
IBM Cúram Social Program Management
Version 6.0.5

Cúram Modeling Reference Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 95

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures vii

Tables ix

Cúram Modeling Reference 1
Introduction 1

Overview 1
Intended Audience 1
Prerequisites 2
Rational Software Architect 2
The Cúram Server Code Generator 2
Chapters in this Guide 2

Part 1 - UML Overview. 2
Part 2 - Class Stereotypes 2
Part 3 - Attribute Stereotypes 3
Part 4 - Operation Stereotypes 3
Part 5 - Relationship Stereotypes. 3
Part 6 - Other Topics. 4

UML Overview 4
UML and the Input Meta-model 4
Overview of the Architecture Layers 4

Remote Interface Layer 4
Business Object Layer 4
Data Access Layer 4

Stereotypes 5
Class Stereotypes 5
Attribute Stereotypes 6
Operation Stereotypes 6
Relationship Stereotypes 7

Data types 7
Packages 10

Overview 10
Options. 10

CODE_PACKAGE 10
Audit Mappings Classes 12

Overview 12
Rules 12
Outputs 13
Options. 13

Domain Definition Classes 14
Overview 14

Defining a Domain Hierarchy 14
Proper Use of Domains 15
Storage Options for String Domains 15

Options. 17
Code Table Name 17
Code Table Root 17
Compress Embedded Spaces. 17
Convert to Uppercase 18
Custom Validation Function Name 18
Default 18
Maximum Size 18
Maximum Value 18
Minimum Size 18
Minimum Value 19

Multibyte Expansion Factor 19
Pattern Match 19
Remove Leading Spaces 19
Remove Trailing Spaces 19
Storage Type 19

Overriding a Domain Definition 20
How to use Domain Definition Overrides . . 20
Considerations / Limitations 20
Usage Rules 20

Entity Classes 20
Overview 20
Rules 21
Attributes 21

Details 21
Key 21

Operations 21
Database Operations 21
Non-database Operations 21

Outputs 22
Standard Key Structs 22
Standard Details Structs 22
Standard List Structs 22

Options. 22
Abstract 22
Allow Optimistic Locking 22
Audit Fields 23
Enable Validation 23
Last Updated Field 23
No Generated SQL 23
Replace Superclass 23

Concurrency Control - Optimistic Locking . . . 23
Table Level Auditing 24

Information Captured by Table-level Auditing 25
Storage of Audit Information 25

Exit Points. 25
Pre Data Access 26
Post Data Access 26
Validation 26
On-fail 26
Exit Point Parameters 26
What should exit points be used for 27
What should exit points not be used for . . . 27

Entity Inheritance 27
Rules when Using Entity Inheritance 27

Last Updated Field 27
Extension Classes 28

Overview 28
How to use Extension Classes 28
When to use Extension Classes 29
Considerations / Limitations 29
Usage Rules 29

Facade Classes 29
Overview 29
Rules 29
Operations 30

default 30

© Copyright IBM Corp. 2012, 2014 iii

batch 30
wmdpactivity. 30
qconnector. 30

Options. 30
Abstract 30
Generate Facade Bean 30
Replace Superclass 30

Process Classes 30
Overview 30
Business Process Objects 31
Rules 31
Operations 31

default 31
batch 31
wmdpactivity. 31
qconnector. 32

Options. 32
Abstract 32
Generate FIDs 32
Replace Superclass 32

Struct Classes. 32
Overview 32
Rules 32
Outputs 33
Options. 33

Audit Fields 33
Attributes 33

Overview 33
Attribute Rules 33
Attribute Options 34

Allow NULLs 34
Multibyte Expansion Factor 34

Operations 35
Overview 35
Rules 35
Operation Options 35

Audit BI (Business Interface) Calls to this
Operation 35
Auto ID Field 35
Auto ID Key 36
Business Date. 36
BytesMessage encoding character set 37
Database Table-level Auditing 37
Field Level Security 38
JNDI name of the QueueConnectionFactory
class 39
JNDI name of the transmission queue . . . 39
JNDI name of the reply queue 39
Message type 39
No Generated SQL 39
On Fail Operation 41
Optimistic Locking 41
Order By 41
Post Data Access Operation 41
Pre Data Access Operation 41
Readmulti_Max 41
Readmulti_Informational 42
Response message timeout (seconds) 42
Security 42
SQL 42
Transactional 42

Where 42
Operation Parameter Options 43

Mandatory Fields 43
Entity Operations Overview 44

Introduction 44
Standard Operations 44

Standard Single-Record Operations 44
Standard Multi-Record Operations. 44

Non-Standard Operations. 45
Generated SQL Operations 45
Handcrafted SQL Operations 45

Non-Key Operations 45
Batch Operations 46

Entity Insert Operations 46
Overview 46
Standard Insert 46

Description 46
Use 46
Parameter and Generator Notes 46

Non-standard Insert (Generated SQL) 47
Description 47
Use 47
Parameter and Generator Notes 47

Entity Read Operations 47
Overview 47
Standard Read 48

Description 48
Use 48
Parameter and Generator Notes 48

Standard Readmulti 48
Description 48
Use 48
Parameter and Generator Notes 48

Non-standard Read (Generated SQL) 49
Description 49
Use 49
Parameter and Generator Notes 49

Non-standard Readmulti (Generated SQL) . . . 49
Description 49
Use 50
Parameter and Generator Notes 50

Non-key Read 50
Description 50
Use 50
Parameter and Generator Notes 51

Non-key Readmulti. 51
Description 51
Use 51
Parameter and Generator Notes 51

Entity Update Operations. 51
Overview 51
Standard Modify 52

Description 52
Use 52
Parameter and Generator Notes 52

Non-standard Modify (Generated SQL) 52
Description 52
Use 52
Parameter and Generator Notes 53

Non-key Modify. 53
Description 53

iv IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Use 53
Parameter and Generator Notes 53

Entity Delete Operations 53
Overview 53
Standard Remove 54

Description 54
Use 54
Parameter and Generator Notes 54

Non-standard Remove (Generated SQL) 54
Description 54
Use 54
Parameter and Generator Notes 54

Non-key Remove 55
Description 55
Use 55
Parameter and Generator Notes 55

Entity Batch Operations 55
Overview 55
BatchInsert 55

Description 55
Use 56
Parameter and Generator Notes 56

BatchModify 57
Description 57
Use 57
Parameter and Generator Notes 57

Entity Handcrafted SQL Operations 58
Overview 58
Non-standard. 58

Description 58
Use 58
Parameter and Generator Notes 58

Non-standard multi 59
Description 59
Use 59
Parameter and Generator Notes 59
Example 1 - nsmulti with a Single (List)
Parameter 59
Example 2 - nsmulti with Two Parameters
(Key + List) 61

Using Handcrafted SQL in Non-Standard Entity
Operations 64

Overview 64
Using Host Variables 64
“Null” Considerations 64
For Update Considerations With DB2 for
z/OS 65
SQL Example 1 65
SQL Example 2 66

Aggregation 67
Overview 67
Rules when Using Aggregation 67
A Special Case 67
One-to-One Aggregation 68
One-to-Many Aggregation 69

Assignable. 70
Overview 70
Explicit Field Assignment. 71
Suppressing Default Assignment Fields 73
Combining structs 73

Foreign Keys 74

Overview 74
Rules when Using Foreign Keys 74
How to Add a Foreign Key to a Database Table 75
Naming Primary and Foreign Key Constraints. . 75
Example 75

Indices 76
Overview 76
Rules when Using Indices 76
How to Add an Index to a Database Table . . . 76
Naming Indices 77
Example 77

Unique Indices 77
Overview 77

Generated Class Hierarchy 78
Overview 78
Basic Hierarchy Example 78
Hierarchy for Subclasses 80
Hierarchy for Abstract Classes 81
Considerations 81

Access Control - private/protected/public/
package 81
The Meaning of super 81
Enforcing the Factory Mechanism 81

Summary 81
Cúram JMS Queue Connectors 82

Overview 82
How It Works / What It Does 82
Options on qconnector Operations. 82
How to Use qconnector Operations 83

Decide on Format of Message and Create the
struct(s) to Correspond to the Message . . . 83
Add the operation to the application
meta-model. 84
Configure the Queues in the Application
Server 84
Implement the message recipient in the
remote system 84

Rules / Restrictions 84
Encoding Methods for Fundamental Types . . . 84
Using Customized Encoding/Decoding Classes 85
Example 1 - Working with Variable Length Fields 86
Example 2 - Working with Lists 88

Subclassing 91
Introduction 91
Reasons for Subclassing 91
How to Model It 91

Basic Subclassing 91
Replacing the Superclass 91
Abstract Classes 92
Restrictions 92

How to write Code for Subclassing 92
Example - Using Subclassing to Override Entity
Exit Points. 92

Overriding Validation Exit Point 92
Overriding Pre Data Access, Post Data Access,
and On-Fail exit points 93

Application Customization 93
Overview 93

Notices 95
Privacy Policy considerations 97

Contents v

Trademarks 98

vi IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Figures

1. extra.generator.options property in
Bootstrap.properties 28

2. Sample datamanager_config.xml for adding
field level security information to the database. 39

3. Inserting field level security SIDs into the
infrastructure SecurityIdentifier table 39

4. Handcrafted data access implementation for a
standard read 40

5. Handcrafted data access implementation for a
readmulti 40

6. Operation Signature. 43
7. Pseudo-Code for Parameter Structures . . . 43
8. SQL for nsmulti with a single (list) parameter 60
9. Pseudocode for generated structs for use by

nsmulti operation 61
10. Generated Java interface for nsmulti operation 61
11. Calling a nsmulti operation from handcrafted

Java code (one parameter). 61
12. SQL for nsmulti with a key and list parameters 62
13. Pseudocode for generated structs for use by

nsmulti with key and list parameters 63
14. Generated Java interface for nsmulti operation

with key and list parameters 63
15. Calling a nsmulti operation from handcrafted

Java code (two parameters) 64

16. Struct for return result 66
17. Java Interface 66
18. SQL Implementation 66
19. Java Interface 66
20. Struct for employer key 67
21. SQL Implementation 67
22. SQL Implementation with qualified parameters 67
23. Example Java code for combining structs 74
24. Equivalent Java code for combining structs 74
25. Using a factory to create an instance of

MyClass 80
26. Sample

QueueConnectorFieldMappers.properties . . 86
27. Pseudo code for the struct to be mapped: 86
28. Pseudo code for the BPO interface 86
29. The property file entries linking the fields to

the mapper 86
30. Mapper class implementation for variable

string 87
31. Pseudo code for the structs to be mapped: 88
32. Pseudo code for the BPO interface 88
33. The property file entry linking the fields to the

mapper 89
34. Mapper class implementation for list of structs 90

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Tables

1. Cúram Class Stereotypes 5
2. Cúram Attribute Stereotypes 6
3. Cúram Operation Stereotypes 6
4. Cúram Relationship Stereotypes 7
5. Cúram Data Types 8

6. Domain primitive types at different levels of a
Cúram application 14

7. Mapping of Class and Attribute Stereotypes 33
8. Data types and nulls 65
9. Encoding methods 84

© Copyright IBM Corp. 2012, 2014 ix

x IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Cúram Modeling Reference

Use this information to learn about the Cúram UML meta-model. The Cúram
generator uses this UML meta-model to automatically generate all the required
stubs, skeletons, classes, and communications that are required to interact with a
database and remote clients. This approach allows the developer to concentrate on
providing the application business logic.

Introduction

Overview
IBM Cúram Social Program Management enables the creation of client-server
applications by minimizing the complexity application developers face in
developing database access, EJB management, client-server interaction, etc. This
minimizing of complexity is achieved by developers modeling the application(s)
they wish to create using a UML1meta-model.

The Cúram Generator uses this UML meta-model to automatically generate all the
required stubs, skeletons, classes, and communications required to interact with a
back-end database and remote clients leaving the developer to concentrate on
providing the application business logic. This guide describes the tools and
components available to an application developer when they are modeling the
application, and how the Cúram Server Code Generator will treat each of these
components when generating classes.

The UML meta-model is a platform-independent model which describes the
following aspects of the application:
v Domains application-specific datatypes. Analogous to C++ typedefs.
v Entities the objects modelled and persistently stored by the application. These

correspond to relational database tables.
v Processes related sets of activities to achieve some business goal.
v Structs passed as messages throughout the application. Analogous to structs in

C++.
v Remote Interfaces client-visible interfaces through which server functionality may

be accessed.

This document provides a reference for Cúram model-based functionality such as:
Cúram domains, classes, operations, attributes and how they map to the
underlying database.

The model is edited using the IBM®Rational® Software Architect and code is
generated using the Cúram Server Code Generator.

Intended Audience
This document should be read by people who will be using the Cúram Server
Development Environment for Java™ (SDEJ) tools to generate applications from
UML models.

1. UML stands for Unified Modeling Language and is an open method used to specify, visualize, construct and document the
artifacts of an object-oriented software system under development.

© Copyright IBM Corp. 2012, 2014 1

Prerequisites
The reader should be familiar with Cúram model development concepts and
should have a good working knowledge of the following before reading this
document:
v Cúram server development (see the Cúram Server Developer's Guide for more

details);
v Rational Software Architect;
v SQL;
v UML;
v Java.

Rational Software Architect
Rational Software Architect is the third-party tool used for developing and
maintaining the UML meta-model. It is primarily used as a tool for object
mapping, analysis and design. A key reason Rational Software Architect was
selected for these functions is because of its extensibility, which enables support of
modeling for Cúram. The use of Rational Software Architect is covered in the
Working with the Cúram Model in Rational Software Architect document.

Note: Please refer to the Cúram Supported Prerequisites document for more
information on the supported versions of third party tools.

The Cúram Server Code Generator
The Cúram Server Code Generator takes as its input the UML meta-model and
produces the following outputs:
v Java server implementation code;
v Java beans;
v XML2for the database entities and other classes in the model.

Chapters in this Guide
This chapters in this guide can be logically grouped into six parts as described
below.

Part 1 - UML Overview
Part 1 consists of a high-level overview of UML and how it applies to Cúram
modeling. These are the chapters making up this part:
v Chapter 2 UML Overview
v Chapter 3 Packages

Part 2 - Class Stereotypes
Part 2 provides reference and usage information for the various class stereotypes
used with Cúram modeling and related topics.

Some notes applicable to classes in general:
v Two or more struct or process classes may have the same name provided they

are in different packages and have differentCODE_PACKAGE names. All other class

2. The XML produced by the Cúram Server Generator is then processed by the Cúram Data Manager (described in the Cúram Server
Developer's Guide), which produces the relevant SQL scripts that are used to create the required database structure for the
application.

2 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

names must be completely unique within the input model. For more information
on theCODE_PACKAGE option see the CODE_PACKAGE option in “Options” on
page 10.

v All classes and domain definitions are visible to each other throughout the
model.

v All new classes should be created within a sub-package of a custom model. It is
advisable to model new classes within a suitable package structure. The package
structure within the Cúram model is a good pattern to follow. For clarity, new
class name should be prefixed with a relevant acronym or abbreviated word as
discussed in the Cúram Development Compliancy Guide.

These are the chapters making up this part:
v Chapter 4 Audit Mappings Classes
v Chapter 5 Domain Definition Classes
v Chapter 6 Entity Classes
v Chapter 7 Extension Classes
v Chapter 8 Facade Classes
v Chapter 9 Process Classes
v Chapter 10 Struct Classes

Part 3 - Attribute Stereotypes
Part 3 provides reference and usage information for the attribute stereotypes used
with Cúram modeling and is made up of this chapter:
v Chapter 11 Attributes

Part 4 - Operation Stereotypes
Part 4 provides reference and usage information for the operation stereotypes used
with Cúram modeling and related topics. These are the chapters making up this
part:
v Chapter 12 Operations
v Chapter 13 Entity Operations Overview
v Chapter 14 Entity Insert Operations
v Chapter 15 Entity Read Operations
v Chapter 16 Entity Update Operations
v Chapter 17 Entity Delete Operations
v Chapter 18 Entity Batch Operations
v Chapter 19 Entity Handcrafted SQL Operations

Part 5 - Relationship Stereotypes
Part 5 provides provides reference and usage information for the relationship
stereotypes used with Cúram modeling and related topics.

Adding relationships to existing classes can be accomplished as follows:

Create a class diagram in the custom area of the model and drag the existing
class(es) onto this diagram. This does not create a copy of the class, rather, it
creates a reference to it. Model the relationship on this diagram as normal.

These are the chapters making up this part:
v Chapter 20 Aggregation
v Chapter 21 Assignable

Cúram Modeling Reference 3

v Chapter 22 Foreign Keys
v Chapter 23 Indices
v Chapter 24 Unique Indices

Part 6 - Other Topics
Part 6 provides reference and usage information for other modeling topics. These
are the chapters making up this part:
v Chapter 25 Generated Class Hierarchy
v Chapter 26 Cúram JMS Queue Connectors
v Chapter 27 Subclassing
v Chapter 28 Application Customization

UML Overview

UML and the Input Meta-model
UML constructs, created and maintained by the user with Rational Software
Architect, are referred to collectively as the input meta-model and this is used as
input to the Cúram generator. It is a logical representation of the system being
developed. Another way of looking at it is: it is the mechanism that developers use
in order to tell the generator what to generate.

This meta-model consists of a set of packages, which in turn contain class
representations, potentially containing attributes and operations, which have
relationships with one another. Classes in the input meta-model result in various
generated Java classes and in some cases tables and indices in generated DDL3.

Overview of the Architecture Layers
The Cúram architecture is conceptually divided into three layers, as follows.

Remote Interface Layer
The Remote Interface Layer presents an interface to business functions that can be
used by a client program. It also interacts with third-party middleware components
to ensure consistency and atomicity of the transactions that execute in business
functions.

Business Object Layer
The Business Object Layer implements all of the server's business functionality. As
such, this layer contains the business application's “smarts”. Within this layer,
Business Process Objects (BPOs) represent the basic business entities modeled by the
server application. BPOs implement the business logic of a Cúram server
application. Typically these are responsible for manipulating Entity Objects in a
business-specific way. This is where most of the development effort is (or should
be) concentrated in business application development. For more information about
BPOs, see “Process Classes” on page 30.

Data Access Layer
The Data Access Layer is responsible for all interactions with the back end
Relational Database Management System (RDBMS). For more information about
Entities, see “Entity Classes” on page 20.

3. DDL means Database Definition Language. It is an SQL language subset enabling the structure and instances of a database to be
defined in a human and machine-readable form.

4 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Stereotypes
Stereotypes are a UML concept used to further describe the various aspects of the
Cúram application model. In UML a stereotype is a string expression used to
assign a classification to an object.

In general, stereotypes affect the behavior of the generator and thus determine its
output. For example, an entity class is identified by having a stereotype of entity
and consequently will have DDL and data-access code produced by the generator.

The supported stereotypes are as shown in the following sections.

Class Stereotypes
The following table lists the class stereotypes with a short description and
reference to where they are described in more detail.

Table 1. Cúram Class Stereotypes

Stereotype Description Reference

audit_mappings An audit mappings class
enables additional fields to be
defined in the database for
auditing purposes.

“Audit Mappings Classes” on
page 12

domain_definition A domain definition is a
meta-model class which defines
a datatype.

“Domain Definition Classes”
on page 14

entity An entity class encapsulates
data-maintenance functionality
on a database table.

“Entity Classes” on page 20

extension Extension classes are intended
to be used to change theAudit
Fields orLast Updated Field
options of an entity or struct
class.

“Extension Classes” on page 28

facade Facade classes are used to
create client-visible operations.
They provide a simplified
interface to a larger body of
code, such as a class.

“Facade Classes” on page 29

listrdo ListRDO classes are simply an
aggregation (list) of RDO
classes.

Cúram Rules Codification Guide

loader Loader classes are specified for
rules data items in the model
(rdo & listrdo).

Cúram Rules Codification Guide

process A process class encapsulates a
business process.

“Process Classes” on page 30

rdo RDO (Rules Data Object)
classes are used to contain data
used by the Cúram rules
engine.

Cúram Rules Codification Guide

struct A struct class is a meta-model
representation of a Java class
containing a collection of fields.

“Struct Classes” on page 32

webservice A WebService class represents
an inbound legacy web service.

Cúram Web Services Guide

Cúram Modeling Reference 5

Table 1. Cúram Class Stereotypes (continued)

Stereotype Description Reference

wsinbound A WS Inbound class represents
an inbound web service.

Cúram Web Services Guide

Attribute Stereotypes
The following table lists the attribute stereotypes with a short description and
reference to where they are described in more detail.

Table 2. Cúram Attribute Stereotypes

Stereotype Description Reference

audit_mappings An audit field entry on the
Audit Mappings Class.

“Audit Mappings Classes” on
page 12

dataitem A attribute on a RDO or
ListRDO class.

Cúram Rules Codification Guide

default A public attribute or field in a
struct class.

“Struct Classes” on page 32

details An attribute or field which is
part of an entity but not part of
the entity key.

“Entity Classes” on page 20

key An attribute or field which is
part of an entity's key.

“Entity Classes” on page 20

Operation Stereotypes
The following table lists the operation stereotypes with a short description and
reference to where they are described in more detail.

Table 3. Cúram Operation Stereotypes

Stereotype Description Reference

batch Process by the Batch Launcher
via generated wrapper code

“batch” on page 30 & “batch”
on page 31

batchinsert For inserting large amounts of
data via batch

“BatchInsert” on page 55

batchmodify For modifying large amounts of
data via batch

“BatchModify” on page 57

default Standard non-database
operation

“default” on page 30 &
“default” on page 31

insert Standard database insert “Standard Insert” on page 46

modify Standard database update “Standard Modify” on page 52

nkmodify Non-key database update “Non-key Modify” on page 53

nkread Non-key database read “Non-key Read” on page 50

nkreadmulti Non-key database read “Non-key Readmulti” on page
51

nkremove Non-key database delete “Non-key Remove” on page 55

ns Database operation for
handcrafted SQL

“Non-standard” on page 58

nsinsert Non-standard database insert “Non-standard Insert
(Generated SQL)” on page 47

6 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Table 3. Cúram Operation Stereotypes (continued)

Stereotype Description Reference

nsmodify Non-standard database update “Non-standard Modify
(Generated SQL)” on page 52

nsmulti Database operation for
handcrafted SQL

“Non-standard multi” on page
59

nsread Non-standard database read “Non-standard Read
(Generated SQL)” on page 49

nsreadmulti Non-standard database read “Non-standard Readmulti
(Generated SQL)” on page 49

nsremove Non-standard database delete “Non-standard Remove
(Generated SQL)” on page 54

qconnector For connecting to external JMS “qconnector” on page 30 &
“qconnector” on page 32

read Standard database read “Standard Read” on page 48

readmulti Standard database read “Standard Readmulti” on page
48

remove Standard database delete “Standard Remove” on page 54

wmdpactivity Deferred processing “wmdpactivity” on page 30 &
“wmdpactivity” on page 31

Relationship Stereotypes
The following table lists the attribute stereotypes with a short description and
reference to where they are described in more detail.

Table 4. Cúram Relationship Stereotypes

Stereotype Description Reference

aggregation The ability to embed or nest
instance(s) of one type of class
within another type of class

“Aggregation” on page 67

assignable An assignable relationship
provides the ability to map
differing or exclude fields for
an assign function.

“Assignable” on page 70

extension The link between an extension
class and target class.

“Extension Classes” on page 28

foreignkey A modeled description of a
database foreign key.

“Foreign Keys” on page 74

index A modeled description of a
database index.

“Indices” on page 76

uniqueindex A modeled description of a
database unique index.

“Unique Indices” on page 77

Data types
The input meta-model supports a number of data types that provide abstraction
for the developer from the different underlying data types used by the database,
middleware and Java layers. These data types can be used to define attributes,
arguments and return values in a platform and database neutral way, and the SDEJ
will take care of mapping them to the appropriate data type in each layer of the
application.

Cúram Modeling Reference 7

Table 5. Cúram Data Types

Type Description

SVR_BLOB
Used for holding binary data.

Corresponds to class curam.util.type.Blob.

Requires a size qualifier although this is only actually used if
the field is used on a database table.

Fields of type SVR_BLOB may be null on the database.

SVR_BOOLEAN
Used for holding binary values.

Corresponds to the primitive Java type boolean.

Is stored as a single character field on the database where 0 =
false and 1 = true.

Fields of type SVR_BOOLEAN cannot be null on the database.

SVR_CHAR
Used for holding single character values. Note that this data
type cannot be used to hold strings or arrays of characters and
therefore does not take a size qualifier.

Corresponds to the primitive Java type char.

Fields of type SVR_CHAR cannot be null on the database.

SVR_DATE
Used for holding date values with a resolution of one day.

Corresponds to class curam.util.type.Date.

Fields of type SVR_DATE can be stored as null on the database.

SVR_DATETIME
Used for holding date and time values with a resolution of one
second.

Corresponds to class curam.util.type.Date.

Fields of type SVR_DATETIME can be stored as null on the
database.

SVR_DOUBLE
Used for holding floating point numbers.

Corresponds to the primitive Java type double.

Fields of type SVR_DOUBLE cannot be null on the database.

SVR_FLOAT
Used for holding floating point numbers.

Used for holding floating point numbers.

Corresponds to the primitive Java type float.

Fields of type SVR_FLOAT cannot be null on the database.

8 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Table 5. Cúram Data Types (continued)

Type Description

SVR_INT8
An eight bit integer.

Corresponds to the primitive Java type byte.

Fields of type SVR_INT8 cannot be null on the database.

SVR_INT16
A sixteen bit integer.

Corresponds to the primitive Java type short.

Fields of type SVR_INT16 cannot be null on the database.

SVR_INT32
A thirty-two bit integer.

Corresponds to the primitive Java type int.

Fields of type SVR_INT32 cannot be null on the database.

SVR_INT64
A sixty-four bit integer.

Corresponds to the primitive Java type long.

Fields of type SVR_INT64 may be null on the database.

SVR_MONEY
A fixed point numeric value with two decimal places used for
holding currency values.

Corresponds to the primitive Java type curam.util.type.Money.

Fields of type SVR_MONEY cannot be null on the database.

SVR_STRING
Used for holding string values.

Corresponds to the Java class java.lang.String.

A SVR_STRING may optionally have a length qualifier. A
SVR_STRING without a length qualifier is a
SVR_UNBOUNDED_STRING. Strings stored on the database
must have a length qualifier to enable a maximum size to be
specified for the database column.

A SVR_STRING can be stored on the database as either CHAR,
VARCHAR or CLOB depending on its size and the type of
database. For more information about storage options for
strings, see “Storage Options for String Domains” on page 15.

Fields of type SVR_STRING may be null on the database.

Cúram Modeling Reference 9

Table 5. Cúram Data Types (continued)

Type Description

SVR_UNBOUNDED
_STRING Used for holding string values for which a maximum length

need not be specified.

Corresponds to the Java class java.lang.String.

SVR_UNBOUNDED_STRING is the only Cúram data type
which cannot be used by an attribute of an entity class. This is
because this data type does not allow the developer to specify
its maximum size and therefore cannot be used to define a
database column. To define a string field on an entity you must
use SVR_STRING with a length qualifier.

Packages

Overview
The package structure in the UML meta-model does not affect any of the generated
outputs. The hierarchy of the meta-model is effectively “flattened” during the build
process.

The one area where the structure of the hierarchy is significant is that options,
which can be specified at package level, will apply to all classes and other
packages within that package. However, any option can be overridden in any of
the sub-packages by setting the option at that level to its new value.

Options

CODE_PACKAGE
It is possible for two or more process or struct classes in the model to have the
same name. Equally named classes are distinguished (on the server side only) by
theirCODE_PACKAGE value which may be specified for one of its containing packages.

TheCODE_PACKAGE option, when specified, affects struct, entity, facade and process
classes within that package and in the packages contained within that package.
Applying theCODE_PACKAGE option to a class has the effect of moving that class into
a package within the default package, curam, and including any of the package's
parentCODE_PACKAGE options. The following example outlines how this works:

For example, the UML meta-model class MyProcess in the model causes the
following Java classes to be created:
v <ProjectPackage>.intf.MyProcess

v <ProjectPackage>.base.MyProcess

v <ProjectPackage>.fact.MyProcessFactory

and the developer must implement:
v <ProjectPackage>.impl.MyProcess

If the developer wishes to create another class named MyProcess, they can do so
provided that they create the class within a package for which a
differentCODE_PACKAGE option has been specified. This is to ensure that the
corresponding Java classes can be stored in separate locations on disk.

10 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

The developer specifies the following option for the package containing the
MyProcess class (this must be manually typed into the documentation for the
package in the UML meta-model):
v CODE_PACKAGE = custom

In this instance the following classes and interfaces will result:
v <ProjectPackage>.custom.intf.MyProcess

v <ProjectPackage>.custom.base.MyProcess

v <ProjectPackage>.custom.fact.MyProcessFactory

and the developer must implement:
v <ProjectPackage>.custom.impl.MyProcess

Rules for theCODE_PACKAGE Feature:

v CODE_PACKAGE values must be valid Java identifiers.
v Setting theCODE_PACKAGE option for a package recursively affects sub-packages

and process, facade, entity and struct classes within the package.
v Specifying aCODE_PACKAGE value within a package whose parent has specified

aCODE_PACKAGE will override the value specified by the parent rather than
append to it.
For example:
– Package A contains package B

– Package A specifiesCODE_PACKAGE = cp1

– Package B specifiesCODE_PACKAGE = cp2

Then:
– The effective code package of classes in package A is cp1

– The effective code package of classes in package B is cp2 (Not cp1.cp2).
v ACODE_PACKAGE setting of . (dot) or $ is interpreted as blank. (This is because a

literal blank is ignored by the generator and therefore cannot be used to
override a non-blank setting.)

v Multiple level code packages may be specified using a similar syntax to Java
packages whereby each level is delimited by a dot. For example, the following
code package setting represents three levels of Java packages:
CODE_PACKAGE = cp1.cp2.cp3

v TheCODE_PACKAGE option allows multiple struct and process classes to have the
same name, however only one instance of each facade class name may exist.
Cúram clients currently cannot distinguish between multiple facade classes with
the same name, regardless of theirCODE_PACKAGE setting.

v The behavior of theCODE_PACKAGE option with entity classes is the same as that of
process and struct classes in that the resulting generated interface and struct
classes are produced in different packages. However, entity class names must
still be unique throughout the application regardless of theCODE_PACKAGE option
setting. This is due to the fact that all entities correspond to tables in the single
underlying database.

v Generated list wrapper structs (triggered by the existence of readmulti
operations) are produced in the same code package as the structs that they
wrap. Note that this will not necessarily be the same code package as the
operation which caused their creation.

Cúram Modeling Reference 11

Audit Mappings Classes

Overview
Audit Fields are fields which can be added to database tables to contain extra
information about the modification history of each record for auditing purposes.

Audit fields are only available on entity and struct classes and are updated only by
certain entity operations.

The information specified in audit fields can be specified by the developer.
Typically, the audit fields should include the following:
v Creation time;
v Modification time;
v Program ID;
v User ID.

Audit fields consist of all the attributes of a special class in the input meta-model
called AuditMappings. A field corresponding to each attribute of this class can then
be automatically added to the database table, and also to all the standard details
structs for the entity.

Rules
The following rules apply to the AuditMappings class:
v The stereotype must be audit_mappings.
v The attributes of the class must be valid domain definitions.
v The class must be “flat”, i.e. it cannot aggregate any other classes.

Audit mappings are made available to an application by adding a class named
AuditMappings with a audit_mappings stereotype to the model. Individual entity
classes can then enable audit mappings by setting theAudit Fields option.

If the meta-model contains an AuditMappings class then a Java implementation
class for it must be provided in the impl package.

Note: If this implementation class is not present, the server application cannot be
compiled. In this situation the developer should either:
v delete the `AuditMappings` class from the model
v explicitly disable audit mappings completely by specifying the generator

switch-noauditmappings.

The following rules apply to the AuditMappings implementation class:
v it must contain the same fields as defined in the meta-model (i.e. they must have

the same name and data type.)
v these fields must be public
v it need not inherit from any other class
v it may optionally contain the following method:

public void set(final boolean isInsert, final boolean isModify)

This is a call back method which is called whenever necessary (i.e. during
inserts and modifies) by the data access layer and should be used to populate
the fields of the `AuditMappings` class. The two boolean parameters indicate
whether the database operation is an insert or modify, respectively.

12 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

v it may optionally contain a public void method named set which takes no
parameters. This method will be called by the data-access layer whenever it
needs the fields to be updated. (In fact any public method whose name starts
with set and which takes no parameters will be called in arbitrary order, but it
is not recommended to use multiple setter methods and support for doing so
will be discontinued in future.)

If the details struct contains any of the audit mapping fields, then these are
updated in the struct automatically during the operation and are included in the
update or insert.

For audit mapping fields, which are not present in the details struct, the
corresponding field will still be updated on the database, i.e. it is not necessary to
include the audit mapping fields in the details struct to get them updated on the
database. Note however that such fields are not included in table level auditing.

Outputs
Switching on auditing for an entity has the following effect:
v Fields are automatically added to the entity and to the generated standard

details struct for the entity.
v Infrastructure data-access code automatically makes calls to the AuditMappings

class to populate its fields whenever audit fields are being updated on the
database.

The following operation stereotypes cause audit information to be set:
v modify;
v nsmodify;
v insert;
v nsinsert;
v nkmodify;
v batchinsert;
v batchmodify.

Options
Two options are available for attributes of the AuditMappings class in the model:
v Exclude from insert

v Exclude from modify

IfExclude from modify is set for an audit mappings field, then the value of this
field will not be changed by a modify / nsmodify / nkmodify operation. i.e. the
field will be set when a record is inserted, and will never be changed by
subsequent updates. Similarly ifExclude from insert is set then the value of the
field will not be set by a insert / nsinsert operation but will be changed by any
subsequent updates. The default value for each of these options is false.

Note that it is not possible to cause audit mapping fields to be excluded from
operations of stereotype ns. Handcrafted SQL in these operations can still be used
to access audit mapping fields directly.

Note: If your audit mappings include a time stamp then you should populate this
field with the value returned by TransactionInfo. getProgramTimeStamp(). This

Cúram Modeling Reference 13

will ensure that all audit mapping-enabled tables modified during the transaction
will have the same time stamp value even though the tables will not have been
written to at the exact same time.

Domain Definition Classes

Overview
In relational database terminology, a domain defines the range of values allowed
for an attribute of an entity. IBM Cúram Social Program Management uses domain
definitions in a similar way. Domains are datatype definitions which resolve to
either a primitive datatype or another domain. Equivalent primitive types are
supported across client, middleware, server and database components of a Cúram
application:

Table 6. Domain primitive types at different levels of a Cúram application

Cúram Architecture Layer Datatypes

Server Remote Interface Layer Java datatypes

Server Business Object Layer Java datatypes

Server Data Access Layer Java datatypes

Database Database datatypes

By working with domains, rather than primitive types, developers are protected
from having to worry about different representations of data in the various
application layers. For this reason, entity and structure attributes must be defined
in terms of a previously defined domain - it is not possible to use primitive
datatypes directly.

Validations on each domain type are also allowed to be defined in the client
application. A specific validation can then be executed for all attributes defined in
terms of a given domain type, before transactions are invoked on the server. This
client-side pre-flight validation gives the user feedback on basic datatype
validation without having to call the server, resulting in lower network overhead
because of the reduced number of failed transactions.

Defining a Domain Hierarchy
Another advantage of using domains is that it allows changes to the datatypes of
related attributes to be effected simply by changing a domain definition. Say, for
example, that a particular type of reference number changes from a 10-digit to a
12-digit number. The reference number probably appears as an attribute in many
different entities and structures. As long as these attributes have been defined in
terms of a common domain definition, they can all be changed together by
modifying the domain definition (obviously, there will also be database impact, etc.
to consider).

By defining domains in terms of other domains, it is possible to set up a hierarchy
of related domain definitions. For instance, consider the following entity classes
and their domain-specified attributes:
v entity class: Customer

Attribute Domain

details address_1 CUSTOMER_ADDRESS_LINE

details address_2 CUSTOMER_ADDRESS_LINE

14 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Attribute Domain

details address_3 CUSTOMER_ADDRESS_LINE

v entity class: Employer

Attribute Domain

details address_1 EMPLOYER_ADDRESS_LINE

details address_2 EMPLOYER_ADDRESS_LINE

details address_3 EMPLOYER_ADDRESS_LINE

In the above tables, the address attributes of the Customer and Employer entities
are defined in terms of CUSTOMER_ADDRESS_LINE and
EMPLOYER_ADDRESS_LINE respectively. Both of these domains are in turn
defined in terms of the ADDRESS_LINE domain. All of the domains ultimately
unwind to a 30-character string primitive datatype.

The following rules of thumb should be followed when defining attributes:
v attributes whose types must be able to vary independently of each other should

be defined in terms of different domains;
v attributes that should always have the same types should be defined in terms of

the same domain;
v attributes that initially have the same type, but might in the future vary

independently should be defined in terms of related domains.

Thus, in the example, it is possible to change the ADDRESS_LINE domain in order
to change the types of all entity address line attributes, but the Customer and
Employer address line attributes can also be varied independently. Given different
design decisions, the entity address line attributes might just have been defined in
terms of ADDRESS_LINE (on the assumption that all address lines will always
have the same type), or each address line might have had a separate domain
definition (on the assumption that address lines 1, 2, and 3 might not always be
the same size).

Proper Use of Domains
Getting the granularity of domain definitions right is important - too few separate
definitions might make it difficult to change the datatypes of some attributes
without impacting others; too many definitions make it difficult to follow which
attributes are related to which others. Remember that the granularity also
determines at what level validations on attributes can be implemented in the
Cúram web client.

A design in which every attribute has a different associated domain is probably
wrong. At the very least, attributes which are foreign keys should share their
domain definitions with the original key.

In general, an analysis of the types of data your application uses early in the
design stage is probably the best approach to coming up with a sensible domain
hierarchy. You should also decide at this point which domains will require special
client-side validations to be constructed.

Storage Options for String Domains
There are three categories of database storage for string: small, medium and large,
corresponding to the maximum sizes of the CHAR, VARCHAR and CLOB data

Cúram Modeling Reference 15

types in the database. By default, the Cúram generator will place each string
domain definition into the smallest possible category based on its size.

For example, in IBM DB2® the maximum size of a CHAR column is 254 and the
maximum size of a VARCHAR column is 32768, so a SVR_STRING of up to 254
will be categorized 'small', a SVR_STRING from 255 to 32768 will be categorized
“medium”, and larger strings will be categorized as “large” and are stored as a
CLOB.

TheStorage Type option allows developers to specify that a string be treated as a
small/medium/large regardless of the size of a string. For example, in DB2, this
enables developers to use VARCHAR or CLOB instead of CHAR, or CLOB instead
of VARCHAR, if necessary.4

The decision to override the default selection of small/medium/large - i.e.
CHAR/VARCHAR/CLOB - is a database tuning exercise which should involve the
developer and DBA, and can be quite complex. For example CHAR can be more
performant than VARCHAR but uses more space. And while VARCHAR can save
space, it can lead to row migration if not tuned correctly. Database tuning is the
responsibility of the DBA and is not covered by this document.

This option is applicable to all domain definitions whose eventual type is a
SVR_STRING. Specifying this option on a domain definition will affect that
domain definition and all domain definitions derived from it - unless it is
overridden in one of the derived domain definitions.

For example, consider the following domain definitions:
v PHONE_NUMBER is a SVR_STRING<32>.

This domain definition does not have a storage_type option specified so the size
32 means that this domain definition will have a default storage_type of small
i.e. it will be stored as CHAR on the database.

v BUSINESS_PHONE_NUMBER is a PHONE_NUMBER

This domain definition specifies a storage_type of medium. So instead of CHAR it
will be stored as VARCHAR on the database.

v ALTERNATE_BUSINESS_PHONE_NUMBER is a BUSINESS_PHONE_NUMBER

This domain definition does not have a storage_type option specified so it
inherits the value storage_type specified in BUSINESS_PHONE_NUMBER. Therefore it
will be stored as VARCHAR on the database

So while the underlying business meaning of the above three domain definitions is
the same - all are phone numbers - they can be stored differently on the database
as appropriate.

Note: For database operations on entities in which the parameters are specified by
the developer (i.e. nsread, ns, etc.) it is necessary to ensure the domain definitions
used in the parameter structs are the same or at least compatible with those in the
entity. This is because the type of the domain definition in the parameter struct
determines the type of host variable which gets produced in the generated
data-access-layer. For example, in DB2, this could mean that a CLOB gets read into
a CHAR host variable, or a VARCHAR gets read into a CLOB host variable, etc.

4. Note that if the developer specifies a Storage Type which is too small for the actual size of the string, the next smallest category
will be used. For example, (in DB2), if a developer specifies aStorage Type of small for a SVR_STRING<1000> the generator will
still treat this as a medium string since the maximum size of a small string (i.e. CHAR) in DB2 is 254.

16 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

The combinations permitted are different depending on the target database type.
Caution is advised whenever custom parameters are specified in this way.

Note: For DB2 and IBM DB2 for z/OS® the allocation of strings to CHAR,
VARCHAR and CLOB in the database may be impacted by the setting of the
Multibyte_Expansion_Factor storage option and related build-time settings. See
“Multibyte Expansion Factor” on page 19 and the Cúram Server Developer's Guide
for more information.

Options
The following are the options allowed for Domain Definitions:

Code Table Name
This specifies the name of the code table which contains valid entries for this
Domain Definition. If the domain definition represents a hierarchy of code tables,
the name of the lowest code table in the hierarchy should be specified as the code
table name.

For fields for which a code table has been specified, the client application will
display a drop-down list of valid values for the field if it is editable, or the code
table translation for the field if it is read-only. In the case of a code table hierarchy,
if the code table field is editable, n-levels of drop-down lists are displayed, where
n is the number of code tables in the hierarchy. Only the first level is populated
and a selection must be made to populate the next level in the hierarchy. For a
read-only field where the code table is a hierarchy, the translation for the lowest
level code table only is displayed.

This option is only valid for Domain Definitions which have been defined in terms
of one which has theCode Table Root option set to yes.

Code Table Root
Specifies whether the current Domain Definition is the root of a hierarchy of code
table Domain Definitions. If this is set to yes, then all Domain Definitions which
use this one (i.e. they are defined in terms of it) must specify theCode Table Name
option. If the developer forgets to specify theCode Table Name option, an error will
be displayed by the generator.

Since this Domain Definition will be used to hold code table codes, its type should
match that of a Cúram code table code, i.e. SVR_STRING<10>.

For more information see “Code Table Name” above.

Compress Embedded Spaces
Implemented in the Cúram client application.

It specifies that any extra whitespace5(not all whitespace) embedded in the string,
and that all leading and trailing whitespace is removed before being sent to the
server.

Extra whitespace consists of a run of whitespace characters immediately after
another whitespace character. This means that each run or sequence of whitespace

5. A whitespace character consists of any character for which java.lang.Character. isWhitespace(char) returns true. Such
characters include the space character, the tab character and the line-feed character.

Cúram Modeling Reference 17

characters is deleted except for the first whitespace character of the run. For
example, a pair of words separated by three spaces will be converted to the pair of
words separated by one space.

Note that in cases where the first whitespace character is not a space, the results
may not be as expected. For example, a pair of words separated by carriage-return,
line-feed, space, space will be converted to the pair of words separated by the
carriage-return character.

Note also that if this feature is used on multiple line text fields it will remove
indentation.

Note: Switching on this option also causes leading and trailing whitespace to be
trimmed from the string, regardless of theRemove Leading Spaces andRemove
Trailing Spaces option settings.

Convert to Uppercase
Implemented in the Cúram client application.

It specifies that the contents of this string field be converted to uppercase before
being sent to the server.

Custom Validation Function Name
Domain Definition validations implemented in the client infrastructure include a
custom validation type which corresponds to a developer-supplied function for
performing validations on data entered by users via the client interface.

This option allows the developer to specify the name of this function which
associates it with the application UML model. The value of the option should be
simply the name of a function (just function, not class + function, since the class
name is defaulted in the client code). It must also be a valid Java identifier.

Note: This feature has been deprecated, please see the “Custom Data Conversion
and Sorting” chapter of the Web Client Reference Manual for information on the
new domain plug-in system.

Default
Implemented in the Cúram client application.

It specifies that this field will contain a default value after it is displayed.

Maximum Size
Implemented in the Cúram client application and database DDL.

It specifies a maximum number of characters which can be entered to this field
before it can be sent to the server and forms the field storage size on the database.

Maximum Value
Implemented in the Cúram client application.

It specifies a maximum permitted numeric value which must be entered into this
field before it can be sent to the server.

Minimum Size
Implemented in the Cúram client application.

18 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

It specifies a minimum number of characters which must be entered to this field
before it can be sent to the server.

Minimum Value
Implemented in the Cúram client application.

It specifies a minimum permitted numeric value which must be entered into this
field before it can be sent to the server.

Multibyte Expansion Factor
Implemented in the Data Manager for DB2 and DB2 for z/OS only.

For string domains it specifies an expansion factor (float from 1.0 to 4.0) to be
applied when multibyte character set (MBCS) data will be used with DB2 or DB2
for z/OS. It overrides the global build-time property
(curam.db.multibyte.expansion.default.factor) and is only necessary in order to
deviate from the global setting (e.g. a particular domain is causing a DB2 limit to
be exceeded). A setting of 1.0 effectively turns off expansion for this domain. You
might choose to set this option for domains where you know the contents will
never contain localized data; e.g. they are constrained to programmatically-defined
Western characters and can't be input via a client. The same option set for a string
entity attribute can override this domain setting (see “Multibyte Expansion Factor”
on page 34 for more information). This option is ignored if the feature is turned off
(curam.db.multibyte.expansion property set to false at build time, see the
"Planning for MBCS Data" topic in the Cúram Server Developer's Guide for more
information).

Pattern Match
Implemented in the Cúram client application.

It specifies a regular expression that the string value must match before it can be
sent to the server. The regular expression must match the whole string, not just a
portion of it. The regular expression syntax is the standard Java regular expression
syntax used in Java 1.5. Full details on the supported syntax for these regular
expressions can be found in the JavaDoc documentation for the
java.util.regex.Pattern class supplied with your Java SDK.

Remove Leading Spaces
Implemented in the Cúram client application.

It specifies that any leading spaces be stripped off the string before it is sent to the
server.

Remove Trailing Spaces
Implemented in the Cúram client application.

Specifies that any trailing spaces be stripped off the string before it is sent to the
server.

Storage Type
It allows the developer to specify what type of string storage datatype to use for
this domain definition on the database. See “Storage Options for String Domains”
on page 15 for more information. This option is only relevant for string domain
definitions for which a length has been specified.

Cúram Modeling Reference 19

Overriding a Domain Definition
The SDEJ provides the facility to override existing domain definitions without
modifying the original domain definition. This is desirable in situations where the
original domain definition is provided by a third party and should not be modified
locally.

Suggested uses:
v Change the maximum size of a string field.
v Change theStorage Type of a domain definition.

How to use Domain Definition Overrides
A domain definition is overridden by creating a new domain definition with the
same name prefixed by an asterisk. For example, the domain definition,
PERSON_NAME, would be overridden by creating a domain definition named
*PERSON_NAME. At build time the overridden version is used instead of the
original version, complete with its own data type and options.

Considerations / Limitations
v It is important to be aware that overriding a domain definition affects all usages

of the original domain definition. It is the responsibility of the developer to
ensure that pre-existing functionality is not broken by overriding domain
definitions. Specifically attempting to change the Type of the domain definition,
the Code Table Name or the Code Table Root is discouraged.

Usage Rules
v A domain definition may be overridden by only one override.
v A domain definition override cannot be overridden. For example, if

PERSON_NAME is overridden by *PERSON_NAME, it is not permitted to
further override *PERSON_NAME with **PERSON_NAME.

v It is not possible to create overrides for domain definitions which do not exist.
For example, if there is a domain definition override named *PERSON_NAME
then the model must contain a domain named PERSON_NAME.

v Domain definition overrides cannot be used as attributes of structs or entities,
i.e. attributes cannot use domain definitions whose names begin with an
asterisk.

Entity Classes

Overview
Entity classes have a stereotype of entity.

An entity is a collection of fields and their associated database operations. Entity
classes are the fundamental building blocks of systems developed with the IBM
Cúram Social Program Management framework. They correspond to database
tables and are the type of construct for which the Cúram generator gives the most
support in terms of automatic code generation.

An entity class is essentially an object wrapper for a database table. The attributes
of an entity are transformed to columns on the database table. Entities can have
various data maintenance operations such as reads, inserts, modifies, removes,
readmultis (which read multiple records from a table based on a partial key), etc.
Standard operations (e.g. read, insert, etc.) operate on one database table by

20 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

default. For example, in a banking system you could have an Account entity class
whose operations would include insert, read, update, etc.

Entities are allowed to have attributes, operations, dependencies, inherits relations,
and aggregations. Each of these constructs has a set of rules associated with it,
which are detailed below.

For more information, see “Operations”

Rules
v Entities must have at least one attribute unless the entity is a subclass of another

entity, in which case it must have no attributes.
v Entities are not allowed to aggregate other classes.

Attributes
Entity attributes correspond to columns with the same name on their associated
database table.

Attributes are not contained in the generated BOL or RIL. This is because Cúram
interface objects are stateless and atomic. Instead these attributes are contained
within generated standard key and details structs (see “Outputs” on page 33).

The stereotype of an entity attribute cannot be blank. It must be one of the
following:

Details
The attribute is included as a column on the database table and in the standard
details struct for the entity. For more information, see “Standard Details Structs” on
page 22.

Key
The attribute is included as a column on the database table, it forms part of the
primary key, it is included in both the standard details struct and the standard key
struct for the entity. For more information, see “Standard Key Structs” on page 22.

Operations
Entity operations can be divided into two categories as determined by their
stereotype:

Database Operations
These are operations whose stereotype is recognized by the generator. These
operations are fully or partially generated by the generator and operate directly on
the RDBMS table related to the entity. They include standard operations to read,
insert, update, delete, together with their variants.

Non-database Operations
These are operations whose stereotype is not recognized by the generator. The
generator generates only prototypes and skeletons for these operations, no
data-access operations are generated. The body of these functions must be
implemented in the BOL by the developer.

The operations available for entity classes are listed in “Operation Stereotypes” on
page 6.

Cúram Modeling Reference 21

Outputs
Entity classes are transformed into classes with operations and no attributes. The
attributes from the entity in the input meta-model are transformed into one or
more structs.

Standard Key Structs
Standard key structs are generated for entity classes and contain those attributes in
the class whose stereotype is key. If no such attributes exist in the class then a
standard key struct is not generated.

This struct will be used as a parameter for operations requiring a primary key. For
example, reads and deletes.

Though standard key structs do not appear in the input meta-model they can be
used as arguments to operations in the input meta-model. The name given to
standard key structs is the name of the corresponding entity with the word Key
appended. For example, the standard key struct for the class Employer would be
called EmployerKey.

Standard Details Structs
Standard details structs are generated for all entity classes and contain all the
attributes of the class. This struct is used as a data parameter to insert, reads and
updates. Structs containing arrays of standard details structs are returned from
standard readmulti operations.

Though standard details structs do not appear in the input meta-model they can be
used as arguments to operations in the input meta-model.

The name given to standard details structs is the name of the corresponding entity
with the word Dtls appended. For example, the standard details struct for the
class Employer would be called EmployerDtls.

Standard List Structs
Standard list structs are generated for entity classes which contain one or more
operations of stereotype readmulti or nkreadmulti. This struct contains a single
attribute named dtls which is a sequence of the standard details struct for the
entity.

The name for a standard list struct is the name of the standard details struct for
the entity with the word List appended. For example, the standard details struct
for the class Employer would be called EmployerDtlsList.

Options
The options available for entity classes are described in the sections below.

Abstract
Specifies that the class is abstract. Abstract classes are intended to be subclassed by
other classes. For more information on abstract classes and subclassing, please see
“Subclassing” on page 91.

Allow Optimistic Locking
Only applicable for entities which are not subclasses. Optimistic locking is
supported on certain database operations (see “Optimistic Locking” on page 41 in
“Operation Options” on page 35). In order to use optimistic locking on an entity's
operation, this option must first be switched on for the class.

22 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

For more information on optimistic locking, see “Concurrency Control - Optimistic
Locking.”

Audit Fields
Only applicable for entities which are not subclasses. Extra fields can be configured
to store additional information on a database table for auditing purposes. These
fields are covered in more detail in “Audit Mappings Classes” on page 12.

If this option is switched on, then the available pre-configured audit fields will be
automatically added to this entity and its standard details struct.

Enable Validation
The validation operation is an exit point which gets called automatically for the
purpose of validating data. This exit point will get called before the data-access
layer entity operations whose stereotype is insert or modify.

For more information on exit points, see “Exit Points” on page 25.

Last Updated Field
Only applicable to entity classes that are not subclasses.

In order to use the last updated field feature for an entity class, this option must
first be switched on. This results in the addition of an extra timestamp field to the
specified entity. This field gets updated with the current date and time whenever
the record is written - unless the write was performed by an ns operation. For
more information on the last updated field feature, see “Last Updated Field” on
page 27.

No Generated SQL
Switches on theNo Generated SQL for all database operations of the entity class.
Individual entity operations can override the value of this option.

For more details see “No Generated SQL” on page 39 in “Operation Options” on
page 35.

Replace Superclass
This is only relevant to entities which are subclasses.

If this option is set, then requests to create instances of the superclass will instead
result in the creation of the subclass. This enables the developer to change
functionality by replacing subclasses with other classes.

Concurrency Control - Optimistic Locking
Using optimistic locking for concurrency control means that more than one user
can access a record at a time, but only one of those users can commit changes to
that record. Once one user has modified the record, another user cannot modify it
without first re-reading the latest version of the record. Thus it is optimistic in the
sense that one user does not expect another to attempt to modify the same record
at the same time.

The record being edited is locked for update only while the changes are being
committed. This has the advantage of minimizing the time for which a lock is in
place.

Cúram Modeling Reference 23

The disadvantage of optimistic locking is that when a user begins to edit a record,
they cannot be sure that the update will succeed. An update that relies on
optimistic locking will fail if another user has updated a record while the first user
is still editing it.

Optimistic locking is implemented by adding an extra field to the database table.
The extra field contains the version number for the record and is automatically
incremented each time the record is modified. The generated DAL code checks this
version number while the record is being updated, and if the version number on
the database table is not the same as the version number on the original record
then the update operation is aborted and an exception is thrown.

Optimistic locking is permitted only on Entity classes.

The following operation stereotypes support optimistic locking:
v modify;
v nkmodify;
v nsmodify.

The following operation stereotypes are affected by optimistic locking:
v insert - The version number field is automatically included in the details

parameter and is automatically initialized before being written to the database;
v nsinsert - If optimistic locking is enabled on an entity class, the version number

field must be included in the details struct by the developer and will be
automatically initialized before being written to the database.

Optimistic locking is only possible for operations which modify a single database
record and whose details struct includes the generated Version Number field. This
means that for non-standard operations, it is up to the developer to ensure that the
non-standard key parameter always identifies a single unique record and that the
Version Number field is included in the details struct. For nkmodify operations,
optimistic locking is only possible if the database table contains exactly one record.
This field must be called versionNo and its type should be VERSION_NO. The
developer must ensure that the model contains a numeric domain definition
named VERSION_NO.

In order to support optimistic locking on an operation you must do two things:
v Switch on theAllow Optimistic Locking option on the entity.

This will cause the Version Number field to be automatically added to the entity.
v Switch on theOptimistic Locking option on the operation.

This will cause the generator to generate code in the DAL for the operation
which will check and update record version numbers accordingly.

Table Level Auditing
Auditing is supported on all stereotyped entity operations except ns, nsmulti,
batchinsert and batchmodify.

The information captured by table level auditing is stored in the database table
AuditTrail.

Table level auditing is enabled by switching on theDatabase table-level auditing
option for an operation. This causes the generated data-access code to record audit
information for an operation.

24 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

The type of audit information recorded depends on whether optimistic locking is
switched on or off for the operation. If optimistic locking is switched on, then the
audit information includes the information of the new and old versions of the
record, otherwise it only includes information about the SQL operation invoked.

Information Captured by Table-level Auditing
The following information is captured:
v Date and time - The date and time of the transaction.
v User ID - The ID of the user who invoked the transaction.
v Table name - The name of the database table which was modified.
v Program name - The FID of the function which invoked the transaction.
v Transaction type - Indicates whether the transaction was online / batch / deferred /

etc.
v Key info - The key which was provided to this operation. Note that this may

identify one or many records.
v Details of changed data - These details are logged in an XML format. The exact

format of this XML can be seen in the JavaDoc details for the class
curam.util.audit.AuditLogInterface in the doc/api directory of the SDEJ. They
include the names of the all the fields referenced by the details struct, the field
types, the new version of the field data and, if optimistic locking is enabled, the
old version of the field data.
If optimistic locking is switched on, then the operation is guaranteed to have
only affected a single record. Therefore, the audit information includes
information about the record before and after the operation. The old version of
the record is re-read, the old value of each field is compared to the new value,
and any field which has changed is included in the audit information, i.e.
unchanged fields are filtered out.
If optimistic locking is switched off then for performance reasons the record is
not re-read during the update, so the audit information will contain only the
new versions of all the fields involved in the update, not a before-after
comparison of the record. Also, any non-optimistic updates apart from the
'modify' stereotype can potentially affect more than one record, in which case it
is not possible to record a before-after comparison of the update. All the detail
fields will be included regardless of whether the new value is different to the
old value.
This data can be compressed when using the default auditing handler by
specifying the curam.audit.audittrail.datacompressionthreshold property
described in the Cúram Configuration Parameters.

v Operation type - Indicates whether the operation was one of: create, read, update
or delete.

Storage of Audit Information
By default, the audit information captured is written to the AuditTrail database
table. The developer may also supply their own auditing handler by specifying a
class which implements the curam.util.audit.AuditLogInterface interface. For
more information, see the section on Customization Settings in the Cúram Server
Developer's Guide.

Exit Points
An exit point is a callback function written by the developer and executed at a
predefined strategic point by the server.

Four types of exit point are supported:

Cúram Modeling Reference 25

Pre Data Access
This function is called before the DAL function (but after Validate functions).

The function is named after the method to which it belongs, prefixed with pre, e.g.
preread.

Post Data Access
This function is called after the DAL function.

The function is named after the method to which it belongs, prefixed with post,
e.g. postread.

Validation
This function is called before standard insert and standard update operations, and
also before Pre-data Access functions. It provides a common place to put validation
code.

The function is named autovalidate. Note that this exit point is enabled per entity
rather than per operation.

The validation exit point always has exactly one parameter which is the standard
details struct for the entity, and is declared to throw the same exceptions as
stereotyped operations of the entity.

Since it is only insert and modify which are guaranteed to pass in the standard
details struct, it is only these operation stereotypes which can utilize the validation
exit point. Other operation stereotypes do not utilize this exit point, even if they
have the standard details struct as one of their parameters.

On-fail
This function is called if an error occurs in the data access function.

The function is named after the method to which it belongs, prefixed with onFail,
e.g. onFailread.

Note: For non-void operations the return class is included in the arguments to this
method and will always be null.

Exit Point Parameters
With the exception of Validate exit points whose parameters are described above,
the parameters to an exit point method consist of the following:
v the parameters to the method to which the exit point belongs. (In fact if any

extra parameters have been specified for a database operation in the model, this
is the only place where the developer can access them.)

v the return type of the method to which the exit point belongs - if a return type
is present.

Limitation: The return type parameter will not be included into the parameters
of exit point methods for nsread and ns operations.

The following approach can be used to generate the return type parameter into
the parameters of exit point methods for nsread and ns operations:
– Add an un-stereotyped method to the entity class giving it the same signature

as the nsread or ns operation.
– Set the Post Data Access option on your nsread or ns operation to False.

26 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

– The implementation of your un-stereotyped operation will then call the
nsread or ns operation, and will have access to its return value as required.

v for on-fail exit points, an exception class. This is the exception which was
thrown from the data access layer. The exit point may handle the error or pass it
on by throwing it.

What should exit points be used for
Exit points are intended to be used for validation or for completing a business
process. For example, after modifying an invoice detail line record, thelast
modified date should be updated on the invoice header record.

What should exit points not be used for
It is recommended that exit points should not be used as a means of populating
incomplete fields in incoming parameters. This situation should be handled by
wrapping the database function in a non-database function which would take a
copy of the incomplete record, fill in the missing fields and invoke the database
operation.

When adding an exit point to an entity operation, ensure that this will not have
any side effects for other users of the operation.

Entity Inheritance
Input meta-model Entity classes are allowed to subclass other entity classes.
Typically, entity classes will be subclassed in order to add functionality (such as
additional stereotyped operation) which are required for special processing of the
associated database table, but which do not belong in the parent class.

For more information please see “Subclassing” on page 91.

Rules when Using Entity Inheritance
v Entity classes are only allowed to inherit from other entity classes.
v Subclasses of entities can add any number of additional database and

user-defined operations.
v Subclasses of entities cannot add attributes. This is because the underlying

relational database table must not be affected by the inheritance.
v Entity subclasses do not have standard key and details generated for them, they

use the standard key and details structs from the base class.

Last Updated Field
This feature is similar to the Audit Mappings feature. It is a field which can be
added to database tables to contain extra information about the modification time
of each record for reporting purposes.

The feature is only available for entity classes and it is updated only by certain
entity operations

Switching on the last updated field functionality for an entity has the following
effects:
v A field called lastWritten of type SVR_DATETIME is automatically added to the

entity.
v The Cúram infrastructure automatically populates this field with the current

time whenever the record is written to the database - unless the write was
performed by an ns operation.

Cúram Modeling Reference 27

The following steps must be taken to avail of this feature:
v To turn on the feature for an individual entity class the Last_Updated_Field

property in the Rational Software Architect Cúram Properties tab must be set to
'1 - yes' using the supplied drop-down.

v To turn on the feature for all of the entities for a particular application, the
following text must be appended to the extra.generator.options property in the
Bootstrap.properties file as follows:

extra.generator.options=-defaultoption class_lastupdatedfield=yes

v A new domain definition must be specified in the model as follows:
– Domain Definition Name: LAST_UPDATED
– Domain Definition Type: SVR_DATETIME

Invoking operations with the following stereotypes cause the lastWritten field to be
set:
v insert;
v nsinsert;
v modify;
v nkmodify;
v nsmodify.
v batchinsert.
v batchmodify.

Note: Unlike the version number field utilized for the optimistic locking feature,
there is no requirement to add the last written field to structures involved in
non-standard insert and modify operations. If the last updated field feature has
been enabled for an entity, this field is always updated for the operation
stereotypes listed above by the infrastructure data access code regardless of
whether the field is present in the structure being used.

Extension Classes

Overview
An extension class allows the developer to specify options for a target class
without modifying the meta-model definition of the target class. Each extension
class should be linked to one target class. At build time the contents of an
extension class are effectively super-imposed on its target class.

How to use Extension Classes
To extend an existing class, create a new class of stereotype Extension; see Working
with the Cúram Model in Rational Software Architect for more information on using
and modeling with Rational Software Architect.

Options can be added to the extension class in the same way as for other classes.
When any of these are added to an extension class they have the effect of adding
(if not already existing) or modifying (if already existing) the same named option
on the target class.

extra.generator.options=-defaultoption class_lastupdatedfield=yes

Figure 1. extra.generator.options property in Bootstrap.properties

28 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

When creating an Extension class in Rational Software Architect, keep in mind that
since it can apply to different class types. You must make sure the settings for the
extension class are compatible with the class you are extending.

The extension class is linked to its target class by adding an relationship of
stereotype extension between the two classes. The new class should be created
within a custom sub-package of your model.

When to use Extension Classes
Extension Classes should only be used for the following purpose:
v To switch on theLast Updated Field option on an entity.
v To switch on theAudit Fields option on an entity or struct.

Note: The Rational Software Architect user interface allows you to specify
additional information such as attributes and options for extension classes but only
the above two options should be included in the class. Other changes are not
compliant.

Considerations / Limitations
v Storage of relationships. When a relationship is created between two classes in

Rational Software Architect, it should be noted that the relationship is not stored
within either of the actual classes but rather as a free standing object in a
package. (Usually the relationship is stored in the package containing the
diagram on which it was drawn but this is not guaranteed.) The developer
should ensure that the relationship is stored in a location where it will not be
lost or overwritten during an upgrade. Inheritance relationships are always
stored within the subclass so there is no risk of inadvertently losing these.

Usage Rules
v An extension class may only be applied to one target class.
v A class may be extended by multiple extension classes.
v Extensions may be applied to classes of stereotype entity, struct.

Facade Classes

Overview
A facade class is defined as a class which encapsulates a business process that is
visible to the client. They form the Business Object Layer (BOL) of the application. It
is a collection of operations. Facade classes do not have data maintenance
operations, or indeed any relationship with database tables. Instead they
manipulate other entity and process classes in order to implement a business
process.

Facade classes have a stereotype of facade.

Rules
v Facade classes must have a stereotype of facade.
v Facade classes cannot have aggregations to any other classes.
v Facade classes can only inherit from other facade classes - not from entity or

process classes.
v Facade classes cannot have attributes.

Cúram Modeling Reference 29

v Facade classes cannot have the same name. See “Options” on page 10 for more
details.

Operations
Within facade classes there are four operations supported:

default
The default stereotype offers a standard or plain operation.

batch
For operations of stereotype batch, the Cúram generator will produce the necessary
source code wrappers to build a batch wrapper program which will enable this
operation to be run by the Batch Launcher (see the Cúram Batch Processing Guide
for more details).

The rules when defining batch operations are:
v Batch operations cannot have more than one parameter.
v Parameters to batch operations must be structs.
v A facade class cannot have more than one batch operation.

wmdpactivity
A method of a facade class can be designated as a deferred processing method by
setting its stereotype to wmdpactivity.

For more information please consult the Cúram Server Developer's Guide.

qconnector
For operations of stereotype qconnector, the generator will produce the necessary
source code to connect to a JMS provider (e.g. IBM MQSeries®). For more
information please see “Cúram JMS Queue Connectors” on page 82.

Options

Abstract
Specifies that the class is abstract. Abstract classes are intended to be subclassed by
other classes. For more information on abstract classes and subclassing, please see
“Subclassing” on page 91.

Generate Facade Bean
This causes a stateless session bean to be generated for this class. This bean class
can be used to allow your server to be accessed by other systems or by message
driven beans.

Replace Superclass
This is only relevant if this facade class has been subclassed from another class. For
more information on subclassing, please see “Subclassing” on page 91.

Process Classes

Overview
A process class is defined as a class which encapsulates a business process. It is a
collection of operations. Process classes do not have data maintenance operations,
or indeed any relationship with database tables. Instead they manipulate other
entity and process classes in order to implement a business process.

30 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

For example, in a banking system, you could have an account transfer process
which debits money from one account and credits another. In this case, internally,
the process would use the above Account entity class to update one account to
debit it, followed by an update of the other account to credit it. Note that the
process class itself does not do any database manipulation, it merely packages a
sequence of entity operations in order to carry out the business process modelled.

Process classes have a stereotype of process.

Business Process Objects
Business Process Objects (BPO s) are the classes which reside in the Business Object
Layer (BOL) of a Cúram server application, i.e. the architectural layer between the
Remote Interface Layer (RIL) and the Data Access Layer (DAL). All business logic is
implemented in this layer and as a result, BPOs constitute the large majority of
handcrafted coding required to create a server application.

BPOs do not directly communicate with the RDBMS (implemented - largely
automatically - in the DAL), nor the middleware (implemented - largely
automatically - in the BOL): their job is specifically to implement business logic.

Rules
v Process classes must have a stereotype of process.
v Process classes cannot have aggregations to any other classes.
v Process classes can only inherit from other process classes - not from entity

classes.
v Process classes cannot have attributes.
v Two or more process classes can have the same name provided that

differentCODE_PACKAGE values have been specified for each. See “Options” on
page 10 for more details.

Operations
Within process classes there are four operations supported:

default
The default stereotype offers a standard or plain operation.

batch
For operations of stereotype batch, the Cúram generator will produce the necessary
source code wrappers to build a batch wrapper program which will enable this
operation to be run by the Batch Launcher (see the Cúram Batch Processing Guide
for more details).

The rules when defining batch operations are:
v Batch operations cannot have more than one parameter.
v Parameters to batch operations must be structs.
v A process class cannot have more than one batch operation.

wmdpactivity
A method of a process class can be designated as a deferred processing method by
setting its stereotype to wmdpactivity.

For more information please consult the Cúram Server Developer's Guide.

Cúram Modeling Reference 31

qconnector
For operations of stereotype qconnector, the generator will produce the necessary
source code to connect to a JMS provider (e.g. MQSeries). For more information
please see “Cúram JMS Queue Connectors” on page 82.

Options

Abstract
Specifies that the class is abstract. Abstract classes are intended to be subclassed by
other classes. For more information on abstract classes and subclassing, please see
“Subclassing” on page 91.

Generate FIDs
Specifies that the class should have a Function Identifier generated for it.

Replace Superclass
This is only relevant if this process class has been subclassed from another class.
For more information on subclassing, please see “Subclassing” on page 91.

Struct Classes

Overview
Struct classes are Java classes with public attributes and no modeled methods (It is
the Java equivalent of a C++ struct.). They allow for the grouping of domain
definitions and other struct classes to form programmatic record definitions.

Typically, struct classes are used as arguments to operations of entity and process
classes. Structs are used to 'package' arguments in order to avoid long argument
lists. Struct classes can also aggregate each other; these aggregations turn into
struct members.

For example, in the case of a bank account entity, the parameters to a read
operation would consist of a key struct and a details struct. The key struct might
contain a single field for the account number. The details struct might have several
fields including Name, Balance, etc.

Struct classes have a stereotype of struct.

Rules
v Struct classes must have one or more attribute or aggregation, i.e. a struct cannot

be empty.
v Struct classes are not allowed to have operations.
v Struct attribute types must be defined in terms of valid domain definitions.
v Struct classes may aggregate entity classes or other struct classes.
v Struct classes are not allowed to be involved in inheritance relationships.
v Struct classes used as key or details parameters to non-standard database

operations must not aggregate other structs, i.e. they must be “flat”.
v Two or more struct classes can have the same name provided that

differentCODE_PACKAGE values have been specified for each, i.e. similarly named
struct classes must be distinguishable by havingCODE_PACKAGE settings. See
“Options” on page 10 for more details.

32 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

v In most cases you will have to define a struct in order to use it as a parameter to
an operation. The exception to this rule is standard key and details structs.
These are generated automatically by the Cúram generator and are available for
use by the developer.

Outputs
Input meta-model struct classes map directly onto generated Java classes in the
<ProjectPackage>.<CodePackage>.struct package. The Java struct class contains
public fields corresponding to each attribute defined in the model.

Each field is initialized to its default value - zero for numerics, empty string for
Strings, etc. - so the developer does not have to worry about null values.

Each field is accompanied by comments describing the Domain Definition
hierarchy for the datatype.

The class also contains generated code enabling the struct to be cloned and
assigned to other structs.

Struct classes have no counterpart in generated DDL.

Options

Audit Fields
If this option is switched on then the available pre-configured audit fields will be
automatically added to this struct.

This option should be enabled if the struct class is being used as a write operation
of an entity which also hasAudit Fields switched on.

For more information, see “Audit Mappings Classes” on page 12.

Attributes

Overview
Attributes represent fields of the underlying Java class. The class stereotype
determines the attribute stereotypes that are valid for the class. The combination of
class and attribute stereotypes will determine behavior such as how the Cúram
generator processes the UML meta-model. The following sections provide details
on how attributes work and need to be specified.

Attribute Rules
The following table shows the mapping of class stereotypes to attribute
stereotypes.

Table 7. Mapping of Class and Attribute Stereotypes

Class Stereotype Valid Attribute Stereotypes

audit_mappings audit_mappings

domain_definition N/A

entity details, key

facade N/A

listrdo dataitem

Cúram Modeling Reference 33

Table 7. Mapping of Class and Attribute Stereotypes (continued)

Class Stereotype Valid Attribute Stereotypes

loader N/A

process N/A

rdo dataitem

struct default

webservice N/A

wsinbound N/A

v Attribute names must be unique within a class.
v Attributes must be defined in terms of domain definitions.
v Since attributes ultimately appear in generated Java code, their names must be

valid Java identifiers.
v The order of attributes in the primary key of an entity is determined by the

order in which the attributes appear in the entity class. Since their order in the
entity is not critical, you can change this order to obtain the primary key
configuration you desire.

Attribute Options

Allow NULLs
This option is available only for details stereotyped attribute on an entity class.

It determines whether NULL values are permitted on the corresponding database
field. Setting this option to no causes a Not Null qualifier to be included with this
field in the generated DDL script.

The default value for this option is dependent on the underlying data type of the
field. The default value of this option for the attributes for fields of type
SVR_BOOLEAN, SVR_CHAR, SVR_FLOAT, SVR_DOUBLE, SVR_MONEY,
SVR_INT8, SVR_INT16, SVR_INT32 is no.

The default value of this option for the attributes of type SVR_BLOB, SVR_DATE,
SVR_DATETIME, SVR_STRING, SVR_INT64 is yes.

This topic is dealt with in ““Null” Considerations” on page 64.

Multibyte Expansion Factor
This is an override for the domain-levelMultibyte Expansion Factor, described in
“Multibyte Expansion Factor” on page 19, and is applicable to string entity
attributes only.

It specifies an expansion factor (float from 1.0 to 4.0) to be applied when multi-byte
character set (MBCS) data will be used with DB2 or DB2 for z/OS. It operates in
conjunction with its equivalent domain option and the global build-time properties
curam.db.multibyte.expansion.default.factor and curam.db.multibyte.expansion,
which are described in the Cúram Server Developer's Guide. This option is only
necessary for DB2 MBCS data in order to deviate from the global or domain
settings. For example, you might choose to set this option to 1.0 (which effectively
turns off expansion) for a string attribute where you know the contents will never
contain localized data (e.g. they are constrained to programmatically defined
Western characters and can't be input via a client). This option is ignored if the

34 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

feature is turned off via the curam.db.multibyte.expansion property (see the
"Planning for MBCS Data" topic in the Cúram Server Developer's Guide for more
information).

Operations

Overview
Operations represent the functionality of modeled classes, which, depending on
their type, can be provided by the Cúram generator or "handcrafted".

Rules
v Operations must belong to either entity, process, facade, webservice, or

wsinbound classes.
v Operations can be fully handcrafted or can make use of the facilities offered by

standard operations. Standard operations are covered in detail in later sections.
v Operations cannot be individually hidden from or exposed to clients, only whole

classes can be hidden or exposed.

These are the rules regarding the requirements for using structs (versus domain
values) as parameters and return values for operations:
v Parameters for batch operations must be structs.
v Parameters and return types for all database operations must be structs.
v Parameters and return types for queue operations must be structs.
v Parameters and return types for web service connector operations must be

structs.
v Parameters and return types for client-visible operations must be structs.

(Domain parameters and return types are not supported by the HTML client.)
v Parameters and return types for other operation stereotypes including web

service client operations or other classes may be domain definitions.

Operation Options

Audit BI (Business Interface) Calls to this Operation
This is only relevant to client-visible operations.

This option specifies whether Business-Interface-level auditing should be
performed for this operation. For Business-Interface-level auditing records the
following information about the operation call is recorded:
v the operation name (Function Identifier);
v the username of the caller;
v the date and time;
v the transaction type (online/batch/deferred/etc.).

This option can be overridden at application startup time using application
properties, this functionality is described with an example in the Database
Table-level Auditing option description contained in this section.

Auto ID Field
This is only relevant for certain insert operations of entity classes.

Cúram Modeling Reference 35

Specify which field is to be used as the Auto ID field. The Auto ID field is
automatically populated with a generated unique ID during the insert to ensure
that the record can be uniquely identified.

Auto ID Key
This option is used only in conjunction with theAuto ID Field option.

It allows you to specify the key set from which a unique ID should be generated.

Business Date
This option is only relevant to operations of a process class.

It allows you to specify that one field of the operation parameters be treated as the
Business Date Field for the operation. This means that the value of this parameter
to the operation becomes the Business Date for the duration of the transaction. The
Business Date is the Date or DateTime which gets returned by the following
methods:
v curam.util.transaction.TransactionInfo. getBusinessDateTime()
v curam.util.transaction.TransactionInfo. getBusinessDate()
v curam.util.type.Date. getCurrentDate()
v curam.util.type.DateTime. getCurrentDateTime()

The main purpose of this feature is to give greater flexibility when running batch
programs for which processing dates are significant. Consider the example where a
report generating program is run at the end of each day to count all payments
issued that day. The payment records are obtained by reading all records whose
issue date equals curam.util.transaction.TransactionInfo. getBusinessDate().
This program will process a different set of records depending on the day on
which it is run.

Now consider what would happen if you needed to re-generate the report from 10
days ago.

Without theBusiness Date feature you would have to do the following:
v Submit a batch request for your batch program.
v Change the system date on the machine where the batch program will be run.

Note that you will have to ensure that this doesn't affect anyone else, so nobody
else can use the machine while the system date is being changed.

v Ensure that your batch request is the only one in the queue.
v Run the batch launcher to cause your batch program to be run.
v Revert the system date on the machine.
v Make the machine available for general usage again.

However if your batch program parameters include aBusiness Date field you need
only do the following:
v Submit a batch request for your program, ensuring that the batch job parameter

which has been specified as the Business Date is set to the date 10 days ago.
v Run the batch launcher.

Syntax forBusiness Date option::
The Business Date option should be specified in one of the following formats:
v fieldName

v paramName. fieldName

36 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

where
v paramName is the name of a parameter. This is optional and, if not specified, the

first operation parameter is assumed.
v fieldName is the name of a field in the parameter struct.

Business Date example 1

v Struct ReportArguments contains a Date field named effectiveDate.
v The following is a batch operation: doReportGeneration (ReportArguments arg1).
v To use effectiveDate as the Business Date for the operation, you can set

theBusiness Date option to either arg1.effectiveDate or because it is the first
(and only) parameter: effectiveDate.

Business Date example 2

v Struct GeneratePaymentsParameters contains a Date field named paymentDate.
v The following is a batch operation: generatePayments (SomeStruct argA,

GeneratePaymentsParameters argB).
v To use paymentDate as the Business Date for the operation, you would set

theBusiness Date option to argB.paymentDate.

Rules forBusiness Date option::

v This option is only relevant to operations which correspond to individual server
transactions. Such operations are the operations of facade classes and batch
operations. Note that it is not applicable to workflow activity or deferred
processing operations.

v The field which is specified as the Business Date Field must be of type
SVR_DATE or SVR_DATETIME.

v The Business Date Field only takes effect when the operation is invoked by a
remote client (either the HTTP client or a web services client) or by the Batch
Launcher. It does not take effect for operations which are invoked directly from
Java code. This is because the latter does not result in a new server transaction
being started.

v If the Business Date Field is set to null, curam.util.type.Date. kZeroDate or
curam.util.type.DateTime. kZeroDateTime for a method invocation, it is ignored
and the Business Date does not get overridden for that transaction. In this case
the Business Date for the transaction will be either the current system date, or
the overridden value specified in application properties - see the Date and
DateTime JavaDoc documentation for more details.

BytesMessage encoding character set
This is only relevant for qconnector operations of process classes. See “Options on
qconnector Operations” on page 82 for more information.

Database Table-level Auditing
This is only relevant to database operations of entity classes.

This option specifies whether table-level auditing should be performed for this
operation. Table-level auditing records detail information about the changes made
to actual data on the database table.

The behavior of auditing depends on whether Optimistic Locking is switched on
or off for the operation. For more information about Auditing, see “Table Level
Auditing” on page 24.

Cúram Modeling Reference 37

This option can be overridden at application startup time using application
properties, this functionality is available to Audit BI Calls and this option and
what follows is an example of how it should be used.

Changing operation auditing options without rebuilding.: Changes to operation
optionsAudit BI andDatabase Table-level auditing in the model require a rebuild
and redeploy to take effect. It is possible to override these properties in application
properties whereby the changes take effect when the application is restarted.

These two options can be targeted at individual operations by specifying
application properties whose format is as follows:
curam.audit.audittrail.<ProjectName>.<ClassName>.<OperationName>
curam.audit.opaudittrail.<ProjectName>.<ClassName>.<OperationName>

or, if the class is in a code package:
curam.audit.audittrail.<ProjectName>.<CodePackage>.
<ClassName>.<OperationName>
curam.audit.opaudittrail.<ProjectName>.<CodePackage>.
<ClassName>.<OperationName>

Properties whose names begin with curam.audit.audittrail apply to the Database
Table-Level Auditing option and cause data to be captured to table AuditTrail.

Properties whose names begin with curam.audit.opaudittrail apply to the Audit BI
calls option and cause data to be captured to table OpAuditTrail.

Example (1): To switch on table level auditing for operation modify of entity
CaseHeader which is in code package core of the Cúram application, set the
property curam.audit.audittrail.curam.core.CaseHeader.modify to true.

Example (2):. To switch off operation auditing for operation modifyAddress of
process class Participant which is in code package core.facade of the Cúram
application, set the property
curam.audit.opaudittrail.curam.core.facade.Participant.modifyAddress

to false.

In Summary,
v changing the value of an auditing option requires an application restart to take

effect
v The curam.audit.opaudittrail.* properties only affect client-visible operations.
v The curam.audit.audittrail.* properties only affect stereotyped entity operations -

excluding stereotypes ns and nsmulti.

Field Level Security
Field Level Security can be applied for the fields returned by client-visible
operations (i.e. operations of the Facade class). It is only relevant to operations of a
client-visible operation (defined in a Facade class).

In Rational Software Architect the Secure Fields properties tab of the Facade class
operation allows you to apply security to any field returned by an operation by
specifying a security identifier (SID) for that field.

To establish secure returned fields for an an operation use the Secure Fields button
from the properties tab for the operation. Clicking the SID Name cell for the

38 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

returned Field Name allows you to enter the security identifier (SID). The
maximum length of a security identifier is 100 characters.

The client infrastructure will then ensure that fields for which a SID has been
specified can only be viewed by users to whom that SID has been granted. Fields
for which no SID has been specified will be visible to all users.

All the information about Field Level Security - which SID is assigned to a field -
is written by the generator to an XML file and is loaded into database table
FieldLevelSecurity by the Data Manager. The Data Manager configuration file
datamanager_config.xml must be changed to reference the generated file
<ProjectName>_FieldsReturned.xml. This can be done by adding an entry to the
initial target as shown in “Field Level Security” on page 38 below.

Once the field names and SIDs have been added to the FieldLevelSecurity table,
the SIDs should be loaded into the SecurityIdentifier to enable them to be assigned
to groups. This can be done using the database command shown in “Field Level
Security” on page 38 below.

These SIDs can then be assigned to user groups using the Security Administration
console.

JNDI name of the QueueConnectionFactory class
This is only relevant for qconnector operations of process classes. See “Options on
qconnector Operations” on page 82 for more information.

JNDI name of the transmission queue
This is only relevant for qconnector operations of process classes. See “Options on
qconnector Operations” on page 82 for more information.

JNDI name of the reply queue
This is only relevant for qconnector operations of process classes. See “Options on
qconnector Operations” on page 82 for more information.

Message type
This is only relevant for qconnector operations of process classes. See “Options on
qconnector Operations” on page 82 for more information.

No Generated SQL
This is only relevant to database operations of entity class.

<target name "initial"
<entry

name="build/svr/gen/ddl/<ProjectName>_Fids.xml"
type="xml" base="basedir" />

<entry
name="build/svr/gen/ddl/<ProjectName>_FieldsReturned.xml"
type="xml" base="basedir" />

</target>

Figure 2. Sample datamanager_config.xml for adding field level security information to the database

INSERT INTO SecurityIdentifier(sidName, sidType, versionNo)
SELECT DISTINCT sidName, ’FIELD’, 1 from FieldLevelSecurity
WHERE sidName IS NOT NULL;

Figure 3. Inserting field level security SIDs into the infrastructure SecurityIdentifier table

Cúram Modeling Reference 39

Switches off generation of data access code, allowing developers to provide their
own implementation.

For example, ifNo Generated SQL was set to yes for a standard read operation
named myRead the generator will produce a declaration of an abstract method
named myRead_da with the same signature as the formerly generated myRead
method. The developer must provide the implementation of method myRead_da as
is shown in the following listing:

For readmulti operations - i.e. operations of stereotype readmulti, nsreadmulti,
nkreadmulti or nsmulti - the handcrafted implementation must follow a different
pattern. The method is declared as returning a list struct but this return value is
ignored. Readmulti operations in Curam are implemented using the visitor design
pattern whereby a subclass of curam.util.dataaccess.ReadmultiOperation is
passed into the data access operation which then invokes its operation(Object) for
each record found. Usually this operation will add the record to a collection which
gets returned to the caller. This is described in greater detail in the Cúram Server
Developers Guide.

The key point is that for readmulti operations, data is returned to the caller by
adding it to the ReadmultiOperation class by calling its operation(Object) method,
and not by simply returning it from the method. This is shown in the following
example:

public MyEntityDtls myRead_da(
final MyEntityKey key, final boolean forUpdate)
throws AppException, InformationalException {

final MyEntityDtls result = new MyEntityDtls();
result.idNumber = "1234";
return result;

}

Figure 4. Handcrafted data access implementation for a standard read

/*
* This implementation returns two hard coded dummy records.
*/
public MyEntityDtlsList readmulti_da(

final SomeKey k, final ReadmultiOperation op,
final boolean requireInformational)
throws AppException, InformationalException {

// Create and add one record for return to the caller.
final MyEntityDtls oneDtls = new MyEntityDtls();
oneDtls.idNumber = "2222";
op.operation(oneDtls);

// Create and add another record for return to the caller.
final MyEntityDtls twoDtls = new MyEntityDtls();
twoDtls.idNumber = "3333";
op.operation(twoDtls);

// our return value is ignored so just return null.
return null;

}

Figure 5. Handcrafted data access implementation for a readmulti

40 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

On Fail Operation
This is only relevant for database operations of entity classes.

This option switches on the on-fail exit point.

If any error occurs in the Data Access Layer (DAL), this function is invoked with a
copy of the parameters given to the DAL and a copy of the DAL exception
corresponding to the error.

The type of exception depends on the type of error which occurred. The error can
either be handled in this exit point or the exception can be thrown from here to
allow the error to be handled elsewhere.

For more information on Exit Points, see “Exit Points” on page 25.

Optimistic Locking
This is only relevant for certain update operations of entity classes.

This option switches on optimistic locking for this operation.

Note that this option is only allowable if theAllow Optimistic Locking option has
been set for the entity class.

For more information on optimistic locking, see “Concurrency Control - Optimistic
Locking” on page 23.

Order By
This option applies only to entity operations of stereotype readmulti, nsreadmulti
and nkreadmulti.

This option allows you to specify the fields by which a sequence of records are
sorted as they are read from the database. Any or all of the fields of an entity are
valid arguments for this option. Records are always sorted in ascending order.

If this option is not specified, records will be returned in arbitrary order.

Post Data Access Operation
This is only relevant for database operations of entity classes.

This option determines whether a standard database operation has a post-exit
point.

For more information on exit points, see “Exit Points” on page 25.

Pre Data Access Operation
This is only relevant for database operations of entity classes and determines
whether a database operation has a pre-exit point.

For more information on exit points, see “Exit Points” on page 25.

Readmulti_Max
This option applies only to entity operations of stereotype readmulti, nsreadmulti,
nkreadmulti and nsmulti.

This allows you to specify the maximum number of records returned by a
readmulti operation. If there are more records available than the Readmulti_Max,

Cúram Modeling Reference 41

then handling is based on the setting of the Readmulti_Informational option
(“Readmulti_Informational”). Unless the Readmulti_Informational setting is on in
the model for the operation there is no Readmulti_Max enforcement.

If this option is not specified then the generator system default will be used.

Specifying a value of 0 for this option is interpreted as infinity and no limit will
be applied to the number of records returned.

Readmulti_Informational
This option applies only to entity operations of stereotype readmulti, nsreadmulti,
nkreadmulti and nsmulti.

This allows you to determine the handling of the system when the specified
Readmulti_Max is reached (“Readmulti_Max” on page 41). The default behavior is
that a Readmulti_Max message gets logged and all entries are returned to the user.
If this option is specified, then an InformationalMessage can be added to the
current transactions InformationalManager, for handling in the Application's
Facade layer. In this case only the specified Readmulti_Max number of entries will
be returned to the user.

If this option is not specified then the generator system default false will be used.

Response message timeout (seconds)
This is only relevant for qconnector operations of process classes. See “Options on
qconnector Operations” on page 82 for more information.

Security
This is only relevant to client-visible records.

This option determines whether security will be applied to this operation. If
security is switched on for an operation, then the generator will generate code in
the RIL which checks whether the user is authorized to invoke the operation. If the
user is not authorized to invoke the operation an exception will be thrown.

SQL
This is only relevant to entity operations of stereotype ns and nsmulti.

This option allows the developer to supply the SQL code to be executed by the
operation. The generator converts the supplied SQL into DAL (Java and SQL) code.

For more information about this option, see “Using Handcrafted SQL in
Non-Standard Entity Operations” on page 64.

Transactional
This allows you to specify whether a transaction is started for an operation. This is
only relevant to client-visible operations.

Where
This is only relevant to readmulti and nsreadmulti operations of entity classes.

This allows the developer to specify a customWHERE clause for the generated SQL
used by the DAL code for this operation.

42 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Operation Parameter Options

Mandatory Fields
This option allows the developer to specify mandatory fields for any given
parameter. Mandatory fields are fields that must be populated when displayed on
a client page.

The option value must be populated with a single line, comma delimited string.

Consider the following operation:

The pseudo-code for the structures involved as parameters in this operation is
outlined below:

In this example, we want to make the following fields mandatory for our operation
parameter:

For the personDtls parameter:
v the person's first name; and
v the first line of the PersonDetails home address.

For the employmentDetails parameter:

public interface Employer
{

public void updateEmployerDetails(
PersonDetails personDtls
EmploymentDetails employmentDetails)

throws AppException, InformationalException;
}

Figure 6. Operation Signature

// Note that since a person can have two addresses,
// PersonDetails aggregates AddressDetails twice
// - "homeAddress" and "workAddress".
struct PersonDetails {

String firstName;
String surname;
AddressDetails homeAddress;
AddressDetails workAddress;

}
// The role name for the struct aggregation between
// PersonDetails and AddressDetails "homeAddress" struct
// is set to "homedtls"
struct AddressDetails {

String addressLine1;
String addressLine2;
String city;
String country;

}
// Note that EmploymentDetails aggregates AddressDetails once.
// The role name for the struct aggregation between
// EmploymentDetails and AddressDetails "employerAddress"
// struct is set to "employmentdtls"
struct EmploymentDetails {

String employerName;
Date employmentStartDate;
AddressDetails employerAddress;

}

Figure 7. Pseudo-Code for Parameter Structures

Cúram Modeling Reference 43

v the first line of the employer's address.

Set theMandatory Fields option of parameter personDtls to:

firstName, homeAddress.addressLine1

Set theMandatory Fields option of parameter employmentDetails to:

employerAddress.addressLine1

Therefore, if adding mandatory fields that are contained in structures aggregated
by the parameter type class, they must be fully qualified by the relevant
aggregation role names as shown above.

Entity Operations Overview

Introduction
This chapter provides an overview of entity operations, which are covered in more
detail in the following sections and chapters.

In the SDEJ, a database operation is an operation of an entity class whose
stereotype is recognized by the Cúram generator. For these operations the
generator will generate data-access Java code based on the stereotype.

The generator treats all other operations as if their stereotype was blank and will
produce Java interfaces and factories for them, but does not generate any
data-access code for these operations. The developer must then provide the
implementation.

Standard Operations

Standard Single-Record Operations
Standard single-record operations are the most basic type of operation provided in
that only a single row from the database is returned and no arguments are
required to be modelled as the code generator assumes standard key and details
structs where appropriate.

These operations are represented by the following operation stereotypes:
v insert
v modify
v read
v remove

Standard Multi-Record Operations
Rather than operating on a single database table row, these operations allow for
processing multiple rows. In database maintenance applications, it is often
necessary to return multiple records to a user interface, from which the user selects
one for processing. Batch programs also frequently operate on multiple rows of a
table; for example a Bank account statement printing batch program will typically
operate on the accounts of every client on record.

These operations are represented by the following operation stereotype:
v readmulti

44 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Non-Standard Operations

Generated SQL Operations
Non-standard generated SQL operations are similar to the standard operations
except that the arguments and return type are not assumed to be standard key and
standard details structs. The developer is required to specify a struct for each
argument and return type.

The attributes of the argument and return structs must be subsets of the fields of
the entity.

The argument structs can be user-defined structs from the input meta-model, or
the generated standard structs that are not explicitly defined in the input
meta-model. Using generated standard key and details structs as the parameters to
non-standard operations is equivalent to simply using standard operations.

It is important to remember that since the key struct of a non-standard generated
SQL operation is defined by the developer, it is possible to define a key struct
which does not uniquely identify a single record. If this happens, certain
operations may not behave as expected. For example, in the case of a non-standard
modify operation, all records matching the key will be modified, not just the
intended record.

These operations are represented by the following operation stereotypes:
v nsinsert
v nsmodify
v nsread
v nsreadmulti
v nsremove

Handcrafted SQL Operations
Non-standard handcrafted SQL operations are the most flexible type of operation
provided by the generator. They allow the developer to specify custom parameters
and SQL for the operation. No parameters are generated for ns operations except
those provided by the developer. All parameters provided by the developer are
replicated into all the generated layers of the application.

This type of operation is intended to be used for situations where none of the
other operations are suitable. This includes joins across tables and queries which
count or calculate max, etc.

These operations are represented by the following operation stereotypes:
v ns
v nsmulti

Non-Key Operations
Non-key operations operate on all rows of a database table and so would typically
be used on tables containing one row.

These operations are represented by the following operation stereotypes:
v nkmodify
v nkread
v nkreadmulti

Cúram Modeling Reference 45

v nkremove

Batch Operations
Batch programs, as described in the Cúram Batch Processing Guide have operations
available to them that are tailored specifically to the batch environment.

These operations are represented by the following operation stereotypes:
v batchinsert
v batchmodify

Entity Insert Operations

Overview
Insert operations as their name suggests insert, or add, a row onto a database
table. Therefore, by definition, they operate on only a single row at a time. There
are two types:
v insert
v nsinsert

Standard Insert
A standard insert operation has a stereotype insert.

Description
Standard insert operations insert a single record onto the appropriate database
table using the information passed in a standard details struct. No arguments are
required to be specified for these operations in the input model. Extra arguments
can be specified and these arguments can be accessed by exit points for the
operation, they do not have any effect on any of the generated code.

Use
You should use a standard insert operation when you want to create a new record
on a database table, and you want to update each attribute.

No arguments are required to be specified for this operation in the input model.
Generated standard key and details structs are assumed as arguments where
appropriate.

Extra arguments can be specified for this operation and these arguments can be
accessed by exit points for the operation, they do not have any effect on any of the
generated code.

This pattern can also be used in conjunction with the Auto ID Field sequence
number generation pattern.

Parameter and Generator Notes
Standard insert operations use the entity's details structure as an input parameter.
This is automatically generated and contains all the fields of the record.
v Parameters - None.
v Return value - None.
v Generator action - The generator will add the standard details struct as a

parameter.

46 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Non-standard Insert (Generated SQL)
A non-standard insert operation has a stereotype nsinsert.

Description
Non-standard insert operations insert a single record onto the database table of the
parent entity with information from a non-standard details struct provided by the
developer.

Use
You should use a non-standard insert operation when you want to create a new
record on a database table, and you do not need to update each attribute.
Attributes not specified in the parameter to a non-standard insert are set to null
values on the database.

Non-standard insert operations are more efficient than standard inserts, because
there is less I/O to the database. It is the responsibility of the application designer
to decide whether the improved efficiency is worth the extra complexity of having
more operations on your entities.

You might choose to use a non-standard insert where you know the database can
perform the operation significantly more efficiently or where the operation will be
used by a very high volume transaction.

Non-standard insert operations take a single input parameter - a structure defining
the attributes to be inserted. Each attribute of this structure must match some
entity attribute by name and type.

Parameter and Generator Notes
A Warning is displayed if a non-standard operation has non-standard details
parameter, which does not include fields that cannot be null. Refer to ““Null”
Considerations” on page 64.

Fields which are not included in the details struct will not be initialized, i.e. they
will be set to <null> by the DBMS.
v Parameters - A non-standard details struct.
v Return Value - None.
v Generator action - None.

Entity Read Operations

Overview
Read operations obtain one or more (multi) rows from the database table,
depending on the type of operation and arguments provided. These are the read
operation types:
v read
v readmulti
v nsread
v nsreadmulti
v nkread
v nkreadmulti

Cúram Modeling Reference 47

Standard Read
A standard read operation has a stereotype of read.

Description
Standard read operations read a single record from a database table into a standard
details struct, using a standard generated key struct (i.e., the primary key) as
search criteria. No arguments are required to be specified for these operations in
the input model. Extra arguments can be specified and these arguments can be
accessed by exit points for the operation, they do not have any effect on any of the
generated code.

Use
You should use a standard singleton read operation when you want to read all of
the attributes of a specific database record. Standard singleton read operations use
the primary key of an entity to locate the target record. You cannot create standard
singleton read operations for entities that do not have primary keys. Since the
primary key of an entity is unique, a standard singleton read always returns a
single database record.

Parameter and Generator Notes
Standard singleton read operations use the entity's key and details structures as
input and output parameters respectively - these are automatically generated and
are not specified in the UML meta-model.

No arguments are required to be specified for these operations in the input model.
Generated standard key and details structs are assumed as arguments where
appropriate.

Extra arguments can be specified and these arguments can be accessed by exit
points for the operation, they do not have any effect on any of the generated code.
v Parameters - None.
v Return value - None.
v Generator action - The generator will add the standard key struct as a parameter

and the standard details struct as the return value.

Standard Readmulti
A standard readmulti operation has a stereotype readmulti.

Description
Standard multiple read operations use an input parameter which you designate as
the key structure for the operation. The return value is a structure containing a list
of the entity's details structures. You must specify the first parameter, but since the
return value is automatically generated, it is not specified in the UML meta-model.

Use
You should use a standard multiple read operation when you want to read all of the
attributes of a set of database records, based on a key that you specify. The
stipulation about efficiency of keyed access, as described for non-standard read,
modify and remove operations, applies equally well to multiple reads - it is up to
the designer to ensure efficient use of database indices.

Parameter and Generator Notes
A standard readmulti operation takes a partial key struct, and returns a list of
standard details structs; every record matching the criteria is returned in the list.

48 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

By default, the records in a readmulti are unsorted and are returned in arbitrary
order.

This can be changed by using theOrder By option of the readmulti operation. This
option takes a list of the fields of the entity and sorts them in ascending order.
v Parameters - A key struct to specify the search criteria for which record(s) to

retrieve. The members of the struct must be a subset of the standard details
struct for the entity.

v Return value - None.
v Generator action - The generator will create a list wrapper for the standard details

struct for the entity, and add this as the return value for the operation.

Non-standard Read (Generated SQL)
A non-standard read operation has a stereotype nsread.

Description
Non-standard read operations read a single record from a database table into a
details struct, using an key struct as search criteria.

Use
You should use a non-standard read operation when you want to read a subset of
the attributes on a database record, or you want to use a key other than the
primary key of the entity. Non-standard operations use a key that you specify to
locate the target record. It is not possible to guarantee at development time that
only one record will be targeted. If there is more than one record in the result set, a
runtime errors is generated.

Non-standard read operations can be more efficient than standard ones because
they result in less database I/O.

As with any operation where you specify the key yourself, there is no guarantee
that the database will be able to access the target records efficiently - it is up to the
designer to ensure that appropriate indices are defined to ensure this.

Parameter and Generator Notes
Non-standard read operations use key and details structures - as input and return
types respectively - that you must create yourself and specify as operation
parameters in the UML meta-model. Each attribute of each of these structures must
match some entity attribute by name and type. It is possible to use standard
(generated) key or details structures also.
v Parameters - A non-standard key struct to specify the record to be retrieved. The

key must be capable of uniquely identifying a single record. If more than one
record matches the criteria, an exception will be thrown.

v Return Value - A non-standard details struct into which the data is retrieved.
v Generator action - None.

Non-standard Readmulti (Generated SQL)
A non-standard readmulti operation has a stereotype nsreadmulti.

Description
Non-standard readmulti operations take a partial key struct and a details struct as
input meta-model parameters. They return a list of the provided details struct;
every record matching the criteria is returned in the list.

Cúram Modeling Reference 49

The only difference between a non-standard readmulti and a standard readmulti is
that a non-standard readmulti must specify a return value whereas for a standard
readmulti this is assumed to be the standard generated details struct for the entity.
For non-standard readmulti the developer is required to specify a struct as the
return value of the operation. The fields of this struct must be a subset of the fields
of the entity.

Use
You should use a non-standard multiple read operation when you want to read a
subset of the attributes of a set of database records, based on a key that you
specify. It is up to the designer to ensure efficient use of database indices when
reading based on this key.

Parameter and Generator Notes
Like standard operations, non-standard multiple read operations use an input
parameter which you designate as the key structure for the operation. The return
value that you specify in the UML meta-model is a structure containing the
attributes that you want returned for each record read from the database. The
return value in the generated code is a list of the structure that you specified in the
meta-model (the structure containing the list is automatically generated).
v Parameters - A non-standard key struct to specify the search criteria for which

record(s) to retrieve. The members of the struct must be a subset of the fields of
the entity.

v Return Value - A non-standard details struct to specify which attributes are to be
returned from the readmulti operation. The members of this struct must be a
subset of the fields of the entity.

v Generator action - The generator will create a list wrapper for the non-standard
details struct specified by the developer, and use this as the return value for the
operation.

Non-key Read
A non-key read operation has a stereotype nkread.

Description
Non-key read operations read the only record from a database table into a
standard details struct.

Non-key operations, as the name suggests, do not take a key parameter. They
operate by executing SQL statements which do not have a where clause; i.e. they
operate on all rows on a table.

For a non-key read operation, there should be a single row on the table - this type
of operation is typically used to read a value from a control table which contains a
single record.

There is no such thing as a non-key insert operation since insert operations do not
require a key parameter.

Use
You should use a non-key singleton read operation when you want to read a record
from a database table on which there is a single record. A runtime error is
generated if the database table contains more than one record.

This operation type is typically used for control tables containing a single record.

50 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Parameter and Generator Notes
Non-key singleton read operations take no parameters and the generator
automatically adds the standard details struct for the entity as the return type.

If more than one record exists on the table, an exception is thrown.
v Parameters - None.
v Return value - None.
v Generator action - The generator will add the standard details struct as the return

value.

Non-key Readmulti
A non-key readmulti operation has a stereotype nkreadmulti.

Description
Non-key readmultis are very similar to standard readmulti operations, the only
difference being that they return all rows of a table rather than those which match
a partial key. They operate by executing SQL statements which do not have a
where clause; i.e. they operate on all rows on a table.

Non-key operations, as the name suggests, do not take a key parameter. They
operate by executing SQL statements which do not have a where clause; i.e. they
operate on all rows on a table.

For a non-key read operation, there should be a single row on the table - this type
of operation is typically used to read a value from a control table which contains a
single record.

There is no such thing as a non-key insert operation since insert operations do not
require a key parameter.

Use
You should use a non-key multiple read operation when you want to read all of the
attributes of all of the records on a database table.

Parameter and Generator Notes
Non-key multiple read operations take no key argument. The return value is a
structure containing a list of the entity's details structures as an output parameters.
You specify no parameters in the UML meta-model (effectively the same interface
and behavior as a standard multiple read except there is no key argument).

Generated non-key readmulti operations in the RIL and BOL have one parameter;
a list details struct, i.e. a list of standard details structs for the entity.
v Parameters - None.
v Return value - None.
v Generator action - The generator will create a list wrapper for the standard details

struct for this entity, and use this as the return value.

Entity Update Operations

Overview
Update operations modify data in one or more rows of the database table,
depending on the type of operation and arguments provided. These are the update
operation types:

Cúram Modeling Reference 51

v modify
v nsmodify
v nkmodify

Standard Modify
A standard modify operation has a stereotype modify.

Description
Standard modify operations modify a specific record on an database table. No
arguments are required to be specified for these operations in the input model. The
record to be modified is specified using a generated standard key struct and the
modified data is contained in a generated standard details struct. Extra arguments
can be specified and these arguments can be accessed by exit points for the
operation, they do not have any effect on any of the generated code.

Use
You should use a standard modify operation when you want to update all the
attributes on a specific database record. Standard modify operations use the
primary key of an entity to locate the target record. You cannot create standard
modify operations for entities that do not have primary keys. Since the primary
key of an entity is unique, a standard modify always updates a single database
record.

The standard modify pattern can also be used in conjunction with the Optimistic
Locking pattern.

Parameter and Generator Notes
Standard modify operations use the entity's key and details structures as input
parameters - these are automatically generated and are not specified in the UML
meta-model.
v Parameters - None.
v Return value - None.
v Generator action - The generator will add the standard key struct and standard

details struct as parameters.

Non-standard Modify (Generated SQL)
A non-standard modify operation has a stereotype nsmodify.

Description
Non-standard modify operations update records on the database table of the
parent entity with information from a non-standard details struct provided by the
developer.

Use
You should use a non-standard modify operation when you want to update a subset
of the attributes on a database record or records. Non-standard modify operations
use a key that you specify to locate the target records, and this may result in
multiple records being updated. You also specify which attributes of the entity are
to be updated.

Non-standard modify operations can be more efficient than standard ones because
they result in less database I/O, and the database may not have to update as many
indices as would be the case for a standard modify operation.

52 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Parameter and Generator Notes
Non-standard modify operations use non-standard key and details structures as
input parameters that you must create yourself and specify as operation
parameters in the UML meta-model. Each attribute of each of these structures must
match some entity attribute by name and type. It is possible to use standard
(generated) key or details structures also.
v Parameters - A non-standard key struct to specify the record to be modified. Note

that this non-standard key may specify multiple records. In this case, all records
matching the non-standard key will be updated.
A non-standard details struct containing the updated version of the data.

v Return Value - None.
v Generator action - None.

Non-key Modify
A non-key modify operation has a stereotype nkmodify.

Description
Non-key modify operations modify all records on a database table with the
information from a standard generated details struct.

Non-key operations, as the name suggests, do not take a key parameter. They
operate by executing SQL statements which do not have a where clause; i.e. they
operate on all rows on a table.

For a non-key read operation, there should be a single row on the table - this type
of operation is typically used to read a value from a control table which contains a
single record.

There is no such thing as a non-key insert operation since insert operations do not
require a key parameter.

Use
You should use a non-key modify operation when you want to update all of the
records on a database table. The attribute values of each record are set to those you
specify in the parameter to the non-key modify function.

Typically you would only use a non-key modify operation for control tables
containing only one record.

Parameter and Generator Notes
Non-key modify operations use the entity's details structure as an input parameter
- this is automatically generated and is not specified in the UML meta-model.
v Parameters - None.
v Return value - None.
v Generator action - The generator will add the standard details struct as a

parameter.

Entity Delete Operations

Overview
Delete operations remove one or more rows from the database table, depending on
the type of operation and arguments provided. These are the delete operation
types:

Cúram Modeling Reference 53

v remove
v nsremove
v nkremove

Standard Remove
A standard remove operation has a stereotype remove.

Description
Standard remove operations delete a specific record from a database table. No
arguments are required to be specified for these operations in the input model. The
record to be deleted is specified using a generated standard key struct. Extra
arguments can be specified and these arguments can be accessed by exit points for
the operation, they do not have any effect on any of the generated code.

Use
You should use a standard remove operation when you want to delete a specific
database record. Standard remove operations use the primary key of an entity to
locate the target record. You cannot create standard remove operations for entities
that do not have primary keys. Since the primary key of an entity is unique, a
standard remove always deletes a single database record.

Parameter and Generator Notes
Standard remove operations use the entity's key structure as an input parameter -
this is automatically generated and is not specified in the UML meta-model.
v Parameters - None.
v Return value - None.
v Generator action - The generator will add the standard key struct as a parameter.

Non-standard Remove (Generated SQL)
A non-standard remove operation has a stereotype nsremove.

Description
Non-standard remove operations delete records from the database table of the
parent entity matching the information in a key struct provided by the developer.

Use
You should use a non-standard remove operation when you want to delete a
database record or records, based on a key that you specify. If the key you specify
is not unique, multiple database records are deleted.

As with any operation where you specify the key yourself, there is no guarantee
that the database will be able to access the target records efficiently - it is up to the
designer to ensure that appropriate indices are defined to ensure this.

Parameter and Generator Notes
Non-standard remove operations use a key structure as an input parameter that
you must specify in the UML meta-model. Each attribute of this key must match
some entity attribute by name and type.

Note: When using segmented tablespaces with DB2 for z/OS (which are the
default for version 9), IBM has changed the behavior of the JDBC driver as per this
Technote: http://www-01.ibm.com/support/docview.wss?uid=swg21244002
Therefore, a RecordNotFoundException error will not be thrown when a negative
row count is returned (i.e., a DELETE FROM with no predicate).

54 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21244002

v Parameters - A non-standard key struct to specify the record to be modified. Note
that this non-standard key may specify multiple records. In this case, all records
matching the non-standard key will be deleted.

v Return Value - None.
v Generator action - None.

Non-key Remove
A non-key remove operation has a stereotype nkremove.

Description
Non-key remove operations remove all the records from a database table.

Non-key operations, as the name suggests, do not take a key parameter. They
operate by executing SQL statements which do not have a where clause; i.e. they
operate on all rows on a table.

For a non-key read operation, there should be a single row on the table - this type
of operation is typically used to read a value from a control table which contains a
single record.

There is no such thing as a non-key insert operation since insert operations do not
require a key parameter.

Use
You should use a non-key remove operation when you want to delete all of the
records from a database table.

Parameter and Generator Notes
Non-key remove operations take no parameters.
v Parameters - None.
v Return value - None.
v Generator action - None.

Entity Batch Operations

Overview
Batch operations are for inserting or removing a large number of records, typically
for performance reasons. More information on IBM Cúram Social Program
Management batch processing can be found in the Cúram Batch Processing Guide.
These are the batch operation types:
v batchinsert
v batchmodify

BatchInsert
A batch insert operation has a stereotype batchinsert.

Description
Batch insert operations are intended to be used whenever a large amount of
records are to be inserted into the database. By batching operations together, the
number of round trips to the database is reduced and performance is improved.

Cúram Modeling Reference 55

Batch insert operations have a similar signature to non-standard insert operations
and can be called in the same way. However, when a batch insert is invoked the
record is not written immediately to the database. The insert statement is instead
added to a batch of statements stored locally by the Cúram infrastructure by
calling the java.sql.PreparedStatement. addBatch method. Once the batch has
reached the desired size, it must be executed by calling the $execute method of the
operation.

Note: The $execute method is never called automatically. It must be called from
code written by the developer. If the entity object is destroyed without calling its
$execute method, any pending (not executed) batched inserts will be discarded.

This means that batched inserts or modifies cannot be spread across multiple client
invocations in an online environment because all entity objects are destroyed at the
end of each invocation (transaction).

The $execute method of the operation calls the executeBatch method of
java.sql.PreparedStatement and returns the result of this call which is an array of
integers (int []). Each entry in this array corresponds to one statement in the batch
and indicates how many records were affected by that statement. For example, for
a successful batch of inserts, each entry of the array should be 1 to indicate that
each statement caused one record to be written to the database. If one statement
violated a unique constraint, its corresponding array entry would contain a zero. A
returned value of java.sql.Statement.EXECUTE_FAILED indicates that the command
failed to execute successfully.

The JDK documentation for java.sql.PreparedStatement provides further details
regarding the information in this array, and how queued statements are executed.

The maximum number of statements in a batch is determined by the application
property curam.db.batch.limit (default value = 30), or can be set for an individual
operation by calling its $setBatchSize(int) method. The optimal size of a batch
depends on many factors such as record size, database configuration and database
vendor and can be different for each individual batch operation. It is the
responsibility of the developer or DBA to determine this value.

If the batch limit is exceeded, an AppException
(INFRASTRUCTURE.ID_BATCH_SIZE_LIMIT_HAS_BEEN_REACHED) is thrown by the batch
insert operation. In this case the developer should simply call the $execute method
of the operation, and then continue as before.

Use
You should use a batchinsert operation when you wish to insert a large number of
records to the same entity in a single transaction.

Parameter and Generator Notes
A batchinsert operation takes a single input parameter - a structure defining the
attributes to be inserted. Each attribute of this structure must match some entity
attribute by name and type.

A warning is displayed if a batchinsert operation has non-standard details
parameter, which does not include fields that cannot be null. Refer to section in
““Null” Considerations” on page 64.
v Parameters - A non-standard details struct.
v Return Value - None.

56 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Generator Action - The generator adds the following methods to a class containing a
batch insert operation:
v public void operationName$setBatchSize(final int newBatchLimit) - This

method sets the batch limit for the operation (overrides the value of the
curam.db.batch.limit property).

v public int[] operationName$execute() throws AppException,
InformationalException - This method executes the currently queued batch of
statements for the operation.

BatchModify
A batch modify operation has a stereotype batchmodify.

Description
Batch modify operations are similar to batch insert operations except, as the name
suggests, they are used to modify existing records rather than to insert new
records.

Use
You should use a batch modify operation when you wish to modify a large number
of records on the same entity in a single transaction.

Parameter and Generator Notes
A batch modify operation uses non-standard key and details structures as input
parameters that you must create yourself and specify as operation parameters in
the UML meta-model. Each attribute of each of these structures must match some
entity attribute by name and type. It is possible to use standard (generated) key or
details structures also.

A warning is displayed if a batchmodify operation has non-standard details
parameter, which does not include fields that cannot be null. Refer to section in
““Null” Considerations” on page 64.
v Parameters - A non-standard key struct to specify the record to be modified. Note

that this non-standard key may specify multiple records. In this case, all records
matching the non-standard key will be updated.
A non-standard details struct containing the updated version of the data.

v Return Value - None.

Generator action - The generator adds the following methods to a class containing a
batch modify operation:
v public void operationName$setBatchSize(final int newBatchLimit) - This

method sets the batch limit for the operation (overrides the value of the
curam.db.batch.limit property).

v public int[] operationName$execute() throws AppException,
InformationalException - This method executes the currently queued batch of
statements for the operation.

Note: batchmodify operations cannot be spread across multiple client-server
invocations (transaction). A batchmodify operation can only be used in an online
transaction if the batch is executed before the end of the transaction.

Cúram Modeling Reference 57

Entity Handcrafted SQL Operations

Overview
Using non-standard ("ns") operations "handcrafted" SQL can be utilized against the
database. These are the non-standard operation types:
v ns
v nsmulti

Non-standard
A non-standard operation has a stereotype ns.

Description
All parameters for a ns operation must be structs. This is because the parameters
are replicated in the Data Access Layer (DAL) and the DAL allows parameters to
be structs only.

The return value for a ns operation must also be a struct. Similar to parameters for
ns operations, the DAL allows return values to be structs only.

The developer must provide SQL with all ns operations; no SQL is automatically
generated.

Non-standard operations must belong to an entity class. However, the SQL query
can operate on any database table, it does not have to operate on only the database
table belonging to the entity class; i.e., it can be used to perform SQL joins across
tables.

For details on how to specify SQL in an operation, see “Using Handcrafted SQL in
Non-Standard Entity Operations” on page 64.

Use
You should use a non-standard operation for a database operation which is too
complex for any of the above operations and which does not retrieve multiple
records. Examples of such operations are:
v queries whosewhere clause contains comparisons other than equals, such as

less-than, greater-than, etc.;
v queries or commands which operate on more than one database table;
v queries which return something other than an attribute of a table, such as the

results of max and count functions.

The developer must specify the SQL to be executed and can specify zero or many
parameters for the operation. All parameters must be structs and must be flat, i.e.
they cannot aggregate other structs.

The handcrafted SQL can perform any database operation provided that a cursor is
not required. This includes single-record-reads, single or multiple record updates
and deletes, and joins across multiple database tables. This is because the
parameter structs cannot aggregate other structs. If your handcrafted SQL requires
a cursor then an nsmulti operation should be used.

Parameter and Generator Notes
v Parameters - Struct(s).
v Return value - Struct.

58 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

v Generator action - None.

Non-standard multi
A non-standard multi operation has a stereotype nsmulti.

Description
Non-standard multi operations are similar to non-standard operations except for
the following restrictions:
v There must be either zero or one parameter;
v The operation must return a struct;
v The SQL for the operation must perform a readmulti.

Typically, this type of operation is intended to be used for doing readmulti
operations which join two or more database tables.

This is the only entity operation that cannot utilize additional parameters, which is
usually done to provide extra parameters to exit points in the Business Object
Layer (BOL). Operations of this stereotype can have either zero or one parameter
only. You cannot add any extra parameters to this operation.

Use
You should use non-standard multiple operations to either:
v retrieve attributes from multiple database tables, performing a relational join

across the tables, or;
v retrieve attributes from one or more database tables when the selection criteria is

too complex to use a readmulti or nsreadmulti. For example, if thewhere clause
contains comparisons other than equals such as less-than, greater-than, etc.

A non-standard multiple operation is very similar (from a modeling perspective) to
a non-standard multiple read operation (nsreadmulti). The major difference is that
the designer must specify the SQL to be executed. This enables multiple database
tables to be referenced and/or complexwhere clauses to be specified.

Parameter and Generator Notes
v Parameters - key parameter [optional].
v Return value - list-details parameter.
v Generator action - The generator will create a list wrapper for the return-value

struct specified by the developer, and use this as the return value for the
operation.

You cannot specify any extra parameters for this operation.

Example 1 - nsmulti with a Single (List) Parameter
Consider an operation in the input meta-model to list every single transaction in
the system whose amount was for less than one dollar.

The following struct is defined in the model and will be used to contain the
information about each transaction. The type of each attribute of the struct is not
relevant here and has been omitted for clarity.
v struct class: MinorTxDetails

Attribute Domain

txDate DATE

Cúram Modeling Reference 59

Attribute Domain

txAccountNumber ACCOUNT_NUMBER

txAmount AMOUNT

The table below shows an entity defined in the model with some of the attributes,
which will be used by the nsmulti operation getMinorTransactions(), returning an
instance of MinorTxDetails.
v entity class: BankAccount

Attribute Domain

details txDate DATE

details txAccountNumber ACCOUNT_NUMBER

details txAmount AMOUNT

details txTellerNumber TELLER_NUMBER

The SQL for the operation (which must be supplied in the model by the developer)
is as follows in “Example 1 - nsmulti with a Single (List) Parameter” on page 59:

This is all that has to be provided by the developer, the remainder is produced by
the generator and is shown below for illustrative purposes.

The following pseudo code in “Example 1 - nsmulti with a Single (List) Parameter”
on page 59 describes the structs used in this operation. The actual Java structs
corresponding to the structs defined in the model are produced by the code
generator.

SELECT txAccountNumber, txDate, txAmount
INTO

:txAccountNumber,
:txDate,
:txAmount

FROM BankAccount
WHERE txAmount < 1;

Figure 8. SQL for nsmulti with a single (list) parameter

60 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

The Java interface for this entity class - complete with the nsmulti operation is
produced by the code generator and would look like this:

“Example 1 - nsmulti with a Single (List) Parameter” on page 59 demonstrates how
the developer would write handcrafted Java code to call this method and to iterate
through each element returned by the method:

Example 2 - nsmulti with Two Parameters (Key + List)
For this example, we will slightly modify the functionality of the previous
example.

struct MinorTxDetails {
txDate;
txAccountNumber;
txAmount;

};

// this is a generated list wrapper:
struct MinorTxDetailsList {

sequence <MinorTxDetails> dtls;
};

// this is the standard details struct for the entity
// just to show where its attributes are kept:
struct BankAccountDtls {

txAccountNumber;
txDate;
txAmount;
txTellerNumber;

}

Figure 9. Pseudocode for generated structs for use by nsmulti operation

public interface BankAccount {

// This is our "nsmulti" operation. Note how the
// generator has transformed the parameter of this function
// from "MinorTxDetails" to a "MinorTxDetails

List
"

public MinorTxDetailsList getMinorTransactions()
throws AppException, InformationalException;

};

Figure 10. Generated Java interface for nsmulti operation

<ProjectPackage>.intf.BankAccount bankAccount
= <ProjectPackage>.fact.BankAccountFactory.newInstance()

double theTotalAmount = 0;

// Call the operation:
MinorTxDetailsList txList

= bankAccount.getMinorTransactions();

// iterate through the set of results.
for (int i = 0; i < txList.dtls.size(); i++) {

MinorTxDetails currentTx = txList.dtls.item(i);

theTotalAmount += currentTx.txAmount;
}

Figure 11. Calling a nsmulti operation from handcrafted Java code (one parameter)

Cúram Modeling Reference 61

Instead of returning all transactions for less than one dollar, in the whole system, it
will return only the transactions for one account which were less than one dollar.

Another parameter is required to specify the account number we are interested in.
Since nsmulti is a database operation and database operations require all
parameters to be structs, we must use a struct for our account number parameter
even though the struct will have only one field.

Note that the account number field appears in various guises - txAccountNumber,
txAccountNum, theAccountID. Unlike the other database operations, the names of
attributes do not have to correspond when used in ns or nsmulti operations, the
handcrafted SQL can reference the different field names as appropriate.
v struct class: AccountNoWrapper

Attribute Domain

txAccountNumber ACCOUNT_NUMBER

This struct can now be used as an input argument to the nsmulti operation
getMinorTransactions(theAccountID : AccountNoWrapper), returning an instance
of MinorTxDetails for the entity below:
v entity class: BankAccount

Attribute Domain

details txDate DATE

details txAccountNumber ACCOUNT_NUMBER

details txAmount AMOUNT

details txTellerNumber TELLER_NUMBER

The SQL for the operation is shown in “Example 2 - nsmulti with Two Parameters
(Key + List)” on page 61:

This is all that has to be provided by the developer, the remainder is produced by
the generator and is shown below for illustrative purposes.

The following pseudo-code “Example 2 - nsmulti with Two Parameters (Key +
List)” on page 61 describes the structs used in this operation (The actual Java
structs corresponding to the structs defined in the model are produced by the code
generator.):

SELECT txAccountNumber, txDate, txAmount
INTO

:txAccountNumber,
:txDate,
:txAmount

FROM BankAccount
WHERE (txAmount < 1)

AND (txAccountNumber = :txAccountNum);

Figure 12. SQL for nsmulti with a key and list parameters

62 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

The Java interface for this entity class - complete with the nsmulti operation - is
produced by the code generator and would look like the following:

“Example 2 - nsmulti with Two Parameters (Key + List)” on page 61 demonstrates
how the developer would write handcrafted Java code to call this method and to
iterate through each element returned by the method:

struct MinorTxDetails {
txDate;
txAccountNumber;
txAmount;

};

// this is a generated list wrapper:
struct MinorTxDetailsList {

sequence <MinorTxDetails> dtls;
};

struct AccountNoWrapper {
txAccountNum;

}

// this is the standard details struct for the entity
// just to show where its attributes are kept:
struct BankAccountDtls {

txAccountNumber;
txDate;
txAmount;
txTellerNumber;

}

Figure 13. Pseudocode for generated structs for use by nsmulti with key and list parameters

public interface BankAccount {

// This is our "nsmulti" operation. Note how the
// generator has transformed the return value of this
// function from "MinorTxDetails" to a
// "MinorTxDetails

List
"

public MinorTxDetailsList getMinorTransactions
(AccountNoWrapper theAccountID)

throws AppException, InformationalException;
};

Figure 14. Generated Java interface for nsmulti operation with key and list parameters

Cúram Modeling Reference 63

Using Handcrafted SQL in Non-Standard Entity Operations

Overview
For entity operations of stereotype ns and nsmulti the developer is required to
specify the SQL to be used in the Cúram Data Access Layer (DAL).

These queries have access to all the tables on the database and to all the
parameters of the operation.

Using Host Variables
Host variables in SQL directly reference fields in the parameter struct or return
value struct.

The rules for using host variables are as follows:
v host variables must be prefixed with a colon (:);
v host variables are case sensitive.

For example:

:surname

v if a field in the parameter struct or return value struct is a result of aggregation
then the role name of aggregation is used for host variable.

For example:

:dtls (see “One-to-One Aggregation” on page 68)

“Null” Considerations
When writing a handcrafted SQL statement, it is important to note that some
Cúram datatypes are stored as null on the database if they are empty (i.e. in their
initial state), so when searching for these records your query must search for “ null
” rather than an empty string. For example:

Incorrect:

<ProjectPackage>.intf.BankAccount bankAccount
= <ProjectPackage>.fact.BankAccountFactory.newInstance();

AccountNoWrapper accNoWrapper = new AccountNoWrapper;

accNoWrapper.txAccountNum = "57033186";

double theTotalAmount = 0;

// Call the operation:
MinorTxDetailsList txList

= bankAccount.getMinorTransactions(accNoWrapper);

// iterate through the set of results.
for (int i = 0; i < txList.dtls.size(); i++) {

MinorTxDetails currentTx = txList.dtls.item(i);

theTotalAmount += currentTx.txAmount;
}

Figure 15. Calling a nsmulti operation from handcrafted Java code (two parameters)

64 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Correct:

In general, if the Cúram data type corresponds to a Java class (as opposed to a
primitive Java type) then its empty state is stored on the database as a null. If the
data type corresponds to a primitive Java type then a null on the database is not a
valid value for it and theAllow NULLs on this database field option defaults to
no. If necessary this default can be overridden.

Note: TheAllow NULLs on this database field option controls the NOT NULL
qualifier in generated DDL in an inverted way. Setting this option to no causes the
NOT NULL qualifier to be added; setting it to yes causes the qualifier to be
omitted.

The following table shows which Cúram data types can be represented as a null on
the database.

Table 8. Data types and nulls

Datatype Nulls allowed

SVR_BLOB yes

SVR_BOOLEAN no

SVR_CHAR no

SVR_DATE yes

SVR_DATETIME yes

SVR_DOUBLE no

SVR_FLOAT no

SVR_INT8 no

SVR_INT16 no

SVR_INT32 no

SVR_INT64 yes

SVR_MONEY no

SVR_STRING yes

For Update Considerations With DB2 for z/OS
If running against a DB2 for z/OS database, any handcrafted SQL that explicitly
uses a FOR UPDATE clause may need to be modified to prevent
RecordLockedException errors from being thrown. If the particular SQL statement
is invoked simultaneously by multiple users, you should consider using FOR
UPDATE WITH RS USE AND KEEP UPDATE LOCKS instead. The locking behavior of DB2
for z/OS is subtly different to that of DB2 on distributed platforms. The KEEP
UPDATE LOCKS syntax ensures that the locking behavior with DB2 for z/OS is the
same as it is on distributed platforms.

SQL Example 1
Consider an example where the entity Employer has a method CountEmployers
(stereotype ns) which returns the number of records in the Employer table.

SELECT ... INTO ... FROM ... WHERE someStringColumn = ’’;

SELECT ... INTO ... FROMWHERE someStringColumn is null;

Cúram Modeling Reference 65

The following struct is required to return the result, since stereotyped entity
operations cannot return primitive types:

The Java interface for this operation would look like the following extract:

Finally, the SQL to implement this query is:

Note that we do not need to specify the name of the LongWrapper class, we simply
reference the name of the longValue attribute within that class because the INTO
clause is automatically assumed to reference the return value.

Thus if an attribute with the same name is used in the input parameter struct and
return value struct then it is assumed that INTO clause references the attribute of
return value struct.

SQL Example 2
This example shows how to use parameter host variables and expands the
previous example by adding another method which updates a numeric field on
one record of the Employer table.

The following struct is required to contain the primary key for the employer:

public final class LongWrapper
implements Serializable, DeepCloneable {

/**
* LONG_TYPE -> long
*/
public long longValue = 0;

}

Figure 16. Struct for return result

public interface Employer
{

public LongWrapper countEmployers()
throws AppException, InformationalException;

}

Figure 17. Java Interface

SELECT count(*)
INTO :longValue
FROM Employer;

Figure 18. SQL Implementation

public interface Employer
{

public void setEmployerSize(EmployerKey empKey,
LongWrapper newSize)

throws AppException, InformationalException;
public LongWrapper countEmployers() throws AppException; }

Figure 19. Java Interface

66 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

The SQL statement for this method is:

Note that since longValue is contained in the second parameter it is necessary to
qualify it with 2.. Unqualified parameter references are assumed to reference the
first parameter.

The SQL statement below qualifies both parameters and is equivalent to the one
above:

Aggregation

Overview
Aggregation is essentially the ability to embed or nest instance(s) of one type of
class within another type of class.

The Cúram generator supports two types of aggregation relationships: one-to-one
and one-to-many. One-to-one aggregation has the effect of embedding a single
instance of one class within another. One-to-many aggregation has the effect of
embedding a sequence of one class within another.

The main use for aggregation in the generator is to represent sequences in the
input meta-model.

Rules when Using Aggregation
The generator permits the following aggregation configurations:
v structs can aggregate structs;
v structs can aggregate entities.

A Special Case
The generator supports the aggregating of standard details structs, even though
they do not appear in the input model. Standard details structs are aggregated by
aggregating the entity class which “owns” the standard details struct.

public final class EmployerKey
implements Serializable, DeepCloneable {

/**
* REFERENCE_NUMBER -> String
*/
public String employerNumber = "";

}

Figure 20. Struct for employer key

UPDATE Employer
SET size = :2.longValue
WHERE employerNumber = :employerNumber;

Figure 21. SQL Implementation

UPDATE Employer
SET size = :2.newSize.longValue
WHERE employerNumber = :1.employerNumber;

Figure 22. SQL Implementation with qualified parameters

Cúram Modeling Reference 67

One-to-One Aggregation
The following example describes how to aggregate a struct class, PersonDetails,
into to another struct class, PersonDetailsWrapper, using one-to-one aggregation.

To create a one-to-one aggregation create an Rational Software Architect diagram
and do the following:
v Add classes PersonDetails and PersonDetailsWrapper to the diagram;
v In the diagram drag the appropriate arrowhead (appears when the mouse cursor

is over the class) between the two classes with PersonDetailsWrapper set as the
source and PersonDetails the target;

v Select Create Aggregation from the popup menu;
v With the aggregation relationship selected in the diagram open the General

Properties tab.

This creates the aggregation relationship whereby one role corresponds to class
PersonDetailsWrapper and the other to class PersonDetails. A UML role is
essentially one end of a UML relationship so each relationship has two roles whose
names are Role A and Role B. Exactly one of these roles - usually Role A - will
have its Aggregate option set. The assignment of Role A and Role B is arbitrary.
The key thing to remember is that the role which has the Aggregate box checked
denotes the outermost class of the pair.

With the relationship line selected in the diagram the General Properties tab
should show PersonDetailsWrapper in the graphic at the top of the properties
sheet with the diamond associated with it. Set the following properties of the
aggregation:
v The Label is optional;
v For PersonDetailsWrapper:

– The Aggregation radio button should indicate Composite;
– Multiplicity should be set to 1;

v For PersonDetails:
– The Aggregation radio button should indicate None;
– By default the role is set to "dtls";
– Multiplicity should be set to 1 (to signify a one-to-one aggregation).

The class diagram would appear in the Rational Software Architect showing the
two classes joined by the UML aggregation relationship line (diamond end
touching PersonDetailsWrapper) and each side of the relationship showing
multiplicity of one and the PersonDetails showing a role name of - dtls.

Note: The position of the diamond in the model diagram is important as it
denotes the outermost class in the pair.

The generated Java code resulting from this construct would take the following
format:

68 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

One-to-Many Aggregation
In this example a one-to-many aggregation is modeled, meaning that a list of one
class type is embedded into the other class. Here we create PersonDetailsList,
which aggregates a list of PersonDetails. To create a one-to-many aggregation,
open an Rational Software Architect diagram and do the following:
v Add classes PersonDetails and PersonDetailsList to the diagram;
v In the diagram drag the appropriate arrowhead (it appears when the mouse

cursor is hovering over the class) between the two classes with PersonDetailsList
as the source and PersonDetails as the target;

v Select Create Aggregation from the popup menu;
v With the aggregation relationship selected in the diagram open the General

Properties tab.

This creates the aggregation relationship whereby one role corresponds to class
PersonDetailsList and the other to class PersonDetails.

Note: The position of the diamond is important as it denotes the outermost class
in the pair.

With the relationship line selected in the diagram the General Properties tab
should show PersonDetailsList in the graphic at the top of the properties sheet
with the diamond associated with it.

Set the following properties of the aggregation:
v The Label is optional;
v For PersonDetailsList:

– The Aggregation radio button should indicate Composite;
– Multiplicity should be set to *;

v For PersonDetails:
– The Aggregation radio button should indicate None;
– By default the role is set to "dtls";
– Multiplicity should be set to 1..* (to signify a one-to-many aggregation).

The class diagram would appear in the Rational Software Architect showing the
two classes joined by the UML aggregation relationship line (diamond end
touching PersonDetailsList) and the aggregates side of the relationship showing a
multiplicity of * and PersonDetails showing a multiplicity of 1..* and a role
name of - dtls.

public final class PersonDetails implements
java.io.Serializable, curam.util.type.DeepCloneable {

public String personRefNo = "";
public String firstName = "";

};
public final class PersonDetailsWrapper implements
java.io.Serializable, curam.util.type.DeepCloneable {

// This class has a single instance of
// class "PersonDetails" embedded in it. PersonDetails dtls =
// new PersonDetails();
};

Cúram Modeling Reference 69

The pseudo-code resulting from this construct would take the following format:

The resulting generated struct class for PersonDetailsList has a field named dtls
which provides functionality required for lists such as adding items, getting an
item by index and getting the list contents as an array.

Assignable

Overview
A function of the generated struct class is the ability to automatically assign values
between matching fields in another struct as provided by the generated struct
class's super class curam.util.type.struct.Struct. Consider an example of a
struct, BankBranchStruct with several attributes:
v bankBranchID

v bankId

v bankName

v bankSortCode

v name

v etc.

A BankBranchListDetails struct class has a subset of attributes shared with the
BankBranchStruct class:
v bankBranchID

v bankSortCode

v name

struct PersonDetails implements
java.io.Serializable, curam.util.type.DeepCloneable {

String personRefNo = "";
String firstName = "";

};

struct PersonDetailsList implements
java.io.Serializable, curam.util.type.DeepCloneable {

public static class List_dtls
extends curam.util.type.ValueList {

public void addRef(PersonDetails s) {
add(s);

}
public PersonDetails item(final int indx) {

return (PersonDetails) get(indx);
}
public PersonDetails[] items() {

PersonDetails[] result = new PersonDetails[size()];
toArray(result);
return result;

}
}

// This class contains an embedded list of "PersonDetails":
public final List_dtls dtls = new List_dtls();

}

70 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Based on this example modeling the following Java code illustrates how to create
these objects.

Typically, the assignment from one struct to the other might look like this:

The above code can be simplified as follows using the assign function, which
becomes more significant as the size of the structs increases:

An assignable relationship then is one which allows further control of the specifics
of the automatic assignment with the assign function. It is required where you
want to do explicit field assignment between fields with differing names or to
suppress the default assignment between fields of the same name.

Explicit Field Assignment
An explicit field assignment is one where fields with different names are matched.
It is represented in the model by adding an assignable relationship between the
two classes, and then adding attributes to be matched to the both sides of the
assignment. Any fields which are not explicitly linked will be treated as default
assignment fields.

The following classes are used to illustrate this.
v entity class: Address

Attribute

addressID

addressLine1

addressLine2

addressLine3

addressLine4

cityCode

countryCode

postalCode

regionCode

comments

v struct class: BankBranchStruct

Attribute

bankBranchID

bankID

BankBranchStruct bankBranchStruct
= new BankBranchStruct();

BankBranchListDetails bankBranchListDetails
= new BankBranchListDetails();

bankBranchListDetails.bankBranchID
= bankBranchStruct.bankBranchID;

bankBranchListDetails.bankSortCode
= bankBranchStruct.bankSortCode;

bankBranchListDetails.name = bankBranchStruct.name;

bankBranchListDetails.assign(bankBranchStruct);

Cúram Modeling Reference 71

Attribute

bankName

addressID

addressLine1

addressLine2

addressLine3

addressLine4

countryCode

postalCode

regionCode

addressVersionNo

cityID

In an assignable relationship between the two classes Address and
BankBranchStruct fields can be explicitly mapped; e.g. BankBranchStruct.cityID
matched with Address.cityCode. In Rational Software Architect this is shown in
Role: fields (RoleA & RoleB) of the General tab of the assignable relationship with
the linked pair, cityID in one Role field and cityCode in the other. All the other
common fields (e.g. AddressLine1, etc.) are handled automatically by the generator.

For instance, the generated code without the explicit field assignment would
appear as shown below:
public curam.util.testmodel.struct.BankBranchStruct

assign(final curam.util.testmodel.struct.AddressDtls v)
{

addressID = v.addressID;
addressLine1 = v.addressLine1;
addressLine2 = v.addressLine2;
addressLine3 = v.addressLine3;
addressLine4 = v.addressLine4;
countryCode = v.countryCode;
postalCode = v.postalCode;
regionCode = v.regionCode;
return this;

}

With the explicit field assignment the following code is then added to the assign
method: cityID = v.cityCode. The handcrafted Java to assign these structures
would be as follows:
BankBranchStruct dtls = new BankBranchStruct();
AddressDtls addressDtls = new AddressDtls();
dtls.addressLine1 = addressDtls.addressLine1;
dtls.addressLine2 = addressDtls.addressLine2;
dtls.addressLine3 = addressDtls.addressLine3;
dtls.addressLine4 = addressDtls.addressLine4;
dtls.cityID = addressDtls.cityCode;
dtls.countryCode = addressDtls.countryCode;
dtls.postalCode = addressDtls.postalCode;
dtls.regionCode = addressDtls.regionCode;

By using the generated assignment operator, these lines of code can be reduced to
just one line as follows:
bankDtls.assign(addressDtls);

72 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Suppressing Default Assignment Fields
In some situations you may not want a pair of similarly named fields to be
matched. You can cause a pair of fields to be omitted from an assignment by
listing one of the fields at one end of the relationship.

For the following two classes below, PersonInfo and AccountInfo, having an struct
relationship, the same named fields are matched.
v struct class: AccountInfo

Attribute

Id

Surname

FirstName

Balance

v struct class: PersonInfo

Attribute

Id

Surname

FirstName

For this example we first create the objects for the PersonInfo and AccountInfo
classes as described above:

This assignment:

is equivalent to the following three statements:

By adding Id as a key to one end of the relationship, it is excluded from the
generated assignment and now this assignment:

is equivalent to the following two statements; that is, the Id assignment will no
longer be made:

Combining structs
Sometimes you may need to populate one struct with the contents of two or more
other structs.

AccountInfo account = new AccountInfo();
PersonInfo person = new PersonInfo();

account.assign(person);

account.Id = person.Id;
account.Surname = person.Surname;
account.FirstName = person.FirstName;

account.assign(person);

account.Surname = person.Surname;
account.FirstName = person.FirstName;

Cúram Modeling Reference 73

A typical piece of Java code would look like the following:

By explicitly mapping the BankBranchStruct.addressVersionNo attribute to the
Address.versionNo in the assignable relationship the Java can now be written as:

Note that in this case, the second assign does not overwrite the first as it happens
to reference a different subset of fields, so the net effect is that the two struct
contents are merged.

Foreign Keys

Overview
The Cúram generator allows for foreign keys to be created between database
tables.

A Foreign Key relationship between two database tables is specified in the input
model by adding a relationship of stereotype foreignkey (one word, no spaces)
between two entity classes. Optionally you can give the relationship a name, this
name is then applied to the foreign key constraint added to the database.
Otherwise the database chooses its own name for the constraint.

Rules when Using Foreign Keys
v Foreign key relationships are allowed on entity classes only.

BankBranchStruct dtls = new BankBranchStruct();
AddressDtls addressDtls = new AddressDtls();
BankBranchDtls bankBranchDtls = new BankBranchDtls();

// Copy from the "AddressDtls" struct
dtls.addressLine1 = addressDtls.addressLine1;
dtls.addressLine2 = addressDtls.addressLine2;
dtls.addressLine3 = addressDtls.addressLine3;
dtls.addressLine4 = addressDtls.addressLine4;
dtls.cityCode = addressDtls.cityCode;
dtls.countryCode = addressDtls.countryCode;
dtls.postalCode = addressDtls.postalCode;
dtls.regionCode = addressDtls.regionCode;
dtls.

addressVersionNo
= addressDtls.
versionNo
;

// Copy from the "BankBranchDtls" struct
dtls.bankBranchID = bankBranchDtls.bankBranchID;
dtls.bankID = bankBranchDtls.bankID;
dtls.bankSortCode = bankBranchDtls.bankSortCode;
dtls.name = bankBranchDtls.name;
dtls.versionNo = bankBranchDtls.versionNo;

Figure 23. Example Java code for combining structs

// Copy from the "AddressDtls" struct
dtls.assign(addressDtls);

// Copy from the "BankBranchDtls" struct
dtls.assign(bankBranchDtls);

Figure 24. Equivalent Java code for combining structs

74 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

v Fields referenced by a foreign key will be set to unique, as this is required by
some databases.

v If the foreign key references the primary key of another entity, a redundant
unique clause will not be generated by the generator, as the primary key is
already unique.

v Foreign keys cannot be specified on subclass entities. The relationship should be
specified using the actual base entity classes themselves.

How to Add a Foreign Key to a Database Table
A foreign key is specified between a pair of entities by adding a relationship
between the two classes and adding key/qualifiers to the role touching the
referenced class. On a class diagram, this results in a line between two classes, with
a box containing the key/qualifiers at the referencing class.

The notation for linking pairs of fields in two different classes is the same for
foreign keys as for generated assignments. The class diagram will show two classes
joined by a line with pairs of linked attributes in a box at one end of the line. The
first name in the pair refers to an attribute in the nearer class, the second name
refers to an attribute in the other class.

Naming Primary and Foreign Key Constraints
It is possible to include a constraint name for foreign key constraints in Cúram
models. The name given in the model to the foreignkey relationship will be
applied to the foreign key constraint itself. If necessary this feature can be
suppressed by specifying '-nonamedforeignkeyconstraint ' on the generator
command line.

Primary key constraints are also given names in the database. The name of each
constraint is the same as that of its corresponding entity. This also results in an
accompanying index of the same name. This feature can be suppressed by
specifying-nonamedprimarykeyconstraint on the generator command line.

Example
Consider two entity classes, BankAccount and BankTransaction, where BankAccount.
accountNo is a foreignkey on BankTransaction. That is, the BankTransaction table
(txAccountNo) must have a record on the BankAccount table with a matching
accountNo value.

The tables below illustrate these two classes where the foreignkey would be
between their key attributes:
v entity class: BankAccount

Attribute Domain

key accountNo ACCOUNT_NO

details clientID CLIENT_ID

details branchLocation BRANCH_LOCATION

details currentBalance MONEY

details lastTransaction DATE_TYPE

details lastStatement DATE_TYPE

v entity class: BankTransaction

Cúram Modeling Reference 75

Attribute Domain

key txAccountNo ACCOUNT_NO

details txID TX_ID

details transactionDate TX_DATE

details transactionType TX_TYPE

details transactionAmount TX_AMOUNT

This foreign key results the following DDL being generated (Oracle SQL shown):

Indices

Overview
The Cúram generator allows for indices other than the primary index to be created
on database tables. Any number of indices can be created on each table, with the
usual speed vs. database size trade-offs associated with indices.

An index for a database table is specified in the input model by adding a
relationship of stereotype index between an entity class and a struct class.

The fact that a struct is being used to represent an index does not have any
side-effects on the struct apart from those mentioned in the rules below, i.e. the
struct can still be used as an argument to an operation. Typically the struct would
be used as both a key parameter and as an index to support database accesses via
this key.

Rules when Using Indices
v The relationship must be given a name. This is the name which will be given to

the database index. (The name of the struct in the relationship does not have
any effect on the index.)

v The names of the attributes of the struct class must be a subset of the names of
the attributes of the entity.

v The struct class must not aggregate any other classes.
v Index names must be unique within the entire model.

How to Add an Index to a Database Table
Create a struct class whose fields are a subset of the fields of the entity class.

Add a relationship of stereotype index between the entity class and the struct. The
direction of the relationship is not important.

Set the relationship name to the name which you want given to the database
index.

ALTER TABLE BankTransaction ADD(
FOREIGN KEY (txAccountNo)
REFERENCES BankAccount(accountNo));

76 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Naming Indices
Developers will never explicitly reference an index but the DBA6will, so it is
recommended that index names be kept as meaningful and descriptive as possible.

Example
Consider the following two classes with an index relationship named
BankClientMNIndex:
v entity class: BankClient

Attribute Domain

key clientID CLIENT_ID

details firstName CUSTOMER_NAME

details middleName CUSTOMER_NAME

details lastName CUSTOMER_NAME

details address1 ADDRESS_LINE

details address2 ADDRESS_LINE

details address3 ADDRESS_LINE

details address4 ADDRESS_LINE

v struct class: MiddleNameWrapper

Attribute Domain

middleName CUSTOMER_NAME

The above index results in the following DDL being produced by the generator:

Unique Indices

Overview
A unique index in a IBM Cúram Social Program Management model is modeled
by adding a relationship of stereotype uniqueindex between an entity class and a
struct class. The rules for modeling a unique index are the same as those for
modeling a non-unique index.

Specifying a unique index for an entity causes the necessary information to be
included in the generated file <Application-name>_unique_constraints.xml which
must then be referenced from the data manager configuration file
(datamanager_config.xml).

Note that the file <Application-name>_unique_constraints.xml contains two sets of
information:
1. Unique indexes. These correspond to explicit ' uniqueindex ' relationships in

the model and result in DDL of the form:

6. Data Base Administrator.

CREATE INDEX BankClientMNIndex
ON BankClient(middleName);

Cúram Modeling Reference 77

where ' <index-name> ' is the name of the relationship in the model.
2. Unique constraints. These are implicit unique constraints which are produced

automatically by the generator and which are applied to all fields which are
referenced by a foreign key. They correspond to foreignkey relationships in the
model and result in DDL of the form:

or, if there is a uniqueindex for the fields referenced by the foreign key:

where ' <constraint-name> ' is the name of the corresponding uniqueindex
relationship in the model.

When the data manager is run, the explicit unique indexes are created before the
implicit unique constraints. This allows the database to use the developer-specified
unique indexes to enforce uniqueness rather than having to create and use its own
system-named indexes. For example the developer may wish to model their
specifically named unique index to correspond to a particular foreign key in the
model. In this case the generator will automatically give the unique constraint the
same name as the corresponding unique index.

Generated Class Hierarchy

Overview
This section describes the hierarchy of classes generated by the server code
generator, and shows how they correspond to the classes designed in the
application model.

All classes are defined in the IBM Cúram Social Program Management model
using UML notation. A single process, facade or entity class may contain a mixture
of automatically generated methods, and methods that the application developer is
required to implement. It is not desirable to store handcrafted code and generated
code in the same file due to the risk of the generator overwriting handcrafted code,
or vice versa. Therefore all developer code is stored in a single class, generated
code is produced into a number of other classes, and the set is linked together into
a hierarchy by inheritance and implementation.

Note that since struct classes do not contain operations there are no issues of
separating handcrafted and generated code. Therefore each struct class in the
model corresponds to one generated Java struct class.

Basic Hierarchy Example
This section describes the elements of the generated and required handcrafted class
hierarchy for a basic entity class named MyClass, which does not make use of
inheritance or code packages.

CREATE UNIQUE INDEX <index-name>
ON....

ALTER TABLE <table-name> ADD
UNIQUE...

ALTER TABLE
<table-name> ADD CONSTRAINT <constraint-name>
UNIQUE...

78 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

The UML representation of the generated Java classes of the entity class MyClass
would show the following four classes:
v <PackageName>.intf.MyClass

v <PackageName>.base.MyClass

– Implements, or realizes, the intf class.
– It is the super class.

v <PackageName>.impl.MyClass

– A subclass of the base class.
– Contains any required (non-generated) handcrafted methods.

v <PackageName>.fact.MyClassFactory

– A subclass of the impl class.
– Returns an instance of the intf class.

Thus, there are four Java classes corresponding to the entity class in the UML
model. Three of the classes have the same name as the class in the model, the
fourth has the same name with the word Factory appended.

A further description of the classes are as follows:
1. <ProjectName>.intf.MyClass

This is a generated Java interface class containing all the public methods for the
class.
The other classes in the hierarchy - either generated or handcrafted - will be
required to provide implementations for these methods.

2. <ProjectName>.base.MyClass

This is a generated abstract Java class which implements the interface contained
in the intf version of the file. It contains the following:
v The implementations of data access methods (i.e. stereotyped methods of

entity classes) and connector methods.
v Abstract method declarations for exit point methods.

This is to ensure that the developer is forced to provide implementations for
the exit points.

v Abstract method declarations for methods declared protected in the model.
This is to ensure that the developer is forced to provide implementations for
these methods without having to expose them in the interface (intf layer)
for the class.

3. <ProjectName>.impl.MyClass

This class is supplied by the developer and always inherits from the
corresponding base version.
It should be declared abstract to ensure that the class cannot be instantiated
directly - the class should only be instantiated using the factory mechanism.
(See below.)
In this class the developer must provide implementations for all the methods
declared in the class in the model for which an implementation was not
produced by the generator.
While this class inherits from a generated class, it contains only handcrafted
code and no generated code. This is so that there is no risk of developer code
overwriting generated code, or generated code overwriting developer code.

4. <ProjectName>.fact.MyClassFactory

Cúram Modeling Reference 79

This is a generated Java class containing one static method: newInstance(). This
method creates instances of the class and is the only means by which entity,
facade and process classes should be instantiated.
Since a factory creates all instances of objects, it can also be used to:
v transparently create and return a customized version of the class requested.

See “Replacing the Superclass” on page 91. Pre-existing code which used the
original version of the class does not need to be changed.

v transparently create and return a proxy class of the requested class. The
proxy class wraps the requested class (using the Java 1.3 Dynamic Proxy
mechanism) and captures detailed tracing information for all interactions
with the class.

The following code sample shows how an instance of MyClass is created. Note that
the return type of MyClassFactory. newInstance is sample.intf.MyClass.

Hierarchy for Subclasses
This section describes the elements of the generated/handcrafted class hierarchy
for a basic entity class named SubClass that inherits from MyClass.

The UML representation of the generated Java classes for the entity class SubClass
would show the following four classes:
v <PackageName>.intf.SubClass

– It inherits from the MyClass intf class.
v <PackageName>.base.SubClass

– Implements, or realizes, the intf class.
– It is the super class.
– It inherits from the MyClass impl class.

v <PackageName>.impl.SubClass

– A subclass of the base class.
– Contains any required (non-generated) handcrafted methods.

v <PackageName>.fact.SubClassFactory

– A subclass of the impl class.
– Returns an instance of the intf class.

As with the previous example there are four Java classes corresponding to class
SubClass. However the fact that SubClass inherits from MyClass results in two
additional relationships, highlighted here:
1. Interface SubClass inherits from interface MyClass thereby ensuring that

SubClass must implement all of its own declared methods plus those declared
in MyClass.

2. Generated class <ProjectName>.base.SubClass inherits from handcrafted class
<ProjectName>.impl.MyClass. This means that SubClass inherits the
implementations of the methods from SubClass as well as their declarations, so
these methods are available to SubClass and do not have to be re-implemented.

// Use the factory to create an instance:
sample.intf.MyClass myObject =

sample.fact.MyClassFactory.newInstance();

Figure 25. Using a factory to create an instance of MyClass

80 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Hierarchy for Abstract Classes
In a Cúram model the developer can mark classes abstract (See “Options” on page
22) meaning that they cannot be instantiated.

From the above example, if MyClass were qualified abstract, the following
hierarchy would result:
v <PackageName>.intf.MyClass

v <PackageName>.base.MyClass

– Implements, or realizes, the intf class.
– It is the super class.

v <PackageName>.impl.MyClass

– A subclass of the base class.
– Contains any required (non-generated) handcrafted methods.

The hierarchy is the same as for non-abstract classes except that no factory is
generated.

Considerations

Access Control - private/protected/public/package
The Java language supports four levels of access control for methods and member
variables. In Cúram models this is simplified to two levels: public and protected.
Since the generated class hierarchy includes different classes in different packages
it does not make sense to use the private and package access levels. Note that this
applies only to operations in Cúram models - developers are still free to use
private and public access in handcrafted Java code as they see fit.

The Meaning of super
In Java, the super keyword is a reference to the superclass i.e. the class from which
the current class (this) inherits.

In the example shown in “Hierarchy for Subclasses” on page 80 the superclass of
SubClass is MyClass. However when writing handcrafted Java code for
<ProjectName>.impl.SubClass it is important to remember that the superclass of
this class is actually <ProjectName>.base.SubClass rather than any version of
MyClass.

Enforcing the Factory Mechanism
For reasons mentioned above, entity, facade and process objects should be created
only by using their associated factory classes. Developers should not bypass this
mechanism by using the new keyword to instantiate these classes. This can and
should be enforced by making all implementation classes (i.e. all classes in the impl
packages) abstract. Failure to make these classes abstract means that there is a risk
of developers instantiating them directly with the result that class replacement will
not work as expected.

Summary
Certain individual objects in a Cúram application model appear as multiple classes
in the output code. The objective of the generated class hierarchy is to ensure the
following:
v The developer provides all handcrafted implementation within a single Java

class.

Cúram Modeling Reference 81

v The public parts of the object's interface are accessible to other objects and the
non-public parts of the object's interface are not accessible to other objects.

v The developer is forced to implement all of the declared interface, both public
and non-public - unless the generator produces the necessary implementation.

v Objects can be subclassed and a subclass can be defined to replace its superclass
transparently.

v The run time type of an object is determined by a factory, to support
replacement and tracing.

Cúram JMS Queue Connectors

Overview
IBM Cúram Social Program Management connectors provide a way for a Cúram
application to connect to other systems by means of JMS queues. For facade and
process class operations with a stereotype of qconnector the generator will produce
code that converts the operation parameter into a JMS message, places the message
on a queue, and optionally waits for another message in response which is then
converted back into a Cúram struct and returned to the caller.

For many operations, queue connectors can be implemented without writing any
handcrafted code. It is also possible to customize connectors with the use of
handcrafted code. You may wish to do this if:
v the default encoding of a datatype is not suitable for your purpose. For example,

you may wish to encode dates in the form DD-MMM-YYYY instead of the default
format of YYYYMMDD.

v your parameter struct is “complex”. For example, it may contain a variable
length field, or may aggregate another struct.

How It Works / What It Does
Connections are not created directly, but are built using a connection factory.
Factory objects are stored in a JNDI namespace, insulating the JMS application
from provider-specific information.

The fields in the parameter struct are scanned using Java reflection, and each is
converted into a fixed length string based on its datatype. The strings are
concatenated together into a JMS BytesMessage which is then placed on a JMS
queue.

If a return type has been specified for the operation, the Cúram application will
wait for a response message, typically on another queue. The remote system must
create a correctly formatted response message and send it to the Cúram application
within the specified timeout period. When the message is received, it is converted
into an instance of the return type struct which is then returned to the caller.

Options on qconnector Operations
The following options are available on qconnector operations:
v JNDI name of the QueueConnectionFactory class

Mandatory. This specifies the name of the QueueConnectionFactory class in the
JNDI namespace.
Queue connections are not instantiated directly but are instead created by
connection factories. The connection factories are stored in the JNDI namespace
of the application server.

82 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

v JNDI name of the transmission queue

Mandatory. This specifies the JNDI name of the queue onto which outgoing
messages are placed.

v Response message timeout (seconds)

This is only relevant for operations that have a return value. The return value is
obtained by receiving a response JMS message from the recipient and this
timeout value is used to ensure that the application does not wait indefinitely
for the response.
Default value: 30 seconds.

v JNDI name of the reply queue

This is only relevant for operations that have a return value. Specifies the JNDI
name of the queue from which the response message should be taken.

v Message Type

BytesMessage or TextMessage. This allows you to specify whether a JMS
BytesMessage or TextMessage is sent/received by the connector. By default the
JMS connectors send and receive a JMS BytesMessage containing the bytes of a
string representation of the struct parameters. If the system(s) being
communicated with use a different character encoding, then these bytes may not
be correctly translated by the other systems. In this case - provided the message
doesn't contain any binary data - a JMS TextMessage can be used to ensure that
the message is correctly translated by the other systems.

v BytesMessage encoding character set

Specifies the name of the character encoding to use when converting the string
representation of a struct to a JMS BytesMessage, and vice versa. If this option is
not specified then the default local system character encoding is used. (Usually
'Cp1252' for Microsoft Windows, 'Cp1046' for EBCDIC on IBM z/OS , etc.) This
enables you to ensure that the character encoding used for the message matches
the character encoding of the other system being communicated with.
This option is not relevant if TextMessage is used.

How to Use qconnector Operations
The following section explains how qconnector operations are represented in the
meta-model and implemented on the remote system.

Decide on Format of Message and Create the struct(s) to
Correspond to the Message
The Cúram developer and the remote application developer need to agree on the
format(s) of the messages passed between the two systems. This involves:
v The format of each field in the message

The default encoding method can be used for each field; but, see “Encoding
Methods for Fundamental Types” on page 84 and “Using Customized
Encoding/Decoding Classes” on page 85 for how a custom encoding
methodology may be implemented.

v The length of each field in the message

Like the encoding, the encoded length of each field depends on the type of the
field and - for some datatypes - its length as specified in the model. See
“Encoding Methods for Fundamental Types” on page 84 for information on
lengths of datatypes. The length of the field can be changed by implementing a
custom mapper for the field.

v The ordering of the fields in the message

Cúram Modeling Reference 83

The fields appear in the message in the same order as they appear in the struct
in the meta-model. The tool-bar contains a facility for changing the order of
struct attributes if required.

Add the operation to the application meta-model.
A qconnector operation is modelled like any other process or facade class
operation subject to the restrictions listed in “Rules / Restrictions.” It is also
necessary to use some of the operations listed in “Options on qconnector
Operations” on page 82 to specify the queue(s) and some queuing parameters.

In summary, the method should have one struct parameter, may return void or a
struct, and should have options set to identify the MQSeries queues to use.

Configure the Queues in the Application Server
The queue connection factory, and references to the queues themselves are stored
in the JNDI namespace. These JNDI names are be mapped to actual connection
factories and queues in the application server configuration.

Implement the message recipient in the remote system
The message recipient can be any system which has access to the MQSeries
queues. Typically this will be a legacy system to which access is required by the
Cúram application. The target system can be either a JMS application or a basic
MQSeries application.

If no response is required from the remote system, the remote system simply
collects and decodes the received message, and uses it as required.

If a response message is required, i.e. if a return type has been specified for the
operation, then the remote system must create a response message and send it
back to the waiting Cúram application. The response message is associated with
the original message using its CorrelationID, i.e., the message recipient must set the
CorrelationID of the response message equal to the MessageID of the original message.

Rules / Restrictions
v The qconnector operation stereotype is valid in process or facade classes only.
v Connector operations must have exactly one struct parameter.
v Connector operations may have a return type of void or a struct.
v The parameter and return structs may take any form, however the generated

code is only capable of mapping structs which are “flat” - structs that do not
aggregate other structs - and which have only fixed length fields. For complex
structs, it is necessary to implement a mapper class to map the struct to and
from messages. Examples of coding and decoding complex structs are provided
below.

Encoding Methods for Fundamental Types
Table 9. Encoding methods

Datatype Encoded Width Encoding method

SVR_BLOB Variable Converted directly to a
padded string

SVR_BOOLEAN 1 false = 0, true = 1

SVR_CHAR 1 Converted directly to a 1
character string

84 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Table 9. Encoding methods (continued)

Datatype Encoded Width Encoding method

SVR_DATE 8 yyyyMMdd

SVR_DATETIME 15 yyyyMMddThhmmss (ISO
8601 standard)

SVR_DOUBLE 25 Numeric

SVR_FLOAT 16 Numeric

SVR_INT8 1 Numeric

SVR_INT16 6 Numeric

SVR_INT32 11 Numeric

SVR_INT64 21 Numeric

SVR_MONEY 25 Numeric

SVR_STRING Variable converted directly to a
padded string

SVR_UNBOUNDED_STRING N/A Not natively supported

v SVR_BLOB and SVR_STRING are variable in that the length of the encoded
message is equal to the length specified for that type in the model. If the data in
the string is less than the maximum amount allowed, space padding is
appended to the data in the message to bring it up to the maximum size.

v SVR_UNBOUNDED_STRING is not natively supported because the string length
is not known at generate time and is required for creating fixed length messages.
However it is possible for the developer to implement a custom mapper to
handle unbounded strings.

v Numeric datatypes are converted to right-justified human-readable strings. For
example: 45678, -23123, 1000003.14159, 1.4E-45.

Using Customized Encoding/Decoding Classes
By default the encoding method used for each field in a struct used or returned by
connector operations is based on the type of the field. For example, the mapper
class for curam.util.type.DateTime is
curam.util.connectors.mqseries.MQFieldMapper.DateTimeMapper; for boolean
fields it is curam.util.connectors.mqseries.MQFieldMapper.BooleanMapper.

For any individual field in any operation it is possible to override this default and
specify the name of the class which should be used to map the data. Names of the
custom mapper classes are specified in the properties file
QueueConnectorFieldMappers.properties which must be included in the
application classpath.

Entries in the properties file take the following format:

[class].[operation].[param].[field]=[mapper]

where
v [class] is the name of the process or facade class containing the connector

operation;
v [operation] is the name of the connector operation;
v [param] is the name of the parameter - or the property return to specify the

return value for the operation;

Cúram Modeling Reference 85

v [field] is the name of the field within the parameter struct;
v [mapper] is the fully qualified class name of the required mapper class. This

must be a subclass of curam.util.connectors.mqseries.MQFieldMapper.

Example 1 - Working with Variable Length Fields
In the following example a custom field mapper class is used to implement a
primitive variable length field message. The variable length field is encoded by
prefixing the data with a six character string containing a number which specifies
the length of the data in the remainder of the string.

Note that this example only shows the implementation at the Cúram end of the
queue. The remote system will also need to understand the encoding method and
implement the necessary translations using the language of choice on the remote
system.

The following pseudo code describes the struct being used in the operation. Fields
idNumber and dateOfBirth will use the default conversion methods for their type
and will be converted into ten and eight character strings respectively. The
historyText field is a variable length field and will be encoded and decoded by
means of a custom mapper class.

Method addToHistory of class LegacyBPO sends a PersonHistory struct to a legacy
system, the legacy system will append text to the variable length field historyText
and return an updated copy of PersonHistory.

Note that field historyText is being used in two cases - once in the parameter to
operation addToPersonHistory and once in the return value from the operation.
Therefore, the custom mapper class must be specified for each of these cases in
QueueConnectorFieldMappers.properties (the lines are broken up for clarity).

The following listing shows the implementation of the custom mapper class.

MyBPO.connectorOp1.dtls.phoneNumber=com.acme.util.PNMapper
MyBPO.connectorOp1.return.phoneNumber=com.acme.util.PNMapper

Figure 26. Sample QueueConnectorFieldMappers.properties

struct PersonHistory {
String<10> idNumber;
String historyText;
Date dateOfBirth;

}

Figure 27. Pseudo code for the struct to be mapped:

interface LegacyBPO {
PersonHistory addToHistory(dtls PersonHistory);

}

Figure 28. Pseudo code for the BPO interface

LegacyBPO.addToPersonHistory.dtls.historyText=
com.acme.mqutils.VariableStringMapper

LegacyBPO.addToPersonHistory.return.historyText=
com.acme.mqutils.VariableStringMapper

Figure 29. The property file entries linking the fields to the mapper

86 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

package com.acme.mqutils;
// implementation for variable length string field mapper class
public class VariableStringMapper
extends MQFieldMapper {

/**
* The size of a prefix at the beginning of the string
* which specifies the length of following data.
*/
private static final int kStringHeaderInfoLength = 6;

/**
* Gets the encoded version of the mapped field within
* the given struct.
*
* @param object The struct class containing the
* mapped field.
* @return The field encoded as a String.
* @throws AppException if the field could not be encoded.
*
*/
public String encode(Object object)
throws AppException {

String historyText = null;
// get the "historyText" field from the given struct:
try {

historyText = (String) getMappedField().get(object);
} catch (IllegalAccessException e) {

// use the handler in the superclass to deal with
// this exception:
handleEncodingException(e, object);

}

// construct the prefix which will hold the
// size of the data.
int bufferLength = historyText.length();

String sizeSpecifierString = String.valueOf(bufferLength);
// pad the size specifier to the right length
sizeSpecifierString = MQUtils.padRight(

sizeSpecifierString,
kStringHeaderInfoLength);

// put the prefix and the data together.
String result = sizeSpecifierString + historyText;
return result;

}

/**
* Decodes the given string and assigns the resulting value
* to the mapped field in the struct.
*
* @param object The struct class containing the field
* @param encodedString The encoded form of the data.
* @return the number of characters consumed from the
* encoded string.
* @throws AppException if the target struct field could
* not be accessed.
*/
public int decode(Object object, String encodedString)
throws AppException {

// the first N characters contain an expression
// specifying the width of the encoded field.
String sizeSpecifierString =

encodedString.substring(0, kStringHeaderInfoLength);
sizeSpecifierString = sizeSpecifierString.trim();
int sizeOfString = Integer.valueOf(

sizeSpecifierString).intValue();
// Now that we know the size of the data, take that
// many characters of data from the encoded string:
String historyText = encodedString.substring(

kStringHeaderInfoLength,
kStringHeaderInfoLength + sizeOfString);

// Update field "historyText" of the given struct:

Cúram Modeling Reference 87

Examples of MQSeries messages transmitted and received by this connector
operation are:
v 10000361iw4 One.19700714

v 10000361iw9 One. Two.19700714

v 10000361iw16 One. Two. Three.19700714

Where the first 10 characters are the idNumber field, the last 8 characters are the
dateOfBirth field and the middle section is the variable length historyText field, of
which the first six characters specify the length of the data.

Example 2 - Working with Lists
In the following example a custom field mapper class is used to implement
encoding and decoding of a struct which aggregates a list of another struct. The
list is encoded into a single string whereby the first 4 characters contain a number
specifying the number of entries in the list and the remainder of the string consists
of the encoded form of each struct as a fixed length string. The main purpose of
this example is to illustrate how list aggregations are handled when implementing
a custom mapper class.

As with the previous example, this example only shows the implementation at the
Cúram end of the queue. The remote system will also need to understand the
encoding method and implement the necessary translations using the language of
choice on the remote system.

The following pseudo code describes the struct being used in the operation. Struct
PersonDtls will be encoded as a fixed length 18 character string. Struct
PersonDtlsList will be encoded by encoding each struct in its list, concatenating
the results into a string, and prefixing the string with a six character string
specifying the number of entries in the list.

Method processNames of class LegacyBPO sends a PersonDtlsList struct to a legacy
system, the legacy system will perform some processing on this data and return an
updated copy of PersonDtlsList.

Again, as in the previous example, field dtls of struct PersonDtlsList is being used
in two cases: once in the parameter to operation processNames and once in the
return value from the operation. Therefore the custom mapper class must be
specified for each of these cases in QueueConnectorFieldMappers.properties (the
lines have been split for clarity).

struct PersonDtls {
String<8> idNumber;
String<10> surname;

}

struct PersonDtlsList {
sequence <PersonDtls> dtls;

}

Figure 31. Pseudo code for the structs to be mapped:

interface LegacyBPO {
PersonDtlsList processNames(p1 PersonDtlsList);

}

Figure 32. Pseudo code for the BPO interface

88 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

The following listing shows the implementation of the custom mapper class.

LegacyBPO.processNames.p1.dtls=
com.acme.mqutils.PersonDtlsListMapper

LegacyBPO.processNames.return.dtls=
com.acme.mqutils.PersonDtlsListMapper

Figure 33. The property file entry linking the fields to the mapper

Cúram Modeling Reference 89

package com.acme.mqutils;

// implementation
public class PersonDtlsListMapper {

/**
* The size of a prefix at the beginning of the string
* which specifies the number of encoded entries in the
* remainder of the string.
*/
private static final int kStringHeaderInfoLength = 4;

/**
* The number of characters used to encode one
* ’PersonDtls’ struct.
*/
private static final int kLengthOfOneEncodedStruct = 18;

/**
* Encodes the ’dtls’ member into a string. The first 4
* characters contain the number of items in the list, the
* rest of the string consists of the encoded version of
* each struct in the list concatenated together.
*
* @param object the object containing the field to be
* encoded
* @throws AppException if it couldn’t be encoded
* @return A encoded string.
*/
public String encode(Object object) throws AppException {

PersonDtlsList.List_dtls d = null;

try {
// get a reference to the field within the struct
// to be encoded
d = (PersonDtlsList.List_dtls)

getMappedField().get(object);
} catch (IllegalAccessException e) {

// use the handler in the superclass to deal with
// this exception:
handleEncodingException(e, object);

}

// construct the prefix which will specify the number
// of items in the list.
int bufferLength = d.size();
String sizeSpecifierString =

String.valueOf(bufferLength);

// apply padding to make it the right size
sizeSpecifierString =

MQUtils.padRight(
sizeSpecifierString, kStringHeaderInfoLength);

// Now go through the items in the
// list and encode each one.
String data = "";
for (int i = 0; i < d.size(); i++) {

PersonDtls currentItem = d.item(i);
data += encodeOneEntry(currentItem);

}

// put the prefix and the data together.
String result = sizeSpecifierString + data;
return result;

}

/**
* Decodes a series of PersonDtls entries in the string
* and adds them to field PersonDtlsList.List_dtls in the
* given PersonDtlsList object.
*

90 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

For example, the following list of Ent18131 structs:
v ("0000361i", "James")

v ("0024684x", "John")

v ("8211519f", "Sharon")

would be encoded as follows:

where the first four characters contain a number specifying the number of encoded
structs to follow, and the remaining string consists of three 18 character blocks
corresponding to the three encoded structs.

Subclassing

Introduction
The IBM Cúram Social Program Management SDEJ supports subclassing for
process, facade, entity, webservice, and wsinbound classes and is intended to be
used to add new functionality or override existing functionality. It cannot be used
to add extra attributes to entities or structs.

Reasons for Subclassing
Reasons for using subclassing include:
v Adding new stereotyped methods to existing entity classes.
v Adding or contributing to an existing entity 's or operation's exit points.
v Modifying an existing entity operation'sReadmulti Max options.

How to Model It

Basic Subclassing
A class is transformed into a subclass by adding a “generalization” relationship
from the subclass to the superclass (base class). On a class diagram this appears as
a line between the two classes with an arrow pointing toward the superclass.

This means that the subclass inherits all the operations of the superclass, and in
addition it may:
v Add extra functions;
v Modify the applicable options of the function in the superclass.

Consider two classes where MySubclass is a subclass of MyBaseClass:
v MyBaseClass has two operations: op1() and op2()

v MySubclass has three operations: op1(), op2() and op3() where op1 and op2 is
inherited from MyBaseClass and MySubclass.op3 is provided only in the
MySubclass class.

Replacing the Superclass
When you define a subclass, you may specify that the subclass replaces its
superclass entirely. To turn on the feature for an individual entity class the
Replace_Superclass property in the Rational Software Architect Curam Properties
tab must be set to 1 - yes using the supplied drop-down.

"3 0000361iJames
0024684xJohn 8211519fSharon "

Cúram Modeling Reference 91

For example, settingReplace_Superclass to yes for a class, MySubclass, means that
instances of the base class, MyBaseClass, will no longer be created. All requests for
the base class (MyBaseClass) will now receive an instance of the subclass
(MySubclass). This is handled by the factory mechanism and is transparent to the
user.

Abstract Classes
A class is made abstract by setting itsAbstract option to yes in the meta-model. In
this case the generated Java class hierarchy for this abstract class will not include a
factory class. This means that the class cannot be instantiated and the only purpose
of having the class is to enable it to be subclassed.

All non-abstract subclasses of the abstract classes will have the factory component
and are instantiated in the normal way.

The developer must provide the impl Java code for abstract classes (unless the
abstract class has no subclasses). From here on the usual rules for abstract classes
apply: the impl class can contain implementations for some or all of the methods
declared in the class, and any methods for which an implementation has not been
provided must be implemented by the subclass(es).

Restrictions
v Multiple inheritance is not supported by the Cúram generators.
v Subclassing can only be used to add or override operations, it cannot be used to

add or override attributes.

How to write Code for Subclassing
There are no specific restrictions on writing code for subclassing. It is possible to
subclass any entity, facade or process class without having to change the way that
class is declared or used.

New subclasses of existing classes should be written in new source files. All new
source files should be placed within the source subdirectory of the
EJBServer\components\<custom> directory. Where <custom> is any new directory
created under the components directory that conforms to the same directory
structure as components\core. The generated class hierarchy will dictate the
packaging of the new source files.

Example - Using Subclassing to Override Entity Exit Points

Overriding Validation Exit Point
In order to override the validation exit point of an entity in a subclass:
v enable theAutomatic validation operation option on an entity subclass;
v specify at least one of the entity superclass stereotype insert or modify

operations in the subclass.

For example, consider two classes, MyEntityClass and MyEntitySubClass. The
subclass, MyEntitySubClass, would inherit the key and details of the superclass.
MyEntitySubClass would have theAutomatic validation operation option enabled
and would add the insert or modify operations.

For more information on validation exit point, see “Validation” on page 26.

92 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Overriding Pre Data Access, Post Data Access, and On-Fail exit
points
In order to override thePre Data Access,Post Data Access, orOn-fail exit points of
an entity in a subclass:
v specify the operation(s) of entity superclass in the subclass;
v enable thePre Data Access,Post Data Access, orOn-fail options as appropriate

on the operations of the entity subclass.

For example, consider two classes, EntityClass and EntitySubClass with the
subclass, EntitySubClass, inheriting the key and details of the superclass. The
same operations would be defined in both classes; e.g.: insert, read, and modify. In
both these classes these operations would have the following exit point options
enabled:
v On Fail operation is enabled on operation insert;
v Post Data Access operation is enabled on operation read;
v Pre Data Access operation is enabled on operation modify.

For more information on exit points see “Exit Points” on page 25.

Application Customization

Overview
One of the more difficult aspects of customizing an application is the handling of
upgrades to the original model at a later stage. Any changes which have been
stored with the original model will be overwritten when a newer version of the
model is taken on. This situation can be avoided by storing customizations
separate from the original model. The original model can then be upgraded
without overwriting any of the customizations.

It is also important to read the Cúram Development Compliancy Guide for more
information about customizing the product.

The following features are available to facilitate the customization of an
application:
v “Extension Classes” on page 28;
v “Overriding a Domain Definition” on page 20;
v “Subclassing” on page 91.

Cúram Modeling Reference 93

94 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 95

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

96 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 97

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Oracle, Java and all Java-based trademarks and logos are registered trademarks of
Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

98 IBM Cúram Social Program Management: Cúram Modeling Reference Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Cúram Modeling Reference
	Introduction
	Overview
	Intended Audience
	Prerequisites
	Rational Software Architect
	The Cúram Server Code Generator
	Chapters in this Guide
	Part 1 - UML Overview
	Part 2 - Class Stereotypes
	Part 3 - Attribute Stereotypes
	Part 4 - Operation Stereotypes
	Part 5 - Relationship Stereotypes
	Part 6 - Other Topics

	UML Overview
	UML and the Input Meta-model
	Overview of the Architecture Layers
	Remote Interface Layer
	Business Object Layer
	Data Access Layer

	Stereotypes
	Class Stereotypes
	Attribute Stereotypes
	Operation Stereotypes
	Relationship Stereotypes

	Data types

	Packages
	Overview
	Options
	CODE_PACKAGE
	Rules for theCODE_PACKAGE Feature

	Audit Mappings Classes
	Overview
	Rules
	Outputs
	Options

	Domain Definition Classes
	Overview
	Defining a Domain Hierarchy
	Proper Use of Domains
	Storage Options for String Domains

	Options
	Code Table Name
	Code Table Root
	Compress Embedded Spaces
	Convert to Uppercase
	Custom Validation Function Name
	Default
	Maximum Size
	Maximum Value
	Minimum Size
	Minimum Value
	Multibyte Expansion Factor
	Pattern Match
	Remove Leading Spaces
	Remove Trailing Spaces
	Storage Type

	Overriding a Domain Definition
	How to use Domain Definition Overrides
	Considerations / Limitations
	Usage Rules

	Entity Classes
	Overview
	Rules
	Attributes
	Details
	Key

	Operations
	Database Operations
	Non-database Operations

	Outputs
	Standard Key Structs
	Standard Details Structs
	Standard List Structs

	Options
	Abstract
	Allow Optimistic Locking
	Audit Fields
	Enable Validation
	Last Updated Field
	No Generated SQL
	Replace Superclass

	Concurrency Control - Optimistic Locking
	Table Level Auditing
	Information Captured by Table-level Auditing
	Storage of Audit Information

	Exit Points
	Pre Data Access
	Post Data Access
	Validation
	On-fail
	Exit Point Parameters
	What should exit points be used for
	What should exit points not be used for

	Entity Inheritance
	Rules when Using Entity Inheritance

	Last Updated Field

	Extension Classes
	Overview
	How to use Extension Classes
	When to use Extension Classes
	Considerations / Limitations
	Usage Rules

	Facade Classes
	Overview
	Rules
	Operations
	default
	batch
	wmdpactivity
	qconnector

	Options
	Abstract
	Generate Facade Bean
	Replace Superclass

	Process Classes
	Overview
	Business Process Objects
	Rules
	Operations
	default
	batch
	wmdpactivity
	qconnector

	Options
	Abstract
	Generate FIDs
	Replace Superclass

	Struct Classes
	Overview
	Rules
	Outputs
	Options
	Audit Fields

	Attributes
	Overview
	Attribute Rules
	Attribute Options
	Allow NULLs
	Multibyte Expansion Factor

	Operations
	Overview
	Rules
	Operation Options
	Audit BI (Business Interface) Calls to this Operation
	Auto ID Field
	Auto ID Key
	Business Date
	Syntax forBusiness Date option:
	Rules forBusiness Date option:

	BytesMessage encoding character set
	Database Table-level Auditing
	Field Level Security
	JNDI name of the QueueConnectionFactory class
	JNDI name of the transmission queue
	JNDI name of the reply queue
	Message type
	No Generated SQL
	On Fail Operation
	Optimistic Locking
	Order By
	Post Data Access Operation
	Pre Data Access Operation
	Readmulti_Max
	Readmulti_Informational
	Response message timeout (seconds)
	Security
	SQL
	Transactional
	Where

	Operation Parameter Options
	Mandatory Fields

	Entity Operations Overview
	Introduction
	Standard Operations
	Standard Single-Record Operations
	Standard Multi-Record Operations

	Non-Standard Operations
	Generated SQL Operations
	Handcrafted SQL Operations

	Non-Key Operations
	Batch Operations

	Entity Insert Operations
	Overview
	Standard Insert
	Description
	Use
	Parameter and Generator Notes

	Non-standard Insert (Generated SQL)
	Description
	Use
	Parameter and Generator Notes

	Entity Read Operations
	Overview
	Standard Read
	Description
	Use
	Parameter and Generator Notes

	Standard Readmulti
	Description
	Use
	Parameter and Generator Notes

	Non-standard Read (Generated SQL)
	Description
	Use
	Parameter and Generator Notes

	Non-standard Readmulti (Generated SQL)
	Description
	Use
	Parameter and Generator Notes

	Non-key Read
	Description
	Use
	Parameter and Generator Notes

	Non-key Readmulti
	Description
	Use
	Parameter and Generator Notes

	Entity Update Operations
	Overview
	Standard Modify
	Description
	Use
	Parameter and Generator Notes

	Non-standard Modify (Generated SQL)
	Description
	Use
	Parameter and Generator Notes

	Non-key Modify
	Description
	Use
	Parameter and Generator Notes

	Entity Delete Operations
	Overview
	Standard Remove
	Description
	Use
	Parameter and Generator Notes

	Non-standard Remove (Generated SQL)
	Description
	Use
	Parameter and Generator Notes

	Non-key Remove
	Description
	Use
	Parameter and Generator Notes

	Entity Batch Operations
	Overview
	BatchInsert
	Description
	Use
	Parameter and Generator Notes

	BatchModify
	Description
	Use
	Parameter and Generator Notes

	Entity Handcrafted SQL Operations
	Overview
	Non-standard
	Description
	Use
	Parameter and Generator Notes

	Non-standard multi
	Description
	Use
	Parameter and Generator Notes
	Example 1 - nsmulti with a Single (List) Parameter
	Example 2 - nsmulti with Two Parameters (Key + List)

	Using Handcrafted SQL in Non-Standard Entity Operations
	Overview
	Using Host Variables
	“Null” Considerations
	Incorrect
	Correct

	For Update Considerations With DB2 for z/OS
	SQL Example 1
	SQL Example 2

	Aggregation
	Overview
	Rules when Using Aggregation
	A Special Case
	One-to-One Aggregation
	One-to-Many Aggregation

	Assignable
	Overview
	Explicit Field Assignment
	Suppressing Default Assignment Fields
	Combining structs

	Foreign Keys
	Overview
	Rules when Using Foreign Keys
	How to Add a Foreign Key to a Database Table
	Naming Primary and Foreign Key Constraints
	Example

	Indices
	Overview
	Rules when Using Indices
	How to Add an Index to a Database Table
	Naming Indices
	Example

	Unique Indices
	Overview

	Generated Class Hierarchy
	Overview
	Basic Hierarchy Example
	Hierarchy for Subclasses
	Hierarchy for Abstract Classes
	Considerations
	Access Control - private/protected/public/package
	The Meaning of super
	Enforcing the Factory Mechanism

	Summary

	Cúram JMS Queue Connectors
	Overview
	How It Works / What It Does
	Options on qconnector Operations
	How to Use qconnector Operations
	Decide on Format of Message and Create the struct(s) to Correspond to the Message
	Add the operation to the application meta-model.
	Configure the Queues in the Application Server
	Implement the message recipient in the remote system

	Rules / Restrictions
	Encoding Methods for Fundamental Types
	Using Customized Encoding/Decoding Classes
	Example 1 - Working with Variable Length Fields
	Example 2 - Working with Lists

	Subclassing
	Introduction
	Reasons for Subclassing
	How to Model It
	Basic Subclassing
	Replacing the Superclass
	Abstract Classes
	Restrictions

	How to write Code for Subclassing
	Example - Using Subclassing to Override Entity Exit Points
	Overriding Validation Exit Point
	Overriding Pre Data Access, Post Data Access, and On-Fail exit points

	Application Customization
	Overview

	Notices
	Privacy Policy considerations
	Trademarks

