
IBM Cúram Social Program Management
Version 6.0.5

Inside Cúram Eligibility and Entitlement
Using Cúram Express Rules

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 229

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing with Eligibility and
Entitlement by using Cúram Express
Rules 1
Introduction 1

Purpose 1
Audience 1
Related Reading 1
Chapters in this Guide 2

Eligibility and Entitlement Processing at a Glance . . 3
Introduction 3
Product Configuration 5

Example 5
Recording of Input Data 5

Example 6
Rules Calculations and Determination Results . . 7

What a Determination Result Contains . . . 7
What Triggers the Calculation of a
Determination Result 10
How a Determination Result Is Calculated . . 11
Example 12

Determination Storage 14
Example 14

Scheduling Financials 14
Example 14

Determination Retrieval 15
Example 16

Navigating Determinations 16
Introduction 16
Manual Check Determinations 17
Snapshot Determinations 17
Assessment Determinations 17

Current Assessment Determination 17
Historical Assessment Determinations . . . 18
Manual Reassessments 18

Calculating and Displaying Eligibility and
Entitlement 18

Introduction 18
How It Looks. 19

Viewing a Determination's Coverage Periods 19
Basic Eligibility/entitlement Decision Details 19

How It Works 20
Calculation of Eligibility and Entitlement . . 20
Display of Eligibility and Entitlement. . . . 24

How to Use It 25
Understanding Eligibility and Entitlement
Concepts 26
Analysis 27
Implementation 30
Testing 45

Calculating and Displaying Key Decision Factors . . 46
Introduction 46

How It Looks. 47
Viewing Key Decision Factors Graphically . . 47
Viewing Key Decision Factors in a List . . . 48

How It Works 48
Calculation of Key Decision Factors 49
Display of Key Decision Factors 50

How to Use It 51
Understanding Key Decision Factor Concepts 51
Analysis 52
Implementation 54
Testing 60

Calculating and Displaying Decision Details . . . 61
Introduction 61
How It Looks. 61

Summary Display Category 62
Decision Comparison 62
Sub-screens 62
Basic Eligibility/entitlement Information. . . 62

How It Works 62
Calculation of Decision Details 64
Display of Decision Details 69

How to Use It 73
Understanding Decision Details Concepts . . 73
Analysis 74
Implementation 76
Testing 85

Understanding Rule Object Converters and
Propagators 86

Introduction 86
An Initial Assessment Example 87

A System Administrator Creates and Publishes
Rule Set Information for a Product 87
A System Administrator Creates and Publishes
a New Rate Table 88
A Case Worker Registers a Person 89
A Case Worker Creates a New Case for that
Person 89
A Case Worker Adds an Additional Member
to the Case 90
A Case Worker Captures and Activates Some
Income Evidence 90
A Case Worker Activates the Case 90

The Framework for Converters and Propagators 91
Rule Objects for Use with Eligibility and
Entitlement Processing. 92

Product Delivery Rule Objects 92
Rate Rule Objects 95
Entity Rule Objects 97
Active Succession Set Rule Objects 107
Active Evidence Row Rule Objects 119

Data Configuration Problems 129
Data Access Points 130

Normal Conversion 130
Temporary Access to In-Edit Evidence
Changes 131
Incremental Propagation. 131

© Copyright IBM Corp. 2012, 2014 iii

Bulk Maintenance of Rate Rule Objects . . . 132
Logging 132
Supported Domain Types 133

How Determinations Are Stored 134
Introduction 134
The Database Tables 135

CREOLECaseDetermination 135
CREOLECaseDeterminationData 137
CaseDecision 138
CaseDecisionObjective 140
CaseDecisionObjectiveTag 140
CREOLECaseDecision 141

Decision Periods 142
Determination Comparison Strategies 142

Strategy Implementations Included with the
Engine 143
Developing your own Strategy
Implementation 143

Scheduling Financials 144
Introduction 144
Scheduling Financials for Eligible Case
Decisions 144

How It Looks 144
How It Works 145
How to Use It 149

Scheduling Financials for Case Deductions . . 150
How It Looks 151
How It Works 152
How to Use It 153

Scheduling Financials for Payment Corrections 153
How It Looks 154
How It Works 155
How to Use It 157

Reassessment - Handling Changes in Circumstance 158
Introduction 158
Case-level Reassessment 159

Overview. 159
Bulk Reassessment 160

Types of Change that Cause Bulk
Reassessment 160
Approaches to Identifying and Reassessing
All Affected Cases 162
Writing your own Bulk Reassessment Batch
Process 168
Bulk Reassessment for Multiple Simultaneous
Changes 171
Scheduling 172

Incremental Design and Evolution 173
Introduction 173
Starting with Rule Sets Included with the
Application 174

How Rule Sets Inter-relate 174
Cloning CER Rule Sets 175

Incremental Design 176
Choose Default Configuration Options for
Your Product 177
Implement a Single Product Period First . . 177
Focus on Eligibility/Entitlement Rules . . . 177
Spin-off a Task to Write Rule Classes for
Custom Entities and/or Evidence Types . . 178
Top-down Implementations 179

Bottom-up Implementations 179
Hard-code Rates at First 179
Keep an Eye on Rule Class Dependencies 179
Try Key Decision Factors before Decision
Details 180
Re-use the Basic Decision Details before
Writing Your Own. 180
Start Slowly with Decision Details 181
Throughout Your Product's Development . . 181

Handling Legislation Change 182
Branching Logic in Your CER Rule Sets. . . 183
Multiple Product Periods for Your Product 183
Choosing the Right Approach 184

Changing Product Configuration Settings . . . 188
Decision Summary Display Strategy 188
Determination Comparison Strategy 188
Allow Open-Ended Cases 188
Reassessment Strategy 189

Compliancy 189
The Public API 189

Identifying the Public API 190
Code Package Restrictions 190
Code Table Restrictions 190

CaseAssessmentDetReason 190
CaseSnapshotDetReason 190
Restricted Code Table Packages 191
Restricted Code Tables 191

Database Restrictions 191
RuleObjectPropagatorControl 191
Restricted Database Tables 192

CER Rule Sets Included with the Application 193
The Eligibility and Entitlement Engine API and
Customizability 193

Eligibility and Entitlement Engine API 193
Customizability 193

Eligibility and Entitlement Engine Events . . 193
Eligibility and Entitlement Engine Hooks . . 194

Extensions to Cúram Express Rules 194
Introduction 194
Expressions 194

combineSuccessionSets 195
legislationChange 201
rate 204

Annotations 207
Display 207
DisplaySubscreen 210
Legislation 212
SuccessionSetPopulation 213
relatedEvidence 213
relatedSuccessionSet 215

Environment Variables 217
Cúram Environment Variables Governing
Behavior of Engine 217

Evidence and Entitlement with CER Glossary . . 219
Terms Used throughout this Guide 219

Notices 229
Privacy Policy considerations 231
Trademarks 232

iv IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Figures

1. Example XML document for Basic
Eligibility/Entitlement data for a coverage
period 68

2. Code example to reassess a CER-based case 171

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Tables

1. Description of Related Reading 2
2. When Do Precedent Change Set Items Get

Created? 6
3. Rule attributes inherited from

ProductEligibilityEntitlementRuleSet.
AbstractProduct 31

4. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractObjectiveType32

5. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractTagType33

6. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractCase36

7. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractObjectiveTimeline37

8. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractTagTimeline39

9. DMX data for CREOLERuleClassLink for your
product structure rule class 42

10. DMX data for CREOLERuleClassLink for your
eligibility/entitlement rule class 43

11. DMX data for CREOLEProductPeriod 43
12. Summarizer Strategy Implementations

Included with the Engine 44
13. Rule attributes inherited from

ProductKeyDataRuleSet.AbstractProduct . . 55
14. Rule attributes inherited from

ProductKeyDataRuleSet.AbstractKeyDataTimeline56
15. Rule attributes inherited from

ProductKeyDataRuleSet.AbstractKeyEvent . . 57
16. DMX data for CREOLERuleClassLink for your

key decision factors rule class 59
17. DMX data for CREOLEProductPeriod 60
18. Supported server interfaces for decision details

UIM pages 69
19. Rule attributes inherited from

ProductDecisionDetailsRuleSet.AbstractCase . 77
20. Rule attributes inherited from

ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay79
21. DMX data for LocalizableText 83
22. DMX data for TextTranslation 83
23. DMX data for CREOLEProductDecisionDispCat 83
24. DMX data for CREOLERuleClassLink 84
25. DMX data for CREOLEProductPeriodDispCat 85
26. Example Dependency Storage for Rate Rule

Objects 96
27. Precedents Identified for Entity Rule Objects 100
28. Support for Entity Operation Stereotypes 102
29. Behavior when non-propagatable operations

are invoked 104
30. Example Dependency Storage for Entity Rule

Objects. 106
31. Population of related ActiveSuccessionSet

rule objects 111
32. Precedents Identified for Active Evidence

Row Rule Objects 113

33. Database Details Stored for New Evidence 115
34. Active Evidence Row Rule Object after Initial

Activation of Evidence 115
35. Example Dependency Storage for Active

Evidence Row Rule Objects 116
36. Database Details Stored for Changes of

Circumstances 116
37. Active Evidence Row Rule Objects after

Changes of Circumstances 117
38. Database Details Stored for Ended Evidence 117
39. Active Evidence Row Rule Objects after

Evidence Ended. 118
40. Propagation of related ActiveEvidenceRow

rule objects 121
41. Precedents Identified for Active Evidence

Row Rule Objects 123
42. Database Details Stored for New Evidence 125
43. Active Evidence Row Rule Object after Initial

Activation of Evidence 125
44. Example Dependency Storage for Active

Evidence Row Rule Objects 126
45. Database Details Stored for Changes of

Circumstances 126
46. Active Evidence Row Rule Objects after

Changes of Circumstances 127
47. Database Details Stored for Ended Evidence 127
48. Active Evidence Row Rule Objects after

Evidence Ended. 128
49. Behavior when configuration problems are

found 130
50. Mapping from Cúram Domain Types to CER

Rule Attribute Types 133
51. Population of common

CREOLECaseDetermination data 135
52. Population of CREOLECaseDetermination

data, according to the type of determination . 136
53. Population of CaseDecision rows 139
54. Population of CaseDecisionObjective rows 140
55. Population of CaseDecisionObjectiveTag rows 141
56. Determination Comparison Strategy

Implementations Included with the Engine . 143
57. Benefits and Limitations to Bulk

Reassessment Approaches 166
58. Environment Variables for the

CREOLEBulkCaseChunkReassessmentStream
Batch Process 169

59. Factors involved when choosing the right
approach for legislation change 185

60. Eligibility and Entitlement Engine Events 194
61. Eligibility and Entitlement Engine Hooks 194
62. Mapping from Cúram Domain Types to CER

Rule Attribute Types 196
63. Cúram environment variables governing the

behavior of the Engine 217

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Developing with Eligibility and Entitlement by using Cúram
Express Rules

Use this information to learn how to set up and use Cúram Express Rules to return
eligibility and entitlement results for cases. Detailed examples of eligibility and
entitlement results are provided as well as descriptions of the processing that
returns these results; and instructions on how to use this processing.

Introduction

Purpose
The purpose of this guide is twofold:
v To provide an inside look at how a case's eligibility and entitlement is assessed

using Cúram Express Rules (CER)
v To provide instructions on how to set up and use the application to return

eligibility and entitlement results

To achieve this purpose, the guide provides detailed examples of eligibility and
entitlement results, descriptions of the processing that returns these results, and
instructions on how to use this processing.

The guide promotes a "designing in stages" approach, focusing first on returning
the basic eligibility and entitlement results (i.e. eligible periods and entitlement
amounts), and then on designing solutions that return more complex eligibility and
entitlement results (e.g. returning eligibility and entitlement results with detailed
explanations of how those results were derived).

Note: The assessment of cases is carried out by the Eligibility and Entitlement
Engine, which for the sake of brevity is referred to as simply "the Engine"
throughout this guide.

Audience
This guide is intended for a technical audience interested in understanding how
the Engine fits into case processing. Designers and developers responsible for
building and customizing products will find this document useful in conjunction
with reading the How to Build a Product guide.

This guide is also intended to help system operators understand the operational
requirements of the Engine, particular with regard to bulk case reassessment.

Related Reading
There are several related documents, some of which provide helpful background
information, others that provide more detailed information on topics covered in
this guide. The following provides a brief description of the related reading
materials available:

© Copyright IBM Corp. 2012, 2014 1

Table 1. Description of Related Reading

Document Name Description

Cúram Integrated Case Management Guide This provides a business overview of Cúram
Integrated Case Management, focusing
specifically on the needs-to-delivery side of
case processing.

Cúram Integrated Case Management
Configuration Guide

This describes the configuration settings for
cases including product configuration,
configuration options for case pages, and a
description of the application properties
relating to case processing.

How to Build a Product This provides sample-based instructions on
how to build a product. It starts off with a
simple product sample, and builds upon
complexity with varying product samples.

Cúram Dynamic Evidence Configuration
Guide

This describes the configuration settings for
Cúram Dynamic Evidence and includes
instructions on how to use the Cúram
Dynamic Evidence Editor to manage case
evidence.

Cúram Express Rules Reference Manual This describes the Cúram Express Rules
language and provides instructions on how
to design rule sets using the Cúram Express
Rules Editor.

Chapters in this Guide
The following list describes the chapters within this guide:

“Eligibility and Entitlement Processing at a Glance” on page 3
This chapter provides an overview of the end-to-end eligibility/entitlement
processing performed by the Engine. It provides an 'at a glance' view of
this processing, with the remaining chapters in this guide examining
eligibility and entitlement processing 'under the microscope'.

“Navigating Determinations” on page 16
This chapter describes the different types of determinations and how case
workers can view the details of those determinations.

“Calculating and Displaying Eligibility and Entitlement” on page 18
This chapter describes in detail how the Engine calculates and displays
core eligibility/entitlement information for a case.

“Calculating and Displaying Key Decision Factors” on page 46
This chapter describes in detail how the Engine calculates and displays
"key decision factors" to help case workers understand a case's
eligibility/entitlement

“Calculating and Displaying Decision Details” on page 61
This chapter describes in detail how the Engine calculates and displays
free-form "decision details" to help case workers understand a case's
eligibility/entitlement

“Understanding Rule Object Converters and Propagators” on page 86
This chapter describes how the Engine uses configurable "converters" and
"propagators" to make custom entities and evidence types available for
CER rules calculations.

2 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

“How Determinations Are Stored” on page 134
This chapter describes how the Engine stores determination results so that
they can be retrieved later for viewing by case workers and as inputs into
financial processing.

“Scheduling Financials” on page 144
This chapter describes how the Engine interacts with Cúram Financials to
make payments, deductions and corrections.

“Reassessment - Handling Changes in Circumstance” on page 158
This chapter describes how the Engine processes changes of circumstances
and reassesses cases.

“Incremental Design and Evolution” on page 173
This chapter provides advice on how to implement complex products and
how to maintain them when legislation changes.

“Compliancy” on page 189
This appendix describes how to develop with the Engine in a compliant
manner.

“The Eligibility and Entitlement Engine API and Customizability” on page 193
This appendix describes the API and extension points for the Engine.

“Extensions to Cúram Express Rules” on page 194
This appendix describes the assessment-specific CER expressions and
annotations contributed by the Engine.

“Environment Variables” on page 217
This appendix lists the Cúram Environment Variables that you can set to
change the Engine's behavior.

“Evidence and Entitlement with CER Glossary” on page 219
This appendix provides a glossary of terms used with the Engine.

Eligibility and Entitlement Processing at a Glance

Introduction
At a glance, the main objective of the Engine is to work with Cúram Express Rules
(CER) to determine case eligibility and entitlement over the lifetime of the case.
CER is responsible for applying rules logic to real world data in order to make
decisions regarding eligibility and entitlement.

The starting point for case eligibility and entitlement is the Product. A Product
contains all the configuration details which specify which CER rules to use when
determining eligibility entitlement. Once a Product has been configured, its
configuration can be used to calculate and store a determination result based on input
data.

This determination result is used to generate financials and is retrieved when a case
worker user views eligibility and entitlement details for the case. When
circumstances change which affect an assessment for an active case, the Engine can
automatically reassess the case.

The Engine manages the reassessment of case eligibility and entitlement through
the use of a Dependency Manager. The Dependency Manager stores dependencies
when they are identified during the calculation of eligibility and entitlement, and
then identifies items that have changed and queues them for later processing,
typically in deferred processing. When the deferred process is executed, the

Developing with Eligibility and Entitlement by using Cúram Express Rules 3

Dependency Manager examines its stored dependency records to identify the cases
that require reassessment, and for each identified case it uses to CER to re-calculate
the determination result.

The below list describes each of the stages in eligibility and entitlement processing,
incorporating the above-mentioned terms.
v Configure

A product must be configured before it can be used to create product delivery
cases. Over its lifetime, a product's configuration can be updated, e.g. in
response to changes in legislation.

v Input

Any input data which affects the case's eligibility and entitlement must be
gathered so that it can be converted into CER Rule Objects that are used by CER
to perform calculations on that data.

v Calculate

The Engine requests that CER performs calculations to provide an initial
determination result for a case. The dependencies on input data used during the
calculations are stored and thereafter, if any input data changes which has a
bearing on the determination result, the Dependency Manager will automatically
use the stored dependencies and run the CER calculations again to see if the
overall result has changed.

v Determination Result

A Determination Result is the overall output from CER eligibility/entitlement
rules calculations, and contains the "three Es" (Eligibility, Entitlement,
Explanation) over the full lifetime of the case.

v Store

The Engine takes a snapshot of the Determination Result and stores it so that it
can be used to generate financials, display details to users and act as an audit of
how decisions regarding a case were arrived at.

v Schedule Financials

The Engine integrates with the application's Financial Engine to schedule
financials (typically, payments). If cases are retrospectively reassessed, then over
and under-payments are automatically handled.

v Retrieve

Case workers can view the full history of a case. They can see the eligibility,
entitlement and explanation for a case over its full lifetime (including cases
which are open-ended). A full history of determinations is kept, so that the user
can see how corrections have been made to determinations as circumstances
have changed in the real world and/or corrections have been made to input
data held on the system.

v Assessment

The first determination for an active case is recorded as its initial assessment.
This assessment is based on the circumstances of the case at the time it was
activated and gives rise to the initial financials for the case.

v Reassessment

When circumstances change for an active case, or there is a change to the
product which affects many cases, then the Engine reassesses the case, possibly
leading to a new determination result which in turn can affect the financials for
the case.

4 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

The remaining sections in this chapter provide more detail on eligibility and
entitlement processing and include an example story that spans the sections.

Product Configuration
An agency must decide what products to offer its clients, and must create a
Product in their application.

There are several details that must be configured for a product (for details, see the
How to Build a Product guide). Some important configuration items highlighted
here are:
v the types of evidence available on integrated cases and product delivery cases;
v the types of input data that can affect eligibility and entitlement calculations;
v the business rules for how to calculate eligibility and entitlement to the product

(and explanations), based on input data; and
v how the product's lifetime divides up into different "product periods", with

different business rules for legislation changes.

Once a product has been set up in the application, case workers are able to create
individual product delivery cases and progress those cases through a case life
cycle, including eligibility and entitlement processing. For more details on the case
life cycle, see the Cúram Integrated Case Management Guide.

Example
An agency decides to offer a new product to provide financial assistance to lone
parents (the "Lone Parent" Benefit).

The business rules for the product dictate that eligibility decisions are based on a
number of criteria, including:
v the age of the child;
v evidence that the child normally resides with the parent, and that the parent has

no live-in partner; and
v a means test, of the family's income.

Product-design users in the agency design a new product configuration, which
includes:
v New types of evidence for personal circumstances details pertinent to the Lone

Parent Benefit product (relationships from the claimant to their child or
children), living arrangements, employments and incomes, etc.);

v Eligibility/Entitlement/Explanation rules that calculate based on the parent's
living arrangements and their child or children's ages; and

v Rule Object data configurations that allow the personal details of the parent and
child, and the new types of evidence, to be made available to CER for rules
processing.

The product-design users notify the agency's case workers that the new product is
now available for use in the creation of product delivery cases to deliver benefits.

Recording of Input Data
Changes to data which may affect case eligibility and entitlement decisions can
come in many forms, including:
v new evidence records for events that have occurred in the real world;

Developing with Eligibility and Entitlement by using Cúram Express Rules 5

v corrections to data which were recorded incorrectly or declared fraudulently;
and

v product-wide data common to all cases.

Changes to such data can affect both:
v eligibility/entitlement decisions already made; and/or
v eligibility/entitlement decisions to be made in the future.

To accommodate both these needs, the Engine knows the types of data required by
rules processing, and uses the Dependency Manager to manage changes made to
this data through the use of "precedent change sets". When a change is made to
data that can affect eligibility/entitlement decisions, an item is added to a
precedent change set. The points in the data capture life cycle where this typically
occurs are below:

Table 2. When Do Precedent Change Set Items Get Created?

What input data is recorded?
When is an item added to a precedent
change set?

Product Delivery Case When the case is created

Personal details When the personal details are recorded on
the system, but only for types of data
configured to be pertinent to
eligibility/entitlement calculations (any
other details are ignored).

Evidence records for a case When the evidence is activated, for the types
of evidence configured to be pertinent to
eligibility/entitlement calculations (NB not
when the evidence is first recorded, as only
when the evidence is activated is it deemed
trustworthy for eligibility/entitlement
calculations).

Product-wide configuration information When an administrator publishes changes to
rate tables, rule sets, data configurations, or
product configurations, for those items
configured to be pertinent to
eligibility/entitlement calculations.

For all input data aside from product-wide configuration information, when an
item is written to a precedent change set this results in the creation of a deferred
process that when executed uses the dependencies stored by the Dependency
Manager to determine if any dependents exist for the precedent change set item,
and if so re-calculates those dependents. For changes to product-wide
configuration information an item is written to a precedent change set that is
executed in batch mode.

Example
A case worker interviews a claimant who is a single father of a young daughter.
The case worker advises the father to apply for Lone Parent Benefit, and the father
agrees to make such an application.

The case worker checks whether the father is already registered on the system, and
finds that he is not registered, and so the case worker must register the father's
personal details before a case can be created.

6 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

When the case worker completes the registration of the father's personal details,
the system stores those details. The system also creates a precedent change set item
which results in the execution of a deferred process. Because no dependencies on
the father's personal details have yet been established, no recalculations occur.

Having registered the father on the system, the case worker can now proceed to
create a case for the Lone Parent Benefit for the father. The case worker creates a
product delivery case for the father's claim, and the system stores a case record.
The system also creates a precedent change set item for the creation of the case
that results in the execution of a deferred process, but again because no
dependencies have yet been established, no recalculations occur.

The case worker asks the father for information which the agency needs in order to
make a determination on the case. Initially, the case worker asks for personal
details of the daughter (including her date of birth). The case worker searches for
the daughter on the system, but finds no registration records and proceeds to
register the daughter's personal details and also records the daughter as an
additional member of the case. The system stores these details and creates a
precedent change set item for each, but again deferred processing results in no
recalculation.

The case worker goes on to ask the father for details of his living arrangement (i.e.
partners and spouses) and income for the household. The case worker records this
information (which can change over time) as evidence. The evidence is "in edit"
and so has not yet become trusted data, and so at this point no precedent change
set items are created.

The case worker satisfies herself that the evidence presented by the father is
indeed correct, and goes on to activate the evidence. The system marks the
evidence records as active.

Rules Calculations and Determination Results
When eligibility is determined within a product delivery case (for CER-based
products) the system retrieves any input data which affects the case's eligibility
and entitlement from the relevant entities and creates CER rule objects in memory
which are used by CER to perform calculations on that data. This includes the
creation of a "case" rule object responsible for calculating the determination result
for a case. A determination result includes the eligibility, entitlement and
explanation for the lifetime of a case, and a request to calculate this result can
occur in either a "active" or "reactive" way.

The following sections give a high-level summary of:
v what a determination result contains;
v what triggers the calculation of a determination result; and
v how a determination result is calculated.

What a Determination Result Contains
Each determination result contains information regarding the eligibility and
entitlement of a case over the case's lifetime and can include detailed explanations
on the case eligibility and entitlement.

The Three Es: Eligibility, Entitlement, and Explanation: A determination result
includes a range of decision information (provided by business rules) which can be
broken down into the categories referred to as the 'three Es': eligibility, entitlement,
and explanation.

Developing with Eligibility and Entitlement by using Cúram Express Rules 7

v Eligibility

The overall "yes" or "no" for whether the claimant is eligible for the product.
Typically there will be business rules which either "rule in" or "rule out" the case
according to details of the case (including personal details of the members of the
case and evidence of their circumstances).

v Entitlement

The objectives which the claimant (and possibly other parties) are entitled to. For
benefit products, typically there will be monetary objectives, perhaps broken
down into separate components. The case's entitlement is often an answer to the
question "how much should the claimant receive?", but objectives can be used
for other purposes too. Note that a case's entitlement only applies during
periods of eligibility - whenever the case is ineligible, there is no entitlement.

v Explanation

The explanation (aimed at the case worker) for why the eligibility and
entitlement calculation results are what they are. For periods of eligibility, the
explanation typically contains a description of why the case is eligible, and for
periods of ineligibility the explanation typically contains one or more reasons
why the case is ineligible. The explanation (when shown to the case worker)
contains a number of tabs for explaining entitlement calculations broken down
into different categories, and also a display of important events which have a
bearing on the case's eligibility and entitlement.

Visually, the Engine presents explanations in these ways:
v a graphical view showing key decision factors. Each factor is shown as a date on

which either an important event occurred (e.g. the date of birth of a new child)
or an important quantity changes value (e.g. a rise in income); and

v display of arbitrary decision details laid out on a dynamic UIM page, for a period
during the case's lifetime for which the explanation is unchanging.

It can be useful to observe that the requirements that underpin
eligibility/entitlement and explanation calculations can come from very different
sources:
v Eligibility and Entitlement

The requirements for eligibility and entitlement calculation typically have their
roots in legislation or policy documents, and thus are more-or-less "set in stone"
when it comes to the implementation of CER rules for providing those
calculations. The job of the rules analyst and developers is the science of
translating "legalese" into CER rules, clarifying any uncertainties along the way.
The acid test of the implemented CER rules is whether they meet the proscribed
legislation and/or policy. The rules developer can exercise ingenuity in
implementing the rules in the simplest way possible, but in the main there is
little creativity involved in the implementation task.

v Explanation

By contrast, the requirements for explanation are much looser, and typically
center around "whatever can be displayed in order to help the case worker
understand the case, and/or help the case worker answer questions from
claimants about the case". As such, the analysis and development of CER rules
for explaining a determination are much more akin to art than science. The
initial implementation of explanation rules may be based around the best
guesses of what questions might be asked of case workers, and so it is
recommended that explanation rules be implemented in such a way that they
can be easily enhanced later without needing any changes to the underlying
(set-in-stone) eligibility and entitlement rules.

8 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

The Determination Result Covers the Lifetime of a Case: The eligibility,
entitlement and explanation may vary over the lifetime of a case. The lifetime of a
case is the period of time between the case's start and end dates, inclusive. Each
case may bear an actual or expected start date; if an actual start date is present
then it is used as the start of the case, otherwise the expected start date will be
used. Similarly, a case may have an actual end date and/or an expected end date,
which governs the end date of the case's lifetime (with the actual date taking
precedence over any expected date).

Important: The end date for a product delivery case is optional. A case without an
end date is known as an "open-ended" case.

Each product is configured to specify whether or not it allows open-ended cases.

Open-ended cases may give rise to open-ended decisions and, ultimately,
open-ended financial schedules (i.e. "pay until further notice").

In practice, each open-ended case will ultimately end due to some real-world event
(and an end date will be recorded, and the case will eventually be closed).

The lifetime of a case may include:
v Periods in the past

These are periods which have already occurred, and (assuming that the agency
has a correct record of all pertinent real-world events) will have been correctly
calculated and assessed. For financial components, these past periods will have
already been paid (or billed). Any retrospective reassessment of past periods
(arising from corrections, or a lag between events occurring in the real world
and their subsequent notification to the agency) may result in changes to the
determination for a past period, and for these periods the system may need to
make corrections to financials, e.g. through the use of over/under payment
cases.

v Periods in the future

These are periods which have yet to occur, and represent the system's "best
guess" regarding determination according to what is already known about the
real world. New events which come to light may cause this "best guess" to
change, but in general a change in prediction of future eligibility/entitlement
will not require corrections to financials (except, perhaps, if payments are made
in advance rather than in arrears).

Because a case's determination is a value calculated for the case's lifetime, any
change in the case's start or end date (e.g. the extension of a case's expected end
date) will cause the case to be reassessed. From a CER perspective, the case's start
and end dates are simply input data in the same way that evidence, personal data
and rates are.

In general, the eligibility, entitlement and explanation for a case will tend to
change on the same dates. However, in some cases, not all will change - for
example, it is possible for a case to remain constantly ineligible, but the reason for
why the case is ineligible may vary over time, and hence the case's explanation
may change value on a date even though the case's eligibility does not change
value on that date.

Of course, the future gradually becomes the past at every passing moment; and so
if "left unchecked" (i.e. there are no changes to input data), the predictions made

Developing with Eligibility and Entitlement by using Cúram Express Rules 9

about future eligibility/entitlement will gently flow into past "actual"
eligibility/entitlement, and will be used as the basis for new financials.

What Triggers the Calculation of a Determination Result
The calculation of a determination is triggered at various points of the case life
cycle, in one of two ways:
v Active

For various user-initiated case events, the Engine explicitly requests the value of
a determination result from CER. CER rule objects are created in memory
through the use of a converter that retrieves data from the relevant database
entities and rules are then executed against this data.

v Reactive

Whenever the Dependency Manager detects that the values used in a case's
assessment determination result have changed, the Dependency Manager
invokes the Engine to reassess the case.

The following sections explain Active and Reactive determinations in more detail.

Active Determination Calculation Requests: The Engine explicitly requests the
value of a determination result from CER at these points in the case life cycle:
v Prior to evidence activation

A case worker can manually request an interim determination for a case, based
on either the active evidence only, or the active and in-edit evidence on the case.
This kind of determination is made available on a "what if" basis, and the results
are essentially disposable once seen by the case worker who requested the
determination. A request for an interim determination does not result in the
storage of any dependencies by the Dependency Manager.

v Approval

The system automatically records a snapshot of a case's determination result
when the case is submitted for approval, approved or rejected. This snapshot
provides an audit trail of the state of the case's eligibility/entitlement at the
point at which important decisions are made about the case (e.g. the information
available to a supervisor at the point when the supervisor chose to accept or
reject the case). Determinations created during the approval process do not result
in the storage of any dependencies by the Dependency Manager.

v Activation

When a case is first activated, the system automatically records a snapshot of the
case's determination result, and this result is used as an input into financials
processing. The Engine also uses the Dependency Manager to store the
dependencies that were identified and used by CER during its calculations.

v Manual Redetermination

To support the ability to take a snapshot of a case's determination result at key
points in the life cycle of a case, for example when an appeal is created, a facility
exists for a case worker to manually request a redetermination for a case. For
CER-based cases, the system will in most situations be up-to-date with changes
that affect a case and so any manual request to redetermine the case will likely
not result in a change to the case's determination. Determinations created during
a manual request for redetermination may cause changes to dependencies to be
stored by the Dependency Manager.

v Generating Payments

When the application is generating payments for a case, it can be configured to
reassess the case's determination first in order to ensure that payments are never
generated for out of date determinations. This behaviour is controlled via the

10 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

application property
curam.batch.generateinstructionlineitems.dontreassesscase.

At a CER level, a request for the value of a determination result is a request for the
value of a particular rule attribute on the CER rule object for the product delivery
case. As described above, upon activation of the case and creation of the initial
assessment determination, the Engine will store the dependencies that were
identified and used by CER during its calculations. This includes all of the
dependencies of the rule attribute that holds the determination result. Once
identified, these dependencies are now established so that the system can react to
changes in input data which may affect its value (and may cause reactive
re-determinations).

Reactive Determination Calculations: Once a case has been activated and an
initial assessment determination has been created, then the items upon which the
determination result depends will be established as dependents so that the system
may react to changes which may affect it. This is in sharp contrast to traditional
case processing which is centered around having to write processing to identify
affected cases; instead, the paradigm is much closer to that of a "spreadsheet",
which automatically calculates results whenever input values change.

When any data that affects eligibility and entitlement is subsequently changed, an
item will be written to a precedent change set, and a request for a deferred process
made. When executed, the deferred process will then use the stored dependencies
to determine the dependents for the precedent items that were changed and
recalculate those dependents. A dependent which relates to a case1will cause that
case to be reassessed.

The Dependency Manager does not really "understand" different types of input
data; rather, it just knows that a dependency exists from a determination result
value to the various input data values used to calculate it (in the same way as a
spreadsheet does not understand the purpose of the data typed into it). From a
business perspective, the types of input data change that can affect determination
results will typically include:
v changes to case data, e.g. start and end dates;
v changes to personal data, e.g. the correction of a date of birth or the recording of

a date of death;
v changes to rate data, e.g. an increase in a benefit payment rate; and
v changes to product configuration, e.g. the introduction of a new period of

legislation.

The Dependency Manager's lack of understanding of types of input data is the
strength underpinning how reactive determinations work. In a spreadsheet-like
way, the Dependency Manager will reassess all cases that are dependent upon the
data that has been changed, regardless of whether that change ends up affecting
zero, one or very many cases. For some changes to input data, the Engine may
reassess cases but find that the overall determination result value has not changed,
and in these circumstances no new determination will be stored.

How a Determination Result Is Calculated
A determination result is calculated by the execution of a chain of CER rules.

These rules fall into two categories:

1. The Dependency Manager manages dependencies for items other than cases, too - e.g. Advice.

Developing with Eligibility and Entitlement by using Cúram Express Rules 11

v Fixed Rules

The Engine includes some fixed rules which cannot be customized. These rules
are responsible for calculating the determination over different legislative
periods, and for creating product-specific rule objects for the execution of
product-specific rules.

v Product-Specific Rules

Each product will have rules which contain the business and technical logic for
the calculation of eligibility/entitlement and explanations for that product. These
rules also effectively link the product to types of evidence, personal data and
rates to be used in determination calculations for the product.

A high-level summary of the chain of CER rules execution for a determination is as
follows:
v the case's lifetime is calculated, with reference to its actual and expected start

and end dates;
v the case's lifetime is checked against the product periods for the product, to see

which of these periods overlap with the case's lifetime. These product periods
will contribute to the case's determination (any other product periods lying
wholly outside the case's lifetime are ignored);

v for each contributing product period, product-specific rule objects for the case
are created (one rule object for the case's eligibility/entitlement, optionally2one
rule object for key decision factors, and one rule object for each category of
decision details3), according to the configuration of the product period;

v for each product-specific rule object created, its output attribute values are
calculated to get the eligibility/entitlement/explanation results for a portion of
the case's lifetime;

v the calculation of eligibility/entitlement/explanation results will involve the
execution of lower-level rules, which may perform searches to retrieve personal
data, evidence and/or rate data. These searches effectively link the case to the
input data on which the case determination result ultimately depends.

v the results arising from different product periods are then "spliced together" to
arrive at an overall determination result which covers the full lifetime of the
case.

Example
When the case worker has gathered evidence for the father's Lone Parent Benefit
case, the father asks how much benefit he is likely to receive. The case worker
requests a manual determination based on the in-edit evidence gathered (the
evidence has not yet been approved).

The system actively calculates a determination result that:
v shows the father is eligible for benefit from 1st January 2001, up until his

daughter is expected to reach the age of majority on 14th December 2010 (which,
at the time the claim is created, is many years in the future);

v shows the father is entitled to $20 per week, but that this amount will rise to $25
per week from 1st June 2002, when there is a planned increase in benefit
payment rates;

2. It is optional whether to configure the product period for key decision factors. If key decision factors are not configured for the
product period then no key decision factors rule object is created.

3. It is optional whether to configure the product period for any decision details categories. If no decision details categories are
configured for the product period then no decision details rule objects are created.

12 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v explains that the father meets all the eligibility criteria but has been means tested
and thus is entitled to a reduced rate of benefit due to his income.

At this point, no dependencies are stored by the Dependency Manager because the
case has not yet been activated.

The case worker activates the evidence, which results in items being written to a
precedent change set, and a deferred process being created. Because no
dependencies yet exist for the case, no recalculation occurs when the deferred
process is executed.

The case worker then submits the case for approval. The system creates a snapshot
of the determination result (recalculated above) for audit purposes, and routes the
case to a supervisor. The supervisor reviews the case and approves it, and the
system creates another snapshot of the determination result, and links it to the
record of the case approval. The case is activated and the system creates the initial
assessment determination result. The dependencies that were identified during the
calculation of the determination result are stored.

On 1st March 2003, the father remarries, and thus stops being a lone parent. The
father is somewhat lax with regard to informing the agency, and only gets around
to telling a case worker about his new marriage three months after it occurred. The
case worker records the change in the father's personal circumstances and activates
the change in evidence. An item is written to a precedent change set, and because
the case is dependent upon the evidence in the case, CER recalculates a new
determination for the case. The determination shows that the father's eligibility
stopped three months previously (on 1st March 2003, his date of marriage) and
that he has been overpaid in the meantime. The system initiates overpayment
processing to recover the amount overpaid. The case worker can see from the latest
determination that the reason that eligibility ended was due to the father no longer
satisfying the "lone" condition of the product's business rules.

On 1st May 2008, the father's wife dies, and the father notifies the agency that he is
again a lone parent. The change in his personal circumstances again results in an
item being written to a precedent change set, and the case once again being
recalculated. It transpires that over the last few years, increases in the father's
income have pushed him out of the low-income bracket, and so despite now being
"lone", he is ineligible for the Lone Parent Benefit due to his income level. The
determination viewed by the case worker shows that when his wife died, the
father continued to be ineligible for benefit, but the reason for ineligibility changed
(prior to his wife's death, the reason was that he was not "lone", after her death the
reason was that his means test failed due to his income level). The determination
continues to show that when his daughter finally reaches the age of majority
(which is still in the future), he will continue to be ineligible, but for a different
reason again (namely that the father has no minor dependent). The determination
also continues to show all the historical changes in eligibility, entitlement and
explanation since the start of the case.

On 14th December 2010, the daughter becomes an adult. A case worker, who
periodically reviews cases, notices that the case has been inactive for some time
and closes the case, recording an end date. The open-ended determination result is
replaced with a closed-period determination result.

Throughout the evolving history for the case, each determination shows key
decision factors such as the date that the daughter was born, the date that the
daughter became an adult, and changes in the household's total income. For any

Developing with Eligibility and Entitlement by using Cúram Express Rules 13

constant period of explanation, there are different categories of explanation, one
showing a summary of which eligibility criteria have been met, and another
showing how the means test was applied during that period.

Determination Storage
For both active and reactive determinations, the Engine stores a snapshot of a
determination.

There are two main groups of database tables used to store the determination data:
v CREOLECaseDetermination and its related tables - stores full details of the

determination for later viewing by a case worker; and
v CaseDecision and its related tables - stores details of the eligibility/entitlement

result for input into financial processing (typically to make benefit payments to
the claimant).

For more details on these database tables and the processing that occurs around
the storage of determinations, see “How Determinations Are Stored” on page 134.

Example
When the father's Lone Parent Benefit case was initially activated (i.e. prior to his
marriage and other changes of circumstances), the father's entitlement was $20 per
week from 1st January 2001, rising to $25 per week from 1st June 2002, with
eligibility halting when his daughter reaches the age of majority on 14th December
2010.

This initial assessment determination would be stored as a single "current" record
on the CREOLECaseDetermination family of database tables, with these related
records on the CaseDecision family of database tables:
v eligible and entitled to $20 per week from 1st January 2001 to 31st May 2002

inclusive;
v eligible and entitled to $25 per week from 1st June 2002 to 13th December 2010

inclusive; and
v ineligible from 13th December 2010 until further notice.

When the evidence on the case and/or payment rates change, the records above
are superseded and replaced with a new set of "current" records.

Scheduling Financials
The financial scheduler is responsible for scheduling financial transactions based
on the eligibility and entitlement results and the case deductions. These financial
schedules, known as financial components, are used by the Financial Manager to
create financial instruction line items. The financial scheduler sits between the
Eligibility and Entitlement Engine and the Financial Manager, translating eligibility
and entitlement results, as well as case deductions, into financial schedules that
can be processed into actual payments or bills.

Financial schedules will only be created from assessment determinations (for more
details on the different types of case determinations, see “Navigating
Determinations” on page 16).

Example
The case determination calculated earlier shows that from 1st January 2001 to 31st
May 2002 inclusive the father is entitled to $20 per week and that from 1st June
2002 to 13th December 2010 inclusive the father is entitled to $25 per week.

14 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Using this information the financial scheduler will produce one financial
component to deliver $20 weekly from the 1st January 2001 to 31st May 2002
inclusive and a second financial component to deliver $25 weekly from the 1st
June 2002 to 13th December 2010 inclusive.

A few months later, the new case determination created following the budgetary
review shows that the father will be entitled to $28 from 1st January 2003.

Using this information the financial scheduler cancels the existing financial
components and creates two new ones. The first will continue to deliver $25
weekly until the current rate expires. The second will deliver $28 weekly from the
date that the revised rate comes into effect until the daughter reaches the age of
majority.

The following year, the new determination created following the father's marriage
shows that the father's eligibility stopped three months earlier (on the date of his
marriage) and that the entitlement from that date onwards was $0.

Using this information the financial scheduler cancels the existing financial
component (for $28 weekly) and creates a payment correction case for the amount
overpaid to the father. The financial schedule created within the payment
correction case indicates that the father is liable for a once-off liability to allow the
agency to recoup the amount he has been overpaid.

Five years later, the new determination created after the father's wife dies shows
that the father is still ineligible, due to his income level. Since no eligible case
decisions exist no financial schedules will be created.

The daughter becomes an adult and the case is closed. When a case is closed any
live financial components on the case are also cancelled. However in this example
no live financial components exist so there is nothing for the financial scheduler to
do.

The actual number of financial components required to represent these various
financial schedules depends on a number of factors including the nominee
component assignments, the nominee delivery patterns, the period to which the
schedule applies and the case decision objective tags which have been specified.

For more details on scheduling financials, see “Scheduling Financials” on page 14.

Determination Retrieval
A case worker can view determination snapshots for a product delivery case,
including:
v the current assessment determination, if any - i.e. the determination which is the

basis of the actual delivery of the product (e.g. the basis for financials for benefit
payments);

v historical assessment determinations, each of which was at one time current but
has since been superseded;

v snapshots taken when a case was submitted for approval, approved or rejected;
and

v the result of requesting a manual determination.

Developing with Eligibility and Entitlement by using Cúram Express Rules 15

When the case worker views a determination snapshot, then the system will
analyze the determination result to find the dates on which one or more of the
eligibility/entitlement/explanation changes, and will use these dates to carve up
the case lifetime into coverage periods.

Each coverage period is shown with its from and to dates. If the case is
open-ended, then the last coverage period will be open-ended. If the case worker
chooses to see decision details for a coverage period, then the system will display a
"vertical slice" through the determination data for that date.

Example
A determination for the father's case establishes the following:
v the claim is eligible from 1st January 2001 up to 30th June 2005 inclusive
v the father is entitled to:

– $20 per week from 1st January 2001 to 31st May 2002 inclusive; and
– $25 per week from 1st June 2002 to 30th June 2005 inclusive;

v the explanation of the case varies:
– father passes all eligibility criteria from 1st January 2001 to 30th June 2005

inclusive;
– father fails the "lone" condition from 1st July 2005 to 31st January 2010

inclusive; and
– father fails the income means test from 1st February 2010 until further notice.

The dates on which items change can be combined to carve up the case's lifetime
into these coverage periods (where the eligibility, entitlement and explanation is
constant throughout each coverage period):
v 1st January 2001 to 31st May 2002 inclusive;
v 1st June 2002 to 30th June 2005 inclusive;
v 1st July 2005 to 31st January 2010 inclusive; and
v 1st February 2010 until further notice.

Navigating Determinations

Introduction
The Engine calculates and stores different types of determination results at various
points of the case lifecycle. This section describes how a case worker user can
navigate the determinations using the screens included with the Engine.

The Engine supports these types of determination:
v Manual eligibility check determinations;
v Snapshot determinations; and
v Assessment determinations.

Once the Engine displays a determination, then the case worker can drill into
details of the determination. The different types of details shown in the
determination are described in later chapters:
v Eligibility/entitlement calculation results

See “How It Looks” on page 19;
v Key decision factors

See “How It Looks” on page 47; and

16 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v Decision details

See “How It Looks” on page 61.

Manual Check Determinations
The case worker can request a manual eligibility check on a product delivery case
and choose whether that check should include "in edit" evidence changes.

If the case worker chooses to base the eligibility check on in-edit evidence, then the
Engine provides a determination as if pending evidence changes had already been
applied (see “Temporary Access to In-Edit Evidence Changes” on page 131), i.e. as
if:
v newly-added evidence had been activated;
v corrections to existing evidence had been activated; and
v pending-removal evidence had been removed.

If the case worker instead chooses to use active evidence only, then any pending
changes to evidence are ignored.

The Engine displays the determination result for the manual eligibility check,
noting whether or not in-edit evidence was used. Once a manual eligibility check
determination has been created, then the case worker can navigate to the last
manual eligibility check created.

Snapshot Determinations
The Engine automatically records a snapshot of a case's determination result when
the case is:
v submitted for approval; and
v approved/rejected.

Snapshot determinations are displayed on the Case Calendar and a decision
summary can be accessed from the calendar view.

Assessment Determinations
The Engine creates an assessment determination whenever there is an active or
reactive request to assess a case. The Current Determination page displays the
active assessment determination result. The active assessment determination feeds
through to financial processing, typically to dictate the amount payable on a case.

The Determination History displays the list of all assessment determination results,
the active assessment determination result and superseded assessment
determination results. There is also an option to manually force the reassessment of
an active case and view these results.

Current Assessment Determination
When a case worker clicks on the Determinations tab, the Engine displays the
current assessment determination, if any. This current assessment determination is
the determination which currently governs how the product is being delivered
(typically, how much is payable).

If there is no current assessment determination (for example if the case has not yet
been activated), then the Engine displays a message explaining that no current
assessment determination is available.

Developing with Eligibility and Entitlement by using Cúram Express Rules 17

Historical Assessment Determinations
Within the Determinations tab, when a case worker clicks on the Determination
History option, the Engine displays a list of assessment determinations on the case
(if any). The most recent (current) assessment determinations (if any) are displayed
at the top and the remainder are superseded determinations (if any) - i.e.
determinations which were "current" at some time in the past, but have been
replaced due to a change which affected the case's determination result.

Recall that each determination covers the complete case lifetime, and typically
includes past periods based on real-world events and predictions based on
expected events. Thus each superseded determination contains the predictions
about a case that the Engine made based on the known facts at the time; if facts
change, then the prediction must be superseded and replaced with a more accurate
prediction based on more accurate facts. The current determination represents the
best prediction about the case's future eligibility and entitlement based on facts
known today.

Manual Reassessments
To support the ability to take a snapshot of a case's determination result at key
points in the life cycle of a case, for example when an appeal is created, the case
worker can manually request that an active case be reassessed. The case worker
must confirm the request to manually reassess a case:

When a case is manually reassessed, the Engine displays the new determination
result and notes that it was due to a manual reassessment request.

Calculating and Displaying Eligibility and Entitlement

Introduction
Eligibility and entitlement results are the core data calculated by the Engine and
underpin how the case is treated by financial processing. The Engine contains
features to calculate additional "explanation" results (see “Calculating and
Displaying Key Decision Factors” on page 46 and “Calculating and Displaying
Decision Details” on page 61), but it is critical to understand how the core
eligibility and entitlement results are calculated by the system and displayed to the
user.

This chapter describes the flow of processing that allows eligibility and entitlement
data to be displayed to the user. The processing is intentionally described in
reverse-chronological order; firstly we describe the end results, followed by the
Engine processing that produces those results, before finally describing how the
data was calculated.

This "backwards" perspective will echo how your rules designers will need to
think when designing your product; they will need to start with the end in mind
(namely how case workers and financial processing will use the eligibility and
entitlement results to perform subsequent work on the case).

This chapter is structured as follows:
v How it looks

Describes how eligibility and entitlement information is displayed to a case
worker.

v How it works

18 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Describes how fixed processing by the Engine and custom processing combine
to calculate and display eligibility/entitlement results.

v How to use it

Describes the steps you will need to follow to implement eligibility/entitlement
calculations for your product.

How It Looks
This section describes how eligibility and entitlement information is displayed (in
summary form) to a case worker.

The structure of eligibility and entitlement data is intentionally restrictive; it
contains the information required to allow Cúram Financials to subsequently
process the case, such as whether the case can be paid, and if so how much and to
whom.

Because the structure of the eligibility and entitlement data is fixed by the Engine,
the Engine knows how to display this information for any CER-based case, and so
includes standard screens capable of displaying summaries of a case's eligibility
and entitlement. (For the display of more flexible data specific to your product, see
“Calculating and Displaying Key Decision Factors” on page 46 and “Calculating
and Displaying Decision Details” on page 61.)

Eligibility/Entitlement data is also used as input into Cúram Financials; for more
details on this use of the data, see “How Determinations Are Stored” on page 134
and “Scheduling Financials” on page 144.

Viewing a Determination's Coverage Periods
The case worker can navigate to an assessment determination for a product
delivery case as described in “Assessment Determinations” on page 17.

A determination covers the full lifetime of the case (as known at the time the
determination was made - the case's lifetime may have subsequently changed and
a newer determination recorded). The determination is open-ended because the
case itself is open-ended, so the latest decision for this determination applies until
further notice.

The determination is divided into a number of contiguous "Coverage Periods".
Broadly each coverage period is a period of constant eligibility, entitlement and
explanation for a determination.

For each coverage period, the system shows the eligibility result for that period,
and a summary of the amount payable. This coverage period data is standard
eligibility/entitlement information and the Engine ships with a standard screen for
displaying this information for any CER-based case. You should not need to write
your own coverage period screens unless you have special requirements.

Basic Eligibility/entitlement Decision Details
The Engine also provides the ability to present a case's entitlement information in a
very basic way. The details are presented in a somewhat technical way, as a list of
objectives and their respective tags.

The Engine does not automatically show this information for your product;
however it is relatively easy to configure your product to show this information,
typically as a stepping stone on the way to fully developing your product.

Developing with Eligibility and Entitlement by using Cúram Express Rules 19

These "basic" eligibility/entitlement details are a simple implementation of
Decision Details rules (see “Calculating and Displaying Decision Details” on page
61); typically these details are too simple to be useful to a case worker, but may be
useful to your developers during the development of your product, and so may be
used as "scaffolding" during your development cycle. See “Re-use the Basic
Decision Details before Writing Your Own” on page 180 for a description of how to
enable these basic details for your product.

How It Works
This section describes how fixed processing by the Engine and product-specific
processing combine to calculate and display eligibility/entitlement results.

The calculation and display of a determination involves a mixture of:
v fixed processing contributed by the Engine; and
v custom product-specific processing contributed by you (i.e. the implementation

of your product).

The Engine follows the following high-level steps to arrive at eligibility and
entitlement data that can be displayed to a case worker:
v At Determination Calculation time:

– An action occurs which triggers the determination of a case (either an active
or reactive determination);

– The Engine identifies the product periods (configured for the product) that
cover the case's lifetime;

– The Engine uses CER rules (specific to the product) to calculate the eligibility
and entitlement for each contributing product period;

– The Engine calculates the eligibility and entitlement across the lifetime of the
case by "splicing together" the eligibility and entitlement from each
contributing product period;

– The Engine calculates the eligibility and entitlement across the lifetime of the
case by "splicing together" the eligibility and entitlement from each
contributing product period;

– The Engine stores (on the database) a determination result containing the
eligibility and entitlement data (as well as key decision factors and decision
details, covered elsewhere in this document).

v At Determination View time:
– A case worker requests to view a determination on a case;
– The Engine retrieves the determination result from the database and identifies

its coverage periods; and
– The Engine lists the coverage periods for the case, and uses the decision

summary display strategy configured for the product to produce a summary
of the entitlement for each coverage period.

The data interfaces and implementation for calculation of eligibility/entitlement,
and subsequent display of eligibility/entitlement data are described in more detail
below.

Calculation of Eligibility and Entitlement
The responsibilities for calculating a case's eligibility and entitlement are divided
between fixed implementations provided by the application and product specific
implementations for a product (some of which must adhere to

20 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

application-provided interfaces). This section describes the important interfaces and
implementations involved in the calculation of the eligibility/entitlement results
that form part of a determination result.

Sections A, B, and I describe a layer of fixed implementations that are responsible
for calculating and storing the overall determination result.

The processing described in sections C, D, and E represents a combination of fixed
interfaces and custom product-specific processing that is responsible for
determining the eligibility and entitlement for the case across product periods.

Section C describes a fixed interface included with the Engine that serves as the
interface between the fixed eligibility/entitlement processing provided by the
Engine and the product-specific rules for the calculation of eligibility and
entitlement results.

Sections D and E both describe custom product-specific processing.

The final layer described in sections F, G, and H represents a mixture of fixed
implementation and fixed interfaces contributed by the engine, as well as custom
product-specific processing that is responsible for retrieving the data from entities,
evidence and rate tables used by the custom product-specific processing described
in section D.

A) ProductEligibilityEntitlementRuleSet ProductDeliveryCase rule object:
When the calculation of a determination is triggered, the Engine automatically
creates a ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
for the case in memory and populates it with case data, including the case ID, start
date, expected start date, end date, and expected end date. This processing is
critical to the Engine and cannot be customized. The rule object is responsible for
calculating the overall determination result (including the calculation of
eligibility/entitlement information).

In particular, the rules for the rule object's calculated attributes are fixed and
cannot be customized:
v the value of contributingProductPeriods is provided by the static method

curam.core.sl.infrastructure.assessment.impl.Statics.contributingProductPeriods
(which is included with the Engine), which returns a timeline of ProductPeriod
rule objects (see below); and

v the value of determinationResult is provided by the static method
curam.core.sl.infrastructure.assessment.impl.Statics.determinationResult
(which is included with the Engine), which returns a
curam.core.sl.infrastructure.assessment.impl.DeterminationResult Java data
object (see below).

B) ProductEligibilityEntitlementRuleSet.ProductPeriod rule objects: The
Engine also retrieves product period information from the database, including the
start date and end date, and creates a ProductPeriod rule object in memory for
each published product period in the system. For a new product, there is typically
only one period covering the lifetime of the product, but as new legislation is
introduced, then it is possible (depending on design approach) for the product to
have more than one period. For more information on adding product periods over
time, see “Incremental Design and Evolution” on page 173.

These product periods allow the Engine to identify which ones will contribute to a
determination on a case - namely the periods that overlap in any way with the

Developing with Eligibility and Entitlement by using Cúram Express Rules 21

case's lifetime. Other product periods outside the case's lifetime (i.e. before the case
started or after it ended) do not contribute. The structure and maintenance of the
ProductPeriod rule objects is fixed by the Engine and cannot be customized.

C) ProductEligibilityEntitlementRuleSet AbstractCase rule class: The Engine
creates an Abstract Case rule object in memory for each Product Period rule object
stored in memory. The AbstractCase rule class acts as the interface between the
fixed eligibility/entitlement processing provided by the Engine, and the
product-specific rules for the calculation of eligibility and entitlement results.

This "interface" rule class ensures that concrete sub-rule-classes have
implementations for the following calculated rule attributes, which provide the
fixed-structure eligibility and entitlement results required by the Engine:
v isEligibleTimeline

Responsible for calculating the intervals of time during which the case is/is not
eligible during the product period; and

v objectiveTimelines

Responsible for calculating the objectives that the case may be entitled to, and
for each objective, the intervals of time when the case is/is not entitled to the
objective, and the tag values available (see “Write the Case Eligibility/
Entitlement Calculation Rule Classes” on page 35 for more details).

The Engine-supplied interface rule set has no implementations for these attributes -
rule classes must be written (see below) to provide implementations for the
business requirements of the product; rather the interface rule class allows the
Engine to communicate with the rule classes by specifying a contract for the data
structures that it requires.

D) Custom rule classes for eligibility/entitlement: When the Engine calculates
eligibility/entitlement results for a product period, the Engine first asks the
product period which rule class should be used (which is recorded on the product
period as part of setting up a product).

The rule class specified on the product period must ultimately extend from the
ProductEligibilityEntitlementRuleSet.AbstractCase interface rule class. For ease
of upgrades, it is recommended that the rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultCase rule class which
provides default implementations.

The rule class must provide implementations of the isEligibleTimeline and
objectiveTimelines rule attributes, which is where the bulk of the implementation
effort for eligibility/entitlement calculations will lie (and in fact this effort may
form the bulk of the overall product implementation). See “Write the Case
Eligibility/Entitlement Calculation Rule Classes” on page 35 for more details on
the work involved in implementing these attributes.

If the product has different product periods, due to a change in legislation that
affects how eligibility and/or entitlement is calculated, then each product period
will be configured to use a different rule class.

E) Custom rule classes for calculations: Typically the calculations of eligibility
and entitlement stored in the isEligibleTimeline and objectiveTimelines rule
attributes may involve complex business calculations, and CER rule classes can be
created to structure these calculations in line with business requirements.

22 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Any such rule classes do not need to adhere to any application-supplied interfaces
(although the CER "extends" mechanism may be used to create a hierarchy of rule
classes to treat rule objects in a polymorphic way if useful).

Some of the calculations will involve accessing stored data, by retrieving rule
objects of these types:
v rate cells (see “F) RateRuleSet.RateCell rule objects and propagation

configuration”);
v custom entities (see “G) Custom Entity rule objects”); and /or
v custom evidence (see “H) Custom Evidence rule objects.”

Note: These retrievals cause a dependency to be stored between the case's
determinationResult and the underlying stored data, which is how the Engine
handles reassessment of cases when data changes (see “Reassessment - Handling
Changes in Circumstance” on page 158.

F) RateRuleSet.RateCell rule objects and propagation configuration: The Engine
stores and maintains RateCell rule objects on CER's database tables for cells from
certain rate tables. The data from the rate table cells is propagated to these rule
objects when modified and is stored in a valueTimeline rule attribute that stores
the value of the rate over time. The list of rate tables that are propagated to rule
objects is configurable (see “Configuration” on page 95), but otherwise the
processing is supplied by the Engine and cannot be customized.

Typically the eligibility and/or entitlement calculations for a product will involve
comparisons with or multiplications by rates (in addition to case-specific data); and
rules for calculations will access such rates via RateCell rule objects.

G) Custom Entity rule objects: When the calculation of a determination is
triggered, the Engine queries rule object data configurations to determine what
entities contain data that is required by CER for rules processing and supports the
population of CER rule objects in memory for each of the relevant entities. The
Engine contains a generic mechanism for populating the rule objects with the data
from these custom entities (see “Entity Rule Objects” on page 97).

H) Custom Evidence rule objects: When the calculation of a determination is
triggered, the Engine queries rule object data configurations to determine what
custom evidence types (both static and dynamic evidence) contain data that is
required by CER for rules processing and supports the population of CER rule
objects in memory for each of the relevant evidence types. The Engine contains a
generic mechanism for populating the rule objects with the data from these custom
evidence types (see “Active Succession Set Rule Objects” on page 107 and “Active
Evidence Row Rule Objects” on page 119).

Each rule class for a custom evidence type must ultimately extend the
Engine-supplied PropagatorRuleSet.ActiveSuccessionSet or
PropagatorRuleSet.ActiveEvidenceRow rule classes.

The population of CER rule objects for dynamic evidence types is handled
automatically (see the section on "Generated Rule Sets" in the Cúram Dynamic
Evidence Configuration Guide).

I) DeterminationResult: The ultimate determination output from the
ProductEligibilityEntitlementRuleSet.ProductDeliveryCase.determinationResult
attribute is an immutable instance of the
curam.core.sl.infrastructure.assessment.impl.DeterminationResult interface.

Developing with Eligibility and Entitlement by using Cúram Express Rules 23

This object holds data only (the methods on the interface are accessors only). The
determination result is created by the Engine when splicing together the individual
eligibility and entitlement results across the case's division into different product
periods and is stored on the database. Note that in the simple case (typically for
recently-created products) where the product has only one product period, the
entire eligibility and entitlement results are exactly those contributed by the single
product period which covers the entire case lifetime.

The DeterminationResult data holds the following:
v productDeliveryID

The unique identifier of the product delivery case;
v determinationDateRange

The "lifetime" of the determination, which was the lifetime of the case at the
time the determination was taken;

v determinationEligibilityEntitlementTimeline

The varying eligibility/entitlement data for the case, spliced together from the
isEligibleTimeline and objectiveTimelines values from the rule objects
created for each of the contributing product periods; and

v Other data not directly relevant to eligibility and entitlement (and so covered
elsewhere in this document - see “E) DeterminationResult” on page 50 and “G)
DeterminationResult” on page 66).

The DeterminationResult structure is provided by the Engine and cannot be
customized in any way.

Display of Eligibility and Entitlement
The vast majority of data processing for eligibility and entitlement occurs at the
time when the determination result was calculated, as described in the previous
section.

However, some data processing for eligibility and entitlement occurs at the time
that the data is viewed; and this section describes the display-time processing of
eligibility and entitlement data.

When a case worker views a determination then the Engine automatically:
v divides the determination into coverage periods; and
v displays a summary of entitlement for each coverage period.

Dividing the Determination into Coverage Periods: When a case worker views a
determination, the Engine automatically divides up the case lifetime into a number
of coverage periods. Each coverage period is a period within the determination
where the following are constant:
v The eligibility (yes/no);
v The entitlement (which objectives, their targets and references, and their tag

values); and
v The decision details data (see “Calculating and Displaying Decision Details” on

page 61).

Or, to put it another way, any change in eligibility, entitlement and/or decision
details along the lifetime of the determination causes a new coverage period to
come into effect on that date.

24 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Note: A change in a key decision factor on a particular date does not in itself cause
a new coverage period to start on that date.

Typically, though, the fact that there is a change to a key decision factor on that
date tends to mean that the eligibility/entitlement and/or decision details are
likely to change on that date, too (and the change in eligibility/entitlement and/or
decision details will cause a new coverage period to start on that date).

The division of the determination into contiguous coverage periods occurs
automatically on the Engine's standard screens for viewing a determination, and
cannot be customized.

Displaying a Summary of Entitlement for a Coverage Period: The Engine
includes an interface for providing a summary description of the entitlement for a
coverage period:
curam.core.sl.infrastructure.assessment.impl.DeterminationIntervalSummarizerStrategy
interface. See the JavaDoc for this interface for more details.

When you set up your product, you may specify an implementation of this
interface that the Engine will use when displaying a coverage period. The Engine
invokes this strategy implementation whenever it displays a coverage period for a
determination, and the strategy implementation is responsible for returning an
appropriate summary line of text (in the user's locale).

Note that:
v if you do not specify a strategy implementation for your product, then no

summary for the coverage period will be displayed; and
v if you subsequently change the strategy implementation for your product, then

only the display output shown to users is affected; the system will not reassess
cases nor cause any changes in financial output.

As such, specifying a strategy implementation for entitlement summaries is not
critical to getting your product up and running; this task can be deferred until later
in the development cycle if need be.

How to Use It
Most of the high-level processing for eligibility and entitlement is fixed logic
provided by the Engine. However, you will have to provide implementations for
certain lower-level logic. In order to do this, you must understand the basic
concepts of eligibility and entitlement.

In addition to providing an understanding of these concepts, this section describes
the work you will need to do to complete the eligibility and entitlement logic for
your product, as follows:
v Analysis;
v Implementation; and
v Testing.

Note: This section describes the complete work for eligibility/entitlement logic;
however, for short-cuts you can take to get your product up-and-running quickly,
see “Incremental Design” on page 176.

Developing with Eligibility and Entitlement by using Cúram Express Rules 25

Understanding Eligibility and Entitlement Concepts
The Engine has a fixed data structure for eligibility and entitlement data.
Understanding the structure of this data is critical as you must map your business
requirements to the concepts in this structure.

Case Lifetime: The lifetime of a case is the period of time between the case's start
and end dates, inclusive.

Each case may bear an actual or expected start date; if an actual start date is
present then it is used as the start of the case, other- wise the expected start date
will be used.

Similarly, a case may have an actual end date and/or an expected date, which
governs the end date of the case's lifetime (with the actual date taking precedence
over any expected date).

A case without an end date is known as an "open-ended" case. A determination for
an open-ended case will thus be an open-ended determination; and the final
coverage period in that determination will be open-ended too.

Eligibility: On any given day in the case's lifetime, the case is either eligible or
ineligible for delivery (depending on the circumstances of the case).

The Engine thus treats the case's eligibility as a Boolean value which can vary over
the lifetime of the case (and thus in CER terms is a Timeline of Boolean values).

For example, a claim for child benefit may be eligible today but will cease to be
eligible once the child being claimed for reaches the age of majority.

Objectives: An objective is something "delivered" by a product delivery case to a
particular target. Commonly an objective is a payment of some kind of benefit or
allowance paid to a client, but an objective could also be (for example) an amount
to bill, or a non-monetary outcome such as a recommendation to the client.

The Engine has separate concepts for:
v the types of objective supported by your product, e.g. your product supports the

concept of a personal benefit allowance; each type of objective defines its name
and other fixed data such as the type of client that it targets; vs.

v an instance of an objective on a particular product delivery case, e.g. on case 123
for your product, claimant John Smith is entitled to personal benefit allowance
from 1st Jan 2011 until 15th Feb 2011; each objective instance describes the
particular target to deliver to and the period(s) for which that target is entitled
to the objective.

On any given day in the case's lifetime, if the case is eligible then the case is either
entitled or not entitled to any particular objective instance. Equivalently, we say that
an objective instance was attained or not attained on that day.

The rule classes for objective types and instances described later in this section
show the full details available.

Objective Tags: An objective tag is a frequency at which an objective may be
delivered. Commonly for payment objectives, the objective will support a mixture
of delivery frequencies, e.g. daily and weekly, to support:
v Different frequencies of payment offered to the client; and

26 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v Payments for ramp-up and ramp-down periods. These are described more in
“Calculating Financial Component Cover Periods” on page 146

The Engine has separate concepts for:
v the types of tag supported by a particular type of objective, e.g. the personal

benefit allowance (supported by your product) may be paid either weekly or
daily; vs.

v an instance of a tag on a particular objective instance, e.g. on case 123 for your
product, claimant John Smith can be paid $10 per week, when receiving the
personal benefit allowance to which he is entitled.

The rule classes for objective tag types and instances described later in this section
show the full details available.

Analysis
You must understand the requirements for your product, and analyze how these
requirements broadly map to the Engine's eligibility/objective/tag concepts before
starting implementation.

Typically, the requirements for eligibility/entitlement are enshrined in legislation,
and so the task of implementing the requirements is, to a certain extent, a
translation exercise (albeit a complex one). We note this here as the tasks described
later in this document (for key decision factors and decision details) differ in
nature.

The following steps should aid your analysis.

Identify the product periods for your product: You must understand whether
there are any significant changes in legislation already in place for your product,
and whether you will implement these changes using multiple product periods.

Typically, for new products there is (to date) only a single version of the
legislation, and so usually a new product will initially have only a single product
period set up. Subsequent changes in legislation may occur once your product
matures, of course.

See “Handling Legislation Change” on page 182 for how to decide whether your
product should have multiple product periods for legislation changes, or rules that
branch based on legislation change. This will help you analyze how many periods
your product is split up into.

Each product period will typically have its own special rule class for eligibility and
entitlement calculations.

For a new benefit product created via the dynamic product wizard a default
product period is automatically inserted and has a default eligibility and
entitlement rule set associated with it. Although the default product period is
published upon creation of the benefit product, the default eligibility and
entitlement rule set is left in an in-edit state following completion of the dynamic
product wizard. The rule set appears in the list of rule sets available for
publication on the Cúram Express Rule Sets page of the Administration Workspace
and is a generic rule set which is not suitable for product use prior to update. The
rule set should be edited within the Cúram Express Rules editor to meet product
requirements prior to use of the newly created product. See the section

Developing with Eligibility and Entitlement by using Cúram Express Rules 27

"Configuring the Product in the Administration Workspace" in the How to Build a
Product Guide for additional information about new products created using the
dynamic product wizard.

Identify what types of objective are delivered by your product, and at what
frequencies: For each product period, you must identify the types of objectives
that your product supports.

Identify what it is that your product "delivers". A common type of delivery is that
of a benefit payment to a person or a household. There may be more than one type
of thing delivered by your product, for example your product may deliver two
different financial components (aimed at different types of nominees - for example
a personal allowance and a child allowance), and also a recommendation.

Once you have identified what it is that your product delivers, you need to map
these deliverable things to types of objectives. You may have a design decision to
make regarding whether to have a smaller number of complex objective types, or a
larger number of simple objective types.

To answer this you may need to consider such things as whether each case needs
to have the flexibility to pay certain types of benefits to one nominee and other
types of benefit to different types of nominee:
v if so, you may well need to have separate types of objectives for the different

types of benefit that your product delivers; however
v if benefit payments are always to a single nominee, then your choice of whether

to implement separate objective types may rest on whether the total benefit paid
is a simple aggregation of all objectives achieved, or whether there are complex
rules to come up with the total amount payable (if the latter, then one complex
objective type is likely to be more suitable).

You may find it useful to come up with a trial design of objectives, and walk
through different business scenarios and how they are treated by the Engine and
financial processing, to ensure that your business requirements mapping to
objective types allows your business requirements for your product to be met.

Once you are happy with your types of objectives, then for each type of objective,
identify at what frequency it can be delivered. Typically a daily rate is always
required (to handle ramp up and ramp down periods) but you can implement
longer periods such as weekly or monthly too. These longer periods can be useful
if your daily rate represents a rounded-up fraction of a weekly or monthly rate, or
if your eligibility results are always exactly some larger unit, e.g. if you have
business requirements that say each case is either entitled to an objective for an
entire month or not at all.

At this point, you have identified the types of things delivered by your product in
general; now you need to turn your attention to how the system will decide HOW
to deliver a particular product delivery CASE.

Identify the rules that govern when a case is eligible: You must analyze the
rules for how the system should determine a case's eligibility. The structure of
these rules can vary very much from product to product.

It is common for eligibility rules to center around the claimant or household falling
into a particular category, where each category is determined by the claimant or
household meeting a number of conditions. The categories and the rules for each
typically form the "highest level" of rules for eligibility.

28 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

For some products, the case's overall eligibility can be determined without
reference to the entitlement to any objectives; for other products the eligibility and
entitlement calculations are much more intertwined (e.g. for some products, you
may only want the case to be deemed eligible if one or more objectives are
attained). You will need to visit your business requirements to understand the
interplay (if any) between eligibility and entitlement calculations for your product.

The eligibility result calculated by the Engine is a Timeline of Boolean results, and
thus allows for the eligibility to vary over time. For some simple products, the
eligibility on any given day is purely determined by the case's circumstances on
that day; however, for some more complex products, the eligibility on one day
may be influenced by events that have occurred on other days (e.g. an event that
occurred in on a different day in the same month). You should take care to
understand your business requirements for applying events that occur on one day
to an overall eligibility result for different days.

For more information on CER's support for Timelines, (see "4.5 Handling Data that
Changes Over Time" in the Cúram Express Rules Reference Manual)

Identify the rules that govern the objectives for each case: You must analyze
which objective instances are required for each case. Typically the creation of
objectives falls into one of these patterns:
v Single Objective

For a given objective type, there is always exactly one objective instance for the
case; and/or

v Multiple Objective

For a given objective type, there is one objective instance for each member of the
case who meets certain criteria.

For example, a product aimed at a household with children might always deliver
exactly one "basic household allowance" objective to the overall household, but
also deliver a "child allowance" objective to each child. Thus a household with 3
children would be have 4 objectives created - one for the household and one for
each child. A household with no children would have only a "basic household
allowance" objective created.

Note that the Engine does not impose these single/multiple objective patterns; the
creation of objectives can be as complex as your business requirements dictate.

Identify the rules that determine when an objective has been attained and its
target: For each objective instance that will be created for a case, you must
analyze the rules for deciding at which points in the case lifetime the case is
entitled to the objective.

Whether or not a particular objective has been attained can vary over time - e.g. an
allowance payable whenever a parent is absent from the household will be
attained when a parent leaves and will cease to be attained once the parent
returns; if the parent leaves and returns many times over the case's lifetime, then
the case's entitlement to the objective will similarly vary many times.

For some simple products, the case is always entitled to an objective by dint of the
case being eligible for that period of time, and thus there is no real entitlement
calculation required. For other more complex products, the rules for entitlement to
a given objective can rival those for overall case eligibility in terms of their

Developing with Eligibility and Entitlement by using Cúram Express Rules 29

complexity. It can be useful to have an understanding of the relative complexity of
your overall case eligibility rules vs. the entitlement rules for your various
objective types.

You must also analyze the requirements for the target of each objective instance,
and any useful related reference information. The Engine allows the values these to
vary over time, but for typical products the values are constant.

Identify the rules that determine the values at which an objective can be
delivered: For each objective, you must analyze the value(s) to be used when it is
delivered (i.e. during periods when the overall case is eligible, and also that the
case is entitled to the objective).

Earlier you analyzed each type of objective to understand the frequencies at which
instances may be delivered; now for each these frequencies you must analyze how
the Engine will calculate value of an objective instance at that frequency.

For some simple products, the value may be a fixed rate (possibly retrieved from a
rate table); for other more complex products, the value may be a complex
calculation involving the case's circumstances.

It is common to see a pattern whereby the value for one frequency provided by a
calculation, and then values for other frequencies based on it. For example, on one
product there may be a complex calculation to provide a daily rate for an
entitlement, but the calculation for the weekly rate is simple 7 x <daily rate>; or on
another product, there may be a complex calculation for a monthly rate, and then
the daily rate is calculated as 12 x <monthly rate> / 365, rounded up to the nearest
cent (in favor of the claimant).

Note that the Engine does not enforce these patterns; the calculation of each
frequency's value can be as complex as business requirements dictate.

Implementation
Having analyzed your business requirements, you are now in a position to start
the implementation of your eligibility and entitlement calculations for your
product. A default eligibility and entitlement rule set is automatically created for
benefit products by the dynamic product wizard, and this rule set should be edited
in line with the guidelines below to suit your product needs. The default name of
this default eligibility and entitlement rule set is
ProductNameWithBlankSpacesRemoved DefaultEligibilityEntitlementRuleSet, but
it is possible to override the name of this rule set on the Eligibility Determination
page of the dynamic product wizard. It is also possible to create a new eligibility
and entitlement rule set for your product, which should follow the guidelines
below.

If your product is complex, then consider sketching out the implementation rule
classes on paper or in an object-oriented modelling tool prior to creating CER rule
sets. You can then use the sketch to validate your rule classes against various
business scenarios.

The rule classes that you create will end up interrelating so it will be useful to
keep these interrelationships in mind as you implement your rule classes. The
sections below this provide a step-by-step path to implement your
eligibility/entitlement calculations.

30 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Write the Product Structure Rule Classes: For each product period, you must
create a rule class which is responsible for describing the structure of your product,
i.e. which types of objectives it supports. Typically the structure of your product
will be identical across product periods and you need only create one set of rule
classes which will be used on each product period.

For a new benefit product created via the dynamic product wizard, a product
structure rule class will be included in the default eligibility and entitlement rule
set that is associated with the default product period created for the product at the
completion of the dynamic product wizard. This default product structure rule
class should be edited to meet your product requirements prior to product use.

You will require the following rule classes:
v one Product rule class for your overall Product;
v one or more Objective Type rule classes, one for each type of objective supported

by your product; and
v one or more Objective Tag Type rule classes, one for each frequency supported

for each of the types of objective supported by your product.

You will also relate these rule classes to each other by implementing rules that
return instances of your rule classes; thus the product rule class has an attribute for
identifying its types of objectives, and each objective type has an attribute for
identifying its supported tags. The default eligibility and entitlement rule set
created for the benefit product by the dynamic product wizard will already contain
each of these rule classes, but they should be edited to meet your product
requirements prior to product use.

The following sections describe the creation of these rule classes and their
interrelations in detail.

Write the Product rule class

Your rule class to describe your product's structure must ultimately extend from
the ProductEligibilityEntitlementRuleSet.AbstractProduct interface rule class.
For ease of upgrades, it is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultProduct rule class which
provides default implementations. The default eligibility and entitlement rule set
that is automatically created for benefit products by the dynamic product wizard
will contain a Product rule class which extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultProduct rule class.

Here is a description of the attributes inherited from AbstractProduct:

Table 3. Rule attributes inherited from ProductEligibilityEntitlementRuleSet.
AbstractProduct

Rule Attribute name Data type Description

objectiveTypes List of
AbstractObjectiveType

The types of objective supported by this
product.

To write the Product rule class, create a rule class which extends
DefaultProductEligibilityEntitlementRuleSet.DefaultProduct. The rule class
should be named in line with your product, e.g. ProductName Product (the Engine
does not have any technical constraint on the rule class name - rather a good name
for your rule class may make it easier to develop and maintain your rule sets). The

Developing with Eligibility and Entitlement by using Cúram Express Rules 31

default name of the Product rule class within the default eligibility and entitlement
rule set that is automatically created for a benefit product by the product wizard is
ProductNameWithBlankSpacesRemoved Product.

The inherited implementation of objectiveTypes returns an empty list; leave this
implementation for now and you will return to it once you have created your
objective type and tag rule classes.

Write the Objective Type rule classes

For each type of objective supported by your product (for example, a Personal
Benefit Allowance or a Child Benefit Allowance), you must create a rule class
which must ultimately extend from the
ProductEligibilityEntitlementRuleSet.AbstractObjectiveType interface rule
class. For ease of upgrades, it is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveType rule class
which provides default implementations. The default eligibility and entitlement
rule set created for benefit products by the dynamic product wizard will contain
two Objective Type rule classes each of which extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveType rule class.

Here is a description of the attributes inherited from AbstractObjectiveType:

Table 4. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractObjectiveType

Rule Attribute name Data type Description

objectiveTypeID String Identifier of the object type, which must be
unique within the product. The length of
this identifier must be no more than the
number of characters dictated by the
RULES_OBJECTIVE_ID domain (which by
default is 16 characters).

name Code from the
RulesComponentType
code table

The code for the display name of this
objective type.

financialComponentTypeCode from the
RulesComponentFCType
code table

The financial component type associated
with this objective, CT1 if this is a benefit,
CT2 if it is a liability.

rateTarget Code from the
RulesComponentTarget
code table

The target for this objective, Client, Product
Provide, Service Supplier, Employer, etc..

tagTypes List of
AbstractTagType

The tag types available for this objective
type, indicating the frequencies at which
this objective can be delivered

description Localizable message A description of this type of objective

comments Localizable message Comments describing this type of objective

isDeductionAllowable Boolean Whether case workers are allowed to select
objective instances of this type when
creating case deductions.

For each objective type supported by your product, create a rule class which
extends DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveType.
The default eligibility and entitlement rule set that is automatically created for
benefit products by the dynamic product wizard will already contain two rule

32 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

classes which extend the
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveType rule class.
These two default rule classes are named PersonalBenefitAllowanceObjectiveType
and ChildBenefitAllowanceObjectiveType. If you are writing a new rule class, the
name of your rule class should be in line with the name of your objective type
(ObjectiveTypeName ObjectiveType), to ease development and maintenance, e.g.
PersonalBenefitAllowanceObjectiveType or ChildBenefitAllowanceObjectiveType.

The inherited implementation of tagTypes returns an empty list; leave this
implementation for now and you will return to it once you have created your
objective tag rule classes.

For all other inherited rule attributes, use your analysis of your business
requirements to implement rules to return values appropriate to your objective
type. The default eligibility and entitlement rule set should be edited to reference
values suitable to your product. If you are writing a new eligibility and entitlement
rule set rather than using the default rule set created by the product wizard,
typically you will add a new value to the RulesComponentType code table to
implement the name for your objective type, but you will use one of the values
provided from the RulesComponentFCType and RulesComponentTarget code tables
when implementing the rules for financialComponentType and rateTarget
respectively.

Write the Objective Tag Type rule classes

For each of your product's supported objectives (e.g. a Personal Benefit Allowance),
your analysis determined frequencies at which that objective may be delivered (e.g.
a Personal Benefit Allowance might be payable either daily or weekly, at the choice
of the claimant or to handle ramp-up/ramp-down periods).

For each frequency for an objective type, you must create a rule class which must
ultimately extend from the
ProductEligibilityEntitlementRuleSet.AbstractTagType interface rule class. For
ease of upgrades, it is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultTagType rule class which
provides default implementations. The default eligibility and entitlement rule set
created for benefit products by the dynamic product wizard will already contain
three objective tag type rule classes each of which extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultTagType rule class.

Here is a description of the attributes inherited from AbstractTagType:

Table 5. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractTagType

Rule Attribute name Data type Description

tagTypeID Long Identifier of the tag type, which must be
unique within the product.

name Localizable message The display name of this tag type.

pattern Frequency Pattern The frequency at which this tag type is
delivered. For more information, see the
JavaDoc for
curam.util.type.FrequencyPattern.

valueType Code from the
RulesTagType code
table

The type of value held in instances of this
tag type.

Developing with Eligibility and Entitlement by using Cúram Express Rules 33

Table 5. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractTagType (continued)

Rule Attribute name Data type Description

description Localizable message A description of this type of objective tag.

The three objective tags defined in the default eligibility and entitlement rule set
created for benefit products by the dynamic product wizard are daily, weekly and
monthly tags. If you are extending this default rule set to include additional
objective tags, or if you are creating a new eligibility and entitlement rule set, for
each objective tag supported by your product create a rule class which extends
DefaultProductEligibilityEntitlementRuleSet.DefaultTagType. Again the name
of your rule class should be in line with the name of your objective tag type
(TagTypeName TagType), to ease development and maintenance, e.g.
PersonalBenefitAllowanceWeeklyDeliveryTagType or
PersonalBenefitAllowanceDailyDeliveryTagType.

For all the inherited rule attributes, use your analysis of your business
requirements to implement rules to return values appropriate to your objective tag
type. Typically you will use one of the values provided from the RulesTagType
code table when implementing the rules for valueType.

Relate each Objective Type to its supported Objective Tag Types

Now that you have created rule classes for your objective types and objective tag
types, you must relate each objective type to its list of supported objective tag
types.

For each objective type rule class that you created, you must now implement its
tagTypes attribute to create a list of instances of the rule classes which represent its
tag types. Typically this list is a <fixedlist> where each member in the list is a
simple <create> expression.

For example, for the PersonalBenefitAllowanceObjectiveType, its implementation
of tagTypes, in pseudo-code, would be:
v Create a list of AbstractTagType, with members:

– Create an instance of PersonalBenefitAllowanceWeeklyDeliveryTagType; and
– Create an instance of PersonalBenefitAllowanceDailyDeliveryTagType.

Relate the Product to its supported Objective Types

Now that you have created rule classes for your product and objective types, you
must relate the product to its list of supported objective tag types. This association
will already be in place if you are using the default eligibility and entitlement rule
set that is automatically created for benefit products by the dynamic product
wizard.

For your product rule class, you must now implement its objectiveTypes attribute
to create a list of instances of the rule classes which represent its objective types.
Typically this list is a <fixedlist> where each member in the list is a simple
<create> expression.

For example, for a product which supports Personal Benefit Allowance and Child
Benefit Allowance objective types, its implementation of objectiveTypes, in
pseudo-code, would be:

34 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v Create a list of AbstractObjectiveType, with members:
– Create an instance of PersonalBenefitAllowanceObjectiveType; and
– Create an instance of ChildBenefitAllowanceObjectiveType.

Write the Case Eligibility/Entitlement Calculation Rule Classes: Now that you
have implemented rule classes to describe the structure of your product, you can
start to implement the rule classes which calculate the eligibility and entitlement
results for a given product delivery case.

For each product period that you are creating, you must create a rule class which
is responsible for calculating the eligibility and entitlement for a case, i.e. which
objectives must be created on the case and their entitlement.

Typically the eligibility and entitlement calculations for your product will be
different across product periods (because it was these differences which led you to
identify multiple product periods in the first place). However, it is likely that large
swathes of the eligibility/entitlement logic are identical between product periods
and you should consider factoring your rule classes so that common logic is
implemented and maintained in a single place, just as you would do in most kinds
of development work.

In a development environment, initially it is recommended that you do just
enough implementation work for eligibility and entitlement calculations so that
you can view your product in a development database and assure yourself that
you can create cases against it and see early eligibility/entitlement results.

You can then return to the non-trivial task of fleshing out your
eligibility/entitlement calculation rules to provide the full logic required by your
business requirements.

You will require the following rule classes:
v one Case rule class responsible for the overall eligibility/entitlement calculations

for a particular case;
v for each Objective Type supported by your product, one Objective Instance rule

class; and
v for each Objective Tag Type supported by each of your Objective Types, one

Objective Tag Instance rule class.

The default eligibility and entitlement rule set created for the benefit product by
the dynamic product wizard will already contain each of these rule classes, but
they should be edited to meet your product requirements prior to product use.

Write the Case rule class

Your rule class to calculate a case's eligibility/entitlement must ultimately extend
from the ProductEligibilityEntitlementRuleSet.AbstractCase interface rule class.
For ease of upgrades, it is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultCase rule class which
provides default implementations. The default eligibility and entitlement rule set
that is automatically created for benefit products by the dynamic product wizard
will already contain a rule class which extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultCase rule class.

Here is a description of the attributes inherited from AbstractCase:

Developing with Eligibility and Entitlement by using Cúram Express Rules 35

Table 6. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractCase

Rule Attribute name Data type Description

productDeliveryCase ProductDeliveryCase The controlling rule object which is
responsible for splicing together the
determination result from the contributions
made by the product period. Passed in
when the instance of AbstractCase is
created.

isEligibleTimeline Timeline of Boolean The varying overall eligibility of the case.

objectiveTimelines List of
AbstractObjectiveTimeline

The objectives created for this case.

Create a rule class which extends
DefaultProductEligibilityEntitlementRuleSet.DefaultCase. The default eligibility
and entitlement rule set that is automatically created for benefit products by the
dynamic product wizard will name the rule class in line with the newly created
product. The default name of the rule class is ProductNameWithBlankSpacesRemoved
Case. If you are creating a new eligibility and entitlement rule set, the rule class
should be named in line with your product, e.g. ProductName Case (the Engine
does not have any technical constraint on the rule class name - rather a good name
for your rule class may make it easier to develop and maintain your rule sets).

The value of productDeliveryCase will be automatically set to be the Engine's rule
object for the overall case. This rule object can be used to access information about
the case, such as its unique identifier.

You must provide an implementation for isEligibleTimeline. The
isEligibleTimeline is created by default within the default eligibility and
entitlement rule set that is automatically created for benefit products by the
dynamic product wizard, but should be edited prior to use in line with your
product requirements. Typically this implementation will be non-trivial (and in fact
its implementation may well be the bulk of the effort in the development of your
product), as it is responsible for ultimately calculating your case's overall eligibility
during the product period, and its full implementation will need to access data
about the case (e.g. using rule objects for evidence recorded on the case) and/or
product-wide data such as rates. The implementation may involve the creation of
many "calculator" rule classes which provide interim calculated results required to
perform the complex calculations dictated by your business requirements for case
eligibility on your product.

In a development environment, you may choose to initially implement a very
simple cut-down version of your eligibility rules, e.g. that the case is eligible
whenever the claimant fits into one of a number of very broad categories, or (even
more simply) that the case is always eligible. Once you have completed the
skeleton implementation of your eligibility rules and checked that cases can be
created against it, then you can return to the much-longer development task of
implementation your full eligibility rules, which will involve the creation of other
rule classes, e.g. which map to your custom evidence types, or which provide
intermediate calculation results.

The inherited implementation of objectiveTimelines returns an empty list (i.e.
your case never has any objectives at all); leave this implementation for now and

36 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

you will return to it once you have created your objective instance and tag instance
classes.

Write the Objective Instance rule classes

Each objective rule object created for your case will be an
AbstractObjectiveTimeline, which is responsible for calculating the periods when
the case is entitled to the objective.

For each type of objective supported by your product (for example, a Personal
Benefit Allowance or a Child Benefit Allowance), you must create a rule class
which must ultimately extend from the
ProductEligibilityEntitlementRuleSet.AbstractObjectiveTimeline interface rule
class. For ease of upgrades, it is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveTimeline rule
class which provides default implementations. This rule class will already have
been created for each type of objective within the default eligibility and entitlement
rule set that is automatically created for benefit products by the dynamic product
wizard, but they should be edited in line with your product requirements prior to
product use.

Here is a description of the attributes inherited from AbstractObjectiveTimeline:

Table 7. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractObjectiveTimeline

Rule Attribute name Data type Description

objectiveType AbstractObjectiveType The type of this objective timeline.

isEntitledTimeline Timeline of Boolean The varying entitlement to this objective.
The value of this timeline is only taken into
account during periods when the case is
eligible.

targetIDTimeline Timeline of Long The varying ID of the target participant
(e.g. Person, Service Supplier, Product
Provider, Employer, etc.) which is targeted
by this objective.

tagTimelines List of
AbstractTagTimeline

The frequencies at which this objective can
be delivered.

relatedReferenceTimelineTimeline of String The varying reference to additional
business-specific information relating to this
objective. The relatedReference attribute
can be used to store information that will
help distinguish the difference between one
instance of a rules objective and another,
which may be important for financial
processing to explain the breakdown of a
payment. The length of this identifier must
be no more than the number of characters
dictated by the
RELATED_REFERENCE_TEXT domain
(which by default is 4000 characters).

description Localizable message A description of this objective instance

For each objective type supported by your product, create a rule class which
extends
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveTimeline. The

Developing with Eligibility and Entitlement by using Cúram Express Rules 37

default eligibility and entitlement rule set that is automatically created for benefit
products by the dynamic product wizard will already contain two rule classes
which extend the
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveTimeline rule
class. These two default rule classes are named
PersonalBenefitAllowanceObjectiveTimeline and
ChildBenefitAllowanceObjectiveTimeline. If you are writing a new rule class,
again the name of your rule class should be in line with the name of your objective
type (ObjectiveTypeName ObjectiveTimeline), to ease development and
maintenance, e.g. PersonalBenefitAllowanceObjectiveTimeline or
ChildBenefitAllowanceObjectiveTimeline.

The inherited implementation of tagTimelines returns an empty list (i.e. your
objective has no supported frequencies at which it can be delivered); leave this
implementation for now and you will return to it once you have created your
objective tag instance rule classes.

Implement the other rule attributes on the rule class. Typically the bulk of the
work is in the implementation of isEntitledTimeline, the complexity of which
depends on your requirements. For some types of objective, the objective is always
attained whenever the case is eligible; for other types of objective, the case is only
entitled to the objective if the circumstances of the case allow it.

Some types of objective will require additional context in order to calculate their
entitlement. For any additional context required, create extra rule attributes to hold
the context. Later when you create instances of your objective rule class, the
<create> expressions will need to pass in the values for these "context" rule
attributes.

Tip: In particular, multiple objectives (i.e. multiple instances of your rule class) will
need some sort of context to distinguish them, e.g. the person to which the
multiple objective relates.

Write the Objective Tag Instance rule classes

Each objective rule object created for your case needs to list its supported tags (as
instances of AbstractTagTimeline which are responsible for calculating the values
at which the objective can be delivered).

For each type of tag supported by each type of objective supported by your
product (for example, a weekly delivery of a Personal Benefit Allowance or a daily
delivery of a Child Benefit Allowance), you must create a rule class which must
ultimately extend from the
ProductEligibilityEntitlementRuleSet.AbstractTagTimeline interface rule class.
For ease of upgrades, it is recommended that your rule class extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultTagTimeline rule class
which provides default implementations. The default eligibility and entitlement
rule set created for benefit products by the dynamic product wizard will already
contain four such rule classes each of which extends the
DefaultProductEligibilityEntitlementRuleSet.DefaultTagTimeline rule class.
These default rule classes should be edited or added to in line with your product
requirements prior to product use.

Here is a description of the attributes inherited from AbstractTagTimeline:

38 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 8. Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractTagTimeline

Rule Attribute name Data type Description

tagType AbstractTagType The type of this tag timeline.

valueTimeline Timeline of Object The varying value of this tag timeline.
When converted to a String, the length of
this value must be no more than the
number of characters dictated by the
RULES_OBJECT_TAG_VALUE domain
(which by default is 1024 characters).

For each tag type supported by your product, create a rule class which extends
DefaultProductEligibilityEntitlementRuleSet. DefaultTagTimeline. Again the
name of your rule class should be in line with the name of your tag type
(TagTypeName TagTimeline), to ease development and maintenance, e.g.
PersonalBenefitAllowanceWeeklyDeliveryTagTimeline or
ChildBenefitAllowanceDailyDeliveryTagTimeline. The four default tag timeline
rule classes that are defined in the default eligibility and entitlement rule set
created for benefit products by the dynamic product wizard are
PersonalBenefitAllowanceDailyDeliveryTagTimeline,
PersonalBenefitAllowanceWeeklyDeliveryTagTimeline,
PersonalBenefitAllowanceMonthlyDeliveryTagTimeline and
ChildBenefitAllowanceDailyDeliveryTagTimeline.

The inherited implementation of tagTimelines returns an empty list; leave this
implementation for now and you will return to it once you have created your
objective tag instance rule classes.

Implement the tagType rule attribute, typically to just <create> an instance of the
appropriate tag type rule class (see “Write the Product Structure Rule Classes” on
page 31).

Implement the valueTimeline rule attribute to calculate the varying value of the
tag. The complexity of the implementation will hinge on the complexity of your
requirements; some objectives have fixed value tags (e.g. the payment value on any
attained objective is identical across cases - the payment amount does not take into
account any circumstances on the case), whereas for other objectives, the amount
to pay for an attained objective varies according to the circumstances of the case
(e.g. reductions in payment amounts due to means tests). It is also possible for the
implementation of a tag's value for one frequency to lean on the calculation for a
related tag for a different frequency (see the example in “Identify the rules that
determine the values at which an objective can be delivered” on page 30).

The implementation of valueTimeline may require that extra context is passed in
when the tag timeline is created. If required, create additional rule attributes to
hold this context. Later when you create instances of your tag rule class, the
<create> expressions will need to pass in the values for these "context" rule
attributes.

Create tag instances from your objective rule classes

Now that you have created rule classes for your objective instances and tag
instances, you must implement how each objective instance will create its tag
instances.

Developing with Eligibility and Entitlement by using Cúram Express Rules 39

The default implementation of tagTimelines inherited from
DefaultProductEligibilityEntitlementRuleSet.DefaultObjectiveTimeline returns
an empty list - i.e. no tags are supported for the objective.

For each objective instance rule class that you created, you must now override and
implement its inherited tagTimelines attribute to create a list of instances of the
rule classes which represent its tag instances. Typically this list is a <fixedlist>
where each member in the list is a simple <create> expression.

For example, for the PersonalBenefitAllowanceObjectiveTimeline rule class, its
implementation of tagTimelines, in pseudo-code, would be:
v Create a list of AbstractTagTimeline, with members:

– Create an instance of PersonalBenefitAllowanceWeeklyDeliveryTagTimeline;
and

– Create an instance of PersonalBenefitAllowanceWeeklyDeliveryTagTimeline.

When creating tags, you will need to pass in any additional context required by
that tag (by specifying values to set in the <create> expressions). In turn, this
additional context may give rise to additional "context" rule attributes being
required on the objective rule class itself.

For example, if the value of an objective's tag depends on total income of the
person targeted by the objective, then the tag instance rule class may require the
person to be set as a context rule attribute; in turn, the objective instance rule class
will need such a rule attribute in order to pass it to the tag instance at creation
time.

Create objective instances from your case rule class

Now that you have created rule classes for your objective instances, you must
implement how the case calculates which objectives are available.

The default implementation of objectiveTimelines inherited from
DefaultProductEligibilityEntitlementRuleSet.DefaultCase returns an empty list
- i.e. the case has no objective instances at all.

For your case rule class that you created, you must now override and implement
its inherited objectiveTimelines attribute to create a list of instances of the rule
classes which represent its objective instances. This attribute will already have been
created within the default eligibility and entitlement rule set that is created for
benefit products by the dynamic product wizard, but it should be edited prior to
product use.

If your product contains only single objectives, your implementation of
objectiveTimelines will typically be a <fixedlist> where each member in the list
is a <create> expression, e.g. (in pseudo-code):
v Create a list of AbstractObjectiveTimeline, with members:

– Create an instance of BasicHouseholdAllowanceObjectiveTimeline, setting
productDeliveryCase = this.productDeliveryCase; and

– Create an instance of ColdWeatherPaymentObjectiveType, setting
productDeliveryCase = this.productDeliveryCase.

40 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

If your product has multiple objective instances of a given type, your
implementation of objectiveTimelines will typically be a <dynamiclist> to create
an objective instance for each object of a particular kind, e.g.
v For each child in the household:

– Create an instance of ChildBenefitAllowanceObjectiveType, setting child =
current child.

Your product may contain a mixture of single objective instances and multiple
objective instances (and indeed many different types of multiple objectives for
different types), in which case you will need to nest the <fixedlist> and
<dynamiclist; creations within a <joinlists> expression.

It may be clearer to factor out the creation of different types of objectives to their
own rule attribute before joining the lists together, e.g.
v Create an attribute called singleObjectiveTimelines, which creates a fixed list of

all the single objective instances for your product;
v Create an attribute called childBenefitAllowanceObjectiveTimelines, which

creates a dynamic list containing one objective instance per child on the case;
v Implement objectiveTimelines to join together the singleObjectiveTimelines

and childBenefitAllowanceObjectiveTimelines lists.

Important: The list of object timelines for your case is a simple list which does not
vary over time; rather, the case's entitlement to each objective is the thing that
varies over time.

You must create an objective instance for any objective which could in theory be
attained at some point in the case lifetime, even if for some or all of the case
lifetime it is not attained.

For example, if a product has an objective type is aimed at paying child benefit for
each child on the case, then at some point those children will each become adults
but possibly remain resident in the household. At that point, the objective for that
person (who was a child, but now an adult) will not longer be attained; but it still
must be listed in the simple list of objective timelines for the case. As such,
typically each person (rather than just each child) in the household should have a
child benefit objective instance created for them; however, for a person who was
already an adult when the case began will never be entitled to that objective.

When creating objective instances, you will need to pass in any additional context
required by that objective instance (by specifying values to set in the <create>
expressions).

For example, if the case requires there to be one objective targeted at each person
in the household, then the objective instance rule class may require the person to
be set as a context rule attribute; when creating the multiple objectives, the
implementation of objectiveTimelines will have to create an objective for each
person in the household, and pass that person to the objective instance so that it
can use that person as its target.

Tip: It can be useful to pass the case rule object's productDeliveryCase value to
objective and tag instance classes, so that they can access its value of caseID and
other data.

Developing with Eligibility and Entitlement by using Cúram Express Rules 41

A note on manipulating Timelines in CER

Your output data from eligibility/entitlement calculations are centered around CER
Timelines. For example, the isEligibleTimeline for the case and the
isEntitledTimeline for your objectives are both timelines of Boolean values.

In general, most of your input data into eligibility/entitlement calculations is
already in timeline format, as populated by the Active Succession Set Rule Object
Converter (see “Active Succession Set Rule Objects” on page 107).

Typically, then, your rules for eligibility/entitlement calculations will generally
transform input timelines into output timelines (via intermediate timelines). CER
contains a number of expressions for manipulating timelines, but given the nature
of eligibility/entitlement calculations, the expressions you should expect to see
most commonly are <timelineoperation> and <intervalvalue>.

Use of other CER expressions for creating timelines is rare, but may be useful:
v to create timeline data from non-timeline data, such as custom entities (as

opposed to custom evidence); and/or
v as "scaffolding" to hard-code timeline data (such as a rate that changes over

time) during the early days of your product's implementation.

Write the Product Periods: For each period in your product, you must create a
product period record and link it to the rule classes you created to:
v describe the product structure; and
v calculate eligibility/entitlement results for cases.

The way you create and link these records differs depending on whether you are
working in a development environment or a running system. A default product
period is automatically inserted for a benefit product that is created via the
dynamic product wizard, and this product period will have been automatically
linked to the rule classes of the default eligibility and entitlement rule set that is
also automatically inserted by the product wizard for the benefit product.

Working in a Development Environment

Create DMX entries for any new rule sets you created for your rule classes (see
section D.5.1. in the Cúram Express Rules Reference Manual).

For each product period, perform the following steps in the custom component:
v Create an entry in a CREOLERuleClassLink.dmx file, which points to the rule class

for your product structure:

Table 9. DMX data for CREOLERuleClassLink for your product structure rule class

Attribute Name Value

creoleRuleClassLinkID A unique ID from your custom key range.

creoleRuleSetID The value of
CREOLERuleSet.creoleRuleSetID you
assigned above for the rule set containing
your product structure rule class.

ruleClassName The unqualified name of your product
structure rule class.

versionNo 1

42 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Important: You must create a separate record for use by each product period,
even if multiple product periods point to the same product structure rule class.

v Create an entry in a CREOLERuleClassLink.dmx file, which points to the rule class
for your case eligibility/entitlement calculations:

Table 10. DMX data for CREOLERuleClassLink for your eligibility/entitlement rule class

Attribute Name Value

creoleRuleClassLinkID A unique ID from your custom key range.

creoleRuleSetID The value of
CREOLERuleSet.creoleRuleSetID you
assigned above for the rule set containing
your eligibility/entitlement rule class.

ruleClassName The unqualified name of your
eligibility/entitlement rule class.

versionNo 1

Important: You must create a separate record for use by each product period,
even if multiple product periods point to the same eligibility/entitlement rule
class.

v Create an entry in a CREOLEProductPeriod.dmx file:

Table 11. DMX data for CREOLEProductPeriod

Attribute Name Value

creoleProductPeriodID A unique ID from your custom key range.

productID The ID of your CER-based product.

startDate The start date of this product period.

If your product has a single period, typically
this start date should be the same as
Product.startDate.

endDate The end of this product period.

If your product has a single period, typically
this end date should be blank.

productStructureRCLID The value of
CREOLERuleClassLink.creoleRuleClassLinkID
you assigned for your product structure rule
class.

decisionRCLID The value of
CREOLERuleClassLink.creoleRuleClassLinkID
you assigned for your case
eligibility/entitlement calculation rule class.

otherKeyDataRCLID Leave blank.

(You will change this later if you implement
key decision factor rules for your product.)

nameID The value of
LocalizableText.localizableTextID you
assigned above.

versionNo 1

See the core data dictionary for a full description of these database columns.

Developing with Eligibility and Entitlement by using Cúram Express Rules 43

Working in a Running System

Publish your rule sets containing your new rule classes.

Start the admin application and navigate to Product Delivery Cases, select your
product, choose Rule Sets and copy the product for edit (if it is not already in
edit).

For each product period in your analysis, perform the following steps:
v Create a product period;
v Set the value of "Product Structure Rule" to be the rule class you created for

your product's structure; and
v Set the value of "Eligibility/Entitlement Rule" to the rule class you created for

the calculation of a case's eligibility/entitlement results for your product.
v (Leave the value of "Key Decision Factors Rule" blank - it is not required for

eligibility/entitlement rules.)

Do not set up any display categories - they are not required for
eligibility/entitlement rules.

Publish your changes to the product.

Choose or Create a Summarizer Strategy: “Displaying a Summary of Entitlement
for a Coverage Period” on page 25 described how the Engine can summarize the
entitlement for a coverage period within a determination.

To use this feature, you must configure your Product to specify a strategy
implementation to use. You must either:
v in development, change your CREOLEProduct.dmx file to populate your product's

detIntSummarizerStrategyType column with the code (from the
DetIntSummarizerStrategy code table) for your chosen strategy implementation;
or

v in a running system, start the admin application and navigate to Product
Delivery Cases, select your product, choose Rule Sets and choose Eligibility
Determination, change "Decision Summary Display Strategy" to be your chosen
strategy implementation.

When choosing a strategy implementation to use, you can either:
v use a strategy implementation included with the Engine (described below); or
v develop your own strategy implementation (described below).

Strategy Implementations Included with the Engine

The Engine includes these implementations which are suitable for most products:

Table 12. Summarizer Strategy Implementations Included with the Engine

Display/code Implementation Class

blank curam.core.sl.infrastructure.assessment.impl.
BlankDeterminationIntervalSummarizerStrategy

Total daily
monetary
entitlement

curam.core.sl.infrastructure.assessment.impl.
TotalDailyMonetaryEntitlementDeterminationIntervalSummarizerStrategy

44 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 12. Summarizer Strategy Implementations Included with the Engine (continued)

Display/code Implementation Class

Total weekly
monetary
entitlement

curam.core.sl.infrastructure.assessment.impl.
TotalMonthlyMonetaryEntitlementDeterminationIntervalSummarizerStrategy

Total monthly
monetary
entitlement

curam.core.sl.infrastructure.assessment.impl.
TotalWeeklyMonetaryEntitlementDeterminationIntervalSummarizerStrategy

See the JavaDoc for the above classes for more details on the behavior of each
strategy implementation.

Developing your own Strategy Implementation

If you have custom requirements not met by the implementations, you may
develop your own strategy implementation(s) for use in your products as follows:
v Add a new entry to the DetIntSummarizerStrategy code table (using custom.ctx

files);
v Create an implementation class which implements the

DeterminationIntervalSummarizerStrategy interface; implement the required
method to return an appropriate summary of the coverage period;

v Bind the code table entry to your implementation, in your custom Guice
Module:

(replacing YOUR_STRATEGY with the constant for your new code table code
and YourDeterminationIntervalSummarizerStrategy with your strategy
implementation class as appropriate)

v Build your application;
v Configure your product to use your new strategy (see instructions above).

Testing
For a complex product created in a development environment, you should create
unit tests for individual parts of your product's eligibility/entitlement rules, using
CER's support for rules testing.

You might consider creating end-to-end unit tests that test full scenarios involving
the creation and activation of evidence, and the creation and activation of product
delivery cases, to test that the overall eligibility and entitlement results are
calculated as expected.

{
// Register your custom determination interval summarizer strategies
final MapBinder<DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry,

DeterminationIntervalSummarizerStrategy>
determinationIntervalSummarizerStrategies = MapBinder

.newMapBinder(binder(),
DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry.class,
DeterminationIntervalSummarizerStrategy.class);

determinationIntervalSummarizerStrategies.addBinding(
DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry.YOUR_STRATEGY).to(

YourDeterminationIntervalSummarizerStrategy.class);
}

Developing with Eligibility and Entitlement by using Cúram Express Rules 45

You might also perform manual testing of the online system to check that your
eligibility/entitlement scenarios are handled as expected.

The Engine will be unable to calculate eligibility/entitlement results for a period in
the case's lifetime if there is no product period covering part of the case's lifetime -
to fix this you must change the product periods configured for your product so
that all cases created have their entire lifetimes covered by exactly one product
period. In particular, if your product allows open-ended cases, then typically the
last product period for your product should be open-ended too (unless you intend
your product to reach its end-of-life soon).

If the Engine detects a missing product period for a particular period in the case's
lifetime, then:
v at determination calculation time, the Engine will:

– store one or more instances of DeterminationProblem in the determination
result (each problem stores a message and a stack trace of the underlying
error, if any); and

– write out the problem to the application logs (according to the setting of the
Cúram Environment Variable curam.creole.log.case.determination.problems); and

v at determination display time, the Engine will display to the case worker an
eligibility result of "Eligibility could not be determined" (as opposed to "Eligible"
or "Not Eligible") for the coverage period within the case.

If there is a runtime error in the calculation of a CER attribute value for
eligibility/entitlement, such as a reference not found (analogous to a
NullPointerException in Java), or a division by zero, or any other calculation
problem, then the Engine will throw an exception. The application logs will
contain details of this exception including its stack trace. For CER calculation
errors, the stack trace can include important information regarding the location
within a CER rule set where the error occurred. To fix this, you will need to debug
and retest your rules.

Calculating and Displaying Key Decision Factors

Introduction
The Engine contains features to calculate and display key decision factors - pieces
of data which were important in arriving at eligibility and entitlement results.

When you design your product, you can choose to output such factors. The
structure of the output data for key decision factors is imposed by the Engine; and
since the structure is fixed, the Engine contains a generic set of screens to display
the key decision factors to case worker users.

Typically, the rules for calculation of key decision factors will "sit on top of" the
rules for calculating a case's eligibility and entitlement. If you follow the best
practice recommendation and layer your rules this way, then you can make
changes to the output of key decision factors for cases while guaranteeing not to
affect any case's underlying eligibility/entitlement results. Data calculated for key
decision factors never affects financial processing or any other processing - the data
is used for display purposes only.

This chapter describes the flow of processing that allows key decision factors to be
displayed to the user. The processing is intentionally described in

46 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

reverse-chronological order; firstly we describe the end results, followed by the
Engine processing that produces those results, before finally describing how the
data was calculated.

This "backwards" perspective will echo how your rules designers will need to
think when designing your product; they will need to start with the end in mind
(namely how case workers will benefit from the additional ability to comprehend a
case's details through the medium of key decision factors).

This chapter is structured as follows:
v How it looks

Describes how key decision factors are displayed to a case worker.
v How it works

Describes how fixed processing by the Engine and custom processing combine
to calculate and display key decision factors.

v How to use it

Describes the steps you will need to follow to implement key decision factors for
your product.

How It Looks
This section describes how key decision factors are displayed to a case worker.

The structure of eligibility and entitlement data is intentionally restrictive; it
contains very basic information such as the name of a key decision factor, the dates
on which its value changes and/or text describing certain events that occurred.

Because the structure of the key decision factor data is fixed by the Engine, the
Engine knows how to display this information for any CER-based case, and so
includes standard screens capable of displaying key decision factors. When you
require to display data outside of this fixed structure, consider implementing
decision details rules instead (see “Calculating and Displaying Decision Details” on
page 61).

Viewing Key Decision Factors Graphically
A graphical view of the key decision factors for a determination is provided via
the 'Graphical View' tab, for a case on a product which has key decision factors
enabled.

A mixture of different types of event are displayed:
v Case events, which are automatically generated by the Engine - e.g. "Case

Started";
v Eligibility/Entitlement events, which are automatically generated by the Engine -

e.g. "Eligible $150 Weekly", "Not Eligible";
v Custom events specific to this product, for changes in a data value, e.g. "Total

Income $50.00 Weekly", "Total Income $60.00 Weekly"; and
v Custom events specific to this product, for important events, e.g. "Client Turned

65: James Smith turned 65 and is no longer eligible.".

The events are displayed with earlier dates on the left and later dates to the right.
A filter is provided to allow the user to restrict the events displayed to those of a
particular type or to narrow the date range.

Developing with Eligibility and Entitlement by using Cúram Express Rules 47

Viewing Key Decision Factors in a List
A list view of key decision factors for a determination is also provided as an
alternative to the graphical view (described in the previous section), for a case on a
product which has key decision factors enabled.

The list displays the events with the latest event shown first (which may be in the
future). The list can be sorted in the standard way, by clicking on the column
headings.

The list displays the date that the event occurred (or is expected to occur, for
future events), the type of event and its text description. For Decision-type events,
the user can click on the action to view the coverage period containing the decision
event.

How It Works
This section describes how fixed processing by the Engine and custom processing
combine to calculate and display key decision factors.

The calculation and display of a determination involves a mixture of:
v fixed processing contributed by the Engine; and
v custom product-specific processing contributed by the implementation of the

product.

Note that it is not mandatory to configure custom key decision factors for your
product periods; any or all of the product periods can opt not to use key decision
factors, and if so no custom key decision factors will be displayed for those
periods.

The Engine follows the following high-level steps to arrive at key decision factors
that can be displayed to a case worker:
v At Determination Calculation time:

– An action occurs which triggers the determination of a case (either an active
or reactive determination);

– The Engine identifies the product periods (configured for the product) that
cover the case's lifetime;

– The Engine uses CER rules (specific to the product) to calculate the custom
key decision factors for each contributing product period;

– The Engine calculates the key decision factors across the lifetime of the case
by "splicing together" the key decision factors from each contributing product
period;

– The Engine stores (on the database) a determination result containing the key
decision factors data (as well as eligibility/entitlement results and decision
details, covered elsewhere in this document).

v At Determination View time:
– A case worker requests to view a determination on a case;
– The Engine retrieves the determination result from the database and

interrogates the determination result to obtain its key decision factors;
- the fixed case and decision factors for the determination, using the

summarizer strategy configured for the product to produce a summary of
the case's entitlement for each decision; and

- the custom key decision factors for the determination (if any).

48 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

The data interfaces and implementation for calculation of key decision factors, and
subsequent display of key decision factors are described in more detail below.

Calculation of Key Decision Factors
The system of interfaces and implementations involved in the calculation of the
key decision factors that form part of a determination result follow a similar
pattern to that for eligibility/entitlement calculations (see “Calculation of Eligibility
and Entitlement” on page 20).

The responsibilities for calculating a case's key decision factors are divided
between fixed implementations provided by the application and custom
implementations for a product (some of which must adhere to interfaces included
with the application).

Sections A and E describe a layer of fixed implementations similar to that of the
eligibility/entitlement calculations, and contribute to calculating and storing the
overall determination result, which includes the key decision factors. Although not
described below, this layer also includes the calculation of contributing product
periods.

The processing described in sections B, C, and D represents a combination of fixed
interfaces and custom product-specific processing that is responsible for
determining the key decisions factors across product periods.

Similar to eligibility/entitlement calculations, section B describes a fixed interface
included with the Engine and sections C and D both describe custom
product-specific processing.

Although not described below, the fixed implementation and fixed interfaces
contributed by the engine that are responsible for retrieving the data from entities,
evidence, and rate tables for eligibility or entitlement calculations are also used by
the custom product-specific processing that is described in section D.

A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object: This
is the single rule object that controls the overall determination for the case,
described in “A) ProductEligibilityEntitlementRuleSet ProductDeliveryCase
rule object” on page 21

B) ProductKeyDataRuleSet AbstractCase rule class: The AbstractCase rule class
acts as the interface between the fixed key decision factor processing provided by
the Engine, and the product-specific rules for the calculation of key decision factors
for a case.

This "interface" rule class ensures that concrete sub-rule-classes have an
implementation for the following rule attribute, which provides the fixed-structure
key decision factors required by the Engine:
v keyDataTimelines - responsible for calculating the named key data items, and

their dates when the key decision factor changes value or undergoes a
significant event.

The Engine-supplied interface rule set has no implementations for this attribute -
rule classes must be written (see below) to provide an implementation for the
business requirements of the product; rather the interface rule class allows the
Engine to communicate with the rule classes by specifying a contract for the data
structures that it requires.

Developing with Eligibility and Entitlement by using Cúram Express Rules 49

C) Custom rule classes for key decision factors: When the Engine calculates key
decision factors for a product period, the Engine first asks the product period
which rule class should be used (which is recorded on the product period as part
of setting up the product).

The rule class specified on the product period must ultimately extend from the
ProductKeyDataRuleSet.AbstractCase interface rule class. For ease of upgrades, it
is recommended that the rule class extends the
DefaultProductKeyDataRuleSet.DefaultCase rule class which provides default
implementations.

The rule class must provide an implementation of keyDataTimelines, which is
where the bulk of the implementation effort for the key decision factor work will
lie.

D) Custom rule classes for calculations: The calculation of the key decision
factors may require complex business recalculation, which may be served by
custom "calculator" rule classes.

Typically the implementation of keyDataTimelines will reuse calculation rules
which you have already implemented for eligibility/entitlement calculations,
although on rare occasions some refactoring of the existing rules may be required
to make the common rules suitable for both eligibility/entitlement and key
decision factor purposes.

The calculations will typically ultimately retrieve (and thus depend on) entity,
evidence or rate data. These dependencies behave in a similar way to those for
eligibility/entitlement calculations (see “E) Custom rule classes for calculations” on
page 22).

E) DeterminationResult: The Determination Result (described in “I)
DeterminationResult” on page 23) also holds the key decision factors for the case,
as determinationKeyDataTimelines.

When splicing together key decision factors across different product periods, the
Engine matches contributions from different product periods by the description of
each key decision factor. For each key decision factor found, the Engine draws
event dates from the different product periods; naturally enough, only the dates
that fall within each product period's effective range are used.

The Engine shows the key decision factors in the order they are listed in the
keyDataTimelines rule attribute value. Typically each product period will define
the same key decision factors, in the same order, but in the rare situation where the
ordering of key decision factors is different across contributing product periods,
then the order is determined by the latest product period to contain that key
decision factor.

Display of Key Decision Factors
The vast majority of data processing for key decision factors occurs at the time
when the determination result was calculated, as described in the previous section.

However, some data processing for key decision factors occurs at the time that the
data is viewed; and this section describes the display-time processing of key
decision factors.

50 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

When a case worker views key decision factors for a determination (whether using
the Graphical View or the List View), then the Engine retrieves the custom key
decision factors stored in the case determination but also automatically adds in:
v case lifetime events; and
v case decision events.

Adding Case Lifetime Events: The Engine automatically adds key decision events
for:
v the case's start date (with the actual start date taking precedence over an

expected start date); and
v the case's end date (if the case has an end date, with the actual end date taking

precedence over an expected end date).

These key decision events are part of the Engine's processing and cannot be
customized.

Adding Case Decision Events: The Engine automatically adds key decision
events for each decision period within a determination. The event shows whether
the case is eligible or not during a decision period, and if eligible shows a
summary of entitlement.

These key decision events are part of the Engine's processing and cannot be
customized.

The Engine uses the Summarizer Strategy configured for the product to calculate
the text to show on the event for the decision period. See “Displaying a Summary
of Entitlement for a Coverage Period” on page 25 for more details.

How to Use It
Most of the high-level processing for key decision factors is fixed logic provided by
the Engine. However, you will have to provide implementations for certain
lower-level logic. In order to do this, you must understand the basic concepts of
key decision factors.

In addition to providing an understanding of these concepts, this section describes
the work you will need to do to complete the key decision factors logic for your
product, as follows:
v Analysis;
v Implementation; and
v Testing.

Note: This section describes the complete work for key decision factors logic;
however, for short-cuts you can take to get your product up-and-running quickly,
see “Incremental Design” on page 176.

Understanding Key Decision Factor Concepts
The Engine has a fixed data structure for key decision factors. Understanding the
structure of this data is critical as you must map your business requirements to the
concepts in this structure. Each case (for a product where key decision factors have
been implemented) will calculate a list of key decision factors when a
determination is stored.

Key decision factors can represent a value which changes over time, e.g. a person's
income. They can also represent key events that happen once over the lifetime of a

Developing with Eligibility and Entitlement by using Cúram Express Rules 51

case, e.g, a person's date of birth. Once-off key events must be explicitly in a
logical fashion that makes sense to a case worker.

Fixed Data Structure for Key Decision Factors: Each key decision factor is an
object with:
v a localizable description (displayed as the name of the key decision factor);
v a value which changes over time such as a person's income (optional); and
v a list of named key events such as a person's date of birth (optional and

described in more detail below).

Typically each key decision factor uses exactly one of these optional features - i.e.
the key decision factor is centered around a value which changes or a list of key
events. It is possible to combine both features if you require. (Technically it is also
possible to use neither feature; however, such a key decision factor would not be
displayed and would be somewhat pointless.)

Explicitly Named Key Events: In contrasts to key decision factors with values
that change over time, certain key events do not represent changes in a single piece
of data, but rather a once-off significant event.

These key events are objects with:
v a localizable description, describing the event, e.g. person's date of birth; and
v the date on which the event occurred.

It is possible to combine a key decision factor that changes over time, e.g. an
employment with earnings that vary over time, and the named events such as
when the employment started and ended. For named events, you should analyze
whether each event always occurs for the key decision factor, or just may occur. For
example, an employment key decision factor will always have a start date but may
or may not have an end date.

Analysis
You must understand the requirements for your product, and analyze how these
requirements broadly map to the Engine's key decision factor/key event concepts
before starting implementation.

Unlike the requirements for eligibility/entitlement, typically requirements for key
decision factors are not enshrined in legislation, but instead are based off informed
predictions of the kinds of information that may be useful to a case worker, when
the case worker is trying to understand a complex case (and perhaps answer
questions about the case from customers.)

As such, producing requirements for your key decision factors is perhaps more art
than science. For a new product, you might consider revisiting your key decision
factor requirements once a product has been live for some time, in light with the
kinds of information that case workers are attempting to understand when they
view determinations. If you layer your requirements and implementation according
to the recommendations, you should be able to implement and deploy changes to
your key decision factor rules without affecting any underlying
eligibility/entitlement calculations.

The following steps should aid your analysis.

52 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Identify which decision factors are "key": For a non-trivial product, the
eligibility/entitlement calculations are likely to be complex, with many layers and
interactions.

Ultimately each of these calculations has a bearing on the overall
eligibility/entitlement result; however, you must decide which of these results are
"key" to aiding a case worker's understanding of a case. You might prepare a
candidate list of key decision factors and discuss them with your business experts
and/or senior end-users.

If you identify too few key decision factors, then case workers might not be able to
readily understand a determination. By contrast, if you identify too many key
decision factors, then the key decision view may become too cluttered for case
workers to easily use. In particular, take care to distinguish candidates for key
decision factor output from requirements for decision details (which are amenable
to more detailed display - see “Calculating and Displaying Decision Details” on
page 61).

For example, let's say you have a product where a household is means tested, by
comparing the total household income against a set of income thresholds.

The total household income is calculated by adding up the total household income
for each person in the household. Moreover, each person can have many
concurrent employments (e.g. a day job, a night job and/or a weekend job) and so
the total income for each person is calculated by adding up the earnings from each
income.

In this example, the following are candidates for key decision factors:
v which income threshold the household falls into;
v the income thresholds themselves (which happen to be constant across all

products - still potentially useful to show to the case worker, though);
v the total household income;
v for each person in the household, the total person income;
v for each income, the earnings for that income, and the dates that the income

started and ended.

An implementation which included all of the above key decision factors could well
be too cluttered to use, so business analysts producing requirements for key
decision factors must choose carefully.

Identify the cardinality and descriptions for your key decision factors: Each
type key decision factor that you have identified will typically fall into one of these
patterns:
v Single key decision factor

Each case has exactly one instance of this key decision factor, e.g. a "total
household income" key decision factor for the case;

v Multiple key decision factor

Each case has a number of instances of this key decision factor, depending on
the case's circumstances, e.g. a "total person income" key decision factor for each
of the people in the case's household.

Note that the Engine does not impose these single/multiple key decision factor
patterns; the creation of key decision factors can be as complex as your business
requirements dictate.

Developing with Eligibility and Entitlement by using Cúram Express Rules 53

For a single key decision factor, the description of the factor can be a fixed piece of
(localized) text, e.g. "Total Household Income".

For a multiple key decision factor, each instance of the factor in a determination
must have a unique name - this uniqueness is required by the Engine and also is
necessary for the case worker to distinguish between multiple instances of the key
decision factor. Thus the description for a multiple key decision factor typically
requires a calculation involving some fixed text and some variable data from the
case, e.g. "Total Person Income for <person-full-name>". Your analysis should
include the calculation requirements for these kinds of descriptions.

Identify the data type for each key decision factor: For each key decision factor
identified, you must analyze whether the key decision factor will display:
v the changes in value of a single piece of data; and/or
v important named events.

Each of these relay events to the case worker, as each change in value of an
important piece of data (such as total household income) is a kind of event in itself
- with the pattern that visually, reporting the new value of the data (such as $100)
is enough information to communicate the event (since text for a named event
such as "The total household income is now $100" could well be overly-wordy).

By contrast, events such as a person being born or dying are not changes in a
single piece of data, and must be explicitly named events.

Implementation
Having analyzed your business requirements, you are now in a position to start
the implementation of your key decision factors for your product.

You are likely to re-use calculation results already implemented for your
eligibility/entitlement calculations, as typically the factors that identify as "key" are
those already part of your eligibility and entitlement logic. As such, the effort
required to implement key decision factors is typically far smaller than that
required for eligibility/entitlement logic calculations.

It is recommended that you implement your key decision factors rule classes in a
rule set separate from your eligibility/entitlement rule set(s), but allow your key
decision factor rule classes to depend on your eligibility/entitlement rule classes
(but not the other way around).

This approach means that you can evolve your key decision factor implementation
in the future without having to retest your eligibility/entitlement implementation;
this can be important since key decision factors are merely "view" data to aid the
case worker, whereas eligibility/entitlement results may affect more critical
business functions such as how much a client is actually paid.

It can be helpful to track the dependencies between your rule sets so that as your
product evolves, you have an insight into how changes in one rule set might affect
other rule sets that depend on it.

For each product period, you must create a rule class which is responsible for
identifying and calculating the key decision factors for the case.

It is possible that your key decision factors are calculated in an identical way
across product periods, in which case you may be able to re-use one case rule class

54 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

for many product periods. Your factoring of common calculated
eligibility/entitlement results may affect how you must factor your case rule
classes for key decision factors.

You will write the following rule classes:
v one case rule class (per product period) to hold the overall identification and

calculation of key decision factors;
v one or more key decision factor rule classes, one for each type key decision

factor supported by your product; and
v zero or more key event rule classes, one for each type of named event supported

by any of your key decision factors.

The sections below detail a step-by-step path to implement your key decision
factors.

Write the Case rule class: Your rule class to identify and calculate key decision
factors for a case must ultimately extend from the
ProductKeyDataRuleSet.AbstractCase interface rule class. For ease of upgrades, it
is recommended that your rule class extends the
DefaultProductKeyDataRuleSet.DefaultCase rule class which provides default
implementations.

Here is a description of the attributes inherited from AbstractCase:

Table 13. Rule attributes inherited from ProductKeyDataRuleSet.AbstractProduct

Rule Attribute name Data type Description

productDeliveryCase ProductDeliveryCase The controlling rule object which is
responsible for splicing together the
determination result from the contributions
made by the product period. Passed in
when the instance of AbstractCase is
created.

keyDataTimelines List of
AbstractKeyDataTimeline

The list of key decision factors for the case.

Create a rule class which extends DefaultProductKeyDataRuleSet.DefaultCase. The
rule class should be named in line with your product, e.g. ProductName
KeyDecisionFactors (the Engine does not have any technical constraint on the rule
class name - rather a good name for your rule class may make it easier to develop
and maintain your rule sets).

The inherited implementation of keyDataTimelines returns an empty list; leave this
implementation for now and you will return to it once you have created your key
decision factor classes.

Write the Key Decision Factor rule classes: For each type of key decision factor
that you have identified, you must create a rule class which must ultimately
extend from the ProductKeyDataRuleSet.AbstractKeyDataTimeline interface rule
class. For ease of upgrades, it is recommended that your rule class extends the
DefaultProductKeyDataRuleSet.DefaultKeyDataTimeline rule class which provides
default implementations.

Here is a description of the attributes inherited from AbstractKeyDataTimeline:

Developing with Eligibility and Entitlement by using Cúram Express Rules 55

Table 14. Rule attributes inherited from ProductKeyDataRuleSet.AbstractKeyDataTimeline

Rule Attribute name Data type Description

description Localizable message The identifying description of this key
decision factor (as displayed to the user)

timeline Timeline of Object The single varying value whose changes
will be reported as events for this key
decision factor.

keyEvents List of
AbstractKeyEvent

The named events for this key decision
factor.

Create a rule class which extends
DefaultProductKeyDataRuleSet.DefaultKeyDataTimeline. The rule class should be
named in line with your key decision factor (KeyDecisionFactorName
KeyDecisionFactor), e.g. TotalHouseholdIncomeKeyDecisionFactor (the Engine does
not have any technical constraint on the rule class name - rather a good name for
your rule class may make it easier to develop and maintain your rule sets).

Implement a meaningful description attribute for your rule class. For a single key
decision factor, a fixed localizable message (typically from a resource file, using
CER's ResourceMessage expression) may suffice, e.g. "Total Household Income".

For a multiple key decision factor, the implementation of the description attribute
will need to have some variable text, e.g. "Total Person Income for
<person-full-name>", typically using CER's <ResourceMessage> expression to
substitute variable text for placeholder in a message from a resource file, e.g. "Total
Person Income for {0}".

Your key decision factor rule class will typically need some context in order to
calculate its events and its description (for key decision factors which support
multiple instances). This context will typically be a rule object which will be passed
in when an instance of your rule class is created (see sections below). You should
identify the context and model rule attribute(s) for the context in your rule class.

For example, if your key decision factor shows the total income for a person, then
the context required may be a rule object for that person, so that your key decision
factor rule class can use that person's data to calculate total income.

Leave the keyEvents with its inherited implementation; you may revisit it later if
required.

The inherited implementation of timeline returns a Timeline with a constant value
(and thus has no change events); if your key decision factor has only named events
(as supplied by the keyEvents attribute), then do not create an implementation for
the timeline attribute.

If your key decision factor does require events for a single varying value, then you
must implement the timeline attribute to obtain that value, typically retrieving an
existing Timeline attribute from another rule class, perhaps creating a rule object
instance based off the context passed in to your key decision factor rule class.

For example, if your key decision factor displays the total income for a person,
then:
v your key decision factor rule class will have a person attribute, of type Person

(another rule class);

56 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v your key decision factor rule class will have a personCalculator attribute, which
creates a PersonCalculator instance (PersonCalculator is another rule class),
passing in the person instance;

v your implementation of the timeline attribute on your key decision rule class
will retrieve the personCalculator.totalIncome rule attribute value (which is
already a Timeline).

Write the Key Event rule classes

For each type of key decision factor that supports named events, you must create a
rule class for each type of event. For example, if your key decision factor describes
an employment, you might write these rule classes:
v EmploymentStartedEvent; and
v EmploymentEndedEvent.

For each type of key event that you have identified (if any), you must create a rule
class which must ultimately extend from the
ProductKeyDataRuleSet.AbstractKeyEvent interface rule class. For ease of
upgrades, it is recommended that your rule class extends the
DefaultProductKeyDataRuleSet.DefaultKeyEvent rule class which provides default
implementations.

Here is a description of the attributes inherited from AbstractKeyEvent:

Table 15. Rule attributes inherited from ProductKeyDataRuleSet.AbstractKeyEvent

Rule Attribute name Data type Description

description Localizable message The description of this key event (as
displayed to the user)

date Date The date on which the event occurred (or is
expected to occur).

Create a rule class which extends DefaultProductKeyDataRuleSet.DefaultKeyEvent.
The rule class should be named in line with your key event (EventName Event), e.g.
EmploymentStartedEvent (the Engine does not have any technical constraint on the
rule class name - rather a good name for your rule class may make it easier to
develop and maintain your rule sets).

Implement a description for your event, which may or may not require context
data to be passed into your rule class, e.g.:
v (no context required) "Employment started"; or
v (age context required) "Customer turned <new age on birthday>".

If the calculation of the date is complex, you may wish to implement a derivation
for the date attribute. Otherwise, the value of date can be set by the calling rules
when implementing the keyEvents rule attribute (see below).

Tip: Events which have a date of null will not be displayed. This can be useful for
optional events such as those for an end date. If you have an
EmploymentEndedEvent which applies only if an employment has an end date, then
you can simply create an EmploymentEndedEvent instance and set its date to the end
date of the employment; if the end date is null (i.e. the employment is ongoing),
the event will not display, but if the employment has an end date recorded then
the event will have a non-null date and will display.

Developing with Eligibility and Entitlement by using Cúram Express Rules 57

This treatment of null dates typically results in more maintainable rule logic that
the alternative approach whereby there is conditional logic governing which event
instances to create.

Relate each Key Decision Factor to its supported Key Events

For each key decision factor rule class, you must consider whether to implement
the keyEvents attribute. The inherited implementation of keyEvents returns an
empty list; if your key decision factor has only events for a single varying value
(as supplied by the timeline attribute), then do not create an implementation for
the keyEvents attribute.

If your key decision factor does require named events, then your implementation
of keyEvents must create a list of event objects. Depending on your
implementation of the key event rule class, the each key event rule object may
require additional context to be passed in when it is created.

For a fixed set of events (e.g. a start event and an end event), your implementation
of keyEvents will typically be a <fixedlist> where each member in the list is a
<create> expression, e.g. (in pseudo-code):
v Create a list of AbstractKeyEvent, with members:

– Create an instance of EmploymentStartedEvent, setting date =
myEmployment.startDate; and

– Create an instance of EmploymentEndedEvent, setting date =
myEmployment.endDate (see tip above about how a null date prevents an event
from being displayed).

For some events, there may be an arbitrary number depend on other conditions,
such as a number of birthdays. For these types of events, you will need to use
other constructs such as <dynamiclist> or <joinlists> to create your list of key
events for the key decision factor.

Relate the Case to its supported Key Decision Factors

You must implement the keyDataTimelines attribute on your case rule object to
return a list of key decision factors for the case.

If your product contains only single key decision factors, your implementation of
keyDataTimelines will typically be a <fixedlist> where each member in the list is
a <create> expression, e.g. (in pseudo-code):
v Create a list of AbstractKeyDataTimeline, with members:

– Create an instance of TotalHouseholdIncomeKeyDecisionFactor, setting
productDeliveryCase be this.productDeliveryCase; and

– Create an instance of ClaimantLifeEvents, setting productDeliveryCase be
this.productDeliveryCase.

If your product has multiple key decision factor instances of a given type, your
implementation of keyDataTimelines will typically be a <dynamiclist> to create a
key decision factor for each object of a particular kind, e.g.:
v For each person in the household:

– Create an instance of PersonIncomeKeyDecisionFactor, setting person =
current person.

58 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Typically your product may contain a mixture of single key decision factors, and
multiple key decision factors (and indeed many different types of multiple key
decision factors), in which case you will need to nest the <fixedlist> and
<dynamiclist; creations within a <joinlists> expression.

It may be clearer to factor out the creation of different types of events to their own
rule attribute before joining the lists together, e.g.:
v Create an attribute called singleKeyDecisionFactors, which creates a fixed list of

all the single key decision factors for your product;
v Create an attribute called personIncomeKeyDecisionFactors, which creates a

dynamic list containing one key decision factor per person on the case;
v Implement keyDataTimelines to join together the singleKeyDecisionFactors and

personIncomeKeyDecisionFactors lists.

Update the Product Periods: For each period in your product, you must modify the
product periods you created for eligibility/entitlement calculations (see “Write the
Product Periods” on page 42) to link each period to your case rule class for key
decision factors.

The way you link these records differs depending on whether you are working in
a development environment or a running system.

Working in a Development Environment

Create DMX entries for any new rule sets you created for your rule classes (see
section D.5.1. in the Cúram Express Rules Reference Manual).

For each product period, perform the following steps in the custom component:
v Create an entry in a CREOLERuleClassLink.dmx file, which points to the rule class

for your case rule class for key decision factors:

Table 16. DMX data for CREOLERuleClassLink for your key decision factors rule class

Attribute Name Value

creoleRuleClassLinkID A unique ID from your custom key range.

creoleRuleSetID The value of
CREOLERuleSet.creoleRuleSetID you
assigned above for the rule set containing
your key decision factors rule class.

ruleClassName The unqualified name of your key decision
factors rule class.

versionNo 1

Important: You must create a separate record for use by each product period,
even if multiple product periods point to the same key decision factors rule
class.

v Update your entry in your CREOLEProductPeriod.dmx file, setting the following
attribute:

Developing with Eligibility and Entitlement by using Cúram Express Rules 59

Table 17. DMX data for CREOLEProductPeriod

Attribute Name Value

otherKeyDataRCLID The value of
CREOLERuleClassLink.creoleRuleClassLinkID
you assigned for your key decision factors
rule class.

Working in a Running System

Publish your rule sets containing your new rule classes.

Start the admin application and navigate to Product Delivery Cases, select your
product, choose Rule Sets and copy the product for edit (if it is not already in
edit).

For each product period, set the value of "Key Decision Factors Rule" to be the rule
class you created for your case's key decision factors.

Publish your changes to the product. Note that if the product has existing cases,
these cases will be reassessed if batch processes are run to reassess all potentially
affected cases, so that the new determination contains key decision factor data. If
you have followed the recommendations regarding the dependencies between your
rule sets, then no eligibility/entitlement changes should result from the
reassessment (and thus no payments for cases will be affected).

Testing
For a complex product created in a development environment, you should create
unit tests for individual parts of your product's key decision factor rules, using
CER's support for rules testing.

You might consider creating end-to-end unit tests that test full scenarios involving
the creation and activation of evidence, and the creation and activation of product
delivery cases, to test that the overall key decision factor results are calculated as
expected.

You might also perform manual testing of the online system to check that your
overall key decision factor scenarios are handled as expected.

The Engine may encounter runtime problems when calculating key decision
factors, due to calculation errors in CER attribute values.

If there is a runtime error in the calculation of a CER attribute value for a key
decision factor, such as a reference not found (analogous to a
NullPointerException in Java), or a division by zero, or any other calculation
problem, then the Engine will throw an exception. The application logs will
contain details of this exception including its stack trace. For CER calculation
errors, the stack trace can include important information regarding the location
within a CER rule set where the error occurred. To fix this, you will need to debug
and retest your rules.

60 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Calculating and Displaying Decision Details

Introduction
The Engine contains features to calculate and display decision details on free-form
screens for displaying the detailed breakdown of eligibility/entitlement
calculations.

When you design your product, you can choose to output such decision details.
Unlike the structure of eligibility/entitlement results and key decision factors, the
structure of the output data for decision details is product-specific and so the
content and layout of the data shown on screens must be defined (using dynamic
UIM screens). The Engine uses these product-specific UIM screens to display the
decision details to case worker users.

Typically, the rules for calculation of decision details will "sit on top of" the rules
for calculating a case's eligibility and entitlement. If you follow the best practice
recommendation and layer your rules this way, then you can make changes to the
output of decision details for cases while guaranteeing not to affect any case's
underlying eligibility/entitlement results. Data calculated for decision details never
affects Cúram financials or other processing - the data is used for display purposes
only.

This chapter describes the flow of processing that allows decision details to be
displayed to the user. The processing is intentionally described in
reverse-chronological order; firstly we describe the end results, followed by the
Engine processing that produces those results, before finally describing how the
data was calculated.

This "backwards" perspective will echo how your rules designers will need to
think when designing your product; they will need to start with the end in mind
(namely how case workers will navigate decision details, which details to display
and how they are laid out on the screen).

This chapter is structured as follows:
v How it looks

Describes how decision details are displayed to a case worker.
v How it works

Describes how fixed processing by the Engine and custom processing combine
to calculate and display decision details.

v How to use it

Describes the steps you will need to follow to implement decision details for
your product.

How It Looks
This section describes how decision details are displayed to a case worker.

Unlike eligibility/entitlement and key decision factor data, the structure of decision
details data is intentionally very flexible; rules designers can include all different
types of information in decision details.

Because the structure of the decision details data is very flexible, the Engine cannot
know by itself how to display this information, and product designers must create

Developing with Eligibility and Entitlement by using Cúram Express Rules 61

dynamic UIM screens which can extract their required data from the decision
details and format it appropriately for a case worker user.

Summary Display Category
A decision details tab is provided for a coverage period within a determination.

The header area of the screen displays summary information about the case (its
start and end dates) and the coverage period selected (its date range and the
eligibility decision during that date range). This header area is supplied
automatically by the Engine.

Below the header area is a strip of tabs, one for each display category configured
for the product. It is recommended that the first tab shown should be an overall
summary of the case's eligibility and entitlement calculation, because:
v This tab is displayed by default when the coverage period is shown; and
v The details from this first tab are also shown when the user expands a coverage

period listed on the overall determination.

The main body of the screen contains "summary" details for the coverage period,
using standard UIM features such as headers, tabular labels and values, and
formatting such as bold text and a total line.

Decision Comparison
The Engine contains features that allow a decision details page to also show data
from the previous case decision within the determination. This feature can be
useful to see how details of the case have changed along the determination.

Sub-screens
The Engine contains features that allow rows of data on a decision details page to
be expanded to show further details on a sub-screen. This feature can be useful to
allow a case worker to drill down into further detail.

Basic Eligibility/entitlement Information
The Engine includes "basic" screens and decision detail rules to display:
v the overall case eligibility; and
v (if eligible) the objectives and tags that the case is entitled to.

This information is too basic to be of genuine use to a case worker, however you
may find it useful to re-use this output in the early days of developing your
product (with a view to removing this "basic" category once you have
implemented custom decision details rules and screens for your product).

The screen definitions and decision details rules included with the application also
serve as examples which may be useful when you come to implement your custom
decision details; and these "basic" artifacts are also used as examples in the
remainder of this chapter.

How It Works
This section describes how fixed processing by the Engine and custom processing
combine to calculate and display decision details.

The calculation and display of a determination involves a mixture of:
v fixed processing contributed by the Engine; and

62 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v custom product-specific processing contributed by you (i.e. the implementation
of your product).

The list of display categories are configured at a product level; in other words, the
strip of display category tabs available for a determination are the same no matter
which product period contributes to a coverage period.

Note that for any display category, it is not mandatory to configure decision details
rules for your product periods; any or all of your product periods can opt not to
use decision details rules for a display category, and if so the Engine will display a
message on the screen to say that no details are available. This situation can arise if
a change in legislation means that a new display category must be introduced for a
product, yet only new (later) product periods need to display details for that
category (because that category of details are simply not relevant to an earlier
period).

For example, let's say that a product is implemented which has a means test
against a household's income. The product is configured to show an "Income"
decision details tab which provides details of how the total income for the
household was derived. However, in 2010 legislation changed so that from 2010
onwards, the means test includes the value of a household's assets as well as total
income. To implement the new legislation, the following steps would be taken:
v a new evidence type would be created to record Asset details for people in a

household;
v the product's configuration would be changed to include a new "Assets" tab;
v the product's lifetime would be divided into two product periods ("pre-2010"

and "2010 onwards"); in other words the existing single product period would be
ended and a new product period created;

v the "2010 onwards" product period would implement decision details rules for
the "Assets" tab, but the "pre-2010" product period would not implement any
new decision details rules, as the household assets have no relevance to that
period on the case (and in any case there would be no historical asset evidence
recorded prior to 2010, because the evidence type is new and did not exist at the
time that older cases were created).

The Engine follows the following high-level steps to arrive at decision details that
can be displayed to a case worker:
v At Determination Calculation time:

– An action occurs which triggers the determination of a case (either an active
or reactive determination);

– The Engine identifies the product periods (configured for the product) that
cover the case's lifetime;

– For each display category configured for the product:
- The Engine uses CER rules (specific to the product) to calculate the

decision details for each contributing product period;
- The Engine calculates the decision details across the lifetime of the case by

"splicing together" the decision details from each contributing product
period;

– The Engine stores (on the database) a determination result containing the
decision details for each display category (as well as eligibility/entitlement
results and key decision factors, covered elsewhere in this document).

v At Determination View time:

Developing with Eligibility and Entitlement by using Cúram Express Rules 63

– A case worker requests to view the details for a display category on a
coverage period within a determination on a case;

– The Engine retrieves the determination result from the database, and extracts
from the determination the decision details for the required category (the
value of which may vary over the lifetime of the case).

– The Engine gets the value of the decision details for the coverage period
required, and creates an XML document containing the decision details data;

– The Engine retrieves the dynamic UIM page configured to display decision
details for the required display category;

– The Engine displays header details for the case and coverage period; and
– The dynamic UIM page extracts data from the XML document and formats

that data to display the body of the decision details.
v If the screen contains expandable rows of data, then there is further processing

at the time a row is expanded:
– A case worker expands a row on a decision details page (which displays

details for a display category on a coverage period within a determination on
a case);

– As above, the Engine retrieves the determination result from the database,
and extracts from the determination the decision details for the required
category. The Engine gets the value of the decision details for the coverage
period required.

– The Engine uses the subscreenName passed in from the screen to identify the
required attribute from the case rule object. The Engine obtains its value, and
then looks through the list of rule objects to match on the businessObjectID
passed in from the screen.

– The Engine creates an XML document for the matching rule object details.
– The top-level dynamic UIM page opens an inner dynamic UIM page; the

inner page receives the XML document, extracts data from it and formats it to
display the expanded details.

The data interfaces and implementation for calculation of decision details, and
subsequent display of decision details are described in more detail below.

Calculation of Decision Details
The system of interfaces and implementations follows a similar pattern to that for
eligibility/entitlement calculations (see “Calculation of Eligibility and Entitlement”
on page 20) and key decision factors “Calculation of Key Decision Factors” on
page 49; however, given the free-form structure of decision details data, there are
some important differences which are described throughout this section.

The responsibilities for calculating a case's decision details are divided between
fixed implementations provided by the application and custom implementations
for a product (some of which must adhere to application-shipped interfaces).

Sections A and G describe a layer of fixed implementations similar to that of the
eligibility/entitlement calculations, and contribute to calculating and storing the
overall determination result, which also holds the decision details. Although not
described below, this layer also includes the calculation of contributing product
periods.

The processing described in sections B, C, D, E, and F represents a layer that
results in rule objects that are created in-memory only and are not stored on the

64 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

database. Similar to eligibility/entitlement calculations, section B and D describes a
fixed interface shipped by the Engine and sections C, E, and F describe custom
product-specific processing.

Although not described below, there is also a final layer similar to that described in
“Calculation of Eligibility and Entitlement” on page 20 that is responsible for the
creation of rule objects that are retrieved by the custom product-specific processing
described in section F.

This section describes the important interfaces and implementations involved in
the calculation of the decision details that form part of a determination result.

A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object: This
is the single rule object that controls the overall determination for the case,
described in “A) ProductEligibilityEntitlementRuleSet ProductDeliveryCase
rule object” on page 21.

B) ProductDecisionDetailsRuleSet AbstractCase rule class: The AbstractCase
rule class acts as the interface between the fixed decision details processing
provided by the Engine, and the product-specific rules for the calculation of
decision details for a case (to provide details for a top-level display category
screen; the interface for sub-screens is described below).

Unlike the interface rule classes for eligibility/entitlement and key decision factors,
the ProductDecisionDetailsRuleSet.AbstractCase interface rule class does not
mandate a fixed data structure for concrete sub-rule-classes to implement. Later we
will see how the Engine "walks" free-form data to calculate decision details for the
case.

C) Custom rule classes for decision details: When the Engine calculates decision
details for a display category on a product period, the Engine first asks the product
period which rule class should be used for that display category (which is
recorded on the product period as part of setting up your product).

The rule class specified on the product period/display category must ultimately
extend from the ProductDecisionDetailsRuleSet.AbstractCase interface rule class.
For ease of upgrades, it is recommended that your rule class extends the
DefaultProductDecisionDetailsRuleSet.DefaultCase rule class which provides
default implementations.

Your rule class will have one or more attributes annotated with Display or
DisplaySubscreen, which is where the bulk of the implementation effort for your
decision details work will lie.

D) ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay rule class:
The AbstractCase rule class acts as the interface between the fixed decision details
processing provided by the Engine, and the product-specific rules for the
calculation of decision details for a case (to provide details for a sub-screen
expanded from within a top-level display category screen).

This "interface" rule class ensures that concrete sub-rule-classes have an
implementation for the following rule attribute:
v businessObjectID - identifies the object being expanded on the screen, so that

details relevant to that object only can be retrieved and displayed.

Developing with Eligibility and Entitlement by using Cúram Express Rules 65

E) Custom rule classes for sub-screen details: When the Engine accumulates
decision details for a determination, the data accumulated may include data to be
included on a sub-screen, i.e. a panel shown when a row on a dynamic UIM screen
is expanded by a user.

Data for sub-screens must be specified by a rule class which must ultimately
extend from the ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay
interface rule class. For ease of upgrades, it is recommended that your rule class
extends the DefaultProductDecisionDetailsRuleSet.DefaultCaseSubscreenDisplay
rule class which provides default implementations.

Your rule class will have one or more attributes annotated with Display, which is
where the bulk of the implementation effort for your decision details work will lie.

F) Custom rule classes for calculations: The calculation of your decision details
(and/or sub-screen data) may require complex business recalculation, which may
be served by custom "calculator" rule classes.

Typically the implementation of your attributes annotated with Display or
DisplaySubscreen will reuse calculation rules which you have already
implemented for eligibility/entitlement calculations, although on rare occasions
some refactoring of your existing rules may be required to make the common rules
suitable for both eligibility/entitlement and decision details purposes.

You may also create new rule classes to accumulate data for display and/or
transform data into a format more suitable for display. Your rule classes will have
one or more attributes annotated with Display, but may also have non-annotated
attributes to hold interim calculation results.

The calculations will typically ultimately retrieve (and thus depend on) entity,
evidence or rate data. These dependencies behave in a similar way to those for
eligibility/entitlement calculations (see “E) Custom rule classes for calculations” on
page 22).

G) DeterminationResult: The Determination Result (described in “I)
DeterminationResult” on page 23) also holds the decision details for the case, as
determinationDecisionDetailsTimelines. determinationDecisionDetailsTimelines
is a map from each display category to a timeline of XML data (which holds the
varying decision detail data for that display category).

Each product period can contribute to the XML data for a particular display
category. If a product period does not have rules configured for a particular
display category, then for the period of time that the product period contributes to
the case's determination, the XML data will be empty and no decision details can
be displayed for that period.

The Engine calculates the XML data for a product period's contribution to a
display category by starting with a rule object created for that product
period/display category, and then "walking" the values on that rule object to
gather XML data as follows:
v The Engine walks all the displayable data to find out all the "change dates" on

which any timeline values change (because the eventual overall XML will
change on each of these change dates). The Engine walks the displayable data in
a recursive fashion as follows:
– Create an instance of the decision details rule class (see “C) Custom rule

classes for decision details” on page 65);

66 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

– Find every attribute on the rule object which is annotated with the Display
annotation (other non- Display attributes are ignored).

– For each Display attribute, processing differs according to the type of the
attribute:
- Timeline

If the value is a timeline, then inspect the timeline value to find the dates
on which it changes value, and contribute these dates to the overall change
dates.

- Rule Object

If the value is another rule object (which has not yet been walked), then
recurse to inspect its Display attributes and add their change dates to the
overall change dates.

- List

If the value is a list of rule objects or Timelines, then each item in the list is
checked to identify change dates to contribute to the overall change dates.

- Other

If the value type is not a Timeline, Rule Object or List then it does not
contribute to the overall change dates.

v For each date on which any display data changes, the Engine creates an XML
document by re-walking the data above, to find the value of each displayable
item on that date (see the example below in “Basic Eligibility/Entitlement
example XML output”). There are special cases for sub-screen data and their
business object IDs to automatically include them.

v The Engine combines the XML documents for each change date into a timeline
of XML documents. This timeline holds all the displayable data for a display
category on the case, and the Engine stores it in the map of display categories to
XML timelines.

Basic Eligibility/Entitlement example XML output: Here is an example of an
XML document for a particular change date, produced by the
AbstractBasicProductDecisionDetailsRuleSet.AbstractBasicCase rule class
included with the Engine (to display basic eligibility/entitlement details):

Developing with Eligibility and Entitlement by using Cúram Express Rules 67

The XML has the following structure:
v A top-level DecisionDetails element; this is a fixed-named element provided by

the Engine;
v A BasicCase element; the name of this element is that of a rule class used to

provide decision details rules (in this example, for the "basic" objectives/tags
output); this element represents a BasicCase rule object and the child elements
represent the point-in-time values for attribute values from the rule object (for
attributes which have been annotated with Display, to command them to be
recorded in this XML);

v A isEligibleTimeline element for the value of the BasicCase.
isEligibleTimeline timeline during this coverage period (in this case "true");
also specifies the domain type of the value so that the dynamic UIM
understands the type of the data and can display or process it appropriately.

Note: The domain type is automatically provided by the Engine by inspecting
the data type of the rule attribute; usually this is sufficient but in some data
conversion scenarios, you may explicitly specify the domain to use within the
Display annotation.

v A displayObjectiveTimelines element for another attribute on BasicCase which
is annotated with Display. This attribute returns a list of rule objects, and so this
XML element has a child Item element (because in this example the list holds a
single rule object - there will be one Item child element for each entry in the list
value).

v The child elements of Item correspond to the attributes of the rule object in the
displayObjectiveTimelines list value (in this case, attributes on the
AbstractBasicProductDecisionDetailsRuleSet.DisplayObjectiveTimeline rule class)

v A displayObjectiveTimelineSubscreens element for an attribute on BasicCase
which is annotated with DisplaySubscreen. This data will be used to allow the

<DecisionDetails>
<BasicCase>

<isEligibleTimeline domain="SVR_BOOLEAN">true</isEligibleTimeline>
<displayObjectiveTimelines>

<Item>
<relatedReferenceTimeline domain="SVR_UNBOUNDED_STRING" />
<index domain="SVR_INT64">0</index>
<objectiveTypeID

domain="SVR_UNBOUNDED_STRING">CREOLE 1</objectiveTypeID>
<targetIDTimeline domain="SVR_INT64">123</targetIDTimeline>
<isEntitledTimeline

domain="SVR_BOOLEAN">true</isEntitledTimeline>
</Item>

</displayObjectiveTimelines>
<displayObjectiveTimelineSubscreens>

<Item>
<displayTagTimelines>

<Item>
<pattern domain="FREQUENCY_PATTERN">000120100</pattern>
<valueTimeline

domain="SVR_UNBOUNDED_STRING">0</valueTimeline>
</Item>

</displayTagTimelines>
<businessObjectID domain="SVR_INT64">0</businessObjectID>

</Item>
</displayObjectiveTimelineSubscreens>

</BasicCase>
</DecisionDetails>

Figure 1. Example XML document for Basic Eligibility/Entitlement data for a coverage period

68 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

user to expand a row on the screen to drill down its detail by displaying a
sub-screen of a data, keyed on the businessObjectID of the required item.

Display of Decision Details
Some data processing for decision details occurs at the time when the
determination result was calculated, as described in the previous section.

However, in contrast to eligibility/entitlement and key decision factors, display of
decision details also involves some considerable processing, described in this
section.

A case worker can choose to view Decision Details in these ways:
v When viewing a determination's list of coverage periods, the user can expand a

row for a coverage period, to display the decision details for the first display
category configured on the product; and/or

v The user can click on the date range shown for a coverage period to display the
full decision details pages, which show a clickable tab for each display category
(with the first display category shown by default).

Either of these actions instructs the Engine to display decision details for a
particular date and display category on a determination for a case. When
instructed, the Engine performs the following steps:
v The Engine looks up the Dynamic UIM page to display, based on the display

category requested. The configuration for which page to display is stored on the
CREOLEProductDecisionDispCat.displayPageName database column.

v The web server loads the Dynamic UIM page, which will specify an appropriate
server interface to call to retrieve data for the screen. The supported server
interfaces are as follows:

Table 18. Supported server interfaces for decision details UIM pages

Server interface Description

CaseDetermination.
viewDecisionDisplayRulesCategoryXML

Retrieves XML data for the top-level
decision details screen for a single coverage
period.

CaseDetermination.
viewDecisionDisplayRuleCategorySubscreenXML

Retrieves XML data for a sub-screen of
decision details screen for a single coverage
period and business object ID (identifying
the sub-screen being expanded).

CaseDetermination.
viewPreviousDecisionDisplayRulesCategoryXML

Retrieves XML data for the case decision
period succeeded by the coverage period
requested. Typically used in addition to
CaseDetermination.viewDecisionDisplayRulesCategoryXML
to provide data for a comparison screen.

CaseDetermination.
viewPreviousDeterminationDecisionDisplayRulesCategoryXML

Retrieves XML data for the same period in
the determination superseded by the
requested determination - reserved for use
by Engine screens to compare
under/over-payment determinations only.

v The Dynamic UIM page calls its server interface(s) to retrieve XML data for the
coverage period.

v The Dynamic UIM page contains XPath-like expressions for querying the XML
data returned. The Dynamic UIM page executes these XPath-like expressions

Developing with Eligibility and Entitlement by using Cúram Express Rules 69

against the XML data obtained from the calls to server interface(s), and obtains
data to use in UIM constructs (such as field values and conditions).

v The web server displays the formatted page of decision details.

Basic Eligibility/Entitlement UIM examples: The Engine includes with a set of
screens to display decision details for basic objective and tag information (see
“Basic Eligibility/entitlement Decision Details” on page 19). This section uses those
screens to illustrate the mechanisms used for displaying decision details.

You should refer to the full Dynamic UIM page definitions and associated
.properties files for the following pages:
v CREOLEDisplayRules_basicCaseDisplay; and
v CREOLEDisplayRules_basicCaseDisplay_objectiveTagSubscreen.

Use of data in a condition

CREOLEDisplayRules_basicCaseDisplay.uim makes use of a Boolean value in a
condition, which governs which cluster is displayed when the case is eligible or
ineligible:
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRulesCategoryXML"

/>
...

<CLUSTER
NUM_COLS="1"
SHOW_LABELS="FALSE"
TITLE="Cluster.Title.Eligibility"

>

<CONDITION>
<IS_FALSE

EXTENDED_PATH=
"/DecisionDetails/BasicCase/isEligibleTimeline"

NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONDITION>

...

The XPath-like syntax of /DecisionDetails/BasicCase/isEligibleTimeline
retrieves the value from the XML returned. In the example XML shown in “Basic
Eligibility/Entitlement example XML output” on page 67, the value retrieved
would be "true" (as a SVR_BOOLEAN) from the xmlData, which enables it to be
used in the condition for the cluster.

Displaying a list of data

CREOLEDisplayRules_basicCaseDisplay.uim makes use of a list to display the list of
objectives to which an eligible case is entitled. The Item[] syntax is used to refer to
an item in the list.
...
<CLUSTER

NUM_COLS="1"
TITLE="Cluster.Title.Entitlement"

>
<LIST>

70 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

<DETAILS_ROW>
...

</DETAILS_ROW>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.ObejctiveTypeID"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/objectiveTypeID"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>

<FIELD
DOMAIN="SVR_BOOLEAN"
LABEL="Field.Label.Entitled"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/isEntitledTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>

<FIELD
DOMAIN="SVR_INT64"
LABEL="Field.Label.Target"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/targetIDTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.RelatedReference"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/relatedReferenceTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>
</LIST>

</CLUSTER>
...

Developing with Eligibility and Entitlement by using Cúram Express Rules 71

Connecting a top-level screen to a sub-screen

CREOLEDisplayRules_basicCaseDisplay.uim allows each objective in its list to be
expanded to show makes use of a list to display the list of objectives to which an
eligible case is entitled. The Item[] syntax is used to refer to an item in the list.
This is the top-level, or "outer" screen in the example:
<CLUSTER

NUM_COLS="1"
TITLE="Cluster.Title.Entitlement"

>
<LIST>

<DETAILS_ROW>
<INLINE_PAGE PAGE_ID=

"CREOLEDisplayRules_basicCaseDisplay_objectiveTagSubscreen">
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="determinationID"

/>
<TARGET

NAME="PAGE"
PROPERTY="determinationID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="displayDate"

/>
<TARGET

NAME="PAGE"
PROPERTY="displayDate"

/>
</CONNECT>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/index"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
<TARGET

NAME="PAGE"
PROPERTY="businessObjectID"

/>
</CONNECT>

</INLINE_PAGE>
</DETAILS_ROW>
...

</LIST>
</CLUSTER>

This is the "inner" screen,
CREOLEDisplayRules_basicCaseDisplay_objectiveTagSubscreen:
<PAGE_PARAMETER NAME="determinationID"/>

<PAGE_PARAMETER NAME="displayDate"/>
<PAGE_PARAMETER NAME="businessObjectID"/>

The inner screen receives the parameters from the outer screen.

72 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

<SERVER_INTERFACE
CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRuleCategorySubscreenXML"

/>

The inner screen calls the
CaseDetermination.viewDecisionDisplayRuleCategorySubscreenXML bean to get
details for the businessObjectID passed. The bean returns XML for the required
"Item".
<CLUSTER NUM_COLS="1">

<LIST>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.Value"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/Item/displayTagTimelines/Item[]/valueTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>
...

The inner screen contains XPath-like expressions to query the sub-screen XML to
populate its sublist.

How to Use It
Most of the high-level processing for decision details is fixed logic provided by the
Engine. However, you will have to provide implementations for certain lower-level
logic. In order to do this, you must understand the basic concepts of decision
details.

Note that for eligibility/entitlement and key decision factor work, you needed only
to provide server-side logic, because the Engine contains fixed screens to display
eligibility/entitlement and key decision factor output. By contrast, you must
implement not only server-side logic but also Dynamic UIM screens for your
decision details logic, and ensure that these implementations integrate correctly.

In addition to providing an understanding of decision details, this section describes
the work you will need to do to complete the decision details logic for your
product, as follows:
v Analysis;
v Implementation; and
v Testing.

Note: This section describes the complete work for decision details logic; however,
for short-cuts you can take to get your product up-and-running quickly, see
“Incremental Design” on page 176.

Understanding Decision Details Concepts
The Engine contains these high-level concepts:
v Top-level screen

Developing with Eligibility and Entitlement by using Cúram Express Rules 73

A screen of decision details that is displayed when the user views a display
category for a coverage period, showing a point-in-time view of the details of a
case.

v Sub-screen

A panel of details which is displayed when the user expands a row on a
top-level screen (or parent sub-screen).

v Case Rule Class

The rule class configured by a product period on a display category, responsible
for identifying all the data to be made available for display.

v Display attribute

A rule attribute annotated with the Display annotation, indicating that its data
should be made available in decision details XML;

v DisplaySubscreen attribute

A rule attribute on a Case Rule Class annotated with the DisplaySubscreen
annotation, indicating that it returns a list of rule objects which can be queried
for display on an expanded sub-screen.

v businessObjectID

A unique numerical identifier for data displayed when a row of data is
expanded to show a sub-screen.

Analysis
You must understand the requirements for your product, and analyze how these
requirements broadly map to the Engine's decision details concepts before starting
implementation.

Unlike the requirements for eligibility/entitlement, typically requirements for
decision details are not enshrined in legislation, but instead are based off informed
predictions of the kinds of information that may be useful to a case worker, when
the case worker is trying to understand a complex case (and perhaps answer
questions about the case from customers.)

As such, producing requirements for your decision details is perhaps more art than
science (in a similar way as for key decision factors; however, requirements for
decision details tend to be more complex than those for key decision factors, given
the flexibility of the Engine's support for decision details and the wealth of data
items that are candidates for display).

For a new product, you might consider revisiting your decision details
requirements once a product has been live for some time, in light with the kinds of
information that case workers are attempting to understand when they view
determinations. If you layer your requirements and implementation according to
the recommendations, you should be able to implement and deploy changes to
your decision details rules without affecting any underlying eligibility/entitlement
calculations.

The following steps should aid your analysis.

Identify the Display Categories: You must identify and name your display
categories, and consider the order in which the categories will be displayed to a
case worker.

Recall that the first category will be displayed by default when the user is
presented with a row of tabs, and moreover the first category will also be used
when the user expands a coverage period row when viewing details of a

74 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

determination. It is recommended that you design your first display category to
show overall "summary" details of the case's eligibility and entitlement
calculations.

Sketch out the Screens: For anything other than the most trivial of screens, it can
be helpful to sketch out an example of the data to be shown on each of your
display category screens.

For each display category that you have identified, sketch out an example of the
screen with some realistic data laid out appropriately, giving particular attention
to:
v whether any expandable sub-screens are required to display further details on

any data; and indeed whether the sub-screens themselves require further
sub-screens (possibly creating separate sketches if warranted by the complexity
of the sub-screens);

v any data which is only to be displayed if a particular condition is met (and
possibly create a separate sketch for how the screen should look if this condition
is not met); and/or

v any non-standard layout such as bold characters, total lines, etc.

Map displayed data to eligibility/entitlement data: For each data item displayed
on your screen examples (and any data item used as a condition), you must
identify where the data will come from.

Some data may be sourced from existing data used or derived during
eligibility/entitlement calculations. Other data may need further transformation
before being suitable for display.

For example, your rules for eligibility may state that, under certain circumstances,
the household must be means-tested in order to determine eligibility (whereas
under other circumstances, the household must fulfill other conditions to be
eligible, but those conditions do not include a means-test).

You may require to display a "Means test" item on your decision details screen
with values "Passed", "Failed" and "Not applicable". To populate this item, you
may need a calculation specific to decision details to translate the condition of
whether or not a means test is required, and if so whether it passed. This
calculated "means test status" value is probably of no relevance to your underlying
eligibility/entitlement rules and thus will require implementing specifically to
support your decision details screen.

It may be helpful to keep track of which data for your screens is already available
directly from eligibility/entitlement rules vs. which data requires screen-specific
calculations.

Identify keys for sub-screens: For any expandable sub-screens, you must identify
a numerical key (businessObjectID) that can be used to uniquely identify the row
being expanded (and thus also uniquely identifies the sub-screen to display for the
row).

Identify comparison data: Each of your screens will show data from a coverage
period within a determination. However it also possible for a top-level screen to
display additional data from the previous case decision.

Developing with Eligibility and Entitlement by using Cúram Express Rules 75

For each top-level screen, you must identify whether (in addition to data from the
"current" coverage period), the top-level screen will also display data from the
previous case decision period (if any). Typically most top-level screens do not
display comparison data.

Implementation
Having analyzed your business requirements, you are now in a position to start
the implementation of your decision details for your product.

You are likely to re-use some of the calculation results already implemented for
your eligibility/entitlement calculations, as some decision details are already part
of your eligibility and entitlement logic. Other decision details may require
additional calculations to make them suitable for display.

It is recommended that you implement your decision details rule classes in a rule
set separate from your eligibility/entitlement rule set(s), but allow your decision
details rule classes to depend on your eligibility/entitlement rule classes (but not
the other way around).

This approach means that you can evolve your decision details implementation in
the future without having to retest your eligibility/entitlement implementation;
this can be important since key decision details are merely "view" data to aid the
case worker, whereas eligibility/entitlement results may affect more critical
business functions such as how much a client is actually paid.

It can be helpful to track the dependencies between your rule sets so that as your
product evolves, you have an insight into how changes in one rule set might affect
other rule sets that depend on it.

For each product period and display category, you must create:
v a rule class which is responsible for identifying and calculating the decision

details for the case; and
v a dynamic UIM page which is responsible for retrieving the details and

formatting them for display to a case worker.

It is possible that your decision details are calculated in an identical way across
product periods, in which case you may be able to re-use one case rule class for
many product periods. Your factoring of common calculated eligibility/entitlement
results may affect how you must factor your case rule classes for decision details.

You may also create an arbitrary number of rule classes to model the data for
display and/or provide intermediate calculations for decision details data. The
flexibility of decision details data means that there are no fixed data structures to
adhere to (unlike the steps for implementing eligibility/entitlement and key
decision factor rules).

The sections below detail a step-by-step path to implement your decision details.

Write the Case rule class: Your rule class to identify and calculate decision details
for a particular display category on a case must ultimately extend from the
ProductDecisionDetailsRuleSet.AbstractCase interface rule class. For ease of
upgrades, it is recommended that your rule class extends the
DefaultProductDecisionDetailsRuleSet.DefaultCase rule class which provides
default implementations.

Here is a description of the attributes inherited from AbstractCase:

76 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 19. Rule attributes inherited from ProductDecisionDetailsRuleSet.AbstractCase

Rule Attribute name Data type Description

productDeliveryCase ProductDeliveryCase The controlling rule object which is
responsible for splicing together the
determination result from the contributions
made by the product period. Passed in
when the instance of AbstractCase is
created.

Create a rule class which extends DefaultProductKeyDataRuleSet.DefaultCase. The
rule class should be named in line with your product and display category, e.g.
ProductNameDisplayCategoryName (the Engine does not have any technical
constraint on the rule class name - rather a good name for your rule class may
make it easier to develop and maintain your rule sets).

The inherited implementation from DefaultCase means that you have a valid rule
class for use with decision details, but as yet your rule class will not gather any
useful data for display.

Implement attributes to return top-level screen data: You must add new Display
attributes to your case rule class to identify data that must be made available for
display.

For calculated data which is already implemented via eligibility/entitlement
calculations, you should implement an attribute to obtain this data. Typically you
will use CER's <create> expression to create an instance of the
eligibility/entitlement rule object (specifying the productDeliveryCase value passed
in), and then use CER's <reference> expression to obtain data from the
eligibility/entitlement rule object. The eligibility/entitlement rule object will tend
to be required by many Display attributes and can be created in its own rule
attribute which is not annotated with Display.

For data which requires display-specific calculations, then you must implement
these calculations. Typically any intermediate steps in these calculations are not
required for display, and so any attributes you implement for intermediate-only
steps should not be annotated with Display. You may also create your own
display-specific rule classes which contain a mixture of Display/non-Display rule
attributes.

For a list of data items, you will typically use CER's <dynamiclist> expression to
transform a list of data into a list of "wrapper" rule objects, where each rule object
has annotated attributes which identify which values to display and which provide
any display-specific calculations.

For example, you may require a summary display category to show the following:
v The name of the claimant;
v The number of people in the household; and
v A list of assets owned by the claimant.

You identify that all these details are available by manipulation of data already
used in eligibility/entitlement calculations, and so your decision details need to
create an instance of your eligibility/entitlement rule class (as is typically the case).

Developing with Eligibility and Entitlement by using Cúram Express Rules 77

The name of the claimant can be obtained by navigating to the person rule object
already retrieved by your eligibility/entitlement rules, and so create a
claimantName Display attribute on your case rule object, which navigates the
eligibility/entitlement rules to obtain the required data.

The number of people in the household is not directly relevant to
eligibility/entitlement rules, so you implement a householdCount Display attribute
which retrieves the list of household members from your eligibility/entitlement
rules and then provides display-specific processing to count the number of items in
the list.

To display the list of assets, you implement a rule class named AssetDisplay with
the responsibility for display each asset. You implement an assets rule attribute on
your case rule class which retrieves the eligibility/entitlement Asset instances and
for each one creates an AssetDisplay instance, passing in the eligibility/entitlement
Asset instance.

In pseudo-code, your case rule class ends up containing rule attributes like this:
v eligibilityEntitlementCase (not annotated with Display):

– Create an instance of the eligibility/entitlement rule class for the product,
specifying the value of productDeliveryCase

v claimantName (annotated with Display):
– Retrieve the value of personName from the value of claimant from the value of

eligibilityEntitlementCase worked out above (or, in a more Java-like
notation, eligibilityEntitlementCase.claimant.personName)

v householdCount (annotated with Display):
– Retrieve the value of householdMembers from the value of

eligibilityEntitlementCase worked out above; and
– Count the number of items in the householdMembers list.

v assets (annotated with Display):
– Retrieve the value of assets from the value of eligibilityEntitlementCase

worked out above.
– For each asset, create an instance of AssetDisplay, passing in the current

asset.
– Return a list of AssetDisplay instances.

Tip: To aid parallel development of dynamic UIM screens while rules are being
developed, initially you can create your Display attributes with dummy
implementations which return fixed values; the real attribute implementations can
then be developed while another developer creates the Dynamic UIM screens and
tests them against the dummy rule attribute implementations.

Implement attributes and rule classes for sub-screen data: If your top-level
screen allows rows to be expanded to show sub-screens, then you must create an
attribute on your case rule class that returns a list of rule objects and annotate that
attribute with the DisplaySubscreen annotation. This annotation allows the data to
be searched by the Engine when a user expands a row of data. It is recommended
that you name your attribute datatype Subscreens .

The rule objects returned in the list from your DisplaySubscreen attribute must
ultimately extend the
ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay rule class shipped
by the Engine. For ease of upgrades, it is recommended that your rule class

78 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

extends the DefaultProductDecisionDetailsRuleSet.DefaultCaseSubscreenDisplay
rule class which provides default implementations.

Here is a description of the attributes inherited from
AbstractCaseSubscreenDisplay:

Table 20. Rule attributes inherited from
ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay

Rule Attribute name Data type Description

businessObjectID Number Identifier of the row being expanded (must
be unique amongst all sibling rows).

Create a rule class which extends
DefaultProductDecisionDetailsRuleSet.DefaultCaseSubscreenDisplay rule. It is
recommended that you name your rule class Datatype Subscreen, in line with the
attribute you created above.

Typically, instances of your rule class will be constructed passing some underlying
eligibility/entitlement rule object to be displayed on the sub-screen. You must
provide an implementation of businessObjectID on your sub-screen rule class, and
typically this implementation will refer to some identifier on the underlying
eligibility/entitlement rule object.

The implementation of the attribute on your case rule class will typically use CER's
<dynamiclist> expression to create an instance of your rule class to wrap some
eligibility/entitlement rule object.

For example, let's say that the AssetDisplay rule class in the previous section is
used to populate a list of assets on the summary decision details screen, and that
furthermore we want the user to be able to expand each asset to see further details
such as purchase date and a list of valuations for that asset.

You would write the following:
v A ValuationDisplay rule class, with the following attributes:

– valuation (the underlying eligibility/entitlement rule class), not annotated;
– valuationAmount, annotated with Display, which retrieves the

valuationAmount value from the underlying valuation;
v An AssetSubscreen rule class, extending

DefaultProductDecisionDetailsRuleSet.DefaultCaseSubscreenDisplay, with the
following attributes:
– asset (the underlying eligibility/entitlement rule class), not annotated;
– businessObjectID, not annotated, which retrieves the assetID from the

underlying asset;
– purchaseDate, annotated with Display, which retrieves the purchaseDate from

the underlying asset;
– valuations, annotated with Display, which retrieves the underlying

valuations for the asset and for each one creates a ValuationDisplay to wrap
it;

v An assetSubscreens attribute on your case rule object, annotated with
DisplaySubscreen, which retrieves all the assets on the case and for each one
creates an AssetSubscreen to wrap it.

Developing with Eligibility and Entitlement by using Cúram Express Rules 79

It is possible that your top-level screen allows multiple types of expansion (i.e.
your top-level screen shows multiple lists, each of which may be expanded). For
each type of expansion, you must create separate DisplaySubscreen attributes in
your case rule class.

It is also possible that your sub-screens also allow further drill down into
sub-screens. In this situation, all data for the lower sub-screens still needs to be
returned by a DisplaySubscreen attribute on your case rule class.

Tip: CER's <joinlists> expression can sometimes be useful to aggregate lists of
lists into a single list in such a situation.

Write the Dynamic UIM screens: For each top-level screen and sub-screen, you
must write a Dynamic UIM file and associated .properties file, and then store
these files on the database.

Top-level screens

For each top-level screen, write UIM including the following:
v Accept these page parameters:

<PAGE_PARAMETER NAME="determinationID"/>
<PAGE_PARAMETER NAME="displayDate"/>

v Call the standard interface to retrieve XML data for a display category for a
coverage period, and connect the parameters required by the call:
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRulesCategoryXML"

/>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="determinationID"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$determinationID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="displayDate"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$date"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$categoryRef"

/>
</CONNECT>

80 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v Decide on a "category reference" for your display category (which will be used
later when configuration your product's display categories). Create a
.properties entry for the CategoryRef of the display category:
CategoryRef=MY_CATEGORY_REF

v If your top-level screen requires data from the previous decision period to
compare to, then write a call to perform additional retrievals and connect the
parameters:
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY_PREV"
OPERATION="viewPreviousDecisionDisplayRulesCategoryXML"

/>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="determinationID"

/>
<TARGET

NAME="DISPLAY_PREV"
PROPERTY="key$determinationID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="displayDate"

/>
<TARGET

NAME="DISPLAY_PREV"
PROPERTY="key$date"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"

/>
<TARGET

NAME="DISPLAY_PREV"
PROPERTY="key$categoryRef"

/>
</CONNECT>

v Write custom UIM to query the xmlData returned from the server call(s) via
XPath-like expressions, and lay out this data on the screen. (This step is typically
where the bulk of your screen implementation effort will lie.)

v If the screen allows the expansion of rows to show sub-screens, write UIM to
connect to your sub-screen.

See the screen CREOLEDisplayRules_basicCaseDisplay.uim included with the
Engine for a full example of a decision details top-level screen (including
connection to a sub-screen).

Sub-Screens

For each sub-screen, write UIM including the following:
v Accept these page parameters:

<PAGE_PARAMETER NAME="determinationID"/>
<PAGE_PARAMETER NAME="displayDate"/>
<PAGE_PARAMETER NAME="businessObjectID"/>

Developing with Eligibility and Entitlement by using Cúram Express Rules 81

v Call the standard interface to retrieve XML data for a business object within a
display category for a coverage period, and connect the parameters required by
the call:
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRuleCategorySubscreenXML"

/>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="determinationID"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$determinationID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="displayDate"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$date"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$categoryRef"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="businessObjectID"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$businessObjectID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="SubscreenName"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$subscreenName"

/>
</CONNECT>

v Create a .properties entry for the CategoryRef of the display category, and the
SubscreenName (which is the name of the attribute on the case rule object which
is annotated with DisplaySubscreen):
CategoryRef=MY_CATEGORY_REF
SubscreenName=myCaseRuleAttributeWithDisplaySubscreenAnnotation

82 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v Write custom UIM to query the xmlData returned from the server call via
XPath-like expressions, and lay out this data on the screen. (This step is typically
where the bulk of your screen implementation effort will lie.)

v If the screen allows the expansion of rows to show further sub-screens, write
UIM to connect to your sub-screen.

See the screen CREOLEDisplayRules_basicCaseDisplay_objectiveTagSubscreen.uim
included with the Engine for a full example of a decision details sub-screen.

Storing your screens

Refer to the Cúram Web Client Reference Manual for more details.

Configure the Product: For each display category identified for your product, you
must create a display category record and link your product period(s) to it.

The way you create these records differs depending on whether you are working
in a development environment or a running system.

Working in a Development Environment

Create DMX entries for any new rule sets you created for your rule classes (see
section D.5.1. in the Cúram Express Rules Reference Manual).

For each display category, perform the following steps in the custom component:
v Create an entry in a LocalizableText.dmx file with the following attributes (to

point to the name of your display category):

Table 21. DMX data for LocalizableText

Attribute Name Value

localizableTextID A unique ID from your custom key range.

richTextInd 0

versionNo 1

v Create an entry in a TextTranslation.dmx file with the following attributes (to
name your display category in your default locale):

Table 22. DMX data for TextTranslation

Attribute Name Value

textTranslationID A unique ID from your custom key range.

localizableTextID
The value of
LocalizableText.localizableTextID you
assigned above.

localeCode Your default locale code, e.g. "en".

v Create an entry in a CREOLEProductDecisionDispCat.dmx file with the following
attributes:

Table 23. DMX data for CREOLEProductDecisionDispCat

Attribute Name Value

creoleProductDecisionDispCatID A unique ID from your custom key range.

Developing with Eligibility and Entitlement by using Cúram Express Rules 83

Table 23. DMX data for CREOLEProductDecisionDispCat (continued)

Attribute Name Value

categoryRef
The category reference you assigned to your
display category (and used in your UIM
.properties files).

displayOrder The placement(Thus the display category
with the lowest displayOrder value for the
product will be displayed first (and also
displayed when a coverage period row is
expanded).)of this display category amongst
those for the same product.

displayPageName The name of your Dynamic UIM page that
you created for this display category.

nameID The value of
LocalizableText.localizableTextID you
assigned above.

productID The ID of your CER-based product.

versionNo 1

(Thus the display category with the lowest
displayOrder value for the product will be
displayed first (and also displayed when a
coverage period row is expanded).)

For each product period, you must decide whether the product period will support
display of decision details for your display category.

For each product period that supports your display category, perform the
following steps in the custom component to link your product period to your
display category:
v Create an entry in a CREOLERuleClassLink.dmx file, which points to the rule class

for your case rule class for decision details:

Table 24. DMX data for CREOLERuleClassLink

Attribute Name Value

creoleRuleClassLinkID A unique ID from your custom key range.

creoleRuleSetID The value of
CREOLERuleSet.creoleRuleSetID you
assigned above for the rule set containing
your decision details rule class.

ruleClassName The unqualified name of your decision
details rule class.

versionNo 1

Important: You must create a separate record for use by each product period,
even if multiple product periods point to the same decision details rule class.

v Create an entry in a CREOLEProductPeriodDispCat.dmx file with the following
attributes:

84 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 25. DMX data for CREOLEProductPeriodDispCat

Attribute Name Value

creoleProductPeriodDispCatID A unique ID from your custom key range.

creoleProductPeriodID The ID of your product period.

creoleProductDecisionDispCatID The value of
CREOLEProductDecisionDispCat.
creoleProductDecisionDispCatID you
assigned above.

decisionDetailsRCLID The value of
CREOLERuleClassLink.creoleRuleClassLinkID
you assigned above.

versionNo 1

See the core data dictionary for a full description of these database columns.

Working in a Running System

Publish your rule sets containing your new rule classes.

Start the admin application and navigate to Product Delivery Cases, select your
product, choose Rule Sets and copy the product for edit (if it is not already in
edit).

Click on "Display Categories", and for each display category in your analysis,
perform the following steps:
v Create a new display category;
v Set the value of "Name" to be the name of the display category in the user's

locale;
v Set the value of "Display Order" to be the placement of this display category

amongst those for the same product;
v Set the value of "Display Page" to be the placement of this display category

amongst those for the same product;
v Set the value of "Display Order" to be the name of your Dynamic UIM page that

you created for this display category; and
v Set the value of "Category Reference" to be the category reference you assigned

to your display category (and used in your UIM .properties files).

Click on "Product Periods" and for each product period perform the following
steps:
v For each display category that the product period must support, choose

"Associate Decision Details Rule...";
v Choose the Display Category; and
v Search for your case rule class that you created for the display category.

Publish your changes to the product.

Testing
For a complex product created in a development environment, you should create
unit tests for individual parts of your product's decision details rules, using CER's
support for rules testing.

Developing with Eligibility and Entitlement by using Cúram Express Rules 85

You might consider creating end-to-end unit tests that test full scenarios involving
the creation and activation of evidence, and the creation and activation of product
delivery cases, to test that the overall decision details results are calculated as
expected.

You might also perform manual testing of the online system to check that your
overall decision details scenarios are handled as expected. This step is particularly
important for decision details, as the implementation of decision details involves
custom screens (unlike the display of eligibility/entitlement and key decision factor
results, which use screens included with the Engine).

It is particularly important to ensure that the XPath-like expressions in your
Dynamic UIM screens matches the structure of the XML data produced by the
Engine when it creates a determination; the structure of the XML data is in turn
mandated by the annotations on your case rule object for the product
period/display category.

Tip: In a development environment, it can be useful to set breakpoints on the
CaseDetermination facade method(s) called from your Dynamic UIM pages, so that
you can inspect the XML returned. In a situation where a screen value is failing to
display as intended, it can be useful to see if:
v the value is present in the returned XML, in which case the error most likely lies

with your XPath-like expression in the Dynamic UIM; or
v The value is not present in the returned XML, in which case the error most

likely lies with the annotations in your rule classes for decision details.

Note that it is possible for the XML returned from the server to contain data which
is not used on any decision details screen. Under rare circumstances, it is possible
for a case worker to view a determination, shown as a number of coverage
periods, with the decision details for those coverage periods seeming (to the case
worker) to appear as identical. In this situation, it is possible that the Engine is
splitting the determination into coverage periods based on some data in the XML
which is not shown to the user. You should take care to ensure that there is no
such extraneous data in your XML - i.e. that all Display attributes do in fact
appear on one or more decision detail screens or subscreens.

The Engine may encounter runtime problems when calculating decision details for
a particular display category, due to calculation errors in CER attribute values.

If there is a runtime error in the calculation of a CER attribute value for a display
category, such as a reference not found (analogous to a NullPointerException in
Java), or a division by zero, or any other calculation problem, then the Engine will
throw an exception. The application logs will contain details of this exception
including its stack trace. For CER calculation errors, the stack trace can include
important information regarding the location within a CER rule set where the error
occurred. To fix this, you will need to debug and retest your rules.

Understanding Rule Object Converters and Propagators

Introduction
Cúram eligibility and entitlement processing relies on CER to calculate
determination results based on details of the case, evidence recorded against the
case and stand-alone data such as personal details and rates. CER is able to access

86 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

such data via the use of rule object converters, which are responsible for retrieving
data from business tables and converting that data into rule objects that can be
used by CER.

Cúram's eligibility and entitlement processing also relies on the Dependency
Manager to track the data that a determination result depends on, and for the
Dependency Manager to request a reassessment whenever such data changes. The
Engine contains a number of rule object propagators which are responsible for
listening for changes in data which could affect calculations, and for informing the
Dependency Manager that such data has changed.

Typically, for each type of data that is used in determination calculations, there is a
corresponding converter and propagator pair which complement each other; the
converter retrieves data of that type when requested by CER calculations while the
propagator listens for changes to that data of that type.

For some of these converter/propagator pairs, there are configuration options to
set exactly which business data will be converted/propagated; and where there are
such configuration options, both the converter and the propagator use the same
underlying configuration data.

This chapter describes in details how the rule object converters and propagators
work and how you can configure them for your business needs.

An Initial Assessment Example
This section walks through an example of how business data on the database is
converted to CER rule objects throughout the lifecycle of a product and case and
how changes in that data are propagated to the Dependency Manager.

The example follows these steps:
v A system administrator creates and publishes rule set information for a Product;
v A system administrator creates and publishes a new Rate Table;
v A case worker registers a Person;
v A case worker creates a new Case for that Person;
v A case worker adds an additional member to the Case;
v A case worker captures and activates some Income evidence; and
v A case worker activates the Case.

As these steps progress, we will see how data from various parts of the system is
converted into CER rule objects.

Propagation processing (to inform the Dependency Manager of changes) occurs
later in the case lifecycle when changes of circumstances occur (see “Reassessment
- Handling Changes in Circumstance” on page 158).

A System Administrator Creates and Publishes Rule Set
Information for a Product
Before any kind of eligibility and entitlement processing can occur for a Product,
that Product must first be created and rule set information for that Product
published. For details on how a Product is built, see the see the How to Build a
Product guide.

Developing with Eligibility and Entitlement by using Cúram Express Rules 87

In this example, the Product is for a Sickness Benefit. The system administrator
sets up the new Product details, associates rule set information to the Product, and
submits the rule set information for publication.

When the rule set information is published, rows are written to a number of
database tables, and in particular the data from the database tables listed here will
be required later, during the calculation of each case's determination result:
v CREOLEProductPeriod;
v CREOLEProductPeriodDispCat; and
v CREOLERuleClassLink.

Important: These database tables are configured to be converted and propagated
by the Entity converter and propagator respectively (see “Entity Rule Objects” on
page 97).

The configuration is included by the application in the .../EJBServer/components/
core/data/initial/blob/EntityPropagatorConfiguration.xml file.

This configuration is critical to the correct operation the Engine, and must not be
modified or removed by customers.

Note that the data on the CREOLEProductDecisionDispCat database table is not
required by rules processing and is not present in the configuration included in the
application.

Later, during the calculation of a case's determination result, the Entity converter
will populate rule object instances of these rule classes from the
ProductEligibilityEntitlementRuleSet rule set:
v ProductPeriod;
v ProductPeriodDisplayCategory; and
v RuleClassLink.

Important: The rule ProductEligibilityEntitlementRuleSet rule set provided by
the application is critical to the correct operation of Cúram Eligibility and
Entitlement, and must not be modified or removed by customers.

A System Administrator Creates and Publishes a New Rate Table
The rules for the new Sickness Benefit require a household's total income to be
tested against a maximum threshold (i.e. if the total household income exceeds this
threshold, then the case is not eligible).

This threshold will vary over time (as policy makers decide from time to time), so
rather than hard-code the threshold into rules, the rule set designer has required
that the threshold be stored in a new "Income Limits" rate table. The rates for this
year and next year have already been decided.

The administrator creates the new rate table including an effective-dated change
when this year's limit will increase to next year's limit.

When finished, the administrator adds the new rate table to the configuration for
the Rate Rule Object Propagator (see “Rate Rule Objects” on page 95), and chooses
to "Apply Changes" to the new rates.

The system is now configured to create rule objects for the cells in the new Income
Limits rate table, and so creates a CER rule object (of class RateRuleSet.RateCell)

88 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

for each distinct cell in the new rate table. CER stores these new rule objects on its
database tables, for later retrieval during the calculation of a case's determination
result.

The income threshold rate varies over time, and so the valueTimeline in the rule
object reflects both this year's and next year's rate.

A Case Worker Registers a Person
An unmarried father applies for Sickness Benefit. Before his claim can be
registered, the case worker user must register the father as a person on the system.

When the system registers the father, a row is inserted onto the Person database
table.

The Entity Rule Object Propagator (see “Entity Rule Objects” on page 97) is
configured to listen for changes to the Person database table, because that table is
mapped to a rule class (ParticipantEntitiesRuleSet.Person), and so the Entity
Rule Object Propagator informs the Dependency Manager that data that could
potentially affect calculations has changed.

In this situation, the Dependency Manager identifies that the new data for the
father does not affect any existing calculations and thus takes no further action.

A Case Worker Creates a New Case for that Person
Now that the father has been registered, the case worker goes on to register a
Sickness Benefit case for the father.

When the system registers the case, it writes a row to each of these database tables:
v CaseHeader; and
v ProductDelivery.

Later, during case determination, the data on these rows will be converted to a
ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object by the
Product Delivery Rule Object Converter (see “Product Delivery Rule Objects” on
page 92). This rule object will be used to calculate the determination result for the
case.

When the system registers the case, it also records the father as a member of the
case, by writing a row to the CaseParticipantRole database table. Later, during case
determination, the Entity Rule Object Converter will convert the data on this row
to a CaseEntitiesRuleSet.CaseParticipantRole rule object for the father's role on
the case.

At this point we now have:
v RateCell rule objects stored on CER's database tables rule objects for the new

rate table; and
v business data stored on Cúram's application database tables, ready to be

converted into CER rule objects during later processing:
– product data;
– non-case business data (personal details); and
– case-specific data (product delivery/case details and case participant role

details).

Developing with Eligibility and Entitlement by using Cúram Express Rules 89

A Case Worker Adds an Additional Member to the Case
The father has a daughter who must be added to the case. The case worker
registers the daughter on the system and adds her to the case.

The system creates additional rows on Person and CaseParticipantRole, and as
before these rows are ready to be converted to rule objects during case
determination processing later.

A Case Worker Captures and Activates Some Income Evidence
The rules for Sickness Benefit rely on calculating the total income for a household,
and comparing that total income to a predetermined threshold.

The total income for the household can vary over time (as can the threshold,
shown earlier as a rate table). In order that the system can calculate the total
income (later), a record of the father's varying income must be stored on the
system.

The case worker captures the history of the father's income since the start of the
case, and the system stores the income data using evidence (see Designing Cúram
Evidence Solutions).

The father has received pay rises over the lifetime of the income, and so a number
of income records are stored within the same evidence succession set. Each
evidence record bears the income effective from a particular date (i.e. the date of
the pay rise).

While the income evidence is being recorded, each evidence record is "in edit", and
so generally is not available to case determination calculations (i.e. would not be
converted into rule objects by the active evidence converters). For eligibility and
entitlement processing, rule objects represent the "best known truth" about
real-world data, and while the evidence is in-edit, it has not yet become "truth", so
to speak.

After all the income evidence has been captured and verified, the case worker
chooses to activate the evidence, at which point its data becomes part of the
system's "best known truth". Later, during case determination, evidence in the
"active" state is converted into rule objects so that the evidence data can be used in
CER's calculation of the determination result.

Later, during case determination, CER will make a request for the rule object for
the father's income. The Active Succession Set Rule Object Converter will retrieve
all the active evidence versions for the father's income (which form a single
"succession set" of evidence) and create a single rule object representing the father's
income changing over time. The rule object created has:
v static values for non-changing details regarding the Income (e.g. its owning

caseParticipantRoleID and its startDate, which cannot vary over time); and
v timeline values for details which may change over time (e.g. its amount).

At this point we have all the data required in order to calculate the case's eligibility
and entitlement (but no such calculation has yet occurred for this case).

A Case Worker Activates the Case
The members of the case and the case evidence have now been recorded, and so
the case worker progresses the case through its approval and activation steps (see
the Cúram Integrated Case Management Guide).

90 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

When the case is activated, the system assesses the case. The system:
v searches for the ProductDeliveryCase rule object for the case, matching on its

caseID (in this example, search for a caseID value of 1234). The Product Delivery
Rule Object Converter (see “Product Delivery Rule Objects” on page 92) reads
the CaseHeader and ProductDelivery rows for caseID 1234 and forms a
ProductDeliveryCase rule object which is returned to the Engine;

v requests the value of the determinationResult attribute value on the
ProductDeliveryCase rule object, which causes CER to perform calculations in
order to calculate the requested value. During the calculation, there are
calculation rules which require data for the:
– Product

Data regarding the structure of the product (e.g. the product periods which
make up the product) is retrieved by the Entity Rule Object Converter and
converted into CER rule objects;

– Personal Details

Data from stand-alone entities such as personal details are also retrieved by
the Entity Rule Object Converter;

– Rates

Rule objects for rates are retrieved directly from CER's database tables for
stored rule objects; and

– Evidence

Data for evidence is retrieved by the Active Succession Set Rule Object
Converter and converted into CER rule objects.

v gathers dependencies by analyzing the kinds of data retrieved by CER (above).
These dependencies are then passed to the Dependency Manager for storage, so
that there is now a record of which data the case's determination result depends
on. The record of these dependencies will be checked whenever data (such as
personal details or evidence) changes, so that the case can be automatically
reassessed.

v stores the varying determination result on the CREOLECaseDetermination and
CREOLECaseDeterminationData database tables, and stores the point-in-time
financial decisions on the CaseDecision, CaseDecisionObjective and
CaseDecisionObjectiveTag database tables (see “How Determinations Are
Stored” on page 134).

Note: CER does not store on the database any of the rule objects populated by rule
object converters. The rule objects are brought into memory as required and are
released when no longer required in memory.

The Framework for Converters and Propagators
The application maintains a registry of converter and propagators that allow
application components to contribute to rule object conversion and rule object
propagation processing.

At runtime, the application invokes the appropriate converter or propagator
implementation from amongst those registered.

Some converters and propagators have fixed behavior, whereas others have
configurable behavior. Typically each type of data is handled by a
converter/propagator pair, which are responsible for managing their own
configuration.

Developing with Eligibility and Entitlement by using Cúram Express Rules 91

Important: The application will validate that each rule class is mapped at most
once by the data configurations for a particular converter/propagator.

Do not attempt to use the same rule class in data configurations across different
converter/propagator implementations.

The following types of rule objects are handled by the converters and propagators
included with the application:
v Product Delivery Rule Objects;
v Rate Rule Objects;
v Entity Rule Objects;
v Active Succession Set Rule Objects; and
v Active Evidence Row Rule Objects.

Important: Some other application components also contribute their own rule
object converters and propagators targeted at their own functional needs.

These other rule object converters and propagators are not suitable for
eligibility/entitlement processing are so are not listed in this guide.

The sections below cover:
v rule objects for use with eligibility and entitlement processing;
v data configuration problems;
v data access points;
v logging; and
v supported domain types.

Rule Objects for Use with Eligibility and Entitlement
Processing

This section describes the types of rule objects which can be used with eligibility
and entitlement processing.

The Engine includes a number of rule object converters which are responsible for
reading data from the database and populating rule objects so that CER can access
their data in calculations.

The Engine also includes a number of rule object propagators which are
responsible for listening for changes in data and notifying the Dependency
Manager that data has changed, so that the Dependency Manager can request the
Engine to reassess cases which may be affected by the data changes.

Product Delivery Rule Objects

Overview: The Product Delivery Rule Object Converter is responsible for
populating the rule object for a product delivery case for a CER-based product.
The Product Delivery Rule Object Propagator is responsible for detecting when
changes in data occur that would affect the data populated on the case rule object
and for interacting with the Dependency Manager.

Note: Any product delivery case for a product which is configured to use Cúram
Rules is ignored by this converter and propagator.

92 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Configuration: The behavior of the propagator can be configured via the
"Reassessment Strategy" option on each CER-based product. See “Propagation
Processing” below.

Conversion Processing: The details of a CER-based product delivery case are
converted to a ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule
object. This rule object contains a calculated attribute determinationResult which
has the responsibility of calculating the overall determination result for the case
(see “A) ProductEligibilityEntitlementRuleSet ProductDeliveryCase rule object”
on page 21).

The rule object will be converted on demand whenever assessment processing
requires it. For case assessment determinations (see “Assessment Determinations”
on page 17), the Engine will analyze which input values were accessed by CER
during the calculation of the determination result and record dependencies in the
Dependency Manager. In particular, the determination result calculation will access
the case's start and end dates (both actual dates and expected dates), and the
dependencies recorded on these dates gives rise to CER's ability to automatically
recalculate the determination result when these dates change.

The following case-level data items are used to populate the attributes on the rule
object:
v from the CaseHeader database row:

– caseID;
– concernRoleID;
– integratedCaseID;
– startDate;
– endDate;
– expectedStartDate; and
– expectedEndDate; and

v from the ProductDelivery database row:
– productID.

Precedents Identified: Access to Product Delivery Rule Objects during CER
calculations does not give rise to any precedents being identified.

Product Delivery Rule Objects are intended to be used to calculate determination
results only.

Propagation Processing: Whenever the CaseHeader or ProductDelivery data
changes for a CER-based product delivery, the propagator requests the
ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object for the
case and manipulates it in memory.

For a product which has its reassessment strategy set to "Do not reassess closed
cases", then:
v when a product delivery case for the product is closed, then the propagator

removes the rule object in memory and also deletes all dependency records for
the case's determination result, to prevent automatic reassessment of the case;
and

v when a product delivery case for the product is re-opened and subsequently
re-activated, then the Engine will calculate the case's determination result and

Developing with Eligibility and Entitlement by using Cúram Express Rules 93

will also build back up the dependency records for the case's determination
result, to allow automatic reassessment of the case if data changes in the future.

For a product which has its reassessment strategy set to "Automatically reassess all
cases", then no such processing occurs and the continuing presence of the
dependency records in the Dependency Manager while a case is closed means that
the case will continue to be reassessed due to data changes even if it is closed.

See “Reassessment Strategy” on page 189 for details of the processing that occurs if
an administrator chooses to change the reassessment strategy for an existing
product that has product delivery cases created against it.

Example: A CER-based product is set up in the system with a reassessment
strategy set of "Do not reassess closed cases".

A case worker registers a new product delivery case for the product, with
concernRoleID 2345, and an actual start date of 1st January 2001, but with no
expected or actual end date (i.e. an open-ended case). When the case is activated,
the Engine requests the rule object for the case, and CER invokes the Product
Delivery Rule Object Converter to convert the case data into the required CER rule
object. The Engine requests the rule object's determinationResult and also requests
CER to determine the data dependencies for the calculation. The Engine passes
these dependencies to the Dependency Manager for storage.

Some time later, a user maintains the case and enters an expected end date of 31st
December 2001. The Entity Rule Object Propagator notifies the Dependency
Manager that a CaseHeader row has changed, and the Dependency Manager
identifies that the case requires reassessment. The Engine reassesses the case, and
when it requests the rule object for the case the Product Delivery Rule Object
Converter retrieves the latest data for the case and forms a rule object that has its
expected end date set. The Engine gets the determination result from the rule
object, which now takes into account the expected end date. The Engine detects
that the determination result has changed (due to the expected end date now set)
and stores the new determination.

The case comes to a natural end and is closed by the case worker. The Product
Delivery Rule Object Propagator removes the dependency records for the case's
determination result (because the product is set not to reassess closed cases).

Later, new evidence comes to light which requires the case to be re-opened. When
the case worker re-activates the case, the Product Delivery Rule Object Propagator
triggers the Engine to reassess the case to build back up the dependency records
for the case's determination result. The Engine finds that there is no change in the
case's determination result since it was last assessed and so does not store a new
determination. The case worker records and activates the changes in evidence, and
the Active Succession Set Rule Object Propagator notifies the Dependency Manager
that evidence on the case has changed. The Dependency Manager identifies that
the case requires reassessment and triggers the Engine to reassess the case, which
will now take into account the recently-activated changes in evidence. The Engine
finds that the determination result has changed and stores a new determination.

94 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Rate Rule Objects

Overview: The Rate Rule Object Propagator is responsible for the creation,
maintenance and removal of rate cell rule objects for nominated rate tables. In
contrast to the other propagators, this propagator stores rule objects on CER's
database tables.

The Engine contributes a rate expression to CER (see “rate” on page 204) which
can be used to retrieve a rule object populated by the Rate Rule Object Converter.

Configuration: This propagator accepts configurations which adhere to the
following structure:
v propagator type must be "ROPT2006" (the code for 'Rate' from the

RuleObjectPropagatorType code table); and
v each rate table to be propagated must be listed in a ratetable element with a

type matching the rate table's type code.

Configurations are cumulative, i.e. there may be many configurations of type
"ROPT2006", and if a rate table's code is present in any of those configurations
then the rate table will be propagated; otherwise, the rate table will be ignored.

The following type of configuration problem will be detected by the Rate Rule
Object Converter:
v Rate table type code not specified in the ratetable element.

Any configuration problems detected will be processed according to “Data
Configuration Problems” on page 129.

Conversion Processing: There is no converter for rate data - CER rule objects for
rates are read directly from CER's database tables when retrieved during CER
calculations.

Precedents Identified: If Rate Rule Objects are accessed during a CER calculation,
and the CER utility is used to identify precedents, then internal IDs for the rate
values on the CER rule objects will be identified directly by CER.

See the Cúram Express Rules Reference Manual.

Propagation Processing: This propagator creates CER rule objects for rate data,
which are stored by CER on its database tables.

In contrast to other propagators, rate data is not propagated incrementally. This is
because typically a user may want to change several rate tables before applying all
the changes in one go, at which point the system will identify all the cases
affected.

As such, rates are only propagated during initial/full propagation (as for the other
propagators), or when the user explicitly chooses to apply rate changes to CER
products. When any of these propagation triggers occur, the system will:
v read the configurations for the Rate Rule Object Propagator (i.e. those of type

"ROPT2006");
v read all the rate cells for the configured rate tables;
v identify each rate cell's varying value over the history of the rate table (ignoring

any range data);

Developing with Eligibility and Entitlement by using Cúram Express Rules 95

v for each rate cell's varying value, create or update the corresponding RateCell
rule object;

v remove any RateCell rule objects for rate cells which have been removed; and
v for any rates which have been created, updated or removed, inform the

Dependency Manager of the changes in data so that the Dependency Manager
can identify which cases require reassessment. Dependencies on rate data are
stored at the Attribute Value level (i.e. per rate cell).

Important: Only rate cells which are in top-level rows and columns are
propagated. Any rate cell which belongs to a sub-row and/or sub-column is
ignored.

Only the value of a rate cell is used during propagation. Any min or max range
data for the rate cells is ignored during propagation.

For more information on rate tables, see "Implementing Rate Tables" in the Cúram
Integrated Case Management Configuration Guide.

Each rate cell will only be valid as far back as its earliest rate header record. Before
this date, the timeline for the rate's varying value will be defaulted to zero.

Example: Let's say that a user creates a new rate table named "Income Limits",
with a single column named "Maximum Allowable Limit" and a single row named
"Sickness Benefit". Furthermore, the user specifies that the initial rate for this single
column/row is 10,000 valid from 1st January 2000, rising to 12,000 effective 1st
January 2001 (until further notice).

The administrator configures the Rate Rule Object Propagator to propagate the
new "Income Limits" rate table, and then chooses the "Apply Changes" option for
rate tables.

The Rate Rule Object Propagator will create a single RateCell rule object with a
valueTimeline populated as follows:
v Beginning of time - 31st December 1999: 0 (the default value for rates for periods

before the rate comes into effect);
v 1st January 2000 - 31st December 2000: 10,000; and
v 1st January 2001 - End of time: 12,000.

A case is registered and assessed, and the calculation of the determination result
involves the use of the “rate” on page 204 expression to retrieve the "Maximum
Allowable Limit" and "Sickness Benefit" rate timelines.

The Engine invokes the CER utility to identify these dependencies (which are
stored using the Dependency Manager):

Table 26. Example Dependency Storage for Rate Rule Objects

Dependent Precedent

Case 453's Entitlement depends on Attribute 'valueTimeline' on rule object ID
'23423456' (RateRuleSet.RateCell)

Case 453's Entitlement depends on Attribute 'valueTimeline' on rule object ID
'9879872342' (RateRuleSet.RateCell)

96 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Entity Rule Objects

Overview: The Entity Rule Object Converter is responsible for converting a
generic database row into a CER rule object. You should use this converter to
populate CER rule objects from your CRUD-style entity data.

Important: You should not use the Entity Rule Object Converter to populate rule
objects from:
v Rate tables

See “Rate Rule Objects” on page 95 instead; or
v Evidence

See “Active Succession Set Rule Objects” on page 107 instead.

The Entity Rule Object Propagator is responsible for listening for database writes
that occur in the application's processing and for notifying the Dependency
Manager that data for entity rule objects has changed.

Configuration: The converter and propagator share a common set of
configuration data, and accept configurations which adhere to the following
structure:
v propagator type must be "ROPT2003" (the code for 'General CRUD entity' from

the RuleObjectPropagatorType code table);
v each entity to be converted or propagated must be listed in a table element with

a name exactly matching the database table's name, as per the application
model;

v each propagation target must be listed as a ruleset element (within the table
element), specifying the name of the rule set to target and optionally the rule
class (if the name of the rule class differs from that of the database table);

v each table element may optionally specify a column/value combination which
identifies the row as "canceled"; any row on the table which has this
column/value combination will not be propagated - this feature allows
physically and logically deleted rows to behave the same (i.e. to cause the Entity
Rule Object Converter to not populate a rule object where the underlying
database row is marked as logically deleted); and

v each ruleset element may optionally specify a filter element to specify a
custom filter class which determines whether each row should be included or
excluded from the Entity Rule Object Converter and Propagator. The filter
element must specify the name of the filter implementation, and may include a
filterconfig element to provide filter configuration specific to the filter
implementation. The Engine includes an EntityAttributePropagationFilter
which provides a simple ANT-like filtering mechanism based on include and
exclude elements.

Configurations are cumulative, i.e. there may be many configurations of type
"ROPT2003", and if an entity is present in any of those configurations then the
entity will be converted and propagated; otherwise, the entity will be ignored.

Note: Any database tables which are on the "exclude" list (see “Propagation
Processing” on page 101) cannot be propagated (and will be ignored).

Tip: You are free to create your own rule classes to match database entities whose
data you require in CER rules. However, you should first check whether existing

Developing with Eligibility and Entitlement by using Cúram Express Rules 97

rule classes are already suitable for your needs - while it is possible to convert each
database row to many different rule classes, this flexibility comes with a potential
maintenance cost for your rule sets.

In particular, the application includes configurations to convert and propagate data
which is particularly often used in eligibility/entitlement processing to rule classes
included with the Engine in these rule sets:
v ParticipantEntitiesRuleSet; and
v CaseEntitiesRuleSet.

You should consider reusing these rule classes when creating your own rule sets,
in order to avoid maintenance overhead for your rule sets.

When you create your own rule classes for propagated data, it is recommended
that you:
v implement a meaningful calculation of the description rule attribute (which can

be useful for debugging); but
v do not implement any other calculated attributes on the rule class (in order to

promote re-use of your rule classes across products).

If you require to map all rows from a database table to one rule class, but only the
non-canceled rows to a different rule class, then you should create separate table
elements which name the same database table, but only specify the canceledValue
and statusColumn attributes on one of the table elements. Similarly, if you require
different filters for different rule classes, create separate table elements which
name the same database table.

The following types of configuration problems will be detected by the Entity Rule
Object Converter/Propagator processing:
v Entity name not specified in the table element;
v The modeled database table with the specified name could not be found;
v The modeled database table does not have a single-field primary key;
v The modeled database table is propagated to a rule class which does not contain

an attribute corresponding to the primary key of the rule class.
v A rule class is targeted by more than one source entity;
v The filter class specified for a filter is invalid; and
v The name or value is missing when using the

EntityAttributePropagationFilter.

Any configuration problems detected will be processed according to “Data
Configuration Problems” on page 129.

Conversion Processing: When a database row is converted to a rule object, then
the values of the database columns are used to map to identically-named rule
attributes on the rule object. Any database column without a corresponding rule
attribute is ignored. The key column for the database table must have a
corresponding rule attribute, as this rule attribute will be used to identify the rule
object.

Rows from a database table may only be converted if the database table has been
modeled to have a primary key which contains a single column, with a data type
supported by the converter (see “Supported Domain Types” on page 133). If a
database table has no primary key, or has a primary key made up of more than

98 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

one column, then any attempt to use that database table in this converter's
configuration will result in a warning being logged and the configuration for the
database table will be ignored.

Restrictions on Access

In your CER rule sets you will use CER's <readall>/<match> expression to access
rule objects converted from entity data.

You may only specify a retrievedattribute which matches a database column on
the underlying database row used to populate the CER rule object. The data type
of the attribute must be Number or String.

If you attempt to specify a retrievedattribute to be the name of an attribute
which is calculated by CER, or which is of a data type other than Number or String,
then the Entity Rule Object Converter will throw a runtime exception when the
CER <readall>/<match> expression is executed.

Do not attempt to search for a retrievedattribute passing a value which would
be stored as a NULL by the application's Data Access Layer. No rule objects will be
found for such values, e.g. for a unique identifier value of 0 or an empty string.

You may specify the ruleset and ruleclass for the <readall> expression to be a
rule class mapped by the data configuration. If you attempt to specify a rule class
which is not directly mapped (e.g. a base rule class that you have created from
which your concrete rule classes inherit) then no rule objects will be found.

Important: You can use <readall> without a <match> to retrieve all rule objects
converted from the entity, but you should do so with care, because:
v there may be a large number of instances of rule objects for that entity; and/or
v the dependent will be recalculated every time a new row is stored for that entity

or an existing row removed.

A <readall> without a <match> is likely to useful only to convert rule objects from
a "control" entity which holds only a small number of rows and it is expected that
additions to or removals from those control rows should cause dependents to be
recalculated.

Precedents Identified: If Entity Rule Objects are accessed during a CER
calculation, and the CER utility is used to identify precedents, then the following
precedents will be identified:

Developing with Eligibility and Entitlement by using Cúram Express Rules 99

Table 27. Precedents Identified for Entity Rule Objects

Name When Identified Trigger for Recalculation

Entity Row
Identifies any entity row for which:

v a search was executed against
the row's primary key
(regardless of whether a row
with that primary key value was
found); and/or

v one or more attribute values
were accessed for the rule object
populated data from the entity
row with that primary key
value.

The precedent ID refers to the
name of the entity, the name of the
entity's primary key field and the
primary key value sought.

A precedent change item for the
entity row will be written to a
precedent change set if:

v any data on the entity row
changes;

v a new entity row is inserted
onto the database(This precedent
change caters for an edge case
whereby previously a CER
expression had sought a row
matching a primary key value,
but none was found; but now a
new row matching that primary
key value is being inserted.);
and/or

v an existing entity row is
removed from the database.

'readall' search
Identifies any searches to retrieve
all Entity Rule Objects for a given
rule class.

The precedent ID refers to the
name of the rule class sought by
the readall expression.

A precedent change item for the
rule class will be written to a
precedent change set if:

v a new entity row is inserted into
the database;

v an existing entity row is
removed from the database;

v the data on the entity row
changes in such a way that it is
now considered logically
deleted, or ceases to be
considered logically deleted (if
the logical deletion feature of the
Entity data configuration is in
use); and/or

v the data on the entity row
changes in such a way that it
now passes the filter, or ceases
to pass the filter (if the filter
feature of the Entity data
configuration is in use).

100 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 27. Precedents Identified for Entity Rule Objects (continued)

Name When Identified Trigger for Recalculation

'readall/match'
search Identifies any readall/match

searches against Entity Rule
Objects other than by primary key.

The precedent ID refers to the
name of the rule class sought by
the readall/match expression,
together with the attribute name
and value used as the search
criterion.

A precedent change item for the
rule class and its attribute name
and match value will be written to
a precedent change set if, for the
entity that is mapped to the rule
class by the data configurations:

v a new entity row is inserted into
the database;

v an existing entity row is
removed from the database;

v the data on the entity row
changes in such a way that it is
now considered logically
deleted, or ceases to be
considered logically deleted (if
the logical deletion feature of the
Entity data configuration is in
use);

v the data on the entity row
changes in such a way that it
now passes the filter, or ceases
to pass the filter (if the filter
feature of the Entity data
configuration is in use); and/or

v the value of the attribute's data
on the entity row changes.

Rule Object Data
Configurations Identifies the use of the

configuration for the Entity Rule
Object Converter if any Entity Rule
Object is accessed during the
calculation.

If changes to the data
configuration for the Entity Rule
Object Converter are published,
then a precedent change item for
the converter's data configuration
will be written to a precedent
change set.

(This precedent
change caters for
an edge case
whereby
previously a CER
expression had
sought a row
matching a
primary key
value, but none
was found; but
now a new row
matching that
primary key
value is being
inserted.)

Propagation Processing: When a row of data changes for a table which is
configured for Entity rule objects, then the Entity Rule Object Propagator requests
the corresponding rule object and manipulates it in memory.

Developing with Eligibility and Entitlement by using Cúram Express Rules 101

A rule object may be created, modified or removed, according to the nature of the
change to the underlying database row (and taking into account configurations for
logical deletions and/or filters).

The Entity Rule Object Propagator informs the Dependency Manager of any rows
that have changed so that the Dependency Manager can determine the effects of
those changes. Dependencies on entity data are stored at the entity row level, by
recording a dependency on the entity's name and the row's key value.

Each database row may map to a number of target rule classes, according to the
configurations for the Entity Rule Object Propagator held on the system. However,
for the sake of clarity, the rest of this section describes the behavior of the Entity
Rule Object Propagator in the situation where an entity is configured to be
propagated to a single rule class only.

Support for Entity Operation Stereotypes

Cúram database tables are modeled as entities in the application model. Each
modeled entity may contain several database operations, each with their own
stereotype. Not all of these operations stereotypes can be reliably propagated. The
table below shows the support for propagating data from invocations of methods
for these stereotypes:

Table 28. Support for Entity Operation Stereotypes

Entity Operation Stereotype Support in Entity Rule ObjectPropagator

(unstereotyped) Ignored - no data written.

batchinsert Supported. Each row in the batch will be
propagated, if possible (as per nsinsert).

batchmodify Supported(There is one edge-case which is
not supported, which is where a
batchmodify operation contains a number of
modify operations, each of which change the
primary key value of an entity, and which
form a chain of changes to the same
underlying row, e.g. the batchmodify
contains two operations:

v a modify which changes a row's key from
keyValue1 to keyValue2; and

v another modify which changes the same
row's key from keyValue2 to keyValue3.

The net effect of these chained modify
operations is to change the database row's
key from keyValue1 to keyValue3. Such a
change cannot be reliably propagated by the
Entity Rule Object Propagator and should be
avoided. (It is good practice to avoid
creating modify operations that change a
row's key anyway.)). Each row in the batch
will be propagated, if possible (as per
nsmodify).

insert Supported.

modify Supported.

nkmodify Supported.

nkread Ignored - no data written.

102 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 28. Support for Entity Operation Stereotypes (continued)

Entity Operation Stereotype Support in Entity Rule ObjectPropagator

nkreadmulti Ignored - no data written.

nkremove Supported.

ns For read operations, ignored.

For write operations, not supported, as the
operation can contain arbitrary SQL and in
general it is not possible to reliably detect
which database rows have been affected by
the operation.

nsinsert Supported, as long as the details being
written to the database include a value for
the primary key (i.e. no reliance on
database-level key assignment).

nsmodify Supported.

nsmulti Ignored - no data written.

nsread Ignored - no data written.

nsreadmulti Ignored - no data written.

nsremove Supported.

read Ignored - no data written.

readmulti Ignored - no data written.

remove Supported.

(There is one edge-case which is not
supported, which is where a batchmodify
operation contains a number of modify
operations, each of which change the
primary key value of an entity, and which
form a chain of changes to the same
underlying row, e.g. the batchmodify
contains two operations:

v a modify which changes a row's key from
keyValue1 to keyValue2; and

v another modify which changes the same
row's key from keyValue2 to keyValue3.

The net effect of these chained modify
operations is to change the database row's
key from keyValue1 to keyValue3. Such a
change cannot be reliably propagated by the
Entity Rule Object Propagator and should be
avoided. (It is good practice to avoid
creating modify operations that change a
row's key anyway.))

Any operation that has the "no generated SQL" option set will not be supported by
the rule object propagators included with the application.

If the EntityRuleObjectPropagator detects that an unsupported operation has
occurred, then its behavior is governed by the value of the
curam.ruleobjectpropagation.nonpropagatableoperation.errorlevel environment
variable:

Developing with Eligibility and Entitlement by using Cúram Express Rules 103

Table 29. Behavior when non-propagatable operations are invoked

Value of
curam.ruleobjectpropagation.
nonpropagatableoperation.errorlevel

Behavior of Entity Rule
Object Propagator Comments

warn (default value) The Entity Rule Object
Propagator writes a warning
to the application logs.

This is the default behavior
and should be suitable for
most environments.

ignore The Entity Rule Object
Propagator ignores the
non-propagatable operation.

Consider using this setting if
you have very many
invocations of
non-propagatable operations,
and you already have in
place procedures to identify
and recalculate any
dependents potentially
affected.

error The Entity Rule Object
Propagator raises an
exception with the details of
the non-propagatable
operation (which will
typically result in the overall
database transaction being
rolled back).

Consider using this setting if
you do not expect to have
any non-propagatable
operations.

If a non-propagatable operation occurs (and the Entity Rule Object Propagator is
configured to warn the operator), then the operator should follow your procedures
to identify and recalculate any dependents potentially affected.

The "Exclude" List for Entity Propagation

Some database tables are unsuitable for consideration by the Entity Rule Object
Propagator because:
v they contain non-business data only;
v they have abnormally high numbers of data writes; and/or
v access to their data occurs before the propagation framework has been

initialized.

The application allows components to register such database tables on an "exclude"
list, and writes to these database tables are never considered for propagation to the
Dependency Manager. The application's components may contribute to the exclude
list, and customers may add further entries to the list by adding a binding inside a
Guice module as follows:

104 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

For information on writing Guice modules, see the Persistence Cookbook.

Example: Let's say that a user creates a new rule set (MyRuleSet) with a MyPerson
rule class. The user adds some rule attributes to the rule class named after some
columns on the Person database table:
v concernRoleID (the primary key of the database table);
v dateOfBirth; and
v dateOfBirthVerInd.

The user creates a new configuration to propagate Person database rows to the
new MyRuleSet.MyPerson rule class. There also continues to be an existing
configuration (provided by the application) to propagate Person database rows to
the ParticipantEntitiesRuleSet.Person rule class.

After a new row is inserted into the Person database table, then if a
MyRuleSet.MyPerson rule object is requested for that person row during CER
calculations, then the Entity Rule Object Converter will create a rule object in
memory from the data on that row. The MyRuleSet.MyPerson rule object has its
values for concernRoleID, dateOfBirth and dateOfBirthVerInd populated from the
database row. It does not have any value for dateOfDeath because there is no such
rule attribute on the MyPerson rule class.

By contrast, if a ParticipantEntitiesRuleSet.Person rule object is requested for
that person row during CER calculations, then the Entity Rule Object Converter
will populate the ParticipantEntitiesRuleSet.Person rule object from the same

import com.google.inject.AbstractModule;
import curam.core.sl.infrastructure.propagator.impl.

RuleObjectDatabaseWriteListener.ExcludedTable;

public class MyModule extends AbstractModule {

// ___
@Override
public void configure() {

...
{

// register excluded tables

final Multibinder<ExcludedTable> excludedTables = Multibinder
.newSetBinder(binder(), ExcludedTable.class);

excludedTables
.addBinding()
.toInstance(

new ExcludedTable(
curam.core.sl.infrastructure.assessment.intf.
MyEntity1.class));

excludedTables
.addBinding()
.toInstance(

new ExcludedTable(
curam.core.sl.infrastructure.assessment.intf.
MyEntity2.class));

}
...

}
}

Developing with Eligibility and Entitlement by using Cúram Express Rules 105

underlying database row. ParticipantEntitiesRuleSet.Person does have an
attribute for dateOfDeath but not for dateOfBirthVerInd. Both rule classes have a
concernRoleID rule attribute, which is required because concernRoleID is the
primary key of the Person database table.

If the person row is subsequently modified on the database, then the Entity Rule
Object Propagator notifies the Dependency Manager that the row has changed, and
the Dependency Manager identifies all case determination results that depend on
that row and requests that those cases be reassessed.

Let's say there are rules which require access to a claimant's personal details, and
also requires access to details of other people related to the claimant, such as
spouses and relatives. The rules would:
v use the claimant's concernRoleID to search for the

ParticipantEntitiesRuleSet.Person rule object by concernRoleID (a primary
key search) and access the claimant's personal details;

v use the claimant's concernRoleID to search for
ParticipantEntitiesRuleSet.ConcernRoleRelationship rule objects by
concernRoleID (not a primary key search); and

v for each ParticipantEntitiesRuleSet.ConcernRoleRelationship found, use the
relConcernRoleID to search for the ParticipantEntitiesRuleSet.Person rule
object by concernRoleID (a primary key search) and access the related person's
details.

Claimant Joe (concernRoleID 392) has relationships to wife Mary (concernRoleID
393) and brother Frank (concernRoleID 394) stored as concern role relationships
(concernRoleRelationshipIDs 773 and 774 respectively). These details are retrieved
during the eligibility/entitlement calculation for Joe's case (caseID 453).

The Engine invokes the CER utility to identify these dependencies (which are
stored using the Dependency Manager):

Table 30. Example Dependency Storage for Entity Rule Objects

Dependent Precedent

Case 453's Entitlement depends on Entity row from table 'Person' where
attribute 'concernRoleID' has value '392'

Case 453's Entitlement depends on <readall>/<match> expression against rule
attribute
'ParticipantEntitiesRuleSet.ConcernRoleRelationship.concernRoleID',
matching value 392

Case 453's Entitlement depends on Entity row from table
'ConcernRoleRelationship' where attribute
'concernRoleRelationshipID' has value '773'

Case 453's Entitlement depends on Entity row from table 'Person' where
attribute 'concernRoleID' has value '393'

Case 453's Entitlement depends on Entity row from table
'ConcernRoleRelationship' where attribute
'concernRoleRelationshipID' has value '774'

Case 453's Entitlement depends on Entity row from table 'Person' where
attribute 'concernRoleID' has value '394'

Case 453's Entitlement depends on Data configuration for conversion of Entity
rule objects

106 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Active Succession Set Rule Objects

Overview: The Active Succession Set Rule Object Converter is responsible for
converting a succession set of active evidence records into a CER rule object.

The Active Succession Set Rule Object Propagator is responsible for listening for
changes to active evidence records and for notifying the Dependency Manager that
active evidence data for succession set rule objects has changed.

Important: Do not confuse the Active Succession Set Rule Object Converter and
Propagator (suitable for use in eligibility/entitlement processing) with the
Active/In-Edit Succession Set Rule Object Converter and Propagator class (which
is not suitable for eligibility/entitlement processing, and thus not described in this
guide - see the Cúram Advisor Configuration Guide).

Evidence (see Designing Cúram Evidence Solutions) allows developers to store
records of evidence that can change over time. When circumstances change in the
real world, a user can record those changes in the system by "succeeding" an
earlier version of evidence. These versions of evidence make up a "succession set"
which describe the history of some real-world evidence.

By contrast, in CER rules it is typically far easier to treat each piece of changeable
evidence as one rule object, which has timeline-based attributes (see "4.5 Handling
Data that Changes Over Time" in the Cúram Express Rules Reference Manual). The
Active Succession Set Rule Object Converter automates the conversion of a
succession set of evidence rows into a single rule object with a mixture of timeline
and non-timeline attributes.

Changes to evidence go through an edit/activate lifecycle. Only evidence changes
which have been activated are considered by the Active Succession Set Rule Object
Converter; any pending additions, changes or removals are ignored.

Each rule class targeted by the Active Succession Set Rule Object Converter must
extend the PropagatorRuleSet.ActiveSuccessionSet rule class included by the
Engine. This rule class contains a successionID rule attribute which is used as a
unique identifier, since the rule object represents the entire succession set of
evidence.

Both dynamic and non-dynamic evidence types can be used with the Active
Succession Set Rule Object Converter.

The Active Succession Set Rule Object Converter also populates relationships
between rule objects for parent and child succession sets, if required.

Configuration: This converter and propagator share a common set of
configuration data, and accept configurations which adhere to the following
structure:
v propagator type must be "ROPT2005" (the code for 'Active succession set' from

the RuleObjectPropagatorType code table);
v each evidence type to be converted or propagated must be listed in an evidence

element with a type exactly matching the evidence's type from the EvidenceType
code table; and

Developing with Eligibility and Entitlement by using Cúram Express Rules 107

v each conversion/propagation target must be listed as a ruleset element (within
the evidence element), specifying the name of the rule set to target and
optionally the rule class (if the name of the rule class differs from that of the
database table).

Configurations are cumulative, i.e. there may be many configurations of type
"ROPT2005", and if an evidence type is present in any of those configurations then
the evidence type will be converted and propagated; otherwise, the evidence type
will be ignored.

The following types of configuration problems will be detected by the Active
Succession Set Rule Object Converter:
v Evidence type not specified in the evidence element;
v The evidence type with the specified type code could not be found;
v The targeted rule class does not extend the

PropagatorRuleSet.ActiveSuccessionSet rule class; and
v A rule class is targeted by more than one source evidence type.

Any configuration problems detected will be processed according to “Data
Configuration Problems” on page 129.

Conversion Processing: Each evidence type may map to a number of target rule
classes, according to the configurations for the Active Succession Set Rule Object
Converter held on the system. However, for the sake of clarity, the rest of this
section describes the behavior of the Active Succession Set Rule Object Converter
in the situation where an evidence type is mapped to a single rule class only.

When an Active Succession Set Rule Object is requested during a CER calculation,
the Active Succession Set Rule Object Converter is invoked to populate that rule
object. The Active Succession Set Rule Object Converter will retrieve all the active
evidence rows in the succession set and use them to populate the attribute values
on the rule object.

The values of the evidence fields are used to map to identically-named rule
attributes on the rule class. Any evidence field without a corresponding rule
attribute is ignored. Evidence fields are defined by:
v Dynamic evidence

The evidence fields available are those defined by the dynamic evidence
metadata for the evidence type (see the Cúram Dynamic Evidence Configuration
Guide); and

v Non-dynamic evidence

The evidence fields available are those defined on the evidence-specific database
table modeled for the static evidence type (see the Cúram Evidence Generator
guide).

When populating a particular attribute value on a rule object, the behavior of the
Active Succession Set Rule Object Converter differs according to whether the rule
attribute's type is a Timeline. The Active Succession Set Rule Object Converter also
contains special processing to populate rule attributes to point to rule objects for
related succession sets.

The following sections detail how the Active Succession Set Rule Object Converter
populates timeline and non-timeline data, and relationship data, along with some
useful rule attributes inherited from the ActiveSuccessionSet rule class.

108 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Timeline-based data types

If the data type of the attribute is Timeline< some data type >, then the
Active Succession Set Rule Object Converter allows the possibility of the evidence
value to differ (across different evidence versions in the succession set).

The identification of the "lifetime" of the succession set depends on the use of the
SuccessionSetPopulation annotation on the rule class (see
“SuccessionSetPopulation” on page 213).

The Active Succession Set Rule Object Converter will form a timeline value from
the evidence versions as follows:
v Calculate the start of the evidence lifetime

The Active Succession Set Rule Object Converter inspects the
SuccessionSetPopulation annotation on the rule class to get the name of the
attribute which the rule designer has designated as holding the start date of the
evidence's lifetime. If no such rule attribute has been designated, or the rule
attribute holds a blank value, then the evidence is deemed to have started from
the beginning of time.

v Calculate the end of the evidence lifetime

The Active Succession Set Rule Object Converter inspects the inspects the
SuccessionSetPopulation annotation on the rule class to get the name of the
attribute which the rule designer has designated as holding the end date of the
evidence's lifetime. If no such rule attribute has been designated, or the rule
attribute holds a blank value, then the evidence is deemed to continue to exist
until the end of time (i.e. "until further notice").

v Accumulate the varying values for the timeline

The Active Succession Set Rule Object Converter uses the evidence versions in
the succession set to work out which values apply from which dates. The
succession set will typically hold a single EvidenceDescriptor with a blank
effective date, and the value of the evidence field on this evidence version will
be used from the start of the evidence lifetime. The other EvidenceDescriptor
rows will each have a populated effective date (on which the change of
circumstances occurred), and the value of the evidence field will be used from
that date in the timeline.

v Assemble the timeline

The Active Succession Set Rule Object Converter inspects the effective dates for
the varying values. Any dates which occur outside of the lifetime start and end
are discarded. For periods before the lifetime start and after the lifetime end (if
any), a default value is used (see “Supported Domain Types” on page 133). A
timeline value is built from the values and used to populate the rule attribute
value.

Note: As for all timelines, any contiguous values which are identical are
combined into a single interval.

This can occur when two neighboring versions of evidence have the same value
for an evidence field - the second version of the evidence has been recorded
because a different evidence field has changed value.

See the example where two neighboring evidence rows have the same value for
amount, because only the employmentStatus has changed.

Developing with Eligibility and Entitlement by using Cúram Express Rules 109

Tip: Because only values from within the evidence lifetime are used, then typically
the timeline value will change to the default value on the day after the end date for
the evidence (if any).

Non-timeline data types

If the data type of the attribute is not Timeline< some data type >, then the
Active Succession Set Rule Object Converter does not allow the possibility of the
evidence value to differ (across different evidence versions in the succession set).
Ordinarily each version of evidence in the succession set should bear the same
data value for the evidence field, and this single data value will be used to
populate the rule attribute value.

However, it is possible that for such fields, either the rules designer has made an
incorrect assumption that the data should not change over time, and/or a case
worker has not consistently applied a correction to data consistently across the
versions in the succession set. In these circumstances, the value of the evidence
field may be inconsistent across the versions in the succession set, and if so the
Active Succession Set Rule Object Converter will:
v propagate the value from the evidence version with the latest effective date (on

the grounds that this is the version that a case worker is most likely to have
maintained); and

v write a warning to the application logs saying that inconsistent evidence data
was found.

Tip: If you see many warnings in your application logs pertaining to inconsistent
evidence data, you should revisit your evidence and/or rule class design to resolve
the inconsistency.

It is especially important to investigate any warnings which pertain to evidence
fields which are designated as the start or end date of your succession set's
lifetime, as any errors in such dates can lead to unreliable timelines being used to
populate CER attribute values.

For more information about whether data should be modeled as a Timeline or not,
see "What Is Timeline Data?" in the Cúram Express Rules Reference Manual.

Population of relationships to rule objects for other succession sets

When a succession set of active evidence is converted into a rule object, then any
rule attributes which are annotated with “relatedSuccessionSet” on page 215 will
be automatically populated with rule objects for related succession sets:
v parent

the attribute will be populated with the rule objects for the succession sets for
the parent(s) of the evidence; or

v child

the attribute will be populated with the rule objects for the succession sets for
the children of the evidence.

The type of the related evidence is identified from the type of the attribute, which
can either be a rule class (extending ActiveSuccessionSet) or a list of such rule
classes. The behavior of the Active Succession Set Rule Object Converter differs
according to whether a list is used:

110 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 31. Population of related ActiveSuccessionSet rule objects

Number of related versions
found

Value propagated when
attribute type is a rule class

Value propagated when
attribute type is a List<rule
class>

0 null Empty list

1 The rule object for the
related succession set found

A list with a single item (the
rule object for the related
succession set found)

many (An exception is thrown at
population time)

A list with the rule objects
for all the related succession
sets found

Note: Typically in evidence design, a parent evidence item has 0, 1 or many child
items (of a given type), while each child evidence item relates to exactly 1 parent.

However, the evidence infrastructure does not impose any constraints in this area,
and so on occasion you may encounter child evidence types which relate to
multiple parent types, and/or parent evidence types which expect only a single
child evidence type.

Tip: The relationships between parent and child rule objects are not stored as
timelines - a relationship between a parent and child rule object holds "for all
time", even outside the parent or child's lifetime.

Typically any rules for the parent rule object, which retrieve the related children,
will make reference to the lifetime of the child rule object (i.e. will use the value of
the child's exists timeline (see “Conversion Processing” on page 108).

Rule attributes inherited from ActiveSuccessionSet

Each rule class targeted by the Active Succession Set Rule Object Converter must
ultimately extend the PropagatorRuleSet.ActiveSuccessionSet rule class, and so
will inherit the following rule attributes:
v successionID

Populated from the successionID value on the EvidenceDescriptor rows, and
used to uniquely identify the rule object (amongst other rule objects of the same
rule class);

v caseID

Populated from the caseID value on the EvidenceDescriptor row. If the evidence
relates to an integrated case, the case ID will be that of an integrated case; if the
evidence relates to a product delivery case, the case ID will be that of the
particular product delivery that holds the evidence;

v description

Contains a default rule to derive a description for the succession set rule object;
sub-classes are free to override this description if required;

v exists

A Boolean timeline which indicates the period of time for which the succession
set rule object "exists", i.e. true for the dates between the designated start and
end dates (inclusive), and false for dates before the start of the lifetime or after
its end, if any; and

v evidenceDescriptorID

Developing with Eligibility and Entitlement by using Cúram Express Rules 111

A Number timeline, populated from the evidenceDescriptorID value on the
EvidenceDescriptor rows which make up the succession set. The values vary
according to the evidence row "in effect" at various points along the lifetime of
the succession set rule object. Each value uniquely identifies the active
EvidenceDescriptor row which contains the source of the data in effect on a
particular date on the timeline-based attributes on the rule object. Note that
these values will change when an evidence correction is activated, because at
that point a different evidence row becomes an active member of the succession
set.

Tip: The exists rule attribute can be useful for certain eligibility/entitlement
calculations.

For example, if a particular objective is attained whenever one of the parents of a
minor is absent from the household, and periods of Absence are recorded as
succession sets of evidence (with start and end dates naturally mapping to the start
and end of the period of absence), then the value of the objective's
isEntitledTimeline is (in pseudo-code, using appropriate timeline operations):
v Get the periods of absence for the minor's parents;
v Entitled when any:

– (iterate through the periods of absence)
- the current period of absence "exists"

Handling of in-edit evidence changes

In general, the Active Succession Set Rule Object Converter ignores in-edit pending
changes to evidence.

However, during manual determinations using in-edit evidence, the Active
Succession Set Rule Object Converter supports a special processing mode to allow
in-edit pending changes to be taken into account. See “Temporary Access to In-Edit
Evidence Changes” on page 131 for more details.

Restrictions on Access

In your CER rule sets you will use CER's <readall>/<match> expression to access
rule objects converted from active succession set data.

You may only specify the retrievedattribute to be the caseID.

If you attempt to specify a retrievedattribute to be the name of any other
attribute, then the Active Succession Set Rule Object Converter will throw a
runtime exception when the CER <readall>/<match> expression is executed.

Tip: If you require only some of the active evidence row evidence of a given type
for a case, then consider wrapping the <readall>/<match> expression within a
<filter> expression to return only the data you require, e.g. use
<readall>/<match> matching on caseID to find all the Income active succession set
rule objects for a case, and then use a <filter> to restrict the rule objects to just
those for a particular member of the case.

You may specify the ruleset and ruleclass for the <readall> expression to be a
rule class mapped by the data configuration. If you attempt to specify a rule class
which is not directly mapped (e.g. a base rule class that you have created from
which your concrete rule classes inherit) then no rule objects will be found.

112 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Important: Do not use a <readall> without a <match>.

Such an unqualified <readall> would typically retrieve a very large number of
rule objects and no dependency on the overall set of rule objects will be stored.

Precedents Identified: If Active Evidence Row Rule Objects are accessed during a
CER calculation, and the CER utility is used to identify precedents, then the
following precedents will be identified:

Table 32. Precedents Identified for Active Evidence Row Rule Objects

Name When Identified Trigger for Recalculation

Active Evidence
Identifies any case for which(In
practice these two conditions
amount to the same thing - that
Active Evidence Row Rule Objects
for the case's evidence were
accessed in some way. Generally, a
search will be executed to retrieve
rule objects in order that one or
more attribute values can be
accessed on those rule objects
anyway.):

v a search was executed to retrieve
Active Evidence Row Rule
Objects; and/or

v one or more attribute values
were accessed for one or more
Active Evidence Row Rule
Objects for the case's evidence

The precedent ID refers to the
caseID which owns the evidence
that was accessed.

If in-edit evidence changes for a
case are activated, then a precedent
change item for the case will be
written to a precedent change set.

Rule Object Data
Configurations Identifies the use of the

configuration for the Active
Evidence Row Rule Object
Converter if any Active Evidence
Row Rule Object is accessed
during the calculation.

If changes to the data
configuration for the Active
Evidence Row Rule Object
Converter are published, then a
precedent change item for the
converter's data configuration will
be written to a precedent change
set.

Developing with Eligibility and Entitlement by using Cúram Express Rules 113

Table 32. Precedents Identified for Active Evidence Row Rule Objects (continued)

Name When Identified Trigger for Recalculation

(In practice these
two conditions
amount to the
same thing - that
Active Evidence
Row Rule Objects
for the case's
evidence were
accessed in some
way. Generally, a
search will be
executed to
retrieve rule
objects in order
that one or more
attribute values
can be accessed
on those rule
objects anyway.)

Propagation Processing: When evidence changes are applied for an evidence type
that is configured for Active Evidence Row Rule Objects, then the Active Evidence
Row Rule Object Propagator listens to internal events from the Evidence
Controller, requests the corresponding rule object and manipulates it in memory.

A rule object may be created, modified or removed, according to whether evidence
is being activated for the first time, is undergoing corrections or changes of
circumstances, or is being canceled.

The Active Evidence Row Rule Object Propagator informs the Dependency
Manager of active evidence data that has changed so that the Dependency
Manager can determine the effects of those changes. Dependencies on active
evidence are stored at the case level, by recording a dependency on the caseID of
the case that owns the evidence.

Example: Let's say that a person's Income from an employment is modeled as
evidence. The income starts when a person starts an employment, and ends if the
employment is subsequently terminated. (This example is intentionally similar to
that for “Active Succession Set Rule Objects” on page 107.)

Over the lifetime of an employment, the income amount (i.e. the per annum pay)
can vary, as the employee receives pay rises. Similarly, but independently, the
person can be employed on a permanent or temporary basis, and this
"employment status" can change over the lifetime of the employment. It is possible
for the income's amount to change on the same date as the employment status, but
a change in income amount can occur without a change in employment status, and
vice versa.

The evidence designer designs an Income evidence entity as follows:
v startDate

The date that the income (i.e. the overall employment) started;
v endDate

The date that the income (i.e. the overall employment) ended, if any;

114 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v employer

Identifier of the employer;
v amount

The per-annum pay amount; and
v employmentStatus

Code for whether the employment status is permanent or temporary.

A rules designer then models an new Income rule class, extending the
ActiveEvidenceRow rule class, and adds rule attributes:
v startDate;
v endDate;
v employer;
v amount; and
v employmentStatus.

An administrator publishes the rule set changes, and then publishes a data
configuration for Active Evidence Row Rule Object Converter and Propagator to
map the Income evidence type to the new rule class.

A case worker records some new Income evidence (for a temporary employment
which started on 1st January 2000, salary $10,000). Initially the evidence is "in edit".

The details stored on the data are as follows (not all evidence details are included
here, only those of interest to the converter):

Table 33. Database Details Stored for New Evidence

Database Column Evidence Version Record 1

EvidenceDescriptor.evidenceDescriptorID 978

EvidenceDescriptor.caseID 453

EvidenceDescriptor.correctionSetID 476

EvidenceDescriptor.effectiveFrom (blank)

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount $10,000

Income.employmentStatus Temporary (code)

When evidence capture is complete, the case worker activates the evidence and
activates the case.

During the calculation of the case's determination result, the Active Evidence Row
Rule Object Converter retrieves the data for the newly-activated Income evidence
and populates a rule object for it, with values as follows:

Table 34. Active Evidence Row Rule Object after Initial Activation of Evidence

Rule Attribute Name Value for Rule Object 1

ActiveEvidenceRow.description "Income, correctionSetID 476"

ActiveEvidenceRow.caseID 453

Developing with Eligibility and Entitlement by using Cúram Express Rules 115

Table 34. Active Evidence Row Rule Object after Initial Activation of Evidence (continued)

Rule Attribute Name Value for Rule Object 1

ActiveEvidenceRow.correctionSetID 476

ActiveEvidenceRow.evidenceDescriptorID 978

ActiveEvidenceRow.effectiveDate (blank)

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount $10,000

Income.employmentStatus Temporary

The Engine invokes the CER utility to identify these dependencies (which are
stored using the Dependency Manager):

Table 35. Example Dependency Storage for Active Evidence Row Rule Objects

Dependent Precedent

Case 453's Entitlement depends on Active Evidence for case 453

Case 453's Entitlement depends on Data configuration for conversion of Active
Evidence Row rule objects

Over time, real-world circumstances change:
v on 1st January 2001, the income amount increases; and
v on 1st May 2002, the employment status changes from "temporary" to

"permanent".

The agency is informed of these evidence changes and a case worker records new
versions of the Income evidence, leading to the system storing new
EvidenceDescriptor / Income pairs of rows for the evidence data effective from
each change date:

Table 36. Database Details Stored for Changes of Circumstances

Database Column
Evidence Version
Record 1

Evidence Version
Record 2

Evidence Version
Record 3

EvidenceDescriptor.
evidenceDescriptorID

978 979 980

EvidenceDescriptor.caseID453 453 453

EvidenceDescriptor.
correctionSetID

476 477 478

EvidenceDescriptor.
effectiveFrom

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) (blank)

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

Income.employmentStatusTemporary (code) Temporary (code) Permanent (code)

116 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

When the case worker activates the change-of-circumstances evidence changes, the
Evidence Controller notifies the Active Evidence Row Rule Object Propagator of
the evidence changes, and the Active Evidence Row Rule Object Propagator in turn
notifies the Dependency Manager that evidence for a case has changed. The
Dependency Manager identifies the product delivery case that depends on the
changed evidence and requests that the Engine reassesses the case. During
reassessment, the Engine invokes CER to calculate the determination result, and as
part of this calculation the Active Evidence Row Rule Object Converter is called
upon to populate the rule objects for the changed evidence, which are populated as
follows:

Table 37. Active Evidence Row Rule Objects after Changes of Circumstances

Rule Attribute Name
Value for Rule
Object 1

Value for Rule
Object 2

Value for Rule
Object 3

ActiveEvidenceRow.
description

"Income,
correctionSetID 476"

"Income,
correctionSetID 477"

"Income,
correctionSetID 478"

ActiveEvidenceRow.caseID453 453 453

ActiveEvidenceRow.
correctionSetID

476 477 478

ActiveEvidenceRow.
evidenceDescriptorID

978 979 980

ActiveEvidenceRow.
effectiveDate

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) (blank)

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

Income.employmentStatusTemporary Temporary Permanent

On 30th June 2002, the employment comes to an end and a case worker records
the end date on the latest version of the evidence:

Table 38. Database Details Stored for Ended Evidence

Database Column
Evidence Version
Record 1

Evidence Version
Record 2

Evidence Version
Record 3

EvidenceDescriptor.
evidenceDescriptorID

978 979 981

EvidenceDescriptor.caseID453 453 453

EvidenceDescriptor.
correctionSetID

476 477 478

EvidenceDescriptor.
effectiveFrom

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) 30th June 2002

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

Income.employmentStatusTemporary (code) Temporary (code) Permanent (code)

Developing with Eligibility and Entitlement by using Cúram Express Rules 117

The case worker activates the changes, which causes the existing latest
EvidenceDescriptor / Income pair to become "superseded" (evidenceDescriptorID
980) and a new pair to become "active" (evidenceDescriptorID 981).

Again the Active Evidence Row Rule Object Propagator causes the case to be
reassessed on foot of the evidence changes. During reassessment the Active
Evidence Row Rule Object Converter populates the rule object with these values:

Table 39. Active Evidence Row Rule Objects after Evidence Ended

Rule Attribute Name
Value for Rule
Object 1

Value for Rule
Object 2

Value for Rule
Object 3

ActiveEvidenceRow.
description

"Income,
correctionSetID 476"

"Income,
correctionSetID 477"

"Income,
correctionSetID 478"

ActiveEvidenceRow.caseID453 453 453

ActiveEvidenceRow.
correctionSetID

476 477 478

ActiveEvidenceRow.
evidenceDescriptorID

978 979 981

ActiveEvidenceRow.
effectiveDate

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) 30th June 2002

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

Income.employmentStatusTemporary Temporary Permanent

At some time later, a review of the case finds that the entire history of the income
has been recorded against the wrong person. All the evidence records for the
Income are canceled by the case worker, and the evidence re-recorded against the
correct person (in a new correction sets). When the case is reassessed, the Active
Evidence Row Rule Object Converter does not populate rule objects for the
evidence because now none of its evidence records are "active".

Some new legislation is introduced which affects how eligibility and entitlement
must be calculated, and in order to comply with this legislation, the agency must
now capture more details about periods of employment, specifically to capture
details of the varying responsibilities that a person had during each employment.
An employee may have several responsibilities at the same time during an
employment, and each responsibility may begin and end independently of others.

An evidence designer models a new type of evidence named Responsibility,
which is a child evidence type of the Income evidence type:
v income

The parent Income evidence of which the Responsibility evidence is a child;
v type

Code for the type of responsibility (e.g. management, clerical tasks, financial
control, etc.);

v startDate

The date that the responsibility started; and
v endDate

118 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

The date that the responsibility ended, if any.

A rules designer creates a new Responsibility rule class, and identifies that rules
centered around the Responsibility will need to navigate to parent Income rule
objects:
v parentIncomeVersions, of type List<Income>, annotated to mark it to be

populated from parent related evidence;
v type;
v startDate; and
v endDate.

The rules designer also identifies that rules centered around the Income will need
to navigate to child Responsibility rule objects, and so adds a new rule attribute
to the existing Income rule class:
v childResponsibilityVersions, of type List<Responsibility>, annotated to mark

it to be populated from child related evidence;

The evidence design changes, rules changes and new data configuration for the
Responsibility rule class are published.

A case worker records details for an employment where there is a pay rise on 1st
January 2005. From the start of the employment, the employee is responsible for
clerical tasks, but from 1st July onwards, the employee is also responsible for
financial tasks (in addition to still be responsible for clerical tasks).

When the case is assessed, the Active Evidence Row Rule Object Converter
populates these rule objects:
v A parent Income rule object effective from the start of the case, with an amount of

$15,000 and with its childResonsibilityVersions value set to be a list
containing the two Responsibility rule objects below;

v Another parent Income rule object effective from 1st January 2005, with an
amount of $16,000 and with its childResonsibilityVersions value also set to be
a list containing the two Responsibility rule objects below;

v A child Responsibility rule object for the clerical tasks, with its
parentIncomeVersions value set to be a list containing the two Income rule object
above; and

v Another child Responsibility rule object for the financial tasks, with its
parentIncomeVersions value also set to be a list containing the two Income rule
object above.

Note that there are two Responsibility rule objects, because there are two distinct
real-world responsibilities, each stored as different succession sets. There are two
Income rule objects, one for each version of the evidence as it changed over time.

Active Evidence Row Rule Objects

Overview: The Active Evidence Row Rule Object Converter is responsible for
converting a row of active evidence into a CER rule object. Each active version of
the evidence is converted to its own CER rule object (unlike the Active Succession
Set Rule Object Converter which converts all active evidence rows from a single
succession set into a single rule object).

Each rule class targeted by the Active Evidence Row Rule Object Converter must
extend the PropagatorRuleSet.ActiveEvidenceRow rule class included by the

Developing with Eligibility and Entitlement by using Cúram Express Rules 119

Engine. This rule class contains a correctionSetID rule attribute which is used as a
unique identifier, since in any correction set of evidence there can be at most one
active record.

Both dynamic and non-dynamic evidence types can be used with the Active
Evidence Row Rule Object Converter.

The Active Evidence Row Rule Object Converter also populates relationships
between rule objects for parent and child evidence versions, if required.

Tip: The Active Evidence Row Rule Object Converter is likely to be useful only for
evidence which is not temporal in nature, and/or which does not use standard
evidence facilities for recording real-world changes of circumstances, because any
CER eligibility/entitlement rules which handle changes of circumstances will
typically need to manipulate the separate rule objects into timelines.

If you have evidence which does use standard evidence facilities, see “Active
Succession Set Rule Objects” on page 107 instead.

Configuration: The converter and propagator share a common set of
configuration data, and accept configurations which adhere to the following
structure:
v propagator type must be "ROPT2004" (the code for 'Active evidence row' from

the RuleObjectPropagatorType code table);
v each evidence type to be converted or propagated must be listed in an evidence

element with a type exactly matching the evidence's type from the
'EvidenceType' code table; and

v each conversion/propagation target must be listed as a ruleset element (within
the evidence element), specifying the name of the rule set to target and
optionally the rule class (if the name of the rule class differs from that of the
database table).

Configurations are cumulative, i.e. there may be many configurations of type
"ROPT2004", and if an evidence type is present in any of those configurations then
the evidence type will be converted and propagated; otherwise, the evidence type
will be ignored.

The following types of configuration problems will be detected by the Active
Evidence Row Rule Object Converter/Propagator:
v Evidence type not specified in the evidence element;
v The evidence type with the specified type code could not be found;
v The targeted rule class does not extend the

PropagatorRuleSet.ActiveEvidenceRow rule class; and
v A rule class is targeted by more than one source evidence type.

Any configuration problems detected will be processed according to “Data
Configuration Problems” on page 129.

Conversion Processing: Each evidence type may map to a number of target rule
classes, according to the configurations for the Active Evidence Row Rule Object
Converter held on the system. However, for the sake of clarity, the rest of this
section describes the behavior of the Active Evidence Row Rule Object Converter
in the situation where an evidence type is mapped to a single rule class only.

120 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

When an Active Evidence Row Rule Object is requested during a CER calculation,
the Active Evidence Row Rule Object Converter is invoked to populate that rule
object. The Active Evidence Row Rule Object Converter will retrieve the active row
for the evidence's correction set and use it populate the attribute values on the rule
object.

The values of the evidence fields are used to map to identically-named rule
attributes on the rule object. Any evidence field without a corresponding rule
attribute is ignored. Evidence fields are defined by:
v Dynamic evidence

The evidence fields available are those defined by the dynamic evidence
metadata for the evidence type (see the Cúram Dynamic Evidence Configuration
Guide); and

v Non-dynamic evidence

The evidence fields available are those defined on the evidence-specific database
table modeled for the static evidence type (see the Cúram Evidence Generator
guide).

Population of relationships to rule objects for other evidence rows

When a row of active evidence is converted to a rule object, then any rule
attributes which are annotated with “relatedEvidence” on page 213 will be
automatically populated with rule objects for related evidence versions:
v parent

the attribute will be populated with the rule objects for the version(s) for the
parent evidence item(s) of the evidence version; or

v child

the attribute will be populated with the rule objects for the version(s) for the
child evidence item(s) of the evidence version.

The type of the related evidence is identified from the type of the attribute, which
can either be a rule class (extending ActiveEvidenceRow) or a list of such rule
classes. The behavior of the Active Evidence Row Rule Object Converter differs
according to whether a list is used:

Table 40. Propagation of related ActiveEvidenceRow rule objects

Number of related versions
found

Value populated when
attribute type is a rule class

Value populated when
attribute type is a List<rule
class>

0 null Empty list

1 The rule object for the
related instance found

A list with a single item (the
rule object for the related
instance found)

many (An exception is thrown at
propagation time)

A list with the rule objects
for all the related instances
found

Important: Remember that the related ActiveEvidenceRow rule objects are each a
version of evidence.

Even if a real-world child object can only have one real-world parent, if that parent
has data that changes over time, then each child version may relate to many parent
versions.

Developing with Eligibility and Entitlement by using Cúram Express Rules 121

For a rule attribute that holds related parent or child rule objects, you should
model that rule attribute as a list of rule classes, unless you can guarantee that
there will only ever be one active version of the related parent/child evidence
(which would generally only be the case if the related evidence type does not store
data which can undergo a change of circumstances).

Rule attributes inherited from ActiveEvidenceRow

Each rule class targeted by the Active Evidence Row Rule Object Converter must
ultimately extend the PropagatorRuleSet.ActiveEvidenceRow rule class, and so will
inherit the following rule attributes:
v correctionSetID

Populated from the correctionSetID value on the EvidenceDescriptor row, and
used to uniquely identify the rule object (amongst other rule objects of the same
rule class);

v caseID

Populated from the caseID value on the EvidenceDescriptor row. If the evidence
relates to an integrated case, the case ID will be that of an integrated case; if the
evidence relates to a product delivery case, the case ID will be that of the
particular product delivery that holds the evidence;

v description

Contains a default rule to derive a description for the evidence rule object;
sub-classes are free to override this description if required;

v effectiveDate

Populated from the effectiveFrom value on the EvidenceDescriptor row; will be
null for evidence effective from the start of the case;

v evidenceDescriptorID

Populated from the evidenceDescriptorID value on the EvidenceDescriptor row;
uniquely identifies the active EvidenceDescriptor row which contains the source
of the data on the rule object. Note that this value will change when an evidence
correction is activated, because at that point a different evidence row becomes
the only active row in the correction set; and

v successionID

Populated from the successionID value on the EvidenceDescriptor row.

Handling of in-edit evidence changes

In general, the Active Evidence Row Rule Object Converter ignores in-edit pending
changes to evidence.

However, during manual determinations using in-edit evidence, the Active
Evidence Row Rule Object Converter supports a special processing mode to allow
in-edit pending changes to be taken into account. See “Temporary Access to In-Edit
Evidence Changes” on page 131 for more details.

Restrictions on Access: In your CER rule sets you will use CER's <readall>/<match>
expression to access rule objects converted from active evidence row data.

You may only specify the retrievedattribute to be the caseID.

If you attempt to specify a retrievedattribute to be the name of any other
attribute, then the Active Evidence Row Rule Object Converter will throw a
runtime exception when the CER <readall>/<match> expression is executed.

122 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Tip: If you require only some of the active evidence row evidence of a given type
for a case, then consider wrapping the <readall>/<match> expression within a
<filter> expression to return only the data you require, e.g. use
<readall>/<match> matching on caseID to find all the Income active evidence row
rule objects for a case, and then use a <filter> to restrict the rule objects to just
those for a particular member of the case.

You may specify the ruleset and ruleclass for the <readall> expression to be a
rule class mapped by the data configuration. If you attempt to specify a rule class
which is not directly mapped (e.g. a base rule class that you have created from
which your concrete rule classes inherit) then no rule objects will be found.

Important: Do not use a <readall> without a <match>.

Such an unqualified <readall> would typically retrieve a very large number of
rule objects and no dependency on the overall set of rule objects will be stored.

Precedents Identified: If Active Evidence Row Rule Objects are accessed during a
CER calculation, and the CER utility is used to identify precedents, then the
following precedents will be identified:

Table 41. Precedents Identified for Active Evidence Row Rule Objects

Name When Identified Trigger for Recalculation

Active Evidence
Identifies any case for which(In
practice these two conditions
amount to the same thing - that
Active Evidence Row Rule Objects
for the case's evidence were
accessed in some way. Generally, a
search will be executed to retrieve
rule objects in order that one or
more attribute values can be
accessed on those rule objects
anyway.):

v a search was executed to retrieve
Active Evidence Row Rule
Objects; and/or

v one or more attribute values
were accessed for one or more
Active Evidence Row Rule
Objects for the case's evidence

The precedent ID refers to the
caseID which owns the evidence
that was accessed.

If in-edit evidence changes for a
case are activated, then a precedent
change item for the case will be
written to a precedent change set.

Rule Object Data
Configurations Identifies the use of the

configuration for the Active
Evidence Row Rule Object
Converter if any Active Evidence
Row Rule Object is accessed
during the calculation.

If changes to the data
configuration for the Active
Evidence Row Rule Object
Converter are published, then a
precedent change item for the
converter's data configuration will
be written to a precedent change
set.

Developing with Eligibility and Entitlement by using Cúram Express Rules 123

Table 41. Precedents Identified for Active Evidence Row Rule Objects (continued)

Name When Identified Trigger for Recalculation

(In practice these
two conditions
amount to the
same thing - that
Active Evidence
Row Rule Objects
for the case's
evidence were
accessed in some
way. Generally, a
search will be
executed to
retrieve rule
objects in order
that one or more
attribute values
can be accessed
on those rule
objects anyway.)

Propagation Processing: When evidence changes are applied for an evidence type
that is configured for Active Evidence Row Rule Objects, then the Active Evidence
Row Rule Object Propagator listens to internal events from the Evidence
Controller, requests the corresponding rule object and manipulates it in memory.

A rule object may be created, modified or removed, according to whether evidence
is being activated for the first time, is undergoing corrections or changes of
circumstances, or is being canceled.

The Active Evidence Row Rule Object Propagator informs the Dependency
Manager of active evidence data that has changed so that the Dependency
Manager can determine the effects of those changes. Dependencies on active
evidence are stored at the case level, by recording a dependency on the caseID of
the case that owns the evidence.

Example: Let's say that a person's Income from an employment is modeled as
evidence. The income starts when a person starts an employment, and ends if the
employment is subsequently terminated. (This example is intentionally similar to
that for “Active Succession Set Rule Objects” on page 107.)

Over the lifetime of an employment, the income amount (i.e. the per annum pay)
can vary, as the employee receives pay rises. Similarly, but independently, the
person can be employed on a permanent or temporary basis, and this
"employment status" can change over the lifetime of the employment. It is possible
for the income's amount to change on the same date as the employment status, but
a change in income amount can occur without a change in employment status, and
vice versa.

The evidence designer designs an Income evidence entity as follows:
v startDate

The date that the income (i.e. the overall employment) started;
v endDate

The date that the income (i.e. the overall employment) ended, if any;

124 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v employer

Identifier of the employer;
v amount

The per-annum pay amount; and
v employmentStatus

Code for whether the employment status is permanent or temporary.

A rules designer then models an new Income rule class, extending the
ActiveEvidenceRow rule class, and adds rule attributes:
v startDate;
v endDate;
v employer;
v amount; and
v employmentStatus.

An administrator publishes the rule set changes, and then publishes a data
configuration for Active Evidence Row Rule Object Converter and Propagator to
map the Income evidence type to the new rule class.

A case worker records some new Income evidence (for a temporary employment
which started on 1st January 2000, salary $10,000). Initially the evidence is "in edit".

The details stored on the data are as follows (not all evidence details are included
here, only those of interest to the converter):

Table 42. Database Details Stored for New Evidence

Database Column Evidence Version Record 1

EvidenceDescriptor.evidenceDescriptorID 978

EvidenceDescriptor.caseID 453

EvidenceDescriptor.correctionSetID 476

EvidenceDescriptor.effectiveFrom (blank)

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount $10,000

Income.employmentStatus Temporary (code)

When evidence capture is complete, the case worker activates the evidence and
activates the case.

During the calculation of the case's determination result, the Active Evidence Row
Rule Object Converter retrieves the data for the newly-activated Income evidence
and populates a rule object for it, with values as follows:

Table 43. Active Evidence Row Rule Object after Initial Activation of Evidence

Rule Attribute Name Value for Rule Object 1

ActiveEvidenceRow.description "Income, correctionSetID 476"

ActiveEvidenceRow.caseID 453

Developing with Eligibility and Entitlement by using Cúram Express Rules 125

Table 43. Active Evidence Row Rule Object after Initial Activation of Evidence (continued)

Rule Attribute Name Value for Rule Object 1

ActiveEvidenceRow.correctionSetID 476

ActiveEvidenceRow.evidenceDescriptorID 978

ActiveEvidenceRow.effectiveDate (blank)

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount $10,000

Income.employmentStatus Temporary

The Engine invokes the CER utility to identify these dependencies (which are
stored using the Dependency Manager):

Table 44. Example Dependency Storage for Active Evidence Row Rule Objects

Dependent Precedent

Case 453's Entitlement depends on Active Evidence for case 453

Case 453's Entitlement depends on Data configuration for conversion of Active
Evidence Row rule objects

Over time, real-world circumstances change:
v on 1st January 2001, the income amount increases; and
v on 1st May 2002, the employment status changes from "temporary" to

"permanent".

The agency is informed of these evidence changes and a case worker records new
versions of the Income evidence, leading to the system storing new
EvidenceDescriptor / Income pairs of rows for the evidence data effective from
each change date:

Table 45. Database Details Stored for Changes of Circumstances

Database Column
Evidence Version
Record 1

Evidence Version
Record 2

Evidence Version
Record 3

EvidenceDescriptor.
evidenceDescriptorID

978 979 980

EvidenceDescriptor.caseID453 453 453

EvidenceDescriptor.
correctionSetID

476 477 478

EvidenceDescriptor.
effectiveFrom

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) (blank)

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

Income.employmentStatusTemporary (code) Temporary (code) Permanent (code)

126 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

When the case worker activates the change-of-circumstances evidence changes, the
Evidence Controller notifies the Active Evidence Row Rule Object Propagator of
the evidence changes, and the Active Evidence Row Rule Object Propagator in turn
notifies the Dependency Manager that evidence for a case has changed. The
Dependency Manager identifies the product delivery case that depends on the
changed evidence and requests that the Engine reassesses the case. During
reassessment, the Engine invokes CER to calculate the determination result, and as
part of this calculation the Active Evidence Row Rule Object Converter is called
upon to populate the rule objects for the changed evidence, which are populated as
follows:

Table 46. Active Evidence Row Rule Objects after Changes of Circumstances

Rule Attribute Name
Value for Rule
Object 1

Value for Rule
Object 2

Value for Rule
Object 3

ActiveEvidenceRow.
description

"Income,
correctionSetID 476"

"Income,
correctionSetID 477"

"Income,
correctionSetID 478"

ActiveEvidenceRow.caseID453 453 453

ActiveEvidenceRow.
correctionSetID

476 477 478

ActiveEvidenceRow.
evidenceDescriptorID

978 979 980

ActiveEvidenceRow.
effectiveDate

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) (blank)

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

Income.employmentStatusTemporary Temporary Permanent

On 30th June 2002, the employment comes to an end and a case worker records
the end date on the latest version of the evidence:

Table 47. Database Details Stored for Ended Evidence

Database Column
Evidence Version
Record 1

Evidence Version
Record 2

Evidence Version
Record 3

EvidenceDescriptor.
evidenceDescriptorID

978 979 981

EvidenceDescriptor.caseID453 453 453

EvidenceDescriptor.
correctionSetID

476 477 478

EvidenceDescriptor.
effectiveFrom

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) 30th June 2002

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

Income.employmentStatusTemporary (code) Temporary (code) Permanent (code)

Developing with Eligibility and Entitlement by using Cúram Express Rules 127

The case worker activates the changes, which causes the existing latest
EvidenceDescriptor / Income pair to become "superseded" (evidenceDescriptorID
980) and a new pair to become "active" (evidenceDescriptorID 981).

Again the Active Evidence Row Rule Object Propagator causes the case to be
reassessed on foot of the evidence changes. During reassessment the Active
Evidence Row Rule Object Converter populates the rule object with these values:

Table 48. Active Evidence Row Rule Objects after Evidence Ended

Rule Attribute Name
Value for Rule
Object 1

Value for Rule
Object 2

Value for Rule
Object 3

ActiveEvidenceRow.
description

"Income,
correctionSetID 476"

"Income,
correctionSetID 477"

"Income,
correctionSetID 478"

ActiveEvidenceRow.caseID453 453 453

ActiveEvidenceRow.
correctionSetID

476 477 478

ActiveEvidenceRow.
evidenceDescriptorID

978 979 981

ActiveEvidenceRow.
effectiveDate

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) 30th June 2002

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

Income.employmentStatusTemporary Temporary Permanent

At some time later, a review of the case finds that the entire history of the income
has been recorded against the wrong person. All the evidence records for the
Income are canceled by the case worker, and the evidence re-recorded against the
correct person (in a new correction sets). When the case is reassessed, the Active
Evidence Row Rule Object Converter does not populate rule objects for the
evidence because now none of its evidence records are "active".

Some new legislation is introduced which affects how eligibility and entitlement
must be calculated, and in order to comply with this legislation, the agency must
now capture more details about periods of employment, specifically to capture
details of the varying responsibilities that a person had during each employment.
An employee may have several responsibilities at the same time during an
employment, and each responsibility may begin and end independently of others.

An evidence designer models a new type of evidence named Responsibility,
which is a child evidence type of the Income evidence type:
v income

The parent Income evidence of which the Responsibility evidence is a child;
v type

Code for the type of responsibility (e.g. management, clerical tasks, financial
control, etc.);

v startDate

The date that the responsibility started; and
v endDate

128 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

The date that the responsibility ended, if any.

A rules designer creates a new Responsibility rule class, and identifies that rules
centered around the Responsibility will need to navigate to parent Income rule
objects:
v parentIncomeVersions, of type List<Income>, annotated to mark it to be

populated from parent related evidence;
v type;
v startDate; and
v endDate.

The rules designer also identifies that rules centered around the Income will need
to navigate to child Responsibility rule objects, and so adds a new rule attribute
to the existing Income rule class:
v childResponsibilityVersions, of type List<Responsibility>, annotated to mark

it to be populated from child related evidence;

The evidence design changes, rules changes and new data configuration for the
Responsibility rule class are published.

A case worker records details for an employment where there is a pay rise on 1st
January 2005. From the start of the employment, the employee is responsible for
clerical tasks, but from 1st July onwards, the employee is also responsible for
financial tasks (in addition to still be responsible for clerical tasks).

When the case is assessed, the Active Evidence Row Rule Object Converter
populates these rule objects:
v A parent Income rule object effective from the start of the case, with an amount of

$15,000 and with its childResonsibilityVersions value set to be a list
containing the two Responsibility rule objects below;

v Another parent Income rule object effective from 1st January 2005, with an
amount of $16,000 and with its childResonsibilityVersions value also set to be
a list containing the two Responsibility rule objects below;

v A child Responsibility rule object for the clerical tasks, with its
parentIncomeVersions value set to be a list containing the two Income rule object
above; and

v Another child Responsibility rule object for the financial tasks, with its
parentIncomeVersions value also set to be a list containing the two Income rule
object above.

Note that there are two Responsibility rule objects, because there are two distinct
real-world responsibilities, each stored as different succession sets. There are two
Income rule objects, one for each version of the evidence as it changed over time.

Data Configuration Problems
For converters and propagators which are configurable, there may be problems
detected in the data configurations.

The behavior of converters and propagators which encounter configuration
problems is governed by the value of the
curam.ruleobjectpropagation.configuration.errorlevel environment variable:

Developing with Eligibility and Entitlement by using Cúram Express Rules 129

Table 49. Behavior when configuration problems are found

Value of
curam.ruleobjectpropagation.configuration.errorlevel

Behavior of configurable converters and
propagators

warn (default value) The converter or propagator writes a
warning to the application logs, and ignores
the problematic configuration.

ignore The converter or propagator ignores the
problematic configuration.

error The converter or propagator raises an
exception with the details of the
configuration problem, and does not allow
processing (typically, application startup) to
continue.

Configuration problems may be detected:
v whenever changes to configurations are published (see “Rule Object Data

Configurations” on page 162); and/or
v when the data configurations are initially loaded, if configured to do so. The

application property,
curam.ruleobjectpropagation.configuration.validateonload, is used to dictate
whether or not configurations are validated when they are initially loaded. The
default value is 'NO'. If this value is set to 'YES' , then configurations will be
validated when they are initially loaded, shortly after application start-up (as
soon as database writes for non-excluded tables are detected). For optimized
performance it is recommended that this value is set to 'NO'.

Data Access Points
This section gives an overview of the various points at which the rule object
converters and propagators interact with data from the application database.

Normal Conversion
During normal processing, rule object converters are invoked by CER whenever
CER is instructed to perform a search against rule objects.

CER looks up the appropriate rule object converter based on the rule class being
searched, and invokes the rule object converter to gather the appropriate data from
the application database and populate CER rule objects in memory, which can then
be used in further CER calculations.

In particular, during normal processing, these converters access the active evidence
records on the application database:
v “Active Succession Set Rule Objects” on page 107; and
v “Active Evidence Row Rule Objects” on page 119.

The retrieval of active evidence records is used when the Engine requests CER to
calculate one of the following types of determination:
v an assessment determination (see “Assessment Determinations” on page 17);
v a snapshot determination (see “Snapshot Determinations” on page 17);
v a manual check determination where the user has chosen the option to include active

evidence only (see “Manual Check Determinations” on page 17);

130 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

In contrast, the evidence converters also support a special data access mode to
provide a calculation based off in-edit evidence data (see “Temporary Access to
In-Edit Evidence Changes”).

Temporary Access to In-Edit Evidence Changes
The converters for these CER rule objects read data from evidence:
v “Active Succession Set Rule Objects” on page 107; and
v “Active Evidence Row Rule Objects” on page 119.

These converters support a special mode to allow the population of rule object
data from in-edit evidence changes whenever a case worker requests a manual
determination based on in-edit pending changes to one or more evidence items (see
“Manual Check Determinations” on page 17). This is in contrast to normal
processing (see “Normal Conversion” on page 130) whereby these converters have
access to active evidence data only.

When the case worker requests a manual determination based on in-edit pending
changes to evidence, then the Engine:
v starts a new CER session;
v instructs these converters to temporarily use in-edit evidence changes to

populate rule objects during the session, i.e. to:
– take into account any pending addition of new evidence;
– take into account any pending modification to existing evidence; and
– disregard evidence data for any pending removal of existing evidence; and

v requests the determinationResult value from CER. The calculation will invoke
the rule object converters to access rule objects for evidence, which will take into
account the in-edit evidence changes when populating those rule objects.

Incremental Propagation
During normal running of the application, the system detects changes to data
which may have been used to populate CER rule objects, by listening for these
internal events:
v changes to evidence, such as the activation of in-edit evidence changes; and
v changes to entity rows, for entities which are mapped in data configurations for

the Entity Rule Object Converter.

The processing of these internal events as they occur is known as "incremental
propagation". Incremental propagation is used to inform the Dependency Manager
of changes to precedent data, so that the Dependency Manager can take care of
identifying dependents to recalculation.

There are situations where incremental propagation cannot automatically detect
changes to precedent data, namely:
v a non-propagatable data write operation is executed (see “Propagation

Processing” on page 101); and/or
v data is written to the database outside the control of standard modeled entity

operations, e.g. via an SQL script or another system connected to the
application's database.

If either of these occur you must take manual steps to identify and reassess cases
which may be potentially affected.

Developing with Eligibility and Entitlement by using Cúram Express Rules 131

Bulk Maintenance of Rate Rule Objects
The Engine uses CER to store rule objects for rate table data on CER's database
tables. These stored rule objects act as a "mirror" copy of the rate table data in a
form that can be accessed during CER calculations.

The CER rule objects may not accurately reflect the latest rate table data for a
number of reasons:
v An administrator has changed rates in the application but not yet applied the

rate changes to CER.
The administration application contains an "Apply Changes" action, which will
request a deferred process to execute which will incrementally make changes to
the affected CER rule objects.

v The system has been initially deployed into production and no CER rule objects
have yet been created for rate table data.
A system operator must arrange to run the RateCreateInitialRuleObjects
process (see the Propagating Non Cúram Data For Cúram Express Rules guide).

v A database for a development system has been built and no CER rule objects
have yet been created for rate table data.
The developer can run the build prepare.application.data target prior to
starting the application, or else the creation of rule objects will be performed
automatically at application start-up4.

v Changes to rate table data have been made outside of the application's APIs.
Depending on the number of changes to rate table data, a system operator must
arrange to either:
– choose the "Apply Changes" action (for small numbers of changes); or
– run the FullPropagationToRuleObjects batch process (for larger numbers of

changes - see the Cúram Operations Guide).

Logging
Configuration problems encountered by rule object propagators are automatically
written to the application logs. You should monitor the logs and correct any
warnings reported.

On occasion, it can be useful to log the detailed actions taken by the rule object
converters and propagators.

The logging behavior of the rule object propagators is governed by these Cúram
environment variables:
v curam.trace.ruleobjectpropagation (specific to rule object propagation); and
v curam.trace (general Cúram trace level).

4. Shortly after start-up, the system checks the RuleObjectPropagatorControl table and runs initial propagation if it has not already
been run. In a development environment, there is typically no discernible effect; however, in a production environment, the
higher data volumes can mean that any initial propagation run after start-up (typically during user login) will cause the database
transaction to timeout, depending on application server timeout settings.

To avoid this problem, be sure to run build prepare.application.data prior to starting the application.

Initial propagation is controlled by a single control row on the RuleObjectPropagatorControl table, which is populated by the
DMX file included by the application. This control row ensures that initial propagation is only run once in an environment where
many JVM instances attach to the database (e.g. during repeated runs of JUnit tests in a development environment, or when
many application servers are used in a production environment).

The EJBServer/components/core/data/initial/RULEOBJECTPROPAGATORCONTROL.dmx file included by the application is required for
the correct behavior of initial propagation, and so this file must not be customized or removed by customers. The control row
populated by this DMX file must be reflected in any production database.

132 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

The amount of logging performed by rule object converters and propagators can be
controlled by setting either of these variables to one of the following (if both are
setting, the more verbose setting takes precedence):
v trace_off;
v trace_on;
v trace_verbose; or
v trace_ultra_verbose.

Types of actions logged include:
v the details of a database write operation that has occurred;
v the details of a database write operation that is/is not of interest to a particular

propagator;
v the details of a search for existing rule objects that match a database row which

has changed or has been removed;
v details of each rule object created, modified or removed; and
v the value that a converter sets on a CER rule attribute.

Supported Domain Types
The conversion of business data into CER rule objects supports the use of the
majority of the application's fundamental domain types.

The table below shows the correct CER data type to use for a CER rule attribute,
which at rule object conversion time will be populated from a database or evidence
field based on a domain. The table also describes any logic which is applied at
data conversion time and the default value that the rule object converters will use
for any values which are not sourced directly from data sources (e.g. when
populating before-start or after-end values in a timeline):

Table 50. Mapping from Cúram Domain Types to CER Rule Attribute Types

Cúram Domain Type
CER Rule Attribute
Type

Data conversion
logic Default value

Numerical types:

v SVR_DOUBLE;

v SVR_FLOAT;

v SVR_INT8;

v SVR_INT16;

v SVR_INT32;

v SVR_INT64; and

v SVR_MONEY.

Java class - Number Converted to CER's
own numerical
format.

0

Character types:

v SVR_STRING; and

v SVR_CHAR.

v Java class - String,
for text data other
than a code table
code; or

v Code table entry
(specifying the
appropriate code
table) for text data
which is a code
table code

An empty String ("").

Developing with Eligibility and Entitlement by using Cúram Express Rules 133

Table 50. Mapping from Cúram Domain Types to CER Rule Attribute Types (continued)

Cúram Domain Type
CER Rule Attribute
Type

Data conversion
logic Default value

SVR_BLOB Not supported.

SVR_BOOLEAN Java class - Boolean false

SVR_DATE Java class -
curam.util.value.Date

The "zero date"
(blank) is converted
to a null value.

null

SVR_DATETIME Java class -
curam.util.value.DateTime

The "zero date time"
(blank) is converted
to a null value.

null

Tip: If there is a mismatch between the database column domain type and the
CER rule attribute type, then at conversion time CER will report an error that the
value set on the rule attribute does not match its expected type. This error points
to the incorrect attribute data type having been modeled on the target rule class.

Important: Each CER rule attribute automatically has a description rule attribute
(of type curam.creole.value.Message), inherited from the RootRuleClass.

Rule attributes of this curam.creole.value.Message data type do not map to a
domain type, and so cannot be populated by the rule object converter. Any data
named "description" in the source data will be ignored.

How Determinations Are Stored

Introduction
After the Engine has calculated a determination result, the Engine must choose
whether to store the determination result, and if so, how to store it.

The choice of whether to store a determination result hinges on a number of
factors, described later. Typically each new determination result will end up being
stored.

The Engine stores the determination result by writing a row to the
CREOLECaseDetermination database table (and also some other data written to
child database tables). The data stored includes the full details of the determination
result and optionally also a "snapshot" of all the CER rule objects used in the
calculation of the determination result.

The Engine also stores rows of eligibility and entitlement data CaseDecision and its
child tables, so that this data can be used later by Cúram Financials to generate
financial components for the case. The Engine links the CaseDecision rows to the
CREOLECaseDetermination row by storing rows on CREOLECaseDecision.

Note: In general, you should not need to access the data on any of these tables;
this chapter merely provides a reference to the data stored.

This chapter is structured as follows:

134 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v The Database Tables

A description of the tables that the Engine uses to store determination data;
v Decision Periods

How the Engine splits a determination into periods of constant
eligibility/entitlement; and

v Determination Comparison Strategies

How the Engine decides whether a new determination is "different" from an
existing determination.

The Database Tables
The database tables below are used by the Engine to store determination data:
v CREOLECaseDetermination;
v CREOLECaseDeterminationData;
v CaseDecision;
v CaseDecisionObjective;
v CaseDecisionObjectiveTag; and
v CREOLECaseDecision.

CREOLECaseDetermination
This is the main table which owns the record of each determination.

The Engine stores a single row on this table for each determination result which
ends up getting stored.

The details stored vary slightly depending on the type of determination being
stored (Manual Check /Snapshot/Case Assessment). For data which is common to
all types of determination, see the core Entity Relationship Diagram. The tables
below show:
v the CREOLECaseDetermination data which is populated regardless of the type

of determination; and
v the CREOLECaseDetermination data which varies according to the type of

determination.

Table 51. Population of common CREOLECaseDetermination data

Attribute Name Value

creoleCaseDeterminationID Unique ID assigned by the system.

caseID Identifier of the case which has its eligibility
and entitlement determined.

determinationDateTime The date and time that the determination
was made.

type The type of this determination.

The value of this attribute governs the
varying data stored, as shown in the
following table.

createdByUser The user who created this determination.

determinationResultDataID The ID of the record which stores the XML
document for the overall determination
result.

Developing with Eligibility and Entitlement by using Cúram Express Rules 135

Table 52. Population of CREOLECaseDetermination data, according to the type of
determination

attribute
name/determination
type Manual Check Snapshot Case Assessment

assessmentReason blank blank Value from the
CaseAssessmentDetReason
code table indicating
the reason why the
case assessment
determination was
requested.

You are permitted to
add new values to
this code table to
contribute your own
assessment reasons if
required.

assessmentStatus blank blank Value from the
CaseDeterminationStatus
code table indicating
whether this
determination is:

v Current (and thus
is being used for
deliveries such as
financials); or

v Superseded (and
thus has been
replaced by a
different Current
record).

Extensions to this
code table are not
supported.

snapshotReason blank Value from the
CaseSnapshotDetReason
code table indicating
the reason that the
snapshot was
requested.

You are permitted to
add new values to
this code table to
contribute your own
snapshot reasons if
required.

blank

136 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 52. Population of CREOLECaseDetermination data, according to the type of
determination (continued)

attribute
name/determination
type Manual Check Snapshot Case Assessment

evidenceUsed Value from the
CaseDetEvidenceUsed
code table indicating
whether the manual
check was based off:

v in-edit changes to
evidence; or

v active evidence
only.

Extensions to this
code table are not
supported.

blank blank

ruleObjectSnapshotDataIDblank, unless the
application has been
configured to record
snapshots for manual
check determinations
(using the
curam.creole.manualeligibilitycheckdetermination.store.ruleobjectsnapshot
environment
variable), in which
case this attribute
stores the ID of the
record which stores
the XML document
of the snapshot of the
rule object data used
in the determination.

The ID of the record
which stores the
XML document of
the snapshot of the
rule object data used
in the determination.

The ID of the record
which stores the
XML document of
the snapshot of the
rule object data used
in the determination.

See also the core data dictionary.

CREOLECaseDeterminationData
This table stores XML data for determinations.

The Engine can store two different types of XML data for each determination (and
so for each row on CREOLECaseDetermination there are typically two related rows
on CREOLECaseDeterminationData):
v Determination result

An XML representation of a determination result, including the full
eligibility/entitlement, key decision factor and decision details over the lifetime
of the case, and also details of any errors encountered during calculation of the
determination. This XML will be used when data from the determination result
is subsequently displayed to a case worker; and

v Snapshot of Rule Objects

An XML snapshot of the CER rule objects used in the calculation of the
determination result. This snapshot provides a point-in-time view of the CER
rule objects and is stored to provide a full technical audit of how the
determination result was calculated. The CER rule objects include those for input
data (such as evidence, personal details and rates) and also all intermediate

Developing with Eligibility and Entitlement by using Cúram Express Rules 137

calculation steps. The snapshot points to the versions of the rule sets that were
in place when the time that the snapshot was taken, so that the subsequent
publication of changes to those rule sets do not affect the ability to read the
snapshot data. The snapshot can be read using CER's SnapshotDataStorage
feature. A snapshot is stored for assessment and snapshot determinations, but is
only stored for manual check determinations if the application has been
configured to do so (using the
curam.creole.manualeligibilitycheckdetermination.store.ruleobjectsnapshot environment
variable).

In the unlikely event that the XML data is too long to fit onto a single
CREOLECaseDeterminationData, the data will be truncated to fit and the extra
data stored on an "overflow" CREOLECaseDeterminationData row (or chain of
overflow rows).

Important: The XML format of determination results and CER rule object
snapshots is internal to the application and direct access to this XML is not
supported.

The data contained in the XML may be accessed via the application's published
APIs only.

CaseDecision
A determination result typically contains eligibility and entitlement data that varies
over the lifetime of the case. For assessment determinations, the Engine stores
details of the case's varying eligibility and entitlement on the CaseDecision table
(and its child tables, CaseDecisionObjective and CaseDecisionObjectiveTag, see
below), so that financial processing can use this data to deliver the case's attained
objectives.

When the Engine stores a new assessment determination, the Engine first
supersedes the existing stored determination (if any) and supersedes any
CaseDecision rows linked to that determination. For other types of determination
no superseding takes place.

Then, for the new determination, the Engine inspects the varying eligibility and
entitlement data to determine the dates on which the eligibility and/or entitlement
changes (see “Decision Periods” on page 142). For each of these
eligibility/entitlement change dates, the Engine stores a row on CaseDecision (and
rows on its child tables) to detail the eligibility and entitlement results that apply
from that date until the next change.

Sometimes it is possible for a determination result to contain key decision factors
and/or decision details which change on a particular date where there is no
accompanying change in eligibility and entitlement, for example where the case
continues to be eligible but for a different business reason than previously. In these
circumstances, the Engine will not store a CaseDecision record effective from the
change date, because there has not been a change in eligibility and entitlement.

The CaseDecision table is used to store eligibility/entitlement data for CER-based
cases as described above. However, it continues to be used to store

138 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

eligibility/entitlement data for cases assessed using Cúram Rules (as opposed to
CER). Some of the attributes on CaseDecision are reserved for use by Cúram
Rules5.

The Engine stores the following values in CaseDecision attributes for CER-based
cases:

Table 53. Population of CaseDecision rows

Attribute on CaseDecision Value stored by the Engine

caseDecisionID Primary key

caseID ID of case for which has been determined.

decisionDate Set to the decisionToDate.

resultCode v "Eligible" if the eligibility result for the
period is true; or

v "Not eligible" otherwise (if the result is
false or cannot be calculated).

methodCode blank (reserved for use by Cúram Rules
cases)

initReasonCode Value stored depends on the type of
determination:

v For manual check determinations,
"Pre-release".

v For snapshot determinations, "Release".

v For assessment determinations, "Release".

typeCode Always "Product Delivery Eligibility".

statusCode Value stored depends on the type of
determination:

v For manual check determinations,
"Superseded".

v For snapshot determinations,
"Superseded".

v For assessment determinations, "Current"
if the CREOLECaseDetermination is
Current, otherwise "Superseded".

decisionFromDate Start of period from which the decision
applies.

decisionToDate End of period to which the decision applies
- blank if the decision period is open-ended,
i.e. is the last decision period in an
open-ended case

runMode blank (reserved for use by Cúram Rules
cases)

decisionFlow blank (reserved for use by Cúram Rules
cases)

decisionResult blank (reserved for use by Cúram Rules
cases)

tagValue blank (reserved for use by Cúram Rules
cases)

5. See Inside Cúram Eligibility and Entitlement Using Cúram Rules.

Developing with Eligibility and Entitlement by using Cúram Express Rules 139

Table 53. Population of CaseDecision rows (continued)

Attribute on CaseDecision Value stored by the Engine

evidenceUsed blank (reserved for use by Cúram Rules
cases)

decisionFlowOverflowInd Always false (reserved for use by Cúram
Rules cases).

decisionResultOverflowInd Always false (reserved for use by Cúram
Rules cases).

evidenceUsedOverflowInd Always false (reserved for use by Cúram
Rules cases).

creationDate System date at the time the record is created.

CaseDecisionObjective
This describes an objective attained (i.e. entitled) for a parent CaseDecision.
Objectives which are not entitled are not stored.

The Engine will create a set of CaseDecisionObjective rows for each change in a
case's entitlement during its lifetime, as present in a determination result. Each
CaseDecisionObjective row describes a single objective attained for the period of
the CaseDecision (a CaseDecision may have zero, one or many attained objectives).

The Engine stores the following values in CaseDecisionObjective attributes for
CER-based cases, centered around the determination data drawn from an
AbstractObjectiveTimeline rule object:

Table 54. Population of CaseDecisionObjective rows

Attribute on CaseDecisionObjective Value stored by the Engine

caseDecisionObjectiveID Primary key

objectiveID The identifier of the type of objective
attained. Set to the CER attribute value
AbstractObjectiveType.objectiveTypeID
from the objective type returned by
AbstractObjectiveTimeline.objectiveType.

caseDecisionID ID of the parent CaseDecision which owns
this CaseDecisionObjective record.

concernRoleID The target of the attained objective. Set to
the value during the decision period for the
CER attribute value
AbstractObjectiveTimeline.targetIDTimeline.

value blank (reserved for use by Cúram Rules
cases)

relatedReference The related reference of the attained
objective. Set to the value during the
decision period for the CER attribute value
AbstractObjectiveTimeline.relatedReferenceTimeline.

overflowInd Always false (reserved for use by Cúram
Rules cases).

CaseDecisionObjectiveTag
This describes the frequency at which an attained objective can be delivered.

140 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

The Engine will create a set of CaseDecisionObjectiveTag rows for each row on
CaseDecisionObjective. These tags are used to calculate the amounts on the
financial schedules. For more information see “Calculating Financial Component
Amounts” on page 147

The Engine stores the following values in CaseDecisionObjective attributes for
CER-based cases, centered around the determination data drawn from an
AbstractTagTimeline rule object:

Table 55. Population of CaseDecisionObjectiveTag rows

Attribute on CaseDecisionObjectiveTag Value stored by the Engine

caseDecisionObjectiveTagID Primary key

caseDecisionID ID of the parent CaseDecision which owns
this CaseDecisionObjectiveTag record.

objectiveTagID The identifier of the type of tag which can
be delivered. Set to the CER attribute value
AbstractTagType.tagTypeID from a tag type
returned by AbstractTagTimeline.tagType.

value The value of the objective if delivered at the
frequency of this tag. Set to the value during
the decision period for the CER attribute
value AbstractTagTimeline.valueTimeline,
with appropriate numeric-to-String
conversions if required.

description blank (reserved for use by Cúram Rules
cases)

type The type of data held in the value attribute.
Set to the CER attribute value
AbstractTagType.valueType from the tag
type returned by
AbstractTagTimeline.tagType.

pattern The frequency at which this tag is delivered.
Set to the CER attribute value
AbstractTagType.pattern from the tag type
returned by AbstractTagTimeline.tagType.

objectiveID The type of objective for the parent objective
which owns this tag.

caseDecisionObjectiveID The ID of the parent objective which owns
this tag.

relatedReference blank (reserved for use by Cúram Rules
cases)

moneyValue Holds the precise string representation of a
money objective tag.

CREOLECaseDecision
This is the link between a CREOLECaseDetermination and a CaseDecision which
records a period of constant eligibility and entitlement within the determination.

The Engine stores a row on CREOLECaseDecision for every CaseDecision row
which forms part of the determination written to CREOLECaseDetermination.

Developing with Eligibility and Entitlement by using Cúram Express Rules 141

Decision Periods
The Engine stores details on CaseDecision and its child tables whenever there is a
"change" in eligibility and/or entitlement over the lifetime of a case. In other
words, the Engine splits a determination into "decision periods" of constant
eligibility/entitlement, and stores each of those period as a row on CaseDecision
(and links those rows back to the CREOLECaseDetermination).

The CER rule objects for eligibility and entitled objectives/tags contain a mixture
of fixed data and data which changes over time. For the sake of clarity, this section
describes each of the types of data changes which the Engine considers a "change"
in eligibility and/or entitlement:
v Each date on which the eligibility result changes;
v Each date on which the set of attained objectives changes; or
v Each date on which any of these values change for an attained objective:

– The target for the objective;
– The related reference for the objective; and/or
– The value of any type of tag for the objective.

Each change to any of the above will result in a CaseDecision record (plus child
records) for that period during a determination.

Determination Comparison Strategies
When the Engine calculates a determination result, then the Engine will store that
determination result if the new result is "different" from the previous result stored.
Each CER-based Product can be configured to set just how "different" a new
determination result needs to be in order to be stored (and thus to supersede the
existing determination).

When the Engine stores a new determination snapshot (i.e. stores a new row on
CREOLECaseDetermination), it will either:
v if the new determination result is "different" from the previously stored

determination result, store a new row for the determination's XML documents
on CREOLECaseDeterminationData, and link the new
CREOLECaseDetermination to the new rows for the XML documents; or

v if the new determination result is not "different" from the previously stored
determination result, link the new CREOLECaseDetermination to the existing
rows for the XML documents stored against the previous determination.

For example, if a case worker repeatedly requests manual eligibility checks on the
same data, each request will result in a (small) row being written to
CREOLECaseDetermination, but only one pair of (large) rows being written to
CREOLECaseDeterminationData.

Each CER-based Product must specify a strategy that the Engine will use when
comparing determinations. You must either:
v in development, change your CREOLEProduct.dmx file to populate your product's

determinationCompStrategyType column with the code (from the
DeterminationCompStrategy code table) for your chosen strategy implementation;
or

142 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v in a running system, start the admin application and navigate to Product
Delivery Cases, select your product, choose Rule Sets and choose Eligibility
Determination, change "Determination Comparison Strategy" to be your chosen
strategy implementation.

The interface for the strategy is
curam.core.sl.infrastructure.assessment.impl.DeterminationComparisonStrategy.
You must choose an existing comparison strategy or implement one of your own.

Tip: In the early stages of developing your product, it may be useful to initially
use the "Compare all user-facing data" strategy included with the Engine, and then
later in your development revisit whether this strategy meets your requirements.

Depending on the strategy in place for a product, it is possible for a new
determination to be stored even though its eligibility and entitlement are identical
to the that for the previous determination (i.e. the new CaseDecision and child
records contain effectively the same data as the old records.).

This situation can arise when two determinations differ in explanation only. For
example, a case may be determined to be ineligible forever because the claimant is
not a citizen. If the claimant acquires citizenship, the case will be reassessed but
the case may still be ineligible forever because the claimant fails a means test. In
this way, the underlying eligibility and entitlement is unchanged (namely,
"ineligible forever"), yet the explanation for the ineligibility has changed, and may
cause a new determination to be stored (depending on the determination
comparison strategy in place for the product).

Strategy Implementations Included with the Engine
The Engine includes these implementations which are suitable for most products:

Table 56. Determination Comparison Strategy Implementations Included with the Engine

Display/code

Compare all user-facing data

Compare eligibility/entitlement data only

Developing your own Strategy Implementation
If you have custom requirements not met by the implementations included with
the Engine, you may develop your own strategy implementation(s) for use in your
products as follows:
v Add a new entry to DeterminationCompStrategy code table (using custom .ctx

files);
v Create an implementation class which implements the

DeterminationComparisonStrategy interface; implement the required method to
return whether the two determinations passed in are considered to have equal
data;

v Bind the code table entry to your implementation, in your custom Guice
Module:

Developing with Eligibility and Entitlement by using Cúram Express Rules 143

(replacing YOUR_STRATEGY with the constant for your new code table code
and YourDeterminationComparisonStrategy with your strategy implementation
class as appropriate)

v Build your application;
v Configure your product to use your new strategy (see instructions above).

Scheduling Financials

Introduction
The financial scheduler is responsible for scheduling financial transactions based
on eligibility and entitlement results and case deductions. These financial
schedules, known as financial components, are used by the Financial Manager to
create financial instruction line items. The financial scheduler sits between the
Eligibility and Entitlement Engine and the Financial Manager, translating eligibility
and entitlement results as well as case deductions into financial schedules that can
be processed into actual payments or bills.

This chapter covers the scheduling of financials for eligible case decisions, case
deduction items, and payment corrections. The approach used to describe each of
these financial schedules is the same followed throughout this guide. For each
financial schedule here is a description of how it looks, how it works, and how to
use it.

Financial components are schedules of transactions to be realized into actual
financial transactions. A financial component encompasses all of the elements that
constitute a financial schedule, e.g. amount, cover period, frequency, validity
period, effective date and so on.

Scheduling Financials for Eligible Case Decisions
The case determination information produced by the Engine is used to create the
financial schedules for the case. Only eligible case decisions are considered and
each eligible decision will have one or more associated case decision objectives.
Each of these case decision objectives represents a component for which financials
must be scheduled. One or more financial components are created for each case
decision objective, and these financial components are used to create one or more
instruction line items that represent the actual financial transactions.

How It Looks
This section describes how financial information is displayed to a case worker. A
financial instruction representing a benefit payment to a nominee is generated and

{
// Register your custom determination comparison strategies
final MapBinder<DETERMINATIONCOMPARISONSTRATEGYEntry,

DeterminationComparisonStrategy>
determinationComparisonStrategies

= MapBinder.newMapBinder(binder(),
DETERMINATIONCOMPARISONSTRATEGYEntry.class,
DeterminationComparisonStrategy.class);

determinationComparisonStrategies.addBinding(
DETERMINATIONCOMPARISONSTRATEGYEntry.YOUR_STRATEGY.to(

YourDeterminationComparisonStrategy.class));
}

144 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

displayed. From this, the case worker can view the total amount due, the
instruction line items which make up the total payment, the nominee and the
delivery details.

For example, a financial instruction has been generated and is displayed for the
period 22nd June to 10th July, for the amount of $407.15. This financial instruction
is comprised of three payment instruction line items. The nominee was determined
eligible to receive an Income Assistance component and entitled to a weekly
amount of $150. The financial scheduler uses the one case decision objective
produced by the Engine to create two financial components.

The first financial component serves as a ramp-up financial component to cover a
partial payment period. Because the nominee is assigned a delivery pattern of
'Weekly by Check in Advance on a Monday' and becomes eligible starting on
Wednesday 22nd of June 2011, the financial scheduler creates a one-time ramp-up
financial component that is processed by the Financial Manager into one
instruction line item for a partial week payment of $107.15 that covers the period
from Wednesday 22nd of June 2011 through Sunday 26th of June 2011.

The second financial component serves as a recurring financial component that is
processed by the Financial Manager into two instruction line items, one for a full
weekly payment of $150 for the week starting Monday 27th of June 2011 and the
second for the week starting Monday 4th of July 2011.

How It Works
There are a number of factors taken into consideration when deciding how to
represent a specific case decision as a financial schedule. These include the case
decision objectives, the nominee component assignments, the nominee delivery
patterns, the period to which the decision applies and the case decision objective
tags which have been specified. The following sections provide more information
on each of these factors.

Considering Case Decision Objectives: An eligible case decision is first turned
into a set of virtual components, one virtual component for each of associated case
decision objectives. The start and end dates of these virtual components will match
the start and end dates of the decision. If the decision is open-ended the virtual
components will also be open-ended.

For example, a case decision which indicates eligibility for the Income Assistance
component from 13th June 2011 until 29th July 2011 would generate a virtual
component starting on 13th June 2011 and ending on 29th July 2011.

Considering Nominee Component Assignments: Once an initial virtual
component has been created the next step is to examine the nominee component
assignments. Any changes to the component assignment during the cover period of
the virtual component are identified and are used to split the initial virtual
component into multiple, nominee specific parts.

For example, the Income Assistance component is assigned to nominee James from
13th June 2011 to 5th July 2011 and is then assigned to nominee Linda from 6th
July 2011 onwards. Using this information the initial virtual component is split up,
giving one virtual component for nominee James, which covers the period 13th
June 2011 to 5th July 2011 and one virtual component for nominee Linda, which
covers the period 6th July 2011 to 29th July 2011.

Developing with Eligibility and Entitlement by using Cúram Express Rules 145

Considering Nominee Delivery Patterns: Once the nominee specific virtual
components have been created, the next step is to examine the nominee delivery
patterns. Any changes to the nominee's delivery pattern during the cover period of
their virtual component are identified and are used to split it again into multiple,
delivery pattern specific parts.

For example, nominee James is paid using the pattern 'Weekly by EFT in Advance
on a Monday' from 13th June 2011 to 3rd July 2011 and then paid 'Daily by EFT'
from 4th July 2011 onwards. Nominee Linda is paid using the pattern 'Weekly by
Check in Advance on a Monday' from 6th July 2011 onwards. In this situation the
virtual component for nominee James will be split into two parts. One virtual
component for the period of the 'Weekly by EFT in Advance on a Monday'
delivery pattern and once virtual component for the period of the 'Daily by EFT'
delivery pattern.

At the end of this processing we will have three virtual components that must be
realized into appropriate financial schedules as follows:
v Monday 13th of June 2011 until Sunday 3rd July 2011 for James, Weekly by EFT

in Advance on a Monday
v Monday 4th of July 2011 until Tuesday 5th July 2011 for James, Daily by EFT
v Wednesday 6th of July 2011 until Friday 29th of July 2011 for Linda, Weekly by

Check in Advance on a Monday

Calculating Financial Component Cover Periods: Each of the virtual components
that we have at this stage is then further split up based on how its cover period
matches with the frequency of the nominee delivery pattern. For each virtual
component up to three financial components may be created. Each financial
component will apply for a specific interval during the period to which the virtual
component applies.

If the virtual component does not begin on a day that can initiate a complete
delivery period, a financial component is created to cover the period between the
virtual component start date and the beginning of the first complete delivery
period. This is known as a ramp-up financial component.

A second financial component may be generated to cover all complete cycles of the
delivery frequency that can be achieved within the virtual component cover
period. This is known as a recurring financial component.

A final financial component may be created to cover the period between the end of
the last complete delivery period and the virtual component end date. This is
known as a ramp-down financial component.

For example, the virtual component for nominee Linda covers the period from
Wednesday 6th of July 2011 to Friday 29th of July 2011 and uses the delivery
frequency Weekly by Check on Monday. Using the frequency of this nominee
delivery pattern to split up the virtual component means that a separate financial
component is generated to cover each of the periods listed below:
1. From Wednesday 6th July 2011 to Sunday 10th July 2011. This financial

component covers the interval from the start of the virtual component to the
start of the first complete delivery cycle, i.e. Monday 11th July.

2. From Monday 11th July 2011 to Sunday 24th July 2011. This financial
component covers the period of the virtual component that contains all of the
complete delivery frequency cycles.

146 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

3. From Monday 25th July 2011 to Friday 29th July 2011. This financial component
covers the period between the end of the last complete delivery cycle and the
virtual component end date.

Calculating Open Ended Financial Component Cover Periods: If a product
supports open ended cases, it means that the last decision on a case may be open
ended. When the last decision is eligible, then it results in the creation of a
recurring, open-ended financial component. This means that a ramp-down
financial component is not required.

For example, an eligible, open ended decision has been created starting on
Wednesday 6th of July 2011 which applies until further notice. For a case with one
nominee component assignment and one nominee delivery pattern which has the
delivery frequency Weekly by Check on Monday, one open ended virtual
component will be created. Using the frequency of the nominee delivery pattern to
split up the open ended virtual component means that a separate financial
component is generated to cover each of the periods listed below:
1. From Wednesday 6th July 2011 to Sunday 10th July 2011. This financial

component covers the interval from the start of virtual component to the start
of the first complete delivery cycle, i.e. Monday 11th July.

2. From Monday 11th July 2011 until further notice. This financial component
covers the period of the virtual component that contains complete delivery
frequency cycles.

At some point in the future, an end date will be added to the case. This might be
because of a change of circumstance or because the case is being closed. When this
occurs, the case will be reassessed and the previous open ended decision will be
replaced by one which has an end date. At that point the open ended financial
component will be replaced by a bounded financial component which applies until
the case end date.

Calculating Financial Component Amounts: After the required financial
components have been identified, the amount and effective date must be
determined for each one. The amount is determined by examining the period for
which the financial component applies. For a ramp-up or ramp-down financial
component, this will be the cover period of the financial component. For a
recurring or open-ended financial component, this will be cover period of the first
complete delivery cycle.

For example, if we take the three financial components identified above for
nominee Linda, the periods specified would be:
1. From Wednesday 6th July 2011 to Sunday 10th July 2011.
2. From Monday 11th July 2011 to Sunday 24th July 2011.
3. From Monday 25th July 2011 to Friday 29th July 2011.

The amount used for each individual financial component depends on the case
decision objective tags which have been specified in the rule set for the product.
Each tag has an associated frequency. The available frequencies are daily, weekly,
bi-monthly, monthly and yearly.

When calculating the amount for a recurring financial component typically the
frequency will match one of the available tags. When calculating the amount for a
ramp-up or ramp-down financial component the available tags are applied largest
first.

Developing with Eligibility and Entitlement by using Cúram Express Rules 147

For example, if the rule set for the product specified a 'daily' case decision
objective tags with an amount of $10 (indicating that for a single day the amount
of 10 should be paid) and a 'weekly' case decision objective tag with an amount of
$65 (indicating that for a full week the amount of 65 should be paid), the amounts
calculated for the three financial components would be as follows:
1. From Wednesday 6th July 2011 to Sunday 10th July 2011 the amount would be

$50 (five days at $10 per day).
2. From Monday 11th July 2011 to Sunday 24th July 2011 the amount would be

$65 (one full week at $65 per week).
3. From Monday 25th July 2011 to Friday 29th July 2011 the amount would be $50

(five days at $10 per day).

Consider this second example which explains how the tags are applied largest first.
If the delivery frequency is monthly and a ramp-up financial component is
required for the period from 8th June 2011 until 30th June 2011 (23 days in total),
and the following case decision objective tags are specified:
1. A monthly tag at $250 per month
2. A weekly tag at $65 per week.
3. A daily tag at $10 per day.

Using these Tags to calculate the amount for the ramp-up financial component
would give a total of $215 (three weekly tags plus two daily tags).

However, if no weekly tag had been specified then the amount calculated for the
ramp-up financial component would be $230 (twenty three daily tags).

Calculating Financial Component Effective Dates: The effective date for the
financial component is determined using a combination of the cover period type
and the delivery pattern. For each of the supported cover period types, the
effective date is calculated as follows:
v Issue in Advance

The effective date is the start date of the first delivery period covered by the
financial component. Therefore, for the three financial components defined above
for nominee Linda, the effective dates would be Monday 4th July, Monday 11th
July and Monday 25th July respectively. It is worth noting that the effective date
for the first financial component is not within the cover period for that
component.

v Issue in Arrears
The effective date is the start date of the delivery period following the first
delivery period covered by the financial component. Therefore, for the three
financial components defined above for nominee Linda, the effective dates
would be Monday 11th July, Monday 18th July and Monday 1st August
respectively.

v Issue for Full Month
The effective date is the start date of the financial component. Therefore, for the
three financial components defined above for nominee Linda, the effective dates
would be Wednesday 6th July, Monday 11th July and Monday 25th July
respectively.

v Once-off Issue
The effective date is the start date of the financial component. Therefore, for the
three financial components defined above for nominee Linda, the effective dates
would be Wednesday 6th July, Monday 11th July and Monday 25th July
respectively.

148 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v Issue in Advance - N Days Prior to Issue Date
The effective date is N days prior to the start date of the first delivery period
covered by the financial component. For example, if N equals 2, then for the
three financial components defined above for nominee Linda, the effective dates
would be Saturday 2nd July, Saturday 9th July and Saturday 23rd July
respectively.

v Issue in Arrears - N Days Prior to Issue Date
The effective date is N days prior to the start date of the delivery period
following the first delivery period covered by the financial component. For
example, if N equals 2, then for the three financial components defined above
for nominee Linda, the effective dates would be Saturday 9th July, Saturday 16th
July and Saturday 30th July respectively.

v Issue in Advance - on the Nth Day of Month Prior
The effective date is the Nth day of the month prior to the start date of the
financial component cover period. For example, if N equals 2, then for each of
the three financial components defined above for nominee Linda the effective
date would be Friday 3rd June.

How to Use It
This section describes the information that must be provided to allow financial
schedules to be generated for an eligible case decision. It is divided into two
sections, mandatory information and optional information.

Mandatory Information:

Case Decision Objectives

These are defined in the rule set assigned to the product on which this case is
based. An Objective is anything that can be awarded as part of a determination
result calculated by CER rules. An eligibility rule set can have multiple objectives.

For more information see “Objectives” on page 26.

Case Decision Objective Tags

These are also defined in the rule set assigned to the product on which this case is
based. An Objective Tag represents how a particular objective is awarded for a
specific period of time (from days to years). An objective may have several
objective tags. For example, a Loan Parent benefit product may have two objective
tags, one applying 'per day' and one 'per week'. An objective tag can be an amount
of money or a formula that evaluates an amount of money for a specific objective.

For more information see “Objective Tags” on page 26.

Financial Code Tables

There are five code tables which must be customized to enable the financial
schedules and subsequent financial transactions to be generated correctly from the
eligible case decisions. They are:
1. RulesComponentType;
2. FinComponentType;
3. ProductComponentFCConv;
4. ILIType; and
5. TranslateILIType.

Developing with Eligibility and Entitlement by using Cúram Express Rules 149

For more information see the 'Financial Code Tables' section of the Inside the
Cúram Financial Manager Guide.

Optional Information:

Nominee Component Assignments

Every component available on a case must be assigned to a nominee. When a case
is first created all the components are initially assigned to the default nominee.
However, if an additional nominee has been added to the case they can be
assigned a component from a certain date or for a specific period of time.

Assigning a component to multiple nominees during the lifetime of an eligible case
decision will result in the creation of separate financial components for each of
those nominees. Nominee Component Assignments can be configured via the
Transactions page of the case.

For more information see the Cúram Nominees Guide.

Nominee Delivery Patterns

Every nominee must have a delivery pattern which indicates how they wish to
receive payments and at what frequency. A nominee's delivery pattern can change
over time, but no gaps are allowed. The delivery pattern can be specified when the
nominee is being added to the case. If one is not explicitly selected, then the
nominee is given the delivery pattern currently in use by the default nominee.

Having multiple delivery patterns for a nominee during the lifetime of an eligible
case decision will result in the creation of separate financial components for each
of the delivery patterns used. Nominee Delivery Patterns can be configured via the
Transactions page of the case.

The nominee delivery pattern is also where the delivery frequency and the cover
period type are specified, as well as any offsets.

For more information see the Cúram Nominees Guide.

Allow Open Ended Cases Indicator

This indicator can be found on the Eligibility Determination tab of the Rule Sets
page for a Product. It is set to 'Yes' by default, meaning that cases based on this
product may be open ended. Only open ended cases can generate open ended
decisions and subsequently open ended financial schedules. Setting this indicator
to 'No' ensures that an end date or expected end date must always be set for cases
based on this product and ensures that any financial schedules created for such a
case will always have an explicit end date.

For more information see the Cúram Integrated Case Management Configuration
Guide.

Scheduling Financials for Case Deductions
The case deduction item information on a case is used to create the deduction
financial schedules. Only active case deduction items are considered. Deductions
can either be for a fixed amount or for a percentage of the payment amount, with
the specific amount being calculated during payment generation.

150 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

For a fixed deduction, the value of the deduction financial component is taken
directly from the case deduction item. A fixed deduction is applied to the total
payment amount of all the deductible components that the specified nominee has
received.

For a variable deduction, a rate is used instead. The rate indicates the percentage
of the payment amount that should be deducted. A variable deduction is applied
to the total payment amount of a specific component if one is selected, otherwise it
is applied to the total payment amount of all the deductible components on the
case. Since a variable deduction represents a percentage of the total payment, the
same percentage is deducted from each nominee receiving one of the applicable
components.

Each active case deduction item defined for a case will result in the generation of
one or more financial components depending upon the number of nominees
affected. One or more deduction instruction line items will then be generated for
each financial component.

For more information on configuring deductions, see the Cúram Deductions Guide.

How It Looks
This section describes how financial information is displayed to a case worker
when a deduction is taken from a payment. A financial instruction representing a
benefit payment to a nominee is generated and displayed. From this, the case
worker can view the total amount due, the instruction line items and the deduction
items which make up the total payment, the nominee and the delivery details.

For example, a financial instruction has been generated and is displayed for the
period 22nd June to 10th July, for the amount of $397.15. This financial instruction
is comprised of three payment instruction line items and one deduction instruction
line item. The nominee was determined eligible to receive an Income Assistance
component and entitled to a weekly amount of $150. A fixed deduction of $10 has
also been created for the nominee in order to assist the nominee in making
payments for a utility bill. The financial scheduler uses the one case decision
objective produced by the Engine to create two financial components to represent
the payment, and uses the case deduction item information to create one financial
component to represent the deduction.

The first payment related financial component serves as a ramp-up financial
component to cover a partial payment period. Because the nominee was assigned a
delivery pattern of 'Weekly by Check in Advance on a Monday' and became
eligible starting on Wednesday 22nd of June 2011, the financial scheduler creates a
one-time ramp-up financial component that is processed by the Financial Manager
into one instruction line item for a partial week payment of $107.15 to covers the
period from Wednesday 22nd of June 2011 through Sunday 26th of June 2011.

The second payment related financial component serves as a recurring financial
component that is processed by the Financial Manager into two instruction line
items, one for a full weekly payment for $150 for the week starting Monday 27th
of June 2011 and the second for the week starting Monday 4th of July 2011.

The deduction financial component is processed by the Financial Manager into one
instruction line item for the amount of $10 that is deducted from the payment
financial instruction created for the nominee.

Developing with Eligibility and Entitlement by using Cúram Express Rules 151

How It Works
There are a number of factors taken into consideration when deciding how to
represent a specific case deduction item as a financial schedule. These include
whether the deduction is fixed or variable, the nominee component assignments,
the nominee delivery patterns, the period to which the deduction applies and the
latest payment date associated with the case itself. The following sections provide
more information on each of these factors.

Considering Case Deduction Items: First the active case deduction items are
retrieved. Only a case deduction item with an end date after the last paid to date
of the case will be considered. If an active deduction has already ended, it will not
be used generate financial schedules.

For example, a case which starts on 13th of June 2011 and has an expected end
date of 10th July 2011 delivers two components, Income Assistance and Medical
Assistance. The case has two nominees Lisa and Paul, but no payments have been
issued yet.

Lisa is the default nominee and so is assigned both components from the case start
date. Lisa's nominee delivery pattern is 'Weekly by EFT in Advance on a Monday'
and applies from the case start date. Paul's nominee delivery pattern is 'Weekly by
Check in Advance on a Monday' and also applies from the case start date. Paul is
assigned the Income Assistance component from 27th June 2011 (the start of the
third week).

The case also has two case deductions specified as follows:
1. A fixed deduction for the amount $12, assigned to nominee Lisa. The deduction

starts on 13th of June 2011 and has no end date specified, meaning that it
applies until further notice.

2. A variable deduction for 20% against the Income Assistance component. It
starts on 20th of June 2011 and has an end date of 5th July 2011.

In this example, both case deduction items will be retrieved and used to generate
financial components.

Considering Deduction Types: Once the case deduction items have been
identified, the next step is to check the deduction type to determine how many
nominees are affected. A fixed deduction will affect a single nominee while a
variable deduction may affect multiple nominees depending on the components it
is targeted at and the nominee component assignments. Any changes to the
component assignments during the cover period of the deduction are identified
and are used to split the initial deduction component into multiple, nominee
specific parts. This is done for each component affected by the deduction.

In our example, the fixed deduction is assigned to Lisa, so it can be represented by
a single deduction financial component. The variable deduction is against the
Income Assistance component which is assigned to Lisa for the first two weeks
and then to Paul for the remainder of the case, so the deduction financial
component representing this must be split in two.

At the end of this processing we will have three deduction financial components as
follows:
1. From Monday 13th of June 2011 until Sunday 10th July 2011 for nominee Lisa,

deducting $12 per week from her total payment.

152 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

2. From Monday 13th of June 2011 until Sunday 26th June 2011 for nominee Lisa,
deducting 20% per week from her total payment.

3. Monday 27th of June 2011 until Sunday 10th July 2011 for nominee Paul,
deducting 20% per week from his total payment.

Calculating Deduction Cover Periods: The cover period of the deduction
financial component starts on the case deduction item start date, unless that date is
before the last date paid out on the case. In that situation, the financial component
cover period starts the day after the last date paid.

The cover period of the deduction financial component ends on the case deduction
item end date, if specified. If no end date has been specified the expected end date
of the case is used instead.

For example, if the case deduction item has a start date of 13th June 2011 and no
end date is specified and the case to which it belongs has an expected end date of
Sunday 10th July 2011 and has been paid up to Sunday 19th June 2011. The cover
period of the deduction financial component would be from Monday 20th June
2011 to Sunday 10th July 2011.

How to Use It
This section describes the information that must be provided to allow financial
schedules to be generated for a case deduction item. It is divided into two sections,
mandatory information and optional information.

Mandatory Information:

Case Deduction Items

The relevant case deduction item must be added to the case. It must have been
Activated, and its end date, if specified, must be later than the last date paid out
on the case.

For more information see the Cúram Deductions Guide.

Optional Information:

Nominee Component Assignments

Every component available on a case must be assigned to a nominee. When a case
is first created all the components are initially assigned to the default nominee.
However, if an additional nominee has been added to the case they can be
assigned a component from a certain date or for a specific period of time.

Assigning a component to multiple nominees during the lifetime of a variable case
deduction item targeted at that component will result in the creation of separate
deduction financial components for each of those nominees. Nominee Component
Assignments can be configured via the Transactions page of the case.

For more information see the Cúram Nominees Guide.

Scheduling Financials for Payment Corrections
The reassessment information produced by the Engine is used to create the
payment correction financial schedules.

Developing with Eligibility and Entitlement by using Cúram Express Rules 153

When a change of circumstance results in a reassessment over a period which has
already been paid, that reassessment may determine that the entitlement amount
originally calculated and subsequently issued to the nominee for that period was
incorrect. When this occurs the original entitlement must be corrected and a
balancing payment or bill must be issued. A payment correction is the mechanism
used to do this.

If the original payment was larger that it should have been, an overpayment
correction will be created. If the original payment was smaller that it should have
been, an underpayment correction will be created. If the original payment was
comprised of multiple components and the total amount for the overpaid
components was found to be the same as the total amount for the underpaid
components, a net zero payment correction will be created.

Reassessment information is stored for each nominee affected by the payment
correction in the NomineeOverUnderPayment table. This information is then
broken down by component for each nominee and stored in the
OverUnderPaymentBreakdown table and is used to create evidence for payment
correction. The type and number of evidence records created depends upon the
type of product used to deliver the payment correction. Each evidence record
results in the creation of one corresponding financial component which in turn is
used to create one instruction line item.

How It Looks
This section describes how financial information is displayed to a case worker
when an overpayment or underpayment occurs and is processed within a Payment
Correction case.

For example, a nominee was initially determined eligible to receive both an Income
Assistance and Medical Assistance component and is entitled to a weekly amount
of $150 for the Income Assistance component and a weekly amount of $35 for the
Medical Assistance component. The financial scheduler uses the two case decision
objectives produced by the Engine to create two financial components that are
processed by the Financial Manager into a payment.

Due to a change in circumstance for the nominee, reassessment of the nominee's
eligibility and entitlement occurs resulting in an overpayment for both components
and the creation of a Payment Correction case. The financial scheduler uses the
reassessment information produced Engine to create two financial components.

The first financial component is created for the Income Assistance component and
is processed by the Financial Manager into one liability instruction line item for
$6.41 that covers the period of the original payment, from Wednesday 22nd of June
2011 through Thursday 7th of July 2011.

The second financial component is created for the Medical Assistance component
and is processed by the Financial Manager into one liability instruction line item
for $10.71 that covers the period of the original payment, from Wednesday 22nd of
June 2011 through Thursday 7th of July 2011.

A financial instruction representing a liability for an overpayment to a nominee is
displayed within a Payment Correction case for the amount of $17.12. This
financial instruction is comprised of the two liability instruction line items created
by the Financial Manager.

154 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

In the originating Product Delivery case, the Engine has determined that the
entitlement amount originally calculated and subsequently issued was larger than
it should have been, resulting in the creation of an overpayment.

The overpayment of $17.12 that resulted in the creation of the Payment Correction
case is displayed. The overpayment is broken down into an overpayment of $10.71
for the Medical Assistance component and an overpayment of $6.41 for the Income
Assistance component.

How It Works
For a payment correction, the generation of the financial schedules is normally a
two step process. First a product delivery case is created and the reassessment
information is used to create the evidence for the case. When that case is
subsequently activated the evidence is used as the basis for the financial schedules.

An alternative process is possible for an underpayment correction. With this
approach it is possible to deliver the underpayment on the original benefit case,
rather than using a separate underpayment case. In this situation the reassessment
information is still used to create the evidence, but the necessary financial
component(s) are created immediately afterwards.

There are a number of factors taken into consideration when deciding how to
represent a payment correction as a financial schedule. These include the payment
correction type determined by the reassessment, the product used to deliver the
payment correction, the number of components included in the reassessment, and
various administration and product settings. The following sections provide more
information on each of these factors.

Considering Payment Correction Types: An overpayment correction is created
when the original payment was larger that it should have been. If the original
payment was comprised of multiple components then it is possible that some of
those component could have been overpaid while others have been underpaid, but
when the totals are combined the balance is an overpayment.

An underpayment correction is created when the original payment was smaller
that it should have been. If the original payment was comprised of multiple
components then it is possible that some of those component could have been
overpaid while others have been underpaid, but when the totals are combined the
balance is an underpayment.

A net zero payment correction is created when the original payment was
comprised of multiple components and the total amount for the overpaid
components was found to be the same as the total amount for the underpaid
components. When the totals are combined the balance is zero.

In the example, the Engine has determined that an overpayment correction is
required. The reassessment information shows that the total overpayment amount
is $17.12 and this total was calculated by adding the overpayment of $10.71 for the
Medical Assistance component and the overpayment of $6.41 for the Income
Assistance component.

Considering Correction Products: There are three products which can be used
when creating financial schedules for a payment correction. They are:
v The Payment Correction product which has the ability to produce individual

financial schedules for each component which was over or under paid on the

Developing with Eligibility and Entitlement by using Cúram Express Rules 155

original benefit case. This product supports all the payment correction types
(overpayment, underpayment and net-zero).

v The Overpayment product which has the ability to produce a single liability
financial schedule for the total amount overpaid on the original benefit case.
This product supports only the overpayment correction type.

v The Underpayment product which has the ability to produce a single benefit
financial schedule for the total amount underpaid on the original benefit case.
This product supports only the underpayment correction type.

The payment correction product will be used by default, however an application
property is provided that allows the overpayment and underpayment products to
be used instead.

In the example, the product associated with the case is configured to use the
Payment Correction product, and since this is an overpayment correction a
Payment Correction case will be created.

Once the Payment Correction case has been created the appropriate evidence is
added to it. In this example, two evidence records will be created:
1. An overpayment record for the amount of $10.71 to correct the original

payment for the Medical Assistance component.
2. An overpayment record for the amount of $6.41 to correct the original payment

for the Medical Assistance component.

Important: Cases that have been migrated from earlier versions of the application
may have existing reassessment information. For case such as this, the granular
reassessment information will not be available. Therefore the payment correction
product cannot be used. So these cases will continue to use the overpayment and
underpayment products as before.

Considering Nominees: For an overpayment correction, the nominee on the
Payment Correction case will be the primary client of the original benefit case and
the nominee delivery pattern will be 'Once-off by Invoice'.

For an underpayment correction the nominee on the Payment Correction case will
be same as the nominee underpaid on the original benefit case. If this is different
to the primary client, a second nominee will be added to the Payment Correction
case to support this. The nominee delivery pattern will be 'Once-off by X' (where X
is the delivery method of that nominee on the original benefit case). A new
nominee can also be added to the underpayment case and assigned to the benefit
underpayment component, however unlike regular benefit cases, the payment
cannot be split between multiple nominees over different period of times because
an underpayment is a single once off payment. In order for a different nominee to
receive the underpayment, the date range of the component assignment must cover
the entire cover period of the benefit underpayment component. If the date range
of the component assignment does not cover the entire cover period, then the
original nominee will still receive the entire underpayment.

For a net zero payment correction, the nominee on the Payment Correction case
will be the primary client of the original benefit case and the nominee delivery
pattern will be 'Once-off by X' (where X is the delivery method of that nominee on
the original benefit case).

156 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

In the example, the Engine has determined that an overpayment correction is
required. The nominee on the financial component will be the primary client of the
original benefit case and the nominee delivery pattern will be 'Once-off by Invoice'.

How to Use It
This section describes the configuration settings which control how financial
schedules are generated for payment corrections. All the configuration options
described here have default values which can be changed if required.

The 'Use Rolled Up Reassessment Products' setting is a configuration option which
controls the product that will be used to deliver a correction. When this is set to
'NO', it indicates that the Payment Correction product should be used. When it is
set to 'YES', it indicates that the legacy, Overpayment and Underpayment products
should be used. The default value for this setting is 'NO'.

For more information see the Cúram Integrated Case Management Configuration
Guide.

When will an Overpayment Correction case be created?: Depending on the
value of the 'Use Rolled Up Reassessment Products' setting, either a payment
correction case or an overpayment case may be created to deliver the overpayment
correction. The following configuration settings also affect the behaviour:
v Automatic Overpayment Case Processing

This setting works in conjunction with the 'Use Rolled Up Reassessment
Products' setting mentioned above and can be configured in one of three ways.
The first option allows an administrator to specify that a separate case should be
automatically created when an overpayment correction is detected. This will be
either an overpayment case or a payment correction case depending on the
value that is specified for the 'Use Rolled Up Reassessment Products' setting.
Once the case is created, a user must manually approve, activate, and generate
the liability financials required to recoup the overpayment.
The second option allows an administrator to specify that a separate case should
be automatically created and approved, activated, and liability financials
generated without the intervention of a user. Note that this option is only
available for benefit products for which the value of the 'Use Rolled Up
Reassessment Products' setting is 'NO'.
The third option instructs the system not to automatically create a separate case
to correct the overpayment. Instead, a task is generated to alert the user of the
overpayment. The user can then manually create and manage a liability case to
recoup the overpayment.

When will an Underpayment Correction case be created?: Depending on the
value of the 'Use Rolled Up Reassessment Products' setting, either a payment
correction case or an underpayment case may be created to deliver the
underpayment correction. Alternatively, in some situations it is possible for the
underpayment correction to be delivered on the original benefit case. The
following configuration settings also affect the behaviour:
v Automatic Underpayment Case Creation

This setting works in conjunction with the 'Use Rolled Up Reassessment
Products' setting mentioned above and can be configured in two ways. The first
option allows an administrator to specify that a separate case should be
automatically created when an underpayment correction is detected. This will be
either an underpayment case or a payment correction case depending on the
value that is specified for the 'Use Rolled Up Reassessment Products' setting.

Developing with Eligibility and Entitlement by using Cúram Express Rules 157

Once the case is created, a user must manually approve, activate, and generate
the benefit financials required to issue the underpayment.
The second option instructs the system not to automatically create a separate
case to correct the underpayment. Instead, an underpayment financial
component should be created on the original benefit case to deliver the
underpayment.

v curam.miscapp.checkforliveliabilities

This application property determines whether a check is performed by the
system to establish the existence of outstanding liabilities for a client when an
underpayment correction has been detected. The default value of this property is
'YES', meaning that a separate case will always be created to deliver the
underpayment when an outstanding liability exists for this client.

v curam.miscapp.underpmtcase.createfornomineediff

This application property determines whether a check is performed by the
system to establish whether the nominee on the original benefit case, currently
assigned the underpaid component, is the same as the underpaid nominee. The
default value of this property is 'YES', meaning that a separate case will always
be created to deliver the underpayment when the nominee currently assigned
the component is not the nominee underpaid.

v Invalidate Payments
This is not a configuration option, rather it is a check that is carried out
internally by the financial scheduler. If the underpayment correction is for a
period that has been paid, but the payment was cancelled and invalidated, then
a separate case will always be created to deliver the underpayment.

When will a Net Zero Correction case be created?: Net zero payment corrections
are created when the overpaid components and underpaid components included in
a reassessment cancel each other out. Since the creation of a net zero payment
correction case is only possible when the Payment Correction product is used, the
value of the 'Use Rolled Up Reassessment Products' setting must be 'NO'.

Net zero payment correction cases will not be of great interest to a case worker,
but they facilitate fund management and accurate account management.

With this in mind, net zero payment correction cases are automatically created,
approved, activated, and the financials generated without the intervention of a
user.

Reassessment - Handling Changes in Circumstance

Introduction
When a case worker first activates a product delivery case, the Engine creates a
determination for the initial assessment for that case, and uses that determination
as input into financial processing.

This initial assessment takes into account:
v Case-specific circumstances known at the time of the initial assessment,

including:
– personal data, such as dates of birth;
– case data, such as case start and end dates; and
– evidence, such as income levels for household members; and

v Product-wide configuration, including:

158 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

– product periods;
– the product rules for eligibility/entitlement, key decision factors and decision

details; and
– rate data.

Any of all of these types of data can change as time goes on; families move, they
have more children, their income fluctuates, they encounter unforeseen problems
which lead to greater need; product legislation and/or policy changes, rates change
in line with costs of living.

Depending on the nature of the change, some changes may affect future periods on
cases which have not yet been paid. However, other types of change may affect
periods on cases which have already been paid, resulting in under- or
over-payments (see “Scheduling Financials for Payment Corrections” on page 153).

This chapter describes how reassessment works for:
v case-level reassessment; and
v bulk reassessment.

Case-level Reassessment

Overview
Most data changes recorded in the application affect a very small number of cases:
v when evidence recorded directly against a product delivery case is activated,

typically only that product delivery case is affected;
v when evidence recorded against an integrated case is activated, typically only

the product delivery cases belong to that integrated case are affected;
v when personal data is changed, typically only cases which involve those persons

are affected (such cases may reference the person data directly, or may use
Evidence Broker to control the use of the personal data in cases);

v when product delivery case data such as case start/end dates are changed,
typically only that product delivery case is affected.

Note: The above observations are based off typical behavior for cases; the Engine
does not enforce any restrictions about sharing evidence or other data across cases.

Product delivery cases are automatically reassessed when the type of data
described above changes. When changes to data occur they are written to a
precedent change set and processed by the Dependency Manager. The Dependency
Manager processes the precedent change set by finding the unique set of
dependents affected by any of the items in the precedent set and instructing each
affected dependent to recalculate itself. Each type of dependent in the system has a
registered 'dependent handler' which, when invoked by the Dependency Manager,
is responsible for taking the appropriate steps to recalculate a dependent. If any of
the dependents affected are a case assessment determination then the appropriate
step is to request that the Engine reassesses the case, by invoking CER to
recalculate the value of the determinationResult attribute value for the case.

The processing of precedent change set items that are likely to affect a small
amount of cases occurs in deferred processing.

Note: Because the Engine uses the Dependency Manager in such a way as to use
deferred processing, then a case affected by a change in data can be either:

Developing with Eligibility and Entitlement by using Cúram Express Rules 159

v reassessed within the deferred process; or
v prior to the execution of the deferred process, if reassessment is initiated within

the case itself as a result of manual reassessment, a change in evidence, or the
generation of financial payments.

Bulk Reassessment
Certain types of system-wide change can affect many or all of the product delivery
cases on the system.

This section describes these types of system-wide change and the facilities
available to you to handle the effects of system-wide changes, by identifying and
reassessing the affected product delivery cases.

Types of Change that Cause Bulk Reassessment
This section describes the types of change that the Engine treats as causing bulk
reassessment, i.e. where the expected effect of the changes is not limited to a low
number of cases (unlike case-level reassessment - see “Case-level Reassessment” on
page 159).

The effects of any of these types of change are handled in batch processing, and so
require the execution of batch jobs to be scheduled, either on a regular schedule
provided by your third-party scheduling software, or on an ad hoc basic by being
manually run by system operator staff.

The Engine treats any change to the following system-wide data as "bulk change"
potentially affecting a large number of cases, and thus requiring bulk reassessment
processing:
v Product configuration;
v CER Rules used by the Product;
v Rule Object Data Configurations; and
v Rate Tables.

The following sections describe these types of change in more detail, and explain
the lifecycle of each type of change. In general terms, each type of change can be
worked on by an administrator without causing any effects on the system,
followed by a "publish" action where the completed changes start to take effect and
are available for case processing.

Tip: When changes to any of these types of data are published, an informational
message (advising that a system-wide change has occurred and that bulk
reassessment processing is required) is shown on the publication screen and also
written to the application logs.

It may be useful to monitor the application logs for this informational message if
you choose to run bulk reassessment processing on an ad hoc basis (i.e. only when
a bulk change has occurred).

Product Configuration: Any change to the configuration of a Product has the
potential to affect assessment determinations for the product's cases.

In particular, changes to the product periods for your product may affect the
product's cases. Product period changes include:

160 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v adding a new product period (e.g. to implement a change in legislation, using
the multiple product periods approach, see “Multiple Product Periods for Your
Product” on page 183);

v removing an existing product period;
v changing the start and/or end date of an existing product period;
v changing the name6of the eligibility/entitlement rule class for an existing

product period;
v adding, changing or removing the name of the key decision factor rule class for

an existing product period; and/or
v adding, changing or removing the name of the decision details rule class for any

display category on an existing product period.

The administration application contains a "sandbox" area where an administrator
can accumulate changes to a product (including its product periods) before
choosing to "publish" those changes, at which point the changes to the product will
start to affect product delivery cases. Unpublished product changes have no effect
on case processing.

There is additional processing required if a change is made to the Product's
reassessment strategy. See “Reassessment Strategy” on page 189.

CER Rules used by your Product: Any change to any part of these CER rule sets,
for any product period on the product, has the potential to affect assessment
determinations for the product's cases:
v the rule set containing the eligibility/entitlement rule class;
v the rule set containing the key decision factors rule class (if configured);
v the rule set (s)containing any of the decision details rule classes(if configured);

and/or
v any other rule set containing any rule attribute that was encountered during the

calculation of a case's determination, e.g. those on "calculator" rule classes and
"data" rule classes for custom entity and evidence types, which may be stored in
"common" rule sets separate from the rule sets containing the rule classes named
by your product period(s).

Note: Other processing in the application (outside the Engine) may also rely on
CER rule sets, and so it is possible that CER rule sets are being changed for
reasons unrelated to case assessments.

The Dependency Manager does not know which CER rule sets do or do not affect
cases, and so for any change in CER rule sets, the Dependency Manager will treat
the change as one that might affect cases, but will simply identify that no product
delivery cases are affected.

The administration application contains a "sandbox" area where an administrator
can accumulate changes to CER rules before choosing to "publish" those changes,
at which point the changes to CER rules will start to affect product delivery cases.
Unpublished rule set changes have no effect on case processing.

6. This change refers to changing which rule class the product period "points at" for eligibility/entitlement calculations; i.e. changing
the product period from pointing to one rule class to instead point to another; similarly for key decision factors and decision
details rule classes.

Changes to the CER rules themselves are described below.

Developing with Eligibility and Entitlement by using Cúram Express Rules 161

Rule Object Data Configurations: Any change to any configuration for any of
the configurable rule object data configurations has the potential to affect product
delivery cases, because the entities and evidence to be used by CER during the
execution of rules may have changed.

Note: Other processing in the application (outside the Engine) may also rely on
rule objects created by configurable rule object data configurations, and so it is
possible that configurations are being changed for reasons unrelated to case
assessments.

The Dependency Manager does not know which configuration changes do or do
not affect cases, and so for any change in data configurations, the Dependency
Manager will treat the change as one that might affect cases. If the data
configuration changes are unrelated to case assessments, then the Dependency
Manager will simply identify that no product delivery cases are affected.

The administration application contains a "sandbox" area where an administrator
can accumulate changes to rule object data configurations before choosing to
"publish" those changes, at which point the changes to the data configurations will
start to affect product delivery cases. Unpublished data configurations changes
have no effect on case processing.

Rate Tables: Any change to a rate table (which is configured to populate RateCell
rule objects) has the potential to affect product delivery cases, typically when the
value of an existing version of a rate is changed or a new effective period of a rate
table comes into effect (see "Implementing Rate Tables" in the Cúram Integrated
Case Management Configuration Guide).

Note: Other processing in the application (outside the Engine) may also rely on
the values stored in rate tables, and so it is possible that rate tables are being
changed for reasons unrelated to case assessments.

The Dependency Manager does not know which rate tables do or do not affect
cases, and so for any change in rate table data, the Dependency Manager will treat
the change as one that might affect cases. If rate table changes are unrelated to case
assessments, then the Dependency Manager will simply identify that no product
delivery cases are affected.

In contrast to the other types of data changes described above, there is no
system-wide "publication" step for rate table changes.

However, the Engine contains a special "Apply Changes" option which allows an
administrator to choose when the changes made to rate tables will start to affect
product delivery cases. Until an administrator chooses this option, rate table
changes have no effect on case processing (for CER-based cases). Other processing
outside the Engine will see the rate table changes immediately, though.

Approaches to Identifying and Reassessing All Affected Cases

Requirements for Bulk Reassessment: When identifying and reassessing cases in
response to a system-wide change, typically the requirements for processing fall
into one of these categories:
v Consistency

162 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

All cases affected by the change must be identified and reassessed (i.e. all
reassessments which are sufficient to make those cases consistent with the
change). It is not acceptable for any case affected by the change to be "missed"
during batch processing.

v Efficiency

Only cases affected by the change should be identified and reassessed (i.e. only
those reassessments which are necessary should occur). It can be wasteful to
spend system time either reassessing cases which are not affected and/or
reassessing any particular case more than once.

v Concurrency

It must be possible to reassess cases in parallel batch streams (to promote
scalability). It must be possible to reassess cases in batch while the online
application is being used (to avoid the necessity for system downtime for online
users).

v Business-specific control and processing

You may have your own business-specific requirements to control reassessment
of cases and/or perform additional processing, e.g.:
– to reassess cases in a particular order, e.g. by surname of the claimant;
– to reassess only a particular subset of cases, e.g. those for claimants who have

social security numbers in a particular range; or
– to perform additional business processing for each case, e.g. to send out

special correspondence with each reassessed case which is pertinent only to
bulk reassessment on this occasion, e.g. an explanatory leaflet sent to each
claimant who has a case affected by a particular piece of legislation change.

In practice, there are trade-offs to be made to meet these requirements. “Driving
the Identification of Affected Cases” on page 165 describes the various approaches
available for handling a bulk change, i.e. for identifying the cases identified so that
they can each be reassessed.

Multiple Reassessments during a Case's Lifetime: At this point it's worth
pausing to recall what happens each time a case is reassessed:
v the Engine invokes CER to calculate a new determination result for the case;
v the Engine retrieves the existing determination result for the case from the

database;
v the Engine compares the new determination against the existing determination,

and only if the new determination is "different":
– the Engine supersedes the existing determination result and stores the new

determination result on the database;
– the Engine updates the case's financial schedule;
– the Engine identifies whether there have been any over- or under-payments

and if so takes corrective action.

Bulk case reassessment is no different from online case lifecycle processing in this
regard - i.e. processing can reassess a case any number of times, but it is only
when the new assessment determination result differs from the existing assessment
determination result that a new determination result is stored and potentially
financial impacts are stored (such as changes to the financial schedule, and
possibly the identification of over- or under-payments and corrective actions).

As such, a "needless" reassessment which results in no change to the existing
assessment determination is not as expensive (in system terms) as a "necessary"

Developing with Eligibility and Entitlement by using Cúram Express Rules 163

reassessment which results in a change to the determination; but on the other hand
performing a "needless" reassessment is more expensive than avoiding it. Needless
reassessments have no business impact on the case, though. You should consider
your performance requirements to determine to what extent needless reassessments
are tolerable in your system and bear that in mind when choosing your approach
to bulk reassessments.

There are a number of common processing points in the application which will
cause a case to be reassessed:
v case lifecycle events - e.g. if the case is closed, and then reopened, and then

reactivated, the case will be reassessed at reactivation time;
v when a case worker chooses to manually reassess the case;
v when case-level reassessment occurs, e.g. in response to changes in evidence or

personal details;
v if the financials batch programs are configured to force a reassessment of each

case prior to generating financials for the case; and
v bulk case reassessment (the subject of this section).

Once system-wide changes to data have been made, then for any particular
product delivery case, the first processing point to reassess the case (e.g. one of the
events listed above) will calculate a new determination result which takes into
account all the system-wide changes to data, and any subsequent processing point
will calculate an identical determination result and take no further action
(assuming that there have been no other data changes which affect the case in the
meantime).

Important: Because the first processing point to reassess the case takes into
account all system-wide changes to data, you must consider carefully:
v when to publish the system-wide changes;
v how long after publication the batch processing will run to identify and reassess

affected cases;
v whether case workers should be allowed to view and maintain7cases during the

lag between publication of the system-wide changes and completion of the batch
processing; and

v how your business processes will cope with any case that would have had a
new determination stored by the batch processing, except that some online
processing (e.g. a manual reassessment by a case worker) caused a new
determination (taking into account the published system-wide changes) to be
stored already.

This last point is especially important if you require to run additional business
processing during your batch identification and reassessment of cases (e.g. to send
out a particular type of correspondence), as online processes such as a manual
reassessment by a case worker will not automatically include that additional
processing. In such circumstances it may be important to schedule the publication
of the system-wide changes and the full batch processing (to completion) during

7. For example, you might have to carefully communicate to your case workers that a system-wide change has occurred, and to let
them know that it will be some time until all affected cases have been reassessed, but that urgent cases can be manually
reassessed in the meantime.

Depending on your business needs, this situation may be perfectly acceptable, or on the other hand be needlessly confusing for
case workers.

164 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

downtime when caseworkers do not have access to the system, and/or make your
batch business processing tolerant to the situation that a case may have already
been reassessed by an online action.

Assuming that you have no additional business processing that relies on being the
first processing point to reassess a case after system-wide changes have been
published, then in general it is safe to run bulk reassessment batch processing
concurrently with the online system. You should note though that:
v online users may experience a performance degradation while batch processing

is ongoing; and
v if an online user performs an action which leads to a case being reassessed, at

the same time that the bulk reassessment batch processing is attempting to
reassess the same case, then it is possible for either the online and/or batch
transaction to fail:
– the online user's transaction may fail and the user advised to try again;
– a deferred transaction to reassess the case triggered from the online user's

action may fail and will be retried a set number of times; and/or
– the batch "chunk" may fail and will be automatically retried.

Driving the Identification of Affected Cases: After system-wide changes to data
have been made, you must run batch processing to identify the cases affected, and
reassess each case.

The algorithm(s) that you choose to identify cases will depend on your business
requirements. In general there are these types of case-identification algorithm to
choose from (or possibly combine):
v Bottom-up

Identify cases that are known by the system to be affected by the change, i.e. use
the dependency records stored in the Dependency Manager; and/or

v Top-down

Identify cases by some facet of the case, e.g. all active cases for a particular
product, or all cases for claimants in a particular range of social security
numbers.

The application includes an implementation of the bottom-up algorithm in the
form of the batch suite provided by the Dependency Manager (see the Cúram
Express Rules Reference Manual). The batch suite uses the dependency records to
identify cases potentially affected by system-wide changes in data and reassesses
them.

Important: The Dependency Manager batch suite has the capability to reassess
cases, but it also has the capability to recalculate other types of dependents, such
as Advice.

If you choose not to use the Dependency Manager batch suite to reassess cases,
you must still use the batch suite to recalculate other types of dependents.

Tooling has been provided to assist with running the Dependency Manager batch
suite, please see the 'Dependency Manager Batch Tooling' section of the 'Cúram
Operations Guide' for more information.

The application also includes a sample implementation of a top-down algorithm in
the form of the CREOLEBulkCaseChunkReassessmentByProduct batch process (see the
Cúram Operations Guide), and instructions for writing your own batch process to

Developing with Eligibility and Entitlement by using Cúram Express Rules 165

implement your own top-down algorithm are included below (see “Writing your
own Bulk Reassessment Batch Process” on page 168).

When scheduling batch processing to reassess cases affected by your published
system-wide changes, you can choose to schedule one or both of:
v an implementation of a top-down algorithm, either that included with the

application or your own custom batch process; and/or
v the bottom-up algorithm included in the Dependency Manager batch suite.

You can choose the most appropriate approach each time you publish one or more
system-wide changes, or you can choose to use the same approach each time. Any
custom batch processing you require to support bulk case reassessment will need
to be implemented and deployed to your production environment, of course.

The benefits and limitations in the choices of approach are outlined in the table
below:

Table 57. Benefits and Limitations to Bulk Reassessment Approaches

Approach Benefits Limitations

Use the
Dependency
Manager batch
suite only

v The implementation is included
with the application - no custom
processing needs to be
implemented.

v The Dependency Manager batch
suite provides robust
identification of all cases
potentially affected by
system-wide changes made
through the application's APIs. If
system-wide changes to data are
made outside of the application's
APIs, e.g. by an SQL script, then
the Dependency Manager cannot
automatically identify affected
cases. If system-wide changes to
data are made outside of the
application's APIs, e.g. by an
SQL script, then the Dependency
Manager cannot automatically
identify affected cases.

v The Dependency Manager batch
suite must be run anyway to
recalculate other dependents
such as Advice.

v You cannot control the order in
which the Dependency Manager
reassesses cases.

v You cannot perform any
additional business processing at
the point at which the
Dependency Manager batch
suite reassesses the case.

If you have requirements to
perform specific business
processing for all the cases that
were identified and reassessed
by the Dependency Manager
and/or those for which new
determinations were recorded,
you must satisfy yourself that
you can identify these cases in
some way after the Dependency
Manager batch suite has
completed and implement your
own custom batch program to
perform the required
post-reassessment business
processing.

166 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 57. Benefits and Limitations to Bulk Reassessment Approaches (continued)

Approach Benefits Limitations

Use an
implementation
of a top-down
case
identification/
reassessment
algorithm,
followed by a
run of the
Dependency
Manager batch
suite

v You get to "prioritize" the
processing of certain cases (those
identified by your top-down
algorithm) ahead of any other
cases and any other dependent
types (such as Advice).

v You control the order in which
cases are reassessed.

v For cases reassessed by your
top-down case reassessment
implementation, you can
perform additional business
processing at the point of
reassessment.

v Any case that your top-down
algorithm fails to identify, but
which is affected by the
system-wide change, will still be
identified and reassessed by the
Dependency Manager batch
suite, so by the end of the batch
run all affected cases will have
been identified and reassessed.
There may be edge cases not
obvious during the design of
your case identification
algorithm.

For example, a rate table may be
primarily used in the
determination calculations for a
particular product, and thus it
would be possible to drive the
identification of cases to reassess
by finding all active cases for
that product.

If, unbeknownst to the
administrator, a rules designer
has reused that rate table in way
that it is used by a handful of
unusual cases for another
product, then these cases will
not be identified by the naive
"all active cases for a product"
algorithm run against the main
product which uses the rates.

v You can schedule this "clean-up"
run of the Dependency Manager
batch suite quite some time after
the run of the top-down batch
processing which identified and
reassessed your "priority" cases.
For example, you might wish to
schedule the "priority"
(top-down) case processing to
run overnight starting on the
evening when the system-wide
changes were published, but
defer the "clean-up" (bottom-up)
case processing until the next
weekend.

v The Dependency Manager batch
b

v You will have additional
development activity to
implement and test your custom
case identification algorithm
and/or post-reassessment
business processing (unless you
are using the
CREOLEBulkCaseChunkReassessmentByProduct
batch process included with the
application).

v Some cases identified by the
Dependency Manager batch
suite will have already been
identified and reassessed by
your top-down case
identification/reassessment
algorithm, so some of the
reassessments performed by the
Dependency Manager may turn
out to be needless.

v If a case is missed by your
top-down algorithm and is
instead identified and reassessed
by the Dependency Manager
batch suite, then the
Dependency Manager batch
suite cannot perform any
additional processing that your
top-down algorithm might have
done at the point where it
would have reassessed the case.

If you have requirements to
perform specific business
processing for the cases that
were cleaned-up by the run of
the Dependency Manager batch
suite, then you must satisfy
yourself that you can identify
these cases in some way after
the Dependency Manager batch
suite has completed and
implement your own custom
batch program to perform the
required post-reassessment
business processing.

Developing with Eligibility and Entitlement by using Cúram Express Rules 167

Note: If system-wide changes to data are made outside of the application's APIs,
e.g. by an SQL script, then the Dependency Manager cannot automatically identify
affected cases.

Note: There may be edge cases not obvious during the design of your case
identification algorithm.

Note that it is always possible for the Dependency Manager to identify a case for
reassessment, but having reassessed that case the Engine finds out that the
reassessment turned out to be needless, due to the granularity at which
dependency records are stored for case determination dependents. Examples where
such a needless reassessment might occur are:
v a change to column value on an entity row, where other unchanged columns for

that entity row have been used as the input to determination calculations;
v a change to a common CER rule set which is used to calculate determinations,

and also for some other purpose such as Advice, but the changed rules are not
accessed during determination calculations;

v a change to a rate (such as for income thresholds) which does not affect the
overall determination result for a case.

Note: There are only two options regarding a reassessment which turns out to be
needless:
v either the system performs the reassessment, and only once a new determination

is calculated can the system discover that the reassessment turned out to be
needless, at the risk of using up processing time; or

v a human outside the system uses his or her business knowledge to implement
processing to identify cases in such as way as to eliminate or minimize needless
reassessments, at the risk of human error (i.e. that needless reassessments still
occur for some cases, or, more seriously, that some necessary reassessments were
not identified.

You should weigh up these unavoidable risks as part of your decision as to which
approach to use for bulk reassessment processing.

Reassessment Processing: Once bulk processing (whether bottom-up or
top-down) has identified cases to reassess, each case can be reassessed by streamed
batch processing.

Important: Be careful when implementing extra business processing that occurs at
reassessment time, either using:
v hook points provided by the Engine; and/or
v custom business processing in your implementation of a top-down algorithm.

Any extra business processing that causes database writes may cause new
precedent change items to be recorded in the batch precedent change set. A run of
the Dependency Manager batch suite will be required to process these new
precedent change items.

Writing your own Bulk Reassessment Batch Process
If you decide that you require to implement your own algorithm for identifying
cases to reassess, and/or require custom business processing to occur at the time

168 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

that each case is reassessed, then you must implement your own batch process for
bulk reassessment. This section describes how to implement such a custom batch
process.

If on the other hand you decide to use the bulk reassessment batch processes
included with the application, you can skip this section.

The CREOLEBulkCaseChunkReassessmentByProduct Batch Process: This process,
included with the application, identifies and reassesses all active cases for a given
product.

The
curam.core.sl.infrastructure.assessment.impl.CREOLEBulkCaseChunkReassessmentByProduct
class is a "Chunker" batch job which takes a productID as a standard batch
parameter and identifies all product delivery cases for that product, with a status
of "Active".

The
curam.core.sl.infrastructure.assessment.impl.CREOLEBulkCaseChunkReassessmentStream
class is the corresponding "Stream" job.

The behavior of the batch process can be configured using the following
environment variables:

Table 58. Environment Variables for the CREOLEBulkCaseChunkReassessmentStream Batch
Process

Environment variable name Description Default value

curam.batch.
creolebulkcasechunkreassessment.
chunksize

The number of cases in each
chunk that will be processed
by the CREOLE Bulk Case
Chunk Reassessment batch
program.

500

curam.batch.
creolebulkcasechunkreassessment.
dontrunstream

Should CREOLE Bulk Case
Chunk Reassessment batch
program sleep while waiting
for the processing to be
completed (rather than run a
stream in its context).

NO

curam.batch.
creolebulkcasechunkreassessment.
chunkkeywaitinterval

The interval (in milliseconds)
for which the CREOLE Bulk
Case Chunk Reassessment
batch program will wait
before retrying when reading
the chunk key table.

1000

curam.batch.
creolebulkcasechunkreassessment.
unprocessedchunkwaitinterval

The interval (in milliseconds)
for which the CREOLE Bulk
Case Chunk Reassessment
batch program will wait
before retrying when reading
the chunk table.

1000

curam.batch.
creolebulkcasechunkreassessment.
processunprocessedchunk

Should CREOLE Bulk Case
Chunk Reassessment batch
program process any
unprocessed chunks found
after all the streams have
completed.

NO

Developing with Eligibility and Entitlement by using Cúram Express Rules 169

Steps to Implement your own Bulk Reassessment Batch Process: Batch
processing must be written using the chunked batch processing architecture (see
the Curam Batch Performance Mechanisms document).

Write these batch programs:
v a "Chunker" batch job which identifies8the list of cases and passes them, along

with appropriate control parameters to the BatchChunker to divide them into
smaller lots. This process of identifying the cases can be controlled by whatever
parameters are required, such as Product ID, case status, etc.

v a "Stream" job which takes one of these chunks of work and performs full
reassessment of each case contained in it.

You must decide on appropriate metrics to capture during the stream processing,
such as the number of cases processed, and/or the number of cases reassessed
which did/did not result in a changed determination result. Your chunker and
streamer must share data structures so that the stream processing can capture
metrics and the chunker can accumulate them into its report.

The "Stream" job must perform a full reassessment of each CER-based case as
follows9:

8. You should ensure that each case is identified at most once.

For simple database queries this is unlikely to be challenging; however for non-trivial queries you might consider using SQL's
DISTINCT keyword, e.g. SELECT DISTINCT(caseID) FROM....

9. You must also include:

v processing to capture the metrics for your batch program; and

v appropriate error handling to communicate with the chunked batch processing architecture's support for skipping cases.

This extra code is beyond the scope of this guide.

170 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Bulk Reassessment for Multiple Simultaneous Changes
It is possible for one business change to require technical changes to a number of
system-wide data artefacts. For example, a change in legislation may involve all of:
v changes to existing CER rule sets associated with your product;
v division of the lifetime of the product into several product periods, together with

new CER rule sets for the new product periods;
v the capture of new types of evidence which map to new rule classes (i.e. new

data configurations for rule object converters); and
v changes in benefit rates.

There are separate publication mechanisms for products, CER rule sets, data
configurations and rates, and so changes to different types of system-wide data
cannot be published in a single action. However, when bulk reassessment is run,
each case affected will be identified only once and the reassessment of each case
will take into account all the system-wide changes that have occurred since the
case was last assessed.

As such, when you prepare to publish a number of system-wide data changes
(whether those changes are inter-related or not), you should consider carefully
when bulk reassessment should be run. Depending on your business needs, you
might want to run bulk reassessment after each publication or instead hold off
until a number of publications have occurred.

Note: When a case is reassessed by the Dependency Manager batch suite, the
system chooses a "reassessment reason" for any new determinations that are stored.

// class member
@Inject
protected DeterminationCalculatorFactory

determinationCalculatorFactory;

public void yourBatchMethod(...yourparameters...)
throws AppException, InformationalException {

// process an identified case
final long caseID = ...;

final DeterminationCalculator determinationCalculator =
determinationCalculatorFactory

.newInstanceForCaseID(caseID);

final DetermineEligibilityKey determineEligibiltyKey =
new DetermineEligibilityKey();

determineEligibiltyKey.caseID = caseID;

/*
* reassess the case and determine whether the decision has
* changed
*/
final boolean decisionChanged =
determinationCalculator
.hasDecisionChanged(

determineEligibiltyKey,
CASEASSESSMENTDETERMINATIONREASONEntry.SOMEREASON);

}

Figure 2. Code example to reassess a CER-based case

Developing with Eligibility and Entitlement by using Cúram Express Rules 171

Each determination can only show a single reassessment reason, so in the situation
where there are multiple system-wide changes published which each affect a case,
only one related reason will show on that case.

If the case is reassessed using your own top-down algorithm, then that algorithm
is responsible for specifying an appropriate reason to store on any new
determinations.

Scheduling
Once you have decided your approach for identifying and reassessing cases in
batch processing, you must arrange for that batch processing to execute.

Broadly, you can run batch processing either:
v regularly, on a pre-determined schedule, either manually or through the use of

third-party scheduling software; or
v on an ad hoc basis, in response to the publication of system-wide data changes.

The Dependency Manager batch suite is amenable to being executed on a
pre-determined schedule, because if there have been no system-wide changes to
data (written to the batch precedent change set) then the batch suite will quickly
identify that there are no cases to reassess. If you use such a pre-determined
schedule, then you can ignore the on-screen and application log messages that
advise that bulk reassessment processing is required.

It is not recommended to execute top-down case identification algorithms on a
pre-determined schedule because those algorithms will identify cases to reassess
regardless of whether there have been any system-wide data changes published.

If you are executing batch processing that uses the chunked batch processing
architecture (such as the Dependency Manager batch suite, the
CREOLEBulkCaseChunkReassessmentStream batch process, or the recommended way
to implement your own top-down case identification/reassessment batch process),
then you have some flexibility when manually executing chunker and streamer
processes:
v during the reassessment phase you can start up more instances of the streamer

batch processes in order to spread the reassessment work across more physical
machines;

v if you find that you need some physical machines for other purposes (e.g. to run
the online application in parallel with batch processing), you can manually
terminate one or more streamer processes and any uncompleted work for those
terminated streamer processes will be automatically picked up by one of the
remaining streamer processes; and/or

v if you find that you need to pause the entire batch processing (e.g. you need all
your physical machines to be dedicated to the online application) then you can
manually terminate the chunker process and all the streamer processes; when
you subsequently re-run the chunker process it will continue running from the
point where it left off.

Tip: If you have configured your chunker process to automatically perform
streamer processing once the case identification phase is over and the case
reassessment phase has begun, and you wish to run multiple parallel streamer
processes to spread the reassessment load across your physical machines, then you
should start your streamer processes before starting your chunker process. The
streamer processes will simply wait until the chunker process has completed its
case identification phase and the case reassessment phase has begun.

172 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

If you start your streamer processes after the chunker processing, then in a
situation where the chunker process identifies only a few cases, it is possible for
some of the streamers (including the chunker process itself) to complete
reassessment processing on all the cases identified, and the overall batch
processing would complete. If this happens, then the other streamer processes will
have no work to do but will wait until the chunker process is next run, which
could be quite some time later; from an operational perspective, these other
streamer processes are just hanging and would need to be manually terminated,
which is not ideal under normal operational procedures.

If you are executing the Dependency Manager batch suite, then you must run the
PerformBatchRecalculationsFromPrecedentChangeSet streamed batch process once
per dependent type. You can choose the order of these runs - for example, you
may decide that it is more urgent to have your cases reassessed in response to a
system-wide data change than it is to have advice recalculated.

If your batch run includes both a top-down case identification/reassessment
algorithm and a run of the Dependency Manager batch suite (see “Driving the
Identification of Affected Cases” on page 165), then typically you should run the
top-down case identification/reassessment algorithm first so that your priority
cases are identified and reassessed.

If your batch run includes the execution of the ApplyProductReassessmentStrategy
batch process (see “Reassessment Strategy” on page 189) then typically there are
no ordering constraints - but note that cases which could previously not be
reassessed will only be able to be reassessed (and identifiable by the Dependency
Manager batch suite) once the ApplyProductReassessmentStrategy batch process
has completed.

If you are planning to publish multiple changes to system-wide data (see “Bulk
Reassessment for Multiple Simultaneous Changes” on page 171), then you may
choose to hold off on manually running your preferred approach to case
identification/reassessment (or suspend your regular batch schedule, if you have
one) until all those system-wide data changes are published. In this way, each case
will only be identified and reassessed once in response to the combined
system-wide data changes.

Incremental Design and Evolution

Introduction
Products can be complex. Their requirements may come from complex legislation
and/or policy documents. The explanations available to case workers may need to
be very detailed.

Over time, products can become even more complex, as legislation and/or policy
is changed.

The Engine supports a rich set of features that allow the implementation of even
the most complex of products; however, when starting off the implementation of
your product, the complexity of your product combined with the richness of the
Engine's features can together be quite daunting.

This chapter offers some advice on how to get started with your product's initial
implementation, and describes the options available when your implemented
product is required to evolve in the future.

Developing with Eligibility and Entitlement by using Cúram Express Rules 173

Starting with Rule Sets Included with the Application
A default eligibility and entitlement rule set is automatically created for a benefit
product that is created via the dynamic product wizard. You are also free to create
your product's rules "from scratch" by starting with empty rule sets. However, if
you have purchased a solution, you may wish to use rule sets from these solutions
as a starting point for your product.

This section describes the process whereby you can clone certain existing rule sets
to come up with rule sets that you are free to customize.

How Rule Sets Inter-relate
The CER rules structure is made up of CER rules artifacts and the relationships
between them. Understanding the structure of CER rules is key to the cloning
process.

CER Rules Artifacts - Technical Dependencies: CER rules are composed of rule
sets which contain rule classes which, in turn, contain rule attributes. CER rules are
exposed at the level of rule sets. Each rule set is an independently delivered unit,
however there may be interdependencies between the rule classes and rule
attributes both within a rule set and across rule sets.

So while a rule set does not have any direct dependencies outside of itself, it can
have such dependencies based on the rule classes and rule attributes it contains.

Dependency Types

CER supports both build time dependencies which are based on defined
relationships, these are covered in more detail in the following sections, and
runtime dependencies which are free form, and hence need to examined in detail
when used rather than following well defined patterns.

Rule Class Dependencies

A rule class can extend another rule class; this is a form of implementation
inheritance for rule classes. Each rule class can only extend at most one other rule
class (single inheritance). The extended rule class can be from the same rule set or
from a different rule set from the extending rule class.

Rule Attribute Dependencies

A rule attribute can define its type to be a rule class, or a collection (such as a list
or Timeline) of a rule class, or its type can be a built in Java type. The rule class
used for an attribute type can be from the same rule set or from a different rule set
from the rule attribute.

A rule attribute can be derived:
v as a fixed (externally <specified>) value; or
v using rules in the following ways (which can be combined into an arbitrarily

complex expression)
– a direct reference to a rule attribute (using the <reference expression), with

the rule attribute possibly on a rule class in a different rule set;
– using the <readall> expression to retrieve instances of a rule class, with that

rule class possibly in a different rule set;

174 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

– using the <create> expression to create an instance of a rule class, with that
rule class possibly in a different rule set; and/or

– using a list of rule class instances, with that rule class possibly in a different
rule set.

CER Rules Artifacts - Logical Categorizations: Logically, appropriately structured
CER rules can be thought of as being made up of rules classes for two distinct
logical functions:
v Data

Data rule classes are those which are an exact mirror for the data held by the
application. For example Income Evidence would be a data rules class.

v Derived Data/Business Logic

All other rule classes can be considered as Derived Data/Business Logic rule
classes. For example Monthly Income would be such a rule class.

Additionally each rule class, provided out of the box, can be thought of as
containing either:
v Infrastructure

Fixed processing which is relied upon by other processing in the application,
and which cannot be altered; or

v Application

Processing which can be cloned and used as the starting point for your rule set
work.

Cloning CER Rule Sets
This section describes the process you must follow to clone rule sets included with
the application so that you can customize the cloned rule sets to meet your
product's needs.

If you need to customize any rules element in a rule set included with the
application, or if you rely on the current functionality of the version of a rule set
included with the application, then you must clone the rule set and all of its
dependencies, in terms of application derived data/business logic rules classes (but
not infrastructure rule classes).

Important: The application does not support the modification of any
application-included rule sets "in place".

See the compliancy statement in “CER Rule Sets Included with the Application” on
page 193.

Please refer to the Rule Set Interdependencies developer documentation located
alongside the Data Dictionary for more information on which rule sets are
Application (clone-able) and which are Infrastructure (not clone-able).

Follow these steps to clone rule sets:
v Identify the rule set(s) that is your entry point into the rules (typically from a

rule class).
v For each of these rule sets, follow the arrows on the ruleset inter-dependency

documentation, to find any other Application rule sets on which those to
customize depend. Repeat this step recursively until there are no more links to
Application rule sets.

Developing with Eligibility and Entitlement by using Cúram Express Rules 175

v For each of the Application rule sets found in the above steps, follow the arrows
backwards to pick up any additional Application rule sets that depend on the
rule sets found so far. Repeat this step recursively until there are no more links
to follow backwards.

v Each of the Application rule sets found during the above steps must now be
cloned. Follow the steps below.
– For each rule set to be cloned, copy its rule set source XML file from

EJBServer/components/ component name /CREOLE_Rule_Sets/
someruleset.xml to EJBServer/components/custom/CREOLE_Rule_Sets/
someruleset Custom.xml .

– For each cloned rule set, create an entry in EJBServer/components/custom/
data/initial/CREOLERuleSet.dmx (which you must create if it does not
already exist). The contents of this entry should be a copy of the entry for the
original rule set, with the exception of the 'ruleSetDefinition' attribute. This
should be updated to the new location of the cloned rule set in the custom
component.

– Similarly, for each cloned rule set, create an entry in EJBServer/components/
custom/data/initial/AppResource.dmx (which you must create if it does not
already exist). The contents of this entry should be a copy of the entry for the
original rule set, with the exception of the 'content' attribute. This should be
updated to the new location of the cloned rule set in the custom component.

On completion of rule set cloning, if you wish to add further propagator
configuration for your cloned rule sets, you should complete these in the custom
directory:
v Propagator configurations should be added to: EJBServer/components/ custom

/data/ directory /RuleObjectProapgatorConfig.dmx

v Propagator configuration XML files should be located in the blob/clob
directories within the custom data directories.

Incremental Design
When you are grappling with the complexity of your product, it can be useful to
take certain shortcuts so that you can start to see your product "up and running"
before it is fully implemented. This section suggests some useful approaches which
may help you incrementally design and/or implement your product.

Important: There is more to getting a product up and running than is described in
this guide. This guide covers only the configuration options specific to CER-based
products; for other configuration options and initial set-up tasks, see the How to
Build a Product guide.

Any short-cuts that you take during the initial development of your product must
be recognised for what they are - each short-cut builds up a certain amount of
"debt" which must be later repaid. Keep track of which short-cuts you take and
plan to place each short-cut with a robust implementation later in your
development cycle.

The initial goal of incremental design is to get something up and running for your
product, even though it is far from fully implemented. This initial version of your
product should be able to have cases created against it and determinations made,
but those determinations may show fixed eligibility/entitlement information
(which does not take into account the case's circumstances) and no key decision
factors or decision details.

176 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

These chapters earlier in this document describe how to configure your product.
The chapters linked below give details for the full implementation of their
respective areas:
v Eligibility and Entitlement Calculations

See “How to Use It” on page 25 in “Calculating and Displaying Eligibility and
Entitlement” on page 18.

v Key Decision Factors

See “How to Use It” on page 51 in “Calculating and Displaying Key Decision
Factors” on page 46.

v Decision Details

See “How to Use It” on page 73 in “Calculating and Displaying Decision
Details” on page 61.

Choose Default Configuration Options for Your Product
When you initially set up your product, you must choose certain configuration
options. You can use these default options and revisit them later in your
development cycle to replace them with more appropriate options:
v Open-ended cases

Allow your product to support open-ended cases.
v Summarizer Strategy

Choose "Total weekly monetary entitlement" (see “Choose or Create a
Summarizer Strategy” on page 44).

v Determination Comparison Strategy

Choose "Compare all user-facing data" (see “Determination Comparison
Strategies” on page 142).

v Reassessment Strategy

Choose "Do not reassess closed cases" (see “Product Delivery Rule Objects” on
page 92).

Implement a Single Product Period First
In the unlikely event that your initial version of product requires multiple product
periods (i.e. already has changes of legislation and/or policy to deal with), first
work with a single product period only, starting at the start of your overall
product, and with no end date. Further product periods can be implemented when
this initial product period is up-and-running. A default product period and
associated eligibility and entitlement rule set is automatically created and
published for a benefit product that is created via the dynamic product wizard.
This eligibility and entitlement rule set is intended to be edited in line with your
product requirements prior to product use.

When you have implementations for your single product period up-and-running,
then you can split your product into multiple product periods, cloning your rule
sets from the first period you implemented, as a starting point.

Focus on Eligibility/Entitlement Rules
The core rules to get your product up-and-running are those for eligibility and
entitlement calculations. Do not initially implement any rules for key decision
factors or decision details.

For a benefit product that has been created via the product wizard, an initial
version of the eligibility/entitlement rules will automatically have been created for
your product. If you are creating a new eligibility and entitlement rule set, the

Developing with Eligibility and Entitlement by using Cúram Express Rules 177

initial version of your eligibility/entitlement rules can hard-code the following (to
be replaced by real implementations later):
v A fixed eligibility result, such as "always eligible", or "eligible for January 2010 to

December 2011 only"; and
v Fixed entitlement, i.e. fixed values for all objectives, a fixed number of

occurrences for any multiple objectives, and fixed entitlement for each objective
(such as "always entitled").

Typically it is easier to work on single objectives before moving on to multiple
objectives (see “Identify the rules that govern the objectives for each case” on page
29).

Spin-off a Task to Write Rule Classes for Custom Entities and/or
Evidence Types
While one rule developer creates the initial eligibility/entitlement rules, another
developer can (in parallel) write rule sets for "data" rule classes for your:
v custom entities (which are required for rules calculations); and/or
v custom evidence types that you have created for your product.

Important: To maximize re-use of these "data" rule classes, it is recommended that
you place them in their own rule set - i.e. not the same rule set as the
eligibility/entitlement rule classes.

Unless you have special requirements for handling versions of active evidence,
typically you will find the Engine's support for succession sets the easiest option
when later working with evidence in your eligibility/entitlement rules (see “Active
Succession Set Rule Objects” on page 107.

The initial implementation of the "data" rule classes should concentrate on creating
the rule attributes with the correct data types.

Later, you can add:
v a description rule attribute to each data rule class (to aid debugging); and
v rule attributes (suitably annotated) to allow navigation to related parent or child

evidence (see “Conversion Processing” on page 108).

Important: To maximize re-use of these "data" rule classes, there should not be any
calculated rule attributes on any rule class other than the description rule
attribute.

Product-specific calculations should be placed on product-specific "calculator" rule
classes later.

Once the "data" rule classes have been written and their rule sets published, the
developer can write and publish rule object propagator configurations so that rule
objects are automatically created by the Engine. These configurations will need to
be in place before the overall product can be tested online, but are not required
while the eligibility/entitlement rules are hard-coded, and are not required in
order to unit-test parts of implemented eligibility/entitlement rules.

Later you can revisit your data rule classes and check for commonality across your
products. You can refactor your rule classes so that any which are common across
products are normalized into a common rule set, and thus are propagated to only
once (to improve performance and lower database storage requirements).

178 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Top-down Implementations
Once your hard-coded eligibility and entitlement rule implementations are in place,
you can use a top-down approach to replace these hard-coded implementations
with real logic appropriate to your product. As you drill down, you may create
new hard-coded lower-level implementations, which (depending on your factoring
of rule sets) might be handed-off to multiple developers for further
implementation.

For example, the "Lone Parent" Benefit outlined in “Example” on page 5 might
initially be implemented as "always eligible".

The next step in implementing the eligibility calculation for "Lone Parent" Benefit
would be to replace the "always eligible" calculation with (in pseudo-code, and
assuming relevant timeline operations):
v childInEligibleAgeRange AND
v childResidingWithParent AND
v parentIsLone AND
v familyPassesMeansTest.

These new attributes would each initially be hard-coded to be "true forever". The
top-down process can then undergo another iteration and the implementations of
these new attributes each changed from the hard-coded "true forever" into real
implementations, possibly with further new attributes which are initially
hard-coded; e.g. the childInEligibleAgeRange could apply date logic to the child's
date of birth, but that date of birth could initially be hard-coded instead of coming
from a propagated rule class for an entity or evidence type.

Bottom-up Implementations
If you know that there are complex calculations around a propagated rule class,
then you can implement and test "calculator" rule classes even though these are
not yet used by eligibility/entitlement rules.

Later you can integrate these bottom-up implementations with your top-down
implementations and re-test.

Hard-code Rates at First
In the initial implementation of your eligibility/entitlement rules, you may require
data which is best implemented as rate tables.

Initially, though, you may find it easier to hard-code the rate information directly
in your rule implementations; later you can refactor your rules to move the data to
Cúram rate tables, and replace your implementation with the rate expression, and
create propagator configuration entries to allow your new rate tables to be
propagated “Rate Rule Objects” on page 95.

Important: If your implemented product goes live with rates hard-coded in the
rule sets, then any subsequent rate changes will involve rule set changes (with the
associated re-testing effort), rather than a rate-only change external to your rule
sets.

Keep an Eye on Rule Class Dependencies
It is recommended that you keep these rule classes in separate rule sets:
v Data rule classes

Keep the data rule classes for your custom entities and evidence types in a
separate rule set to maximize their re-use across different products.

Developing with Eligibility and Entitlement by using Cúram Express Rules 179

v Eligibility/entitlement rule classes

Keep the rule classes for your eligibility/entitlement calculations in a separate
rule set so that display-only changes to rules do not require re-testing of core
eligibility/entitlement implementations.

v Key decision factor rule classes

Keep the rule classes for your key decision factors in a separate rule set so that
they can be maintained independently of your eligibility/entitlement rule
classes.

v Decision details rule classes

Keep the rule classes for your decision details in a separate rule set so that they
can be maintained independently of your eligibility/entitlement rule classes.

v Common calculator rule classes

As you identify calculator rule classes which are common between your
eligibility/entitlement, key decision factor and/or decision detail rule classes,
you can consider placing such rule classes in "common" rule sets.

While it is important to adhere to the recommended structure above by the time
your product's implementation is complete, you do not have to strictly adhere to it
in the early days of your product's development cycle.

You can refactor your rule sets later to match this structure, although such a
refactoring task will become more complex the longer it is put off. In any case, to
refactor freely you will need to have built up a good bank of unit tests for the
behavior of your rule classes.

Try Key Decision Factors before Decision Details
Writing rules for key decision factors is easier than writing rules for decision
details, because:
v The data structure for key decision factors is fixed, whereas the data structure

for decision details is free-form and requires design work
v The Engine provides screens to display key decision factors, whereas you have

to implement your own dynamic UIM screens for decision details.

When starting to implement visualizations for the explanation of a case's
determination result, consider implementing key decision factors before embarking
on the more onerous task of implementing decision details. Key decision factors
may be sufficient to demonstrate that the eligibility/entitlement results for your
product's cases are not only "correct", but are "correct for the right reasons".

Re-use the Basic Decision Details before Writing Your Own
The Engine includes support for basic eligibility/entitlement decision details (see
“Basic Eligibility/entitlement Decision Details” on page 19).

Consider re-using this basic display category before implementing your own (more
suitable) display categories. This re-use will help you understand how decision
details are implemented and will enable your testers to see more details about
your cases (albeit only very basic details).

You can remove the Basic display category later when you implement more
appropriate display categories.

To re-use the basic decision details, follow these steps (as part of the general steps
involved in implementation decision details - see “Implementation” on page 76):

180 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

v When you create your case rule class (see “Write the Case rule class” on page
76), make your rule class extend
AbstractBasicProductDecisionDetailsRuleSet.AbstractBasicCase. You must
implement the inherited abstract abstractCase rule attribute, to create an
instance of the underlying rule class for your eligibility/entitlement (i.e. the one
you created in “Write the Case Eligibility/Entitlement Calculation Rule Classes”
on page 35), specifying the value for productDeliveryCase; and

v When you create you create your dynamic UIM and properties files, clone those
for the following pages to your custom component:
– CREOLEDisplayRules_basicCaseDisplay; and
– CREOLEDisplayRules_basicCaseDisplay_objectiveTagSubscreen.
You must provide new unique names for your cloned dynamic UIM and
.properties files, and update their contents to point to your new names.

Start Slowly with Decision Details
The implementation of decision details (rules and screens) can be a complex area.

Start off with simple screens that do not require subscreens or comparison data.
Avoid conditional display in your dynamic UIM until you have all displayable
data reliably flowing from rules to determination results to screens.

Later you can start to implement conditional display, and more complex screens
that have subscreens or comparison data.

When implementing a dynamic UIM screen, if you require data that is not already
available in rules, then initially you can create a new rule class/rule attribute with
a hard-coded dummy implementation only; once you have the data flowing to the
screen you can revisit the rule attribute to implement real logic (possibly giving the
task to another developer to work on in parallel to screen development).

Throughout Your Product's Development
The sections above describe various short-cuts that can be taken during initial
development.

However, there are some approaches which are important no matter which part of
the development cycle you're in:
v Understand Timelines

CER's concept of Timelines, and its expressions for manipulating them, are
widespread in rule sets used by products. Ensure that you are comfortable with
how timelines work and when they are used, before you implement any rule
sets for your product. See also “Write the Case Eligibility/Entitlement
Calculation Rule Classes” on page 35.

v Comment as you go

Write comments for your rule classes and rule attributes as you implement
them, while they are fresh in your mind.

v Test as you go

Once you have simple processing up-and-running, write unit tests for blocks of
rules as you implement them. Write integration tests for your product once there
are enough end-to-end processing steps implemented for your product.

v Draw on rule sets included with Cúram Solutions

Look at the rule sets included with Cúram Solutions for ideas on how to
structure and implement different styles of rules.

v Refactor

Developing with Eligibility and Entitlement by using Cúram Express Rules 181

Don't be afraid to refactor rules as you discover commonality and better
structures. A good bank of unit tests will allow you to refactor with confidence.
Draw pictures of complex structures (because any system of a certain complexity
cannot be entirely self-documenting).

v Monitor application logs

The Engine tries hard to continue processing even when configuration is not
quite correct. Keep an eye on non-fatal warnings and/or errors written to the
application logs and console output. Use the Engine's environment variables to
increase the logging verbosity to help track down problems (see “Environment
Variables” on page 217).

Handling Legislation Change
When a product is first implemented, typically there is an initial version of
legislation which takes effect until further notice.

However, over time, for political, policy or budgetary reasons, the legislation
underpinning the functional requirements for your product may change. One style
of change prevalent amongst social security legislation is whereby the eligibility
and entitlement rules for cases change over the lifetime of the case. Typically (but
not always):
v the change in rules "takes effect" on a particular date; the case's eligibility and

entitlement is calculated according the "old" rules before that date, and
according to the "new" rules after that date;

v the date that the rules changes takes effect is the same for all cases for that
product, i.e. there is no data on any case which affects the date from which the
new rules apply;

v cases that came to a natural end before the change in legislation are unaffected;
v cases that start after the new rules have taken effect use the new rules only; and
v after the new rules have taken effect, any new claims which are registered to

retrospectively start before that date will use a mixture of old and new rules, just
as for claims which were registered on time before that date.

The Engine uses the term "legislation era" to refer to a period of constant
legislation; in other words, a change in legislation (no matter how big or small)
ushers in a new legislation era for a product.

The following example illustrates how a product set-up might need to change from
supporting just the "old" rules, to supporting a mixture of "old" and "new" rules, to
be applied to different legislative eras.

A client has been receiving an Income Assistance benefit but the case has
subsequently ended. Another client has been receiving the same benefit and
continues to do so. Both of these cases are using the eligibility and entitlement
rules that were implemented to meet the requirements of the single (initial) version
of the legislation.

New legislation is enacted resulting in the need for the social services agency to
modify the eligibility and entitlement rules. Changes are made to the rule set and
made effective from the date on which the legislation went into effect.

For the case that has already ended, eligibility and entitlement continues to be
determined using the initial version of the rules because the case ended before the
effective date of the legislation changes. For the case that remains open, eligibility

182 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

and entitlement continues to be determined using the initial version of the rules up
to the effective date of the legislation change, but uses the new version of the rules
from the effective date onwards.

For any cases that are created after the date on which the new version of the rule
set took effect, eligibility and entitlement will be determined using the new version
of the rule set. For any cases that are retrospectively created and begin before the
effective date of the legislation changes, eligibility and entitlement will be
determined using the initial version of the rule set up to the effective date and the
new version of the rule set from that date onwards.

The Engine supports two different mechanisms for implementing legislation
change:
v Branching logic in your CER rule sets

You can create a new version of your existing rule sets used by your product,
and this new version of the rule set can contain branches which apply different
logic to the periods on your cases, before and after the date that the legislation
changes.

v Multiple product periods for your product

You can change your product's set-up so that the lifetime of the product is
carved up into distinct "product periods", and you can assign different
eligibility/entitlement CER rule sets to each of the product periods.

Each of these approaches has its own benefits and limitations. The remainder of
this chapter describes these two supported mechanisms in greater detail, followed
by some important points to consider when choosing which approach to follow
when implementing a particular change in legislations.

Important: You should familiarize yourself with the details of these approaches
prior to deciding how best to implement changes in legislation which affect your
product's requirements.

Branching Logic in Your CER Rule Sets
If you choose to implement branching logic in your rule sets, then you will first
need to identify which rule attribute implementations will need to have branching
logic. (Indeed, if this identification shows that a very large number of attributes
require branching logic, you may be better off switching to the “Multiple Product
Periods for Your Product” approach instead.)

For each rule attribute that requires branching logic, use CER's legislationChange
expression to implement different logic for different "eras" of time. See
“legislationChange” on page 201 for a full description of this expression.

Update your rule set tests to test for the behavioral changes introduced by your
legislation change.

Once your changes to your existing rule sets are complete, publish the changes,
which will result in existing cases being bulk-reassessed, typically leading to new
determinations being stored for some existing cases.

Multiple Product Periods for Your Product
If you choose to use multiple product periods for your product, then typically it
will be helpful to clone the rule sets for your existing product period (assuming

Developing with Eligibility and Entitlement by using Cúram Express Rules 183

that the structure of the rules is still suitable, and that some significant number of
existing rules implementations do not require updating to implement the
legislation change).

Clone the rule sets using the process described above in “Cloning CER Rule Sets”
on page 175. You need only clone the rule sets down as far as those rules which
are affected by the legislation change. It may be helpful to rename your rule sets in
line with your eras of legislation. You may also identify useful refactorings to make
common any rule classes which are unaffected by the legislation change.

Update your cloned rule sets to implement the change in legislation.

You must create tests for your rule set changes; because you have cloned rule sets,
you may need to clone your bank of rule set tests, and update the cloned tests to
use your cloned rule sets. This cloning of tests will help ensure that existing
functionality unaffected by the legislation change continues to work as expected.
Update your cloned rule set tests to test for the behavioral changes introduced by
your legislation change.

Once your changes to the newly-created cloned rule sets change are complete,
publish the changes.

Set an end date on the existing product period. Create a new product period (see
“Write the Product Periods” on page 42) and configure the new product period to
use your cloned rule sets.

Publish your changes to the product periods, which will result in existing cases
being bulk-reassessed, typically leading to new determinations being stored for
some existing cases.

Choosing the Right Approach
When you come to implement a change in legislation, there are many factors
which you should bear in mind when choosing which approach is better for your
change. Sometimes the competing factors will mean that there is no overall
clear-cut answer, and you will need to make an informed decision based on the
details of the change that you need to make.

Over time, a product may undergo several legislation changes, and each legislation
change must be taken on its merits when deciding which approach to take; in
other words, a long-lived product may have had several historical legislation
changes implemented using branching logic, and also other historical legislation
changes implemented using multiple product periods. Indeed, it is possible (but
rare) that a single legislation change may be implemented using a combination of
the "branching logic" and "multiple product periods" approaches.

This table describes some important consequences to keep in mind when making
your choice.

184 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 59. Factors involved when choosing the right approach for legislation change

Factor
Consequences under the
"branching logic" approach

Consequences under the
"multiple product periods"
approach

Testing For existing unit test that test
attributes which now contain
branching logic, the tests
need to be updated to test
the output of rule attributes
taking into account eras of
old legislation and new
legislation; these tests will
need to deal with both
versions of the legislation.

The full bank of unit tests for
a cloned rule set must also
be cloned and maintained in
line with the cloned rule set;
in particular, tests for cloned
attributes which are updated
in line with the legislation
change must be updated to
test the behavior of the
changed attribute. Each test
only needs to deal with one
version of the legislation,
however.

Refactoring Typically (depending on the
complexity of the legislation
change) no refactoring will
be required to make logic
common, as existing
common logic should
already have been factored to
normalize common logic.

The cloning of rule sets may
present an opportunity to
refactor rule sets so that
common logic unaffected by
the legislation change can be
refactored to exist only once
- but this refactoring will
take implementation and
retesting effort.

Maintenance The number of rule classes
and rule attributes will
typically be unchanged;
however, the implementation
of some rule attributes will
become more complex, as
those attributes have to deal
with legislation change.
Future bug fixes to the rule
set (which span legislation
eras) will typically require
implementation in one rule
set only.

The number of rule classes
and rule attributes will
increase due to cloning;
however, the implementation
of rule attributes should
remain at the existing level
of complexity. Future bug
fixes to the rule set (which
span legislation eras) may
require implementation in
more than one rule set,
depending on whether logic
common across rule sets has
been refactored.

Complexity This approach is suited to
legislation changes which
affect a small number of rule
attributes, where the
human-readability of the
overall rule set is not
overly-compromised by the
limited introduction of
branching logic.

This approach is suited to
legislation changes which
affect a large number of rule
attributes, where the
human-readability of the
overall rule set would be
overly-compromised by the
wide-ranging introduction of
branching logic.

Guarantees regarding
stability of decisions under
older legislation

You must test that your
implementation of branching
logic has correct dates for
eras, and does not
accidentally affect past
periods already determined
for cases.

Existing periods of
determinations for the old
product period (now with an
end date) are guaranteed not
to be affected by the
legislation change introduced
by the new product period.

Developing with Eligibility and Entitlement by using Cúram Express Rules 185

Table 59. Factors involved when choosing the right approach for legislation
change (continued)

Factor
Consequences under the
"branching logic" approach

Consequences under the
"multiple product periods"
approach

Existing display categories You must test that the
existing dynamic UIM
screens for display categories
should continue to work
with your updated rule sets.

You must test that the
existing dynamic UIM
screens for display categories
work with the different rule
sets configured for your
different product periods.
Either update the existing
dynamic UIM screens (if
necessary), or if the display
output for an existing rule
set category is sufficiently
different after the legislation
change, you may need to
clone the display category so
that there are different tabs
(and thus different dynamic
UIM screens) for before/after
the legislation change. If you
clone a display category, then
case workers will need to
click on one of two display
categories, depending on
which one is implemented
for the coverage period
displayed.

New display categories If a new display category is
introduced for the legislation
change, then your existing
rules must create appropriate
"no output" values for older
eras of legislation.

Your cloned rule sets and
new product period can
introduce support for a new
display category which is not
supported by older product
periods.

Whether the legislation
change affects all cases on
the same date

Each attribute which is
updated to contain
legislation change logic can
have an implementation
which uses different era
dates from other attributes
(and can even use dates
which vary according to
circumstances of the case).

The cloned version of the
rule sets affects all cases on
the same date - namely the
date of the new product
period. The date cannot vary
across cases.

186 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 59. Factors involved when choosing the right approach for legislation
change (continued)

Factor
Consequences under the
"branching logic" approach

Consequences under the
"multiple product periods"
approach

Whether the legislation
change date is important
enough to flag to case
workers on each
determination

If the date of legislation
change is important in its
own right, consider
implementing a key decision
factor which shows the date
that legislation changed.

If the date of legislation
change is important in its
own right, consider
implementing a key decision
factor which shows the date
that legislation changed.
Note that if the format of the
decision details data is
different between your old
product period and your
new product period, then
when a case worker views a
determination which spans
these periods, then the
Engine will split the
determination into different
coverage periods anyway
(due to the change in
decision details across the
product periods).

Typically, the choice of approach does not significantly affect performance and/or
data storage. The multiple product period approach will lead to more rule objects
being created in memory during the calculation of a determination result; but these
rule objects are not stored on the database. They are included in rule object
snapshots, however, but if common logic has been normalized, then when CER is
requested to create a rule object with common logic, CER will re-use a
similarly-created rule object that has the same initialization/specified values, and
thus the common rule object will appear only once in the rule object snapshot,
regardless of which approach is used.

Some types of legislation change require that newly-registered cases are treated
differently from cases which already existed at the time that the legislation change
came into effect, even if those newly-registered cases are recorded to
retrospectively start before the legislation change (i.e. if the case was registered
"late" and its start date is back-dated). Under these circumstances, regardless of
which approach is chosen, the case's registration date will become an important
piece of evidence in its own right, as it will govern how the case is treated. If you
are considering the "multiple product period" approach, then you might implement
and test the changes to branch logic based on the case registration date before
cloning your rule sets, as the branching logic may be common to the determination
results for both eras of legislation.

Some types of legislation change introduce "transitional" periods whereby claims
are treated different. You may need to include branching logic for several dates, or
create more than one new product period, to cater for how cases are treated
before/during/after any transitional periods.

If a start date of a case is incorrectly recorded, then when it is corrected, there may
be a change to the product periods which contribute to that case, and thus the case
may now be affected by a legislation change whereas previously it was not, or vice

Developing with Eligibility and Entitlement by using Cúram Express Rules 187

versa. This kind of retrospective correction to case start dates behaves as you
would expect and is automatically handled by the Engine.

Legislation changes can be future-only or contain an element of retrospective
change, depending on whether the effective date of the legislation change is in the
future or the past; indeed, sometimes a legislation change targeted at a future date
might, due to lags introduced by legal/policy departments, end up being in the
past by the time it is implemented. The implementation of legislation changes will
typically affect a large number of cases, which will undergo changes in their
determination results. For future-dated changes, the periods of the determinations
affected will be in the future, typically for periods not yet processed by financial
processing, and thus there will be no corrective under- or over-payments issued on
foot of the change. For retrospective legislation changes though, it is possible to
affect determinations for periods already delivered, typically leading to corrective
under- or over-payment processing on a number of cases, as is to be expected.

Changing Product Configuration Settings
There are a number of configuration settings at the product level which can be
changed at any time, including for a product which has already had product
delivery cases created for it:
v decision summary display strategy;
v determination comparison strategy;
v allow open-ended cases; and
v reassessment strategy.

The sections below describe these configuration settings in more detail.

Decision Summary Display Strategy
The strategy in place for the product governs how each coverage period is
summarized when shown to the a case worker (see “Viewing a Determination's
Coverage Periods” on page 19, “Viewing Key Decision Factors Graphically” on
page 47 and “Viewing Key Decision Factors in a List” on page 48).

If you change this setting for your product, then it will affect how all
determinations for the product are displayed, including historical determinations
already created and stored as well as any new determinations created in the future.

Determination Comparison Strategy
The strategy in place for the product governs how "different" a new assessment
determination must be to be worthy of storage (see “Determination Comparison
Strategies” on page 142).

If you change this setting for your product, then it will only affect the processing
of new determinations created in the future; all existing determinations which have
already been created and stored are entirely unaffected.

Allow Open-Ended Cases
This setting governs whether the Engine allows a new case to be created without
an expected or actual end date.

If you change this setting for your product, then it will only affect the processing
of new cases created in the future; all existing cases which have already been
created and stored are entirely unaffected. Thus it is possible for a product not to

188 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

allow the creation of open-ended cases, yet have cases registered against which are
open-ended (because those cases were registered at a time in the past when the
product did support open-ended cases).

Reassessment Strategy
This setting governs the types of cases that the Engine can reassess.

The supported settings are:
v Automatically reassess all cases

The Engine will allow reassessment of all cases and will maintain dependency
records for each case's assessment for as long as the case is recorded on the
system. Over time, depending on the number of cases on your system, the
ever-growing number of dependency records may have an effect on the
performance of your system.

v Do not reassess closed cases

The Engine will allow reassessment of all cases except for those with a status of
"Closed". The Engine will maintain dependency records for each non-closed case.
If a case's circumstances change when it is closed, the Engine will not reassess
the case (but if the case is re-opened, the Engine will then reassess the case).
This setting is the default for new products you add to your system.

If you change this setting for your product, then all existing cases will be checked
to see if dependency records should be created or deleted as appropriate.

Important: The checking of existing cases is performed by the
ApplyProductReassessmentStrategy batch job.

When a user publishes changes to a product which include a change to the
product's reassessment strategy, then at the point where the user is asked to
confirm the publication, the system will warn the user that a batch job request will
be queued up, and that the batch job must be executed before the new
reassessment strategy takes effect for existing cases.

For each product delivery case for the product:
v if the case was not reassessable under the old strategy but becomes reassessable

under the new strategy, then an assessment is performed on the case to build up
the dependency records for the case's determination result;

v if the case was reassessable under the old strategy but is no longer reassessable
under the new strategy, then the dependency records for the determination
result are removed;

v otherwise no action is performed on the case.

Compliancy
This appendix explains how to develop using the Eligibility and Entitlement
Infrastructure in a compliant manner.

The Public API
The Eligibility and Entitlement Infrastructure has a public API which customers
may invoke in application code. Nothing will be changed or removed in this
public API without following the standards for handling customer impact.

Developing with Eligibility and Entitlement by using Cúram Express Rules 189

Identifying the Public API
The JavaDoc for the code packages listed in “Code Package Restrictions” is the sole
means of identifying which public classes, interfaces and methods form the
Eligibility and Entitlement Infrastructure public API.

Code Package Restrictions
The following code packages are restricted:
v curam.core.facade.infrastructure.assessment.impl;
v curam.core.facade.infrastructure.creole.rulesetadmin.impl;
v curam.core.facade.infrastructure.paymentcorrection.impl;
v curam.core.facade.infrastructure.product.creole.impl;
v curam.core.facade.infrastructure.propagator.impl;
v curam.core.sl.infrastructure.assessment.event.impl;
v curam.core.sl.infrastructure.assessment.impl;
v curam.core.sl.infrastructure.creole.extension.impl;
v curam.core.sl.infrastructure.creole.impl;
v curam.core.sl.infrastructure.paymentcorrection.impl;
v curam.core.sl.infrastructure.product.creole.impl;
v curam.core.sl.infrastructure.propagator.impl; and
v curam.core.sl.infrastructure.rate.impl.

These packages contain interfaces and classes internal to the Eligibility and
Entitlement Infrastructure. Unless explicitly permitted in the JavaDoc, customers
must not provide their own implementation of any Java interface nor subclass any
implementation Java class contained in these packages. Customers must not place
any custom classes or interfaces in these packages.

For convenience the available customization points are described in “The Eligibility
and Entitlement Engine API and Customizability” on page 193.

Code Table Restrictions

CaseAssessmentDetReason
The CaseAssessmentDetReason code table contains codes which indicate why a
particular assessment occurred (for example 'Case Activation' or 'Change of
Evidence'). It can be found in the
curam.core.sl.infrastructure.assessment.codetable package.

In contrast to the other code tables in the same package, customers are free to add
custom codes to the CaseAssessmentDetReason code table using the recommended
approach.

CaseSnapshotDetReason
The CaseSnapshotDetReason code table contains codes which indicate why a
particular snapshot was taken occurred (for example 'Case Approval' or 'Case
Rejection'). It can be found in the
curam.core.sl.infrastructure.assessment.codetable package.

In contrast to the other code tables in the same package, customers are free to add
custom codes to the CaseSnapshotDetReason code table using the recommended
approach.

190 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Restricted Code Table Packages
The following code table code packages are restricted:
v curam.core.sl.infrastructure.assessment.codetable;
v curam.core.sl.infrastructure.codetable;
v curam.core.sl.infrastructure.propagator.codetable; and
v curam.core.facade.infrastructure.creole.rulesetadmin.codetable.

With the exception of CaseAssessmentDetReason and CaseSnapshotDetReason, all
code tables contained in these packages are reserved for use by the Eligibility and
Entitlement Infrastructure. Customers must not modify these code tables in any
way. In particular, the creation of custom versions of these code tables to contain
additional codes is not supported.

Restricted Code Tables
The following code tables in the curam.codetable package are also restricted:
v AssessmentDateListType;
v CaseDecisionMethodCode;
v CaseDecinitReasonCode;
v ReassessmentAmount;
v ReassessmentProcMode; and
v ReassessmentResult.

These code tables are reserved for use by the Eligibility and Entitlement
Infrastructure. Customers must not modify these code tables in any way. In
particular, the creation of custom versions of these code tables to introduce custom
codes is not supported.

Database Restrictions
The Eligibility and Entitlement Infrastructure includes a number of database tables.
In general, these tables are internal to the Eligibility and Entitlement Infrastructure
and the data on them may only be read or written via the public API.

For more details on the read/write restrictions for these database tables, see the
following subsections.

Note: There are database tables prefixed with CREOLE which are part of other
application components (in particular the CER Infrastructure), and which are
subject to their own compliancy statements. Only the compliancy statements for
the Eligibility and Entitlement Infrastructure database tables are described below.

RuleObjectPropagatorControl
RuleObjectPropagatorControl is a single-row control table which is used to control
the execution of the initial propagation of application data to CREOLE rule objects.

This table contains a single row which indicates whether initial propagation has
been run. This control row ensures that initial rule object propagation is run by
exactly one application server instance during Guice initialization.

The data on this table is internal to the Eligibility and Entitlement Infrastructure
and may not be read or written by any other component.

Developing with Eligibility and Entitlement by using Cúram Express Rules 191

The single row on this table is populated via a DMX file provided with the
application. Customers must not alter this DMX file nor create any other DMX files
which target the RuleObjectPropagatorControl table.

Restricted Database Tables
The remaining database tables which are included with the Eligibility and
Entitlement Infrastructure are:
v BreakdownInfo
v BulkCaseReassessment
v BulkReassessRecalcGroup
v CaseDecision
v CaseDecisionObjective
v CaseDecisionObjectiveTag
v CaseNomineeProdDelPattern
v ConfigurationChangeItem
v ConfigurationPublication
v CREOLECaseDecision
v CREOLECaseDetermination
v CREOLECaseDeterminationData
v CREOLECaseReassessment
v CREOLEProduct
v CREOLEProductDecisionDispCat
v CREOLEProductPeriod
v CREOLEProductPeriodDispCat
v CREOLEProductPublicationItem
v CREOLEProductSandbox
v CREOLEProductSnapshot
v CREOLERecalcRequestGroup
v CREOLERecalculationRequest
v CREOLERuleClassLink
v CREOLERuleSetCategory
v CREOLERuleSetCategoryLink
v CREOLERuleSetPublicationItem
v NomineeOverUnderPayment
v OverPaymentEvidence
v OverUnderPaymentBreakdown
v OverUnderPaymentHeader
v PaymentCorrectionEvidence
v PaymentCorrectionFCLink
v PropConfigPublicationItem
v ReassessmentAmountInfo
v ReassessmentBalanceInfo
v ReassessmentInfo
v RuleObjPropConfigSandbox
v RuleObjPropConfigSnapshot
v UnderPaymentEvidence

192 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

These Eligibility and Entitlement Infrastructure database tables must not be
customized through extension of the model. The data on these database tables
must not be read or written other than through the public API. In particular, initial
population of these database tables via DMX files is not supported.

CER Rule Sets Included with the Application
The source of CER rule sets included by the application must not be changed "in
place".

If you wish to use CER rule sets included with the application as the basis for your
own rule sets, then you must clone those rule sets (and, transitively, their
dependent and precedent rule sets) to your custom component. See “Cloning CER
Rule Sets” on page 175 for the steps to follow.

The Eligibility and Entitlement Engine API and Customizability

Eligibility and Entitlement Engine API
The Eligibility and Entitlement Engine API was developed as a means of clearly
identifying the entry points into the eligibility and entitlement engine, which is
used in determining a client's eligibility and entitlement. The classes comprising
the Eligibility and Entitlement Engine API are as follows:
v AssessmentEngine

v AssessmentEngineImpl

v AssessmentEngineEntity

v AssessmentEngineEntityImpl

These classes are located inside the following package:

..\EJBServer\components\core\source\curam\core\sl\infrastructure\assessment\
impl

Important: You must not provide your own implementation of any of the Java
interfaces above nor subclass any implementation Java class.

Nothing will be changed or removed in this public API without following the
standards for handling customer impact.

Customizability
A number of customization points are provided throughout the Eligibility and
Entitlement Engine, either through events being raised or through a series of
hooks.

Eligibility and Entitlement Engine Events
The Eligibility and Entitlement Engine raises several business events which allow
customers add logic at various points in the application. For details on how to add
event listeners, please refer to the Persistence Cookbook. The following table lists
the event class(es) available in the Eligibility and Entitlement Engine. For
additional information, please refer to the JavaDoc of the associated class.

Developing with Eligibility and Entitlement by using Cúram Express Rules 193

Table 60. Eligibility and Entitlement Engine Events

Event Class Description

curam.core.sl.infrastructure.assessment.event.
impl.AssessmentEngineEvent

This class contains events which are raised
inside the Eligibility and Entitlement Engine.

Eligibility and Entitlement Engine Hooks
The Eligibility and Entitlement Engine contains a number of hooks which can be
availed of by customers needing to provide custom input to the Eligibility and
Entitlement Engine. The following table lists the hook class(es) available in the
Eligibility and Entitlement Engine. For additional information, please refer to the
JavaDoc of the associated class.

Table 61. Eligibility and Entitlement Engine Hooks

Hook Class Description

curam.core.sl.infrastructure.assessment.impl.
AssessmentEngineHooks

This class contains a number of Eligibility
and Entitlement Engine customization/hook
points.

curam.core.sl.infrastructure.assessment.impl.
ReassessEligiblityHook

This class contains a number of product
specific hook/customization points called
during Eligibility Assessment.

For the AssessmentEngineHooks, there is an out-of-the-box implementation of some
of these hooks inside AssessmentEngineHooksImpl. Customers can provide their
own implementation and make these available in the application through the use
of Guice bindings, binding AssessmentEngineHooks.class to the custom
implementation. The detail of how to do this is covered in the Persistence
Cookbook.

For the ReassessEligibilityHook, customers can provide an implementation of
these hook points for a specific product, and make them available to the
application through the use of Guice bindings, as follows:
final MapBinder<Long, ReassessEligibilityHook> reassessEligibilityHooks =

MapBinder.newMapBinder(binder(), Long.class, ReassessEligibilityHook.class);

reassessEligibilityHooks.addBinding(new Long(<PRODUCT_ID>)).to(<HOOK_IMPL>.class);

Extensions to Cúram Express Rules

Introduction
The Engine contributes some expressions and annotations to CER. For more
information about CER, see the Cúram Express Rules Reference Manual.

Important: These expressions and annotations are for use in case eligibility and
entitlement processing only, and are not supported for use by any other purpose.

Expressions
The Engine contributes these expressions to CER:
v “combineSuccessionSets” on page 195;
v “legislationChange” on page 201; and
v “rate” on page 204.

194 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

combineSuccessionSets

Overview: The Active Succession Set Rule Object Converter (see “Active
Succession Set Rule Objects” on page 107) supports the creation of one rule object
per succession set of evidence records.

In some circumstances, a real-world entity (such as a person) can have periods of
time with certain characteristics (such as a period of absence from the household).
These periods of time may each be recorded as their own succession sets, and in
some circumstances it can be beneficial to combine each of these succession sets
into a single history of those periods.

The combineSuccessionSets expression allows you to "splice together" succession
sets which each represent a non-overlapping period, with default values used for
the "gaps" between those periods.

Example: Let's say that details of a person's absence from their household are
captured as evidence.

Each period of absence has a start date and (optionally) an end date. Each period
of absence also has a reason for the person's absence, but notably the reason can
change during the absence (i.e. the person can be initially absent for one reason,
then from a given date continues to be absent but for a different reason).

For a given person, no two periods of absence can overlap (a person cannot be
absent in more than one way at any given time). In particular, the person can have
at most one open-ended period of absence.

Each separate period of absence is captured as its own succession set of absence; in
other words, if the person is absent from the household, and then returns, and
then later leaves the household again, the second period of absence is a different
succession set of evidence from the first.

Some eligibility/entitlement rules for the person require to derive information from
the person's history of absences. Legislation states that a person is eligible for
benefit if present in the household, or is absent for the reason of "Education" only.

To simplify these eligibility/entitlement rules, it is desirable to compute a single
history of absence details from the person's absence periods (of which there may
be zero, one or many). The combineSuccessionSets expression is used to compute
this single history of absence details for the person.

Now let's create a history of absences for a Person and work through it as an
example.

The person John Smith is absent from his household on these occasions:
v John leaves the household on 1st January 2000 to pursue his college education.

Unfortunately, on 28th January 2000, John falls seriously ill and is hospitalized.
His absence from the household continues but its reason changes from
Education to Medical Treatment. John recuperates and returns home on 8th
March 2000.

v John's curtailed college education and subsequent illness leave him with
personal problems, and after committing a spate of petty crimes he is jailed on
2nd June 2000. A new absence is recorded for John, with a reason of
Incarceration throughout (this particular absence does not vary in reason). He is
released from prison on 30th June 2000.

Developing with Eligibility and Entitlement by using Cúram Express Rules 195

v Determined to make a fresh start, John enlists in the army and is then absent
from the household from 10th August 2000 until further notice, with an absence
reason of Military.

Three Absence rule objects are populated for John's three periods of absence by the
Active Succession Set Rule Object Converter. Each Absence rule object is populated
by the succession set of evidence records captured for the related period of
absence, e.g. the first Absence rule object is populated with a start date of 1st
January 2000 and an end date of 8th March 2000. Each Absence rule object also has
a reason attribute with values that vary over time.

A single CombinedAbsence rule object is then created by the combineSuccessionSets
expression. The single CombinedAbsence rule object for John has a reason attribute
with these values that vary over time:
v prior to 1st January 2000, the absence reason is blank (the default value), as John

is not absent at this time;
v from 1st January 2000, the absence reason is Education, John's initial reason for

his first absence;
v from 28th January 2000, the absence reason changes to Medical Treatment, in

line with the change in reason part-way through John's his first absence;
v from 9th March 2000 (the day after John's last day in hospital), the absence

reason changes back to blank, because John is no longer absent;
v from 2nd June 2000, John begins his second period of absence, with a reason of

Incarceration;
v from 1st July 2000, the absence reason changes back to blank, because John is no

longer absent; and
v from 10th August 2000 until further notice, John begins his third period of

absence, with a reason of Military.

The single CombinedAbsence rule object for John also has an exists attribute which
simply combines the periods for which the contributing absences each exist.

Detailed Behavior: Each instance of combineSuccessionSets must:
v take a single argument which must be a list of rule objects, each of which must

ultimately inherit from the PropagatorRuleSet.ActiveSuccessionSet rule class;
v nominate a rule class to use as the type of the new rule object created and

returned when the expression is evaluated.

When an instance of combineSuccessionSets is evaluated, a rule object of the
nominated return rule class is created. The attribute values on this return rule
object will be set by matching their names to those on the input succession set rule
objects being combined.

For periods of time not covered by the input succession set rule objects (i.e. for the
"gaps" between periods, or the values used if the input list is empty), then default
values will be used as shown in the following table:

Table 62. Mapping from Cúram Domain Types to CER Rule Attribute Types

Data type for succession set attribute used
as an input timeline

Default value, used for "gaps" between
input succession sets

Timeline<Number> 0

Timeline<Boolean> false

Timeline<Code table entry> null (not-specified) entry from the code table

196 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 62. Mapping from Cúram Domain Types to CER Rule Attribute Types (continued)

Data type for succession set attribute used
as an input timeline

Default value, used for "gaps" between
input succession sets

(any other data type) null

If the input list of succession set of rule objects is empty (e.g. a person who has
never been absent from their household), then the default values shown above will
be used throughout the entire timelines.

The combineSuccessionSets expression applies validations when the rule set is
validated, and also when the expression is evaluated, as described in the following
sections.

Validation checks made when the rule set is validated

Each instance of combineSuccessionSets will be checked to ensure that it meets the
following constraints:
v the single argument to the expression must return a list of rule objects, and the

rule class for these rule objects must be annotated with the
“SuccessionSetPopulation” on page 213 annotation;;

v for the rule class nominated as the return type of the combineSuccessionSets
expression:
– the rule class must not be abstract and must not contain any initialized

attributes; and
– each rule attribute on the rule class that has a specified derivation must have

an identically-named attribute on the rule class for the input list of rule
objects.

If the above conditions are not met, then the rule set will not pass validation
checks.

Validation checks made when combineSuccessionSets is evaluated

When an instance of combineSuccessionSets is evaluated at run time, each rule
object for a contributing succession set being combined must:
v have a non-blank start date - i.e. the value of the attribute named in the

“SuccessionSetPopulation” on page 213 annotation must not be null; and
v not overlap with any other contributing succession set rule objects - i.e. the

lifetimes of each contributing succession set (calculated with reference to the
start/end date attributes named in the “SuccessionSetPopulation” on page 213
annotation) must each cover distinct periods. In particular, at most one
contributing succession set is allowed to be open-ended.

If the above conditions are not met, then combineSuccessionSets throws an
appropriate exception.

CER Editor reference: The CombineSuccessionSet element provides a graphical
representation of the combineSuccessionSet expression. It is accessed from the
Technical Logic pallet.

The steps below describe how to implement the logic described in “Example” on
page 195. For brevity, some steps (such as the best practice of creating description
rule attributes) are omitted.

Developing with Eligibility and Entitlement by using Cúram Express Rules 197

Create an Absence rule class for evidence

Create a rule class named Absence to represent a Person 's succession set of
Absence evidence, and add the following attributes:
v caseParticipantRoleID (Number);
v startDate (Date);
v endDate (Date); and
v absenceReason (Code table entry, from the AbsenceReason code table, then made

into a Timeline).

On this Absence rule class, select the "Succession Set" check box, set the "Start Date
Attribute" to startDate and the "End Date Attribute" to endDate. Edit the "Extends"
to select the "ActiveSuccessionSet" rule class from the PropagatorRuleSet..

See the Cúram Express Rules Reference Manual for more details on general
properties for all rule elements.

Write the CombinedAbsence return class

The CombineSuccessionSet expression will combine the details from the Absence
rule objects, and you need a new rule class to hold the combined details.

Create a CombinedAbsence rule class with the following attributes:
v absenceReason (Code table entry, from the AbsenceReason code table, then made

into a Timeline); and
v exists (Boolean, then made into a Timeline).

Write the Person rule class

Each absence pertains to a person, and thus you must create a Person rule class to
contain the list of absence details (which will be combined in a single rule object
showing the combined absence details for the person).

Add a caseParticipantRoleID (Number) attribute.

Add a Rule Attribute for the Person 's Absence Succession Sets

On the Person rule class, add an absences attribute which retrieves the Absence
succession set rule objects for the Person.

Add a Rule Attribute to combine the Person 's Absence Succession Sets

On the Person rule class, add an combinedAbsences attribute which combines the
Absence succession set rule objects for the Person (using the
CombineSuccessionSets expression).

Add a Rule Attribute to calculate eligibility based on absence reason

On the Person rule class, add an isEligibleTimeline attribute (Boolean, made into
a Timeline) which tests the absence reason for the combined absence history for the
person.

XML Reference: This section provides a reference to the underlying XML
representation of combineSuccessionSets.

198 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Each combineSuccessionSets instance contains:
v a ruleclass attribute naming the rule class to be used as the return type;
v optionally, a ruleset attribute naming the rule set containing the rule class to be

used as the return type (required only if that rule class is in a different rule set);
and

v a single child expression, which must return a list of succession set rule objects.

The following XML implements the logic described in “Example” on page 195.

Developing with Eligibility and Entitlement by using Cúram Express Rules 199

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_combineSuccessionSets"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Rule class for a person on a case. -->
<Class name="Person">

<Attribute name="caseParticipantRoleID">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Retrieves the absence succession sets (if any) for this
person on the case. -->

<Attribute name="absences">
<type>

<javaclass name="List">
<ruleclass name="Absence"/>

</javaclass>
</type>
<derivation>

<readall ruleclass="Absence">
<match retrievedattribute="caseParticipantRoleID">

<reference attribute="caseParticipantRoleID"/>
</match>

</readall>
</derivation>

</Attribute>

<Attribute name="combinedAbsences">
<type>

<ruleclass name="CombinedAbsence"/>
</type>
<derivation>

<combineSuccessionSets ruleclass="CombinedAbsence">
<reference attribute="absences"/>

</combineSuccessionSets>
</derivation>

</Attribute>

<!-- Eligible if present in the household (i.e. no absence,
which means the absence reason is blank), or absent
for the reason of education. -->

<Attribute name="isEligibleTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<timelineoperation>
<choose>

<type>
<javaclass name="Boolean"/>

</type>
<test>

<reference attribute="absenceReason">
<intervalvalue>

<reference attribute="combinedAbsences"/>
</intervalvalue>

</reference>
</test>
<when>

<condition>
<Code table="AbsenceReason">

<!-- Not absent - eligible -->
<null/>

200 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

legislationChange

Overview: A choice of approaches for implementing changes in legislation is
supported (see “Handling Legislation Change” on page 182).

One approach is to use the legislationChange expression to provide "branching"
logic in your rule set, by applying different logic contributed by different
"legislation eras" to come up with a timeline of values based on the changes in
legislation.

Example: Let's say that a person's eligibility for a product is based on whether
that person is "low-waged".

Initially, legislation is enacted which lays down that a person is considered to be
"low-waged" if that person's total pre-tax income is less than $20,000 per annum.

However, after some successful lobbying, the legislation is revisited and it is
agreed that from 2001 onwards, a person will instead be deemed to be
"low-waged" based on whether that person's post-tax income is less than $15,000
per annum.

After a change in administration, the legislation comes under scrutiny again, and
from 2002 revised legislation takes effect which broadens the low-income net to
cover persons with pre-tax income less than $22,000 per annum and/or post-tax
income less than $16,000.

The initial eligibility calculation (for a person) is based directly off the pre-tax
income (for that person). When the agency implements the changes in legislation,
then a rule set designer changes the initial implementation to instead use the
legislationChange expression to combine contributions from the different
legislation "eras". (The implementation of the initial era is just that for the initial
implementation; there are new implementations for the subsequent eras.)

John Smith makes a claim for benefit. John's income levels are as follows:
v from 1st January 2000, pre-tax income of $19,500 and post-tax income of $15,500;
v from 1st June 2001, pre-tax income of $18,000 and post-tax income of $14,700;
v from 1st July 2002, pre-tax income of $26,000 and post-tax income of $22,300.

John's eligibility varies not only according to the variations in his income levels,
but also according to the changes in legislation that are enacted:

Detailed Behavior: Each instance of legislationChange must:
v specify the data type of the intervals in the timeline returned; and
v specify one or more eras of legislation, including an "initial" era (valid from the

start of time, i.e. a null date). Each era must return a timeline of the same value
type as that returned by the overall legislationChange expression

When an instance of legislationChange is evaluated, each era is evaluated and the
resultant timelines are "spliced together" according to their era dates. An overall
return timeline is assembled from these era-contributions, and this return timeline
obeys the usual semantics of Timelines in general (in particular, identical
contiguous values in the timeline will be amalgamated into a single value).

Developing with Eligibility and Entitlement by using Cúram Express Rules 201

As such, if a particular change in legislation does not affect a calculation, then the
resultant timeline will not change value on the legislation change date.

CER Editor reference: The Legislation Change element provides a graphical
representation of the legislation Change expression. It is accessed from the Business
Logic pallet.

The steps below describe how to implement the logic described in “Example” on
page 201. For brevity, some steps (such as the best practice of creating description
rule attributes) are omitted.

Note: For brevity and clarity, the cut-off rates are "hard-coded" into this example.

A production-quality rule set would instead externalize these rates using Cúram
rate tables. See “rate” on page 204 for further details.

Create a Person rule class

Create a rule class named Person, and add the following attributes:
v caseParticipantRoleID (Number);
v preTaxIncomeTimeline (Number, made into a Timeline);
v postTaxIncomeTimeline (Number, made into a Timeline); and
v isEligibleTimeline (Boolean, made into a Timeline).

Note: No derivations will be given for the preTaxIncomeTimeline and
postTaxIncomeTimeline attributes in this example. These attributes are assumed to
be populated from an outside source (such as evidence).

Implement legislation change logic

Implement the derivation of isEligibleTimeline to take into account the three eras
of legislation:

XML Reference: This section provides a reference to the underlying XML
representation of legislationChange.

Each legislationChange instance contains:
v an intervaltype element naming the data type for the intervals in the resultant

timeline returned; and
v one or more era elements, each containing:

– a from element, which must contain an expression returning a Date (which
governs from which date the legislation era takes effect); and

– a value element, which must contain an expression returning a timeline of the
same type as that returned by the overall legislationChange expression
(which provides the values to be used in the resultant timeline, for the
portion of that timeline contributed by this era).

The following XML implements the logic described in “Example” on page 201.

Note: For brevity and clarity, the cut-off rates are "hard-coded" into this example.

A production-quality rule set would instead externalize these rates using Cúram's
rate tables. See “rate” on page 204 for further details.

202 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_legislationChange"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Rule class for a person on a case. -->
<Class name="Person">

<!-- The pre-tax income for this person. -->
<Attribute name="preTaxIncomeTimeline">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="Number"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The pre-tax income for this person. -->
<Attribute name="postTaxIncomeTimeline">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="Number"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Eligible if "low-waged", where the definition of
"low-waged" varies as changes in legislation are
enacted. -->

<Attribute name="isEligibleTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<legislationChange>
<!-- The type of the timeline returned is a timeline of

Boolean values. -->
<intervaltype>

<javaclass name="Boolean"/>
</intervaltype>

<!-- Initial legislation era. -->
<era>

<from>
<null/>

</from>
<value>

<timelineoperation>
<!-- Low-waged if pre-tax income is below

20,000. -->
<compare comparison="<">

<intervalvalue>
<reference attribute="preTaxIncomeTimeline"/>

</intervalvalue>
<Number value="20000"/>

</compare>
</timelineoperation>

</value>
</era>

<!-- A change in legislation, effective from 1st January
2001, -->

<era>
<from>

Developing with Eligibility and Entitlement by using Cúram Express Rules 203

rate

Overview: The Rate Rule Object Propagator (see “Rate Rule Objects” on page 95)
automatically creates rule objects which mirror the data from cells specified rate
tables. The rate expression provides a convenience mechanism for searching for
the rule object corresponding to a particular cell in a particular rate table.

Example: Let's say that a person's eligibility for a product is based on whether
that person's total income is below a certain limit. This limit is revised periodically
in line with costs of living and inflation.

The rules for eligibility do not vary as such; however the income limit does vary
over time, and so a rules designer models the income limit as a rate table, rather
than "hard-coding" the income limit directly in the rule set. This approach allows
the income limit to vary independently of rules; changes to the income limit can be
effected by publishing changes to the rate table, rather than by changing the rule
set. In particular, the rule set itself does not need to be retested when the income
limit changes (but of course any users changing rate tables should satisfy
themselves that the change being made will have the desired effect, possibly by
first trialling the change in a test environment).

The eligibility rules will use the rate expression to retrieve the value of the
required rate, and use this value to determine whether a person's total income is
within the bounds for eligibility.

John Smith makes a claim for benefit. John's total income varies as follows:
v from 1st January 2000, total income of $21,000;
v from 1st June 2001, total income of $23,500; and
v from 1st July 2002, total income of $26,200.

In parallel, the agency varies the income limit applied to eligibility calculations as
follows:
v from 1st January 2000, income limit of $20,000;
v from 1st January 2001, total income of $22,000; and
v from 1st January 2002, total income of $24,000.

John's eligibility varies not only according to the variations in his total income
level, but also according to the varying income limit rate:

Detailed Behavior: Each instance of rate must specify the "co-ordinates" of
required cell in from a rate table. The co-ordinates which uniquely identify a cell
are:
v the code for the name of the rate table (i.e. the code for the entry from the

RateTableType code table);
v the code for the name of the row in the rate table (i.e. the code for the entry

from the RateRowType code table); and
v the code for the name of the column in the rate table (i.e. the code for the entry

from the RateColumnType code table).

Recall that each rate table can have multiple "version" with values effective from a
specified date; whereas the rule object created by the Rate Rule Object Propagator

204 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

has a timeline of numbers representing a varying rate value. Thus the value
returned by the rate is the value of the rate cell as it varies over different versions
of its rate table.

Note: If two neighboring versions of rate table contain the same value for a
particular rate cell, then the timeline value for that rate cell will not change value
on the rate table change data. As per Timeline semantics, contiguous identical
values are amalgamated into single unchanging value.

This situation can arise where a new version of a rate table is recorded to change
values in some of its rate cells only; values in other rate cells may remain
unchanged.

When an instance of rate is evaluated, a rate rule object matching the required rate
cells co-ordinates is sought. Ordinarily the required rate rule object will be found,
and its varying rate cell value returned as a timeline of numbers.

However, if the required rate rule object has not been found (e.g. if rate
propagation has not been run, for example in a unit test that creates a rate but
does not publish changes), then the rate expression will create an internal rule
object to hold the varying value from the rate table (subject to the same constraints
that apply to the Rate Rule Object Converter - i.e. cells in sub-rows and
sub-columns are not supported). If such internal rule object are created, then if a
rate table change is subsequently published, then the rate expression will safely
recalculate to pick up the external rule object created by the propagator. This
feature means that it is possible to write unit tests that interact with rates without
having to worry about rate propagation.

Important: All uses of the rate expression require a database transaction to be in
effect.

For normal application processing, a database transaction will be in effect just as
for other server logic.

However, for speed of testing, CER promotes the use of in-memory testing of rule
sets which do not access the database. If you write any unit tests which cause a
rate expression to be evaluated, then that test must run in the context of database
transaction (which is in sharp contrast to the majority of unit tests for CER rule
sets, which do not require a database transaction).

You must either:
v wrap your test in a database transaction (such as that provided by inheriting

from CuramServerTest); or
v prevent the evaluation of rate expressions by using CER's "specify" mechanism

to override the values of any attribute values whose definition includes one or
more rate expressions.

CER Editor reference: The Rate Table element provides a graphical representation
of the rate expression. It is accessed from the Data Types pallet.

The steps below describe how to implement the logic described in “Example” on
page 204. For brevity, some steps (such as the best practice of creating description
rule attributes) are omitted.

Developing with Eligibility and Entitlement by using Cúram Express Rules 205

Create a Person rule class

Create a rule class named Person, and add the following attributes:
v totalIncomeTimeline (Number, made into a Timeline); and
v isEligibleTimeline (Boolean, made into a Timeline).

Note: No derivations will be given for the totalIncomeTimeline in this example.
This attribute is assumed to be populated from an outside source (such as
evidence).

Implement rate retrieval logic

Implement the derivation of isEligibleTimeline to retrieve the required rate data
and compare it to the person's total income.

XML Reference: This section provides a reference to the underlying XML
representation of rate.

Each rate instance contains:
v a table attribute naming the code from the RateTableType code table;
v a row attribute naming the code from the RateRowType code table;
v a column attribute naming the code from the RateColumnType code table;

The following XML implements the logic described in “Example” on page 204.

206 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Annotations
The Engine contributes these annotations to CER:
v “Display”;
v “DisplaySubscreen” on page 210;
v “Legislation” on page 212;
v “SuccessionSetPopulation” on page 213;
v “relatedEvidence” on page 213; and
v “relatedSuccessionSet” on page 215.

Display
This marks an attribute for inclusion when the Engine walks rule objects to gather
decision details to include in a determination (see “Calculating and Displaying
Decision Details” on page 61).

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_rate"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Rule class for a person on a case. -->
<Class name="Person">

<!-- The total income for this person. -->
<Attribute name="totalIncomeTimeline">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="Number"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Eligible if total income is below an income limit (from a
rate table). -->

<Attribute name="isEligibleTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<compare comparison="<">
<intervalvalue>

<reference attribute="totalIncomeTimeline"/>
</intervalvalue>
<intervalvalue>

<!-- code table constants for the rate table/rate
row/rate column -->

<rate table="RTT_LIMITS" row="RR_INCOME"
column="RC_AMOUNT"/>

</intervalvalue>
</compare>

</derivation>
</Attribute>

</Class>
</RuleSet>

Developing with Eligibility and Entitlement by using Cúram Express Rules 207

This annotation may be placed on a rule attribute only.

XML Reference: Here is an example rule set with Display and non-Display rule
attributes:

208 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Display"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember">

<!-- This attribute will be made available for display in
decision details -->

<Attribute name="dateOfBirth">
<Annotations>

<Display/>
</Annotations>
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- This attribute will be made available for display in
decision details -->

<Attribute name="fullName">
<Annotations>

<Display/>
</Annotations>
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<XmlMessage>
<replace>

<reference attribute="firstName"/>
</replace>
<replace>

<String value=" "/>
</replace>
<replace>

<reference attribute="surname"/>
</replace>

</XmlMessage>
</derivation>

</Attribute>

<!-- This attribute is used as an input into the calculated
fullName, but is not directly required for display -->

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- This attribute is used as an input into the calculated
fullName, but is not directly required for display -->

<Attribute name="surname">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>
</RuleSet>

Developing with Eligibility and Entitlement by using Cúram Express Rules 209

DisplaySubscreen
This marks an attribute as returning data for a subscreen of decision details, which
can be displayed by the Engine when a user expands a row on a decision details
screen (see “Sub-screens” on page 62).

This annotation may be placed on a rule attribute only, on a rule class which
ultimately extends from ProductDecisionDetailsRuleSet.AbstractCase.

XML Reference: Here is an example rule set with DisplaySubscreen rule
attributes:

210 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_DisplaySubscreen"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="MyProductSummary" extends="DefaultCase"
extendsRuleSet="DefaultProductDecisionDetailsRuleSet">

<!-- Allow the screen to display a list of members for the
case. -->

<Attribute name="householdMembers">
<Annotations>

<Display/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="HouseholdMember"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Allow the screen to drill down into more details for each
household member -->

<Attribute name="householdMemberSubscreens">
<Annotations>

<DisplaySubscreen/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="HouseholdMemberSubscreen"/>

</javaclass>
</type>
<derivation>

<dynamiclist>
<list>

<reference attribute="householdMembers"/>
</list>
<!-- Create a wrapper HouseholdMemberSubscreen for each

HouseholdMember -->
<listitemexpression>

<create ruleclass="HouseholdMemberSubscreen">
<specify attribute="householdMember">

<current/>
</specify>

</create>
</listitemexpression>

</dynamiclist>

</derivation>
</Attribute>

</Class>

<Class name="HouseholdMember">
<Attribute name="concernRoleID">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="earnedIncome">
<type>

<javaclass name="Number"/>
</type>

Developing with Eligibility and Entitlement by using Cúram Express Rules 211

Legislation
This allows a rule element to be linked to an arbitrary HTML document which
describe the legislation underpinning that rule element.

This annotation may be placed on:
v a rule set;
v a rule class;
v a rule attribute; or
v an expression.

The CER Editor can open legislation links in your web browser as follows:
v a legislation link value that starts with http:// or https:// will open the

absolute page for that link; or
v any other legislation link value will be used as a path relative to your

application.

XML Reference: Here is an example rule set with various legislation link values:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Legislation"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Annotations>
<!-- Rule set - an absolute link. -->
<Legislation

link="http://www.somelegislationsite.com/somepage1"/>
</Annotations>
<Class name="Citizen">

<Annotations>
<!-- Rule class - another absolute link. -->
<Legislation

link="http://www.somelegislationsite.com/somepage2"/>
</Annotations>

<Attribute name="dateOfBirth">
<Annotations>

<!-- Rule attribute - a relative link. -->
<Legislation link="somedirectory/onmywebserver/page.html"/>

</Annotations>
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified>
<Annotations>

<!-- Expression - another relative link. -->
<Legislation

link="anotherdirectory/onmywebserver/page.html"/>
</Annotations>

</specified>
</derivation>

</Attribute>
</Class>

</RuleSet>

212 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

SuccessionSetPopulation
This annotation indicates to the Active Succession Set Rule Object Converter (see
“Active Succession Set Rule Objects” on page 107) which attributes on a rule class
hold the start and end dates which mark the "lifetime" of the succession set of
evidence.

This annotation may be placed on a rule class only. The annotated rule class must
ultimately extend the PropagatorRuleSet.ActiveSuccessionSet rule class included
with the application.

The names of the start date attribute and the end date attribute are each optional
in this annotation. However, if present, each named attribute must exist on the rule
class (i.e. must be declared by or inherited by the rule class), and must return a
Date value.

If the start date attribute is not named by the annotation, or is named but at
evaluation time is found to have a null value, then the data in the initial version of
the succession set is assumed to apply from the beginning of time.

Similarly, if the end date attribute is not named by the annotation, or is named but
at evaluation time is found to have a null value, then the data in the final version
of the succession set is assumed to apply until the beginning of time.

XML Reference: Here is the XML for an example rule set, with a rule class
extending PropagatorRuleSet.ActiveSuccessionSet, with its succession set start
date and end date attributes set:

relatedEvidence
When Active Evidence Row Rule Objects are populated (see “Active Evidence Row
Rule Objects” on page 119), indicates that the value of the annotated attribute
should be automatically populated with rule object(s) for related evidence. See
“Conversion Processing” on page 120 for full details on the processing the rule
object converter performs, taking into account this annotation.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_SuccessionSetPopulation">

<Class name="Employment" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">

<Annotations>
<SuccessionSetPopulation startDateAttribute="startDate"

endDateAttribute="terminationDate"/>
</Annotations>
<Attribute>

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
<Attribute>

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

</RuleSet>

Developing with Eligibility and Entitlement by using Cúram Express Rules 213

This annotation may be placed on a rule attribute only. Furthermore, the following
restrictions apply:
v the annotated attribute must be on a rule class that ultimately extends the

PropagatorRuleSet.ActiveEvidenceRow rule class; and
v the return type of the annotated attribute must be either:

– a rule class that ultimately extends the PropagatorRuleSet.ActiveEvidenceRow
rule class; or

– a List of such a rule class.

XML Reference: Here is an example rule set with rule attributes for related
parent and child evidence rows annotated to be automatically populated using the
Active Evidence Row Rule Object Propagator:

214 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

relatedSuccessionSet
When Active Succession Set Rule Objects are populated (see “Active Succession Set
Rule Objects” on page 107), indicates that the value of the annotated attribute
should be automatically populated with rule object(s) for related evidence. See
“Conversion Processing” on page 108 for full details on the processing the rule
object converter performs, taking into account this annotation.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_relatedEvidence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember" extends="ActiveEvidenceRow"
extendsRuleSet="PropagatorRuleSet">
<Attribute name="incomes">

<Annotations>
<!-- The Active Evidence Row Rule Object Propagator will

automatically populate this attribute with a list of
related Income rule objects.-->

<relatedEvidence relationship="child"/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Income" extends="ActiveEvidenceRow"
extendsRuleSet="PropagatorRuleSet">

<Attribute name="householdMembers">
<Annotations>

<!-- The Active Evidence Row Rule Object Converter will
automatically populate this attribute with a list of
related HouseholdMember rule objects.

Note that a list is still used because there may be
multiple versions of the parent household member
evidence.-->

<relatedEvidence relationship="parent"/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="HouseholdMember"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>
</RuleSet>

Developing with Eligibility and Entitlement by using Cúram Express Rules 215

This annotation may be placed on a rule attribute only. Furthermore, the following
restrictions apply:
v the annotated attribute must be on a rule class that ultimately extends the

PropagatorRuleSet.ActiveSuccessionSet rule class; and
v the return type of the annotated attribute must be either:

– a rule class that ultimately extends the
PropagatorRuleSet.ActiveSuccessionSet rule class; or

– a List of such a rule class.

XML Reference: Here is an example rule set with rule attributes for related
parent and child succession sets annotated to be automatically populated using the
Active Succession Set Rule Object Propagator:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_relatedSuccessionSet"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">
<Attribute name="incomes">

<Annotations>
<!-- The Active Succession Set Rule Object Converter will

automatically populate this attribute with a list of
related Income rule objects.-->

<relatedSuccessionSet relationship="child"/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Income" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">

<Attribute name="householdMembers">
<Annotations>

<!-- The Active Succession Set Rule Object Converter will
automatically populate this attribute with the
related HouseholdMember rule object. -->

<relatedSuccessionSet relationship="parent"/>
</Annotations>
<type>

<ruleclass name="HouseholdMember"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>
</RuleSet>

216 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Environment Variables

Cúram Environment Variables Governing Behavior of Engine
This appendix lists the Cúram Environment Variables that you can set to change
the Engine's behavior.

Table 63. Cúram environment variables governing the behavior of the Engine

Environment variable name Description More Information

curam.trace General trace setting for the
overall application.

“Logging” on page 132 and
the Cúram Server
Developer's Guide.

curam.trace.ruleobjectpropagation The logging level for rule
object propagation log
messages.

Valid values are:

v trace_off;

v trace_on;

v trace_verbose; and

v trace_ultra_verbose.

“Logging” on page 132.

curam.ruleobjectpropagation.
configuration.errorlevel

Whether a problem in the
configuration for a rule
object propagator is reported
as:

v an application error
(error);

v a logged warning (warn);
or

v ignored (ignore).

“Data Configuration
Problems” on page 129.

curam.ruleobjectpropagation.
nonpropagatableoperation.
errorlevel

Whether a database
operation which cannot be
propagated to rule objects is
reported as:

v an application error
(error);

v a logged warning (warn);
or

v ignored (ignore).

“Propagation Processing” on
page 101.

curam.creole.log.case.determination.
problems

Whether details of problems
encountered during a case
determination should be
listed as warnings in the
application log.

“Testing” on page 45,
“Testing” on page 60 and
“Testing” on page 85.

curam.batch.
creolebulkcasechunkreassessment.
chunksize

The number of cases in each
chunk that will be processed
by the CREOLE Bulk Case
Chunk Reassessment batch
program.

“The
CREOLEBulkCaseChunkReassessmentByProduct
Batch Process” on page 169.

Developing with Eligibility and Entitlement by using Cúram Express Rules 217

Table 63. Cúram environment variables governing the behavior of the Engine (continued)

Environment variable name Description More Information

curam.batch.
creolebulkcasechunkreassessment.
dontrunstream

Should CREOLE Bulk Case
Chunk Reassessment batch
program sleep while waiting
for the processing to be
completed (rather than run a
stream in its context).

“The
CREOLEBulkCaseChunkReassessmentByProduct
Batch Process” on page 169.

curam.batch.
creolebulkcasechunkreassessment.
chunkkeywaitinterval

The interval (in milliseconds)
for which the CREOLE Bulk
Case Chunk Reassessment
batch program will wait
before retrying when reading
the chunk key table.

“The
CREOLEBulkCaseChunkReassessmentByProduct
Batch Process” on page 169.

curam.batch.
creolebulkcasechunkreassessment.
unprocessedchunkwaitinterval

The interval (in milliseconds)
for which the CREOLE Bulk
Case Chunk Reassessment
batch program will wait
before retrying when reading
the chunk table.

“The
CREOLEBulkCaseChunkReassessmentByProduct
Batch Process” on page 169.

curam.batch.
creolebulkcasechunkreassessment.
processunprocessedchunk

Should CREOLE Bulk Case
Chunk Reassessment batch
program process any
unprocessed chunks found
after all the streams have
completed.

“The
CREOLEBulkCaseChunkReassessmentByProduct
Batch Process” on page 169.

curam.workflow.
gendetermineeligibityfailureticket

"YES"/"NO" flag which
determines whether a
workflow ticket is
automatically generated
whenever a determine
product eligibility for a case
fails.

curam.workflow.
geneligibilityreassesssuccessticket

"YES"/"NO" flag which
determines whether a
workflow ticket is
automatically generated
whenever a case has been
reassessed and the case
decision is now "eligible".

curam.trace.productconfiguration.
publication

The logging level for product
configuration publication log
messages.

Valid values are:

v trace_off;

v trace_on;

v trace_verbose; and

v trace_ultra_verbose.

218 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Table 63. Cúram environment variables governing the behavior of the Engine (continued)

Environment variable name Description More Information

curam.trace.caseassessment The logging level for case
assessment log messages.

Valid values are:

v trace_off;

v trace_on;

v trace_verbose; and

v trace_ultra_verbose.

curam.creole.
manualeligibilitycheckdetermination.
store.ruleobjectsnapshot

Whether the system will
store a snapshot of rule
objects used in the
calculation of a manual
eligibility check
determination.

“The Database Tables” on
page 135

Evidence and Entitlement with CER Glossary
Consult this glossary for terms related to Evidence and Entitlement with Cúram
Express Rules.

Terms Used throughout this Guide
This appendix provides a glossary of terms used with the Engine.

Activation
Activation refers to:
v Cases

A case is activated so that a product can be delivered (typically, so that
financials can be generated). Only approved cases can be activated.
See the Cúram Integrated Case Management Guide.

v Evidence

Evidence is activated so that it can be used during the calculation of
assessment determinations for cases.
See the Cúram Evidence Guide.

Active Determination
A determination which was triggered by an explicit action from a user, for
example when a case is activated.

See “Active Determination Calculation Requests” on page 10.

Administrator
A user who administers the application and has rights to change its
configuration.

Assessment
The initial determination of eligibility and entitlement that occurs upon
case activation.

Assessment Determination
A determination made when a case is initially assessed during case
activation or subsequently reassessed due to a change in circumstance. The
result of an assessment determination is typically used in the generation of
financials on a case).

Developing with Eligibility and Entitlement by using Cúram Express Rules 219

See “Assessment Determinations” on page 17.

Attained Objective
An objective to which a case is entitled.

See Entitlement.

Attribute Value
The value of an attribute on a CER rule object.

For example, if there is a CER rule object for James Smith, and that rule
object has an attribute named firstName, then the attribute value on that
rule object will be "James".

See the Cúram Express Rules Reference Manual.

Basic eligibility/entitlement details
A simple technical description of a case's eligibility, objectives and tags.

See “Basic Eligibility/entitlement Decision Details” on page 19.

Bulk Case Reassessment
The reassessment of a large number of cases following a system-wide
change in data or configuration.

See “Bulk Reassessment” on page 160.

Case Decision
A record of eligibility/entitlement for a period of time on a case.

See “CaseDecision” on page 138.

Case Lifetime
The length of time that a case lasted or is expected to last, with reference
to the case's start and end dates.

See “What a Determination Result Contains” on page 7.

Case Worker
A user responsible for the ongoing management of cases.

CER Data Configurations
The on-screen term for configurations for rule object converters and
propagators.

See “Understanding Rule Object Converters and Propagators” on page 86.

CER Acronym for Cúram Express Rules.

See the Cúram Express Rules Reference Manual.

Configuration
The ability to change a system's behavior by changing settings in the
running application rather than using traditional systems development and
redeployment techniques.

Converter
See Rule Object Converter.

Correction Set
A set of related evidence records which reflects the history of the system's
record of evidence.

Older items in the correction set were (at one time) thought to be true but
are now known to have been recorded incorrectly.

220 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Coverage period
A period within a determination of constant eligibility, entitlement and
explanation.

See “Dividing the Determination into Coverage Periods” on page 24.

Current Assessment Determination
The most up-to-date assessment determination, which is currently being
used to deliver the product (typically, used to calculate the amounts
payable under the case).

Custom Entity
A database table added to the application by the customer - not included
with the application.

See the Cúram Modeling Reference Guide.

Custom Evidence Type
A type of Dynamic or Non-Dynamic Evidence added to the application by
the customer - not included with the application.

See Evidence.

Decision Details
Free-form calculated output which helps explain to a case worker how the
eligibility/entitlement results were arrived at.

See “Calculating and Displaying Decision Details” on page 61.

Decision Period
A period within a determination of constant eligibility and entitlement.
Stored as a Case Decision.

Deferred Processing
Background processing which occurs outside of main online processing.
Requests for deferred processing can be added to a queue.

Dependency Manager
Software included with the application which stores and manages how one
value (a Dependent) depends on other values (Precedents). Used to
identify Dependents which may be affected by changes to one or more
Precedents.

See the Cúram Express Rules Reference Manual.

Dependent
See Dependency Manager.

Determination
The act of calculating a Determination Result.

Determination Result
A record of a case's eligibility, entitlement and explanation, as they vary
over the lifetime of the case.

See “What a Determination Result Contains” on page 7.

Display Category
A tab on a determination screens which allows the case worker to choose a
category of explanation.

Examples include:
v Summary;
v Household Members;

Developing with Eligibility and Entitlement by using Cúram Express Rules 221

v Income; and
v Resources.

See “Identify the Display Categories” on page 74.

Dynamic Evidence
Types of Evidence which are created by configuring a running application.

See the Dynamic Evidence Configuration Guide.

Dynamic UIM
Refer to the UIM Reference chapter of the Cúram Web Client Reference
Manual for more details.

Eligibility
Whether a product can be delivered.

Typically, whether a case will result in the generation of financial payments
or liabilities.

See “Eligibility” on page 26.

Engine
The application's Eligibility and Entitlement Engine.

See “Introduction” on page 1.

Entitlement
The objectives attained on a case. Typically, objectives are financial and are
used in the generation of payments or liabilities on a case.

Only eligible periods have entitlement; ineligible periods have no
entitlement.

See “Objectives” on page 26.

Explanation
Additional calculated data which helps a case worker understand how a
case's eligibility and entitlement were arrived at.

See “What a Determination Result Contains” on page 7.

Expression
A function available in CER for calculating an output value based on input
values.

See the Cúram Express Rules Reference Manual.

Financial Schedule
A schedule of payments or liabilities for a nominee.

See “Scheduling Financials” on page 144.

Frequency Pattern
A recurring time interval over which to deliver a product, e.g.:
v Daily;
v Weekly; or
v Monthly.

See “Objective Tags” on page 26.

In-edit evidence
Changes to evidence which have not yet been activated.

See “Temporary Access to In-Edit Evidence Changes” on page 131.

222 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Integrated Case
A type of case used to manage the delivery of products and services to a
household or related group of individuals.

An Integrated Case can contain a number of child product delivery cases.
Evidence can be captured at either the integrated case level (and thus
applies to all product deliveries under the integrated case) and/or the
product delivery level (and thus applies to that product delivery only).

See the Cúram Integrated Case Management Guide.

Interface Rule Class
A CER rule class which enforces a data interface between the Engine and
custom business rules.

See the following sections:
v “C) ProductEligibilityEntitlementRuleSet AbstractCase rule class” on

page 22;
“B) ProductKeyDataRuleSet AbstractCase rule class” on page 49; and
“B) ProductDecisionDetailsRuleSet AbstractCase rule class” on page
65;

Key Decision Factor
A named item which has simple events or data changes which can help
explain a determination to a case worker.

Examples:
v Person events, such as "Claimant born", "Claimant married", "Claimant

died"; and/or
v Data change events such as "Total Annual Income: $10,000", "Total

Annual Income: $12,000"

See “Calculating and Displaying Key Decision Factors” on page 46.

Legislation
The legal documents underpinning the requirements for
eligibility/entitlement calculations (and other behavior for a product).

See “Handling Legislation Change” on page 182.

Manual Eligibility Check Determination
An active determination manually requested by a case worker to provide
an interim determination on a case. The determination may be based on
in-edit evidence or active evidence only.

See “Manual Check Determinations” on page 17.

Nominee
A recipient of an attained objective on a case. Typically the nominee is the
primary client of the product delivery case but can be any person.

Non-Dynamic Evidence
Types of Evidence which are developed using standard development
techniques (and requiring redeployment of the application).

Objective
An item to be delivered on a case, to a particular target. Typically, a type
of payment on a case, e.g. an income assistance benefit or a medical
allowance benefit.

See “Objectives” on page 26.

Developing with Eligibility and Entitlement by using Cúram Express Rules 223

Objective Tag
A frequency at which an objective may be delivered, e.g. income assistance
benefit weekly, or income assistance benefit daily.

Larger frequencies are typically used for recurring delivery periods;
smaller periods are typically used for ramp-up and ramp-down delivery
periods.

See “Objective Tags” on page 26.

Open-ended
Open-ended applies to:
v A Case

An open-ended case has no end date.
v A Determination

An open-ended determination has no end date and thus its final
coverage period applies until further notice.

v A Case Decision

An open-ended case decision has no end date and its
eligibility/entitlement applies until further notice

v A Financial Component

An open-ended financial component has no end date and will continue
to be used to generate instruction line items until further notice.

In practice, each of these items will close at some point in the future, as
circumstances change (e.g. when the claimant dies, or a child leaves home,
or the claimant finds employment, etc.).

Policy Procedures and rules specified by an expert department, based on
legislation for a product.

Precedent
See Dependency Manager.

Product
A benefit or liability delivered by the organization.

Typically a benefit product will result in payments to clients.

Product Configuration
Configuration affecting a product's behavior, including:
v the splitting of the product's lifetime into product periods;
v the association of business rules for calculating the product's eligibility,

entitlement and explanation; and
v the categories of explanation available and the dynamic UIM screens for

displaying those explanations.

Product Delivery Case
A type of case used to deliver a product.

Product Period
A period within a product's lifetime that has a single set of business rules
for the calculation of eligibility, entitlement and explanation.

See “Handling Legislation Change” on page 182.

Product Structure
A description of the types of objectives available for the product and the
frequencies at which they can be delivered.

224 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

See “Write the Product Structure Rule Classes” on page 31.

Propagator
See Rule Object Propagator.

Publication
The act of taking pending changes from a sandbox and making those
changes part of the running system's configuration.

Applies to:
v CER Rule Sets - see “CER Rules used by your Product” on page 161;
v CER Data Configurations - see “Rule Object Data Configurations” on

page 162; and/or
v Products - see “Write the Product Periods” on page 42.

Ramp-up, Recurring, Ramp-down
The initial, ongoing and final part of a periodic delivery respectively.
Typically applies to benefit payments.

See “Scheduling Financials” on page 144.

Rate Table
A table of numerical system-wide data that may change over time.

See "Implementing Rate Tables" in the Cúram Integrated Case Management
Configuration Guide.

Reactive Determination
A determination automatically made by the Engine in response to data
changes.

See “Reactive Determination Calculations” on page 11.

Reassessment
A determination of eligibility and entitlement that occurs after a case is
activated, due to a change in circumstances within the case and/or a
change to product configuration which may affect its calculations.

Rule Attribute
A named piece of data on a CER Rule Class.

e.g. a Person rule class might have a firstName rule attribute.

See the Cúram Express Rules Reference Manual.

Rule Category
A categorization of a CER rule set to allow for filtering when a user is
searching for a rule set.

Rule Class
A defined type of data manipulated by CER rules.

e.g. a rule set might contain a Person rule class.

See the Cúram Express Rules Reference Manual.

Rule Object
An instance of a rule class.

e.g. A Person rule class might have rule object instances for James Smith
and Linda Smith.

See the Cúram Express Rules Reference Manual.

Developing with Eligibility and Entitlement by using Cúram Express Rules 225

Rule Object Converter
Software which makes data available to CER as rule objects. Some types of
rule object converters can be configured.

See “Understanding Rule Object Converters and Propagators” on page 86.

Rule Object Propagator
Software which automatically maintains rule objects when application data
changes in the application. Some types of rule object propagators can be
configured.

See “Understanding Rule Object Converters and Propagators” on page 86.

Rule Set
A collection of rule classes, which may be maintained and published.

Typically all the rule classes in a rule set are geared towards the same
purpose.

See the Cúram Express Rules Reference Manual.

RuleDoc
A development tool for creating an HTML document to explain the
structure of rule sets.

See the Cúram Express Rules Reference Manual.

Rules Declarations of business and/or technical logic for performing calculations.

Sandbox
An area where pending changes to the system can be accumulated prior to
publication. Sandbox data does not affect calculations which are based off
published data.

Examples include:
v Sandbox for CER Rule Sets;
v Sandbox for product configurations;
v Sandbox for CER Data Configurations; and
v Sandbox for in-edit evidence on a case (the Evidence Workspace).

SessionDoc
A development tool for viewing the rule objects manipulated in a CER
Session.

See the Cúram Express Rules Reference Manual.

Snapshot Determination
A point-in-time record of a case's eligibility, entitlement and explanation.

See “Snapshot Determinations” on page 17.

Sub-screen
A dynamic UIM screen shown when a case worker expands a row of data
on the screen, to "drill down" into further details.

See “Sub-screens” on page 62.

Succession Set
A set of related evidence records which reflects the history of real-world
changes in circumstance. Older items in the succession set apply to
circumstances which used to be true in the real world but which are no
longer true now.

226 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Superseded Assessment Determination
An assessment determination which used to form the basis of the delivery
of a product, but has since been replaced by a more up-to-date
determination which has taken into account changes in evidence or
product-wide configuration.

See “Historical Assessment Determinations” on page 18.

Tag See Objective Tag.

Target The participant who has caused an objective to be attained (typically the
person in respect of which benefit is paid).

For example, there may be a child benefit objective on a case for each child
in the household; each objective will be targeted at a different child (even
if, overall, the total amount payable is received by the primary client).

Evidence
Evidence of real-world circumstances which varies over time due to
corrections and/or successions.

See the following guides:
v Cúram Evidence Guide;
v Cúram Evidence Generator Business Guide;
v Cúram Evidence Generator Specification;
v Cúram Evidence Generator Modeling Guide;
v Designing Cúram Evidence Solutions;
v Cúram Evidence Developers Guide;
v Cúram Evidence Generator Cookbook; and
v Dynamic Evidence Configuration Guide.

Timeline
A CER data item which varies over time.

See the Cúram Express Rules Reference Manual.

Developing with Eligibility and Entitlement by using Cúram Express Rules 227

228 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 229

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

230 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 231

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

232 IBM Cúram Social Program Management: Inside Cúram Eligibility and Entitlement Using Cúram Express Rules

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing with Eligibility and Entitlement by using Cúram Express Rules
	Introduction
	Purpose
	Audience
	Related Reading
	Chapters in this Guide

	Eligibility and Entitlement Processing at a Glance
	Introduction
	Product Configuration
	Example

	Recording of Input Data
	Example

	Rules Calculations and Determination Results
	What a Determination Result Contains
	The Three Es: Eligibility, Entitlement, and Explanation
	The Determination Result Covers the Lifetime of a Case

	What Triggers the Calculation of a Determination Result
	Active Determination Calculation Requests
	Reactive Determination Calculations

	How a Determination Result Is Calculated
	Example

	Determination Storage
	Example

	Scheduling Financials
	Example

	Determination Retrieval
	Example

	Navigating Determinations
	Introduction
	Manual Check Determinations
	Snapshot Determinations
	Assessment Determinations
	Current Assessment Determination
	Historical Assessment Determinations
	Manual Reassessments

	Calculating and Displaying Eligibility and Entitlement
	Introduction
	How It Looks
	Viewing a Determination's Coverage Periods
	Basic Eligibility/entitlement Decision Details

	How It Works
	Calculation of Eligibility and Entitlement
	A) ProductEligibilityEntitlementRuleSet ProductDeliveryCase rule object
	B) ProductEligibilityEntitlementRuleSet.ProductPeriod rule objects
	C) ProductEligibilityEntitlementRuleSet AbstractCase rule class
	D) Custom rule classes for eligibility/entitlement
	E) Custom rule classes for calculations
	F) RateRuleSet.RateCell rule objects and propagation configuration
	G) Custom Entity rule objects
	H) Custom Evidence rule objects
	I) DeterminationResult

	Display of Eligibility and Entitlement
	Dividing the Determination into Coverage Periods
	Displaying a Summary of Entitlement for a Coverage Period

	How to Use It
	Understanding Eligibility and Entitlement Concepts
	Case Lifetime
	Eligibility
	Objectives
	Objective Tags

	Analysis
	Identify the product periods for your product
	Identify what types of objective are delivered by your product, and at what frequencies
	Identify the rules that govern when a case is eligible
	Identify the rules that govern the objectives for each case
	Identify the rules that determine when an objective has been attained and its target
	Identify the rules that determine the values at which an objective can be delivered

	Implementation
	Write the Product Structure Rule Classes
	Write the Case Eligibility/Entitlement Calculation Rule Classes
	Write the Product Periods
	Choose or Create a Summarizer Strategy

	Testing

	Calculating and Displaying Key Decision Factors
	Introduction
	How It Looks
	Viewing Key Decision Factors Graphically
	Viewing Key Decision Factors in a List

	How It Works
	Calculation of Key Decision Factors
	A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
	B) ProductKeyDataRuleSet AbstractCase rule class
	C) Custom rule classes for key decision factors
	D) Custom rule classes for calculations
	E) DeterminationResult

	Display of Key Decision Factors
	Adding Case Lifetime Events
	Adding Case Decision Events

	How to Use It
	Understanding Key Decision Factor Concepts
	Fixed Data Structure for Key Decision Factors
	Explicitly Named Key Events

	Analysis
	Identify which decision factors are "key"
	Identify the cardinality and descriptions for your key decision factors
	Identify the data type for each key decision factor

	Implementation
	Write the Case rule class
	Write the Key Decision Factor rule classes

	Testing

	Calculating and Displaying Decision Details
	Introduction
	How It Looks
	Summary Display Category
	Decision Comparison
	Sub-screens
	Basic Eligibility/entitlement Information

	How It Works
	Calculation of Decision Details
	A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
	B) ProductDecisionDetailsRuleSet AbstractCase rule class
	C) Custom rule classes for decision details
	D) ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay rule class
	E) Custom rule classes for sub-screen details
	F) Custom rule classes for calculations
	G) DeterminationResult
	Basic Eligibility/Entitlement example XML output

	Display of Decision Details
	Basic Eligibility/Entitlement UIM examples

	How to Use It
	Understanding Decision Details Concepts
	Analysis
	Identify the Display Categories
	Sketch out the Screens
	Map displayed data to eligibility/entitlement data
	Identify keys for sub-screens
	Identify comparison data

	Implementation
	Write the Case rule class
	Implement attributes to return top-level screen data
	Implement attributes and rule classes for sub-screen data
	Write the Dynamic UIM screens
	Configure the Product

	Testing

	Understanding Rule Object Converters and Propagators
	Introduction
	An Initial Assessment Example
	A System Administrator Creates and Publishes Rule Set Information for a Product
	A System Administrator Creates and Publishes a New Rate Table
	A Case Worker Registers a Person
	A Case Worker Creates a New Case for that Person
	A Case Worker Adds an Additional Member to the Case
	A Case Worker Captures and Activates Some Income Evidence
	A Case Worker Activates the Case

	The Framework for Converters and Propagators
	Rule Objects for Use with Eligibility and Entitlement Processing
	Product Delivery Rule Objects
	Overview
	Configuration
	Conversion Processing
	Precedents Identified
	Propagation Processing
	Example

	Rate Rule Objects
	Overview
	Configuration
	Conversion Processing
	Precedents Identified
	Propagation Processing
	Example

	Entity Rule Objects
	Overview
	Configuration
	Conversion Processing
	Precedents Identified
	Propagation Processing
	Example

	Active Succession Set Rule Objects
	Overview
	Configuration
	Conversion Processing
	Precedents Identified
	Propagation Processing
	Example

	Active Evidence Row Rule Objects
	Overview
	Configuration
	Conversion Processing
	Precedents Identified
	Propagation Processing
	Example

	Data Configuration Problems
	Data Access Points
	Normal Conversion
	Temporary Access to In-Edit Evidence Changes
	Incremental Propagation
	Bulk Maintenance of Rate Rule Objects

	Logging
	Supported Domain Types

	How Determinations Are Stored
	Introduction
	The Database Tables
	CREOLECaseDetermination
	CREOLECaseDeterminationData
	CaseDecision
	CaseDecisionObjective
	CaseDecisionObjectiveTag
	CREOLECaseDecision

	Decision Periods
	Determination Comparison Strategies
	Strategy Implementations Included with the Engine
	Developing your own Strategy Implementation

	Scheduling Financials
	Introduction
	Scheduling Financials for Eligible Case Decisions
	How It Looks
	How It Works
	Considering Case Decision Objectives
	Considering Nominee Component Assignments
	Considering Nominee Delivery Patterns
	Calculating Financial Component Cover Periods
	Calculating Open Ended Financial Component Cover Periods
	Calculating Financial Component Amounts
	Calculating Financial Component Effective Dates

	How to Use It
	Mandatory Information
	Optional Information

	Scheduling Financials for Case Deductions
	How It Looks
	How It Works
	Considering Case Deduction Items
	Considering Deduction Types
	Calculating Deduction Cover Periods

	How to Use It
	Mandatory Information
	Optional Information

	Scheduling Financials for Payment Corrections
	How It Looks
	How It Works
	Considering Payment Correction Types
	Considering Correction Products
	Considering Nominees

	How to Use It
	When will an Overpayment Correction case be created?
	When will an Underpayment Correction case be created?
	When will a Net Zero Correction case be created?

	Reassessment - Handling Changes in Circumstance
	Introduction
	Case-level Reassessment
	Overview

	Bulk Reassessment
	Types of Change that Cause Bulk Reassessment
	Product Configuration
	CER Rules used by your Product
	Rule Object Data Configurations
	Rate Tables

	Approaches to Identifying and Reassessing All Affected Cases
	Requirements for Bulk Reassessment
	Multiple Reassessments during a Case's Lifetime
	Driving the Identification of Affected Cases
	Reassessment Processing

	Writing your own Bulk Reassessment Batch Process
	The CREOLEBulkCaseChunkReassessmentByProduct Batch Process
	Steps to Implement your own Bulk Reassessment Batch Process

	Bulk Reassessment for Multiple Simultaneous Changes
	Scheduling

	Incremental Design and Evolution
	Introduction
	Starting with Rule Sets Included with the Application
	How Rule Sets Inter-relate
	CER Rules Artifacts - Technical Dependencies
	CER Rules Artifacts - Logical Categorizations

	Cloning CER Rule Sets

	Incremental Design
	Choose Default Configuration Options for Your Product
	Implement a Single Product Period First
	Focus on Eligibility/Entitlement Rules
	Spin-off a Task to Write Rule Classes for Custom Entities and/or Evidence Types
	Top-down Implementations
	Bottom-up Implementations
	Hard-code Rates at First
	Keep an Eye on Rule Class Dependencies
	Try Key Decision Factors before Decision Details
	Re-use the Basic Decision Details before Writing Your Own
	Start Slowly with Decision Details
	Throughout Your Product's Development

	Handling Legislation Change
	Branching Logic in Your CER Rule Sets
	Multiple Product Periods for Your Product
	Choosing the Right Approach

	Changing Product Configuration Settings
	Decision Summary Display Strategy
	Determination Comparison Strategy
	Allow Open-Ended Cases
	Reassessment Strategy

	Compliancy
	The Public API
	Identifying the Public API

	Code Package Restrictions
	Code Table Restrictions
	CaseAssessmentDetReason
	CaseSnapshotDetReason
	Restricted Code Table Packages
	Restricted Code Tables

	Database Restrictions
	RuleObjectPropagatorControl
	Restricted Database Tables

	CER Rule Sets Included with the Application

	The Eligibility and Entitlement Engine API and Customizability
	Eligibility and Entitlement Engine API
	Customizability
	Eligibility and Entitlement Engine Events
	Eligibility and Entitlement Engine Hooks

	Extensions to Cúram Express Rules
	Introduction
	Expressions
	combineSuccessionSets
	Overview
	Example
	Detailed Behavior
	CER Editor reference
	XML Reference

	legislationChange
	Overview
	Example
	Detailed Behavior
	CER Editor reference
	XML Reference

	rate
	Overview
	Example
	Detailed Behavior
	CER Editor reference
	XML Reference

	Annotations
	Display
	XML Reference

	DisplaySubscreen
	XML Reference

	Legislation
	XML Reference

	SuccessionSetPopulation
	XML Reference

	relatedEvidence
	XML Reference

	relatedSuccessionSet
	XML Reference

	Environment Variables
	Cúram Environment Variables Governing Behavior of Engine

	Evidence and Entitlement with CER Glossary
	Terms Used throughout this Guide

	Notices
	Privacy Policy considerations
	Trademarks

