
IBM Cúram Social Program Management
Version 6.0.5

Persistence Cookbook

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 129

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables ix

Developing with the Persistence
Infrastructure 1
Introduction 1

Intended Audience 1
Background. 1
Further Reading 1
Structure of this document. 1

Making calls to service-layer APIs 2
You want to read some data from a database table 2

The problem 2
The solution 3

You want to insert a new row onto a database
table 7

The problem 7
The solution 7
Putting it all together 9

You want to modify a row on a database table . 10
The problem 10
The solution 11
Putting it all together 13

You want to remove (physically delete) a row
from a database table 13

The problem 13
The solution 14
Putting it all together 15

You want to cancel (logically delete) a row on a
database table 15

The problem 15
The solution 16
Putting it all together 17

You want to list all rows of a database table . . 17
The problem 17
The solution 18
Putting it all together 19

You want to list all child rows of a database table
belonging to some parent row (on another table) . 20

The problem 20
The solution 21
Putting it all together 22

Summary 24
Coding service-layer APIs 26

You want to start writing the API for a new
database table 26

The problem 26
The solution 26

You want to add getters and setters to your
entity interface 27

The problem 27
The solution 28
Putting it all together 34

You want to add persistence methods to your
entity interface 36

The problem 36
The solution 36
Putting it all together 38

You want to specify searches on your entity . . 39
The problem 39
The solution 39

Summary 40
Coding service-layer implementations 40

You want to start implementing your entity API 40
The problem 40
The solution 40

You want to implement getters 49
The problem 49
The solution 49
Putting it all together 52

You want to implement new row defaults . . . 54
The problem 54
The solution 54

You want to implement setters 55
The problem 55
The solution 55
Putting it all together 57

You want to implement single-field validation . . 59
The problem 59
The solution 59
Putting it all together 62

You want to implement mandatory-field
validation 64

The problem 64
The solution 64

You want to implement cross-field validation . . 65
The problem 65
The solution 66

You want to implement cross-entity validation . 66
The problem 66
The solution 66

Creating a Guice module 66
Create a class extending AbstractModule . . . 66
Store a row on ModuleClassName. 67

Events 68
Identify where an event must be raised 68
Define the Event interface 69
Create an EventDispatcherFactory 70
Raise events 71
Create an event listener 72
Configure Guice 73
Writing listeners for automatic persistence events 74
Design Considerations with Events 75
Backward compatibility 75

Using Entity Context 75
The Problem 76
The Solution 76
Customising Inserts using entity context. . . . 77
Customising Reads using entity context 80

© Copyright IBM Corp. 2012, 2014 iii

Customising other operations using entity
context 82

State Transitions 82
The problem 82
The solution 83

Specify states 84
Specify storage mechanism for the state value 84
Identify transition methods 86
Implement getLifecycleState 87
Create a map to hold the permitted states . . 87
Create an object for each state 88
Create an object for each permitted transition 88
Create a private getter to retrieve the current
State. 89
Create a private setter to set the current State 89
Create a private helper method to perform a
state transition 90
Implement state transition methods 91
Specify the initial state. 91

Add state transition validation logic 92
Override the modify method (if required) . . 92

Putting it all together 93
Inheritance 97

Identifying inheritance. 97
Entity interface inheritance 97
DAO interfaces 98
Deciding on database storage 99

One table per class 99
One table per concrete class 109
One table for the whole hierarchy 116

Adding New Searches to Existing Entities 127
Approach 1 127
Approach 2 128

Notices 129
Privacy Policy considerations 131
Trademarks 132

iv IBM Cúram Social Program Management: Persistence Cookbook

Figures

1. Façade calling classic Cúram entity to read a
database row 3

2. Creating an injected member variable for a
DAO 3

3. Creating a public constructor to inject member
variables 4

4. Calling a DAO to get an instance of an entity
based on its key 4

5. Calling getter methods on an entity interface 4
6. Complete listing for a façade "view" method 5
7. Comparison of a façade view calling a "classic"

service layer vs. calling a service layer
developed using the Persistence Infrastructure . 6

8. Façade calling classic Cúram entity to create a
database row 7

9. Calling a DAO to create a new instance of an
entity 8

10. Calling setter methods on an entity instance 8
11. Calling the insert persistence method on an

entity instance 9
12. Retrieving the ID of an entity instance 9
13. Complete listing for a façade "create" method 10
14. Façade calling classic Cúram entity to modify a

database row 11
15. Factoring out common calls to setter methods 12
16. Calling the modify persistence method on an

entity 12
17. Incorrect - bypassing optimistic locking

safeguards 13
18. Complete listing for a façade "modify" method 13
19. Façade calling classic Cúram entity to remove

a database row 14
20. Calling the remove persistence method on an

entity 14
21. Incorrect - bypassing optimistic locking

safeguards 15
22. Complete listing for a façade "remove" method 15
23. Façade calling classic Cúram entity to cancel a

database row 16
24. Calling the cancel method on an entity 16
25. Incorrect - bypassing optimistic locking

safeguards 17
26. Complete listing for a façade "cancel" method 17
27. Façade calling classic Cúram entity to list all

database rows. 18
28. Calling a DAO method to read multiple entity

instances 18
29. Iterating through multiple entity instances 19
30. Complete listing for a façade "list all" method 19
31. Complete listing for a façade "list all" method

(terser version) 20
32. Façade calling classic Cúram entity to list all

child database rows for a given parent . . . 21
33. Declaring a variable to hold a DAO for an

entity 21
34. Retrieving an instance of a parent entity 22

35. Calling a getter method on a parent entity
instance to retrieve its child entity instances. . 22

36. Iterating through child entity instances 22
37. Complete listing for a façade "list children"

method 23
38. Complete listing for a façade "list children"

method (terser version) 24
39. Façade class listing 25
40. Creating an entity interface file 26
41. Creating an entity DAO interface file 27
42. Incorrect - redundant getter method for entity

ID. 28
43. Incorrect - setter method for entity ID. . . . 29
44. Interface declaration for a simple get method 29
45. Interface declaration for a simple set method 29
46. Extending the DateRanged interface 30
47. Codetable for the type of an entity 31
48. Excerpts from a generated "Entry" class for a

codetable 32
49. Getter and setter methods for a

codetable-based value 33
50. Interface declaration for getting/setting a

related entity instance 33
51. Creating a skeletal API for a related entity 34
52. Incorrect - getting/setting a related ID instead

of the related entity 34
53. Interface declaration for getting a set of related

entities 34
54. Creating a skeletal API for another related

entity 34
55. Complete listing for an entity API with getter

and setter methods 35
56. Sample code calling an entity insert 36
57. Extending the Insertable interface 37
58. Extending the OptimisticLockModifiable

interface 37
59. Extending the LogicallyDeleteable interface 38
60. Extending the OptimisticLockRemovable

interface 38
61. Entity API extending multiple interfaces for

persistence 38
62. DAO interface declaration for a singleton read 39
63. DAO interface declaration for a search . . . 39
64. DAO interface taking an entity instance as a

parameter 40
65. Incorrect - DAO interface taking an entity ID

value as a parameter 40
66. Creating a DAO implementation file 42
67. Implementing the entity DAO interface 42
68. Extending StandardDAOImpl 42
69. Annotating the DAO implementation as a

Singleton 42
70. Declaring a static member variable for the

entity adapter 42
71. Creating a protected constructor 43
72. Adding unimplemented methods 43

© Copyright IBM Corp. 2012, 2014 v

73. Implementing a singleton read 43
74. Implementing a search 43
75. Implementing a search based on a codetable

value. 44
76. Specifying the DAO implementation as the

default implementation of the DAO interface . 44
77. Null pointer exceptions will occur if no default

DAO implementation is specified on the DAO
interface 44

78. Complete listing for an entity DAO
implementation 45

79. Creating an entity implementation file . . . 46
80. Implementing the entity API 46
81. Entity implementing extending

SingleTableLogicallyDeleteableEntityImpl . . 46
82. Adding a protected constructor to the entity

implementation 47
83. Adding unimplemented methods to the entity

implementation 48
84. Specifying the entity implementation as the

default implementation of the entity API. . . 49
85. Exceptions will occur if no default entity

implementation is specified on the entity API . 49
86. Implementation of a simple get method 50
87. Implementation of a get method which returns

a single object representing multiple database
column values 50

88. Implementation of a get method which returns
a codetable entry value 50

89. Creating a member variable for a related
entity's DAO 51

90. Implementing a get method to retrieve a
related entity instance 51

91. Creating a member variable for another related
entity's DAO 51

92. Implementing a get method to retrieve a set of
related entity instances 51

93. Adding a search method to the related entity's
DAO interface 52

94. Incorrect - adding a search method taking the
entity implementation as a parameter 52

95. Complete listing for an entity implementation
with implemented getter methods 53

96. Complete listing for changes made to a related
entity DAO arising from implementation of a
getter which calls a new search 54

97. Setting default values on new instances of an
entity 54

98. Creating a skeletal implementation of a private
setter method 55

99. Implementation of a simple setter method 56
100. Implementation of a setter method which sets

multiple database column values from one
object 56

101. Implementation of a setter which translates an
codetable entry to a codetable code String
value. 56

102. Implementation of a setter which sets a related
entity 57

103. Complete listing for an entity implementation
with implemented setter methods 58

104. Creating a message catalog with validation
error messages 60

105. Implementing single field validation logic 60
106. Using ValidationHelper to create temporary

error messages 61
107. Using DateRange to perform standard

validation 61
108. Complete listing for an entity implementation

with implemented single-field validation logic . 63
109. Implementing mandatory field validation logic 65
110. Skeleton Guice Module 67
111. DMX file to create a row for your module on

ModuleClassName 68
112. A simple class which performs an action 69
113. Defining the Event interface 70
114. Creating an EventDispatcherFactory 71
115. Raising events 72
116. Creating an event listener class 73
117. Adding wiring 74
118. Creating a persistence event listener class 74
119. Adding wiring for persistence event listeners 75
120. Manipulating entity context 76
121. Manipulating parameterized types in context 76
122. A façade which stores MyEntity. 78
123. A façade subclass which uses entity context 78
124. A listener for inserts on MyEntity 79
125. A Guice module to register the listener in the

previous listing 79
126. A façade which reads MyEntity 80
127. A façade subclass which uses entity context 81
128. A listener for reads on MyEntity 81
129. A Guice module to register the listener in the

previous listing 82
130. State transition diagram for the example

cookbook code 83
131. Creating a code table file listing the states of

an entity 85
132. Extending the Lifecycle interface 85
133. Interface declaration of a "suspend" state

transition method 86
134. Interface declaration of a "resume" state

transition method 86
135. Interface declaration of a "close" state

transition method 87
136. Implementing getLifecycleState 87
137. A map of permitted states. 87
138. Creating an object for each permitted state 88
139. Creating an object for each permitted

transition 89
140. Creating a private getter to retrieve the current

State 89
141. Creating a private setter to set the current

State 90
142. Creating a private helper method to perform a

state transition 90
143. Implementing state transition methods 91
144. Specifying the initial state 91
145. Adding state transition validation logic 92
146. Overriding the modify method 93
147. Lifecycle entity interface example 94
148. Lifecycle entity implementation example 96

vi IBM Cúram Social Program Management: Persistence Cookbook

149. The Animal Interface 97
150. The Cat Interface. 98
151. The Dog Interface 98
152. The DAO interface for Cat 98
153. The DAO interface for Dog 98
154. The read-only DAO interface for Animal 99
155. One table per class - implementation of

abstract base class 100
156. One table per class - implementation of

concrete class 102
157. One table per class - implementation of

another concrete class 104
158. One table per class - DAO implementations

for the concrete classes 105
159. One table per class - DAO implementation for

the abstract class 107
160. One table per concrete class - implementation

of abstract base class 109

161. One table per concrete class - implementation
of concrete class 111

162. One table per concrete class - implementation
of another concrete class 113

163. One table per concrete class - DAO
implementations for the concrete classes . . 114

164. One table per concrete class - DAO
implementation for the abstract class. . . . 115

165. One table for the whole hierarchy -
implementation of abstract base class . . . 117

166. One table for the whole hierarchy -
implementation of concrete class 119

167. One table for the whole hierarchy -
implementation of another concrete class . . 122

168. One table for the whole hierarchy - DAO
implementations for the concrete classes . . 123

169. One table for the whole hierarchy - DAO
implementation for the abstract class. . . . 125

Figures vii

viii IBM Cúram Social Program Management: Persistence Cookbook

Tables

© Copyright IBM Corp. 2012, 2014 ix

x IBM Cúram Social Program Management: Persistence Cookbook

Developing with the Persistence Infrastructure

Use this information to learn how to use and develop service-layer APIs, and how
to customize software that uses the persistence infrastructure. The persistence
infrastructure uses façade-layer logic to translate data that is received from a user
interface screen into a format suitable for passing into a service-layer API call. It
also translates the data that is returned from a service-layer API call into a format
suitable for returning to a user interface screen.

Introduction

Intended Audience
This documented is intended to be read and used by designers and developers of
server application functionality which:
v calls service-layer APIs developed using the Persistence Infrastructure; and/or
v is developed as service-layer APIs using the Persistence Infrastructure.

Background
The service layer in "classic" Cúram was developed using an approach which
combined:
v "Process classes", which contained processing logic only (i.e. no data); and
v "Struct classes", which contained data only (i.e. no processing logic).

By comparison, a service layer developed using the Persistence Infrastructure
contains classes which contain both processing and data.

Thus a service layer developed using the Persistence Infrastructure looks and feels
very different to its classic-Cúram counterpart, not only to those designers and
developers delivering such a service layer, but also to those designers and
developers who must make use of it. Code which calls service-layer APIs is
typically either:
v façade-layer logic, responsible for translating the data received from a user

interface screen into a format suitable for passing into a service-layer API call, or
similarly translating the data returned from a service-layer API call into a format
suitable for returning to a user interface screen; or

v server logic in another system, which is designed to re-use the service layer
developed using the Persistence Infrastructure.

The purpose of this document is to show developers how to use and develop
service-layer APIs, through a series of scenarios and solutions, and how to
customize out-of-the-box software that uses the Persistence Infrastructure.

Further Reading
For more information about the classes and interfaces included in the Persistence
Infrastructure, see its JavaDoc.

Structure of this document
The scenarios in this cookbook are categorized (according to the task at hand) as
follows:

© Copyright IBM Corp. 2012, 2014 1

v making calls to service-layer APIs;
v coding service-layer APIs; and
v coding service-layer implementations.

Each of these categories enumerates a number of scenarios, and each scenario
describes the problem to be solved and walks through how to "cook up" a solution.

One possible scenario is that you are customizing software provided
out-of-the-box. One common reason for doing this is to add attributes to database
entities provided out-of-the-box. If this is what you are doing then you may only
need to read the following three chapters, after which you may selectively read the
rest of this guide as necessary:
v creating a Guice module;
v events;
v using entity context.

There are also chapters covering more advanced topics:
v state transitions; and
v inheritance; and
v adding new searches to existing entities.

Making calls to service-layer APIs
The scenarios in this section describe how to make calls into service-layer APIs
from other code. Typically this "other code" is façade-layer logic.

Whilst service-layer APIs can perform a wide variety of functionality, very
typically the overwhelming majority of service-layer API calls are related to the
reading or writing of database data. Accordingly, the scenarios in this section are
described in terms of database tables.

These scenarios build up a typical façade which controls the
v read;
v insert;
v modification;
v removal;
v cancellation; and
v list

of a data stored on a database table.

You want to read some data from a database table

The problem
You are writing a façade method which needs to:
v retrieve a database row based on its primary key; and
v format the data for return to the user interface, where it will be displayed to the

user.

Under classic Cúram, you would have created a call to the generated "entity"
method as follows:

2 IBM Cúram Social Program Management: Persistence Cookbook

How do you read from a database table using a service-layer API (developed using
the Persistence Infrastructure)?

The solution
Reading data from a service-layer API (developed using the Persistence
Infrastructure) involves writing code using two interfaces, which will be
introduced by example:
v the interface for the entity being read; and
v the interface for the entity's Data Access Object ("DAO").

Coding the solution involves these steps:
v create a class variable to hold the DAO;
v create a constructor to request Guice to inject class variables
v use the DAO to retrieve the instance of the entity; and
v access the entity instance to map field values to the client struct.

Create a class variable to hold the DAO

Firstly, you need to create a class member variable for the entity's DAO, and
annotate it with @Inject:

public class MyFacade {
// ...
public SomeEntityDetails viewSomeEntityDetails(

final SomeEntityKey key) throws AppException,
InformationalException {

// create an instance of the return struct
final SomeEntityDetails someEntityDetails =

new SomeEntityDetails();

// objects for reading the database
final SomeEntity someEntityObj =

SomeEntityFactory.newInstance();
final SomeEntityKey someEntityKey = new SomeEntityKey();
final SomeEntityDtls someEntityDtls;

// map the key
someEntityKey.someEntityID = key.someEntityID;

// do the read
someEntityDtls = someEntityObj.read(someEntityKey);

// map the details returned - in this situation the return
// struct aggregates the generated entity Dtls struct
someEntityDetails.details = someEntityDtls;

// return to the client
return someEntityDetails;

}

Figure 1. Façade calling classic Cúram entity to read a database row

public class MyFacade {
// ...

@Inject
private SomeEntityDAO someEntityDAO;

Figure 2. Creating an injected member variable for a DAO

Developing with the Persistence Infrastructure 3

(The @Inject annotation is provided by Guice, a dependency injector. At runtime,
Guice will initialize the someEntityDAO variable to use the configured
implementation of SomeEntityDAO. You don't really need to worry about any of
this.)

The someEntityDAO object "knows" how to create instances of the entity interface.
In this scenario, you'll use the DAO to retrieve the instance of the entity from the
database.

Create a constructor to request Guice to inject class variables

Because instances of your class are created outside of Guice's control, you must
code an explicit constructor which requests Guice to "inject" class variables (in
particular the someEntityDAO variable you created in the previous step):

If you fail to do this step, then when your application runs you will likely see a
NullPointerException when your application attempts to access the
someEntityDAO variable.

Use the DAO to retrieve the instance of the entity

In your façade method, code a variable to hold an instance of the entity interface,
and set its value by calling.get() on the DAO, passing the key of the database row:

Here, the DAO instance has "dished up" the required instance of the entity
interface. someEntity now holds an object which "knows" how to:
v get at data (via "getter" methods); and also
v "do things" with that data (via other methods).

Access the entity instance to map field values to the client struct

Now code calls to the entity "getters" to map fields values to your return struct:

Points to note:

public MyFacade() {
GuiceWrapper.getInjector().injectMembers(this);

}

Figure 3. Creating a public constructor to inject member variables

// retrieve the instance of the entity
final SomeEntity someEntity = someEntityDAO.get(key.someEntityID);

Figure 4. Calling a DAO to get an instance of an entity based on its key

// map the details from the entity instance
someEntityDetails.details.someEntityID = someEntity.getID();
someEntityDetails.details.name = someEntity.getName();
someEntityDetails.details.versionNo = someEntity.getVersionNo();

final DateRange dateRange = someEntity.getDateRange();
someEntityDetails.details.startDate = dateRange.start();
someEntityDetails.details.endDate = dateRange.end();
// ...more mappings

Figure 5. Calling getter methods on an entity interface

4 IBM Cúram Social Program Management: Persistence Cookbook

v Every entity API has a.getID() method, which returns its primary key. There will
not be a specific getter for the entity's primary key field, e.g. there is no
someEntity.getSomeEntityID() method.

v The API for any entity which supports optimistic locking has a.getVersionNo()
method.

v Some getters do not return primitive types, but instead return objects, e.g. there
are no someEntity.getStartDate() or.getEndDate() methods, only a.getDateRange()
method which returns a DateRange object which contains a start and end date,
but is also capable of date-range processing such as validation and comparison.

You must code a mapping for each field that you need to return to the client.
Code-completion in IDEs like Eclipse will help!

Putting it all together

Here's the complete code for this scenario solution:

For this first scenario only, here's a side-by-side look at the classic approach vs. the
service-layer API approach:

public class MyFacade {
// ...

@Inject
private SomeEntityDAO someEntityDAO;

public MyFacade() {
GuiceWrapper.getInjector().injectMembers(this);

}

public SomeEntityDetails viewSomeEntityDetails(
final SomeEntityKey key) throws AppException,
InformationalException {

// create an instance of the return struct
final SomeEntityDetails someEntityDetails =

new SomeEntityDetails();

// retrieve the instance of the entity
final SomeEntity someEntity =

someEntityDAO.get(key.someEntityID);

// map the details from the entity instance
someEntityDetails.details.someEntityID = someEntity.getID();
someEntityDetails.details.name = someEntity.getName();
someEntityDetails.details.versionNo = someEntity.getVersionNo();

final DateRange dateRange = someEntity.getDateRange();
someEntityDetails.details.startDate = dateRange.start();
someEntityDetails.details.endDate = dateRange.end();
// ...more mappings

// return to the client
return someEntityDetails;

}

// ...
}

Figure 6. Complete listing for a façade "view" method

Developing with the Persistence Infrastructure 5

1. The object which knows how to retrieve instances of the entity. Using the
persistence package, the object is called a Data Access Object ("DAO") and is a

Figure 7. Comparison of a façade view calling a "classic" service layer vs. calling a service layer developed using the
Persistence Infrastructure

6 IBM Cúram Social Program Management: Persistence Cookbook

class member variable initialized by Guice using @Inject. The class constructor
requests Guice to initialize this (and any other) class variable(s).

2. The retrieval of the entity from the database uses the DAO.
3. The data held on the entity is mapped to the client struct.

Note that when using service-layer APIs, in general:
v Code to retrieve instances of these APIs is more terse than when using classic

Cúram; but
v Code to map entity data to client structs is more verbose (but this is after all one

of the main purposes of façade logic).

You want to insert a new row onto a database table

The problem
You are writing a façade method which needs to insert a new row onto a database
table.

Under classic Cúram, you would have created a call to the generated "entity"
method as follows:

How do you insert a new row onto a database table using a service-layer API
(developed using the Persistence Infrastructure)?

The solution
Coding the solution involves these steps:
v create a class variable to hold the DAO;
v use the DAO to create a new instance of the entity;

// ...
public SomeEntityKey createSomeEntityDetails(

final SomeEntityDetails details)
throws AppException, InformationalException {

// create an instance of the return struct
final SomeEntityKey key = new SomeEntityKey();

// objects for writing to the database
final SomeEntity someEntityObj =

SomeEntityFactory.newInstance();
final SomeEntityDtls someEntityDtls;

// map the details
someEntityDtls = details.details;

// do the insert
someEntityObj.insert(someEntityDtls);

// check for informational exceptions
TransactionInfo.getInformationalManager().failOperation();

// map the key assigned
key.someEntityID = someEntityDtls.someEntityID;

// return to the client
return key;

}

// ...

Figure 8. Façade calling classic Cúram entity to create a database row

Developing with the Persistence Infrastructure 7

v access the entity instance to set field values from the client struct;
v instruct the entity instance to insert itself onto the database; and
v map the entity instance key back to the client (if required).

Create a class variable to hold the DAO

This step is identical to that in “You want to read some data from a database
table” on page 2 above.

In general more than one façade method will require to use the DAO object. Of
course, you only need to create the DAO object class member once for the façade
class!

Use the DAO to create a new instance of the entity

In your façade method, code a variable to hold an instance of the entity interface,
and set its value by calling.newInstance() on the DAO, passing the key of the
database row:

Here, the DAO instance has "dished up" a new instance of the entity interface,
which does not (yet) exist on the database. The entity itself takes care of setting its
data fields to sensible defaults.

someEntity now holds an object which "knows" how to:
v get at data (via "getter" methods);
v set data (via "setter" methods); and
v "do things" with that data (via other methods).

Access the entity instance to set field values from the client struct

Now code calls to the entity "setters" to map fields values from your input struct:

Points to note:
v Often, an entity may have a getter to allow retrieval of a data field, but have no

corresponding setter. This is because the entity manages the setting of such
fields, and does not allow the field to be set by calling code. Common examples
include:
– the entity's ID;
– the "logical delete" record status; and
– lifecycle state.

// create a new entity instance
final SomeEntity someEntity = someEntityDAO.newInstance();

Figure 9. Calling a DAO to create a new instance of an entity

// map the details
someEntity.setName(details.details.name);

final DateRange dateRange = new DateRange(
details.details.startDate,

details.details.endDate);
someEntity.setDateRange(dateRange);
// ...more mappings

Figure 10. Calling setter methods on an entity instance

8 IBM Cúram Social Program Management: Persistence Cookbook

v Some setters do not take primitive types, but instead take objects, e.g. there are
no someEntity.setStartDate() or.setEndDate() methods, only a.setDateRange()
method which takes a DateRange object which contains a start and end date.

v When you call a setter on an entity instance, the entity instance will perform any
single-field validation on the field being set.

You must code a mapping for each field that you need to populate from the client.

Instruct the entity instance to insert itself onto the database

Once the entity instance has been populated with data supplied by the client, you
must code a call for the entity instance to store itself:

The entity instance will:
v perform additional validation, including:

– mandatory field validation (i.e. check that all mandatory fields have been set);
– cross-field validation; and
– cross-entity validation;

v assign a primary key value; and
v insert its data into the database.

Map the entity instance key back to the client (if required)

Some façade methods require to return back to the client the key of a new row
stored.

If required, code a mapping to return the key:

Putting it all together
Here's the complete code for this scenario solution:

// do the insert
someEntity.insert();

Figure 11. Calling the insert persistence method on an entity instance

// map the key assigned
key.someEntityID = someEntity.getID();

Figure 12. Retrieving the ID of an entity instance

Developing with the Persistence Infrastructure 9

Note that there is no call to
TransactionInfo.getInformationalManager().failOperation() - the entity insert
operation takes care of all error handling.

You want to modify a row on a database table

The problem
You are writing a façade method which needs to modify the contents of an existing
row on the database.

Under classic Cúram, you would have created a call to the generated "entity"
method as follows:

// ...
public SomeEntityKey createSomeEntityDetails(

final SomeEntityDetails details)
throws AppException, InformationalException {

// create an instance of the return struct
final SomeEntityKey key = new SomeEntityKey();

// create a new entity instance
final SomeEntity someEntity = someEntityDAO.newInstance();

// map the details
someEntity.setName(details.details.name);

final DateRange dateRange =
new DateRange(details.details.startDate,
details.details.endDate);

someEntity.setDateRange(dateRange);
// ...more mappings

// do the insert
someEntity.insert();

// map the key assigned
key.someEntityID = someEntity.getID();

// return to the client
return key;

}
// ...

Figure 13. Complete listing for a façade "create" method

10 IBM Cúram Social Program Management: Persistence Cookbook

How do you modify an existing row on a database table using a service-layer API
(developed using the Persistence Infrastructure)?

The solution
The solution draws together elements of processing seen in the earlier scenarios:
v “You want to read some data from a database table” on page 2; and
v “You want to insert a new row onto a database table” on page 7.

Coding the solution involves these steps:
v create a class variable to hold the DAO;
v use the DAO to retrieve the instance of the entity;
v access the entity instance to set field values from the client struct; and
v instruct the entity instance to modify its data on the database.

Create a class variable to hold the DAO

This step is identical to that in “You want to read some data from a database
table” on page 2 above.

Use the DAO to retrieve the instance of the entity

This step is identical to that in “You want to read some data from a database
table” on page 2 above.

Access the entity instance to set field values from the client struct

This step is identical to that in “You want to insert a new row onto a database
table” on page 7 above.

It is likely that a façade class will contain both of the following methods:
v a method which insert a new row onto a database table; and

// ...
public void modifySomeEntityDetails(

final SomeEntityDetails details)
throws AppException, InformationalException {

// objects for writing to the database
final SomeEntity someEntityObj =

SomeEntityFactory.newInstance();
final SomeEntityDtls someEntityDtls;

// map the details
someEntityDtls = details.details;

// create an instance of the key
final SomeEntityKey someEntityKey = new SomeEntityKey();
someEntityKey.someEntityID = someEntityDtls.someEntityID;

// do the modify
someEntityObj.modify(someEntityKey, someEntityDtls);

// check for informational exceptions
TransactionInfo.getInformationalManager().failOperation();

}
// ...

Figure 14. Façade calling classic Cúram entity to modify a database row

Developing with the Persistence Infrastructure 11

v a method which modifies an existing row on a database table.

For facades which contain both of these kinds of methods, it is likely that the steps
to map client data to setters are very similar. Any identical processing should be
factored into a common method:

Note that this method cannot be modeled as the entity interface argument is not
present in the Cúram model; thus this method is private to the Java
implementation.

Instruct the entity instance to modify its data on the database

Once the entity instance has been populated with data supplied by the client, you
must code a call for the entity instance to store its changes:

The entity instance will:
v perform additional validation, including:

– mandatory field validation (i.e. check that all mandatory fields have been set);
– cross-field validation; and
– cross-entity validation;

v modify its data on the database.

Important: For an entity which supports optimistic locking, you must pass the
version number held by the client struct. Do not be tempted to use the version
number on the entity instance which has been retrieved, as this would render the
optimistic lock mechanism useless and allow one user's updates to be overwritten
by another user's updates:

// ...
/**
* Maps client details to the setters on the service-layer API
*
* @param someEntity
* the service-layer instance of the entity
* @param someEntityDtls
* the client details to map
*
*/
private void setSomeEntityDetails(final SomeEntity someEntity,

final SomeEntityDtls someEntityDtls) {

// map the details
someEntity.setName(someEntityDtls.name);

final DateRange dateRange =
new DateRange(someEntityDtls.startDate,

someEntityDtls.endDate);
someEntity.setDateRange(dateRange);
// ...more mappings

}
// ...

Figure 15. Factoring out common calls to setter methods

// do the modify, passing the version number from the client
someEntity.modify(details.details.versionNo);

Figure 16. Calling the modify persistence method on an entity

12 IBM Cúram Social Program Management: Persistence Cookbook

Putting it all together
Here's the complete code for this scenario solution:

You want to remove (physically delete) a row from a database
table

The problem
You are writing a façade method which needs to remove an existing row from the
database.

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */
// do the modify, passing the version number from the entity
// instance
someEntity.modify(someEntity.getVersionNo());
/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */

Figure 17. Incorrect - bypassing optimistic locking safeguards

// ...
public void modifySomeEntityDetails(

final SomeEntityDetails details)
throws AppException, InformationalException {

// retrieve the instance of the entity
final SomeEntity someEntity = someEntityDAO

.get(details.details.someEntityID);

// set the fields
setSomeEntityDetails(someEntity, details.details);

// do the modify, passing the version number from the client
someEntity.modify(details.details.versionNo);

}

/**
* Maps client details to the setters on the service-layer API
*
* @param someEntity
* the service-layer instance of the entity
* @param someEntityDtls
* the client details to map
*
*/
private void setSomeEntityDetails(final SomeEntity someEntity,

final SomeEntityDtls someEntityDtls) {

// map the details
someEntity.setName(someEntityDtls.name);

final DateRange dateRange =
new DateRange(someEntityDtls.startDate,

someEntityDtls.endDate);
someEntity.setDateRange(dateRange);
// ...more mappings

}

// ...

Figure 18. Complete listing for a façade "modify" method

Developing with the Persistence Infrastructure 13

Under classic Cúram, you would have created a call to the generated "entity"
method as follows:

How do you remove an existing row from a database table using a service-layer
API (developed using the Persistence Infrastructure)?

The solution
Coding the solution involves these steps:
v create a class variable to hold the DAO;
v use the DAO to retrieve the instance of the entity;
v instruct the entity instance to remove its data from the database.

Create a class variable to hold the DAO

This step is identical to that in “You want to read some data from a database
table” on page 2 above.

Use the DAO to retrieve the instance of the entity

This step is identical to that in “You want to read some data from a database
table” on page 2 above.

Instruct the entity instance to remove its data from the database

You must code a call for the entity instance to remove its data from the database:

The entity instance will:
v perform cross-entity validation, allowing other entities to veto the removal; and
v remove its data from the database.

// ...
public void removeSomeEntityDetails(final SomeEntityKey key)

throws AppException, InformationalException {

// objects for writing to the database
final SomeEntity someEntityObj =

SomeEntityFactory.newInstance();

// create an instance of the key
final SomeEntityKey someEntityKey = new SomeEntityKey();
someEntityKey.someEntityID = key.someEntityID;

// do the remove
someEntityObj.remove(someEntityKey);

// check for informational exceptions
TransactionInfo.getInformationalManager().failOperation();

}

// ...

Figure 19. Façade calling classic Cúram entity to remove a database row

// do the remove, passing the version number from the client
someEntity.remove(key.versionNo);

Figure 20. Calling the remove persistence method on an entity

14 IBM Cúram Social Program Management: Persistence Cookbook

For an entity which supports optimistic locking, you must pass the version number
held by the client struct. Note that this approach is stricter than the classic Cúram
approach which does not require a version number.

Important: Do not be tempted to use the version number on the entity instance
which has been retrieved, as this would render the optimistic lock mechanism
useless and allow one user's updates to be removed by another user acting on
out-of-date data:

Putting it all together
Here's the complete code for this scenario solution:

You want to cancel (logically delete) a row on a database table

The problem
You are writing a façade method which needs to cancel an existing row on the
database (i.e. set its "recordStatus" to "Canceled").

Under classic Cúram, you would have created a call to a non-stereotyped "entity"
method as follows:

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */
// do the remove, passing the version number from the entity
// instance
someEntity.remove(someEntity.getVersionNo());
/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */

Figure 21. Incorrect - bypassing optimistic locking safeguards

// ...
public void removeSomeEntityDetails(

final SomeEntityKeyVersion key)
throws AppException, InformationalException {

// retrieve the instance of the entity
final SomeEntity someEntity =

someEntityDAO.get(key.someEntityID);

// do the remove, passing the version number from the client
someEntity.remove(key.versionNo);

}

// ...

Figure 22. Complete listing for a façade "remove" method

Developing with the Persistence Infrastructure 15

How do you cancel an existing row on a database table using a service-layer API
(developed using the Persistence Infrastructure)?

The solution
Coding the solution involves these steps:
v create a class variable to hold the DAO;
v use the DAO to retrieve the instance of the entity;
v instruct the entity instance to cancel its data on the database.

Create a class variable to hold the DAO

This step is identical to that in “You want to read some data from a database
table” on page 2 above.

Use the DAO to retrieve the instance of the entity

This step is identical to that in “You want to read some data from a database
table” on page 2 above.

Instruct the entity instance to cancel its data on the database

You must code a call for the entity instance to cancel its data on the database:

The entity instance will:
v perform cross-entity validation, allowing other entities to veto the cancellation;

and
v cancel its data from the database.

// ...
public void cancelSomeEntityDetails(

final SomeEntityKeyVersion key)
throws AppException, InformationalException {

// objects for writing to the database
final SomeEntity someEntityObj =

SomeEntityFactory.newInstance();

// create an instance of the key/version
final SomeEntityKeyVersion someEntityKeyVersion =

new SomeEntityKeyVersion();
someEntityKeyVersion.someEntityID = key.someEntityID;
someEntityKeyVersion.versionNo = key.versionNo;

// do the cancel
someEntityObj.cancel(someEntityKeyVersion);

// check for informational exceptions
TransactionInfo.getInformationalManager().failOperation();

}

// ...

Figure 23. Façade calling classic Cúram entity to cancel a database row

// do the cancel, passing the version number from the client
someEntity.cancel(key.versionNo);

Figure 24. Calling the cancel method on an entity

16 IBM Cúram Social Program Management: Persistence Cookbook

For an entity which supports optimistic locking, you must pass the version number
held by the client struct.

Important: Do not be tempted to use the version number on the entity instance
which has been retrieved, as this would render the optimistic lock mechanism
useless:

Putting it all together
Here's the complete code for this scenario solution:

You want to list all rows of a database table

The problem
You are writing a façade method which needs to:
v retrieve all rows from a database table; and
v format the data for return to the user interface, where it will be displayed to the

user.

Under classic Cúram, you would have created a call to the generated "entity"
method as follows:

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */
// do the cancel, passing the version number from the entity
// instance
someEntity.cancel(someEntity.getVersionNo());
/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */

Figure 25. Incorrect - bypassing optimistic locking safeguards

// ...
public void cancelSomeEntityDetails(

final SomeEntityKeyVersion key)
throws AppException, InformationalException {

// retrieve the instance of the entity
final SomeEntity someEntity =

someEntityDAO.get(key.someEntityID);

// do the cancel, passing the version number from the client
someEntity.cancel(key.versionNo);

}

// ...

Figure 26. Complete listing for a façade "cancel" method

Developing with the Persistence Infrastructure 17

How do you list all rows from a database table using a service-layer API
(developed using the Persistence Infrastructure)?

The solution
Coding the solution involves these steps:
v create a class variable to hold the DAO;
v use the DAO to retrieve all the instances of the entity; and
v iterate the set of entity instances and access these instances to map field values

to the client struct.

Create a class variable to hold the DAO

This step is identical to that in “You want to read some data from a database
table” on page 2 above.

Use the DAO to retrieve all the instances of the entity

In your façade method, code a variable to hold a set of instances of the entity
interface, and set its value by calling.readAll() on the DAO:

Note that (in this particular example):
v the DAO readAll method returns a Set, typed with the entity interface

(SomeEntity); and

// ...
public SomeEntitySummaryDetailsList listSomeEntityDetails()

throws AppException, InformationalException {

// create an instance of the return struct
final SomeEntitySummaryDetailsList list =

new SomeEntitySummaryDetailsList();

// objects for reading the database
final SomeEntity someEntityObj =

SomeEntityFactory.newInstance();
final SomeEntityDtlsList someEntityDtlsList;

// do the read
someEntityDtlsList = someEntityObj.readAll();

// map the details returned
for (int i = 0; i < someEntityDtlsList.dtls.size(); i++) {

final SomeEntitySummaryDetails someEntitySummaryDetails =
new SomeEntitySummaryDetails();

someEntitySummaryDetails.assign(
someEntityDtlsList.dtls.item(i));

list.details.addRef(someEntitySummaryDetails);
}

// return to the client
return list;

}

// ...

Figure 27. Façade calling classic Cúram entity to list all database rows

// retrieve all the instances of the entity
final Set<SomeEntity> someEntities = someEntityDAO.readAll();

Figure 28. Calling a DAO method to read multiple entity instances

18 IBM Cúram Social Program Management: Persistence Cookbook

v this scenario assumes that the API designer created a readAll method on the
DAO (it does not have one by default).

Iterate the set of entity instances and access these instances to map
field values to the client struct

Now code a loop which iterates the set retrieved, and maps each instance to the
client struct. Note that since a Set is used, the Java 5 syntax for "for" loops can be
used:

Putting it all together
Here's the complete code for this scenario solution:

Note that the assignment to the someEntities set was shown for clarity only -
equivalent terser code is shown below:

// map the details returned
for (final SomeEntity someEntity : someEntities) {

final SomeEntitySummaryDetails someEntitySummaryDetails =
new SomeEntitySummaryDetails();

someEntitySummaryDetails.someEntityID = someEntity.getID();
someEntitySummaryDetails.name = someEntity.getName();

list.details.addRef(someEntitySummaryDetails);
}

Figure 29. Iterating through multiple entity instances

// ...
public SomeEntitySummaryDetailsList listSomeEntityDetails()

throws AppException, InformationalException {

// create an instance of the return struct
final SomeEntitySummaryDetailsList list =

new SomeEntitySummaryDetailsList();

// retrieve all the instances of the entity
final Set<SomeEntity> someEntities = someEntityDAO.readAll();

// map the details returned
for (final SomeEntity someEntity : someEntities) {

final SomeEntitySummaryDetails someEntitySummaryDetails =
new SomeEntitySummaryDetails();

someEntitySummaryDetails.someEntityID = someEntity.getID();
someEntitySummaryDetails.name = someEntity.getName();

list.details.addRef(someEntitySummaryDetails);
}

// return to the client
return list;

}

Figure 30. Complete listing for a façade "list all" method

Developing with the Persistence Infrastructure 19

You want to list all child rows of a database table belonging to
some parent row (on another table)

The problem
You are writing a façade method which needs to:
v retrieve all rows from a database table for a given "parent ID"; and
v format the data for return to the user interface, where it will be displayed to the

user.

Under classic Cúram, you would have created a call to the generated "entity"
method as follows:

// ...
public SomeEntitySummaryDetailsList listSomeEntityDetails()

throws AppException, InformationalException {

// create an instance of the return struct
final SomeEntitySummaryDetailsList list =

new SomeEntitySummaryDetailsList();

for (final SomeEntity someEntity : someEntityDAO.readAll()) {
// map the details returned
final SomeEntitySummaryDetails someEntitySummaryDetails =

new SomeEntitySummaryDetails();
someEntitySummaryDetails.someEntityID = someEntity.getID();
someEntitySummaryDetails.name = someEntity.getName();

list.details.addRef(someEntitySummaryDetails);
}

// return to the client
return list;

}

// ...

Figure 31. Complete listing for a façade "list all" method (terser version)

20 IBM Cúram Social Program Management: Persistence Cookbook

How do you list child rows for a given parent using a service-layer API
(developed using the Persistence Infrastructure)?

The solution
Coding the solution involves these steps:
v create a class variable to hold the DAO for the parent entity;
v use the DAO to retrieve the instance of the parent entity;
v call a getter on the parent entity instance to retrieve its set of child entity

instances; and
v iterate the set of child entity instances and access these instances to map field

values to the client struct.

Create a class variable to hold the DAO

Use the DAO to retrieve the instance of the parent entity

In your façade method, code a variable to hold an instance of the entity interface,
and set its value by calling.get() on the DAO, passing the key of the database row:

// ...
public SomeChildSummaryDetailsList listSomeChildDetails(

final SomeParentKey key)
throws AppException, InformationalException {

// create an instance of the return struct
final SomeChildSummaryDetailsList list =

new SomeChildSummaryDetailsList();

// objects for reading the database
final SomeChild someChildObj = SomeChildFactory.newInstance();
final SomeChildDtlsList someChildDtlsList;

// set up the key
final SomeParentKey someParentKey = new SomeParentKey();
someParentKey.someParentID = key.someParentID;

// do the read
someChildDtlsList =

someChildObj.searchBySomeParent(someParentKey);

// map the details returned
for (int i = 0; i < someChildDtlsList.dtls.size(); i++) {

final SomeChildSummaryDetails someChildSummaryDetails =
new SomeChildSummaryDetails();

someChildSummaryDetails.assign(
someChildDtlsList.dtls.item(i));

list.details.addRef(someChildSummaryDetails);
}

// return to the client
return list;

}
// ...

Figure 32. Façade calling classic Cúram entity to list all child database rows for a given parent

@Inject
private SomeParentDAO someParentDAO;

Figure 33. Declaring a variable to hold a DAO for an entity

Developing with the Persistence Infrastructure 21

Call a getter on the parent entity instance to retrieve its set of child
entity instances

Now code a call to the appropriate getter on the parent entity instance to retrieve
its child entity instances:

Iterate the set of child entity instances and access these instances to
map field values to the client struct

Now code a loop which iterates the set retrieved, and maps each instance to the
client struct:

Putting it all together
Here's the complete code for this scenario solution:

// retrieve the instance of the parent entity
final SomeParent someParent =

someParentDAO.get(key.someParentID);

Figure 34. Retrieving an instance of a parent entity

// retrieve all the child instances of the entity for this parent
final Set<SomeChild> someChildren = someParent.getSomeChildren();

Figure 35. Calling a getter method on a parent entity instance to retrieve its child entity instances

// map the details returned
for (final SomeChild someChild : someChildren) {

final SomeChildSummaryDetails someChildSummaryDetails =
new SomeChildSummaryDetails();

someChildSummaryDetails.someChildID = someChild.getID();
someChildSummaryDetails.name = someChild.getName();

list.details.addRef(someChildSummaryDetails);
}

Figure 36. Iterating through child entity instances

22 IBM Cúram Social Program Management: Persistence Cookbook

Again, here is a briefer version which has no intermediate variable to hold the Set
of child entity instances:

// ...
@Inject
private SomeParentDAO someParentDAO;

public SomeChildSummaryDetailsList listSomeChildDetails(
final SomeParentKey key)
throws AppException, InformationalException {

// create an instance of the return struct
final SomeChildSummaryDetailsList list =

new SomeChildSummaryDetailsList();

// retrieve the instance of the parent entity
final SomeParent someParent =

someParentDAO.get(key.someParentID);

// retrieve all the child instances of the entity for this
// parent
final Set<SomeChild> someChildren =

someParent.getSomeChildren();

// map the details returned
for (final SomeChild someChild : someChildren) {

final SomeChildSummaryDetails someChildSummaryDetails =
new SomeChildSummaryDetails();

someChildSummaryDetails.someChildID = someChild.getID();
someChildSummaryDetails.name = someChild.getName();

list.details.addRef(someChildSummaryDetails);
}

// return to the client
return list;

}

// ...

Figure 37. Complete listing for a façade "list children" method

Developing with the Persistence Infrastructure 23

Summary
Here is the entire listing for the façade class:

// ...
public SomeChildSummaryDetailsList listSomeChildDetails(

final SomeParentKey key)
throws AppException, InformationalException {

// create an instance of the return struct
final SomeChildSummaryDetailsList list =

new SomeChildSummaryDetailsList();

// retrieve the instance of the parent entity
final SomeParent someParent =

someParentDAO.get(key.someParentID);

for (final SomeChild someChild : someParent.getSomeChildren()) {
// map the details returned
final SomeChildSummaryDetails someChildSummaryDetails =

new SomeChildSummaryDetails();
someChildSummaryDetails.someChildID = someChild.getID();
someChildSummaryDetails.name = someChild.getName();

list.details.addRef(someChildSummaryDetails);
}

// return to the client
return list;

}
// ...

Figure 38. Complete listing for a façade "list children" method (terser version)

24 IBM Cúram Social Program Management: Persistence Cookbook

package curam.cookbook.facade.persistence;

import curam.util.persistence.GuiceWrapper;
import curam.util.type.DateRange;

import java.util.Set;

import com.google.inject.Inject;

import curam.cookbook.SomeChild;
import curam.cookbook.SomeEntity;
import curam.cookbook.SomeEntityDAO;
import curam.cookbook.SomeParent;
import curam.cookbook.SomeParentDAO;
import curam.cookbook.facade.struct.SomeChildSummaryDetails;
import curam.cookbook.facade.struct.SomeChildSummaryDetailsList;
import curam.cookbook.facade.struct.SomeEntityDetails;
import curam.cookbook.facade.struct.SomeEntityKeyVersion;
import curam.cookbook.facade.struct.SomeEntitySummaryDetails;
import curam.cookbook.facade.struct.SomeEntitySummaryDetailsList;
import curam.cookbook.sl.entity.struct.SomeEntityDtls;
import curam.cookbook.sl.entity.struct.SomeEntityKey;
import curam.cookbook.sl.entity.struct.SomeParentKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

public class MyFacade {

@Inject
private SomeEntityDAO someEntityDAO;

public MyFacade() {
GuiceWrapper.getInjector().injectMembers(this);

}

public SomeEntityDetails viewSomeEntityDetails(
final SomeEntityKey key)

throws AppException, InformationalException {

// create an instance of the return struct
final SomeEntityDetails someEntityDetails =

new SomeEntityDetails();

// retrieve the instance of the entity
final SomeEntity someEntity =

someEntityDAO.get(key.someEntityID);

// map the details from the entity instance
someEntityDetails.details.someEntityID = someEntity.getID();
someEntityDetails.details.name = someEntity.getName();
someEntityDetails.details.versionNo = someEntity.getVersionNo();

final DateRange dateRange = someEntity.getDateRange();
someEntityDetails.details.startDate = dateRange.start();
someEntityDetails.details.endDate = dateRange.end();
// ...more mappings

// return to the client
return someEntityDetails;

}

public SomeEntityKey createSomeEntityDetails(
final SomeEntityDetails details)

throws AppException, InformationalException {

// create an instance of the return struct
final SomeEntityKey key = new SomeEntityKey();

// create a new entity instance
final SomeEntity someEntity = someEntityDAO.newInstance();

// map the details
someEntity.setName(details.details.name);

Developing with the Persistence Infrastructure 25

Coding service-layer APIs
The scenarios in this section describe how to write service-layer APIs, which may
be called from other code such as:
v implementations of other service-layer APIs;
v "classic" Cúram service layers in other components; and/or
v façade layer code.

You want to start writing the API for a new database table

The problem
You identify the need for a new database table and you want to control access to
this database table through a service-layer API.

How do you start?

The solution
The interface for interacting with your database table breaks down as follows:
v DAO interface - responsible for describing how to search your database table for

rows matching certain criteria ("readmultis"); and
v Entity interface - responsible for describing what calling code can "do" with your

entity once row(s) have been retrieved.

Coding the solution involves these steps:
v create an entity interface java file; and
v create an entity DAO interface java file.

Create an entity interface java file

Create a new java file named after your entity, and declare an interface extending
StandardEntity:

The StandardEntity super-interface provides a standard API for all entities, and
must be extended by all entity APIs.

As far as callers of your code are concerned, this interface "is" your entity, which is
why (by convention) you name the entity interface after your entity. Ensure that
the interface is well-commented.

So far your new entity API doesn't do very much, but that'll change during later
the scenarios.

package curam.mypackage;

import curam.util.persistence.StandardEntity;

/**
* Description of my wonderful new entity.
*/

public interface MyNewEntity extends StandardEntity {
}

Figure 40. Creating an entity interface file

26 IBM Cúram Social Program Management: Persistence Cookbook

Note that not all interfaces need to be public - if the interface does not need to be
visible outside of its package then remove the "public" declaration and make the
interface "package-private". Typically this can only be done with entities which are
not exposed to calling code, e.g. link tables which do not (directly) appear on UI
screens. Only make an interface public if it needs to be (which is usually the case).

Only include methods in your interface which must be visible to other classes -
implementation-only methods will exist only in your implementation class (see
“Coding service-layer implementations” on page 40).

Create an entity DAO interface java file

Create another interface in the same java package, named after your entity but
suffixed with "DAO", extending StandardDAO (typed with your entity interface):

The StandardDAO super-interface must be extended by all entity DAO APIs. It
provides two DAO API methods "for free":
v newInstance() - creates a new instance of MyNewEntity suitable for inserting

onto the database; and
v get(Long id) - retrieves the instance of MyNewEntity with the primary key value

specified by id

Your DAO declares that it is responsible for managing MyNewEntity instances by
virtue of the type argument to StandardDAO.

In a later scenario you will add additional methods to the DAO interface.

You want to add getters and setters to your entity interface

The problem
Your database table contains a number of data columns. You need to allow callers
of your code to:
v get the values held in some of these columns; and
v set the values held in some of these columns.

You also need to support navigation to related entity instances.

In classic Cúram, callers of your code had access full access to each field on the
entity Dtls struct, and so there was no need (nor any way) to decide whether a
particular field was:
v hidden;
v read-only; or
v read/write.

package curam.mypackage;

import curam.util.persistence.StandardDAO;

/**
* Data access for {@linkplain MyNewEntity}.
*/
public interface MyNewEntityDAO extends StandardDAO<MyNewEntity> {
}

Figure 41. Creating an entity DAO interface file

Developing with the Persistence Infrastructure 27

Regarding navigation, in classic Cúram callers of your code had to perform their
own navigation by executing queries on related entities, and seeding those queries
with foreign key fields from an entity Dtls struct.

How do you add getters and setters to your entity interface?

The solution
You must code getters and setters on your entity interface, and make an informed
decision as to the level of visibility of each field.

For each column on your database table, you must decide:
v whether callers of your entity must be able to read the data - if so you must

code a getter method; and
v whether callers of you entity must be able to write the data - if so you must

code a setter method; and
v whether access to the column is on a "per-column" basis or whether there is

some logical grouping of columns which should be combined into a single object
(see the date range example below).

Example

You'll step through an example database table and code getters/setters in your
API.

Let's say that the database table MyNewEntity has these columns:
v myNewEntityID - primary key;
v name - String;
v startDate - date;
v endDate - date;
v typeCode - codetable code, specifying the "type" of the entity; and
v myParentEntityID - foreign key to a row on a different database table.

Let's go through the attributes on MyNewEntity and flesh out the entity API.

myNewEntityID

In general, getters and setters for your primary key column are straightforward -
you don't write any.

You rarely need to code anything for the primary key of an entity, because each
entity already has a getID method (inherited from StandardEntity).

Important: Do not be tempted to write your own getter for the ID:

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */
/**
* @return the primary key of MyNewEntity.
*/
public Long getMyNewEntityID();

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */

Figure 42. Incorrect - redundant getter method for entity ID

28 IBM Cúram Social Program Management: Persistence Cookbook

Similarly, each entity implementation typically takes care of assigning its own
primary key, and so callers of the entity API do not require a facility to set the
primary key themselves.

Important: Do not be tempted to write your own setter for the ID:

name

After analysis of requirements, you determine that callers of your API require to
both get and set the name column of a database row.

Code a field getter as follows:

Note that:
v by convention, the method is named get<Fieldname> with the first letter of the

field name upper-cased (one exception is that getters that return a boolean value
often read better as is<Condition>); and

v the name column holds a String, so the getter must return a String.

Code a field setter as follows:

Note that:
v by convention, the method is named set<Fieldname>, with the first letter of the

field name upper-cased;
v by convention, the variable name of the value passed in is "value";
v the setter returns void; and
v the name column holds a String, so the setter must take a String value.

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */
/**
* @param value
* the primary key of MyNewEntity.
*/
public void setMyNewEntityID(final Long value);

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */

Figure 43. Incorrect - setter method for entity ID

/**
* Gets the name.
*
* @return the name
*/
public String getName();

Figure 44. Interface declaration for a simple get method

/**
* Sets the name.
*
* @param value
* the name
*/
public void setName(final String value);

Figure 45. Interface declaration for a simple set method

Developing with the Persistence Infrastructure 29

startDate and endDate

After analysis of requirements, you determine that:
v callers of your API require to get the start and end dates, to compare the range

of dates covered with dates supplied by other processing;
v the start date is always set to the current business date when a new row is

created; and
v the end date is only set (to a specified date) when the entity enters a state of

"closed".

Accordingly, you decide that:
v the start date and end date should be returned to callers as a DateRange "helper"

object; and
v callers should not be free to set the start and end dates - manipulation of these

end dates should be taken care of by specialized methods on the entity (see e.g.
“State Transitions” on page 82).

You require your entity to return a DateRange helper object - rather than coding a
getDateRange method, instead it's better to change your API to extend
DateRanged:

The DateRanged interface provides your entity with a getDateRange method and
also allows access to helper functions which provide commonly-used processing on
entities which contain a date range.

typeCode

After analysis, you determine that your entity stores a codetable code describing
the "type" of the entity instance.

Create a codetable specifying the permitted values:

/**
* Description of my wonderful new entity.
*/

public interface MyNewEntity extends StandardEntity, DateRanged {

Figure 46. Extending the DateRanged interface

30 IBM Cúram Social Program Management: Persistence Cookbook

The Persistence Infrastructure includes a code generator to generate a class per
codetable. These classes provide a type-safe mechanism for passing around an
entry from the codetable, and each class is named after its codetable suffixed with
the word Entry:

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.mypackage.codetable">

<codetable
java_identifier="MYNEWENTITYTYPE"
name="MYNEWENTITYTYPE"

>
<code

default="false"
java_identifier="SOMETYPE"
status="ENABLED"
value="TYPE1"

>
<locale

language="en"
sort_order="0"

>
<description>Some type</description>
<annotation/>

</locale>
</code>
<code

default="false"
java_identifier="SOMEOTHERTYPE"
status="ENABLED"
value="TYPE2"

>
<locale

language="en"
sort_order="0"

>
<description>Some other type</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Figure 47. Codetable for the type of an entity

Developing with the Persistence Infrastructure 31

package curam.mypackage.codetable.impl;

/**
* Represents an entry from the
* {@linkplain curam.mypackage.codetable.MYNEWENTITYTYPE} code
* table.
*/

public class MYNEWENTITYTYPEEntry extends
curam.util.type.CodeTableEntry {

// ...

/**
* Private constructor.
*/
private MYNEWENTITYTYPEEntry(final String code) {

super(TABLENAME, code);
}

/**
* Gets the
* {@linkplain curam.mypackage.codetable.impl.MYNEWENTITYTYPEEntry}
* for the specified code value.
*
* @param code
* the String representation of the code value required.
*
* @return a
* {@linkplain curam.mypackage.codetable.impl.MYNEWENTITYTYPEEntry}
* representation of the specified code value.
*
* @throws curam.util.exception.AppRuntimeException
* if the specified code value is not present in the
* {@linkplain curam.mypackage.codetable.MYNEWENTITYTYPE}
* code table.
*/
public static curam.mypackage.codetable.impl.MYNEWENTITYTYPEEntry get(

final String code) {
// ...

}

/**
* The name of the
* {@linkplain curam.mypackage.codetable.MYNEWENTITYTYPE} table -
* {@value}.
*/
public static String TABLENAME =

curam.mypackage.codetable.MYNEWENTITYTYPE.TABLENAME;

/**
* Not specified (i.e. blank).
*/
public static final curam.mypackage.codetable.impl.MYNEWENTITYTYPEEntry

NOT_SPECIFIED = get(null);

/**
* TYPE1 en = Some type
*/
public static final curam.mypackage.codetable.impl.MYNEWENTITYTYPEEntry

SOMETYPE =
get(curam.mypackage.codetable.MYNEWENTITYTYPE.SOMETYPE);

/**
* TYPE2 en = Some other type
*/
public static final curam.mypackage.codetable.impl.MYNEWENTITYTYPEEntry

SOMEOTHERTYPE =
get(curam.mypackage.codetable.MYNEWENTITYTYPE.SOMEOTHERTYPE);

}

Figure 48. Excerpts from a generated "Entry" class for a codetable

32 IBM Cúram Social Program Management: Persistence Cookbook

Use of this generated class is preferable to using a String to pass around the value,
as (in particular) a String can be constructed with any text whereas the generated
class only permits values corresponding to the underlying code table.

Code:
v a getter to return an instance of this generated class; and
v a setter which takes an instance of this generated class:

Note: Getter and setter methods do not have to be named exactly after their
database columns (in this example, the data column typeCode is accessed via
methods named getType and setType, not getTypeCode and setTypeCode.

In particular, some database column names are abbreviated to comply with
database name length constraints, and for these the getter and setter names should
not slavishly repeat the abbreviation, e.g. use
getSomeVeryVeryLongDatabaseColumnName rather than getSmVyVyLgDbColNm.

myParentEntityID

For foreign keys to related entity instances, in general you should not create getters
and setters for the entity ID, but instead code getters and setters which deal with
the API of the related entity:

Note that this code assumes that the MyParentEntity API has already been coded.
If not, you must create a skeletal API:

/**
* Gets the type of this entity instance.
*
* @return the type of this entity instance
*/
public MYNEWENTITYTYPEEntry getType();

/**
* Sets the type of this entity instance.
*
* @param value
* the type of this entity instance
*/
public void setType(final MYNEWENTITYTYPEEntry value);

Figure 49. Getter and setter methods for a codetable-based value

/**
* Gets the parent instance of MyParentEntity.
*
* @return the parent instance of MyParentEntity, or null if not
* yet set
*/
public MyParentEntity getMyParentEntity();

/**
* Sets the parent instance of MyParentEntity.
*
* @param value
* the parent instance of MyParentEntity
*/
public void setMyParentEntity(final MyParentEntity value);

Figure 50. Interface declaration for getting/setting a related entity instance

Developing with the Persistence Infrastructure 33

Important: Do not be tempted to expose the related entity ID directly:

Child instances

Each instance of your entity has a set of associated child entity instances (from a
different database table).

If callers of your API require to navigate to these child instances, code a getter
which returns a Set, typed with the API of the child entity:

Note that this code assumes that the MyChildEntity API has already been coded. If
not, you must create a skeletal API:

Putting it all together
Here's the complete code for this scenario solution, showing the getters, setters and
changes to the interface inheritance hierarchy:

public interface MyParentEntity extends StandardEntity {

}

Figure 51. Creating a skeletal API for a related entity

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */
/**
* @return the foreign key to the parent MyParentEntity instance
*/
public Long getMyParentEntityID();

/**
* @param value
* the foreign key to the parent MyParentEntity instance
*/
public void setMyParentEntityID(final Long value);

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */

Figure 52. Incorrect - getting/setting a related ID instead of the related entity

/**
* Gets the MyChildEntity children of this entity instance.
*
* @return the MyChildEntity children of this entity instance
*/
public Set<MyChildEntity> getMyChildren();

Figure 53. Interface declaration for getting a set of related entities

public interface MyChildEntity extends StandardEntity {

}

Figure 54. Creating a skeletal API for another related entity

34 IBM Cúram Social Program Management: Persistence Cookbook

package curam.mypackage;

import java.util.Set;

import com.google.inject.ImplementedBy;

import curam.util.persistence.StandardEntity;
import curam.util.type.DateRanged;

/**
* Description of my wonderful new entity.
*/
@ImplementedBy(MyNewEntityImpl.class)
public interface MyNewEntity extends StandardEntity, DateRanged {

/**
* Gets the name.
*
* @return the name
*/
public String getName();

/**
* Sets the name.
*
* @param value
* the name
*/
public void setName(final String value);

/**
* Gets the parent instance of MyParentEntity.
*
* @return the parent instance of MyParentEntity, or null if not
* yet set
*/
public MyParentEntity getMyParentEntity();

/**
* Sets the parent instance of MyParentEntity.
*
* @param value
* the parent instance of MyParentEntity
*/
public void setMyParentEntity(final MyParentEntity value);

/**
* Gets the MyChildEntity children of this entity instance.
*
* @return the MyChildEntity children of this entity instance
*/
public Set<MyChildEntity> getMyChildren();

/**
* Gets the type of this entity instance.
*
* @return the type of this entity instance
*/
public MYNEWENTITYTYPEEntry getType();

/**
* Sets the type of this entity instance.
*
* @param value
* the type of this entity instance
*/
public void setType(final MYNEWENTITYTYPEEntry value);

}

Figure 55. Complete listing for an entity API with getter and setter methods

Developing with the Persistence Infrastructure 35

You want to add persistence methods to your entity interface

The problem
Callers of your entity API need to be able to ask instances of your entity to store
data on the database.

In classic Cúram, callers of your code made calls to modeled methods which were
generated onto entity "process" classes.

How do you add persistence to your entity interface?

The solution
You must first analyze your requirements and decide which types of database
write must be publicly supported by your API:
v insert - typically every entity API contains an insert() operation, to create a new

row on the database;
v modify - typically required if your entity API contains setter methods. You must

decide whether the modify requires optimistic lock support;
v cancel - typically required if your entity must allow callers to request that the

entity instance be "logically deleted"; and
v remove - (rare) typically required if your entity must allow callers to request that

the entity instance be "physically deleted". You must decide whether the remove
requires optimistic lock support;

Note that it is quite in order not to publish any persistence methods on your entity
interface, and instead create your own specialized methods instead.

In practice, entities often combine a mixture of exposing some persistence methods
(for what are known as "CRUD" operations) and other specialized methods for
business operations such as controlling the change of an entity's state.

Insert

If your entity API contains setter methods, then typically calling code will require
an insert method to store new instances of your entity on the database:

@Inject
private MyInsertableEntityDAO myInsertableEntityDAO;

public void someCallToAnInsert() throws InformationalException {
final MyInsertableEntity myInsertableEntity =

myInsertableEntityDAO.newInstance();

// set some field values on the new instance
myInsertableEntity.setSomeField("some value");
myInsertableEntity.setSomeOtherField("some other value");

// ask the new entity instance to store itself on the database
myInsertableEntity.insert();

}

Figure 56. Sample code calling an entity insert

36 IBM Cúram Social Program Management: Persistence Cookbook

If your entity API must publish an insert method, change the entity API
declaration to extend the Insertable interface:

Note that the.insert() method (inherited from Insertable) throws
InformationalException, in the case that validation errors are detected.

Modify

If your entity API contains setter methods, then typically calling code will require
a.modify method to store changes on the database any changes to field values.

If modify support is required, you must decide whether your API should support:
v an optimistic-lock modify - (common) the modify only succeeds if the version

number held by the caller matches that on the database - this mechanism
prevents users from over-writing each others' concurrent modifications;

v a non-optimistic-lock modify - (less common) no version number checking is
performed; or

v both (rare).

Change the entity API declaration to extend (as appropriate):
v OptimisticLockModifiable; and/or
v Modifiable

e.g.:

Note that database tables which store historical data (e.g. a history of state changes
or other events) typically should not support modify.

Cancel

If your entity supports the concept of logical deletion, then typically calling code
will require a.cancel method to logically delete an instance of your entity.

If cancel support is required, change the entity API declaration to extend
LogicallyDeleteable:

/**
* This entity supports callers asking it to insert itself.
*/
public interface MyInsertableEntity extends StandardEntity,

Insertable {

}

Figure 57. Extending the Insertable interface

/**
* This entity supports callers asking it to modify itself.
*/
public interface MyModifiableEntity extends StandardEntity,

OptimisticLockModifiable {

}

Figure 58. Extending the OptimisticLockModifiable interface

Developing with the Persistence Infrastructure 37

Note that support for logical deletes requires support for optimistic locking.

Remove

If your entity supports the concept of physical deletion, then typically calling code
will require a.remove method to physically delete an instance of your entity.

Business tables in Cúram rarely support physical deletion (favoring logical deletion
instead). Technical tables (such as link tables) may support physical removal.

If remove support is required, you must decide whether your API should support:
v an optimistic-lock remove - the remove only succeeds if the version number held

by the caller matches that on the database - this mechanism prevents one user
deleting data containing updates that another user has concurrently made;

v a non-optimistic-lock remove - no version number checking is performed; or
v both.

Change the entity API declaration to extend (as appropriate):
v OptimisticLockRemovable; and/or
v Removable

e.g.:

Putting it all together
Typically your entity API will support a number of persistence operations, as
evidence by its inheritance hierarchy:

/**
* This entity supports callers asking it to cancel itself.
*/

public interface MyLogicallyDeleteableEntity extends
StandardEntity, LogicallyDeleteable {

}

Figure 59. Extending the LogicallyDeleteable interface

/**
* This entity supports callers asking it to remove itself.
*/

public interface MyPhysicallyDeleteableEntity extends
StandardEntity, OptimisticLockRemovable {

}

Figure 60. Extending the OptimisticLockRemovable interface

/**
* Description of my wonderful new entity.
*/
public interface MyNewEntity extends StandardEntity, DateRanged,

Lifecycle<MyNewEntity.State>, Insertable,
OptimisticLockModifiable, LogicallyDeleteable {

Figure 61. Entity API extending multiple interfaces for persistence

38 IBM Cúram Social Program Management: Persistence Cookbook

You want to specify searches on your entity

The problem
Instances of your entity need to be retrieved using data other than the primary key
of your entity, which may include:
v searches ("readmultis") of your entity, which may return zero or more matches;

and/or
v singleton reads ("nsreads") of your entity, which may return zero matches or

exactly one match.

In classic Cúram, you would model readmulti and nsread operations on your
entity. Callers of your nsread would be expected to handle a
RecordNotFoundException (or use the NotFoundIndicator mechanism).

How do you add non-key retrievals to your entity?

The solution
You must code retrievals of your entity on your entity DAO API, not on the entity
itself.

A singleton read method must return your entity API, and should specify that null
will be returned if no matching entity instance is found:

A search method (which can return zero, one or many instances) must return a
collection of your entity API (typically a Set):

Your method names must follow the naming standards for modeled entity
operations.

Use entity APIs in preference to passing primary keys, e.g. do this:

/**
* Reads the instance with the specified name.
*
* @param name
* the name to find
* @return the instance with the specified name, or null if not
* found.
*/
public MyNewEntity readByName(final String name);

Figure 62. DAO interface declaration for a singleton read

/**
* Searches all the instances which have the specified type.
*
* @param type
* the type to search for
* @return all the instances which have the specified type, or an
* empty set if none found.
*/
public Set<MyNewEntity> searchByType(

final MYNEWENTITYTYPEEntry type);

Figure 63. DAO interface declaration for a search

Developing with the Persistence Infrastructure 39

not this:

Summary
At this point you have developed the API for your entity and its DAO.

Because entities interact with each other through their APIs, it is possible to
develop the service layer APIs for an entire component before commencing
implementation. Such an approach allows you to publish the APIs to any
interested parties and/or generate navigable JavaDoc for your APIs.

Alternatively, you may wish to create a limited number of entity APIs and proceed
to implement these APIs.

Coding service-layer implementations
The scenarios in this section describe how to implement your service-layer APIs.

You want to start implementing your entity API

The problem
You have created interfaces for your entity and its DAO. You now need to create
implementations of these interfaces.

Where do you start?

The solution
You must:
v model your database table in the Cúram model; and
v create the following classes:

– an adapter for generated data access methods;
– an implementation for your entity DAO interface; and

/**
* Searches all the instances belonging to the specified parent.
*
* @param myParentEntity
* the parent to search for
* @return all the instances belonging to the specified parent, or
* an empty set if none found.
*/
public Set<MyNewEntity> searchByParent(

final MyParentEntity myParentEntity);

Figure 64. DAO interface taking an entity instance as a parameter

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */
/**
* Searches all the instances which have the specified parent ID.
*
* @param myParentEntityID
* the parent ID to search for
* @return all the instances which have the specified parent ID,
* or an empty set if none found.
*/
public Set<MyNewEntity> searchByParentID(

final Long myParentEntityID);
/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */

Figure 65. Incorrect - DAO interface taking an entity ID value as a parameter

40 IBM Cúram Social Program Management: Persistence Cookbook

– an implementation for your entity interface.

Model your database table in the Cúram model

You must model your database table in the Cúram model using Cúram's modeling
tools.

Ensure that:
v you model a single primary key attribute for the table, which unwinds to a long;
v you model a standard read operation;
v any write operations that you require to model are standard write operations

(insert, modify and remove);
v if you model a standard insert operation, that it specifies an AUTO_ID strategy

(if required);
v if your entity supports optimistic locking (i.e. your entity specifies

ALLOW_OPTIMISTIC_LOCKING=yes) and if you model a standard modify
operation, that optimistic locking is switched on for this operation (i.e. your
modify operation specifies OPTIMISTIC_LOCKING=yes);

v if your entity supports any non-standard read operations, then you model a
struct to hold the search criteria and specify the return struct as the full Dtls
struct;

v if your entity supports any search operations, then you model a struct to hold
the search criteria (you do not need specify any return struct - by default the
DtlsList struct will be used); and

v if your entity supports logical deletes, then you model a recordStatus attribute
(using the RECORD_STATUS_CODE domain).

Do not model:
v any non-stereotyped operations;
v any non-standard write operations;
v any standard write operations which are not required (e.g. remove is only rarely

required);
v any read or search operations which return anything other than the full Dtls or

DtlsList struct; nor
v any pre- or post- exit points.

Extract and generate your model using the standard command-line tools.

Create an adapter for generated data access methods

You must create an adapter which wraps the generated code for reading, searching
and writing database rows.

The Persistence Infrastructure includes a code generator which generates adapter
code using information extracted from the Cúram model. To generate a new
adapter, add the name of your database table to the file EJBServer/components/
<your component>/properties/adapters.properties.

The adapter code generator runs automatically as part of the server build scripts.

Create an implementation for your entity DAO interface: You must create an
implementation class for your entity DAO interface.

Developing with the Persistence Infrastructure 41

Create a class in the same package as your DAO interface, and name the class after
your entity, suffixed with DAOImpl:

Your DAO implementation must implement the DAO interface:

However, if you were to directly implement this interface, you would have to
write a huge amount of "plumbing" code. A great deal of plumbing is supplied by
StandardDAOImpl, so extend this class, supplying the entity API and the
generated Dtls struct for the database table as type parameters:

Annotate the class with @Singleton:

Create a private static variable to hold an instance of your entity adapter:

Create a protected constructor which passes the adapter and the class of the entity
API to StandardDAOImpl:

package curam.mypackage;

/**
* Standard implementation of {@linkplain MyNewEntityDAO}.
*/

public class MyNewEntityDAOImpl {
}

Figure 66. Creating a DAO implementation file

public class MyNewEntityDAOImpl implements MyNewEntityDAO {

Figure 67. Implementing the entity DAO interface

import curam.mypackage.struct.MyNewEntityDtls;
import curam.util.persistence.StandardDAOImpl;

/**
* Standard implementation of {@linkplain MyNewEntityDAO}.
*/

public class MyNewEntityDAOImpl extends
StandardDAOImpl<MyNewEntity, MyNewEntityDtls>
implements MyNewEntityDAO {

Figure 68. Extending StandardDAOImpl

@Singleton
public class MyNewEntityDAOImpl extends

StandardDAOImpl<MyNewEntity, MyNewEntityDtls>
implements MyNewEntityDAO {

Figure 69. Annotating the DAO implementation as a Singleton

/**
* Single instance of the entity adapter shared across all DAO
* implementations.
*/
private static MyNewEntityAdapter adapter =

new MyNewEntityAdapter();

Figure 70. Declaring a static member variable for the entity adapter

42 IBM Cúram Social Program Management: Persistence Cookbook

Use the "Add unimplemented methods" feature in Eclipse to add in the methods
you must implement:

The implementation of the non-standard singleton readByName calls the adapter
to return a Dtls struct (by reading the database), and passes this to a
StandardDAOImpl method to create an instance of your entity interface:

The implementation of the readmulti searchByParent calls the adapter to return an
array of Dtls structs (by reading the database), and passes this to a
StandardDAOImpl method to create set of instances of your entity interface:

The implementation of the readmulti searchByType must translate from the
codetable value supplied to the String representation stored on the database:

/**
* @see StandardDAOImpl
*/
protected MyNewEntityDAOImpl() {

super(adapter, MyNewEntity.class);
}

Figure 71. Creating a protected constructor

public MyNewEntity readByName(String name) {
// TODO Auto-generated method stub
return null;

}

public Set<MyNewEntity> searchByParent(
MyParentEntity myParentEntity) {
// TODO Auto-generated method stub
return null;

}

public Set<MyNewEntity> searchByType(
final MYNEWENTITYTYPEEntry type) {
// TODO Auto-generated method stub
return null;

}

Figure 72. Adding unimplemented methods

/**
* {@inheritDoc}
*/
public MyNewEntity readByName(final String name) {

return getEntity(adapter.readByName(name));
}

Figure 73. Implementing a singleton read

/**
* {@inheritDoc}
*/
public Set<MyNewEntity> searchByParent(

final MyParentEntity myParentEntity) {
return newSet(adapter.searchByParent(myParentEntity.getID()));

}

Figure 74. Implementing a search

Developing with the Persistence Infrastructure 43

Your implementation of the DAO interface is now complete. However, there is a
final important step, which is to specify your DAO implementation as the default
implementation of the DAO interface.

Open the DAO interface and add an annotation prescribing the default
implementation:

If you fail to do this step, then when your application runs you will likely see a
NullPointerException when Guice fails to inject instances of your DAO interface:

Putting it all together

Here's the complete code for the DAO implementation:

/**
* {@inheritDoc}
*/
public Set<MyNewEntity> searchByType(

final MYNEWENTITYTYPEEntry type) {
return newSet(adapter.searchByType(type.getCode()));

}

Figure 75. Implementing a search based on a codetable value

/**
* Data access for {@linkplain MyNewEntity}.
*/

@ImplementedBy(MyNewEntityDAOImpl.class)
public interface MyNewEntityDAO extends StandardDAO<MyNewEntity> {

Figure 76. Specifying the DAO implementation as the default implementation of the DAO interface

/*
* This variable will be null if you don’t specify the default
* implementation of MyNewEntityDAO properly...
*/

@Inject
private MyNewEntityDAO myNewEntityDAO;

Figure 77. Null pointer exceptions will occur if no default DAO implementation is specified on the DAO interface

44 IBM Cúram Social Program Management: Persistence Cookbook

Create an implementation for your entity interface: You must create an
implementation class for your entity interface. In this scenario you will only create
the skeleton of your implementation class - it will be fleshed-out in later scenarios.

Create a class in the same package as your entity interface, and name the class
after your entity, suffixed with Impl:

package curam.mypackage;

import java.util.Set;

import com.google.inject.Singleton;

import curam.mypackage.struct.MyNewEntityDtls;
import curam.util.persistence.StandardDAOImpl;

/**
* Standard implementation of {@linkplain MyNewEntityDAO}.
*/
@Singleton
public class MyNewEntityDAOImpl extends

StandardDAOImpl<MyNewEntity, MyNewEntityDtls> implements
MyNewEntityDAO {

/**
* Single instance of the entity adapter shared across all DAO
* implementations.
*/
private static MyNewEntityAdapter adapter =

new MyNewEntityAdapter();

/**
* @see StandardDAOImpl
*/
protected MyNewEntityDAOImpl() {

super(adapter, MyNewEntity.class);
}

/**
* {@inheritDoc}
*/
public MyNewEntity readByName(final String name) {

return getEntity(adapter.readByName(name));
}

/**
* {@inheritDoc}
*/
public Set<MyNewEntity> searchByParent(

final MyParentEntity myParentEntity) {
return newSet(adapter.searchByParent(myParentEntity.getID()));

}

}

Figure 78. Complete listing for an entity DAO implementation

Developing with the Persistence Infrastructure 45

Your entity implementation must implement the entity interface:

There are a number of common development patterns in the Cúram server layer,
and the Persistence Infrastructure comes with a number of helper implementations
that implement these patterns.

A common pattern is that an entity:
v stores its data on a single database table;
v supports logical deletes; and
v requires logic for single-field, cross-field and cross-entity validations.

These patterns are implemented by the SingleTableLogicallyDeleteableEntityImpl
helper class, so let's base your entity implementation on it:

SingleTableLogicallyDeleteableEntityImpl provides a standard implementation of
these methods:
v insert;
v modify;
v cancel;
v lock;
v getID;
v getRecordStatus; and
v getVersionNo.

Add a protected no-argument constructor:

package curam.mypackage;

/**
* Standard implementation of {@linkplain MyNewEntity}.
*/

public class MyNewEntityImpl
}

Figure 79. Creating an entity implementation file

public class MyNewEntityImpl implements MyNewEntity {

Figure 80. Implementing the entity API

package curam.mypackage;
import curam.mypackage.struct.MyNewEntityDtls;
import

curam.util.persistence.helper.SingleTableLogicallyDeleteableEntityImpl;

/**
* Standard implementation of {@linkplain MyNewEntity}.
*/

public class MyNewEntityImpl extends
SingleTableLogicallyDeleteableEntityImpl<MyNewEntityDtls>
implements MyNewEntity {

Figure 81. Entity implementing extending SingleTableLogicallyDeleteableEntityImpl

46 IBM Cúram Social Program Management: Persistence Cookbook

Use the "Add unimplemented methods" feature in Eclipse to add in the methods
you must implement, and categorize them to aid readability:

protected MyNewEntityImpl() {
/* Protected no-arg constructor for use only by Guice */

}

Figure 82. Adding a protected constructor to the entity implementation

Developing with the Persistence Infrastructure 47

package curam.mypackage;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import com.google.inject.Inject;

import curam.message.impl.MYNEWENTITYExceptionCreator;
import curam.mypackage.codetable.impl.MYLIFECYCLEENTITYSTATEEntry;
import curam.mypackage.struct.MyNewEntityDtls;
import curam.util.persistence.ValidationHelper;
import curam.util.persistence.helper.CodetableState;
import

curam.util.persistence.helper.SingleTableLogicallyDeleteableEntityImpl;
import curam.util.persistence.helper.State;
import curam.util.persistence.helper.Transition;
import curam.util.type.DateRange;
import curam.util.type.StringHelper;

/**
* Standard implementation of {@linkplain MyNewEntity}.
*/

public class MyNewEntityImpl extends
SingleTableLogicallyDeleteableEntityImpl<MyNewEntityDtls>
implements MyNewEntity {

protected MyNewEntityImpl() {
/* Protected no-arg constructor for use only by Guice */

}

/*
* Field getters
*/
public String getName() {

// TODO Auto-generated method stub
return null;

}

public DateRange getDateRange() {
// TODO Auto-generated method stub
return null;

}

public State getLifecycleState() {
// TODO Auto-generated method stub
return null;

}

public MYNEWENTITYTYPEEntry getType() {
// TODO Auto-generated method stub
return null;

}

/*
* Related-entity getters
*/
public Set<MyChildEntity> getMyChildren() {

// TODO Auto-generated method stub
return null;

}

public MyParentEntity getMyParentEntity() {
// TODO Auto-generated method stub
return null;

}

/*
* Setters
*/
public void setMyParentEntity(MyParentEntity value) {

// TODO Auto-generated method stub

48 IBM Cúram Social Program Management: Persistence Cookbook

Your implementation of the skeletal entity interface is now complete. However,
there is a final important step, which is to specify your entity implementation as
the default implementation of the entity interface.

Open the entity interface and add an annotation prescribing the default
implementation:

If you fail to do this step, then when your application runs you will likely see
exceptions when Guice callers of your API attempt to read or create instances of
your entity:

You want to implement getters

The problem
You have created a skeletal implementation for your entity. You now need to
implement getter methods.

How do you implement getters?

The solution
You must create implementations for your skeletal getter methods created above.
Each getter method is responsible for retrieving one or more fields from an
underlying Dtls struct and returning a value (either primitive or object) to calling
code.

The implementation of your entity has at its heart an instance of a RowManager.
The RowManager instance contains a generated Dtls struct and manages the
manipulation of this struct.

Getter methods must use the RowManager. getDtls method to get at the Dtls
struct. For implementations extending SingleTableEntityImpl (which the example
does via SingleTableLogicallyDeleteableEntityImpl), there is a convenience getDtls
method which can be used directly as a shorthand.

Our example requires these getters to be implemented:
v getName;
v getDateRange;
v getType;

/**
* Description of my wonderful new entity.
*/
@ImplementedBy(MyNewEntityImpl.class)
public interface MyNewEntity extends StandardEntity, DateRanged,

Insertable, OptimisticLockModifiable, LogicallyDeleteable {

Figure 84. Specifying the entity implementation as the default implementation of the entity API

/*
* These attempts to construct instances of the entity interface
* will fail if you don’t specify the default implementation of
* MyNewEntity properly...
*/
final long someID = 123;
final MyNewEntity tryingToRead = myNewEntityDAO.get(someID);

final MyNewEntity tyringToCreate = myNewEntityDAO.newInstance();

Figure 85. Exceptions will occur if no default entity implementation is specified on the entity API

Developing with the Persistence Infrastructure 49

v getMyParentEntity; and
v getMyChildren.

In general the JavaDoc for your getter implementations can simply inherit from
your entity API JavaDoc.

getName

The getter for name is a straight-forward mapping of the name held in the Dlts
struct:

getDateRange

The getter for your entity's date range must use the startDate and endDate held on
the generated Dtls struct and construct a new DateRange object:

getType

The getter for your entity's type must retrieve the relevant
MYNEWENTITYTYPEEntry value based on the codetable code String value held in
the typeCode field on the Dtls struct:

getMyParentEntity

The getter for a single record must retrieve that related record and return it.
However, the getter must check whether the key is currently zero (which is used
throughout the server application to signify that a unique ID value has not been
set), and if so instead return null.

Create a class member variable for the related record's DAO:

/**
* {@inheritDoc}
*/
public String getName() {

return getDtls().name;
}

Figure 86. Implementation of a simple get method

/**
* {@inheritDoc}
*/
public DateRange getDateRange() {

return new DateRange(getDtls().startDate, getDtls().endDate);
}

Figure 87. Implementation of a get method which returns a single object representing multiple database column values

/**
* {@inheritDoc}
*/
public MYNEWENTITYTYPEEntry getType() {

return MYNEWENTITYTYPEEntry.get(getDtls().typeCode);
}

Figure 88. Implementation of a get method which returns a codetable entry value

50 IBM Cúram Social Program Management: Persistence Cookbook

In the getter, conditionally call the DAO, depending on whether the value of
myParentEntityID is zero:

getMyChildren

The getter for a set of related records must call a DAO method to perform a
search.

Create a class member variable for the related records' DAO:

In the getter, call the DAO passing in this object:

You must add the searchByParent method to the DAO:

@Inject
private MyParentEntityDAO myParentEntityDAO;

Figure 89. Creating a member variable for a related entity's DAO

/**
* {@inheritDoc}
*/
public MyParentEntity getMyParentEntity() {

final long myParentEntityID = getDtls().myParentEntityID;

if (myParentEntityID == 0) {
return null;

} else {
return myParentEntityDAO.get(myParentEntityID);

}
}

Figure 90. Implementing a get method to retrieve a related entity instance

@Inject
private MyChildEntityDAO myChildEntityDAO;

Figure 91. Creating a member variable for another related entity's DAO

/**
* {@inheritDoc}
*/
public Set<MyChildEntity> getMyChildren() {

return myChildEntityDAO.searchByParent(this);
}

Figure 92. Implementing a get method to retrieve a set of related entity instances

Developing with the Persistence Infrastructure 51

Important: Do not be tempted to take Eclipse's suggestion of using the
MyNewEntityImpl class as an argument:

(The underlying principle here is that entity and DAO interfaces are allowed to be
dependent on other entity and DAO interfaces, but are not allowed to be
dependent on implementations.)

If an implementation exists for MyChildEntityDAO, then you must implement the
new method, and model a new search operation (a readmulti) to retrieve the
required records.

Putting it all together
You now have a full set of implemented getter methods. In doing the
implementation, you have:
v fleshed out MyNewEntityImpl; and
v added a new method to MyChildEntityDAO.

The full code for these classes is shown below:

/**
* Data access for {@linkplain MyChildEntity}.
*/

public interface MyChildEntityDAO
extends StandardDAO<MyChildEntity> {

/**
* Searches all the instances belonging to the specified parent.
*
* @param myNewEntity
* the parent to search for
* @return all the instances belonging to the specified parent, or
* an empty set if none found.
*/
public Set<MyChildEntity> searchByParent(

final MyNewEntity myNewEntity);

Figure 93. Adding a search method to the related entity's DAO interface

/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */
/**
* Searches all the instances belonging to the specified parent.
*
* @param impl
* the parent to search for
* @return all the instances belonging to the specified parent, or
* an empty set if none found.
*/
public Set<MyChildEntity> searchByParent(MyNewEntityImpl impl);
/** ********** VERY VERY BAD - DO NOT DO THIS! ********** */

Figure 94. Incorrect - adding a search method taking the entity implementation as a parameter

52 IBM Cúram Social Program Management: Persistence Cookbook

MyNewEntityImpl

package curam.mypackage;

import java.util.Set;

import com.google.inject.Inject;

import curam.mypackage.struct.MyNewEntityDtls;
import curam.util.exception.InformationalException;
import

curam.util.persistence.helper.SingleTableLogicallyDeleteableEntityImpl;
import curam.util.type.Date;
import curam.util.type.DateRange;

/**
* Standard implementation of {@linkplain MyNewEntity}.
*/
public class MyNewEntityImpl extends

SingleTableLogicallyDeleteableEntityImpl<MyNewEntityDtls>
implements MyNewEntity {

@Inject
private MyParentEntityDAO myParentEntityDAO;

@Inject
private MyChildEntityDAO myChildEntityDAO;

protected MyNewEntityImpl() {
/* Protected no-arg constructor for use only by Guice */

}

/*
* Field getters
*/

/**
* {@inheritDoc}
*/
public String getName() {

return getDtls().name;
}

/**
* {@inheritDoc}
*/
public DateRange getDateRange() {

return new DateRange(getDtls().startDate, getDtls().endDate);
}

/**
* {@inheritDoc}
*/
public MYNEWENTITYTYPEEntry getType() {

return MYNEWENTITYTYPEEntry.get(getDtls().typeCode);
}

/*
* Related-entity getters
*/
/**
* {@inheritDoc}
*/
public Set<MyChildEntity> getMyChildren() {

return myChildEntityDAO.searchByParent(this);
}

/**
* {@inheritDoc}
*/
public MyParentEntity getMyParentEntity() {

final long myParentEntityID = getDtls().myParentEntityID;

Developing with the Persistence Infrastructure 53

MyChildEntityDAO

You want to implement new row defaults

The problem
You have an entity which has one or more fields which require defaulting when
new instances are inserted into the database.

How do you specify new row defaults for your entity?

The solution
You must override the setNewInstanceDefaults method and initialize any fields
which require defaulting before a new instance is inserted onto the database.

In the example, the initial typeCode of MyNewEntity must be defaulted to
"SomeType", and the date range set to start on today's date and no end date
specified:

Note: Be sure to include a call to super.setNewInstanceDefaults().

package curam.mypackage;

import java.util.Set;

import curam.util.persistence.StandardDAO;

/**
* Data access for {@linkplain MyChildEntity}.
*/

public interface MyChildEntityDAO extends
StandardDAO<MyChildEntity> {

/**
* Searches all the instances belonging to the specified parent.
*
* @param myNewEntity
* the parent to search for
* @return all the instances belonging to the specified parent, or
* an empty set if none found.
*/
public Set<MyChildEntity> searchByParent(

final MyNewEntity myNewEntity);

}

Figure 96. Complete listing for changes made to a related entity DAO arising from implementation of a getter which
calls a new search

/**
* Defaults:
*
* the type to {@linkplain MYNEWENTITYTYPEEntry#SOMETYPE};
* and
* the date range to {@linkplain DateRange#todayOnwards()}.
*
*
*/
public void setNewInstanceDefaults() {

setType(MYNEWENTITYTYPEEntry.SOMETYPE);
setDateRange(DateRange.todayOnwards());

}

Figure 97. Setting default values on new instances of an entity

54 IBM Cúram Social Program Management: Persistence Cookbook

For example, for logically-deleteable entities, this super implementation defaults
the recordStatus to "active".

Note that this implementation of new instance defaults calls a new private setter
(setDateRange - this setter is not available in the entity API but is local to the
entity implementation class. (Recall that you do not want callers of your class to be
able to set its dates directly.)

The DateRange class contains the convenience method todayOnwards to return a
data range that starts on the current business date and has no end date specified.

Create a skeletal implementation of this private setters - you'll flesh it out later:

You want to implement setters

The problem
You have created a skeletal implementation for your entity. You now need to
implement setter methods.

How do you implement setters?

The solution
You must create implementations for your skeletal setter methods created above.
Each setter method is responsible for taking a value (either primitive or object)
supplied by calling code and setting one or more fields in an underlying Dtls
struct.

Our example requires these setters to be implemented:
v setName;
v setDateRange (private, not present in the entity interface);
v setType; and
v setMyParentEntity.

Note: In general the JavaDoc for your setter implementations can simply inherit
from your entity API JavaDoc.

Private setters must detail their own JavaDoc (as there is no API JavaDoc to inherit
from).

setName

The setter for the name field maps the value provided to the name field on the
Dtls struct. The setter must trim/compress white space and convert any null value
passed to an empty string:

public void setDateRange(DateRange value) {
// TODO Auto-generated method stub

}

Figure 98. Creating a skeletal implementation of a private setter method

Developing with the Persistence Infrastructure 55

The StringHelper class contains the convenience method trim which converts a
null to an empty string, trims white space from the ends of genuine strings passed
and compresses any contiguous embedded spaces down to a single space.

setDateRange

The setter for the date range field must set two values on the underlying Dtls
struct:

setType

The setter for the typeCode database column must convert the state supplied into
its codetable code for storage on the database:

setMyParentEntity

The setter for a related record must retrieve the object's ID and store it in the
appropriate field on the Dtls struct. A null value must be converted to zero:

/**
* {@inheritDoc}
*/
public void setName(final String value) {

getDtls().name = StringHelper.trim(value);
}

Figure 99. Implementation of a simple setter method

/**
* Sets the start and end fields from the date range supplied.
*
* @param value
* the date range supplied
*/
private void setDateRange(final DateRange value) {

getDtls().startDate = value.start();
getDtls().endDate = value.end();

}

Figure 100. Implementation of a setter method which sets multiple database column values from one object

/**
* {@inheritDoc}
*/
public void setType(final MYNEWENTITYTYPEEntry value) {

getDtls().typeCode = value.getCode();
}

Figure 101. Implementation of a setter which translates an codetable entry to a codetable code String value

56 IBM Cúram Social Program Management: Persistence Cookbook

Putting it all together
You now have a full set of implemented setter methods. Here's the code so far:

/**
* {@inheritDoc}
*/
public void setMyParentEntity(final MyParentEntity value) {

final long myParentEntityID;
if (value == null) {

myParentEntityID = 0;
} else {

myParentEntityID = value.getID();
}

getDtls().myParentEntityID = myParentEntityID;
}

Figure 102. Implementation of a setter which sets a related entity

Developing with the Persistence Infrastructure 57

package curam.mypackage;

import java.util.Set;

import com.google.inject.Inject;

import curam.mypackage.struct.MyNewEntityDtls;
import curam.util.exception.InformationalException;
import

curam.util.persistence.helper.SingleTableLogicallyDeleteableEntityImpl;
import curam.util.type.Date;
import curam.util.type.DateRange;
import curam.util.type.StringHelper;

/**
* Standard implementation of {@linkplain MyNewEntity}.
*/

public class MyNewEntityImpl extends
SingleTableLogicallyDeleteableEntityImpl<MyNewEntityDtls>
implements MyNewEntity {

@Inject
private MyParentEntityDAO myParentEntityDAO;

@Inject
private MyChildEntityDAO myChildEntityDAO;

protected MyNewEntityImpl() {
/* Protected no-arg constructor for use only by Guice */

}

/*
* Field getters
*/

/**
* {@inheritDoc}
*/
public String getName() {

return getDtls().name;
}

/**
* {@inheritDoc}
*/
public DateRange getDateRange() {

return new DateRange(getDtls().startDate, getDtls().endDate);
}

/**
* {@inheritDoc}
*/
public MYNEWENTITYTYPEEntry getType() {

return MYNEWENTITYTYPEEntry.get(getDtls().typeCode);
}

/*
* Related-entity getters
*/
/**
* {@inheritDoc}
*/
public Set<MyChildEntity> getMyChildren() {

return myChildEntityDAO.searchByParent(this);
}

/**
* {@inheritDoc}
*/
public MyParentEntity getMyParentEntity() {

final long myParentEntityID = getDtls().myParentEntityID;

if (myParentEntityID == 0) {

58 IBM Cúram Social Program Management: Persistence Cookbook

You want to implement single-field validation

The problem
You have created an implementation for your entity setters. You now need to
implement single-field validation logic.

How do you implement single-field validation logic?

The solution
Each field setter is responsible for ensuring that the value being set is appropriate.
In general, errors arising from single-field validation should be "accumulated"
using the InformationalManager, so that callers can be notified of all the
single-field validation errors found. This is particularly useful to online users who
may have entered several fields in error - if single-field validation errors are
reported one-by-one then it would be frustrating for the user to be presented with
a series of single-error messages instead of a list of all known single-field
validation errors.

One important corollary of this is that each field setter should only attempt to
validate the field being set. It should make no reference to other fields.

For the purposes of single-field validation, a field corresponds to the value received
by the setter. Generally, there is one setter per underlying database field; however,
in cases where database fields are grouped together (notably with DateRange), it is
the object received by the setter which is validated, not the individual underlying
database fields. In the case of a setDateRange method, it is the date range which is
validated. This single-field validation of the DateRange typically includes start/end
date validation which under classic Cúram would have been considered
"cross-field" validation.

One other point to note is that the validation of whether mandatory fields have
been set is deferred to a special "mandatory field validation" method (see “You
want to implement mandatory-field validation” on page 64 below); this is because
you cannot guarantee which (if any) setters have been called from calling code.

You must add single-field validation logic to the setters:
v setName;
v setDateRange; and
v setType; and
v setMyParentEntity.

setName

After analyzing requirements, you determine that the setter for the name must
validate that the name length is within acceptable bounds.

First create a message catalog:

Developing with the Persistence Infrastructure 59

Note that the validation messages for minimum/maximum length take as
argument the minimum/maximum lengths permitted, rather than hard-coding
these bounds into the messages.

Now code validation logic in the setter and raise errors using the ValidationHelper:

Note that:
v validation regarding whether the name has been set at all will occur during

mandatory-field validation; and
v constants for the maximum length of database text columns are automatically

generated into the entity adapter. These constants should be used in preference
to creating your own, as they will automatically be updated should the length of
the database column be customized (by changing the domain definition in the
model).

<?xml version="1.0" encoding="UTF-8"?>
<messages package="curam.message">

<message name="ERR_MY_NEW_ENTITY_FV_NAME_EMPTY">
<locale language="en">

The name must be specified.
</locale>

</message>
<message name="ERR_MY_NEW_ENTITY_FV_NAME_SHORT">

<locale language="en">
The name must be at least %1n characters.

</locale>
</message>
<message name="ERR_MY_NEW_ENTITY_FV_NAME_LONG">

<locale language="en">
The name must be no more than %1n characters.

</locale>
</message>

</messages>

Figure 104. Creating a message catalog with validation error messages

/**
* Minimum valid name length
*/
private static final long kMinimumNameLength = 3;

/**
* {@inheritDoc}
*/
public void setName(final String value) {

getDtls().name = StringHelper.trim(value);

final long nameLength = getDtls().name.length();
if (nameLength > 0 && nameLength < kMinimumNameLength) {

ValidationHelper.addValidationError(
MYNEWENTITYExceptionCreator

.ERR_MY_NEW_ENTITY_FV_NAME_SHORT(kMinimumNameLength));
} else if (nameLength > MyNewEntityAdapter.kMaxLength_name) {

ValidationHelper.addValidationError(
MYNEWENTITYExceptionCreator

.ERR_MY_NEW_ENTITY_FV_NAME_LONG(
MyNewEntityAdapter.kMaxLength_name));

}
}

Figure 105. Implementing single field validation logic

60 IBM Cúram Social Program Management: Persistence Cookbook

The ValidationHelper class contains the convenience method addValidationError to
format an error message and add it to the informational manager. It takes an
AppException or CatEntry (shown here). It also has a deprecated overload which
takes a String, which can be used as a "quick and dirty" way of writing error
messages:

You must convert these Strings to message catalog entries prior to testing and
release. This facility exists purely to minimize the "switching" you might have to
do between editing Java and editing/generating message files that you might
otherwise have to do when writing validation logic.

setDateRange

After analyzing requirements, you determine that the date range requires the
following validation logic:
v the range is valid (i.e. that the start date is not after the end date); and
v the start date has been specified (but the end date is optional, or, more to the

point, whether the end date is required is dependent on the value of other
fields).

The first of these is amenable to single-field validation; the second is more
appropriate for mandatory-field validation.

Code validation logic to use the standard validation message on DateRange:

The DateRange class contains the convenience method validateRange which
validates the start and end dates of the range and raises a standard error message
if the start date is after the end date. If you require a specific message, then use
DateRange.isValidRange instead.

/** **** Must be "cleaned up" prior to testing and release ** */
final long nameLength = getDtls().name.length();
if (nameLength > 0 && nameLength < kMinimumNameLength) {

ValidationHelper.addValidationError("Name too short!");
} else if (nameLength > MyNewEntityAdapter.kMaxLength_name) {

ValidationHelper.addValidationError("Name too long!");
}
/** **** Must be "cleaned up" prior to testing and release ** */

Figure 106. Using ValidationHelper to create temporary error messages

/**
* Sets the start and end fields from the date range supplied.
*
* @param value
* the date range supplied
*/
private void setDateRange(final DateRange value) {

getDtls().startDate = value.start();
getDtls().endDate = value.end();

value.validateRange();
}

Figure 107. Using DateRange to perform standard validation

Developing with the Persistence Infrastructure 61

setType

After analyzing requirements, you determine that the type field has no single-field
validation requirements. Mandatory field validation will be required to ensure that
the type has been set.

Note that the caller of this method must supply an instance of
MYNEWENTITYTYPEEntry, and will fail with a runtime error if it attempts to
retrieve an entry value which from a value which is not present in the
corresponding code table.

setMyParentEntity

After analyzing requirements, you determine that the parent entity ID field has no
single-field validation requirements. Mandatory field validation will be required to
ensure that the parent entity has been set.

Putting it all together
Here's the entity implementation code with the single-field validation logic:

62 IBM Cúram Social Program Management: Persistence Cookbook

package curam.mypackage;

import java.util.Set;

import com.google.inject.Inject;

import curam.message.impl.MYNEWENTITYExceptionCreator;
import curam.mypackage.struct.MyNewEntityDtls;
import curam.util.persistence.ValidationHelper;
import

curam.util.persistence.helper.SingleTableLogicallyDeleteableEntityImpl;
import curam.util.type.DateRange;
import curam.util.type.StringHelper;

/**
* Standard implementation of {@linkplain MyNewEntity}.
*/
public class MyNewEntityImpl extends

SingleTableLogicallyDeleteableEntityImpl<MyNewEntityDtls>
implements MyNewEntity {

@Inject
private MyParentEntityDAO myParentEntityDAO;

@Inject
private MyChildEntityDAO myChildEntityDAO;

/**
* Minimum valid name length
*/
private static final long kMinimumNameLength = 3;

protected MyNewEntityImpl() {
/* Protected no-arg constructor for use only by Guice */

}

/*
* Field getters
*/

/**
* {@inheritDoc}
*/
public String getName() {

return getDtls().name;
}

/**
* {@inheritDoc}
*/
public DateRange getDateRange() {

return new DateRange(getDtls().startDate, getDtls().endDate);
}

/**
* {@inheritDoc}
*/
public MYNEWENTITYTYPEEntry getType() {

return MYNEWENTITYTYPEEntry.get(getDtls().typeCode);
}

/*
* Related-entity getters
*/
/**
* {@inheritDoc}
*/
public Set<MyChildEntity> getMyChildren() {

return myChildEntityDAO.searchByParent(this);
}

/**
* {@inheritDoc}

Developing with the Persistence Infrastructure 63

You want to implement mandatory-field validation

The problem
Your entity is only valid if certain fields have values specified (commonly known
as "mandatory" fields).

How do you implement mandatory-field validation logic?

The solution
Each class that implements Validator (which MyNewEntityImpl does via
SingleTableEntityImpl) must implement standard methods for validation logic.

(Note that in general, implementation classes may implement Validator but that
entity APIs should not extend Validator - you do not want calling code to be able
to call validation methods directly.)

One of these Validator methods is mandatoryFieldValidation, where you must
place any logic which detects whether any field value has not been set. It is up to
your logic to determine how to detect whether or not a field value is "set"
(typically with reference to the defaulted values of the generated Dtls struct).

The persistence infrastructure automatically calls mandatoryFieldValidation prior to
any insert or modify operation (but not before a physical remove operation), and
fails the operation if any validation errors have been raised. These errors include
those raised by setter methods as well as by mandatoryFieldValidation. In
particular, processing will not proceed to cross-field or cross-entity validation if
any single-field or mandatory-field validation errors have been found.

Logic placed in mandatoryFieldValidation must consider each field on a
field-by-field basis; logic which checks one field value against another must instead
be placed in cross-field validation. In particular, the persistence infrastructure will
prevent any database access occurring during mandatoryFieldValidation.

After analyzing requirements, you determine that in order to be valid your entity
must always have the following specified:
v name;
v start date of the date range;
v type; and
v parent entity instance.

You add the following code to implement mandatoryFieldValidation:

64 IBM Cúram Social Program Management: Persistence Cookbook

Note that:
v the fields are tested sequentially, raising validation errors via ValidationHelper,

so that all errors are accumulated and reported in one "batch" to calling code;
v the StringHelper class contains the convenience method isEmpty to check

whether the string is empty or null;
v MYNEWENTITYTYPEEntry contains the generated constant NOT_SPECIFIED,

which is the value returned if a null or empty String is passed to
MYNEWENTITYTYPE.get; and

v the DateRange class contains the convenience method validateStarted which
raises a standard error message if no start date has been specified. If you require
a specialized message, use DateRange.isStarted instead.

You want to implement cross-field validation

The problem
Your entity is only valid if the data in certain groups of fields obeys business rules
(commonly known as "cross-field" validation).

How do you implement cross-field validation logic?

/**
* {@inheritDoc}
*/
public void mandatoryFieldValidation() {

/*
* Name cannot be empty
*/
if (StringHelper.isEmpty(getDtls().name)) {

ValidationHelper.addValidationError(
MYNEWENTITYExceptionCreator

.ERR_MY_NEW_ENTITY_FV_NAME_EMPTY());
}

/*
* Start date must be specified
*/
getDateRange().validateStarted();

/*
* Type must be specified
*/
if (getType().equals(MYNEWENTITYTYPEEntry.NOT_SPECIFIED)) {

ValidationHelper
.addValidationError("Type must be specified");

}

/*
* Parent entity instance must be specified
*/
if (getMyParentEntity() == null) {

ValidationHelper
.addValidationError(

"Parent entity instance must be specified"
);

}

}

Figure 109. Implementing mandatory field validation logic

Developing with the Persistence Infrastructure 65

The solution
Each class that implements Validator has a crossFieldValidation method where you
must place any logic which validates the value in one field against one or more
others.

If single-field and mandatory-field validation has succeeded, then the persistence
infrastructure automatically calls crossFieldValidation prior to any insert or modify
operation (but not before a physical remove operation), and fails the operation if
any validation errors have been raised. In particular, processing will not proceed to
cross-entity validation if any cross-field validation errors have been found. The
persistence infrastructure will prevent any database access occurring during
crossFieldValidation.

You want to implement cross-entity validation

The problem
Your entity is only valid if its data obeys business rules with regard to data on
other entities (commonly known as "cross-entity" validation).

How do you implement cross-entity validation logic?

The solution
Each class that implements Validator has a crossEntityValidation method where
you must place any logic which validates the value in your entity against data on
other entities.

If cross-field validation has succeeded, then the persistence infrastructure
automatically calls crossEntityValidation after any insert or modify operation (but
not after a physical remove operation), and fails the operation if any validation
errors have been raised. The persistence infrastructure permits database access
occurring during crossEntityValidation, so that your validation logic can retrieve
data on other entities required to implement the validation.

Creating a Guice module
In earlier chapters you saw how Guice's @ImplementedBy annotation is used to
designate the default implementation of an interface.

Guice has another more flexible configuration mechanism, namely a Guice Module
which you code yourself.

Moreover, the configuration that you place in a Guice Module takes precedence
over any @ImplementedBy annotations in the code, which allows you to configure
Guice to use your custom implementation instead of the default implementation.
This may be useful for customisation or testing purposes.

To create your own Guice Module, follow these steps:
v create a class extending AbstractModule; and
v store a row on ModuleClassName.

Create a class extending AbstractModule
Create a class as follows:

66 IBM Cúram Social Program Management: Persistence Cookbook

You can now add new Guice "bindings" to the configure method to override
default implementations:
@Override

public void configure() {
bind(MyNewEntity.class).to(MyCustomNewEntityImpl.class);

}

This configuration will cause Guice to dish up an instances of
MyCustomNewEntityImpl instead of the default implementation
(MyNewEntityImpl), whenever an MNewEntity interface instance is @Injected.

You will also add configuration code if your application uses events (see “Events”
on page 68).

Important: Each interface can only be bound to a single implementation. If the set
of runtime Guice modules attempts to bind the same interface more than once,
Guice will raise a runtime exception.

As such, code which is delivered to customers should not use this mechanism to
bind an interface to an implementation in any situation where the customer should
be permitted to specify their own binding for the interface.

Store a row on ModuleClassName
The Persistence Infrastructure reads from a database table named
ModuleClassName to identify Guice modules which should be loaded.

You must add a row to this database table with the name of your module. The
most straightforward way to do this is to use the Data Manager, by creating a
custom DMX file containing the row required:

package curam.mypackage;

import com.google.inject.AbstractModule;

/**
* Contains my Guice bindings.
*/
public class MyModule extends AbstractModule {

/**
* {@inheritDoc}
*/
@Override
public void configure() {

// no explicit bindings
}

}

Figure 110. Skeleton Guice Module

Developing with the Persistence Infrastructure 67

Events
The Persistence Infrastructure provides some helper classes which allow you to
raise and listen for events. You can define your own events or write listeners for
ones that are already defined "out-of-the-box".

Events can be a useful tool in removing an explicit dependency from one class (the
event raiser) to another (the event listener). If you require to add another listener
to an event, you can do so without having to "open up" the code that raises the
event - the event raiser and listener only depend on the event interface, not on
each other's implementation.

The Persistence Infrastructure supports:
v an instance of a class raising events declared on an interface;
v zero, one or more "listener" instances wired to listen for these events; and
v special classes of "persistence events" which are automatically raised for all

persistence operations, signalling when various standard operations are
performed on entities.

To implement events and listeners, follow these steps (described in detail below):
v identify where an event must be raised;
v define the Event interface;
v create an EventDispatcherFactory;
v raise events;
v create an event listener; and
v configure Guice.

After these steps there is a description of how to add a listener for generic
persistence events.

Identify where an event must be raised
Let's take as an example a simple class which has a simple method:

<?xml version="1.0" encoding="UTF-8"?>
<table name="ModuleClassName">

<column
name="moduleClassName"
type="text"

/>
<row>

<attribute name="moduleClassName">
<value>

curam.mypackage.MyModule
</value>

</attribute>
</row>

</table>

Figure 111. DMX file to create a row for your module on ModuleClassName

68 IBM Cúram Social Program Management: Persistence Cookbook

You decide that events should be raised:
v before doSomething performs its logic (preDoSomething); and
v after doSomething performs its logic (postDoSomething).

Define the Event interface
You must define an interface to contain your event methods.

The event interface will be:
v used by the event source to raise events; and
v implemented by event listeners to listen to and react to events.

Note that we are using the word "interface" loosely here. A very important
consideration is whether you might ever change the event interface to create
additional methods. If you do, all existing implementations of the interface are
forced to implement the new methods. In this case, you are strongly advised to use
abstract classes rather than Java interfaces. These classes should provide empty
implementations of event methods, rather than declare them abstract, so that
newly added methods do not cause compilation problems for existing
implementations. This approach also means that you can group many related
events together in a single abstract class declaration, knowing that only those
methods of interest to a particular customer need to be implemented, since default
empty implementations for all methods are inherited.

The event interface is typically public so that class in any code package can listen
to its events. The interface can be created as an inner interface, in which case it can
simply be named Event without fear of name collision with other event interfaces.
Typically your entity implementations are package-protected, and so the event
interface should be declared as an inner interface of your entity's public interface.
However, here for brevity an inner interface is shown declared on the simple class:

package curam.mypackage;

public class MyEventSource {

public void doSomething() {

// do whatever it is that needs to be done
System.out.println("Do something!");

}

}

Figure 112. A simple class which performs an action

Developing with the Persistence Infrastructure 69

You must carefully think about the signature of your event methods. The event
method is free to pass any number of parameters and/or throw exceptions; note
though that the EventDispatcherFactory (see below) ignores any return values, so if
you require listeners to return a value then you have to supply your own custom
event dispatch logic.

Because each listener is a single instance, typically each event method should pass
the instance which raised the event, so that the listener can identify the source of
the event. In the example both preDoSomething and postDoSomething take an
instance of MyEventSource, namely the instance which raised the event.

Create an EventDispatcherFactory
Your class needs a mechanism for dispatching events to listeners.

Create an instance of EventDispatcherFactory parameterized with your Event
interface:

package curam.mypackage;

public class MyEventSource {
public abstract class Event {

public void preDoSomething(MyEventSource raiser) {
// intentionally empty

}

public void postDoSomething(MyEventSource raiser) {
// intentionally empty

}
}

public void doSomething() {

// do whatever it is that needs to be done
System.out.println("Do something!");

}

}

Figure 113. Defining the Event interface

70 IBM Cúram Social Program Management: Persistence Cookbook

Raise events
You must now raise events at appropriate points in the class's logic. Retrieve an
instance of your dispatcher to call the methods on your Event interface:

package curam.mypackage;

import com.google.inject.Inject;

import curam.util.persistence.helper.EventDispatcherFactory;

public class MyEventSource {

public abstract class Event {
public void preDoSomething(MyEventSource raiser) {

// intentionally empty
}

public void postDoSomething(MyEventSource raiser) {
// intentionally empty

}
}

@Inject
private EventDispatcherFactory<Event> dispatcher;

public void doSomething() {

// do whatever it is that needs to be done
System.out.println("Do something!");

}

}

Figure 114. Creating an EventDispatcherFactory

Developing with the Persistence Infrastructure 71

Note how the dispatcher.get method took the class of the Event interface as a
parameter. Calling this method returned an event "multiplexer" instance on which
any method call will be dispatched to each of the registered listeners for that event
interface.

This completes the coding to raise events. You can now move on to create listeners.

Create an event listener
You can create as many event listener classes as you require. These classes can be
in any code package and each event listener can react to the event in its own way.

package curam.mypackage;

import com.google.inject.Inject;

import curam.util.persistence.helper.EventDispatcherFactory;

public class MyEventSource {

public abstract class Event {
public void preDoSomething(MyEventSource raiser) {
// intentionally empty
}

public void postDoSomething(MyEventSource raiser) {
// intentionally empty
}

}

@Inject
private EventDispatcherFactory<Event> dispatcher;

public void doSomething() {
// notify listeners that something is about to happen

dispatcher.get(Event.class).preDoSomething(this);
// do whatever it is that needs to be done

System.out.println("Do something!");
// notify listeners that something has just been done

dispatcher.get(Event.class).postDoSomething(this);
}

}

Figure 115. Raising events

72 IBM Cúram Social Program Management: Persistence Cookbook

Note that the listener class implements the Event interface from the event source,
and uses the event methods to respond to the events as required.

You have created a listener class which will listen for events raised from
MyEventSource instances. However, in order for these events to be dispatched to
your listener instance, you must first perform some Guice configuration.

Configure Guice
You must add code to the configure method of your Guice Module (see “Creating
a Guice module” on page 66) to "wire" your listeners to your events.

Note that no Guice configuration is required to simply declare an event interface
and dispatch events on it. Configuration is only required for implementations of
the event interface. You need similar configuration for each implementation of the
event interface, although this can be split across as many Guice modules as you
want. The Multibinder syntax in the figure below ensures that no matter how
many implementations and modules you provide, they all end up in the same set
of event listeners.

package curam.mypackage;

import com.google.inject.Singleton;

@Singleton
final class MyListener implements

curam.mypackage.MyEventSource.Event {

protected MyListener() {
// Protected constructor for use only by Guice

}

@Override
public void preDoSomething(final MyEventSource raiser) {

System.out
.println("preDoSomething event was raised from object "

+ raiser);

}

@Override
public void postDoSomething(final MyEventSource raiser) {

System.out
.println("postDoSomething event was raised from object "

+ raiser);

}

}

Figure 116. Creating an event listener class

Developing with the Persistence Infrastructure 73

The wiring is now complete, and a call to MyEventSource.doSomething() will
result in output resembling the following:
preDoSomething event was raised from

object curam.mypackage.MyEventSource@125d06e
Do something!
postDoSomething event was raised from

object curam.mypackage.MyEventSource@125d06e

Writing listeners for automatic persistence events
The Persistence Infrastructure provides automatically dispatched events for all
entity classes. To use these events all you need to do is write event listeners and
wire them using Guice, very much as described in the previous section. The event
interface for persistence events differs from the previous example in that it is a
parameterized abstract class called PersistenceEvent, which takes the name of the
entity as a type parameter.

See the Javadoc for the PersistenceEvent class for a complete list of methods.
Default empty implementations are provided for all event methods. In the example
following, a listener is written which implements just the postInsert method of
PersistenceEvent for an entity called MyEntity:

@Override
public void configure() {

/*
* Get the listener set
*/
Multibinder<MyEventSource.Event> myEventListeners = Multibinder

.newSetBinder(binder(), MyEventSource.Event.class);
/*
* Add a listener
*/
myEventListeners.addBinding().to(MyListener.class);

}

Figure 117. Adding wiring

package curam.mypackage;

import com.google.inject.Singleton;
import curam.util.persistence.PersistenceEvent;

@Singleton
final class MyListener implements

PersistenceEvent<MyEntity> {

protected MyListener() {
// Protected constructor for use only by Guice

}

@Override
public void postInsert(final MyEntity entity) throws

InformationalException, AppException {
// handle the event here

}

}

Figure 118. Creating a persistence event listener class

74 IBM Cúram Social Program Management: Persistence Cookbook

As for other events, you have to wire your listener implementation in a Guice
module:

Design Considerations with Events
Some things to think about when defining events or writing listeners for them:
v Like any other class or interface in Java, it is possible to create package-protected

event interfaces. This allows you to use Events in your design, without making
them freely available to all API clients.

v It is more efficient to implement a listener class as a singleton (either using the
@Singleton Guice annotation on the class, or binding the class in singleton scope
in the Guice module). Singletons need to be implemented in a thread-safe way,
but even if you don't use singletons you should still assume that your listener
should be thread-safe, since the safety requirements are imposed by the class
which raises events. In short, unless an Event interface is documented as not
requiring thread-safe listeners, you should assume thread-safety is required.

v It will rarely be appropriate for your listener methods to modify arguments
passed to them. Remember that the same arguments are passed to all listeners,
and that furthermore you have no control over the order in which different
registered listeners will be called. Changing the contents of a listener method
parameter (for instance, calling mutator methods on it) can have negative
consequences and cause unexpected results or violate validation requirements.
Unless an Event interface documents what can validly be changed, assume
nothing can.

Backward compatibility
Previous versions of the Persistence Infrastructure provided event dispatching
functionality via the EventDispatcher and StandardEventDispatcher classes. These
provided similar functionality but were harder to configure. Their use is now
deprecated but they are still supported for backward compatibility. The approach
described in this chapter is recommended for all new event handling.

Using Entity Context
The Persistence Infrastructure allows you to add additional information to any
entity instance at runtime. This facility has a number of possible uses which are
described later. First we describe the facility and how to use it.

@Override
public void configure() {

/*
* Get the listener set
*/
Multibinder<PersistenceEvent<MyEntity>> myEventListeners =

Multibinder.newSetBinder(binder(),
new TypeLiteral<PersistenceEvent<MyEntity>>() { /**/ });

/*
* Add a listener
*/
myEventListeners.addBinding().to(MyListener.class);

}

Figure 119. Adding wiring for persistence event listeners

Developing with the Persistence Infrastructure 75

The Problem
You want to attach additional information to an entity instance at runtime, so that
it is available to event handlers and other custom code. However, the entity
interface itself is not easily customizable.

The Solution
Use Entity Context. Every entity instance allows you to attach additional context
information. In fact, you can store a whole variety of different types of
information, indexed by the class of the information.

In practice the context information is stored in a ContextContainer which is
essentially a Map attached to the entity. The key of the Map is the Java Class of the
stored information:

As will be clear from the code above, you can only have one String value stored at
any given time in the entity context. It is up to you to make sure that you "own"
any class that you use as context on an entity, and that it will not interfere with
other customizations. In practice, it may be wise to define your own classes for use
as context, rather than using built-in classes such as String.

What if you want to store a set or a list as context? The Java List is a built-in class,
and there are no class literals for Lists of your own types, i.e. no
List<MyClass>.class. You can use a TypeLiteral as a key in this case, and it will be
distinct from Lists of any other type which may also be stored in the entity
context:

The ContextContainer class lets you retrieve, set, or remove context information by
Class or by TypeLiteral. When you set the contents of the context container (using
the ContextContainer.put(Class) method) the previous contents of the context
container for that class, if any, are returned.

...
void someMethod(MyEntity entity) {

// Get the string stored in the entity’s context:
String s = entity.getContextContainer().get(String.class);
System.out.println(s);

// Store an updated string in the entity context:
s += " longer context";
entity.getContextContainer().put(String.class, s);

}

Figure 120. Manipulating entity context

...
void someMethod(MyEntity entity) {

// Get the List<MyClass> stored in the entity’s context:
TypeLiteral<List<MyClass>> type =

new TypeLiteral<List<MyClass>>() { /**/ };
List<MyClass> list = entity.getContextContainer().get(type);
System.out.println(list);

}

Figure 121. Manipulating parameterized types in context

76 IBM Cúram Social Program Management: Persistence Cookbook

Customising Inserts using entity context
A common customisation pattern is that you want to store additional information
on the application database whenever a Cúram entity is inserted. In "classic"
Cúram you might have extended the out-of-the-box entity but this is discouraged
for code constructed using Persistence Infrastructure because of the undesirable
dependencies it creates between custom code and out-of-the-box code. Instead,
you'll create a whole separate entity that gets updated in synch with the original.

Let's take a typical use case. A method of a façade class is called by the Cúram
client to insert data collected on a UIM page. The façade method gets data from its
parameters, and invokes service layer APIs to create a new entity instance and
persist it. You want to collect additional information and persist it on a new entity
along with the original, using the same primary key value.

The initial steps you will take are as follows, and are the same as described for
"classic" Cúram code in the Cúram Server Developer's Guide:
v customize the relevant UIM page to add new fields;
v make corresponding changes to the façade method parameters to add new

attributes;
v subclass the façade and override the particular method in question;

The remaining steps are particular to code using the Persistence Infrastructure:
v define a new entity to store the additional attributes;
v store additional attributes collected in the façade as entity context;
v write a listener for insert events on the original entity (as described in the earlier

chapter on Events), and have its implementation insert on the new entity using
the stored entity context information;

v register the listener.

Here's how that works in practice. In order to keep the program listings concise we
assume that you've already declared a new "classic" entity called
MyAdditionalEntity and have extended the façade parameters to take the new
details.

Here's the original façade:

Developing with the Persistence Infrastructure 77

Here's our override of the façade:

Here's our listener for inserts on the original entity. Note the handling when we
find that no entity context has been passed. This is a design decision that must be
made in each case - do we store blank additional details, or do we store nothing. If
we choose to store nothing, then the application must know how to handle the
situation later when we retrieve an entity and there are no additional details to be
read.

Of course we know that there will always be context if the insert that is occurring
was triggered via the façade we've just customized. But we always have to cater
for the situation where the insert is occurring on code other than our façade.

...
public class MyFacade {

@Inject
protected MyEntityDAO myEntityDAO;

public void createMyEntity(final MyEntityDetails details) throws
AppException, InformationalException {

MyEntity myEntity = myEntityDAO.newInstance();
setDetails(myEntity, details.dtls);
myEntity.insert();

}

protected void setDetails(final MyEntity e,
final MyEntityDtls dtls)
throws AppException, InformationalException {

e.setFirstname(dtls.firstname);
e.setSurname(dtls.surname);

}

}

Figure 122. A façade which stores MyEntity

...
public class MyCustomFacade extends

curam.custom.facade.base.MyCustomFacade {

@Override
public void createMyEntity(final MyEntityDetails details)

throws AppException, InformationalException {
MyEntity myEntity = myEntityDAO.newInstance();
setDetails(myEntity, details.dtls);

/*
* Store additional details in entity context
*/
myEntity.getContextContainer().put(MyAdditionalEntityDtls.class,

details.additionalDtls);
myEntity.insert();

}

}

Figure 123. A façade subclass which uses entity context

78 IBM Cúram Social Program Management: Persistence Cookbook

Here's how we register our listener:

In summary, what we've done is to provide a listener which receives insert events
for one entity and performs inserts on another, supplemental entity. The data for
the supplemental entity was piggybacked on "entity context", and will normally

@Singleton
class MyEntityListener extends PersistenceEvent<MyEntity> {

/**
* After MyEntity is inserted, also insert MyAdditionalEntity.
*/
@Override
public void postInsert(final MyEntity e) throws AppException,

InformationalException {

/*
* Retrieve the stored details from entity context
*/
MyAdditionalEntityDtls dtls = e.getContextContainer().get(

MyAdditionalEntityDtls.class);

/*
* Note - don’t store null details; on reads, the application
* must handle having no additional details for a MyEntity
* instance
*/
if (dtls != null) {

/*
* Use same id as original entity
*/
dtls.id = e.getID();

/*
* Insert additional details
*/
MyAdditionalEntity additionalEntity =

MyAdditionalEntityFactory.newInstance();

additionalEntity.insert(dtls);
}

}
}

Figure 124. A listener for inserts on MyEntity

public class MyModule extends AbstractModule {

@Override
protected void configure() {

/*
* Get the listener set
*/
Multibinder<PersistenceEvent<MyEntity>> myEventListeners =

Multibinder.newSetBinder(binder(),
new TypeLiteral<PersistenceEvent<MyEntity>>() {/**/});

/*
* Add a listener
*/
myEventListeners.addBinding().to(MyEntityListener.class);

}
}

Figure 125. A Guice module to register the listener in the previous listing

Developing with the Persistence Infrastructure 79

have been provided via a façade. However, it's important to note that this listener
pattern works no matter where the insert was invoked from, although you'll find
you have to decide how to handle the situation where an insert was performed but
no entity context was provided.

Customising Reads using entity context
If you've customized an entity Insert to store additional information, you'll
typically want to also customize the Read operation to retrieve the additional
attributes. This is very much like the Insert operation in reverse. You'll do the
following:
v retrieve additional attributes from entity context and return them from your

subclassed façade method;
v write a listener for read events on the original entity and have its

implementation read from the new entity, storing the results in entity context for
use by the façade;

v register the listener.

Note that in the sample code that follows, the facade and listener classes can be
the same classes as from our Insert example. We're just looking at different
methods. By the same token, if you just have a single Listener class to handle both
Insert and Read then you only have to do the Listener registration once. Here's
how it all looks in practice. As before, we're assuming that you've already declared
a new "classic" entity called MyAdditionalEntity and have extended the façade
parameters to take the new details.

Here's the original façade:

Here's our override of the façade:

...
public class MyFacade {

@Inject
protected MyEntityDAO myEntityDAO;

public MyEntityDetails readMyEntity(final MyEntityKey key)
throws AppException, InformationalException {

MyEntityDetails details = new MyEntityDetails();
MyEntity myEntity = myEntityDAO.get(key.id);
getDetails(myEntity, details.dtls);
return details;

}

protected void getDetails(final MyEntity myEntity,
final MyEntityDtls dtls)
throws AppException, InformationalException {

dtls.firstname = myEntity.getFirstname();
dtls.surname = myEntity.getSurname();

}

}

Figure 126. A façade which reads MyEntity

80 IBM Cúram Social Program Management: Persistence Cookbook

Here's our listener for reads on the original entity. Note, we're assuming that there
will always be a corresponding record on the new entity. Your design may have to
cater for the situation where this is not the case.

Here's how we register our listener. Note that if you combined the listener from
the Insert example and the Read example into a single listener class, you won't
need this step. You only register each listener class once:

...
public class MyCustomFacade extends

curam.custom.facade.impl.MyFacade {

@Override
public MyEntityDetails readMyEntity(final MyEntityKey key)

throws AppException, InformationalException {
MyEntityDetails details = new MyEntityDetails();
MyEntity myEntity = myEntityDAO.get(key.id);
getDetails(myEntity, details.dtls);

/*
* Retrieve additional details from entity context
*/
details.additionalDtls = myEntity.getContextContainer().get(

MyAdditionalEntityDtls.class);

return details;
}

}

Figure 127. A façade subclass which uses entity context

@Singleton
class MyEntityListener extends PersistenceEvent<MyEntity> {

/**
* After MyEntity is read, also read MyAdditionalEntity.
*/
@Override
public void postRead(final MyEntity e) throws AppException,

InformationalException {
/*
* Read additional details from database
*/
MyAdditionalEntity additionalEntity = MyAdditionalEntityFactory

.newInstance();
MyAdditionalEntityKey key = new MyAdditionalEntityKey();
key.id = e.getID();
MyAdditionalEntityDtls dtls = additionalEntity.read(key);
/*
* Store additional details in entity context
*/
e.getContextContainer().put(MyAdditionalEntityDtls.class, dtls);

}
}

Figure 128. A listener for reads on MyEntity

Developing with the Persistence Infrastructure 81

In summary, we've created a listener which receives read events for one entity and
performs reads on another, supplemental entity. The data from the supplemental
entity is piggybacked on "entity context", and is available to a façade method
which returns the details to a client.

Customising other operations using entity context
We've shown how to customize entity Insert and Read operations to handle
additional data. It is just as easy to handle additional data with other operation
types using very similar approaches.

For modifications on an entity, perform the same façade-level customizations, and
handle the PersistenceEvent.postModify(ENTITY) event.

There are also persistence events for readmulti, remove, and cancel operations.

State Transitions
The Persistence Infrastructure provides support for implementing entities which
are state machines. These entities each have their own "lifecycle", and the state of a
particular entity instance is held in a database column.

Typically, the state of an entity instance may be retrieved, but changes to the state
must be controlled through specialized methods.

This chapter explains how to implement an entity which has a state-based lifecycle.

The problem
Let's take an example: you analyze requirements to determine that your entity
should support the following state transitions:

public class MyModule extends AbstractModule {

@Override
protected void configure() {

/*
* Get the listener set
*/
Multibinder<PersistenceEvent<MyEntity>> myEventListeners =

Multibinder.newSetBinder(binder(),
new TypeLiteral<PersistenceEvent<MyEntity>>() {/**/});

/*
* Add a listener
*/
myEventListeners.addBinding().to(MyEntityListener.class);

}
}

Figure 129. A Guice module to register the listener in the previous listing

82 IBM Cúram Social Program Management: Persistence Cookbook

Moreover, each of these transitions has its unique validation, data manipulation
and notification requirements.

The solution
You must follow these steps to implement state transitions using the Persistence
Infrastructure helper classes:
v Specify states;
v Specify storage mechanism for the state value;
v Identify transition methods;
v Implement getLifecycleState;
v Create a map to hold the permitted states;
v Create an object for each state;
v Create an object for each permitted transition;
v Create a private getter to retrieve the current State;
v Create a private setter to set the current State;
v Create a private helper method to perform a state transition;
v Implement state transition methods;
v Specify the initial state;
v Add state transition validation logic; and
v Override the modify method (if required).

Figure 130. State transition diagram for the example cookbook code

Developing with the Persistence Infrastructure 83

Specify states
Firstly you must identify the possible states of your entity. The possible states are:
v open;
v suspended; and
v closed.

Specify storage mechanism for the state value
Your entity must store its state in some form. A typical storage mechanism is to
enumerate the states in a codetable and store the code's String value on a database
column.

In this example, you'll enumerate these states in a new codetable called
MYLIFECYCLEENTITYSTATE, and present the value as an instance of the
generated MYLIFECYCLEENTITYSTATEEntry class.

Create the codetable:

84 IBM Cúram Social Program Management: Persistence Cookbook

Now mark your entity's interface to extend the Lifecycle interface, parameterized
with the data type used to present the state (in this case,
MYLIFECYCLEENTITYSTATEEntry):

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.mypackage.codetable">

<codetable
java_identifier="MYLIFECYCLEENTITYSTATE"
name="MYLIFECYCLEENTITYSTATE"

>
<code

default="false"
java_identifier="OPEN"
status="ENABLED"
value="OPEN"

>
<locale

language="en"
sort_order="0"

>
<description>Open</description>
<annotation/>

</locale>
</code>
<code

default="false"
java_identifier="SUSPENDED"
status="ENABLED"
value="SUSPENDED"

>
<locale

language="en"
sort_order="0"

>
<description>Suspended</description>
<annotation/>

</locale>
</code>
<code

default="false"
java_identifier="CLOSED"
status="ENABLED"
value="CLOSED"

>
<locale

language="en"
sort_order="0"

>
<description>Closed</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Figure 131. Creating a code table file listing the states of an entity

/**
* Description of my state-machine entity.
*/
@ImplementedBy(MyLifecycleEntityImpl.class)
public interface MyLifecycleEntity extends StandardEntity,

Lifecycle<MYLIFECYCLEENTITYSTATEEntry>

Figure 132. Extending the Lifecycle interface

Developing with the Persistence Infrastructure 85

Identify transition methods
Typically an entity must carefully control its transitions between states. As such, it
is often better to create specialized methods for state transitions rather than expose
a setState method. Typically the name of each specialized method will reflect the
state being transitioned to.

Since a state-transition method will modify the entity's data on the database, each
such method should take the entity's version number (assuming that the entity
supports optimistic locking). Each specialized method is free to specify additional
arguments which may be required, e.g.:
v suspend (taking a suspension reason);
v resume (no arguments); and
v close (taking the end date of the entity).

Suspend

Resume

/**
* Suspends business pending investigation.
*
* Transitions the state to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#SUSPENDED}, if it is
* valid to suspend.
*
* @param reason
* the reason for suspension
*
* @param versionNo
* the version number as previously retrieved
*
* @throws InformationalException
* if the entity is not in a valid state to transition
* to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#SUSPENDED},
* or if any other validation errors are found
*/

public void suspend(final String reason, final int versionNo)
throws InformationalException;

Figure 133. Interface declaration of a "suspend" state transition method

/**
* Resumes business following a suspension investigation resulting
* in acquittal.
*
* Transitions the state to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#OPEN}, if it is valid
* to resume business.
*
* @param versionNo
* the version number as previously retrieved
*
* @throws InformationalException
* if the entity is not in a valid state to transition
* to {@linkplain MYLIFECYCLEENTITYSTATEEntry#OPEN}, or
* if any other validation errors are found
*/

public void resume(final int versionNo)
throws InformationalException;

Figure 134. Interface declaration of a "resume" state transition method

86 IBM Cúram Social Program Management: Persistence Cookbook

Close

Implementations of these methods are free to perform method-specific validations
and notifications, e.g. whenever suspend is called, to notify an investigations
worker to launch an investigation.

Note that this approach of having specialized methods (e.g. controlling the setting
of state and endDate through the close method) is far "cleaner" than an alternative
approach of allowing a public setter methods for setEndDate and setState and
having complex validation to ensure that whenever the state is modified (by
calling code), that the endDate is set.

Implement getLifecycleState
You must implemented a getLifecycleState method, as required by the Lifecycle
interface:

Create a map to hold the permitted states
Each state will be represented by an instance of the State helper class.

You must create a map to hold your entity's State instances:

/**
* Ceases business with the agency.
*
* Transitions the state to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#CLOSED}, if it is
* valid to cease conducting business.
*
* @param endDate
* the date on which business with the agency was ceased
*
* @param versionNo
* the version number as previously retrieved
*
* @throws InformationalException
* if the entity is not in a valid state to transition
* to {@linkplain MYLIFECYCLEENTITYSTATEEntry#CLOSED},
* or if any other validation errors are found
*/

public void close(final Date endDate, final int versionNo)
throws InformationalException;

Figure 135. Interface declaration of a "close" state transition method

/**
* {@inheritDoc}
*/
public MYLIFECYCLEENTITYSTATEEntry getLifecycleState() {

return MYLIFECYCLEENTITYSTATEEntry.get(getDtls().state);
}

Figure 136. Implementing getLifecycleState

/**
* A map of the states for this entity
*/
private final Map<MYLIFECYCLEENTITYSTATEEntry,

State<MYLIFECYCLEENTITYSTATEEntry>> states =
new HashMap<MYLIFECYCLEENTITYSTATEEntry,
State<MYLIFECYCLEENTITYSTATEEntry>>();

Figure 137. A map of permitted states

Developing with the Persistence Infrastructure 87

Create an object for each state
Each permitted state for your class is represented by an instance of the State>
helper class. Here you'll use the CodetableState> helper class:

Each State object is an anonymous class, constructed with:
1. the map to which the object will be added (states);
2. the value used to identify the state object in the map (typically, the code table

entry value);
3. whether the entity may be modified when in this state; and
4. whether the entity may be removed when in this state.

Note: There is no automatic processing surrounding the use of the "entity may be
modified/removed" values.

If you require to prevent modifications or removals when your entity is in a
particular state, you must override the modify and/or remove methods as
appropriate, and in them put validation logic which may make use of calls to
State.isModifyAllowed or State.isRemoveAllowed as appropriate.

See “Override the modify method (if required)” on page 92 below.

Create an object for each permitted transition
Each permitted transition between states is represented by an instance of the
Transition helper class.

From the state-transition diagram, you can see that the following transitions are
required:
v from open to closed;
v from open to suspended;
v from suspended back to open; and
v from suspended to closed.

/**
* Actively conducting business with the agency.
*/
private final State<MYLIFECYCLEENTITYSTATEEntry> OPEN =

new CodetableState<MYLIFECYCLEENTITYSTATEEntry>(
states, MYLIFECYCLEENTITYSTATEEntry.OPEN, true, true) {

};

/**
* Business has been suspended pending investigation.
*/
private final State<MYLIFECYCLEENTITYSTATEEntry> SUSPENDED =

new CodetableState<MYLIFECYCLEENTITYSTATEEntry>(
states, MYLIFECYCLEENTITYSTATEEntry.SUSPENDED, true, false) {

};

/**
* No longer conducting business with the agency.
*/
private final State<MYLIFECYCLEENTITYSTATEEntry> CLOSED =

new CodetableState<MYLIFECYCLEENTITYSTATEEntry>(
states, MYLIFECYCLEENTITYSTATEEntry.CLOSED, false, false) {

};

Figure 138. Creating an object for each permitted state

88 IBM Cúram Social Program Management: Persistence Cookbook

Each Transition object is an anonymous class, constructed with:
1. the State being exited (i.e. transitioned from); and
2. the State being entered (i.e. transitioned to).

Note: Specifying the set of permitted transitions is typically more straightforward
than crafting logic to prevent unsupported transitions from occurring.

You do not need to specify a transition to the initial state - the initial state will be
specified in setNewInstanceDefaults (see below).

Create a private getter to retrieve the current State
This method retrieves the State object representing the entity's current state. Note
that the method is private, as the State object is not exposed outside of the entity -
callers which require to know the entity's state must use getLifecycleState instead.

The relevant State object is retrieved by looking it up in the map of states.

Create a private setter to set the current State
This method sets the entity's state value from a State object. Note that the method
is private.

private final Transition<MYLIFECYCLEENTITYSTATEEntry>
OPEN2CLOSED =
new Transition<MYLIFECYCLEENTITYSTATEEntry>(

OPEN, CLOSED) {
};

private final Transition<MYLIFECYCLEENTITYSTATEEntry>
OPEN2SUSPENDED =
new Transition<MYLIFECYCLEENTITYSTATEEntry>(

OPEN, SUSPENDED) {
};

private final Transition<MYLIFECYCLEENTITYSTATEEntry>
SUSPENDED2OPEN =
new Transition<MYLIFECYCLEENTITYSTATEEntry>(

SUSPENDED, OPEN) {
};

private final Transition<MYLIFECYCLEENTITYSTATEEntry>
SUSPENDED2CLOSED =
new Transition<MYLIFECYCLEENTITYSTATEEntry>(

SUSPENDED, CLOSED) {
};

Figure 139. Creating an object for each permitted transition

/**
* @return The State object representing the current state of
* this entity
*/

private State<MYLIFECYCLEENTITYSTATEEntry> getState() {
return states.get(getLifecycleState());
}

Figure 140. Creating a private getter to retrieve the current State

Developing with the Persistence Infrastructure 89

Create a private helper method to perform a state transition
You must create a helper method which performs the state transition.

Points to note:
v the validation of whether the transition is permitted is performed by the

State.transitionTo method (i.e. in the line oldState.transitionTo(newState); in the
figure above). See below for how to add your own validation logic; and

v your entity may have overridden the modify method to add validation to be
applied when calling code invokes modify - often this logic is inappropriate to
state transitions, and so typically the storage of a state change is accomplished
by a call to super.modify (as shown in the figure above) rather then this.modify.

/**
* Sets the state codetable code field from the State object
* supplied.
*
* @param value
* the State supplied
*/

private void setState(
final State<MYLIFECYCLEENTITYSTATEEntry> state) {
getDtls().state = state.getValue().getCode();
}

Figure 141. Creating a private setter to set the current State

/**
* Transitions this entity to the new state specified.
*
* @param newState
* the state to transition to
* @param versionNo
* the version number of this entity as previously
* retrieved
* @throws InformationalException
* if validation errors occur during the transition
*/

private void transitionTo(
final State<MYLIFECYCLEENTITYSTATEEntry> newState,
final Integer versionNo) throws InformationalException {

// get the current state of this entity
final State<MYLIFECYCLEENTITYSTATEEntry> oldState =

getState();

// set the field which stores the state value
setState(newState);

// validate the state transition
oldState.transitionTo(newState);

// update the database, bypassing any pre-modify validation
// in this class
super.modify(versionNo);
}

Figure 142. Creating a private helper method to perform a state transition

90 IBM Cúram Social Program Management: Persistence Cookbook

Implement state transition methods
Now you can code the implementations of your specialized state transition
methods:

These methods are publicly visible and callable through the entity's interface. Note
that in the figure above, additional setter methods (setEndDate and
setSuspensionReason) are assumed.

Specify the initial state
You must specify the initial state for new instances of your entity:

Note: If you find that new instances have a number of possible initial states, then
consider whether:
v calling code should be responsible for creating a new instance of your entity

with a default state, and then immediately transitioning it to the required state;
or

/**
* {@inheritDoc}
*/
public void close(Date endDate, int versionNo)

throws InformationalException {
// store the date of closure
setEndDate(endDate);

// transition to "closed"
transitionTo(CLOSED, versionNo);

}

/**
* {@inheritDoc}
*/
public void resume(int versionNo) throws InformationalException {

// blank the suspension reason
setSuspensionReason(null);

// transition to "open"
transitionTo(OPEN, versionNo);

}

/**
* {@inheritDoc}
*/
public void suspend(String reason, int versionNo)

throws InformationalException {
// store the suspension reason
setSuspensionReason(reason);

// transition to "suspended"
transitionTo(SUSPENDED, versionNo);

}

Figure 143. Implementing state transition methods

/**
* Defaults the state to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#OPEN}.
*/

public void setNewInstanceDefaults() {
setState(OPEN);
}

Figure 144. Specifying the initial state

Developing with the Persistence Infrastructure 91

v you are trying to force logically different concepts to be stored on the same
physical entity, and perhaps should instead consider using inheritance/
polymorphism to separate out different behavior.

Add state transition validation logic
The CodetableState and Transition helper classes provide the following standard
validation to disallow any transition which is not explicitly specified. For example,
the state transition diagram does not permit an entity instance in the closed state
to transition to any other state; by default, any attempts to.suspend() an entity
instance which is currently closed will result in this error being raised: Cannot
transition from 'Closed' to 'Suspended'.

You can add logic (typically to perform validations and/or notifications) to the
following places:
v in your State objects:

– onEnter - this method is called whenever a transition occurs which attempts
to enter this State;

– onLeave - this method is called whenever a transition occurs which attempts
to leave this State; and

– onUnsupportedTransitionFrom - this method is called whenever an
unsupported transition is attempted which attempts to transition to this State
from the one specified; by default, the CodetableState helper class raises a
default message, but you are free to provider your own validation/
notification logic; and

v in your Transition objects:
– onTransition - this method is called whenever this Transition occurs.

See the Javadoc for the State, CodetableState and Transition helper classes for more
information.

For example, if you want your logic to send an email whenever your entity is
closed (regardless of whether it was previously open or suspended), override the
onEnter method of your CLOSED state:

Override the modify method (if required)
If you require logic to prevent modifications to the entity if it is in an
inappropriate state, then you must override your entity's modify method:

/**
* No longer conducting business with the agency.
*/

private final State<MYLIFECYCLEENTITYSTATEEntry> CLOSED =
new CodetableState<MYLIFECYCLEENTITYSTATEEntry>(
states, MYLIFECYCLEENTITYSTATEEntry.CLOSED, false, false) {

@Override
protected void onEnter() {
// whenever the entity is closed, send an email
sendClosureEmail();
}

};

Figure 145. Adding state transition validation logic

92 IBM Cúram Social Program Management: Persistence Cookbook

Note: Only explicit calls to your entity's modify method (e.g. through its interface)
will hit this logic - state transitions will typically call super.modify directly and
thus bypass this logic.

Putting it all together
Here are full listings of the entity interface and implementation example used in
this chapter:

/**
* {@inheritDoc}
*/
@Override
public void modify(Integer versionNo)

throws InformationalException {

if (!getState().isModifyAllowed()) {
ValidationHelper

.addValidationError(
"You are not allowed to modify this record when it is in this state"
);

}

super.modify(versionNo);
}

Figure 146. Overriding the modify method

Developing with the Persistence Infrastructure 93

package curam.mypackage;

import com.google.inject.ImplementedBy;

import curam.mypackage.codetable.impl.MYLIFECYCLEENTITYSTATEEntry;
import curam.util.exception.InformationalException;
import curam.util.persistence.Insertable;
import curam.util.persistence.OptimisticLockModifiable;
import curam.util.persistence.StandardEntity;
import curam.util.persistence.helper.Lifecycle;
import curam.util.type.Date;
import curam.util.type.DateRanged;

/**
* Description of my state-machine entity.
*/

@ImplementedBy(MyLifecycleEntityImpl.class)
public interface MyLifecycleEntity extends StandardEntity,

DateRanged, Lifecycle<MYLIFECYCLEENTITYSTATEEntry>, Insertable,
OptimisticLockModifiable {

/**
* Suspends business pending investigation.
*
* Transitions the state to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#SUSPENDED}, if it is
* valid to suspend.
*
* @param reason
* the reason for suspension
*
* @param versionNo
* the version number as previously retrieved
*
* @throws InformationalException
* if the entity is not in a valid state to transition
* to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#SUSPENDED},
* or if any other validation errors are found
*/
public void suspend(final String reason, final int versionNo)

throws InformationalException;

/**
* Resumes business following a suspension investigation resulting
* in acquittal.
*
* Transitions the state to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#OPEN}, if it is valid
* to resume business.
*
* @param versionNo
* the version number as previously retrieved
*
* @throws InformationalException
* if the entity is not in a valid state to transition
* to {@linkplain MYLIFECYCLEENTITYSTATEEntry#OPEN}, or
* if any other validation errors are found
*/
public void resume(final int versionNo)

throws InformationalException;

/**
* Ceases business with the agency.
*
* Transitions the state to
* {@linkplain MYLIFECYCLEENTITYSTATEEntry#CLOSED}, if it is
* valid to cease conducting business.
*
* @param endDate
* the date on which business with the agency was ceased
*
* @param versionNo

94 IBM Cúram Social Program Management: Persistence Cookbook

Developing with the Persistence Infrastructure 95

package curam.mypackage;

import java.util.HashMap;
import java.util.Map;

import curam.mypackage.codetable.MYLIFECYCLEENTITYSTATEEntry;
import curam.mypackage.struct.MyLifecycleEntityDtls;
import curam.util.exception.InformationalException;
import curam.util.exception.UnimplementedException;
import curam.util.persistence.ValidationHelper;
import curam.util.persistence.helper.CodetableState;
import curam.util.persistence.helper.SingleTableEntityImpl;
import curam.util.persistence.helper.State;
import curam.util.persistence.helper.Transition;
import curam.util.type.Date;
import curam.util.type.DateRange;

/**
* Standard implementation of {@linkplain MyLifecycleEntity}.
*/

public class MyLifecycleEntityImpl extends
SingleTableEntityImpl<MyLifecycleEntityDtls> implements
MyLifecycleEntity {

protected MyLifecycleEntityImpl() {
/*
* Protected no-arg constructor for use only by Guice
*/

}

/*
* Persistence methods
*/
/**
* {@inheritDoc}
*/
@Override
public void modify(Integer versionNo)

throws InformationalException {

if (!getState().isModifyAllowed()) {
ValidationHelper

.addValidationError(
"You are not allowed to modify this record when it is in this state"

);
}

super.modify(versionNo);
}

/*
* Getters
*/
/**
* {@inheritDoc}
*/
public MYLIFECYCLEENTITYSTATEEntry getLifecycleState() {

return MYLIFECYCLEENTITYSTATEEntry.get(getDtls().state);
}

public DateRange getDateRange() {
throw new UnimplementedException();

}

/*
* Setters
*/
private void setEndDate(final Date value) {

throw new UnimplementedException();
}

private void setSuspensionReason(final String value) {
throw new UnimplementedException();

96 IBM Cúram Social Program Management: Persistence Cookbook

Inheritance
The Persistence Infrastructure includes support for simple inheritance. This support
allows you to:
v specify that an entity interface extends another entity interface; and
v allows you to store the data held (in your base and concrete entity classes) in a

number of different ways.

Identifying inheritance
If you are lucky, you will be able to directly identify concepts in your requirements
which fall into a natural inheritance hierarchy. Requirements which mention
phrases like “X is a Y” / “X is a kind of Y” / “X is a type of Y” are likely
candidates for inheritance.

Often, though, you may only discover an inheritance hierarchy during
implementation, and you should refactor accordingly. Tell-tale signs include:
v one or more methods whose behavior differs depending on the "type" of the

entity instance;
v a need to link each row on a database table (A) to exactly one of either:

– a row on table B; or

– a row on table C (but not both);
v a need to pass around lists of entity instances, which may be made up of

instances of entities of more than one type.

It is often a good idea to look out for refactoring opportunities during
implementation to take advantage of appropriate object-oriented design techniques.

Entity interface inheritance
Let's take a simple example: You require to store information about Cats and Dogs.
You identify that Cats and Dogs have a number of behaviors in common, and so
you identify a common Animal interface.

You need to code three interfaces, Cat, Dog and Animal with the Cat and Dog
interfaces both extending the Animal interface.

package curam.inheritance;

import curam.util.persistence.Insertable;
import curam.util.persistence.OptimisticLockModifiable;
import curam.util.persistence.StandardEntity;
import curam.util.persistence.helper.Named;

public interface Animal extends StandardEntity, Insertable,
OptimisticLockModifiable, Named {

public void speak();

}

Figure 149. The Animal Interface

Developing with the Persistence Infrastructure 97

DAO interfaces
You require to:
v create new Cat instances;
v retrieve a Cat, based on its ID;
v create new Dog instances;
v retrieve a Dog, based on its ID; and
v retrieve a generic Animal, based on its ID (and receive a concrete Cat or Dog

instance as appropriate).

The creation and retrieval of Cat and Dog instances is straightforward - create
DAO interfaces for Cats and Dogs (you can also include other retrievals too):

package curam.inheritance;

public interface Cat extends Animal {

public int getNumberOfLivesRemaining();

public void setNumberOfLivesRemaining(final int value);

}

Figure 150. The Cat Interface

package curam.inheritance;

public interface Dog extends Animal {
public String getFavouriteTrick();

public void setFavouriteTrick(final String value);

}

Figure 151. The Dog Interface

package curam.inheritance;

import java.util.Set;

import curam.util.persistence.StandardDAO;

public interface CatDAO extends StandardDAO<Cat> {

public Set<Cat> readAllCats();

}

Figure 152. The DAO interface for Cat

package curam.inheritance;

import java.util.Set;

import curam.util.persistence.StandardDAO;

public interface DogDAO extends StandardDAO<Dog> {
public Set<Dog> readAllDogs();

}

Figure 153. The DAO interface for Dog

98 IBM Cúram Social Program Management: Persistence Cookbook

The DAO interface for Animal is slightly different in that callers can retrieve a
generic Animal based on its ID (and the implementation will be responsible for
creating a Cat or Dog object as appropriate), but callers cannot create an Animal (all
creations must create either a concrete Cat or a concrete Dog).

Use the ReaderDAO interface instead of StandardDAO:

Note: Unlike the Animal/Cat/Dog interfaces, the DAO interfaces for
Animal/Cat/Dog do not form an inheritance hierarchy.

Deciding on database storage
The Persistence Infrastructure has support for the following data storage options:
v one table per class;
v one table per concrete class; and
v one table for the whole hierarchy.

These options are described in more detail below.

The option you choose will depend on a number of factors:
v the amount of commonality or disparity between the data storage requirements

for your classes;
v data retrieval requirements; and
v volumetric and performance concerns.

One table per class
If you choose this option, you will create one physical database table per class
(whether abstract or concrete) in your hierarchy.

This option makes use of a disciminator value in the form of the attribute
Animal.animalType. This attribute stores a String value which will allow the
implementation to determine whether a particular Animal is a Cat or a Dog
without further reads. This data is denormalized (it can be determined by
attempting to read rows on the Cat and Dog tables and seeing which one
succeeds), however processing is greatly simplified and performance increase by
the use of a discriminator.

This option also assumes that all the tables in the hierarchy share the same key
value (animalID). It is possible (though very unwieldy) to allow different key
values on the tables; for this example assume that the primary key value of an
abstract Animal row is the same as its corresponding concrete Cat or Dog row.

package curam.inheritance;

import java.util.Set;

import curam.util.persistence.ReaderDAO;

public interface AnimalDAO extends ReaderDAO<Long, Animal> {

public Set<Animal> readAllAnimals();

}

Figure 154. The read-only DAO interface for Animal

Developing with the Persistence Infrastructure 99

You must provide the following implementation classes (listed in dependency
order):
v AnimalImpl;
v CatImpl;
v DogImpl;
v CatDAOImpl;
v DogDAOImpl; and
v AnimalDAOImpl.

These classes are described in detail below. The concrete (Cat and Dog)
implementation classes are reasonably straightforward, but the abstract (Animal)
classes are more complex.

AnimalImpl:

There are a number of important features of this implementation which are
explained below.

package curam.inheritance;
import curam.inheritance.Animal;
import curam.inheritance.struct.AnimalDtls;
import curam.util.persistence.EntityAdapter;
import curam.util.persistence.helper.BasePlusConcreteTableImpl;
import curam.util.type.DeepCloneable;

abstract class AnimalImpl<CONCRETE_ENTITY extends Animal,
CONCRETE_CLASS_DTLS_STRUCT extends DeepCloneable> extends

BasePlusConcreteTableImpl<Long, CONCRETE_ENTITY,
AnimalDtls, CONCRETE_CLASS_DTLS_STRUCT>
implements Animal {

protected AnimalImpl() {
}

@Override
protected void setDiscriminator(final String value) {

setAnimalType(value);
}

@Override
protected EntityAdapter<Long, AnimalDtls> getBaseEntityAdapter() {

return new AnimalAdapter();
}

public String getName() {
return getBaseRowDtls().name;

}

public void setName(final String value) {
getBaseRowDtls().name = value;

}

protected void setAnimalType(final String value) {
getBaseRowDtls().animalType = value;

}
}

Figure 155. One table per class - implementation of abstract base class

100 IBM Cúram Social Program Management: Persistence Cookbook

Class declaration
abstract class AnimalImpl<CONCRETE_ENTITY extends Animal,

CONCRETE_CLASS_DTLS_STRUCT extends DeepCloneable> extends
BasePlusConcreteTableImpl<Long, CONCRETE_ENTITY, AnimalDtls,

CONCRETE_CLASS_DTLS_STRUCT>

The implementation class extends the helper class BasePlusConcreteTableImpl,
which provides support for simple two-level class hierarchies (such as the one in
this example).

BasePlusConcreteTableImpl is parameterized with the key type, the concrete entity
interface and the Dtls structs used to store the abstract and base rows. AnimalImpl
can directly supply two of these parameters (namely Long and AnimalDtls), but
the name of the concrete interface and Dtls struct must be specified by the subclass
implementations, and so the Animal class takes these types as parameters.

The class is package-protected and marked abstract. In this example the subclasses
will be placed in the same code-package; if you require some of your subclasses to
be in a different package, you will need to mark your abstract implementation
class public.

The class implements the Animal interface; note that the class implements only
some of the methods required by the interface, leaving others to the subclass
implementation, e.g:
v AnimalImpl provides an implementation for getName and setName, as the

behavior is identical for all Animal instances; but
v AnimalImpl does not provide an implementation for speak, as the behavior will

differ between Cat and Dog instances.

Protected constructor
protected AnimalImpl() {
}

Store discriminator value
@Override

protected void setDiscriminator(final String value) {
setAnimalType(value);

}

The class must override the BasePlusConcreteTableImpl.setDiscriminator method to
store the discriminator in an appropriate column (in this example the animalType
column). A protected setter is used to set the column value.

Base entity adapter
@Override

protected EntityAdapter<Long, AnimalDtls> getBaseEntityAdapter() {
return new AnimalAdapter();

}

The class must override the BasePlusConcreteTableImpl.getBaseEntityAdapter
method to provider an entity adapter for retrieving and storing the database row
for the base class.

Developing with the Persistence Infrastructure 101

Getters and Setters

The getters and setters make use of the
BasePlusConcreteTableImpl.getBaseRowDtls to retrieve the Dtls struct for the base
row (in this example an AnimalDtls struct).

CatImpl:

Class declaration
final class CatImpl extends AnimalImpl<Cat, CatDtls>

implements Cat {

The class:

package curam.inheritance;

import curam.inheritance.Cat;
import curam.inheritance.struct.CatDtls;
import curam.test.codetable.ANIMAL_TYPE;

public class CatImpl extends AnimalImpl<Cat, CatDtls>
implements Cat {

protected CatImpl() {
}

@Override
protected String getDiscriminatorValue() {

return ANIMAL_TYPE.CAT;
}

@Override
protected void mapBaseKeyToConcreteDtls() {

getConcreteRowDtls().animalID = getBaseRowDtls().animalID;
}

public int getNumberOfLivesRemaining() {
return getConcreteRowDtls().numberOfLivesRemaining;

}

public void setNumberOfLivesRemaining(final int value) {
getConcreteRowDtls().numberOfLivesRemaining = value;

}

public void speak() {
System.out.println("Miaow! My name is " + getName()

+ " and I have " + getNumberOfLivesRemaining()
+ " lives remaining");

}

public void setNewInstanceDefaults() {// none required
}

public void crossFieldValidation() {// none required
}

public void crossEntityValidation() {// none required
}

public void mandatoryFieldValidation() {// none required
}

}

Figure 156. One table per class - implementation of concrete class

102 IBM Cúram Social Program Management: Persistence Cookbook

v extends the AnimalImpl class created above, specifying the Cat interface and
CatDtls struct as parameters; and

v implements the Cat interface (which in turn extends the Animal interface).

Constructor
protected CatImpl() {

}

The class has a protected constructor, as is the norm for the implementation
classes.

Specifying the discriminator value
@Override

protected String getDiscriminatorValue() {
return ANIMAL_TYPE.CAT;

}

The class must override the BasePlusConcreteTableImpl.getDiscriminatorValue
method to specify the discriminator String value which distinguishes Cat instances
from other types of Animal.

In this example a code-table constant is used to provide the String value.

Mapping the base key
@Override

protected void mapBaseKeyToConcreteDtls() {
getConcreteRowDtls().animalID = getBaseRowDtls().animalID;

}

The class overrides the BasePlusConcreteTableImpl.mapBaseKeyToConcreteDtls
method, which is called when a new entity instance is stored on the database.
Typically, the base row uses the AUTO_ID facility to assign a primary key value on
insert, and since (in this example) Animal and Cat share key values, the key value
assigned to the Animal.animalID column must also be stored on the Cat.animalID
column.

The method makes use of these methods from BasePlusConcreteTableImpl :
v getBaseRowDtls, to access the AnimalDtls row data; and
v getConcreteRowDtls, to access the CatDtls row data.

Getters and Setters

The getters and setters make use of the
BasePlusConcreteTableImpl.getConcreteRowDtls method to access the CatDtls row
data.

Implementations for the getters and setters for the Animal fields are inherited from
AnimalImpl.

speak
public void speak() {

System.out.println("Miaow! My name is " + getName() +
" and I have "+ getNumberOfLivesRemaining() +
" lives remaining");

}

Developing with the Persistence Infrastructure 103

This class must provide an implementation of the Animal.speak method - recall
that this method is not implemented in AnimalImpl, as the logic differs between
CatImpl and DogImpl.

DogImpl:

The structure of this class is similar to CatImpl above.

package curam.inheritance;

import curam.inheritance.Dog;
import curam.inheritance.struct.DogDtls;
import curam.test.codetable.ANIMAL_TYPE;

class Dog extends Animal<Dog, DogDtls> implements Dog {

protected Dog() {
}

@Override
protected String getDiscriminatorValue() {

return ANIMAL_TYPE.DOG;
}

@Override
protected void mapBaseKeyToConcreteDtls() {

getConcreteRowDtls().animalID = getBaseRowDtls().animalID;
}

public String getFavouriteTrick() {
return getConcreteRowDtls().favouriteTrick;

}

public void setFavouriteTrick(final String value) {
getConcreteRowDtls().favouriteTrick = value;

}

public void speak() {
System.out.println("Woof! My name is " + getName()

+ " and I like to " + getFavouriteTrick());
}

public void setNewInstanceDefaults() {// none required
}

public void crossFieldValidation() {// none required
}

public void crossEntityValidation() {// none required
}

public void mandatoryFieldValidation() {// none required
}

}

Figure 157. One table per class - implementation of another concrete class

104 IBM Cúram Social Program Management: Persistence Cookbook

CatDAOImpl and DogDAOImpl:

The DAO classes for the concrete classes are straightforward DAO
implementations.

package curam.inheritance;

import java.util.Set;

import com.google.inject.Singleton;

import curam.inheritance.Cat;
import curam.inheritance.CatDAO;
import curam.inheritance.struct.CatDtls;
import curam.util.persistence.StandardDAOImpl;

@Singleton
public class CatDAO extends StandardDAOImpl<Cat, CatDtls> implements

CatDAO {
private static final CatAdapter adapter = new CatAdapter();

/**
* Protected no-arg constructor for use only by Guice
*/
protected CatDAO() {

super(adapter, Cat.class);
}

public Set<Cat> readAllCats() {
return newSet(adapter.readAll());

}

}
package curam.inheritance;

import java.util.Set;

import com.google.inject.Singleton;

import curam.inheritance.Dog;
import curam.inheritance.DogDAO;
import curam.inheritance.struct.DogDtls;
import curam.util.persistence.StandardDAOImpl;

@Singleton
public class DogDAO extends StandardDAOImpl<Dog, DogDtls> implements

DogDAO {
private static final DogAdapter adapter = new DogAdapter();

/**
* Protected no-arg constructor for use only by Guice
*/
protected DogDAO() {

super(adapter, Dog.class);
}

public Set<Dog> readAllDogs() {
return newSet(adapter.readAll());

}

}

Figure 158. One table per class - DAO implementations for the concrete classes

Developing with the Persistence Infrastructure 105

CatDAOImpl and DogDAOImpl each support the creation of new instances of
their respective entities, as well as retrieval of existing instances, by making use of
the StandardDAOImpl class.

106 IBM Cúram Social Program Management: Persistence Cookbook

AnimalDAOImpl:

package curam.inheritance;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import com.google.inject.Inject;
import com.google.inject.Singleton;

import curam.inheritance.Animal;
import curam.inheritance.AnimalDAO;
import curam.inheritance.CatDAO;
import curam.inheritance.DogDAO;
import curam.inheritance.AnimalDtls;
import curam.test.codetable.ANIMAL_TYPE;
import curam.util.persistence.BaseDAOImpl;
import curam.util.persistence.ReaderDAO;
import curam.util.persistence.RowManager;

@Singleton
public class AnimalDAOImpl extends

BaseDAOImpl<Long, Animal, AnimalDtls> implements AnimalDAO {

private static final AnimalAdapter adapter = new AnimalAdapter();

@Inject
private CatDAO catDAO;

@Inject
private DogDAO dogDAO;

/**
* Protected no-arg constructor for use only by Guice
*/
protected AnimalDAO() {

super(adapter, Animal.class);
}

@Override
protected String getDiscriminator(

final RowManager<Long, AnimalDtls> rowManager) {
return rowManager.getDtls().animalType;

}

@Override
protected Map<String, ReaderDAO<Long, ? extends Animal>>

getConcreteReaderDAOs() {

final Map<String, ReaderDAO<Long, ? extends Animal>>
concreteReaderDAOs =
new HashMap<String, ReaderDAO<Long, ? extends Animal>>();

concreteReaderDAOs.put(ANIMAL_TYPE.CAT, catDAO);
concreteReaderDAOs.put(ANIMAL_TYPE.DOG, dogDAO);
return concreteReaderDAOs;

}

public Set<Animal> readAllAnimals() {
return newSet(adapter.readAll());

}
}

Figure 159. One table per class - DAO implementation for the abstract class

Developing with the Persistence Infrastructure 107

Class declaration
final class AnimalDAOImpl extends

BaseDAOImpl<Long, Animal, AnimalDtls> implements AnimalDAO

The class extends the BaseDAOImpl class, which provides support for reading
instances of abstract classes (by calling back to the implementation to decide which
concrete class to instantiate). AnimalDAOImpl is responsible for retrieving a Cat or
Dog instance, according to the value of the discriminator column, i.e.
Animal.animalType.

Adapter
private static final AnimalAdapter adapter = new AnimalAdapter();

The class contains an adapter variable, as is the norm for DAO implementations.

DAO instances
@Inject

private CatDAO catDAO;

@Inject
private DogDAO dogDAO;

The class contains injected instances of the DAO interfaces for the concrete classes.

These DAOs will be used to "dish up" the appropriate concrete type when a calling
requests to read or search for Animal instances.

Protected constructor
/**

* Protected no-arg constructor for use only by Guice
*/
protected AnimalDAO() {

super(adapter, Animal.class);
}

The class contains a protected constructor, as is the norm for DAO
implementations. This constructor passes the adapter and the entity class to the
super constructor.

Get discriminator value from a row read from the database
@Override

protected String getDiscriminator(
final RowManager<Long, AnimalDtls> rowManager) {
return rowManager.getDtls().animalType;

}

You must override the BaseDAOImpl.getDiscriminator method to return the
discriminator value from an abstract row read from the database (in this example,
the value of Animal.animalID is returned from the row read).

Map discriminator values to DAO instances
@Override

protected Map<String, ReaderDAO<Long, ? extends Animal>>
getConcreteReaderDAOs() {
final Map<String, ReaderDAO<Long, ? extends Animal>>

concreteReaderDAOs =
new HashMap<String, ReaderDAO<Long, ? extends Animal>>();

108 IBM Cúram Social Program Management: Persistence Cookbook

concreteReaderDAOs.put(ANIMAL_TYPE.CAT, catDAO);
concreteReaderDAOs.put(ANIMAL_TYPE.DOG, dogDAO);
return concreteReaderDAOs;

}

You must override the BaseDAOImpl.getConcreteReaderDAOs method to return a
map of DAOs which can read the concrete instances of your entity.

The persistence infrastructure uses this map to retrieve a Cat or Dog as
appropriate, depending on the value of Animal.animalID.

One table per concrete class
If you choose this option, you will create one physical database table for each
concrete class, in this example Cat and Dog. The abstract class will have no table
of its own; instead, the abstract fields will be replicated on each of the concrete
tables.

You must provide the following implementation classes (listed in dependency
order):
v AnimalImpl (optional);
v CatImpl;
v DogImpl;
v CatDAOImpl;
v DogDAOImpl; and
v AnimalDAOImpl.

These classes are described in detail below. The concrete (Cat and Dog)
implementation classes are reasonably straightforward, but the abstract (Animal)
classes are more complex.

AnimalImpl

You may provide this implementation if there is any common behavior between
your concrete classes which is identical.

Note: Although the behavior of attribute getters and setters for the base class is
conceptually identical for all Animal instances, technically they differ since:
v Cat instances will store their Animal attributes on the Cat table; and
v Dog instances will store their Animal attributes on the Dog table.

package curam.inheritance;

import curam.inheritance.Animal;
import curam.util.persistence.helper.SingleTableEntityImpl;
import curam.util.type.DeepCloneable;

abstract class AnimalImpl<DTLS_STRUCT extends DeepCloneable>
extends SingleTableEntityImpl<DTLS_STRUCT> implements Animal {

public void printName() {
System.out.println("My name is " + getName());

}

}

Figure 160. One table per concrete class - implementation of abstract base class

Developing with the Persistence Infrastructure 109

Hence the implementation of Animal getters and setters cannot be implemented in
a central place.

The class is parameterized with the name of the Dtls struct, to be supplied by the
implementing subclass.

The class is package-protected and marked abstract. In this example the subclasses
will be placed in the same code-package; if you require some of your subclasses to
be in a different package, you will need to mark your abstract implementation
class public.

If there is no common implementation logic, you may omit this class, and instead
concrete classes will inherit from SingleTableEntityImpl (or some other suitable
class) directly.

110 IBM Cúram Social Program Management: Persistence Cookbook

CatImpl:

Class declaration
public class CatImpl extends AnimalImpl<CatDtls> implements Cat {

The class:
v extends the AnimalImpl class created above, specifying the CatDtls struct as a

parameter; and
v implements the Cat interface (which in turn extends the Animal interface).

package curam.inheritance;

import curam.inheritance.Cat;
import curam.inheritance.struct.CatDtls;

public class CatImpl extends AnimalImpl<CatDtls> implements Cat {

protected CatImpl() {
}

public int getNumberOfLivesRemaining() {
return getDtls().numberOfLivesRemaining;

}

public void setNumberOfLivesRemaining(final int value) {
getDtls().numberOfLivesRemaining = value;

}

public String getName() {
return getDtls().name;

}

public void setName(String value) {
getDtls().name = value;

}

public void speak() {
System.out.println("Miaow! My name is " + getName()

+ " and I have " + getNumberOfLivesRemaining()
+ " lives remaining");

}

public void crossFieldValidation() {
// none required

}

public void crossEntityValidation() {
// none required

}

public void mandatoryFieldValidation() {
// none required

}

public void setNewInstanceDefaults() {
// none required

}

}

Figure 161. One table per concrete class - implementation of concrete class

Developing with the Persistence Infrastructure 111

Protected constructor
protected CatImpl() {

}

The class has a protected constructor, as is the norm for the implementation
classes.

Getters and Setters

The getters and setters make use of the regular SingleTableEntityImpl.getDtls
method to access the CatDtls row data.

Getters and setters are supplied for both:
v Cat -specific fields; and
v fields common across all Animal types.

speak
public void speak() {

System.out.println("Miaow! My name is " + getName() +
" and I have " + getNumberOfLivesRemaining() +
" lives remaining");

}

This class must provide an implementation of the Animal.speak method.

112 IBM Cúram Social Program Management: Persistence Cookbook

DogImpl:

The structure of this class is similar to CatImpl above.

package curam.inheritance;

import curam.inheritance.Dog;
import curam.inheritance.struct.DogDtls;

public class DogImpl extends AnimalImpl<DogDtls> implements Dog {

protected DogImpl() {
}

public String getFavouriteTrick() {
return getDtls().favouriteTrick;

}

public void setFavouriteTrick(final String value) {
getDtls().favouriteTrick = value;

}

public String getName() {
return getDtls().name;

}

public void setName(String value) {
getDtls().name = value;

}

public void speak() {
System.out.println("Woof! My name is " + getName()

+ " and I like to " + getFavouriteTrick());
}

public void crossFieldValidation() {
// none required

}

public void crossEntityValidation() {
// none required

}

public void mandatoryFieldValidation() {
// none required

}

public void setNewInstanceDefaults() {
// none required

}

}

Figure 162. One table per concrete class - implementation of another concrete class

Developing with the Persistence Infrastructure 113

CatDAOImpl and DogDAOImpl:

The DAO classes for the concrete classes are straightforward DAO
implementations.

package curam.inheritance;

import java.util.Set;

import com.google.inject.Singleton;

import curam.inheritance.Cat;
import curam.inheritance.CatDAO;
import curam.inheritance.struct.CatDtls;
import curam.util.persistence.StandardDAOImpl;

@Singleton
public class CatDAOImpl extends StandardDAOImpl<Cat, CatDtls>

implements CatDAO {
private static final CatAdapter adapter = new CatAdapter();

/**
* Protected no-arg constructor for use only by Guice
*/
protected CatDAOImpl() {

super(adapter, Cat.class);
}

public Set<Cat> readAllCats() {
return newSet(adapter.readAll());

}

}
package curam.inheritance;

import java.util.Set;

import com.google.inject.Singleton;

import curam.inheritance.Dog;
import curam.inheritance.DogDAO;
import curam.inheritance.struct.DogDtls;
import curam.util.persistence.StandardDAOImpl;

@Singleton
public class DogDAOImpl extends StandardDAOImpl<Dog, DogDtls>

implements DogDAO {
private static final DogAdapter adapter = new DogAdapter();

/**
* Protected no-arg constructor for use only by Guice
*/
protected DogDAOImpl() {

super(adapter, Dog.class);
}

public Set<Dog> readAllDogs() {
return newSet(adapter.readAll());

}

}

Figure 163. One table per concrete class - DAO implementations for the concrete classes

114 IBM Cúram Social Program Management: Persistence Cookbook

CatDAOImpl and DogDAOImpl each support the creation of new instances of
their respective entities, as well as retrieval of existing instances, by making use of
the StandardDAOImpl class.

AnimalDAOImpl:

Class declaration
public class AnimalDAOImpl implements AnimalDAO {

The class does not make use of any superclasses for its implementation.

Adapter

Unlike most DAO implementations, there is no adapter variable because there is
no physical Animal database table.

package curam.inheritance;

import java.util.HashSet;
import java.util.Set;

import com.google.inject.Inject;
import com.google.inject.Singleton;

import curam.util.exception.UnimplementedException;

@Singleton
public class AnimalDAOImpl implements AnimalDAO {

@Inject
private CatDAO catDAO;

@Inject
private DogDAO dogDAO;

/**
* Protected no-arg constructor for use only by Guice
*/
protected AnimalDAOImpl() {
}

public Set<Animal> readAllAnimals() {

final Set<Cat> cats = catDAO.readAllCats();

final Set<Dog> dogs = dogDAO.readAllDogs();

final Set<Animal> animals = new HashSet<Animal>(cats.size()
+ dogs.size());

animals.addAll(cats);
animals.addAll(dogs);

return animals;
}

public Animal get(final Long id) {
throw new UnimplementedException();

}

}

Figure 164. One table per concrete class - DAO implementation for the abstract class

Developing with the Persistence Infrastructure 115

DAO instances
@Inject

private CatDAO catDAO;

@Inject
private DogDAO dogDAO;

The class contains injected instances of the DAO interfaces for the concrete classes.

These DAOs will be used to delegate searches to.

Protected constructor
/**

* Protected no-arg constructor for use only by Guice
*/
protected AnimalDAOImpl() {
}

The class contains a protected constructor, as is the norm for DAO
implementations.

Performing a search across Animal types
public Set<Animal> readAllAnimals() {

final Set<Cat> cats = catDAO.readAllCats();

final Set<Dog> dogs = dogDAO.readAllDogs();

final Set<Animal> animals =
new HashSet<Animal>(cats.size() + dogs.size());

animals.addAll(cats);
animals.addAll(dogs);

return animals;
}

A search of Animal instances across the Cat and Dog tables is performed by
naively delegating the searches and combing the results.

Unsupported - retrieval of an Animal by its ID
public Animal get(final Long id) {

throw new UnimplementedException();
}

Important: It is not possible to retrieve a generic Animal by its ID. This is because
the Cat and Dog database tables maintain their own IDs - there is no concept of an
animalID as such.

If you require to be able to retrieve a generic Animal by its ID, then do not choose
to store your data using this "One table per concrete class" method.

One table for the whole hierarchy
If you choose this option, you will create one physical database table to store all
types in the hierarchy. The single table, in this example Animal will store all
attributes required by any type, with default/null values stored where not
applicable to a particular type.

116 IBM Cúram Social Program Management: Persistence Cookbook

This option requires a disciminator value in the form of the attribute
Animal.animalType. This attribute stores a String value which will allow the
implementation to determine whether a particular Animal is a Cat or a Dog.

You must provide the following implementation classes (listed in dependency
order):
v AnimalImpl;
v CatImpl;
v DogImpl;
v CatDAOImpl;
v DogDAOImpl; and
v AnimalDAOImpl.

These classes are described in detail below. The concrete (Cat and Dog)
implementation classes are reasonably straightforward, but the abstract (Animal)
classes are more complex.

AnimalImpl:

Class declaration
abstract class AnimalImpl extends SingleTableEntityImpl<AnimalDtls>

implements Animal {

The implementation class extends the standard class SingleTableEntityImpl,
parameterized with the Dtls struct from the single database table (AnimalDtls).

The class is package-protected and marked abstract. In this example the subclasses
will be placed in the same code-package; if you require some of your subclasses to
be in a different package, you will need to mark your abstract implementation
class public.

The class implements the Animal interface; note that the class implements only
some of the methods required by the interface, leaving others to the subclass
implementation, e.g:

package curam.inheritance;

import curam.inheritance.Animal;
import curam.inheritance.struct.AnimalDtls;
import curam.util.persistence.helper.SingleTableEntityImpl;

abstract class AnimalImpl extends SingleTableEntityImpl<AnimalDtls>
implements Animal {

protected AnimalImpl() {
}

public String getName() {
return getDtls().name;

}

public void setName(final String value) {
getDtls().name = value;

}

}

Figure 165. One table for the whole hierarchy - implementation of abstract base class

Developing with the Persistence Infrastructure 117

v AnimalImpl provides an implementation for getName and setName, as the
behavior is identical for all Animal instances; but

v AnimalImpl does not provide an implementation for speak, as the behavior will
differ between Cat and Dog instances.

Protected constructor
protected AnimalImpl() {
}

Getters and Setters

The getters and setters make use of the SingleTableEntityImpl.getDtls to retrieve
the Dtls struct for the single row (in this example an AnimalDtls struct).

118 IBM Cúram Social Program Management: Persistence Cookbook

CatImpl:

package curam.inheritance;

import curam.inheritance.Cat;
import curam.inheritance.struct.AnimalDtls;
import curam.test.codetable.ANIMAL_TYPE;
import curam.util.persistence.EntityInfo;
import curam.util.persistence.helper.SingleTableEntityImpl;

public class CatImpl extends AnimalImpl implements Cat {

protected CatImpl() {
}

/**
* {@inheritDoc}
*/
@Override
public void setEntityInfo(

EntityInfo<Long, SingleTableEntityImpl<AnimalDtls>,
AnimalDtls>
entityInfo) {

super.setEntityInfo(entityInfo);

// check that this object has been constructed with an
// appropriate row
if (getID() != null

&& !getDtls().animalType.equals(ANIMAL_TYPE.CAT)) {
throw new RuntimeException("Expected to be a cat");

}
}

public int getNumberOfLivesRemaining() {
return getDtls().numberOfLivesRemaining;

}

public void setNumberOfLivesRemaining(final int value) {
getDtls().numberOfLivesRemaining = value;

}

public void speak() {
System.out.println("Miaow! My name is " + getName()

+ " and I have " + getNumberOfLivesRemaining()
+ " lives remaining");

}

public void crossFieldValidation() {
// none required

}

public void crossEntityValidation() {
// none required

}

public void mandatoryFieldValidation() {
// none required

}

public void setNewInstanceDefaults() {
getDtls().animalType = ANIMAL_TYPE.CAT;

}

}

Figure 166. One table for the whole hierarchy - implementation of concrete class

Developing with the Persistence Infrastructure 119

Class declaration
public class CatImpl extends AnimalImpl implements Cat {

The class:
v extends the AnimalImpl class created above. As there is only a single database

table, no parameters are required; and
v implements the Cat interface (which in turn extends the Animal interface).

Protected constructor
protected CatImpl() {

}

The class has a protected constructor, as is the norm for the implementation
classes.

Confirming that the correct type has been retrieved
/**

* {@inheritDoc}
*/
@Override
public void setEntityInfo(

EntityInfo<Long, SingleTableEntityImpl<AnimalDtls>,
AnimalDtls>
entityInfo) {

super.setEntityInfo(entityInfo);

// check that this object has been constructed with an
// appropriate row
if (getID() != null &&

!getDtls().animalType.equals(ANIMAL_TYPE.CAT)) {
throw new RuntimeException("Expected to be a cat");

}
}

If the CatDAO is used to retrieve a Cat instance, it is important to check that the
Animal row retrieved actually contains the correct discriminator value for a Cat, to
guard against client code trying to retrieve a Cat based on a Dog 's ID.

Getters and Setters

The getters and setters make use of the SingleTableEntityImpl.getDtls method to
access the AnimalDtls row data.

Implementations for the getters and setters for the Animal fields are inherited from
AnimalImpl.

speak
public void speak() {

System.out.println("Miaow! My name is " + getName() +
" and I have " + getNumberOfLivesRemaining() +
" lives remaining");

}

This class must provide an implementation of the Animal.speak method - recall
that this method is not implemented in AnimalImpl, as the logic differs between
CatImpl and DogImpl.

120 IBM Cúram Social Program Management: Persistence Cookbook

Specifying the discriminator value for new instances
public void setNewInstanceDefaults() {

getDtls().animalType = ANIMAL_TYPE.CAT;
}

When a new Cat is created, its discriminator value must be set. This is done in the
setNewInstanceDefaults method.

Developing with the Persistence Infrastructure 121

DogImpl:

The structure of this class is similar to CatImpl above.

package curam.inheritance;

import curam.inheritance.DogImpl;
import curam.inheritance.struct.AnimalDtls;
import curam.test.codetable.ANIMAL_TYPE;
import curam.util.persistence.EntityInfo;
import curam.util.persistence.helper.SingleTableEntityImpl;

public class DogImpl extends AnimalImpl implements Dog {

protected DogImpl() {
}

/**
* {@inheritDoc}
*/
@Override
public void setEntityInfo(

EntityInfo<Long, SingleTableEntityImpl<AnimalDtls>,
AnimalDtls>
entityInfo) {

super.setEntityInfo(entityInfo);

// check that this object has been constructed with an
// appropriate row
if (getID() != null

&& !getDtls().animalType.equals(ANIMAL_TYPE.DOG)) {
throw new RuntimeException("Expected to be a dog");

}
}

public String getFavouriteTrick() {
return getDtls().favouriteTrick;

}

public void setFavouriteTrick(final String value) {
getDtls().favouriteTrick = value;

}

public void crossFieldValidation() {
// none required

}

public void crossEntityValidation() {
// none required

}

public void mandatoryFieldValidation() {
// none required

}

public void speak() {
System.out.println("Woof! My name is " + getName()

+ " and I like to " + getFavouriteTrick());
}

public void setNewInstanceDefaults() {
getDtls().animalType = ANIMAL_TYPE.DOG;

}

}

Figure 167. One table for the whole hierarchy - implementation of another concrete class

122 IBM Cúram Social Program Management: Persistence Cookbook

CatDAOImpl and DogDAOImpl:

The DAO classes for the concrete classes are straightforward DAO
implementations.

package curam.inheritance;

import java.util.Set;

import com.google.inject.Singleton;

import curam.inheritance.Cat;
import curam.inheritance.CatDAO;
import curam.inheritance.struct.AnimalDtls;
import curam.test.codetable.ANIMAL_TYPE;
import curam.util.persistence.StandardDAOImpl;

@Singleton
public class CatDAOImpl extends StandardDAOImpl<Cat, AnimalDtls>

implements CatDAO {
private static final AnimalAdapter adapter = new AnimalAdapter();

/**
* Protected no-arg constructor for use only by Guice
*/
protected CatDAOImpl() {

super(adapter, Cat.class);
}

public Set<Cat> readAllCats() {
return newSet(adapter.searchByAnimalType(ANIMAL_TYPE.CAT));

}

}
package curam.inheritance;

import java.util.Set;

import com.google.inject.Singleton;

import curam.inheritance.struct.AnimalDtls;
import curam.test.codetable.ANIMAL_TYPE;
import curam.util.persistence.StandardDAOImpl;

@Singleton
public class DogDAOImpl extends StandardDAOImpl<Dog, AnimalDtls>

implements DogDAO {
private static final AnimalAdapter adapter = new AnimalAdapter();

/**
* Protected no-arg constructor for use only by Guice
*/
protected DogDAOImpl() {

super(adapter, Dog.class);
}

public Set<Dog> readAllDogs() {
return newSet(adapter.searchByAnimalType(ANIMAL_TYPE.DOG));

}

}

Figure 168. One table for the whole hierarchy - DAO implementations for the concrete classes

Developing with the Persistence Infrastructure 123

CatDAOImpl and DogDAOImpl each support the creation of new instances of
their respective entities, as well as retrieval of existing instances, by making use of
the StandardDAOImpl class (parameterized with AnimalDtls, the single database
table).

Note that the searches to retrieve e.g. all Cat instances make use of a modeled
searchByAnimalType method, as there is no Cat table from which to retrieve all
rows. All searches performed by CatDAOImpl should ensure that they return only
Cat rows, otherwise an error will be thrown from CatImpl.setEntityInfo.

124 IBM Cúram Social Program Management: Persistence Cookbook

AnimalDAOImpl:

Class declaration
public class AnimalImpl extends BaseDAOImpl<Long, Animal, AnimalDtls>

implements AnimalDAO {

The class extends the BaseDAOImpl class, which provides support for reading
instances of abstract classes (by calling back to the implementation to decide which

package curam.inheritance;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import com.google.inject.Inject;
import com.google.inject.Singleton;

import curam.inheritance.struct.AnimalDtls;
import curam.test.codetable.ANIMAL_TYPE;
import curam.util.persistence.BaseDAOImpl;
import curam.util.persistence.ReaderDAO;
import curam.util.persistence.RowManager;

@Singleton
public class AnimalImpl extends

BaseDAOImpl<Long, Animal, AnimalDtls> implements AnimalDAO {
private static final AnimalAdapter adapter = new AnimalAdapter();

@Inject
private CatDAO catDAO;

@Inject
private DogDAO dogDAO;

/**
* Protected no-arg constructor for use only by Guice
*/
protected AnimalImpl() {

super(adapter, Animal.class);
}

@Override
protected String getDiscriminator(

final RowManager<Long, AnimalDtls> rowManager) {
return rowManager.getDtls().animalType;

}

@Override
protected Map<String, ReaderDAO<Long, ? extends Animal>>

getConcreteReaderDAOs() {
final Map<String, ReaderDAO<Long, ? extends Animal>>

concreteReaderDAOs =
new HashMap<String, ReaderDAO<Long, ? extends Animal>>();

concreteReaderDAOs.put(ANIMAL_TYPE.CAT, catDAO);
concreteReaderDAOs.put(ANIMAL_TYPE.DOG, dogDAO);
return concreteReaderDAOs;

}

public Set<Animal> readAllAnimals() {
return newSet(adapter.readAll());

}
}

Figure 169. One table for the whole hierarchy - DAO implementation for the abstract class

Developing with the Persistence Infrastructure 125

concrete class to instantiate). AnimalDAOImpl is responsible for retrieving a Cat or
Dog instance, according to the value of the discriminator column, i.e.
Animal.animalType.

Adapter
private static final AnimalAdapter adapter = new AnimalAdapter();

The class contains an adapter variable, as is the norm for DAO implementations.

DAO instances
@Inject

private CatDAO catDAO;

@Inject
private DogDAO dogDAO;

The class contains injected instances of the DAO interfaces for the concrete classes.

These DAOs will be used to "dish up" the appropriate concrete type when a calling
requests to read or search for Animal instances.

Protected constructor
/**

* Protected no-arg constructor for use only by Guice
*/
protected AnimalDAO() {

super(adapter, Animal.class);
}

The class contains a protected constructor, as is the norm for DAO
implementations. This constructor passes the adapter and the entity class to the
super constructor.

Get discriminator value from a row read from the database
@Override

protected String getDiscriminator(
final RowManager<Long, AnimalDtls> rowManager) {
return rowManager.getDtls().animalType;

}

You must override the BaseDAOImpl.getDiscriminator method to return the
discriminator value from an abstract row read from the database (in this example,
the value of Animal.animalID is returned from the row read).

Map discriminator values to DAO instances
@Override

protected Map<String, ReaderDAO<Long, ? extends Animal>>
getConcreteReaderDAOs() {
final Map<String, ReaderDAO<Long, ? extends Animal>>

concreteReaderDAOs =
new HashMap<String, ReaderDAO<Long, ? extends Animal>>();

concreteReaderDAOs.put(ANIMAL_TYPE.CAT, catDAO);
concreteReaderDAOs.put(ANIMAL_TYPE.DOG, dogDAO);
return concreteReaderDAOs;

}

You must override the BaseDAOImpl.getConcreteReaderDAOs method to return a
map of DAOs which can read the concrete instances of your entity.

126 IBM Cúram Social Program Management: Persistence Cookbook

The persistence infrastructure uses this map to retrieve a Cat or Dog as
appropriate, depending on the value of Animal.animalID.

Adding New Searches to Existing Entities
Cúram ships with a number of entities which have service layers implemented
using the Persistence Infrastructure.

Cúram recognizes that in certain circumstances, customers may wish to add
additional read SQL (select statements) to the Cúram-shipped database entities
behind PI-based service layer code, to retrieve data in new ways using existing
Cúram-shipped database columns and/or columns on a custom database table.

Cúram supports a choice of approaches that allow you to implement new searches,
described below.

Important: Cúram does not support the addition of write SQL
(insert/update/delete statements) to the Cúram-shipped database entities behind
PI-based service layer code (as the invocation of such SQL would bypass the very
service layer code that exists to protect the integrity of such data).

Approach 1
In the custom model package structure, model an extension entity which extends
the Curam-shipped entity (if such an extension does not already exist).

In the extension entity, model a stereotyped retrieval operation
(read/readmulti/nsread/nsmulti/ns). The retrieval operation must return the full
generated Dtls struct for the Curam-shipped entity (or the corresponding DtlsList
struct for multi operations); moreover, any hand-crafted SQL for the operation
must correctly populate every field in the return struct, including versionNo (if
present). Note that hand-crafted is free to join to custom database tables if
necessary to filter results (but not to return data from custom database tables).

In the custom code package structure, create a hand-crafted custom DAO
interface/implementation to house the new search operations. Note that unlike
standard DAO interface/implementations, your hand-crafted classes will not
extend PI-supplied infrastructure classes.

In your custom DAO interface, declare your new search methods.

In your custom DAO implementation, implement your new search methods. The
methods will delegate to the generated code for your custom entity extension.
Note that there is no generated adapter support for operations contributed by
extension classes, and so your implementation will need to provide the exception
wrapping and struct mapping traditionally performed by the generated adapters.

In your client code which requires to execute your custom search, inject an
instance of your new custom DAO interface and use your new search methods to
return instances of the Curam-shipped interface for the entity's service layer class.
You may access the entity's data via the accessor (getter) methods on the service
layer class, including any derived data, and access any side-saddle tables using the
entity's context, just as you would for instances returned by the Curam-shipped
DAO interface.

Developing with the Persistence Infrastructure 127

(Optional) If you find that your client code ends up having to inject instances of
both the Curam-shipped DAO interface and your new custom DAO interface, you
might consider mimicking some or all of the Curam-shipped DAO methods on
your new custom interface. The implementation of these mimicked methods may
delegate to the Curam-shipped DAO implementation. Curam does not recommend
that you allow your new custom DAO interface to extend the Curam-shipped
DAO interface, nor that you allow your new custom DAO implementation to
subclass the Curam-shipped DAO implementation, as to do so may present future
upgrade difficulties.

Approach 2
In the custom model package structure, model an extension entity which extends
the Curam-shipped entity (if such an extension does not already exist).

In the extension entity, model a stereotyped retrieval operation
(read/readmulti/nsread/nsmulti/ns). The retrieval operation is free to return any
data that it requires, including data joined from custom database tables, and to use
any suitable return struct (i.e. the restrictions in Approach 1 do not apply here)..

In your client code which requires to execute your custom search, invoke the
generated DAL code directly. Note that:
v you must not invoke any database write methods directly from your client code;
v derived data which might ordinarily be provided by a service-layer class will

not be available; and
v data held on custom side-saddle table will only be available via a separate call

to the generated DAL code for that custom side-saddle table.

128 IBM Cúram Social Program Management: Persistence Cookbook

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 129

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

130 IBM Cúram Social Program Management: Persistence Cookbook

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 131

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Actuate is a registered trademark of Actuate Corporation.

Adobe, the Adobe logo, Adobe SVG Viewer, Adobe Reader, Adobe Flash Player,
and Portable Document Format (PDF), are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or
both.

Apache is a trademark of Apache Software Foundation.

Safari is a registered trademark of Apple Inc.

BIRT is a registered trademark of Eclipse Foundation.

JAWS is a registered trademark of Freedom Scientific.

HP-UX is a registered trademark of Hewlett-Packard Company.

Microsoft, Windows 7, Windows XP, Windows NT, Windows Server 2003,
Windows Server 2008, Internet Explorer, Word, Excel, and the Windows logo are
trademarks of Microsoft Corporation in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Firefox is a registered trademark of Mozilla Foundation.

Novell, the Novell logo, the N logo, and SUSE Linux Enterprise Server are
registered trademarks of Novell, Inc. in the United States and other countries.

UNIX is a registered trademark of the Open Group in the United States and other
countries.

Oracle, Solaris, WebLogic Server, Java and all Java-based trademarks and logos are
registered trademarks of Oracle and/or its affiliates.

Red Hat Enterprise Linux is a registered trademark of Red Hat, Inc. in the United
States and other countries.

NetWeaver CE is a registered trademark of SAP AG.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

132 IBM Cúram Social Program Management: Persistence Cookbook

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Developing with the Persistence Infrastructure
	Introduction
	Intended Audience
	Background
	Further Reading
	Structure of this document

	Making calls to service-layer APIs
	You want to read some data from a database table
	The problem
	The solution

	You want to insert a new row onto a database table
	The problem
	The solution
	Putting it all together

	You want to modify a row on a database table
	The problem
	The solution
	Putting it all together

	You want to remove (physically delete) a row from a database table
	The problem
	The solution
	Putting it all together

	You want to cancel (logically delete) a row on a database table
	The problem
	The solution
	Putting it all together

	You want to list all rows of a database table
	The problem
	The solution
	Putting it all together

	You want to list all child rows of a database table belonging to some parent row (on another table)
	The problem
	The solution
	Putting it all together

	Summary

	Coding service-layer APIs
	You want to start writing the API for a new database table
	The problem
	The solution

	You want to add getters and setters to your entity interface
	The problem
	The solution
	Putting it all together

	You want to add persistence methods to your entity interface
	The problem
	The solution
	Putting it all together

	You want to specify searches on your entity
	The problem
	The solution

	Summary

	Coding service-layer implementations
	You want to start implementing your entity API
	The problem
	The solution
	Create an implementation for your entity DAO interface
	Create an implementation for your entity interface

	You want to implement getters
	The problem
	The solution
	Putting it all together

	You want to implement new row defaults
	The problem
	The solution

	You want to implement setters
	The problem
	The solution
	Putting it all together

	You want to implement single-field validation
	The problem
	The solution
	Putting it all together

	You want to implement mandatory-field validation
	The problem
	The solution

	You want to implement cross-field validation
	The problem
	The solution

	You want to implement cross-entity validation
	The problem
	The solution

	Creating a Guice module
	Create a class extending AbstractModule
	Store a row on ModuleClassName

	Events
	Identify where an event must be raised
	Define the Event interface
	Create an EventDispatcherFactory
	Raise events
	Create an event listener
	Configure Guice
	Writing listeners for automatic persistence events
	Design Considerations with Events
	Backward compatibility

	Using Entity Context
	The Problem
	The Solution
	Customising Inserts using entity context
	Customising Reads using entity context
	Customising other operations using entity context

	State Transitions
	The problem
	The solution
	Specify states
	Specify storage mechanism for the state value
	Identify transition methods
	Implement getLifecycleState
	Create a map to hold the permitted states
	Create an object for each state
	Create an object for each permitted transition
	Create a private getter to retrieve the current State
	Create a private setter to set the current State
	Create a private helper method to perform a state transition
	Implement state transition methods
	Specify the initial state
	Add state transition validation logic
	Override the modify method (if required)

	Putting it all together

	Inheritance
	Identifying inheritance
	Entity interface inheritance
	DAO interfaces
	Deciding on database storage
	One table per class
	AnimalImpl
	CatImpl
	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl

	One table per concrete class
	CatImpl
	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl

	One table for the whole hierarchy
	AnimalImpl
	CatImpl
	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl

	Adding New Searches to Existing Entities
	Approach 1
	Approach 2

	Notices
	Privacy Policy considerations
	Trademarks

