
IBM Cúram Social Program Management
Version 6.0.5

Working with Intelligent Evidence
Gathering (IEG)

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 57

Revised: March 2014

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Working with Intelligent Evidence
Gathering 1
Introduction 1

Audience 1
Purpose 1
Additional Reading 1

Getting Started 1
Introduction 1
About IEG 2

Datastore (DS) 2
Resource Store (RS) 2
Script Structure 3

Evaluating the Use of IEG 3
The Basics 4

Create a Schema 4
Create a Script 6
Adding a Summary Page to an IEG Script . . 8
Run a Script 10

Capturing Client Information 11
Introduction 11
Families and Households 11
Household Relationships 15
Summarizing Client Information 17

Capturing Related Data 17
Introduction 17
Capturing Composite Data 17
Displaying Composite Data on a Summary . . . 18
Capturing Associated Data 19
Displaying Associated Data on a Summary . . . 20
Deleting Associated Data 21

Efficient Ways of Capturing Data 22
Introduction 22
List Questions 22

Single-select 23
Codetable Questions 24
Conditional Elements 25

Conditional Sections 25
Conditional Pages 26
Conditional Clusters 26

Question Matrices 28
Fast Path Navigation 29

List Question driving a Loop 30
Eligibility Criteria 31
Fast Path Conditions 31
Condition in Fast Path Loop. 33

Implicit Delete 33
Other Script Development Considerations 34

Introduction 34
Displaying Data as Read-Only 34
Invoking External Functionality Using
Expressions 35
Reusing Scripts 40
Source Control and Versioning 40

Integrating IEG into a Cúram Application 41
Introduction 41
Creating a Script Execution 41
Specifying a Redirection URL 41
Running the IEG Player in a Tab 42
Running the IEG Player in a Modal Dialog . . . 44

Opening the IEG Player in a Modal Dialog . . 44
Exiting a Script Execution in a Modal Dialog 45

Cleaning Up Application Data 46
Resuming Executed Scripts 47

Managing Captured Data. 48
Introduction 48
Retrieving Captured Data 48
Pre-Populating Scripts with Captured Data . . . 48

Using the Resource Store 50
Introduction 50
Listing all Resources 50
Uploading a New Resource 51
Removing an Existing Resource 51
Updating an Existing Resource 51
Downloading an Existing Resource 52
Adding Images 52
Changing Static Text 52
Changing the Default File Encoding 52

Using IBM Rational AppScan to scan IEG 53
Introduction 53
Preparation 53
Relationship Pages 53
Scan Configuration 53
Test Policy. 54
Explore Options 54
Communications and Proxy 54
Test Options 54
Multi-Step Operations 54
Exclude Paths and Files 55
Complete 55
Running the Scan 55

Notices 57
Privacy Policy considerations 59
Trademarks 60

© Copyright IBM Corp. 2012, 2014 iii

iv IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Figures

1. Starting Schema 5
2. Person Entity 5
3. Basic Schema 6
4. New Script 6
5. New Section 7
6. Clusters, Questions and Display Text 8
7. Summary Page 9
8. Obtaining household size 12
9. Using 'for' loop to collect household members 13

10. Using 'while' loop to collect household
members 14

11. Using while loop to collect household
members 15

12. Relationship Entity in Datastore Schema 16
13. Relationship Page 16
14. For loop to collect household member

information 17
15. List of people 17
16. Relationship Summary List 17
17. Parent/Child Schema 18
18. Creating Nested Entities 18
19. Displaying Nested Entities on Summary Pages 19
20. Associated Entity Schema 20
21. Creating Association Relationships 20
22. Entity Association Summary Page 21
23. Cascading Deletes Schema 22
24. Has Income Person Schema 22
25. List question 23
26. Primary Care Giver Person Schema 23
27. Single-select List Question 23
28. State Codetable and Attribute 24
29. State Codetable Question 24
30. State Entity 25
31. Multi-Select Codetable Question 25
32. Visible Attribute of a Section 26

33. Conditional Section 26
34. Additional Person Attribute 27
35. Static Conditional Cluster 27
36. Dynamically Conditional Cluster 28
37. Substance Abuse Attribute 29
38. Question Matrix Code Example 29
39. Fast Path List Question driving a Loop Code

Example 30
40. Fast Path List Question with Eligibility Criteria

driving a Loop Code Example 31
41. Fast Path Conditions Code Example 32
42. Condition in Fast Path loop Code Example 33
43. Setting the read-only flag on a script execution 35
44. Additional Person attributes in the DS schema 36
45. State and zipCode questions in the script

definition 36
46. Custom Function to validate the ZIP code 37
47. Custom Function Metadata 37
48. ZIP code validation in the script definition 38
49. Alternate validation expression 38
50. Custom Function to populate the state . . . 39
51. Custom Function metadata 39
52. Callout to populate the sate in the script

definition 39
53. Subscript Containing Pages 40
54. Inclusion of a Subscript in a Script 40
55. Creation of a script execution 41
56. Script with finish-page and quit-page defined 42
57. Resolve UIM to open IEG Player 43
58. Deleting the Root Entity 47
59. Obtaining root entity 48
60. Code Snippet that Populates the DS 49
61. Creation of a Script Execution 49
62. Launching the IEG Player 50

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Tables

1. Client Data to Capture 4

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Working with Intelligent Evidence Gathering

Use this information to learn how to define and maintain IEG scripts and the
associated datastore schemas for use in internal or external applications. Intelligent
Evidence Gathering is a technology that enables data to be collected in many
different ways with dynamic question scripts.

Introduction

Audience
This guide is targeted at script authors who are new to Intelligent Evidence
Gathering (IEG) and want to utilize its features to capture data intelligently as part
of an internal or external application. Technically, this can be any data you like and
can be used for whatever purpose, but typically the data in question is client
related data and is required as part of an application for a program or to
determine potential eligibility. All such information comes under the general
heading of evidence in Cúram. Given its instructional style, this guide refers to
you, the script designer directly.

Purpose
The purpose of this guide is to provide script authors with essential information
on how to define and maintain IEG scripts and the associated Datastore (DS)
schemas for use in either internal or external applications.

IEG is a technology provided as part of the Cúram Application Suite which allows
customers create dynamic scripts for collecting data in many different ways. There
are however some considerations when creating an IEG script and DS schema. This
guide will outline some of those considerations as well as information relating to
the maintenance of scripts.

Additional Reading
There are some other documents that should be read before creating and releasing
an IEG script. Firstly, the Cúram Development Compliancy Guide outlines the
restrictions that apply when developing applications using IEG that need to be
understood before starting any implementation. The other document worth reading
is the Authoring Scripts using Intelligent Evidence Gathering (IEG). This
document can be used as a reference guide and contains detailed information on
all the features available in IEG and instructions on how to use these features. The
guide Creating Datastore Schemas explains how DS schemas are created and
maintained for use with IEG.

Getting Started

Introduction
This chapter will explain to you the basic principles if IEG and its dependency on
the Datastore (DS) and the Resource Store (RS). The chapter will guide you
through creating a simple IEG script to gather information about a client.

© Copyright IBM Corp. 2012, 2014 1

About IEG
IEG is an efficient alternative to traditional information gathering processes. With
IEG, information is gathered interactively by displaying a script of questions that a
user can provide answers to. Questions are only displayed if they are consistent
with the user's previous answers so that the user is only required to provide
answers relevant to his or her needs and situation. This creates a user-friendly
environment that can be effectively implemented for a range of processes including
client information intake, benefit assessment triage, online eligibility assessment,
etc.

In contrast to traditional information gathering processes, IEG cuts down on the
organization's administrative work by creating the potential for several routes
through the same question script. This eliminates the necessity to develop many
scripts for gathering information from different types of users.

A further advantage of IEG is the flexibility of its implementation and the range of
its potential users. The IEG runtime environment can be set up for access from any
UIM page. This means that IEG can be accessed directly from an organization
application or remotely by an online user.

The two main components of IEG are the Engine and the Player. IEG scripts are
defined in XML and the Engine interprets the script definitions at runtime and
evaluates the answers supplied by the user to determine the flow of execution. The
Engine determines which pages should be displayed to the user and how many
times they should be displayed. The Player presents the pages, questions and other
controls to the user. IEG also builds on other elements of the Cúram Application
Suite such as the Datastore (DS) and the Resource Store (RS).

Datastore (DS)
The data supplied by a user during script execution is not directly persisted by
IEG itself. This task is delegated to the Datastore (DS). The DS is a configurable
database. Just as the questions and question pages that are to be displayed to the
user are determined by an IEG script, the data that can be stored in the DS is
dynamically determined by an XML schema. The schema describes the structure of
the information you want to store and any relationships between the data. Data is
stored in the DS in XML format and conforms to the W3C XML Schema Definition
Language. More details on the DS and how it works can be found in the Creating
Datastore Schemas guide.

An IEG script and a DS schema are very closely linked. An IEG script is defined
with references to the elements contained in a schema and for that reason a
schema must be supplied when editing a script. The same schema is also required
when executing a script. Schemas may by reused to edit and execute multiple
scripts so the same data structures can be used in different circumstances.

Resource Store (RS)
An IEG script can contain references to images that will be displayed to the user
when a script is executed, for example icons representing sections and question
pages. The images are stored in the Resource Store (RS). An IEG script also
contains a number of different textual elements, for example page headings,
question labels and help text. IEG allows you to enter all the text for your script
for the default locale directly into the script definition.

When an IEG script is uploaded into the system via the IEG admin screens, all the
text contained within it is automatically extracted into an appropriately named
properties files for the script. These properties files are also stored in the RS. The

2 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

properties files are stored with no locale associated with them (so that they act as
the fall-back properties if no properties exist for the locale in which you are
running). The RS allows properties files for multiple locales to be uploaded making
the localization of scripts a straightforward task. At runtime, the properties files are
retrieved for the appropriate locale and presented to the user in the IEG Player.

Script Structure
In its simplest form, an IEG script consists of pages which include questions to be
posed to users of IEG. The structure of the IEG script is a logical grouping of these
pages so that answers to the questions can be captured effectively. Sequences of
pages can be grouped into logical sections. The purpose of these sections is to give
users a higher level view of the kind of information captured by the IEG script.

In addition to including a variable number of pages, each section should contain
one summary page. This page is used to give feedback to the user on the
information entered on the pages in a section. Summary pages typically contain
clusters and lists displaying read-only versions of the answers to questions asked.
The summary page will always be the last page displayed within a section and
will also be displayed whenever a user clicks on the link for that section in the
sidebar of the IEG Player.

To summarize, IEG scripts consist of a hierarchy of elements structured something
like this:
v Script

– Section
- Page

v Cluster
– Question

- Summary Page

Evaluating the Use of IEG
There are some key questions to ask when evaluating the use of IEG in any
application:
v What information is being captured?
v What is the source of that information?
v How is this information to be used?
v How long will this information live in the application?

Many of the current uses of IEG stem from the need to support an application for
products and services offered by agencies either externally or internally. The
information captured is generally client related information, such as client personal
details, their family or household details and details of their needs.

Often agencies already have data about a client; therefore they can source the
information from another system using some key pieces of information like a social
security number. This allows them to verify the client information being entered or
retrieve to assist with the application.

Some applications are complex and require information from many sources. Clients
may have to enter information that is not close to hand. For example, the required
information may be held by their employer. They may need the ability to store
what they have entered and return to the application at a later time once they have
all the required data.

Working with Intelligent Evidence Gathering 3

Clients may be exposed to simple screening applications that inform them of their
entitlements under current or new legislation. This information is often unreliable
and temporary data must be removed from the system after the client logs out or
within a set period of time.

These requirements drive the use of IEG and provide important information on the
use of the data over its lifetime.

So, let's start with the basics: we want to capture and store information about a
client.

The Basics

Create a Schema
The first step in capturing data about a client is to create a DS schema. This section
provides an example of how to create a basic schema that defines the capture of
some general client data.

The DS stores data collected from users during online screening and intake of
applications. The contents of the DS are dynamically definable by way of a schema
definition. The requirements for capturing and storing any data about a client can
be complex but with appropriate schema design, this data can be efficiently
managed over its lifetime.

For the purposes of this example, the requirement is to capture the following:

Table 1. Client Data to Capture

Attributes Type

First name String

Middle name String

Last name/Family name String

Gender Male/Female

Date of Birth Date

There is a minimum set of definitions required in a schema. For a schema to be
used in IEG, the following is required:
v Inclusion of Base Domains
v Inclusion of IEG Domains
v A root entity

For more information on the minimum set of definitions required, see the Creating
Datastore Schemas guide.

The schema would look something like this before adding new content such as the
Person entity described above:

4 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

The content of the schema indicates that it is an XMLSchema that imports
BaseDomains schema and includes the IEGDomains schema. The first element
called Application is the root entity for the schema. IEG requires that the root
entity is always called Application.

The IEGDomains schema contains the domains required to define the attributes of
entities to be used with IEG. The types of the attributes must be derived from the
IEG Domains rather than the base domains. A Person entity can be defined to
represent a client as follows:

There are a couple of things to note about the above addition for an entity like
person:
v Like relational database tables, an ID field is required and a key is defined for

this table using this unique ID.
v The person entity is added as a child entity of the root entity.

The schema to capture basic information about a person can be defined as follows:

<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:d="http://www.curamsoftware.com/BaseDomains">
<xsd:import namespace="http://www.curamsoftware.com/BaseDomains"/>
<xsd:include schemaLocation="IEGDomains"/>
<xsd:element name="Application">

<xsd:complexType>
<xsd:sequence minOccurs="0">

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Figure 1. Starting Schema

<xsd:element name="Person">
<xsd:complexType>

<xsd:attribute name="firstName" type="IEG_STRING"/>
<xsd:attribute name="middleName" type="IEG_STRING"/>
<xsd:attribute name="lastName" type="IEG_STRING"/>
<xsd:attribute name="gender" type="IEG_GENDER"/>
<xsd:attribute name="dateOfBirth" type="IEG_DATE"/>

</xsd:complexType>
</xsd:element>

Figure 2. Person Entity

Working with Intelligent Evidence Gathering 5

Once the schema has been defined you can then create a script to use the schema.

Create a Script
IEG allows you to create dynamic scripts for collecting data. IEG scripts can
contain sections, question pages, questions and conditional logic which allows you
to decide what information to capture, what pages to display and how many times
they are displayed.

Please read the Authoring Scripts using Intelligent Evidence Gathering (IEG)
guide for details on how to define each element of an IEG script.

For the requirements above, where there is a need to capture information about a
person, you must define the script and decide how the pages are arranged to
capture the information.

A new script can be created in the admin application and the editor can be used to
add elements to this script. The content of a newly created script will be similar to
the following:

The ID, Type and Version supplied when creating the script are combined to create
a script identifier to uniquely identify the script definition.

Once a new script is created, elements such as sections, question pages and
summary pages can be added to the script. The examples in the next two sections
will show you how to add a section and a question page to a script as well as how
to add a summary page that displays information back to the user. Summary pages
allow the user to confirm that the data they entered is correct before proceeding
and they can also provide the user with the ability to modify the data.

<xsd:element name="Application">
<xsd:complexType>

<xsd:sequence minOccurs="0">
<xsd:element ref="Person" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="Person">

<xsd:complexType>
<xsd:attribute name="personID" type="d:SVR_KEY"/>
<xsd:attribute name="firstName" type="IEG_STRING"/>
<xsd:attribute name="middleName" type="IEG_STRING"/>
<xsd:attribute name="lastName" type="IEG_STRING"/>
<xsd:attribute name="gender" type="IEG_GENDER"/>
<xsd:attribute name="dateOfBirth" type="IEG_DATE"/>

</xsd:complexType>
<xsd:key name="Person_Key">

<xsd:selector xpath="./Person"/>
<xsd:field xpath="@personID"/>

</xsd:key>
</xsd:element>

Figure 3. Basic Schema

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ieg-schema.xsd">
<identifier id="WorkingWithIEG" scriptversionnumber="V1"

type="Intake" />
</ieg-script>

Figure 4. New Script

6 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Adding a Section and a Question Page to an IEG Script: A section and a
question page need to be added. A section can be used to group related pages
together to allow the user to flow through the screens in a logical manner. Sections
can also help to convey to the user their progress through a script. Both the section
and the question page can have a title and the question page can optionally have a
description.

The following code sample shows a section containing a question page, added to a
script:

The question page requires the appropriate questions to capture the data. Any data
to be stored in the DS has to be associated with an attribute of an entity in the DS
schema to be used with this script. If all the questions on a page relate to the same
entity, the page can be mapped to that entity type. In the above example the page
is mapped to the Person entity.

To add questions to a page, a cluster is required. Clusters help control the layout of
the questions on the page. A page can contain many clusters to allow you to
logically group questions on the page. Clusters may also contain a title and a
description.

In our example below, there are two clusters, one just to display some
informational text to the user and another to contain the questions for personal
details. Questions and display text can be added to each cluster. Questions must be
given an ID which must correspond to one of the attributes of the entity type the
page is mapped to. If an answer must be supplied to a question the mandatory
indicator of the question can be set to true. The script snippet below contains the
questions to capture the required data outlined in our example.

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script xmlns:xsi="http://www.w3.org/2001/XMLSchema-in stance"
xsi:noNamespaceSchemaLocation="ieg-schema.xsd">
<identifier id="WorkingWithIEG" scriptversionnumber="V1"

type="Intake" />
<section>

<title id="AboutYouSection.Title">
<![CDATA[About You]]>

</title>
<question-page id="AboutYouPage" entity="Person">

<title id="PrimaryPersonPage.Title">
<![CDATA[About You]]>

</title>
<description id="PrimaryPersonPage.Description">

<![CDATA[Please enter some information about yourself]]>
</description>

</question-page>
</section>

</ieg-script>

Figure 5. New Section

Working with Intelligent Evidence Gathering 7

Please note there are more properties of scripts, sections, question pages, clusters,
questions and display texts than are covered here. These properties are covered in
the Authoring Scripts using Intelligent Evidence Gathering (IEG) guide some
of which will be discussed later in this guide.

Adding a Summary Page to an IEG Script
The final step of this basic example is to display a summary of the information
captured. Generally each section will have a summary page. A summary page is
used to display the most important data back to the user in order for them to
verify data was captured or calculated correctly. A summary page can display data
captured on multiple question pages. A summary page does not have to contain all
the information captured in the section as this could be very large making it less
useful.

Obviously if the data displayed on a summary page is incorrect the user will more
than likely want to modify it. Users may navigate backwards in the script
execution by pressing the Back button in the IEG Player until they reach the page
where the data was entered, update the data, then proceed forward through the
script again. Alternatively you can add edit links to the clusters on the summary

<question-page ...
<cluster>
<display-text id="RequiredFields.Text">

<![CDATA[
* indicates a required field]]>

</display-text>
</cluster>
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Personal Details]]>

</title>
<description id="DetailsCluster.Description">

<![CDATA[Enter your details here]]>
</description>
<question id="firstName" mandatory="true">

<label id="FirstName.Label">
<![CDATA[First Name:]]>

</label>
</question>
<question id="middleName">

<label id="MiddleName.Label">
<![CDATA[Middle Name:]]>

</label>
</question>
<question id="lastName">

<label id="lastName.Label">
<![CDATA[Last Name:]]>

</label>
</question>
<question id="gender" mandatory="true">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>
<question id="dateOfBirth" mandatory="true">

<label id="DateOfBirth.Label">
<![CDATA[Date Of Birth:]]>

</label>
</question>

</cluster>
</question-page>

Figure 6. Clusters, Questions and Display Text

8 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

page. When the user clicks on an edit link on a summary page the question page
specified in the edit link is displayed to the user in the IEG Player. The user can
then change the data and depending on whether the changed data is referenced
elsewhere in the script, the summary page will be displayed again when the user
presses the Next button in the IEG Player.

The summary page in this case will be very simple and similar to the question
page previously added. And similar to a question page, if all the attributes referred
to on the page relate to the same entity the summary page can be mapped to that
entity type, as follows:

This basic script and schema to capture information about a person and display a
summary page is now complete and can be run.

<section>
...

<summary-page id="AboutYouSummary" entity="Person">
<title id="AboutYouSummary.Title">

<![CDATA[Information about you]]>
</title>
<description id="AboutYouSummary.Description">

<![CDATA
[Here’s the information you’ve entered about yourself]]>

</description>
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Person Details]]>

</title>
<description id="DetailsCluster.Description">

<![CDATA[Enter the details for this person here]]>
</description>
<edit-link start-page="AboutYouPage" />
<question id="firstName">

<label id="FirstName.Label">
<![CDATA[First Name:]]>

</label>
</question>
<question id="middleName">

<label id="MiddleName.Label">
<![CDATA[Middle Name:]]>

</label>
</question>
<question id="lastName">

<label id="lastName.Label">
<![CDATA[Last Name:]]>

</label>
</question>
<question id="gender">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>
<question id="dateOfBirth">

<label id="DateOfBirth.Label">
<![CDATA[Date Of Birth:]]>

</label>
</question>

</cluster>
</summary-page>

</section>

Figure 7. Summary Page

Working with Intelligent Evidence Gathering 9

Run a Script
In order to run an IEG script the script definition and the associated schema
definition must be uploaded into the system. There are a number of ways this can
be done which will be covered later in this guide. The most straightforward way to
upload the definitions is via the administration screens in the Intelligent Evidence
Gathering section of the Administration Workspace.

To gain access to the IEG administration screens, you will need to log in as an
admin user. Once logged in, you will see a section in your shortcuts panel called
Intelligent Evidence Gathering and when you click on it you will see a menu for
'IEG' which contains a link called 'Scripts'. If you click on this, you will see a page
that contains a list of the IEG scripts currently in the system and various links to
allow you to perform activities on these scripts.

At the top of the 'Scripts' page is an 'Import' link which lets you upload, or import,
a new IEG script definition.

Similarly, if you click on the 'Datastore Schemas' link of the menu for 'IEG' you
will see a page that contains a list of the DS schemas currently in the system. At
the top of the 'Datastore Schemas' page, there is also an 'Import' link which lets
you upload, or import, a new schema definition.

For convenience, IEG provides a type of test harness that allows IEG scripts to be
tested without having to integrate them into the Cúram application. The test
harness does have some limitations but it allows most scripts to be tested as soon
as they are uploaded into the system. IEG scripts may be run either in a tab or in a
modal window via the admin screens.

A script can be run using either the 'Run' or 'Run in Modal' options for the script
from the 'Scripts' page. As there is no explicit association between an IEG script
and a DS schema, when you select the option to run a script you will then be
asked to select a schema from a dropdown with which to execute the script.
Clicking on the 'Run Script' button will cause the IEG Player to launch and you
will be presented with the first page of the script.

Validating a Script: When a script is executed via the admin screens in this way,
the script is validated before it is executed. You may also choose the 'Validate'
option for the script from the 'Scripts' page. All scripts should be validated before
they are executed. If the script fails validation, a list of validation errors will be
displayed. The validation errors must be addressed before the script can be run
from the 'Scripts' page.

Fill in some sample data on the first page of the script and select the Next button.
Now this same sample data should be displayed on the summary page. The
answers are not modifiable but an edit link is provided to jump back to the page
where that data was entered.

Please note, pressing the Next button in the IEG Player on the summary page of
the script that has been implemented in this example will cause an error to be
displayed. This is because not all the properties of the script have been defined.
The required properties will be covered later in this guide.

10 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Capturing Client Information

Introduction
The previous chapter outlined a basic example of how IEG can be used to capture
data for a client. Some application forms for benefits and services can be complex
and the information required about applicants can be very detailed.

We'll begin to build on the initial example covered in the previous chapter by
considering a household, where we have captured some initial data about a
primary member and now want to add details for the other household members.

Families and Households
We currently have a straightforward script, relating to one person. Often
applications need more information about the client's circumstance, starting with
their living situation.

In general, information is requested about the primary person and this is followed
by a simple question that will allow the client to skip to another area of the
application. For example, after entering personal details, the client is asked 'Do you
live alone?'. If the answer is yes then the person can be treated as single individual
who is not living within a household of family or other individuals. Most clients
want to get through the application process as quickly as possible, therefore
questions such as these provide a good way to move to more relevant parts of the
application.

If the client is living with other people, then questions about each person may
need to be asked. Loops are used to capture information from each person and
depending on how the script author wants to present these questions, they have a
choice of loop types: for, while and for-each loop.

IEG also features a Person Tab that allows the client to see who these questions
relate to while entering the data. This will appear automatically for a Person entity
in the Datastore. Each Person will be represented by an icon (based on the gender
and age) and a name. The current Person will be highlighted.

Let's take a scenario for handling family/household data as an extension of the
requirements in the basic sample. Here the client is asked if how many people are
in the household including the client. Some new question pages need to be added
to capture this information.

The first question page will ask about the living situation. For this example there is
only one question to ask, as follows: How many people are in the family
(excluding yourself)?

Working with Intelligent Evidence Gathering 11

This question is a control question, i.e. a question used to control the size of a loop
and not for data collection purposes. Control questions are not stored in the
Datastore schema. It will used in the loop expression of the 'for' loop in the next
question page.

The family members question page is within a 'for' loop that will iterate over the
number of family members.

<question-page id="HouseholdPage" progress="10">
<title id="LoopControlPage.Title">

<![CDATA[Household Details]]>
</title>
<description id="LoopControlPage.Description">

<![CDATA[Please tell us some information about your
household]]>

</description>
<icon image="sample_title_household" />
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Details]]>

</title>
<question id="numPeople" control-question="true"

control-question-type="IEG_INT32"
mandatory="true">
<label id="NumPeople.Label">

<![CDATA[How many other people are in your
household?]]>

</label>
</question>

</cluster>
</question-page>

Figure 8. Obtaining household size

12 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

The above is an example of how the client enters the number of family members.
But the question could have been asked a different way, for example: 'Do you live
with your family?' In this case a condition element in the script can be used to
check the value of that question. This would display the family member page if
they do live with their family. On this question page, a control question is asked to
determine if they would like to capture another family member's details.

This control question would be used in a 'while' loop around the family member
question page, as follows:

<loop loop-type="for" loop-expression="numPeople"
entity="Person" criteria="isPrimary==false">
<question-page id="PersonDetailsPage"

show-person-tabs="true"
progress="20">
<title id="PersonDetailsPage.Title">

<![CDATA[Household Member Details]]>
</title>
<description id="PersonDetailsPage.Description">

<![CDATA[Please enter the details for the
next person in your household]]>

</description>
<icon image="sample_title_household" />
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Person Details]]>

</title>
<description id="DetailsCluster.Description">

<![CDATA[Enter the details for this person
below]]>

</description>
<question id="firstName" mandatory="true">

<label id="FirstName.Label">
<![CDATA[First Name:]]>

</label>
</question>
<question id="lastName">

<label id="lastName.Label">
<![CDATA[Last Name:]]>

</label>
</question>
<question id="gender" mandatory="true">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>

</cluster>
</question-page>

</loop>

Figure 9. Using 'for' loop to collect household members

Working with Intelligent Evidence Gathering 13

Using this approach, the control question is a boolean type, as it is used in a
condition expression that indicates whether or not the while loop should be
entered. The loop, once entered, is iterated over until details of all the household
members have been gathered, as follows:

<question-page id="HouseholdPage" progress="10">
<title id="LoopControlPage.Title">

<![CDATA[Household Details]]>
</title>
<description id="LoopControlPage.Description">

<![CDATA[Please tell us some information about your
household]]>

</description>
<icon image="sample_title_household" />
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Details]]>

</title>
<question id="livesWithFamily" control-question="true"

control-question-type="IEG_BOOLEAN"
mandatory="true">
<label id="NumPeople.Label">

<![CDATA[Do you live with your family?]]>
</label>

</question>
</cluster>

</question-page>

Figure 10. Using 'while' loop to collect household members

14 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Household Relationships
When gathering information about a group of people in a household, it might be
necessary to ascertain how those people are related to each other. IEG provides a
mechanism for capturing relationships through the use of relationship pages and a
specific Datastore schema structure.

<condition expression="livesWithFamily==true">
<loop loop-type="while" loop-expression="

anotherMember==true"
entity="Person">

<question-page id="PersonDetailsPage"
show-person-tabs="true"

progress="20">
<title id="PersonDetailsPage.Title">

<![CDATA[Household Member Details]]>
</title>
<description id="PersonDetailsPage.Description">

<![CDATA[Please enter the details for
the next person in your household]]>

</description>
<icon image="sample_title_household" />
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Person Details]]>

</title>
<description id="DetailsCluster.Description">

<![CDATA[Enter the details for this
person below]]>

</description>
<question id="firstName" mandatory="true">

<label id="FirstName.Label">
<![CDATA[First Name:]]>

</label>
</question>
<question id="lastName">

<label id="lastName.Label">
<![CDATA[Last Name:]]>

</label>
</question>
<question id="gender" mandatory="true">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>
</cluster>
<cluster>

<question id="anotherMember"
control-question="true"

control-question-type="IEG_BOOLEAN">
<label id="AnotherMember.Label">

<![CDATA[Is there another
household member?]]>

</label>
</question>

</cluster>
</question-page>

</loop>
</condition>

Figure 11. Using while loop to collect household members

Working with Intelligent Evidence Gathering 15

A Relationship entity should be defined in the Datastore schema, taking the
following form:

A relationship page for the household can be defined as follows, provided that the
Relationship entity is a child of the Person entity:

It is only necessary to define the relationship page once. IEG will then display the
page as many times as is necessary to gather Relationships one person at a time.
This equates to one less times than the number of people in the household, as the
last person's Relationships will have been collected in their entirety through the
process.

By default, the Relationship Type field is presented as a dropdown, populated
from a codetable (configurable through the relationship.type.domain.name
property):

The relationship page will display a Person Tab at the top containing the list of
household members and the current Person will be highlighted. Then each
relationship between the current Person and the other members will be displayed.

The caretaker indicator is the only question that can be added directly to the
relationship page. Questions regarding other attributes of a Relationship entity
must be added to clusters that have been added to the relationship page.

<xsd:element name="Person">
<xsd:complexType>

<xsd:sequence minOccurs="0">
<xsd:element ref="Relationship" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
...

</xsd:element>
<xsd:element name="Relationship">

<xsd:complexType>
<xsd:attribute name="relationshipType"
type="IEG_STRING"/>
<xsd:attribute name="isNonParentPrimaryCaretaker"

type="IEG_BOOLEAN" default="false"/>
<xsd:attribute name="personID" type="D:SVR_KEY"/>

</xsd:complexType>
</xsd:element>

Figure 12. Relationship Entity in Datastore Schema

<relationship-page id="RelationshipPage" show-person-tabs="true"
progress="40">
<title id="RelationshipPage.Title">

<![CDATA[Household Relationships]]>
</title>
<description id="RelationshipPage.Description">
<![CDATA[Please enter the relationships for %1s below]]>

<argument id="Person.firstName" />
</description>
<icon image="sample_title_household" />
<question id="caretakerInd">

<label id="CaretakerInd.Label">
<![CDATA[Is this a non-parent caretaker
relationship?]]>

</label>
</question>

</relationship-page>

Figure 13. Relationship Page

16 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Summarizing Client Information
Lists are used on summary pages to display information gathered in loops. The
structure of the list should reflect the structure of the loop or hierarchy of loops
that collected the data. This means that the entity and criteria on the list should
match the entity and criteria on the loop. For example, to record the members of
the family described in “Families and Households” on page 11, a for loop was
used:

In the section summary page, the information gathered in this loop is displayed in
a list. The list, like the loop, has 'Person' as its entity and 'isPrimary==false' as its
criteria:

Relationship information gathered using a relationship page can be displayed on
summary pages in relationship summary lists:

Capturing Related Data

Introduction
Now that we've captured information about the household members such as their
personal details and their relationships, we might want to capture related data.
This can be achieved through composition (the use of nested DS entities) or
association (the use of related, non-nested DS entities).

Capturing Composite Data
We have seen previously that it is possible to capture relationships in IEG. The
combination of the Relationship entity and the RelationshipPage provide a
convenient mechanism to capture the relationships between the people in a
household. The relationship between people in a household is only one form of
relationship. IEG supports other types of relationships. IEG and the DS allow

<loop loop-type="for" loop-expression="numPeople"
entity="Person" criteria="isPrimary==false">

...
</loop>

Figure 14. For loop to collect household member information

<list entity="Person" criteria="isPrimary==false">
...

</list>

Figure 15. List of people

<relationship-summary-list>
<title id="RelationshipSummaryList.Title">

<![CDATA[Person Relationships Summary]]>
</title>
<description id="PersonRelationshipSummaryList.Description">

<![CDATA[Person Relationship Summary Details]]>
</description>
<column id="caretakerInd">

<title id="CaretakerInd.Title">
<![CDATA[NPCR]]>

</title>
</column>
<edit-link start-page="RelationshipPage" />

</relationship-summary-list>

Figure 16. Relationship Summary List

Working with Intelligent Evidence Gathering 17

entities to be nested creating a parent child relationship. This can be seen in the
example where there is a requirement to capture the incomes for the people in a
household. The Income entity is defined as any other entity is defined. It is nested
in the Person entity by referencing it in a sequence, as the following sample code
snippet shows:

Income information can then be gathered for people in a household by looping
over every person that has income. The loop criteria will use a "hasIncome"
boolean question that will be asked while gathering the details for each person. A
page within the loop can be mapped to the Income entity thus creating the nested
relationship, as shown below:

Displaying Composite Data on a Summary
The information gathered for nested entities can be displayed on a summary page
using a nested list. Similarly to regular lists, nested lists must match the entities
and criteria used in the nested loops that captured the data.

<xsd:element name="Person">
<xsd:complexType>

<xsd:sequence minOccurs="0">
<xsd:element ref="Income" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>
...
<xsd:attribute name="hasIncome" type="IEG_BOOLEAN"

default="false"/>
</xsd:complexType>
...

</xsd:element>
<xsd:element name="Income">

<xsd:complexType>
<xsd:attribute name="type" type="IEG_STRING" />
<xsd:attribute name="amount" type="IEG_MONEY" />

</xsd:complexType>
</xsd:element>

Figure 17. Parent/Child Schema

<loop loop-type="for-each" entity="Person"
criteria="hasIncome==true">

<loop loop-type="while" loop-expression="hasMoreIncome"
entity="Income">

<question-page id="IncomePage" entity="Income"
...

Figure 18. Creating Nested Entities

18 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

The sample code snippet above of an income summary list will be displayed in the
IEG Player as a regular list with incomes grouped per Person. It will also contain
Edit and Delete links for each income and an Add link with a dropdown listing all
the people.

Capturing Associated Data
IEG allows association relationships to be created between entities. This is useful
because a restriction applies to nested entities and nested lists that they can only
be nested to two levels. The use of associated relationships provides an effective
alternative to nesting entities to three levels.

For example, suppose there is a requirement to record employment information for
the people in a household. Employment information may be gathered
independently of Income information as there may be multiple incomes for a given
employment.

Once the Income and Employment information is gathered and the entities have
been created, the association between the entities can be made. The association is
made by creating a "relationship" entity. The relationship entity is normally
"owned" by one of the entities participating in the relationship and is represented
as a sequence as with other relationship types.

Defining a relationship entity requires being able to identify the related entity
therefore a key must be defined in the related entity. To apply this to the
Income/Employment example, the Employment entity type will have a key, an
EmploymentRelationship entity type will be defined and the Income entity will
own a sequence of EmploymentRelationships, as follows:

<list entity="Person" show-icons="true" criteria="hasIncome==true">
<title id="IncomeList.Title">

<![CDATA[Income]]>
</title>
<description id="IncomeList.Description">

<![CDATA[Here’s the income details you’ve entered for all the
people in your household]]>

</description>
<column id="firstName">

<title id="FirstName.Title">
<![CDATA[First Name]]>

</title>
</column>
<list entity="Income">

<column id="type">
<title id="IncomeType.Title">

<![CDATA[Income Type]]>
</title>

</column>
<column id="amount">

<title id="IncomeAmount.Title">
<![CDATA[Income Amount]]>

</title>
</column>

</list>
</list>

Figure 19. Displaying Nested Entities on Summary Pages

Working with Intelligent Evidence Gathering 19

The association can then be captured in the script by defining a list-question and
specifying a link-entity attribute which refers to the key of the related entity.
Continuing our example, on a page mapped to the Income entity a list-question
can be defined specifying the key from the EmploymentRelationship used to
identify the Employment entity.

List questions are constructs that allow the user to choose from a list of entities.
For more details, see “List Questions” on page 22.

Displaying Associated Data on a Summary
The association between entities can be displayed on a summary page by adding a
column to the list of entities of one type, in order to display details of the related
entity. A link-entity attribute needs to be specified on this column to identify the
related entity.

<xsd:element name="Employment">
<xsd:complexType>

<xsd:attribute name="employmentID" type="d:SVR_KEY" />
<xsd:attribute name="employer" type="IEG_STRING" />
<xsd:attribute name="employmentType" type="IEG_STRING" />

</xsd:complexType>
<xsd:key name="Employment_Key">

<xsd:selector xpath="./Employment" />
<xsd:field xpath="@employmentID" />

</xsd:key>
</xsd:element>
<xsd:element name="Income">

<xsd:complexType>
<xsd:sequence minOccurs="0">

<xsd:element ref="EmploymentRelationship" minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attribute name="type" type="IEG_STRING" />
<xsd:attribute name="amount" type="IEG_MONEY" />

</xsd:complexType>
</xsd:element>
<xsd:element name="EmploymentRelationship">

<xsd:complexType>
<xsd:attribute name="employmentID" type="d:SVR_KEY" />

</xsd:complexType>
</xsd:element>

Figure 20. Associated Entity Schema

<question-page id="IncomePage" entity="Income" ...
<cluster>

<layout>
<label-width>0</label-width>

</layout>
<list-question link-entity="EmploymentRelationship.employmentID"

entity="Employment" single-select="true">
<label id="SelectEmployer.Label">

<![CDATA[Select Employer]]>
</label>
<item-label>

<label-element attribute-id="employer" />
</item-label>

</list-question>
</cluster>

</question-page>

Figure 21. Creating Association Relationships

20 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

The following example shows how, while listing the Incomes for a Person on a
summary page, the associated Employer name can be displayed for each Income:

Deleting Associated Data
When entities form parent-child relationships, if the parent entity is deleted, all its
child entities are also deleted. When an entity that participates in a relationship is
deleted, by default, the relationships for that entity are deleted but the related
entities are not.

For example, suppose the details of all the people in a household have been
collected and Person entities created and the relationships between the people in
the household have also been captured and Relationship entities created. If the
user chooses to remove a person, the relationships that person participates in will
also be removed but none of the other people in the household will be removed.

This default behavior also applies to the income/employment example. If the user
chooses to remove an income, any EmploymentRelationships for the income will
be removed but none of the Employment entities will be removed.

It is possible to change the default behavior when deleting associated entities so
that any entities related to the entity being removed will also be removed.

To change the default behavior, an annotation containing a documentation element
may be added to the definition of a relationship entity in the DS schema. A
documentation element containing the text "@curam.ieg.cascading.delete=true"
indicates that related entities should be deleted when the relationship is deleted.

<summary-page id="IncomeSummary"
...
<list entity="Person" criteria="hasIncome==true"

show-icons="true">
<title id="IncomeList.Title">Income</title>
<description id="IncomeList.Description">Here’s the income

details you’ve entered for all the people in your
household</description>

<column id="firstName">
<title id="FirstName.Title">First Name</title>

</column>
<list entity="Income" show-icons="false">

<column id="type">
<title id="IncomeType.Title">Income Type</title>

</column>
<column id="amount">

<title id="IncomeAmount.Title">Income Amount</title>
</column>
<column id="employer"

link-entity="EmploymentRelationship.employmentID"
entity="Employment">

<title id="Employer.Title">Employer</title>
</column>

</list>
</list>

</summary-page>

Figure 22. Entity Association Summary Page

Working with Intelligent Evidence Gathering 21

In the Income/Employment example, if curam.ieg.cascading.delete is set to true
for the EmploymentRelationship when an Income entity is removed any associated
Employment entity will also be removed. Removing the Employment entities in
this way does not cause other Income entities to the removed.

Efficient Ways of Capturing Data

Introduction
This chapter will highlight some of the features of IEG that allow information to be
gathered more effectively and more intuitively.

List Questions
In an earlier example, we saw a requirement to gather income information for the
people in a household. In order to only gather income information for the people
who actually have income, a question was added to the 'Household Members
Details' page to indicate if the person has income or not.

IEG provides an alternative to asking the same boolean question for a number of
entities. A list question can be used to gather all the answers at the same time.

Continuing the previous example where information has been collected about the
people in the household, the attribute hasIncome has been added to the Person
entity to indicate if income information should be collected for the person, as
follows:

Like questions, list questions must be added to a cluster. Where list questions
differ is that you must specify the type of the entities that will be displayed in the
list. The ID of the list question corresponds to the name of the boolean attribute
that should be set if the user selects an item in the list. As with questions, a list
question should have a label to indicate the purpose of the question. List questions
should also have an item label element. The item label specifies which attribute
from the entities should be used to identify the entities in the list. In the following
example, the first name of the household members is displayed to identify them.

<xsd:element name="EmploymentRelationship">
<xsd:annotation>

<xsd:documentation>@curam.ieg.cascading.delete=true
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:attribute name="employmentID" type="d:SVR_KEY" />
</xsd:complexType>

</xsd:element>

Figure 23. Cascading Deletes Schema

<xs:element name="Person">
<xs:complexType>

...
<xs:attribute name="hasIncome" type="IEG_BOOLEAN"/>

Figure 24. Has Income Person Schema

22 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

So rather than adding a question in the loop where the household member details
are gathered, once the household member details have been captured a list
containing the household members can be displayed. The user can then select the
members that have income.

List questions are particularly useful when used in conjunction with a for-each
loop, referencing the question that was set in the list-question in the criteria
expression of the loop. List questions can also be used with entity types other than
Person.

Single-select
List questions can also be used when the selection should be mutually exclusive.
When the single-select attribute of a list question is set to true, only one of the
items in the list can be selected.

If for example, the requirement is to indicate which household member is the
primary care giver, an attribute can be added to the Person entity and a
single-select list question can be added to the script:

The above list question will cause list of the household members that are over 14
years old to be displayed with a radio button next to each Person, thus allowing
only one to be selected.

<question-page id="AnyoneHaveIncome">
...

<cluster>
<list-question id="hasIncome" entity="Person">

<label id="HasIncome.Label">
<![CDATA[Which people have income?]]>

</label>
<item-label>

<label-element attribute-id="firstName"/>
</item-label>

</list-question>
</cluster>

</question-page>

Figure 25. List question

<xsd:element name="Person">
<xsd:complexType>

...
<xsd:attribute name="primaryCareGiver" type="IEG_BOOLEAN"/>

Figure 26. Primary Care Giver Person Schema

<question-page id="PrimaryCareGiver" ...>
...

<cluster>
<list-question id="primaryCareGiver" entity="Person"

single-select="true" criteria="age > 14">
<label id="PrimaryCareGiver.Label">

<![CDATA[Which person is the primary care giver?]]>
</label>
<item-label>

<label-element attribute-id="firstName" />
</item-label>

</list-question>
</cluster>

Figure 27. Single-select List Question

Working with Intelligent Evidence Gathering 23

Codetable Questions
If an attribute is defined in a DS schema as a codetable, when the corresponding
question is displayed the default behavior is to display the question as a
drop-down. Only one answer can be selected in the drop-down list.

For example, if these is a requirement to capture a household member's home
state, a new a new domain definition can be added to represent the AddressState
codetable and an attribute to store the home state can be added to the Person
entity as follows:

A question to capture the hone state information can then be added to the script as
follows:

When the script is executed the question is displayed to the user as a dropdown.

IEG also supports defining codetable questions in such a way that the user can
make multiple selections.

When a codetable question is single-select the answer to the question can be stored
in a single attribute of an entity. Because there are multiple possible answers in a
multi-select codetable question, a sequence must be added to store all the answers
and a new entity type must be defined to represent the answers in the sequence.

...
<xsd:simpleType name="IEG_STATE_ADDRESS">

<xsd:annotation>
<xsd:appinfo>

<D:options>
<D:option name="code-table-name">AddressState</D:option>

</D:options>
</xsd:appinfo>

</xsd:annotation>
<xsd:restriction base="IEG_CODETABLE_CODE" />

</xsd:simpleType>
...

<xsd:element name="Person">
...

<xsd:attribute name="homeState" type="IEG_STATE_ADDRESS" />

Figure 28. State Codetable and Attribute

<question-page id="AboutYouPage" entity="Person">
...

<cluster>
<question id="homeState">

<label id="State.Label">
<![CDATA[Please select your home state:]]>

</label>
</question>

</cluster>

Figure 29. State Codetable Question

24 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Making a codetable question multi-select is done by setting the multi-select
attribute of the question to true. When adding a multi-select codetable question,
the cluster that the question is being added to must be mapped to the new entity
type representing the answers to the question. In our example the cluster must be
mapped to the State entity. The page that contains the multi-select question must
be mapped to the entity that contains the sequence. In this example the page
should be mapped to the Person entity. Finally, in order for a number of options in
a multi-select codetable question to be visible a layout should be added to the
question. The layout should specify the number of visible rows for the question. If
the number of options available for the question exceeds the number of rows
specified in the layout a scroll bar will be added to the question.

When the script is executed the question is displayed to the user as a list of
codetable descriptions with one checkbox for each item.

Conditional Elements
IEG scripts can have multiple different conditional elements: sections, pages or
clusters. Conditional elements can be shown or hidden based on answers from
previous pages or on data pre-populated in the DS.

Conditional Sections
It is possible to remove sections from a script execution by evaluating an
expression at the start of the execution: if the section is not visible, it will not be
listed in the sections panel and the expression will not be re-evaluated during the
script execution.

<xsd:element name="Person">

<xsd:complexType>
<xsd:sequence minOccurs="0">

<xsd:element ref="State" minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>
...

</xsd:complexType>
</xsd:element>

<xsd:element name="State">
<xsd:complexType>

<xsd:attribute name="stateCode" type="IEG_STATE_ADDRESS" />
</xsd:complexType>

</xsd:element>

Figure 30. State Entity

<question-page id="AboutYouPage" entity="Person">
...

<cluster entity="State">
<question id="stateCode" multi-select="true">

<label id="State.Label">
<![CDATA[Please select the states you lived in:]]>

</label>
<layout>

<num-rows>4</num-rows>
</layout>

</question>
</cluster>

Figure 31. Multi-Select Codetable Question

Working with Intelligent Evidence Gathering 25

Using a pre-populated DS as described in “Pre-Populating Scripts with Captured
Data” on page 48, we can set a flag on an entity depending on circumstances
external to the script. Let's say we have an entity called IntakeInformation that has
a boolean attribute "collectIncomeInformation". We can specify an Income section
in our script:

This will hide the Income section if the "collectIncomeInformation" attribute is
false, as if the section was not present in the script definition.

If a section needs to be enabled or disabled depending on answers from previous
sections, it is possible to wrap all the pages of a section in a single condition.
Unlike the visible attribute, this condition will be evaluated whenever the section
is encountered, which means it is possible to go back and change an answer that
affects the navigability of a section. The section will still appear in the sections
panel but will be grayed out so the user cannot click on it.

The preceding example can be modified so that the "collectIncomeInformation"
question is asked at the start of the script. The Income section can then be
modified as follows:

Conditional Pages
Pages can be displayed or not based on the value of a condition expression. Loops
can be also wrapped in these conditions.

The conditional section previously mentioned where one condition wraps all the
section's content is an example of conditional pages.

Conditional Clusters
Clusters can also be wrapped in a condition element. If the expression of the
condition element does not refer to any of the questions on the same page the
cluster is a static conditional cluster. That is because it can be determined before
the pages is displayed whether to display the cluster or not.

For example, if information about household members has been gathered you may
wish to add another page to ask further personal details including whether the
person is pregnant. A new isPregnant attribute should be added to the Person
entity to store this information:

...
<section visible="IntakeInformation.collectIncomeInformation==true">

...
</section>
...

Figure 32. Visible Attribute of a Section

...
<section>

<condition
expression="IntakeInformation.collectIncomeInformation">
...

</condition>
</section>
...

Figure 33. Conditional Section

26 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Of course, this question is only applicable if the gender is female. Therefore the
cluster can be wrapped in a condition and it will only be displayed if the condition
expression evaluates to true. The new extra Person Details page can be defined as
follows:

Alternatively, if any of the questions referenced in the condition expression are on
the same page, the cluster is then a dynamically conditional cluster. The means
that the cluster will be displayed and hidden as the user changes answers to
questions on the page. This dynamic feature of IEG requires that JavaScript is
enabled in the browser. The expressions of dynamically conditional cluster may not
refer to custom functions, as the expressions are evaluated without making a
server call.

Without changing the DS schema, if the example above is changed so that the
conditional cluster is defined on the same page as the gender question the cluster
will be a dynamically conditional cluster.

<xsd:element name="Person">
<xsd:complexType>

...
<xsd:attribute name="isPregnant" type="IEG_BOOLEAN"/>

Figure 34. Additional Person Attribute

<question-page id="AboutTheClientContinued" entity="Person" ...>
<condition expression="Person.gender=="SX2"">

<cluster>
<question id="isPregnant" mandatory="true">

<label id="IsPregnant.Label">
Are you pregnant?

</label>
<help-text id="IsPregnant.HelpText">

Are you pregnant?
</help-text>

</question>
</cluster>

</condition>
</question-page>

Figure 35. Static Conditional Cluster

Working with Intelligent Evidence Gathering 27

The pregnancy question will dynamically appear or disappear when the value
selected for the gender changes. Dynamic behavior on a page can be triggered by
text fields, date fields, checkboxes, radio buttons, select elements. Dynamic
behavior cannot be triggered by the answer to a multi-select question or a question
matrix, due to the restrictions of the expression syntax.

It should be noted that only one level of condition is allowed around a cluster, i.e.
conditional clusters cannot be nested in other conditions. The condition expression
for a dynamically condition cluster may refer to questions on the same page that
are themselves defined in dynamically conditional cluster. This creates a cascading
dependency between clusters.

Question Matrices
The list questions presented in “List Questions” on page 22 ask the same boolean
question about a group of entities. It is possible to ask the same codetable question
for a group of entities using question matrices.

A question matrix will display a list of questions based on a codetable and for each
of these codetable values and each entity, a checkbox will be displayed to allow the
user to select all the values that apply to a particular entity.

For example, suppose there is a requirement to capture possible levels of substance
abuse for each household member, a new a new domain definition can be added to
represent the SubstanceAbuse codetable and an attribute to store the level of
substance abuse can be added to the Person entity as follows:

<question-page id="AboutTheClient" entity="Person" ...>
...

<cluster>
<title id="DetailsCluster.Title">

<![CDATA[Personal Details]]>
</title>

...
<question id="gender" mandatory="true">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>

...
<condition expression="Person.gender=="SX2"">

<cluster>
<question id="isPregnant" mandatory="true">

<label id="IsPregnant.Label">
<![CDATA[Are you pregnant?]]>
</label>

</question>
</cluster>

</condition>
</question-page>

Figure 36. Dynamically Conditional Cluster

28 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

The question matrix is then defined as a regular list question, only the fact that it
is based on a codetable instead of a boolean will cause it to be displayed
differently.

The example above, of a question matrix that collects substance abuse information
about multiple household members, will be displayed in the IEG Player as a
matrix with each row corresponding to a codetable description and each column to
a Person.

Fast Path Navigation
By default, when a user reiterates through a script all the pages are re-displayed
which can become arduous especially in large households. Fast Path navigation
enables end users to go through IEG scripts more quickly by automatically
skipping loop or conditional pages that have already been answered.

This functionality is optional and switched off by default. It can be activated on
loops and conditions (to activate Fast Path navigation, see the Authoring Scripts
using Intelligent Evidence Gathering (IEG)) guide.

The first time a fast path element is encountered, it behaves as normal. When the
user navigates through the script subsequently only the new pages within these
fast path elements will be displayed. The pages that were previously displayed
will now be skipped. This functionality doesn't prevent from editing the data via
the edit links on a summary page if necessary.

Fast Path can be used in the following scenarios:
v List Question driving a Loop
v Eligibility Criteria

<xsd:simpleType name="IEG_SUBSTANCEABUSE">
<xsd:annotation>

<xsd:appinfo>
<D:options>

<D:option name="code-table-name">SubstanceAbuse</D:option>
</D:options>

</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="IEG_CODETABLE_CODE" />

</xsd:simpleType>

<xsd:element name="Person">
<xsd:complexType>

...
<xsd:attribute name="substanceAbuse"

type="IEG_SUBSTANCEABUSE" />

Figure 37. Substance Abuse Attribute

...
<list-question entity="Person" id="substanceAbuse"

criteria="age > 14">
<label id="SubstanceAbuse.Label">

<![CDATA[Substance Abuse:]]>
</label>
<item-label>

<label-element attribute-id="firstName" />
</item-label>

</list-question>

Figure 38. Question Matrix Code Example

Working with Intelligent Evidence Gathering 29

v Fast Path Conditions
v Condition in Fast Path Loop

List Question driving a Loop
Using the same List Question as described in “List Questions” on page 22, we
want to gather income information for the people in a household. We will use a
nested fast path loop as described in the following example:

The first time the list question is encountered, the pages following the loop will
gather income for the people that have been selected. Then when re-visiting the
page containing the list question, the following can occur:
v If the checkboxes are not modified, clicking Next will jump over the income

loop and display the page after the loop.
v If some of the checkboxes are unselected, clicking Next will delete the incomes

corresponding to the people that were unselected, jump over the income loop
and display the page after the loop.

v If new checkboxes are checked, clicking Next will jump over the existing income
pages, show new income pages for the newly selected people and then display
the page after the loop.

v If new checkboxes are checked and others are unselected, clicking Next will
delete the incomes corresponding to the people that were unselected,jump over

...
<loop loop-type="for-each" entity="Person"

criteria="hasIncome==true" fast-path="true">
<loop loop-type="while" loop-expression="hasMoreIncome"

entity="Income">
<question-page id="IncomePage" entity="Income"

show-person-tabs="true">
<title id="IncomePage.Title">

<![CDATA[Income Details]]>
</title>
<cluster>

<title id="IncomeDetails.Title">
<![CDATA[Income Details]]>

</title>
<question id="type">

<label id="Type.Label">
<![CDATA[Type:]]>

</label>
</question>
<question id="amount">

<label id="Amount.Label">
<![CDATA[Amount:]]>

</label>
</question>
<question id="hasMoreIncome"

control-question="true"
control-question-type="IEG_BOOLEAN">
<label id="ContinueQuestion.Label">

<![CDATA[Does %1s have any more income?]]>
<argument id="Person.firstName" />

</label>
</question>

</cluster>
</question-page>

</loop>
</loop>

Figure 39. Fast Path List Question driving a Loop Code Example

30 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

the existing income pages, show new income pages for the newly selected
people and then display the page after the loop.

Eligibility Criteria
Building on the previous scenario, we can filter the people that will be displayed
in the list question (the loop doesn't need to be modified). Only the people over 18
will be eligible to enter income so a criteria is added to the list question. When
reiterating through the script people may no longer match the criteria and
therefore not appear in the list.

This will behave as mentioned in the previous scenario, but if the date of birth of a
person is modified, the following will happen:
v If the person becomes ineligible (under 18) and income had been entered, the

corresponding income will get automatically deleted as soon as the new date of
birth is submitted.

v If the person becomes eligible (over 18), it will be displayed in the list question
(but not selected) the next time the list question page is displayed.

Fast Path Conditions
We can ask pregnancy details for female household members using a conditional
page. If the condition is defined as fast path, the pregnancy details will be hidden
when re-iterating over household members as the pages in the condition will only
be displayed when reiterating through the script if the condition previously
evaluated to false and something has changed so the condition now evaluates to
true.

...
<list-question id="hasIncome" entity="Person" criteria="age > 18">

<label id="HasIncome.Label">
<![CDATA[Which people have income?]]>

</label>
<item-label>

<label-element attribute-id="firstName" />
</item-label>

</list-question>

Figure 40. Fast Path List Question with Eligibility Criteria driving a Loop Code Example

Working with Intelligent Evidence Gathering 31

When editing the personal details, the following can occur:
v If no change was made to the gender, clicking on Next will jump over the

condition, whether it was displayed the first time or not.
v If the gender has changed from Male to Female, clicking on Next will display

the conditional page to enter pregnancy details.
v If the gender has changed from Female to Male, clicking on Next will delete the

pregnancy details and display the page after the condition.

...
<question-page id="AboutYouPage" entity="Person">

<title id="PrimaryPersonPage.Title">
<![CDATA[About You]]>

</title>
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Personal Details]]>

</title>
<question id="firstName" mandatory="true">

<label id="FirstName.Label">
<![CDATA[First Name:]]>

</label>
</question>
<question id="middleName">

<label id="MiddleName.Label">
<![CDATA[Middle Name:]]>

</label>
</question>
<question id="lastName">

<label id="lastName.Label">
<![CDATA[Last Name:]]>

</label>
</question>
<question id="gender" mandatory="true">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>
<question id="dateOfBirth" mandatory="true">

<label id="DateOfBirth.Label">
<![CDATA[Date Of Birth:]]>

</label>
</question>

</cluster>
</question-page>
<condition expression="Person.gender=="SX2""

fast-path="true">
<question-page id="PregnancyPage" entity="Person">

<title id="PregnancyPage.Title">
<![CDATA[About You: pregnancy]]>

</title>
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Personal Details About Your Pregnancy]]>

</title>
<question id="isPregnant" >

<label id="IsPregnant.Label">
<![CDATA[Are you pregnant?]]>

</label>
</question>

</cluster>
</question-page>

</condition>

Figure 41. Fast Path Conditions Code Example

32 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Condition in Fast Path Loop
When a condition is defined inside a Fast Path loop, this will behave the same as
when a criteria is used on the loop instead of nesting a condition, with the
following exception: if the condition becomes true, the page contained within the
condition cannot be displayed as the loop doesn't have a new iteration to show
and therefore will be skipped. If the condition becomes false, the page and
associated data won't be deleted as the condition is not re-evaluated. It is therefore
recommended to use a criteria on the loop instead of a condition.

Implicit Delete
Wherever possible, the IEG engine tries to delete data as soon it finds out that it is
no longer relevant.

If an answer is explicitly modified by the user (through a regular question, a
list-question or a set-attribute, but not through a custom function call), the engine
detects if this answer is used in a condition expression, a list-question criteria or a
loop criteria. If that is the case, the expression or criteria is re-evaluated and if it
becomes false, the corresponding pages are removed and the associated data gets
deleted without the need to go through the script to encounter the expressions or
criterion.

...
<loop loop-type="for-each" entity="Person"

fast-path="true">
<condition expression="Person.hasIncome==true">

<loop loop-type="while" loop-expression="hasMoreIncome"
entity="Income">
<question-page id="IncomePage" entity="Income"

show-person-tabs="true">
<title id="IncomePage.Title">

<![CDATA[Income Details]]>
</title>
<cluster>

<title id="IncomeDetails.Title">
<![CDATA[Income Details]]>

</title>
<question id="type">

<label id="Type.Label">
<![CDATA[Type:]]>

</label>
</question>
<question id="amount">

<label id="Amount.Label">
<![CDATA[Amount:]]>

</label>
</question>
<question id="hasMoreIncome"

control-question="true"
control-question-type="IEG_BOOLEAN">
<label id="ContinueQuestion.Label">

<![CDATA[Does %1s have any more income?]]>
<argument id="Person.firstName" />

</label>
</question>

</cluster>
</question-page>

</loop>
</condition>

</loop>

Figure 42. Condition in Fast Path loop Code Example

Working with Intelligent Evidence Gathering 33

Other Script Development Considerations

Introduction
The various constructs that have been presented so far cater for a lot of different
evidence gathering needs, but there can be situations that require additional
functionality such as the ability to display data in a read-only mode or to invoke
external functionality. This chapter details these items.

This chapter also covers some things that should be considered when maintaining
IEG scripts, placing scripts under source control and loading scripts into the
database.

Displaying Data as Read-Only
Sometimes the answers to some questions need to be displayed to the user in such
a way that they cannot be modified. This is already the case on summary pages
where users can review the answers and use the back button or edit links to
modify them.

On a question page, a "read-only" boolean attribute can be set to true indicating
that all the questions displayed on the page will not be editable.

A more sophisticated mechanism exists: "read-only-expression" attributes can be
used on different script elements (sections, all types of pages, clusters, questions
and list questions). If the expression evaluates to true, this will apply to all the
questions contained in the element. At its simplest, the expression will be "true" if
the element needs to be unconditionally read-only. On a summary page, the result
is that add, edit and delete links are not displayed.

In the case of read-only-expression defined for cluster, question and list question
script elements, if any of the questions referenced in the expression are on the
same page as the script element the script element is then dynamically enabled or
disabled as opposed to just being read-only. This means that questions will be
enabled and disabled as the user changes answers to other questions on the page.
Where the read-only-expression of a cluster references a question on the same page
all the questions contained in the cluster will be enabled and disabled. This
dynamic feature of IEG requires that JavaScript is enabled in the browser. The
expressions to dynamically enable and disable questions may not refer to custom
functions, as the expressions are evaluated without making a server call.

Dynamic read-only-expressions may also refer to questions on the same page that
are themselves dynamically enabled and disabled. This creates a cascading
dependency between questions. Care should be taken when defining expressions
with cascading dependencies as IEG does not take into account whether the
questions referred to in the read-only-expression is enabled or not, just the value of
the question. This may be confusing for the user as it may not be apparent what is
controlling the enabling and disabling of a question.

When a question is displayed if the corresponding Datastore attribute has a value
it will be displayed even if the question is initially disabled. The question may
then be enabled by the user and the user may change the answer. If the question is
disabled its value will set back to the value it had when initially displayed. When
a page is submitted the Datastore attribute will not be updated unless the question
is enabled. Therefore if the page is redisplayed the original value of the Datastore
attribute will be displayed again.

34 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

It is not possible to mark a question as mandatory if it also has a dynamic
read-only-expression on the question itself or one of its parent elements.

Dynamically enabling and disabling script elements is not supported on
Relationship Pages.

The information gathered in loops can be displayed on summary pages using lists,
but it is also possible to use this list construct on regular pages without the need to
specify a read-only-expression in one of the elements wrapping the list. The only
difference with summary lists is that links are not allowed.

Another possibility is to make a whole script read-only. This is useful, for example,
if a case-worker needs to review a script without being able to change any of the
answers. The script is set to read-only through the IEGRuntimeAPI by setting a
read-only flag on the script execution, as shown below:

Invoking External Functionality Using Expressions
Expressions can be found in multiple places in a script to define behavior for
loops, conditions and so on. See the Expression Syntax appendix in the Authoring
Scripts using Intelligent Evidence Gathering(IEG) guide for reference.

These expressions can refer to answers and can combine them using various
operators, and they can even call functions (except when used on dynamic
conditional clusters as these expressions are evaluated in the browser).

The functions described above are referred to as Custom Functions and are defined
using Java™ code. Depending on their usage, they can be of two types:
v Custom functions which can take parameters (possibly making a call to an

external functionality) and will return a value. They will not alter the content of
the DS. They are used in most expressions.

v When the aim is to update the content of the DS, the custom function can be
used in a standalone element: callout. The returned value is irrelevant (but it
must be a boolean). The custom function should not update values that have
been answered prior to the callout. This is because the IEG Engine is not aware
of the updates made outside the context of the script, and is therefore not be
able take any actions required by the updates.

Real-world examples that might necessitate the invocation of external functionality
are the validation of a US ZIP code that a user has supplied and the population of
a state field based on a supplied ZIP code. We will now demonstrate those 2
different usage.

The DS schema will need to be expanded to add the following 2 attributes to the
Person entity, as follows:

...
//Set read only flag.
IEGRuntime runtimeAPI = new IEGRuntime();
IEGScriptExecutionID runtimeExecID = new IEGScriptExecutionID();
runtimeExecID.executionID = execution.getExecutionID();
IEGReadOnlyFlag readOnlyFlag = new IEGReadOnlyFlag();
readOnlyFlag.readOnlyFlag = true;
runtimeAPI.setReadOnlyFlag(runtimeExecID, readOnlyFlag);
...

Figure 43. Setting the read-only flag on a script execution

Working with Intelligent Evidence Gathering 35

First let's try to validate a ZIP code against a state (this is a naive implementation):
a ZIP code must be five digits long and the first 3 digits will indicate the state.

The personal details page mentioned earlier and the corresponding summary page
can be modified with 2 extra mandatory questions: state and zipCode:

Then the custom function that will perform the validation must be created as a
Java class in the package curam.rules.functions:

<xsd:attribute name="state" type="IEG_STRING"/>
<xsd:attribute name="zipCode" type="IEG_STRING"/>

Figure 44. Additional Person attributes in the DS schema

<question id="state" mandatory="true">
<label id="State.Label">

State:
</label>
<help-text id="State.HelpText">

The state you live in
</help-text>

</question>
<question id="zipCode" mandatory="true">

<label id="ZipCode.Label">
ZIP Code:

</label>
<help-text id="ZipCode.HelpText">

Your ZIP code
</help-text>

</question>

Figure 45. State and zipCode questions in the script definition

36 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

The following metadata for the custom function must be inserted in
<yourcomponent>/rulesets/functions/CustomFunctionMetaData.xml:

See the Cúram Rules Codification Guide for more details on the definition of
custom functions.

In our example, the custom function ValidateZipCode doesn't access an external
database to look-up the corresponding state. Ideally, it should do that look-up and
then check the state returned against the state that was entered. For simplification
purposes, only two zip code prefixes are hard-coded above.

The validation will then be inserted in the personal details page:

...
public class CustomFunctionValidateZipCode extends CustomFunctor {

public Adaptor getAdaptorValue(final RulesParameters rp)
throws AppException, InformationalException {

final List<Adaptor> parameters = getParameters();
final String zipCode =

((StringAdaptor) parameters.get(0)).getStringValue(rp);
final String state =

((StringAdaptor) parameters.get(1)).getStringValue(rp);
boolean valid = false;

if (zipCode.length() == 5) {
final String prefix = zipCode.substring(0, 3);
//lookup the state prefixes
if (prefix.equals("100")

&& state.equalsIgnoreCase("New York")) {
valid = true;

}
if (prefix.equals("900")

&& state.equalsIgnoreCase("California")) {
valid = true;

}
}

return AdaptorFactory.getBooleanAdaptor(Boolean.valueOf(valid));
}

}

Figure 46. Custom Function to validate the ZIP code

<CustomFunctor name="CustomFunctionValidateZipCode">
<parameters>

<parameter>
curam.util.rules.functor.Adaptor$StringAdaptor

</parameter>
<parameter>

curam.util.rules.functor.Adaptor$StringAdaptor
</parameter>

</parameters>
<returns>curam.util.rules.functor.Adaptor$BooleanAdaptor</returns>

</CustomFunctor>

Figure 47. Custom Function Metadata

Working with Intelligent Evidence Gathering 37

When the user clicks Next, the answers to the zipCode and state questions are
passed to the custom function, which will return true if the answers are valid. The
next page will then be displayed.

If the custom function returns false, the message specified in the validation is
displayed at the top of the Person details page, blocking the access to the Next
page until valid answers are submitted.

The custom function has no side effect as it doesn't alter anything. It only performs
an operation based on the parameters and returns a result.

It would also be possible to remove the mandatory flag on the two new questions
and to validate the answers only if they have both been supplied. The validation
expression would then need to be changed to the following using the
out-of-the-box custom function isNotNull that checks if the given parameter is
null:

Alternatively, it is possible to populate the state question given the zipCode. To do
so, the Person details page will only ask for the zipCode (with the mandatory
flag), and the summary page will display both state and zipCode.

The following custom function should be defined:

<validation
expression="ValidateZipCode(Person.zipCode, Person.state)">

<message id="InvalidZipCode">
The ZIP code is invalid.

</message>
</validation>

Figure 48. ZIP code validation in the script definition

"not(isNotNull(Person.zipCode) and isNotNull(Person.state))
or ValidateZipCode(Person.zipCode, Person.state)"

Figure 49. Alternate validation expression

38 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

And its metadata:

Between the Person details page and the summary page, a callout element must be
inserted to call this custom function, as follows:

This time, the custom function will alter the DS by populating the state on the
Person entity. The context contains the root entity ID and executionID, making it
easier to update the DS. If the callout is in a loop, the context also contains the
current entity ID.

...
public class CustomFunctionpopulateState extends CustomFunctor {

public Adaptor getAdaptorValue(final RulesParameters rp)
throws AppException, InformationalException {

final IEG2Context ieg2Context = (IEG2Context) rp;
final long rootEntityID = ieg2Context.getRootEntityID();
String schemaName;
//schemaName has to be hard-coded or retrieved outside of IEG
Datastore ds = null;
try {

ds =
DatastoreFactory.newInstance().openDatastore(

schemaName);
} catch (NoSuchSchemaException e) {

throw new AppException(IEG.ID_SCHEMA_NOT_FOUND);
}

Entity applicationEntity = ds.readEntity(rootEntityID);

Entity personEntity =
applicationEntity.getChildEntities(

ds.getEntityType("Person"))[0];
String zipCode = personEntity.getAttribute("zipCode");
String state = "Unknown";
final String prefix = zipCode.substring(0, 3);
//lookup the state prefixes
if (prefix.equals("100")) {

state = "New York";
}
if (prefix.equals("900")) {

state = "California";
}
personEntity.setAttribute("state", state);
personEntity.update();
return AdaptorFactory.getBooleanAdaptor(new Boolean(true));

}

}

Figure 50. Custom Function to populate the state

<CustomFunctor name="CustomFunctionpopulateState">
<returns>curam.util.rules.functor.Adaptor$BooleanAdaptor</returns>

</CustomFunctor>

Figure 51. Custom Function metadata

<callout id="populateAddress" expression="populateState()"/>

Figure 52. Callout to populate the sate in the script definition

Working with Intelligent Evidence Gathering 39

Reusing Scripts
It is possible to break down a script definition into multiple files thus providing a
re-use mechanism.

In order to achieve this, a script definition will have to reference subscripts. Each
of these subscripts will be a standalone script that can be run independently.

Here is an example of a script that can be used as a subscript:

The script in the above example code snippet can be included in another script as
a subscript, as follows:

The possible point of insertion of a subscript in a script can be as follows:
v If the script contains sections and the subscript also contains sections, the

subscript will have to be inserted at the top level, under the parent ieg-script
element.

v If the script contains sections and the subscript doesn't contain sections, the
subscript will have to be inserted in a section of the parent script.

v If the script doesn't contain sections, the subscript cannot contain sections. It will
be inserted at the top level, under the ieg-script element.

Another limitation to keep in mind is that a subscript can appear only once in a
script as the page IDs must be unique within the resulting script.

Note that a script might be used as a subscript elsewhere. When modifying scripts,
ensure that any referencing scripts are re-tested to ensure the changes do not have
an undesired impact.

Source Control and Versioning
IEG script definitions are stored in the database. When editing an IEG script using
the IEG Editor, the script is edited in place and updated directly in the database.

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script ...>

<identifier id="Subscript" scriptversionnumber="V1" type="Test" />
<question-page ...>

...
</question-page>
...

</ieg-script>

Figure 53. Subscript Containing Pages

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script ...>

<identifier id="Script" scriptversionnumber="V1" type="Test" />
<section>

<ieg-sub-script>
<identifier id="Subscript"
scriptversionnumber="V1" type="Test" />

</ieg-sub-script>
</section>
<section>

...
</section>
...

</ieg-script>

Figure 54. Inclusion of a Subscript in a Script

40 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

IEG script definitions are development artifacts and from a software configuration
management point of view it is important that these artifacts are placed under
source control as you would with any other artifacts.

It is possible to download a script definition from the IEG script administration
screens. When the option to download a script is chosen, the script is first retrieved
from the database, then the properties files associated with the script definition are
retrieved from the Resource Store and the textual properties are "injected" into the
script definition before it is made available. However downloading a script in this
way does not provide all the resources that may be associated with a script
definition. For example, it does not provide properties files in multiple locales and
it does not provide images and icons. Please see the Compliancy appendix of the
Authoring Scripts using Intelligent Evidence Gathering (IEG) developer's
guide for more information on the database representation of an IEG script.

When populating the database with script definitions, it is important to be aware
of the differences in functionality between importing a script through the IEG
script administration screens and loading a script definitions via DMX files.

Integrating IEG into a Cúram Application

Introduction
This chapter outlines how IEG can be integrated into an application. IEG can be
integrated in two ways: either by opening the player in a tab or in a modal dialog.
The integration tasks that are dealt with here include creating the script execution;
setting finish and quit pages; running in a tab; running in a modal; cleaning up
application data; and resuming scripts.

Creating a Script Execution
It is recommended that, before opening the IEG Player from an application, the
script execution is created using the public API. The execution ID can then be
passed to the player.

The following example code snippet shows the creation of a script execution using
the public API:

Specifying a Redirection URL
The finish-page and quit-page attributes in an IEG Script indicate what URL to
redirect to when leaving the IEG Player. In this way they provide a connection
between the IEG Player and an application. These attributes are detailed in the IEG
Script Element Reference chapter of the Authoring Scripts using Intelligent
Evidence Gathering (IEG) developer's guide.

Modify the example script to include these attributes as shown below:

...

// create the script execution
final IEGRuntime runtimeAPI = new IEGRuntime();
final IEGScriptExecutionIdentifier executionIdentifier =

runtimeAPI.createScriptExecution(iegScriptID, schemaName);

Figure 55. Creation of a script execution

Working with Intelligent Evidence Gathering 41

In the example above, completion or exit from the script will result in redirection
to the list of all IEG scripts provided in the administration screens.

Running the IEG Player in a Tab
Running the IEG Player in a tab is a requires less effort than running it in a modal.
It necessitates that the 'opening' link points to ieg/Screening.do and passes in the
executionID. Screening.do invokes the IEG Player. The parameters are as follows:

Here is an example of a resolve UIM that opens the IEG Player in a tab:

<ieg-script
finish-page="IEG2_listAllIEG2Scripts"
quit-page="IEG2_listAllIEG2Scripts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ieg-schema.xsd">

...
<ieg-script>

Figure 56. Script with finish-page and quit-page defined

42 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

<?xml version="1.0" encoding="UTF-8"?>
<PAGE PAGE_ID="System_IEGResolver">

<JSP_SCRIPTLET>
<![CDATA[

String scriptID = request.getParameter("scriptID");
String scriptType = request.getParameter("scriptType");
String scriptVersion = request.getParameter(

"scriptVersion");
String schemaName = request.getParameter("schemaName");
String name = request.getParameter("name");

String executionIDParam =
request.getParameter("executionIDParam");

String url = null;

curam.omega3.request.RequestHandler
rh = curam.omega3.request.

RequestHandlerFactory.getRequestHandler(request);

String context = request.getContextPath() + "/";

if (executionIDParam == null) {
// Need to check to see if there are any script validation
// errors before running the script.

String contextWithUserPreferences = context +
curam.omega3.user.UserPreferencesFactory
.getUserPreferences(

pageContext.getSession()).getLocale() + "/";

curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_checkForScriptErrors_TH

iegScriptAdminCheckForErrors
= new curam.interfaces.IEGScriptAdminPkg.

IEGScriptAdmin_checkForScriptErrors_TH();

iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptID_idx, scriptID);
iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptType_idx,

scriptType);
iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptVersion_idx,

scriptVersion);
iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$schemaName_idx,

schemaName);
//Call the method.
iegScriptAdminCheckForErrors.callServer();

String errorsPresentInScript =
iegScriptAdminCheckForErrors.getFieldValue(

iegScriptAdminCheckForErrors
.result$errorsExist_idx);

boolean errorsPresent =
Boolean.valueOf(errorsPresentInScript).booleanValue();

if (errorsPresent) {

// If there are errors, redirect to the validation error
// page.
String redirectTo = contextWithUserPreferences
+ "System_listValidationErrorsForRunPage.do"
+ "?name=" + name
+ "&scriptID=" + scriptID
+ "&scriptType=" + scriptType
+ "&scriptVersion=" + scriptVersion
+ "&schemaName=" + schemaName;
url = redirectTo + "&" + rh.getSystemParameters();

} else {

Working with Intelligent Evidence Gathering 43

Running the IEG Player in a Modal Dialog
The IEG Player can be opened in a modal dialog, and there are some specific
considerations a script developer needs to account for pertaining to this.

Opening the IEG Player in a Modal Dialog
To open the IEG Player in a modal dialog, open Screening.do, in the modal,
passing the executionID and system parameters, using a resolve UIM.
System_IEGResolverModal.uim is provided out-of-the-box to perform this
processing:
<PAGE PAGE_ID="System_IEGResolverModal">

<JSP_SCRIPTLET>
<![CDATA[

String scriptID = request.getParameter("scriptID");
String scriptType = request.getParameter("scriptType");
String scriptVersion =

request.getParameter("scriptVersion");
String schemaName = request.getParameter("schemaName");
String name = request.getParameter("name");

// Need to check to see if there are any script
// validation errors before running the script.
curam.omega3.request.RequestHandler

rh = curam.omega3.request.
RequestHandlerFactory.getRequestHandler(request);

String context = request.getContextPath() + "/";
String contextWithUserPreferences = context +
curam.omega3.user.UserPreferencesFactory

.getUserPreferences(
pageContext.getSession()).getLocale() + "/";

String url = null;

curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_checkForScriptErrors_TH

iegScriptAdminCheckForErrors
= new curam.interfaces.IEGScriptAdminPkg.

IEGScriptAdmin_checkForScriptErrors_TH();

iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptID_idx,

scriptID);
iegScriptAdminCheckForErrors.setFieldValue(

iegScriptAdminCheckForErrors.key$scriptType_idx,
scriptType);

iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptVersion_idx,

scriptVersion);
iegScriptAdminCheckForErrors.setFieldValue(

iegScriptAdminCheckForErrors.key$schemaName_idx,
schemaName);

//Call the method.
iegScriptAdminCheckForErrors.callServer();

String errorsPresentInScript =
iegScriptAdminCheckForErrors.getFieldValue(

iegScriptAdminCheckForErrors.result$errorsExist_idx);
boolean errorsPresent =

Boolean.valueOf(errorsPresentInScript).
booleanValue();

44 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

if (errorsPresent) {

// If there are errors, redirect to the validation
// error page.
String redirectTo = contextWithUserPreferences

+ "System_listValidationErrorsForModalPage.do"
+ "?name=" + name + "&scriptID=" + scriptID

+ "&scriptType=" + scriptType
+ "&scriptVersion=" + scriptVersion
+ "&schemaName=" + schemaName;

url = redirectTo + "&&" + rh.getSystemParameters();

} else {

// Call the run script method and redirect to
// the IEG player.
curam.interfaces.IEGScriptAdminPkg.

IEGScriptAdmin_runScript_TH iegScriptAdminRunScript
= new curam.interfaces.IEGScriptAdminPkg.

IEGScriptAdmin_runScript_TH();

iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptID_idx,

scriptID);
iegScriptAdminRunScript.setFieldValue(

iegScriptAdminRunScript.key$dtls$scriptType_idx,
scriptType);

iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptVersion_idx,

scriptVersion);
iegScriptAdminRunScript.setFieldValue(

iegScriptAdminRunScript.key$schemaName_idx,
schemaName);

//Call the method.
iegScriptAdminRunScript.callServer();

String executionID =
iegScriptAdminRunScript.getFieldValue(

iegScriptAdminRunScript.result$executionID_idx);
executionID = executionID.replaceAll(",", "");

url = context + "ieg/Screening.do?"
+ "executionID=" + executionID
+ "&" + rh.getSystemParameters();

}

// Redirect to the correct page.
response.sendRedirect(

response.encodeRedirectURL(url));
]]>

</JSP_SCRIPTLET>
</PAGE>

Exiting a Script Execution in a Modal Dialog
There are two broad approaches a script developer can take to complete or exit an
IEG script execution in a modal dialog:
v Directly closing the modal dialog, and refresh or redirect in the parent tab.
v Progressing to further UIM screen/s in the modal dialog.

Directly Closing the Modal on Script Completion: To close a modal dialog
directly upon completion of; or exit (Exit, Save & Exit actions) from an IEG script
execution, the script developer must specify a resolve UIM as the finish-page
and/or quit-page. That resolve UIM must in turn invoke a custom JSP that calls
the appropriate JavaScript function to close the dialog.

Working with Intelligent Evidence Gathering 45

For example, to redirect to the IEG2_listAllIEG2Scripts administration screen,
include the following JSP scriptlet in your UIM file:
<PAGE

PAGE_ID="IEG2_resolveFinishScript"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"

>
<JSP_SCRIPTLET>

<![CDATA[

curam.omega3.request.RequestHandler
rh = curam.omega3.request.RequestHandlerFactory

.getRequestHandler(request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory

.getUserPreferences(
pageContext.getSession()).getLocale() + "/";

String url = "";
url = context + "IEG2_listAllIEG2ScriptsPage.do";

String forwardParams =
request.getParameter("forwardParams");

if (screenContext != null && screenContext
.hasContextBits(
curam.omega3.taglib.ScreenContext.MODAL)) {

url += "?" + rh.getSystemParameters();
String encodeRedirectURL = response.encodeURL(url);
response.sendRedirect(response.encodeRedirectURL(

request.getContextPath() +
"/ieg/CloseAndRedirect.jspx?redirect="
+ encodeRedirectURL));

} else {
url += "?" + rh.getSystemParameters();
response.sendRedirect(

response.encodeRedirectURL(url));
}

]]>
</JSP_SCRIPTLET>
</PAGE>

CloseAndRedirect.jspx is provided out-of-the-box for closing the modal dialog and
redirecting to a specified UIM (if provided) in the parent.

Progressing to Further UIM Screen/s in the Modal Dialog: To keep the modal
dialog open to display further UIM screens after script execution has completed,
specify the required UIM page as the finish-page and/or quit-page in the IEG
script definition. Once that UIM has loaded, you have moved out of IEG and
standard UIM processing in a modal dialog applies.

Cleaning Up Application Data
Cleaning up application data involves removing data from the
IEGEXECUTIONSTATE database table and the Datastore(DS) where appropriate.
This section details the manual and automatic data clean-up tasks that script
authors should be aware of, and makes some recommendations to ensure cleaning
up application data can proceed smoothly.

In order to support execution of an IEG script, information about individual script
executions must be maintained by the IEG engine. For example the IEG engine

46 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

must keep track of the current page for the script execution. The IEG engine must
also maintain a list of the pages that have been presented to the user to support
navigation. The answers to control questions are not persisted in the DS and the
IEG engine must also keep track of these. All the information to support the
execution of an IEG script is persisted in the IEGEXECUTIONSTATE table. When a
new IEGScriptExecution object is created via the IEGScriptExecutionFactory API a
corresponding entry is created in the IEGEXECUTIONSTATE table. The
IEGEXECUTIONSTATE table is an "internal" table only intended to be used by the
IEG engine and it should not be modified or extended. Script authors should not
become dependent on or make assumptions about the contents of this table as they
can be subject to change without notice.

IEG has no way of knowing when an entry in the IEGEXECUTIONSTATE table is
no longer required and therefore the entries will persist until they are explicitly
deleted. To avoid the IEGEXECUTIONSTATE table becoming unnecessarily
cluttered, if a script execution has completed or will not be resumed or re-executed
its entry in the table should be removed via the removeScriptExecutionObject
method of the IEGScriptExecutionFactory API.

IEG cannot make any inference as to what data can be used to logically and
uniquely identify a particular script execution as this can vary from script
definition to script definition. The only way for IEG to identify a script execution is
via the generated ID that is assigned to the script execution when it is initially
created. It is highly recommended that script authors implement a mechanism to
identify script executions by associating unique data with the script execution IDs.
A new table can be created to maintain the relationship between the data that
identifies the execution and the execution ID to make it easy for script executions
to be resumed. When they are no longer required they can be removed. Removing
a script execution does not cause any of the gathered data that is persisted in the
DS to be removed.

Similarly to IEGEXECUTIONSTATE, the IEG engine and the DS have no way of
knowing when the data that is gathered during a script execution and persisted in
the DS is no longer required. Again, the DS can become unnecessarily cluttered
with entities that are no longer required. It is intended that entities will not persist
in the DS indefinitely but that the gathered data be moved to application tables
and then removed from the DS. When an entity is deleted from the DS its child
entities are also deleted. Therefore when the data that is gathered during a script
execution has been moved to application tables and is no longer required it is
sufficient to delete the root entity for the execution.

The following example code snippet shows the deletion of the root entity:

Resuming Executed Scripts
It is possible to stop a script execution and resume it later. To do so, the
application must take care of storing the execution ID in a custom table and
associate it with some user ID. See “Cleaning Up Application Data” on page 46 for
more details.

final Long applicationID = execution.getRootEntityID();
final Entity rootEntity = datastore.readEntity(applicationID);
rootEntity.delete();

Figure 58. Deleting the Root Entity

Working with Intelligent Evidence Gathering 47

Provided the IEGEXECUTIONSTATE table hasn't been cleaned up and the script
definition hasn't been modified, a script execution will be resumed by passing the
executionID parameter to the IEG Player in the same way it is done when starting
a new script execution.

Managing Captured Data

Introduction
As previously mentioned, the data captured during script execution is persisted in
the Datastore (DS). This chapter will explain how you can retrieve the captured
data from the DS. This chapter will also explain how data can be inserted into the
DS so that it is available to IEG while executing scripts.

Retrieving Captured Data
The Datastore (DS) has a public API which you may use in your application code.
This API is most often used to retrieve information from a populated schema but it
can also be used to pre-populate a schema. For example, once a client has
completed an application, they can submit their information. At this point, the API
can be used to extract the data from the schema and populate tables in the
relational database.

An example of pre-population is where some information about the client is
known in advance of starting their application. If some of that information is
required to navigate through the application, the DS can be pre-populated with the
information.

To read any data from a schema, the appropriate execution of the script needs to
be known. This means you are retrieving the correct application information for a
client. Therefore, the executionID and schema name are vitally important to gain
access to the data.

The following example code snippet shows the obtaining of the root entity:

From here, the root entity can be used to retrieve other entities under this root
entity.

Pre-Populating Scripts with Captured Data
It is possible to pre-populate the values that will be displayed to the user so that
the answers only need to be confirmed or modified.

For example, we can pre-populate the name and date of birth of a user on a
Personal Details page assuming that the user has already logged in and another
database holds the personal details.

final IEGRuntime runtimeAPI = new IEGRuntime();
final IEGRootEntityID rootEntityID =

runtimeAPI.getScriptExecutionRootEntityID(executionID);

Datastore ds = DatastoreFactory.newInstance()
.openDatastore(kSchemaName);

final Entity rootEntity =
ds.readEntity(rootEntityID.entityID));

Figure 59. Obtaining root entity

48 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

The DS can be pre-populated prior to the start of script execution as follows:

The root entity can then be used in creating a new script execution as follows:

The IEG Player can then be run using this new script execution as follows:

...
Datastore ds = null;

try {
// open the data store and create the root entity
ds = DatastoreFactory.newInstance().openDatastore(schemaName);

} catch (NoSuchSchemaException e) {
throw new AppException(IEG.ID_SCHEMA_NOT_FOUND);

}

final EntityType appType = ds.getEntityType("Application");
final Entity rootElement = ds.newEntity(appType);

ds.addRootEntity(rootElement);

final EntityType personType = ds.getEntityType("Person");
final Entity person = ds.newEntity(personType);

person.setAttribute("firstName", "TestFirstName");
person.setAttribute("lastName", "TestLastName");
person.setAttribute("dateOfBirth", "19700101");
//...

rootElement.addChildEntity(person);

Figure 60. Code Snippet that Populates the DS

...

// create the script execution
final IEGRootEntityID rootEntityID = new IEGRootEntityID();
rootEntityID = rootElement.getUniqueID();
final IEGRuntime runtimeAPI = new IEGRuntime();
final IEGScriptExecutionIdentifier executionIdentifier =

runtimeAPI.createScriptExecutionExistingRootEntity(
iegScriptID, schemaName, rootEntityID);

Figure 61. Creation of a Script Execution

Working with Intelligent Evidence Gathering 49

Note that it is only possible to pre-populate the DS, and not the control questions
or other script-related information as they are stored in the script execution and
not in the DS. This means that it is not possible to pre-populate the data displayed
in the first section of the script and start at the second section. The first section will
be displayed and the user will be able to confirm the pre-populated data.

Using the Resource Store

Introduction
The Resource Store is an area of the infrastructure database which is used to store
resources used in a live application. Resources can be of any type but the most
common used by IEG are images and properties file resources.

Listing all Resources
To gain access to the resource administration screens, you will need to log in as an
admin user. Once logged in, you will see a section in your navigation panel called
IEG. When you click on the section, you will see a menu which contains a link
called 'Application Resources'. If you click on this, a list of resource will be
displayed with a search box based on the category.

Resources are organized into categories. Existing resources are displayed by
selecting a category in the filter criteria and selecting 'search'. The resource
categories used by IEG are as follows:
v CSS

Stylesheet templates that can be modified to customize the look-and-feel of the
IEG Player.

v Image
Images used in the IEG Player and IEG Scripts.

v Property
Properties files containing locale specific text for Scripts and Question Pages.

<?xml version="1.0" encoding="UTF-8"?>
<PAGE PAGE_ID="IEGScriptLauncher">

<JSP_SCRIPTLET>
<![CDATA[

curam.omega3.request.RequestHandler rh =
curam.omega3.request.RequestHandlerFactory.getRequestHandler(

request);

String context = request.getContextPath() + "/";

String url =
context + "ieg/Screening.do?" + "executionID=" + executionID

+ "&" + rh.getSystemParameters();

// Redirect to the correct page.
response.sendRedirect(response.encodeRedirectURL(url));

]]>
</JSP_SCRIPTLET>

</PAGE>

Figure 62. Launching the IEG Player

50 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Uploading a New Resource
At the top of the screen which lists all resources is a link which lets you add a new
resource. When you click on this link, you will be presented with a screen where
the resource details should be entered.

You must enter the following information:
v Name

This is a unique name for the resource which can be used within an IEG script
to reference it. Depending on the resource type, a naming convention may be
enforced for use within an IEG script. The sections on “Adding Images” on page
52 and “Changing Static Text” on page 52 have more details.

v Content Type
When serving a resource to a web browser, a content type is required to instruct
the browser how to handle the resource. The most common content types used
in an IEG script would be image/png for a PNG image and text/plain for a
properties file.

v Content
The file chooser allows the user to pick the resource to upload.

The following information is optional:
v Category

The category in which the new resource is to be added.
v Content Disposition

For resources used in IEG scripts, this can be left empty.
v Locale

If you wish to have a locale specific version of a resource, enter the locale code
here. When the system searches for a resource, it uses a fall-back mechanism
similar to Java. For example, if the current locale is en_US the system will
attempt to locate the resource for the en_US locale, then en and finally the
“default” resource. The “default” resource is specified by leaving the locale field
empty when uploading the resource.

v Internal
This indicates if the resource is for internal use only and should never be served
to the web browser. In this first release of IEG, this setting can be ignored.

v Description
A description of the resource.

Removing an Existing Resource
To delete an existing resource, select the 'view' link on the resource and from the
'View Resource Page' select 'delete' to remove this resource from the system. When
you click on this link, a confirmation dialog will be displayed asking you to
confirm that you want to remove this resource from the system.

Updating an Existing Resource
To update an existing resource, select the 'edit' link on the 'Application Resources'
page or on the 'View Resource' page. You can then browse to the updated resource
on your file system in the 'New content' field.

Working with Intelligent Evidence Gathering 51

Downloading an Existing Resource
Each entry in the resources list can be downloaded by clicking the 'download' link
on the 'Application Resources' page. This link will open the browser file download
dialog to allow the user to save the resource or open it directly.

Adding Images
IEG scripts allow you to specify images to use for both your sections (in the
navigation panel to the left of a page, by default) and pages (in the page title area
for the page), and also comes with some images which are built in to the system
(like the various person images used in person tabs, etc.). All of these images must
be stored in the resource store so that new images can be added and existing ones
updated without having to rebuild and re-deploy your application. When
uploading an image resource, set the “Content Type” appropriately for the image
(e.g., image/png, image/gif etc.) and leave the “Content Disposition” field empty.

Changing Static Text
The IEG engine allows you to enter all the text for your script for the default locale
directly into the script definition. However, this is not where the text displayed on
the screens is actually read from. Instead, all text referenced from within a script is
stored in locale-specific properties files within the resource store. For each script,
there will be a minimum of one properties file for the script itself and one
properties file for each page within the script. In order to ensure the uniqueness of
these files, the following naming convention is used (the last part is obviously only
applicable to the page-specific properties files):
scriptID_scriptVersion_scriptType_pageID

When you use the IEG admin screens to upload a new script into the system, all
the static text contained within it (e.g., all the labels, titles, descriptions, etc.) are
automatically extracted into the appropriately named properties files for your
script and stored in the resource store with no locale associated with them (so that
they act as the fall-back properties if no properties exist for the locale in which you
are running). Any of this text can then be changed by simply downloading the
current properties file keeping in mind the naming convention described above to
locate the resource in the resources list. Then make the necessary changes and
update the resource as described in “Updating an Existing Resource” on page 51.
No changes to the script itself are required.

Equally, versions of these files for other locales can be easily added and will be
picked up in preference to the default locale properties the next time the script is
run in that locale. When uploading a properties file resource, set the “Content
Type” to text/plain and leave the “Content Disposition” field empty.

Changing the Default File Encoding
When uploading a plain text resource, the file will be expected to be in UTF-8
encoding. If you wish to use a different encoding when uploading the file, the
"Content Type" field can be used to specify this through the use of the optional
charset parameter. For example:
text/plain; charset=ISO-8859-1

52 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Using IBM Rational AppScan to scan IEG

Introduction
This chapter describes the steps required to perform security scans of IEG style
applications using the IBM®Rational AppScan tool.

Preparation
In IEG the communication between the Player and the Engine is coordinated by
means of a sync token. The sync token is used to ensure that the page submitted
by the browser is consistent with the page the IEG engine is expecting to be
submitted. This facilitates detecting when the user uses the browser navigation
buttons rather than the navigation buttons in the Player itself. The sync token
changes for every question page that is displayed in the IEG Player. This makes it
very difficult to scan IEG question scripts executing in the IEG player.

For this reason, prior to scanning it is recommended that the script configuration
property appscan.mode.enabled should be set to true. When this property is set to
true, the Engine does not check the value o the sync token that is passed by the
Player. Disabling sync token checking is acceptable when performing a scan but
sync token checking should always be enabled in a production environment.

Also, in order to reduce the amount of superfluous information reported in a scan
the stack trace should be disabled. To disable the stack trace:
v Go to the folder webclient\JavaSource\curam\omega3\
v Rename Initial_ApplicationConfiguration.properties to

ApplicationConfiguration.properties
v Open ApplicationConfiguration.properties
v Add the entry: errorpage.stacktrace.output=false

Relationship Pages
Relationship pages are a special feature of IEG which facilitate gathering
information about the relationships between the people of a household. Unlike the
other pages of an IEG script Relationship pages have a more dynamic nature and
contain a variable number of fields. Currently the names of the fields that are
generated for Relationship pages vary from execution to execution. This means that
currently it is not possible to run a scan on an IEG question script that contains a
relationship page.

Scan Configuration
Once AppScan is launched a new scan can be created by selecting the 'Create New
Scan...' option on the Welcome screen.

Then select 'Regular Scan' from the Predefined Templates on the next screen.

Choose 'Web Application Scan' on the first page of the Configuration Wizard, click
'Next'.

On the 'URL and Servers' page of the wizard enter the starting URL of the
application. Once the URL is entered it can be verified by clicking the icon beside
the input field. This will cause the AppScan browser to be displayed and it will

Working with Intelligent Evidence Gathering 53

attempt to open the URL. Confirm that the URL is correct and accessible. (Click
yes on security warning if necessary). Close the browser and click 'Next' in the
Configuration Wizard.

Enter the necessary Login Management details. Applications running under
Eclipse/Tomcat do not require the user to login, so the option 'None' can be
selected. Click 'Next'.

On the 'Test Policy' screen click on the 'Full Scan Configuration' link in the 'General
Tasks' panel. This presents the 'Scan Configuration' dialog.

Test Policy
Ensure that 'Test Policy' is selected in the view selection pane on the left-hand side
of the configuration dialog. The most straight forward approach while configuring
a scan is to enable all the tests and then disable the low value tests which increase
the time required to run the scan.

Select 'Enabled/Disabled' from the 'sort tests by' dropdown. First check the
'Partially Enabled' then the 'Disabled' boxes. The only entry displayed should be
'Enabled'. Select 'Severity' from the dropdown. Uncheck the 'Low' and
'Informational' boxes. For the purposes of scanning IEG it is not required to
perform invasive tests as these tests are more concerned with testing the platform.
Select 'Invasive' from the dropdown. Uncheck the 'Invasive' box.

Explore Options
Select 'Explore Options' in the view selection pane. Set 'Redundant Path Limit' to 1.
Choose 'Breadth First' as the 'Explore Method'.

Communications and Proxy
Select 'Communications and Proxy' in the view selection pane. Set 'Number of
Threads' to 1.

Test Options
Select 'Test Options' in the view selection pane. Uncheck 'Use Adaptive Testing
based on application behavior'.

Multi-Step Operations
IEG requires correctly formatted data be used in certain parameters. As such
AppScan must be 'trained' to use the application being tested. Select 'Multi-Step
Operations' in the view selection pane. Click the record button. This will cause the
AppScan browser to be displayed and it will attempt to open the URL specified on
the 'URL and Servers' page of the Configuration Wizard. You should then navigate
through the application as required, entering relevant data. AppScan will record
the values entered and use these values for each test that it runs later. Once you
have finished, simply close the browser. The Scan configuration dialog will be
updated with the sequence that has just been recorded. Check the 'Enable playback
of this sequence' checkbox and uncheck the 'Allow play optimization' checkbox.

Take note of all the sequence steps that contain Screening.do. You will have to
turn these sequence steps into regular expressions and add them as exception
paths to the exclude path options of AppScan. AppScan can easily be thrown out
of sync when it comes to recorded operations, so you have to ensure that AppScan
will ignore the wrong path and keep to the recorded script when running its tests.

54 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

This is achieved by telling AppScan to ignore all sequence steps containing
screening.do, except those that you specify in regular expressions. Take note of
each __u=x value found in the list of sequence steps.

Exclude Paths and Files
Select 'Exclude Paths and Files' in the view selection pane. Click the button to add
an Exclude Path. Choose 'Exclude' as the 'Type' and select 'Regular Expression'
from the 'Match' dropdown. Enter .*/Curam/ieg/Screening.do.* for the 'Path' and
click 'OK'.

Add another Exclude Path. Choose 'Exception' as the 'Type' and select 'Regular
Expression' from the 'Match' dropdown. Enter .*/Curam/ieg/
Screening.do?executionID=.\d* for the 'Path' and click 'OK'.

An Exception should also be added for each __u=x value found in the list of
sequence steps. Again, select 'Regular Expression' from the 'Match' dropdown and
enter an expression in the following format for 'Path': .*/Curam/ieg/
Screening.do?executionID=.*&__u=[value shown in summary screen]

Click 'OK'.

Click 'OK' to be returned to the configuration wizard.

Click 'Next' in the Configuration Wizard.

Complete
At this point the configuration of the scan is complete. Choose the 'I will start my
scan later' option so that the configured scan will be saved rather than allowing
AppScan randomly scan the whole application. Click 'Finish'.

Running the Scan
To start the scan, select the 'Scan' menu item in the AppScan main window and
select 'Test Multi-Step Operations Only'. Depending on the application to be tested
a scan may take a number of days to complete. Once the scan is complete AppScan
will display the results of the scan on a summary screen. These results should then
be investigated to determine which reported issues are real vulnerabilities and
which are false positives.

Working with Intelligent Evidence Gathering 55

56 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 57

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

58 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 59

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Java and all Java-based trademarks and logos are registered trademarks of Oracle
and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

60 IBM Cúram Social Program Management: Working with Intelligent Evidence Gathering (IEG)

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Working with Intelligent Evidence Gathering
	Introduction
	Audience
	Purpose
	Additional Reading

	Getting Started
	Introduction
	About IEG
	Datastore (DS)
	Resource Store (RS)
	Script Structure

	Evaluating the Use of IEG
	The Basics
	Create a Schema
	Create a Script
	Adding a Section and a Question Page to an IEG Script

	Adding a Summary Page to an IEG Script
	Run a Script
	Validating a Script

	Capturing Client Information
	Introduction
	Families and Households
	Household Relationships
	Summarizing Client Information

	Capturing Related Data
	Introduction
	Capturing Composite Data
	Displaying Composite Data on a Summary
	Capturing Associated Data
	Displaying Associated Data on a Summary
	Deleting Associated Data

	Efficient Ways of Capturing Data
	Introduction
	List Questions
	Single-select

	Codetable Questions
	Conditional Elements
	Conditional Sections
	Conditional Pages
	Conditional Clusters

	Question Matrices
	Fast Path Navigation
	List Question driving a Loop
	Eligibility Criteria
	Fast Path Conditions
	Condition in Fast Path Loop

	Implicit Delete

	Other Script Development Considerations
	Introduction
	Displaying Data as Read-Only
	Invoking External Functionality Using Expressions
	Reusing Scripts
	Source Control and Versioning

	Integrating IEG into a Cúram Application
	Introduction
	Creating a Script Execution
	Specifying a Redirection URL
	Running the IEG Player in a Tab
	Running the IEG Player in a Modal Dialog
	Opening the IEG Player in a Modal Dialog
	Exiting a Script Execution in a Modal Dialog
	Directly Closing the Modal on Script Completion
	Progressing to Further UIM Screen/s in the Modal Dialog

	Cleaning Up Application Data
	Resuming Executed Scripts

	Managing Captured Data
	Introduction
	Retrieving Captured Data
	Pre-Populating Scripts with Captured Data

	Using the Resource Store
	Introduction
	Listing all Resources
	Uploading a New Resource
	Removing an Existing Resource
	Updating an Existing Resource
	Downloading an Existing Resource
	Adding Images
	Changing Static Text
	Changing the Default File Encoding

	Using IBM Rational AppScan to scan IEG
	Introduction
	Preparation
	Relationship Pages
	Scan Configuration
	Test Policy
	Explore Options
	Communications and Proxy
	Test Options
	Multi-Step Operations
	Exclude Paths and Files
	Complete
	Running the Scan

	Notices
	Privacy Policy considerations
	Trademarks

