
IBM Cúram Social Program Management
Version 6 Release 0

Health Care Reform Developer Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 49

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2011, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information v
Overview of Health Care Reform support v
Intended audience v

Chapter 1. Customizing the Health Care
Reform portal 1
IEG scripts customization 1
Eligibility Display Rules customization 1

Customizing the conditional display of IRS
income information 1
Customizing the conditional display of specific
questions for Medicaid, CHIP, or IA 2
Customizing the determination of projected
annual income for a citizen 2

Chapter 2. Integration with external
systems. 5
Customizing the external system implementations . . 5

Customizing request or response fields for
external system calls 6

External system processors 7
Configuring the Federal Hub implementation . . . 7
Configuring a State systems implementation. . . . 7
Customizing electronic verifications 8

Default verification processors 8
Adding custom verification processing. 9
Overriding the default verification processing . . 9

Chapter 3. Customizing case
management 11
Dynamic evidence customization 11
Eligibility Rules customization 11
Conditional verifications customization 11

Chapter 4. Customizing plan
management 13
Integration with Plan Management 13
The plan management adapter interface 13

Configuring the plan management adapter . . . 14
Plan management web services provided by Cúram 15
Configuration parameters for plan management . . 15
Callback URLs for plan management 16
Batch processing for plan management 16

Employer enrollment notification batch process 16
Plan management web service API reference . . . 16

Health Care Reform web services 16
retrieveDemographicsAndEligibilityDetails . . 17
getEntitlementDetails 17
getHouseholdSummaryDetails 17
policyIDAvailable 18
updateEmployerEnrollment 18

Health Care Reform schema elements 18

Chapter 5. Customizing change of
circumstances 25
Change of circumstances process flow 26

Change of circumstances workflow 27
Customizing the default change of circumstances
implementation 28

Customizing the change of circumstances IEG
script 29

Adding custom entities through the change of
circumstances script 30
Modifying entities through the change of
circumstances script 30
Removing entities through the change of
circumstances script 31

Customizing the change of circumstances
workflow 31

Chapter 6. Monitoring Cúram
processes 33
Application intake process overview 33
Monitoring workflow process instances 36
Process Instance Errors 37
Monitoring Process Instance Errors 37

Chapter 7. Configuring Account
Transfer to the Federally Facilitated
Exchange 39
The FederalExchange component 39
Configuring Federal Exchange 39

Activating Account Transfer 39
Enabling batch processing of account transfer
applications 39
Configuring the sending of Account Transfers to
Cúram 40
Selecting the source data set for outbound
mapping 40
Setting the identity of the sender US state . . . 40
Setting the data store schema name for the FFE
schema 41

Extending Federally Facilitated Exchange data
mappings 41

Adding or updating the attributes for a data
store entity 41
Adding an entity as a child of a mapped data
store entity 42
Adding or replacing a top-level data store entity 43
Adding or updating entities for an outbound
response to the FFE. 44

The Web Service Java API 44
Inbound processing. 44
Outbound processing 44
HCRFedExchangeAppStatus code table
descriptions 45

Adding a new entity 46

© Copyright IBM Corp. 2011, 2014 iii

Writing an EntityMapper 46
Updating the Federal Exchange data store
schema 47

Notices 49
Privacy Policy considerations 51

Trademarks 52

iv Health Care Reform Developer Guide

About this information

Describes how to customize the IBM Cúram Solution for Health Care Reform.

Overview of Health Care Reform support
The Affordable Care Act (ACA) introduced new requirements for states in relation
to making affordable healthcare available to state residents. Healthcare is available
not just through the existing Medicaid and Children's Health Insurance Programs,
but also through the introduction of new programs to provide state residents with
help in paying for private health insurance.

In support of the ACA legislation, the IBM Cúram Income Support and IBM
Cúram Income Support for Medical Assistance products were extended. These
solution modules now support the Health Care Reform provisions of the
Affordable Care Act (ACA) with the addition of the Cúram Solution for Health
Care Reform.

Intended audience
This publication is intended for developers who are customizing the IBM Cúram
Solution for Health Care Reform.

Readers must be familiar with the following topics:
v IBM Cúram Solution for Health Care Reform.
v Cúram Server Developers Guide
v Cúram Server Modeling Guide
v Persistence Cookbook
v Cúram Universal Access Configuration Guide
v Cúram Universal Access Customization Guide
v Working with Cúram Intelligent Evidence Gathering
v Authoring Scripts Using Intelligent Evidence Gathering
v Working with Cúram Express Rules
v Cúram Express Rules Reference Manual
v Inside Cúram Eligibility and Entitlement Using Cúram Rules
v Cúram Dynamic Evidence Configuration Guide
v Cúram Evidence Broker Developers Guide
v Cúram Verification Guide
v Cúram Batch Processing Guide
v Cúram Web Services Guide

© Copyright IBM Corp. 2011, 2014 v

vi Health Care Reform Developer Guide

Chapter 1. Customizing the Health Care Reform portal

The Health Care Reform portal uses the IBM Cúram Universal Access Motivation
infrastructure for the online application processes required by ACA legislation.

Each Health Care Reform motivation is associated with an IEG script, a data store
schema, and a display rule set. The following Health Care Reform motivations are
available by default:
v Find Assistance
v Browse for plans
v Quick Shopping
v Employer Sponsored Coverage
v Apply for an exemption

For more information about motivations, see the IBM Cúram Universal Access
Customization Guide.

IEG scripts customization
The default Health Care Reform portal IEG scripts are in the HCROnline
component. You can customize the default IEG scripts by creating a custom copy.

For more information about customizing IEG scripts, see the Authoring Scripts
Using Intelligent Evidence Gathering (IEG) guide.

Eligibility Display Rules customization
When an IEG script completes, the eligibility results page is displayed according to
the eligibility results display rules. You can write custom display rules to
customize eligibility calculations for the eligibility results page. In addition, Health
Care Reform provides several other mechanisms for customizing rule sets.

The default display rules reference the default eligibility rule sets to determine
eligibility. The curam.healthcare.eligibility.ruleset.name property points to the
name of this rule set. You must update this property if custom eligibility rules are
to be used.

For information about configuring properties, see "Configuring Application
Properties" in the Cúram System Configuration Guide.

For information about customizing rule sets in a compliant manner, see the Curam
Express Rules Reference Manual and the Cúram Development Compliancy Guide.

There are several areas in the script rules where you can provide a custom
implementation as follows.

Customizing the conditional display of IRS income
information

You can customize the eligibility rules that determine the display of retrieved
income from the IRS.

© Copyright IBM Corp. 2011, 2014 1

About this task

IRS income data that is retrieved for members in a tax household is not displayed
if any of the following conditions are true:
v There is more than one financial household within the overall household.
v There are any American Indians or Alaskan Natives in the household.
v The household income is below the Medicaid or CHIP threshold for any of the

applicants in the household.

These rules are implemented by the IRSIncomeDisplayDeterminator rule class
available in the default HealthCareReformEligibilityRuleset rule set .

Procedure
1. Create a custom rule class that adheres to the default structure provided in the

Abstract Eligibility Rule set,
AbstractEligibilityRuleset.IRSIncomeDisplayDeterminator This custom rule
class must ultimately extend the
AbstractEligibilityRuleset.DefaultIRSIncomeDisplayDeterminator rule class.

2. Update the curam.healthcare.displayirsincome.invoking.ruleclass.name
property to point to the fully qualified name of the custom rule class. For
example, MyRuleSet.MyRuleClass.

Customizing the conditional display of specific questions for
Medicaid, CHIP, or IA

You can override the default eligibility rules that determine which specific
questions are asked based on eligibility for Medicaid, CHIP, or IA.

About this task

Certain eligibility rules are run as the citizen progresses through the script. These
rules control the flow of the script according to the citizen's eligibility for certain
programs. When the user enters income information for the household, these rules
run. The results of these rules allow the script to ask intelligent questions pertinent
to the program for which a household member is considered eligible.

Procedure
1. Create a custom rule class that adheres to the default structure provided in the

AbstractEligibilityRuleset.EligibilityDeterminationCalculator rule class.
This custom rule class must ultimately extend the
AbstractEligibilityRuleset.DefaultEligibilityDetermination rule class.

2. Update the curam.healthcare.eligibility.invoking.ruleclass.name property
to point to the fully qualified name of the custom rule class. For example,
MyRuleSet.MyRuleClass.

Customizing the determination of projected annual income for
a citizen

You can override the default eligibility rules that determine the projected annual
income for a client.

About this task

Income calculation rules are run after you capture a household member's complete
income details, including any deductions or exclusions. The projected annual

2 Health Care Reform Developer Guide

income is then calculated by rules that are based on these details. The citizen can
choose to attest to the determined projected annual income or chose to enter a
different value. If the customer enters a different value, the rules take this value
into consideration for calculating final eligibility.

Projected annual income is determined by invoking MemberIncomeCalculator
available in the default HealthCareReformEligibilityRuleset. The property is
“curam.healthcare.memberincome.invoking.ruleclass.name” and is set to a default
implementation of the
HealthCareReformEligibilityRuleset.MemberIncomeCalculator rule class.

Procedure
1. Create a custom rule class that adheres to the default structure provided in the

Abstract Eligibility rule set
AbstractEligibilityRuleset.MemberIncomeCalculator. This custom rule class
must ultimately extend the
AbstractEligibilityRuleset.DefaultMemberIncomeCalculator rule class.

2. Update the curam.healthcare.memberincome.invoking.ruleclass.name property
to point to the fully qualified name of the custom rule class. For example,
MyRuleSet.MyRuleClass.

Chapter 1. Customizing the Health Care Reform portal 3

4 Health Care Reform Developer Guide

Chapter 2. Integration with external systems

The Health Care Reform solution can call external systems at certain points to
gather information necessary for application processing. For example, a call can be
made to the Federal Hub to verify SSN and citizenship status for a citizen.

The customization and configuration options for these integration points are as
follows:

Customizing the external system implementations
By default, Health Care Reform provides several interfaces and corresponding
implementations for integrating with external systems. Customers are free to
provide their own implementations for these integration points.

About this task

Note: You might want to customize the default Federal Hub implementation by
using the provided customization points.

The following table lists the default external system interfaces, default
implementations, and Federal Hub implementations.

Interface Default Implementation Federal Hub Implementation

curam.hcr.verification.service.impl.
SSACompositeBusinessService

curam.hcr.verification.service.impl.
SSAVerificationServiceImpl

curam.hcr.verification.service.impl.
FederalSSACompositeServiceImpl

curam.hcr.verification.service.impl.
AnnualIncomeDataService

curam.hcr.verification.service.impl.
AnnualIncomeDataServiceImpl

curam.hcr.verification.service.impl.
FederalAnnualIncomeVerificationServiceImpl

curam.hcr.verification.service.impl.
IRSHouseholdDataService

curam.hcr.verification.service.impl.
IRSHouseholdDataServiceImpl

No service available

curam.hcr.verification.service.impl.
LawfulPresenceVerificationService

curam.hcr.verification.service.impl.
LawfulPresenceVerificationServImpl

curam.hcr.verification.service.impl.
FederalLawfulPresenceVerificationServiceImpl

curam.hcr.verification.service.impl.
MECVerificationService

curam.hcr.verification.service.impl.
MECVerificationServiceImpl

curam.hcr.verification.service.impl.
FederalMECVerificationServiceImpl

curam.hcr.verification.service.impl.
ResidencyVerificationService

curam.hcr.verification.service.impl.
ResidencyVerificationServiceImpl

No service available

curam.hcr.verification.service.impl.
IncomeDataService

curam.hcr.verification.service.impl.
IncomeDataServiceImpl

curam.hcr.verification.service.impl.
FederalCurrentIncomeVerificationServiceImpl

curam.hcr.verification.service.impl.
CloseDHSCaseService

curam.hcr.verification.service.impl.
CloseDHSCaseServiceImpl

curam.hcr.verification.service.impl.
FederalCloseDHSCaseService

curam.hcr.verification.service.impl.
ESIVerificationService

curam.hcr.verification.service.impl.
ESIVerificationServiceImpl

curam.hcr.verification.service.impl.
FederalESIVerificationServiceImpl

curam.hcr.verification.service.ridp.
fars.impl.FARSVerificationService

curam.hcr.verification.service.ridp.
fars.impl.FARSVerificationServiceImpl

curam.hcr.verification.service.ridp.
fars.impl.FederalFARSServiceImpl

curam.hcr.verification.service.ridp.
primary.impl.
RIDPPrimaryRequestVerificationService

curam.hcr.verification.service.ridp.
primary.impl. RIDPPrimaryRequest
VerificationServiceImpl

curam.hcr.verification.service.ridp. primary.impl.
FederalRIDPPrimaryRequestServiceImpl

curam.hcr.verification.service.ridp.
secondary.impl. RIDPSecondaryRequest
VerificationService

curam.hcr.verification.service.ridp.
secondary.impl. RIDPSecondaryRequest
VerificationServiceImpl

curam.hcr.verification.service.ridp.
secondary.impl. FederalRIDPSecondary
RequestServiceImpl

© Copyright IBM Corp. 2011, 2014 5

Procedure
1. To create a custom implementation, write a new class that extends one of the

external system default implementations.
2. Bind the custom implementation to the corresponding interface by using a

Guice module. For example:
public class CustomModule extends AbstractModule {
@Override
protected void configure() {

binder().bind(IncomeDataService.class).to(CustomIncomeDataService.class);
}

}

3. Ensure that the module is added to a custom Module Class Name .DMX file. For
example:
<?xml version="1.0" encoding="UTF-8"?>

<table name="MODULECLASSNAME">
<column name="moduleClassName" type="text" />

<row>
<attribute name="moduleClassName">

<value>gov.myorg.CustomModule</value>
</attribute>

</row>
</table>

Customizing request or response fields for external system
calls

You can customize the request and response fields that are used by the external
system interfaces by extending the respective request or response classes. You can
then use the updated request or response classes in the custom implementation of
the external system interface.

Procedure
1. Extend the request or response classes. For example:

CustomCitizenshipVerificationRequestDetails
extends CitizenshipVerificationRequestDetails {
//Define custom attributes
//Define getter and Setter methods
}
CustomCitizenshipVerificationResponseDetails
extends CitizenshipVerificationResponseDetails {

//Define custom attributes
//Define custom getter and setter methods

}

2. Use the updated request or response classes in the custom implementation of
the external system interface. For example:
CustomCitizenshipVerificationServiceImpl
implements CitizenshipVerificationService {

CustomCitizenshipVerificationResponseDetails
verify(CustomCitizenshipVerificationRequestDetails requestDetails){
}
}

6 Health Care Reform Developer Guide

External system processors
During the application process, external system Java classes called processors call
out to external systems and store the information received in the data store. For
example, a call is made to the Federal Hub to verify SSN and citizenship by using
the CombinedSSAServiceViewProcessor processor. The response is stored in the
data store by the processor and can be used later to facilitate the electronic
verification process. By default, the following processors are available:
v curam.hcr.verification.datastore.impl.CombinedSSAServiceViewProcessor

v curam.hcr.verification.datastore.impl.AnnualIncomeViewProcessor

v curam.hcr.verification.datastore.impl.CurrentIncomeViewProcessor

v curam.hcr.verification.datastore.impl.LawfulPresenceViewProcessor

v curam.hcr.verification.datastore.impl.MECViewProcessor

v curam.hcr.verification.datastore.impl.RIDPFARSViewProcessor

v curam.hcr.verification.datastore.impl.RIDPPrimaryViewProcessor

v curam.hcr.verification.datastore.impl.RIDPSecondaryViewProcessor

Configuring the Federal Hub implementation
By default, all external system calls are routed to the default (empty)
implementations for the external system interfaces. Complete the following steps to
route the external system calls to the Federal Hub implementations. You must
restart the server after updating these values.

About this task

For information about configuring properties, see Configuring Application
Properties in the Cúram System Configuration Guide.

Procedure
1. Set the curam.healthcare.test.registerMockExternalSystems property to

false.
2. Set the curam.fed.hub.verification.system.name property to the Federal Hub

system name.
3. Set the curam.fed.hub.verification.system.registered property to true.
4. Restart the server.

Configuring a State systems implementation
You might want to implement a custom implementation to call State systems as
well as calling the Federal Hub.

About this task

For example, you might want to retrieve Current Income from the State Quarterly
Wages system, and to fall back on the corresponding Federal Hub service only if
the information is not available.

Procedure

Create a custom implementation for the service that first calls the State system, and
then calls the Federal Hub implementation.

Chapter 2. Integration with external systems 7

Customizing electronic verifications
External systems are also used for electronic verification of information that is
provided in the application. Health Care Reform provides support for integrating
with external systems such as state systems or third-party commercial applications
that are identified by states as data sources. You can also customize electronic
verification.

By default, Health Care Reform provides processing for Electronic Verification of
data such as Citizenship, Residency, or SSN. The framework for Electronic
Verification supports adding implementations for custom verification processing
for data elements that are either not covered by default processing or those data
elements that are added as part of the custom implementation. Also, it is possible
to override the default Verification Processing, if needed.

Default verification processors
By default, the following verification processors are available.
v curam.hcr.verification.online.impl.ResidencyVerificationProcessor - Considers the

Residency to be verified if it was indicated (isStateResident attribute of the
Person data store entity or has address with the state to be configured state) that
a Person was a state resident (or) If the Person was indicated to be a state
resident and the information that is retrieved about the person from external
system (stored in the ExternalSystemResidencyInformation data store entity) also
indicates that the person is a state resident. This processing is completed for all
the persons who are marked as applicant (isApplicant attribute of the Person
data store entity) on the case.

v curam.hcr.verification.online.impl.CitizenshipVerificationProcessor - Considers
the Citizenship to be verified if it was indicated (isUSCitizen or isUSNational or
lawfullyPresent attribute of the Person data store entity) that a Person was a US
citizen or US Nation or Lawfully Present alien and the information that is
retrieved about the person from external system (stored in the
ExternalSystemCitizenshipInformation data store entity) also indicates that the
person citizenship verified. This processing is completed for all the persons who
are marked as applicant (isApplicant attribute of the Person data store entity) on
the case.

v curam.hcr.verification.online.impl. IncarcerationVerificationProcessor - Considers
the Incarceration status to be verified if it was indicated (isIncarcerated attribute
of the Person data store entity) that a Person is incarcerated (or) If the Person
was indicated to be not incarcerated or incarcerated pending disposition and the
information that is retrieved about the person from external system (stored in
the RetrievedPersonInformation data store entity) also indicates the same. This
processing is completed for all the persons who are marked as applicant
(isApplicant attribute of the Person data store entity) on the case.

v curam.hcr.verification.online.impl.HouseholdSSNVerificationProcessor -
Considers the SSN to be verified if the SSN was provided (ssn attribute of the
Person data store entity) and the information that is retrieved about the person
from the external system (stored in the ExternalSystemSSNInformation data store
entity) also indicates that the given SSN was verified. This processing is
completed for all the persons who are marked as applicant (isApplicant attribute
of the Person data store entity) on the case.

v curam.hcr.verification.online.impl.IncomeVerificationProcessor - Considers the
Income data to be verified if the Income was provided(IncomeItem data store
entity has records) and the information that is retrieved about the person from

8 Health Care Reform Developer Guide

the external system (store in the IRSAnnualTaxReturn or ExternalSystemIncome
data store entity) are reasonably compatible/E verified. This processing is
completed for all the persons.

v curam.hcr.verification.online.impl. MECVerificationProcessor - Considers the
MEC to be verified if the person indicated to not receiving benefits
(isReceivingBenefits attribute of the Person data store entity) and the information
that is retrieved about the person from the external system (stored in the
ExternalSystemMECDetails data store entity) also indicates the same. This
process is completed for all the persons.

Adding custom verification processing
Complete the following steps to add custom verification processing.

Procedure
1. Edit CT_VerificationItemType.ctx to add an entry to the VerificationItemType

code table.
2. Create an implementation of the

curam.hcr.verification.online.impl.VerificationProcessorinterface. Ensure that the
getVerificationType() API returns the code table code you have added.

3. Install the custom implementation by using a custom Guice module. The
custom Verification Processing implementation can be bound by using a Guice
Set MultiBinder. For example:
public class CustomModule extends AbstractModule {

@Override
protected void configure() {

Multibinder<VerificationProcessor> binder = Multibinder.newSetBinder(
binder(), VerificationProcessor.class);
binder.addBinding().to(CustomVerificationProcessor.class);

}
}

4. Add an entry that contains the custom Guice module name to a .DMX file for
ModuleClassName entity.

Overriding the default verification processing
Complete the following steps to override the default verification processing.

About this task

Each entry in the VerificationItemType represents a kind of data item, such as
Citizenship.

Procedure
1. Review CT_VerificationItemType.ctx to identify the code for the data item type

for which the default processing must be overridden.
2. Create an implementation of the

curam.hcr.verification.online.impl.VerificationProcessorinterface. Ensure that the
getVerificationType() API returns the code table code you have identified.

3. Install the custom implementation by using a custom Guice module. The
custom Verification Processing implementation can be bound by using a Guice
Set MultiBinder. For example:
public class CustomModule extends AbstractModule {

@Override
protected void configure() {

Multibinder<VerificationProcessor> binder = Multibinder.newSetBinder(

Chapter 2. Integration with external systems 9

binder(), VerificationProcessor.class);
binder.addBinding().to(CustomVerificationProcessor.class);

}
}

4. Add an entry that contains the custom Guice module name to a .DMX file for
ModuleClassName entity.

10 Health Care Reform Developer Guide

Chapter 3. Customizing case management

You can customize Health Care Reform case management artifacts such as dynamic
evidence, eligibility rule sets, and conditional verifications.

Dynamic evidence customization
Health Care Reform ships with a number of dynamic evidence configurations in
the HCR component. The Health Care Reform dynamic evidence configurations
model information that is captured and maintained for the various ACA programs.

For information about customizing dynamic evidence, see the Cúram Dynamic
Evidence Configuration Guide.

Eligibility Rules customization
Health Care Reform ships with a default set of eligibility rule sets in the HCR
component. You can customize these eligibility rules for your custom requirements.

For information about customizing eligibility rules, see the Inside Cúram Eligibility
and Entitlement Using Cúram Express Rules guide.

For information about compliantly customizing the default rule sets, see the Cúram
Development Compliancy Guide.

Conditional verifications customization
Health Care Reform application cases and integrated cases are configured to use
the verification framework. You can customize conditional verification rule sets in
the same way as other rule sets.

For more information about configuration of verifications and conditional
verifications, see the Cúram Verification Guide.

For information about compliantly customizing the default rule sets, see the Cúram
Development Compliancy Guide.

© Copyright IBM Corp. 2011, 2014 11

12 Health Care Reform Developer Guide

Chapter 4. Customizing plan management

Complete the following tasks to customize the default plan management
implementation.

Integration with Plan Management
When a citizen applies for insurance affordability assistance through Cúram, they
must go to a plan management vendor's website to view and purchase plans. To
facilitate this access, you must integrate a plan management vendor with the
Cúram application. You can integrate with the plan management vendor of your
choice.

Important: IBM Cúram implements a vendor-agnostic approach to plan
management integration and does not include an implementation of the plan
management adaptor in the product. Each project is responsible for implementing
their own integration between the Cúram system and the plan management system
of choice.

Plan management integration is accomplished with a combination of both user
interface and web services integration.

A plan management vendor's user interface is shown in an inline frame on a
Cúram page.

Information is exchanged between Cúram and the plan management vendor
through two categories of web services:
v Web services that are owned by Cúram (inbound)
v Web services that are owned by the plan management vendor (outbound)

This approach allows the citizen to enroll on a plan on the plan management
vendor's system with the eligibility information that is determined on the Cúram
side. In addition, Cúram can query the plan management vendor's web services to
read and store any plans in which a citizen enrolls.

The plan management adapter interface
A plan management interface is provided which customers must implement. The
custom implementation allows customers to communicate with their chosen plan
management vendor through web services.

The methods in the interface are called at different points during processing. For
example, the getEnrollmentDetails() method is called to determine the plan details
after a citizen successfully enrolls on a plan in the plan management system.

A default curam.planmanagement.adapter.impl.PlanManagementAdapterDefault
implementation of the plan management adapter interface is provided. To provide
some insulation from future changes, extend this class instead of directly
implementing the interface.

curam.planmanagement.adapter.impl.PlanManagementAdapter

v getBenchmarkPlanDetails()

© Copyright IBM Corp. 2011, 2014 13

Retrieves the benchmark plan amount and essential health benefit premium
amount from a plan management vendor.

v getEnrollmentDetails()

Retrieves the enrollment details for a completed enrollment. For example, the
enrolled plan details.

v getAvailableEmployerPlanDetails()

Retrieves the available employer insurance plans for an employee.
v getBenchmarkPlanDetailsForBenefitMembers()

Retrieves the benchmark plan amount and essential health benefit premium
amount from a plan management vendor.

v updateEntitlementDetails()

Informs the plan management vendor of a change in entitlement for a specific
enrollment.

v getPlanUpdates()

Retrieves any updates to plans for an enrollment, typically called during
re-enrollment.

v continueEnrollment()

Informs the plan management vendor that an existing enrollment on a plan is to
be continued, typically called during the re-enrollment period.

v getPolicyID()

Retrieves the policy identifier for a specific enrollment.
v getEmployerOpenEnrollmentDetails()

Retrieves the open enrollment details for an employer.

Note: For more information about the plan management adapter interface, see the
Javadoc in the HCR component.

Configuring the plan management adapter
The custom plan management adapter typically communicates with a plan
management vendor over a web service with stubs generated from the plan
management vendor's WSDL file.

Procedure
1. Create a directory named axis in a custom component.
2. Add a ws_outbound.xml file to this directory. This file must reference the WSDL

file that is provided by a plan management vendor. , For example:
<?xml version="1.0" encoding="UTF-8"?>
<services>
<service
location="components/CustomComponent/axis/PlanMgmtWebService/PlanManagementVendor.wsdl"

name="PlanManagementVendor"
/>

</services>

3. From a command prompt under the EJBServer directory, run build
wsconnector2 to generate the stubs to the build directory. These stubs are now
available to call in the custom PlanManagementAdapter implementation.

4. Create an implementation of the plan management adapter interface and bind
it using a Guice module. For example:
@Override
protected void configure() {

bind(PlanManagementAdapter.class).to(CustomPlanManagementAdapter.class);
}

14 Health Care Reform Developer Guide

For more information about bindings in Guice, see the Persistence Cookbook.
5. Code the custom implementation of the plan management adapter by using the

generated stubs.
For more information about web services in Cúram, see the Cúram Web Services
Guide.

Plan management web services provided by Cúram
A plan management vendor must call Cúram web services to be able to populate
their screens and to carry out plan management processing.

For example, when a household is enrolling on a plan in the plan management
vendor's system, the vendor requires details about the household such as names,
date of births, address, and eligibility information. Cúram provides the
retrieveDemographicsAndEligibilityDetails() web service for this purpose.

The following web services are provided:

curam.planmanagement.adapter.intf.HealthCareWebService

v retrieveDemographicsAndEligibilityDetails()

v getHouseholdSummaryDetails()

v getEntitlementDetails()

v policyIDAvailable()

v updateEmployerEnrollment()

For more information about these web services, see the Javadoc in the HCR
component.
Related concepts:
“Health Care Reform web services” on page 16
The web services that are available for Health Care Reform.

Configuration parameters for plan management
The following configuration properties exist for plan management integration.

Property Description

curam.healthcare.planManagementVendorUrl The plan management vendor URL
for the main find assistance flow.

A unique enrollment identifier is
appended to this URL.

curam.healthcare.planManagementVendorBrowseForPlansUrl The plan management URL used to
allow a citizen to browse for (but
not purchase) insurance plans.

A unique enrollment identifier is
appended to this URL.

curam.healthcare.planManagementVendor
EmployerCoverageUrl

The plan management URL used to
allow employees to shop for
insurance plans provided by their
employer.

A unique enrollment identifier is
appended to this URL.

Chapter 4. Customizing plan management 15

Property Description

curam.healthcare.planManagementVendorAvailable This property indicates whether a
plan management vendor is
available. By default, it is set to
false to enable testing but must be
set to true when integrated with a
plan management vendor.

Callback URLs for plan management
Callback URLs are the URLs that a plan management vendor uses to return control
to the Cúram user interface. For example, after an enrollment completes, a callback
URL is used to redirect back to the Cúram results page.

The default callback URLs are listed in this table.

Callback URL Description

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_finishEnrollmentPage.do?o3ctx=4096

A plan management vendor redirects to this URL upon
successful completion of an enrollment.

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_saveAndExitEnrollmentPage.do?o3ctx=4096

A plan management vendor redirects to this URL if a
user chooses to save and exit from the plan management
vendor's screens. This option would enable a user to
resume the enrollment later.

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_cancelEnrollmentPage.do?o3ctx=4096

A plan management vendor redirects to this URL if a
user chooses to cancel/quit from the plan management
vendor's screens.

Batch processing for plan management
The following plan management batch processes are available.

For more information about batch processes, see the Cúram Batch Processing Guide.

Employer enrollment notification batch process
The purpose of this batch process is to generate notifications for employees to
indicate that the open enrollment period for their employer is about to begin.

This batch process looks at active EmployerEnrollment records on the database.
For each one, it calls out to the plan management vendor by using the
curam.planmanagement.adapter.impl.PlanManagementAdapter.
getEmployerOpenEnrollmentDetails() API. Using the response from the plan
management vendor, a pro-forma communication is generated and stored against
each employee returned.

Plan management web service API reference
The plan management web services that are available for the IBM Cúram Solution
for Health Care Reform and the schema that is used for the data.

Health Care Reform web services
The web services that are available for Health Care Reform.
Related concepts:

16 Health Care Reform Developer Guide

“Plan management web services provided by Cúram” on page 15
A plan management vendor must call Cúram web services to be able to populate
their screens and to carry out plan management processing.

retrieveDemographicsAndEligibilityDetails
A plan management vendor requests eligibility details for an enrollment. The
eligibility details and details for each person in the enrollment are returned from
IBM Cúram Health Care Reform.

Table 1. Request

Data Member Type Description

EnrollmentDetails EnrollmentDetails The health care retrieve
eligibility request that
contains the enrollment ID.

Table 2. Response

Data Member Type Description

EligibilityAnd
DemographicDetails

EligibilityAnd
DemographicDetails

Response containing
eligibility details, details
about each person in the
enrollment group, previous
enrollments for each person
that is being enrolled and
details about assistors.

getEntitlementDetails
A plan management vendor calls the IBM Cúram Health Care Reform solution to
get updated entitlement details for an existing enrollment.

Table 3. Request

Data Member Type Description

EnrollmentDetails EnrollmentDetails The health care retrieve
eligibility request that
contains the enrollment ID.

Table 4. Response

Data Member Type Description

EntitlementUpdateDetails EntitlementUpdateDetails Response containing the
updated tax credit amount

getHouseholdSummaryDetails
A plan management vendor calls the IBM Cúram Health Care Reform solution to
notify any change in the status of an existing enrollment. For example, when a
carrier finishes processing the enrollment and made a policy ID available.

Table 5. Request

Data Member Type Description

EnrollmentDetails EnrollmentDetails Contains the enrollment ID
for which the request is
being made

Chapter 4. Customizing plan management 17

Table 6. Response

Data Member Type Description

HouseholdSummaryDetails HouseholdSummaryDetails Response containing
eligibility details, details
about each person in the
enrollment group, previous
enrollments for each person
that is being enrolled and
details about assistors.

policyIDAvailable
A plan management vendor calls the IBM Cúram Health Care Reform solution to
notify that a carrier has finished processing the enrollment and made a policy ID
available.

Table 7. Request

Data Member Type Description

EnrollmentDetails EnrollmentDetails Contains the ID of the
enrollment for which a
policy ID is available.

updateEmployerEnrollment
A plan management vendor calls this API to notify the agency that the open
enrollment period has begun for a specific employer.

Table 8. Request

Data Member Type Description

EmployerEnrollment EmployerEnrollment Contains the
employerEnrollmentID for
the employer with an open
enrollment period.

Table 9. Response

Data Member Type Description

EmployerEnrollmentReceived EmployerEnrollmentReceived An indicator that represents
successful receipt and
storage of the employer
identifier.

Health Care Reform schema elements
The schema that is used for Health Care Reform data.

Table 10. EnrollmentDetails

Data Member Type Description

enrollmentID Long The enrollment key.

Table 11. EligibilityAndDemographicDetails

Data Member Type Description

eligibilityDetails eligibilityDetails

persons persons

18 Health Care Reform Developer Guide

Table 11. EligibilityAndDemographicDetails (continued)

Data Member Type Description

previousEnrollments previousEnrollments

assistors assistors

employerDetails employerDetails

Table 12. eligibilityDetails

Data Member Type Description

program String Values are as follows:

EP1 Insurance Assistance

EP2 CHIP

EP3 Medicaid

EP4 State Basic Plan

EP5 None (for when the
household is just shopping
for plans)

maxPremiumTaxCredit Double

maxPremiumTaxCreditAnnual Double The amount of premium
tax credit that remains for
the year.

monthsRemaining Int The number of months that
remains in the plan year.

costSharingSubsidy Double

premiumPayment Double

maximumCoPay Double

stateSubsidy Double

enrollmentPeriod String Values are as follows:

EPD1 Open

EPD2 Special

coverageStartDate Date

coverageEndDate Date

Table 13. persons

Data Member Type Description

person List of person

Table 14. person

Data Member Type Description

personID Long Unique identifier for a
person within the exchange

ssn String

firstName String

Chapter 4. Customizing plan management 19

Table 14. person (continued)

Data Member Type Description

middleName String

lastName String

dateOfBirth Date

gender String Values are as follows:

SX1 Male

SX2 Female

tobaccoUser Boolean

coverageCategory String Values are as follows:

CC1 Parent/Caretaker

CC2 Pregnant Woman

CC3 Adult

CC4 Child

address Address

phoneNumber PhoneNumber

emailAddress String

nativeAmerican Boolean Indicates whether the person
is an American Indian or
Alaskan Native.

isPrimaryContact Boolean Indicates whether the person
is the primary contact for the
group that is being enrolled

costSharingEliminated Boolean True for AI/NA individual
with household income less
than or equal to 300% of FPL

subscriberID Long Unique identifier of the
primary client that is
assigned to each member.

taxFilerRelationshipList TaxFilerRelationshipList

Table 15. Address

Data Member Type Description

addressLine1 String

addressLine2 String

city String

county String

state String

zip String

Table 16. TaxFilerRelationshipList

Data Member Type Description

taxFilerRelationships List of TaxFilerRelationship

20 Health Care Reform Developer Guide

Table 17. TaxFilerRelationship

Data Member Type Description

relatedPersonID Long

taxFilerRelationshipType String Values are as follows:

TFRT26001 Dependent

TFRT26002 Spouse

TFRT26003 Tax Filer

Table 18. previousEnrollments

Data Member Type Description

enrollment List of enrollment objects

Table 19. enrollment

Data Member Type Description

enrollmentID Long

planID String

policyID String

coverageEndDate Date

previousPremium Double

previousTaxCredit Double

previousEnrollees previousEnrollees

Table 20. previousEnrollees

Data Member Type Description

enrollee List of enrollee objects

Table 21. enrollee

Data Member Type Description

personID Long

Table 22. assistors

Data Member Type Description

assistor List of assistor objects

Table 23. assistor

Data Member Type Description

firstName String

lastName String

address Address

phoneNumber PhoneNumber

certificationNumber String

assistorType String

Chapter 4. Customizing plan management 21

Table 23. assistor (continued)

Data Member Type Description

assistorID Long

agencyOrganisationID Long

Table 24. PhoneNumber

Data Member Type Description

countryCode String

areaCode String

phoneNumber String

Extension String

Table 25. EmployerDetails

Data Member Type Description

employerID Long

coverageStartDate Date

Table 26. EntitlementUpdateDetails

Data Member Type Description

enrollmentID Long

updatedPremiumTaxCredit Double

Table 27. HouseholdSummaryDetails

Data Member Type Description

effectiveDate String

zipCode String

personList PersonList

Table 28. PersonList

Data Member Type Description

persons List of Person

Table 29. person

Data Member Type Description

dateOfBirth Date

tobaccoUser Boolean

isPrimaryContact Boolean Indicates whether the person
is the primary contact for the
group being enrolled

Table 30. EmployerEnrollment

Data Member Type Description

employerEnrollmentID String The employer enrollment
identifier.

22 Health Care Reform Developer Guide

Table 31. EmployerEnrollmentReceived

Data Member Type Description

employerEnrollmentReceived Boolean Indicates the employer
enrollment identifier has
been successfully received
and stored.

Chapter 4. Customizing plan management 23

24 Health Care Reform Developer Guide

Chapter 5. Customizing change of circumstances

To customize change of circumstances for your environment, you must be familiar
with the default implementation. Use this information to understand the process
flow, and to identify the steps that you must complete to customize your system.

© Copyright IBM Corp. 2011, 2014 25

Change of circumstances process flow
Use this information to understand how the components work together to handle
changes in client circumstances.

�1� A citizen with an existing application logs in to the Health Care Reform
portal

They can see a read-only summary of some of their evidence, such as SSN,
Address, Household Members, and Income by clicking the View your
information to provide updates link on the landing page, or the My
Information menu option. They can also see the history of their submitted
life events in My Updates.

Figure 1. Change of circumstances process flow

26 Health Care Reform Developer Guide

The read-only data that is shown is the most current information for each
evidence type, specifically the most recent active evidence. If the citizen
has recently created an in-edit version of evidence by a previous change of
circumstances, that in-edit version is displayed instead.

�2� The citizen decides to update their data

After they review the information, the citizen can click the Update My
Information link to update their information. This link is only available if
there is no outstanding change of circumstances for the citizen. Clicking
the link starts the following processing:

�2a� The change of circumstances Datastore Builder retrieves the evidence
from the ongoing Insurance Affordability integrated case and creates a data
store instance for the data retrieved. This data store instance becomes the
data store used for the change of circumstances IEG script.

�2b� The change of circumstances IEG script opens with the data
pre-populated for the citizen to make the required changes. The citizen can
add, update, or remove data. Remove refers to end-dating particular
evidence types. The citizen continues through the script and completes
their updates.

�3� The citizen submits their change of circumstances updates

When the citizen clicks submit, the following processing starts:

�3a� Online and special enrollment rules
HCR Online rules, and optionally special enrollment rules, are run
to generate a results page for the citizen. Citizens can only enroll
on Advanced Premium Tax Credit (APTC) plans outside the
configured open enrollment period if they meet the special
enrollment criteria. A set of special enrollment rules are run to
determine whether the reported change qualifies an individual for
special enrollment.

A results page with the outcome of those rules is displayed to the
citizen. Depending on the results, the citizen can proceed to
enrollment.

�3b� Life Event Infrastructure

The change of circumstances process uses the Life Event
infrastructure as the mechanism for updating the ongoing
Insurance Affordability case with the new or modified data that is
supplied by the citizen. When the life event associated with the
change of circumstances is submitted, the following processing is
triggered:
1. The state of the life event is updated to pending. The Update

My Information link is disabled to prevent the citizen from
triggering a second change of circumstances while there is still
one in progress.

2. The change of circumstances workflow is started.

Change of circumstances workflow
The default change of circumstances workflow contains the following process
steps.

Chapter 5. Customizing change of circumstances 27

Case and Participant processing
This step creates new household members as participants on the
Participant Data Case.

Evidence Updater
This step adds or updates evidence directly on the ongoing case as in-edit
evidence. An attempt is made to add or update the evidence with
validations turned on. If this attempt fails, an attempt is made to add this
evidence with validations turned off. The following scenarios are catered
for:
1. New evidence is added. In this case, the new evidence is written as

in-edit evidence.
2. A citizen updates evidence, such as income, and specifies when the

update became effective. In this case, a new record is created in the
succession on the integrated case.

3. A citizen updates an in-edit record that was previously added by the
citizen In this case, the evidence is updated in place.

4. A citizen updates an existing active record that has an in-edit version
that was not entered by the citizen. In this case, the data is not written
but is captured in a case note for resolution by the case worker.

Evidence Corrections
If validation errors occur when evidence is added, a manual task is created
and assigned to the ongoing case owner. This task contains two links:
v Primary Link 1 goes to the evidence workspace to facilitate the case

worker in resolving the issues reported.
v Primary Link 2 (Case Note) allows the case worker to resolve any issues

that were captured in a case note.

Post Evidence Mapping
By default, this mapping sets the life event state to Completed.

Customizing the default change of circumstances implementation
Complete the following steps to customize the default change of circumstances
implementation to suit your custom environment.

Before you begin

You must complete a full analysis of your requirements, and identify the
information that you want citizens to be able to modify.

Procedure
1. Customize the default change of circumstances IEG script and data store

schema.
/components/HCROnline/data/initial/clob/ChangeOfCircumstance.xml
/components/HCROnline/data/initial/clob/ChangeOfCircumstance.xsd

a. In most cases, you are updating the default change of circumstances IEG
script to align it with the existing enrollment and internal case worker
scripts. For example, you might want to make one of the following changes:
v Create a custom evidence entity for which you want to capture data.
v Customize a default evidence entity, typically by adding one or more

attributes.
v Customize the flow of the script. For example, by modifying control

questions.

28 Health Care Reform Developer Guide

v Customize the script to facilitate adding, updating, or removing evidence
for a newly added evidence type.

b. Depending on the changes to the script, you might need to make parallel
changes to the schema that is associated with the script.

2. Configure the change of circumstances life event to call your custom script by
overriding the change of circumstances entry in the following files:
/components/HCROnline/data/initial/LifeEventContext.dmx
/components/HCROnline/data/initial/LifeEventType.dmx

3. To add a custom evidence entity, you must write new prepopulator and
updater implementations.
a. A prepopulator takes the data from a dynamic evidence instance and puts

that data into data store format so that it can be read by the script. For
information about configuring a new prepopulator, see the Javadoc of the
following class:
curam.healthcare.lifeevents.coc.prepopulators.impl.Recertification

b. An updater, or mapper, takes the data store information after a change of
circumstance and identifies which evidence on the ongoing case needs to be
added, modified or removed. For information about configuring a new
updater, see the Javadoc of the following class:
curam.healthcare.lifeevents.coc.mappers.impl.LifeEventDefaultEvidenceMapper

4. If you are extending a default entity, you must extend the provided
prepopulator and mapper classes that are associated with this type and add the
custom code. For a list of all of the prepopulator and mapper classes that can
be extended, see the following class:
curam.healthcare.lifeevents.impl.Module

5. Configure the online and program group logic rules to reflect your custom
changes. The existing portal and case management rule-sets were updated to
cater to change of circumstances.
You can find the online rules in the following location:
./EJBServer/components/HCROnline/CREOLE_Rule_Sets/HealthCareReformEligibilityRuleset.xml

You can find the main program group logic rules in the following location:
./EJBServer/HCR/CREOLE_Rule_Sets/HCRProgramGroupRuleSet

You can find a rule set per program in the following location:
./EJBServer/HCR/CREOLE_Rule_Sets

6. Thoroughly test the custom changes made to the change of circumstances
process. You must ensure the following results:
v The correct online results are been achieved.
v The correct information is being written to the ongoing case.
v The correct program group logic results are being achieved.

7. Customize the change of circumstances workflow.

Customizing the change of circumstances IEG script
You can complete one or more of the following tasks to customize the change of
circumstances script for your custom environment.

About this task

The change of circumstances script starts with a summary page. From this
summary page, all of the necessary change of circumstance actions can be done.

Chapter 5. Customizing change of circumstances 29

For example, add, modify and remove, where remove refers to the end-dating of
evidence.

Adding custom entities through the change of circumstances
script
To add custom entities through the change of circumstance script, you must make
the following changes to the script.

Procedure
1. Provide an Add link on the summary page. This link must point at an existing

page.
2. Add a new data store entity to reflect the new custom evidence entity.
3. Add an attribute called evidenceCoCStatus to this data store entity. This

attribute is based on the code-table EVIDENCECOCSTATUS, which contains
the following values:
v ADDED
v MODIFIED
v REMOVED

The default for this data store schema attribute is a blank value.
4. Set the newly added attribute to ADDED after the IEG page that gathers the

data for this new entity has been submitted. This is achieved through invoking
the UpdateEvidenceCoCStatus custom function which takes the name of the
entity as a parameter.

5. This attribute can be used, as follows, in conditions to display or hide data:
“IsRecordAdded() or <MyEntity>.evidenceCoCStatus=="ADDED"”

6. The evidence updater can use the value of this attribute to determine any data
store entity that needs to be added as evidence. The ADDED status can also be
deduced using the localID for the entity in question as this will not have been
set for newly added entities. The localID attribute is used to hold the unique
identifier of evidence on the database.

Modifying entities through the change of circumstances script
To modify entities through the change of circumstance script, you must make the
following changes to the script.

Procedure
1. Provide a Change link on the summary page. This link must point at an

existing page.
2. Set the evidenceCoCStatus attribute to MODIFIED. This is achieved by

comparing the attributes. New validations are added that call a custom
function (HasChanged or HasAttrValueChanged, which always return true).
The parameters are the new value and the fully qualified attribute name. This
function can deduce if the attribute has changed by looking up its original
value.

3. An additional boolean attribute dataSubmitted, which defaults to false, will be
added to the schema on the given data store entity. It is needed in case other
page validations fail. The custom function SetDataSubmitted will be called in
the last validation, setting the flag to true. This has the effect of resetting
evidenceCoCStatus to a blank value if this flag is set. The flag will be reset to
false in the custom function following the page, UpdateEvidenceCoCStatus.

30 Health Care Reform Developer Guide

Removing entities through the change of circumstances script
To remove entities through the change of circumstance script, you must make the
following changes to the script.

Procedure
1. Provide a Change link on the summary page. This link must point at an

existing page.
2. Set the evidenceCoCStatus attribute to REMOVED. This is achieved by

comparing the attributes. New validations are added that call a custom
function (HasChanged or HasAttrValueChanged, which always return true).
The parameters are the new value and the fully qualified attribute name. This
function can deduce if the attribute has changed by looking up its original
value.

3. An additional boolean attribute dataSubmitted, which defaults to false, will be
added to the schema on the given data store entity. It is needed in case other
page validations fail. The custom function SetDataSubmitted will be called in
the last validation, setting the flag to true. This has the effect of resetting
evidenceCoCStatus to a blank value if this flag is set. The flag will be reset to
false in the custom function following the page, UpdateEvidenceCoCStatus.

Customizing the change of circumstances workflow
You can use the following steps to customize the default change of circumstances
workflow.

Before you begin

You can find the change of circumstances workflow in the following location:

./EJBServer/components/HCROnline/workflow/ChangeOfCircumstances_v1.xml

Procedure
1. If you want to or add or remove steps, or to change the flow structure of the

existing workflow, create a version of the workflow to make your custom
changes. Customize the change of circumstances workflow in the standard
supported fashion of customizing workflows as follows:
a. Using the PDT, view the latest version of the process definition that requires

modification. Create a new version of that process definition using the tool.
b. Make the changes, validate it and release the workflow.
c. Export the newly released workflow process definition using the PDT and

place it into the workflow subdirectory of the ...\EJBServer\components\
custom directory.

2. If you are happy with the structure and the steps in the default workflow, you
can implement your own version of each step. Use the provided hook points
for each step in the workflow to implement your own version of a step. Add
your own implementations for each of the steps. Then, bind those new
implementations by using Guice to ensure that they are called as each step in
the workflow is called. The following abstract classes are available:

Case and Participant Processing step
curam.healthcare.lifeevents.coc.sl.impl.CaseAndParticipantProcessing

Evidence Updater step
curam.healthcare.lifeevents.coc.sl.impl.EvidenceUpdater

Chapter 5. Customizing change of circumstances 31

Post Evidence Updater step
curam.healthcare.lifeevents.coc.sl.impl.PostEvidenceUpdater

3. The Evidence Corrections step is a manual activity in the change of
circumstances workflow. If you want to change this step, update the workflow
process definition.

32 Health Care Reform Developer Guide

Chapter 6. Monitoring Cúram processes

Use the following Cúram views to monitor and troubleshoot problems with
process instances and to see process instance errors.

About this task

Use these views to see workflow processes and see specific errors in workflow and
deferred processes. Plan to monitor the information in the following locations
regularly for potential errors or exceptions. You can troubleshoot problems by steps
such as suspending process instances or overriding event waits, or by retrying or
aborting failed workflow process instances.

Application intake process overview
Use this information to understand how the components work together to intake
and process citizen information and deliver the appropriate insurance assistance.

For documentation purposes, the process diagram is split into two parts.

© Copyright IBM Corp. 2011, 2014 33

A citizen applies for assistance
As the citizen completes the dynamic application questionnaire, the data is
stored in the data store.

Qualified citizen data is verified with external systems
Data that is configured to be verified with external systems is compared
with the specified external data sources and the data store updated where
required.

The citizen submits the application and the intake process starts
When the user clicks submit, the ProcessIntakeApplication workflow starts.
An application case is created and data from the data store is applied to
the application case. If there are workflow process errors, you can see them
in the Process Instance Errors view.

The straight-through processing workflow
If none of the data on the case requires manual processing, the case is
routed to the StraightThroughtProcessing workflow. Straight-through
applications are authorized automatically. If there are workflow process
errors, you can see them in the Process Instance Errors view. On
authorization, the deferred transaction EVIDENCE_SHARE_BULK is
started and evidence is shared to the integrated case.

Figure 2. Application intake process diagram: Part 1

34 Health Care Reform Developer Guide

Manual processing
If any of the data on the case requires manual processing, the case is
routed to the deferred transaction process
APPLICATIONAUTHORIZATION. If there are deferred transaction process
errors, you can see them in the Process Instance Errors view. Applications
in the manual processing workflow are authorized by the case worker. On
authorization, the deferred transaction EVIDENCE_SHARE_BULK is
started and evidence is shared to the integrated case.

Where possible, evidence from the application case is brokered directly to the
integrated case

On authorization, the EVIDENCE_SHARE_BULK deferred transaction
process is started and evidence is shared to the integrated case. Program
group logic processing is triggered automatically.

Where possible, after direct brokering has failed, evidence from the application
case is added as 'In Edit' to the integrated case, manual intervention is then
needed

If the evidence cannot be brokered directly, it is directed to the
EVIDENCE_SHARE_BULK_AUTO_ACCEPT_ONLY deferred transaction

Figure 3. Application intake process diagram: Part 2

Chapter 6. Monitoring Cúram processes 35

process. A case worker accepts the in-edit evidence, corrects any issues,
and applies the changes. Program group logic processing is triggered when
the changes are applied.

Where possible, after brokering as 'In Edit' has failed, evidence from the
application case is added as 'Incoming' to the integrated case, manual
intervention is then needed

If the evidence cannot be brokered as 'In Edit' evidence, it is directed to the
EVIDENCE_SHARE_BULK_BROKER_ONLY deferred transaction process.
A case worker accepts the incoming evidence, corrects any issues, and
applies the changes. Program group logic processing is triggered when the
changes are applied. If there are deferred transaction process errors, you
can see them in the Process Instance Errors view.

The program group logic runs on the integrated case and creates the required
product delivery cases

Program group logic is triggered when evidence changes are applied to the
integrated case and creates the required product delivery cases.

Program group logic is triggered automatically by the
EVIDENCE_SHARE_BULK deferred transaction process, and each time a
case worker applies evidence changes on the integrated case.

Note: The Health Care Reform program group logic to determine which potential
multiple product delivery cases are to be created depends on predefined rule sets
and therefore bypasses the Common Intake product delivery creation process. It
does not configure the product delivery type for the program and therefore does
not use the productDeliveryCaseID field on the programauthorisationdata table.
For the Common Intake process, if a product delivery type is configured against a
program, this product delivery type is created as part of a successful program
authorization and recorded in the ProgramAuthorisationData entity.

Monitoring workflow process instances
Use the Process Instances view to see the status of each workflow process instance.
By searching and filtering, you can see the current process instances and their
status. Generally, the complete or in-progress processes are of most interest.

About this task

For troubleshooting, you have the following options:
v You can suspend a process instance that is in progress. You must resume the

process instance before any further activities can run.
v You can stop a process instance that is in progress. Once aborted, a process

instance cannot be resumed.
v All activities that wait for events to be raised have a failure mode where the

event they are waiting on is raised before the activity runs. To progress such
process instances, you can override the event wait.

Procedure
1. Log in as the admin user.
2. Select Administration Workspace > Process Monitoring > Process Instances

3. Use the search and filtering options to see the current workflow processes on
the system.

36 Health Care Reform Developer Guide

Process Instance Errors
The Workflow Engine records information about errors that occur during the
lifetime of a workflow process instance. You can use this information for
troubleshooting problems with the process instance.

This troubleshooting includes retrying or aborting failed workflow process
instances.

Retrying a failed process instance instructs the Workflow Engine to re-enact the
workflow process instance from where it failed.

Aborting stops the process instance and its activities and closes any tasks that are
associated with manual activities in the process instance. Depending on where the
process was aborted, some manual steps might be required before the process is
fully stopped.

Monitoring Process Instance Errors
Use the Process Instance Errors view to find workflow process or deferred process
errors.

About this task

Plan to monitor the Process Instance Errors view regularly for potential operational
errors or exceptions. You can abort or retry failed workflow process instances.

Procedure
1. Log in as the admin user.
2. Select Administration Workspace > Process Monitoring > Process Instance

Errors

3. Use the search and filtering options to find process instance errors.
4. Click the error details for more information.

Chapter 6. Monitoring Cúram processes 37

38 Health Care Reform Developer Guide

Chapter 7. Configuring Account Transfer to the Federally
Facilitated Exchange

You can configure how Account Transfer applications are processed and sent to the
Federally Facilitated Exchange.

This implementation uses the Cúram data store and the Cúram Persistence
Infrastructure.

The FederalExchange component
The FederalExchange component helps state agencies to process Account Transfer
applications that originate from the Federally Facilitated Exchange (FFE). In
addition, the FederalExchange component sends applications that originate from
the state agency to the FFE for applicants that are not eligible for Medicaid or
CHIP.

Configuring Federal Exchange
Configure Account Transfer to the Federal Exchange to your requirements by
modifying the appropriate properties.

About this task

For information about configuring properties, see "Configuring Application
Properties" in the Cúram System Configuration Guide.

Activating Account Transfer
Account Transfer is switched off by default. When you activate Account Transfer,
eligibility determinations are processed and prepared to be sent to the FFE by the
FederalExchange component.

Procedure

To activate Account Transfer, set the
curam.healthcare.account.transfer.activate.outbound.mapping property to true.

Enabling batch processing of account transfer applications
If you want to process Account Transfer applications by batch processing, you can
modify a property to stop the account transfer application data from being sent to
Cúram for inbound applications and to the FFE for outbound applications.

About this task

Enabling batch processing prevents the mapping of the data and the processing of
that mapped data by Cúram or the FFE. The FederalExchangeApplication entity
stores the jobs that are pending for each batch process.

© Copyright IBM Corp. 2011, 2014 39

Procedure

To process Account Transfer applications by batch processing, change the value of
the curam.healthcare.account.transfer.processing.mode property from the
default value of online to batch.

Configuring the sending of Account Transfers to Cúram
You might want to complete the mappings in real time and to stop the processing
just before the Account Transfer is sent to Cúram for case processing.

About this task

If you stop processing applications, the applications remain in a PENDING state
on the FederalExchangeApplication entity.

For other possible states for entries on this entity, see the
HCRFedExchangeAppStatus code table.

Procedure

To ensure that no Account Transfer applications are sent to Cúram, update the
curam.healthcare.account.transfer.auto.submit property from true to false.

Selecting the source data set for outbound mapping
Outbound mapping can be completed from two different sets of source data, intake
and case processing. Different data store schemas are used to store the data in each
case.

About this task

The following sets of source data are available:

Intake The data that is stored in the data store as a result of a case worker
completing the internal case worker intake application for Health Care
Reform.

Case processing
The data that is stored in the data store as a result of running an
implementation of HCRDatastoreBuilder to convert case and person
evidence for a Health Care Reform application to data store data.

Procedure
1. Set the curam.healthcare.account.transfer.outbound.mapping.source property

to intake for the internal case worker intake application for Health Care
Reform, or caseprocessing for the data store data that is derived from case and
person evidence.

2. Set the curam.healthcare.account.transfer.internal.datastore.schema
property to the correct schema name depending on the source of the data.

Setting the identity of the sender US state
Ensure that the sender is identified correctly by setting the correct US state. The
codes that are used to denote the sender state are stored as properties.

40 Health Care Reform Developer Guide

About this task

Procedure

Update the following properties for the US state for which HCR is implemented:
curam.healthcare.account.transfer.sender.state.code
curam.healthcare.account.transfer.sender.county
curam.healthcare.account.transfer.sender.category.code

Setting the data store schema name for the FFE schema
You can set the schema name for the data store schema representation of the FFE
schema.

Procedure

Set the schema name for the data store schema representation of the FFE schema in
the curam.healthcare.fedexchange.version.schema property.

Extending Federally Facilitated Exchange data mappings
You can modify the default Federally Facilitated Exchange data mappings to add
attributes or entities to the data that is sent or received.

Federally Facilitated Exchange (FFE) mappings are called when data is received
from the FFE (inbound) or sent to the FFE (outbound).

When you receive data from the FFE, you must map data from the FFE data
schema to the Cúram data store schema so that Cúram can process that data.

When you send data to the FFE, you must map data from the Cúram data store
schema to the FFE data schema so that the FFE can process that data.

Adding or updating the attributes for a data store entity
Modify the properties of the appropriate Persistence Infrastructure event to add or
update an attribute.

About this task

After an entity is mapped by the FederalExchange component, a Persistence
Infrastructure event is sent to allow custom listeners of the event to add or update
the attributes on the entity.

As with all data store processing, the attributes that are added to an entity must
conform to the data store schema that is configured for that instance of data store
data. For information about the event signature and more information on usage,
see the Javadoc.

Procedure

To add or update an attribute, configure the appropriate event for the custom
listeners:
v Inbound

curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.customInboundMap

v Outbound

Chapter 7. Configuring Account Transfer to the Federally Facilitated Exchange 41

curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.customOutboundMap

Example listener:
/**

* Raised when in-bound mapping (from FFM to Curam) has been completed
* on a given
* data store entity.
*
* @param mappedEntity
* The data store entity that contains mapped data.
* Note that if the entity is a child it will not have
* been added to its parent at this point and will therefore
* not have a unique identifier. The result of this is that
* no children can be added to this entity during the
* processing
* of this method.
* @param originalElement
* The original data that can act as the source for the
* mapped data.
*
* @throws AppException
* Generic Exception Signature.
* @throws InformationalException
* Generic Exception Signature.
*/

public void customInboundMap(Entity mappedEntity,
Element originalElement)

throws AppException, InformationalException{}

Adding an entity as a child of a mapped data store entity
When an entity is mapped and you add child entities to the entity, an event is sent
that allows custom listeners to add extra child entities to the entity.

About this task

Any child entity types that are added must exist in the data store schema for the
data store data that is being processed.

Procedure

To add a child entity, configure the appropriate event for the custom listeners:
v Inbound

curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.

v Outbound
curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.
customOutboundMapChildren

Example listener:
/**
* Raised when in-bound mapping (from FFM to Curam) has been completed * on a given

* data store entity and when children can be added to that entity.
* Custom processing should check for an existing child before
* creating one.
*
* @param mappedEntity
* The data store parent entity that contains mapped data.
* This entity can be used to create valid child entities
* underneath.
* @param originalElement
* The original data that can act as the source for the
* mapped child data. It is possible to traverse up or down
* the DOM tree using the originalElement as the starting

42 Health Care Reform Developer Guide

* point
*
* @throws AppException
* Generic Exception Signature.
* @throws InformationalException
* Generic Exception Signature.
*/
public void customInboundMapChildren(Entity mappedEntity,
Element originalElement)

throws AppException, InformationalException{}

Adding or replacing a top-level data store entity
An element mapping provider can map implementations for a target entity type.
You can use this element mapping provider to add custom processing to create an
entity that is at a top level.

About this task

Typically, a child of the Application root entity or another entity type that can have
only a single instance.

Procedure

Use the appropriate events to add a custom mapping implementation for the
element mapping provider:
v Inbound

curam.hcr.fedexchange.mapper.impl.ElementMapperEvent.
addElementMapperEvent(Map elementMappers)

The elementMappers contains a map of entity types and mapping
implementations to which you can append extra entity types and custom
mapping implementations that are called as part of the element mapping
provider processing.

v Outbound
curam.hcr.fedexchange.mapper.ffe.impl.FFEElementMapperEvent.
addFFEElementMapperEvent(Map elementMappers)

A custom listener to this event is implemented in much the same way as for the
listener for the inbound provider event. The target entity type that is being
added to the map is an entity type in the Federal Exchange data store schema.
The mapping implementation maps data from the Cúram data store schema to
the Federal Exchange data store schema.

Example listener:
/**
* Raised when {@linkplain ElementMapperProvider} is initialized to
* allow
* additional EntityMapper to be included.
*
* @param elementMappers
* The map containing a string that represents the
* element being mapped from and the mapping implementation
* that creates and maps to the corresponding element on the
* target schema.
*
* @throws AppException
* Generic Exception Signature.
* @throws InformationalException
* Generic Exception Signature.

Chapter 7. Configuring Account Transfer to the Federally Facilitated Exchange 43

*/
public void addElementMapperEvent(Map<String,

Provider<? extends EntityMapper>> elementMappers)
throws AppException, InformationalException;

Adding or updating entities for an outbound response to the
FFE

When the response to be sent to the FFE is built by the FederalExchange
component, an event is sent with all of the response data. Listeners to this event
can then update the response data before they send it to the FFE.

Procedure

To add or update outbound entities, configure the following event:
curam.hcr.fedexchange.mapper.impl.EntityMapper.
MapEvent.customOutboundMapResponse

Example listener:
/**

* Raised when out-bound mapping (from Curam to FFM) has been completed on the
* response being

* sent to the FFM.
* Custom processing should check for an existing response entity before
* creating one.
*
* @param mappedEntity
* The data store parent entity that contains mapped data.
* This entity for an applicant can be used to create valid response
* entities.
* @param originalElement
* The original data that can act as the source for the
* mapped response data.
*
* @throws AppException
* Generic Exception Signature.
* @throws InformationalException
* Generic Exception Signature.
*/
public void customOutboundMapResponse(Entity mappedEntity,

Element originalElement)
throws AppException, InformationalException{}

The Web Service Java API
You can use the Federal Exchange component Java API for data that is received
from or sent to the Account Transfer web service, or to send data to the FFE.

Inbound processing
You can use the Java API as entry and exit points for data that is received from or
sent to the Account Transfer web service.

You use the
curam.hcr.fedexchange.ws.impl.AccountTransferWS.initiateAccountTransfer
method to send an account transfer to Cúram from the FFE or to send an account
transfer response to Cúram from the FFE.

Outbound processing
To send data to the FFE, the API includes events that provide the data to be sent.

44 Health Care Reform Developer Guide

curam.hcr.fedexchange.ws.impl.AccountTransferWS.
OutBoundDataEvent.sendOutBoundTransferDataEvent

This property sends an account transfer application from Cúram. The listener that
receives this event can alter the data to meet specific custom needs (if not already
catered for by the custom mapping processing) and then send that data to the FFE
by a web service. Any mapping updates that must be made by custom processing
must use the events that are sent during data mapping.
curam.hcr.fedexchange.ws.impl.AccountTransferResponseWS.
OutBoundResponseEvent.sendOutBoundResponseEvent

This property sends a response of an account transfer application from Cúram. The
listener that receives this event can alter the data to meet their specific needs and
then send the data to the FFE through a web service. Any mapping updates that
must be made by custom processing must use the events that are sent during
outbound response processing.

HCRFedExchangeAppStatus code table descriptions
A list of the possible status states of the FederalExchangeApplication that uses the
HCRFedExchangeAppStatus code table. For clarity, the status states are divided by
the direction of the request. The status states are listed in the same sequence in
which the transitions happen.

Table 32. Account Transfer from FFM to State Medicaid Agency

Code Java Identifier Full Description

HCRIFEIP IBD_IN_PROGRESS The initial status on creation of a Federal Exchange Application. On
creation, the record contains the root data store entity ID of the external
data store that is used to store the Account Transfer payload from the
Federally-Facilitated Marketplace (FFM).

HCRIFEUD IBD_UPDATE_PENDING This state is the other initial state that is possible for an Account Transfer
received by the State. The Federal Exchange Application is created in this
state if there is an existing Account Transfer with the same Global
Application ID. In other words, this transfer is considered as a change of
circumstances. Currently, the default Account Transfer feature does not
address change of circumstances payloads. Instead, the
FederalExchangeApplication is saved and an event is raised that can be
handled by custom listeners to provide the required processing.

HCRIRSAK IBD_ACKNOWLEDGED Set after an inbound request is stored and successfully acknowledged.

HCRIFEER IBD_ERROR Set when any issues are encountered during the mapping of the FFM
payload to the internal data store, or when the FFM payload is stored in
the external data store.

HCRORSIP OBD_RESPONSE_IN_PROGRESS Set when the processing for sending a response to the FFM is initiated.

HCRORSAK OBD_RESPONSE_ACKNOWLEDGED Set after the response sent by the State Medicaid Agency is acknowledged
successfully by the Federally-Facilitated Exchange (FFE).

HCRIFEPD IBD_PENDING If transfers are configured to happen in batch mode. The Account Transfer
payload is stored in the external data store but no further processing
happens as part of the online processing.

Table 33. Account Transfer from State Medicaid agency to FFM

Code Java Identifier Full Description

HCROFEIP OBD_IN_PROGRESS Set on a new instance of FederalExchangeApplication that is created for a
transfer from the State to the FFM.

HCROFEPD OBD_PENDING Set if transfers are configured to happen in batch mode. No further
processing is done for this transfer as part of online processing.

HCROFEAK OBD_ACKNOWLEDGED Set after a transfer from the State is acknowledged successfully by the
FFE.

Chapter 7. Configuring Account Transfer to the Federally Facilitated Exchange 45

Table 33. Account Transfer from State Medicaid agency to FFM (continued)

Code Java Identifier Full Description

HCROFEER OBD_ERROR Set if an acknowledgement to an outbound transfer was not received or is
not successful. Also set if there are any issues during mapping from the
HCR data store to the FFM data store. If there were errors during
mapping, Federal Exchange Applications are not transferred.

HCRIRSIP IBD_RESPONSE_IN_PROGRESS Set on receiving the response from the FFM for an Account Transfer from
the State.

HCRIFEAK IBD_RESPONSE_ACKNOWLEDGED Set when the response from the FFM for an Account Transfer from the
State is successfully acknowledged

HCRIRAER IBD_RESPONSE_ACKNOWLEDGE
_ERROR

Set if any issues were encountered when the response to an outbound
account transfer is stored, or if there were issues with the generation of an
acknowledgement.

Adding a new entity
You can add a new entity to replace an existing entity or to create an entity that is
not mapped and created by default. For each new entity, write an entity mapper
and add the new entity to the Federal Exchange data store schema.

Writing an EntityMapper
You must write an EntityMapper for each new entity. An EntityMapper must
implement the curam.hcr.fedexchange.mapper.impl.EntityMapper interface.

About this task

An implementation of curam.hcr.fedexchange.mapper.impl.ElementMapperUtil is
provided in the map method to facilitate searching for required elements and
attributes in the source XML to be used to populate the entity or entities that are
being created.

Procedure
1. Using the provided example, implement an EntityMapper.
2. After you implement the EntityMapper, register it by using the

ElementMapperEvent inbound or outbound event as appropriate. This depends
whether the Mapper implementation is being called for inbound or outbound
processing.

Example

This example outlines how IncomeItem entities might be mapped from the
FederalExchange external system into Cúram and added to the data store.
/**
* Sample entity mapping implementation that creates a new
* data store entity and appends it to a parent entity.
*/
public class SampleEntityMapperImpl implements EntityMapper {

/** The source element to map from, the source elements of interest can be
* searched for by using this element **/
private Element source;
/** The FederalExchangeApplication persistence infrastructure implementation
* for the FederalExchangeApplication entity **/
private FederalExchangeApplication federalExchangeApplication;

@Override
public void setSource(Element source) {

46 Health Care Reform Developer Guide

this.source = source;
}

@Override
public void map(Entity parent, ElementMapperUtil elementMapperUtil) {

Datastore ds = parent.getDatastore();
//get the element from the source i.e. the element from the FederalExchange
//XML
List<Element> incomeItems =

elementMapperUtil.getElements(FFEEntityType.PERSONINCOME.entityType(),
source);

for(Element incomeItemSource : incomeItems){
//create the new entity in the target data store
Entity incomeItem = ds.newEntity(EntityType.INCOMEITEM.entityType());
//set the attributes on the new target entity
incomeItem.setTypedAttribute(IncomeItemFieldMap.STARTDATE.hcrField(),

FieldMapperUtil.formatDate(
elementMapperUtil.getAttribute(incomeItemSource,
elementMapperUtil.createFindAttributeQuery(

IncomeItemFieldMap.STARTDATE.ffeField()))));
incomeItem.setTypedAttribute(IncomeItemFieldMap.ENDDATE.hcrField(),

FieldMapperUtil.formatDate(
elementMapperUtil.getAttribute(incomeItemSource,

elementMapperUtil.createFindAttributeQuery(
IncomeItemFieldMap.ENDDATE.ffeField()))));

incomeItem.setTypedAttribute(IncomeItemFieldMap.INCOMEAMOUNT.hcrField(),
elementMapperUtil.getAttribute(incomeItemSource,

elementMapperUtil.createFindAttributeQuery(
IncomeItemFieldMap.INCOMEAMOUNT.ffeField())));

//add the new entity as a child of the parent entity
parent.addChildEntity(incomeItem);

}
}

@Override
public void postMap(Entity rootEntity, Entity personEntity) {

//no post map processing required
}

@Override
public void setFederalExchangeApplication(

FederalExchangeApplication federalExchangeApplication) {
this.federalExchangeApplication = federalExchangeApplication;

}
}

Updating the Federal Exchange data store schema
If a new entity is being added by custom processing, then you must update the
data store schema that is used to store the entity for inbound and outbound
mapping.

Before you begin

It is important to note the following when you update the Federal Exchange data
store schema for Account Transfer.
v If element text exists in the payload from the Federal Exchange, then this text is

converted into an attribute. This allows the text to be stored in the data store.
For example:
<IncomeAmount>1200</IncomeAmount>

Chapter 7. Configuring Account Transfer to the Federally Facilitated Exchange 47

You define that Federal Exchange payload XML in the data store schema as
follows:
<xsd:element name="IncomeAmount">

<xsd:complexType>
<xsd:attribute name="value" type="d:SVR_STRING"/>

</xsd:complexType>
</xsd:element>

Note the use of the attribute value to store the element text.
v If the element in the Federal Exchange payload contains a name space prefix,

then the data store schema must contain an attribute that defines the name space
prefix value as the default value. For example:
<hix-core:IncomeAmount>1200</hix-core:IncomeAmount>

You define that Federal Exchange payload XML in the data store schema as
follows:
<xsd:element name="IncomeAmount">

<xsd:complexType>
<xsd:attribute name="value" type="d:SVR_STRING"/>
<xsd:attribute name="nameSpacePrefix" type="d:SVR_STRING"

default="hix-core:"/>
</xsd:complexType>

</xsd:element>

Procedure
1. Identify the relevant data store schema. The name of the data store schema

name that stores the Federal Exchange data for Account Transfer is denoted by
the curam.healthcare.fedexchange.version.schema property.

2. Update the data store schema with the new entity.

48 Health Care Reform Developer Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2011, 2014 49

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

50 Health Care Reform Developer Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 51

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

52 Health Care Reform Developer Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

����

Printed in the Republic of Ireland

	Contents
	About this information
	Overview of Health Care Reform support
	Intended audience

	Chapter 1. Customizing the Health Care Reform portal
	IEG scripts customization
	Eligibility Display Rules customization
	Customizing the conditional display of IRS income information
	Customizing the conditional display of specific questions for Medicaid, CHIP, or IA
	Customizing the determination of projected annual income for a citizen

	Chapter 2. Integration with external systems
	Customizing the external system implementations
	Customizing request or response fields for external system calls

	External system processors
	Configuring the Federal Hub implementation
	Configuring a State systems implementation
	Customizing electronic verifications
	Default verification processors
	Adding custom verification processing
	Overriding the default verification processing

	Chapter 3. Customizing case management
	Dynamic evidence customization
	Eligibility Rules customization
	Conditional verifications customization

	Chapter 4. Customizing plan management
	Integration with Plan Management
	The plan management adapter interface
	Configuring the plan management adapter

	Plan management web services provided by Cúram
	Configuration parameters for plan management
	Callback URLs for plan management
	Batch processing for plan management
	Employer enrollment notification batch process

	Plan management web service API reference
	Health Care Reform web services
	retrieveDemographicsAndEligibilityDetails
	getEntitlementDetails
	getHouseholdSummaryDetails
	policyIDAvailable
	updateEmployerEnrollment

	Health Care Reform schema elements

	Chapter 5. Customizing change of circumstances
	Change of circumstances process flow
	Change of circumstances workflow

	Customizing the default change of circumstances implementation
	Customizing the change of circumstances IEG script
	Adding custom entities through the change of circumstances script
	Modifying entities through the change of circumstances script
	Removing entities through the change of circumstances script

	Customizing the change of circumstances workflow

	Chapter 6. Monitoring Cúram processes
	Application intake process overview
	Monitoring workflow process instances
	Process Instance Errors
	Monitoring Process Instance Errors

	Chapter 7. Configuring Account Transfer to the Federally Facilitated Exchange
	The FederalExchange component
	Configuring Federal Exchange
	Activating Account Transfer
	Enabling batch processing of account transfer applications
	Configuring the sending of Account Transfers to Cúram
	Selecting the source data set for outbound mapping
	Setting the identity of the sender US state
	Setting the data store schema name for the FFE schema

	Extending Federally Facilitated Exchange data mappings
	Adding or updating the attributes for a data store entity
	Adding an entity as a child of a mapped data store entity
	Adding or replacing a top-level data store entity
	Adding or updating entities for an outbound response to the FFE

	The Web Service Java API
	Inbound processing
	Outbound processing
	HCRFedExchangeAppStatus code table descriptions

	Adding a new entity
	Writing an EntityMapper
	Updating the Federal Exchange data store schema

	Notices
	Privacy Policy considerations
	Trademarks

