
IBM Cúram Social Program Management
Version 6.0.5

Cúram Custom Widget Development
Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 85

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing Custom Widgets 1
Introduction 1

Objective 1
Audience 1
Prerequisites 1
What's New? 1
Customizing Widgets 2
Outline of this Guide 3
Conventions of this Guide 3
Limitations and Restrictions 4

Approaches to Customization. 4
Objective 4
Prerequisites 4
Identifying the Right Approach 4
Using Only UIM 5
Reconfiguring Standard Widgets. 6
Developing Simple Custom Widgets 6
Developing Complex Custom Widgets 7
Mixing Simple Custom Widgets with UIM . . . 7
Responsibilities of the Widget Developer 8

How Widgets Work 9
Objective 9
Prerequisites 9
Introduction 9
Anatomy of a Widget 10
How Widgets Work. 12

An E-Mail Address Widget 13
Objective 13
Prerequisites 14
Introduction 14
Defining the HTML 14
Defining the Renderer Class 15
Accessing the Data 16
Generating the HTML Content 16
Configuring the Widget 17

The Sample Context Panel Widgets 18
Objective 18
Prerequisites 18
Introduction 18
The Sample Widgets 18

A Photograph Widget 20
Objective 20
Prerequisites 20
Introduction 21
Defining the HTML 21
Defining Data in XML Form 23
Defining the Renderer Class 23
Accessing Data in XML Form 24
Generating the HTML Content 24

Linking to a UIM Page 25
Linking to a Static Image 25

Linking to the FileDownload Servlet 26
Configuring the Widget 26
Configuring the FileDownload Servlet. 27

A Details Widget Demonstrating Widget Re-use . . 28
Objective 28
Prerequisites 28
Introduction 28
Defining the HTML 28
Defining Data in XML Form 29
Defining the Renderer Class 29
Accessing Data in XML Form 30
Generating the HTML Content 30
Configuring the Widget 31

Tying Widgets Together in a Cascade 32
Objective 32
Prerequisites 32
Introduction 33
Defining Data in XML Form 34
Defining the HTML 34
Defining the Renderer Classes 35
Generating the HTML Content 35

Person Context Panel Widget 35
Horizontal Layout Widget 37

Configuring the Widgets 38
Person Context Panel Widget 38
Horizontal Layout Widget 38

A Text Field Widget with No Auto-completion . . 39
Objective 39
Prerequisites 39
Introduction 39
Defining the HTML 40
Defining the Renderer Class 40
Handling Form Items 40
Accessing the Data 41
Generating the HTML Content 42
Configuring the Widget 44
Limitations on Support for Custom Edit
Renderers 44

Internationalization and Localization 44
Objective 44
Prerequisites 44
Introduction 45
CDEJ Support for Internationalization 45
Widget Internationalization 46

Accessibility Concerns 47
Objective 47
Prerequisites 47
Introduction 48
Labels for Form Input Controls 48
Font Sizes 49

Overview of the Renderer Component Model . . . 50
Elements of the Model. 50
Building Components 51

Design and Implementation Guidelines 52
Introduction 52
Guidelines for Writing Renderers 53

© Copyright IBM Corp. 2012, 2014 iii

Do Keep Things Simple 53
Do Divide and Conquer 53
Do Check for Nulls 53
Do Take Shortcuts 54
Do Go with the Flow 54
Don't Introduce Concurrency Issues 56
Don't Convert Data in a Renderer 59
Don't Do Too Much 59

Supporting Field-level Security 60
Adding New CSS Rules for Custom Widgets . . 62

Testing, Troubleshooting and Debugging 62
Introduction 62
Testing 62
Troubleshooting 63
Debugging 64

Configuring Renderers 65
Introduction 65
Configuring Domain Renderers. 66
Configuring Component Renderers 67

Accessing Data with Paths 68
Introduction 68
Creating New Paths 69

General Properties Resources 70
Resource Store Properties Resources 71
Literal Values. 72

Extending Paths for XML Data Access 73
Introduction 73
Simple XPath Expressions 73
Evaluating the Paths 76
Automatic Data Conversion 77

Source Code for the Sample Widgets 78
Source Code for the E-Mail Address Widget . . 78
Source Code for the Photograph Widget 78
Source Code for the Details Widget 79
Source Code for the Person Context Panel Widget 81
Source Code for the Horizontal Layout Widget 81
Source Code for the Text Field Widget with No
Auto-completion. 82

Notices 85
Privacy Policy considerations 87
Trademarks 88

iv IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Figures

1. HTML Output of the E-Mail Address Widget 14
2. Custom CSS for the E-Mail Address Widget 14
3. Declaration of the EMailAddressViewRenderer

Class 15
4. Getting the E-Mail Address Value 16
5. Marking Up the E-Mail Address Value . . . 17
6. Configuring the E-Mail Address Widget 17
7. Context Panel for a Person 19
8. Context Panel for a List of Case Participants 20
9. Context Panel Showing a Photograph of a

Person 21
10. HTML Output of the Photo Widget 22
11. Custom CSS for the Photo Widget 22
12. An XML Document Describing a Photograph 23
13. The Renderer Class for the Photograph Widget 23
14. Getting the Person Name and ID Values 24
15. Marking Up the Photograph Data 25
16. Linking to a UIM Page. 25
17. Linking to a Static Image 26
18. Linking to the FileDownload Servlet 26
19. Configuring the E-Mail Address Widget 26
20. Example FileDownload Configuration for a

Photograph 27
21. Example of the HTML to Show an In-line

Image 27
22. HTML Output of the Details Widget 28
23. Custom CSS for the Details Widget 29
24. An XML Document Describing a Person 29
25. The Renderer Class for the Details Widget 29
26. Getting the Person name and Reference

Number. 30
27. Invoking the E-Mail Address Widget from the

Details Widget 30
28. Configuring the Person Details Widget 32
29. Context Panel Showing the Photograph and

Details of a Person 33
30. An XML Document Describing a Person 34

31. HTML Output of the Person Context Panel
Widget 34

32. The Renderer Class for the “Person Context
Panel Widget” 35

33. The Renderer Class for the “Horizontal Layout
Widget”. 35

34. Building the component model and invoking
the “Horizontal Layout Widget” 36

35. Generating a HTML table and delegating to
other widgets 37

36. Configuring the Person Context Panel Widget 38
37. Configuring the Horizontal Layout Widget 39
38. HTML Output of the Date Picker Widget 40
39. Declaration of the NoAutoCompleteEditRenderer

Class 40
40. Adding a Form Item to Get a Target ID 41
41. Getting the Initial Value for a Form Item 42
42. Marking Up the Input Control 42
43. Supporting Other UIM Features. 43
44. Configuring the SSN Edit Renderer 44
45. Referencing Localized Image Files 46
46. An XML Document Describing Contact Details 55
47. An XML Document Describing an Address 55
48. A Revised XML Document Describing Contact

Details 56
49. A Plug-in Class with a Concurrency Defect 57
50. A Plug-in Class without a Concurrency Defect 58
51. Implementing Field-level Security 61
52. An Example of a DomainsConfig.xml File 66
53. An Example of a StylesConfig.xml File 67
54. The Anatomy of a Path 68
55. Accessing General Properties. 70
56. Accessing Multiple General Properties . . . 71
57. Accessing Resource Store Properties 72
58. Accessing Multiple Resource Store Properties 72
59. Encoding Literal Values 73
60. A Sample XML Document 74

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Tables

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Developing Custom Widgets

Use this information to develop custom widgets for UIM pages. A comprehensive
set of widgets are provided, which are configured against the application's domain
definitions by default. These configurations can be changed as required.

Introduction

Objective
The objective of this guide is to explain when it is appropriate to use a custom
widget to present the content of a UIM page and to show how to develop such a
widget and integrate it into the application.

The text within the images used throughout this guide are intentionally blurred
because we are only concerned with the high level details of these widgets. Each
number in an image maps to a specific detail in a widget. A list is given below
each image to explain its details by referring those numbers.

The objective of this chapter is to explain briefly what widgets are, what can be
achieved through the customization of widgets and how the rest of this guide is
structured to aid the developer in the task of developing custom widgets.

Audience
This is a guide for client application developers who want to customize the
presentation of Cúram application pages in ways that are not possible through
UIM or through the reconfiguration of the set of widgets provided in the Cúram
Client Development Environment (CDEJ).

Prerequisites
The developer should be proficient in Cúram client-side application development
in Java™ and UIM. In addition, knowledge of HTML, JavaScript, CSS and other
web application technologies is required to varying degrees depending on the
nature of the widget being developed.

What's New?
UIM provides support for easy development of a consistent application user
interface and can meet most presentation requirements. However, sometimes there
is a requirement for richer functionality or a more sophisticated look than can be
achieved with UIM alone. Cúram 6.0 introduces support for the customization of
widgets. Widgets are the elements of the user interface used to present the values of
the fields defined in UIM, such as simple text values, editable text fields, date
selectors, bar charts and calendars. The new custom widget development features
make it possible for developers to create their own widgets that supplement or
replace those provided by the CDEJ. Here are just a few examples of the kinds of
customizations that can now be performed:
v The configuration can be changed so that the basic text field widget is used for

the input of all date values, instead of the date selector that is configured by
default;

© Copyright IBM Corp. 2012, 2014 1

v The presentation of all e-mail address values can be customized so that, instead
of being shown as simple text, they are shown as HTML mailto: links beside an
e-mail icon;

v A photograph of a person stored in the application database can be displayed as
the value of a field;

v The details of a person can be presented using a richer and more compact layout
than possible with a UIM CLUSTER;

v Widgets can be reused within other widgets, so that the e-mail address widget
can be reused within the widget that displays the details of a person and that
details widget can, in turn, be combined with the widget that displays a
photograph of a person to create a single widget that presents a more engaging
summary of a person in a tab context panel.

Customizing Widgets
Customizing widgets is a process that involves customizing the HTML that is
produced to represent the value of a field. A client application developer defines a
Cúram application page using UIM, but the page is displayed in a user's web
browser using HTML. Behind the scenes, the CDEJ translates the CLUSTER and LIST
elements of the UIM page into HTML elements and then presentsor renders the
labels and values of the FIELD elements within the structure provided by those
HTML elements. Typically, the CDEJ renders a cluster or list using a HTML table
and then places the labels and values of the fields into the cells of that table. The
CDEJ renders the label of a field the same way for all fields, but renders the HTML
for the value of a field in different ways depending on the type, the domain
definition, of that field's value.

The processing of field values in a domain-specific manner has been available since
Cúram 4.0. This support for custom data conversion and sorting is described in
detail in the Cúram Web Client Reference Manual. Using the same configuration
mechanism, the CDEJ now extends this domain-specific customization to the
widgets used to produce the HTML for the values of fields. The CDEJ includes a
default configuration that associates the provided Cúram widgets with all of the the
domain definitions of the application. The CDEJ now also supports these key
features:
v The customization of the default configuration by the application developer,

providing the freedom to change what widget is used to render the value of
each type of field;

v The development of new widgets by the application developer and their
integration into the application through the customization of the default
configuration. These custom widgets allow full control over the rendering of
values for individual UIM FIELD elements.

Custom widgets are integrated into the application in a manner that preserves all
of the time-saving and simplifying features of UIM development. However,
developing custom widgets can be a complex process. Widget developers take on
the responsibility for considerations such as styling, internationalization,
cross-browser support and other concerns from which they are insulated when
using UIM alone. There is a balance to be achieved between ease of development
and maintenance on the one hand and user interface richness and flexibility on the
other.

Cúram widgets and custom widgets differ only in where they are developed and
configured, not how. Therefore, custom widgets are a powerful tool for application
developers who need to meet challenging presentation requirements by

2 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

complementing or replacing the provided Cúram widgets. The development and
configuration of such custom widgets is the subject of this guide.

Outline of this Guide
The next chapter, “Approaches to Customization” on page 4 guides the developer
on the choice of approach to achieving the required customization of the
user-interface while minimizing the development effort.

“How Widgets Work” on page 9, presents more detailed information about the
components of a widget and their configuration.

“An E-Mail Address Widget” on page 13 introduces the fundamental principles of
the widget development process and the subsequent widget configuration. The
chapter shows how to create a simple widget that presents an e-mail address more
appealingly in the context of a typical UIM page.

“The Sample Context Panel Widgets” on page 18 presents some samples of context
panels used within the tabbed user interface. These sample context panels are
constructed using several complex widgets that are supplied with data in XML
form. The development and configuration of each of these widgets is covered in
the following chapters. Each chapter introduces new concepts in widget
development that build upon what has gone before until the complete context
panels have been created and configured.

All of the widgets described to that point are used to present read-only values. “A
Text Field Widget with No Auto-completion” on page 39 introduces a widget for
editing values on a form page. Widgets used to edit values have some unique
requirements that are not applicable to widgets that present read-only values. To
edit a value, a widget must ensure that, once the user submits a form page
containing the widget, the entered field value reaches its destination on the server
interface and that any validation errors are handled correctly.

Often, the deployed Cúram application must comply with local regulatory
requirements for the localization of text and the accessibility of the user-interface.
While the details differ between jurisdictions, the general principles are common to
all. “Internationalization and Localization” on page 44 and “Accessibility
Concerns” on page 47 outline the main principles.

This is not a comprehensive reference manual for widget development. References
to external sources of information, such as the published Javadoc of the CDEJ, will
be used to draw the attention of the developer to additional information when
necessary. The developer should also study the primary companion guide, the
Cúram Web Client Reference Manual, before embarking on custom widget
development. Several appendixes at the end of this guide supplement these other
sources where they lack specific information related to widget development.
Throughout this guide, the developer's attention will be referred to the relevant
appendix as appropriate.

Conventions of this Guide
For clarity, the source code presented throughout this guide is abridged. Import
statements are omitted and package names are not shown. “Source Code for the
Sample Widgets” on page 78 provides the full, unabridged source code listings
showing the import statements that identify the package names of the referenced
classes and interfaces.

Developing Custom Widgets 3

Similarly, the configuration files in the examples show only the domain
configuration entry relating to the configuration of the widget just presented. The
real configuration file within an application component will typically contain all of
the configuration entries for all of the domain definitions to which customizations
have been applied.

Limitations and Restrictions
The focus of this guide is on the development of custom widgets for inclusion into
context panels within the tabbed user interface. Other uses of widgets are covered
only briefly or not at all.

warning: No Implied Support

Only the custom widget functionality described in this document is supported. No
other functionality, whether inferred by the reader through extrapolation or
analysis of the Javadoc or other sources, is supported. Neither is support offered
for use of custom widgets in contexts other than those contexts presented in this
document.

Throughout this guide, other limitations or restrictions will be highlighted in the
relevant contexts.

Approaches to Customization

Objective
To understand when UIM should be used to define all of the content of a page,
when a custom widget is required to achieve a presentation requirement and what
the scope of the custom widget should be.

Prerequisites
A basic knowledge of the capabilities of UIM and the structure of web pages
rendered from UIM sources.

Identifying the Right Approach
UIM pages can define the content of an application page in terms of fields, action
controls, clusters, lists and other elements. UIM provides enough control to present
the page content in ways that meet most presentation requirements. Alternatively,
instead of using multiple fields in clusters and lists in a UIM page, a single field
can be used in the UIM to anchor a custom widget that produces most of the
HTML content of the page. Between these two bounding approachesdoing it all
with UIM or doing it all with a widgetthere are several intermediate approaches.
Where a requirement for customized presentation is identified, the developer needs
to assess the necessary extent of that customization and how best to meet the
requirement to minimize the complexity and effort required.

While the development of custom widgets provides greater control over the
presentation of the content than UIM, this control comes at the cost of greater
complexity. Trying to do everything from one widget by producing large amounts
of HTML content can lead to significant long-term maintenance overheads. This is
particularly so if the appearance of the content needs to be kept consistent with
content produced from standard elements of a UIM page or with content from
Cúram widgets. For example, if a custom widget attempts to produce HTML
output that looks the same as that produced for a standard UIM CLUSTER, that may

4 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

introduce a long-term requirement to repeatedly reverse engineer the potentially
changing structure of that HTML. The HTML structure and CSS produced by the
CDEJ is subject to change and it cannot be guaranteed that customizations that
depend on this HTML structure or CSS styling will continue to work when the
Cúram application is upgraded. Therefore, while a custom widget could present all
of the page content, it is usually best to limit what the custom widget produces
and to produce as much of the content as possible using UIM.

Attempt to meet the presentation requirement by selecting the first approach listed
below capable of meeting the requirements. These approaches are listed in order of
increasing complexity and are described more fully in the following sections.
v Use only UIM, though perhaps use it more creatively than is typical.
v Reconfigure the standard widgets to change the presentation of the field values.
v Develop and use one or more simple custom widgets and use them in

combination with UIM.
v Develop and use one or more complex custom widgets instead of many UIM

elements.
v Apply some combination of the above approaches.

Using Only UIM
Before deciding to develop a custom widget, the developer should first assess if
the required presentation can be achieved using the layout and styling capabilities
supported by UIM. If the presentation requirement can be achieved using only
UIM, there will be no need to develop a custom widget and time and effort can be
saved.

UIM allows CLUSTER and LIST elements to be nested within other CLUSTER
elements. The number of columns in a cluster can be controlled, as can the display
of the titles of clusters and lists and of the labels of their contained FIELD elements.
This flexibility can exploited to achieve quite complex page layouts. See the Cúram
Web Client Reference Manual for more details on these UIM elements.

Many UIM elements also support a STYLE attribute that can be used to associate a
custom CSS class with the HTML content generated in respect of those elements.
The custom CSS class can define styles that control many aspects of the
presentation. Fonts, background images, spacing, borders, colors and other aspects
of the presentation can be customized easily. See the Cúram Web Client Reference
Manual for more details on the use of the STYLE attribute and on the inclusion of
custom CSS resources.

The developer may identify a UIM-only solution to the presentation requirement,
but may need to apply this to many pages. Doing this one page at a time may not
be desirable, particularly if later changes would also require that all of the pages
be updated again. Using a UIM VIEW in a VIM file and including this view into
many UIM files may meet this requirement.

If the requirement is to change the presentation of a field value in a significant
way, rather than to change the page layout and/or make minor styling changes to
the content, then this approach of using only UIM may not be sufficient. If the
customization needs to be repeated across many pages in a way that cannot be
accommodated by included views (VIM files), or in a way that imposes significant
maintenance overheads, then this approach may also be insufficient. In those cases,
a more advanced approach may be necessary, such as the reconfiguration of the
standard widgets or the development of a new widget.

Developing Custom Widgets 5

Reconfiguring Standard Widgets
Cúram provides a comprehensive set of widgets that are configured against the
application's domain definitions by default. The application developer has the
option to change (override) this configuration to meet the presentation
requirements. Such reconfiguration can change the standard widget used for a
particular type of data to be a different standard widget. Where custom widgets
have been added to the application already, these custom widgets are also
candidates for reuse through reconfiguration.

For example, the date selector widget is used for fields in the SVR_DATE domain
(and its descendant domains). If the requirement is to change the date selector to a
simple text field, possibly formulated as, “Remove the pop-up calendar icon,” then
a new date selector that acts like a text field is not required. This requirement can
be met simply by associating the same widget used for the SVR_STRING domain
(and many numeric domains) with the SVR_DATE domain. This configuration
change, made in a configuration file in the application component, will cause all
SVR_DATE values on all pages to be presented for editing with a simple text field.

The elements of a widget that are configured in this way are explained in the next
chapter and the configuration process is covered in detail in “Configuring
Renderers” on page 65. Also described in that appendix are the names and
locations of the configuration files, including the default configuration file that
shows what is configured as standard in the CDEJ.

If a reconfiguration of the widgets by changing the domain associations, perhaps in
combination with the creative use of UIM, cannot meet the presentation
requirement, it may be necessary to develop a new custom widget and configure it
for use.

Developing Simple Custom Widgets
A widget controls how the value of a field is presented by adding the HTML
mark-up to the value that is appropriate for that presentation. Reconfiguring the
widgets associated with different domain definitions and restyling the HTML of
existing widgets with custom CSS are not always sufficient to meet a presentation
requirement. If the developer decides that the presentation requirement can only be
satisfied by modifying the structure of the HTML produced for the value of a field
in a manner that no existing widget can achieve, then the developer must write a
new widget and configure it for use by the application.

“An E-Mail Address Widget” on page 13 explains how to develop a simple widget
for viewing the value of a field; “A Text Field Widget with No Auto-completion”
on page 39 explains how to develop a simple widget for editing the value of a
field. Both chapters describe briefly how to configure these widgets and more
information about the configuration of custom widget can be found in
“Configuring Renderers” on page 65.

In the simple case, a widget will replace the HTML content produced for the value
of a UIM FIELD within the context of a normal UIM CLUSTER or LIST. The value of
the field will still be a single string, number or date, only styled more elaborately.
The general layout of the page will not be affected. Where the presentation
requirement has a wider scope and requires that the layout of significant parts of
the page be changed, or that the value of a field contain many embedded values,
such as in an XML document, a more complex widget will be required.

6 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Developing Complex Custom Widgets
There is no clear dividing line between simple widgets and complex widgets. The
more control over the presentation that the developer exerts through a custom
widget, the more complex the implementation of that widget will become. Some
indicators of increased complexity are:
v The value of the field may be more than a simple string or numeric value. For

example, the value may be an XML document containing several separate
values, such as the data for a bar chart.

v Multiple values may be presented to the user differently from the usual grid
layout of a cluster or list. For example, a photograph of a person may be
presented with the person's name below the image and with no field label to the
side.

v A widget may present information by delegating significant parts of the
presentation to the renderer plug-ins of other widgets. For example, in
presenting a non-grid layout for the details of a person, the value of the single
UIM field may be an XML document containing all of those details. A single
widget is invoked by the CDEJ for that XML document value. That widget may
then produce the non-grid layout in HTML and, in each position within this
layout, delegate the rendering of the values within the XML document to other
widgets. This is similar to the way the CDEJ delegates to widgets when
rendering the contents of the cells in the grid layout presented by a UIM cluster.

While a UIM FIELD is always required to anchor a custom widget, a UIM page can
contain little more than a single FIELD element and leave most of the rendering of
the HTML page content to the associated custom widget. (The page title and other
surrounding content are still rendered independently of the field.) The ability to
place a UIM FIELD element directly within a PAGE element without any CLUSTER or
LIST element, is a new feature of the CDEJ. While it allows a widget more control
over the layout of the data, this approach should only be used if the presentation
requirement is such that it cannot be achieved using only UIM, or using a
combination of UIM and one or more simple widgets.

Even if a presentation requirement can be met using only UIM, the developer may
prefer to use a custom widget to allow the customization to be applied
automatically to many application pages, via the domain definition association,
rather than repeat the UIM-only solution on every page that needs it. Where the
use of VIM VIEW elements cannot achieve this, a complex custom widget may be
necessary.

This guide presents the development of several complex widgets in later chapters.
The developer should not assume that because much of the guide is concerned
with the development of complex widgets that complex widgets are the preferred
approach. On the contrary, much of this guide covers complex widgets because
their very complexity requires more explanation. The developer should always opt
for the simplest possible approach first and only resort to complex widget
development when there are no simple alternatives.

Mixing Simple Custom Widgets with UIM
The complexity of a widget increases as it assumes more and more control over the
layout of more and more data. If a presentation requirement cannot be met using
only UIM, the developer may need to create a custom widget. However, the
complexity can be reduced by developing only the widgets that are absolutely
necessary and using UIM as much as possible to achieve the goal. The developer

Developing Custom Widgets 7

should assess if a combination of UIM with several simple widgets could achieve
the desired result, or if a full, single custom widget is the only solution.

The developer can use UIM clusters, lists and fields in various combinations to
produce HTML output that is close to what is required. The developer may then
associate simple custom widgets with individual fields, replacing the default
HTML content for those fields with custom content. Further, the developer may
replace the presentation of a cluster on the page with a presentation produce by a
single custom widget, which still using UIM clusters elsewhere on the same page.
The combination of default content for the main layout of the page with changes to
the content for individual fields or individual clusters, is generally easier to
achieve than using a single custom widget to produce all of the page content.

Constructing pages from several, simpler custom widgets reduces the complexity
of the individual widgets. It also results in a number of simpler widgets that are
much easier to reuse in other contexts. The developer may identify that some
widgets could be developed in a way that makes them a component of the
solutions to the differing requirements of several pages. In this case, the alternative
approach of a single custom widget that can only satisfy the requirements of a
single page, is likely to be more complex to develop and result in further
development of other complex widgets for other pages with little reuse.

Responsibilities of the Widget Developer
This chapter has presented the approaches to the customization of widgets in
increasing order of complexity. The widget developer, in eliminating a simpler
approach and moving on to consider a more complex approach, takes on more
responsibility for the proper operation of the resulting user interface. UIM insulates
client application developers from most of these responsibilities, but this insulation
is, to a significant extent, provided by the widgets that underlie the UIM fields.
Therefore, the widget developer is responsible for ensuring that the custom widget
continues to insulate the UIM developer from concerns such as the following:
v The Cúram user interfaces evolves with each new release. Widgets that attempt

to emulate the output produced by standard elements of the Cúram user
interface, such as clusters and lists, will need to evolve in step with Cúram to
ensure that the consistency of presentation of the user interface is preserved.
This is a long-term maintenance task that should be considered as part of the
cost of development of any such custom widget.

v Rendering HTML to the application page is a low-level process. It offers
considerable power and flexibility to customize the application. However, it also,
by its nature, opens up the possibility of introducing unwanted side-effects that
interfere with the presentation of other parts of the application page, or
introducing security defects, such as vectors for cross-site scripting (XSS) attacks.
The widget developer assumes the responsibility for ensuring that such defects
are not introduced.

v Complex widgets with ambitious presentation requirements can be an expensive
undertaking. Much of the development effort goes not into developing the
widget source code, but into fine-tuning the styling of the HTML for that widget
within the browser. Where there is a requirement for cross-browser support,
either different versions of the same web browser, or different web browsers
entirely, the time required to achieve a consistent look across all web browsers
should not be underestimated.

8 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

v The CDEJ provides considerable assistance to the widget developer to aid with
the internationalization of a widget. However, this assistance is only of value if
the widget developer takes advantage of it to ensure that the widget can be
properly localized after development.

v The widget developer may not have a free hand to implement all presentation
requirements as specified. Most jurisdictions implement regulations and
guidelines requiring that web applications be available and accessible to as
many people as possible and, in particular, be inclusive of those with disabilities.
The technical requirements may differ between jurisdictions and it is the
responsibility of the widget developer to understand and comply with any such
requirements.

v The perceived quality of the application can be diminished if a widget does not
operate correctly or if it introduces inconsistencies or unwanted side-effects. As
the complexity of a widget increases, so too does the effort required to test it in
all of its aspects and to ensure that it enhances, not degrades, the application
and the experience of the users. The widget developer should not underestimate
the effort required to test a complex widget properly and the need to test it
repeatedly as the application is further customized or upgraded.

This guide explains these concerns in more detail in the later chapters and
appendixes and advises on how they can be addressed. By choosing the simplest
approach possible to achieve a presentation requirementafter evaluating if the
presentation requirement can be modified to permit a simpler approachthe widget
developer can minimize the effort required to meet all of these added
responsibilities.

How Widgets Work

Objective
To understand the components of a widget and the principles of their development
and configuration.

Prerequisites
A basic knowledge of the capabilities of UIM and the basic principles of web
application development in HTML.

Introduction
As described in the previous chapter, a developer defines a Cúram application
page using UIM, but the page is displayed in a user's web browser using HTML.
The label of a field is presented the same way for all fields, but the HTML that
presents the value of each field differs depending on two factors: the mode of
operation of the field and the type, the domain definition, of its value.

There are two modes of operation: the view mode and the edit mode. In the view
mode, the user cannot modify the value of the field. The user may see the value
presented as just text, or presented more elaborately as a bar chart or a rate table,
depending on the type of the value. In the edit mode, the user can enter a new
value or modify the existing value of a field. The user may see the value presented
in a simple text input field, or a date selector or a check-box, again depending on
the type of the value.

For each mode of operation and type of data, a specialized component is invoked
by the CDEJ to render the HTML for a field's value. This HTML is included into

Developing Custom Widgets 9

the full HTML page and the page is returned for presentation to the user by the
web browser. Often, other resources, such as icons and JavaScript, are required to
complete that presentation. These specialized rendering components together with
their associated resources are called widgets. Thus, there is a date selector widget, a
text field widget, a bar chart widget, and many other widgets. The CDEJ provides
a comprehensive set of widgets for all modes of operation and types of data. These
are detailed in the “ Domain Specific Controls ” chapter of the Cúram Web Client
Reference Manual and further in this guide in “Configuring Renderers” on page 65.

When rendering a complete UIM page at run-time, the CDEJ automatically
identifies the mode and type of each UIM FIELD and selects the appropriate widget
to render the value. The mode of operation is determined by the presence or
absence of a TARGET connection on that field. When that connection is present, the
field is in the edit mode; when it is absent, the view mode. The type of a field is
determined by the domain definition of the server interface property to which that
field is connected. What widget is “appropriate” for any given combination of
mode and type is defined by configuration. A configuration file associates widgets
with named domain definitions. For each domain definition, the widget to be used
for each mode is specified. The CDEJ will use a widget so configured whenever it
needs to render the value of a field with a matching mode and domain definition.

The configuration used by the CDEJ to associate widgets with domain definitions
is the same configuration used to associate custom converter and comparator
plug-ins with domain definition. The development and configuration of these
plug-ins are described in the “ Custom Data Conversion and Sorting ” chapter of the
Cúram Web Client Reference Manual. Custom widget development involves the
development and configuration of new types of plug-ins that are configured in the
same way. The widget developer can define a configuration within the application
that overrides the default configuration of the CDEJ to customize the associations
between widgets and domain definitions and change how the values of fields are
presented. In order to do this, the widget developer must first understand the
relationship between widgets and domain-specific plug-ins.

Anatomy of a Widget
“Introduction” on page 1 and the introduction to this chapter described what a
widget is and outlined how a widget is integrated into the application. However,
the widget developer must be familiar with the anatomy of a widget in more detail
before developing one.

To a user, a widget is just what is shown in the web browser. To a widget
developer, a widget comprises all the resources involved in the generation and
presentation of what a user sees. From this development perspective, a widget may
be comprised of many artifacts that, together, realize a presentation requirement for
a specific type of data in one mode of operation.

The common artifacts of a widget are as follows:

Renderer Plug-in
The main component of a widget is its renderer plug-in, the Java class that
generates the HTML mark-up around the field value. The renderer plug-in
class is the only artifact required for every widget. The CDEJ provides
abstract base classes that all custom renderer plug-in classes must extend.
There is a different base class for each mode of operation. Each renderer
plug-in class has a render method that must be implemented to generate
the HTML content using the W3C DOM Core API.

10 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Custom renderer plug-in classes are placed into the javasource folder of
the chosen client application component. The classes can be added to a
Java package sub-folder, but the Java package name should not conflict
with the name of the Cúram application packages. Throughout this guide,
the package folder sample is used, but the use of that name is neither
required nor recommended.

The presentation requirement of a widget can sometimes be realized with
nothing more than a single renderer plug-in class. In this case, the terms
widget and renderer may be synonymous to a developer. However, most
widgets require additional resources, and sometimes additional renderer
plug-in classes, so the term widget has a wider scope than renderer.

Domain Configuration
A configuration file associates domain definitions with the renderer
plug-ins of widgets. One file named DomainsConfig.xml is permitted in
each application component. The same configuration file is used for other
types of plug-ins, such as those used to customize sorting and data
validation described in the Cúram Web Client Reference Manual. The change
to the domain configuration required to associate a custom widget's
renderer plug-in class with a domain must be added to this file and the file
must be created if it does not already exist. The configuration process is
covered as required in the other chapters of this guide and in more detail
in “Configuring Renderers” on page 65.

JavaScript
JavaScript can be incorporated in two ways by a widget. Both are
controlled by the renderer plug-in class. The renderer plug-in can embed
JavaScript code directly into the HTML using script tags, or it can request
that the CDEJ add a link to the page to include a separate JavaScript
resource. It is common for a renderer plug-in to do both: include a link to
a JavaScript resource and then add scripts that invoke the functions
defined in that resource. External JavaScript resources should be placed
into the application component. They will be copied into the correct
location during the build.

Images
Images can be included by embedding a HTML img tag with the
appropriate value for its src attribute. For images such as icons, the image
files can be placed into the application component. For images, such as
photographs stored on the database, a special source URL is required.
Examples of both approaches are presented in the later chapters of this
guide.

CSS CSS can be used to separate the styling of the HTML produced by a
renderer plug-in from the operation of that plug-in. Like JavaScript and
image resources, CSS resources are not directly associated with a widget.
They are just added to the application component. Unlike JavaScript and
image resources, CSS resources are not requested explicitly by a renderer
plug-in. The style rules defined within a CSS resource, and all other CSS
resources in the application components, are automatically combined into a
single new CSS resource during the build process. The specific CSS
resource is not referenced anywhere in the HTML, but the rules will be
applied nonetheless. See the Cúram Web Client Reference Manual for more
details on the incorporation of custom CSS resources.

Localized Text Properties
Any text produced by a renderer plug-in other than the actual field value
is usually required to be internationalized, i.e., to support localization into

Developing Custom Widgets 11

different languages. Standard Java properties resources, as defined by the
Java ResourceBundle API are supported for this purpose. The techniques
for locating these resources and referencing their content are covered in
“Internationalization and Localization” on page 44.

Widgets can use or depend on other artifacts, such as Java libraries, supporting
Java classes, XSLT stylesheets, XML schemas, and many others. The use of such
artifacts is dependent on the nature of the widget and what it must achieve. This
guide does not describe the use of such artifacts or their integration into an
application. A widget developer will not be supported in the resolution of any
issues related to the use of artifacts, or types of artifact, not explicitly covered in
the later chapters of this guide.

How Widgets Work
“Introduction” on page 1 described the modes of operation of widgets and
outlined how widgets can be associated with domain definitions. The widget
developer will benefit from a deeper understanding of this process and of its
dynamics.

As explained in the previous chapter, widgets are selected and invoked
automatically by the system depending on the type of data and mode of operation
of a field. In UIM, each FIELD is associated with data using SOURCE and/or TARGET
connections. The system identifies the type of the data based on the domain
definition of the server interface property named on those connections. The
domain definition for the TARGET connection is preferred over that of the SOURCE
connection. The mode is determined by the presence or absence of the TARGET
connection; if a TARGET connection is present, the edit mode is used; if only a
SOURCE connection is present the view mode is used.

A configuration file associates the widgets' renderer plug-in classes with domain
definitions, so that, for any given type of data and mode of operation, the same
renderer plug-in class is invoked on every page to present that data with the
appropriate HTML mark-up. A widget's renderer plug-in class can identify itself as
either a view-renderer for the view mode or an edit-renderer for the edit mode, but
not both, so a separate renderer plug-in class is required for each mode. The
configuration allows one edit-renderer plug-in class and one view-renderer plug-in
class to be associated with each domain definition. If the developer changes the
configuration file so that a custom widget's renderer plug-in class is associated
with a domain definition, then every time a field in that mode with a connection to
data in that domain is presented on any page, the custom renderer plug-in class
will be used. Thus, the developer can produce any desired custom HTML mark-up
to present the data of any UIM FIELD and see that applied consistently across the
application.

The same widget is often used for many different types of data in a given mode.
For example, the application presents the majority of view-only data using a single
widget that simply inserts the text representation of that data into the HTML
without any HTML element mark-up. Only where the presentation is more
specialized are specialized widgets applied.

The CDEJ invokes widgets in the course of transforming a UIM page to HTML.
For widgets associated with UIM FIELD elements, this always happens at run-time.
During the rendering of the page, the CDEJ constructs a Field object from the
information defined in the UIM. Using this information, it consults the domain
configuration to select the appropriate widget's renderer plug-in and then passes

12 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

the Field object to the renderer plug-in along with an empty DOM
DocumentFragment object. Using the information provided by the Field object, the
renderer plug-in uses the DOM Core API to create the DOM nodes representing
the required HTML and field value and adds these nodes to the DocumentFragment
object. When the renderer plug-in returns, the CDEJ will take the now populated
DocumentFragment object, serialize it to a HTML text stream, and add this to the
stream being returned to the web browser. By this method, any HTML content can
be produced by the renderer plug-in class.

The developer can implement a widget such that multiple renderer classes are
used together to achieve a presentation requirement. The CDEJ first invokes a
single renderer plug-in class based on its association with a domain definition.
That renderer class can then delegate the rendering of elements of its output to
other renderer classes. The first renderer can create empty DOM DocumentFragment
objects of its own and pass them on to the other renderers. These renderers will
populate the fragments with HTML nodes and the first renderer can add the
contents of those fragments to its own before returning control to the CDEJ.
Combining renderer classes together into such a rendering cascade simplifies the
individual renderer classes and maximizes the potential to reuse these classes in
other combinations to realize new custom widgets. Examples of this process will
be presented in later chapters of this guide.

The configuration file, identified in the previous section, that associates renderer
plug-in classes with domain definitions is subject to the same type of
component-order-based merging as most other configuration files in the Cúram
client application. In simple terms, the CDEJ default domain configuration is
loaded first. Then the domain configurations defined (if at all) in each of the
application's components are loaded in order from the lowest priority component
to the highest priority component. Each configuration can replace elements of the
the configuration that has been loaded before, so the last configuration is the one
that has the most control. The actual configuration process is a little more complex
than this simplified explanation and is explained in full in “Configuring
Renderers” on page 65. Crucially, the configuration defined in the application is
given more weight than that defined in the CDEJ, so it is possible for the
developer to customize anything. However, there are limits on what
customizations are supported within the Cúram application and that are described
at the relevant points in this guide.

When a custom widget controls most of the page content, it is often the case that
much of the output of the widget relates to laying out other page content in the
correct manner. The view-renderer and edit-renderer plug-in types that are
associated with domain definitions are used to renderer fields that are bound to
data. However, page layout is often unrelated to any data. Another type of plug-in,
the component-renderer, can be used to perform these layout operations. These
plug-ins are associated with styles, not domain definitions, and can be invoked by
the domain-specific renderers when necessary. Styles and component-renderer
plug-ins are covered in “Tying Widgets Together in a Cascade” on page 32.

An E-Mail Address Widget

Objective
To learn how to write a simple widget to present some data more appealingly in
the context of a simple UIM page.

Developing Custom Widgets 13

Prerequisites
A knowledge of UIM and Java development.

Introduction
The presentation requirements of many pages can be satisfied with simple UIM
pages containing fields that are laid out using clusters and lists. However, the
presentation of the data within a cluster or list might benefit by presenting it in a
more aesthetically pleasing way. This chapter will show how the an e-mail address
can be enhanced instead of presenting it as plain text. A link will be added to
allow the user to click the address and open their e-mail software and also an icon
will be added.

Defining the HTML
By default, string values are presented in the Cúram application, such as e-mail
addresses, without any HTML mark-up. The string value is simply added to the
HTML page in the appropriate location. The e-mail address widget must produce
HTML in the following form for an e-mail address such as info@example.com:

The HTML above is formatted for clarity, but it will be generated without any
indentation or line breaks, as these are not necessary for the browser to present the
e-mail address properly and only increase the size of the page.

A span element specifying a custom CSS class name contains a hyperlink defined
by the a (anchor) element. The anchor element's href attribute prefixes the e-mail
address with mailto:, as most browsers will react to that value by opening the
system's default e-mail application and creating a new message with that address
in the To: field. The anchor element contains an img element for the e-mail icon
and the e-mail address text that will be displayed for the user to click.

The CSS vertical-align style applies only to the img element. It ensures that the
e-mail address text shown to the user lines up with the centerline of the text,
rather than the baseline. This looks more appealing. The same styling goal could
be achieved if the class attribute were placed on the img element instead of the
span element. However, placing the email-container class name on the span
element allows further customization of the other elements using different CSS
selectors without the need to change the HTML structure generated by the widget,
which would involve changing and rebuilding the Java source code.

The Cúram Web Client Reference Manual provides more details on adding custom
CSS resources to the application.

info@example.com

Figure 1. HTML Output of the E-Mail Address Widget

.email-container img {
vertical-align: middle;

}

Figure 2. Custom CSS for the E-Mail Address Widget

14 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Defining the Renderer Class
The Cúram Renderer API defines the DomainRenderer interface that is used when
writing renderer plug-in classes, such as for the e-mail address widget. A plug-in
class has a render method that is provided with details of the field to be rendered
and the method must retrieve the data bound to that field and add the HTML
mark-up to that data.

The developer must not implement the DomainRenderer interface directly. Instead,
the OOTB application provides abstract base classes that the developer must use as
the base of any custom renderer plug-in class. The e-mail address widget produces
a read-only value, so it will be presented using a view-renderer plug-in based on
the AbstractViewRenderer class. The developer should place the
EMailAddressViewRenderer.java source file in the sample package sub-folder of the
javasource folder of the client application component.

A renderer plug-in class uses the W3C DOM Level 3 Core API to create the HTML
content. This API is a standard component of the Java Runtime Environment for
Java 5 and above. It is documented in the Javadoc supplied for the corresponding
JDK. For further information about this API, refer to that documentation.

The first argument to the render method is a Field object that represents the
details of the UIM FIELD element to be rendered and the data bound to it by its
connections.

The second argument is a DOM DocumentFragment node. The goal of the render
method is to append DOM nodes representing the data and its HTML mark-up to
this fragment. The system will automatically serialize these nodes to HTML in
string form and include this in the HTML stream for the page that is returned to
the web browser.

The third argument is a RendererContext object. This object provides access to the
context in which a renderer is invoked. It includes facilities to delegate rendering
to other renderers, to resolve the data identified by the paths associated with a
Field object, to include JavaScript resources in the page that can be shared with
other renderers, and other facilities that are elaborated upon in the API
documentation.

Use of the RendererContract argument to the render method is not supported
except in the limited manner described later in this guide.

See the Cúram Javadoc for full details on each of these arguments and their
interface types.

public class EMailAddressViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
// Create the HTML here....

}
}

Figure 3. Declaration of the EMailAddressViewRenderer Class

Developing Custom Widgets 15

Accessing the Data
The Field object has a Binding property that defines the source path and target
path that identify the data that is bound to the field. These paths combine the
server interface name and the property name into a single value. The context
provides a DataAccessor object that can be invoked to resolve paths to their values.
For a view-renderer, only the source path is provided. The target path is only
provided for edit-renderers (presented in “A Text Field Widget with No
Auto-completion” on page 39). Paths can represent values other than server
interface properties. The developer should not be concerned about where the data
comes from, only that it can be retrieved when required. More information about
the available paths and their forms is provided in “Accessing Data with Paths” on
page 68. The code to retrieve the e-mail address string value is shown below.

The source path is retrieved from the field's binding and passed to the get method
of the data accessor retrieved from the context. The source path will never be null
for a view-renderer plug-in. The get method will return the value of the (in this
case) server interface property. The value will be formatted to a string
representation appropriate for the active user. This formatting is performed using
the format method of the DomainConverter plug-in associated with the domain of
the server interface property. While the formatting of an e-mail address value is
trivial (the value is simply returned as is), other values, such as dates and
date-times must be formatted using the active user's locale, time zone and date
format. Regardless of the type of the underlying data, this will all be handled
automatically by the converter plug-ins. The returned string will be suitable for
inclusion in the HTML response without any further formatting. See the Cúram
Web Client Reference Manual for more information on converter plug-ins and their
format methods.

Generating the HTML Content
With the e-mail address retrieved, it must now be marked up with the required
HTML. The DOM API, while a little verbose, makes this process easy and reduces
the chances of producing invalid output. The use of the DOM API means that
opening and closing tags for the elements will be created as needed and the
attribute values and body content will be escaped automatically.

All content created using the DOM API must be created in the context of the
owning DOM Document. Each node has a property that identifies this Document
object, so it can be retrieved from the document fragment. Elements and other
nodes can be created using the factory methods of the Document object. The nodes
can be appended to each other, and ultimately to the provided document fragment,
to create the correct HTML structure. This is shown below (see “Source Code for
the E-Mail Address Widget” on page 78 for the complete source code of this
renderer).

String emailAddress = context.getDataAccessor()
.get(field.getBinding().getSourcePath());

Figure 4. Getting the E-Mail Address Value

16 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The first line gets the owner document that is used throughout the rest of the
method to create new nodes. The span element is then created and added to the
document fragment. The other elements and nodes are created and added in turn.
When the render method returns, the system takes the newly populated document
fragment and incorporates its contents into the HTML page in the appropriate
location.

The URI of Cúram application pages includes the locale code as the first part of
the resource path, for example, en/Person_homePage.do. This path is relative to the
application's context root, which corresponds to the WebContent folder in the
development environment. When icons or other resources are referenced, the ../
path prefix is needed for relative URIs so move from the locale-specific folder in
the page's URI, back to the context root folder. More details about the inclusion of
custom image resources can be found in the Cúram Web Client Reference Manual.

Configuring the Widget
To configure the e-mail address widget, the data must be in a domain that is
specific to e-mail addresses. Here, the SAMPLE_EMAIL_ADDR domain is
assumed. The DomainsConfig.xml file should be added to the client application
component, or the existing file should be modified if it already exists, to associate
the view-renderer plug-in class with that domain.

Applying the above configuration, the view-renderer of the custom widget will
now be invoked anywhere a UIM FIELD element has a source connection to a
server interface property in the SAMPLE_EMAIL_ADDR domain. If the UIM FIELD
has a target connection, the edit-renderer will be used instead. As no edit renderer
is defined in this configuration, the edit-renderer of the parent or other ancestor
domain, will be inherited and used. Typically, this will be the TextEditRenderer
associated by default with the SVR_STRING domain.

Document doc = fragment.getOwnerDocument();

Element span = doc.createElement("span");
span.setAttribute("class", "email-container");
fragment.appendChild(span);

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "mailto:" + emailAddress);
span.appendChild(anchor);

Element img = doc.createElement("img");
img.setAttribute("src", "../Images/email_icon.png");
anchor.appendChild(img);

anchor.appendChild(doc.createTextNode(emailAddress));

Figure 5. Marking Up the E-Mail Address Value

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_EMAIL_ADDR">
<dc:plug-in name="view-renderer"

class="sample.EMailAddressViewRenderer"/>
</dc:domain>

</dc:domains>

Figure 6. Configuring the E-Mail Address Widget

Developing Custom Widgets 17

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 65.

The Sample Context Panel Widgets

Objective
To introduce the functionality of the sample context panel widgets that will be
developed throughout the following chapters of this guide.

Prerequisites
An understanding of the basic process of developing custom widgets, as presented
in the previous chapters.

Introduction
The previous chapter presented the main steps required to develop a simple
custom widget and the artifacts required for its operation. Simple custom widgets,
such as the e-mail address widget, are often sufficient to meet presentation
requirements. They can also be used in the context of more complex widgets. In
this chapter, two such complex widgets will be introduced. The following chapters
will develop these sample widgets in full to demonstrate all of the main concepts
in advanced custom widget development.

The two sample widgets are used to present information in context panels. To
avoid overloading the developer with information, the main parts of these context
panel widgets will be developed first in isolation. Each part will be a widget in its
own right and will be configured for use on its own before the next part is
introduced. When the parts are essentially complete, they will be combined using
new renderer classes that delegate the rendering of these parts to form the full
sample widgets. Later chapters will then show how issues such as text localization,
locale-specific data formatting and accessibility compliance can be addressed.

The Sample Widgets
The first sample widget is a context panel providing details about a person shown
in “The Sample Widgets.” The widget has two parts: the first part presents a
photograph of the person above their name, an icon provides a hyperlink from the
photograph to the home page of that person; the second part displays details about
that person using text with elaborate styling and icons. This development of this
context panel will show how these two parts can be created and used
independently and how they can also be combined together into a single widget.
In the cases of both of these parts, the content and layout requirements cannot be
met using ordinary UIM pages.

18 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

1. Photograph
2. Icon Links to Person's Home Page
3. Name
4. Name
5. ID
6. Address
7. Gender
8. Date Of Birth
9. Telephone Number

10. Email

The photograph widget will introduce XML-based data sources and the use of the
FileDownload servlet to deliver images to the web browser. The details widget will,
at first, demonstrate a more complex example of a widget backed by XML data.
Later, the details widget will be used to show how the e-mail address widget
developed in “An E-Mail Address Widget” on page 13 can be reused through
delegation to present the e-mail address value, how text can be localized and how
locale-specific formatting can be applied to the date of birth value.

The second sample widget, a person list widget shown in “The Sample Widgets”
on page 18, is another context panel widget. This widget displays a list of people
using their photographs and, when each photograph is clicked, some details about
that person are shown in a pop-up box. The photograph widget and details widget
developed for the first sample are reused to create this new context panel widget.
This time, however, the person's name is presented in a different way in the details
panel and their ID number is omitted. This kind of reuse is more complex than the
reuse of a simple e-mail address renderer.

Figure 7. Context Panel for a Person

Developing Custom Widgets 19

1. Photograph
2. Icon Links to Person's Home Page
3. Name
4. Name
5. Address
6. Gender
7. Date Of Birth
8. Telephone Number
9. Email

There are two fundamentally different ways to access data: as single values and as
lists of values. The person list widget must handle a list of values that stored in an
XML document. Widgets that are developed to handle a single value can, with a
little care, be reused in the context of widgets that present lists of values. The reuse
of the photograph and details widgets in a list context will demonstrate further
complex rendering techniques.

A Photograph Widget

Objective
To show how to develop a widget that displays the photograph of a person in a
context panel and to show to to access XML data.

Prerequisites
Familiarity with Java development and with the construction of web page content
using CSS and HTML.

Figure 8. Context Panel for a List of Case Participants

20 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Introduction

1. Photograph
2. Link to the Associated Details Page
3. Name

The photograph widget displays a photograph of a person in the current context
with their name and a link to an associated details page. “An E-Mail Address
Widget” on page 13 described how to access a single source value (the e-mail
address) and generate HTML markup to provide a more aesthetically pleasing
representation of an e-mail address. The same principals apply here, except that
multiple source values are required for the photo widget. The person's name is
displayed as text and their unique identifier is required to retrieve their
photograph as well as being needed as a parameter to link to the associated details
page. This chapter will show how multiple source values can be combined and
accessed by the widget.

This chapter will also show how to access a photograph. Photographs are typically
stored in the database along with other details of the person. Photographs, like any
other images, can be delivered to the web browser by using a HTML img element
and setting its src attribute to the URI of the resource that can supply the image
data. For images such as icons, the URI points to a static image file within the web
client application. For photographs, the URI points to the Cúram FileDownload
servlet and includes the necessary parameters to instruct that servlet to retrieve the
image data from the database and return it to the web browser.

Defining the HTML
As shown by the screen-shot, the photograph widget displays a link, a photograph
and the person's name one under the other. It is recommended that all widgets
have a single root node with a specific CSS class. This makes the “boundaries” of
the widget obvious. It is also the basis of making associated CSS rules as specific
as possible to this widget. The “root” class is then used when when defining CSS
rules for all content within the widget. In this case, the root div element has been
given the photo-container class name. There are three child div elements

Figure 9. Context Panel Showing a Photograph of a Person

Developing Custom Widgets 21

containing the link, the photo and the person name. Each of these has also been
given a CSS class so that their contents can be individually styled. The img
elements show how both a static and a dynamic image resource can be accessed.
The dynamic image resource uses the Cúram FileDownload servlet. The use of this
feature and the value of the img element's src attribute will be described in this
chapter.

The HTML above is formatted for clarity, but it will be generated without any
indentation or line breaks, as these are not necessary for the browser to present the
e-mail address properly and only increase the size of the page.

Based on the screen-shot, the visual requirements of the widget can be summarized
as:
v The widget has a border.
v The link is right-aligned in the widget.
v The photograph and person name are center-aligned in the widget.

The class names applied in the HTML allow these requirements to be implemented
in CSS as follows:

The class name of the root div element is used when defining all CSS rules to
ensure they are specific to this widget. The photo-container class applies a border
and fixed width to the widget. The fixed width means an image with a max size of
88 pixels can be accommodated, allowing for the border. If the image width is less

<div class="photo-container">
<div class="details-link">

</div>
<div class="photo">

<img src="../servlet/FileDownload?
pageID=Sample_photo&id=101">

</div>
<div class="description">

James Smith
</div>

</div>

Figure 10. HTML Output of the Photo Widget

.photo-container {
border: 1px solid #DADADA;
width: 90px;
height: 130px;

}

.photo-container .details-link {
text-align: right;

}

.photo-container .photo {
text-align: center;

}

.photo-container .description {
text-align: center;
font-weight: bold;

}

Figure 11. Custom CSS for the Photo Widget

22 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

than this maximum value, ensure it is an even number. Since the image is centrally
aligned this ensures there is even spacing on each side of the image. The remaining
CSS classes make use of the text-align CSS style to align the contents within each
child div element. This is possible because the contents of each div element are
“inline” elements i.e. an anchor element, an image element and plain text. Finally,
there is an additional style on the description element to set it's font.

Defining Data in XML Form
The previous chapters described how simple data can be accessed by a renderer
and marked up with HTML for presentation. For complex widgets, simple values
like that are usually not sufficient. It is often preferable for the value to be an XML
document that contains all of the data required for the widget in a structured form.
In the case of this photograph widget, the concern role ID of the person and the
name of the person are required to present the photograph correctly. As the widget
is associated with a UIM FIELD element that can only specify one SOURCE
connection to the required data, both the ID and the name must be passed back in
a single server interface property. The Cúram application provides support classes
that make it simple to access data expressed as an XML document, so an XML
document containing the values is the preferred form when combining data into a
single server interface property.

Below is a sample of an XML document that represents all of the information
required to present the photograph of a person. The id element defines the concern
role ID value passed to the FileDownload servlet using the id parameter shown in
the example in the previous section. The name element defines the name of the
person to be shown below the photograph. To make best use of the support classes
provided with the Cúram application, the values should be given in the body of
the elements, rather than as attributes of a single element. The XML document is
constructed in a server facade and returned in a single (string-based) property.

Defining the Renderer Class
The skeleton renderer class for the photograph widget is shown below. The class
extends the same base class as the e-mail address widget, as it too is a view
renderer. The class should be created in the component/sample/javasource/sample
folder.

<photo>
<id>101</id>
<name>James Smith</name>

</photo>

Figure 12. An XML Document Describing a Photograph

public class PhotoViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException {

// Add the HTML to the "fragment" object here....
}

}

Figure 13. The Renderer Class for the Photograph Widget

Developing Custom Widgets 23

Accessing Data in XML Form
“An E-Mail Address Widget” on page 13 described how to access a single source
value using a Field object, its Binding property and a source path. For the
photograph widget, the source value is no longer a simple string, instead it is an
XML document. The approach used for the e-mail address widget needs to be
extended to allow values embedded in the XML document to be retrieved
individually. Support is provided for accessing data in an XML by extending the
source path. The code to retrieve the person's name and unique identifier from the
XML document is shown below.

The source path is retrieved from the field's binding in the same way as the e-mail
address widget in the previous chapter. However, the source path is not passed
directly to the get method of the data accessor retrieved from the context . Doing
this would simply return the entire XML document as a string. Instead the source
path is first extended using the extendPath method. The path extensions are
photo/id and photo/name. They correspond directly to the tree structure of the
XML document. For example, the photo/id path means the data accessor will
retrieve the body content of the id element which is a child of the photo element.
In the sample XML above, this is the value “101”. Those familiar with XPATH will
recognize the format of these paths. However, while the extended paths used here
are similar, they are not XPATH. Creating simple XML documents where each
value is represent in the body content of an element will mean the path formats
shown in this section will be all that is required to use in a widget. However, the
“Extending Paths for XML Data Access” on page 73 appendix describes XML data
access through path extension in full detail.

Generating the HTML Content
With the data for the photograph widget retrieved, it must now be marked up
with the required HTML.

String personID = context.getDataAccessor()
.get(component.getBinding()

.getSourcePath().extendPath("photo/id"));
String personName = context.getDataAccessor()

.get(component.getBinding()
.getSourcePath().extendPath("photo/name"));

Figure 14. Getting the Person Name and ID Values

24 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The same techniques used to construct the e-mail address widget using the DOM
API in the previous chapter, also apply here. The URI used to link to the details
page, a static image and the FileDownload servlet are described below.

Linking to a UIM Page
The URI of Cúram application pages includes the locale code as the first part of
the resource path, for example, en/Person_homePage.do. This path is relative to the
application's context root, which corresponds to the WebContent folder in the
development environment. All UIM pages are therefore considered to be in a locale
“folder”. When linking from one UIM page to another, it is always in the same
locale (or “folder”). Therefore the locale should not be specified in the URI when
generating a link. For example, in the sample code shown above, note that the href
to link to the Person_home UIM page was generated without the locale specific
folder specified:

Linking to a Static Image
Linking to a static image was described when creating the e-mail address widget
in the previous chapter, but is worth repeating here. Static images are stored in the
folder Images which is located directly under the application's context root. Because
a UIM page is in a locale specific folder, when icons or other resources are
referenced the ../ path prefix is needed for relative URIs. This is to move from the

Document doc = fragment.getOwnerDocument();

Element rootDiv = doc.createElement("div");
rootDiv.setAttribute("class", "photo-container");
fragment.appendChild(rootDiv);

Element linkDiv = doc.createElement("div");
linkDiv.setAttribute("class", "details-link");
rootDiv.appendChild(linkDiv);

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "Person_homePage.do?"

+ "id=" + personID);
linkDiv.appendChild(anchor);

Element anchorImg = doc.createElement("img");
anchorImg.setAttribute("src", "../Images/arrow_icon.png");
anchor.appendChild(anchorImg);

Element photoDiv = doc.createElement("div");
photoDiv.setAttribute("class", "photo");
rootDiv.appendChild(photoDiv);

Element photo = doc.createElement("img");
photo.setAttribute("src",

"../servlet/FileDownload?"
+ "pageID=Sample_photo"
+ "&id=" + personID);

photoDiv.appendChild(photo);

Element descDiv = doc.createElement("div");
descDiv.setAttribute("class", "description");
descDiv.appendChild(doc.createTextNode(personName));
rootDiv.appendChild(descDiv);

Figure 15. Marking Up the Photograph Data

anchor.setAttribute("href", "Person_homePage.do?"
+ "id=" + personID);

Figure 16. Linking to a UIM Page

Developing Custom Widgets 25

locale-specific folder in the page's URI, back to the context root folder as shown in
this excerpt from the sample code:

Linking to the FileDownload Servlet
The FileDownload servlet is used to download an image resource from the Cúram
database. The path to the file download servlet is servlet/FileDownload which is
relative to the application's context root. The ../ path prefix is also needed to
move from the locale-specific folder as shown in this excerpt from the sample
code:

The FileDownload servlet has to be configured to use the parameters shown in the
URI above to download the correct photograph. This is described in detail in later
in this chapter.

Configuring the Widget
To configure the photograph widget, the data must be in a domain that is specific
to photographs. Here, the SAMPLE_PHOTO_XML domain is assumed. The
DomainsConfig.xml file should be added to the client application component, or the
existing file should be modified if it already exists, to associate the view-renderer
plug-in class with that domain. To access data in XML form and use the path
extension feature described earlier a “marshal” plug-in must also be configured
exactly as shown below. Failure to do so will mean that individual values cannot be
retrieved from the XML document as shown earlier.

Applying the above configuration, the view-renderer of the custom widget will
now be invoked anywhere a UIM FIELD element has a source connection to a
server interface property in the SAMPLE_PHOTO_XML domain. If the UIM FIELD
has a target connection, the edit-renderer will be used instead. As no edit renderer
is defined in this configuration, the edit-renderer of the parent or other ancestor
domain, will be inherited and used. Typically, this will be the TextEditRenderer
associated by default with the SVR_STRING domain. However, this type of widget
is displaying a subset of the information the Cúram application captures about a

anchorImg.setAttribute("src", "../Images/arrow-icon.png");

Figure 17. Linking to a Static Image

photo.setAttribute("src",
"../servlet/FileDownload?"
+ "pageID=Sample_photo"
+ "&id=" + personID);

Figure 18. Linking to the FileDownload Servlet

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_PHOTO_XML">
<dc:plug-in

name="view-renderer"
class="sample.PhotoViewRenderer"
/>

<dc:plug-in
name="marshal"
class="curam.util.client.domain.marshal.SimpleXPathMarshal"
/>

</dc:domain>

</dc:domains>

Figure 19. Configuring the E-Mail Address Widget

26 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

person. An editable version of this widget would not be expected. Instead the
information would edited through the standard Cúram screens associated with a
person, for example if the person's name required updating.

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 65.

Configuring the FileDownload Servlet
The Cúram Web Client Reference Manual provides full information on the
configuration of the FileDownload servlet for the use of the FILE_DOWNLOAD WIDGET
in a UIM page. For this photograph widget, the same configuration is used, but
instead of letting the UIM WIDGET element generate HTML anchor tag that
downloads the photograph when clicked, the photograph widget will create a
HTML image tag using the same URI that displays the image within the page. The
example below is representative of the FileDownload configuration that is required
in curam-config.xml:

Each file download configuration is uniquely represented by the PAGE_ID of the
FILE_DOWNLOAD element. The PAGE_ID is used when a file download is initiated
directly from a UIM page by using the FILE_DOWNLOAD WIDGET. However, as the file
download link is being generated by a custom widget, the only requirement is that
the PAGE_ID value is unique, it does not have to correspond to an existing UIM
page. The widget will use this value when generating the URI to the FileDownload
servlet. The remaining configuration elements and attributes define the server
facade to invoke and it's inputs and outputs. Consult the Cúram Web Client
Reference Manual for information on the configuration of the FileDownload servlet

The HTML for the image element should look like the example above. The src
attribute path is made up of a number of parts. The fixed path to Cúram's file
download servlet is: ../servlet/FileDownload. The pageID request parameter is
mandatory and must correspond to the PAGE_ID of the FILE_DOWNLOAD configuration
element. The id request parameter corresponds to the INPUT configuration element.
With this URI, the FileDownload servlet reads the configuration, sets the input
fields of the server facade, invokes the facade and retrieves it's output fields which
contain the file name and binary file data.

<APP_CONFIG>

<FILE_DOWNLOAD_CONFIG>
<FILE_DOWNLOAD PAGE_ID="Sample_photo"

CLASS="sample.interfaces.SamplePkg.Sample_readImage_TH">
<INPUT PAGE_PARAM="id" PROPERTY="key$concernRoleID"/>
<FILE_NAME PROPERTY="key$concernRoleID"/>
<FILE_DATA PROPERTY="result$concernRoleImageBlob"/>

</FILE_DOWNLOAD>
</FILE_DOWNLOAD_CONFIG>

</APP_CONFIG>

Figure 20. Example FileDownload Configuration for a Photograph

Figure 21. Example of the HTML to Show an In-line Image

Developing Custom Widgets 27

A Details Widget Demonstrating Widget Re-use

Objective
To show how to develop a widget that presents the details of a Person using
formatting not possible on a plain UIM page. To show how to re-use the e-mail
address widget described earlier.

Prerequisites
The previous chapters in this document.

Introduction
The presentation requirements of many pages can be satisfied with simple UIM
pages containing fields that are laid out using clusters and lists. However, the
presentation of this details widget requires additional processing such as
displaying the person's name and reference number in a different font, refer to
“The Sample Widgets” on page 18. Also, the e-mail address is presented in the
same form as shown in “An E-Mail Address Widget” on page 13. This widget will
be re-used within the details widget.

Defining the HTML
In the details widget, there are a number of lines of plain text displaying the the
person's address, date of birth and so on. The person's name, reference number
and contact details have specific presentation requirements and which means they
need to be distinguished in the HTML so that specific CSS rules can be applied to
them. The following HTML structure for the details widget achieves this:

The HTML above is formatted for clarity, but it will be generated without any
indentation or line breaks, as these are not necessary for the browser to present the
e-mail address properly and only increase the size of the page.

It is good practice to give a widget a single root node with a specific CSS class. It
is the basis of making CSS rules as specific as possible to this widget. The “root”
class is used when when defining CSS rules for all content within the widget. The
root div element has been given the person-details-container class name. Each
line of text in the details panel is represented by a div element. Additionally, two
div elements have CSS class names so that specific CSS rules can be applied to
them. Note that the HTML representing the e-mail address is identical to that

<div class="person-details-container">
<div class="header-info">James Smith - 24684</div>
<div>1074, Park Terrace, Fairfield,
Midway, Utah, 12345</div>
<div>Male</div>
<div>Born 9/26/1964, Age 46</div>
<div class="contact-info">

1 555 3477455

info@example.com

</div>
</div>

Figure 22. HTML Output of the Details Widget

28 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

described in “An E-Mail Address Widget” on page 13.

The header-info and contact-info classes allow the specific presentation
requirements (e.g. changing the font) to be implemented. Note that the CSS rules
are made as specific as possible by using the person-details-container class name
in every rule.

Defining Data in XML Form
The photograph widget required an XML document to provide all of the data
required by the renderer class. The details widget also requires an XML document
for the same reasons. The general structure of the documents is the same: a root
element containing one child element for each value, where each value is the body
content of the child element.

The XML above is formatted for clarity, the indentation or line breaks are not
required.

Defining the Renderer Class
The skeleton renderer class for the details widget is shown below. The class
extends the same base class as the e-mail address widget and the photograph
widget, as it too is a view renderer. The class should be created in the
component/sample/javasource/sample folder.

.person-details-container .header-info {
color: #FB7803;
font-size: 140%;

}
.person-details-container .contact-info img {

vertical-align: middle;
}

Figure 23. Custom CSS for the Details Widget

<details>
<name>James Smith</name>
<reference>24684</reference>
<address>1074, Park Terrace, Fairfield,
Midway, Utah, 12345</address>
<gender>Male</gender>
<dob>9/26/1964</dob>
<age>46</age>
<phone>1 555 3477455</phone>
<e-mail>james@ie.ibm.com</e-mail>

</details>

Figure 24. An XML Document Describing a Person

public class PersonDetailsViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException {

// Add the HTML to the "fragment" object here....
}

}

Figure 25. The Renderer Class for the Details Widget

Developing Custom Widgets 29

Accessing Data in XML Form
Data from the XML document is accessed in the same way as the photograph
widget described in the previous chapter. The source path is extended to extract an
individual value. For example, /details/name retrieves the person's name.

All values in the XML document can be accessed using the same technique except
for the e-mail address value. The e-mail address widget described in “An E-Mail
Address Widget” on page 13 will be re-used to output the e-mail address. As
shown in that chapter, the e-mail address widget uses a Field object, its Binding
property and a source path to access the e-mail address value. The next section
will explain how to invoke that renderer.

Generating the HTML Content
The same technique, described in previous chapters, of using the DOM API to
generate HTML content can be used to output the HTML show earlier in this
chapter. The only new concept comes at the point when the HTML for the e-mail
address is to be output. The e-mail address widget will be re-used within the
details widget to output the HTML required for an e-mail address.

The render method of a widget is usually invoked by directly by the Cúram
infrastructure. The parameters provided to the render method are set based on
what was specified in UIM. For example, the source path of the Field object's
Binding is set based on CONNECT and SOURCE element's used within a FIELD element.
To invoke one widget from another it becomes the developer's responsibility to
ensure the appropriate widget is invoked and the correct parameters are supplied
to it. The code required to do this is as follows:

The steps to invoke the e-mail address widget are:
1. Create a Field component.

A FieldBuilder is required to create a Field. The ComponentBuilderFactory can
be used to create a FieldBuilder as shown above. See “Overview of the
Renderer Component Model” on page 50 for full details.

2. Set the domain of the Field.
The underlying domain definition of a Field is used to select the appropriate
widget. “An E-Mail Address Widget” on page 13 showed how the e-mail

String name = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/name"));
String reference = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/reference"));

Figure 26. Getting the Person name and Reference Number

FieldBuilder fb =
ComponentBuilderFactory.createFieldBuilder();

fb.setDomain(
context.getDomain("SAMPLE_EMAIL"));

fb.setSourcePath(
field.getBinding().getSourcePath()

.extendPath("/details/e-mail"));
DocumentFragment emailFragment = doc.createDocumentFragment();
context.render(fb.getComponent(), emailFragment,

contract.createSubcontract());
div.appendChild(emailFragment);

Figure 27. Invoking the E-Mail Address Widget from the Details Widget

30 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

address widget was associated with the SAMPLE_EMAIL domain definition.
This domain definition is set on the Field as shown above.

3. Set the source path of the Field.
“An E-Mail Address Widget” on page 13 chapter showed how the e-mail
address widget used it's source path to access the value of the e-mail address.
This is normally set based on the CONNECT in UIM. In this case the source path
for the widget has to be specified “manually”. The details widget has to tell the
e-mail address widget where to get its data from. As shown earlier the e-mail
address is embedded in the XML document supplied to the details widget. The
path extension technique to access XML data, that has been described in
previous chapters, can be used to specify the source path for the e-mail address
widget.
The setSourcePath method of the FieldBuilder is used to set the source path
as shown in the following excerpt from the example above. The source path is
the same as used to access other values from the XML document. The
difference is that instead of retrieving the value directly in the details widget, it
is set as the source path of the e-mail address widget.
fb.setSourcePath(

field.getBinding().getSourcePath()
.extendPath("/details/e-mail"));

This demonstrates the benefits of the path system to access data. In “An E-Mail
Address Widget” on page 13, the e-mail address was retrieved directly from a
server interface property. In this chapter the e-mail address is retrieved from an
XML document. However the e-mail address widget is identical in both cases.
It retrieves its data using a source path and is abstracted from what source path
actually resolves to “behind the scenes”.

4. Create a DocumentFragment for the widget content
As shown in previous chapters, he DOM API has been used to create HTML
elements and add them to a DocumentFragment, supplied as the fragment
parameter to the render method. The DocumentFragment is usually supplied by
the Cúram infrastructure. In this case the fragment has to be created using the
createDocumentFragment as shown above.

5. Invoke the e-mail address widget
The e-mail address widget is invoked by calling context.render. The first
parameter to the method is a Field. The FieldBuilder was used to set the
domain and source path and the Field is retrieved by calling the getComponent
method. The second parameter is the DocumentFragment created earlier. The
widget will add it's HTML content to this fragment. The final parameter is
reserved and should always be set to contract.createSubcontract().

6. Append HTML generated from e-mail address widget
After the e-mail address widget has been invoked, the DocumentFragment will
contain its HTML content. This fragment can be added to the appropriate place
in the details widget. In the HTML described earlier the HTML should be
added as a child of the div element with the contact-info CSS class.

The first three steps above build up a “component model”, in this case a single
Field. The remaining steps then render the model as HTML. The “Overview of the
Renderer Component Model” on page 50 appendix provides more details on the
classes and APIs which can be used to build a “component model”.

Configuring the Widget
To configure the details widget, the data must be in a domain that is specific to
person details. Here, the SAMPLE_DTLS_XML domain is assumed. The

Developing Custom Widgets 31

DomainsConfig.xml file should be added to the client application component, or the
existing file should be modified if it already exists, to associate the view-renderer
plug-in class with that domain. To access data in XML form and use the path
extension feature described earlier a “marshal” plug-in must also be configured
exactly as shown below. Failure to do so will mean that individual values cannot be
retrieved from the XML document as shown earlier.

Applying the above configuration, the view-renderer of the custom widget will
now be invoked anywhere a UIM FIELD element has a source connection to a
server interface property in the SAMPLE_EMAIL_ADDR domain. If the UIM FIELD
has a target connection, the edit-renderer will be used instead. As no edit renderer
is defined in this configuration, the edit-renderer of the parent or other ancestor
domain, will be inherited and used. Typically, this will be the TextEditRenderer
associated by default with the SVR_STRING domain. However, this type of widget
is displaying a subset of the information the application captures about a person.
An editable version of this widget would not be expected. Instead the information
would edited through the standard Cúram screens associated with a person, for
example if the person's name required updating.

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 65.

Tying Widgets Together in a Cascade

Objective
To expand on the concepts of widget re-use and delegation. To show how to build
generic widgets using the Component and Container interfaces.

Prerequisites
The previous chapters in this document.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_DTLS_XML">
<dc:plug-in

name="view-renderer"
class="sample.PersonDetailsViewRenderer"
/>

<dc:plug-in
name="marshal"
class="curam.util.client.domain.marshal.SimpleXPathMarshal"
/>

</dc:domain>

</dc:domains>

Figure 28. Configuring the Person Details Widget

32 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Introduction

1. Photograph
2. Icon Links to Person's Home Page
3. Name
4. Name
5. ID
6. Address
7. Gender
8. Date Of Birth
9. Telephone Number

10. Email

This chapter will expand on the re-use of widgets to produce the “Person Context
Panel Widget”. As shown above, this is a combination of the photograph widget
and details widget positioned side-by-side. The previous chapter introduced
widget re-use by showing how the details widget could delegate to the e-mail
address widget to generate part of it's HTML content. Using the exact same
technique, the “Person Context Panel Widget” could combine the output of the
photograph and details widgets and display them side-by-side to produce the
content shown above. However, there is an opportunity to provide a further layer
of abstraction by introducing a generic widget for displaying content side-by-side
in a horizontal layout. The generic requirement could be phrased as: “To combine
the output of multiple widgets in a horizontal layout”.

The previous chapter introduced the concepts of building a "component model"
and delegating to another widget to render it as HTML. The details widget was
responsible for building the component model, which consisted of a single Field.
The model was then passed to the e-mail address widget to generate HTML. In the
same way the “Person Context Panel Widget” will be responsible for building the
component model. In this case the component model will be represented as a
collection of Field 's; one for the photograph, the other for the person's details. The
“Person Context Panel Widget” will pass the component model to a new widget,

Figure 29. Context Panel Showing the Photograph and Details of a Person

Developing Custom Widgets 33

the “Horizontal Layout Widget”. This widget in turn will delegate to photograph
and details widgets introduced in previous chapters and combine their output. The
advantage of this abstraction is the “Horizontal Layout Widget” could also be used
to fulfill separate requirements such as combine the display of multiple details
widgets or multiple photograph widgets in a horizontal layout. For example,
consider the requirement to display the photographs of a family side-by-side.

In summary, by the end of this chapter the “Person Context Panel Widget” will
delegate to the “Horizontal Layout Widget”, which in turn will delegate to the
widgets introduced in earlier chapters. This is what is referred to as a “cascade”.

Defining Data in XML Form
The XML document for the “Person Context Panel Widget” widget is a
combination of the XML documents used by the photograph and details widgets
described in previous chapters, but combined in a new root element. This will
allow each of those renderers to be re-used.

Defining the HTML
The HTML of the “Person Context Panel Widget” is the output of the photograph
and details widgets combined by placing them in the cells of a HTML table to lay
them out horizontally.

The CSS class sample-container is unused in this example, but it is still a good
practice to always provide a CSS class on the root element of a widget to allow for
customization of the contents within it. For example, the root element of the

<person>
<photo>

<name>James Smith</name>
<id>24684</id>

</photo>

<details>
<name>James Smith</name>
<reference>24684</reference>
<address>1074, Park Terrace, Fairfield,
Midway, Utah, 12345</address>
<gender>Male</gender>
<dob>9/26/1964</dob>
<age>46</age>
<phone>1 555 3477455</phone>
<e-mail>james@ie.ibm.com</e-mail>

</details>
</person>

Figure 30. An XML Document Describing a Person

<table class="sample-container">
<tbody>

<tr>
<td>

<!-- HTML of photograph widget goes here -->
</td>
<td>

<!-- HTML of details widget goes here -->
</td>

</tr>
</tbody>

</table>

Figure 31. HTML Output of the Person Context Panel Widget

34 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

photograph widget has a CSS class of photo-container. If necessary, the
photograph widget could be customized specifically when it is contained within
the table shown above as follows:
.sample-container .photo-container {
/* customization of photograph widget styles */
}

Defining the Renderer Classes
Two classes are required; one for the “Person Context Panel Widget”, the other for
the “Horizontal Layout Widget”. The skeleton renderer class for the “Person
Context Panel Widget” is shown below. The class extends the same base class as
the previous widgets, as it too is a view renderer. The class should be created in
the component/sample/javasource/sample folder.

The skeleton renderer class for the generic “Horizontal Layout Widget” is shown
below. The widgets described up to now in this guide have been “view renderer's”
based on the AbstractViewRenderer class. The component model provided to each
widget was a single Field (the first parameter of its render method). As described
in the introduction above, “Horizontal Layout Widget” requires a collection of
Field 's. This requires the use of a new base class and in turn, a different signature
for the render method. Instead of a Field, a Component is provided to the render
method. With the use of a new base class, this renderer class is known as a
“component renderer” instead of a “view renderer”. The class should be created in
the component/sample/javasource/sample folder.

Generating the HTML Content

Person Context Panel Widget
The role of the “Person Context Panel Widget” is to build the component model
and delegate to the “Horizontal Layout Widget” to render the HTML from the
model. The component model is a collection of Field 's. As described in the
previous section, the render method of the “Horizontal Layout Widget” expects a
Component as it's first parameter. The out-of-the-box Cúram application provides a
subclass of Component called Container, which is specifically for creating collections

public class PersonContextPanelViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException {

// Add the HTML to the "fragment" object here....
}

}

Figure 32. The Renderer Class for the “Person Context Panel Widget”

public class HorizontalLayoutRenderer
extends AbstractComponentRenderer {

public void render(
Component component, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException {

// Add the HTML to the "fragment" object here....
}

}

Figure 33. The Renderer Class for the “Horizontal Layout Widget”

Developing Custom Widgets 35

of Component 's or Field 's.

The steps to build the model and invoke the “Horizontal Layout Widget” are:
1. Create a Container component.

A ContainerBuilder is required to create a Container. The
ComponentBuilderFactory can be used to create a ContainerBuilder as shown
above. See “Overview of the Renderer Component Model” on page 50 for full
details.

2. Set the “style” of the Container.
The “Horizontal Layout Widget” is a component renderer which is associated
with a “style”. The “Horizontal Layout Widget” has been associated with the
horizontal-layout style. This must be set using the setStyle method as shown
above. The style corresponds to a particular renderer implementation class.
Configuration of this “style” is described later in this chapter and more detail
on the component model and configuring renderers can be found in the
appendices (note it is not a CSS style that is being referred).

3. Create a Field representing the photograph and add it to the container.
As shown in the previous chapter, a Field is created using a FieldBuilder.
Setting the domain definition to SAMPLE_PHOTO_XML ensures the
photograph widget will be invoked. The next step is to set it's source path. The
photograph XML is now embedded in an XML document with a root element
called person which is supplied to the “Person Context Panel Widget”. “A
Photograph Widget” on page 20 showed how data for the photo widget was
accessed in the XML document using paths such as photo/name. The full path
to get the same data is now /person/photo/name. The photograph widget
cannot be changed. Instead the source path is extended as shown above to
account for the root person element. When the photograph widget executes, the
paths will be combined to ensure the full path corresponding to the combined
document is used. The Field is created using the getComponent method and
added to the Container

4. Create a Field representing the person details and add it to the container.

ContainerBuilder cb
= ComponentBuilderFactory.createContainerBuilder();

cb.setStyle(context.getStyle("horizontal-layout"));

FieldBuilder fb
= ComponentBuilderFactory.createFieldBuilder();

fb.copy(component);
fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());

fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());
DocumentFragment content

= fragment.getOwnerDocument().createDocumentFragment();
context.render(cb.getComponent(), content,

contract.createSubcontract());
fragment.appendChild(content);

Figure 34. Building the component model and invoking the “Horizontal Layout Widget”

36 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

In the same way as the previous point, a Field is created. Its domain definition
is set to SAMPLE_DTLS_XML to associate it with the details widget. The source
path is extended in the same to account for the root person element. The Field
is created using the getComponent method and added to the Container.

5. Create a DocumentFragment for the widget content
As shown in previous chapters, he DOM API has been used to create HTML
elements and add them to a DocumentFragment, supplied as the fragment
parameter to the render method. The DocumentFragment is usually supplied by
the Cúram infrastructure. In this case the fragment has to be created using the
createDocumentFragment as shown above.

6. Invoke the horizontal layout widget
The e-mail address widget is invoked by calling context.render. The first
parameter to the method is a Field. The FieldBuilder was used to set the
domain and source path and the Field is retrieved by calling the getComponent
method. The second parameter is the DocumentFragment created earlier. The
widget will add it's HTML content to this fragment. The final parameter is
reserved and should always be set to contract.createSubcontract().

7. Append HTML generated from horizontal layout widget
After the e-mail address widget has been invoked, the DocumentFragment will
contain its HTML content. This fragment can be added to the appropriate place
in the details widget. In the HTML described earlier the HTML should be
added as a child of the div element with the contact-info CSS class.

The next section shows how the “Horizontal Layout Widget” renders the
component model has HTML.

Horizontal Layout Widget
The component model supplied to the “Horizontal Layout Widget” is a collection
of components. The role of this widget is to iterate over that collection, delegating
to the widget associated with each component and combining the output into the
HTML shown earlier.

As in all previous examples, the DOM API is used to generate HTML elements. As
shown in the previous section, the component model is represented by a
Container, the render method signature requires a Component. As former is a

Document doc = fragment.getOwnerDocument();
Element table = doc.createElement("table");
table.setAttribute("class", "sample-container");
fragment.appendChild(table);

Element tableBody = doc.createElement("tbody");
table.appendChild(tableBody);

Element tableRow = doc.createElement("tr");
tableBody.appendChild(tableRow);

Container container = (Container) component;
for (Component child : container.getComponents()) {

Element tableCell = doc.createElement("td");
tableRow.appendChild(tableCell);
DocumentFragment cellContent

= doc.createDocumentFragment();
context.render(child, cellContent,

contract.createSubcontract());
tableCell.appendChild(cellContent);

}

Figure 35. Generating a HTML table and delegating to other widgets

Developing Custom Widgets 37

sub-class of the latter, a cast is required to a Container. A for loop is used to iterate
over each item in the collection using the getComponents method. Each iteration of
the for loop will:
1. Create a table cell and add it to the table row.
2. Create a DocumentFragment used when delegating to another widget.
3. Invoke another widget by calling context.render passing the current

component in the collection and the fragment (the third parameter is unused
and must always be set as shown above).

4. Appends the output from the widget to the table cell.

The requirement of this widget was described in the introduction as: “To combine
the output of multiple widgets in a horizontal layout”. This widget achieves the
horizontal layout requirement by generating a HTML table. However, note that it
is completely abstracted from the underlying details of the components it is
outputting. It is simply iterating over a collection of components and delegating to
their associated widgets. In this particular example the components represent a
photograph and person details panel. However, without any modification, the
widget could display multiple photographs side-by-side if the component model
supplied to it was constructed accordingly.

Configuring the Widgets

Person Context Panel Widget
The configuration of this widget is identical to all previous examples. It has to be
associated with a domain definition, SAMPLE_PERSON_XML is used. To allow
access to values embedded in XML documents a “marshal” plug-in must also be
configured exactly as shown below.

Horizontal Layout Widget
As described earlier, this widget is a component renderer which is not associated
with a domain definition, instead it is associated with a “style”. A separate
configuration file is used for component renderers. The StylesConfig.xml file
should be added to the client application component, or the existing file should be
modified if it already exists, to associate the component-renderer plug-in class with
the horizontal-layout style as shown below.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_PERSON_XML">
<dc:plug-in

name="view-renderer"
class="sample.PersonContextPanelViewRenderer"
/>

<dc:plug-in
name="marshal"
class="curam.util.client.domain.marshal.SimpleXPathMarshal"
/>

</dc:domain>

</dc:domains>

Figure 36. Configuring the Person Context Panel Widget

38 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The horizontal-layout style is what the “Person Context Panel Widget” used
when delegating to the “Horizontal Layout widget” i.e.
ContainerBuilder cb

= ComponentBuilderFactory.createContainerBuilder();
cb.setStyle(context.getStyle("horizontal-layout"));

When the Container component is rendered, the sample.HorizontalLayoutRenderer
class will be used. If a new renderer class is developed to achieve the horizontal
layout using a different HTML technique, the horizontal-layout style can simply
be re-configured to associate it with another renderer class. As long as that class
takes the same input (a Container component), other widgets which use this style
will not require any update.

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 65.

A Text Field Widget with No Auto-completion

Objective
To show how input controls can be customized with custom widgets and their edit
renderers.

Prerequisites
A knowledge of the behavior of Cúram form pages and a reading of the first three
chapters of this guide.

Introduction
This chapter will describe edit renderers used to mark up read/write values with
HTML. It will expand on the details in the previous chapters by introducing more
advanced concepts related to the creation of input controls on HTML forms.

The sample widget presented in this chapter is a text field widget useful for
entering sensitive information such as social security numbers (SSN). By default,
the TextEditRenderer plug-in class is configured as the edit-renderer for most text
and numeric values in the out-of-the-box application. The plug-in displays a
HTML text input control. For the input of an SSN, it may be desirable to prevent
the web browser from storing the SSN in its cache of entered form data and
subsequently providing SSN values using its form field auto-completion feature.
Microsoft Internet Explorer supports a non-standard HTML attribute to disable
auto-completion of the value of a HTML input control. This autocomplete attribute
will likely have no effect in other web browsers, but may be useful in
environments where Internet Explorer is used. The sample will show how to
render the HTML text input control, integrate it into a form page, and add the new
attribute to disable auto-completion in Internet Explorer.

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:styles

<sc:style name="horizontal-layout">
<sc:plug-in name="component-renderer"

class="sample.HorizontalLayoutRenderer"/>
</sc:style>

</sc:styles>

Figure 37. Configuring the Horizontal Layout Widget

Developing Custom Widgets 39

Defining the HTML
The HTML for the sample text field widget requires only one element, but many
attributes. The values of many of the attributes are not defined here and are just
shown with a question mark. The values will be provided by the renderer, as
explained later.

Defining the Renderer Class
The NoAutoCompleteEditRenderer class is defined in much the same way as the
EMailAddressViewRenderer class, except that the base class is AbstractEditRenderer
instead of AbstractViewRenderer. The render method is the same, as it is defined
by the DomainRenderer interface that is shared by both abstract base classes.

Handling Form Items
A HTML form page contains HTML input controls, such as text fields and
check-boxes. Input controls are required where a UIM FIELD element contains a
TARGET connection, as the user must have somewhere to enter the value before
submitting it to the targeted server interface property. An edit-renderer must create
the appropriate HTML to present an input control.

To select an edit-renderer, the system identifies the domain definition associated
with the server interface property of the target connection. Each domain definition
has associated edit-renderer and view-renderer plug-in classes. As a target
connection is present, the system will automatically use the edit-renderer instead of
the view-renderer when rendering the field.

When a form page is presented to a user, the user sets the values of the input
controls in the browser. The user then submits the form to send these values to the
server's client-tier in a new request. The edit-renderer plug-in type differs from the
view-renderer in that the edit-renderer must declare to the system what input
control it adds to a form page, so that the system can process the corresponding
values when it receives the form submission request. A view-renderer does not add
input controls, so it has no such requirement.

The RendererContext provides a method for recording form items as they are
added to the form page. The addFormItem method returns the identifier that should
be used as the value of the id and name attributes of the HTML element. Before

<input type="text" autocomplete="no"
id="?" name="?"
value="?" title"?"
tabindex="?" style="?"/>

Figure 38. HTML Output of the Date Picker Widget

public class NoAutoCompleteEditRenderer
extends AbstractEditRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
// Create the HTML here....

}
}

Figure 39. Declaration of the NoAutoCompleteEditRenderer Class

40 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

calling this method, the title (or label) of the field must be determined.

The abstract base class provides a getTitle method that can determine the title of
the given field. This renderer passes the field and this title value to the
addFormItem method. The third parameter, null, specifies an optional extended path
value. Extended path values for form items are not supported in custom
widgets.The addFormItem method returns a target ID string value that must be
used to identify the input control that will be created to correspond to this newly
registered form item.

The addFormItem method uses the Field object and the title string to record the
target path of the entered value of that control, the domain definition of the
targeted server interface property, and the label of that field. As the form page is
rendered, the system records the form items added by all of the edit renderers and
embeds all of this extra information into the HTML form on the page.

When the user submits the form, the values of all of the input controls are
submitted as ID/value pairs. The ID is the id or name attribute value of the
respective HTML input control element (which attribute is used depends on the
browser, so both attributes are added and set to the same value by the
edit-renderer plug-in). The information about the form items recorded and
embedded in the form by the system is also submitted at this time. The system
combines the input control's ID and value with the embedded form item data that
records IDs and target paths. The system can thus determine automatically which
submitted values should be assigned to which server interface properties identified
by the target paths. The label is used in the event of a validation error, so that the
error message can report the label of the field in error.

Accessing the Data
As described in an earlier chapter, the Field object has a Binding property that
defines the source path and target path that identify the data that is bound to the
field. For a view-renderer, only the source path is set; it can be resolved to get the
value to be displayed. For an edit-renderer, the target path is always set, as it
determines where the value will go when the form is submitted. However, the
source path may or may not be set. If the source path is set, then the resolved
value is used as the initial value of the input control. If the source path is not set,
then the input control will have no explicit initial value.

When no explicit initial value is defined, an initial value may still be displayed.
The UIM FIELD element supports a USE_DEFAULT attribute. If this attribute is set to
false, then no default initial value will be displayed in the absence of a source
connection. However, if the attribute is set to true, then the default value is
determined from a default value domain plug-in. The domain of the targeted
server interface property is identified and the associated default value plug-in is
invoked to get the default value to be displayed in the input control. If not set, the
value of the USE_DEFAULT attribute is assumed to be true.

Default value plug-ins are configured for all domains out-of-the-box in Cúram, but
they may be customized. Typically, the default value of a string domain is an
empty string, the default value of a numeric domain is zero and the default value

String title = getTitle(field, context.getDataAccessor());
String targetID = context.addFormItem(field, title, null);

Figure 40. Adding a Form Item to Get a Target ID

Developing Custom Widgets 41

of a date or date-time domain is the current date and time. See the Cúram Web
Client Reference Manual for more information about default value domain plug-ins
and the user of the USE_DEFAULT attribute.

Catering for explicit or default initial values is still not sufficient to determine the
correct initial value. When a validation error occurs, the system renders the form
again and displays error messages detailing what fields are in error. The values
displayed in the HTML input controls in this case are the values entered by the
user before submitting the form. Regardless of what initial values where originally
shown, the user may have changed any or all of these values. Depending on
circumstances, then, the initial value of the HTML input control could be set from
the source path, set from a default value plug-in or set by the user. To simplify the
handling of these conditions, the RendererContext provides a facility to get the
appropriate initial value for a form item.

First, the renderer retrieves the parameters of the field argument. The parameters
are a map that associates named parameters with values, all strings. These
represent, for the most part, the attributes set on the UIM FIELD element. Where
attributes are not set in the UIM and default values for those attributes need to be
handled, the renderer must respect this requirement. Above, if the value of the
USE_DEFAULT field parameter is anything other than "false", including if it is not
defined, then the useDefault variable will be set to true, which is the correct default
value for this UIM attribute and field parameter.

The appropriate initial value for the input control can now be retrieved by calling
getFormItemInitialValue on the context object. The third argument, null, is an
optional extended path value that is not supported in custom renderers.

Generating the HTML Content
As before, the DOM Core API is used to create the HTML content and the content
to be rendered is appended to the DocumentFragment passed to the render method.

The first statement creates the HTML input element. The input element is then
added to the document fragment. The required attributes are then set on the

boolean useDefault = !"false".equalsIgnoreCase(
field.getParameters().get(FieldParameters.USE_DEFAULT));

String value = context.getFormItemInitialValue(
field, useDefault, null);

Figure 41. Getting the Initial Value for a Form Item

Element input = fragment.getOwnerDocument()
.createElement("input");

fragment.appendChild(input);

input.setAttribute("type", "text");
input.setAttribute("autocomplete", "no");
input.setAttribute("id", targetID);
input.setAttribute("name", targetID);

if (title != null && title.length() > 0) {
input.setAttribute("title", title);

}

if (value != null && value.length() > 0) {
input.setAttribute("value", value);

}

Figure 42. Marking Up the Input Control

42 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

element. Note that both the id and the name attributes are defined and assigned the
same target ID value; this ensures compatibility with most web browsers. The
title and value attributes are only set if they are not null and not empty strings.

There are several other features of fields in UIM that the renderer must support.
The code required to implement the basic features is shown below.

When a form page is first shown, the input focus is normally given to the first
input control on that page. However, if the INITIAL_FOCUS attribute is set to true
on a UIM FIELD element other than the first one, the input focus should be given
to that field instead. If not specified, the INITIAL_FOCUS attribute is assumed to be
set to false.

Support for this feature can be achieved by setting the tabindex attribute of the
HTML input element to 1 if the field object's INITIAL_FOCUS parameter is set to
"true" (as it reflects the value defined for the corresponding attribute in UIM). The
parameter value may be null, but calling the equals method on the literal string
value is still safe in that case and yields the desired result.

The width of an input control is set by combining the WIDTH parameter value
with the WIDTH_UNITS parameter value. Both values are optional and may be
null. If the WIDTH parameter is null, is empty, or is explicitly set to zero, then the
width is not set on the input control. If the WIDTH_UNITS parameter is null or
not recognized, then "PERCENT" is assumed. The width is set using the style
attribute of the input element.

UIM FIELD elements support child SCRIPT elements that define JavaScript handlers
to be associated with the rendered HTML content. The SCRIPT elements are
transposed into further parameter values on the Field object passed to the
renderer. For example, this UIM SCRIPT element will be represented as a parameter
named ONCLICK_ACTION with a value set to the value of the ACTION attribute in
the UIM:

There can be many different scripts for different events. A helper method provided
by the abstract base class can set all of the appropriate event attributes on a HTML

if ("true".equals(field.getParameters()
.get(FieldParameters.INITIAL_FOCUS))) {

input.setAttribute("tabindex", "1");
}

String width
= field.getParameters().get(FieldParameters.WIDTH);

if (width != null && width.length() > 0
&& !"0".equals(width)) {

String units;
if ("CHARS".equals(field.getParameters()

.get(FieldParameters.WIDTH_UNITS))) {
units = "em";

} else {
units = "%";

}
input.setAttribute("style", "width:" + width + units + ";");

}

setScriptAttributes(input, field);

Figure 43. Supporting Other UIM Features

<SCRIPT EVENT="ONCLICK" ACTION="doSomething();"/>

Developing Custom Widgets 43

element for these scripts. Simply call setScriptAttributes passing the HTML
element to which to add any required event attributes and the Field object on
which the parameters record the necessary information.

Configuring the Widget
To configure the SSN text field widget in isolation from other text field widgets,
the data must be in a domain that is specific to SSNs. Here, the SAMPLE_SSN
domain is assumed. The DomainsConfig.xml file should be added to the client
application component, or the existing file should be modified if it already exists,
to associate the edit-renderer plug-in class with that domain.

Applying the above configuration, the edit-renderer of the custom widget will now
be invoked anywhere a UIM FIELD element has a target connection to a server
interface property in the SAMPLE_ SSN domain. If the UIM FIELD has no target
connection, the view-renderer will be used instead. As no view-renderer is defined
in this configuration, the view-renderer of the parent or other ancestor domain,
will be inherited and used. Typically, this will be the TextViewRenderer associated
by default with the SVR_STRING domain.

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 65.

Limitations on Support for Custom Edit Renderers
Only the development of custom edit-renderer plug-ins with these limitations is
supported:
v The renderer must not be used within the context of a rendering cascade; it may

only be used where invoked in direct correspondence to a UIM FIELD element.
v The renderer must not be used in the context of a UIM LIST element.
v The renderer must add no more than one form item to a form page.
v The renderer must not process code-table items.
v The renderer must not use any features of the Renderer API other than those

demonstrated in this chapter.

Internationalization and Localization

Objective
To provide a basic understanding of the internationalization and localization
processes and how they apply to widget development.

Prerequisites
A knowledge of the concept of a locale and an understanding of the impact of a
locale on the operation of a software application.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_SSN">
<dc:plug-in name="edit-renderer"

class="sample.NoAutoCompleteEditRenderer"/>
</dc:domain>

</dc:domains>

Figure 44. Configuring the SSN Edit Renderer

44 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Introduction
Internationalization is the process of enabling a software application to function
equally well in any of its supported locales; to enable it to be localized.
Localization is the process of modifying elements of an application to support the
requirements of a particular locale. For any application required to support more
than one locale, the widget developer must internationalize the widget to ensure
that it can be localized with ease.

Note: Internationalization and localization are long words. They are commonly
abbreviated as i18n and L10n respectively. The number in each abbreviation is the
number of letters that have been removed between the first and last letters of the
original word. A capital “L” is used in L10n to avoid confusion with the “i” in
i18n, which may be capitalized at the start of a sentence. Internationalization is
also sometimes referred to as “international-enabling” or “national language
support” (NLS).

Localization is a process that usually takes place after development. The natural
language text elements of the application are typically submitted to an agency that
specializes in language translation. The agency returns the text elements translated
into a new language and this text is then incorporated back into the application.
This process is only possible if the application makes it easy to package up the text
elements and replace them with text in another language; if the application has
been properly internationalized.

There are many other aspects to localization. Some of these are handle
automatically by the CDEJ and some remain the concern of the widget developer.

CDEJ Support for Internationalization
The CDEJ is internationalized in many ways. Not only are text elements separated
out to standard Java properties files, but other elements are also localized
automatically:
v All CDEJ plug-in classes of all types expose the locale and time zone of the

active user through the getLocale and getTimeZone methods. The active user is
the user who initiated the request for the HTML page currently being rendered
on the web container's request service thread. The widget developer can access
this information and use it as required.

v Locale-aware sort orders are supported by special locale-aware versions of the
comparator plug-ins provided with the CDEJ. These use Java's Collator API, but
can be overridden to support custom sorting rules if required.

v Locales can be define both the language and the country and the CDEJ uses this
information to support spelling variations of the same language in different
countries.

v The converter plug-ins for numeric values automatically apply the rules of the
active user's locale when formatting or parsing numbers, ensuring that decimal
points and grouping separators are presented or handled appropriately. For date
values, similarly, non-numeric months names are translated as appropriate.

In general, there is no need to specify the locale when accessing the CDEJ
rendering API, as the locale is automatically determined and applied when
necessary. Some types of plug-ins, particularly the converter plug-ins described in
the Cúram Web Client Reference Manual, need to handle the locale carefully, but this
is generally not the case for renderer plug-ins. When renderer plug-ins resolve

Developing Custom Widgets 45

paths to their values, the values are provided via the converter plug-ins, or other
locale-aware sources, and the localization will happen automatically before the
value is returned.

Widget Internationalization
Not all localization is handled automatically by the internationalization features of
the CDEJ. Widgets may have specific localization requirements that are not covered
by the CDEJ and the widget developer must internationalize the widget to
accommodate these. The main internationalization issues of concern to the widget
developer are:
v accessing and rendering localized text values;
v referencing localized versions of images or icons;
v providing locale information and localized text elements to JavaScript code used

by a widget in the web browser;
v laying out content on the HTML page in a way that can accommodate the

increased length of text when localized into other languages.

“Accessing Data with Paths” on page 68 provides details on how to construct
paths that identify localized text properties resources on the classpath or in the
Application Resource Store and to resolve these paths to the localized text values.
Examples of this process are also provided in that appendix. Once retrieved, the
localized text can be incorporated into the HTML mark-up produced by a renderer
plug-in class.

Localized images are often required where the images contain text or other
symbols that are specific to one language or culture. The developer should avoid
including text in images where possible. It makes the application harder and more
expensive to localize and also affects the accessibility of the application.
“Accessibility Concerns” on page 47 describes how applications are often required
to be accessible to as many people as possible. People with visual impairments
may find that text in images is difficult to read or entirely unreadable.
Nevertheless, internationalizing such elements is a simple process. The HTML
produced by the widget's renderer plug-in class includes a img element with a src
attribute that references an image resource on the application server. These image
resources can be added to the WebContent folder of an application component. A
simple scheme to support internationalization then places image files in sub-folders
named for the locales. For example, create an images folder within the WebContent
folder. Create folders named en (English) and es (Spanish) within that images
folder. Now place the localized image files for English and Spanish into their
respective locale folders. Within the renderer, the localized image can be referenced
as shown in the example below. The context of the example is the render method
of a renderer plug-in class.

The getLocale method returns the locale of the active user, so the image source
URI could be generated as, for example, ../images/en/icon.png for a user in the
English locale and ../images/es/icon.png for the Spanish locale. Alternatively, the
locale folder could be omitted and the locale could could appear in the image file
name.

Element img = fragment.getOwnerDocument().createElement("img");
img.setAttribute("src",

"../images/" + getLocale().toString + "/icon.png");

Figure 45. Referencing Localized Image Files

46 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

A problem with this scheme is that a user with a locale en_US will not seen any
image, as there is no en_US folder within the images folder. For text properties, a
locale fall-back scheme is used, but that does not apply in the example above.
There are a number of ways to accommodate extra locales:
v create one folder for each supported locale and place the localized images in

those folders, even if the image is the same for several locales, such as if en,
en_US and en_GB were supported simultaneously and there were no spelling
variations across those locales for the words used in the images;

v for each image, define a property in a localized text properties resource
containing the path to image appropriate for the locale of that properties
resource. Instead of constructing the path in the renderer, resolve the text
property that contains the path and use that. This scheme is similar to the use of
the Images.properties file in UIM development described in the Cúram Web
Client Reference Manual and allows the normal locale fallback mechanism to
operate. (An overview of this fallback mechanism is provided in “Accessing
Data with Paths” on page 68.)

There is a separate type of text-based image generation and localization feature in
the CDEJ that is described in the Cúram Web Client Reference Manual. It is not
directly related to widget development.

Widgets that depend on JavaScript libraries and scripts may require that the
JavaScript be internationalized. The two main requirements are to supply the
JavaScript code with the correct locale to ensure that localization features of the
JavaScript library are used correctly and/or to supply localized text elements to the
JavaScript routines. The specific requirements vary between widgets and are
beyond the scope of this guide. However, the basic approach for the widget
developer is to generate JavaScript content containing the required information
from locale information and localized text values available to the renderer plug-in
class. For example, the renderer plug-in can generate a script containing a class to
a JavaScript function that passes the value of the active user's locale. The locale
value is embedded in the function call in a same way it was embedded in the
image URI in “Widget Internationalization” on page 46, by calling getLocale and
converting it to a string. Localized text elements retrieved by the renderer plug-in
class can also be embedded into a script, perhaps into a JavaScript array or object,
depending on requirements.

The layout of a page may also be affected by localization requirements. The text of
a label in one language may become much longer when translated into another
language. An average of 30% more space should be added for any English text to
accommodate the replacement of that text with text in other languages. However,
depending on the language and the phrase, the text could be require twice the
amount of space or even more.

Accessibility Concerns

Objective
To introduce the developer to accessibility concerns in the context of custom
widget development and to provide some guidance on how to address those
concerns.

Prerequisites
A basic knowledge of HTML.

Developing Custom Widgets 47

Introduction
The accessibility of the application determines how usable the application is by
people of all abilities and disabilities. Typically, accessibility concerns focus on the
needs of people with disabilities, such as visual or motor impairments, and the
compliance with the regulatory requirements to accommodate their needs. Their
needs may include some of the following:
v higher contrast visual presentation to make the content easier to read;
v color schemes that are suitable for people with deficiencies in their color vision;
v the ability to zoom in to the content on the page or increase font sizes

independently of the application's styling;
v access key support to allow the application to be used with a keyboard only and

not require a mouse;
v additional information associated with images and form input controls to allow

a screen reader (voice browser) to identify them to the user.

The regulatory requirements differ between jurisdictions. There is no universal
solution for all of the accessibility requirements. However, many local regulations
and guidelines draw from those developed by the W3C Web Accessibility Initiative
(WAI) and its Web Content Accessibility Guidelines (WCAG). The WAI is a good
starting point for widget developers wishing to learn more about accessibility and
its application to the web. The widget developer should identify what the
accessibility regulations and guidelines are for the jurisdiction in which the
application will be employed and aim to comply with those. It is beyond the scope
of this guide to cover all of the possible regulations.

Labels for Form Input Controls
The correct labeling of input controls on forms is typically the most important
accessibility concern of the widget developer. A visually impaired user may use a
screen reader to access the application. A screen reader is a software application
that converts the text of a web page (or other application) into speech, allowing the
user to hear what is present and respond appropriately. When using a form, the
screen reader will inform the user of the input control that currently has the input
focus. For example, the user may use the Tab key to move the focus to the text
field with the label Date of Birth and the screen reader will announce “Date of
Birth, edit”; adding the word “edit” to notify the user that the control is editable.
This is only possible if the screen reader can associate the label of the field with
the input control for that field.

All of the accessibility standards require that input controls on forms be identified
by labels that can be used by a screen reader. The implementation guidelines for
these standards often demonstrate the use of the HTML label element that allows
the label text to be marked up with an element that defines the ID of the input
control for which that text is the label. Some validation tools then enforce this
particular implementation guideline to the exclusion of all others. The CDEJ does
not use the HTML label element to associate label text with form input controls, it
uses an alternative method. The HTML of a Cúram application page may fail an
automated accessibility validation check for this reason, but this failure is
erroneous and does not affect the accessible of the form input controls to a screen
reader application.

The technique used by the CDEJ is the same technique that widget developers
should use. The visible label of the input control is rendered separately and
automatically by the CDEJ and the title attribute of the input element is set to

48 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

the value of the label that should be read by the screen reader for that control.
There are several reasons why this approach is used by the CDEJ instead of the
often suggested label element:
v The label element displays its label as the visible label on the page for the form

control. It is not possible to associate a single label element with more than one
input control, as it may only have one ID value in its for attribute. For example,
a UIM CONTAINER element is used and it contains two FIELD elements. One label,
that of the container, will appear beside two input controls, one for each field. A
search form may have a Surname label appearing beside a text field and a
check-box. The user inputs the surname into the text field and checks the
checkbox if the search should find names that sound like that surname. Using a
label element, it is not possible to label these controls without displaying two
labels on the page and that is not desired. However, it is easily achieved using
the title attribute on the input elements for the text field and the checkbox.
The values of the title attributes are set from the labels of the UIM FIELD
elements, not the CONTAINER element, so the labels can be specific to each input
control while the visual presentation is still uncluttered.

v Most browsers use the title attribute of an input control as the text displayed
in a tool-tip shown then the use hovers over the control with the mouse pointer.
This allows sighed users to identify controls even if the specific label for the
control is not shown on the page. For example, the label of the Sounds Like
check-box in the example above. Using the title attribute, therefore, makes the
application more accessible to sighted users, too.

v For mandatory input fields, an icon is displayed beside the label of the field to
alert the user to the fact that a value must be entered. This icon is not apparent
to a screen reader application, as it is applied using a CSS style rule and is not
part of the content of the HTML document. For accessibility, the word
“mandatory” can be appended to the label value used in the title attribute of
the input control while omitting it from the visible label that already has the
visible mandatory icon. It is not possible for the visible label to differ from the
input control label in this way if the label element is used.

v When rendering a page, the CDEJ renders the field label before invoking the
widget's renderer plug-in for the field value (assuming labels of shown to the
left of the values). As the CDEJ does dictate what input control will be produced
by an edit-renderer plug-in, it cannot know in advance what the ID of the
control will be and cannot set an ID in the for attribute of a label element. It is
not possible, therefore, to use the label element while allowing widgets for the
field values to be customized. This is not a problem, as the label element is not
desirable for all of the other reasons described above.

These are the main reasons why the CDEJ uses and recommends the title
attribute in preference to the label element. The application pages are equally, if
not more, accessible to screen reader applications and users as a result. Any
spurious errors from accessibility validation tools relating to the non-use of the
label element can be safely ignored once the presence of the title attribute has
been confirmed.

Font Sizes
It is recommended that the use of, relative font sizes when styling a widget's
HTML output. Relative font sizes, specified as a percentage of the web browser's
base font size, allow the user to change the base font size in their browser to
effectively magnify all of the text on the page. Some modern web browser can
scale up the text even if fixed font sizes are specified, but some browsers do not

Developing Custom Widgets 49

change fixed font sizes properly when scaling the page, or will only scale the text
along with all other non-text content, which may not be the user's preference.

Overview of the Renderer Component Model

Elements of the Model
More complete details of the renderer component model are provided in the CDEJ
Javadoc. The information presented here is an overview of the main elements in
the model and how they relate to each other.

There are three main categories of elements in the renderer component model:
v Elements that define components of the page. These are the elements of the

model that are passed to renderer plug-in classes for rendering.
v Elements that provide additional information about a component.
v Elements that are used to create components.

The elements of the model are defined using Java interfaces. All of the interfaces
are defined in the curam.util.client.model package.

The main interfaces that define the component of the page are as follows:

Component
The Component interface defines the common properties of all elements that
may be rendered to HTML by renderer plug-ins. A component can be
associated with a style and rendered with a component-renderer plug-in.

Field The Field interface extends the Component interface and adds the binding
and domain properties. The binding records the connections defined in
UIM for the field. The domain records the domain of the server interface
property of the target connection, or that of the source connection if there
is no target connection. A Field, being a Component, can be associated with
a style, but it is more usual to associate a field with a domain. If both a
domain and a style are defined, the domain will be used when selecting
the appropriate renderer plug-in. A field may also be rendered with a
component-renderer plug-in, but a view-renderer or edit-renderer will be
used if the domain property is set.

Container
The Container interfaces extends the Component interface and allows the
component to contain other components. The children of a container are
recorded in a list; the order in which the children are added will be the
iteration order of that list. A container can be associated with a style and
rendered with a component-renderer plug-in.

The main interfaces that provide additional information about a component are as
follows:

Binding
A Binding is used exclusively with a Field object to record its source and
target path defined by the corresponding connection in UIM. A binding
defines other paths, mostly related to the use of the UIM INITIAL
connection element, but their use, or the use of the INITIAL element, in
combination with custom widgets is not supported in the Cúram
application.

ComponentParameters
A component's parameter values, usually derived from the corresponding

50 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

UIM attributes, are stored in a ComponentParameters object retrieved by
calling Component.getParameters. The interface extends
java.util.Map<String, String>, but the returned map may not be
modified. When building new components at run-time, add additional
parameters as necessary.

Link A Link represents a hyperlink to another destination. A link defines a
target and an arbitrary collection of parameters. The target and the
parameter values are defined using paths, not literal values. However,
paths can be constructed to represent literal values if required. See
“Accessing Data with Paths” on page 68 for more details.

The main interfaces that are used to create new components are as follows:

ComponentBuilder
A ComponentBuilder is used to build basic components. This interface also
defines the properties common to the other builder interfaces.

FieldBuilder
A FieldBuilder extends a ComponentBuilder to allow the source path,
target path and domain to be set. Other paths may be set, but their use is
not supported in the Cúram application.

ContainerBuilder
A ContainerBuilder extends a ComponentBuilder to allow components,
fields or other containers, to be added to a new container.

Building Components
Components of the model are constructed using the builder pattern, which is a
software design pattern. Different types of components require the use of different
builders. The interfaces for these builders were listed in the previous section.
However, a concrete implementation of a builder is required to do any real work.
Builder objects can be created using the ComponentBuilderFactory class defined in
the curam.util.client.model package. The factory class provides a number of
factory methods to create builders. Only the use of the following factory methods are
supported in the Cúram application:

createComponentBuilder
Creates and returns an object implementing the ComponentBuilder
interface. Use this to build generic components that do not require a
binding and that do not contain other components.

createFieldBuilder
Creates and returns an object implementing the FieldBuilder interface.
Use this to build fields that are bound to data sources.

createContainerBuilder
Creates and returns an object implementing the ContainerBuilder
interface. Use this to build components that may contain other components
of any kind.

The component builders present a simple, flat API for creating components. They
eliminate the need to understand the internal structure of components. In
particular, the properties of the objects that hold additional information about a
component, such as bindings, parameters and links can be defined directly through
the builder interface; there is no need to create instances of these objects or
understand how they are stored.

Developing Custom Widgets 51

To use a builder, instantiate it using the appropriate factory method and then call
the appropriate setter methods to set the properties of the component being built.
When complete, call getComponent to get the instance of the newly built component
object. When getComponent is called and has returned the new component, the
builder object resets all of the properties and may be reused to build another
component. Until getComponent is called, many of the simple properties can be set
again to overwrite their existing values. However, this may not work for properties
that represent items in collections, such as the parameters of the component.

Once built, components are immutable, much like java.lang.String objects, or the
Path objects described in “Accessing Data with Paths” on page 68. The only way to
change a property of a component is to build a new component with the modified
value for that property. Component builders can be used to create entirely new
components, but are commonly used to create new components that are modified
copies of other components to overcome this immutability. The starting point in
this process is the component that will act as the prototype for the new component.
Create the builder object and then pass the prototype component to the builder's
copy method. This will set all of the properties of the component component to be
built from the properties of the prototype component. Use the setter method of the
builder to overwrite (including with a null value) the properties of the new
component that differ from the prototype component. Finally, call the getComponent
method on the builder to get the new component that is the modified copy of the
original, prototype component. A typical use of this copy-and-modify process is
when making multiple copies of a Field object, changing the domain and
extending the paths, before delegating the copy of the field for rendering by
another renderer plug-in class.

When copying a prototype Container object using the builder's copy method, all of
the child components of the container are copied by reference. A reference is
sufficient, as the child components are immutable. Because references are used, any
child that is itself a container will become a child of the new container complete
with its own child components. When it is necessary to change the children of a
Container that must be copied using a builder, the copyShallow method should be
called on the ContainerBuilder instead of the copy method. The copyShallow
method does not copy any references to the child components. Copy these
one-by-one by iterating over the child components of the prototype container and
then calling the add method on the ContainerBuilder. The child components can
be copied and modified, or even selectively omitted, during this process if
required.

Design and Implementation Guidelines

Introduction
Custom widgets provide the developer with considerable power and flexibility
when meeting challenging presentation requirements. However, widget
development can be complex and it raises many design issues that are usually not
a concern of a client application developer used to using only UIM to define the
content of pages. The next section presents some guidelines for writing renderer
plug-in classes to assist the developer in avoiding some of the common pitfalls.

Some renderer plug-ins also need to support the requirements of field-level
security. This is explained and demonstrated in the final section.

52 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Guidelines for Writing Renderers

Do Keep Things Simple
“Approaches to Customization” on page 4 described the approaches to widget
development in order of increasing complexity. Endeavor to keep the complexity of
any new widget as low as possible by selecting the simplest viable approach. It is
always possible to change to a more complex approach later if necessary, but it is
much harder to simplify a widget after first committing to a complex approach.

Pay particular attention to widgets that will be used very widely. Simplicity and
efficiency are very important in this case. A complex widget that will be used on
many pages by many concurrent users can be difficult to develop without much
prior experience.

Do Divide and Conquer
A complex widget implemented as a single, large render method is difficult to
maintain and offers no opportunity to reuse its component parts, as it has none.
Where a widget renders more than a single value, consider dividing it up into a
group of cooperating renderer plug-ins. This will result in smaller, more
manageable components. These components can be reconfigured or reused in other
contexts to meet future requirements.

Development of a complete renderer can progress toward the final goal in stages.
For example, take the widget described in “A Details Widget Demonstrating
Widget Re-use” on page 28. This requirement could not be met using multiple
fields in a UIM CLUSTER element because the layout would not fit into the strict
grid provided by a cluster. However, an alternative approach to its development is
this sequence:
1. Create a UIM page containing a CLUSTER element and place separate fields for

the details within the cluster.
2. Create widgets to render each of the fields a manner closer to that required in

the final details widget.
3. Assess if the solution is “close enough” to be acceptable and release the change

if it is.
4. If the cluster layout is still too limiting, develop a widget to lay out the fields

in the required manner. This will require a change to the data to make it a
single value, an XML document. Reuse all of the smaller widgets in a rendering
cascade.

All of the widgets developed in the second step are reused in the context of the
last step. This allows greater flexibility in planning the work, as the functionality
can be released early and refined at a later time, if it is still necessary. The
individual widgets developed in the second step can also be reused when
developing other details panel widgets, or widgets for unrelated purposes.

Do Check for Nulls
Renderer plug-ins may be supplied with null values, so check for null values to
avoid errors. The main values that may be null are the paths of the field's binding,
the field's parameters and the values resolved using paths.

The CDEJ will never supply null arguments to the render method, but if one
renderer invokes another, this cannot be guaranteed. In a view-renderer, the field's
source path will never be null, but the target path will always be null; these do not

Developing Custom Widgets 53

need to be checked if this is assumed. In an edit-renderer, the field's target path
will never be null, but the source path may or may not be null and should always
be checked.

The field's parameters may or may not be null. Typically, the parameters reflect the
attributes used in the UIM. However, if an attribute was set to the same value as
its default value, or was not set at all, then the parameter value is likely to be null.
Always check parameter values for null and, if they are null, ensure that the
renderer treats this the same as the default value for the corresponding UIM
attribute. The default values for the attributes are described in the Cúram Web
Client Reference Manual.

On resolving paths using the DataAccessor, the values may be null in some cases.
A path to a server interface property will not resolve to null, the DataAccessor will
throw an exception instead. Paths to values within an XML document that are
resolved using a SimpleXPathMarshal may result in a null value. See “Extending
Paths for XML Data Access” on page 73 for details on the conditions that can
result in null values.

Do Take Shortcuts
Renderer plug-in classes must extend the prescribed abstract base classes identified
earlier in this guide. However, the extension does not have to be direct. There is no
prohibition against creating new base classes custom renderers or extending other
custom renderer plug-in classes as long as the prescribed abstract base class is an
ancestor class of any custom renderer class. This option can be exploited to share
code between custom renderers more effectively and to develop renderers that are
variations on other renderers without implementing all the code from scratch. Note
however, that the extension of the CDEJ renderer plug-ins for custom widget
development, is not supported in the Cúram application.

Widget development, particularly in the area of creating and manipulating DOM
nodes for the HTML content can be repetitive. Consider writing a simple utility
class to wrap up common operations, such as checking if a string value is null or
empty before setting an attribute on an element, or creating and appending text
nodes.

Do Go with the Flow
Combining several renderer classes into a rendering cascade is a powerful
technique for enabling maximum reuse of widgets in other contexts. However, this
technique requires that the renderers conform to the expectations of the renderer
API and the CDEJ that manages it rather than try to do things another way.
Renderer classes should respect the imperative to render the data referenced by the
paths in the Field object's binding without trying to examine what the paths
represent of react differently to different kinds of paths. Any renderer class that
implements special handling of paths or other information is likely to be unusable
in all but the context for which it was first developed.

The key to going with the flow in a rendering cascade is to develop view-renderer
and edit-renderer classes in a manner that makes them suitable for direct use in
combination with a UIM FIELD element. This should be the case even for renderer
classes that are never intended to be used directly in this way and only intended
to be used in the context of a complex widget's rendering cascade. Making this the
design goal ensures that the renderer class is context independent and will
maximize the possibilities for its reuse.

54 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

When using XML document, it may be necessary to change the structure of the
data to suit the rendering cascade. For example, a contact details widget is
required to display the contact details of a person. The widget is expected, when
complete, to provide reusable widgets that display the postal address and e-mail
address of the person in the required form. The developer first conceives that the
XML consumed by the new contact details widget will have the form shown
below.

The initially invoked renderer plug-in for the new widget, the contact renderer,
will use the copy-and-modify technique on the Field object described in
“Overview of the Renderer Component Model” on page 50 and demonstrated in
“Tying Widgets Together in a Cascade” on page 32 and then delegate the rendering
of these copied objects to the other renderers. To the address widget, the contact
widget delegates a Field object whose source path is extended with /contact and
the address widget will further extend this path with /street and /city to resolve
and present the address values.

This arrangement will work, but the reusability of the address widget has been
compromised by the order in which the paths have been extended. This is a
consequence of the structure of the XML document. Were the address renderer to
be used in a standalone address widget, its XML data might look like this:

The street and city elements are contained within an address element, as the XML
document would not be valid without a single root element. This requires that the
address renderer extend the source path (in this case just the path that identifies
the server interface property itself) with /address/street and /address/city.
These path extensions are not the same as those used with the address renderer
was invoked by the contact renderer, so something is wrong.

This problem could be solved by having the contact renderer set a field parameter
on the copy of the field passed to the address renderer instructing the renderer to
extend the paths in different ways. This field parameter would not be set if the
address renderer were invoked directly in correspondence with a UIM FIELD
element, so the context could then be determined. However, this complicates both
renderers in several ways. The contact renderer must accommodate the
requirements of the address renderer to extend paths in one of two ways, the
address renderer must check a field parameter value and then operate differently
depending on the result. The XML is different for the address in each case, so any
code that generates this XML would need to accommodate the requirements of the
two renderers. Testing also becomes more difficult, as there are more paths through
the code and more edge cases to consider. Therefore, this is not the right solution
to the problem.

<contact>
<name>James Smith</name>
<street>Main Street</street>
<city>Springfield</city>
<phone>555-555-0101</phone>
<e-mail>james@example.com</e-mail>

</contact>

Figure 46. An XML Document Describing Contact Details

<address>
<street>Main Street</street>
<city>Springfield</city>

</address>

Figure 47. An XML Document Describing an Address

Developing Custom Widgets 55

The alternative is much simpler: simply revise the structure of the XML document
to the form shown below.

The address details are now embedded in the contact details XML document in the
same form as they would appear in a standalone address XML document. As
before, the contact renderer extends the path with /contact before delegating to
the address renderer and then the address renderer extends that path further with
/address/street and /address/city, just as it would do in the standalone use
case. There is no need for any conditional processing and the need to deliver an
address renderer that works in the context of a rendering cascade or when directly
associated with a UIM FIELD element has not resulted in any added complication.

The situation for the e-mail address value is slightly different. In the standalone
use case, the e-mail address renderer does not expect an XML document, just a
string value containing the e-mail address. To accommodate this, the contact details
renderer should extend the path for the e-mail address using /contact/e-mail
before delegating the rendering of the value. Both renderers can now operate
without any additional complication, as the e-mail address renderer will blindly
resolve its source path to the e-mail address value and be unaffected by the fact
that the path may either directly refer to a server interface property value or be
extended to refer to a value within an XML document. In either case, the result of
calling DataAccessor.get on the source path will be the string value of the e-mail
address.

To design a rendering cascade that is effective in reusing renderers in a new
context, proceed as follows:
v Design the individual renderers first as if they were to be invoked directly in

association with a UIM FIELD element and define the format of the data that
they will consume and the paths that they may extend to access that data.

v Move on to the design of the delegating renderer that will delegate to the above
simple renderers. Determine how it will create new components and extend
their paths to accommodate the needs of the simple renderers.

v Leave any decisions about the form of the aggregate XML document until the
end, as it will follow from the design of the renderers in the cascade, not the
other way around.

Taking this bottom-up approach to the design will ensure that each of the ultimate
elements in the rendering cascade are clearly defined and readily reusable. Taking
a top-down approach may seem to work well at first, but it is almost inevitable
that some problem will occur at the final level that results in the need to start the
whole design again, as the design flaw cascades back in the opposite direction to
the intended rendering cascade.

Don't Introduce Concurrency Issues
The application may service requests from many users at the same time. Even
when a single user is active, the application may still receive concurrent requests

<contact>
<address>

<street>Main Street</street>
<city>Springfield</city>

</address>
<phone>555-555-0101</phone>
<e-mail>james@example.com</e-mail>

</contact>

Figure 48. A Revised XML Document Describing Contact Details

56 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

for several pages that are presented to that user in the tabbed user interface. At
run-time, only one instance of each renderer plug-in class is created for each
domain or style. The application may use the same plug-in instance to service
concurrent requests from one or more users. This places some restrictions on the
implementation of a renderer plug-in class to avoid concurrency problems. The
restrictions also apply to all other kinds of domain and style plug-ins, as they
share the same life-cycle as renderer plug-ins.

Maintaining state information within a plug-in instance will cause concurrency
problems. A developer may introduce a dependency on state information when
factoring a large render method into smaller, more manageable, private methods.
If, instead of passing all information between methods using method arguments,
the developer passes information through fields of the plug-in class, concurrency
defects will arise. “Don't Introduce Concurrency Issues” on page 56 shows such a
defect.

The DefectiveEMailAddressViewRenderer class is similar to the
EMailAddressViewRenderer class developed in “An E-Mail Address Widget” on
page 13. The defective class has a createAnchor method to organize the code for
improved readability. However, rather than pass the e-mail address value as a
method argument, the e-mail address is defined as a field of the class that is set by
the render method and read by the createAnchor method. At run-time, there may
be concurrent requests for pages containing e-mail addresses, so the render
method of a single instance of the renderer plug-in for e-mail addresses may be
invoked from more than one thread. This can lead to a defect where the shared
field value becomes corrupt.

public class DefectiveEMailAddressViewRenderer
extends AbstractViewRenderer {

private String emailAddress;
public void render(

Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {

emailAddress = context.getDataAccessor()
.get(field.getBinding().getSourcePath());

Document doc = fragment.getOwnerDocument();

Element span = doc.createElement("span");
span.setAttribute("class", "email-container");
span.appendChild(createAnchor(doc));
fragment.appendChild(span);

}

private Element createAnchor(Document doc) {
Element anchor = doc.createElement("a");
anchor.setAttribute("href", "mailto:" + emailAddress);

Element img = doc.createElement("img");
img.setAttribute("src", "../Images/email_icon.png");
anchor.appendChild(img);

anchor.appendChild(doc.createTextNode(emailAddress));
return anchor;

}
}

Figure 49. A Plug-in Class with a Concurrency Defect

Developing Custom Widgets 57

For example, thread T1 services a request from user U1 and thread T2 services a
request from user U2. T1 calls the render methodon the same plug-in instancejust
before T2 does. T1 sets the emailAddress field value to e-mail address E1and then
T2 immediately sets the field to E2. Now, when T1 invokes createAnchor, e-mail
address E2 will be rendered and shown to user U1. This may not be a serious
problem for e-mail addresses, but the same defect could lead to unwanted leaking
of more sensitive information. In the case of edit-renderer plug-in initializing form
field values when modifying entities, the problem could also result in incorrect
values being written to the database.

It is also important to note that concurrency problems do not necessarily arise
because there are two or more users active; they arise because there are two or
more requests active. With the tabbed user interface, it is very likely that a single
user can trigger concurrent requests for pages. Do not dismiss potential
concurrency problems on the mistaken assumption that data that is local to a user,
such as data stored in Java EE session attributes, is immune from such problems.

The remedy for this problems is simple: do not use fields of a class to pass
information between methods; use the methods' arguments instead. “Don't
Introduce Concurrency Issues” on page 56 shows the alternative implementation
that has no concurrency defect because the e-mail address value is passed as an
argument to the createAnchor method.

In general, avoid fields of a plug-in class unless they are constants declared static
and final. Carefully consider the potential for concurrency defects before

public class DefectiveEMailAddressViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {

String emailAddress = context.getDataAccessor()
.get(field.getBinding().getSourcePath());

Document doc = fragment.getOwnerDocument();

Element span = doc.createElement("span");
span.setAttribute("class", "email-container");
span.appendChild(createAnchor(doc, emailAddress));
fragment.appendChild(span);

}

private Element createAnchor(
Document doc, String emailAddress) {

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "mailto:" + emailAddress);

Element img = doc.createElement("img");
img.setAttribute("src", "../Images/email_icon.png");
anchor.appendChild(img);

anchor.appendChild(doc.createTextNode(emailAddress));
return anchor;

}
}

Figure 50. A Plug-in Class without a Concurrency Defect

58 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

considering the introduction of any non-constant fields and must never introduce
fields simply to shorten the argument lists of private methods.

The fields of a plug-in class are the most obvious place to store state information
during rendering. However, a developer might store state information in other
places, such as in attributes of the Java EE session or application, in ad hoc data
caches and in helper classes. In introducing any such state storage, consider
concurrency issues with the same care given to fields of a plug-in class.

Don't Convert Data in a Renderer
Renderer plug-ins are responsible for marking up field values with HTML for
presentation. Converter plug-ins are responsible for converting the server interface
property values from their Java object representations to strings formatted
appropriately for the active user. Endeavor to maintain this separation of concerns
and avoid converting data within a renderer plug-in.

The format method of converter plug-ins, described in the Cúram Web Client
Reference Manual, is called by the CDEJ when servicing the get method calls on the
DataAccessor within the renderer. The format method is responsible for converting
the Java object representation of a server interface property value to a string. The
method applies the active user's locale, time zone, date format and other
preferences as appropriate. Implementing this processing in a renderer is
redundant, complicated and prone to error. It can also introduce inconsistencies
with the presentation of the same type of data in other places in the application.
Where the data is not available in a suitable format, consider developing a new
converter plug-in to produce the required string representation before developing
the renderer plug-in.

Where the data to be converted is retrieved from an XML document, configure and
use the SimpleXPathADCMarshal class as the domain marshal. When the XML has a
suitable form, this domain marshal will automatically invoke the correct converter
class for the data, parse it from its generic string representation to a Java object
representation and then format it to a string representation appropriate for the
active user. This domain marshal is introduced in “A Photograph Widget” on page
20 and described in detail in “Extending Paths for XML Data Access” on page 73.

Don't Do Too Much
The client-tier of the application produces a HTML response for each page request.
This CDEJ begins to send this HTML response to the web browser before the full
HTML content of the page is complete. The CDEJ invokes a renderer for each field,
serializes the DocumentFragment populated by the renderer to a HTML string, and
then writes this HTML string to the response before invoking the next renderer.
This way, very little of the response is held in memory at any one time and
resource usage is minimized. This is particularly important for pages that can
contain a lot of content or when the application is under heavy load.

A renderer plug-in class is free to produce any HTML content for a field, but bear
in mind that the contents of the DocumentFragment will be held in memory until the
render method returns. Only at this time is the fragment serialized and its
allocated memory freed. The memory use of widgets that produce a large volume
of HTML content may or may not pose a problem. If such a widget is used on
many pages and by many concurrent users, asses the potential impact of its high
memory use. For widgets that are used rarely or by only a limited number of
users, memory use may not be a significant problem.

Developing Custom Widgets 59

Using a lot of memory when producing the HTML is not the only resource use
issue that can be caused by a renderer plug-in. Renderer plug-ins can also consume
a lot of processing resources. Technologies such as Extensible Stylesheet Language
Transformations (XSLT) can be employed by renderers to manage the generation of
the HTML content. Such processing can require significant processing resources (in
addition to memory). Determine if such processing is necessary and plan from the
beginning to reduce the impact this may have on the application as a whole.

XSLT processing, for example, is both memory and processor intensive. However,
this can be mitigated to some degree by taking care to avoid unnecessary
processing. XSLT stylesheets can be loaded from resource on the classpath, but this
only needs to be performed once. An instance of a javax.xml.transform.Templates
object can maintain a copy of the stylesheet in memory and can be used multiple
times in a thread-safe manner to eliminate the overhead of loading the XSLT
stylesheet each time it is required.

Not only can single, large processing operations pose a problem, so can an
excessive number of smaller operations. A renderer is invoked every time the value
of a field is rendered on a page, both in clusters and in lists. Minor inefficiencies in
renderers that are used to present field values in clusters may go unnoticed, but
the same inefficiencies may pose a serious problem in the context of long lists of
data. The same view renderer plug-in is used to present read-only fields values in
a cluster or in a list where the type of the data is the same. If one or two values
are presented in a cluster, the resource use may be acceptable. However, if
hundreds of values are presented in a long list, the resource use will increase
dramatically.

Renderers that depend on receiving their data in the form of XML documents are a
particular common concern. While XML is suitable and convenient in many cases,
it is inadvisable to use it for values that may be presented in lists. For each field in
a list column, the CDEJ will create an XML parser, parse the XML document, store
the result, allow the renderer to query the result, and then, at the end of the
request, free all of the used resources. This may appear to perform adequately in a
development environment with a single user, but is unlikely to perform well with
concurrent users on a heavily loaded application server. Pagination in its current
implementation does not change this. All of the data in a paginated list is still
rendered up front, it is just presented as if it were being rendered piecemeal.

To avoid serious resource use issues, a developer may decide to present values
used in clusters in one way and values used in lists, another. This is only possible
if the values have different domain definitions, as it is not possible to configure
renderer plug-ins based on the context (cluster or list) in which they will be used.
Using two different domain definitions for the same data can require considerable
changes to the application UML model.

Supporting Field-level Security
The Cúram client application enforces security at two levels: the page and the
field. Page-level security depends on securing the server interfaces that represent
the functions of the server application. Any UIM page that declares a server
interface will not be displayed if the authenticated user is not authorized to access
all of the server interfaces invoked from that page. Field-level security is enforced
when a property of a server interface is accessed. It is permitted for a user to
access a page even though the page contains some fields connected to server
interface properties that the user is not authorized to view. In this case, the values
of those secured fields should not be shown to the user. For example, a user may

60 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

be able to view the details of a person, but may not be authorized to view the
salary of a person. The salary field may be presented on the person entity home
page for all users, but if a user is not authorized to view the salary, the value of
that field may be presented as a sequence of asterisks, **** instead of a monetary
amount.

In the case of page-level security, the page is never rendered, so the renderers
plug-ins will never be invoked. Therefore, page-level security is not a concern for
the widget developer. In the case of field-level security, the renderer is invoked, so
it is the responsibility of the widget developer to ensure that the renderer plug-in
handles a field-level security violation appropriately. In the example given above, it
is the renderer plug-in that produces the **** value instead of the monetary
amount.

The field-level security violation is triggered when the renderer uses the
DataAccessor to resolve a path to a server interface property that the active user is
not authorized to access. The invoked method on the DataAccessor throws a
DataAccessSecurityException instead of returning a value. If the renderer plug-in
does not catch this exception and handle it, the rendering of the page fails and an
error message is displayed. Where the required behavior is to display, say, ****
instead of the secure value, the renderer must catch the exception and produce that
value instead. The example below demonstrates this; the context is the render
method and the DataAccessSecurityException class should be imported from the
curam.util.common.path package.

After the try... catch block, the value variable holds either the real value of the
server interface property indicated by the field's source path, or ****, depending
on whether or not the current user is authorized to access that server interface
property. In either case, the value can be appended to the renderer's
DocumentFragment to include it in the HTML response. The system is fail-safe. If the
developer neglects to catch the security exception, then the page will not be
rendered. If the developer catches the security exception, the secure value is never
made available to the renderer class, so it is not possible for the developer to write
code that would display the value accidentally.

The application security design should not expect to enforce field-level security on
form pages. For example, a user may attempt to modify a person entity, but the
user is not authorized to access the salary field. The user may see the salary text
field on the person modification form initialized with the **** value. If the user
submits the form, this literal value will overwrite the real salary value on the
database. More likely, the user will see a validation error stating that **** is not a
number. In that case, the user could enter any valid number and save it as the new
salary value. In an edit-renderer plug-in, therefore, the developer should not catch
the DataAccessSecurityException and simply allow the rendering of the page to
fail. No secure information will be revealed in this case and the page can be
secured at the page-level instead, preventing the user from viewing the page at all.
If the user must be allowed to modify some of the details of the person, then the

String value;

try {
value = context.getDataAccessor.get(

field.getBinding().getSourcePath());
} catch (DataAccessSecurityException e) {

value = "****";
}

Figure 51. Implementing Field-level Security

Developing Custom Widgets 61

option to modify the secured salary field should be presented on a different from
from the one that provides the option to modify the unsecured fields. Field-level
security, then, is a concern for view-renderer plug-ins, not edit-renderer plug-ins.

Adding New CSS Rules for Custom Widgets
When developing custom widgets, the developer is in complete control of the
HTML that is generated for their custom widget and what CSS classes it
references. The developer should ensure the CSS is as specific as possible to their
widget. The developer must also be aware of how their widget can inherit styling
from the Cúram application's default CSS without adding any custom CSS for the
widget. The developer has two choices:
v Inherit - Without writing any custom CSS for the widget, default styling (e.g.,

color) will be applied due to the cascading and inheritance rules of CSS.
Choosing this option will mean the widget is subject to changes from any future
release of the Cúram application.

v Specific - If the widget has specific styling requirements then ensure they are
explicitly defined in custom CSS for the widget. This will help to insulate the
widget from changes to the default styling within the application. The
recommended approach is to use the features provided by the Custom Widget
Development Framework to generate a unique identifier for your widget and
apply that to id attribute of the root element. All CSS rules for the custom
widget can then be based off this identifier. Consult the Cúram Widget
Development Guide for more details.

Every visual aspect (color, font size, borders, margin padding etc.) for a custom
widget should be analyzed and the developer should decide on whether it should
be inherited or specific. Also, it is impossible to guarantee there will never be
impact on custom CSS, even if it is as specific as possible. As a guideline, it would
be expected that with minor service pack releases of the Cúram application, the
underlying HTML and CSS will not change drastically. However, a major release of
the Cúram application may bring a new user interface and with it major changes
to HTML structure and CSS. Even if a custom widget has specific CSS, it may need
to be updated to adhere to the Cúram application's new look and feel.

Testing, Troubleshooting and Debugging

Introduction
Writing a widget's renderer plug-in class (or classes) is only half the battle. In the
case of many widgets, particularly those that depend a lot on JavaScript and
custom CSS styling, the battle has only just begun. The following sections provide
some guidance on what to do next.

Testing
There are several aspects to the testing of widgets that pose different challenges to
the developer or tester. The developer must:
v Test that the HTML produced by the renderer has the correct structure for all

potential inputs.
v Test that the widget is presented correctly within the browser when the CSS

styling has been applied.
v Test that any associated JavaScript operates correctly on the widget in the

browser.
v Test the CSS and JavaScript across all supported browsers.

62 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The best way to get started is to create a UIM page to host the widget. Sometimes,
several test pages are required for the different use cases of the widget, though
sometimes these can be combined in to a single UIM page. On building and
running the application, open the page to check that the widget is presented
correctly.

There are several testing tools available that can automate the process of checking
the structure of the HTML produced by the widget. Tools such as Canoo WebTest
can be run from Apache Ant build scripts and can be integrated into the build and
test process. Alternatively, the structure can be checked manually by viewing the
source of the HTML page.

Manual testing is required when checking that the HTML is presented correctly
after the CSS styles are applied. This also has to be repeated in all browsers and
versions of browsers that will be supported, as each browser has its own way of
interpreting and implementing the CSS standards.

JavaScript, similarly, can behave differently in different browsers. Testing tools exist
for testing both the JavaScript code directly and testing the behavior of the
JavaScript with the browser environment. The performance of JavaScript code can
also vary dramatically between different browsers. It is important to establish early
on if any of the supported browsers may exhibit performance problems and to
change the approach early in the development cycle if necessary.

Cross-browser support is often the most difficult aspect of renderer development to
get right. When problems arise, search Internet forums and web sites for others
who may have had the same problem. Sometimes there is an easy solution to the
problem that would have taken a long time to figure out alone. However,
sometimes there is no such magic bullet and compromises in the quality of the
rendering on some browsers have to be accepted.

Troubleshooting
There are a number of common problems that arise during renderer development.
The first place to start is with the error messages that are reported.

When an error occurs in a renderer, the rendering of the page fails and an error
page is displayed. During development, it is very useful to enable the option to
display the stack trace of the exceptions in a HTML comment within the error
page. This option is normally turned off in production, but can be enabled by
setting the errorpage.stacktrace.output property to true in the
ApplicationConfiguration.properties file (described in the Cúram Web Client
Reference Manual). Then, then an error occurs, view the source of the HTML page
to see the embedded stack trace.

The exceptions reported in the stack trace are often deeply nested. The top of the
stack trace will usually show a series of nested exception messages before
displaying the first trace. This first series of error messages is often sufficient to
diagnose the problem. Each error message is reported with an error number. Look
up the error number in the Cúram Web Client Error Message Guide to find out what
the error means and what the possible causes may be. Do not ignore these errors
or dismiss them or fail to follow the resolution steps in the documentationthese
errors are rarely ever misleading.

The domain and style configurations are a common source of issues. Naming
clashes or incorrect assumptions about the component order can cause problems. If

Developing Custom Widgets 63

a renderer simply does not seem to be invoked at all, check that it is correctly
configured, that the configuration has the highest priority in the component order
and that the application has been built after these changes have been made. Make
sure, also, that the names of custom styles do not clash with existing style names.

A renderer plug-in class populates a DOM document fragment with the nodes that
represent the HTML mark-up. At present, the CDEJ serializes the document
fragment to XML text. This is compatible with the W3C XHTML 1.0
recommendation. However, some browsers are not fully compatible with XHTML
and do not properly parse empty element tags, requiring instead separate opening
and closing element tags with no body content. When an element node in the
document fragment is serialized to XML text, an empty element tag is used when
the element has no body content. To avoid parsing problems in the browser, it may
be necessary to add some content to the body of the element to cause the serializer
to generate separate opening and closing element tags. The simplest way to do this
without affecting the presentation of that content is to add a comment node to the
body of the element. The elements that cause the most problems are empty div
elements and empty script elements. The browser may parse the page incorrectly,
treating the empty element tag as an opening tag and nesting the following content
incorrectly within that element. An indication that this has happened is when the
view of the source for the HTML page in the browser does not match the view of
the browser's DOM document (the parsed version of that source). The DOM
document can be viewed with the web development tools available for most
browsers. Adding a comment node to the empty element will resolve this issue.

Debugging
During the development of a Cúram client application, Apache Tomcat can be used
within the Eclipse IDE to start and test the application. Renderer plug-in classes
run in the context of the client application server and debugger breakpoints placed
into the renderer plug-in class can be used to inspect the operation of the plug-in
at run-time. When a breakpoint is not reached when expected, the problem may be
with the debugging configuration of the IDE or with the configuration of the
renderer. Add tracing code to the renderer to determine which problem exists. If
the trace messages are displayed in the log, then the configuration is correct and
the problem is with the configuration of the debugger. The configuration of the
debugger is beyond the scope of this guide.

Trace messages can be written to the client application log easily from a renderer
plug-in class. Simply print the messages to standard output or standard error
using, for example, System.out.println. When running Tomcat from within the
Eclipse IDE, the messages will appear in the console view of Tomcat process. Once
the trace messages have been used to successfully diagnose and resolve a problem,
they can be removed or commented out.

Much of the debugging effort of a complex widget lies not in the Java code of the
renderer plug-in class, but in the JavaScript code or the CSS stylesheets. Issues in
these areas can only be debugged within the browser. One effective approach to
investigate such problems is to use the Mozilla Firefox1web browser with the
Firebug2add-on. Firebug provides a host of tools for analyzing styling and layout,
debugging JavaScript code, inspecting the DOM document, monitoring network
activity and more. Firebug also allows changes to be made to the HTML page and
the CSS style rules in real time, reducing the time it takes to test experimental

1. See the Mozilla web site for details.

2. See the Firebug web site for details.

64 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

http://www.mozilla.com/
http://getfirebug.com/

changes. Beware, however, that Firefox may not render the content in the same
manner as other browsers, such as Microsoft Internet Explorer. If Internet Explorer
is the browser for which support is required, check regularly that changes that
correct the presentation and operation of the widget in Firefox also work in
Internet Explorer.

Configuring Renderers

Introduction
The customization of the configuration that associates edit-renderer and
view-renderer plug-ins with named domain definitions, is supported in the Cúram
application. This feature is merely an extension of the existing customization
features, presented in the Cúram Web Client Reference Manual, where it describes
how plug-ins can be developed for custom data conversion and sorting. That
manual also describes the configuration process in detail. The two kinds of
renderer plug-in are just to more kinds to add to the existing kinds of domain
plug-in. They are configured in the same way and in the same configuration file.
Examples are provided in this appendix, but the Cúram Web Client Reference Manual
should be consulted for more details.

Component renderers are associated with styles, not domains, so these are
configured separately. Styles only support a single kind of plug-in, a
component-renderer, so their configuration, which very similar to the domain
configuration, is simpler. Styles are not defined in the UML model like domain
definitions; they are simply defined by naming them in the configuration file. The
creation of custom configuration file for styles and the syntax for defining custom
style configurations are described in this appendix.

The configuration process is one of customization, rather than full replacement.
The CDEJ provides the default configuration. The developer adds custom
configuration files to one or more application components. These custom
configurations can override the CDEJ default configuration. As there can be many
custom configurations in the application, one per component, these must be merged
before they are used to customize the default configuration. Where specific
domains or styles in the default configuration are not customized fully or at all,
the default configuration is inherited for those domains and styles. The details of
this merging and inheritance behavior for domains are described in the Cúram Web
Client Reference Manual. This appendix provides additional information about the
style configurations.

warning: Purpose -based Configuration

The developer may see domain and style configurations in the default CDEJ
configurations that configure domains or styles using a purpose attribute instead of
a class attribute. Configuration using purposes is more complex then
configuration using named classes and custom configuration using purposes is not
supported within the Cúram application; only class-based configuration may be
used.

warning: Limitations on Kinds of Plug-ins

The CDEJ domain configuration specifies a kind of plug-in called a select-renderer.
The development of custom select-renderer plug-ins is not supported in the Cúram
application at this time. No further mention of them is made in this guide.

Developing Custom Widgets 65

The configuration of marshal plug-ins for domains is also unsupported outside of
the specific cases of the two marshal plug-ins for accessing XML data described in
the samples of this guide and in more specific detail in “Extending Paths for XML
Data Access” on page 73.

Any references to select-renderer or marshal plug-ins in the Javadoc for CDEJ, or
information provided in the Javadoc about their development or configuration,
does not constitute an authorization or offer of support for their use.

Several of the CDEJ renderers are defined in classes whose names include the
word “Legacy”. These are deprecated, transitional renderer classes and the
referencing of these legacy renderer classes in custom configurations is not
supported in the Cúram application. Note, also, that a rendering cascade will fail if it
delegates the rendering of a field whose domain is associated with a legacy
renderer. Developers must avoid rendering cascades that may result in the
invocation of a legacy renderer.

Configuring Domain Renderers
The Cúram Web Client Reference Manual provides detailed information about the
customization of the domain configuration in the DomainsConfig.xml file of an
application component. That information is not repeated here. The view-renderer
and edit-renderer plug-ins are configured in the same file and in the same way as
other domain plug-ins. The only difference is that the specific plug-in names
view-renderer or edit-renderer are used in the plug-in elements of the
configuration. An example is shown below.

What are the basic principles? Configuration inheritance for domain renderers, no
inheritance for component renderers (styles). What is the default configuration?
Only configure what you need to change; do not copy complete configurations,
otherwise expected inheritance can be compromised in the future.

It is possible to override all of the plug-ins associated with a domain (subject to
some support limitations described in the previous section). However, it is very
important that the developer only specify the plug-ins that need to be customized
and not repeat the configuration of existing plug-ins without changing them. When
the developer partially customizes a domain, any unspecified plug-ins will be
resolved using the CDEJ default configuration or inherited from an ancestor
domain of the configured domain. This is the preferred behavior.

Defining unnecessary custom configurations for plug-ins can have unwanted
effects that may be hard to diagnose. For example, the developer might copy the
CDEJ default configuration of a domain from the CDEJ default configuration file
together with the configurations of all of that domain's plug-ins and use this as a
template of sorts in the custom configuration file. The developer might now
change only one plug-in element to customize the view-renderer class used for the

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domain name="SAMPLE_DOMAIN">

<dc:plug-in name="view-renderer"
class="sample.SampleViewRenderer"/>

<dc:plug-in name="edit-renderer"
class="sample.SampleEditRenderer"/>

</dc:domain>

</dc:domains>

Figure 52. An Example of a DomainsConfig.xml File

66 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

domain and leave all of the other plug-in elements copied from the CDEJ intact
and unchanged. All of these unchanged plug-in configurations are unnecessary, as
the developer is not customizing them. If the CDEJ is now upgraded, any changes
to the CDEJ default configuration of that domain will not be reflected in the
application, as the developer has, in the custom configuration, effectively
customized all of the plug-ins for that domain. While using the older version of
the CDEJ, this went unnoticed, as the customization was the same as the default.
However, on upgrading the CDEJ, the old CDEJ configuration that the developer
copied to the custom configuration file continues to be given priority and any new
CDEJ default configuration of any plug-in will not be reflected in the application.
It is very important, therefore, that the developer customize only the plug-ins that
must change and omit all references to other plug-ins.

Configuring Component Renderers
Configuring styles with component-renderer plug-ins is similar to configuring
domains with view-renderer and edit-renderer plug-ins. To configure styles, create
a StylesConfig.xml file in the application component. An example styles
configuration is shown below.

While the namespace and element names are different, the styles configuration file
is similar in form to DomainsConfig.xml, but there is only one plug-in per style
configuration.

There can be any number of style elements within the styles root element. Styles
are defined by naming them in the configuration file; there is no need to model
them or declare them anywhere else. Unlike a domain definition, the name of a
style does not have to be a valid Java identifier; any non-empty string value that is
not entirely composed of whitespace characters is acceptable.

On the plug-in element, the name is always component-renderer and the class is
the fully qualified name of the Java class for the widget's component-renderer
plug-in.

Where more than one StylesConfig.xml file exists in the application (there can be
one in each component) and where the same style is defined more than once, the
configuration for that named style from the highest priority component will be
used. As styles do not form a hierarchy like domains, there is no inheritance
behavior in the in the configuration.

Using the name of a style defined in the CDEJ default style configuration will
override the configuration. However, the overriding of the CDEJ default styles is
not supported in the Cúram application. Take care not to use the name of an
existing CDEJ style, as the results may be unpredictable. To avoid accidental
overrides, particularly if using generic style names like label, or panel, use a
custom naming convention. For example, prefix style names with a string that
represents an ad hoc, private namespace: sample::label and sample::panel. The

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:styles

<sc:style name="sample-style">
<sc:plug-in name="component-renderer"

class="sample.SampleComponentRenderer"/>
</sc:style>

</sc:styles>

Figure 53. An Example of a StylesConfig.xml File

Developing Custom Widgets 67

prefix sample:: is not used by the CDEJ, so it can act like a namespace. The double
colon has no special meaning in a style name and any separator character(s) can be
used. If using this approach, it is best to choose a separator that is different from
any separator used for words in the style name to avoid accidental name clashes.

Accessing Data with Paths

Introduction
Paths are references to sources of data. They are similar in concept to file system
paths used to access files or XPath expressions used to access data in a structured
document. All access to data of any kind from a renderer is performed via paths.
Paths can be used to access the values of server interface properties, text in
localized properties files, localized properties resources in the database and other
values. The terminology used to describe the parts of a path is shown in the figure
below.

1. Prefix Path
2. Selector
3. Predicate
4. Step
5. Extended Path

The above path can be read as follows:
v The prefix path identifies the type of the data source. Here, /data/si indicates

that it is a reference to the data of a server interface property.
v The following two path steps identify the name of the server interface (as

declared in the UIM) and the full name of the property. Here, the
dtls$list$address property of the DISPLAY server interface is referenced.

v A path step may have a selector or a selector followed by one or more
predicates. The predicate is used to qualify the data identified by the path up to
that point. Here, the predicate [1] is used to select the first address from the list
of addresses in the property. Where predicates are used as numeric indexes, the
index of the first value is one, as in XPath.

v An individual value of a server interface list property is selected by the first four
steps of the path. The fifth step, ADD1, is the beginning of an extended path that

Figure 54. The Anatomy of a Path

68 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

will be resolved, not by the DataAccessor, but by the domain marshal plug-in
associated with the domain of the identified server interface property. Here, ADD1
may, if the marshal is the SimpleXPathMarshal described in “Extending Paths for
XML Data Access” on page 73, select the value of an ADD1 element in an XML
document that is the value of the server interface property.

For more information about the general structure of paths and their manipulation
in code, refer to the Javadoc for the Path and Step interfaces in the
curam.util.common.path package.

The Field object passed to a render method contains a Binding object that specifies
a source path and/or a target path. Renderer plug-ins do not need to be concerned
about the form of these paths, or what type of data sources they reference;
renderer plug-ins only need to resolve these paths to their values and should do so
without inspecting the paths or depending on then being in any particular form. It
is this unquestioning processing of any given path that allows renderer plug-ins to
be reused easily in many different contexts and in rendering cascades.

Renderer plug-ins resolve paths the DataAccessor object available from the
RendererContext object passed to the render method. There are a number of
DataAccessor methods that can be called. They all take a single path argument:

get(Path)
Gets the formatted text value of the data. For domain-specific data, this is
the value returned by the format method of the converter plug-in for that
domain.s

getRaw(Path)
Gets the raw value of the data. For domain-specific data, this is the value
passed to the format method of the converter plug-in. The type of the value
is also the same as the type returned by the parse method of the converter
plug-in.

getList(Path)
Gets the list of formatted text values of the data.

getRawList(Path)
Gets the list of raw values of the data.

count(Path)
Gets a count of the number of values that will be returned by getList or
getRawList.

Where the data is not domain-specific, such as the contents of a properties file, the
getRaw method usually returns the same string value as the get method. Some data
sources may only support a subset of these methods. The get method is always
supported, but the getList, getRawList and count methods may not be supported
for all data sources. There are other methods on the DataAccessor, but their use is
not supported in the Cúram application.

Creating New Paths
For the most part, a renderer plug-in just resolves the values of the paths given to
it in the Binding of its Field object. However, in some cases, the renderer requires
data other than that referenced by the given paths. For example, a renderer may
require a localized text value to use as a label within the HTML that it produces.
In this case, the renderer must create a new path that references the required data
and then resolve it to the required value.

Developing Custom Widgets 69

New paths are created by extending one of the supported prefix paths. These
prefix paths are defined by the ClientPaths class in the
curam.util.client.path.util package. Each prefix refers to a different type of
data source. Only a limited set of data sources for use in custom renderers are
supported in the application. The supported prefix paths for those data sources are
defined by these constants on the ClientPaths class:

GENERAL_RESOURCES_PATH
A reference to a localized text property within a Java properties file
available on the classpath.

APP_PROP_RESOURCE_PATH
A reference to a localized text property within a Java properties file stored
in the Application Resource Store in the database.

LITERAL_VALUE_PATH
A path encoding a literal value that can be resolved without reference to
any external data source.

The prefix path is extended with further path steps to identify the required data.
The forms of the paths required for each of the supported data sources are
described in the following sections. The use of constants in ClientPaths, or their
corresponding prefix path values, other than those listed above, are not supported
in the Cúram application.

General Properties Resources
The general properties path refers to a localized text property stored in a Java
properties file on the classpath. The prefix path is extended with two further steps:
the first step is the resource identifier for the properties file; the second step is the
property key. Java properties files can be added to any package within the
javasource folder of an application component, the same location used for the
renderer plug-in classes.

The resource identifier to use to locate the properties should correspond to the
location of the properties resource on the classpath. For example, if the properties
file X.properties is placed in a Java package sample.resources, after building the
application it will be stored in a JAR file on the classpath as the file
/sample/resources/X.properties. Then the resource name will the be
sample.resources.X. See the Javadoc documentation for the standard
java.util.ResourceBundle API for more information on the naming convention
and mechanism used to locate the properties for properties files in more than one
locale.

The example below shows how a renderer plug-in may retrieve the value of the
age property from the PersonDetails.properties file in the sample Java package.
The code is defined in the context of the render method. The localized text value is
stored in the ageLabel variable ready to be added to the appropriate point of the
HTML document.

Only the get method is supported when accessing general properties resources. If
no such property can be found, the get method will throw a DataAccessException.

Path agePath = ClientPaths.GENERAL_RESOURCES_PATH
.extendPath("sample.PersonDetails", "age");

String ageLabel = context.getDataAccessor().get(agePath);

Figure 55. Accessing General Properties

70 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Path objects are immutable; they are similar to java.lang.String objects in that
respect, or to the component objects described in “Overview of the Renderer
Component Model” on page 50. Operations such as extendPath, do not modify the
path, they return a new path (see the Javadoc for details). Therefore, if several
properties are required from the same resource, a path can be created that includes
the resource identifier step and then that path can be extended again and again to
retrieve individual property values. This is shown in the example below, where the
value of the dtlsPath variable is never changed by calls to extendPath after it has
been initialized.

Where properties files are supplied for several locales, the properties file name will
differ, but the path used to reference the property should not include the locale.
For example, if the properties files PersonDetails_en_US.properties and
PersonDetails_es.properties are defined in the sample package folder, the above
code will not change; the resource identifier remains sample.PersonDetails. The
DataAccessor will automatically determine the locale of the active user and select
the correct properties resource. The usual locale fall-back sequence, described by
the java.util.ResourceBundle API, is followed.

Resource Store Properties Resources
Files of any kind are allowed to be uploaded and stored in the database of the
application, for later retrieval. This service is called the Application Resource Store.
Once a file is uploaded, it no longer exists as a file, but as the value of a field in a
database record. This database record is referred to as a resource. By constructing
and resolving the appropriate path, a renderer plug-in can access property values
from Java properties resources uploaded to this store.

The path form is a little different from the paths used for general properties files
resources on the classpath, as it accommodates other path forms that are not
supported in the custom renderers within the Cúram application. Also, as these are
no longer properties files, there are differences in the way the resources are
identified. Properties resources are loaded to a local cache when they are
requested. The cache stores the properties in a form that optimizes locale fall-back
operations and reduces memory usage through de-duplication, so the individuality
of the original resources is lost. However, this results in an efficient system that is a
good alternative to classpath-based properties resources, particularly where
resources may need to be modified at run-time.

The path is created by extending the prefix path defined by
ClientPaths.APP_PROP_RESOURCE_PATH. The extension adds a single step. The
selector of the step is the name of the resource and a single predicate contains the
name of the property key. The resource is identified using the name assigned to the
resource when it was uploaded to the resource store. For example, if an
administrator uploads the file PersonDetails.properties to the resource store and
names the resource PersonDetails.properties, then that is the identifier that must

Path dtlsPath = ClientPaths.GENERAL_RESOURCES_PATH
.extendPath("sample.PersonDetails");

DataAccessor da = context.getDataAccessor();

String ageLabel = da.get(dtlsPath.extendPath("age"));
String dobLabel = da.get(dtlsPath.extendPath("date.of.birth"));
String nameLabel = da.get(dtlsPath.extendPath("name"));
String addressLabel = da.get(dtlsPath.extendPath("address"));

Figure 56. Accessing Multiple General Properties

Developing Custom Widgets 71

be used. The .properties name suffix (which is not a file extension, as a resource
is not a file) is not added or removed by the system and must be used as the
identifier of the resource. The name could be set to just PersonDetails, without
any suffix, but adding the suffix may help to make the type of the resource more
readily identifiable from its name when administering the resource store. Either
way, the resource identified in the path should match the resource name in the
resource store exactly. An example of the construction of a path to request the age
property from the resource store resource named PersonDetails.properties is
shown below.

As with general properties resources, only the get method is supported when
accessing general properties resources. If no such property can be found, the get
method will throw a DataAccessException.

Where multiple properties resource values are required, the path to the resource
can first be created with an empty predicate and then the value of the predicate
can be set again and again using the applyIndex method of the Path interface. This
method returns a new path each time, it does not modify the existing path. The
index value is used to set the value of the first empty predicate encountered in the
path. This is shown below.

The locale fall-back operation depends on all the resources in the sequence having
the same name. When resolving properties using the local fall-back mechanism, the
CDEJ does not modify the name of the requested resource, it only changes the
value for the separate locale field in the resource store record. This differs from the
way the java.util.ResourceBundle API creates new file names when searching for
locale fall-back resources. When a resource is uploaded to the store, both the name
and the locale should be specified separately through the administration interface.
If the files PersonDetails_en_US.properties and PersonDetails_es.properties are
uploaded, the administrator should assign the same name
PersonDetails.properties (or just PersonDetails, if preferred) to both resources,
but set the separate locale field value to en_US and es, respectively. If no locale is
specified, then the resource is treated as the ultimate locale fall-back resource, just
as the ResourceBundle API would treat a properties file with no locale code
appended to its name.

Literal Values
Occasionally, the developer may need to represent a literal value using a path, as
the widget API usually only supports paths to represent data. For this purpose, the
developer may encode a literal value within a path, so that when the DataAccessor

Path agePath = ClientPaths.APP_PROP_RESOURCE_PATH
.extendPath("PersonDetails.properties[age]");

String ageLabel = context.getDataAccessor().get(agePath);

Figure 57. Accessing Resource Store Properties

Path dtlsPath = ClientPaths.APP_PROP_RESOURCE_PATH
.extendPath("PersonDetails.properties[]");

DataAccessor da = context.getDataAccessor();

String ageLabel = da.get(dtlsPath.applyIndex("age"));
String dobLabel = da.get(dtlsPath.applyIndex("date.of.birth"));
String nameLabel = da.get(dtlsPath.applyIndex("name"));
String addressLabel = da.get(dtlsPath.applyIndex("address"));

Figure 58. Accessing Multiple Resource Store Properties

72 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

resolves the path, the literal value is returned. An example is shown below.

The literal value may contain characters that could be confused with the path
syntax, so the value must be escaped when constructing the path. The PathUtils
class in the curam.util.common.path package provides an escape method for this
purpose. In the example, the method escapes the forward slash characters in the
literal value and prevents them from being interpreted as separating path steps by
the extendPath method. When the path is resolved using DataAccessor.get, the
escaping will be reversed automatically, so there is no requirement on the
consumer of the path to treat it differently to any other.

Extending Paths for XML Data Access

Introduction
A special domain marshal plug-in was used in many of the examples in this guide
to access data from XML document using paths resembling XPath expressions. This
appendix describes the supported path forms in more detail and provides
additional information about the automatic data conversion capabilities.

This appendix refers to the structure of path values. See the Javadoc for the Path
and Step interfaces in the curam.util.common.path package for an explanation of
the terminology used here.

When the path from the Binding of a Field object is resolved, and where that path
identifies a server interface property, the value returned is the value of the server
interface property. If the path is extended with extra path steps, then the domain
marshal plug-in class associated with the domain definition of that server interface
property is invoked to evaluate the extra path steps with respect to the value of
the server interface property. The examples in this guide show how this can be
used to extract data from XML documents returned in server interface properties.
Two domain marshal plug-in classes are provided with the out-of-the-box Cúram
application for this purpose.

The SimpleXPathMarshal class supports the resolution of XPath-like expressions
against data returned in a server interface property value. All values are returned
as strings, just as they appear in the XML document. The SimpleXPathADCMarshal
class adds the ability to apply automatic data conversion and formatting to the
resolved string values. This class can be used without automatic data conversion,
but it is a little more efficient to use the former class if data conversion is not
required. Both classes are defined in the curam.util.client.domain.marshal
package.

Simple XPath Expressions
The “simple” XPath expressions supported by these marshal plug-ins are not true
XPath expressions, though they aim to be as similar as possible to a very small and
simple subset of the location paths defined by the W3C XPath 1.0 recommendation.

The paths operate on a DOM document created by parsing the XML string that is
returned as the value of a server interface property. Each step in the path selects
one or more nodes in the document and subsequent steps are evaluated within the

Path literalPath = ClientPaths.LITERAL_VALUE_PATH
.extendPath(PathUtils.escape("a //literal// value"));

Figure 59. Encoding Literal Values

Developing Custom Widgets 73

context of each of those selected nodes. The context starts with the document node,
so the first step will identify the root element of the document.

The selector of a step (that part of the step before the predicate) defines the name
of the element or attribute to be selected. The prefix @ is used to indicate an
attribute name; an element name requires no prefix. An element name may be
followed by a single, optional predicate with an integer index value (starting from
one) or an attribute selection expression.

For example, if the XML document has the form shown in “Simple XPath
Expressions” on page 73, then the path /values selects the values root element;
/values/value[3] selects the third value element within the values root element;
/values/value[@domain='SVR_DATE'] selects the value element with the domain
attribute value SVR_DATE within the values root element; /values/value[2]/@domain
selects the domain attribute of the second value element within the values root
element; /values/value selects all three value elements within the values root
element; /values/value/@domain selects the three domain attributes from the three
value elements within the values root element; and the paths /values/value[3]/
address and /values/value/address both select the two address elements of the
third value element within the values root element. When more than one node is
selected, the selected nodes are returned in the order in which they appear in the
document.

An attribute value expression can be used to select elements that have an attribute
with a particular value. An example was given above. The expression is limited to
a single attribute name, prefixed with @ followed by an equals sign and a quoted
string value. The attribute name must be on the left-hand side of the equals sign
only. The string can be quoted with single quotes or double quotes. If single quotes
are used, then the string can contain double quotes and vice versa. The string
cannot contain any /, [or] characters; it is intended to be used only for matching
ID values or other simple identifiers.

The selector * selects any element and the selector @* selects any attribute. For
example, the path /values/value[3]/* selects the two address elements and the
city element of the third value element within the values root element; the path
/values/@* selects the id and locale attributes of the values root element; the path
/values/*/@* selects all of the attributes of all of the child elements of the values
root element; the path /values/value[3]/*[3] selects the third child element of
any name of the third value element within the values root element, the city
element in the case of the document above.

There are a number of restrictions on the steps that can be used and on their
positions in a path. Where an element or attribute name appears below, a * can
replace it. The allowed forms are as follows (the examples refer to the above
sample document):

<values id="a1" locale="en">
<value domain="SVR_INT32">1234</value>
<value domain="SVR_DATE">20080131</value>
<value domain="ADDRESS_DATA">

<address>Apt. 86</address>
<address>1000 Main St.</address>
<city>Hometown</city>

</value>
</values>

Figure 60. A Sample XML Document

74 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

element-name
An element name identifying the elements to be selected within the context
provided by the previous path step. For example, /values selects the
values root node, while /values/value selects all three value elements
within the values root element.

element-name [index]
An element name and an integer index value identifying one of several
elements with that name in the context provided by the previous path step.
For example, /values[1] selects the first values element, which, as it is the
root element and the only values element, selects the same element as the
simpler path /values; /values/value[2] selects the second value element
that is a child of the values root element.

element-name [@ attribute-name = quoted-string]
An element name and an attribute selection expression identifying
elements with that name and with that value for the named attribute in the
context provided by the previous path step. See above for more details.

@ attribute-name
An attribute name identifying an attribute of the element or elements
selected by the previous steps in the path. An attribute selection step is
only allowed as the last step in a path unless it is followed by a single
function step (described below).

For convenience, the following step form may also be used in leading steps or the
terminal step:

element-name []
An element name followed by an empty predicate. This is treated in the
same way as a simple element name. This is not a true XPath expression,
but it is convenient for situations when a path has an empty predicate to
which an index will later be applieda common scenario if all that is
required is a count of the nodes.

A valid path may select zero or more nodes. The values returned for these nodes
depend on which method of the DataAccessor was called from the renderer class.
The details are provided in the next section.

The Path interface does not support the representation of full XPath expression.
Notably, XPath function calls that accept location paths as arguments cannot be
represented, so a non-standard notation is used to provide some basic functionality.
Instead of an expression of the form function-name (location-path) , the form
location-path / function-name () is used instead. For example, to the get the
qualified name of the third child element of the third value element in the sample
document above, the path would be /values/value[3]/*[3]/name(); this is treated
as if it were the expression name(/values/value[3]/*[3]).

A function may only appear as the last step in a path. The supported functions are
as follows:

name()
Gets the qualified name of the first node selected by the path. This will be
the element or attribute name including any namespace prefix.

local-name()
Gets the name of the first node selected by the path. This will be the
element or attribute name not including any namespace prefix.

Developing Custom Widgets 75

Evaluating the Paths
Paths are evaluated using the DataAccessor object available from the
RendererContext that is passed to all render methods. When a path is extended
into a server interface property value, the method called on the DataAccessor
determine the method that is called on the marshal plug-in. For the
SimpleXPathMarshal plug-in class data is converted generally as follows:
v The value of an attribute node is the string value of the attribute.
v The value of an element node is the concatenation of the values of all of the

child text nodes of that element.
v If the are no selected nodes or a path evaluates to null, the result depends on

which DataAccessor method was called. See below for details.
v The value of the result of a function call, is the string value of that result.

This behavior is consistent with use of the standard XPath string() function on
the selected nodes or value, except, in the case of an element node, where only
direct child text nodes of an element are concatenated, not all descendant text
nodes as would be normal for XPath.

The DataAccessor methods refine the general behavior described above. For the
SimpleXPathMarshal plug-in class, there is little difference between the formatted
and raw variants, except for their handling of null values.

get Gets the string value of a the first node (in document order) selected by
the simple XPath expression given by the path, or, in the case of a function
call, the string value of the result of that call. If no nodes are selected, the
result will be an empty string. To distinguish between an attribute or
element that is present but has an empty string value and an attribute or
element that is not present at all, use the getRaw method and test if the
result is an empty string or a null value.

getRaw Gets the first raw value of the first node (in document order) selected by
the path, or, in the case of a function call, the resulting value of that call. If
no nodes are selected, the result will be null.

getList
Gets the list containing the string values of the nodes (in document order)
selected by the path. For non-function-call paths, the values in the list
represent the result of calling the get method on each selected node. If the
path represents a function call, then the list will contain the single result of
calling the function ones on all of the selected nodes, not a list of the
results of the function call on each node. The functions operate only on the
first node when presented with a list of several nodes.

For example, /values/value[3]/* selects all of the child elements of the
third value element within the values root element. The resulting list will
contain the three string objects, one each for the body text of each element.
However, evaluating the path /values/value[3]/*/name() will return a list
containing a single string that is the name of the first selected element
(addr), not one string for the name of each selected element.

getRawList
Gets the list containing the values of the nodes (in document order)
selected by the path. The conversion behavior of this method is the same
as the getRaw method and the list handling is the same as the getList
method.

76 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

count Counts the number of nodes selected by the given path. If the path
represents a function call, then the count is the number of results from the
function call (usually one).

Automatic Data Conversion
The SimpleXPathMarshal class is useful when extracting simple string values from
XML documents. However, much of the time, the values are merely the string
representation of other data types, such as dates, numbers and code-table items.
The SimpleXPathADCMarshal extends the capabilities of the SimpleXPathMarshal by
enabling automatic data conversion (ADC) using the domain converter plug-ins.
The same XPath location paths supported by the SimpleXPathMarshal are
supported by this ADC class.

This SimpleXPathADCMarshal plug-in will perform automatic data conversion
(ADC) on the values in the XML content. This requires that the XML content
represents values in a particular form: the value must be the body content of an
element and the element must have a domain attribute identifying the name of the
domain definition to apply to the value. The values must use the generic string
form of the data, to be compatible with the parseGeneric method of the domain
converter plug-in associated with the identified domain. In general, the generic
string value is the same as the result of calling Java's toString method on the
corresponding Java object, with the exception of date and data-time values, where
the ISO 8601 basic format is used. ADC cannot be applied to the values of attributes
or the results of XPath function calls, only to the body text of elements; however,
attributes can still be used for values if ADC is not required.

Generic String Values: The generic string value of a server interface property is
used to represent numbers, dates, date-times and other values unambiguously in
string form when it is not possible to represent them using a more suitable Java
object representation. The generic string value in some of the domain definition
options in the application UML model and when transporting data in XML
documents. The format avoids problems that may arise if values were formatted
according to the rules or conventions of different locales, as these would add
unnecessary complication and need to be communicated.

For numbers, the generic string representation must omit grouping separator
characters (such as thousands separators), use only a period character (Unicode
“FULL STOP” U+002E) as a decimal separator and, if the number is negative, place
the minus sign character (Unicode “HYPHEN-MINUS” U+002D) on the left. The
CDEJ is lenient when parsing numeric values that use a comma as a thousands
separator, but these are best avoided. Using the toString method of class used for
the Java object representation of numeric domain definitions will produce the
desired result. The classes used for the Java object representations for all of the
base domain definitions are listed in the Cúram Web Client Reference Manual.

Date and date-time values must be formatted using ISO 8601 basic format. ISO
8601 basic format represents date and date-time values as fixed-length character
strings. The format for date values is YYYYMMDD , two-digit years are not allowed.
The format for date-time values is YYYYMMDD T hhmmss , the T is a literal character
denoting the start of the time value and the time uses the 24-hour clock. The
parseGeneric method assumes the date-time values are in the UTC time zone. The
active user's time zone will be applied when formatting the value for display.

Without ADC, the formatted values and raw values that are returned by the getter
methods are both the literal string values that are retrieved from the XML

Developing Custom Widgets 77

document (with only a difference in the handling of null values). With ADC, the
formatted values are the values formatted according the the locale of the active
user and the raw values are the Java object representations of those values
appropriate for the indicated domain.

For example, with reference to the document in “Simple XPath Expressions” on
page 73, if the path /values/value[1] is passed to the get method, then the result
will be the string string 1,234 if the user's locale is, say, en, where a comma is used
as a thousands separator. Similarly, if the path is /values/value[2], then the result
will be 31-Jan-2008 if the user's locale is en and if that particular date format is
set. For raw values, the effect is similar, but the corresponding Java object will be
returned instead of a formatted string. For example, it will be a java.lang.Integer
for the SVR_INT32 domain, or a curam.util.type.Date for the SVR_DATE domain.
Date and date-time values should be in the UTC time zone, they will be converted
to the user's time zone when formatted.

Source Code for the Sample Widgets

Source Code for the E-Mail Address Widget

Source Code for the Photograph Widget

public class EMailAddressViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {

String emailAddress = context.getDataAccessor()
.get(field.getBinding().getSourcePath());

Document doc = fragment.getOwnerDocument();

Element span = doc.createElement("span");
span.setAttribute("class", "email-container");
fragment.appendChild(span);

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "mailto:" + emailAddress);
span.appendChild(anchor);

Element img = doc.createElement("img");
img.setAttribute("src", "../Images/email_icon.png");
anchor.appendChild(img);

anchor.appendChild(doc.createTextNode(emailAddress));
}

}

78 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Source Code for the Details Widget

public class PhotoViewRenderer extends AbstractViewRenderer {

public void render(final Field component,
final DocumentFragment fragment,
final RendererContext context,
final RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
String personID

= context.getDataAccessor().get(component.getBinding()
.getSourcePath().extendPath("photo/id"));

String personName = context.getDataAccessor()
.get(component.getBinding()

.getSourcePath().extendPath("photo/name"));

Document doc = fragment.getOwnerDocument();

Element rootDiv = doc.createElement("div");
rootDiv.setAttribute("class", "photo-container");
fragment.appendChild(rootDiv);

Element linkDiv = doc.createElement("div");
linkDiv.setAttribute("class", "details-link");
rootDiv.appendChild(linkDiv);

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "Person_homePage.do?"

+ "id=" + personID);
linkDiv.appendChild(anchor);

Element anchorImg = doc.createElement("img");
anchorImg.setAttribute("src", "../Images/arrow_icon.png");
anchor.appendChild(anchorImg);

Element photoDiv = doc.createElement("div");
photoDiv.setAttribute("class", "photo");
rootDiv.appendChild(photoDiv);

Element photo = doc.createElement("img");
photo.setAttribute("src",

"../servlet/FileDownload?"
+ "pageID=Sample_photo"
+ "&id=" + personID);

photoDiv.appendChild(photo);

Element descDiv = doc.createElement("div");
descDiv.setAttribute("class", "description");
descDiv.appendChild(doc.createTextNode(personName));
rootDiv.appendChild(descDiv);

}
}

Developing Custom Widgets 79

public class PersonDetailsViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException, PlugInException {

String name = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/name"));
String reference = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/reference"));

String address = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/address"));
String gender = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/gender"));

String dateOfBirth = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/dob"));
String age = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/age"));

String phone = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/phone"));
String email = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/e-mail"));

Document doc = fragment.getOwnerDocument();

Element detailsPanelDiv = doc.createElement("div");
detailsPanelDiv.setAttribute("class",

"person-details-container");
fragment.appendChild(detailsPanelDiv);

Element div;
Element image;

div = doc.createElement("div");
div.setAttribute("class", "header-info");
div.appendChild(doc.createTextNode(name));
div.appendChild(doc.createTextNode(" - "));
div.appendChild(doc.createTextNode(reference));
detailsPanelDiv.appendChild(div);

div = doc.createElement("div");
div.appendChild(doc.createTextNode(address));
detailsPanelDiv.appendChild(div);

div = doc.createElement("div");
div.appendChild(doc.createTextNode(gender));
detailsPanelDiv.appendChild(div);

div = doc.createElement("div");
div.appendChild(doc.createTextNode("Born "));
div.appendChild(doc.createTextNode(dateOfBirth));
div.appendChild(doc.createTextNode(", Age "));
div.appendChild(doc.createTextNode(age));
detailsPanelDiv.appendChild(div);

div = doc.createElement("div");
div.setAttribute("class", "contact-info");
detailsPanelDiv.appendChild(div);
image = doc.createElement("img");
image.setAttribute("src", "../Images/phone_icon.png");
div.appendChild(image);
div.appendChild(doc.createTextNode(phone));

80 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Source Code for the Person Context Panel Widget

Source Code for the Horizontal Layout Widget

public class PersonContextPanelViewRenderer
extends AbstractViewRenderer {

public void render(final Field component,
final DocumentFragment fragment,
final RendererContext context,
final RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
ContainerBuilder cb

= ComponentBuilderFactory.createContainerBuilder();
cb.setStyle(context.getStyle("horizontal-layout"));

FieldBuilder fb
= ComponentBuilderFactory.createFieldBuilder();

fb.copy(component);
fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());

fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());
DocumentFragment content

= fragment.getOwnerDocument().createDocumentFragment();
context.render(cb.getComponent(), content,

contract.createSubcontract());
fragment.appendChild(content);

}
}

Developing Custom Widgets 81

Source Code for the Text Field Widget with No
Auto-completion

public class PersonContextPanelViewRenderer
extends AbstractViewRenderer {

public void render(final Field component,
final DocumentFragment fragment,
final RendererContext context,
final RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
ContainerBuilder cb

= ComponentBuilderFactory.createContainerBuilder();
cb.setStyle(context.getStyle("horizontal-layout"));

FieldBuilder fb
= ComponentBuilderFactory.createFieldBuilder();

fb.copy(component);
fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());

fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());
DocumentFragment content

= fragment.getOwnerDocument().createDocumentFragment();
context.render(cb.getComponent(), content,

contract.createSubcontract());
fragment.appendChild(content);

}
}

82 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

public class NoAutoCompleteEditRenderer
extends AbstractEditRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {

String title = getTitle(field, context.getDataAccessor());
String targetID = context.addFormItem(field, title, null);

boolean useDefault = !"false".equalsIgnoreCase(
field.getParameters().get(FieldParameters.USE_DEFAULT));

String value = context.getFormItemInitialValue(
field, useDefault, null);

Element input = fragment.getOwnerDocument()
.createElement("input");

fragment.appendChild(input);

input.setAttribute("type", "text");
input.setAttribute("autocomplete", "no");
input.setAttribute("id", targetID);
input.setAttribute("name", targetID);

if (title != null && title.length() > 0) {
input.setAttribute("title", title);

}

if (value != null && value.length() > 0) {
input.setAttribute("value", value);

}

if ("true".equals(field.getParameters()
.get(FieldParameters.INITIAL_FOCUS))) {

input.setAttribute("tabindex", "1");
}

String width
= field.getParameters().get(FieldParameters.WIDTH);

if (width != null && width.length() > 0
&& !"0".equals(width)) {

String units;
if ("CHARS".equals(field.getParameters()

.get(FieldParameters.WIDTH_UNITS))) {
units = "em";

} else {
units = "%";

}
input.setAttribute("style", "width:" + width + units + ";");

}

setScriptAttributes(input, field);
}

}

Developing Custom Widgets 83

84 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 85

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

86 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 87

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Microsoft and Internet Explorer are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Firefox is a registered trademark of Mozilla Foundation.

Java and all Java-based trademarks and logos are registered trademarks of Oracle
and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

88 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing Custom Widgets
	Introduction
	Objective
	Audience
	Prerequisites
	What's New?
	Customizing Widgets
	Outline of this Guide
	Conventions of this Guide
	Limitations and Restrictions

	Approaches to Customization
	Objective
	Prerequisites
	Identifying the Right Approach
	Using Only UIM
	Reconfiguring Standard Widgets
	Developing Simple Custom Widgets
	Developing Complex Custom Widgets
	Mixing Simple Custom Widgets with UIM
	Responsibilities of the Widget Developer

	How Widgets Work
	Objective
	Prerequisites
	Introduction
	Anatomy of a Widget
	How Widgets Work

	An E-Mail Address Widget
	Objective
	Prerequisites
	Introduction
	Defining the HTML
	Defining the Renderer Class
	Accessing the Data
	Generating the HTML Content
	Configuring the Widget

	The Sample Context Panel Widgets
	Objective
	Prerequisites
	Introduction
	The Sample Widgets

	A Photograph Widget
	Objective
	Prerequisites
	Introduction
	Defining the HTML
	Defining Data in XML Form
	Defining the Renderer Class
	Accessing Data in XML Form
	Generating the HTML Content
	Linking to a UIM Page
	Linking to a Static Image
	Linking to the FileDownload Servlet

	Configuring the Widget
	Configuring the FileDownload Servlet

	A Details Widget Demonstrating Widget Re-use
	Objective
	Prerequisites
	Introduction
	Defining the HTML
	Defining Data in XML Form
	Defining the Renderer Class
	Accessing Data in XML Form
	Generating the HTML Content
	Configuring the Widget

	Tying Widgets Together in a Cascade
	Objective
	Prerequisites
	Introduction
	Defining Data in XML Form
	Defining the HTML
	Defining the Renderer Classes
	Generating the HTML Content
	Person Context Panel Widget
	Horizontal Layout Widget

	Configuring the Widgets
	Person Context Panel Widget
	Horizontal Layout Widget

	A Text Field Widget with No Auto-completion
	Objective
	Prerequisites
	Introduction
	Defining the HTML
	Defining the Renderer Class
	Handling Form Items
	Accessing the Data
	Generating the HTML Content
	Configuring the Widget
	Limitations on Support for Custom Edit Renderers

	Internationalization and Localization
	Objective
	Prerequisites
	Introduction
	CDEJ Support for Internationalization
	Widget Internationalization

	Accessibility Concerns
	Objective
	Prerequisites
	Introduction
	Labels for Form Input Controls
	Font Sizes

	Overview of the Renderer Component Model
	Elements of the Model
	Building Components

	Design and Implementation Guidelines
	Introduction
	Guidelines for Writing Renderers
	Do Keep Things Simple
	Do Divide and Conquer
	Do Check for Nulls
	Do Take Shortcuts
	Do Go with the Flow
	Don't Introduce Concurrency Issues
	Don't Convert Data in a Renderer
	Don't Do Too Much

	Supporting Field-level Security
	Adding New CSS Rules for Custom Widgets

	Testing, Troubleshooting and Debugging
	Introduction
	Testing
	Troubleshooting
	Debugging

	Configuring Renderers
	Introduction
	Configuring Domain Renderers
	Configuring Component Renderers

	Accessing Data with Paths
	Introduction
	Creating New Paths
	General Properties Resources
	Resource Store Properties Resources
	Literal Values

	Extending Paths for XML Data Access
	Introduction
	Simple XPath Expressions
	Evaluating the Paths
	Automatic Data Conversion

	Source Code for the Sample Widgets
	Source Code for the E-Mail Address Widget
	Source Code for the Photograph Widget
	Source Code for the Details Widget
	Source Code for the Person Context Panel Widget
	Source Code for the Horizontal Layout Widget
	Source Code for the Text Field Widget with No Auto-completion

	Notices
	Privacy Policy considerations
	Trademarks

