Override the maximum length of a code
table description. This is used for
validation of codetables during generation,
where it is desired to ensure that the
description length defined in the
codetables being generated do not exceed
the length specified. This is to ensure, you
catch errors before entering codetables
onto the database. This does not override
the maximum length on the database
“Cúram Build Settings” on page 11.

12 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 5. Build Configuration Settings (continued)

Parameter Values Description

prp.warningstoerrors true

false

Indicates that warnings thrown when
extracting and generating from the model,
code table and message files should be
treated as errors (an error typically
terminates the process). The default is
false.

prp.forcegen “-force:modelgen” Indicates that the build should progress
even if errors are found when generating
code from the model. The default is that
this should not occur.

This means that if this flag is set and
errors are found during generation, the
build is not interrupted after the modelgen
build target is executed. Once this target is
complete it will eventually pass onto the
compile.generated target. See “What is
happening under the hood” on page 17 for
more details.

Note: The errors are still reported.

prp.noninterned
strings

true

false

Indicates whether code table artefacts
should be generated with strings which
will not be interned. This is described in
more detail in “ctgen” on page 20. The
default is true.

curam.using.dbcs true

false

Should be set if the Cúram model contains
DBCS (Double Byte Character Set)
characters. If defined the Cúram
application model is first processed by the
utility native2ascii. The Model Extractor
then uses this new reworked model to
produce <project>.xml file. If this property
is not specified the Model Extractor takes
original model file as its input.

curam.using.nonascii true

false

Should be set if the Cúram model contains
non ascii characters. If defined the
application model is first processed by the
utility native2ascii. The Model Extractor
then uses this new reworked model to
produce <project>.xml file. If this property
is not specified the Model Extractor takes
original model file as its input.

extra.generator
.options

String Specifies additional command line
parameters for the server code generator.
These settings are described in “Generator
Settings” on page 16.

Cúram Server Developer's Guide 13

Table 5. Build Configuration Settings (continued)

Parameter Values Description

portability.warnings BUILD,

DMX

Specifies whether the SQL Checker should
determine if the build is portable to other
database platforms and whether the Data
Manager files are valid. The default is to
check all of these.

enablefacade true

false

Specifies that the build should generate the
session beans and their corresponding
deployment artefacts for model elements
identified as facades. The default is false
which means they will not be generated.

prp.genschema
validation

true

false

Indicates that the.xml file produced by the
model extractor will be validated against a
schema when it is being parsed and used
by the code generator to generate the
application code. The default is false.

appserver.failonerror true

false

Indicates whether the application server
command will trigger an error if the
start/stop command fails. The default is
true.

Database update for code table property changes: The relevant database column
lengths must be altered to support the changes made by using the
prp.maxcodetablecodelength, prp.maxcodetablenamelength, or
prp.maxcodetabledescriptionlength properties.

The columns should be altered using the Data Manager. In each case a handcrafted
SQL script that alters the relevant column's length should be added to the custom
database scripts folder. This script should then be added as an entry to the
datamanager_config.xml file before loading the code tables into the database.
Please refer to “Data Manager” on page 44 for further information on using the
Data Manager.

Java Compiler Settings
The following parameters may be passed when performing the build and control
the behavior of the Java compiler. They should be passed in the following way
build server -Dcmp.debug=on. These settings are:

Table 6. Java Compiler Settings

Parameter Values Description

cmp.debug on

off

Indicates whether the source should be
compiled with debug information. The
default is on.

cmp.maxmemory Number The maximum size of the memory for the
underlying VM. The default is 768.

cmp.nowarn on

off

Indicates whether the -nowarn switch
should be passed to the compiler. The
default is off.

14 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 6. Java Compiler Settings (continued)

Parameter Values Description

cmp.maxwarnings Number Asks the compiler to set the maximum
number of warnings to print. The default
is 10000.

cmp.optimize on

off

Indicates whether source should be
compiled with optimization The default is
off.

cmp.deprecation on

off

Indicates whether source should be
compiled with deprecation information.
The default is off.

cmp.verbose true

false

Asks the compiler for verbose output. The
default is false.

cmp.include.AntRuntime yes

no

Indicates whether the Ant run-time
libraries should be included on the
classpath. The default is yes.

cmp.include.JavaRuntime yes

no

Indicates whether the default run-time
libraries, from the executing VM (Virtual
Memory), should be included on the
classpath. The default is no.

cmp.failonerror true

false

Indicates whether the build will continue
even if there are compilation errors. The
default is true.

cmp.listfiles yes

no

Indicates whether the source files to be
compiled will be listed. The default is no.

PRE_CLASSPATH Filename An environment variable to allow jar files
to be added to the start of the classpath
used during compilation or a Batch
Launcher run. Files listed here will be
added to any EAR (Enterprise ARchive)
file created and an entry added to the
manifest file to reference this file. Files
should be separated with the relevant Path
separator for your operating system.

POST_CLASSPATH Filename An environment variable to allow jar files
to be added to the end of the classpath
used during compilation or a Batch
Launcher run. Files listed here will be
added to any EAR file created and an
entry added to the manifest file to
reference this file. Files should be
separated with the relevant Path separator
for your operating system.

Java Task Settings
The following parameters may be passed when performing the build and control
the behavior of the Java runtime used by the build scripts. They should be passed
in the following way build server -Djava.fork=true. These settings are:

Cúram Server Developer's Guide 15

Table 7. Java Task Settings

Parameter Values Description

java.fork true

false

Specifies whether any external classes are
executed in another VM. The default is
true.

java.maxmemory Number The maximum size of the memory to
allocate to the forked VM. The default is
768m.

java.failonerror true

false

Specifies whether the build process should
be stopped if an external java command
exits with a return code other than 0. The
default is true.

java.jvmargs String Specifies the arguments to pass to the
forked VM The default is the empty
string.

Generator Settings
The following parameters may be passed when performing the build and control
the behavior of the Cúram Generator. These parameters should be passed in the
following way build server -Dextra.generator.options=-setting1 -setting2.

These settings are:

Table 8. Generator Settings

Option Meaning

-nomessage <nnnnn> Prevent the message with this number from
being displayed or acted upon. Note that
this can be used to suppress errors which
would normally cause the generator to
terminate. Doing so can cause the generator
to behave unpredictably or produce code
which cannot be built.

-primarykeyconstraintprefix <prefix> Specify a prefix to be applied to primary key
constraint names in IBM DB2® and Oracle
Database. See the Cúram Modeling Reference
Guide for more details.

-primarykeyindexprefix <prefix> Specify a prefix to be applied to primary key
index names in DB2. See the Cúram Modeling
Reference Guide for more details.

-progresslevel <n> Specify the level of progress to be reported
by the generator.

-nonamedprimarykeyconstraint Specify that names should not be provided
for the primary keys. This is off by default
i.e. primary keys are named. See the Cúram
Modeling Reference Guide for more details.

-nonamedforeignkeyconstraint Specify that names should not be provided
for the foreign keys. This is off by default,
i.e., foreign keys are named. See the Cúram
Modeling Reference Guide for more details

16 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Other Environment Settings
If you are building on Red Hat Linux you may get this error during compilation:

<errortext>unmappable character for encoding UTF8</errortext>

This is due to an encoding mismatch between Windows and Linux and can be
worked around by setting theLANG environment variable as follows:

LANG=en_US.ISO-8859-1

What is happening under the hood
While building the application is as simple as invoking the default target listed
above, it is useful for the reader to understand the steps that are involved. Each of
these are ant targets which may be invoked separately:

generated
This target generates and compiles the code for use in an IDE and wraps the
following targets:
v wsconnector step generates client stub connectors for outbound web services

from .wsdl (WSDL is an acronym for Web Service Definition Language) files
registered in the configuration file, <SERVER_DIR>/project/config/
webservices_config.xml.

v wsconnector2 Generates client stub connectors for outbound Axis2 web services
from the registered WSDL files.

v emx2xml - this extracts an intermediate XML representation from a Cúram
application UML model.

v modelgen - this generates source code and other artefacts from the XML
representation of a Cúram application model. It also deletes any artefacts that
are no longer represented in the model.

v msggen - this merges the message file definitions according to the component
order and generates source code and properties from the resultant message
definitions.

v ctgen - this merges the code table definitions according to the component order
and generates source code from the resultant code table definitions.

v evgen - this merges the event definitions according to the component order and
generates source code from the resultant event definitions.

v compile.generated - this compiles any generated source code that doesn't
depend on the impl directory.

wsconnector:
The wsconnector step generates client stub connectors for outbound web services
from .wsdl files registered in the configuration file, <SERVER_DIR>/project/config/
webservices_config.xml.

An example is shown in “wsconnector”

<services>
<service location=

"components/<component_name>/wsdl/some_service/TopLevel.wsdl"
/>

</services>

Figure 4. Example Web Services Configuration

Cúram Server Developer's Guide 17

The location attribute is the location of the top level WSDL file relative to the
SERVER_DIR. This configuration file also gives the ability to turn a particular Web
Service Connector on and off at will (bearing in mind that business code that
accesses the connector would be affected by this). It is acceptable to have no
service elements in this file.

The generated connector client stubs must not be treated as source. They are
intended to be overwritten during each build, based on the WSDL files provided,
to ensure the connectors are always synchronized with the web services they
represent.

emx2xml:
The emx2xml step transforms the UML model (which is located in the
<SERVER_DIR>components/*/model directory) into an intermediate XML
representation. The intermediate representation is stored at the top level of the
directory tree.

modelgen:
The modelgen step transforms the intermediate XML representation into the final
Java code, deployment support artefacts, web service support artefacts and a set of
Data Definition XML files.

Data Definition XML Files

The Data Definition XML files are placed in the build/svr/gen/ddl directory and
are typically made up of a number of files:
v <SERVER_MODEL_NAME>_Tables.xml

v <SERVER_MODEL_NAME>_Indices.xml

v <SERVER_MODEL_NAME>_PrimaryKeys.xml

v <SERVER_MODEL_NAME>_UniqueConstraints.xml

v <SERVER_MODEL_NAME>_ForeignKeys.xml

v <SERVER_MODEL_NAME>_Batch.xml

v <SERVER_MODEL_NAME>_Fids.xml

v <SERVER_MODEL_NAME>_FieldsReturned.xml

v <SERVER_MODEL_NAME>_SQLJ.xml

The first five of these files contain database independent definitions for creating
tables on the database and placing constraints on these tables.
<SERVER_MODEL_NAME>_Batch.xml describes the persistent data that is necessary to
support the batch process related information that has been captured in the UML
model. <SERVER_MODEL_NAME>_fid.xml describes the persistent data that is necessary
to support the security related information that has been captured in the UML
model. <SERVER_MODEL_NAME>_FieldsReturned.xml describes the persistent data that
is necessary to support Field Level Security. <SERVER_MODEL_NAME>_SQLJ.xml
contains a representation of all the hand-crafted SQL in the model and is used by
the checksql target. More information on the contents of these files is provided in
“Data Manager” on page 44.

Foreign Keys and Cúram: The Cúram application is responsible for enforcing
referential integrity and foreign keys are generated to support testing of this. The
use of declarative referential integrity (foreign keys) in a production system will
impact the performance of that system and is consequently not supported.

18 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Java Code

A large number of Java code artefacts are generated as part of this model
generation build. They are generated according into a number of categories (and
are all located under the /build/svr/gen/<ProjectPackage>/ and
/build/svr/gen/<ProjectPackage>/<CodePackage> directories). A CodePackage may
be empty or there may be a number of CodePackage elements within each other
(for example, <ProjectPackage>/intf and <ProjectPackage>/<CodePackageA>/
<CodePackageB>/intf may both be generated depending on the options that have
been chosen).
v intf - Defines the interface for the objects that have been modeled.
v fact - Provides factory wrappers for the objects identified in bizinterface.
v base - Ensures the developer provides implementations for those methods which

must be hand crafted.
v remote - Provides remote interfaces for the objects which can be exposed to the

client.
v struct - Defines the classes which model parameters between the objects.
v rules/rdo - Defines the classes for the rules data objects. RDOs cannot be stored

in code packages so the rules folder is always at the top level. As well as the
classes this directory contains a file named rdoindex.properties which contains
a listing of all the generated objects.

Deployment Artefacts

A number of deployment artefacts are also generated by the model build. This
section does not attempt to detail the meaning of these files but simply introduces
the files and their locations. These artefacts are used when building an application
.ear file where they are passed into the XDoclet tool. They are generated according
to the following categories:
v IBM Specific Metadata:

provides support for deployment on WebSphere Application Server. These
artefacts are generated into the /build/ear/WAS directory and contain the
necessary .xml, .xmi and policy files.

v Oracle Specific Metadata:

provides support for deployment on WebLogic. These artefacts are generated
into the /build/ear/WLS directory and contain the necessary .xml files .

Web Service Artefacts

Finally a number of Web Service artefacts are generated. This section does not
attempt to detail the meaning of these files but simply introduces the files and
their locations. These artefacts are used when building an .ear file that supports
Web Service invocation. The artefacts consist of special structs which contain web
service conversion routines and a web service configuration file
(server-config.wsdd) and are generated into the /build/svr/gen/webservices
directory.

msggen:
Cúram message files allow a Cúram application to be localized without needing
manipulation of hand-crafted code. These files should be used in preference to
hard-coded strings within hand-crafted code.

Message files are located in the /message directory of a component. The Social
Program Management Platform is shipped with a set of message files. These files

Cúram Server Developer's Guide 19

may be overridden by placing new message files in the SERVER_DIR/components/
<custom > directory, where <custom> is any new directory created under
components that conforms to the same directory structure as components/core. The
override process involves merging all message files of the same name according to
a precedence order where the order is based on the
SERVER_COMPONENT_ORDER environment variable. This variable lists the
components in a delimited list in order of priority from most to least important.

The msggen build target performs the merge of message files and then translates
the resultant merged message file (which is stored in /build/svr/message/scp
directory) into Java source code and property files so it can be accessed at runtime.

The generated Java code is then compiled and packed into /build/jar/
messages.jar.

ctgen:
Cúram code table files allow an application to use a level of indirection when
storing commonly used constants on the database. This level of indirection enables
efficient database storage. Codetable files are located in the source/codetable
directory of a component. Like message files, code table files are shipped with the
Social Program Management Platform and may be customized through the merge
behavior.

The ctgen build target merges Cúram code table (.ctx) files and then translates the
resultant merged code table file (which is stored in /build/svr/codetable/scp
directory) into Java source code and SQL files which are used to return codes from
the database at runtime.

The prp.noninternedstrings parameter indicates whether code table artefacts
should be generated with strings that are not interned. The use of interned strings
in Java avoids the creation of duplicate java.lang.String objects. Consequently
memory usage may be reduced as there will be only one String object created for
a string value, irrespective of how many references to that string value exist.

Note: The default value for this property is true. Setting prp.noninternedstrings
to false means that strings will be interned. Although this may result in decreased
memory usage by the final application, dependency checking will operate
incorrectly when .ctx files are changed.

The generated Java code is then compiled and packed into /build/jar/
codetable.jar.

evgen:
Events provide a mechanism for loosely-coupled parts of a Cúram application to
communicate information about state changes in the system. When one module in
the application raises an event, one or more other modules receive notification of
that event having occurred provided they are registered as listeners for that event.
Event files are located in the events directory of a component.

The evgen build target merges Cúram event (.evx) files and then translates the
resultant merged event file (which is stored in /build/svr/events/scp directory)
into Java source code which can be subsequently used as constants in the
application and also .dmx files which are used to populate the event class and
event type database tables.

The generated Java code is then compiled and packed into /build/jar/events.jar.

20 IBM Cúram Social Program Management: Cúram Server Developer's Guide

compile.generated:
The compile.generated target compiles any generated source code that doesn't
depend on the impl directory. This includes the classes with the following patterns
from the build/svr/gen directory:
/struct//*.java
/intf//*.java
<Project Package>/*.java

This step uses an augmented version of Ant 's dependency checker to minimize the
build time.

implemented
This target completes the build and wraps the following targets:
v compile.implemented - this compiles all hand-crafted source code and any

generated code that wasn't built during the compile.generated step. Again this
step uses an augmented version of Ant 's dependency checker to minimize the
build time.

compile.implemented:
The compile.implemented step simply compiles all hand-crafted source code and
any generated code that wasn't built during the compile.generated step. This
includes the classes with the following patterns from the build/svr/gen directory:
/base//*.java
/fact//*.java
**/rules/loaders/*.java
**/rules/rdo/*.java
/remote//*.java

From the components/*/source directory -
/impl//*.java
**/rules/loaders/*.java
/webservice//*.java

Extra Targets
A number of extra Ant targets are provided which are not necessary to build a
server. Some of the more useful targets are listed below:
v clean - Delete all the generated and compiled files to ensure all generated and

compiled artefacts are removed and the next build is fresh and clean. It is useful
to periodically perform clean builds because of limitations in the dependency
checker provided by Ant.

v encrypt - Encrypt a plain-text password (e.g. for curam.db.password) so the
encrypted password can be safely stored in a property file. None of the Cúram
property files contain plain-text passwords so the passwords contained within
them are automatically decrypted. See the Cúram Security Handbook for more
information regarding cryptographic settings for encrypted passwords.

v digest - Digest a plain-text user password. When you change cryptographic
digest settings, for internal and external Cúram users, you may need to update
digested password values in DMX (e.g. USERS.DMX) and SQL files for passwords
to be stored on the database. To make these updates you will need the new
digest password values, which you can obtain via this target. Care should be
used in creating these passwords and should only be done for test users. See the
Cúram Security Handbook for more information regarding cryptographic settings
for digested passwords.

v database - This transforms the database independent xml files into DDL files
and places the contents of these DDL files on the database. The database target

Cúram Server Developer's Guide 21

also provides support for applying rule sets to the database (more detail on this
is provided in “Rules Targets” on page 25).

v mergeshortnames - Merges file ShortNames.properties from all components
v extractdata - This extracts the contents of all or some of the tables on the

database and transforms them into database independent XML files. More detail
on this target is provided in “Data Manager” on page 44.

v reloadextracteddata - This reloads data that was extracted using the
extractdata command back onto the database. This is dependent on the
insertextracteddata and the extracteddata targets existing in the
datamanager_config.xml file. If these targets do not exist in your
datamanager_config.xml file, the OOTB datamanager_config.xml file should be
used as a reference for adding them.

v checksql - This validates the hand-crafted SQL and test data against the actual
database. If this step is not run syntactical (and semantic) mistakes in
hand-crafted SQL will not be determined until run-time because of the dynamic
nature of JDBC (Java Database Connectivity)2. This step operates by producing
an SQLJ file and completely relies on the syntax checking provided by the
particular database. The checksql target uses the output that is built during the
database target. So it is a pre-requisite to have run database target before
running checksql. Any errors that are discovered while running the checksql
target are logged to the console and to a timestamped log file in the buildlogs
directory. More detail on this target is provided in “SQL Checker” on page 69.

v deprecationreport - The command-line Java compiler deprecation warnings
have been extended to apply to certain Cúram builds and validations. This helps
to quickly pinpoint where custom dependencies exist on deprecated
out-of-the-box artefacts. This target combines all the Cúram builds and
validations that support deprecation warnings. As such, the build output from
this target provides a comprehensive overview of all deprecation warnings for
all supported builds (server and client builds, workflow validations, rules
validations, etc). Please note that this target starts with a clean (as the Java
compiler does not produce warnings for incremental builds). See “Deprecation”
on page 122 for more information.

v foreignkeycheck - In a production environment it is not desirable to enable
foreign keys on the database because of the result performance degradation. As
a result it is possible for referential integrity to be violated as a result of program
bugs or manual intervention by a Database Administrator. This target validates
that the Referential Integrity has not been violated. It performs this task by
loading the generated foreign key constraints for the application and verifying
that for each child record of each foreign key the referenced parent key exists.
The key values of any missing parent key records are reported.

v test - Execute the tests associated with the application.
– If Clover is available a code coverage report can also be generated. More

details on the usage of Clover are available in “Clover Targets” on page 25.
– The JUnit forkmode controls the number of Java Virtual Machines that gets

created if you want to fork some tests; and it can be set dynamically by
specifying junit.fork.mode property, while executing the test target.
For Example:

2. JDBC (Java Database Connectivity) is part of the Java Development Kit which defines an application programming interface for
Java for standard SQL access to databases from Java programs.

build test -Djunit.fork.mode=once

22 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Possible values for this property are:
perTest - creates only a single Jav Java VM for all tests.
perBatch - creates a Java VM for each nested batch test and one collecting all
nested tests.
once - creates only a single Java VM for all tests.
Default value of perTest is used if junit.fork.mode property is not set.

– It is possible to exclude or include set of tests while running the test target.
To Exclude/Include tests, copy the ExcludeTests.txt or IncludeTests.txt file
located in the CuramSDEJ\util\ directory. This new file can then be modified
to add the tests that you want to exclude or include and can be reference
using the property override.
For Example:

v configtest - Examines the current environment to ensure that the various
environment settings and property files have been established correctly. This tool
attempts to diagnose any problems in the environment which would be an
impact. It checks the validity of:
– versions of third party tools including Java SE Runtime Environment (JRE),

Ant, application server and database.
– Bootstrap.properties including properties: curam.db.name or

curam.db.oracle.servicename, curam.environment.bindings.location,
curam.db.username, curam.db.password and curam.db.type

– database connectivity by attempting to connect to the database described by
properties in Bootstrap.properties and ensures it is a valid database.

– database configuration; e.g. for DB2: buffer pools, tablespaces, etc.; and for
Oracle: privileges for the Cúram user. If DB2 is remote the configuration
check for LOCKSIZETIMEOUT will fail. This check can be bypassed by
setting the db2.is.remote property.

– application server variables: WAS_HOME and WLS_HOME dependencies are
also checked i.e. if using WebSphere the IBM JDK and IBM Java EE must be
used.

– Ant variables i.e. ANT_HOME and ANT_OPTS
– server and client environment variables

v configreport - Creates a config_report.zip file, which contains information to
assist with diagnostics gathering, and can be used if remote support is required.
The file is created in the <CURAM_DIR>/EJBServer directory, and contains a copy
of:
– Environment settings for Cúram specific and system environment variables,

and software versions on the machine.
– The installer logs, which also provide the version of Cúram being used.
– Properties files - all properties files that are located in the

<CURAM_DIR>/EJBServer/project/properties directory.
– A copy of the deployment_packaging.xml file.
– The output from the configtest build target, as detailed above.
– The log files from the application server being used (WebSphere or

WebLogic). Note that these log files will only be copied if:

build test
-Dexclude.test.file=<PATH_TO_THE_FILE>\ExcludeTests.txt

build test
-Dinclude.test.file=<PATH_TO_THE_FILE>\IncludeTests.txt

Cúram Server Developer's Guide 23

- the application server is installed on the same machine as Cúram.
- the application is running on a standalone server.
- the default location where the log files are written to has not been changed.

v javadoc - Produce the Java Documentation (JavaDoc) from the application. To
produce useful JavaDoc, comments must have been placed in the model as well
as in the code.

v apijavadoc - Generates the javadoc for black/grey box components, this is based
on the javadoc.properties files.

v release - Gathers all the files together that are necessary to run Cúram on
another machine in the <SERVER_DIR>/release directory. This target is used when
building for a target platform (e.g. building on Windows for deployment on IBM
z/OS®) or moving the application between machines. On moving the release
directory to another machine a Bootstrap.properties and AppServer.properties
property files must be placed in a release/project/properties directory and the
following environment variables must be set: SERVER_DIR must point at the
release directory, SERVER_MODEL_NAME must be set to the name of the
application model, and CURAMSDEJ must be set to the location of the SDEJ
before any of the scripts can be used. The SERVER_COMPONENT_ORDER
environment variable must be set on your target environment where you plan to
work with the resulting release directory, and this value must be the same as the
value used in your source environment. The files that are copied are:
– Ant Build files;
– Project jars;
– DDL files;
– SQL files;
– Code Tables files;
– Batch Launcher;
– Data Manager;
– Application EAR files.
– XML Server files.

v insertproperties - Merges all the properties (.prx) files defined under the
properties directory for each of the application's components, and inserts them
into the database. See “Application Properties” on page 37 for more details.

v extractproperties - Extracts the properties from the database, and stores them
into a database independent prx file. The generated prx file is stored at
<SERVER_DIR>/build/propertiesextractor/

v mergeuserpreferenceproperties - Merge the user preference properties files.
v model - Extract the model and generate source code and other artefacts from the

XML representation of a Cúram application. The model target combines the
modelext and modelgen targets.

v runbatch - Runs the Batch Launcher. For more information refer to the Cúram
Batch Processing Guide.

v runstatistics - Runs statistics for the database. For more information refer to
“Statistics” on page 67.

v supplement - Compiles and jars all the Java files contained within any
supplementary directory specified by the -Dsupplement=<DIRECTORY_NAME>
parameter. A <DIRECTORY_NAME>.jar file will be created and stored in the
<SERVER_DIR>/build/jar/ directory.

v police.access.restrictions - Provides a report of accesses to restricted APIs
within the Cúram application. The APIs that are restricted are marked by

24 IBM Cúram Social Program Management: Cúram Server Developer's Guide

annotations within the Javadoc and indicate areas that should not be accessed by
custom code. This policing tool highlights any code that accesses restricted APIs
and out-of-the-box code containing a restricted annotation. During development
these restrictions are further backed by the non-delivery of sample Java files,
Eclipse access restrictions and that there is no JavaDoc available.

Clover Targets
Clover is a code coverage tool that can easily be integrated into the Cúram build
environment. A number of Ant targets are provided to aid in the integration of
Clover. For these targets to work correctly the clover.jar and clover.license files
must be obtained and installed in the <ANT_HOME>/lib directory. More information
on obtaining and using Clover can be found at http://www.atlassian.com/
software/clover/overview.
v clover.server - This is the equivalent of the server target and also includes

instrumenting the compiled .java files with the necessary Clover information.
v clover.supplement - This is the equivalent of the supplement target and also

includes instrumenting the compiled .java files with the necessary Clover
information.

v clover.report.html - This target will generate a html report detailing code
coverage. The report is generated into the <SERVER_DIR>/clover/clover_html
folder.

v clover.report.viewer - This target will launch the Clover viewer with details of
the code coverage.

Rules Targets
The Cúram Rules Codification Guide and the Cúram Rules Editor Guide provide an
introduction to the support for rules in Cúram. A rule set is the fundamental
structure which describes the rules within a Cúram application. It is the database
that is the system of record for rule sets. This allows the rule sets to be changed at
run-time via an administration client. However, support is also provided for
representing rule sets as .xml files. These .xml files can be used for source control
management. To allow for the synchronization between these .xml files and the
database a number of extra targets have been introduced:

Representing Rulesets as XML Files: Support for ruleset import and export is
only there to allow source control management and to exchange rulesets between
machines. Direct editing of the ruleset XML files is not supported in any way.
v listrulesets - Produce a listing of the names and identifiers of the rulesets that

are present on the database.
v exportruleset - This target exports a ruleset definition (.xml file) from database

to the file system. This command takes two parameters - rulesetid and
component. Exported ruleset will be saved as [specified rulesetid].xml in
<SERVER_DIR>/components/[specified component]/rulesets folder.
rulesetid - Identifier of the ruleset that is to be exported from the database.
component - Name of the component to which the rule set has to be exported
(copied).
For example:

build exportruleset
-Drulesetid=PRODUCT_1
-Dcomponent=custom

Cúram Server Developer's Guide 25

http://www.atlassian.com/software/clover/overview
http://www.atlassian.com/software/clover/overview

Where 'PRODUCT_1' denotes the identifier of the ruleset that is to be exported
from the database and 'core' denotes the name of the component to which the
rule set has to be exported (copied).

v importruleset - This target imports a ruleset definition (.xml file) from a file
system to the database. It validates the rule set ID for uniqueness before
importing the rule set, it does this by searching for existing IDs in the
SERVER_DIR/components/../rulesets directories. This command takes two
parameters- ruleset.file and overwrite.
ruleset.file - This parameter denotes the path of the ruleset that is to be
placed on the database.
overwrite (Optional) - This is an optional flag with the default value as false,
indicating whether the database should be overwritten if the ruleset already
exists.
For example:

Where <SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml denotes the path
of the ruleset definition file and true denotes the flag to overwrite the database,
if ruleset already exists.

v validateallrulesets - Validates all the rule sets in the Cúram application. This
target has to be invoked from the SERVER_DIR directory, where it scans all the
components for rule set files and validates them. For schema validation this
target uses the rule set schema located in CURAMSDEJ/lib directory by default,
unless another schema is specified by using an optional property 'schema.file'.
The validator ensures that the rule set ID is unique by searching for existing IDs
in the SERVER_DIR/components/../rulesets directories.
schema.file (Optional) - This optional parameter specifies the rule set schema
that has to be used for validating the rule sets.
For example:

v validaterulesets - Validates all the rule sets in the specified directory. The
property 'rulesets.dir' has to be specified when invoking the target. For schema
validation this target uses the rule set schema located in CURAMSDEJ/lib directory
by default, unless another schema is specified by using an optional property
'schema.file'.
The validator ensures that the rule set ID is unique by searching for existing IDs
in the SERVER_DIR/components/../rulesets directories.
schema.file (Optional) - This optional parameter specifies the rule set schema
that has to be used for validating the rule sets.
rulesets.dir - This parameter specifies the directory within which rule sets are
to be validated.
For example:

build importruleset
-Druleset.file=

<SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml
-Doverwrite=true

ant validateallrulesets
ant validateallrulesets

-Dschema.file=C:/Rules/ruleset.xsd

26 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v validateruleset - Validates the specified rule set. The property 'ruleset.file' that
denotes the rule set path and file name has to be specified when invoking the
target. For schema validation this target uses the rule set schema located in
CURAMSDEJ/lib directory by default, unless another schema is specified by using
an optional property 'schema.file'.
The validator ensures that the rule set ID is unique by searching for existing IDs
in the SERVER_DIR/components/../rulesets directories.
schema.file (Optional) - This optional parameter specifies the rule set schema
that has to be used for validating the rule set.
ruleset.file - This parameter specifies the rule set path and file name.
For example:

v rulesfunctionsmerge - Merge rules custom function meta-data from.xml files.

Classic IEG Targets
The Classic Intelligent Evidence Gathering Guide provides an introduction to scripts
and question groups within Classic IEG. The database can be populated by using
the Classic IEG editor to define these scripts. However, support is also provided
for representing the groups and scripts as xml data. Although the files are
consistent with well and fully formed xml, the file extensions are modified to
denote the contents as script (.sx) and question group(.gx). These xml data files
can be created and manipulated directly to allow for the synchronization between
these files, and the database. A number of extra targets have been introduced to
enable this:
v importieg - This target imports all IEG files in a specified directory to the

database. This command takes two parameters - directory and overwrite.
directory - This parameter denotes the directory from which IEG scripts and
question groups are imported.
overwrite (Optional) - This is an optional flag with the default value as false,
indicating whether the database should be overwritten if an imported script or
group already exists.
For example:

ant validaterulesets
-Drulesets.dir=

<SERVER_DIR>/components/core
ant validaterulesets

-Drulesets.dir=
<SERVER_DIR>/components/core

-Dschema.file=C:/Rules/ruleset.xsd

ant validateruleset
-Drulesets.file=
<SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml

ant validateruleset
-Drulesets.file=

<SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml
-Dschema.file=C:/Rules/ruleset.xsd

build importieg
-Ddirectory=

<
SERVER_DIR>/components/core/ieg
-Doverwrite=true

Cúram Server Developer's Guide 27

Where <SERVER_DIR>/components/core/ieg denotes the path to the import
directory and true denotes the flag to overwrite the database if a file already
exists.

v importiegscript - This target imports an IEG script from a file system to the
database. This command takes two parameters - IEG file and overwrite.
ieg.file - This parameter denotes the full path of the IEG script to be imported.
overwrite (Optional) - This is an optional flag with the default value as false,
indicating whether the database should be overwritten if the script already
exists.
For example:

Where <SERVER_DIR>/components/core/ieg/PRODUCT_1.sx denotes the path of the
script definition file and 'true' denotes the flag to overwrite the database if the
question script already exists.

v importiegcomponent - This target imports all IEG data (IEG scripts and question
groups) from the ieg subdirectory of a specified component to the database. This
command takes two parameters - component and overwrite.
component - This parameter denotes the component from which to import all IEG
data to the database.
overwrite (Optional) - This is an optional flag with the default value as false,
indicating whether the database should be overwritten if the IEG data already
exists.
For example:

Where core denotes the path of the component and 'true' denotes the flag to
overwrite the database if the question script already exists.

v importiegsubdirs - This target imports all IEG data (IEG scripts and question
groups) from the ieg subdirectory of subdirectories of a specified directory to
the database. This command takes two parameters - directory and overwrite.
This target is used when it is required to import IEG data from multiple
components.
directory - This parameter denotes the directory whose subdirectories will be
searched for IEG data to import to the database.
overwrite (Optional) - This is an optional flag with the default value as false,
indicating whether the database should be overwritten if the IEG data already
exists.
For example:

Where <SERVER_DIR>/components denotes the path of the directory and 'true'
denotes the flag to overwrite the database if the IEG data already exists.

build importiegscript
-Dieg.file=

<
SERVER_DIR>/components/core/ieg/PRODUCT_1.sx
-Doverwrite=true

build importiegcomponent
-Dcomponent=core
-Doverwrite=true

build importiegsubdirs
-Ddirectory=<SERVER_DIR>/components
-Doverwrite=true

28 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v importquestiongroup - This target imports an IEG question group from a file
system to the database. This command takes two parameters - IEG file and
overwrite.
ieg.file - This parameter denotes the full path of the IEG question group to be
imported.
overwrite (Optional) - This is an optional flag with the default value as false,
indicating whether the database should be overwritten if IEG import data
already exists.
For example:

build importquestiongroup
-Dieg.file=

<SERVER_DIR>/components/core/ieg/
PRODUCT_1.gx
-Doverwrite=true

Where <SERVER_DIR>/components/core/ieg/PRODUCT_1.gx denotes the path of the
question group definition file and true denotes the flag to overwrite the
database, if the question group already exists.

v exportiegscript - This target exports a script definition (.sx file) from a database
to the file system. This command takes two parameters - scriptid and
component. Exported scripts will be saved and named as [specified rulesetid].sx
in the <SERVER_DIR>/components/[specified component]/ieg folder.
scriptid - Identifier of the script that is to be exported from the database.
component - Name of the component to which the script has to be exported
(copied).
For example:

Where 'PRODUCT_1' denotes the identifier of the script that is to be exported
from the database and 'core' denotes the name of the component to which the
script has to be exported (copied).

v exportiegscripttodir - This target exports a script definition (.sx file) from a
database to the file system. This command takes two parameters - scriptid and
exportdirectory. Exported scripts will be saved and named as [specified
rulesetid].sx in the specified export directory.
scriptid - Identifier of the script that is to be exported from the database.
exportdirectory - Full path of the directory to which the script has to be
exported (copied).
For example:

Where 'PRODUCT_1' denotes the identifier of the script that is to be exported
from the database and 'C:/exportedscripts' denotes path to the directory to
which the script has to be exported (copied).

v exportfulliegscript - This target exports a specific script definition (.sx file)
and its associated group definitions(.gx files) from the database to the file
system. If any of the files exported are read only, a warning will be reported and
the file will not be overwritten. The exportfulliegscript command takes two
parameters - scriptid and component. The exported script is named as [specified

build exportiegscript
-Dscriptid=PRODUCT_1
-Dcomponent=core

build exportiegscripttodir
-Dscriptid=PRODUCT_1
-Dexportdirectory=C:/exportedscripts

Cúram Server Developer's Guide 29

scriptid].sx and the associated question groups are saved and named as
[associated questiongroupid].gx in the <SERVER_DIR>/components/[specified
component]/ieg folder.
scriptid - Identifier of the script that is to be exported from the database.
component - Name of the component to which the script has to be exported
(copied).
For example:

Where 'PRODUCT_1' denotes the identifier of the script that is to be exported
from the database and 'core' denotes the name of the component to which the
script and its associated question groups has to be exported (copied).

v exportfulliegscripttodir - This target exports a specific script definition (.sx
file) and its associated group definitions(.gx files) from the database to the file
system. If any of the files exported are read only, a warning will be reported and
the file will not be overwritten. The exportfulliegscripttodir command takes two
parameters - scriptid and exportdirectory. The exported script is named as
[specified scriptid].sx and the associated question groups are saved and named
as [associated questiongroupid].gx in the specified export directory.
scriptid - Identifier of the script that is to be exported from the database.
exportdirectory - Full path of the directory to which the script has to be
exported (copied).
For example:

Where 'PRODUCT_1' denotes the identifier of the script that is to be exported
from the database and 'C:/exportedscripts' denotes the path to the directory to
which the script and its associated question groups has to be exported (copied).

v exportquestiongroup - This target exports a question group definition (.gx file)
from database to the file system. This command takes two parameters - groupid
and component. Exported question groups will be saved as [specified
rulesetid].gx in <SERVER_DIR>/components/[specified component]/ieg folder.
groupid - Identifier of the question group that is to be exported from the
database.
component - Name of the component to which the rule set has to be exported
(copied).
For example:
build exportquestiongroup

-Dgroupid=PRODUCT_1
-Dcomponent=core

Where 'PRODUCT_1' denotes the identifier of the question group that is to be
exported from the database and 'core' denotes the name of the component to
which the question group has to be exported (copied).

v listiegscripts - Produces a list of all the IEG scripts available in the database.
v listquestiongroups - Produces a list of all the question groups available in the

database.

build exportiegscript
-Dscriptid=PRODUCT_1
-Dcomponent=core

build exportfulliegscripttodir
-Dscriptid=PRODUCT_1
-Dexportdirectory=C:/exportedscripts

30 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v migrateiegscript - Migrate a Classic IEG script definition to an IEG2 script
definition (use -Dscriptfilename= -Dinputdir= -Doutputdir=).
scriptfilename - denotes the name of the file to import.
inputdir - denotes the directory to import from.
outputdir - denotes the directory to write the migrated script to.

v validatealliegscripts - Validates the IEG scripts.

IEG2 Targets
v validateieg2scripts - Validates the IEG2 scripts in the specified directory.

Requires IntelligentEvidenceGathering component to run.

Application Configuration Import and Export Targets
The application configuration information for the Cúram web client is stored as a
series of XML and properties files in the server source directory. It is merged and
loaded into the database at build time from where it is read by the client tier at
run time.

The rules for merging are as follows:
v Files in the clientapps directory take precedence over files in the tab directory,

regardless of component order. E.g: if a file named CaseHome.nav exists in the
clientapps directory of any component of the application, then any files named
CaseHome.nav which exist in the tab directory of any component are ignored.

v Files in the clientapps directory are selected (not merged) based on the
component order. E.g: if a file name CaseHome.nav exists in the clientapps
directory of components Custom1 and Custom2, and Custom1 is ahead of
Custom2 in the component order, then the version of CaseHome.nav from
Custom1 is used and the version from Custom2 is ignored.

v Files in the tab directory are merged according to the component order -
provided that a corresponding file in a clientapps directory does not exist. E.g:
if a file named SearchTab.nav exists in the tab directory of components
CustomA and CustomB, but not in the clientapps directory of any component,
then the contents of the two files are merged together.

Note: Note that only OOTB Cúram components may use the tab directory to
store application configuration files; this directory may not be used by custom
components. Custom components may use only the clientapps directory for
application configuration files.

One target controls the import and export of application configuration to and from
the database:

inserttabconfiguration

Merges application configuration files from disk and inserts the data into the
database. The default action of this target is to insert the application configuration
data onto the database but it can also be used to:
v Merge the application configuration files and write the merged files to a

directory on disk.
If property dir.tab.merge is set then it denotes a directory into which the
application configuration files from the various components of your application
will be merged. In this mode, nothing is written to the database. E.g: build
inserttabconfiguration -Ddir.tab.merge=C:/EJBServer/tabExtract

Cúram Server Developer's Guide 31

v Extract the application configuration data from the database and write it to a
directory on disk.
If property dir.tab.extract is set then it denotes a directory into which the
application configuration data from the database will be extracted. In this mode
the application configuration data is read from the database and nothing is
written to the database. E.g: build inserttabconfiguration
-Ddir.tab.extract=C:/EJBServer/tabExtract

Workflow Targets
The Cúram Workflow Reference Guide provides an introduction to the support for
workflow in Cúram. A workflow process definition is the fundamental structure
which describes the workflow process within a Cúram application. Workflow
process definitions are stored on the database, but can also be represented as .xml
files and loaded onto the database as needed. A number of targets exist to allow
for the validation of workflow process definition .xml files:

Prerequisites for validating workflow process definition files: Workflow process
definitions can make reference to rule sets (see Cúram Rules Codification Guide) and
Cúram events (See “Events and Event Handlers” on page 150) in the process xml
files. Therefore, all rule sets and events that are referenced in workflow process
definitions being validated must already be loaded onto the database before the
associated workflow process definition files can be validated using the targets
outlined below.
v validateworkflows - supports validation of the workflow process definition files

in the specified directory. The property 'workflow.dir' has to be specified when
invoking the target.
workflow.dir - This parameter denotes the directory within which workflow
process definition files are to be validated.
validate.schema.only - This optional parameter, if set to true, only performs
schema validation on the workflow xml files and bypasses the full semantic
validation that would otherwise be performed.
For example:

v validateallworkflows - performs validation of all workflow process definitions
files in the Cúram application.
validate.schema.only - This optional parameter, if set to true, only performs
schema validation on the workflow xml files and bypasses the full semantic
validation that would otherwise be performed.
For example:

v validateworkflow - supports validation of the specified workflow process
definition file. The property 'workflow.file' has to be specified when invoking
this target.
workflow.file - This parameter denotes the full path to the workflow process
definition file that is to be validated.
validate.schema.only - This optional parameter, if set to true, only performs
schema validation on the workflow xml file and bypasses the full semantic
validation that would otherwise be performed.

ant validateworkflows
-Dworkflow.dir=

<SERVER_DIR>/path to workflow directory

ant validateallworkflows

32 IBM Cúram Social Program Management: Cúram Server Developer's Guide

For example:

v importworkflow - Import a workflow process definition (use -Dworkflow.file=
-Doverwrite=).
workflow.file - This parameter denotes the full path to the workflow process
definition file that is to be imported.
overwrite (Optional) - This is an optional flag with the default value as false,
indicating whether the database should be overwritten if the workflow process
definition already exists.

v importworkflows - Import the workflow definitions in the specified directory
(use -Dworkflow.dir= -Doverwrite=).
workflow.dir - This parameter denotes the directory from which the workflow
definitions should be imported.
overwrite (Optional) - This is an optional flag with the default value as false,
indicating whether the database should be overwritten if the workflow process
definitions already exist.

v listworkflows - List all process definitions available in the database.

Deployment Targets
A number of extra targets exist which allow an application to be deployed on an
application server. These commands are fully described in the Cúram Deployment
Guide3, but a summary is provided here.
v weblogicEAR - Produce an .ear file that can be deployed on WebLogic.
v websphereEAR - Produce an .ear file that can be deployed on WebSphere

Application Server.
v weblogicWebServices - Produce an .ear file that can be deployed on WebLogic

that supports Web Services invocation.
v websphereWebServices - Produce an .ear file that can be deployed on

WebSphere that supports Web Services invocation.
v weblogicEARGSS - Build GSS ear for WebLogic
v websphereEARGSS - Build GSS ear for WebSphere Application Server
v configure - Automatically configures the application server.
v installapp - Installs and starts a specified EJB application. (Note: the EAR file

(Curam.ear) containing the server module must be deployed before installing any
other (client-only) EAR files.)

v precompilejsp - Precompiles all JSPs in the specified .ear file.
v prepare.application.data - Must be run after the database target is run and

before starting the application server for the first time. Failing to run this
sequence will likely result in transaction timeouts during first login and a failure
to initialize and access the application. Whenever the database target is rerun
(e.g. in a development environment) this target must also be rerun.

v startserver - Starts an application server.
v restartserver - Restarts an application server.

3. For your particular application server, i.e. WebSphere and WebLogic. The deployment guides are named Cúram Deployment Guide
for WebSphere Application Server, Cúram Deployment Guide for WebSphere Application Server on z/OS, and Cúram Deployment Guide for
WebLogic Server.

ant validateworkflow
-Dworkflow.file=

<SERVER_DIR>/path to workflow file to be validated

Cúram Server Developer's Guide 33

v stopserver - Stops an application server.
v uninstallapp - Stops and uninstalls the specified EJB application.

Extending the Build
This section describes how Ant can be used to introduce new targets, enhance
existing targets or override OOTB build targets.

This is achieved by creating a script hierarchy using Ant 's import task and can be
seen in the OOTB application. Examples include the build.xml files found in the
webclient and EJBServer directories that extend, through an import, the build.xml
files from the CuramCDEJ and CuramSDEJ directories respectively.

The delivered build.bat or.sh files invoke Ant against the webclient or EJBServer
build.xml. This allows for these build.xml files to introduce new targets not
available in the scripts delivered in the CDEJ and SDEJ. It also allows these targets
to be enhanced as required due to the principal of the import task, which is that
"If a target in the main file is also present in at least one of the
imported files, the one from the main file takes precedence".

Introducing a new script
The following section details the steps to create a new top level script which can
be used to introduce new targets, enhance existing targets or override OOTB build
targets.

Two Environment variables CDEJ_BUILDFILE and SDEJ_BUILDFILE are used to
control the script that is invoked by the build.bat or.sh files. A new script can be
invoked by setting the appropriate environment variable. For example:

This script must then import it's parent in the hierarchy EJBServer\build.xml, for
example:

New targets can then be added to the script as required. These targets can also
utilize existing targets or properties in the inherited script hierarchy.

To enhance or override an existing target the same target name is chosen as that
which is being enhanced or overriden. When enhancing a target, the existing target
is then either added as a dependency of the new target or invoked during a point
in the new target. The previous target's name used is formed from the project
name of the script where the target being enhanced exists. For example:

Introducing a new server script:

SDEJ_BUILDFILE=%SERVER_DIR%/components/custom/scripts/build.xml

<?xml version="1.0" encoding="UTF-8"?>
<project name="custom">

<!-- Relative path to EJBServer\build.xml -->
<import file="./../../../../build.xml"/>

</project>

34 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Target API: Only targets that are documented i.e. those visible through the
-projecthelp for a script should be enhanced, overriden or invoked. Other targets
are considered internal are subject to change without notice.

Overridden Targets
Some targets in the SDEJ are overridden by application build scripts. Such targets
appear in the report produced by the -projecthelp command qualified by the
SDEJ sub project name such as app_auxiliary, serverbuild, etc. Only the
unqualified version of these targets should be used, otherwise the target may not
work correctly. E.g. always use weblogicEAR instead of serverbuild.weblogicEAR.

This applies to the following targets:
v app_auxiliary.ctgen

v app_auxiliary.msggen

v app_runtimewas.configure

v serverbuild.clean

v serverbuild.generated

v serverbuild.implemented

v serverbuild.model

v serverbuild.release

v serverbuild.weblogicEAR

v serverbuild.websphereEAR

Application Targets
This section lists targets which are available in the OOTB application and which
are displayed when the -projecthelp command is given.

BI App
v biapp.BIRTViewerEARs - Builds deployable EAR files for WebSphere and

WebLogic
v biapp.configure.birtviewer - Configures the Cúram Business Intelligence and

Reporting Tools (BIRT) Viewer application (use -Dserver.name= -Dear.file=
-Dapplication.name=)
server.name - The name of the server to deploy the application onto.
application.name - The name of the BIRT Viewer application.

Enhancing the database target, where the project name of the SDEJ script containing the database target is
app_database.

Before target usage:

<target name="database" >
<!-- Some further processing before the SDEJ database target -->
...
<antcall target="app_database.database"/>

</target>

After target usage:

<target name="database" depends="app_database.database">
<!-- Some further processing after the SDEJ database target -->
...

</target>

Figure 5. Before/After Target usage

Cúram Server Developer's Guide 35

v biapp.release - Copies BIRT build files required to run
biapp.configure.birtviewer (post install step for WebSphere)

CREOLE
v creole.check.initial.database - Checks the structure of rule set XML data

uploaded from DMX files and runs lax validation.
v creole.compile.test.classes - Compiles the test classes generated from the

CREOLE rule sets.
v creole.consolidate.resource - Consolidates together resource bundles for

CREOLE rule sets.
v creole.consolidate.rulesets - Inlines any included CREOLE rule sets and

consolidates the rule sets into one build directory.
v creole.copyresourceto.cls - Copies resource files for CREOLE rule sets into the

build\svr\cls directory.
v creole.generate.catalog - Generates an XML catalog file for CREOLE rule sets.
v creole.generate.ruledoc - Generates rule documentation for all CREOLE rule

sets.
v creole.generate.schema - Generates an XML schema file for CREOLE rule sets.
v creole.generate.test.classes - Generates test classes from the CREOLE rule

sets.
v creole.report.coverage - Reports CREOLE rule set coverage information

gathered from CREOLE rule executions.
v creole.report.unused.attributes - Reports CREOLE rule attributes which are

not used directly by any other rule attributes.
v creole.upload.rulesets - Uploads new CREOLE rule sets and/or changes to

existing CREOLE rule sets to the database.
v creole.validate.rulesets - Performs full validation of all CREOLE rule sets.

Evidence Generation
v egtools.assign.resourceID - Allocate resourceID values for the Create Wizard

AppResource.dmx.
v egtools.clean - Calls on the EG Tool to delete all generated components.
v egtools.client.clean - Calls on the EG Tool to delete all generated client

evidence screens on the product.
v egtools.client.generate - Generate target for client evidence generation.
v egtools.generate - Main generate target for evidence generator. Generates all

evidence components.
v egtools.server.clean - Calls on the EG Tool to delete all generated components

on the server.
v egtools.server.generate - Generate target for server evidence generation.
v egtools.wizard.dmx - Generate target for creation of AppResource.dmx for

Create Wizard pages.
v post.modelgen - Calls on the EG Tool to perform any steps required after the

modelgen.
v add.rootnode.to.appresource.dmx - APPRESOURCE.dmx gets appended to by

each product's evidence generation. This adds the root node 'table'.
v add.rootnode.to.initialappresource.dmx - INITIALAPPRESOURCE.dmx gets

appended to by each product's evidence generation. This adds a root node to
make a valid xml file.

36 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v add.rootnode.to.products.xml - Product.xml gets appended to by each
product's evidence generation. This adds the root node 'products'.

v build.all.component.dirs - Builds all components.
v build.all.evidence.dirs - Builds all evidence directories.
v build.evidencebroker.resources - Builds the evidencebroker resources for

domains and labels.
v call.egtools.transformer - Calls on the XSLT transformer.
v generate.resolve.scripts - Calls any XSLT transformations that require the

cross products summary defined in Products.xml.
v makedir - Creates directory structure for an evidenceEntities.xml file in the

EJBServer/build folder if none exists. Should only be necessary if an appbuild
clean has been performed.

Cúram Configuration Settings

Overview
This chapter details the environment variables that can be set in your IBM Cúram
Social Program Management environment.

Application Properties
This section describes the property files associated with developing or running a
Cúram application.

Application prx
The Application.prx contains the properties used when running a Cúram
application. The properties contained in this file are loaded to the database during
the build database target and at runtime are cached from the database for use by
the Application. An Application.prx can be loaded separately via the build
insertproperties target.

The properties defined in Application.prx can be dynamic or static. Dynamic
properties will have effect immediately if changed and published using the
administration interface during runtime. Modifying static properties will have no
effect until a restart of the server is performed.

The file is organized as follows:

Property Element
There is a property element for each property used.

<property name="curam.trace" dynamic="true">
<type>STRING</type>
<value>trace_ultra_verbose</value>
<default-value>trace_ultra_verbose</default-value>
<category>CODETABLE</category>
<locales>

<locale language="en" country="US">
<display-name>Trace Property</display-name>
<description>Details of the Trace Property</description>

</locale>
</locales>

</property>

Figure 6. PRX Entry

Cúram Server Developer's Guide 37

Name Attribute
Attribute specifying the name of the property.

Dynamic Attribute
Indicator as to whether a change to the property value will require
an Application restart.

Type Element
Refers to a code entry on the codetable DomainType.

Value Element
The property value.

Default-Value Element
The default value of a property used when properties are reset.

Category Element
Refers to a code entry on the codetable EnvPropertyCategory.

Locales Element
Contains one or more locale specific elements for the display name
and description.

Language Attribute
Language Code for this locale specific entry.

Country Attribute
(Optional) Country Code for this locale specific entry.

Display Name Element
Locale specific display name for the property.

Description Element
Locale specific entry for the property.

Merging an Application prx File:
Prx files are located in the /properties directory of a component and the root
/project/properties directory. The Social Program Management Platform is
shipped with a set of prx files. These may be overridden by placing new prx files
in the SERVER_DIR/components/<custom >/properties directory, where <custom> is
any new directory created under components that conforms to the same directory
structure as components/core. This mechanism avoids the need to make changes
directly to the out-of-the-box application, which would complicate later upgrades.

This override process involves merging all prx files according to a precedence
order. The order is based on the SERVER_COMPONENT_ORDER environment
variable. This environment variable contains a comma-separated list of component
names: the left most has the highest priority, and the right most the lowest.

The order shows that the precedence of Appeal is higher than that of the sample
component. The core component always has the lowest priority and as such does
not need to be specified. Any components which are not specified are placed
alphabetically above core and below those which are specified.

Note: After changing the component precedence order in
SERVER_COMPONENT_ORDER it is necessary to preform a re-insert of the
merged properties. This is done by invoking build insertproperties.

SERVER_COMPONENT_ORDER=custom,Appeal,ISProduct,sample

Figure 7. SERVER_COMPONENT_ORDER example

38 IBM Cúram Social Program Management: Cúram Server Developer's Guide

When merging prx files, the components listed in the
SERVER_COMPONENT_ORDER are taken in order of highest to lowest priority. In
the above example the Application.prx file from the sample component is merged
with the Application.prx located in the core component. The Application.prx
from ISProduct is then merged into the intermediate results and the merge process
continues until the Application.prx in the custom component is merged.

Rules of PRX Merges

PRX files are merged based on precedence order. As described above there is
always a more important main/source Application.prx file, and a file which is
being merged into it. The second file is called the merge file in the following
sections.

An Application.prx files can be customized by:
v Adding a property providing mandatory property values.
v Overriding an existing properties description.
v Overriding an existing properties display name.
v Override an existing properties value or default value.
v Adding a new locale to provide a new display name and description for that

locale.
v Removing a property by setting the property tag removed to be true.

An Application.prx files cannot be customized by:
v Changing an existing property name.
v Changing an existing properties type.
v Changing an existing properties category.
v Changing the static or dynamic setting of a property.

Duplicate property nodes will always be overwritten by the Application.prx file
in the component with the highest precedence order. The main Application.prx
example file below and the merge Application.prx file below illustrate these rules:

<property name="curam.trace" dynamic="true">
<type>STRING</type>
<value>trace_ultra_verbose</value>
<default-value>trace_ultra_verbose</default-value>
<category>CODETABLE</category>
<locales>

<locale language="en" country="US">
<display-name>Trace Property</display-name>
<description>Details of the Trace Property</description>

</locale>
</locales>

</property>

Figure 8. Sample main Application.prx file

Cúram Server Developer's Guide 39

As a result of the merge process the new Application.prx produced would be:

Bootstrap.properties
The Bootstrap.properties file mainly contains the minimum set of properties
necessary for obtaining a connection to the database. These properties will
generally have no effect if set in the Application.prx file and are only picked up
directly from the Bootstrap.properties file.

<property name="curam.trace" dynamic="true">
<type>STRING</type>
<value>trace_off</value>
<default-value>trace_off</default-value>
<category>CODETABLE</category>
<locales>

<locale language="en" country="GB">
<display-name>New Trace Display Name</display-name>
<description>New Description</description>

</locale>
</locales>

</property>
<property name="property2" dynamic="true">

<type>STRING</type>
<value>value</value>
<default-value>default</default-value>
<category>CODETABLE</category>
<locales>

<locale language="en" country="GB">
<display-name>Display Name</display-name>
<description>Description</description>

</locale>
</locales>

</property>

Figure 9. Sample merge Application.prx file

<property name="curam.trace" dynamic="true">
<type>STRING</type>
<value>trace_off</value>
<default-value>trace_off</default-value>
<category>CODETABLE</category>
<locales>

<locale language="en" country="US">
<display-name>Trace Property</display-name>
<description>Details of the Trace Property</description>

</locale>
<locale language="en" country="GB">

<display-name>New Trace Display Name</display-name>
<description>New Description</description>

</locale>
</locales>

</property>
<property name="property2" dynamic="true">

<type>STRING</type>
<value>value</value>
<default-value>default</default-value>
<category>CODETABLE</category>
<locales>

<locale language="en" country="GB">
<display-name>Display Name</display-name>
<description>Description</description>

</locale>
</locales>

</property>

Figure 10. Resulting Application.prx File

40 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The Bootstrap.properties file may also contain properties that can be defined in
Application.prx file. If such a property is defined in the Bootstrap.properties file
and is a dynamic property, it can be overridden by setting it on database using the
administration interface.

Note: Properties defined in the following are cached: Application.prx,
Bootstrap.properties and Java System properties at runtime. Properties defined in
Application.prx are loaded into the database and can be updated at runtime using
the administration interface. A publish is required to rebuild the property cache
and allow the changes to take effect.

The property cache loads its contents with the following priority:
1. Java System properties,
2. Application.prx,

3. Bootstrap.properties;

For example, if a property is set in the Java System properties (either via the
Application Server or using java.lang.System.setProperty()) and also in
Application.prx curam.util.resources.Configuration.getProperty(), the value of
the property defined in the Java System properties will always be returned when
using the Application.prx and Bootstrap.properties, the value of the property in
Application.prx is what will take effect.

An automatically generated version of Bootstrap.properties is packed in the
Enterprise Archive (EAR) when building the EAR file. This file chooses it's
properties from the default Bootstrap.properties and is extended with extra
properties relating to the Application Server being used.

Tnameserv Port
curam.environment.tnameserv.port=900
curam.environment.bindings.location=C:/Bindings

curam.db.username=db2admin
curam.db.password=wWw5UTMnFOe1SeCBEQy/Zg==
curam.db.type=DB2
curam.db.name=CURAM
curam.db.serverport=50000
curam.db.servername=localhost

property to specify Oracle service name.
curam.db.oracle.servicename=orcl.<host_name>

Properties specific to H2
Mode remote|embedded
curam.db.h2.mode=embedded
For remote mode also specify:
curam.db.serverport=9092
curam.db.servername=localhost
Lock Time Out in ms. Default is 1000, i.e. 1 second. (Optional)
curam.db.h2.locktimeout=20000
Property to disable MVCC. Default: true. (Optional)
curam.db.h2.mvcc=true

Figure 11. Bootstrap.properties

curam.db.type=DB2
curam.environment.as.vendor=IBM

Figure 12. Bootstrap.properties in an EAR file

Cúram Server Developer's Guide 41

Note: The EAR file cannot be built for H2 database.4

Support for Multiple Time Zones
To enable multiple time zone support, the time zone ID must be specified for each
user in the user preferences.

Only DateTimes are processed and displayed in the user's preferred time zone.
Date only and Time only fields are not affected and for these fields it is the
responsibility of the business logic to ensure that the time zone is not relevant. If
the time zone is relevant then a DateTime field should be used. An example of a
date where the time zone is not relevant is someone's date of birth; it doesn't vary
no matter what time zone that person was born. An example of a date where the
time zone is relevant is the current date; this will be different for two user's
working either side of the international date line, in this case a DateTime must be
used.

The server's time zone is basically the underlying operating system's configured
time zone, however the server stores date/times in a time zone independent
manner, i.e the number of milliseconds since 1/1/1970 00:00 GMT (also known as
the epoch). It is the responsibility of the web tier to convert all DateTimes passed
to it from the server into the user's preferred time zone and also to convert all
DateTimes to be passed back to the server into milliseconds since the epoch.

The preferred time zone for each user is configured based on the time zone ID
specified in the user preferences for the particular user. The time zone ID must
conform to one of the time zones returned from the Java method
java.util.TimeZone.getAvailableIDs().

Some of the Java supported time zones returned by
java.util.TimeZone.getAvailableIDs() method are as listed below:
v GMT+x,where x can take value from 1 to 12.

v GMT-x,where x can take value from 1 to 12.

v America/Chicago

v America/Mexico_City

v America/Indiana/Indianapolis

v America/New_York

v America/Los_Angeles

v Australia/Canberra

v Australia/North

v Australia/South

v Australia/West

v Australia/Adelaide

v Australia/Melbourne

v Australia/Brisbane

v Africa/Casablanca

v Africa/Johannesburg

v Brazil/West

v Canada/Pacific

4. For more information on H2 database consult the Cúram Third-Party Tools Installation Guide for Windows.

42 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v Canada/Saskatchewan

v Canada/Eastern

v Canada/Atlantic

v Canada/Central

v Canada/Eastern

v Europe/London

v Europe/Dublin

v Europe/London

v Europe/Paris

v Europe/Vatican

v Europe/Moscow

v Europe/Amsterdam

v Indian/Chagos

v Indian/Cocos

v NZ

v Pacific/Auckland

For information on server time zone configuration consult the Time Zone
Configuration chapter in the Cúram Deployment Guide for the appropriate
application server.

Dates and date/times in Cúram
This section describes the behavior of dates and date/times in Cúram.

Take a look at these examples:
v The server is in time zone "GMT". A user is in time zone "GMT -01". At 15:00

GMT the user registers a new person, and the server-side processing timestamps
a resulting database record with the time 15:00. Twenty seconds later the user
performs a query and sees the timestamp displayed in the client user interface
as 14:00. The user's clock is showing 14:00:20 - the new record's timestamp is
twenty seconds in the past - just what the user expected.

v The user registers a new case at 23:30 local time on 01-Jul-2003. The server's
local time is 00:30 on 02-Jul-2003, so it creates the case with a case start date of
02-Jul-2003. The user immediately performs a query on all cases registered on
01-Jul-2003. The newly registered case is not found.

In the second example, the server processing which records the current date as the
case start date must convert from the current date (which is time zone dependent)
to some fixed value that will henceforth be taken as the case start date. On the
grounds of both simplicity and higher likelihood of meeting requirements, the
server's local date is recorded.

The basis for how dates and date/times are handled is as follows:
v Dates are processed and displayed in a time zone-independent manner.
v Date/times are processed and displayed in the user's preferred time zone.
v The time zone of the server is used when converting from a date/time to a date

(or vice versa).

Cúram Server Developer's Guide 43

The second issue was mentioned with an earlier example :- the fact that the user,
on performing a search for today's cases, fails to find a record just registered. What
caused this situation is as follows:
v The user carried out a transaction just before midnight, local time, on day 1. The

server recorded a "start date" of day 2, based on converting it's current local
date/time to a date.

v The user requested a list of transactions with a start date of day 1. Because this
is a date, not a date/time the server treats it in a time zone independent manner.
The newly registered record does not match the search criteria.

Searches on date/time ranges (such as the start/end of the user's local day) are
only feasible if the column being searched on is itself date/time. Users will need to
be aware that the current "business day" may not be the same date as the date in
their local time zone. Fortunately, such situations are likely to be rare.

Data Manager

Overview
The Data Manager is a tool delivered as part of IBM Cúram Social Program
Management, which allows a developer to conveniently create a database which
contains a set of initial and/or test data. It is based around database independent
.xml files so any setup done by a developer can be applied to any of the supported
databases.

Intended Data Manager Process
The Data Manager is intended to provide assistance as part of an overall process for
initial database creation. At a high level, that process includes the following three
main steps:
1. Create the database, tablespaces and so on.
2. Use the Data Manager to create tables and complete initial data loading.
3. DBA tasks to complete database creation such as handcrafting scripts to tune

the tables (ALTER) and set constraints.

The aim of the Data Manager is to help establish a skeletal database. Subsequently
a DBA can then write handcrafted scripts to complete the database by modifying
tables and settings such as LOCKSIZE or BUFFERPOOL.

Note: The SQL generated by the Data Manager is not intended to replace the role of
a DBA. It is expected that there would be site-specific tweaking required in order
to achieve production readiness.

A DBA would not be expected to manipulate the Cúram model to define extra
entity options such as LOCKSIZE, BUFFERPOOL, and so on, in order for the
desired SQL to be generated. This is due to a number of factors. The modeling
tooling is designed to be unaware of the final deployment environment, and DBAs
would not be expected to have the skill-sets for using the modeling environment.

The Data Manager is not intended to be used to upgrade an existing database; it
exists simply to reset the database to a known state.

Planning for MBCS Data
The use of multi-byte character set (MBCS) data with Oracle, DB2, or IBM DB2 for
z/OS has specific database considerations, which are covered in the Cúram

44 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Third-Party Tools Installation Guide for Windows and Cúram Third-Party Tools
Installation Guide for UNIX. Specific Cúram configuration is required when using
MBCS data with DB2 or DB2 for z/OS so that the Data Manager will function
compatibly. This configuration is enabled for Cúram out-of-the-box.

Cúram support for MBCS data with DB2 and DB2 for z/OS is enabled
out-of-the-box to ensure error-free operation for users with languages requiring
MBCS data and for users who find they require MBCS data when copying/pasting
data from other applications. This support entails expanding the size of string
columns in the database because DB2 column sizes are based on bytes, which is
not necessarily the length required when MBCS data is used. This is explained in
more detail in the Cúram Third-Party Tools Installation Guide for Windows and Cúram
Third-Party Tools Installation Guide for UNIX. However, these default expansion
settings may not be appropriate in the following circumstances:
v If your data requirements don't necessitate the maximum expansion (as

explained below) you can reduce the amount of expansion.
v If you are only using single-byte data (a only Western languages such as

English) and will not be using any other MBCS data (e.g. via a browser
copy/paste) you should disable multi-byte expansion support. However, this is
not generally recommended due to the likelihood of MBCS data being
introduced via external sources (e.g. browser copy/paste) and later causing
errors.

Whether database expansion is applied by the Data Manager is controlled by the
curam.db.multibyte.expansion property in Bootstrap.properties. The amount of
expansion (a factor of 1.0 to 4.0) is set with the
curam.db.multibyte.default.factor property in Bootstrap.properties. These
properties are described in “Cúram Configuration Parameters” on page 161.

To be 100% sure of no processing errors when processing MBCS data the default
expansion factor is set to the maximum out-of-the-box. However, for many
languages and data profiles it's unlikely that every database column character
would require MBCS data or that all characters would require the maximum size
of 4 bytes. There is a cost associated with using the maximum expansion factor in
terms of disk space used, network overhead, memory utilization, buffer pool
performance, CPU utilization, etc. Therefore, it is best to use an expansion factor
that balances resource utilization and performance while avoiding or minimizing
the possibility of application errors caused by data overruns. There are no strict
rules for achieving this balance between resource utilization and the possibility of
application errors; but, considerations, such as those that follow, can help you
choose a reasonable expansion factor and your testing should confirm your choice.

Depending on your language, locale, and encoding the number of required MBCS
characters will vary. For instance, if you are using English with only a few special
characters (e.g. smart quotes) you will require very little expansion. Or, if you are
using a language that shares the Latin alphabet with some additional characters
(e.g. German) then you will need more space for MBCS data. A language (e.g.
Chinese) that utilizes characters at the higher end of the Unicode range will require
more space per character, which needs to be tempered by the number of characters
required per word; i.e., the language may convey more information in each
character than a typical Latin alphabetic character. In other words, consider the
average bytes required per character, word, etc. Typically this average is only a
rough estimate because, as studies have shown, character usage can vary
depending on a number of factors; e.g. data context, data that is more numeric

Cúram Server Developer's Guide 45

(phone numbers), versus more textual data (names) and even free-form comments.
So, some additional safety factor should be considered in choosing your expansion
factor.

You also have the ability to control the expansion factor at a more fine-grained
level in the modeling environment by specifying theMultibyte_Expansion_Factor
option for a string domain and/or entity string attribute, which may be
appropriate for your customizations. See the Cúram Modeling Reference Guide for
more information on setting these options. You may need to set these fine-grained
expansions at this level due to various limits within DB2 and DB2 for z/OS
regarding the size of rows, indexes, etc. that can be exceeded by large expansion
factors (see the relevant DB2 or DB2 for z/OS SQL reference for more information
on these limits).

Invocation
The Data Manager is invoked by executing a build command of build database.

DB2 development database optimization tip.: During iterative development with
DB2 on distributed platforms the dropping and creation of tables performed
during the build database target can be optimized to run quicker by running the
script:

ant -f %CURAMSDEJ%\util\db2_optimizedbrecreation.xml

once per database. Internally this runs:

ALTER TABLESPACE USERSPACE1 DROPPED TABLE RECOVERY OFF;

ALTER TABLESPACE CURAM_L DROPPED TABLE RECOVERY OFF;

This step should not be performed on a production database.

Database Artefacts
The Data Manager uses a number of generated and hand-crafted artefacts to setup
the database. This section introduces those artefacts. It does not describe the
artefacts that are related rules as these are described in the Cúram Rules Codification
Guide.

Data Definition XML Files
These generated files were briefly introduced in “Under the Hood” on page 69.
The .xml files describe the database tables and the constraints that should be
placed on them.

“Data Definition XML Files,” shows a sample table definition. An entity can have
any number of attribute elements. Not all elements will have all the attributes
(the size attribute is only present for strings and Large Objects).

46 IBM Cúram Social Program Management: Cúram Server Developer's Guide

“Data Definition XML Files” on page 46, shows a sample foreign key constraint.
There can be any number of key, association and foreignkeypair elements.

Note: If foreign keys are applied to a DB2 for z/OS database by the Data Manager
manual intervention will be required to move the tables from the check_pending
state. Please consult with your local Database Administrator (DBA) to resolve this.

“Data Definition XML Files” on page 46, shows a sample primary key constraint.
There can be any number of key and attribute elements.

“Data Definition XML Files” on page 46, shows a sample index constraint. There
can be any number of index and indexattribute elements.

“Data Definition XML Files” on page 46, shows a sample Unique Constraint. This
can have any number of constraint, association and attribute elements as
necessary.

<entities>
<entity tablename="Fully qualified tablename"

<attribute ddltype="DD Type from the UML Model"
notnull="Indicator whether Nulls are allowed"
size="Size qualifier for the DDL Type"
/>

</entity>
</entities>

Figure 13. Table Definitions

<foreignkeys>
<key>
<association tablename="Local Table name"

othertablename="Remote table name"
>

<foreignkeypair localfield="Local field name"
remotefield="Remote field name"/>

</association>
</key>

</foreignkeys>

Figure 14. Foreign Key Constraints

<primarykeys>
<key tablename="Fully qualified tablename">

<attribute keyname="Field name"/>
</key>

</primarykeys>

Figure 15. Primary Key Constraints

<indices>
<index>

<indexdetails tablename="Fully qualified tablename"
indexname="Name for the Index" >

<indexattribute attribute="Field name"/>
</indexdetails>

</index>
</indices>

Figure 16. Index Constraints

Cúram Server Developer's Guide 47

“Data Definition XML Files” on page 46, shows a sample of the metadata that is
generated to support the batch processes that have been modeled by the developer.
There may be any number of batch processes which have any number of
parameters.

“Data Definition XML Files” on page 46, shows a sample of the metadata that is
generated to support the security that has been modeled by the developer. There
may be any number of function identifiers (FIDs).

“Data Definition XML Files” on page 46, shows a sample of the metadata that is
generated to support the field level security that has been modeled by the
developer. There may be any number of fields returned.

Data Contents DMX Files
As well as creating the tables on the database, the Data Manager allows the
developer to specify sample and test data which should be placed on the database.
The format of the .DMX file is introduced in “Data Contents DMX Files.” The
developer will typically edit this file using a standard XML editor.

<uniqueconstraints>
<constraint>

<association tablename="fully qualified tablename">
<attribute field="field name on table for constraint">

</association>
</constraint>

</uniqueconstraints>

Figure 17. Unique Constraints

<batches>
<batch process="Process Name"

operation="Operation Name"
application="Application Name"
>

<parameter name="Parameter name"
type="Domain Type"/>

</batch>
</batches>

Figure 18. Batch Metadata

<fids>
<fid

name="Function identifier name"
operation="Operation to allow access to"
fidenabled="Indicate whether enabled by default or not"
iswebservice="Indicate whether this is a web service"
/>

</fids>

Figure 19. Security Metadata

<fieldsreturned>
<fieldreturned
operationname="Function identifier name"
fieldname="Field name"
sidname="Associated SID"
/>

</fieldsreturned>

Figure 20. Field Level Security Metadata

48 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The Data Contents DMX file is made up of a number of elements described in the
following sections, some of these elements/attributes are necessary to enable
customization of DMX files, described in further detail in “Customizing a DMX
file” on page 51.

The table Element: The <table> element has the following attributes:

Table 9. Attributes of the table Element

Attribute Name Required Default Description

name Yes None Specifies the name of the database table.

override No false Used to customize or completely override
existing DMX files from within a
component lower down in the
SERVER_COMPONENT_ORDER.

The <column> Element

The <column> element has the following attributes:

Table 10. Attributes of the column Element

Attribute Name Required Default Description

name Yes None Specifies the name of the column.

type Yes None Specifies the data type of a column.
Table 14 on page 51 describes the type that
a column can be set to.

encoding No UTF-8 Specifies the clob data file encoding
type.Check “Lob Manager” on page 68.

<table name = fully qualified tablename>
<column name = column name

type = One of:
number
text
bool
id
blob
clob
date
timestamp

>
</column>
<row>

<attribute name = field name>
<value>Field value</value>

</attribute>
</row>

</table>

Figure 21. Data Contents File

Cúram Server Developer's Guide 49

The <row> Element

The <row> element has the following attributes:

Table 11. Attributes of the row Element

Attribute Name Required Default Description

remove No false Enables the removal of a row from a DMX
file from within a component lower down
in the SERVER_COMPONENT_ORDER.

locales No None If omitted, the row will be applicable to all
locales.

If present, this must be set to a
comma-separated list of locales ensuring
there are no spaces between each locale.
The following example indicates the <row>
is applicable for the en and en_US locales:
<row locales="en,en_US">.

The row element also encapsulates a collection of attribute elements.

The <attribute> Element: The <attribute> element has the following attribute:

Table 12. Attributes of the attribute Element

Attribute Name Required Default Description

name Yes None Specifies the name of the column.

encoding No UTF-8 Specifies the clob data file encoding
type.Check “Lob Manager” on page 68.

Note: If the number of attributes defined for a row does not match the number of
columns defined the DMX processing will fail.

Note: Also, when processing DMX files, the name of each attribute is not taken
into account, the order is taken from the column definition at the start of the file,
therefore the ordering of the attributes should match the ordering of the columns.

The attribute element has a required sub-element: value.

The <value> Element

The <value> element is the value to be inserted into the column for this row. For a
BLOB the value should be a pointer to a file. To be meaningful the name attribute
of the attribute element must take its value from one of the column elements' name
attributes within the same DMX file. Ordering is also important as when the
database is being built, database columns will be updated with content defined by
the row elements in the order the column elements are listed within the DMX file.

The <column> elements' type attribute determines the valid attribute values.
Table 14 on page 51, describes the relation between the column type and attribute
value.

The <value> element has the following attributes:

50 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 13. Attributes of the value Element

Attribute Name Required Default Description

language No None The language attribute, along with
the country attribute, make up the
locale for an <attribute> element.

country No, but if the
language attribute is
specified this
attribute must also
be specified.

None The country attribute, along with
the language attribute, make up
the locale for an <attribute>
element.

Important: The primary key/composite key for a record must never be localized
within the DMX file for that record. For example, if AddressID is the primary key
for the Address table, the AddressID value element within the Address.DMX file
must not be localized.

Table 14. Attribute Values

Column Type Attribute Value

number Value must be numeric.

text Value must be text or multi-line text.

bool Value must be TRUE or FALSE.

id Value must be numeric.

blob Value must be a relative path from the DMX file to
the blob file.

clob Value must be a relative path from the DMX file to
the clob file.

date Value must be a valid date or system date. For
system date, value must be represented as
SYSDATE.

timestamp Value must be a valid time or system time. For
system time, value must be represented as
SYSTIME.

Customizing a DMX file: The Data Manager processing allows for the
customization of DMX files for the initial, demo and test targets, Supported
customizations include the ability to add a row, update a row, remove a row,
localize at a row/attribute level and completely override a DMX file. This process
allows for DMX files that are shipped with the Cúram application to be easily
customized by adding new DMX files to new components in the relevant directory.

The DMX files to be customized must be in the following directory structure:
v <SERVER_DIR>/components/<custom>/data/initial

v <SERVER_DIR>/components/<custom>/data/demo

v <SERVER_DIR>/components/<custom>/data/test

To customize DMX files that are delivered out-of-the-box, new DMX files must be
created and added to new components in the relevant directory within
SERVER_DIR/components/<custom>/data/initial (or /demo or /test).

This mechanism avoids the need to make changes directly to the out-of- the-box
application, which would complicate later upgrades.

Cúram Server Developer's Guide 51

The customization process involves the merging of DMX files of the same name
within the specified directory structure according to a precedence order. The order
is based on the SERVER_COMPONENT_ORDER environment variable which
contains a comma separated list of component names, the left-most having the
highest priority.

Note: It is possible that more than one DMX file will contain data for a particular
database table. As the merging of DMX files is based on file names it may be
necessary to customize multiple DMX files in order to achieve a desired data
customization for an individual entity.

Only DMX files placed within the structure above will be included in the merging
process for DMX files. If sub-directories are used within the initial, demo and
test directories, then these will not be included in the merging process.

The merged DMX file is output to the %SERVER_DIR%/build/datamanager/data/
initial(or /demo or /test) directory.

Rules of DMX file merging

DMX files are merged based on precedence order. There is always a more
important main/source DMX file, and a file which is being merged into it. The
second file is called the merge file in the following sections.

The merging rules described below are applied to decide if the rows, attributes or
DMX files should be merged into the new DMX file.
v A DMX file will only be considered for merging if the new DMX file does not

have the override attribute on the <table> element set to true.
v A <row> will be inserted into the new DMX file if is determined, by using the

primary key information for the record, that the <row> is not already present in
the new file.

v If a <row> already exists in the new DMX file and the remove attribute is set to
true, then no merging will occur. If the remove attribute is set to false or is not
present, then the attribute values for that row will be considered for merging.
– If the <value> element does not exist in the new DMX file, then the <value>

element will be copied.
– If the <value> contains a different locale, then this <value> entry will be

copied into the new file. The locale is specified by the language and country
attributes on the <value> element.

All examples below assume custom is before core in the
SERVER_COMPONENT_ORDER.

The Example 1 below illustrates how merging works when using the <table> level
override attribute. To use the override attribute, copy the contents of the existing
DMX file, i.e. the core DMX file and place it in a DMX file of the same name in a
<custom> component. Then add the following to the table element:
<table override="true">

This indicates that only DMX files in this <custom> component or in a component
higher up in the SERVER_COMPONENT_ORDER will be included in the merged
DMX file output produced from the Data Manager processing.

52 IBM Cúram Social Program Management: Cúram Server Developer's Guide

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>22</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 record</value>
</attribute>

</row>
<row>

<attribute name="CONCERNID">
<value>23</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 2 record</value>
</attribute>

</row>
</table>

Figure 22. Example 1 - Core DMX File.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN" override="true">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>55</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>My custom comment</value>
</attribute>

</row>
</table>

Figure 23. Example 1 - Custom DMX file.

Cúram Server Developer's Guide 53

In the resulting merge file, no rows are taken from the core DMX file as the custom
DMX file is completely overriding the core DMX file through the following: <table
override="true">, resulting in all entries in the core file being excluded.

The Example 2 below illustrates how the merging process works when the <row>
level remove attribute is set. To remove a row, copy the row from the existing DMX
file and place it in a DMX file of the same name in a <custom> component. Then
set the remove attribute on that row to true.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN" override="true">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>55</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>My custom comment</value>
</attribute>

</row>
</table>

Figure 24. Example 1 - Resulting Merge DMX File.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 core</value>
</attribute>

</row>
<row>

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 2 core</value>
</attribute>

</row>
</table>

Figure 25. Example 2: Core DMX file.

54 IBM Cúram Social Program Management: Cúram Server Developer's Guide

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 custom</value>
</attribute>

</row>
<row remove="true">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="en">Concern 2 en custom</value>
</attribute>

</row>
<row>

<attribute name="CONCERNID">
<value>5</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 5 custom</value>
</attribute>

</row>
</table>

Figure 26. Example 2 : Custom DMX file.

Cúram Server Developer's Guide 55

For Example 2, the <row> where the CONCERNID is set to 2, does not merge the
<row> from the core DMX file. When processing the merged DMX file in Example
2, the <row> where the CONCERNID is set to 2 will not be included when creating
the SQL insert statements, thus ensuring no entry will exist on the database for this
<row>.

Example 3 below illustrates the setting and merging of the language and country
attributes on the <value> element.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 custom</value>
</attribute>

</row>
<row remove="true">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="en">Concern 2 en custom</value>
</attribute>

</row>
<row>

<attribute name="CONCERNID">
<value>5</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 5 custom</value>
</attribute>

</row>
</table>

Figure 27. Example 2 : Result merge file.

56 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In this example, the COMMENTS attribute for the CONCERNID=2 has a value for the fr and the en_GB locales.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 core</value>
</attribute>

</row>
<row>

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
</table>

Figure 28. Example 3: Core DMX file.

Cúram Server Developer's Guide 57

In this example, the COMMENTS attribute for the CONCERNID=2 has a value for the en locale only. The
COMMENTS attribute for the CONCERNID=5 has a value for the en_US locale only.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 custom</value>
</attribute>

</row>
<row remove="true">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="en">Concern 2 en custom</value>
</attribute>

</row>
<row>

<attribute name="CONCERNID">
<value>5</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="en"
country="US">Concern 5 en_US custom</value>

</attribute>
</row>

</table>

Figure 29. Example 3 : Custom DMX file.

58 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In Example 3 above, for the <row> where the CONCERNID is set to 2, the resulting
merge file has values for the en, fr and the en_GB locales, i.e. a merge of both core
and custom <value> elements.

Example 4 below illustrates the <row> level locales attribute.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 custom</value>
</attribute>

</row>
<row remove="true">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="en">Concern 2 en custom</value>
<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
<row>

<attribute name="CONCERNID">
<value>5</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="en"
country="US">Concern 5 en_US custom</value>

</attribute>
</row>

</table>

Figure 30. Example 3 : Result merge file.

Cúram Server Developer's Guide 59

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 core</value>
</attribute>

</row>
<row locales="en_GB">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
</table>

Figure 31. Example 4: Core DMX file.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 custom</value>
</attribute>

</row>
<row locales="en,en_US">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="en">Concern 2 en custom</value>
</attribute>

</row>
</table>

Figure 32. Example 4 : Custom DMX file.

60 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In Example 4 above, the value for the locales attribute is taken from the row in
the component that is higher up in the SERVER_COMPONENT_ORDER, i.e. the
custom component.

The primary key/composite key for a record is used to determine the
overriding/merging process for DMX files. DMX files will be merged based on the
definition of the primary key for the table/entity the DMX file represents. For all
modelled entities, the primary key information is stored in the generated
<SERVER_MODEL_NAME>_PrimaryKeys.xml file in the build directory, i.e.
%SERVER_DIR%/build/svr/gen/ddl. For all non-modelled components, the primary
key information for entities must be stored in a file called
<SomeName>_PrimaryKeys.xml within %SERVER_DIR%/components/<custom>/data/ddl
directory. If this file is named correctly in the specified location, the DMX
processing will contain the relevant primary key information for the non-modelled
component.

Retrieving values from DMX files for database insertion: The Data Manager
uses the <row> level remove attribute to determine if an entry will be inserted onto
the database for that row. If the remove attribute is set to true, then the Data
Manager will not insert an entry for that row. The row will be ignored.

DMX files store the locale information for the attributes for the database table. As
the database must be built for only one locale, the Data Manager uses the
curam.dmx.locale property to determine the locale that must be used when
inserting data specified in DMX files onto the database. This property can be set in
either the Bootstrap.properties file or as a system variable. If set in both the
Bootstrap.properties file and as a system variable, the system variable will

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 custom</value>
</attribute>

</row>
<row locales="en,en_US">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="en">Concern 2 en custom</value>
<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
</table>

Figure 33. Example 4 : Result merge file.

Cúram Server Developer's Guide 61

override the setting in the Bootstrap.properties file. This property must be set to
a valid locale, i.e. in the format language_Country, where language is mandatory
and country is optional. For example,
curam.dmx.locale=en_US

If this property is not set, the infrastructure will fallback on the en locale.

As mentioned, the Data Manager processing uses the curam.dmx.locale to
determine the value to insert for an attribute in a DMX file. The locale can be
specified at a <row> or <attribute> level. If specified at a row level, then this takes
precedence over the attribute level. For example, given the following:
<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">

<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>

<attribute name="CONCERNID">
<value>1</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value>Concern 1 core</value>
</attribute>

</row>
<row locales="en_GB">

<attribute name="CONCERNID">
<value>2</value>

</attribute>
<attribute name="NAME">

<value/>
</attribute>
<attribute name="COMMENTS">

<value language="fr">Concern 2 French core</value>
<value language="en"

country="GB">Concern 2 en_GB core</value>
</attribute>

</row>
</table>

In this example, if the curam.dmx.locale environment variable is set to the fr
locale, then there will be no entry inserted for the record where CONCERNID is
set to 2, as the locales attribute for the <row> is only applicable for the en_GB
locale, even though the attribute for COMMENTS has an entry for the fr locale.

The Data Manager attempts to match the locale specified by the curam.dmx.locale
environment variable with the locales attribute for the <row> element within a
DMX file. If this attribute is not set, then the Data Manager attempts to match on
the <value> for an <attribute>, i.e. it tries to match on the language and country
attributes of the <value> element.

Since DMX files are not guaranteed to contain an entry for every locale, a fall back
mechanism is in place. This fallback mechanism is only applicable to the attribute
<value> element, i.e. it is not applicable to the <row> locales attribute. Once a
<value> has been found and there is no direct match with the locale specified by
curam.dmx.locale, the rules for fall back are as follows:
v If the curam.dmx.locale is set to include a language and country part, the

processing looks for an attribute where the language and country attributes are

62 IBM Cúram Social Program Management: Cúram Server Developer's Guide

set on the <value> element. If this is not found, then the country is removed and
the search looks for a <value> where the language attribute matches, if this is
not found, then the search looks for a <value> that does not have the language
and country attributes set, i.e. a default match. If this is not found, then no entry
is inserted onto the database for this <value>.

In “Retrieving values from DMX files for database insertion” on page 61, lets
assume the curam.dmx.locale is set to en. The following is set for each attribute:
v ELEMENTTYPE - EN_TYPE is the value inserted onto the database for this

attribute, as this is the value set for the en locale.
v ELEMENTVALUE - null is inserted onto the database for this attribute. This

attribute has the language attribute set to fr. The locale that is being searched
for is en, a value for en is not found, so a <value> that contains no language or
country attributes is searched for, i.e. the default value, as this does not exist,
null is inserted for this attribute.

Validation of DMX files: All DMX files in %SERVER_DIR%/components/
componentName/data directories will be validated against a DMX schema file when
the build database target is run. This schema file is located in %CURAMSDEJ%/lib/
DMX.xsd. For any DMX file that is not in the correct format, a warning will be
displayed. The validation of DMX files is controlled by the
curam.dmx.disable.validation system variable. Validation is enabled by default, to
disable the validation, this system variable should be passed into the database
build setting it to true, as follows:
build database -Dcuram.dmx.disable.validation="true"

The ability to treat these warnings as errors is available by setting the
prp.warningstoerrors property. If this is set to true, the warnings will be treated as
errors and the build database will fail.

Tracing Information for the DMX Merging Process: It is possible to turn tracing
on for the DMX merging process. This can help assist in debugging any issues that
may occur, as a result of merging DMX data. The system property
curam.dmx.tracing, if set to true, produces tracing information to the console for
the DMX file being processed. This property is false by default.

The tracing output includes:
v The name of the file being processed;
v The key value for a row that is being merged (only where duplicate rows exist);
v Information indicating the merging process has finished for a DMX file.

<row>
<attribute name="ADDRESSELEMENTID">

<value>3227</value>
</attribute>
<attribute name="ELEMENTTYPE">

<value language="en">EN_TYPE</value>
<value country="US" language="en">EN_US_TYPE</value>

</attribute>
<attribute name="ELEMENTVALUE">

<value language="fr">French Value</value>
</attribute>

</row>

Figure 34. Locale Fallback Example

Cúram Server Developer's Guide 63

The following is an example of setting this property:

When set to true, this property outputs a large amount of data to the console and
must therefore only be used for debugging purposes.

Database Object Naming
Typically the names of the objects on the database are clearly visible from the Data
Manager XML Files (for example, table names and column names). The Data
Manager does provide support for the naming of objects which are not directly
visible in these files.

Short Name Substitution
The Short Name Substitution feature will be removed in a future version of IBM
Cúram Social Program Management. The third party databases now supported no
longer have the SQL identifier limitations that originally necessitated the feature.
Consequently, it is no longer necessary to use this feature and it has been removed
from the product documentation. If you still require this feature please contact
Support for the information that previously was available in this document. Please
refer to the Cúram Supported Prerequisites document for comprehensive details of
the supported versions of database management systems.

Primary Key Indices
By default the primary key index will have the same name as its corresponding
table.

If required, a prefix can be specified for the primary key index name using the
generator command line option -primarykeyindexprefix. For example setting the
property extra.generator.options=-primarykeyindexprefix PI_ in
Bootstrap.properties will result in the primary key index for a table named
Person being named PI_Person. If the index name length is greater than the SQL
identifier limit supported by your database you will encounter an error during
SQL processing.

Primary Key Constraints
By default, the generated DDL for adding a primary key to a table takes the form:

alter table TTTT add primary key (AAAA)

where

TTTT is the table name.

AAAA is a comma-delimited list of the primary key attributes.

By specifying the command line option -usenamedprimarykeyconstraint through
the extra.generator.options this DDL can be made take the form:

where

CCCC is the name of the primary key constraint.

build database -Dcuram.dmx.tracing=true

Figure 35. Set tracing for DMX files.

alter table TTT add constraint CCCC primary key
(AAAA)

64 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In this case the name of the primary key constraint defaults to the same as the
name of its corresponding table. Also, like primary key index names, a prefix can
be applied to this name using the -primarykeyconstraintprefix command line
option. If the constraint name length is greater than the SQL identifier limit
supported by your database you will encounter an error during SQL processing.

Tablespaces

Note: This section is specific to DB2 for z/OS.

By default the behavior is for tablespaces to be created implicitly during table
creation. The exceptions to this are:
1. The tablespace named by the curam.db.zos.32ktablespace property is created

explicitly by the datamanager and tables exceeding the 4K row limit are placed
in this tablespace.

2. Tablespaces identified in the Tablespace.properties file are created explicitly
by the datamanager. If the table specified for the tablespace exceeds the 4K row
limit the tablespace is defined in the 32K BUFFERPOOL. Otherwise, it will take
the default setting.

When using the Tablespace.properties file the format of the entries is:

Comments are specified by the "#" character in column one.

Note: If the tablespace for the table that exceeds the 4K row limit is defined in the
Tablespace.properties file then this tablespace will be used over the one defined
in the property curam.db.zos.32ktablespace.

Note: When using DB2 for z/OS version 8 the use of the default 32K tablespace
(curam.db.zos.32ktablespace) can result in SQLCODE -913 errors during login, but
could also occur in other contexts. To avoid these errors you should do one of the
following:
1. Ensure your Cúram default 32K tablespace is segmented (SEGSIZE; see the

DB2 Universal Database for z/OS SQL Reference Version 8 for more information).
2. Explicitly define tablespaces for each Cúram table that defaults to the 32K

tablespace (e.g. SELECT * FROM SYSIBM.SYSTABLESPACE WHERE NAME =
<curam.db.zos.32ktablespace value>) and assign each table to a specific
tablespace via the Tablespaces.properties file.
(This is not an issue when using DB2 for z/OS version 9 because tablespaces
are segmented by default.)

Note: In DB2 for z/OS version 9 the behavior of the ALTER TABLE DROP PRIMARY
KEY SQL statement changed as follows: "If the table space was implicitly created,
the corresponding enforcing index is dropped if the primary key is dropped." Most
production users would typically explicitly create their tablespaces and would not
be impacted by this change, but in test environments this may not be the case. The
symptom of this issue is an SQLCODE -551 error on a DROP INDEX statement
following the ALTER TABLE DROP PRIMARY KEY statement. To avoid this error you
can either:
v Manually remove the generated DROP INDEX SQL statement from the Data

Manager -generated SQL to take into account the new behavior; or,
v Explicitly define the tablespace and specify it in the Tablespace.properties file.

For example, for the USERS table, your Tablespace.properties file would

tablename=tablespacename

Cúram Server Developer's Guide 65

contain:

Data Manager Configuration
Typically the Data Manager sets up the database from a number of different
components:
v SDEJ Tables
v Application Tables
v Initial Data
v Demo Data
v Test Data

The selection of which set of data to apply effectively depends on the task the
developer wishes to perform.

The Data Manager is configured using the datamanager_config.xml configuration
file. The file is located at:

The structure of datamanager_config.xml is shown in “Data Manager
Configuration.”

The file is organized as follows:

Target Tag
This has a name attribute specifying the name of the target and a set of
associated entry tags.

Entry Tag
This has three attributes associated with it.

Name Attribute
This specifies the file or directory associated with this attribute and
its offset from the base attribute.

Type Attribute
This specifies whether the file is an SQL script, a .DMX file or an
.xml file.

Base Attribute
This specifies the system dependent offset of the file on the local
machine. It may be specified as one of basedir (the directory above
the Data Manager) or sdescripts (the location of the SDEJ
installation).

USERS=USERSTS

SERVER_DIR\project\config\datamanager_config.xml

<datamanager>
<compositetarget name="target name">

<subtarget name="subtarget name"/>
</compositetarget>
<target name="subtarget name">

<entry name="relative filename or relative directory"
type="sql, DMX or xml"
base="sdejscripts or basedir"/>

</target>
</datamanager>

Figure 36. Data Manager Configuration

66 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Any of the targets listed in this configuration file can be passed to the build
database target.

The datamanager_config.xml file is used when running the the build database
target. When this target is run, composite targets specified within the
datamanager_config.xml can be called. By default, the all composite target is
called within the datamanager_config.xml file. To call a different composite target
the prm.target can be passed to the build database target specifying the composite
target to be called. For example, to call the initial composite target, the following
could be executed:
build database -Dprm.target=initial

New composite targets can be added to the datamanager_config.xml file. The
composite target can contain any number of subtargets. The following is an
example of specifying a new composite target mycompositetarget that calls
mynewtarget.
<target name="mynewtarget">

<entry base="basedir"
name="components/core/data/initial/

handcraftedscripts/NewScript.sql"
type="sql"

/>
</target>
<compositetarget name="mycompositetarget">

<subtarget name="mynewtarget"/>
</compositetarget>

Database Synchronization
Typically the Data Contents XML files are hand crafted by a developer. However
the infrastructure provides Ant targets to create a Data Contents XML file from the
database. The Data Extractor is invoked by executing a build command of build
extractdata. By default the full database is extracted and DMX files are created for
any tables that contain data. An optional parameter of tablename can be passed to
specify that only one or more tables should be extracted e.g. build extractdata
-Dtablename=Users. If you want to extract multiple tables during the one run, pass
a comma separated list of tables to the tablename parameter.

The generated .DMX files are placed in a %SERVER_DIR%/build/dataextractor folder.
Under this folder the contents of any clobs or blobs are also extracted and stored
in a file which is based on the naming format: <tablename><rownumber>.

Statistics
Databases use an optimizer to determine the most efficient access path to data on
the database. The optimizer uses statistics about the physical characteristics of a
table and the associated indexes to determine this information. These
characteristics include number of records, number of pages, and average record
length. If no statistics are available on the database, then the optimizer makes a
guess as to the best access path to use and this can often lead to performance
issues, including unnecessary deadlock and timeout exceptions. The runstatistics
target is available to gather these necessary statistics on the database and will be
run against all Cúram database tables.

Note: The "runstatistics" target is not supported with DB2 for z/OS due to the
architectural differences of this platform. Consult with your local database
administrator in regard to invoking the equivalent DB2 for z/OS functionality.

Cúram Server Developer's Guide 67

Lob Manager
The LOB Manager is part of the Data Manager which enables Clobs and Blobs to
be loaded onto the database.

In the data contents file Blob and Clob fields are handled slightly differently to
other fields, in that the value element will not contain the literal data but will
instead contain a reference to a file containing the data.

The “Lob Manager,” illustrates how a table with a numeric and blob column can
be populated with one record using a binary file from disk.

Note that to load Blobs, the LOB Manager can only be used on tables for which
the primary key fields are known. This is because inserting a LOB involves an SQL
insert followed by an SQL update, and the SQL update must be capable of
addressing a single record by means of its primary key.

The “Lob Manager,” illustrates how a table with a numeric and clob column can
be populated with one record using a character data file from disk.Here, the clob
data file is encoded with UTF-16 format, and this is specified in the attribute
element with encoding as UTF-16 for that row, so the clob content gets encoded
before it gets inserted.

The “Lob Manager,” illustrates how a table with a numeric and clob column can
be populated with two records using the character data files from disk.Here, if all
the clob data files are encoded in UTF-16 format, then this can be specified at
column level, using encoding attribute, so all the rows for clob type uses the same
encoding type of that column. To override this for only a single row, the encoding

<table name = "BlobEntity">
<column name = "imageID" type = "number"/>
<column name = "imageData" type = "blob"/>
<row>

<attribute name = "imageID">
<value>1</value>

</attribute>
</row>
<row>

<attribute name = "binaryData">
<value>./images/1.jpg</value>
</attribute>

</row>
</table>

Figure 37. Blob Data Contents File

<table name = "Entity">
<column name = "ID" type = "number"/>
<column name = "content" type = "clob"/>
<row>

<attribute name = "ID">
<value>1</value>

</attribute>
</row>
<row>

<attribute name = "content" encoding = "UTF-16">
<value>./clobcontentdir/1.txt</value>
</attribute>

</row>
</table>

Figure 38. Clob Data Contents File

68 IBM Cúram Social Program Management: Cúram Server Developer's Guide

type can be specified as in previous example at attribute element level of that row
element.

The LOB manager identifies primary keys by means of the
datamanager_config.xml file, so this file must contain a reference to the generated
_PrimaryKeys.xml relating to table containing the LOB.

SQL Checker

Overview
The IBM Cúram Social Program Management SDEJ produces a database access
layer which is based around JDBC. JDBC is dynamic SQL from the viewpoint of
database and as such there is no ability to check the syntax and semantics of the
statements prior to their first execution. The SQL checker provides a method of
validating the syntax and semantics of these SQL statements before they are first
exercised.

Under the Hood
The SQL checker is invoked by an Ant target and generates a simple Java program
which uses SQLJ rather than JDBC. This program is generated into
/build/sqlcheck/SQLJTemp.sql. This Java program contains all the elements that
should be checked, namely the hand crafted SQL in the model and the Data
Manager. Because SQLJ is static SQL the program can be compiled in advance of
deployment, provided the database is already created and populated.

The SQL checker can also check the contents of the model for database portability.
This is useful in situations where primary development is against one kind of
database (for example DB2) but final deployment is against another database (for
example DB2 for z/OS). The elements checked for include:
v Comparison of Host Variables to NULL

<table name = "Entity">
<column name = "ID" type = "number"/>
<column name = "Data" type = "clob"

encoding = "UTF-16"/>
<row>

<attribute name = "ID">
<value>1</value>

</attribute>
</row>
<row>

<attribute name = "Data">
<value>./clobcontentdir/4.txt</value>
</attribute>

</row>
<row>

<attribute name = "ID">
<value>2</value>

</attribute>
</row>
<row>

<attribute name = "Data">
<value>./clobcontentdir/2.txt</value>
</attribute>

</row>
</table>

Figure 39. Clob Data Contents File in encoded format

Cúram Server Developer's Guide 69

This check is performed because hand-crafted SQL can use the SQL is Null
keyword on a host variable. If this is done the Cúram Generator automatically
produces a cast to the correct fundamental SQL datatype for the database that is
being built against. However, this means that the resultant .ear file cannot be
deployed against a database of a different type unless it is completely re-built.

Limitations
The SQL Checker is designed to reduce the number of syntax and portability errors
that remain until deployment as this reduces the effort expended in testing for and
removing these errors. However, it is not a replacement for a comprehensive test
suite as it does not catch all the possible errors. There are a number of reasons for
this:

Reliance on the SQLJ Check
The SQL Checker is only as good as the SQLJ compiler that it invokes. Any
syntactical or semantic errors which are not reported by the compiler will
not be reported by the SQL Checker.

Portability Warnings
The SQL Checker is only designed to capture and report the most common
portability errors. It is not a replacement for early and comprehensive
testing on the final target database.

Limitation with H2
H2 doesn't provide an implementation of an SQLJ checker; therefore, it
only performs a portion of the perceived checks that the SQL Checker
does.

Eclipse

Overview
Eclipse is the core IDE for development of IBM Cúram Social Program
Management. It is the underlying technology in:
v IBM Rational Application Developer for WebSphere;
v Rational Software Architect;
v Rational Software Architect for WebSphere.

This chapter describes relevant aspects of Eclipse as well as providing some tips
and tricks. It does not attempt to describe the general features or usage of Eclipse;
e.g., the Java Editor or debugging as that information is provided by the vendor,
see http://www.eclipse.org/ for more information.

The term “ Eclipse ” which is used throughout this chapter applies to all
supported tooling based on Eclipse; e.g., Rational Software Architect.

The supported version of Eclipse or its usage through the Rational product
versions can be found in the Cúram Supported Prerequisites.

70 IBM Cúram Social Program Management: Cúram Server Developer's Guide

http://www.eclipse.org/

Curam Projects in Eclipse
Four projects are provided that should be imported into Eclipse:

Table 15. Transaction settings

Project Name
File System
directory Contents

CuramSDEJ CuramSDEJ The Server Development libraries.

CuramCDEJ CuramCDEJ The Client Development libraries,
depends on the CuramSDEJ project.

EJBServer EJBServer The Cúram Server application, depends
on the CuramSDEJ project.

Curam webclient The Cúram Client application, depends
on the CuramCDEJ project.

Dependencies allow for exposed jar libraries in referenced projects to be used in
code developed in the dependent project.

The CuramCDEJ and CuramSDEJ are non-development projects that are only
containers for libraries. All development should be done within the EJBServer and
Curam projects.

Eclipse Configuration Files
Each Eclipse project is configured through two XML files; a .project and a
.classpath file. Also a number of preferences and settings can be configured at a
project level rather than workspace level; the effect of setting these at a project
level means that this configuration, which form files and entries in a.settings folder
under the project, can be distributed which the project in a team environment.

The configuration mentioned in section is maintained by right-clicking on a Project
within the Project Explorer view in Eclipse and selectingProperties.

.project File
The .project file holds the project nature and builders and for a typical Java
project holds a single nature and builder corresponding a Java project. Additionally
in the Curam project there is a Apache Tomcat nature to signify the project can be
configured for and deployed on Tomcat. The project's dependencies are also
maintained in the .project file.

.classpath File
The .classpath maintains the Project's source and target references for Java
compilation and jar or project dependencies.

This configuration is maintained through the Java Build Path page in the Project's
properties. Source entries can be added, ordered or new jar file dependencies can
all be managed through this page.

Optionally, Access Rules and JavaDoc references can be configured on jar files.
Access Rules are discussed further in “Access Rules” on page 72.

Eclipse .classpath Generation:
The Eclipse .classpath files for the EJBServer and webclient projects can be
generated from a build target - build createClasspaths which can be invoked

Cúram Server Developer's Guide 71

from the EJBServer directory. This allows for the classpaths to tailored to the
contents in your environment and avoids the need for manual maintenance of this
file.

It is advised that your add the invocation of this target to your default build
invocation wrapper to ensure it gets run with each build. Example in the
EJBServer\.build.bat file. The classpath will not be regenerated unless their are
changes in your environment.

The classpaths are formed from:
v source directories under the EJBServer\components directories;
v tests directories under the EJBServer\components directories;
v Jar files residing in the lib directories under the EJBServer\components

directories;
v javasource directories under the webclient\components directories;
v Jar files residing under the webclient\components directories;
v Standard build output directories;
v Jar files on the PRE_CLASSPATH, POST_CLASSPATH and J2EE_JAR

environment variables;
v CuramCDEJ and CuramCDEJ project references.

.settings Directory
The .settings folder maintains a number of the other preferences that can be
maintained at the project level e.g. Compiler warning/error levels, Code style
settings, etc. The preference pages offering this ability to maintain at a project level
can be seen to have anEnable project specific settings at the top of the page.

This directory can be added to SCM control and settings distributed to team
members as required.

Access Rules
TheAccess Rules option allows jar files within an Eclipse project .classpath to
define an access level for packages and classes. There are three different levels of
access: non-accessible, discouraged and accessible. When the compiler within
Eclipse detects access to a type that should not be accessed, it will create a problem
marker rather than compile failure:
v Non-accessible rules define types that must not be referenced. The compiler

typically creates an error marker for accesses to these types;
v Discouraged rules define types that should not be referenced. The compiler

typically creates a warning marker for accesses to these types;
v Accessible rules define types that can be referenced.

Access rules are applied and provided rules for a number of the jar files in the
.classpath files of the Eclipse projects. These access rules complement each jar
file's API and through theaccessible rule indicate access that is compliant5as per
the Cúram Development Compliancy Guide. Classes defined asnon-accessible
ordiscouraged are not supported for usage and are subject to change without
notice and may not respect their API; hence they can impact the ability to easily
integrate IBM Cúram Social Program Management upgrades.

5. Access Rules can only be applied to jar files so should not be treated as a complete solution to police compliancy.

72 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Note: A large number of discouraged accesses exist in the out of the box Social
Program Management Platform that may have been copied into your codebase as
part of sub-classing or extension work. In a future release it is expected that these
accesses will be removed and appropriate alternative APIs provided where none
currently exist. In order to reduce future impact to your codebase, in regard access
to discouraged code, you should treat these accesses as non-accessible and work to
seek an alternate API.

Working Sets
A common problem in Eclipse is that as the content in your workspace grows it
can be overwhelming to navigate through all the directories and difficult to focus
on the areas of interest to you. Eclipse solves this through Working Sets which is a
way to specify, in a global location, which working set you are currently
interacting with. The following views and dialogs in Eclipse support the concept of
working sets:
v The Navigator;
v The Package Explorer;
v The Projects View;
v The Packages View;
v The Types View;
v The Problems View;
v The Open Type Dialog.

Working sets can be especially useful for example on the Problems View, in terms
of viewing what problems relate to your owned code. The following steps detail
how to set a working set on the Problems view to only display problems related to
thecustom component:
1. From the Problem View menu select Configure Contents;
2. In the Configure Contents dialog you must first add a filter from the

Configurations panel. Click the New... button and name this filter (e.g. Custom)
and click OK. This will create the filter checking it in the Configurations: list.
Under Scope: select the On Working Set: Window Working Set radio button
and click the Select... button to add a new working set;

3. In the Select Working Set dialog select the Selected Working Sets radio button
and click the New... button;

4. The New Working Set wizard can then be used to add types to the working
sets. In this instance we want to add a Java type and select the custom source
directory.

5. In the Select a working set type panel, select Java from the Working set type:
and click the Next > button. In the Java Working Set panel, select items in the
Workspace content: list and add them to the Working set content: list using
the Add --> button. Use the other buttons in the list to manage the Workspace
content: list. Specify a name in the Working set name: text box. Click the
Finish button. You can invoke the New Working Set wizard again to create
more working sets. Before clicking the OK button to exit the Wizard ensure
your Selected Working Sets are checked.

6. On clicking OK to exit the Configure Contents dialog your Problems View will
be updated to only display errors, warnings or informationals relating to the
newly created Custom filter.

Cúram Server Developer's Guide 73

Logging

Overview
Logging facilities in an IBM Cúram Social Program Management application are
provided by the curam.util.resources.Trace class which provides a convenient
wrapper onto the Apache log4j6API.

This allows developers to log any information without concerning themselves with
whether the program is being run in on-line or batch mode. The final destination
of the trace information is highly configurable and may be a log file associated
with the application server, a standalone log file, a console or even a database.

Usage
The main interface into the tracing API is through an instance of the
org.apache.log4j.Logger class. The infrastructure provides a number of named
instances which match the categories described in “Logging Hierarchy.” The top
level category is accessed through curam.util.resources.Trace.kTopLevelLogger
as shown in “Usage.”

It should be noted that the above code produces two trace records. This will not be
easily visible if log4j is configured to use a flat file or the console. However if a
log4j viewer is used then the two trace records will result in a needless entry
which will complicate the view without any added benefit. As such it is
recommended that trace statements which contain logically dependent data are
performed in a single call.

A formatted textual representation of a Cúram struct class object may be obtained
through a call to the class curam.util.resources.Trace.objectAsTraceString call.
For example:

Logging Hierarchy
The Cúram infrastructure produces trace records in specific categories with specific
levels. This allows them to be easily filtered in a log4j viewer. The categories and
levels supported are described in the following table where <BPO>, <Entity> and
<Facade> are the names of the relevant Cúram class. The <CodePackage> field is left
empty if the class is not located in a code package.

6. log4j is a logging framework provided by the Apache Jakarta project (see The complete manual - log4j, Gulcu).

curam.util.type.DateTime timeNow;
timeNow = curam.util.type.DateTime.getCurrentDateTime();
curam.util.resources.Trace.kTopLevelLogger.info(

"This function was called at ");
curam.util.resources.Trace.kTopLevelLogger.info(timeNow);

Figure 40. Usage of the loggers

curam.util.struct.ProcessNameKey someKey =
new curam.util.struct.ProcessNameKey;

someKey.processName="someValue";

curam.util.resources.Trace.kTopLevelLogger.info("DEBUG\n");
curam.util.resources.Trace.kTopLevelLogger.info(

curam.util.resources.Trace.objectAsTraceString(someKey));

Figure 41. Tracing a Cúram Struct

74 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 16. Logging Hierarchy

Category Level Meaning

Trace Error Loggable exceptions which have
not been caught in the code.

Trace.BatchLauncher Info Progress of Batch Launcher

Trace.BatchLauncher Error Errors in Batch Launcher

Trace.CodeTable Debug Tracing information about code
table lookups.

Trace.DataAccess.<Entity> Info SQL statements executed by
entity objects.

Trace.DataAccess.<Entity> Debug Results of SQL select
statements.

Trace.Methods.<CodePackage>
.<BPO>

Info Business Object method
invocation.

Trace.Methods.<CodePackage>
.<BPO>

Debug Arguments and types of
arguments for Business Object
method invocation.

Trace.Rules Info Progress of Rules Engine.

Trace.ServerCalls.<CodePackage>
.<Facade>

Info Server method invocations by
remote clients.

Trace.ServerCalls.<CodePackage>
.<Facade>

Debug Arguments and types of
arguments for server method
invocation.

Trace.Tools Info Progress of build time tools.
E.g: configtest

Trace.Tools Warning Warnings from build time tools

Trace.Tools Error Errors from build time tools

Logging Level
When logging the Cúram server, trace level should be taken into consideration.
These settings can be used to guard the calls made into log4j to improve the
performance in environments where tracing is not required7.

The current level of tracing can be checked by calling the method:

curam.util.resources.Trace.atLeast(Trace t)

7. While log4j is designed to impose a minimal overhead it cannot avoid the cost of the parameter construction inside the method
invocation. Application developers must take this into consideration.

Cúram Server Developer's Guide 75

where the parameter to this method can be one of the following:
v curam.util.resources.Trace.kTraceOff

v curam.util.resources.Trace.kTraceOn

v curam.util.resources.Trace.kTraceVerbose

v curam.util.resources.Trace.kTraceUltraVerbose

The trace level for your application can be specified by setting the curam.trace
property as defined in “Cúram Configuration Settings” on page 37. Valid values
for this property are:
v trace_on

v trace_verbose

v trace_ultra_verbose

The amount of logging done by your application code should reflect the current
logging level of the application. The following code extract demonstrates this:

The Cúram infrastructure provides support for a number of standard trace options
which provide a convenient view on top of the trace levels. All of the options
result in significant information being written to the log and will have a significant
impact on the performance of the application. The following are the properties that
may be set as described in “Cúram Configuration Settings” on page 37, and the
level at which they are set at default (O is On, V is Verbose, U is Ultra).

Table 17. Diagnostic Tracing Options

Property Name Meaning Enabled

curam.trace.servercalls Trace server method invocations by remote
clients. This includes the name of the user
requesting the invocation.

O

curam.trace.methods Trace all business object method invocation. V

curam.trace.method_args Dump arguments, including their types, to
BO method invocations.

U

curam.trace.sql Trace SQL statements executed by entity
objects.

V

curam.trace.sql_args Dump results of SQL select statements. U

curam.trace.rules For more information refer to the Runtime
Rules Logging in the Cúram Rules Codification
Guide.

U

curam.trace.smtp Trace the messages that are sent to the mail
server.

Configuration
log4j provides extensive support for configuring the destination of the trace
information. This section does not attempt to duplicate the log4j documentation
but places this information in the context of IBM Cúram Social Program

if (curam.util.resources.Trace.atLeast(
curam.util.resources.Trace.kTraceOn)) {

curam.util.resources.Trace.kTopLevelLogger.info(
"hello world.");

}

Figure 42. Logging example in application code

76 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Management. The configuration information should be placed in a file pointed at
by the curam.trace.configfile.location property.

If the curam.trace.configfile.location property is not set, the default log4j setting is
to use a Console Appender. The Console Appender simply outputs everything
output at the default (or higher) log4j level to System Out. The default log4j level
for the top level logger (and all inherited loggers) is set to DEBUG.8

“Configuration” on page 76 will result in trace information being written to a
rolling file appender. This means the output is placed in a file until it reaches a
specified size. Once it reaches this size it is “rolled-over”, and it is renamed by
appending a .1 to the file name. If a .1 file exists it is first renamed to .2 and so
on.

This is suitable for development environments where a historical trace can be
useful.

There are a number of customizable values in this file:

8. The set of possible levels (in order of priority) defined by log4j are ALL, DEBUG, INFO, WARN, ERROR, FATAL and OFF. Only
those items logged at the specified level or higher levels will be included in the log.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<!--

| For more configuration information and examples
| see the Jakarta Log4j website:
| http://jakarta.apache.org/log4j

-->

<log4j:configuration
xmlns:log4j="http://jakarta.apache.org/log4j/"
debug="false">

<!-- ========================== -->
<!-- Append messages to a File -->
<!-- ========================== -->
<appender name="OutputToFile"

class="org.apache.log4j.RollingFileAppender">
<param name="File"

value="d:/CuramProps/CuramAppLog.log" />
<param name="Threshold"

value="debug"/>
<param name="MaxBackupIndex"

value="3"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"

value="[%-5p] [%d{dd MMM yyyy HH:mm:ss}] [%c] - %m%n"/>
</layout>

</appender>

<!-- ======================= -->
<!-- Setup the Root category -->
<!-- ======================= -->
<root>

<level value="INFO"/>
<appender-ref ref="OutputToFile"/>

</root>

</log4j:configuration>

Figure 43. Configuring log4j

Cúram Server Developer's Guide 77

v The name of the log file is set to be d:/CuramProps/CuramAppLog.log.

v The maximum number of previously rolled back files which are preserved is set
to 3.

v The maximum file size is not explicitly set so the default of 10Mb is used.
v The Conversion pattern means the following is output:

– %-5p : The level of the trace message after being left padded to be a 5
character string.

– %c : The category of the trace message.
– %m : The trace message itself.
– %n : A platform specific line separator.

v The log4j level is set to INFO, which means that all items logged at the DEBUG
level will be ignored. This overwrites the default level of DEBUG set by the
infrastructure.

However, direct access to a file may not be an ideal mechanism if the trace output
should be monitored. “Configuration” on page 76 will result in trace information
being written to a socket. A listener (such as Apache Chainsaw which is delivered
with log4j) can then be used to display the resultant information.

The Conversion pattern used in this file is the same but some extra customizable
values have been introduced:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<!--

| For more configuration information and examples
| see the Jakarta Log4j website:
| http://jakarta.apache.org/log4j

-->

<log4j:configuration
xmlns:log4j="http://jakarta.apache.org/log4j/"
debug="false">

<!-- =========================== -->
<!-- Append messages to a Socket -->
<!-- =========================== -->
<appender name="OutputToSocket

class="org.apache.log4j.net.SocketAppender">
<param name="RemoteHost"

value="localhost" />
<param name="Port"

value="4445"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"

value="[%-5p] [%d{dd MMM yyyy HH:mm:ss}] [%c] - %m%n"/>
</layout>

</appender>

<!-- ======================= -->
<!-- Setup the Root category -->
<!-- ======================= -->
<root>

<level value="INFO"/>
<appender-ref ref="OutputToSocket"/>

</root>

</log4j:configuration>

Figure 44. Configuring log4j to log to a socket

78 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v The host name and port of the remote server are set to localhost and 4445
respectively.

Numerous other possibilities exist for this configuration and this section does not
attempt to duplicate the existing log4j documentation. However, it is worth noting
that Nested Diagnostic Contexts are not currently supported.

Statistics
Tracing facilities are provided to allow server-related information and diagnostics
to be output to a central location. It is possible to use this information to collect
performance information about client visible Cúram server functions, i.e. any
operations invoked by the Cúram web client. However writing trace informational
typically has an impact on performance, because the log4j appender should always
be configured to maintain the contents after a server crash (for example buffered
file access should not be used). For performance benchmarking it is highly
desirable that the benchmarking process should not itself impose a performance
overhead on the application being measured. For this reason, A way to collect
server function performance statistics is provided that imposes less overhead than
server tracing, and which produces output in a format more amenable for
automated processing as part of benchmark analysis.

To avoid performance overhead on the server output is written to separate log
files, one per Session Bean (Cúram Facade) in the application. Each log file has an
associated 4Kb memory buffer, so there is a memory overhead imposed by the
collection of server benchmarks. It is assumed that a realistic benchmark
configuration will involve application server machines with a significant amount of
physical memory.

The statistics files are created in the directory specified by the
curam.test.trace.statistics.location property if the curam.test.trace.statistics property
is set. They are named <MachineName>_<SessionBeanName>_0.<TimeStamp>. Each
(tab-delimited) entry in the file contains the following format:

Table 18. Statistics File Elements

Summary Meaning

Timestamp This timestamp is in a sortable format (ISO 8601
complete) and indicates the time at which the method
was invoked. The International Standard for the
representation of dates and times is ISO 8601. It displays
the timestamp with the accuracy to seconds. The format
of the timestamp is YYYYMMDDTHHMMSS. Note that
the "T" appears literally in the string, to indicate the
beginning of the time element, as specified in ISO 8601.

Machine name The name of the application server machine on which
this function executed.

Session Bean Name The name of the statistics class, Statistics, is always
printed.

Process ID Currently hard-coded to zero.

Server function signature The function signature including class and method
name, and method argument types.

Success indicator A flag indicating whether the server function succeeded
with no error returned to the client. A value of 1
indicates success, a value of 0 indicates failure. The
specific error message is not recorded

Cúram Server Developer's Guide 79

Table 18. Statistics File Elements (continued)

Summary Meaning

Elapsed time in milliseconds This is the time spent (in milliseconds) executing this
function excluding time spent by the middleware
software in dispatching the function call and marshaling
arguments

Localization
In cases where log messages should be localizable, class LocalisableString can be
used. See “Localized Output” on page 88. However it is important to note that
logged messages are typically targeted at a system administrator who may have a
different locale to the current user. For example if the user uses English and the
administrator uses French, then the Cúram default locale will be French and the
log message should be written in French. In the following example, the default
server locale is explicitly passed into getMessage, otherwise getMessage would
return a string corresponding to the users locale rather than the Cúram server
locale.

Note: To display the localize content (non-English) correctly on command line, you
need to change the system locale accordingly. (Change the language setting in
"Control Panel > Region and Language Administrative > Formats > Format" and
"Control Panel > Region and Language Administrative > Language for
non-Unicode programs > Change system locale")

Enabling Dynamic UIM Tracing
Logging of a missing Dynamic UIM resource is disabled by default. In order to
enable this logging the Tracing Level property must be set to trace_on or higher
and the Enable tracing of Dynamic UI property must be set to true.

Both of these properties can be set via the System Administration application;
from the Shortcuts Panel of the System Configuration section select Application
Data > Property Administration.

import curam.util.resources.ProgramLocale;

// Create a localizable message
curam.util.exception.LocalisableString e =

new LocalisableString(EXAMPLE.ID_EXAMPLE_MESSAGE);
e.arg(someIdentifier);

// WRONG! This logs the message in the current users locale,
// not that of the Cúram server.
curam.util.resources.Trace.kTopLevelLogger.info(e.getMessage());

// RIGHT: The message is logged using the Cúram server locale.
curam.util.resources.Trace.kTopLevelLogger.info(

e.getMessage(ProgramLocale.getDefaultServerLocale()));

Figure 45. Localizable logging example in application code

80 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Using Exceptions

Overview
As the Java language provides full support for exceptions, they are the
recommended mechanism for handling errors in an IBM Cúram Social Program
Management application. The advantage of using exceptions to handle errors is
that it saves the developer from having to check the status of each operation
attempted. A single try..catch construct can enclose many statements, each of which
could raise an exception.

In a Cúram application, exceptions can originate from various parts of generated
code. For example the Database Access Layer (DAL) throws exceptions in the
event of a database error, application developers can throw pre-defined exceptions
or customized exceptions. There are two basic forms of exceptions used; checked
and unchecked.

Checked exceptions are subclasses of curam.util.exception.AppException and
curam.util.exception.InformationalException. These exceptions must be
explicitly caught or listed in the throws clause of the method.

Unchecked exceptions are subclasses of
curam.util.exception.AppRuntimeException. These exceptions do not have to be
explicitly handled as they inherit from the Java Exception and RuntimeException
classes respectively. Typically, database problems (such as a
RecordLockedException) are thrown as unchecked exceptions. This means that
there is no need for code to tediously check for a RecordLockedException each time
the database is accessed.

In a Cúram application, checked exceptions can arrive at the Remote Interface
Layer (RIL), despite being checked, a throws clause can unwind all the way to the
RIL. Once here they are converted to a different form of exception which is thrown
to the client, and may write information from the exception to the log file. To
avoid this a developer can write code to catch exceptions and handle them and/or
re-throw them before the exception reaches the RIL.

The following happens when the RIL catches a checked exception:
v The text for the exception is loaded from a message catalog file.
v If the exception is loggable, then the text will be formatted, with arguments

inserted and written to the log file in the default server language.
v If the exception is loggable and includes a stack trace this will be written to the

log file.
v An exception is created and thrown to the client. This contains the name of the

message catalog, the ID of the message, and the exception arguments if any.
v The client receives the exception and uses the catalog name and message ID to

look-up a localized version of the message. It then inserts and formats the
arguments into a message and displays the message.

The RIL also catches unchecked exceptions to perform default actions.
v The text for the exception is loaded from a message catalog file.
v The text is formatted with arguments inserted and written to the log file in the

default server language.
v A stack trace is written to the log file.

Cúram Server Developer's Guide 81

v A new exception is created and thrown to the client. This exception states that
the original exception was Unhandled. The original exception is mapped because
the descriptive text is at too low a level to make sense to a user.
The newly created exception contains a nested exception which has the details of
the original exception - namely the name of the message catalog, the ID of the
message, and the exception arguments if any.
This mapping happens for all but four unchecked exceptions. These exceptions
are left untouched because the descriptive text produced is readable to a user.
These are RecordChangedException. RecordDeletedException,
RecordLockedException and ReadmultiMaxException.

v When the client receives the exception and uses the catalog name and message
ID to look-up a localized version of the message. It then inserts and formats the
arguments into the message and displays the message.

Constructing an Exception
Exceptions9are typically created with a catalog name and message identifier. If
these are not specified default values are used. The server infrastructure will take
care of delivering the message text to the client and/or log file. For example:

The purpose of exceptions is to communicate the fact that an error has occurred
and to communicate information about that error. Often it is necessary to include
additional information as well as the error code. This can be done using
arguments.

Arguments are attached to an exception before it is thrown and are intended to be
ultimately included in the error message displayed at the client and/or the server
log file.

To attach an argument to an exception, the arg method (.arg()) is used.
“Constructing an Exception” shows a code example of how to use the arg method
to attach an argument to an exception.

9. The following sections focus on use of AppException rather than AppRuntimeException as this is typical of production code.
However, AppRuntimeException can be created and manipulated in the same way.

if (DatabaseFieldIsNull()) {
curam.util.exception.AppException e = new

AppException(MAINTENANCE.ID_NULL_INDICATOR);
throw e;

}

// This can also be written as follows
if (DatabaseFieldIsNull()) {

throw new curam.util.exception.AppException
(INFRASTRUCTURE.ID_NULL_INDICATOR);

}

Figure 46. Constructing an AppException

82 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The arg method supports the addition of many different types of arguments to an
exception. Such primitive types include long, boolean or double while complex
types e.g. Date, DateTime, Money and CodeTableItemIdentifier objects can also be
added. See the JavaDoc for curam.util.exception.AppException for more details.

Creating Messages with Argument Placeholders
Argument place holders are tokens which are included in the error message source
text and are replaced by an argument at runtime.

Place holders are of the form %nc, where n is the argument number (of 1 or more),
and c is a single character denoting the argument type as follows:
v s - string
v n - numeric
v d - date
v t - time
v z - date/time
v c - code table item

For example, the source message:

“The first name is %1s and the surname is %2s”

would be displayed as:

“The first name is John and the surname is Smith”

// set a status code for the error which occurred
long lngErrorCode = -1;

// create the exception.
curam.util.exception.AppException e = new

AppException(MAINTENANCE.ID_SYSTEM_ERROR);

// Include this status code with the exception.
e.arg(lngErrorCode);

// now throw the exception
throw e;

Figure 47. Using the arg method with a primitive type

// Create a codetable identifier to describe domain type.
curam.util.type.CodeTableItemIdentifier aCodeIdentifier =

new CodeTableItemIdentifier
(DOMAINTYPE.TABLENAME, DOMAINTYPE.INT32);

// create the exception to flag an invalid data type
curam.util.exception.AppException e = new

AppException(WORKFLOW.ERR_ANSWER_NOT_VALID_DATATYPE);

// Include the domain type code with the exception.
e.arg(aCodeIdentifier);

// now throw the exception
throw e;

Figure 48. Using the arg method with a complex type

Cúram Server Developer's Guide 83

The fact that the place holders are numbered means that they can appear in the
message in any order. For example, the source message:

“The second name is %2s and the first name is %1s”

would be displayed as:

“The second name is Smith and the first name is John”

The exception would be constructed and thrown as shown in “Creating Messages
with Argument Placeholders” on page 83.

Handling Exceptions
When an exception is thrown in an application, it may be caught within a try..catch
construct or it may be allowed to filter up to the RIL.

The try..catch construct will typically handle the exception in one of the following
ways:
v Ignore it and carry on with the next processing step.

An example of this is where the program must check for the existence of a
record on the database. If the DAL throws a RecordNotFoundException, then this
indicates that the record does not exist. This exception will not be allowed to
reach the client, instead it controls how processing is done.

v Pass it upwards to a higher try..catch construct by re-throwing the actual
exception.
An example of this is a try..catch construct which is interested in only a specific
exception. If any other exception is caught then it can be passed on upwards for
some other handler to deal with.

curam.util.exception.AppException e = new
AppExeption(EXAMPLE.ID_EXAMPLE_MESSAGE);

e.arg(Person.FirstName);
e.arg(Person.Surname);
throw e;

Figure 49. Exception message with argument placeholders

bPersonExists = true;
try {

dtls = myPerson.read(key);
}
catch(RecordNotFoundException rnfe) {

bPersonExists = false;
}

84 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v Create a new exception and throw the new exception.
An example of this is where the handler would replace a generated DAL
exception with an application exception containing a more user-friendly
application-specific error message.

v Create a new exception, attach the original exception to this new exception, and
raise the new exception.
An exception can be constructed with a pointer to another exception as follows:

This has the effect of creating a linked list of exceptions with the most recent
exception at the head of the list. This allows a detailed history of an exception to
be built up for auditing or debugging purposes.

Logging Exceptions
Exceptions can be optionally logged to the application log file by setting its
loggable flag using the setLoggable method.

Loggable exceptions are written to the application log file by the RIL. The
exception message is read from the error message catalog file, the exception
arguments, if any, are inserted into the text and this parsed text is written to the
log file.

An exception is treated as loggable if its loggable flag is set or if the loggable flag
is set on any attached exceptions.

If the exception being logged has any other exceptions attached, then these
exceptions are also logged.

try {
myPerson.checkCompleteness(dtls);

}
catch(curam.util.exception.AppException e) {
if(e.equals(APP.ID_INCOMPLETE_DATA)) {

// set this flag and continue
bIncompleteData = true;

} else {
// do not know how to handle this exception,
// pass it straight through.
throw e;

}
}

catch(RecordNotFoundException rnfe)
{

curam.util.exception.AppException e = new
AppException(APP.NO_SUCH_PERSON);

// substitute the message for the exception.
// (The new message includes the ID number of
// the record we searched for.)
e.arg(dtls.personIDNumber);
throw e;

}

catch(curam.util.exception.AppException
origException) {

curam.util.exception.AppException newException = new
AppException(MYAPP.ID_MYMESG, origException);

throw newException;
}

Cúram Server Developer's Guide 85

General Exception Guidelines
v Follow the processing specification for the method, this should describe the error

situations that can be encountered. When actually writing and testing the code,
look out for sources of errors that might have been overlooked.

v Do not try to add a “catch-all” for unanticipated errors; the server infrastructure
can handle these better than you can. Do not wrap entire operations with error
handlers.

v Do handle exceptions where you are in a position to add more specific
information about what has happened, such as converting “record not found”
into “bank account not found”.

v Do gain an understanding of the standard exceptions defined in the core
infrastructure. Be aware of the types of exceptions that can be thrown by
generated database manipulation operations of entity objects:
– RecordNotFoundException can be thrown by singleton reads, updates and

removes of the database (entity read, nsread, modify, nsmodify, remove and
nsremove operations). A non standard operation (for example nsmodify and
nsremove) will throw this exception irrespective of the uniqueness of the key
that is passed into it.

– RecordNotFoundException can be thrown by nonkeyed updates and removes
of the database (entity nkremove and nkmodify).

– RecordDeletedException is always thrown in precedence to a
RecordNotFoundException.

– RecordDeletedException can be thrown when an optimistic update fails
because the target record has been deleted . With optimistic locking enabled
the record is re-read to obtain the version number. If the record is no longer
present this exception is thrown.

– DuplicateRecordException can be thrown by insert and update operations
(entity insert, nsinsert, modify, nsmodify, nkmodify operations).

– RecordChangedException and RecordDeletedException can be thrown by
update operations with optimistic locking. RecordDeletedException is thrown
by entities which have optimistic locking enabled in preference to
RecordLockedException.

– MultipleRecordException can be thrown by singleton reads of the database
(entity read, nsread, nkread operations) if multiple records are found which
meet the specified selection criteria.

– ReadmultiMaxException can be thrown by multiple reads of the database
(entity readmulti, nsmulti, nkreadmulti operations) if more record are
retrieved than the maximum specified in the application model.

– RecordLockedException can be thrown by any of the entity operations if a
deadlock or lock timeout occurs.

– OtherDatabaseException can be thrown by any of the entity operations if the
database reports an error which does not map to one of the above exceptions.

Coding Conventions for Exceptions
v Under normal circumstances don't create your own subclasses of AppException

or AppRuntimeException.
v Use exception chaining and exception logging when handling serious errors (the

definition of “serious” is application-specific).
v When writing the text of errors in a message file, be aware of localization issues.

Do not write code which simply replaces placeholders with hard-coded literals
as shown in “Coding Conventions for Exceptions.”

86 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Using Record Not Found Indicator
Each of the singleton reads of the database (entity read, nsread, nkread operations)
which could potentially throw a RecordNotFoundException has overloads added to
take a Record Not Found Indicator variable.

The reasons for providing a Record Not Found Indicator are:
v To save the overhead of creating and throwing an exception whenever a record

cannot be found, as this is an expensive process in some JVM s.
v To make it easier to write code which simply checks for the existence of a

record.

This indicator (curam.util.type.NotFoundIndicator) wraps a boolean value which
indicates whether the required record could not be found. When this indicator is
passed into one of the above read operations, the operation will never throw a
RecordNotFoundException if the record does not exist but will instead set the
boolean flag inside NotFoundIndicator to true, and return a value of null. If the
record is found, the boolean flag inside NotFoundIndicator is set to false, and the
record is returned.

Whenever a developer wishes to pass a NotFoundIndicator into a singleton read
operation, it is always passed in as the first argument. This is shown in the
following examples:

//Check that BankAccount entity exists:
bankAccountKey.accountNumber = argIn.accountNumber;
try {

bankAccountDtls = bankAccount.read(bankAccountKey);
} catch (RecordNotFoundException rnf) {

//This is a SERIOUS error
curam.util.exception.AppException e = new AppException(

COOKBOOK.ID_NO_SUCH_ACCOUNT, rnf);
e.setLoggable(true); //make sure it gets logged
e.arg("not found"); // NOT LOCALIZABLE!!!
throw e;

}

Figure 50. Incorrect usage of hard-coded literals

try {
bankAccountDtls = bankAccount.read(bankAccountKey);

} catch (RecordNotFoundException rnf) {
// record was not found...

}

Figure 51. A typical read operation which may throw a RecordNotFoundException

final NotFoundIndicator notFoundInd =
new curam.util.type.NotFoundIndicator();

bankAccountDtls = bankAccount.read(notFoundInd, bankAccountKey);
if (notFoundInd.isNotFound()) {

// record was not found...
} else {

// record was found...
}

Figure 52. The overloaded version of the one above, using the NotFoundIndicator

Cúram Server Developer's Guide 87

Localized Output
In IBM Cúram Social Program Management the client is responsible for converting
the text of an exception into the language that a user has chosen. However certain
situations do exist where the server must present data to the client for localization.
To facilitate these situations the curam.util.exception.LocalisableString class has
been introduced. This class is used in a similar manner to AppException as is
shown in “Localized Output.”

This string can be passed back to the client as an output parameter and will be
localized by the client.

Informational Manager
The standard exception handling and string presentation features described in this
chapter do not address one scenario. In a number of situations it is useful to
present multiple informational messages at one time. For example, during the
course of validation a number of warnings, or errors, may occur independently as
they are based on different elements of the user input. These should be reported
together to simplify the corrective actions that a user must take. The
InformationalManager class allows for exceptions and informationals to be grouped
together in this manner. “Informational Manager” shows the use of this class to
group informational messages for presentation:

try {
bankAccountDtls = bankAccount.read(bankAccountKey, true);

} catch (RecordNotFoundException rnf) {
// record was not found...

}

Figure 53. A typical read operation for update which may throw a RecordNotFoundException

bankAccountDtls =
bankAccount.read(notFoundInd, bankAccountKey, true);

if (notFoundInd.isNotFound()) {
// record was not found...

} else {
// record was found...

}

Figure 54. The overloaded version of the one above, using the NotFoundIndicator

curam.util.type.CodeTableItemIdentifier someIdentifier =
new CodeTableItemIdentifier("someTable", "someCode");

curam.util.exception.LocalisableString e =
new LocalisableString(EXAMPLE.ID_EXAMPLE_MESSAGE);

e.arg(someIdentifier);
return e.toClientFormattedText();

Figure 55. Use of LocalisableString

88 IBM Cúram Social Program Management: Cúram Server Developer's Guide

import curam.util.exception.InformationalElement;
import curam.util.exception.InformationalException;
import curam.util.exception.InformationalManager;
import curam.util.exception.LocalisableString;
import curam.util.internal.security.struct.LoginMessage;
import curam.util.internal.security.struct.LoginMessageList;
import curam.util.message.INFRASTRUCTURE;
import curam.util.resources.GeneralConstants;

class InformationalManagerDemo {

public LoginMessageList checkLoginStatus()
throws InformationalException {

// Create an informational manager to store the
// results of the validation checks. A transaction wide
// version can be obtained via
// TransactionInfo.getInformationalManager().
final InformationalManager informationalManager =

new InformationalManager();

// Informational #1
// Create an informational string for presentation to
// the client: this specifies the password will expire
// in 6 days
LocalisableString infoMessage1 = new LocalisableString(

INFRASTRUCTURE.INFO_ID_PASSWORD_EXPIRING);
infoMessage1.arg(6);
// Add this informational string to the informational
// manager
informationalManager.addInformationalMsg(infoMessage1,

GeneralConstants.kEmpty,
InformationalElement.InformationalType.kWarning);

// Informational #2
// Create an informational string for presentation to
// the client: this specifies the user will be locked
// out if they do not change their password in the next
// 10 logins.
LocalisableString infoMessage2 = new LocalisableString(

INFRASTRUCTURE.INFO_ID_LOG_ATTEMPTS_EXPIRING);
infoMessage1.arg(10);
// Add this informational string to the informational
// manager
informationalManager.addInformationalMsg(infoMessage2,

GeneralConstants.kEmpty,
InformationalElement.InformationalType.kWarning);

// The informationals must now be converted to a format
// suitable for return to the client.
final String[] informationalArray = informationalManager

.obtainInformationalAsString();
// The array of informational strings must be
// transferred to an array of structs because we
// cannot return an array of strings directly. Each
// string goes into one struct (LoginMessage) and
// this is aggregated into a list by struct
// LoginMessageList.
// LoginMessage : A struct containing one string
// named ’message’.
// LoginMessageList : A struct which aggregates
// LoginMessage as member ’dtls’.
final LoginMessageList result = new LoginMessageList();
for (int i = 0; i != informationalArray.length; i++) {

LoginMessage warning = new LoginMessage();
warning.message = informationalArray[i];
result.dtls.addRef(warning);

}
return result;

}

}

Cúram Server Developer's Guide 89

There are a number of points worth emphasizing in this code fragment:
v This sample is based around the presentation of informationals to the client. It

does not throw an exception, and therefore it is a successful invocation of the
method. This means the transaction will be committed and any database updates
will be made permanent. It is the responsibility of the client screen for this
sample to handle the return value of the operation as a collection of
informationals.

v InformationalManager. failOperation() can be used to fail the invocation
depending on whether or not the informational manager contains any warnings
or errors. If the informational manager contains an error or warning then this
method will throw an exception which means the transaction will be rolled-back.
Otherwise this method does nothing and the transaction is allowed to continue.
The full details of this operation are described in the API documentation
(JavaDoc) shipped with IBM Cúram Social Program Management.

v The second parameter to InformationalManager.addInformationalMsg currently
populated with GeneralConstants.kEmpty (as in “Informational Manager” on
page 88) is intended to name a field. However, this is not supported in the
current release

The Cúram Web Client Reference Manual should be consulted to determine the client
side configuration that is necessary to use the InformationalManager; at its simplest
the field in the struct containing the informationals must be named in the UIM.

The InformationalManager logs informationals to the Curam log. Please see
“Logging” on page 138 for details on Logging.The informationals are logged in the
following way:
v Logging of the informationals is only performed at the time when they are

added to the InformationalManager (i.e. when calling InformationalManager.
addInformationalMsg()).

v Fatal errors and errors are logged at the top level logger using the error level.
v Warnings are logged at the top level logger using the info level.

Message and Code Table Files

Overview
This chapter describes message catalog and code table files and how they are used
in the IBM Cúram Social Program Management application. Cúram message
catalogs allow an application to be localized without manipulating hand-crafted
code, while Cúram code table files allow an application to use a level of indirection
when storing commonly used constants on the database, e.g., Ms., Mr. This chapter
introduces message and code table fundamentals, and explains how they can be
augmented to produce customized messages and code tables in a Cúram
application.

Message Files
Traditionally message files or catalogs are binary files used for holding text
messages associated with an application. Each message catalog had a one-to-one
association with a symbol definition file. The symbol definition file was examined
at compile time and the message catalog at run-time. Using this form of indirection
allows an application to be localized without a re-compilation being necessary.

In keeping with this approach, Cúram message catalogs are generated from
message .xml files using a command-line build utility called msggen (build

90 IBM Cúram Social Program Management: Cúram Server Developer's Guide

msggen). Generating from a message .xml file produces two outputs: a message
catalog file (one Java .properties file is generated for each locale specified) and a
symbol definition file (a standard Java class file). The symbol definition file is a
Java file containing constants (in Java terms, a constant is a static final) for
message identifiers enumerated in the message. xml file, and the name of the
message file itself. This file should be imported into any Java source files which
use that catalog. The message catalog is a properties file opened by the Cúram
application at runtime.

The msggen build target performs the merge of message files and then translates
the resultant message file (which are stored in /build/svr/message/scp) into
symbol definition (Java code) and message catalog (property) files.

msggen is automatically invoked by the provided build scripts, against those
message files which are placed in the suggested source locations, i.e., the /message
directory of a component.

The Format of Message Files
The message .xml file is an XML document which is made up of a number of
distinct elements combined with the core message elements; see “The Format of
Message Files.”

As a standard XML document, the encoding attributed indicates that the file is
encoded in UTF-8. It should be noted that this encoding will be respected and
maintained by an XML aware editor. However, other editors (such as TextPad) do
not maintain this encoding by default. A file which contains UTF-8 characters may
have to be specifically saved as UTF-8 with these editors.

The following sections detail the message.xml file elements and attributes.

The <messages> Element:
The <messages> element is the root element of a message file, and it groups all
other elements together. The messages element has the following attribute:

Table 19. Attributes of the messages Element

Attribute Name Required Default Description

package Yes None The Java package name to use for the
generated Java file.

<?xml version="1.0" encoding="UTF-8"?>
<!-- A sample message file. -->
<messages package="curam.message">

<message name="ERR_XRV_EXISTING_OVERLAP">
<locale country="US" language="en">

More than 1 overlapping Assessment has been found.
</locale>

</message>
<message name="ERR_CREATION_DATE_EMPTY">
<locale country="US" language="en">

You must enter a creation date
</locale>

</message>
</messages>

Figure 57. Example of Message text file

Cúram Server Developer's Guide 91

The <message> Element

The <message> element groups a number of <locale> elements together. The
message element has the following attributes:

Table 20. Attributes of the message Element

Attribute Name Required Default Description

name Yes None Uniquely identifies the message.

removed No false Set to true to indicate if the message is to
be removed and hence not included in the
generated artefacts.

The <locale> Element

The <locale> element details the text of the message for one of the supported
locales. Since the message files are XML, it is not necessary to use Java escape
characters. Special characters can be inserted by using the XML entity references in
the message files. These will be converted to the actual characters in the properties
file. For example ¢ and $ will result in the cent and dollar symbols,
respectively, being put in the properties file. Care must be taken to only specify
characters that can be supported by the target properties file on your platform and
for your operating system locale.

The locale element has the following attributes:

Table 21. Attributes of the locale Element

Attribute Name Required Default Description

language Yes None To be included during generation of the
message artefacts each <locale> element
must specify a language (and optional
country) attribute that corresponds to a
supported locale. The
SERVER_LOCALE_LIST environment
variable is a comma separated list defining
the set of locales that are supported, where
the locale is either simply language or
language_country. For example:
SERVER_LOCALE_LIST=en, en_US,
en_GB.

country No None Set to the country relevant to the locale
language attribute.

Customizing a Message File
Message text files are located in the /message directory of a component. The Social
Program Management Platform is shipped with a set of message files. These may
be overridden by placing new message files in the SERVER_DIR/components/<custom
>/message directory, where <custom> is any new directory created under
components that conform to the same directory structure as components/core. This
mechanism avoids the need to make changes directly to the out-of-the-box
application, which would complicate later upgrades.

Note: If the package attribute in the overridden message file is modified, then the
customization will not work.

92 IBM Cúram Social Program Management: Cúram Server Developer's Guide

This override process involves merging all message files of the same name
according to a precedence order. The order is based on the
SERVER_COMPONENT_ORDER environment variable. This environment variable
contains a comma separated list of component names: the left most has the highest
priority, and the right most the lowest.

The order in “Customizing a Message File” on page 92, shows that the precedence
of Appeal is higher than that of the sample component. The core component always
has the lowest priority and as such does not need to be specified. Any components
that are not specified are placed alphabetically above core and below those that are
specified.

Note: After changing the component precedence order in
SERVER_COMPONENT_ORDER it is necessary to perform a clean build to ensure
that you are using the appropriate files. This is done by invoking build clean
server.

When merging message files, the components listed in the
SERVER_COMPONENT_ORDER are taken in order of highest to lowest priority. In
“Customizing a Message File” on page 92 message files from the sample
component are merged with the message files located in the core component. The
message files from ISProduct are then merged into the intermediate results and the
merge process continues until the messages in the custom component are merged.

Rules of Message Merges:
Message files are merged based on precedence order. As described above there is
always a more important main/source message file, and a file which is being
merged into it. The second file is called the merge file in the following sections.

The merging rules described below are applied to decide if the <message> and
<locale> elements should be merged into the new message file.
v A <message> will be merged into a new message file if the <message> is not

already present in the new file.
v A <locale> will be merged into a named <message> element in the new message

file if the <locale> is not already present in the <message> of the new message
file.

Duplicate messages will always be overwritten by the message file in the
component with the highest precedence order. The main message file of “Rules of
Message Merges,” and the merge file of “Rules of Message Merges,” illustrate
these rules:

SERVER_COMPONENT_ORDER=custom,Appeal,ISProduct,sample

Figure 58. SERVER COMPONENT ORDER example

Cúram Server Developer's Guide 93

As a result of the merge process the new message file produced would be:

<messages package="curam.message">
<message name="ERR_SAMPLE_VALIDATION_MSG">

<locale country="US" language="en">
The specified color is not valid.

</locale>
</message>
<message name="ERR_SAMPLE_ERROR_MSG">

<locale country="US" language="en">
An external resource is not available.

</locale>
</message>

</messages>

Figure 59. Sample main message file

<messages package="curam.message">
<message name="ERR_SAMPLE_VALIDATION_MSG">

<locale country="GB" language="en">
The specified colour is not valid.
</locale>

</message>
<message name="ERR_SAMPLE_NEW_MSG">

<locale country="GB" language="en">
An example of localisation.

</locale>
</message>
<message name="ERR_SAMPLE_REMOVED_MSG" removed="true">

<locale language="en">
This message will be removed.
</locale>

</message>
</messages>

Figure 60. Sample merge message file

<messages package="curam.message">
<message name="ERR_SAMPLE_VALIDATION_MSG">

<locale country="GB" language="en">
The specified colour is not valid.

</locale>
<locale country="US" language="en">

The specified color is not valid.
</locale>

</message>
<message name="ERR_SAMPLE_ERROR_MSG">

<locale country="US" language="en">
An external resource is not available.

</locale>
</message>
<message name="ERR_SAMPLE_NEW_MSG">

<locale country="GB" language="en">
An example of localisation.</locale>

</locale>
</message>
<message name="ERR_SAMPLE_REMOVED_MSG" removed="true">

<locale language="en">
This message will be removed.

</locale>
</message>

</messages>

Figure 61. Resulting Message File

94 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Artefacts Produced by msggen Build Target
The Java artefacts (symbol definition and message catalog files) produced from a
merged message file, are placed in the / build/svr/message/gen/<package>
directory, where <package> is the package attribute specified in the message file.
For example, package="curam.message" would result in the Java artefacts being
placed in the / build/svr/message/gen/curam/message directory.

The directory contains the Java files (which are locale independent) and the
property files (which are locale dependent) which are named <Message File
name>_<specific language>_<specific country>.properties.

Note: If message files of the same name exist in different components with a
different package attribute value, then the generated artefacts (symbol definition
and message catalog files) produced are placed in the package specified by the
message file of the component with the highest precedence order (as listed in the
SERVER_COMPONENT_ORDER environment variable).

These artefacts are best illustrated by example:

At the end of the msggen step these property files are placed into a .jar file which
is used by the client to localize the messages that are returned to it.

package curam.message;
import curam.util.message.CatEntry;
import curam.util.message.MessageCatalog
public final class SampleMessages {

private static final MessageCatalog kCat =
new MessageCatalog("curam.message.SampleMessages");

/**
* BpoActivity:ERR_SAMPLE_VALIDATION_MSG
* en_UK = The specified colour is not valid.
* en_US = The specified color is not valid.
*/
public static final CatEntry ERR_SAMPLE_VALIDATION_MSG

= kCat.entry("ERR_SAMPLE_VALIDATION_MSG");

/**
* BpoActivity:ERR_SAMPLE_ERROR_MSG
* en_US = An external resource is not available.
*/
public static final CatEntry ERR_SAMPLE_ERROR_MSG

= kCat.entry("ERR_SAMPLE_ERROR_MSG");

/**
* BpoActivity:ERR_SAMPLE_NEW_MSG
* en_GB = An example of localisation.
*/
public static final CatEntry ERR_SAMPLE_NEW_MSG

= kCat.entry("ERR_SAMPLE_NEW_MSG");
}

Figure 62. Java file produced from merged message file

ERR_SAMPLE_VALIDATION_MSG=The specified colour is not valid.
ERR_SAMPLE_NEW_MSG=An example of localisation.

Figure 63. Sample (UK) Properties produced from message file

Cúram Server Developer's Guide 95

Retrieving Messages from Message Files
A message file can contain any number of locales for a named message, and as a
result a mechanism needs to be in place to return the correctly localized message
for a running instance of Cúram. Messages are retrieved from a message file based
on the locale property which includes a language and, optionally, a country. The
message file look up returns a matching localized message for a named message
identifier. For example, if the runtime locale is set to en_US where “en” is the
language and “US” is the country, a message look up for the message named
A_MESSAGE with the example below will return the text “The message”. If
however the runtime locale was set to “fr” the text “Le message” would be
returned.

Since message files are not guaranteed to contain an entry for each message that
matches the runtime locale, a fall back mechanism is in place to guarantee that if
possible a localized message is returned when a look up is performed. Once a
message of a given name has been found, and there is no direct match with the
specified locale, the rules for fall back are as follows:
v If the runtime locale is set to include a language and country, the country is

removed and the search looks for a matching language only. Looking up the
message named A_MESSAGE in the example above with runtime locale en_US
will return the message text “The message”.

v If nothing is found for the runtime locale, then a lookup will be performed
using the fall back locale of en. Looking up the message named A_MESSAGE in
the example above with runtime locale es will return the message text “The en
message”, i.e. the lookup will revert to the fall back locale of en as nothing can
be found for es.

If nothing can be found for either the runtime locale or the fall back locale, then
the search will be determined based on the underlying message lookup mechanism
provided by the JDK class java.util.ResourceBundle. Please refer to the relevant
JDK JavaDoc for details of this classes functionality and further details of the fall
back mechanism provided.

If the runtime locale does not find a match in the message file and no match can
be found using the fall back locale of en, and no match can be found after
applying the fall back rules described by java.util.ResourceBundle, a
MissingResourceException is returned and server logs are updated if appropriate.

Writing Messages To Server Logs
Messages from message catalogs are used in many instances in Cúram and
localized at runtime as described in “Retrieving Messages from Message Files.”
Localization of server log messages is different in that it is performed by the server
infrastructure based on the default server locale. In this case, the locale used when
writing to Cúram server logs is set by configuring the
curam.environment.default.locale property in Application.prx.

<messages package="curam.message">
<message name="A MESSAGE">

<locale country="US" language="en">The message</locale>
<locale language="fr">Le message</locale>
<locale language="en">The en message</locale>

</message></messages>

Figure 64. Message File Search

96 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Localizing SDEJ Message Files
It is possible to localize or modify the message files shipped with the Cúram SDEJ.
These message files are located in the message directory of the SDEJ and are in the
same format as Cúram application message files but with the extension .iml.

To localize these files copy the particular .iml message file to be modified from the
SDEJ to the message directory of a component in your Cúram application, for
example, SERVER_DIR/components/custom/message. The .iml message file can then
be modified in the same way as any message file, overriding a message or adding
a new locale for all the messages.

Note: If the package attribute in the message file is modified the localization will
not work.

The msggen target, when run, will merge the localized .iml message file with the
original one located in the SDEJ. The localized message file will have the higher
precedence order. It will then generate the properties files only and include them
in the messages.jar file created. The messages.jar file will always be on the
classpath before the default SDEJ messages in a runtime application.

Code Table Files
Code table files allow a Cúram application to use a level of indirection when
storing commonly used constants on the database. Like message files, code table
files are shipped with Cúram and can be customized by adding new code table
files to new components in the SERVER_DIR/components/<custom>/codetable
directory, where <custom> is any new directory created under components that
conforms to the same directory structure as components/core. Code table files can
contain one code table or a number of code tables that are linked as a hierarchy.

Generating code tables produces two outputs: a code table SQL file to place the
codes on the database, and a symbol definition file (a standard Java class file). The
symbol definition file is a Java file containing constants for code table identifiers
used in the code table XML file. The generation of code table hierarchies also
produces.properties files as described in “Artefacts Produced by ctgen Build
Target” on page 108.Generating code tables is supported by the build target ctgen.

For more information on code tables also consult the Domain Definitions chapter
in the Cúram Modeling Reference Guide and the Cúram Web Client Reference Manual.

The Format of Code Table Files
The code table file is an XML document which is made up of a number of distinct
elements. “Rules of Code Table Merges” on page 102, shows a sample code table.

As a standard XML document, the encoding attributed indicates that the file is
encoded in UTF-8. It should be noted that this encoding will be respected and
maintained by an XML aware editor. However, other editors (such as TextPad) do
not maintain this encoding by default. A file which contains UTF-8 characters may
have to be specifically saved as UTF-8 with these editors.

The following sections detail the elements and attributes of a code table file.

The <codetables> Element:
The <codetables> element is the root element of a code table file and it groups all
other elements together. The codetables element has the following attributes:

Cúram Server Developer's Guide 97

Table 22. Attributes of the codetables Element

Attribute Name Required Default Description

package Yes None Specifies the package the generated
symbol definition Java file will be part of.

hierarchy_name No None Identifies the code table file as containing
a hierarchy of code tables.

The <description> Element:
The <description> element is an optional sub-element below the <codetables>
root. It is used to define a description for the code tables. It should be listed first,
before the other sub-element, <codetable>, of <codetables>. It should only be
listed once. There are no attributes for the description element.

The <codetable> Element:
The <codetable> element is a sub-element below the <codetables> root. The
<codetable> element should follow the <description> element, if it's specified. For
an ordinary code table file definition only a single <codetable> element can be
defined. If a hierarchy_name attribute has been specified in the <codetables>
multiple <codetable> elements are allowed as long as they are linked correctly in a
hierarchy.

The codetable element groups a number of <code> elements together and an
optional <codetabledata> element.

The <codetable> element has the following attributes:

Table 23. Attributes of the codetable Element

Attribute Name Required Default Description

name Yes None A unique identifier for the code
table. The name attribute is
trimmed of leading and trailing
spaces on code table generation.
Some restrictions apply to the
name attribute when the
<displaynames> element is
specified. Please see “Artefacts
Produced by ctgen Build Target”
on page 108 for further details.

java_identifier Yes None The name of the generated
symbol definition Java file. This
identifier cannot be duplicated for
code tables with different names.

parent_codetable No None Used to define the name of the
parent code table in the hierarchy,
where the code table file has been
defined as a hierarchy of code
tables.

The <codetabledata> Element:
The <codetabledata> element is an optional sub-element of <codetable> that
groups the locale-specific comments for a codetable. Each <codetable> element can
have one optional <codetabledata> element. The <codetabledata> element can
contain multiple optional <locale> elements.

98 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Note: The <codetabledata> element and its child elements are optional elements.

The <codetabledata> element has the following attributes:

Table 24. Attributes of the codetabledata Element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale
for the codetabledata element.

country No None Specifies the country portion of the locale
for the codetabledata element.

The <locale> Element:
The optional <locale> element can occur multiple times for the <codetabledata>
element. Each <locale> element can contain one optional <comments> element.

The locale element has the following attributes:

Table 25. Attributes of the locale Element

Attribute Name Required Default Description

language Yes None Specify a language that corresponds to a
supported locale.

country No None Specify a country that corresponds to a
supported locale and language.

The <comments> Element:
The optional <comments> element is used to store the locale-specific comments for a
code table.

The comments element has no attributes.

The <displaynames> Element:
The <displaynames> element groups a number of code table hierarchy <name>
elements together, and it also groups a number of code table name<locale>
elements together. It is an optional element. However, if present it can contain any
one <name> element or <locale>, having a <locale> element helps the client to
display codetable name in the locale set for the current user. The displaynames
element has no attributes.

The <name> Element:
The <name> element is optional when the <displaynames> element is present. When
displaying the <name> values on the client, the name that contains the locale for the
current user is displayed. However, if the current user's locale does not match any
of the locales specified within the <name> element, then the <codetable> name
attribute is displayed.

The name element has the following attributes:

Table 26. Attributes of the name Element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale
for the name element.

country No None Specifies the country portion of the local
for the name element.

Cúram Server Developer's Guide 99

The <locale> Element:
The <locale> element is optional and is used to add localisable display names to
represent the codetable table name when the <displaynames> element is present.
When displaying the <codetable> name attribute on the client, the name that
contains the locale for the current user is displayed. However, if the current user's
locale does not match any of the locales specified within the <locale> element,
then the <codetable> name attribute is displayed.

The locale element has the following attributes:

Table 27. Attributes of the locale Element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale
for the name element.

country No None Specifies the country portion of the local
for the name element.

The <code> Element:
The <code> element is a sub-element of <codetable> and groups a number of
<locale> elements together. The code element has the following attributes:

Table 28. Attributes of the code Element

Attribute Name Required Default Description

value Yes None A unique identifier for the code in the
code table.

status Yes None Indicates if the code table is enabled and
selectable in the list of codes as displayed
on the client. It can be set to either
ENABLED or DISABLED and if set to anything
else it is considered to be DISABLED.

default No None Indicates if this is the default code for the
code table. There should only ever be one
default specified. The default code is used
to define the initially selected value in an
editable code table list in the client. For
more information consult the Cúram Web
Client Reference Manual.

java_identifier No None Used as part of the generated symbol
definition Java file

removed No false Set to true to indicate if the code is to be
removed and hence not included in the
generated artefacts

parent_code No None Used to define the name of the code in the
specified parent code table in the hierarchy
that this code is linked to. See “Code Table
Hierarchy” on page 112 for more
information on defining a code table
hierarchy.

The <locale> Element:

100 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The <locale> element contains two mandatory sub-elements (<description> and
<annotation>) and one optional sub-element <comments>, which are used to
describe the code.

To be included during generation of the code table artefacts, each <locale> element
must specify a language (and optional country) attribute that corresponds to a
supported locale. The SERVER_LOCALE_LIST environment variable is a comma
separated list of locales that are supported, where the locale is either simply of the
form language or language_country as shown in this example:

The locale element has the following attributes:

Table 29. Attributes of the locale Element

Attribute Name Required Default Description

language Yes None Specifies a language that corresponds to a
supported locale.

country No None Specifies a country that corresponds to a
supported locale and language.

sort_order No None Specifies the order in which the codes in a
code table will be displayed in the
drop-down list on an edit page in the
client.

The <description> Element:
The <description> element is used to provide a description for the code. The
description element has no attributes.

The <annotation> Element:
The <annotation> element is used to provide an annotation to the code. The
annotation element has no attributes.

The <comments> Element:
The optional <comments> element is used to store the locale-specific comments for a
code table item. This element can be used to provide localized information to aid
in understanding the usage for a code table item, and any implication of change to
it.

The comments element has no attributes.

Customizing a Code Table File
Code table files are located in the /codetable directory of a component. The Social
Program Management Platform is shipped with a set of code table files. These may
be overridden by placing new code table files in the SERVER_DIR/components/
<custom>/codetable directory, where <custom> is any new directory created under
components that conforms to the same directory structure as components/core.

This mechanism avoids the need to make changes directly to the out-of-the-box
application, which would complicate later upgrades. Typically code table files are
customized to add new entries, localize descriptions or to add new locales.

This override process involves merging all code table files of the same name
according to a precedence order. The order is based on the

SERVER_LOCALE_LIST=en, en_US, en_GB

Cúram Server Developer's Guide 101

SERVER_COMPONENT_ORDER environment variable which contains a
comma-separated list of component names: the left most has the highest priority,
and the right most the lowest10

Rules of Code Table Merges:
Code table files are merged based on precedence order. There is always a more
important main/source code table file, and a file which is being merged into it.
The second file is called the merge file in the following sections.

The merging rules described below are applied to decide if the <code>, <locale>,
<displaynames>, and <name> elements should be merged into the new code table
file.
v A <code> will be merged into a new code table file if its associated <codetable>

is present in the new file and its value attribute is not already present in the
new file.

v The <codetabledata> element is merged into the <codetabledata> element in the
new code table file if the <locale> element is not already present in the
<codetabledata> element of the new code table. The <codetabledata> element is
added into the new code table file even if the <codetabledata> is not already
present in the new code table file.

v A <locale> will be merged into a named <code> element in the new code table
file if the <locale> is not already present in the <code> of the new code table.

v A <displaynames> element will be merged into a new code table file if its
associated <codetable> is present in the new file and it is not already present in
the new file.

v If the <displaynames> element is already present in the new file, then the <name>
elements will need to be merged. If the <name> element with its language and
country attributes is not already present in the new file, then it will be merged
into the new file.

The main code table file of “Rules of Code Table Merges,” and the merge code
table file of “Rules of Code Table Merges,” illustrate the rules of merging <code>,
<codetabledata> and <locale> elements.

10. See “Customizing a Message File” on page 92, for further explanation of SERVER_COMPONENT_ORDER.

102 IBM Cúram Social Program Management: Cúram Server Developer's Guide

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.codetable">

<codetable java_identifier="ACCEPTANCESTATUS"
name="AcceptanceStatus">

<code default="true" java_identifier="ACCEPTED"
status="ENABLED" value="ACS1">

<locale language="en" country="US" sort_order="0">
<description>Accepted</description>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="PROVISIONAL"

status="ENABLED" value="ACS2">
<locale language="en" country="US" sort_order="0">

<description>Provisional</description>
<comments>Comments for PROVISIONAL in EN_US</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REJECTED"

status="ENABLED" value="ACS3">
<locale language="en" country="US" sort_order="0">

<description>Rejected</description>
<comments>Comments for Rejected in EN_US</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REMOVED" removed="true"

status="ENABLED" value="ACS3">
<locale language="en" country="US" sort_order="0">

<description>Removed</description>
<annotation>This message will be removed</annotation>

</locale>
</code>
<codetabledata>

<locale language="en">
<comments>Code table comments for
Country in EN.</comments>

</locale>
<locale> language="en" country="US">

<comments>Code table comments for
Country in US.</comments>

</locale>
</codetabledata>

</codetable>
</codetables>

Figure 65. Sample Main Code Table File 1

Cúram Server Developer's Guide 103

As a result of the merge process the resulting code table file would be:

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.codetable">

<codetable java_identifier="ACCEPTANCESTATUS"
name="AcceptanceStatus">

<code default="true" java_identifier="ACCEPTED"
status="ENABLED" value="ACS1">

<locale language="en" country="GB" sort_order="0">
<description>Passed</description>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="PROVISIONAL"

status="ENABLED" value="ACS2">
<locale language="en" country="GB" sort_order="0">

<description>Pending</description>
<comments>Comments for PROVISIONAL in EN_GB</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REJECTED"

status="ENABLED" value="ACS3">
<locale language="en" country="GB" sort_order="0">

<description>Failed</description>
<comments>Comments for REJECTED in EN_GB</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="UNKNOWN"

status="ENABLED" value="ACS4">
<locale language="en" sort_order="0">

<description>Unknown</description>
<annotation></annotation>

</locale>
</code>
<codetabledata>

<locale language="en">
<comments>Code table comments for
Country in EN.</comments>

</locale>
<locale language="en" country="GB">

<comments>Code table comments for
Country in GB.</comments>

</locale>
</codetabledata>

</codetable>
</codetables>

Figure 66. Sample Merge Code Table File 1

104 IBM Cúram Social Program Management: Cúram Server Developer's Guide

<codetables package="curam.codetable">
<codetable java_identifier="ACCEPTANCESTATUS"

name="AcceptanceStatus">
<code default="true" java_identifier="ACCEPTED"

status="ENABLED" value="ACS1">
<locale language="en" country="US" sort_order="0">

<description>Accepted</description>
<annotation></annotation>

</locale>
<locale language="en" country="GB" sort_order="0">

<description>Passed</description>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="PROVISIONAL"

status="ENABLED" value="ACS2">
<locale language="en" country="US" sort_order="0">

<description>Provisional</description>
<comments>Comments for PROVISIONAL in EN_US</comments>
<annotation></annotation>

</locale>
<locale language="en" country="GB" sort_order="0">

<description>Pending</description>
<comments>Comments for PROVISIONAL in EN_GB</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REJECTED"

status="ENABLED" value="ACS3">
<locale language="en" country="US" sort_order="0">

<description>Rejected</description>
<comments>Comments for REJECTED in EN_US</comments>
<annotation></annotation>

</locale>
<locale language="en" country="GB" sort_order="0">

<description>Failed</description>
<comments>Comments for REJECTED in EN_GB</comments>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="UNKNOWN"

status="ENABLED" value="ACS4">
<locale language="en" sort_order="0">

<description>Unknown</description>
<annotation></annotation>

</locale>
</code>
<code default="false" java_identifier="REMOVED" removed="true"

status="ENABLED" value="ACS3">
<locale language="en" country="US" sort_order="0">

<description>Removed</description>
<annotation>This message will be removed</annotation>

</locale>
</code>
<codetabledata>

<locale language="en">
<comments>Code table comments for
Country in EN.</comments>

</locale>
<locale> language="en" country="US">

<comments>Code table comments for
Country in US.</comments>

</locale>
<locale language="en" country="GB">

<comments>Code table comments for
Country in GB.</comments>

</locale>
</codetabledata>

</codetable>
</codetables>

Figure 67. Resulting Code Table File 1

Cúram Server Developer's Guide 105

The main code table file of “Rules of Code Table Merges” on page 102, and the
merge code table file of “Rules of Code Table Merges” on page 102, illustrate the
rules of merging <displaynames> and <name> elements.

<codetables
hierarchy_name="CarHierarchy"
package="curam.codetable">
<codetable java_identifier="CarMake" name="CarMake">

<displaynames>
<name country="GB" language="en">Car Make CustomGB</name>
<name language="lt">Masinos Gamintojas</name>
<name language="en">Car Make Custom</name>

</displaynames>
<code default="false" java_identifier="MITS"
status="ENABLED" value="CMK1">
<locale language="en" sort_order="0">

<description>Mitsubishi</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="AUDI"

status="ENABLED" value="CMK2">
<locale language="en" sort_order="0">

<description>Audi</description>
<annotation/>

</locale>
</code>

</codetable>
<codetable java_identifier="CarModel" name="CarModel"

parent_codetable="CarMake">
<code default="false" java_identifier="COLT"
parent_code="CMK1" status="ENABLED" value="CML1">
<locale language="en" sort_order="0">

<description>Colt</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="LANCER"
parent_code="CMK1" status="ENABLED" value="CML2">
<locale language="en" sort_order="0">

<description>Lancer</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Figure 68. Sample Main Code Table File 2

106 IBM Cúram Social Program Management: Cúram Server Developer's Guide

As a result of the merge process, the resulting code table file would be:

<codetables
hierarchy_name="CarHierarchy"
package="curam.codetable"

>
<codetable java_identifier="CarMake" name="CarMake">

<displaynames>
<name country="US" language="en">Car Make US</name>
<name language="fr">Marque</name>
<name language="en">Car Make Core</name>
<name language="en" country="GB">Car Make CoreGB</name>

</displaynames>
<code default="false" java_identifier="MITS"

status="ENABLED" value="CMK1">
<locale language="en" sort_order="0">

<description>Mitsubishi</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="AUDI"

status="ENABLED" value="CMK2">
<locale language="en" sort_order="0">

<description>Audi</description>
<annotation/>

</locale>
</code>

</codetable>
<codetable java_identifier="CarModel" name="CarModel"

parent_codetable="CarMake">
<displaynames>

<name language="en">Car Model</name>
</displaynames>
<code default="false" java_identifier="COLT"
parent_code="CMK1" status="ENABLED" value="CML1">
<locale language="en" sort_order="0">

<description>Colt</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="LANCER"
parent_code="CMK1" status="ENABLED" value="CML2">

<locale language="en" sort_order="0">
<description>Lancer</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Figure 69. Sample Merge Code Table File 2

Cúram Server Developer's Guide 107

Artefacts Produced by ctgen Build Target
The artefacts produced from the code table file of “Rules of Code Table Merges” on
page 102, are a symbol definition file (Java class) and an SQL file.

The symbol definition file is a Java file containing constants for code table
identifiers used in the code table XML file. This file can be used in conjunction
with the curam.util.CodeTable interface to access code table information
programmatically.

The Java file is generated to /build/svr/codetable/gen/<package> directory, where
<package> is the package attribute specified in the codetable file. For example,

<codetables
hierarchy_name="CarHierarchy"
package="curam.codetable">
<codetable java_identifier="CarMake" name="CarMake">

<displaynames>
<name country="GB" language="en">Car Make CustomGB</name>
<name language="lt">Masinos Gamintojas</name>
<name language="en">Car Make Custom</name>
<name country="US" language="en">Car Make US</name>
<name language="fr">Marque</name>

</displaynames>
<code default="false" java_identifier="MITS"
status="ENABLED" value="CMK1">
<locale language="en" sort_order="0">

<description>Mitsubishi</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="AUDI"
status="ENABLED" value="CMK2">
<locale language="en" sort_order="0">

<description>Audi</description>
<annotation/>

</locale>
</code>

</codetable>
<codetable java_identifier="CarModel" name="CarModel"
parent_codetable="CarMake">
<displaynames>

<name language="en">Car Model</name>
</displaynames>
<code default="false" java_identifier="COLT"
parent_code="CMK1" status="ENABLED" value="CML1">

<locale language="en" sort_order="0">
<description>Colt</description>
<annotation/>

</locale>
</code>
<code default="false" java_identifier="LANCER"
parent_code="CMK1" status="ENABLED" value="CML2">
<locale language="en" sort_order="0">

<description>Lancer</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Figure 70. Resulting Code Table File 2

108 IBM Cúram Social Program Management: Cúram Server Developer's Guide

package="curam.codetable" would result in the Java artefacts being placed in the
/build/svr/codetable/gen/curam/codetable directory.

The code table SQL file contains inserts for the CodeTableHeader and
CodeTableItem database tables. All SQL file artefacts are placed in a common
directory: /build/svr/codetable/sql/.

Note: If code table files of the same name exist in different components with
different package attribute values then the symbol definition file (Java class)
artefacts are placed in the package specified by the code table file of the
component with the highest precedence order (as listed in the
SERVER_COMPONENT_ORDER environment variable).

These artefacts are best illustrated by example:

Cúram Server Developer's Guide 109

It should be noted that this pattern of generation means that the Strings will not be
interned by the Java compiler. This allows the dependency checking in the build
scripts to operate correctly. If an empty string is provided for a Java Identifier the
code is only mapped into persistent data (SQL file) and is not reflected in the Java
artefacts.

package curam.codetable;

/**
* Generated AcceptanceStatus codetable file.
*
*/

public final class ACCEPTANCESTATUS {

/**
* TABLENAME=AcceptanceStatus.
*/
public static final String TABLENAME

= new String("AcceptanceStatus");

/**
* DEFAULTCODE=ACS1.
*/
public static final String DEFAULTCODE

= new String("ACS1");

/**
* Retrieves the defaultCode from the cache.
*
* @returns the default code value
*
* @throws curam.util.exception.AppException
* Generic Exception Signature.
* @throws curam.util.exception.InformationalException
* Generic Exception Signature.
*/
public static String getDefaultCode()

throws curam.util.exception.AppException,
curam.util.exception.InformationalException {

return curam.util.type.CodeTable.getDefaultItem(TABLENAME);
}

/**
* ACS1=Accepted.
*/
public static final String ACCEPTED

= new String("ACS1");
/**
* ACS2=Provisional.
*/
public static final String PROVISIONAL

= new String("ACS2");
/**
* ACS3=Rejected.
*/
public static final String REJECTED

= new String("ACS3");
/**
* ACS4=Unknown.
*/
public static final String UNKNOWN

= new String("ACS4");
}

Figure 71. Sample Java file produced from code table file

110 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The persistent data associated with code tables is generated into the common
/build/svr/codetable/sql/ directory.

Note: If any <locale> entries specify a language (and optional country) which are
not contained in the SERVER_LOCALE_LIST environment variable they will be
ignored during generation and a warning will be produced.

Also, while generating the codetable SQL artefacts containing the contents for the
CodeTableItem and CodeTableHeader database tables, the LASTWRITTEN field
with an initial value will be populated. The initial value is a time stamp which is
set to the time when the data is inserted into the database.

--
-- Cúram Code Table SQL Data File
--

--
-- CODETABLE AcceptanceStatus
--
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,

ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES (’AcceptanceStatus’, ’ACS1’, ’Accepted’, ’’, ’1’,
0, ’en_US’, CURRENT_TIMESTAMP(’’));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES (’AcceptanceStatus’, ’ACS2’, ’Provisional’, ’’, ’1’,
0, ’en_US’, CURRENT_TIMESTAMP(’’));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES (’AcceptanceStatus’, ’ACS3’, ’Rejected’, ’’, ’1’,
0, ’en_US’, CURRENT_TIMESTAMP(’’));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES (’AcceptanceStatus’, ’ACS1’, ’Passed’, ’’, ’1’,
0, ’en_GB’, CURRENT_TIMESTAMP(’’));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES (’AcceptanceStatus’, ’ACS2’, ’Pending’, ’’, ’1’,
0, ’en_GB’, CURRENT_TIMESTAMP(’’));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES (’AcceptanceStatus’, ’ACS3’, ’Failed’, ’’, ’1’,
0, ’en_GB’, CURRENT_TIMESTAMP(’’));

INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION,
ANNOTATION, ISENABLED, SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)

VALUES (’AcceptanceStatus’, ’ACS4’, ’Unknown’, ’’, ’1’,
0, ’en’, CURRENT_TIMESTAMP(’’));

INSERT INTO CodeTableHeader (TableName, TimeEntered,
DefaultCode, LASTWRITTEN)

VALUES (’AcceptanceStatus’, CURRENT_TIMESTAMP(’’),
’ACS1’, CURRENT_TIMESTAMP(’’));

Figure 72. Sample SQL file produced from code table file

Cúram Server Developer's Guide 111

The same artefacts are produced for the code table file of “Rules of Code Table
Merges” on page 102, also, because the file contains a <displaynames> element,
additional artefacts are created, i.e. a properties file is generated for each <name>
element it contains.

The ctgen target produces one properties file for each locale (composite of
language and country attributes) and <name> element within the <displaynames>
element of a code table definition. Locale is defined by the language and country
attributes of the <name> element. These properties files define the display names
associated with each code table in a code table hierarchy.

The properties files are generated into /build/svr/codetable/gen/. If no
<displaynames> element is specified for a code table hierarchy, no properties file is
generated, and a warning will be displayed. The name of the generated properties
file consists of the code table name along with the locale. Since a code table name
with spaces renders a properties file invalid and unlocalizable, any spaces specified
in the code table name will be replaced with the underscore character.

The warning, i.e. warning where a <displaynames> element is not specified, is only
treated as a warning and never an error, regardless of the setting of the property
prp.warningstoerrors.

If the locale specified for the <name> element is not supported, then the ctgen will
display a warning and no properties file for that locale will be generated.

The following is an example of properties files produced by the ctgen on the
“Rules of Code Table Merges” on page 102. Each properties file is generated to
/build/svr/codetable/gen/

Code Table Hierarchy
Code table files can define a single code table or a hierarchy of code tables. A
hierarchy is where multiple code tables are linked into a number of levels.
Selecting a code at a particular level will reduce the number of selections available
at the next level. Any number of levels in a code table hierarchy is supported.

CarMake=Car Make US

Figure 73. CarMake_en_US.properties

CarMake=Marque

Figure 74. CarMake_fr.properties

CarMake=Car Make CustomGB

Figure 75. CarMake_en_GB.properties

CarMake=Masinos Gamintojas

Figure 76. CarMake_lt.properties

CarMake=Car Make Custom

Figure 77. CarMake_en.properties

CarModel=Car Model

Figure 78. CarModel_en.properties

112 IBM Cúram Social Program Management: Cúram Server Developer's Guide

For example, “Code Table Hierarchy” on page 112 shows a sample hierarchy.
Selecting Ireland as the country will return a sub-list of Meath and Wexford and
selecting Meath as the county will return sub-list of Trim and Navan. Alternatively,
selecting England will return a sub-list of Stafford and London, etc.

Table 30. Address Hierarchy

Level 1 Level 2 Level 3

Country County Town

Ireland Meath Navan

Trim

Wexford Gorey

Enniscorthy

England Stafford Bednall

Stone

London Earlsfield

Eltham

To define a code table hierarchy a code table (CTX) file should be created with a
code table defined for each level in the hierarchy. To indicate that the code table
file contains a hierarchy, the hierarchy_name attribute should be defined on the
<codetables> element.

Each <codetable> defined must then be linked using the parent_codetable
attribute of the <codetable> element. The parent_codetable value should be set to
the name of an existing <codetable> in the file, where the specified code table is the
parent in the hierarchy. All code tables defined in the file, excluding the top level
code table, must have a valid parent_codetable attribute defined for them. A
<codetable> can be linked to only one parent <codetable> and cannot be used in
more than one code table hierarchy.

Each <code> entry in a code table is finally linked to a <code> entry in the parent
code table, using the parent_code attribute. The parent_code value must be the
value of a <code> existing in the specified parent code table. A child <code> cannot
be linked to more than one parent <codetable>.

<codetables package="curam"
hierarchy_name="AddressHierarchy">

<description>
A description of the hierarchy.

</description>

Figure 79. Usage of hierarchy_name attribute

<codetable java_identifier="COUNTY"
name="County" parent_codetable="Country">

Figure 80. Usage of parent_codetable attribute

<code java_identifier="MEATH"
value="MEATH" parent_code="IRELAND" status="ENABLED">

Figure 81. Usage of parent_code attribute

Cúram Server Developer's Guide 113

The hierarchy defined in “Code Table Hierarchy” on page 112 can be represented
as follows in a code table file.

114 IBM Cúram Social Program Management: Cúram Server Developer's Guide

<?xml version="1.0" encoding="UTF-8" ?>
<codetables package="curam" hierarchy_name="AddressHierarchy">

<description>
A description of the hierarchy.

</description>

<codetable java_identifier="COUNTRY" name="Country">
<displaynames>

<name language="en">Country</name>
<displaynames>
<code java_identifier="IRL" value="IRLND" default="true"

status="ENABLED">
<locale language="en" sort_order="1">

<description>Ireland</description>
</locale>

</code>
<code java_identifier="GB" value="ENGLND" status="ENABLED">

<locale language="en" sort_order="2">
<description>England</description>

</locale>
</code>

</codetable>

<codetable java_identifier="COUNTY" name="County"
parent_codetable="Country">

<displaynames>
<name language="en">County</name>

</displaynames>
<code java_identifier="MEATH" value="MTH"

parent_code="IRLND" status="ENABLED">
<locale language="en" sort_order="1">

<description>Meath</description>
</locale>

</code>
<code java_identifier="WEXFORD" value="WXFD"

parent_code="IRLND" status="ENABLED">
<locale language="en" sort_order="1">

<description>Wexford</description>
</locale>

</code>
<code java_identifier="STAFFORD" value="STFFRD"

parent_code="ENGLND" status="ENABLED">
<locale language="en" sort_order="1">

<description>Stafford</description>
</locale>

</code>
<code java_identifier="LONDON" value="LNDN"

parent_code="ENGLND" status="ENABLED">
<locale language="en" sort_order="2">

<description>London</description>
</locale>

</code>
</codetable>

<codetable java_identifier="TOWN" name="Town"
parent_codetable="County">

<code java_identifier="NAVAN" value="NVN"
parent_code="MTH" status="ENABLED">

<locale language="en" sort_order="2">
<description>Navan</description>

</locale>
</code>
<code java_identifier="TRIM" value="TRM"

parent_code="MTH" status="ENABLED">
<locale language="en" sort_order="2">

<description>Trim</description>
</locale>

</code>
<code java_identifier="GOREY" value="GRY"

parent_code="WXFD" status="ENABLED">
<locale language="en" sort_order="2">

<description>Gorey</description>
</locale>

Cúram Server Developer's Guide 115

The artefacts listed in “Artefacts Produced by ctgen Build Target” on page 108 are
also generated for code table files that define a hierarchy.

Properties files are generated for <displaynames> elements. A symbol definition
Java file is generated for each code table in the hierarchy. A single SQL file is
generated, containing the relevant inserts to the CodeTableHeader and
CodeTableItem database tables for all defined code tables. These insert statements
will include the population of the parentCode field in the CodeTableItem table and
the parent_codetable field in the CodeTableHeader table. An insert entry is also
generated for the CodeTableHierarchy database table. This table is used for
administration purposes only.

Note: The code table hierarchies can only be created through code table (CTX) files
and not through the admin screens. The admin screens can only be used to
maintain the code table hierarchies.

Retrieving Codes from Code Table Files
Since a code table file can contain any number of locales for a named code a
mechanism needs to be in place to return the correctly localized code for a running
instance of Cúram. Codes are retrieved from a code table file based on the locale
property which includes a language and, optionally, a country. The code table file
look up returns a matching localized code for a named value. For example, if the
runtime locale is set to en_US where “en” is the language and “US” is the country,
a code look up for the code named ACODE in the example below, will return the
text “The code”. If, however, the runtime locale was set to “fr”, the text “Le code”
would be returned.

Since code table files are not guaranteed to contain an entry for every country, a
fall back mechanism is in place. Once a code of a given name has been found and
there is no direct match with the specified locale, the rules for fall back are as
follows:
v If the runtime locale is set to include a language and country, the country is

removed and the search looks for a matching language only. Looking up the
code named ACODE in the example above, with runtime locale fr_CN would
return the text “Le code”.

<codetables package="curam.codetable">
<codetable java_identifier="AN_ID" name="ANAME">

<code default="true" java_identifier="ACODE"
status="ENABLED" value="ACODE">

<locale language="en" country="US" sort_order="0">
<description>The code</description>
<annotation></annotation>

</locale>
<locale language="en">

<description>The en code</description>
<annotation></annotation>

</locale>
<locale language="fr">

<description>Le code</description>
<annotation></annotation>

</locale>
</code>

</codetable
</codetables>

Figure 83. Code File Search

116 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v If nothing is found for the runtime locale for either language and country or
language only, then a search using the fall back locale of en will be used.
Looking up the code named ACODE in the example above, with runtime locale
es would return the text “The en code”.

For example, if the runtime locale is set to fr_CA, then the following will be the
search path:
v Search on fr_CA,
v Search on fr
v Search on en

If nothing is found for either the runtime locale or the fallback locale of en, then an
empty string is returned.

Localizing SDEJ Code Table Files
It is possible to localize or modify the codetable files shipped with the SDEJ. These
codetable files are located in the codetable directory of the SDEJ and are in the
same format as Cúram application codetable files but with the extension .itx.

To localize these files copy the particular .itx codetable file to be modified from
the SDEJ to the codetable directory of a component in your Cúram application, for
example, SERVER_DIR/components/custom/codetable. The .itx codetable file can
then be modified in the same way as any codetable file; overriding a code or
adding a new locale for all the codes.

Note: If the package attribute in the codetable file is modified the localization will
not work.

The ctgen target, when run, will merge the localized .itx codetable file with the
original one located in the SDEJ. The localized codetable file will have the higher
precedence order. It will then generate the sql files only. No Java artefacts will be
generated for codetable files with the extension .itx.

The datamanager_config.xml file, located in the project/config directory specifies
the location of the common directory for generated SQL artefacts. There is no
requirement to update this entry for localized code tables as all .sql files are
generated to the same location.

Note: The <description> sub-element is an optional element for the <codetables>
element in the codetable (CTX) files. The <description> element is mainly used to
define a description for the code tables for developers information. The description
is not saved into any database tables for normal code tables. However, for Code
Table Hierarchies, if the description is defined in the CTX file, then the
<description> value is saved to the description attribute in the CODETABLEHIERARCHY
table. This value will be displayed on the Code Table Hierarchy page of the Cúram
Administration screens.

< entry
name="build/svr/codetable/sql/"
type="sql"
base="basedir"/>

Figure 84. Datamanager entry for the code table SQL artefacts location

Cúram Server Developer's Guide 117

Specialized Readmulti Operations

Overview
Generated readmulti operations in IBM Cúram Social Program Management
servers execute SQL SELECT statements and return the resulting record set as an
ArrayList. In fact, readmulti operations are implemented as two very distinct
pieces:
v a Data Access Layer function which establishes the result set, through building

up the statement, executing an executeQuery on it, and finally a series of
getResultObject statements, and

v a Business Object Layer function which assembles the results into the required
in-memory vector of structures.

The Business Object Layer function is a specialization of a general class of
functions called readmulti operations, which can perform arbitrary processing on
the contents of SQL cursors. You can view the definitions of these function classes
in curam.util.dataaccess.ReadMultiOperation. This ReadMultiOperation is the
parent abstract class, while curam.util.dataaccess.StandardReadMultiOperation is
a concrete subclass providing an implementation of “normal” readmulti functions.

“Specialized readmulti operations” are simply hand-crafted functions “plugged
into” the Data Access Layer using generated helper classes. The pattern in use here
is similar to the Visitor design pattern described in Design Patterns by Gamma et al.
Readmulti operations are “plugged into” the appropriate Data Access Layer
functions by generated readmulti helper classes, which insulate the operation from
knowledge about the specific Data Access Layer functions used.

When to Use Readmulti Operations
“Normal” readmulti operations return a set of database records as an ArrayList.
There are several situations in which you might want to replace this type of
standard “normal” readmulti operation with your own specialized processing.

An example is in batch processing where you want to iterate across a large number
of records on a database table, and process each record in turn. It is not feasible to
use a standard readmulti operation to assemble an in-memory vector of all of the
records read before processing. Another common example is where you want to
lock or delete records from the result set as they are processed. In each of these
examples you can write your own readmulti operations to process records
individually as they are retrieved from the database rather than relying on the
standard processing supplied by StandardReadMultiOperation.

How to Define Your Own Readmulti Operations
The steps that you follow to define your own specialized readmulti operations are
as follows:
1. Add the readmulti operation to your UML application model. We will assume

for this example that you add a standard readmulti operation called readmulti
to an entity called E. The standard readmulti operation whose “details”
structure will be called EDtls. However, this example applies equally to
readmulti, nsreadmulti, nkreadmulti and nsmulti operations in the UML
application model, where the “details” structure might not be a generated
entity details structure.

2. Write the specialized readmulti operation class, as follows:

118 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Note: If the readmulti operation specifies a 'Post Data Access' or 'On-fail'
operation then your readmulti operation must be a subclass of
curam.util.dataaccess.StandardReadMultiOperation. This is because this class
builds up an in-memory list of the structs which are read by the readmulti
operation in order to make it available to thePost Data Access andOn-fail
operations.

If your readmulti operation processes large numbers of records then this could
cause an excessive memory usage overhead; so caution is advised if using
specialized readmulti operations in conjunction withPost Data Access
orOn-fail operations.

3. Implement MyReadMultiOperation. operation to perform your specific
processing. This method will be called automatically for each record retrieved
from the database.
In general, always return true from readmulti operations. In unusual cases,
where you want to stop processing before you hit the end of the record set,
return false. This means the operation method will not be called again.

4. Write the code that will invoke the readmulti operation. This will appear in a
BPO implementation and look like this:

Each generated readmulti function is associated with a generated “helper” class
which exists solely for use in code like that above. The helper class is scoped
inside the entity class and has an execute method that begins a readmulti.

Extra Features of Readmulti Operations
v TheREADMULTI_MAX option in the model limits the number of records processed

by a standard “normal” readmulti operation. It has however no effect when you
hand-craft your own operations. As a result none of the overrides for this option
(defined in “Cúram Configuration Settings” on page 37) have any effect. To limit
the number of records returned within your readmulti subclass you must
override the following method:
public int getMaximum();

static class MyReadmultiOperation extends
curam.util.dataaccess.ReadmultiOperation {

public boolean operation(Object objDtls) throws
AppException, InformationalException {

// No implementation for the moment

return true;

}

}

// instance of specialized operation class
MyReadMultiOperation op = new MyReadMultiOperation();

// instance of readmulti key structure
EReadmultiKey key;

// set key fields for search
key.id = 99;

// construct helper and call operation
E.newInstance().readmultiHelper(key, op);

Cúram Server Developer's Guide 119

v You can filter out records from the database result set by overriding the
following method of your readmulti subclass:
public boolean filter(Object dtls) throws AppException,
InformationalException;

Each record is passed to filter before being passed to your operation method.
Any record which results in filter returning false is not passed to operation.
The default filter always returns true.

v If you want to write code that is called before the first row is passed to
operation, you can override:
public void pre() throws AppException, InformationalException;

If you want to write code that is called with the first row read from the
database, you can override:
public void first(Object dtls) throws AppException,
InformationalException;

The same record is also passed to the operation method.

Note: Note that first is called as long as there is at least one row in the result
set, regardless of whether or not filter returns true for this row.

v If you want to write code that is called after the last call to operation, you can
override:
public void post() throws AppException, InformationalException;

Be aware, this function is always called once, regardless of the value returned by
the operation method.

v An optional third parameter to the execute method of readmulti helper classes
is a boolean which specifies whether records read from the database will be
updated later in the transaction. This can be used as in:

This means that each record read from the database is locked for write access as
it is read.

You can use a combination of the above methods, with your own data members, to
achieve many common styles readmulti operation. For instance, “Extra Features of
Readmulti Operations” on page 119 shows a readmulti operation that produces a
report grouped by department:

E.newInstance().readmultiHelper(key, op, true);

120 IBM Cúram Social Program Management: Cúram Server Developer's Guide

static class MyReadmultiOperation
extends curam.util.dataaccess.ReadmultiOperation

{
// Remember last dept, for grouping
private String lastDepartment;

// Department salary accumulator
private curam.util.type.Money salaryDeptTotal;

// Total Salary Accumulator
private curam.util.type.Money salaryGrandTotal;

public void pre()
throws AppException, InformationalException {
// initialization
lastDepartment = "";
salaryGrandTotal = 0.0;

}

public void first (Object dtls)
throws AppException, InformationalException {

// per-department group initialization
salaryDeptTotal = 0.0;

// remember last department for grouping.
lastDepartment = dtls.department;

}

public boolean operation(Object dtls)
throws AppException, InformationalException {

// Change of department group
if (!(lastDepartment.equals(dtls.department))) {

printGroupTotals();

// redo per-dept initialization
first(dtls);

}

// detail report line
curam.util.resources.Trace.kTopLevelLogger.info("Emp ");
curam.util.resources.Trace.kTopLevelLogger.info(

dtls.employeeId);
curam.util.resources.Trace.kTopLevelLogger.info(
" salary: ");

curam.util.resources.Trace.kTopLevelLogger.info(
dtls.salary);

// accumulate dept salary
salaryDeptTotal += dtls.salary;

// accumulate total salary
salaryGrandTotal += dtls.salary;

return true;
}

public void post()
throws AppException, InformationalException {
// only if there was at least one department
if (!(lastDepartment.empty())) {

printGroupTotals();
// final group
// Grand total report line:
curam.util.resources.Trace.kTopLevelLogger.info(

"Grand total salary: ");
curam.util.resources.Trace.kTopLevelLogger.info(

salaryGrandTotal);
}

}

public int getMaximum() {
// Explicitly enforce that all matching records are

Cúram Server Developer's Guide 121

An Alternative
Specialized Readmulti operations and non-standard operations allow the developer
a greater level of freedom when handcrafting database access code. However in
certain situations this may prove to be too limiting. For example where the SQL
string will be derived from the input parameters to a method; parts of the 'where'
clause will be optional or expressed differently depending on the input. In these
situations the developer can obtain the Connection being used for database
communication through the TransactionInfo. getInfoConnection interface. Once
this connection has been obtained it is possible to execute any form of handcrafted
JDBC in the context of the Cúram transaction.

To enable this style of database access to be visible in the model it should be
placed in an entity which has theNO_SQL option enabled. This is detailed in the
Cúram Modeling Reference Guide.

Summary
The order in which your readmulti operation methods are called is:
v pre - always called once before anything else;
v first - called once with the first record, provided at least one record exists;
v filter - called for each record (including the first);
v operation - called for each record for which filter returns true;
v post - always called once after everything else;
v getMaximum - specifies the maximum number of records that should be matched.

If you are designing processing that maintains locks remember that there are
performance implications when you do so.

Deprecation

Introduction
IBM IBM Cúram Social Program Management uses deprecation as a means of
reducing the impact of change on custom applications. This chapter describes
deprecation in Cúram: what it is, how it can affect custom code, what it means for
support and the build infrastructure that helps pinpoint custom artefact
dependencies on deprecated Cúram artefacts.

Overview
In enhancing Cúram in a Major Version release or fixing defects in a Service Pack,
the necessity occasionally arises where the contract of a Cúram development
artifact has to be changed. In this context the contract of an artifact is its API or
signature (e.g. name, parameters, return values, etc) in conjunction with its
documented statement of functionality (e.g. JavaDoc).

Prior to Cúram 6.0, such changes would typically have been made in place,
potentially causing compilation errors or unexpected runtime behavior in a custom
application. This policy changed in 6.0 to favor adding a new artifact which
implements the changed behavior while preserving the original artefact and
marking it 'deprecated'. This has two main benefits for custom applications.
Primarily, it provides back-compatibility for any references in custom code to the
deprecated artefact (n.b. it does not provide back-compatibility for a custom

122 IBM Cúram Social Program Management: Cúram Server Developer's Guide

override of the deprecated artefact). It also eliminates a source of compilation
failures during upgrades, which can hamper the development of a reliable upgrade
plan. These effects are described in more detail in this chapter.

Finally, infrastructure is provided in Cúram that extends Java 's command-line
compiler deprecation warnings to certain Cúram builds. This helps pinpoint
dependencies in custom applications on deprecated Cúram artefacts. It also helps
distinguish between references-to and customizations-of deprecated artefacts in
custom code. That build infrastructure is also described in this chapter.

Other Sources of Information
Information about specific deprecated artefacts, can be found in the artefact itself
and also in the 'Notes on Deprecation' section of the Cúram release notes.

In the artefact itself, the deprecated element will be marked as described in
“Artefact Types that can be Deprecated” on page 125. This marker includes space
for a short 'deprecation comment' about the replacement functionality for the
deprecated item and a reference to any associated release note containing more
context. To make your analysis easier, Cúram validation and compilation steps will
include this comment in the build warning, to save you looking up the deprecated
artefact. However, this enhanced build warning is only available from Cúram
compilers/validations, the command-line Java compiler does not have equivalent
functionality. It is recommended you view Java warnings in your IDE for fast
navigation between artefacts.

If the information in the artefact's deprecation comment does not provide enough
context, additional information can be found in the Cúram Release Notes. You can
search these by the name of the deprecated artefact or by the release note ID
referenced in its deprecation comment.

Effect of Deprecation on a Custom Application
In Cúram, a 'deprecated' artefact means an artefact that has been replaced by other
functionality and is no longer part of the default flow of Cúram. Deprecated
artefacts remain present in the application codebase, but they are not referenced by
the out-of-the-box runtime application. If deprecated artefacts are referenced in the
out-of-the-box application codebase, it is only by other deprecated artefacts.

To quickly pinpoint where custom dependencies exist on deprecated Cúram
artefacts, the command-line Java compiler has been extended to provide
deprecation warnings to Cúram builds and validations. This will be described in
more detail later in this chapter.

Customizations and References
Custom artefacts can depend on deprecated Cúram artefacts either by referencing
them, or by customizing (overriding) them. Reference and customization
dependencies have different characteristics and it is important to understand the
difference. To illustrate:
v Examples of References

– A custom method can call a deprecated Cúram server interface method
– A custom workflow can reference a deprecated Cúram method as an

automatic activity
– A custom UIM client page can link to a deprecated Cúram UIM page

v Examples of Customizations

Cúram Server Developer's Guide 123

– A custom class can subclass a Cúram class and replace (override) deprecated
Cúram methods

– A custom UIM client page can customize (override) a deprecated Cúram UIM
client page

The impact of deprecation on custom code depends on whether that code is
referencing or customizing a deprecated artefact.

Where code references a deprecated Cúram artefact (e.g. calls a deprecated method),
the deprecated artefact still exists and functions in a backwardly-compatible way.
This is the same as for regular Java deprecation where the immediate impact is
minimal or nil.

Where code customizes (overrides) a deprecated Cúram artefact, the base Cúram
Application no longer invokes that artefact - it is no longer part of the "default
flow" of the base application. It is reasonably likely that it has been removed from
the default flow of custom applications. In short, customizations of deprecated
artefacts do not function as before and there is a strong likelihood that some
corrective action will be needed. That action could include dropping the
customization (e.g. if equivalent functionality has since been implemented),
re-applying the customization to the artefact that replaces the deprecated one, etc.

The deprecation build infrastructure provided uses special tags in deprecation
warnings to help distinguish between references-to and customizations-of
deprecated artefacts. This will be described in more detail later in this chapter.

Support for Deprecated Artefacts
Deprecated artefacts will continue to be supported as long as the version in which
they were deprecated remains in-support. Customer-raised defects will continue to
be addressed in the deprecated artefacts during this period. All future
enhancement requests will be directed toward the replacement functionality.

Deprecation of an artefact is an indication of the intent to remove it in a future
version. However, a deprecated artefact will remain in- support as long as the
version it was deprecated in remains in-support. After that, it is subject to removal
without further notice. Extended support for specific artefacts will be considered as
long as the request is made in good time (no less than 6 months in advance of the
relevant version falling out of general support).

You are advised to address any dependencies from Custom code on deprecated
Cúram artefacts at the earliest opportunity. The replacement functionality offers
better support and better upgrades in future. When deprecated artefacts are
removed in a future release, it can cause compilation failures and this can seriously
hamper effective planning of upgrade tasks.

Effect of Deprecation on the User Interface
When client pages are deprecated, this changes the default flow of the client
application to include the replacement functionality. This has two results that do
not occur when other artefacts are deprecated:

Consistency of the User Interface: If existing client pages have been customized or
new pages added which are used in conjunction with deprecated pages, then the
resultant user experience may be changed with the replacement pages. If this is the
case it will be necessary to consider updating the customizations to be consistent
with the replacement pages, or reverting the default flow to use the deprecated
pages.

124 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Documentation/Training Materials: If descriptions and/or screen shots of the
deprecated pages have been included in custom documentation/training materials,
these may need to be updated to describe/show the replacement pages.

Scope

Artefact Types that can be Deprecated
The following artefact types may be deprecated:

Table 31. Artefact Types that can be Deprecated

Area Artefact Type

Modeled Artefacts Process Class, Entity Class, Struct Class, Process Method,
Entity Method.

Java Code Identical to Java deprecation (Class, Interface, Method,
Attribute, etc)

Client Artefacts UIM Page, VIM file, Page Property (.property associated
with a UIM or VIM file)

Messages Message Catalog Entry

All of these artefact types support explanatory comments attached to the
deprecation tag. These can be easily found by searching for the string 'deprecated'
within the artefact in question. For .java files (and model artefacts), the
@deprecated JavaDoc tag is used in the normal way. For XML files such as
UIM/VIM files and message catalog entries, the <?curam-deprecated XML
processing instruction is used. Finally, in property files, the string .deprecated is
appended to the name of a property to denote that that property is deprecated.

Entity Classes: Please note that for Entity Classes, the term 'deprecation' refers
entirely to the generated Java artefacts derived from the Entity and does not refer
to data associated with that entity. The Cúram Generator produces no database
schema representation for a deprecated Entity, it is expected that this data has
migrated to another Entity (or Entities). Entities are deprecated in order to
minimize the code impact of changes to the data model. The deprecated Entity's
purpose is to re-route method calls to the appropriate replacement Entity (or
Entities). As such, deprecated Entities follow the same pattern as other classes -
references to the entity will continue to function as before, customizations
(overrides) will not.

Limitations
There are certain limitations of the deprecation infrastructure to be aware of:
v No build warnings will be produced for non-typed references to deprecated

artefacts. For example, if the UIM page Participant_viewAddress.uim was
deprecated and a Java method contained a "Participant_viewAddress" string
literal - this would not be picked up by the build warnings because the reference
is not typed - the compiler cannot know that the String refers to a UIM page.

v The deprecation infrastructure is comprised of a deprecation tagging capability
and build/validation warning capability (reporting dependencies on tagged
artefacts). The build/validation warning capability is intended for customer use.
The deprecation tagging capability is not intended for customer use and is
therefore not supported. For example, using the <?curam-deprecated processing
instruction in custom XML files is not supported.

Cúram Server Developer's Guide 125

Running a Deprecation Report
Cúram has developed infrastructure that extends Java 's command-line compiler
deprecation warnings to certain Cúram builds. This helps pinpoint dependencies in
custom applications on deprecated Cúram artefacts. It also helps distinguish
between references-to and customizations-of deprecated artefacts in custom code.

Configuring the Deprecation Report
Deprecation reporting in Cúram is controlled by two properties:
v Ensure the prp.warningstoerrors build property, is set to false or the build may

be unable to complete (false is the default for this property, so if you do not
override the property then the default is fine).

v The curam.deprecation.reporting property in the bootstrap.properties file
controls the reporting of deprecation warnings. Warnings are not displayed if
this property is set to false. The property defaults to true so if it is not specified
deprecation warnings will be displayed.

v It is recommended you remove "Sample" components (Sample, CPMSample, etc)
from the CLIENT_COMPONENT_ORDER environment variable before running
the commands below. These components may generate spurious warnings that
are not relevant to identifying your exposure to deprecated Curam artefacts.

Prerequisites for running the Deprecation Report
The deprecationreport build target calls a sequence of Cúram build targets in order
to provide build output containing a complete set of deprecation warnings. As
there are dependencies between some of the build steps the following builds
should complete successfully before running the deprecationreport target.
v build clean server
v build clean client
v build database

Generating the Deprecation build output
Execute the build target below, it will capture the build output to a
%SERVER_DIR\buildlogs\%Deprecation<timestamp>.log file for further analysis.
v cd %SERVER_DIR%

v build deprecationreport

Identifying deprecation warnings in the build output.
Since the build output has all been directed into the Deprecation<timestamp>.log
file, check that file, to ensure that the overall build succeeded. Ant prints either a
'BUILD SUCCESSFUL' marker in the last few lines of that file if all parts of the
build completed (or 'BUILD FAILED' if any failed).

Since you have already confirmed that the server, client and database builds
complete successfully, the only issues that are expected to cause this target to fail
are validation issues. Since the validation of one file has no bearing on the next,
the these targets do not stop on a failed validation. They aim to provide as
complete a picture as possible by validating all files and only reporting success or
failure at the end of the build. So the deprecation information will still be
produced for all files that pass validation.

Finally, to get a summary report of all exposure to deprecated artefacts, filter the
deprecation.log for the [deprecation] tag. You can use grep or the Windows find
utility for this, or your preferred text editor. e.g.:

126 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The resulting deprecation_summary.log file will contain only the deprecation
warnings produced by the build.

Tip:: Since some warnings can be broken over more than one line, it is useful to
hold on to the original deprecation.log as well.

Notes on running the Deprecation Report
v This build can take some time to run, as it has to do a clean followed by server

and client build, in order to identify all dependencies. The target also does the
validations for several artifact types.

v Although the deprecationreport target generates the deprecation build log, it
is not always necessary to rerun the entire build in case it fails. If the build fails
due any validation, the validation target can be ran in isolation. After fixing all
the validation issue, deprecationreport target should be executed to ensure the
deprecation build log is complete.

v The deprecationreport calls the validation target. For example: The
deprecationreport will fail if validateallworkflows target will report an error,
as the build output from other builds is not available.
[deprecation] The client has not been built and therefore it
cannot be determined if UIM pages referenced are
deprecated.

v By default the Java compiler limits the number of compiler warnings displayed.
The Cúram build specifies this limit as 10,000, which means that the compiler
will display 10,000 warnings followed by a message that, there were further
warnings. This value can be overridden by passing -Dcmp.maxwarnings to the
build.

v IEG scripts can also contain dependencies on server and/or client artifacts that
have become deprecated. However, this scenario is not covered by validation
targets at this time. If you have IEG scripts, you will need to manually inspect
UIM page and server interface references to identify any dependencies on
deprecation pages or interfaces.

Note: Since some warnings can be broken over more than one line, it is useful to
hold on to the original deprecation.log as well.

Analyzing Deprecation Warnings
Once you have produced a summary deprecation build log you need to identify
the deprecation warnings contained in it. This section describes how to identify
and categorize the deprecation warnings

Identifying overrides of deprecated artefacts
As described in “Customizations and References” on page 123 there are significant
differences between the effects of deprecation on references and on customizations.
Identifying overrides of deprecated artefacts is relatively simple. The deprecation
summary report you produced in “Running a Deprecation Report” on page 126
pinpoints all dependencies on deprecated artefacts using the standard Java
[deprecation] tag in the build log. Curam code generators and command-line

grep "\[deprecation\]" Deprecation<timestamp>.log
1> deprecation_summary.log 2>&1
or
find "[deprecation]" Deprecation<timestamp>.log
1> deprecation_summary.log 2>&1

Figure 86. Getting a Summary Report

Cúram Server Developer's Guide 127

validations also check for dependencies on deprecated artefacts and produce the
same build warning as Java (using the same [deprecation] tag).

In addition to this, Curam code generators augment the [deprecation] tag with an
additional [customization] tag where your custom artefact is overriding a Curam
artefact, rather than referencing it.

Any lines in your deprecation summary report tagged with [deprecation]
[customization] indicate places where you are overriding an artefact that Curam
has since deprecated (i.e. removed from the default flow of the base application).
Since Cúram has removed this artefact from the default flow of the out-of-the-box
application, it is reasonably likely that it has also been removed from the flow of
your custom application. Where this happens, it will be necessary to address the
override.

The example below shows a custom VIM file that is overriding an out-of-the-box
Curam VIM file. The Curam VIM file has become deprecated, so the client build is
producing this warning. The warning follows the Java deprecation message format:
the first part is the path of the file that references the deprecated artefact, followed
by the [deprecation] tag and, in this case, a [customization] tag also. This is
followed by the name of the artefact that has been deprecated. Finally (and this
differs from the Java format) where possible, any comments attached to the
deprecated artefact are also printed. This saves you having to locate the file and
look up the associated comments.

In the above example, the VIM file is no longer used in the default flow of the
out-of-the-box Curam application. If your application relies on the out-of-the-box
flow, your customization of this file will no longer appear in that flow.

Addressing overrides of deprecated artefacts: There is no single approach to
addressing overrides of deprecated artefacts. You must analyze the modifications
you made to the original (now-deprecated) artefact and determine a suitable course
of action for your customization. Some options are to drop the customization (e.g.
if Cúram have since implemented equivalent functionality), to re-apply the
customization to the artefact that replaces the deprecated one, etc. There are
sources of information that can help you when deciding the appropriate course for
your customization, please see “Other Sources of Information” on page 123

Identifying references to deprecated artefacts
References (e.g. calls to) to deprecated artefacts can also be easily identified in your
deprecation log - they are lines tagged with a [deprecation] marker, but no
[customization] marker.

[processUim]
C:/webclient/components/custom/Case_listView.vim warning:
[deprecation] [customization]
C:/webclient/components/core/Case_listView.vim has been
deprecated. [deprecation comment] Since Curam 6.0,
replaced with Case_listAnotherView.vim. See release note:
CR12345

Figure 87. Example: override of a deprecated artefact

128 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In the above example, the UIM page is no longer used in the default flow of the
out-of-the-box Curam application and is deprecated.

Notes on analyzing deprecation warnings
v You should not see any deprecation warnings from out-of-the-box Curam files.

However, there are instances where a deprecation issue in your custom file can
appear, as if it came from an out-of-the-box Curam file. If you overrode a.VIM
client file that is being used by an out-of-the-box.UIM page, any warnings from
your VIM file will appear as if they came from the out-of-the-box UIM page.
This is because the client build imports.VIM content into UIM pages before
validating it. If you see deprecation warnings from out-of-the-box UIM pages,
please be aware that they may be referring to issues in a custom VIM file.

v If you have included sample components in your build (such as Sample,
CPMSample, etc), you may also see deprecation warnings from these
components. Curam does not recommend including sample components in your
builds.

v You will find [deprecation comment] marker, if the tag @depreceted in
documentation field has a comment. This save you having to look up the file
and then look up the file it's referencing and then get the comment.

v Please be aware that any deprecation warnings marked [bopigen] in the build
log are duplicates of warnings produced earlier in the log and marked as
[servercodegenerator]. You can safely ignore deprecation warnings marked as
[bopigen].

v Warnings coming from generated java classes (those in build/svr/gen) are
by-products of the [customization] warnings produced by the generator and can
generally be ignored. Resolving the "[deprecation] [customization]" issues should
also resolve these generated file warnings.

Note: It is easier to work with java deprecation warnings in Eclipse, than it is to
use the command-line deprecation build logs.

User Preferences

Overview
User preferences are name-value options which specify settings that can be
customized for a particular user. A set of DefaultPreferences is assigned to each
user of the Cúram application.

A user preferences editor is available in the web client. This editor allows each
user to update values for the preferences. Examples of user preference usage
include setting the time zone, or providing a flag to turn a custom option on or off.

A set of user preferences are defined out-of-the-box in Cúram:

[processUim] C:\Curam\webclient\components\custom\
Custom Benefit\Deduction\listThirdPartyDeduction.uim
warning: [deprecation] UIM ProductDelivery_cancelDeduction
has been deprecated. [deprecation comment]
Since Curam 6.0, replaced with ProductDelivery_cancelDeduction1

Figure 88. Example: reference to a deprecated artefact

Cúram Server Developer's Guide 129

Table 32. Out of the box user preferences

Name Description Default Value

Time Zone The user's time zone. Europe/
Dublin

High Contrast Mode The high contrast accessibility feature adjusts the
colors and images used in the application to ensure
all visual content is accessible to users with limited
color vision.

false

User Preferences Definition

Data definition XML file
It is possible to create new user preferences, or override existing user preferences,
by creating a custom DefaultPreferences.xml file.

A custom DefaultPreferences.xml file should be placed in the
EJBServer\components\<component_name>\userpreferences directory, where
<component_name> is the name of a component within the component directory.

The following sample DefaultPreferences.xml file illustrates how a user
preference is defined:

In the user preferences definition example above the preference "sample.pref" is
defined in an XML document with a root Preferences node.

The Preferences document may contain only one <PreferenceSet> element, with
the id attribute set to “default”. The <PreferenceSet> contains any number of
<Preference> elements, each defining a new preference or overriding an existing
one.

The name attribute of <Preference> defines the internal name of the user
preference. This attribute forms a unique name for the preference stored in the
database. In the example above the name is “sample.pref”.

A <Preference> element contains a number of child elements, listed in the table
below.

<Preferences>
<PreferenceSet id="default"

description="The default preferences">
<Preference name="sample.pref" category="DefaultPreferences">

<type>SVR_BOOLEAN</type>
<value>false</value>
<readonly>false</readonly>
<visible>true</visible>
<externalVisible>false</externalVisible>

</Preference>
</PreferenceSet>

</Preferences>

Figure 89. Example of user preference definition

130 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 33. User Preference options

Element Description Mandatory
Default
Value

type Indicates the preference type, which should
be a valid Domain Definition type.

yes N/A

value The initial default value of the user
preference.

yes N/A

readonly A boolean value (true or false) that
indicates whether the preference should be
editable in the user preference editor in the
web client.

no false

visible A boolean value (true or false) that
indicates whether the preference should be
displayed in the user preference editor in
the web client for an internal user, i.e. a
user on the Users table.

no true

externalVisible A boolean value (true or false) that
indicates whether the preference should be
displayed in the user preference editor in
the web client for an external user.

no false

If multiple DefaultPreferences.xml files exist (in different components), the
contents of these files are merged together during a server build. The files are
merged according to the SERVER_COMPONENT_ORDER. Duplicated preferences in a
component with higher precedence in the SERVER_COMPONENT_ORDER will take
priority over those duplicates in components with lower precedence.

The results of the merged user preferences are added to the database by the
database build target for usage at runtime.

Note: Only the default value of the out of the box user preferences in Cúram
should be overridden.

Although the ability to override all elements of a user preference exists it is
strongly recommended that only the actual value, as defined by the <value>
some_value </value> element, should be updated.

Properties files
When defining a user preference in the DefaultPreferences.xml file a
corresponding entry should also be made in an accompanying
DefaultPreferences_<locale>.properties file. where, <locale> represents the
intended locale of the properties. This file specifies the display name that will be
displayed when accessing the user preferences in the web client user preferences
editor. The ability to localize the display name for each of the user preferences is
possible by creating a DefaultPreferences_<locale>.properties file for each
supported user locale. See “Localizing Display Names” on page 132 for more
details on localizing user preferences display names.

A DefaultPreferences_<locale>.properties file should be created if it does not
already exist. The DefaultPreferences_<locale>.properties should be placed in
the EJBServer\components\<component_name>\userpreferences directory with the
corresponding DefaultPreferences.xml.An entry for the user preference defined in
the previous example would be:

Cúram Server Developer's Guide 131

sample.pref=Sample Preference Display Name:

DefaultPreferences_<locale>.properties files in multiple components will be
merged using the same SERVER_COMPONENT_ORDER merge rules that apply to
DefaultPreferences.xml files.

Development Support
User Preferences can be accessed at development time using the getValue() and
setValue() methods in the curam.util.userpreference.impl.UserPreference class.

A user preference must have been previously created before invoking the
setValue() method. See “User Preferences Definition” on page 130 for more details
on creating user preferences.

External Users
To make user preferences available to an external user, you need to make both
client and server changes. These changes are described below.

For the client, you need to set the USER_PREFS_PAGE attribute to true within a
<link> element. Please see the Cúram Web Client Reference Manual for further details
on setting this element.

The ExternalAccessSecurity interface is used to retrieve information for an
external user. This class contains 2 new methods, getUserPreferenceSetID() that
reads user preferences for an external user and modifyUserPreferenceSetID() that
updates user preferences for an external user. These methods must be implemented
in order to retrieve user preferences for an external user. Please see the
Customizing External User Applications chapter in the Cúram Security Handbook
guide for further details on the ExternalAccessSecurity interface.

Once the client and server changes have been implemented, you must ensure that
the relevant user preferences are visible to the external user. The
<externalVisible> element within the DefaultPreferences.xml allows you to
manage the visibility of each user preference to an external user. This element is
described in “User Preferences Definition” on page 130.

If you want to make user preferences available for external users and
<externalVisible> is set to false or is not defined for all user preferences, then
there will be no user preferences displayed for an external user. If you do not wish
to have any user preferences displayed for external users, it is recommended that
the User Preferences link should not be available within the external user
application.

Localizing Display Names
Localized display names can be added by creating new
DefaultPreferences_<locale>.properties files for each DefaultPreferences.xml
file created under directory EJBServer\components\<component_name>\
userpreferences. <locale> represents the intended locale of the properties file and
<component_name> is the name of a component within the component directory.

For example, to support the en_US locale, you should create the following default
preference properties file

DefaultPreferences_en_US.properties

132 IBM Cúram Social Program Management: Cúram Server Developer's Guide

As there may exist multiple DefaultPreferences_<locale>.properties files in
different components, the contents of these default preference properties will be
merged to a MergedDefaultPreferences_<locale>.properties file according to the
SERVER_COMPONENT_ORDER11. This merging happens when running either of the
following targets: mergeuserpreferenceproperties, server.

Before merging the.properties files, the following validations will cause an error
during a build where:
v The specified <locale> is not present in the SERVER_LOCALE_LIST12.
v More than one display name is specified for the same locale.

For example, two display names are specified for locale en_US.

v The <locale> in the property file name includes a country part with more than 2
characters.
For Example:

v The <locale> in the property file name includes a language part with more than
2 characters.
For Example:

v The.properties file is empty.
v The.properties file contains invalid properties.

For Example:

The infrastructure will attempt to display the correct localized name by matching
the country part and language part of the user's locale. If the country part does not
exist, the infrastructure will attempt to match the language part only, and if this
does not exist it will fall back to a default language. The localization of display
names is illustrated below.

If the user is associated with the locale fr_CA, then the application searches the
MergedDefaultPreferences_<locale>.properties files for the display names in the
following order:
1. MergedDefaultPreferences_fr_CA.properties
2. MergedDefaultPreferences_fr.properties
3. MergedDefaultPreferences_en.properties
4. MergedDefaultPreferences.properties

The system first attempts to locate the correct display name for the fr_CA locale in
a MergedDefaultPreferences_fr_CA.properties file. If this file does not exist, or if

11. See “Customizing a Message File” on page 92, for further explanation of SERVER_COMPONENT_ORDER.

12. See “The Format of Message Files” on page 91, for further explanation of SERVER_LOCALE_LIST.

DefaultPreferences_en_US.properties:
Timezone=TimeZone:
Timezone=TimeZone US:

DefaultPreferences_en_USA.properties

DefaultPreferences_eng_US.properties

DefaultPreferences_en_US.properties:
Timezone

Cúram Server Developer's Guide 133

the display name for the user preference does not exist within this file, then the
system looks for MergedDefaultPreferences_fr.properties. If this file does not exist,
then the system will search for a MergedDefaultPreferences_en.properties file
where locale is set to the default system locale. If the display name is not present
the system will fall back to the MergedDefaultPreferences.properties file.

In the case where the display name is not found in any of the properties files (or
the properties files do not exist), the value defined for the name attribute for a user
preference in the DefaultPreferences.xml file will be used as the display name. See
“User Preferences Definition” on page 130 for more details on the name attribute.

Similarly, if the user is associated with the locale en_US, then the application
searches for the display names in MergedDefaultPreferences_<locale>.properties
files with the following priority.
1. MergedDefaultPreferences_en_US.properties
2. MergedDefaultPreferences_en.properties
3. MergedDefaultPreferences.properties

Localizing Infrastructure Preferences Display Names
There are a number of Infrastructure Preferences used in the application and their
display names can be localized in a manner similar to User Preference's display
names. Localized display names can be added by creating new
InfrastructurePreferences_<locale>.properties files under the directory
EJBServer\components\<component_name>\userpreferences. Where <locale>
represents the intended locale of the properties file and <component_name> is the
name of a component within the component directory. A sample file, containing all
the properties available for localisation, can be found in SDEJ\lib\
InfrastructurePreferences.properties.

Transaction Control

Overview
The IBM Cúram Social Program Management Server Development Environment
(SDEJ) abstracts transaction management from the average developer. This section
provides a brief overview for the developer and then details what is happening
“under the hood”. This is a difficult task because of multiple database support,
which provide significantly different ways of supporting the ACID nature of a
transaction. A transaction should be Atomic13, its result should be Consistent14,
Isolated15and Durable16.

13. Atomicity requires that all of the operations of a transaction are performed successfully for the transaction to be considered
complete. If all of a transaction's operations cannot be performed, then none of them may be performed.

14. Consistency refers to data consistency. A transaction must transition the data from one consistent state to another. The
transaction must preserve the data's semantic and physical integrity.

15. Isolation requires that each transaction appear to be the only transaction currently manipulating the data. Other transactions may
run concurrently. However, a transaction should not see the intermediate data manipulations of other transactions until and
unless they successfully complete and commit their work. Because of interdependencies among updates, a transaction might get
an inconsistent view of the database were it to see just a subset of another transaction's updates. Isolation protects a transaction
from this sort of data inconsistency.

16. Durability means that updates made by committed transactions persist in the database regardless of failures that occur after the
commit operation and it also ensures that databases can be recovered after a system or media failure.

134 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Developer's View

Transactions and Method Invocations
Typically in Cúram a Facade method invocation maps to a single transaction. The
exception to this is where the method invokes a deferred process or workflow. See
the Cúram Workflow Management System Developers Guide for more details. The
single transaction starts at the beginning of the Facade method invocation and
finishes at the end.

The transaction demarcation in Cúram is bean managed rather than container
managed and as such the developer must use the APIs in the infrastructure to
checkpoint transactions.

One exception to this general rule is the Key Server. When a Unique ID block is
obtained from the Key Server a separate transaction is started to govern this
database access. This guarantees that long running transactions do not place locks
on the Key Server tables as this would provide an unacceptable bottleneck.

Optimistic Locking and the forUpdate Flag
When a developer creates operations on an entity they must first determine if that
entity supports optimistic locking. Optimistic locking is described in the Cúram
Modeling Reference Guide and provides a suitable method of ensuring that
transactions are ACID. However there are situations when using optimistic locking
can unnecessarily impact on the performance of a transaction. If a record is read
and then modified later in the transaction it is unlikely (though not impossible)
that the record will have changed underneath the developer. Rather than using the
version number it is often more suitable to lock the record when it is read. This
means that it is impossible for another transaction to change the record, so there is
no need to guard the modify with a version number. However it also means that
the possibility of locks and deadlocks increases.

This form of locking is supported in Cúram via an extra parameter which can be
passed to any of the standard read operations. This parameter (forUpdate), when
set to true, will result in an update lock being taken on the record(s) that are being
accessed as part of this query. These locks will not be released until the end of a
transaction.

General Guidelines
There is a golden rule relating to locking and performance in database transactions.
Any records you lock should remain locked for the minimum possible period of
time to reduce database contention caused by other users seeking the same
records. This means that operations that take out locks should be called as late as
possible in your transactions. For example, if you read several records to validate a
transaction, followed by updates to several more records, always perform the
validations first followed by the updates. Try to defer update operations (or reads
with locks) until as late as possible: don't scan a million-record table after taking
out a record lock that ought to be short-lived.

Underlying Design
Transaction management happens on the server, rather than the client side.
Client-initiated transactions would involve complicated and largely unnecessary
communication overhead. However, this imposes a requirement on the application
to guarantee that the database data remains consistent across a series of
client/server calls. In practice this usually involves deferring the database updates
done by a business function until the last client/server interaction in a series.

Cúram Server Developer's Guide 135

Transactions typically have to encompass interactions with more than one resource
manager even if legacy systems are not used. The server database is one resource
manager and the queues used for deferred processing and workflow are another.
In order to guarantee atomicity of a transaction that is distributed across multiple
resource managers, a two-phase-commit protocol is required to coordinate the
distributed transaction.

DB2
At the beginning of a transaction Cúram obtains a single connection to the
database. This connection runs at a specific isolation level:
v Repeatable Read - This guarantees that dirty data is not read and that a second

read will read the same thing as a first.

However specific categories of statements are run at a lower isolation level:
v Cursor Stability - Cursor stability is the DB2 implementation of the SQL

standard Read Committed isolation level. This guarantees that a transaction
cannot read a row with uncommitted changes in it. However it does not
guarantee that a second read will read the same thing as a first.

This is not a separate connection to the database rather the DB2 keyword WITH CS
is automatically appended to the SELECT statement.

All queries which do not have the forUpdate flag set run at the “Cursor Stability”
isolation level. All modifies and queries with the forUpdate flag set run at
“repeatable read” isolation level. This means that they place a lock on the row(s)
that have been read so that they cannot be updated by anyone else, and in the case
of modify operations be read by anyone else. This lock is not released until the
transaction commits.

Oracle
Oracle does not really support the JDBC Isolation levels (mainly because its
underlying support does not truly map to these levels). For this reason Oracle 's
default isolation level is used for all statements. In Oracle there is no possibility of
a dirty read occurring.

Transaction SQL Query Cache

Overview
Benchmarking has identified that the same database query is often performed
numerous times during one transaction in an IBM Cúram Social Program
Management application. This is costly in performance terms and to counteract this
a transaction SQL query cache is now available in the Server Development
Environment (SDEJ). This cache, when enabled, operates at the data access layer
and endures for the lifetime of any one transaction. The cache stores the results of
any SELECT SQL queries for the duration of the transaction in which the operation
was invoked. Subsequent calls in the same transaction will retrieve the required
results from the SQL query cache and will not read the results from the database.

Populating the Cache
The SQL query cache will store the results in memory of any SQL query that
executes a SELECT statement on a database table. Invocation of the following
entity operation stereotypes will result in the results of that query being stored in
the cache:
v read

136 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v nsread
v nkread
v readmulti
v nsreadmulti
v nkreadmulti
v nsmulti
v ns with handcrafted SQL containing a SELECT statement

There are two exceptions to this rule:
v SQL queries that have the FOR UPDATE flag set to true will not have their results

cached. These queries will always result in direct database access. This is due to
the fact that this data is being read for modification and the subsequent update
operation will result in that cache entry being invalidated.

v The results of specialized readmulti operations, where the operation is not an
instance of StandardReadMultiOperation class, will not be cached. This is due to
the fact that a customized ReadMultiOperation can modify the result set for a
SQL query being executed. Since these results are not yet present in the cache,
the cache cannot be invalidated which results in invalid data in the cache (i.e.
the data cached for the SQL query does not reflect the data for that SQL query
on the database).

Invalidating the Cache
The SQL query cache is associated with a transaction and is not global. When any
specified transaction is committed or rolled back, the SQL query cache associated
with that transaction is invalidated.

Any time an update (i.e. an insert, modify or remove operation) is made to a table
associated with a transaction SQL query cache entry, that entry is invalidated from
the cache. For most update operations (i.e. modify, nsmodify, remove etc.), the
invalidation of cache entries is somewhat intelligent. The table affected by the
update is determined from the SQL statement being executed and used to directly
invalidate only the cache entries relating to the table. However, for ns operations
that are executed and contain anything other than a SELECT SQL statement, the
complete SQL query cache associated with that transaction is invalidated.

The following entity operations therefore cause the cache entries containing the
table affected by that operation to be invalidated:
v insert
v nsinsert
v modify
v nsmodify
v nkmodify
v remove
v nsremove
v nkremove
v ns operation with handcrafted SQL that does not contain a SELECT statement
v batchinsert
v batchmodify

As detailed above the transaction SQL query cache endures for the lifetime of a
transaction only. Database updates will result in the invalidation of associated

Cúram Server Developer's Guide 137

entries in the local transaction cache only. As a result, any subsequent reads within
a different transaction will return data from the cache and not as updated on the
database.

Properties
The transaction SQL cache is enabled by default, meaning that the results of SQL
queries will be cached. To disable it, the curam.transaction.sqlquerycache.disabled
property must be set to true in the Application.prx file.

Storing the results of SQL queries that return large result sets may lead to memory
problems in transactions that endure for a long period of time. The most likely
queries that could lead to such problems are those that return data of type CLOB
and BLOB. To cater for SQL queries that return large result sets, a property is
available to control the size of fields of type CLOB or BLOB that may be stored in
the transaction SQL query cache. This property is called
curam.sqlquerycache.lob.max.size and it's default size is set to 500KB.

Further details concerning these properties may be found in “Cúram Configuration
Parameters” on page 161.

SQLQueryCacheAdmin API
A public API is available for the transaction SQL query cache. The class,
curam.util.transaction.SQLQueryCacheAdmin, provides functions that allow
developers to manipulate the transaction SQL query cache at runtime. These
methods include the following:
v enableSQLQueryCache(): this function enables the SQL query cache for the current

transaction.
v disableSQLQueryCache(): this function disables the SQL query cache for the

current transaction.
v clearSQLQueryCacheForTable(String tableName): this function flushes all entries

from the transaction SQL cache that contain the specified table name for the
current transaction.

v clearSQLQueryCache(): this function flushes all of the entries from the transaction
SQL cache for the current transaction.

SQLQueryCacheUtil API
A public API is available which contains utility methods for the transaction SQL
query cache. The class, curam.util.transaction.SQLQueryCacheUtil, provides
utility methods for the transaction SQL query cache. These methods include the
following:
v isSQLQueryCacheEnabled(): This function returns a flag to indicate if the

transaction SQL query cache has been enabled or not.
v runWithSQLQueryCacheDisabled(Runnable run): This function runs the runnable

bypassing the SQL query cache. SQLQueryCache may be needed to be disabled
when there is a need to read the same row multiple times in a transaction to see
if it has changed. For example, in the batch infrastructure it is required to read
the same row multiple times in a transaction to see if it has changed.

Logging
When the tracing level for the Cúram application is set to
curam.util.resources.Trace.kTraceUltraVerbose (see “Logging Level” on page 75
for more details on logging), various lifecycle events concerning the transaction

138 IBM Cúram Social Program Management: Cúram Server Developer's Guide

SQL query cache are logged. These entries may be diagnosed in the logs by the
following starting statement: Transaction SQL Query Cache:. The following events
are logged during the lifecycle of the SQL query cache:
v When an entry is added to the transaction SQL query cache.
v When an entry is invalidated from the transaction SQL query cache.
v When the complete SQL query cache is invalidated as a result of a transaction

being either committed or rolled back.

Deferred Processing

Objective
In this chapter you will learn how to achieve deferred processing for appointed
Business Process Objects (BPOs) in your IBM Cúram Social Program Management
application.

Prerequisites
Before reading this chapter you should be familiar the Cúram Modeling Reference
Guide and the Server Development Environment (SDEJ).

Introduction
In Cúram, describing a Business Process method as a Deferred Process means that
this method is invoked asynchronously. A BPO within your Cúram application that
calls a method of another BPO, configured for deferred processing, does not wait
for it to return. Deferred Processing is accomplished, in part, by configuring
queues in the middleware17. Any request over the queued enactment interface is
deferred.

The structure of this guide is a step-by-step walk-through and explanation of what
you must do in order to achieve deferred processing in your application.

Model Your Deferred Processes
A deferred process is identified in your application model by selecting the
<<wmdpactivity>> stereotype on a method of a <<process>> class. Each deferred
processing method must be defined to take the following input parameters:

Note: The application does not invoke a deferred process method using these
parameters. These are the parameters passed to the method by the deferred
processing server once the process is enacted.
v The ticket ID of the DPTicket record generated by the deferred processing engine

(long datatype).
v The instance data ID (type of long) of the WMInstanceData record associated with

the deferred process method at the time of enactment. This gives the deferred
process method access to any information you wish it to have in order to carry
out the required processing (long datatype).

v A boolean flag. This parameter is internal to the deferred processing
infrastructure. It should be ignored, but must be part of the signature of the
method (boolean datatype).

17. WebSphere Application Server and WebLogic. For exact details on the versions of these products, see the Cúram Supported
Prerequisites document.

Cúram Server Developer's Guide 139

“Model Your Deferred Processes” on page 139 shows the code that is generated for
a method that is stereotyped as <<wmdpactivity>>. The required parameters must
be specified in the model by the developer. You are not concerned with how these
parameters are provided to the deferred process (that is taken care internally by
the deferred processing engine following the enactment request). You, however,
must code the logic of your deferred process into this method.

Note: Your deferred process should not attempt to perform any begin, commits or
rollbacks via the TransactionInfo class or attempt any other forms of Java EE
Transactional Control. This also applies to any methods that are invoked by
workflows or deferred processes, regardless of how deep in the call stack. As well
as deferred processes the examples of the methods include implementations of
workflow or deferred processing interfaces (such as NotificationDelivery,
WorkResolver, curam.util.deferredprocessing.impl.DPCallback, etc.) and any
methods called by either of the above.

Deferred Process Enactment
Deferred processes are enacted via the Deferred Processing Enactment Service.

Consider the situation where a BPO within your Cúram application needs to call a
deferred process in order for it to do some other processing. The call must be
made as shown in “Deferred Process Enactment.” Within the calling BPO you
should populate a WMInstanceData record (see “WMInstanceData” on page 141,
how to define this entity) with the information that you want to be accessible to
the deferred process.

The class DeferredProcessing is available to you from the SDEJ.

public void sampleDeferredMethod(long ticketID,
long instDataID,
boolean flag)

{
// Method logic goes here

}

Figure 90. wmdpactivity stereotype method

140 IBM Cúram Social Program Management: Cúram Server Developer's Guide

“Deferred Process Enactment” on page 140 shows a Cúram application BPO that
calls a deferred process method. The key points to note, however, are that the
WMInstanceData record is set up as part of the calling BPO implementation. The
DeferredProcessing.startProcess() is then used to request the enactment of the
deferred process method. The parameters of this method are:
1. The name of the deferred process method being requested. This string value is

configured by you in the DPProcess table. The exact configuration of the
DPProcess table for deferred processing is dealt with in “Configuration of
Deferred Processing Table” on page 142.

2. The instance data ID of the WMInstanceData record that is populated with
information that you deem necessary to be used by the deferred process.

3. Optional The Error Handler that implements the TicketCallback interface that
should be invoked if an error occurs. If the parameter is not provided the
global error handler set through the property
curam.custom.workflow.ticketcallback is called.

WMInstanceData
WMInstanceData allows the definition of application data that is particular to each
deferred process, so that values can be supplied for that data for each instance of
the deferred process.

import curam.util.AppException;
import curam.core.fact.WMInstanceDataFactory;
import curam.core.intf.WMInstanceData;
import curam.core.struct.UsersDtls;
import curam.core.struct.WMInstanceDataDtls;
import curam.util.fact.DeferredProcessingFactory;
import curam.util.intf.DeferredProcessing;
import curam.util.resources.GeneralConstants;
import curam.util.resources.KeySet;
import curam.util.type.UniqueID;

public class MyBPO extends curam.core.base.MyBPO {

public void doOnlineOperation(int caseID,
UsersDtls usersDtls)
throws AppException {

DeferredProcessing deferredProcessingObj
= DeferredProcessingFactory.newInstance();

WMInstanceData wmInstanceDataObj=
WMInstanceDataFactory.newInstance();

WMInstanceDataDtls wmInstanceDataDtls
= new WMInstanceDataDtls();

// Create a new instance data record
wmInstanceDataDtls.wmInstDataID

= UniqueID.nextUniqueID(KeySet.kKeySetDefault);
wmInstanceDataDtls.caseID = caseID;
wmInstanceDataDtls.enteredByID = usersDtls.userName;
wmInstanceDataDtls.enteredByName = usersDtls.firstName

+ GeneralConstants.kSpace
+ usersDtls.surname;

wmInstanceDataObj.insert(wmInstanceDataDtls);
deferredProcessingObj.startProcess(

"DO_DEFERRED_OPERATION",
wmInstanceDataDtls.wmInstDataID);

}

Figure 91. Using DeferredProcessing startProcess

Cúram Server Developer's Guide 141

Consider the situation where you want to develop a deferred method for
processing a Case. The deferred processing engine has no knowledge of any cases
(or even what a case is), so it cannot supply the ID of the case to your deferred
method. It does, however, know about WMInstanceData and supplies the ID of a
WMInstanceData record to every deferred method it invokes. This record should be
created and populated by you before enacting the deferred process and the ID of
the populated record should then be supplied to the enactment API. When the
deferred processing engine invokes your deferred method, it will pass in that ID as
a parameter.

“WMInstanceData” on page 141 shows the WMInstanceData entity class and its
properties. As you can see, apart from the unique identifier attribute of this class,
all other information must be defined by you. This is done using the modeling
environment. The WMInstanceData entity should be created in your model, in a
package of your choice. WMInstanceData facilitates in the definition of your
application specific information.

Table 34. WMInstanceData Properties

Property Description Type Requirement

wmInstDataID The unique identifier of
the instance data.

WM_INST_DATA_ID M

myInstanceData1 Property to be included
as instance data

Your application
domain definition for
the property.

O

myInstanceData2

etc.

Property to be included
as instance data

Your application
domain definition for
the property.

O

Offline Unit-Testing of Deferred Processes
If the application is deployed in an Application Server, the deferred methods will
be invoked asynchronously. However, if the Application is not executing in an
Application Server container (for example, for off-line unit-testing), you may wish
to invoke the deferred method synchronously (i.e. not deferred). This can be done
by setting the property curam.test.stubdeferredprocessing to true.

Note: The invocation of the deferred method is dependent on a successful commit
of the the caller's transaction context. If the calling method's transaction rolls back,
the deferred process will not be invoked.

Setting curam.test.stubdeferredprocessinsametransaction property to true ensures
that the deferred processes gets invoked in the same transaction. If this property is
not set, the deferred processes will still be invoked, but in a different transaction.

Configuration of Deferred Processing Table
When using deferred processing functionality in your Cúram application, you need
to configure the DPProcess table prior to runtime in order for it to work correctly.

The DPProcess table, provided as part of the SDEJ, must contain names for the
methods within your application that have been modeled and defined as being
deferred using the <<wmdpactivity>> stereotype. For each deferred method, you
must define a name that describes it, for the processName field. This string value is
what must be used when requesting for a deferred process method to be enacted.
The primary key of this table is a processName field.

142 IBM Cúram Social Program Management: Cúram Server Developer's Guide

“Configuration of Deferred Processing Table” on page 142 details the properties of
the DPProcess table.

Table 35. DPProcess Properties

Property Description Type Requirement

processName Name that describes your
deferred processing method.

String M

interfaceName Fully-qualified interface name
of a BPO with a
<<wmdpactivity>> method
corresponding to the deferred
process.

String M

methodName The name of the
<<wmdpactivity>> method
corresponding to the deferred
process.

String M

ticketType Code table value describing the
type of deferred process. The
meaning of this is
Application-defined, for
example, see the Cúram
TicketType code table.

String O

subject Short description of what the
deferred process method does.

String O

“Configuration of Deferred Processing Table” on page 142 shows an example of
how a DPProcess table might be populated.

Table 36. Example DPProcess Table

processName interfaceName methodName ticketType Subject

DO_DEFERRED_
OPERATION

server.curam.
bizinterface.
SomeProcess

doSomething CLAIM This method
does
something.

DO_ANOTHER_
DEFERRED
_OPERATION

server.curam.
bizinterface
.SomeOther
Process

doSomethingElse CASEREVIEW This method
does
something else.

TicketCallback.dpHandleError()
The Deferred Processing Engine provides an error handling callback mechanism
for when deferred processes fail (i.e. the deferred method you defined throws an
exception). The curam.util.deferredprocessing.impl.DPCallback interface is
provided with the infrastructure. It has a single method definition: dpHandleError.

Note: The curam.util.deferredprocessing.impl.DPCallback interface should not
be confused with the curam.core.impl.DPCallback interface.

Cúram Server Developer's Guide 143

dpHandleError() gives application developers control over error handling when the
invocation of a deferred process fails. This callback is invoked once the deferred
processing message has been moved to the DPError queue (usually after the failing
process has been retried several times). An implementation example is provided in
“TicketCallback.dpHandleError()” on page 143 below.

There are two ways an error handler can be configured. Firstly, a single (global)
error handler callback can be defined for deferred processing by setting the
curam.custom.deferredprocessing.dpcallback property to the fully- qualified
name of a class that implements the
curam.util.deferredprocessing.impl.DPCallback interface. The dpHandleError()
method on that class will then be invoked when any deferred method fails.
Alternately, you can supply the fully-qualified name of any class that implements
the curam.util.deferredprocessing.impl.DPCallback interface when enacting a
deferred process. This allows you to specify a specific error handler for a single
deferred process, or even a subset of the instances a deferred process.

This callback operation could be used to:
v Notify the client that a deferred process failed.
v Take some remedial action.

Security
Deferred processes run under the username ' SYSTEM '; therefore the effective locale
for deferred processes is the default locale for this user as specified in field
'defaultLocale' on the Users table.

In the case of offline unit-testing of deferred processes, the username is blank and
the effective locale is the default locale for the Cúram server.

Summary
v The incorporation of Deferred Processing into your application is largely

achieved by:
1. Modeling appointed BPO methods with <<wmdpactivity>> stereotype;
2. Configuring the DPProcess table in your database;
3. Using the DeferredProcessing to request deferred process methods.

v The appropriate deferred processing queues must be set up prior to runtime by
following the steps given in the Cúram Installation Guide18.

v Application specific error handling can be achieved using the
TicketCallback.dpHandleError() method. An error handler can then be targeted
in the code by passing the error handler class name when invoking the
DeferredProcessing.startProcess() method.

18. You should refer to the installation guide for your particular platform type, i.e. Windows or UNIX.

void dpHandleError(String processName, long instDataID)
throws AppException {
// Method logic goes here

}

Figure 92. TicketCallback dpHandleError()

144 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Timer Bean

Overview
Generic EJB Timer Bean functionality is provided as part of IBM Cúram Social
Program Management, which allows users to start timers which will invoke
client-visible methods at a specified point in the future either once or multiple
times. This is based on the timer service provided by the EJB container. This
chapter gives details about all major aspects of implementing Cúram Generic EJB
Timer Bean.

EJB Timer Bean Definition
The EJB container provides the timer service, which is the infrastructure for the
registration and callbacks of timers and, hence, provides the methods for creating
and canceling them. The timer service of the enterprise bean container enables you
to schedule timed notifications for all types of enterprise beans except for stateful
session beans. You can schedule a timed notification to occur at a specific time,
after duration of time, or at timed intervals. For example, you could set timers to
go off at 10:30 AM on May 23, in 30 days, or every 12 hours.

The EJB container provides different types of timers. The timer can be a
single-event timer, which can occur at a specific time or after a specific elapsed
duration, or an interval timer, which may occur on a regular schedule. Essentially,
three types of timers are possible, as outlined in the table below:

Table 37. Types of Timers

Type of Timer Description

Single-event timer Create a single-action timer that expires after a specified
duration.

Single event with expiration date Create a single-action timer that expires at a given point
in time.

Interval timer with initial
expiration Duration

Create an interval timer whose first expiration occurs
after a specified duration, and whose subsequent
expirations occur after a specified interval.

Interval timer with initial
expiration Date

Create an interval timer whose first expiration occurs at
a given point in time and whose subsequent expirations
occur after a specified interval.

Development Support
The Cúram infrastructure provides the following classes and interface to develop
Timer Bean functionality.
v curam.util.transaction.TimerInfo

v curam.util.timer.TimerTask

v curam.util.timer.TimerCallback

TimerInfo Class
The class curam.util.transaction.TimerInfo contains methods for starting and
stopping timers. This class also contains a number of internal methods and
methods reserved for future use. The following table describes the API's that are
currently supported by the infrastructure:

Cúram Server Developer's Guide 145

Table 38. List of API's in TimerInfo Class

Method Name Description

startTask(long, TimerTask) Create a single-action timer that expires after a specified
duration.

startTask(long, long,
TimerTask)

Create an interval timer whose first expiration occurs
after a specified duration, and whose subsequent
expirations occur after a specified interval.

startTask(DateTime, TimerTask) Create a single-action timer that expires at a given point
in time.

startTask(DateTime, long,
TimerTask)

Create an interval timer whose first expiration occurs at
a given point in time and whose subsequent expirations
occur after a specified interval.

cancel() Cancels the timer which invoked the current method.
Should only be called by methods which were invoked
by a timer, calling this method from a non-timed
method will have no effect.

getID() Gets the identifier for the timer which is running the
current thread.

isTimerTransaction() Indicates whether the current transaction is being run
by a timer.

TimerTask Class
The class curam.util.timer.TimerTask contains information about the timed
operation, such as which server operation to invoke, parameters to pass into it,
whether a callback is required, etc. The following table describes the parameters
that are available in this class.

Table 39. List of parameters from TimerTask Class

Name Description

methodName Mandatory. The name of the method to invoke when
timer expires.

argument Optional. A struct parameter for the method being
invoked.

timerName Optional. A name for this timer. This can be used as an
identifier to query or cancel a timer.

errorHandlerName Optional. The name of a class, which implements
interface TimerCallback which will get called if the
timed method fails.

userID Read-only. The ID of the user who started off the task.
This gets automatically populated when the timer is
started.

taskID Read-only. A unique identifier for each task. This is
automatically populated when the timer is requested.

creationTime Read-only. The time at which this timer was requested.
This is automatically populated when the timer is
requested.

initialDelay Read-only. The initial delay time in milliseconds which
was specified when this timer was created.

initialEventTime Read-only. The absolute time of the first event for this
timer, or null if none was specified when this timer was
created.

146 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 39. List of parameters from TimerTask Class (continued)

Name Description

Interval Read-only. The repeat interval which was specified when
this timer was created, or zero if it is a one event timer.

TimerCallback Interface
This is an interface for which developers can provide an implementation and
which will get invoked if a timed operation fails. The interface
curam.util.timer.TimerCallback has only one method handleError(Exception,
TimerTask) defined and uses can provide implementation to this method.

Code sample:

Rules for using SDEJ Timers
There are some considerations and limitations to Generic Timer Bean provided as
part of Cúram infrastructure and they are listed below.
1. SDEJ timers can invoke any client visible operation in the application

meta-model, provided that:
a. The operation has zero or one parameter.
b. The operation has its Transactional option set to No.
c. The user has access rights to that operation.

2. SDEJ timers do not have any facility to return a value from an operation.
3. Timer creation and cancellation are transactional; i.e., if you create a timer, it

only becomes active after the transaction gets committed. Similarly if you
cancel a timer, it only gets cancelled when that transaction gets committed.

4. Transactions invoked by timers execute using the same Cúram user ID as the
user who created that timer.

5. The transaction type of a timer transaction is reported by
TransactionInfo.getTransactionType() as being 'online'. (i.e. not
deferred/batch/etc)

6. Timers should only be started by online transactions or other timer
transactions. i.e. deferred processes, workflows or batch programs cannot start
timers.

// Create the task, specifying the name of the server
// operation to invoke:
final TimerTask task = new TimerTask();
task.methodName =

"curam.core.facade.intf.ProductDelivery.close";

// This operation takes one struct parameter,
// so instantiate the struct and add it to the task:
final curam.core.facade.struct.CloseCaseDetails caseDetails

= new curam.core.facade.struct.CloseCaseDetails();
caseDetails.caseID = 12345;
task.argument = caseDetails;

// Start off the timer, specifying that it invokes the
// method in 10 seconds time:
final long timerID = TimerInfo.startTask(10000, task);

// Every timer is assigned a unique ID which can be used
// to manipulate it and also to help track the timer
// in any diagnostic logs.
System.out.println("Created a timer with ID " + timerID);

Cúram Server Developer's Guide 147

7. Timers are persistent and remain active until they are cancelled by the user,
even if the application server is stopped and restarted.

8. If the application server is stopped for a time and then restarted later, all
timers which were active before the shutdown will resume following the
restart but the timer will not try to 'catch up' with any missed ticks. Instead it
will tick at the next scheduled time.

9. If a timed operation throws an exception, the transaction will be rolled back. If
the developer has specified a callback handler for the exception, the callback
handler will get called if it has been configured, but it cannot be used to
prevent the transaction from being rolled back.

10. If a timed operation throws an exception, the timer does not get cancelled and
will continue to tick as before until it is cancelled from within a transaction
which gets committed.
Therefore it is important for developers to ensure that timed operations cannot
repeatedly throw exceptions, as otherwise they could continue to be attempted
indefinitely.

11. Timers should not be used to drive batch style processing. A timer driven
transaction will have the same timeout as a deferred processing transaction (30
seconds by default) and should therefore be used only for reasonably short
running pieces of processing.

12. Timers in the SDEJ are provided by the javax.ejb.TimerService of the
application server. Currently it is not possible to start a timer from outside an
application server which means that SDEJ timers are not available in the
development environment. Attempting to start a timer from outside an
application server will have no effect.

Timer Behavior
Timer can behave differently depending on the scenario at with they are started.
Some of the scenarios and Timer behavior is as described below.
v For a repeating timer, if a timed transaction continues past the point at which

the next tick is due, then that tick is discarded and the next due tick will be
used.
For example:
A timer is configured to tick every 20 seconds. So this means that the timer will
normally tick at the following times:
20, 40, 60, 80, 100, etc
Now let's say that on the second tick, the timed transaction took 25 seconds to
complete. This means that the transaction which started at the 40 second mark
completed at the 65 second mark, and is therefore deemed to have 'missed' the
60 second mark. So the next time the timer will tick will be at the 80 second
mark. So the actual times the timer will have ticked are:
20, 40, 80, 100

v When a timer is specified with an initial duration, that duration is relative to the
time at which the timer was created. It is not relative to the time at which the
transaction was committed - even though the timer cannot actually begin ticking
until the transaction in which it was created has been committed.
For example, the user invokes a rather long online transaction which does the
following:
– Creates Timer A with an initial duration of 60 seconds.
– Does some processing which takes 20 seconds.
– Creates timer B with an initial duration of 60 seconds.

148 IBM Cúram Social Program Management: Cúram Server Developer's Guide

– Commits the transaction.
Next the following will happen:
– 60 seconds after it was created, Timer A will start ticking.
– 20 seconds later, Timer B will start ticking.
i.e. even though these timers were committed at the same time, each retains its
own individual start time.

FAQ
v How do I see which timers are active?

Different Java EE application servers implement their timer mechanism in
different ways and there is no standard way to administer timers via their
admin consoles. The TimerInfo API provides a number of functions to find and
query active timers.

v How do I stop a timer?
A single-event timer will stop automatically after one successful execution. (i.e. if
it executes a transaction which committed successfully.) For repeating timers, the
TimerInfo class contains a number of methods for stopping these timers. Note
that stopping a timer will only take effect when the transaction which requested
the stop is committed.

v Can I ensure that my operation will be invoked only by a timer?
Cúram timer beans can only invoke methods which are in the model and are
client visible, therefore it is possible for the HTML client to also access these
methods, which may not be desirable.
If you want to ensure that only only a timer transaction executes your method,
you can use the TimerInfo API to check for this at run time as illustrated by the
following sample code extract:

v How many timers can be active at a time?
The Cúram timer bean API is a wrapper for the Java EE Timer API and it is
worth noting that the Java EE Timer API uses arrays of timers and as such is not
designed for dealing with very large volumes of timers.
As an extreme example: if an application contained several million customer
records on the database, it would be unadvisable to use timers as the
mechanism for controlling when an invoice is issued to each customer, because
this would result in having several million timer objects active in memory.
In general it is recommended that timers be kept as few and as short lived as
possible.

v How accurate is a timer?
The parameters used when creating a timer allow a developer to specify a
granularity of milliseconds with regard to when and how often the timer will
fire. However the application server cannot guarantee to fire the timer at exactly
the expected time because there may be conditions which prevent this from
being achieved. For example the server may be down at the scheduled time, it
may be delayed by other transactions, a large number of timers may be
scheduled to fire at exactly the same moment, etc. The rule of thumb is that the

// Ensure that this transaction is a timer:
if (!TimerInfo.isTimerTransaction()) {
// throw an exception to report that an
// invalid attempt was made to execute
// this operation outside of a timer.
throw new AppException(....);
}

Cúram Server Developer's Guide 149

application server will fire the timer event as close to the designated time as
possible, so the developer should not assume that the timer will fire at an exact
time.

v Can I use timers in the development environment?
No. Currently timers only operate in deployed applications because the
underlying implementation is provided by the application server.

v How can I debug timers?
Timers cannot be executed in the development environment as this is currently
not supported. However Cúram timers can output extensive logging data if
required. The fact that each timer has a unique identifier means that its
execution and life cycle can be traced via the log output.
This logging data can be captured by configuring a log4j appender for category
'Trace.TimerInfo'.

v Can a timer be configured to start automatically?
No. The life cycle of a timer is controlled by the developer. i.e. the developer is
responsible for starting each timer and for ensuring that it stops.

Events and Event Handlers

Overview
Events provide a mechanism for loosely-coupled parts of the IBM Cúram Social
Program Management application to communicate information about state changes
in the system. When one module in the application raises an event, one or more
other modules receive notification of that event having occurred provided they are
registered as listeners for that event.

To make use of this functionality, some events have to be defined, some application
code must raise these events, and some event handlers have to be defined and
registered as listeners to such events. Developers must write and register event
handlers (classes that perform some action when an event is raised) and optionally
event filters (logic that determines whether or not to invoke the handler for a
given event). Event handlers and filters are classes that implement callback
interfaces in much the same way as in the classic observer pattern19.

The Format of Event Files

Event Definition
Events are defined in Cúram in XML files that specify both the event classes and
the event types. These files are created with a .evx extension and are placed in the
events of a Cúram component from where they are picked up and processed by
the build scripts. The format of an event file is shown below:

19. The observer pattern is one of the design patterns made popular by the landmark book Design Patterns: Elements of Reusable
Object-Oriented Software. It describes a generic listener framework.

150 IBM Cúram Social Program Management: Cúram Server Developer's Guide

events This is the root tag of an event definition file under which all the event
classes and types are defined.

package
This specifies the Java code package into which the Java constants
for event classes and their types are generated.

annotation
This is an optional element specified for both event classes and types
intended for descriptive text for the element. The text specified in an
annotation is generated into the Java constant files as javadoc comments.

event-class
Defines an event class, which qualifies all the event types associated with
that class.

identifier
This is the identifier of the event class for code generation and will
be the class name for the constant class containing all the event
types in the class. Since this will be a Java class name it must be a
valid Java identifier.

value This is how an event class is referenced at runtime and it is this
value that event handlers are registered against. This value should
be unique in the system and is a 100 character string.

event-type
Defines an event type within a given class. Since an event is identified by
it's own name and that of it's parent class, an event type only needs to be
unique within a given class.

identifier
This is the identifier of the event type for code generation and will
be the field name for the constant containing the value of the event
type. Since this will be a Java field name it must be a valid Java
identifier.

value This is how an event type is referenced at runtime and the value
should be unique within a given event class and is a 100 character
string.

Event Handler Registration
Event handlers and their associated (optional) filters have to be registered against a
particular event class to be invoked when the an event of the specified class is
raised. This is done in file named handler_config.xml placed in the events folder

<events package="curam.util.events">
<event-class identifier="EVENT_CLASS_ONE" value="CLASS1">

<annotation>Some event class.</annotation>
<event-type identifier="EVENT_TYPE_ONE" value="EVENT1"/>
<event-type identifier="EVENT_TYPE_TWO" value="EVENT2"/>

</event-class>
<event-class identifier="EVENT_CLASS_TWO" value="CLASS2">

<event-type identifier="EVENT_TYPE_ONE" value="EVENT1">
<annotation>Some event type.</annotation>

</event-type>
<event-type identifier="EVENT_TYPE_TWO" value="EVENT2"/>
<event-type identifier="EVENT_TYPE_THREE" value="EVENT3"/>

</event-class>
</events>

Figure 93. Event definition file

Cúram Server Developer's Guide 151

of a Cúram component.

registrations
This is the root tag of an event handler registration file under which
individual registrations are defined.

event-registration
Specifies an event handler registration.

handler
The fully qualified name of an event handler class (see: “Event
handlers” on page 156).

filter The fully qualified name of an optional event filter class (see:
“Event filters” on page 156).

removed
An optional attribute used by components of a higher precedence
to disable previously registered event handlers, (see: “Rules of
Event Handler Merges” on page 153).

event-classes
This is a list of all the event classes against which the handler is registered.

event-class
A specific event class against which the specified handler is registered.
When any event with the specified class is raised the event handler
(providing the event filter approves) is invoked.

identifier
This identifies the event that the handler is registered against. This
value should corresponds to the value attribute of an event-class
element in the event definition files.

Merging Event Files
Both event definition and handler registration files are located in the /events
directory of a component. The Cúram reference application is shipped with a set of
event files. These may be augmented by placing new event files in the
SERVER_DIR/components/<custom>/events directory, where <custom> is any new
directory created under components that conforms to the same directory structure

<registrations>
<event-registration handler="curam.impl.SomeEventHandler">

<event-classes>
<event-class identifier="CLASS1"/>

</event-classes>
</event-registration>
<event-registration handler="curam.impl.AnotherEventHandler"

filter="curam.impl.AnotherEventFilter">
<event-classes>

<event-class identifier="CLASS2"/>
</event-classes>

</event-registration>
<event-registration handler="curam.impl.RemovedEventHandler"

removed="true">
<event-classes>

<event-class identifier="CLASS2"/>
</event-classes>

</event-registration>
</registrations>

Figure 94. Event handler registration file

152 IBM Cúram Social Program Management: Cúram Server Developer's Guide

as components/core. This mechanism avoids the need to make changes directly to
the out-of-the-box application, which would complicate later upgrades.

The override process involves merging all event files of the same name according
to a precedence order. The order is based on the SERVER_COMPONENT_ORDER
environment variable. This environment variable contains a comma-separated list
of component names: the left most has the highest priority, and the right most the
lowest.

After changing the component precedence order in
SERVER_COMPONENT_ORDER it is necessary to perform a clean build to ensure
that you are using the appropriate files. This is done by invoking build clean
server.

Rules of Event Definition Merges
For event definitions to be merged, the files provided to customize the events must
be named the same as the existing files containing the event classes to customize.
Placing event classes with the same name in files with different names will result
in errors occurring when loading the event definitions onto the database.

The customizing behavior for events is very simple; events cannot be removed as
existing functionality might be using an event that other components then decide
to remove. Such code would subsequently fail to compile. This being the case the
only change that can be made to existing event definitions is that event types can
be added to an event class by other components.

Rules of Event Handler Merges
The event handler (and filter) configurations used at runtime are those from the
component with the highest precedence that specifies the event handler in question
(for the purpose of merging the event handler is the identifier). Event classes that
are to be processed by each handler as specified in the handler configuration in all
the components are amalgamated into a merged configuration. It is also possible
for higher precedence components to disable handler specified by lower
precedence components by setting the removed attribute of the event-registration
element to true.

Artefacts produced by generate events
There are two types of output generated by the evgen command: .java files (for
code constants that make the use of events less error prone) and .dmx files
(database scripts for loading event definitions onto the database).

The Java artefacts produced from a merged event files are placed in the
/build/svr/events/gen/[package] directory. Where [package] is the package
attribute specified in the event definition file. For example,
package="curam.events" would result in the Java artefacts being placed in the
/build/svr/events/gen/curam/events directory.

The database scripts produced from a merged event files are placed in the
/build/svr/events/gen/dmx directory.

Database Scripts
Events are primarily a development time concept they are defined in XML files,
raised in application code and handled by application defined call-backs. However
some administration utilities in the application need access to the list of events
defined and available in a running system; thus they are also loaded onto the data
base.

Cúram Server Developer's Guide 153

Below are examples of the DMX files generated from the event definitions for the
two entities used to store the event definitions.

Java Code
Events are identified in the system by their names as specified by the value
attribute of the event-class and event-type elements. However simply using text
in application code to reference events would be error prone. In particular, an
event is fully identified by its type as well as its class. Thus, using string literals to
reference an event could be ambiguous, as an event type is only unique when
qualified by its associated event class.

Below is an example of the generated constants file for an event class, the class
name is the same as the event class, the attributes are the event types. This
prevents the use of incompatible values.

<?xml version="1.0" encoding="UTF-8"?>
<table name="EVENTCLASS">

<column name="EVENTCLASS" type="text"/>
<row>

<attribute name="EVENTCLASS">
<value>CLASS1</value>

</attribute>
</row>
<row>

<attribute name="EVENTCLASS">
<value>CLASS2</value>

</attribute>
</row>

</table>

Figure 95. Generated event class database script

<?xml version="1.0" encoding="UTF-8"?>
<table name="EVENTTYPE">

<column name="EVENTCLASS" type="text"/>
<column name="EVENTTYPE" type="text"/>
<row>

<attribute name="EVENTCLASS">
<value>CLASS1</value>

</attribute>
<attribute name="EVENTTYPE">

<value>EVENT1</value>
</attribute>

</row>
<row>

<attribute name="EVENTCLASS">
<value>CLASS2</value>

</attribute>
<attribute name="EVENTTYPE">

<value>EVENT2</value>
</attribute>

</row>
</table>

Figure 96. Generated event type database script

154 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Raising events
Raising an event is simply a matter of creating an event struct, populating it with
data, then calling the event service API to raise the event. The event infrastructure
will notify any registered handlers that the event has been raised. An example of
how to raise an event is shown below.

eventKey
This is the unique identifier of the event within the system. It is made up
of two constituent parts: the event class and the event type. As mentioned
earlier and as shown in the example, though the event key is two parts it
is best to specify it using one generated constant to avoid mismatching
event classed and types.

eventClass
The class of the event being raised: this is the value on which
handlers are registered.

package curam.util.testmodel.events;
/**
* Generated EVENT_CLASS_ONE events file.
* Some event class.
*
*/
public final class EVENT_CLASS_ONE {

/** Some event type. */
public static final

curam.util.events.struct.EventKey EVENT_TYPE_ONE
= new curam.util.events.struct.EventKey();

static {
EVENT_TYPE_ONE.eventClass = "CLASS1";
EVENT_TYPE_ONE.eventType = "EVENT1";

}

/** Another event type. */
public static final

curam.util.events.struct.EventKey EVENT_TYPE_TWO
= new curam.util.events.struct.EventKey();

static {
EVENT_TYPE_TWO.eventClass = "CLASS1";
EVENT_TYPE_TWO.eventType = "EVENT2";

}
}

Figure 97. Generated event Java constants

import curam.util.events.struct.Event;
import curam.util.events.impl.EventService;
curam.util.events.EVENT_CLASS_ONE;

...

Event event = new Event();
event.eventKey = EVENT_CLASS_ONE.EVENT_TYPE_TWO;
event.primaryEventData = 12300838;
event.secondaryEventData = 23413081;

EventService.raiseEvent(event);

Figure 98. Raising an event

Cúram Server Developer's Guide 155

eventType
The type of the event being raised: this identifies the specific type
of the event in the given class.

primaryEventData
This is the primary payload of the event and is a 64-bit integer. Typically
this will be (though not necessarily) the identifier of an entity in Cúram,
the entity in question being identified by the class of the event. The event
type is commonly used to indicate the action that has taken place on the
entity.

secondaryEventData
This is any additional data that may be associated with an event when it is
raised. Unlike the primary event data the secondary event data is optional.

Event handlers
We have already seen how to register handlers. To create an event handler one
simply needs to implement the interface: curam.util.events.impl.EventHandler,
which is shown below.

The action taken by an event handler when the event is raised is up to the
developer. It should be noted that event handlers are invoked synchronously when
the event is raised (and hence run within the same transaction context as the code
raising the event). This has two implications:
v Throwing exceptions from an even handler will result in the transaction from

which the event was raised being rolled back.
v Long running actions should be avoided in event handlers as they will affect the

running time of the code raising the event.

Event filters
As mentioned previously, an event handler can be configured to have a filter. The
purpose of a filter is to decide whether or not the handler needs be notified about
the event being raised. To create an event filter one simply needs to implement the
interface: curam.util.events.impl.EventFilter which is shown below.

If the accept method returns true the event will be passed on to the event handler
(that is the eventRaised method of the associated event handler will be invoked),
otherwise the event is ignored.

package curam.util.events.impl;

import curam.util.events.struct.Event;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

public interface EventHandler {
void eventRaised(Event event)

throws AppException, InformationalException;
}

Figure 99. Event handler interface

156 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Unique IDs

Overview
This chapter describes what Unique IDs (Identifiers) are in the context of IBM
Cúram Social Program Management and how to use them in your application.

What are Unique IDs?
Unique IDs are numbers generated by the Cúram infrastructure for use as unique
database keys. They come in two flavors:
v Human-readable Unique IDs are ascending sequences of numbers, usually starting

at 1, and are used as database keys where the key value might need to be
presented in a User Interface to a human user.

v Non-human-readable Unique IDs are typically large positive or negative values in
the approximate range 1E-19 to 1E+19. The sequence of non-human-readable
Unique IDs does not repeat (for 2^64 key values), but is random in a way that
can improve database performance in some circumstances.

A Unique ID key set is a named non-repeating set of 2^64 Unique ID key values.
Key sets can be configured by developers and used to generate Unique IDs for a
particular purpose. Each key set can be configured to be human-readable or
non-human-readable. The infrastructure uses a number of predefined key sets
which must be configured as part of a Cúram installation.

What are Unique IDs for?
Cúram-generated Unique IDs address a perennial problem in application design -
how to co-ordinate multiple processes each of which needs to allocate a number
guaranteed to be unique throughout the application. One classic approach involved
locking and updating a key control database table each time a key needs to be
allocated. Unfortunately, this can lock the control table for the duration of
long-lived transactions, preventing other processes from accessing it. This
technique is almost always the source of serious database contention problems in
an application (see “Allocating Sequence Numbers” from Chapter 12 of High
Performance Client/Server, Loosley and Douglas).

Unique IDs are served out in blocks of 256 keys using a unique ID generator, also
know as the Key Server20. A process requests a block of Unique IDs by calling the
key server. This updates a database control table each time it returns a block of

20. The design is loosely based on the Sequence Block pattern described by Floyd Marinescu in EJB Design Patterns (ISBN:
0471208310).

package curam.util.events.impl;

import curam.util.events.struct.Event;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

public interface EventFilter {
boolean accept(Event event)

throws AppException, InformationalException;
}

Figure 100. Event filter interface

Cúram Server Developer's Guide 157

Unique IDs to a requesting process. Once a block has been allocated, the
requesting process can allocate keys from this block locally, i.e. without calling the
server again, until the Unique ID block is exhausted. Furthermore, the key server
operates in its own transaction so it never locks the key control table for longer
than it takes to allocate and update a next Unique ID block value.

It should be noted, however, that a process which requests a Unique ID block may
or may not use the keys from that block. If it does not, then the unused keys
represent holes in the key sequence. Processes which use, say, one key value before
shutting down will leave quite large holes in the key sequence. Note also that there
is no time limit on how long a process can wait between allocating a Unique ID
block, and using the key values in it. Thus, even for human-readable keys which
are in an ascending sequence starting at 1, the sort order of keys on the database
has no direct bearing on the chronological order in which they were inserted.
Obviously, programs should not assume that this is the case.

Can I run out of Unique IDs?
In short, no! A process which used only one key out of each Unique ID block, and
allocated one thousand of these per second non-stop, would take over two million
years to exhaust one Unique ID key set. For all practical purposes, the set of
Unique IDs in a key set can be considered to be inexhaustible.

When should I use Unique IDs?
Use Unique IDs in your design when each of the following criteria are met:
v you need a unique key for a database entity
v the database key has no “business meaning”
v instances of the entity may be created by multiple contending on-line or batch

functions
v holes in the key sequence are acceptable (which should always be true if the key

has no business meaning).

When should I not use Unique IDs?
Do not use Unique IDs in your design when:
v you need a unique key for a database entity, but have a business requirement for

an ascending sequence without holes (Cúram-generated Unique IDs are not
guaranteed to be contiguous), or

v your key requires something other than a simple numeric format, or
v contending processes will not create instances of the entity (in which case there

is no need for key control at all).

Should my keys be human-readable?
This is up to you. The rule of thumb is that Unique ID values that will be
displayed to a user should be human-readable. Otherwise, you may choose to use
non-human readable Unique IDs. The advantage of these is that their values are
spread across a very large range, so that database indexes are not always being
extended at the end, as for ascending sequences.

What if I require contiguous human-readable Unique IDs?
Human-readable IDs allocated by the key server are sequential, but can have gaps
for two reasons:

158 IBM Cúram Social Program Management: Cúram Server Developer's Guide

v the IDs are allocated in blocks of 256 keys. When the server is restarted, the
remaining values in any block for any key set that has been loaded are
discarded.

v if a transaction that requests a human readable ID from the key server is rolled
back, the ID that was served up is discarded (as the key server runs in a
separate transaction, its transaction commits irrespective of what happens to the
application transaction - this is important for performance reasons).

In instances where there is a requirement to generate human-readable IDs, where
the numbers must be both sequential and have no gaps, Cúram uses an application
defined "key" table for each set of IDs (for example, InternalPersonID,
InternalEmployerID, etc). An example of such a business requirement is the one
around the issuing of "Social Security Numbers". These tables are read and
updated in the context of the application transaction, meaning, the ID is only
allocated if the record bearing that ID is committed to the database. Otherwise, the
whole business transaction, including the ID allocation, is rolled back. It is worth
noting that there is a performance overhead because of this, as the single row ID
table is a database hot spot that must be updated every time the record bearing
that ID is committed to the database.

Thus it is recommended that:
v this method of ID generation is used only when absolutely necessary and
v your design should strive to ensure that transactions using this mechanism are

kept as short as possible to minimize contention on the key table.

How do I use Unique IDs?
Designing Unique IDs into your Cúram application is straightforward. In your
UML application model, set the appropriate domain definitions to be of the data
type SVR_INT64. The developer's view of this is as a Java Long primitive. To
allocate a new Unique ID call UniqueID.nextUniqueID(), passing a key set name as
a string. This call transparently looks after allocating a new Unique ID block if
necessary. If no key set name is passed to the nextUniqueID() method the default
key set, curam.util.resources.KeySet.kKeySetDefault, is used. This key set
allocates non human-readable Unique IDs.

Key sets are defined by configuring entries in the KeyServer database table. This
can be done by creating a DMX file defining all key entries. “How do I use Unique
IDs?” details the fields of the KeyServer database table.

Table 40. KeyServer Database Table

Field Description

keySetCode An identifier for the key set, e.g. MYKEYSET.

nextUniqueIdBlock The next Unique ID block that should be allocated. For
human-readable IDs this field can be used to skip
pre-allocated Unique IDs.

humanReadable True if the Unique IDs should be human-readable.

lastUpdated The timestamp for when the entry was last updated.

strategy Represents strategy used to generate next unique id block for
a given key set.

Annotation A description of the key set.

Cúram Server Developer's Guide 159

If you are using human-readable Unique IDs, and non-Cúram-generated keys have
already been allocated, then you can guarantee that these values will never be
re-allocated by Cúram (i.e. Unique IDs will never “clash”). This is achieved by
setting the nextUniqueIdBlock field on the KeyServer database table to be
Ceiling(N/256), where N is the number of Unique IDs which have already been
pre-allocated.

The strategy field is used to specify whether the standard Key Server or the Range
Aware Key Server is used for the key set. If the field is set to null, the standard
Key Server is used. If the field is set to a specific value KB1002 then the Range
Aware Key Server will be used to generate next unique id block for the key set.
The Range Aware Key Server is explained in more detail in “Range Aware Key
Server.”

Warning: Care should be taken when defining and using custom key sets. The
same key set should always be used when using Unique IDs as the primary key
for a particular database table. If two key sets are used to generate Unique IDs for
the same database table, duplicate record problems may occur. Unique IDs are only
unique within a particular key set.

Note: The conversion routine for hexadecimal numbers that are used as Unique
IDs on a DB2 for z/OS database can only support numbers between
Long.MAX_VALUE and Long.MIN_VALUE + 1.

Range Aware Key Server

Overview
The Range Aware Key Server is a new Key Server implementation introduced to
support Configuration Transport Manager (CTM). CTM is used to transport
administrative configuration data (Business Objects) between systems. Each
Business Object is comprised of a number of entities. Each of these entities has a
primary key. The standard Key Server implementation only guarantees uniqueness
of a primary key within a single system installation. This means that when a
Business Object is transported from a Source System and applied on a Target
System, there is the strong possibility of key clashes between the transported
entities and the existing entities on the system.

The Range Aware Key Server implementation is responsible for creating primary
keys to meet the following requirements:
v Prevent clashes in primary keys between new entities transported to a system

and existing entities on that system.
v Identify where there is an existing version of a transported entity on a system,

so that the existing entity is updated with the transported entity data.

How does the Range Aware Key Server work?
The approach used by the Range Aware Key Server to generate primary keys
hinges on ensuring that non-overlapping key ranges are allocated to every system.
The Range Aware Key Server will then ensure that all of the primary keys on a
given system are generated from the range(s) assigned to that system. Therefore,
the primary keys generated by each system will be unique.

So, at system install (or upgrade) time, the system administrator allocates a unique
primary key range from which all primary keys provided by the Range Aware Key

160 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Server implementation will be generated. Please refer to the CTM Setup Guide
chapter in the Configuration Transport Manager guide for information on how the
range allocations are configured.

Where is the Range Aware Key Server used?
The Range Aware Key Server is only used for Key Sets that have been created
specifically for the entities that form part of transportable Business Objects.
Existing Key Sets continue to use the current SDEJ Key Server implementation,
unchanged. Note that it is important that existing Key Sets are not changed to use
the Range Aware Key Server - the Range Aware Key Server should only be used
with new Key Sets.

The Range Aware Key Server supports both non-human readable and
human-readable generated keys, so the value of the humanReadable attribute in
the KeyServer table is set to either 0 or 1 depending on the entity's requirements.

Cúram Configuration Parameters

Overview
This section describes configuration parameters for Curam applications that you
can (or in some cases must) set to control characteristics of application execution.
Generally, and unless otherwise noted, these parameters are set in property and
prx files associated with your application. The following configuration parameter
descriptions are organized according to the file that they should be set in and also
in functionally-related groups. Some parameters are of a "BOOLEAN" type, where
noted. This means that the value "true" or "yes" in upper-, lower-, or mixed-case,
equates to a "true" value; all other values (or none) equate to "false". The
configuration parameter descriptions are grouped into functionally-related groups.

Bootstrap.properties
The following properties relate to the Bootstrap.properties file.

Database
These settings configure Curam for database communication.

Table 41. Database settings

Property Name Type Meaning

curam.db.type STRING The property which specifies the
database type. Suggested:
DB2/ORA/ZOS.

curam.db.password STRING The encrypted password that
corresponds to the user name specified
above. The database password is never
stored in plaintext in the various
Curam property files.

curam.db.username STRING A valid database username.

Cúram Server Developer's Guide 161

Table 41. Database settings (continued)

Property Name Type Meaning

curam.db.oracle.cachesize INT32 The size of the prepared statement
cache used by batch programs when
run against Oracle (the prepared
statement cache is based around
implicit caching).

curam.db.oracle.
connectioncache.enabled

BOOLEAN Turn on connection caching for Oracle
outside of an Application Server.

curam.db.oracle.
connectioncache.minlimit

INT32 Set Min Limit for the Cache. This sets
the minimum number of
PooledConnections that the cache
maintains. This guarantees that the
cache will not shrink below this
minimum limit.

curam.db.oracle.
connectioncache.maxlimit

INT32 Set Max Limit for the Cache. This sets
the maximum number of
PooledConnections the cache can hold.
There is no default MaxLimit assumed
meaning connections in the cache could
reach as many as the database allows.

curam.db.oracle.
connectioncache.initiallimit

INT32 Set the Initial Limit. This sets the size
of the connection cache when the cache
is initially created or reinitialized.
When this property is set to a value
greater than 0, then that number of
connections are pre-created and are
ready for use.

curam.db.oracle.
connectioncache.name

STRING The name used to identify the cache
uniquely.

curam.db.zos.32ktablespace STRING Property which specifies the name of
the table space used for 32k storage on
DB2 z/OS.

162 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 41. Database settings (continued)

Property Name Type Meaning

curam.db.zos.enable
foreignkeys

BOOLEAN Controls whether foreign keys are
generated for a z/OS database when
running the Data Manager. Note on
usage - If Foreign Keys are used
against a z/OS database, the tables are
put in a CHECK_PENDING state,
causing failures when the tables are
accessed. The state can only be
changed through direct DBA
intervention on the target platform
(hence it cannot be scripted into the
Data Manager which can run on
remote clients). In normal usage the
Data Manager invokes LOB Manager
after applying the foreign keys. This
means the LOB manager should be
re-run after the this CHECK_PENDING
state has been resolved.

curam.db.disableforeignkeys BOOLEAN Controls whether foreign keys are
generated in SQL statements. By
default this property is false, which
means foreign key generation is
enabled. However, for z/OS foreign
keys will not be generated if
curam.db.zos.enableforeignkeys is set
to false.

curam.db.disableInvalid
LobFileError

BOOLEAN This property controls the reporting of
invalid LOB file paths in DMX files.
The default value is FALSE. By default
a build exception will be thrown, when
set to TRUE a warning will be
reported.

curam.db.zos.encoding STRING Property which specifies whether the
database being used on z/OS requires
processing for EBCDIC, ASCII, or
UNICODE encoding. This should be
set to EBCDIC, ASCII, or UNICODE
depending on the appropriate database
encoding in use. EBCDIC is the default
value.

curam.db.zos.dbname STRING The name of the database on z/OS.

curam.database.shortnames BOOLEAN It is strongly recommended that this
property be set to false. The
functionality for this property is
planned for removal in a future version
of Curam. If you have utilized this
property in previous versions of Curam
please contact Curam Support for more
information.

Cúram Server Developer's Guide 163

Table 41. Database settings (continued)

Property Name Type Meaning

curam.db.oracle.servicename STRING The Oracle database service name.
Setting this will create database
connection using Oracle service name.

curam.db.name STRING The database name. This setting will be
overridden if property
"curam.db.oracle.servicename" is set for
Oracle database.

curam.db.servername STRING The database server name.

curam.db.serverport INT32 Suggested: 1521 (Oracle)/ 50000 (DB2).
The database server TCP/IP port.

curam.db.enable
.bindings.generation

BOOLEAN Suggested: false. Causes a bindings file
to be generated for the JDBC data
source when a database connection is
made outside of the application server,
e.g. by the Batch Launcher. Has no
effect if property
'curam.db.disable.bindings.generation'
is set. Intended to be used to produce a
starter bindings file which can then be
customized.

curam.db.disable
.bindings.generation

BOOLEAN Suggested: false. Prevents re-generation
of the JDBC data source bindings file
and instead causes the data source to
be looked up from a customized
bindings file when a database
connection is made outside of the
application server, e.g. by the Batch
Launcher.

curam.dmx.locale STRING Default: en. Property that specifies the
locale that will be used when inserting
dmx data onto the database. The locale
should be specified in the format:
language_country, for example en_US.

curam.db.multibyte.expansion BOOLEAN Enables the multi-byte expansion
feature for DB2 and DB2 for z/OS.
Default value is true.

curam.db.multibyte
.default.factor

FLOAT Specifies the default expansion factor
for multi-byte string fields if the
multi-byte expansion feature is enabled.
The value must be a float between the
values of 1 and 4. Default value is 4.

curam.db2.ssl BOOLEAN Default: false. Indicates that SSL is to
be used for DB2 database
communications.

164 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 41. Database settings (continued)

Property Name Type Meaning

curam.db2.purescale BOOLEAN Default: false. Indicates that the DB2
pureScale property, enableSysplexWLB,
will be set for the DB2 DataSource and
WebSphere configuration.

Environment
These settings configure the environment for your Curam application.

Table 42. Environment settings

Property Name Type Meaning

curam.environment.as.vendor STRING Suggested: Should be set to BEA or
IBM to reflect the Application Server
which is being used. If running outside
an application server this should be
empty. Defines the Application Server
in which Curam will be deployed. This
is setup automatically when the EAR
file is built using the build targets.

curam.environment.
tnameserv.port

INT32 Suggested: 900. Port on which the
tnameserv is running.

curam.environment.
bindings.location

STRING Suggested: C:/Temp. Name of the file
system location containing data
sources.

curam.environment.
default.dateformat

STRING Default: yyyy MM dd. The date format.
Can be set to one of: "d M yyyy", "M d
yyyy", "yyyy M d", "dd MM yyyy",
"MM dd yyyy", "yyyy MM dd", "d
MMM yyyy", "MMM d yyyy", "yyyy
MMM d", "d MMM yyyy", "MMMM d
yyyy", "yyyy MMMM d", "dd MMM
yyyy", "MMM dd yyyy", "yyyy MMM
dd".

curam.environment.
default.dateseparator

STRING The date separator. Can be set to one
of: ".", ",", "/", "-".

curam.disable.
dynamic.properties

BOOLEAN Indicates if dynamic properties should
be enabled or disabled. This is used by
command line tools that require access
to properties but cannot access the
database.

curam.deprecation.reporting BOOLEAN Indicates if deprecation reporting
should be enabled or disabled. This is
used by all tools (both online and
offline) that report deprecation
warnings to the user (e.g. rules and
workflow validation).

Cúram Server Developer's Guide 165

Table 42. Environment settings (continued)

Property Name Type Meaning

curam.entity.struct.deprecation BOOLEAN Indicates if generated entity standard
structs should be deprecated if an
entity is deprecated. This is used by
generators which generate standard
entity structs.

curam.environment.
roundingprecision.enable

STRING Indicates if when rounding money
types in Curam, the HALF_UP
algorithm will be used. This means that
all Money will be rounded up. If set to
true, the HALF_UP algorithm will be
used. If not set, a default of true is
used.

Test
These settings configure those elements of Curam which are useful for Unit
Testing. None of these settings should be used in a deployed application as they
will either degrade performance or cause failures.

Table 43. Test settings

Property Name Type Meaning

curam.test.
override.date

STRING This property allows the date and time
to be set to a known value for testing.
In order to override the date and time
the property should be in the format
YYYYMMDDThhmmss. The 'T'
character is the separator between the
date and the time. It is valid to only
specify the date. If the time portion of
the property is not explicitly set the
time will be automatically default to
midnight (00:00:00). For example, the
string value 20070101T175930
represents 17:59:30 on 1st January 2007.
The string value 20070101 represents
00:00:00 on 1st January 2007.

curam.test.
treatreadmultimaxaserror

BOOLEAN Default: false. Specifies that a run time
error should be thrown as well as a log
message when the result size of
Readmulti operation exceeds the
maximum. This does not apply when
the Treat readmulti-max as
InformationalException option is
enabled

Custom
These settings allow a developer to replace elements of the Curam infrastructure
with their own customized handlers.

166 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 44. Custom settings

Property Name Type Meaning

curam.custom.
workflow.webservicebpo

STRING The name of the application BPO that
workflow process enactment web
services go through.

Application.prx - Dynamic properties
The following properties relate to the available dynamic properties in the
Application.prx file.

Environment
These settings configure the environment for your Curam application.

Table 45. Environment settings

Property Name Type Meaning

curam.environment.
default.locale

STRING Default: en. The default value of the
language code for the server.

curam.environment.
recordlocked.
systemexception

BOOLEAN Specifies whether a
RecordLockedException should be set
to a System exception. The default is
false here, that it is a Application
exception.

curam.environment.
readmultimax.
systemexception

BOOLEAN Specifies whether a
ReadmultiMaxException should be set
to a System exception. The default is
false here, that it is a Application
exception.

curam.transaction.
sqlquerycache
.disabled

BOOLEAN Specifies whether any SQL queries that
do a SELECT on a database table will
have their results cached for the
duration of the transaction in which the
operation was invoked. Subsequent
calls using the same SQL query will
then retrieve the results from this
thread local transaction SQL query
cache and not read the results from the
database. The default setting for
disabling this cache is false so that the
results of SQL queries will be cached.

curam.sqlquerycache
.lob.max.size

INT64 Specifies the maximum size of a field
of type CLOB or type BLOB in a result
set that is allowed to be cached in the
transaction SQL query cache.

curam.enable.
logging.client.
authcheck

BOOLEAN Default: false. When set to true, all
client authorization checks will be
logged to the AuthorisationLog
database table.

Cúram Server Developer's Guide 167

Table 45. Environment settings (continued)

Property Name Type Meaning

curam.audit.
audittrail.
datacompressionthreshold

INT32 Specifies the size of the audit data
stored in the detailinfo column of the
audittrail database table that causes
data compression to be invoked.
Default: -1 (off). This value is checked
per audit operation. To turn
compression on for all audittrail
detailinfo data set this value to 0.
When turned on rows that contain
compressed data have the boolean
attribute ISCOMPRESSED set to true.
Note that short audit data is not likely
to see performance gains, but will for
large data rows. The performance of
Curam auditing OOTB should not
require compression, but if you add
additional auditing you should
evaluate your auditing selections for
performance to determine the best
setting for this value. Compression is
done via the
curam.util.resources.
ByteArrayUtil.byteArrayToBase64
EncodedString method and
decompression can be done via the
corresponding ByteArrayUtil.base64
EncodedStringToByteArray method.

JMX
These settings configure the JMX infrastructure for your Curam application.

Table 46. JMX settings

Property Name Type Meaning

curam.jmx.monitoring_
enabled

BOOLEAN Whether JMX monitoring is enabled or
not in the application.

curam.jmx.transaction_tracing
_enabled

BOOLEAN Whether transaction tracing is enabled
or not in the application. When this is
enabled, in-flight data collection is
enabled as well.

curam.jmx.transaction_tracing
_url_filter

STRING Regular expression to identify URLs for
which transaction tracing data is
collected.

168 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 46. JMX settings (continued)

Property Name Type Meaning

curam.jmx.transaction_tracing
_max_recorded_threads

INT32 The maximum number of threads for
which transaction tracing data is
collected. Note that at any one moment
there could be more than this number
of threads in the transaction tracing
data but a significant amount of entries
will only be preserved for this number
of threads.

curam.jmx.transaction
_tracing_purge_period

INT32 The period of time, in seconds,
between checks to ensure that only the
number of threads specified in
curam.jmx.transaction
_tracing_max_recorded_threads are
preserved in the transaction tracing
data.

curam.jmx.transaction
_tracing_max_thread_idle_time

INT32 The maximum amount of time, in
seconds, a thread is allowed to be idle
before its transaction tracing data can
be cleared.

curam.jmx.configured
_mbeans_ejb

STRING The list of MBeans configured in the
EJB container.

curam.jmx.configured
_mbeans_web

STRING The list of MBeans configured in the
WEB container.

curam.jmx.pe
r_user_statistics_filter

STRING Regular expression to identify users for
which individual statistics are collected.

curam.jmx.in_
flight_statistics_enabled

BOOLEAN Whether or not statistics about in-flight
transactions are collected.

curam.jmx.sql_statement
_statistics_enabled

BOOLEAN Whether or not SQL statement statistics
collection is enabled.

curam.jmx.download
_statistics_allowed

BOOLEAN Whether or not the download of JMX
statistics is allowed.

curam.jmx.download
_statistics_username

STRING The username of the user who is
allowed to download the JMX statistics.

curam.jmx.end_user
_statistics_enabled

BOOLEAN Whether or not end user statistics
collection is enabled.

curam.jmx.end_user
_statistics_user_filter

STRING Regular expression that selects users
for which end user statistics are
collected.

Cúram Server Developer's Guide 169

Table 46. JMX settings (continued)

Property Name Type Meaning

curam.jmx.end_user
_statistics_display_enabled

BOOLEAN Whether or not the end user statistics
are displayed in the browser. If true,
the statistics for the current page are
displayed in the top left corner of the
page.

curam.jmx.end_user_
statistics_upload_delay

INT32 The delay in seconds between the page
reporting being loaded and the
moment the statistics are uploaded.

Test
These settings configure those elements of Curam which are useful for Unit
Testing. None of these settings should be used in a deployed application as they
will either degrade performance or cause failures.

Table 47. Test settings

Property Name Type Meaning

curam.test.store.entitykeys BOOLEAN Default: false. Specifies that the values
written to the database should be
stored in memory for retrieval by tests.
They can be accessed through
curam.util.DataAccess.KeyRepository.

curam.test.trace.statistics BOOLEAN Default: false. Place a compact trace of
BO method invocations in a buffered
log. This representation is suitable for
obtaining performance measurements.

curam.test.trace.
statistics.location

STRING The name of the file which will have
the statistics information generated into
it.

curam.test.singleuser BOOLEAN Indicates whether only a single user
will be active. This is the only mode
supported if an IDE is used to execute
Curam as a standalone Java program.

curam.test.
stubdeferredprocessing

BOOLEAN Default: false. Specifies that it needs to
use deferred processing without
en-queuing in App Server.

curam.test.stubdeferred
processinsametransaction

BOOLEAN Default: false. Specifies that stubbed
deferred process calls should be run in
the current transaction using the
current database connection. If true, a
new transaction will not be started for
each stubbed deferred process call.

170 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Rules
These settings configure the rules infrastructure of Curam.

Table 48. Rules settings

Property Name Type Meaning

curam.rules.file.access.location STRING The directory where the XML
representation of rule sets will be
created.

curam.rules.file.access.
multilocation

BOOLEAN Specifies that rule set files exist in
multiple locations.

curam.rules.model.file
.rdo.access

BOOLEAN Specifies that RDOs should be retrieved
from a Curam model file.

curam.rules.default.locale STRING Default: en_US. Default locale used
when creating the XML representation
of rule sets.

curam.rules.globals.description STRING The display/user friendly name
associated with the pre-defined Globals
Rules Data Object. The default value is
the localized message text associated
with the infrastructure catalog entry:
RULES:ID_GROUP_DISPLAY_
NAME_GLOBALS

curam.rules.enable
.optimization

BOOLEAN Specifies the rules optimization.

curam.rules.enable.fulltext BOOLEAN Specifies the rules engine construction
of full result text.

curam.debug.rules BOOLEAN Default: false. Specify whether the rules
debugging should be enabled.

curam.disable.empty
.objectivelistgroups

BOOLEAN Default: true. Specify whether the rules
decision should include empty
Objective list groups.

curam.rules.date.range.
includes.calculation.date

BOOLEAN Specifies the new objective calculation.

IEG
These settings configure the properties which relate to the IEG Environment.

Table 49. IEG settings

Property Name Type Meaning

curam.iegeditor.
callback.class

STRING Specifies the IEG Editor Application
Callbacks class.

Cúram Server Developer's Guide 171

Table 49. IEG settings (continued)

Property Name Type Meaning

curam.iegruntime.
questionpage.
separatequestionsforloopstyle

BOOLEAN Specifies whether to use separate
question pages when "for" looping.

Custom
These settings allow a developer to replace elements of the Curam infrastructure
with their own customized handlers.

Table 50. Custom settings

Property Name Type Meaning

curam.custom.
deferredprocessing.dpcallback

STRING The name of the application class that
implements the DPTicketCallback
interface.

curam.custom.
workflow.workresolver

STRING The name of the application class that
implements the WorkResolver interface.

curam.custom.
workflow.processcachesize

INT32 Default: 250. Specifies the maximum
size of the process definition cache.

curam.audit.
audittrail.noxmlaudit

BOOLEAN If set to true this property will disable
the existing audit writer.

curam.custom.
notifications.notification
delivery

STRING Specifies the name of the application
class that implements the
NotificationDelivery interface.

curam.custom.
dataaccess.database
writecallback

STRING The name of the application class that
implements the DatabaseWriteCallback
interface.

curam.custom.
dataaccess.transactioncallback

STRING The name of the application class that
implements the TransactionCallback
interface.

curam.custom.
disable.database.callback

BOOLEAN If set to true this property will disable
the database callback.

Trace
These control what diagnostic information (in addition to errors which are always
logged) is written to the application server's diagnostics file. Note that you can set
the "curam.trace.*" settings independently of the "curam.trace" settings, resulting in
the union of these settings.

172 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 51. Trace settings

Property Name Type Meaning

curam.trace STRING Default: trace_off. Tracing is off by
default. Turn tracing on by setting the
property to trace_on, trace_verbose or
trace_ultra_verbose. The value trace_on
is equivalent to setting
curam.trace.servercalls to true. The
value trace_verbose is equivalent to
setting curam.trace.servercalls,
curam.trace.methods and
curam.trace.sql to true, while the
highest trace level "trace_ultra_verbose"
is equivalent to setting curam.trace.* to
true

curam.trace.servercalls BOOLEAN Default: false. Trace server method
invocations by remote clients.

curam.trace.methods BOOLEAN Default: false. Trace all business object
(BO) method invocations.

curam.trace.method_args BOOLEAN Default: false. Dump arguments to BO
method invocations, including the
argument type. This option is only
valid if curam.trace.methods is set to
true or curam.trace is set to at least
trace_verbose.

curam.trace.sql BOOLEAN Default: false. Trace SQL statements
executed by entity objects.

curam.trace.sql_args BOOLEAN Default: false. Dump results of SQL
select statements.

curam.trace.rules BOOLEAN Default: false. Trace Curam rules
execution.

curam.trace.smtp BOOLEAN Default: false. Trace the calls to the
SMTP server.

curam.trace.configfile.location STRING The location of the ".xml" configuration
file which controls the output of
logging within Curam.

curam.trace.oracle.cachehits BOOLEAN Default: false. An indicator as to
whether the cache hits and misses of
the Oracle prepared statement cache
should be output.

curam.trace.ejb.
invocation_differentiators

STRING Comma separated list of invocation
differentiator implementations.

Cúram Server Developer's Guide 173

Table 51. Trace settings (continued)

Property Name Type Meaning

curam.trace.suppress
_optimistic_locking_detail

BOOLEAN Default: false. Suppress SQL detail from
being dumped when optimistic locking
exceptions occur.

curam.trace.suppress
_database_exception_detail

BOOLEAN Default: false. Suppress SQL detail from
being dumped when database
exceptions occur.

Security
These settings configure the authentication behavior of Curam.

Table 52. Security settings

Property Name Type Meaning

curam.security.
breakInThreshold

INT32 Default: 3. The number of consecutive
break-in attempts that are allowed
before an account is locked out.

curam.security.
passwordexpiry.warningperiod

INT32 The number of days, in advance, that a
user should be warned (on login) that
their password is about to expire.

curam.security.
loginattempts.warningperiod

INT32 Default: 1. The number of logins, in
advance, that a user should be warned
(on login) that they have a limited
number of logins in which they must
change their password.

curam.security.
cache.failure.callback

STRING Specifies the security cache failure
callback class.

curam.security.
disable.cache.failure.callback

BOOLEAN If set to true this property will disable
the security cache failure callback.

curam.security.
identifier.minsearch.
stringlength

INT32 Specifies the security Identifier
Minimum Search String Length.

SMTP
These settings configure the environment in which the SMTP client element of
Curam operates.

Table 53. SMTP settings

Property Name Type Meaning

curam.mail.smtp.serverhost STRING The default mail server that is used by
Curam.

174 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 53. SMTP settings (continued)

Property Name Type Meaning

curam.mail.smtp.serverport INT32 The port on which the default mail
server is addressed.

curam.mail.smtp.
connectiontimeout

INT32 The socket connection timeout value (in
seconds) of the mail server.

curam.mail.smtp.timeout INT32 The socket I/O timeout value (in
seconds) of the mail server.

XMLServer
These settings configure the environment in which the XML Server will be used.

Table 54. XMLServer settings

Property Name Type Meaning

curam.xmlserver.host STRING The host on which the XML Print
Server resides. The property may also
be specified as a '/' separated list of
host names in order to use multiple
XML Servers. For further information
please refer to the Curam XML
Infrastructure Guide.

curam.xmlserver.port STRING The port on which the XML Print
Server is listening. The property may
also be specified as a '/' separated list
of ports in order to use multiple XML
Servers. For further information please
refer to the Curam XML Infrastructure
Guide.

curam.xmlserver.printer STRING The printer name that will be provided
to the XML Server.

curam.xmlserver.tray STRING The printer tray that will be provided
to the XML Server.

curam.xmlserver.fileencoding STRING The encoding that should be used for
the encoding of files provided to the
XMLServer.

curam.xmlserver.
serializelocaleneutral

BOOLEAN Specify that xml server data will be
serialized in a locale-neutral way
instead of being based on the locale
properties on the server.

Cúram Server Developer's Guide 175

Database
These settings configure Curam for database communication.

Table 55. Database settings

Property Name Type Meaning

curam.db.readmultimax INT32 Default: 100. Allows the developer to
override the default maximum number
of records returned by the readmulti
(readmulti, nsreadmulti, nkreadmulti
and nsmulti) operations in an
application. This default value is only
used if an explicit value is not set in
the model. Unless the
Readmulti_Informational option is set
in the model there is no enforcement of
this limit.

curam.db.locktimeout INT32 Default: 30. Allows the developer to set
the lock timeout in seconds on an
Oracle database when performing a
singleton select FOR UPDATE. The
syntax here is to append a WAIT XX
clause to the statement. This default
value is only used if an explicit value is
not set.

curam.db.batch.limit INT32 Default: 10. Globally defines the
number of updates that can be grouped
together as part of a batch update.

KeyServer
These settings allow a customer to configure the behavior of the KeyServer.

Table 56. KeyServer settings

Property Name Type Meaning

curam.keyserver.
default.unique.set

STRING The name of the default key set used
by the application.

curam.keyserver.retry INT32 Default: 5. The number of retries that
will be performed if there is a problem
communicating with the key server
before that problem is reported to the
user.

curam.keyserver.support BOOLEAN Default: false. The range aware key
server algorithm allows usage of group
from 3 to 32,768. But as group 2 is to
allocated for Cúram support. This
property can be set to true to state keys
generated are for Cúram support
purpose.

176 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 56. KeyServer settings (continued)

Property Name Type Meaning

curam.keyserver.remaining.
keyblock.notification

INT64 Default: 100000000. The range aware
key server algorithm supply a
notification to administrators when a
particular key set is nearing the end of
the systems allocated range. This
notification would be sent repeatedly at
defined magnitude intervals before
exhaustion e.g. the first message sent
when there are X key blocks remaining
for the key set, the next when there are
X/10 key blocks remaining etc. Range
Aware Key Server send these
notifications only in case if there are no
further ranges allocated to the system.

curam.keyserver.keyset.
cachesize

INT32 Default: 1 : Specifies the number of
unique ID keysets to be consumed and
cached per Key Server transaction.

BatchLauncher
These settings configure the behavior of Curam when problems occur invoking
batch programs.

Table 57. BatchLauncher settings

Property Name Type Meaning

curam.batchlauncher
.erroremail.recipient

STRING The email address of the recipient of
error emails from Curam.

curam.batchlauncher.
erroremail.nostacktrace

BOOLEAN Default: false. Suppress the stack trace
in the error emails.

curam.batchlauncher.
default.error.code

INT32 Default: 1. The default error code
returned by a batch program.

curam.batchlauncher.
dbtojms.enabled

BOOLEAN Default: false. Specifies whether
deferred processing and workflow
functionality for batch programs should
be enabled. When set to true the
curam.batchlauncher.dbtojms.
notification.host and
curam.batchlauncher.
dbtojms.notification.port properties
must also be set.

curam.batchlauncher.
dbtojms.notification.host

String Default: localhost. Specifies whether the
host on which the database-to-JMS
listener is available. This property must
be set when the
curam.batchlauncher.dbtojms.enabled
property is set to true.

Cúram Server Developer's Guide 177

Table 57. BatchLauncher settings (continued)

Property Name Type Meaning

curam.batchlauncher.
dbtojms.contextroot

STRING The context root used by the Curam
web client. Default value = 'Curam'.

curam.batchlauncher.
dbtojms.notification.port

INT32 Default: 9044. Specifies whether the
port on which the database-to-JMS
notification listener is available. This
property must be set when the
curam.batchlauncher.dbtojms.enabled
property is set to true.

curam.batchlauncher.
dbtojms.notification.ssl

BOOLEAN Default: true. Specifies that the
database-to-JMS notification listener on
the application server is using SSL.

curam.batchlauncher.
dbtojms.notification.ssl.
protocol

String Default: SSL. The protocol name
appropriate and valid for your
environment, which is dependent on
your JDK and application server; e.g.:
SSL, TLS, etc. For this property to be
used curam.batchlauncher.dbtojms
.notification.ssl must be set
affirmatively.

curam.batchlauncher.
dbtojms.notification.encoding

String Specifies the encoding of the
database-to-JMS listener.

curam.batchlauncher.
dbtojms.notification.
batchlaunchermode

String Specifies the db-to-jms mode for the
batch launcher. 0=none, 1=once per
batch launcher session, 2=once per
batch job.

curam.batchlauncher.
dbtojms.notification.disabled.
in.standalone

BOOLEAN Specifies that the batch launcher should
not perform a db-to-jms notification
when run in standalone mode.

curam.batchlauncher.
dbtojms.notification.test.
stubtrigger

BOOLEAN Default: false. For debugging batch jobs
which use DBtoJMS: stubs out
DBtoJMS.beginTransfer() to prevent it
from creating deferred processes.
JMSLiteEngine must be started to
process the messages.

curam.batchlauncher.
dbtojms.messagesper
transaction

INT32 Default: 512. The number of messages
per transaction processed by the
database-to-JMS conversion.

178 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Workflow
These settings configure the properties which relate to the Workflow Environment.

Table 58. Workflow settings

Property Name Type Meaning

curam.workflow.disable.audit.
wdovalueshistory.before.
activity

BOOLEAN When specified to true, this flag will
ensure that no WDO values history
audit information will be written before
an activity is executed.

curam.workflow.disable.audit
.wdovalueshistory.after.activity

BOOLEAN When specified to true, this flag will
ensure that no WDO values history
audit information will be written after
an activity is executed.

curam.workflow.disable.audit.
wdovalueshistory.transition.
evaluation

BOOLEAN When specified to true, this flag will
ensure that no WDO values history
audit information will be written before
the transitions from an activity are
evaluated.

CTM
These settings configure the properties which relate to configuration transport
manager.

Table 59. CTM settings

Property Name Type Meaning

curam.ctm.landscape.name STRING Default: nolandscape. The landscape
name for configuration transport
manager to transport change set from
source to target systems with in the
configured landscape.

Application.prx - Static properties
The following properties relate to the available static properties in the
Application.prx file.

Custom
These settings allow a developer to replace elements of the Curam infrastructure
with their own customized handlers.

Table 60. Custom settings

Property Name Type Meaning

curam.custom.audit.writer STRING Default: curam.util.internal.misc.
StandardDatabaseAudit.
The name of the class which will
handle the generated audit information.
This class must extend
curam.util.audit.AuditLogInterface.
curam.util.audit.DisabledAudit may be
used to globally disable auditing.

Cúram Server Developer's Guide 179

Table 60. Custom settings (continued)

Property Name Type Meaning

curam.custom.
predataaccess.hook

STRING The name of the class that implements
the interface
curam.util.audit.DataAccessHook.

curam.custom.
external.operation.hook

STRING Specifies the fully qualified class name
of the customized external operation
Hook which implements
curam.util.audit.
ExternalOperationHook. An external
operation is an operation callable as a
remote, batch, webservice or deferred
process call.

Security
These settings configure the authentication behavior of Curam.

Table 61. Security settings

Property Name Type Meaning

curam.security.
disable.authorisation

STRING Default: false. Suppress the
authorization checks normally
performed by Curam.

curam.security.
casesensitive

BOOLEAN Authentication and authorization of
usernames is case sensitive by default.
When this property is set to false the
authentication and authorization
mechanisms will ignore the case of the
user. If duplicate case insensitive user
names exist (e.g. caseworker,
CaseWorker), authentication will fail
due to an ambiguous user name. Such
duplicate names will also cause the
security cache to fail to initialize.

curam.custom.
externalaccess.implementation

STRING The fully qualified name of the class
implementing the curam.util.security.
ExternalAccessSecurity interface.
This class implements the custom
authentication mechanism for External
Users.

curam.custom.
authentication.implementation

STRING The fully qualified name of the class
implementing the curam.util.security.
CustomAuthenticator interface.
This class implements custom
authentication verifications that will be
invoked during the authentication
process.

180 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 61. Security settings (continued)

Property Name Type Meaning

curam.custom.
userscope.implementation

STRING The fully qualified name of the class
implementing the
curam.util.security.UserScope interface.
This class determines the type of User
logging into the application, i.e.
INTERNAL or EXTERNAL.

Trace
These control what diagnostic information (in addition to errors which are always
logged) is written to the application server's diagnostics file.

Table 62. Trace settings

Property Name Type Meaning

curam.trace.method_handler STRING Default:
curam.util.resources.Trace.Curam
MethodInvocationHandlerDefault.
Name of a class implementing
curam.util.resources.Trace.
CuramMethodInvocationHandler to
perform custom method tracing.

curam.trace.
dataaccess.maxstringlength

STRING Default: 1000. Maximum length of a
String or CLOB logged by the Data
Access Layer when SQL tracing is
enabled.

Environment
These settings configure the environment for your Curam application.

Table 63. Environment settings

Property Name Type Meaning

curam.project.name STRING This parameter is required by the Rules
and Workflow engines to dynamically
invoke methods in the application.

curam.disable.tab.cache BOOLEAN Default: false. Indicates if tab caching
should be disabled. Note, this only
applies to caching on the server side.

Variable Property Settings
The following properties whose name is defined variably.

Cúram Server Developer's Guide 181

Transaction
Contains properties connected with the runtime setting of transactional options.

Table 64. Transaction settings

Property Name Type Meaning

<fully qualified
classname>.intf.<method
name>.transaction.timeout

INT32 Used to control the transaction timeout
for a single operation. The value is the
number of seconds before the
transaction should timeout. Format:
PROJECTNAME.CODEPACKAGE.
CLASSNAME.intf.
OPERATIONNAME.transaction.timeout
e.g. curam.core.facade.intf.Person.
createAddress.transaction.
timeout=60

LoginBeanTransaction.
transaction.timeout

INT32
Used to control the transaction timeout
for the user login operation. The value
is the number of seconds before the
user login transaction should timeout.

If this property is not specified, the
login transaction timeout will default to
the JTA timeout value which has been
set for the application server.

Audit
Contains properties connected with the runtime setting of auditing options.

Table 65. Audit settings

Property Name Type Meaning

curam.audit.opaudittrail BOOLEAN Specify whether operation level
auditing for the operation
'OPERATIONNAME', within the client
visible class 'CLASSNAME' of the code
package 'CODEPACKAGE' is enabled
or disabled. Format:
curam.audit.opaudittrail.
PROJECTNAME.CODEPACKAGE.
CLASSNAME.OPERATIONNAME
Default: determined by the option set
in the model.

curam.audit.audittrail BOOLEAN Specify whether table level auditing for
the operation 'OPERATIONNAME' of
entity 'CLASSNAME' within the code
package 'CODEPACKAGE' is enabled
or disabled. Format:
curam.audit.audittrail.PROJECTNAME
.CODEPACKAGE.
CLASSNAME.OPERATIONNAME
Default: determined by the option set
in the model.

182 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 65. Audit settings (continued)

Property Name Type Meaning

curam.custom.external.
operation.hook

STRING Specify the name of a class which
implements
'curam.util.audit.DataAccessHook' and
which will be used to audit
client-visible operation calls.

curam.custom.
predataaccess.hook

STRING Specify the name of the class which
implements
'curam.util.audi.DataAccessHook' and
is used to audit data access calls.

curam.custom.audit.writer STRING Specify the name of a class which
implements
curam.util.audit.AuditLogInterface and
will be used to capture and write audit
information.

curam.audit.
audittrail.noxmlaudit

BOOLEAN Specify whether the XML audit writer
is disabled for data access operations.
This saves XML from being generated
for each invocation of the operation
done so far. Default: false.

Note: There are two ways to turn off auditing:
v Set the 'curam.custom.predataaccess.hook' property in the Application.prx to be

blank and set the 'curam.audit.audittrail.noxmlaudit' property to be true.
v Set the value of the property 'curam.custom.audit.writer' to be

'curam.util.audit.DisabledAudit'. The 'curam.util.audit.DisabledAudit' is a class
that is provided by the Infrastructure that contains empty methods. Therefore
the class will be called but no auditing will take place. This ensures that the
'Audit.logDataAccess' class gets called and builds up the xml that will form part
of the auditing but it does not actually insert any audit records onto the
database.

The first option is the preferred option.

Infrastructure Auditing Settings

Default table-level-audit setting
The following tables list the database operations in the IBM Cúram Social Program
Management infrastructure and the default value of their table-level auditing flag.
This value may be overridden by setting application properties, see the Cúram
Modeling Reference Guide for more details. Certain database operations do not
support auditing, for example operations with stereotype ns which have
handcrafted SQL - and these are listed with a default value of N/A

Cúram Server Developer's Guide 183

Table 66. Audit settings 1

Operation Name

Default
Auditing
Setting

ActivityInstance.getActivityVersionDetailsByTaskID N/A

ActivityInstance.getTaskID False

ActivityInstance.insert False

ActivityInstance.modify False

ActivityInstance.read False

ActivityInstance.readActivityInstanceByTaskID False

ActivityInstance.readByActivityInstanceCompoundKey N/A

ActivityInstance.readByTaskID False

ActivityInstance.readIterationID False

ActivityInstance.remove False

ActivityInstance.searchByProcessInstanceID False

ActivityInstance.searchByProcessInstanceIDAndStatus False

ActivityInstance.setActivityInstanceStatusAndEndDate False

ActivityInstance.setTaskID False

ActivityOccurrence.insert False

ActivityOccurrence.read False

ActivityOccurrence.remove False

AppResource.insert False

AppResource.modify False

AppResource.read False

AppResource.readAllResources False

AppResource.readByCategory False

AppResource.readByEmptyCategory N/A

AppResource.readByIEGScriptDefinitionID N/A

AppResource.readByLikeName N/A

AppResource.readByName False

AppResource.readByNameAndLocale N/A

AppResource.readResourceNameByID False

AppResource.remove False

AppResource.removeByIEGScriptDefinitionID N/A

AppResource.removeByName False

AppResource.removeByNameAndLocale N/A

AuditTrail.insert False

AuditTrail.readAll False

AuthenticationLog.countEntries N/A

AuthenticationLog.insert False

AuthenticationLog.modify True

AuthenticationLog.read False

184 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 66. Audit settings 1 (continued)

Operation Name

Default
Auditing
Setting

AuthenticationLog.readmulti False

AuthenticationLog.remove True

AuthorisationLog.countEntries N/A

AuthorisationLog.insert False

AuthorisationLog.readmulti False

BPOMethodLibrary.insert False

BPOMethodLibrary.modify False

BPOMethodLibrary.read False

BPOMethodLibrary.remove False

BPOMethodLibrary.searchBPOMethodReferences N/A

BPOMethodLibrary.searchByCompoundKey False

BatchErrorCodes.getAllErrorCodes N/A

BatchErrorCodes.insert False

BatchErrorCodes.modify False

BatchErrorCodes.read False

BatchErrorCodes.remove False

BatchGroupDesc.insert True

BatchGroupDesc.read False

BatchGroupDesc.readmulti False

BatchGroupDesc.remove True

BatchGrpGrpAssoc.insert False

BatchGrpGrpAssoc.readmulti False

BatchGrpGrpAssoc.readmultichildid False

BatchGrpGrpAssoc.remove False

BatchParamDef.read False

BatchParamDef.readmulti False

BatchParamDesc.insert True

BatchParamDesc.modify True

BatchParamDesc.read False

BatchParamDesc.readmulti False

BatchParamDesc.remove True

BatchParamValue.insert False

BatchParamValue.read False

BatchParamValue.readmulti False

BatchParamValue.remove False

BatchProcDef.read False

BatchProcDef.readAllProcesses False

BatchProcDesc.insert True

Cúram Server Developer's Guide 185

Table 66. Audit settings 1 (continued)

Operation Name

Default
Auditing
Setting

BatchProcDesc.modify True

BatchProcDesc.read False

BatchProcDesc.readAll False

BatchProcDesc.remove True

BatchProcGrpAssoc.insert True

BatchProcGrpAssoc.readmulti False

BatchProcGrpAssoc.readmultionprocessname False

BatchProcGrpAssoc.remove True

BatchProcRequest.insert False

BatchProcRequest.read False

BatchProcRequest.readallrequests False

BatchProcRequest.readmulti False

BatchProcRequest.readmultiuserid False

BatchProcRequest.remove False

BizObjAssociation.countOpenTasksByBizObjectTypeAndID N/A

BizObjAssociation.insert False

BizObjAssociation.modify False

BizObjAssociation.modifyBusinessObjectID False

BizObjAssociation.read False

BizObjAssociation.remove False

BizObjAssociation.searchByBizObjectTypeAndID False

BizObjAssociation.searchByTaskID False

CacheVersion.insert False

CacheVersion.modify False

CacheVersion.read False

CodeTableData.changeTableName False

CodeTableData.insert True

CodeTableData.modify False

CodeTableData.read False

CodeTableData.removeOneCodeTable False

CodeTableHeader.getChildCode False

CodeTableHeader.insert True

CodeTableHeader.joinCTHeaderCTItem N/A

CodeTableHeader.modifyDefaultCode False

CodeTableHeader.modifyParentCodetable False

CodeTableHeader.modifyTableName False

CodeTableHeader.modifyTimestamp False

CodeTableHeader.read False

186 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 66. Audit settings 1 (continued)

Operation Name

Default
Auditing
Setting

CodeTableHeader.readChildCodeTable False

CodeTableHeader.readDefaultCode False

CodeTableHeader.readEntireTable False

CodeTableHeader.readTableName False

CodeTableHeader.remove True

CodeTableHeader.searchByCodeTableName N/A

CodeTableHierarchy.insert False

CodeTableHierarchy.modify False

CodeTableHierarchy.modifyCodetable False

CodeTableHierarchy.read False

CodeTableHierarchy.readAll False

CodeTableHierarchy.readByCodetable False

CodeTableHierarchy.remove False

CodeTableItem.changeTableName False

CodeTableItem.countCodeTableItems N/A

CodeTableItem.countDescriptionSameParentCodeDifferentCode N/A

CodeTableItem.countDescriptionSameParentCodeOnTable N/A

CodeTableItem.countDescriptionsOnTable N/A

CodeTableItem.countDescriptionsWithDifferentCodeOnTable N/A

CodeTableItem.insert True

CodeTableItem.insertWithoutTimestamp True

CodeTableItem.listUnlinkedCodesExcludeLocale N/A

CodeTableItem.read False

CodeTableItem.readAllLocales False

CodeTableItem.readAllWithoutAnnotations False

CodeTableItem.readChildren False

CodeTableItem.readChildrenOneLocale False

CodeTableItem.readChildrenOneLocaleExcludeDuplicates N/A

CodeTableItem.readDisabled False

CodeTableItem.readEnabled False

CodeTableItem.readOneLocale False

CodeTableItem.readOneLocaleExcludeDuplicates N/A

CodeTableItem.readUnlinkedCodes False

CodeTableItem.readmulti False

CodeTableItem.remove True

CodeTableItem.removeOneCodeTable False

CodeTableItem.update True

CodeTableItem.updateWithCommentWithoutParentCode True

Cúram Server Developer's Guide 187

Table 66. Audit settings 1 (continued)

Operation Name

Default
Auditing
Setting

CodeTableItem.updateWithoutParentCode True

DPErrorInformation.insert False

DPErrorInformation.read False

DPErrorInformation.remove False

DPProcess.insert False

DPProcess.nkreadmulti False

DPProcess.read False

DPProcess.remove False

DPProcessInstance.insert False

DPProcessInstance.nkreadmulti False

DPProcessInstance.read False

DPProcessInstance.setFinishTime False

DPTicket.insert False

DPTicket.modify False

DPTicket.nkreadmulti False

DPTicket.read False

EventClass.insert False

EventClass.modify False

EventClass.read False

EventClass.readAllEventClasses False

EventClass.remove False

EventType.insert False

EventType.modify False

EventType.modifyByEventClass N/A

EventType.read False

EventType.remove False

EventType.removeByEventClass False

EventType.searchByEventClass False

EventWait.countEventWaitsByActivityInstanceID N/A

EventWait.countEventWaitsByEventMatchKey N/A

EventWait.insert False

EventWait.readByActivityInstanceID False

EventWait.readByEventMatchKey False

EventWait.readEventMatchDataByActivityInstanceID False

EventWait.remove False

EventWait.removeByActivityInstanceID False

FailedMessage.getAllMessages False

FailedMessage.insert False

188 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 66. Audit settings 1 (continued)

Operation Name

Default
Auditing
Setting

FailedMessage.read False

FailedMessage.remove False

FailedMessage.searchByMessageType False

FailedMessage.searchByProcessInstID False

FieldLevelSecurity.getAllOperations N/A

FieldLevelSecurity.getAllReturnedFieldNamesByOperation False

FieldLevelSecurity.getAllReturnedFieldsAndSidsByOperation False

FieldLevelSecurity.getAllSecuredFields N/A

FieldLevelSecurity.getSidForReturnedField False

FieldLevelSecurity.getSidVersionNoForReturnedField False

FieldLevelSecurity.insert True

FieldLevelSecurity.setSidForReturnedField True

FunctionIdentifier.joinFidSecurityFidSid N/A

FunctionIdentifier.read False

FunctionIdentifier.readAllFids False

GroupInformation.getVersionNoForGroup False

GroupInformation.insert False

GroupInformation.listExcludingScript N/A

GroupInformation.modify False

GroupInformation.nkreadmulti False

GroupInformation.read False

GroupInformation.remove False

GroupRange.insert False

GroupRange.readAll False

GroupRangeValid.insert False

GroupRangeValid.readAll False

GroupRangeValid.removeAll False

IEGDefinitionInfo.insert False

IEGDefinitionInfo.nsmultiGroupByType N/A

IEGDefinitionInfo.nsmultiGroupWithoutType N/A

IEGDefinitionInfo.nsmultiScriptByType N/A

IEGDefinitionInfo.nsmultiScriptWithoutType N/A

IEGDefinitionInfo.readmulti False

IEGDefinitionInfo.remove N/A

IEGExecutionInfo.insert False

IEGExecutionInfo.modify False

IEGExecutionInfo.nkreadmulti False

IEGExecutionInfo.read False

Cúram Server Developer's Guide 189

Table 66. Audit settings 1 (continued)

Operation Name

Default
Auditing
Setting

IEGExecutionInfo.readExec False

IEGExecutionInfo.remove False

IEGExecutionInfo.searchBeforeDate N/A

Iteration.insert False

Iteration.modifyEndDateTime False

Iteration.read False

Iteration.readIterationID False

Iteration.readIterationSummary False

Iteration.remove False

JMSLiteMessage.insert False

JMSLiteMessage.read False

JMSLiteMessage.readAllByType False

JMSLiteMessage.remove False

JoinInstance.insert False

JoinInstance.modify False

JoinInstance.readByJoinMetaID False

JoinInstance.remove False

KeyServer.insert False

KeyServer.modify False

KeyServer.read False

KeySetRange.insert False

KeySetRange.modify False

KeySetRange.read False

MatchedEvtArchive.getMatchedEventsForActivityInstance False

MatchedEvtArchive.insert False

MatchedEvtArchive.read False

MatchedEvtArchive.readByActivityInstanceID False

MatchedEvtArchive.searchByActivityInstanceID False

OpAuditTrail.insert False

ProcEnactEvtData.insert False

ProcEnactEvtData.modify False

ProcEnactEvtData.read False

ProcEnactEvtData.readByProcessStartEventID False

ProcEnactEvtData.remove False

ProcEnactEvtData.removeByProcessStartEventID False

ProcEnactmentEvt.insert False

ProcEnactmentEvt.modify False

ProcEnactmentEvt.read False

190 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 66. Audit settings 1 (continued)

Operation Name

Default
Auditing
Setting

ProcEnactmentEvt.readAllRecords False

ProcEnactmentEvt.readByEnabled False

ProcEnactmentEvt.readByEvent False

ProcEnactmentEvt.readByProcessToStart False

ProcEnactmentEvt.remove False

ProcInstOverflow.getWDOSnapshot False

ProcInstOverflow.insert False

ProcInstOverflow.removeAllRecordsForProcessInstanceWDO False

ProcInstWDOData.getAllContextWDOForActivity False

ProcInstWDOData.getAllWDODataForOneProcessInstance False

ProcInstWDOData.insert False

ProcInstWDOData.modify False

ProcInstWDOData.read False

ProcInstWDOData.readAllRecords False

ProcInstWDOData.readOverflowInd False

ProcInstWDOData.remove False

ProcInstWDOData.removeAllContextWDOForActivity N/A

ProcessDefinition.countDefinitionsByName N/A

ProcessDefinition.countDefinitionsByNameAndVersion N/A

Table 67. Audit settings 2

Operation Name

Default
Auditing
Setting

ProcessDefinition.countUnreleasedDefinitionsByID N/A

ProcessDefinition.countUnreleasedDefinitionsByName N/A

ProcessDefinition.getHighestReleasedVersionNumber N/A

ProcessDefinition.getHighestUnReleasedVersionNumber N/A

ProcessDefinition.getHighestVersionNumber N/A

ProcessDefinition.insert False

ProcessDefinition.modify False

ProcessDefinition.modifyByNameAndVersion False

ProcessDefinition.read False

ProcessDefinition.readByNameAndVersion False

ProcessDefinition.readDefinitionByID N/A

ProcessDefinition.readDefinitionByName N/A

ProcessDefinition.readLatestVersionDefinitionDetailsByName N/A

ProcessDefinition.readProcessIdentifier False

ProcessDefinition.readProcessReleased False

Cúram Server Developer's Guide 191

Table 67. Audit settings 2 (continued)

Operation Name

Default
Auditing
Setting

ProcessDefinition.readUnreleasedDefinitionByName N/A

ProcessDefinition.remove False

ProcessDefinition.removeByNameAndVersion False

ProcessDefinition.searchAllDefinitionsSummaryDetails N/A

ProcessDefinition.searchAllVersions False

ProcessDefinition.searchAllVersionsByName False

ProcessDefinition.searchByNameAndReleasedInd False

ProcessDefinition.searchByReleasedIndicator False

ProcessDefinition.searchDefinitions False

ProcessDefinition.searchLatestDefinitions N/A

ProcessDefinition.searchLatestReleasedProcesses N/A

ProcessDefinition.searchProcesses False

ProcessInstance.countProcessInstancesByProcessDefinitionDetails N/A

ProcessInstance.insert False

ProcessInstance.modify False

ProcessInstance.modifyStatus False

ProcessInstance.read False

ProcessInstance.readOne False

ProcessInstance.readStatus False

ProcessInstance.remove False

ProcessInstance.searchByBizObject N/A

ProcessInstance.searchByEventWaitDetails N/A

ProcessInstance.searchByParentProcessInstanceID N/A

ProcessInstance.searchByProcessDetails N/A

ProcessInstance.searchByProcessIDAndVersion N/A

ProcessInstance.searchByTaskID N/A

ProcessInstance.searchByTaskUser N/A

PropDescription.countDescriptions N/A

PropDescription.insert True

PropDescription.modify True

PropDescription.read False

PropDescription.readDescriptionByID False

PropDescription.remove True

PropDescription.removeAllDescriptionsByPropertyID False

Properties.countOccurrencesOfName N/A

Properties.insert True

Properties.modify True

Properties.read False

192 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 67. Audit settings 2 (continued)

Operation Name

Default
Auditing
Setting

Properties.readAllByLocaleOrCategory N/A

Properties.readName False

Properties.readNameAndValueList N/A

Properties.readbyName False

Properties.readlAllPropertiesTable False

Properties.remove True

Properties.resetAllProperties N/A

Reminders.clearSentRemindersByActivityInstanceID False

Reminders.clearSentRemindersByReminderAndActivityInstanceID False

Reminders.insertReminder False

Reminders.scanReminders N/A

RuleSetInformation.insert False

RuleSetInformation.listByType False

RuleSetInformation.modify False

RuleSetInformation.read False

RuleSetInformation.readDetailsWithoutDefinition False

RuleSetInformation.remove False

RuleSetLink.insert False

RuleSetLink.read False

RuleSetLink.readmultiByMasterRuleSet False

RuleSetLink.readmultiBySubRuleSet False

RuleSetLink.remove False

ScriptGroupRels.dropGroupsForScript N/A

ScriptGroupRels.insert False

ScriptGroupRels.read False

ScriptGroupRels.readmulti False

ScriptGroupRels.readmultiForScript False

ScriptInformation.insert False

ScriptInformation.modify False

ScriptInformation.nkreadmulti False

ScriptInformation.read False

ScriptInformation.remove False

SecurityFidSid.insert True

SecurityFidSid.joinFidSidFunctionIdentifier N/A

SecurityFidSid.modifySid True

SecurityFidSid.readAllFid False

SecurityFidSid.readAllFidSid False

SecurityFidSid.readAllSid False

Cúram Server Developer's Guide 193

Table 67. Audit settings 2 (continued)

Operation Name

Default
Auditing
Setting

SecurityFidSid.readFid False

SecurityFidSid.readSid False

SecurityFidSid.remove True

SecurityFidSid.removeSid True

SecurityGroup.insert True

SecurityGroup.modify True

SecurityGroup.read False

SecurityGroup.readAllGroups False

SecurityGroup.readGroupsInRole N/A

SecurityGroup.readGroupsNotInRole N/A

SecurityGroup.remove True

SecurityGroupSid.getFunctionSIDsForGroup N/A

SecurityGroupSid.getNonFunctionSIDsForGroup N/A

SecurityGroupSid.getUnlinkedFunctionSIDsForGroup N/A

SecurityGroupSid.insert True

SecurityGroupSid.modifyGroup True

SecurityGroupSid.modifySid True

SecurityGroupSid.read False

SecurityGroupSid.remove True

SecurityGroupSid.removeGroupName True

SecurityGroupSid.removeSid True

SecurityIdentifier.insert True

SecurityIdentifier.modify True

SecurityIdentifier.modifyNameAndDescription True

SecurityIdentifier.read False

SecurityIdentifier.readAllSids False

SecurityIdentifier.readMatchSid False

SecurityIdentifier.readSidType False

SecurityIdentifier.readSidsInGroupSid N/A

SecurityIdentifier.readSidsNotInGroupSid N/A

SecurityIdentifier.remove True

SecurityRole.getNonUsersRoles N/A

SecurityRole.getRolesAndFunctionSIDs N/A

SecurityRole.getRolesAndNonFunctionSIDs N/A

SecurityRole.getUnlinkedFunctionSIDs N/A

SecurityRole.insert True

SecurityRole.modify True

SecurityRole.read False

194 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 67. Audit settings 2 (continued)

Operation Name

Default
Auditing
Setting

SecurityRole.readAllRoles False

SecurityRole.readRolesNotInGroup N/A

SecurityRole.remove True

SecurityRoleGroup.insert True

SecurityRoleGroup.modifyAllOccurrencesOfARoleName True

SecurityRoleGroup.modifyGroup True

SecurityRoleGroup.read False

SecurityRoleGroup.readRolesInGroup False

SecurityRoleGroup.remove True

SecurityRoleGroup.removeGroupName True

SecurityRoleGroup.removeRole True

SuspendedActivity.insert False

SuspendedActivity.read False

SuspendedActivity.readmulti False

SuspendedActivity.remove False

SuspendedActivity.removeActivitiesForProcessInstance False

TabSession.insert False

TabSession.modify False

TabSession.read False

TabSession.remove False

Task.countAllByBizObjectAndStatus N/A

Task.countAllByBizObjectDueDateAndStatus N/A

Task.countAssignedByBizObjectAndStatus N/A

Task.countAssignedByBizObjectDueDateAndStatus N/A

Task.countByUserAndPriority N/A

Task.countByUserAndStatus N/A

Task.countByUserDueDateAndStatus N/A

Task.countReservedByCategory N/A

Task.countReservedByStatus N/A

Task.countReservedByUsername N/A

Task.countReservedByUsernameAndDueDate N/A

Task.countReservedByUsernameAndPriority N/A

Task.countReservedByUsernameAndStatus N/A

Task.countReservedByUsernameBizObjectAndStatus N/A

Task.countReservedByUsernameBizObjectStatusAndDueDate N/A

Task.countTasksForReservedByUser N/A

Task.insert False

Task.modify False

Cúram Server Developer's Guide 195

Table 67. Audit settings 2 (continued)

Operation Name

Default
Auditing
Setting

Task.modifyAssignedDateTime False

Task.modifyPriority False

Task.modifyReservedBy False

Task.modifyRestartTime False

Task.modifyStatus False

Task.modifyTotalTimeWorked False

Task.read False

Task.readAllTasks False

Task.readAssignedDateTime False

Task.readReservedBy False

Task.readStatus False

Task.readSummaryDetails False

Task.readTaskWithDueDate N/A

Task.readTotalTimeWorked False

Task.readVersionNo False

Task.searchAllByBizObjectAndStatus N/A

Task.searchAllByBizObjectDueDateAndStatus N/A

Task.searchAssignedByBizObjectAndStatus N/A

Task.searchAssignedByBizObjectDueDateAndStatus N/A

Task.searchReservedByCategory N/A

Task.searchReservedByDueOnDate N/A

Task.searchReservedByPriority N/A

Task.searchReservedByStatus N/A

Task.searchReservedByUsername N/A

Task.searchReservedByUsernameAndDueDate N/A

Task.searchReservedByUsernameAndPriority N/A

Task.searchReservedByUsernameAndStatus N/A

Task.searchReservedByUsernameBizObjectAndStatus N/A

Task.searchReservedByUsernameBizObjectStatusAndDueDate N/A

Task.searchTasksByBizObject N/A

Task.searchTasksByBizObjectAndDueDate N/A

Task.searchTasksByBizObjectAndReservationStatus N/A

Task.searchTasksByBizObjectUserAndStatus N/A

Task.searchTasksByDueDate N/A

Task.searchTasksDueInTheNextWeek N/A

Task.searchTasksReservedDueInTheNextTimePeriod N/A

TaskHistory.insert False

TaskHistory.read False

196 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 67. Audit settings 2 (continued)

Operation Name

Default
Auditing
Setting

TaskHistory.search False

TaskHistory.searchByTaskID N/A

TaskWDOOverflow.getWDOSnapshot False

TaskWDOOverflow.insert False

TaskWDOOverflow.removeAllEntriesForTask False

TransitionInstance.insert False

TransitionInstance.modify False

TransitionInstance.read False

TransitionInstance.remove False

TransitionInstance.removeByTransitionID False

TransitionInstance.searchByProcessInstanceID False

UserPreferenceInfo.getAllUserPrefNamesForPrefSetID N/A

UserPreferenceInfo.getAllUserPreferences False

UserPreferenceInfo.getAllUserPreferencesForUser N/A

UserPreferenceInfo.getUserPreference False

UserPreferenceInfo.insertUserPreference False

UserPreferenceInfo.modifyUserPreference False

UserPreferenceInfo.removeUnusedUserPreferences N/A

UserPreferenceInfo.removeUserPreferencesForUser False

Users.countOccurrencesOfRole N/A

Users.modify True

Users.modifyAllOccurrencesOfARoleName True

Users.read False

Users.readAllUsers False

Users.readCaseInsensitiveUser N/A

Users.readLocale False

Users.readUserAndRoleNames N/A

Users.readUsersByRole False

Users.remove True

WDOTemplateLibrary.countTemplatesByName N/A

WDOTemplateLibrary.insert False

WDOTemplateLibrary.modify False

WDOTemplateLibrary.read False

WDOTemplateLibrary.readAll False

WDOTemplateLibrary.readTemplateByName False

WDOTemplateLibrary.remove False

WDOTemplateLibrary.searchByCategory False

WDOValuesHistory.insert False

Cúram Server Developer's Guide 197

Table 67. Audit settings 2 (continued)

Operation Name

Default
Auditing
Setting

WDOValuesHistory.modify False

WDOValuesHistory.read False

WDOValuesHistory.readByActivityInstanceIDAndExecutionPeriod False

WDOValuesHistory.remove False

WDOValuesHistory.searchByActivityInstanceID False

WDOValuesHistory.searchByProcessInstanceID False

WDOValuesHistory.searchByProcessInstanceIDAndCreationTime N/A

WorkflowDeadline.insert False

WorkflowDeadline.modify False

WorkflowDeadline.modifySuspended False

WorkflowDeadline.read False

WorkflowDeadline.readDeadlineDetailsByActivityInstanceID False

WorkflowDeadline.readDeadlineDetailsByTaskID False

WorkflowDeadline.readDeadlineIDAndTimeByTaskID False

WorkflowDeadline.readDeadlineIDByTaskID False

WorkflowDeadline.remove False

WorkflowDeadline.scanWorkflowDeadlines N/A

WorkflowHistory.insert False

WorkflowHistory.modify False

WorkflowHistory.read False

WorkflowHistory.readmulti False

WorkflowHistory.remove False

WorkflowHistory.searchByEvent False

WorkflowHistory.searchByProcessInstanceIDAndEventTime False

WorkflowHistory.searchByProcessInstanceIDAndUserID False

WorkflowHistory.searchByUser False

WorkflowHistory.searchByUserAndEvent False

XMLArchiveDoc.insert False

XMLArchiveDoc.read False

XSLTemplate.insert False

XSLTemplate.modify False

XSLTemplate.read False

XSLTemplate.readAllByType False

XSLTemplate.readByIDCode False

XSLTemplate.readByName False

XSLTemplate.readLatestVersionAndTemplateName False

XSLTemplate.readLatestVersionByTemplateID False

XSLTemplate.readmulti False

198 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 67. Audit settings 2 (continued)

Operation Name

Default
Auditing
Setting

XSLTemplate.remove False

XSLTemplateInst.deleteUsingTemplateIDAndLocale False

XSLTemplateInst.getAllTemplateInstDetailsForTemplateIdAndLocale False

XSLTemplateInst.getAllVersionDetails False

XSLTemplateInst.insert False

XSLTemplateInst.modify False

XSLTemplateInst.read False

XSLTemplateInst.remove False

Cúram Server Developer's Guide 199

200 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 201

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

202 IBM Cúram Social Program Management: Cúram Server Developer's Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 203

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

BIRT is a registered trademark of Eclipse Foundation.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United States and other
countries.

Oracle, WebLogic Server, Java and all Java-based trademarks and logos are
registered trademarks of Oracle and/or its affiliates.

Red Hat Linux is a registered trademark of Red Hat, Inc. in the United States and
other countries.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

204 IBM Cúram Social Program Management: Cúram Server Developer's Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Cúram Server Developer's Guide
	Introduction
	Introduction
	Content Summary
	Overview of Compliant Development Artifact Changes

	Directory Structure
	Overview
	Application Components
	Component Folders
	Component Order
	Localized Components

	Application Directory Structure
	Source Artefacts of the Cúram Application
	Cúram Application Build Structure

	Artefacts of the SDEJ

	Build Files and Their Targets
	Overview
	Performing the Build
	Overriding default JUNIT JAR
	Configuring the Build
	Cúram Build Settings
	Java Compiler Settings
	Java Task Settings
	Generator Settings
	Other Environment Settings

	What is happening under the hood
	generated
	wsconnector
	emx2xml
	modelgen
	msggen
	ctgen
	evgen
	compile.generated

	implemented
	compile.implemented

	Extra Targets
	Clover Targets
	Rules Targets
	Classic IEG Targets
	IEG2 Targets
	Application Configuration Import and Export Targets
	Workflow Targets
	Deployment Targets
	Extending the Build
	Introducing a new script

	Overridden Targets
	Application Targets
	BI App
	CREOLE
	Evidence Generation

	Cúram Configuration Settings
	Overview
	Application Properties
	Application prx
	Merging an Application prx File

	Bootstrap.properties

	Support for Multiple Time Zones
	Dates and date/times in Cúram

	Data Manager
	Overview
	Intended Data Manager Process
	Planning for MBCS Data

	Invocation
	Database Artefacts
	Data Definition XML Files
	Data Contents DMX Files
	The table Element
	Customizing a DMX file
	Retrieving values from DMX files for database insertion
	Validation of DMX files
	Tracing Information for the DMX Merging Process

	Database Object Naming
	Short Name Substitution
	Primary Key Indices
	Primary Key Constraints
	Tablespaces

	Data Manager Configuration
	Database Synchronization
	Statistics
	Lob Manager

	SQL Checker
	Overview
	Under the Hood
	Limitations

	Eclipse
	Overview
	Curam Projects in Eclipse
	Eclipse Configuration Files
	.project File
	.classpath File
	Eclipse .classpath Generation

	.settings Directory

	Access Rules
	Working Sets

	Logging
	Overview
	Usage
	Logging Hierarchy
	Logging Level
	Configuration
	Statistics
	Localization
	Enabling Dynamic UIM Tracing

	Using Exceptions
	Overview
	Constructing an Exception
	Creating Messages with Argument Placeholders
	Handling Exceptions
	Logging Exceptions
	General Exception Guidelines
	Coding Conventions for Exceptions
	Using Record Not Found Indicator
	Localized Output
	Informational Manager

	Message and Code Table Files
	Overview
	Message Files
	The Format of Message Files
	The <messages> Element

	Customizing a Message File
	Rules of Message Merges

	Artefacts Produced by msggen Build Target
	Retrieving Messages from Message Files
	Writing Messages To Server Logs
	Localizing SDEJ Message Files

	Code Table Files
	The Format of Code Table Files
	The <codetables> Element
	The <description> Element
	The <codetable> Element
	The <codetabledata> Element
	The <locale> Element
	The <comments> Element
	The <displaynames> Element
	The <name> Element
	The <locale> Element
	The <code> Element
	The <locale> Element
	The <description> Element
	The <annotation> Element
	The <comments> Element

	Customizing a Code Table File
	Rules of Code Table Merges

	Artefacts Produced by ctgen Build Target
	Code Table Hierarchy
	Retrieving Codes from Code Table Files
	Localizing SDEJ Code Table Files

	Specialized Readmulti Operations
	Overview
	When to Use Readmulti Operations
	How to Define Your Own Readmulti Operations
	Extra Features of Readmulti Operations
	An Alternative
	Summary

	Deprecation
	Introduction
	Overview
	Other Sources of Information

	Effect of Deprecation on a Custom Application
	Customizations and References
	Support for Deprecated Artefacts
	Effect of Deprecation on the User Interface

	Scope
	Artefact Types that can be Deprecated
	Limitations

	Running a Deprecation Report
	Configuring the Deprecation Report
	Prerequisites for running the Deprecation Report
	Generating the Deprecation build output
	Identifying deprecation warnings in the build output.
	Notes on running the Deprecation Report

	Analyzing Deprecation Warnings
	Identifying overrides of deprecated artefacts
	Addressing overrides of deprecated artefacts

	Identifying references to deprecated artefacts
	Notes on analyzing deprecation warnings

	User Preferences
	Overview
	User Preferences Definition
	Data definition XML file
	Properties files

	Development Support
	External Users
	Localizing Display Names
	Localizing Infrastructure Preferences Display Names

	Transaction Control
	Overview
	Developer's View
	Transactions and Method Invocations
	Optimistic Locking and the forUpdate Flag
	General Guidelines

	Underlying Design
	DB2
	Oracle

	Transaction SQL Query Cache
	Overview
	Populating the Cache
	Invalidating the Cache
	Properties
	SQLQueryCacheAdmin API
	SQLQueryCacheUtil API
	Logging

	Deferred Processing
	Objective
	Prerequisites
	Introduction
	Model Your Deferred Processes
	Deferred Process Enactment
	WMInstanceData

	Offline Unit-Testing of Deferred Processes
	Configuration of Deferred Processing Table
	TicketCallback.dpHandleError()
	Security
	Summary

	Timer Bean
	Overview
	EJB Timer Bean Definition
	Development Support
	TimerInfo Class
	TimerTask Class
	TimerCallback Interface
	Code sample:

	Rules for using SDEJ Timers
	Timer Behavior
	FAQ

	Events and Event Handlers
	Overview
	The Format of Event Files
	Event Definition
	Event Handler Registration

	Merging Event Files
	Rules of Event Definition Merges
	Rules of Event Handler Merges

	Artefacts produced by generate events
	Database Scripts
	Java Code

	Raising events
	Event handlers
	Event filters

	Unique IDs
	Overview
	What are Unique IDs?
	What are Unique IDs for?
	Can I run out of Unique IDs?
	When should I use Unique IDs?
	When should I not use Unique IDs?
	Should my keys be human-readable?
	What if I require contiguous human-readable Unique IDs?
	How do I use Unique IDs?
	Range Aware Key Server
	Overview
	How does the Range Aware Key Server work?
	Where is the Range Aware Key Server used?

	Cúram Configuration Parameters
	Overview
	Bootstrap.properties
	Database
	Environment
	Test
	Custom

	Application.prx - Dynamic properties
	Environment
	JMX
	Test
	Rules
	IEG
	Custom
	Trace
	Security
	SMTP
	XMLServer
	Database
	KeyServer
	BatchLauncher
	Workflow
	CTM

	Application.prx - Static properties
	Custom
	Security
	Trace
	Environment

	Variable Property Settings
	Transaction
	Audit

	Infrastructure Auditing Settings
	Default table-level-audit setting

	Notices
	Privacy Policy considerations
	Trademarks

