
IBM Cúram Social Program Management
Version 6.0.5

Cúram XML Infrastructure Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 49

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing with the Cúram XML
Infrastructure 1
Introduction 1

Objective 1
Prerequisites 1
Introduction 1
Third-Party Libraries 2

XML Concepts 2
Objective 2
Prerequisites 2
Introduction 2
XML 2
Document Type Definition 4
XML Documents 4
Summary 4
Further Reading 5

Developing for XML. 5
Objective 5
Prerequisites 5
Introduction 5
XML Documents 5

Documents 5
The XMLDocument Class 6
Encoding 6
Creating an XMLDocument 7
Opening an XMLDocument Object 8
Adding Data to an XMLDocument Object . . 9
Closing an XMLDocument Object 9
Saving an XMLDocument Object 9
Loading an XMLDocument Object 10

The XML Print Stream. 10
Overview 10
The XMLPrintStream Class 10
Default Configuration for XMLPrintStream . . 10
Creating an XMLPrintStream Object 11
Configuring an XMLPrintStream Object . . . 11
Opening an XMLPrintStream Object 13
Closing an XMLPrintStream Object 14
Print Previewing 14

Sample Usage 15
Overview 15
Saving XML Data to a File 15
Printing an XML Document 15
Saving and Loading XML Documents . . . 16
Previewing an XML Print Job 18
Building a Document from a List 20

Load Balancing and Fail-over 21
Summary 22

The XML Server 22
Objective 22
Prerequisites 22
Introduction 22
The XML Server 22
Configuring the XML Server. 23

Overview 23
Network Configuration 25
Default Value Configuration 26
Server Command Configuration 26
Template Cache Configuration 28
Debug Configuration 28
Log4j Logging 29
RenderX Configuration 29
Custom Configuration 29
Font Configuration 30
Sample Configuration Files 31

Running the XML Server 37
Running the XML Server as a Windows
Service or UNIX Daemon. 37

Overriding the Default Port 38
Overriding the Default Configuration. 38
Switching Off Configuration File Schema
Validation 38
Shutting Down the XML Server 38
Statistics 39
Summary 39

Cúram XML and XSL Templates 40
Objective 40
Prerequisites 40
Introduction 40
Cúram XML 40
Examples 41
Job Types and Template Types 43

Overview 43
Templates for PDF Documents 43
Templates for RTF Documents 43
Templates for HTML Documents 44
Templates for Plain Text Documents 44

XSL Template Example 44
Generating Templates from RTF Documents . . 46
Globalization Considerations 46
Summary 46
Further Reading 46

Notices 49
Privacy Policy considerations 51
Trademarks 52

© Copyright IBM Corp. 2012, 2014 iii

iv IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Figures

1. XMLDocument Constructor 7
2. Opening an XMLDocument 8
3. Adding to an XMLDocument 9
4. Closing an XMLDocument 9
5. Saving an XMLDocument 9
6. Loading an XMLDocument 10
7. XMLPrintStream Constructor. 11
8. Configuring an XMLPrintStream 11
9. Opening an XMLPrintStream. 13

10. Closing an XMLPrintStream 14
11. Configuring an XMLPrintStream for

Previewing. 14
12. Saving XML Data to a File: Method 1 15
13. Printing an XML Document: Method 1 . . . 16
14. Saving and Loading an XML Document 17
15. Previewing an XML Print Job 19
16. Adding a List to a Document 20
17. Adding Elements of a List to a Document 21

18. XML Processing Architecture. 23
19. Sample FOP Configuration File 31
20. Batch File for Printing a Document (Windows) 32
21. Configuration for Printing a Document

(Windows) 33
22. Displaying a Document for Testing (Windows) 33
23. Setting up RenderX as the rendering tool for

Right To Left Document processing 34
24. Sample Shell Script for Printing a Document

(UNIX and z/OS) 36
25. Configuration for Printing a Document (UNIX

and z/OS) 37
26. Cúram XML Document Type Definition (DTD) 41
27. An Example XML Document. 42
28. An Example XML Document with a List 42
29. An Example XSL Template 45
30. Example output 45

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Tables

1. XML Character Encoding Constants 6
2. The application prx settings for

XMLPrintStream 11
3. Right-to-Left Supported Languages and Locale

Codes 12

4. XMLPrintStream Job Types 13
5. Configuration Options 24
6. XML Server Command Tokens 26

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Developing with the Cúram XML Infrastructure

Learn how to develop applications that use XML with the IBM Cúram Social
Program Management Server Development Environment. The XML Server can be
used to convert XML data into various formatted document types and then
manipulate these documents for printing, e-mailing, and so on.

Introduction

Objective
In this guide you will learn how to develop applications that use the XML1features
of the IBM® Cúram Social Program Management Server Development Environment
(SDEJ).

Prerequisites
Before reading this guide you should be familiar with application server
development and the Server Development Environment (SDEJ). These topics are
covered in the following guides in the IBM Cúram Social Program Management
documentation:
v Cúram Modeling Reference Guide;
v Cúram Server Developer's Guide.

This document makes a number of references to struct classes which are fully
defined in the Cúram Server Modeling Guide.

Introduction
This guide presents all aspects of the IBM Cúram Social Program Management
XML functionality provided with the Server Development Environment (SDEJ),
from modeling to development to runtime management.

“XML Concepts” on page 2 provides a brief introduction to XML. “Developing for
XML” on page 5 presents the application server development infrastructure
elements that allow you to create XML documents and send them to the XML
Server. “The XML Server” on page 22 describes the IBM Cúram Social Program
Management XML Server and how it can be used to convert XML data into
formatted PDF2, RTF3, HTML4or plain text documents and then manipulate these
documents for printing, e-mailing, etc. “Cúram XML and XSL Templates” on page
40 describes the XML format used by IBM Cúram Social Program Management
and provides instructions on how it can be used to create XSL5templates.

1. XML means Extensible Markup Language.

2. PDF is the Adobe Portable Document Format. For more information about PDF, or to download free software to read PDF files on
most platforms, go to the Adobe PDF web site: http://www.adobe.com/products/acrobat/adobepdf.html

3. RTF is the Rich Text Format, a format developed by Microsoft and that can be read by most common work processing applications.

4. HTML means Hypertext Markup Language and is a document format used on the World-Wide Web.

5. XSL means Extensible Stylesheet Language and is a W3C standard defining stylesheets for (and in) XML.

© Copyright IBM Corp. 2012, 2014 1

http://www.adobe.com/products/acrobat/adobepdf.html

This breakdown should be considered when reading the document as terms may
be introduced in an early chapter and detailed in the succeeding chapters, without
a specific cross reference being provided.

Third-Party Libraries
This product includes software developed by the Apache Software Foundation
(http://www.apache.org/). The IBM Cúram Social Program Management XML
infrastructure is based on the Apache XML Project's suite of Java™ XML libraries.
These libraries are the de facto standard implementation of XML. Apache Xerces is
the XML parser used; Apache Xalan is used for XSL processing; and Apache FOP
(Formatting Objects Processor) for the PDF rendering

Bertrand Delacrétaz's JFOR library (now part of the Apache FOP) is used for
rendering documents in RTF format (http://www.jfor.org/).

XML Concepts

Objective
In this chapter, you will be introduced to the Extensible Markup Language (XML),
what it is and how it is used to represent data.

Prerequisites
There are no prerequisites for this chapter.

Introduction
This chapter presents a brief overview of the Extensible Markup Language (XML).
XML is a data representation standard that is growing enormously in popularity as
the growth of the Internet requires that more and more data be readable on a
multitude of different systems.

IBM Cúram Social Program Management can generate XML data from struct
classes at runtime, a typical use of which is to print documents based on XSL
templates and the contents of these classes. It is useful to know what XML is prior
to seeing how it fits into IBM Cúram Social Program Management and the next
section presents a brief overview of the standard. “Cúram XML and XSL
Templates” on page 40 provides an introduction to XSL templates.

XML
XML is a meta-markup language that defines how to write your own markup
languages. Unlike HTML, XML markup languages are case-sensitive and all
documents must be well-formed (more about this below). Well-formed XML-based
markup can be parsed by generic parsers and processors regardless of the tags and
attributes chosen for the application.

A tag is an entity in XML that defines an element. Tags are identifiers that are
enclosed in angle brackets (< and >). For every opening tag there must be a closing
tag. Closing tags are similar to opening tags except that there is a slash (/) before
the tag name. In between the tags is the value of the element defined by the tag.
For example, here is a <NAME> element defined using NAME tags:

<NAME>Joe Bloggs</NAME>

2 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

http://www.apache.org/
http://www.jfor.org/

XML elements can be nested to define structure and white-space can be used to
make the structure easier to identify:

XML is deemed to be well-formed:

a. If every element has an opening and closing tag.

b. Elements do not overlap (i.e. the elements delimited by opening and closing tags
nest properly within each other).

c. There is a root element.

d. Case-sensitivity is respected and

e. <, >, &, , and " characters are escaped.

The following is not-well-formed XML because the elements overlap:

Characters with meaning in XML are escaped using & for a &, < for a <,
> for a >, ' for a , and " for a ". These are called character entities.

The requirement for a root element makes this XML invalid:

as no single element forms the root. The following is valid, however, as
NAME_LIST forms the root element:

XML elements can have attributes. Attributes are specified as part of the tag and
can be used to hold meta-data about the elements (this is what they are usually
used for but there is no prescription for their use).

XML supports empty tags. These are tags where the start tag and end tag are
combined into one and there is no element data. These tags start with a < and end
with a />. Typically attributes are used to store the data in these tags. For example,
here is an empty PERSON tag with NAME and SEX attributes:

<PERSON>
<FIRST_NAME>Joe</FIRST_NAME>
<SURNAME>Bloggs</SURNAME>
<E_MAIL>jbloggs@acme.com</E_MAIL>

</PERSON>

<BOLD>The quick brown <ITALICS>fox
jumps</BOLD> over the lazy dog.</ITALICS>

<NAME>Joe Bloggs</NAME>
<NAME>Jane Doe</NAME>

<NAME_LIST>
<NAME>Joe Bloggs</NAME>
<NAME>Jane Doe</NAME>

</NAME_LIST>

<NAME_LIST ELEMENTS="4" RANGE="A-D">
<NAME SEX="MALE">Hop Along</NAME>
<NAME SEX="MALE">Joe Bloggs</NAME>
<NAME SEX="MALE">P Cutter</NAME>
<NAME SEX="FEMALE">Jane Doe</NAME>

</NAME_LIST>

Developing with the Cúram XML Infrastructure 3

Comments can be entered in an XML document using an opening <!-- tag and a
closing --> tag. For example:

That was XML in a nutshell.

Document Type Definition
As described in the previous section an XML document is an entity that contains
XML data of a particular type. The primary requirement is that a document have a
root element, and XML defines some simple rules for data representation. To make
sense of data represented in XML, it is necessary to know what the chosen element
tags, etc. mean. This meaning is provided by a Document Type Definition (DTD) that
defines what tags can be used and where they can be used. A unit of XML data
that conforms to the rules defined in a DTD is an XML document

XML Documents
A particular set of XML tags has been defined to allow any data in IBM Cúram
Social Program Management to be represented as XML6. All XML is from struct
classes defined in the application model. The IBM Cúram Social Program
Management XML definition uses tags to generically identify the parts of these
model entities. So, these XML includes tags for structs, fields, values, types, lists,
etc. These tags are described in an IBM Cúram Social Program Management
-specific Document Type Definition (DTD) which is shown in “Cúram XML” on page
40.

This DTD is shown for the sake of completeness. The only area of the XML
infrastructure where the developer requires knowledge of the exact format of the
XML is in XSL template development although they may wish to manipulate the
XML directly for some unforeseen reason.

Summary
v XML stands for Extensible Markup Language.
v XML allows data to be defined in plain text and structured using nested

elements defined using tags that appear within angle-brackets < >. Elements can
be defined with attributes.

v XML is case-sensitive and requires that documents be well-formed: they must
have a root element and elements cannot overlap.

v XML uses several character entities to avoid confusing data with the XML
markup.

v In IBM Cúram Social Program Management a specific set of tags has been
chosen to generically represent data that is generated from an applications struct
classes at runtime. These tags are contained in a supplied Document Type
Definition.

6. An input field that contains a period (".") on a line by itself (i.e., "." surrounded by "\n" or "\r") will cause the XML Server, when
the data is processed, to throw an error. This is because, as documented in “Debug Configuration” on page 28, the XML Server
uses this particular character sequence to mark the end of client transmission; but, in the particular context of data entered from a
web client this is undesirable behavior.

<PERSON NAME="Joe Bloggs" SEX="MALE"/>

<!--This is an empty PERSON tag-->
<PERSON NAME="Joe Bloggs" SEX="MALE"/>

4 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Further Reading
The World-Wide-Web Consortium (http://www.w3c.org/) is responsible for the
development of the XML and related standards. There is much more detailed
information on their web-site about XML that is worth reading.

Developing for XML

Objective
In this chapter, you will learn how to incorporate XML support into your
application servers and produce XML documents

Prerequisites
Before reading this chapter, you should be familiar with the IBM Cúram Social
Program Management application server development with UML Modeling and
the Server Development Environment (SDEJ). These topics are covered in the
following guides in IBM Cúram Social Program Management documentation:
v Cúram Modeling Reference Guide;
v Cúram Server Developer's Guide.

You should also have read the previous chapter which provided a brief
introduction to XML.

Introduction
This chapter describes the two most important classes you need when adding XML
functionality to your applications: curam.util.xml.impl.XMLDocument and
curam.util.xml.impl.XMLPrintStream. The classes are presented in depth before
samples of their use are presented to demonstrate how they can be used together
to generate XML and print documents.

XML Documents

Documents
A number of operations can be performed on XML documents.
v A document can be created and stored in memory. This document can then be

stored in the database, or written to a stream, or both.
v A document can be created and written to a stream directly to reduce storage

requirements. This is particularly useful for very large documents that do not
require an archived copy.

v A previously archived document can be retrieved from the database and written
to a stream.

As streams are flexible, there are many things you can do with them.
v You can use a stream to save the XML data to a file.
v You can use the XMLPrintStream class to request that a document should be

printed.
v You can use a stream to transfer information over a network via a socket

connection.
v You can use a java.io.BufferedOutputStream to buffer all the XML data.
v You can create your own stream classes (or use any of the standard stream

classes) to do just about anything you want with the XML data!

Developing with the Cúram XML Infrastructure 5

http://www.w3c.org/

The XMLDocument Class
IBM Cúram Social Program Management XML data is generated according to the
rules of a simple DTD. The XMLDocument class is used to hold the generated XML
and wraps the data in the necessary root element. This class is central to all XML
operations that you can perform in IBM Cúram Social Program Management. Its
interface can be found in the curam.util.xml.impl package within the supplied
SDEJ JavaDoc. In the rest of this section, you will learn how to use this interface to
create XML documents from your application data.

The use of the XMLDocument class follows the following broad pattern:
1. Create a new instance of the XMLDocument class.
2. Open the XML document to create the root element and provide a context for

the XML data that you want to create.
3. Add a struct class (or struct classes) to the open XML document to create the

XML data.
4. Close the XML document to complete the root element.

These steps will be covered in the following sub-sections. First, however, you must
be aware of the importance of XML data encoding.

Encoding
All XML data are represented in plain-text. A small number of characters have a
particular meaning to XML (“<”, “>”, “'”, “”, “&”) and if these occur in your data
they are automatically converted to their corresponding XML character entities to
avoid problems. However, if you use characters outside the normal US-ASCII
range (characters 0-127), even plain-text becomes ambiguous. For example, in
Western Europe, you might typically store your data using the ISO-8859-1
character set also known as “Latin 1”. In this character set, the character “ë”
(e-umlaut) is character number 235. However if you sent this XML data to a person
in Greece who would typically use the ISO-8859-7 (Greek) character set, the same
character 235 would appear as the lower-case Greek letter lambda.

To avoid this problem, XML allows the character encoding used for a document to
be stated in the XML processing instruction found at the top of all XML
documents. Now, when you create your document you can explicitly state that you
want to use ISO-8859-1 for your data because that is the form in which it is stored
in your database. When you send the file to Greece, the person there knows not to
use the ISO-8859-7 character set to interpret the data but ISO-8859-1 instead. In
general, this will be handled by their XML parsing software which will read the
encoding information from the document.

By default, XML uses an encoding scheme known as UTF-8. This modified
Unicode scheme creates a document that uses two bytes to represent characters
greater than 127. However, you will need to set the encoding explicitly if the data
stored in your database uses a different encoding scheme.

IBM Cúram Social Program Management XML provides a range of constants for
the common encoding schemes. The available schemes are shown in “Encoding”
below.

Table 1. XML Character Encoding Constants

Constant Alternative Constant Encoding Scheme

kEncodeUTF8 UTF-8

kEncodeISO10646UCS2 ISO-10646-UCS-2

6 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 1. XML Character Encoding Constants (continued)

Constant Alternative Constant Encoding Scheme

kEncodeISO10646UCS4 ISO-10646-UCS-4

kEncodeISO88591 kEncodeISOLATIN1 ISO-8859-1

kEncodeISO88592 kEncodeISOLATIN2 ISO-8859-2

kEncodeISO88593 kEncodeISOLATIN3 ISO-8859-3

kEncodeISO88594 kEncodeISOLATIN4 ISO-8859-4

kEncodeISO88595 kEncodeISOCYRILLIC ISO-8859-5

kEncodeISO88596 kEncodeISOARABIC ISO-8859-6

kEncodeISO88597 kEncodeISOGREEK ISO-8859-7

kEncodeISO88598 kEncodeISOHEBREW ISO-8859-8

kEncodeISO88599 kEncodeISOLATIN5 ISO-8859-9

kEncodeISO885910 kEncodeISOLATIN6 ISO-8859-10

kEncodeISO885913 kEncodeISOLATIN7 ISO-8859-13

kEncodeISO885914 kEncodeISOLATIN8 ISO-8859-14

kEncodeISO885915 kEncodeISOLATIN9 ISO-8859-15

kEncodeISO2022JP ISO-2022-JP

kEncodeSHIFTJIS Shift_JIS

kEncodeEUCJP EUC-JP

The relevant constant should be specified when constructing a new XMLDocument in
order to set the encoding scheme as appropriate for the XML document. This
encoding will be used for the XML document declaration as well as for the XML
document itself. If loading an XML document from the database, the encoding of
that document should match the encoding used to construct the XMLDocument class.
If you supply no value, no encoding scheme will be specified in the XML and
XML parsers will thus assume UTF-8 according to the XML standard. If the
encoding scheme you wish to use is not among those listed, you may supply a
string containing the encoding value you wish to use.

All of the encoding constants are within the XMLEncodingConstants interface. To
use, for example, the Latin 1 set, you would use XMLEncodingConstants.
kEncodeISOLATIN1 or XMLEncodingConstants. kEncodeISO88591.

Creating an XMLDocument
As XML data is created it is written to a stream. By default, an instance of the
XMLDocument class maintains an internal stream that will hold the XML data. By
allowing the document to store the data in this stream, you may later save the
document to the database or write it to another stream. If you have no wish to
save the document, you can specify an alternative stream where the XML data
should be written as it is created. This can help to reduce memory overhead if the
data stream is very large. For example, data for a large report may not need to be
stored in the database. This data can be generated and processed on-the-fly
without any intermediate storage.

XMLDocument(String encoding);
XMLDocument(OutputStream stream, String encoding);

Figure 1. XMLDocument Constructor

Developing with the Cúram XML Infrastructure 7

Both constructors take a parameter to set the character encoding. You can set the
encoding value using one of the encoding constants or an encoding string of your
own choosing.

The first constructor is used when you want the XML document to use its internal
string buffer to store the XML data. This allows you to save the document to the
database later or to write to another stream once it is complete. If you intend to
load an XML document from the database, you should also use this constructor. In
that event, the encoding string is irrelevant.

The second constructor allows you to specify an output stream that the document
should be written to as it is created. This precludes the possibility of storing the
document in the database once it is complete. However, for large documents that
do not need to be stored but rather printed, saved to a file, or transferred over a
network, this is a more efficient method that the first. For streams such as file and
print streams that are required to be explicitly opened, it is important that the
stream passed to this constructor is already open as the document will expect to be
able to write to it immediately.

Opening an XMLDocument Object

Once you have instantiated an XMLDocument object, you need to open it in one of
two ways. If you want to write the details of a single struct class to the XML
document, you must open the document with the open() method. If you want to
write the details of several different struct classes of the same type to the
document, you must open the document with the openForList() method. This
latter method allows you to create a document that contains a list of struct classes
where each one is added in turn. All the struct classes must be of the same type.
The former method allows you to add only a single struct class to the document
before closing it. This single struct class can, however, contain fields that are lists
of struct classes.

Both of the open methods take several parameters that can be used to set
meta-data for the document. You can include the name of the entity that generated
the document, the date and time on which it was generated, the version of the
document, and any other comments you wish to associate with the document.
Each parameter is a string and you can use any length of data formatted in any
way you wish. You must, however, respect the requirement of XML that certain
characters be converted to character entities. If your strings contain any of the
following characters: “'”, “”, “<”, “>”, or “&”, you must convert them to their
character entity values. This can be done by calling the XMLDocument. escape()
method. The method takes a string parameter and returns a new string with the
character entity conversions done for you.

Once opened, you can begin adding struct classes to your XML document.

open(String generatedBy, String generatedDate, String version,
String comment);

openForList(String generatedBy, String generatedDate,
String version, String comment);

Figure 2. Opening an XMLDocument

8 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Adding Data to an XMLDocument Object

The add() method of the XMLDocument class can be used to produce XML data from
an instance of a struct class.

For documents opened with the open() method, you may only issue a single call
to add() before closing your document. For documents opened with
openForList(), you may use several calls to add() but should ensure that you only
add instances of the same struct class type.

addFromXML() is a convenience method allowing an XML fragment to be directly
added to the document, rather than using the struct class. It is the responsibility of
the caller to ensure this fragment respects the DTD.

Closing an XMLDocument Object

Once you have finished adding data to an XML document, you need to close it.
The close method of the XMLDocument class takes no parameters. Calling the close
method will not close the output stream you specified as a parameter to the XML
document. You must close this stream separately.

Once closed, a document will write all remaining XML information to the stream
to complete a well formed XML document. If the document object is using an
internal string stream buffer, you may save the document to the database or write
it to another stream.

Saving an XMLDocument Object

Once closed, any XML document you created to write to the default internal string
stream buffer can be saved to the database. This is useful if you want to print
information yet keep a record of what was printed. As information in the database
may change, it will not always be possible to simply print out the same form,
letter, etc., and expect it to contain the same data as before. Using the XML
document archive, however, you are guaranteed that the data will be identical as it
represents a snapshot of the values at a particular point in time.

Each document can be saved along with the details of an associated template. This
allows any print job, for example, to be rerun in the future with the same data and
the same version of the template. The save method takes two input parameters
and has one return value. The input parameters allow you to specify a name for
this saved document. This can be any string-type information that you want. The
maximum length is 100 characters. The second parameter is the template instance
(version of a template) that you want to associate with this document.

add(Object value);
addFromXML(String xmlFragment);

Figure 3. Adding to an XMLDocument

close();

Figure 4. Closing an XMLDocument

save(String name, XSLTemplateInstanceKey templateKey);

Figure 5. Saving an XMLDocument

Developing with the Cúram XML Infrastructure 9

The return value is the key value of the new archived document record that will be
created to hold the XML data. This key value can be stored elsewhere to keep track
of what documents are available. For example, if you print a letter to send to a
client, you could associate this key with a diary entry recording the sending of the
letter. The letter could then be reprinted at any time in the future by accessing the
key stored with the diary entry.

Loading an XMLDocument Object

To load an XML document from the document archive, you should first create a
default XMLDocument object. The load method takes one parameter which is the key
to the archive document. The details returned include the template information
that you saved with the document such as its version and locale, and the XML
representation of the data in the document.

Once loaded, the XML document object can be treated like any other document
object that was created, opened, had data added and was closed.

The XML Print Stream

Overview
The SDEJ includes the XML Server (see “The XML Server” on page 22). For
developers, the interface to this server is via the XMLPrintStream class. This class
allows you to send print job requests (and more besides) to the IBM Cúram Social
Program Management XML Server.

This section describes the use of the print stream and how XML documents can be
printed using its facilities.

The XMLPrintStream Class
The public interface to the XMLPrintStream class can be found in the
curam.util.xml.impl package within the SDEJ JavaDoc.

In use the following basic pattern will be followed:
1. Create a new instance of the XMLPrintStream class.
2. Set the various printing options.
3. Open the connection to the XML Server.
4. Write to the print stream object. (This will usually be done by an XMLDocument

object).
5. Close the print stream object to initiate the print job.

The following subsections will look at these steps in detail, but first there are steps
you can take to configure default values for your print streams.

Default Configuration for XMLPrintStream
The XMLPrintStream class lets you set a number of options when you want to
submit a print job. These are the printer name, the paper tray name, the server
host name, and the server port number. Each of these options can be set in your
project's properties as described in the Cúram Server Developer's Guide. The values
required are shown in the “Default Configuration for XMLPrintStream.” All are

load(XMLArchiveDocumentID key);

Figure 6. Loading an XMLDocument

10 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

entered as strings and are not converted to any other data-type. You must make
sure to convert any special characters with a meaning in XML to character entities.

Table 2. The application prx settings for XMLPrintStream

Variable Name Description

curam.xmlserver.printer The name of the default printer to use for jobs submitted by
this application. On Microsoft Windows, this might be, for
example, \\\\myhost\\printer1, or lpt1:.

curam.xmlserver.tray The name of the paper tray to use for jobs submitted by this
application.

curam.xmlserver.host The host on which the XML Print Server resides. The
property may also be specified as a '/' separated list of host
names in order to use multiple XML Servers.

curam.xmlserver.port The port on which the XML Print Server is listening. The
property may also be specified as a '/' separated list of ports
in order to use multiple XML Servers.

curam.xmlserver.fileencoding The default encoding used for the encoding of files provided
to the XMLServer. This value can be overriden for individual
instances of XMLPrintStream using the setEncoding method.
The default value for this property is UTF-8.

curam.xmlserver.serializelocaleneutralSpecify that XML Server data will be serialized in a
locale-neutral way instead of being based on the locale
properties on the server.

When your application submits a print job, these values will be used as the
defaults for the job. You can use the individual setter methods to override these
defaults.

Creating an XMLPrintStream Object

An XMLPrintStream object can be instantiated by providing the name of the host on
which the XML Server resides and the port on which the XML Server is listening.
However, as documented in the Java documentation, these properties are not used
and it is recommended to use the empty constructor.

Configuring an XMLPrintStream Object

Once instantiated, an XMLPrintStream object can be configured. In “Default
Configuration for XMLPrintStream” on page 10 the default configuration was
covered. You can override the printer name and paper tray values using the
setPrinterName and setPaperTray methods respectively. In addition, you can also
set a user name and an e-mail address for the print job. The user name might be

XMLPrintStream(String host, int port)
XMLPrintStream(final XMLServerEndPoint[] endpoints)
XMLPrintStream()

Figure 7. XMLPrintStream Constructor

setPrinterName(String name);
setPaperTray(String tray);
setUserName(String user);
setEmailAddress(String email);
setEncoding(String encoding);
setJobType(String job);

Figure 8. Configuring an XMLPrintStream

Developing with the Cúram XML Infrastructure 11

that of the user who initiated the print job, or any other user name you prefer to
use. The e-mail address, similarly, can be any e-mail address you want to associate
with the job.

The encoding can also be set here. This encoding is used within the XMLServer for
such purposes as printing documents in the specific encoding. If the encoding is
not explicitly set through the setEncoding method, then the value will be taken
from the curam.xmlserver.fileencoding configuration property. If this property is
not set, then the default encoding of UTF-8 will be used.

Note: It is important to set the encoding correctly when using XMLDocument and
XMLPrintStream classes together. For example, if you create an XMLDocument class
with an encoding of UTF-8 and you create the XMLPrintStream class setting the
encoding to be US-ASCII, there may be some issues with the document being
printed. As US-ASCII contains a smaller character code set than UTF-8, some
characters may not be supported and therefore when printing the document, the
resulting document may contain unrecognizable characters. Therefore, if you wish
to have the UTF-8 document printed correctly, you should set the encoding of the
XMLPrintStream instance to use UTF-8 encoding. Please see “Encoding” on page 6
for further information on encoding.

All the parameters are strings and you must respect the requirement of XML that
certain characters must be replaced with character entities. You can use the
XMLDocument. escape(String value) method for this conversion.

Overriding the default values allows you, for example, to print a document to a
printer nearest the current user, rather than to a default printer.

By default, the XML Server will combine your XML data with an XSL template and
attempt to render the resulting document as a PDF document. The XML is
transformed based on the template locale and for Right-to-Left languages. These
are the supported languages, which are specified by locale code:

Table 3. Right-to-Left Supported Languages and Locale Codes

Language Locale Code

Arabic ar

Farsi fa

Hebrew he

Hebrew iw

Yiddish ji

Yiddish yi

Pashto/Pushto ps

Urdu ur

Due to the limitations of FOP, you must have a supporting Right-to-Left
implementation in the XML Server configuration (e.g., see “RenderX
Configuration” on page 29). For this rendering step to work, the combination of
the XML data and XSL template should produce a document marked up using XSL
Formatting Objects. As an alternative to PDF output, you can specify RTF, HTML
or plain text output using the setJobType() method. This method can be used to
specify any of the supported output formats using the appropriate constant as
shown in “Configuring an XMLPrintStream Object” on page 11. All the constants

12 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

are within the XMLPrintStreamConstants class and should be prefixed with
XMLPrintStreamConstants in your code unless you have implemented this class as
an interface.

Table 4. XMLPrintStream Job Types

Job Type Description

kJobTypePDF This is the default job type. The XML data will be
combined with the XSL template and the resulting
document will be rendered as a PDF document. The
template should be developed to produce a document
marked up with XSL Formatting Objects. Temporary
files will be given the extension “.pdf”.

kJobTypeRTF The XML data will be combined with the XSL template
and the resulting document will be rendered as an RTF
document. The template should be developed to
produce a document marked up with XSL Formatting
Objects. Temporary files will be given the extension
“.rtf”.

kJobTypeHtml The XML data will be combined with the XSL template
and the resulting document is assumed to be HTML.
Appropriate indentation will be applied automatically.
The <xml> declaration at the top of the file will be
omitted. The template should be developed to produce
a document marked up with HTML. Temporary files
will be given the extension “.html”.

kJobTypeText The XML data will be combined with the XSL template
and the resulting document is assumed to be plain text.
The <xml> declaration at the top of the file will be
omitted. Temporary files will be given the extension
“.txt”.

In addition to the predefined job types it is possible to define a custom job type. If
a custom job type is to be used the setJobType() method should be passed a string
matching the new job type, where the job type is defined in the XML Server
configuration file. For more information on defining and implementing custom job
types consult “Custom Configuration” on page 29.

Opening an XMLPrintStream Object

Opening an XMLPrintStream object, establishes a connection with the chosen XML
Server, sends the job configuration information, and the XSL template. Once open,
the XML data can be written to the connection. In general, you will let an

open(XSLTemplateInstanceKey key);
open(String xslTemplate);
open(XSLTemplateInstanceKey key,

String host,
int port);

open(String xslTemplate,
String host,
int port);

open(XSLTemplateInstanceKey key,
XMLServerEndPoint[] endpoints)

open(String xslTemplate,
XMLServerEndPoint[] endpoints)

Figure 9. Opening an XMLPrintStream

Developing with the Cúram XML Infrastructure 13

XMLDocument object write the data to the stream. All XML documents must be
accompanied with an XSL template to allow the data to be formatted.

There are a number of open() methods. The main difference between these is that
you can specify a key to an XSL template in the database or provide the XSL
template document directly in a string. Also, you can provide the connection
information for the XML Server (host and port) or alternatively leave these values
to be picked up from the curam.xmlserver.host and curam.xmlserver.port
properties.

Once opened, you should immediately begin writing data to the connection. A
long delay will cause a time-out to occur and the connection will be lost.

Closing an XMLPrintStream Object

Closing an XMLPrintStream object causes the print job to be started. Before closing
the object, a well-formed XML document must have been written to it. The close
method takes no parameters.

Print Previewing

The XML Server takes an XML document and an XSL template and processes the
two to produce another document which could be in PDF, RTF, HTML, or plain
text format. Normally, the XML Server will run a further command to print, or
otherwise process, the document. However, you can instead direct the XML Server
to return the document to your application server rather than process it further.
This allows you to preview the document before printing it or just store the
document in the database for later retrieval.

To preview a document, you must specify a preview stream when configuring the
print stream object. After the XML Server has generated the PDF it will return it to
the print stream object which will in turn write it to the stream specified as a
parameter to the setPreviewStream method. This stream could be a simple string
stream buffer or a file stream, whatever is required. If no stream is specified, the
XML Server will assume that a preview is not required.

Once the print stream object is closed, the preview stream will contain the
document and the application server can manipulate it in any way required. For
example, it could be returned to the client application and displayed in an
appropriate viewer of some kind.

Note: If a preview stream has been specified, the XML Server will not print
anything, nor will it create a temporary file containing the document.

close();

Figure 10. Closing an XMLPrintStream

setPreviewStream(OutputStream preview);

Figure 11. Configuring an XMLPrintStream for Previewing

14 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Sample Usage

Overview
This section presents some samples of the way the XMLDocument and
XMLPrintStream objects can be used together. The samples included cover the
following scenarios:
v Saving XML data to a file.
v Printing a simple XML document.
v Saving and loading XML documents using the archive.
v Previewing an XML print job's output.
v Building a document from a list.

Along with the code samples are suggestions of how they be further developed
and used.

All the methods are developed as methods of process stereotyped classes in the
application model.

Saving XML Data to a File
This sample demonstrates how XML data can be created and written to a stream,
in this case a file stream. The function assumes that a file name and an instance of
a struct class are passed as parameters.

This method demonstrates the use of a FileWriter.

Printing an XML Document
This sample shows how the struct class used in the previous sample could be
written to an XMLPrintStream object to print the data. It is assumed that a template
instance key is supplied to the function and that the default configuration values
will be used.

import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import java.io.FileWriter;

public class XMLSample {

void saveToFile1(String fname, MyStruct myStruct) {
FileWriter myFile = new FileWriter(fname);

XMLDocument myDoc =
new XMLDocument(XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.open(A User, 31-Dec-2002, 1.0, Sample 1);
myDoc.add(myStruct);
myDoc.close();

myFile.write(myDoc.toString());
myFile.close();

}
}

Figure 12. Saving XML Data to a File: Method 1

Developing with the Cúram XML Infrastructure 15

Saving and Loading XML Documents
In this sample, two functions are presented. The first, based on the previous
sample, saves a document to the archive. The second retrieves the document and
prints it again. The direct streaming method cannot be used to create the document
if it is to be saved.

import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import

curam.util.administration.struct.XSLTemplateInstanceKey;

public class XMLSample {

void printDoc1(XSLTemplateInstanceKey tempKey,
MyStruct myStruct) {

XMLPrintStream myPrintStream = new XMLPrintStream();
myPrintStream.open(tempKey, MyPC, 1234);
myPrintStream.setEncoding(

XMLEncodingConstants.kEncodeISOLATIN1);
XMLDocument myDoc =

new XMLDocument(myPrintStream.getStream(),
XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
myDoc.add(myStruct);
myDoc.close();

myPrintStream.close();
}

}

Figure 13. Printing an XML Document: Method 1

16 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

import curam.util.administration.struct.XSLTemplateInstanceKey;
import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import curam.util.xml.struct.XMLArchiveDocumentID;
import curam.util.xml.struct.XMLArchiveDocDetails;

public class XMLSample {

/*
* Creates an XMLDocument and saves it to the database.
*/
XMLArchiveDocumentID saveDoc(

XSLTemplateInstanceKey tempKey, MyStruct myStruct) {

XMLDocument myDoc = new XMLDocument(
XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
myDoc.add(myStruct);
myDoc.close();

// Save the document to the database.
final XMLArchiveDocumentID docKey =

myDoc.save("Sample Saved Document 1", tempKey);
return docKey;

}

/*
* Loads an XMLDocument from the database and prints it.
*/
void loadDoc(XMLArchiveDocumentID docKey) {

// First load the archived data for the document and get
// its template details and data content.
final XMLDocument docForLoading = new XMLDocument(

XMLEncodingConstants.kEncodeISOLATIN1);
final XMLArchiveDocDetails docDetails =

docForLoading.load(docKey);

final XSLTemplateInstanceKey tempKey =
new XSLTemplateInstanceKey();

tempKey.templateID = docDetails.templateID;
tempKey.templateVersion = docDetails.templateVersion;
tempKey.locale = docDetails.locale;

final String xmlContent = docDetails.document;

docForLoading.close();

// Now use this information to reconstruct a new
// XMLDocument and print it.
final XMLPrintStream myPrintStream =

new XMLPrintStream();
myPrintStream.open(tempKey, MyPC, 1234);
myPrintStream.setEncoding(

XMLEncodingConstants.kEncodeISOLATIN1);
XMLDocument docForPrinting = new XMLDocument(

myPrintStream.getStream(),
XMLEncodingConstants.kEncodeISOLATIN1);

docForPrinting.addFromXML(xmlContent);
myPrintStream.close();

}

}

Figure 14. Saving and Loading an XML Document

Developing with the Cúram XML Infrastructure 17

Previewing an XML Print Job
This sample demonstrates how you can process an XML print job and receive a
preview of the data that would have been printed for that XML document and XSL
template.

18 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

import curam.util.administration.struct.XSLTemplateInstanceKey;
import curam.util.exception.AppException;
import curam.util.exception.DatabaseException;
import curam.util.exception.InformationalException;
import curam.util.internal.xml.impl.XMLPrintStreamConstants;
import curam.util.type.Blob;
import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class XMLServerTest {

MyResult previewJob(
final XSLTemplateInstanceKey tempKey,
final MyStruct myStruct)
throws DatabaseException, AppException,
InformationalException, IOException {

final XMLPrintStream myPrintStream =
new XMLPrintStream();

final ByteArrayOutputStream previewBuffer =
new ByteArrayOutputStream();

myPrintStream.setPreviewStream(previewBuffer);

// Explicitly specify that a PDF document be created:
myPrintStream.setJobType(

XMLPrintStreamConstants.kJobTypePDF);

myPrintStream.open(tempKey, MyPC, 1234);
final XMLDocument myDoc =

new XMLDocument(
myPrintStream.getStream(),
XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
myDoc.add(myStruct);
myDoc.close();
myPrintStream.close();

// Now that we have created the PDF document the
// following code illustrates three things that
// can be done with it.

// (1) Save the document to disk.
final FileOutputStream previewFile =

new FileOutputStream("/preview.pdf");
previewBuffer.writeTo(previewFile);
previewFile.close();

// This class contains both a String and
// a Blob for demonstration purposes.
final MyResult result = new MyResult();

// (2) Store the PDF preview in a String:
result.previewDocString = previewBuffer.toString();

// (3) Store the PDF document in a Blob:
result.previewDocBlob =

new curam.util.type.Blob(previewBuffer.toByteArray());

return result;
}

}

Figure 15. Previewing an XML Print Job

Developing with the Cúram XML Infrastructure 19

Having received the PDF preview of the data, this sample illustrates three ways in
which the preview can be used:
1. Save it to disk.
2. Store it in a String variable.
3. Store it in a Blob. This is recommended if the document is to be stored on the

database.

This example used an java.io.ByteArrayOutputStream as a buffer to hold the
generated PDF document because this class was most suited to the three examples
above. However any sub-class of java.io.OutputStream can be used, depending on
your needs. For example, a java.io.FileOutputStream could be used if you wish
to write the data to a file.

Building a Document from a List
In these final samples, the use of list documents is demonstrated. Once an XML
document built from a list has been closed, it may be manipulated in the same
manner as any other XML document.

The first sample shows how a vector of struct classes can be added to an XML
document.

In the second sample below, the list of struct classes is iterated over and only those
elements whose value field is greater than 100 are added to the document. You can,
of course, apply any condition you like to this basic pattern. In IBM Cúram Social
Program Management, the list of a type called MyStruct is called MyStructList,
and the dtls field of the list is a java.util.Vector of the basic struct class type, this
is assumed below.

import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLDocument;

public class XMLSample {
void listDoc1(MyStructList myStructList) {

XMLDocument myDoc =
new XMLDocument(XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.openForList("A User",
"31-Dec-1999",
"1.0",
"Sample 1");

myDoc.add(myStructList);
myDoc.close();

// The document may now be manipulated as before.
}

}

Figure 16. Adding a List to a Document

20 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Load Balancing and Fail-over
The XMLPrintStream supports load balancing and fail-over. Load balancing
increases the capacity of the XML Server by sharing the load among a number of
replicated XML Servers and making them appear as one large virtual server.
Fail-over provides the capability to switch over automatically to a redundant XML
Server upon the failure or abnormal termination of the previously active XML
Server.

Load balancing and fail-over are implemented in the XMLPrintStream, and
XMLServerEndPoint classes. An instance of the XMLServerEndPoint class contains the
endpoint details such as server name, port number and a weight between 0 and 1
which dictates the percentage of requests that are directed to this server. The
open() method of the XMLPrintStream class can optionally take a list of
XMLServerEndPoints as parameter. The connection will be performed to one of
these endpoints based on the weight attached to it as well as its availability.

Load balancing and fail-over can also be configured using the
curam.xmlserver.host and curam.xmlserver.port properties. The
curam.xmlserver.host property specifies the machine names hosting the XML
Server as a '/' separated list of host names. For example:
curam.xmlserver.host="server1/server2/server3"

The curam.xmlserver.port property specifies the ports the XML Server is running
on as a '/' separated list of entries in the following format: port[#weight], where
the part in square brackets is optional and weight is a number between 0 and 1.
The weight dictates the percentage of requests that are directed to the particular
server and port. For example:
curam.xmlserver.port="1801#0.6/1802#0.2/1803#0.3"

import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLDocument;

public class XMLSample {
void listDoc2(MyStructList myStructList) {

XMLDocument myDoc = new XMLDocument(
XMLEncodingConstants.kEncodeISOLATIN1);

myDoc.openForList("A User",
"31-Dec-1999",
"1.0",
"Sample 1");

for (int i = 0; i < myStructList.dtls.size(); i++) {
if (myStructList.dtls.item(i).value > 100) {

myDoc.add(myStructList.dtls.item(i));
}

}
myDoc.close();

// The document may now be manipulated as before.
}

Figure 17. Adding Elements of a List to a Document

Developing with the Cúram XML Infrastructure 21

There is a one to one mapping between the servers and ports specified. For
example, server1 is running the XML Server on port 1801 and server3 is running
the XML Server on port 1803.

Summary
v The XMLDocument class allows well-formed XML documents to be generated

using struct classes or lists of struct classes.
v Care must be taken to ensure that the character encoding scheme used for your

data is specified for the XML document.
v Instances of XMLDocument can be created, saved, loaded, and written to arbitrary

output streams.
v The XMLPrintStream class is a type of output stream that allows jobs to be

submitted to the XML Server for processing. Used in combination with the
XMLDocument class and XSL templates, it allows XML data to be formatted and
printed

v The XMLPrintStream can be configured on a per-server or per-job basis for
maximum flexibility.

v The XMLPrintStream class includes features for previewing documents generated
by the server.

The XML Server

Objective
In this chapter, you will learn about the IBM Cúram Social Program Management
XML Server, the component that processes and renders XML documents.

Prerequisites
There are no prerequisites for this chapter.

Introduction
The XML Server is a Java application that processes XML documents generated by
a IBM Cúram Social Program Management server application, applying XSL
templates (which are described in more detail in “Cúram XML and XSL Templates”
on page 40) and rendering to PDF, RTF, HTML, or plain text. The IBM Cúram
Social Program Management server application and the XML Server do not have to
be co-located; they may be hosted on different machines. There can also be any
number of XML Servers, each responsible for a specific task. The XML Server was
primarily designed to support printing of XML documents, however, it can be
configured in a myriad of ways to perform many different tasks.

This chapter describes how the XML Server fits into the IBM Cúram Social
Program Management application architecture and how the server can be
configured, and also suggests many ways in which it can be used.

The XML Server
“The XML Server” below shows how the XML Server fits into the architecture of a
IBM Cúram Social Program Management application. An application can read
application data from a database and using curam.util.xml.impl.XMLDocument and
curam.util.xml.impl.XMLPrintStream can transmit XML data to the XML Server.
The XML Server processes the data and renders a document in any of a number of
formats. This document is then submitted to the system allowing arbitrary

22 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

commands to be executed on the document so that it can be printed, e-mailed,
transferred, stored, etc. in any system-specific way.

The connection from XMLPrintStream to the XML Server is over a TCP/IP socket
allowing the XML Server to be located remotely. The XML Server is configured, at
startup, to run a command on its host to process the document.

The XML Server is fully threaded, allowing it to process multiple jobs
simultaneously.

Configuring the XML Server

Overview
The XML Server has a number of configuration options used to specify how it
should work. All the options are set in a configuration file written using XML
notation. This file is picked up when the XML Server is started and as such the
configuration cannot be changed without stopping and starting the server. There
are a number of areas of the operation of the server that can be configured:
v Network;
v Default Values;
v Server Command;
v Template Cache;
v Debugging;
v Apache log4j Logging;
v RenderX Configuration;
v Custom.

These categories are covered in the following sub-sections. The final sub-section
presents some samples to help you develop your own configuration files. All the
configuration options are enclosed in an XML root element <XML_SERVER_CONFIG>.
As with all XML documents, you must ensure that the characters,, <, >, and &
used in the values of your options in the configuration file are replaced with their
respective character entities: ', ", <, >, and &.

Figure 18. XML Processing Architecture

Developing with the Cúram XML Infrastructure 23

Table 5. Configuration Options

Option Category Description

<SERVER_PORT> Network The TCP/IP port number that the XML
Server will use to listen for client
connections.

<SO_TIMEOUT> Network A positive integer value specifying the
timeout (in milliseconds) on socket
operations. If zero value is specified then
it will be interpreted as an infinite
timeout. If this option is not specified a
default value of 60000 milliseconds will
be used.

<DEFAULT_PRINTER> Default Values The name of the default printer. The
format used should be that required by
the server command.

<DEFAULT_TRAY> Default Values The name of the default printer tray. The
format used should be that required by
the server command.

<DEFAULT_USERNAME> Default Values The name of the default user. The format
used should be that required by the
server command.

<DEFAULT_EMAIL> Default Values The default e-mail address. The format
used should be that required by the
server command.

<SERVER_COMMAND> Server
Command

The command string to use to process
the document. If the command string is
empty, no processing will be attempted.

<USE_PIPE> Server
Command

Indicate that the output document from
the XML Server should be piped to the
standard input of the server command
when it is executed. One of USE_PIPE or
USE_TMP_FILE is required to betrue.

<USE_TMP_FILE> Server
Command

Indicate that the output document from
the XML Server should be written to a
temporary file before the server
command is executed. One of USE_PIPE
or USE_TMP_FILE is required to betrue.

<USE_STDOUT_SINK> Server
Command

Start a thread to read and discard any
data written to standard output by the
server command.

<USE_STDERR_SINK> Server
Command

Start a thread to read and discard any
data written to standard error by the
server command.

<TMP_DIRECTORY> Server
Command

Specifies the directory into which
temporary files containing the document
data should be written. Required only if
USE_TMP_FILE wastrue.

<TMP_FILE_ROOT> Server
Command

Specifies the root part of the file name to
use to create the temporary file. A
sequence number and the appropriate
extension will be appended to create the
full file name. Required only if
USE_TMP_FILE wastrue.

24 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 5. Configuration Options (continued)

Option Category Description

<FOP_CONFIG_FILE> Server
Command

The name and location of a FOP
configuration file. This can be used to
add additional fonts for use when
processing PDF files. Consult the Apache
FOP documentation for more
information.

<RENDERX_CONFIG_FILE> RenderX
Configuration

The name and location of a RenderX
configuration file. This is required to
initiate the RenderX rendering engine.
RenderX can be used as an alternative to
Apache FOP. Consult the RenderX
documentation for more information.

<RENDERX_LOGGING> RenderX
Configuration

Specifies how RenderX 's internal logging
should be configured. Consult the
RenderX documentation for more
information.

<USE_TEMPLATE_CACHE> Template

Cache

Indicates that the template cache should
be used to avoid having to read
templates each time a job is submitted.

<TEMPLATE_CACHE_DIR> Template

Cache

The name of the directory in which to
store the cached template files. Required
only if USE_TEMPLATE_CACHE wastrue.

<CLEAR_TEMPLATE_CACHE> Template

Cache

When the server is started, this option
will force all files in the template cache
directory to be deleted.

<TRACE_TRAFFIC> Debug A debug option to echo all data received
by the server to the servers standard
output.

<STATISTICS_FOLDER> Debug This option will output statistics for the
XML Server in the folder specified by the
option.

<THREAD_POOL_SIZE> Sizing The amount of threads in the pool.

<THREAD_POOL_QUEUE_SIZE> Sizing This can be tuned if needed so that
requests are held inside the XMLServer
rather than out in the TCP backlog
queue. The process memory space
required for an accepted TCP/IP
connection should be taken into
consideration when setting this
configuration parameter.

<JOBS> Custom The parent element of <JOB> children
elements which specify a job type for the
XML Server.

<JOB> Custom Specifies a job type for the XML Server.
Multiple <JOB> elements can be defined,
each detailing a new job type and the
implementing class.

Network Configuration
There are two network settings that can be set to all XML Server s.

Developing with the Cúram XML Infrastructure 25

The TCP/IP port number on which to listen for connections. Clients of the XML
Server connect to the host on which the server is running and must specify which
port should be used for communications. The <SERVER_PORT> element is used to
specify the port number. The number should be that of an available port on the
system. Generally, this means a port number between about 1000 and 32767. If the
server is started with a port that is already in use, this will be reported and you
can select a different port.

A timeout value can be specified for network socket operations to ensure that the
job threads are not blocked indefinitely, while reading template files across the
network and in the event of any network problems. The <SO_TIMEOUT> element is
used to specify the timeout value (in milliseconds). This option allows a network
socket operation to block for the time specified. If the timeout expires, a
java.net.SocketTimeoutException is raised, although the socket is still valid. A timeout
value of zero is interpreted as an infinite timeout. If this option is not specified, a
default value of 60000 (i.e. one minute) is used.

Default Value Configuration
There are a number of default values that can be specified for the server. These are
the default printer name, the default paper tray, the default e-mail address, and the
default user name. They are specified using the elements <DEFAULT_PRINTER>,
<DEFAULT_TRAY>, <DEFAULT_EMAIL>, <DEFAULT_USERNAME> respectively. The values can
be anything you wish.

If a job submitted to the XML Server via an instance of the XMLPrintStream class
includes these values, the defaults will be overridden for that job.

Server Command Configuration
Once a job has been processed by the XML Server (providing the client did not
request a preview), the server will run its server command.

Note: The server command cannot be set per invocation, if multiple commands are
required multiple XML Server s must be used
The server command is a command that is sent to the system to manipulate the
output document. Usually this will involve printing or e-mailing the document,
but there are no restrictions on what the command can do other than those
imposed by your system. No built in server commands are provided. The command
is free-form and is specified using the <SERVER_COMMAND> element.

The server command uses token substitution to pass parameters to the system. The
tokens consist of a % character followed by a letter (it is case-insensitive). Tokens
that appear in the server command string are substituted with the relevant value
of the token just before the server command is executed for each job. The tokens
are listed in “Server Command Configuration” below.

Table 6. XML Server Command Tokens

Token Meaning

%p The name of the printer is being set to either the default printer ID
attribute on the Users table (i.e. the user trying to print the document)
or the default printer name as specified in the XML server configuration.

%t The name of the paper tray as specified in the job configuration received
from the client, or the default paper tray as specified in the server
configuration.

26 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 6. XML Server Command Tokens (continued)

Token Meaning

%u The name of the connecting user, or the default username specified in
the server configuration. This could be the application username that the
user logged in as.

%e The e-mail address of the connecting user, or the default e-mail address
specified in the server configuration. This can be used if you want to
e-mail the result of the XML job back to the user. For example, you
could configure a server to e-mail PDF to a user as well as print the
PostScript output. You could even use this to configure two servers
where one supplies e-mailed copies and the other generates hard-copies.

%f The name of the file where the document was saved. This will be a
generated temporary file name and will not include that path to the file.
The file extension will depend on the specified job type and will default
to.pdf.

%d The directory where the temporary file is located. You may use a trailing
directory separator character and then specify %d%f or you can leave out
the character and use, for example, %d/%f. The XML Server will not
insert one for you. Care should be taken to use the correct separator
character for your system.

%% If you want to use a % character in a command but not as a token, use
%% instead. The first % will be removed before invoking the command.

For example, if the server command is specified as:

mail -s 'Your Print Job' %e

the %e token will be replaced with the e-mail address specified for the job (or the
default e-mail address if none was supplied).

For more complex server commands it may be necessary to wrap the actual
commands in a batch/script files. This batch file is then executed via a server
command such as:

<SomeLocation>/MyBatch.bat 'Your Print Job' %e

The server command tokens are not available in the batch file but are only
replaced in the server command specified in the server configuration file and must
be passed into the batch program as normal parameters.

The main consideration when writing a server command is to identify whether
you want the output document of the XML Server piped to your command or
stored in a temporary file for your command to process. This can be chosen by
setting one of the mutually exclusive <USE_TMP_FILE> or <USE_PIPE> elements in
your configuration.

If you opt to use a temporary file. The document data will be written to the
temporary file and then the server command will be executed. The XML Server
will not delete the temporary file for you. You should have your server command
do that if that is what you wish. The temporary file will be named using the value
of the TMP_FILE_ROOT element with a sequence number and the appropriate
extension appended according to the job type. For example, if the value was temp,
and the job type was XMLPrintStreamConstants. kJobTypePDF the first file generated
by the XML Server would be temp0.pdf, the next file temp1.pdf, etc. This is useful

Developing with the Cúram XML Infrastructure 27

if you start several XML Server s that all share the same temporary directory to
avoid servers over-writing each others temporary files. The file will be created in
the directory specified by the <TMP_DIRECTORY> element in the configuration. This
element should contain an absolute path or a path relative to the directory in
which the XML Server was started. The directory name and the generated file
name are made available to your command using the %d and %f tokens
respectively.

If you opt to use a pipe, your command will be executed and the XML Server will
begin to write document data to the standard input of the command. No
temporary file will be created. There is, however, an issue that must be resolved
when using pipes: if the command write buffered data to standard error or
standard output that is not read by any process, once the buffer is full, the
command may block. As no process will ever read from the streams, the command
will remain blocked indefinitely; in other words, it hangs. There are two methods
that can be employed to avoid this. The first is to ensure that all unused output
from your command is redirected to a device that will read all the output and
ensure the process does not block. The second is to have the XML Server do this
for you using the <USE_STDOUT_SINK> and <USE_STDERR_SINK> elements. While the
former method is recommended where possible, the use of the XML Server sinks
can help in situations or on systems where it is not possible. Both elements cause
threads to be created in the XML Server to read and discard data output by the
server command.

More details on how to write server commands are provided in the section
including samples below.

Template Cache Configuration
Each job submitted to the XML Server requires an XSL template to be applied to an
XML document. Both the template and the document must be supplied by the
client. As it is likely that a template may be used more than once, the server can be
instructed to store copies of the templates in local files rather than request that the
client send a new copy of a template each time it is used.

The cache is enabled using the element <USE_TEMPLATE_CACHE>. The templates are
then stored in the directory specified using the TEMPLATE_CACHE_DIR element. Only
templates that are supplied to the XMLPrintStream with a template ID and template
version number will be cached.

The files in the template cache are not deleted when the XML Server is shut down.
They will be reused the next time the server is started. If this behavior is not
desired, the <CLEAR_TEMPLATE_CACHE> element will ensure that all files in the
template cache directory are deleted on server start up.

Debug Configuration
If the server complains that your XSL template or XML document contain errors,
you can take a look at what the server sees by tracing all network traffic received
by the server. Use the element <TRACE_TRAFFIC> to enable this debugging feature.
The output will be written to the servers standard output. For server
communications, lines in the template that start with a period or full-stop
character. have an extra period character inserted. The end of the client
transmission is marked by a line containing only a single period. You should just
ignore these extra periods.

28 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Log4j Logging
Logging with log4j is used to improve the performance of logging. This can be
configured via the log4j.properties file in the XML Server directory. Further
information on how to configure log4j can be found on the Apache website,
http://logging.apache.org/log4j.

RenderX Configuration
The XML Server provides support for RenderX as an alternative to the Apache
FOP document rendering engine. It must be installed on the machine on which
XML Server is running before it can be used within the XML Server. Further
information on RenderX as a rendering tool can be found on the RenderX website,
http://www.renderx.com.

<RENDERX_CONFIG_FILE> is used to locate the configuration file required by RenderX
engine to start up.

<RENDERX_LOGGING> is used to configure RenderX 's internal logging.
v default - RenderX 's DEFAULT_LOGGER will be used to log information.
v null - RenderX 's NULL_LOGGER will be used to log information.
v File Path - RenderX 's DEFAULT_LOGGER will be used, but the logging stream

will be redirected to the file specified.

The default value for this property is default, if it's not specified. Further
information on DEFAULT_LOGGER and NULL_LOGGER can be found on
RenderX 's Java API.

Custom Configuration
The XML Server provides support for defining custom rendering implementations,
which allows the use of third party rendering tools. A custom rendering
implementation can be added in the form of a new job type; alternatively the
default implementation can be replaced.

By default, the XML Server provides four <JOB> definitions catering for processing
four types of documents: HTML, RTF, TEXT, PDF. The default rendering
implementations are listed below:
v HTML - curam.util.xmlserver.HTMLDocumentGenerator
v RTF - curam.util.xmlserver.RTFDocumentGenerator
v TEXT - curam.util.xmlserver.TEXTDocumentGenerator
v PDF - curam.util.xmlserver.PDFDocumentGenerator

The default document formatting solution uses Apache Formatting Objects
Processor (FOP) to define processing for the document types HTML, PDF, RTF,
TEXT. This default implementation can be replaced with a custom implementation
by implementing the curam.util.xmlserver.DocumentGenerator interface.

Due to FOP 's limited capabilities on processing Right-To-Left (RTL) documents, a
second pdf rendering tool can be used to specifically handle RTL documents. This
can be done using the direction attribute when defining a <JOB>. This attribute is
optional, and only applicable for pdf job type. The possible values it may contain
are: rtl and ltr. The default value is ltr.

Custom Job Type: A new job type is specified using a <JOB> element which must
be created with the <JOBS> element. The new job type should be specified using
the type attribute. This attribute is case insensitive, and may not contain spaces.

Developing with the Cúram XML Infrastructure 29

http://logging.apache.org/log4j
http://www.renderx.com

Attribute class should be used to specify the fully qualified name of the class
implementing the curam.util.xmlserver.DocumentGenerator interface.

For example:
<JOB type="CUSTOM_JOB_TYPE" class="custom.JobImpl" />

The configuration file supports the definition of any number of <JOB> elements.

The curam.util.xmlserver.DocumentGenerator interface requires the following two
methods to be implemented.
/**
* This method should be implemented to generate the document
* for the custom job type. The method is provided with the
* xml template and xml data to be merged to create the
* document. The document result should be sent to the
* output stream provided.
*
* @param xslTemplate The XSL template transformer.
* @param xmlDataStream The input stream from which to read
* the XML data.
* @param docOutput The output stream for the generated
* document.
*
* @throws XMLJobException Generic exception to be thrown on
* error. Exception handing should be handled within the
* implemented method.
*/
void generateDocument(final Transformer xslTemplate,

final InputStreamReader xmlDataStream,
final OutputStream docOutput)

throws XMLJobException;

/**
* This method should return a String containing the file
* extension for the file to be generated. For example if
* generating a HTML file the method should return the
* String ".html".
*
* @return The extension of the file to be generated.
*/
String getFileExtension();

Font Configuration
By Default the XML Server uses FOP (Formatting Objects Processor) for rendering
documents in various formats. FOP supports a default set of fonts, including
Helvetica, Times and Courier, and it is possible using a FOP configuration file to
include support for additional fonts, for example a simplified Chinese font. The
<FOP_CONFIG_FILE> configuration option allows you to specify the name and
location of a FOP configuration file. The path specified for the configuration file
can be absolute (c:/directory/fop-config-file.xml) or relative
(./fop-config-file.xml) to the xmlserver directory. Any references to files within
the FOP configuration file can also be absolute or relative to the xmlserver
directory.

30 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

The example FOP configuration file above references a font metrics file
(pmingliu.xml) and an embed file (mingliu.ttc). The embed file is the true type
collection font file. True type collection font files can be found on a Windows
machine in the installed fonts directory, for example c:/Windows/Fonts. Apache
provides utilities to generate the necessary font metrics file from a true type
collection font file and also from other formats. The Apache FOP documentation
should be consulted for more information on font configuration.

Sample Configuration Files

Overview: In this section a number of samples are presented to illustrate ways
the XML Server can be configured. These configurations are dependent on the
platform or operating system used and include:
v Printing a document (Windows);
v Displaying a document for testing purposes (Windows);
v Printing a document (UNIX and IBM z/OS®).

Where path names are specified (e.g. to commands) your customizations may need
to be changed if you base your configurations on any of these samples.

The server command (and all other options) should be entered on a single line in
the configuration file. In this document they may display with line wrapping for
formatting purposes (e.g. “Printing a Document (Windows)”; but, in your
implementation they will need to be specified on a single line to be valid.

Printing a Document (Windows): On Windows the server command (specified in
the <SERVER_COMMAND> element) is not executed in a command shell unless explicitly
invoked via the Windows command interpreter (cmd.exe) and this is necessary in
order to use such facilities as pipes and redirection. The configuration described
here is representative for Windows platforms.

Depending on the file type, your printing requirements, and the target printer
there are a number of possible options and configurations for printing on
Windows. For instance, your particular version of Adobe Reader may allow for
direct printing or your printer may support direct PDF printing.

A convenient way to implement print functionality is to write a batch file for the
Windows command interpreter to invoke and perform any necessary operations
and to get the server to execute this batch file. A sample batch file is shown in
“Printing a Document (Windows)” below. Let us assume that the batch file is

<fop>
<renderers>
<renderer mime="application/pdf">

<fonts>
<font metrics-url=".\chinese\pmingliu.xml" kerning="yes"

embed-url=".\chinese\mingliu.ttc">
<font-triplet name="PMingLiu" style="normal"

weight="normal"/>

</fonts>
</renderer>
</renderers>

</fop>

Figure 19. Sample FOP Configuration File

Developing with the Cúram XML Infrastructure 31

saved as c:\xmlsrv\xmlserverprint.bat7. The server command can pass
parameters to the batch file through the command line and the batch file accesses
these as %1 for the first parameter, %2 for the second, etc. These parameters are
provided to the batch file via the server command tokens specified in the batch file
invocation in the server configuration file and replaced when it is invoked. (See
“Server Command Configuration” on page 26 and “Printing a Document
(Windows)” on page 31 for more information on command tokens.)

While Windows applications sometimes allow the use of either forward-slash (/)
or back-slash (\) characters interchangeably as a path separator, the Windows
command interpreter only allows the \ character. Care must be taken to ensure
that all paths that may be visible to the command interpreter use back-slash
characters (\) as separators. As path information will not be available in the
context of your batch file, commands must have fully specified paths. The
interpreters built-in commands do not require a path.

The following example illustrates the use of the sample SimplePrintService class,
which is implemented using the Java Print Service API. You could utilize this API
for your own custom solution; for instance, to utilize specific printer features in
your environment. To print a PDF file using this sample class would require the
printer to have direct PDF print support.

Instead of the sample Java program above any appropriate processing could be
specified or additional processing prior to printing or cleanup after printing could
also be implemented as needed. If you use any command that may send output to
the console, make sure that you add null redirection. This output needs to be
redirected to the null device or it will cause the command to block and the batch
file will hang. Therefore, redirection must be added to the command pointing to

7. Note that you should choose a target destination for setting up your XML Server and its customizations to avoid being
overwritten by subsequent service pack updates.

@ECHO OFF

echo -- ^
>> XMLServer.log

REM log output
echo File: %1 ^

>> XMLServer.log
echo Print Server: %2 ^

>> XMLServer.log

REM Call the system print command
echo Starting Print ^

>> XMLServer.log
echo %JAVA_HOME%\bin\java ^

-cp xmlserver.jar;xmlservercommon.jar ^
curam.util.xmlserver.SimplePrintService ^
%2 "%1" >> XMLServer.log 2>&1

%JAVA_HOME%\bin\java ^
-cp xmlserver.jar;xmlservercommon.jar ^
curam.util.xmlserver.SimplePrintService ^
%2 "%1" >> XMLServer.log 2>&1

echo Printing Completed ^
>> XMLServer.log

echo -- ^
>> XMLServer.log

Figure 20. Batch File for Printing a Document (Windows)

32 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

the null device; e.g.: > nul:, which avoids the problem of blocking the XML Server.
Setting the <USE_STDOUT_SINK> and <USE_STDERR_SINK> elements in the
configuration will not work on Windows.

A sample configuration file used to launch this batch file is shown in “Printing a
Document (Windows)” on page 31 below. Note how the printer name and the
details of the temporary file are passed to the batch file using the command
tokens.

The command interpreter (cmd.exe) uses the/C option to specify a batch file to
execute. The batch file is passed two parameters. The first parameter is the name
of the temporary PDF file created by concatenating the expanded %d token for the
temporary directory name, a back-slash separator, and the expanded %f token for
the name of the temporary PDF file. The second parameter is the expanded %p
token for the name of the printer. The configuration file also includes a default
printer name. But this may be overridden by the client. See “Server Command
Configuration” on page 26 for a more detailed description of these tokens.

Displaying a Document for Testing (Windows): When testing a new XSL
template against XML data, it is useful to see the PDF output without printing it
each time. If the code you are writing does not use the preview facilities of the
XMLPrintStream class, you will need to look at the PDF output of the XML Server
manually.

A simple solution is to run an XML Server on your development machine and
configure it to open Adobe Reader to display the PDF data each time you submit a
job. This will save you from running to a printer or manually opening PDF files.
The configuration is shown in “Displaying a Document for Testing (Windows).”

You cannot include space characters in the path to the server command as Java
will interpret these as the end of the command file name and there is no way of
escaping them. To avoid the problem, the above configuration file shows how the
DOS short name of the directory containing the space character is used:

<XML_SERVER_CONFIG>
<SERVER_PORT>6789</SERVER_PORT>
<SERVER_COMMAND>

c:\Windows\System32\CMD.EXE
/C c:\xmlsrv\xmlserverprint.bat %d\%f %p

</SERVER_COMMAND>
<USE_TMP_FILE>true</USE_TMP_FILE>
<TMP_FILE_ROOT>temp</TMP_FILE_ROOT>
<TMP_DIRECTORY>c:\xmlsrv\tmp</TMP_DIRECTORY>
<DEFAULT_PRINTER>\\MyPC\ps1</DEFAULT_PRINTER>
...

</XML_SERVER_CONFIG>

Figure 21. Configuration for Printing a Document (Windows)

<XML_SERVER_CONFIG>
<SERVER_PORT>6789</SERVER_PORT>
<SERVER_COMMAND>c:/PROGRA~1/Adobe/AcrobatReader/AcroRd32.exe

%d/%f</SERVER_COMMAND>
<USE_TMP_FILE>true</USE_TMP_FILE>
<TMP_FILE_ROOT>temp</TMP_FILE_ROOT>
<TMP_DIRECTORY>c:/xmlsrv/tmp</TMP_DIRECTORY>
...

</XML_SERVER_CONFIG>

Figure 22. Displaying a Document for Testing (Windows)

Developing with the Cúram XML Infrastructure 33

PROGRA~1 instead of Program Files. As the command was not passed to a
command interpreter, the choice of / or \ as a path separator character is arbitrary.

Installing RenderX for Right-To-Left (RTL) PDF Document Processing
(Windows): Due to the lack of support for RTL writing languages in Apache FOP
the XML Server also provides the functionality to use alternative rendering tools.

RenderX is one of a number of third party document rendering engines that
supports RTL writing languages. If RenderX is installed, and the XML Server is
configured to use RenderX, the XML Server will automatically use RenderX to
generate all RTL PDF documents. In order to use the default RenderX
implementation in IBM Cúram Social Program Management the following steps
should be completed:
v Install RenderX according to RenderX 's installation guide.
v Set a system environment variable RENDERX_HOME to point to RenderX 's

installation directory.
v Customize xmlserver_config.xml to use

curam.util.xmlserver.RenderXDocumentGenerator to process Right To Left PDF
documents. See example below for details.

Note: In order to use a relative path with a default installation of RenderX, the
images should be stored relative to the RenderX location. For example, if the
RENDERX_HOME is C:\projects\RenderX\, and the images are stored in
C:\projects\RenderX\images, then the relative path to an image would be
"./images/curam/curam.jpg" which is the equivalent of C:\projects\RenderX\
images\curam\curam.jpg.

Printing a Document (UNIX and z/OS): Printing a document on UNIX and z/OS
can be done similarly to Windows in that an invoked shell script can execute
commands or other necessary processing. That is, you write a shell script that is
invoked by the XML Server as per your configuration and the shell script performs
the processing specific to the platform. For example, see “Printing a Document
(UNIX and z/OS)” below. Let us assume that the shell script is saved as
/usr/local/xmlsrv/xmlserver.sh8. The server command can pass arguments to the
shell script, which are accessed in a typical way: $1 for the first parameter, $2 for
the second, etc. These arguments are provided to the shell script via the server
command tokens specified in the script invocation in the server configuration file

8. Note that you should choose a target destination for setting up your XML Server and its customizations to avoid being
overwritten by subsequent service pack updates.

<XML_SERVER_CONFIG>
...
<RENDERX_CONFIG_FILE>C:/RENDERX/xep.xml</RENDERX_CONFIG_FILE>
<RENDERX_LOGGING>off</RENDERX_LOGGING>
...
<JOBS>

...
<JOB type="pdf" direction="RTL"
class="curam.util.xmlserver.RenderXDocumentGenerator"/>

</JOBS>
</XML_SERVER_CONFIG>

The customizations in this example assume RenderX is installed to c:/RenderX directory
Figure 23. Setting up RenderX as the rendering tool for Right To Left Document processing

34 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

and replaced when the script is invoked. (See “Server Command Configuration”
on page 26 and “Printing a Document (UNIX and z/OS)” on page 34 for more
information on command tokens.)

In general, printing capabilities vary widely by OS distribution, version, installed
software, physical printer capabilities, etc. Review your local environment for
requirements and how to best implement printing support. For instance, a z/OS
implementation might use the IBM InfoPrint Server9.

The following example illustrates how printing might be done on various UNIX
platforms. For instance, as on z/OS, if the software and printer hardware supports
it direct printing via the the system print command (lp or lpr) may be possible.
On IBM AIX® you would require third-party software to convert the input PDF to
PostScript for printing. For ease of monitoring the script contains echo commands
to provide progress during its execution and appends the output to a file named
XMLServer.log.

Note: On the z/OS platform you will have to covert the encoding of the
xmlserverprint.sh script from ASCII to EBCDIC. For example:

9. The installation and configuration of the InfoPrint Server is beyond the scope of this document.

tr -d ’\15\32’ < xmlserverprint.sh > xmlserverprint.sh-ASCII
iconv -t IBM-1047 -f ISO8859-1 xmlserverprint.sh-ASCII \
> xmlserverprint.sh
chmod a+rx xmlserverprint.sh

Developing with the Cúram XML Infrastructure 35

The configuration file used to launch this shell script is shown in “Printing a
Document (UNIX and z/OS)” on page 34 below. Note how the printer name (%p)
and the details of the temporary file (%d and %f) are passed to the shell script using
the command tokens. These are interpreted by the shell as two arguments inside
the script: 1) The temporary directory and file name are concatenated with a
forward-slash separator; and 2) name of the printer, which may be overridden by
the client. See “Server Command Configuration” on page 26 for a more detailed
description of these tokens.

#!/bin/sh

Sample UNIX script for XMLServer printing.

echo -- \
>> XMLServer.log

log output
echo File: $1 >> XMLServer.log
echo Print Server: $2 >> XMLServer.log
Platform=`/bin/uname`
echo Platform: $Platform >> XMLServer.log

The following illustrates some possible print solutions
for various platforms:

case $Platform in
z/OS:
OS/390)

On OS/390 (z/OS) use of the lop command as
illustrated would be dependent on the InfoPrint
Server installation and configuration, related
software, and a printer with direct PDF support
and sufficient memory.
echo Starting print... >> XMLServer.log
lp -d $2 $1
echo Printing Completed >> XMLServer.log

;;

AIX)
AIX has no native print support for PDF files,
so you would need to implement functionality such as
pdf2ps to convert the generated PDF file to
PostScript for printing with lpr; e.g.:
see the IBM Redbook SG24-6018-00
pdf2ps $1 $1.ps
lpr -P $2 $1.ps
echo $Platform printing implementation is TBD. \

>> XMLServer.log
;;

Other platforms:
*)

Your local print functionality to be implemented here ...
echo $Platform printing implementation is TBD. \

>> XMLServer.log
;;

esac

echo -- \
>> XMLServer.log

Figure 24. Sample Shell Script for Printing a Document (UNIX and z/OS)

36 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Running the XML Server
The XML Server application is delivered as a separate component in IBM Cúram
Social Program Management. The XML Server is started from the XML Server
installation directory using Apache Ant. For example:

ant -file xmlserver.xml

A default xmlserver_config.xml is provided on install which contains the default
configuration file for the server. You can apply changes to this file as required.

When the server starts, it displays the configuration information it has read from
the configuration file and displays the status of each job it receives.

Note: In addition to running as a command line application, the XML server can
also be run in the background as a Windows service as discussed in “Running the
XML Server as a Windows Service or UNIX Daemon.”

Running the XML Server as a Windows Service or UNIX Daemon
For a production environment it can be more effective, for purposes of ensuring
availability at restart, avoiding accidental shutdowns via an open shell prompt,
etc., to run the XML Server as a Windows service or UNIX daemon.

To run a program as a Windows service requires specific Windows infrastructure;
that is, batch files and programs cannot be run this way out-of-the-box. However,
there are third-party tools available to enable this functionality. One example of
such a tool is the Java Service Wrapper from Tanuki Software (http://
wrapper.tanukisoftware.com).

With Tanuki Java Service Wrapper we recommend, after installation, integrating
the XML Server using the WrapperStartStopApp class (setting
wrapper.java.mainclass=org.tanukisoftware.wrapper.WrapperStartStopApp) and
you would need to:
v Set the classpath to include the necessary Ant libraries;
v Pass the Ant home into the environment;
v Ensure adequate memory (e.g. 768MB);
v Pass in the necessary parameters to invoke the XML Server Ant script.

Specifically, for the Java Service Wrapper the properties would look like:

<XML_SERVER_CONFIG>
...
<SERVER_COMMAND>

./xmlserverprint.sh %d/%f %p
</SERVER_COMMAND>
<USE_TMP_FILE>true</USE_TMP_FILE>
<TMP_DIRECTORY>./tmp</TMP_DIRECTORY>
<TMP_FILE_ROOT>doc</TMP_FILE_ROOT>
<DEFAULT_PRINTER>printer1</DEFAULT_PRINTER>
...

</XML_SERVER_CONFIG>

Figure 25. Configuration for Printing a Document (UNIX and z/OS)

Developing with the Cúram XML Infrastructure 37

http://wrapper.tanukisoftware.com
http://wrapper.tanukisoftware.com

The values in angle brackets above would need to be substituted with the
appropriate values for your local installation. See the Java Service Wrapper
documentation for more details on installation, configuration and running.

Running the XML Server as a UNIX daemon is something that can typically be
done with shell scripting and system facilities (e.g. cron); but, UNIX -compatible
versions of Java Service Wrapper are available.

Overriding the Default Port
The Cúram XML Server application runs on port 1800 by default. To override the
default port the -Dxmlserver.port option can be specified, overriding the Ant
script. For example:

ant -file xmlserver.xml -Dxmlserver.port=1805

Overriding the Default Configuration
The Cúram XML Server application comes and runs with a default configuration
file which it generates each time the application is started.

To override this default version, take a copy of the xmlserverconfig.xml10and place
in a custom location. To start the server using this custom configuration use the
following Ant command:

ant -f xmlserver.xml -Dxmlserver.config.file=C:\Custom\xmlserverconfig.xml

Switching Off Configuration File Schema Validation
The Cúram XML Server application validates the XML Server configuration file at
start up by default.

To switch off validation the novalidation option can be specified as an additional
argument to the Ant script invocation. For example:

ant -file xmlserver.xml -Dadditional.args=-novalidation

Shutting Down the XML Server
In an environment where few jobs are printed or you can be sure the XMLServer is
idle, you can safely shut down the XML Server with a simple Control-C key
combination without causing any problems. However, the recommended and safer

10. The xmlserverconfig.xml is created from the xmlserverconfig.xml.template file the first time the XML Server is run. This file
contains all the configuration elements for the XML Server.

wrapper.java.classpath.<n>=<ANT_HOME>/lib/ant.jar
wrapper.java.classpath.<n>=<ANT_HOME>/lib/ant-launcher.jar
wrapper.java.additional.<n>=-Dant.home=<ANT_HOME>
wrapper.java.maxmemory=768
wrapper.app.parameter.1=org.apache.tools.ant.launch.Launcher
wrapper.app.parameter.2=2
wrapper.app.parameter.3=-f
wrapper.app.parameter.4=<CURAMSDEJ>/xmlserver/xmlserver.xml
wrapper.app.parameter.5=org.apache.tools.ant.launch.Launcher
wrapper.app.parameter.6=true
wrapper.app.parameter.7=3
wrapper.app.parameter.8=-f
wrapper.app.parameter.9=<CURAMSDEJ>/xmlserver/xmlserver.xml
wrapper.app.parameter.10=stop

38 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

method is to use the XMLServerShutdown command. This will shut down any XML
Server in an orderly fashion: the server will refuse any new jobs and allow all
outstanding jobs to complete before exiting. This is done through the following Ant
command:

ant -file xmlserver.xml stop

The server will be switched into shut down mode and all outstanding jobs will be
completed before the server exits and the XMLServerShutdown command informs
you that the server has been shut down. Depending on the number of jobs being
processed, this may take some time to complete.

Statistics
Once you shutdown the XMLServer various statistics data for the XML Server are
collected in the statistics folder, specified in xmlserverconfig.xml.

The statistics log includes the below columns:-
v Success - Whether or not the job was successful(true, false).
v Job preview type - The job preview type (PDF,HTML,TEXT,RTF).
v Elapsed connection - the time elapsed (in milliseconds) since processing of a

connection started until the connection was closed.
v Elapsed job - The time (in milliseconds) it takes to run the job.
v Elapsed job preview send - The time (in milliseconds) it takes to send the

preview data to the client.
v Job preview data length - The length of the preview data (in bytes) sent to the

client.
v Timestamp - The timestamp (Java time stamp value) when the connection

entered the system.
v Template ID - The ID for the template being processed.
v Template version - The version number of the template being processed.
v Template locale - The locale of the template being processed.

Summary
v The Cúram XML Server processes jobs submitted by a client to produce a

formatted document.
v Each job requires an XML document and an XSL template.
v Multiple servers can be run on the same host by specifying different port

numbers for each server. Each server can perform a different operation, but can
only perform one operation.

v Default values for a printer name, printer tray, e-mail address, and user name
can be specified in the configuration.

v The server can be configured to perform any required operation on the output
document such as printing, e-mailing, display, etc. by specifying a command that
should be run against the document data.

v The configuration can specify whether the document should be piped to the
server command or first written to a temporary file.

v The template cache can be used to improve performance where templates are
reused regularly.

v Debugging options are available to help solve problems with templates or XML
data.

Developing with the Cúram XML Infrastructure 39

v Custom implementations can be defined to overwrite the default job types, or to
define new job types.

v The server is a Java application started from the command line and displays its
configuration and status when run.

v The server can be shut down safely using the shutdown command.

Cúram XML and XSL Templates

Objective
In this chapter, you will learn about the IBM Cúram Social Program Management
XML format used for all XML documents generated by your application server.
You will need to know this format if you wish to write XSL templates for
formatting and printing the XML documents.

Prerequisites
Before reading this chapter you should be familiar with the basic concepts behind
XML and Document Type Definitions (DTD).

Introduction
Every XML document generated by the XML infrastructure uses a fixed format
regardless of the struct classes being converted. This makes the development of
XSL templates easier, as the format of the XML does not change. The following
sections present that format and show what IBM Cúram Social Program
Management XML documents look like. This will help you when you are
developing XSL templates.

Cúram XML
“Cúram XML” below presents the DTD for Cúram XML. The DTD can also be
found in the /lib directory of the SDEJ. The structure is relatively simple and,
with the comments, this needs no further explanation.

40 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Examples
“Examples” below shows a simple XML document generated for a struct that
contains two fields. Note that the field types will always be the basic types and not
the domain definitions derived from those basic types.

<!--A DOCUMENT element has an optional META element
followed by a mandatory DATA element.-->

<!ELEMENT DOCUMENT (META?, DATA)>

<!--A META element has a number of optional elements that
it can contain in no particular order.-->

<!ELEMENT META (GENERATED_DATE | GENERATED_BY |
VERSION | COMMENT)*>

<!--A DATA element contains a single mandatory STRUCT_LIST
or STRUCT element.-->

<!ELEMENT DATA ((STRUCT_LIST | STRUCT))>

<!--A STRUCT_LIST element has one or more STRUCT
elements.-->

<!ELEMENT STRUCT_LIST (STRUCT+)>

<!--A STRUCT element has an optional SNAME element and one
or more FIELD elements.-->

<!ELEMENT STRUCT (SNAME?, FIELD+)>

<!--A FIELD element has an FNAME and either a TYPE
element and a VALUE element, or a STRUCT_LIST element,
or a STRUCT element (in that order).-->

<!ELEMENT FIELD (FNAME, ((TYPE, VALUE) | STRUCT_LIST | STRUCT))>

<!--All these elements contain parsed character data only
and do not contain sub-elements. Use ISO-8601 when
formatting date values.-->

<!ELEMENT GENERATED_DATE (#PCDATA)>
<!ELEMENT GENERATED_BY (#PCDATA)>
<!ELEMENT VERSION (#PCDATA)>
<!ELEMENT COMMENT (#PCDATA)>
<!ELEMENT SNAME (#PCDATA)>
<!ELEMENT FNAME (#PCDATA)>
<!ELEMENT VALUE (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>

<!--A TYPE element can have a SIZE attribute. If not
supplied, the attribute will not be set by default
and will have a null value. This is normally used
for SVR_STRING types.-->

<!ATTLIST TYPE SIZE CDATA #IMPLIED>

Figure 26. Cúram XML Document Type Definition (DTD)

Developing with the Cúram XML Infrastructure 41

In the next example, the format of an XML document describing a list of structs is
presented. Note that the <STRUCT> elements are the same as previously, but
multiple <STRUCT> elements are contained within a <STRUCT_LIST> element.

<DOCUMENT>
<META>

<GENERATED_BY>My Server</GENERATED_BY>
</META>
<DATA>

<STRUCT>
<SNAME>DPTicketDtls</SNAME>
<FIELD>

<FNAME>ticketID</FNAME>
<TYPE>SVR_INT64</TYPE>
<VALUE>12796</VALUE>

</FIELD>
<FIELD>

<FNAME>subject</FNAME>
<TYPE SIZE="100">SVR_STRING</TYPE>
<VALUE>This is the subject.</VALUE>

</FIELD>
</STRUCT>

</DATA>
</DOCUMENT>

Figure 27. An Example XML Document

<DOCUMENT>
<META>

<GENERATED_BY>My Server</GENERATED_BY>
</META>
<DATA>

<STRUCT_LIST>
<STRUCT>

<SNAME>DPTicketDtls</SNAME>
<FIELD>

<FNAME>ticketID</FNAME>
<TYPE>SVR_INT64</TYPE>
<VALUE>12796</VALUE>

</FIELD>
<FIELD>

<FNAME>subject</FNAME>
<TYPE SIZE="100">SVR_STRING</TYPE>
<VALUE>This is the subject.</VALUE>

</FIELD>
</STRUCT>
<STRUCT>

<SNAME>DPTicketDtls</SNAME>
<FIELD>

<FNAME>ticketID</FNAME>
<TYPE>SVR_INT64</TYPE>
<VALUE>35667</VALUE>

</FIELD>
<FIELD>

<FNAME>subject</FNAME>
<TYPE SIZE="100">SVR_STRING</TYPE>
<VALUE>This is another subject.</VALUE>

</FIELD>
</STRUCT>

</STRUCT_LIST>
</DATA>

</DOCUMENT>

Figure 28. An Example XML Document with a List

42 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

If a field of a struct is itself a struct, then instead of a <TYPE> and <VALUE> element,
the <FIELD> element will contain a whole <STRUCT> element. Fields can also contain
<STRUCT_LIST> elements in the same manner.

Job Types and Template Types

Overview
You saw in “Developing for XML” on page 5 how different job types can be
specified when using the XMLPrintStream class to communicate with the XML
Server. These job types require different types of templates in order to be
successful. While all the templates use XSL for formatting, there are two parts of
that standard that are used in specific situations.
v XSL Transformations (XSLT)

XSLT is a standard that defines a language for transforming XML documents in
other XML documents. Elements of the XSLT language allow data from one
XML document to be combined with static elements of a template (or stylesheet).

v XSL Formatting Objects (XSL-FO)

XSL-FO defines a set of elements for describing the physical layout of a
document: paper size, fonts, spacing, image locations, etc. The layout model
used is based on that used for PDF documents. A formatting objects processor
can convert data marked up with formatting objects into other representations
such as PDF or RTF.

The following subsections outline how these standards can be used to develop
templates for each of the supported job types.

XSL and XSL-FO are extensive standards and it is beyond the scope of this
document to describe them in more than cursory detail. Reference to books and
useful Internet sites on these topics are included at the end of this chapter. You are
advised to obtain such materials to learn how to use these technologies.

Templates for PDF Documents
Generating PDF documents is a two stage process. It is perhaps easiest to describe
the process in reverse order.

PDF documents are generated from documents marked up with XSL-FO in a
process called rendering. The document contains the data that should appear in the
document (text, figures, etc.) and the XSL-FO mark-up needed to define how this
data should be laid out (margins, paper-size, fonts, line-spacing, location of
paragraphs, etc.) This rendering stage is handled by the Apache FOP library.

To prepare an XSL-FO document for rendering, the raw data is supplied in an
XML document and a template uses XSLT to combine this raw data with the
XSL-FO mark-up and the other static elements of the document. In essence, the
XSLT inserts the raw data into the template creating the XSL-FO document. This
transformation stage is handled by the Apache Xalan library.

Thus, templates for rendering documents as PDF are largely XSL-FO documents
with elements of XSLT used to insert values from the XML document at the
appropriate point. An example of such a template is given in the next section.

Templates for RTF Documents
RTF templates are identical to PDF templates. The same template can be used to
produce output in either format. Again, the template is mostly XSL-FO with XSLT
used to insert values from the XML document in the appropriate locations.

Developing with the Cúram XML Infrastructure 43

The JFOR library is used to render RTF documents from XSL-FO documents,
however, not all XSL-FO elements are supported. Unless you need to edit the
documents in a word processor after they have been generated, you should use the
better supported PDF generator.

Templates for HTML Documents
Templates for HTML documents are simpler than those for PDF or RTF. XSL-FO
mark-up is not used as the HTML mark-up is used to define the formatting. As
such, there is no rendering step when generating HTML documents. The templates
consists of HTML mark-up and XSLT elements that insert values from the XML
document in the appropriate locations to create a HTML document.

As XSLT can only convert one XML document into another, the output will include
some XML elements. These elements are automatically removed for this job type so
that the output is a pure HTML document. The HTML will be automatically
indented during the processing.

Templates for Plain Text Documents
As with templates for HTML documents, templates for plain text documents
contain no XSL-FO mark-up and there is no rendering step. The templates
comprise plain text with embedded XSLT elements to insert values from the XML
document in the appropriate locations.

Again, XML elements in the output document are stripped. As XML and XSL
generally do not preserve white-space, use of the <text> element around
white-space that is to be preserved is advised (for example, line breaks,
indentation, etc.).

XSL Template Example
Presented here is a simple example to get your started. It shows the basic method
of identifying and extracting data from an XML document containing a single
struct.

44 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

The output is formatted for A4 paper (210x297mm) with 30mm margins and
should appear like this, if the earlier sample XML document is used:

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">

<xsl:template match="DOCUMENT">
<xsl:apply-templates select="DATA"/>

</xsl:template>

<xsl:template match="DATA">
<xsl:apply-templates select="STRUCT[SNAME=’DPTicketDtls’]"/>

</xsl:template>

<xsl:template match="STRUCT">
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
<fo:simple-page-master page-master-name="only"

page-height="297mm" page-width="210mm"
margin-top="30mm" margin-bottom="30mm"
margin-left="30mm" margin-right="30mm">

<fo:region-body/>
</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence>
<fo:sequence-specification>

<fo:sequence-specifier-single
page-master-reference="only"/>

</fo:sequence-specification>

<fo:flow>
<fo:block font-size="12pt" font-family="serif"

line-height="20mm">
Ticket ID: <xsl:apply-templates

select="FIELD[FNAME=’ticketID’]"/>
</fo:block>

<fo:block font-size="12pt" font-family="serif"
line-height="20mm">

Subject: <xsl:apply-templates
select="FIELD[FNAME=’subject’]"/>

</fo:block>
</fo:flow>

</fo:page-sequence>
</fo:root>

</xsl:template>

<xsl:template match="FIELD">
<xsl:value-of select="VALUE"/>

</xsl:template>

</xsl:stylesheet>

Figure 29. An Example XSL Template

Ticket ID: 12796

Subject: This is the subject.

Figure 30. Example output

Developing with the Cúram XML Infrastructure 45

Generating Templates from RTF Documents
While templates cannot be generated directly from RTF documents, software is
available to convert an RTF document created by a word processor into the
corresponding XSL-FO document. Once the XSL-FO document has been generated,
you can insert the appropriate XSLT mark-up to convert it into a usable template.

Globalization Considerations
As described above structs are transmitted to the XML Server for printing by
calling method curam.util.xml.impl.XMLDocument .add(your-struct). This data
can be sensitive to locale differences.

Structs are serialized into an XML representation which is then transformed into a
human-readable document using XSLT. By default the following data types are
serialized by calling their toString() method:
v curam.util.type.Date

v curam.util.type.DateTime

v curam.util.type.Money

The toString() method of Date and DateTime returns a string dependent on the
value of property 'curam.environment.default.dateformat ' and the toString()
method of Money returns a value dependent on the value of property
'curam.environment.default.locale '.

For example, if 'curam.environment.default.locale ' was set to ' en_GB ', a Money
amount would be serialized in the form ' 12,345.67 ' whereas for ' es_ES ' it would
be formatted like '12.345,67' (i.e., commas and dots reversed). This prevents the
XSLT from de-serializing the data in a locale neutral way. So if the server locale
was set to English, then the XSL template for a Spanish letter would have to parse
an English formatted numeric string instead of a numeric value.

Locale related problems like this can be avoided in two ways:
v Use string fields to transfer all data to the XML Server, and ensure that these

string fields are correctly formatted for the appropriate locale on the server
beforehand.

v Transfer fields to the XML Server in a locale-neutral way by setting property
'curam.xmlserver.serializelocaleneutral ' to true. For Date and DateTime the
formats are ' yyyyMMdd ' and ' yyyyMMddTHHmmss ' respectively. For Money it is the
same as for floating point decimals.

Summary
v Cúram XML uses a fixed format for all generated XML.
v The format is defined in a document type definition (DTD).
v XML documents can be formatted using XSL transformations and marked-up

using XSL-FO ready for rendering as PDF or RTF.
v XML documents can be formatted using XSL transformations only to produce

HTML and plain text documents.

Further Reading
Some books that cover XML, XSL, and XSL-FO are:
v Harold, Elliotte Rusty, The XML Bible, Hungry Minds Inc.
v Bradly, Neil, The XSL Companion, Addison-Wesley.

46 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

v Pawson, Dave, XSL-FO, OReilly.

Useful web-sites for information on XSL, XSLT, and XSL-FO are:
v http://www.ibiblio.org/xml/books/bible/updates/ has all the XML chapters

from The XML Bible book.
v http://www.w3c.org/ is the home of the World Wide Web Consortium. This

organization controls and maintains the XSL specifications.
v http://www.dpawson.co.uk/ is a site with some nice tutorials and frequently

asked question (FAQ) lists about XSL and XSL-FO.

The third-party libraries used are available from these locations:
v http://xml.apache.org/ is the home of the Xerces, Xalan, and FOP libraries used

by the XML Server.
v http://www.jfor.org/ is the home of JFOR, the XSL-FO to RTF converter.

Developing with the Cúram XML Infrastructure 47

http://www.ibiblio.org/xml/books/bible/updates/
http://www.w3c.org/
http://www.dpawson.co.uk/
http://xml.apache.org/
http://www.jfor.org/

48 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 49

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

50 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 51

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Adobe, Adobe Reader, and Portable Document Format (PDF), are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Apache is a trademark of Apache Software Foundation.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are registered trademarks of Oracle
and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

52 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing with the Cúram XML Infrastructure
	Introduction
	Objective
	Prerequisites
	Introduction
	Third-Party Libraries

	XML Concepts
	Objective
	Prerequisites
	Introduction
	XML
	Document Type Definition
	XML Documents
	Summary
	Further Reading

	Developing for XML
	Objective
	Prerequisites
	Introduction
	XML Documents
	Documents
	The XMLDocument Class
	Encoding
	Creating an XMLDocument
	Opening an XMLDocument Object
	Adding Data to an XMLDocument Object
	Closing an XMLDocument Object
	Saving an XMLDocument Object
	Loading an XMLDocument Object

	The XML Print Stream
	Overview
	The XMLPrintStream Class
	Default Configuration for XMLPrintStream
	Creating an XMLPrintStream Object
	Configuring an XMLPrintStream Object
	Opening an XMLPrintStream Object
	Closing an XMLPrintStream Object
	Print Previewing

	Sample Usage
	Overview
	Saving XML Data to a File
	Printing an XML Document
	Saving and Loading XML Documents
	Previewing an XML Print Job
	Building a Document from a List

	Load Balancing and Fail-over
	Summary

	The XML Server
	Objective
	Prerequisites
	Introduction
	The XML Server
	Configuring the XML Server
	Overview
	Network Configuration
	Default Value Configuration
	Server Command Configuration
	Template Cache Configuration
	Debug Configuration
	Log4j Logging
	RenderX Configuration
	Custom Configuration
	Custom Job Type

	Font Configuration
	Sample Configuration Files
	Overview
	Printing a Document (Windows)
	Displaying a Document for Testing (Windows)
	Installing RenderX for Right-To-Left (RTL) PDF Document Processing (Windows)
	Printing a Document (UNIX and z/OS)

	Running the XML Server
	Running the XML Server as a Windows Service or UNIX Daemon

	Overriding the Default Port
	Overriding the Default Configuration
	Switching Off Configuration File Schema Validation
	Shutting Down the XML Server
	Statistics
	Summary

	Cúram XML and XSL Templates
	Objective
	Prerequisites
	Introduction
	Cúram XML
	Examples
	Job Types and Template Types
	Overview
	Templates for PDF Documents
	Templates for RTF Documents
	Templates for HTML Documents
	Templates for Plain Text Documents

	XSL Template Example
	Generating Templates from RTF Documents
	Globalization Considerations
	Summary
	Further Reading

	Notices
	Privacy Policy considerations
	Trademarks

