
Version 6 Release 0

Health Care Reform Developer Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 111

Revised: August 2014

This edition applies to IBM Cúram Social Program Management v6.0.5.5 interim fix 2 and to all subsequent releases
unless otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2011, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information vii
Overview of Health Care Reform support vii
Intended audience vii

Chapter 1. Configuring Health Care
Reform 1
Configuring appeal requests 1

Appeal case types and appeals process
configuration 1

Configuring the resilient option for the process intake
application workflow 1

Chapter 2. Customizing the Health Care
Reform portal 3
IEG scripts customization 3
Eligibility Display Rules customization 3

Customizing the conditional display of IRS
income information 3
Customizing the conditional display of specific
questions for Medicaid, CHIP, or IA 4
Customizing the determination of projected
annual income for a citizen 4

Chapter 3. Integration with external
systems. 7
Customizing the external system implementations . . 7

Customizing request or response fields for
external system calls 8

External system processors 9
Configuring the Federal Hub implementation . . . 9
Configuring a State systems implementation. . . . 9
Customizing electronic verifications 10

Default verification processors 10
Adding custom verification processing 11
Overriding the default verification processing . . 11

Chapter 4. Customizing case
management 13
Dynamic evidence customization 13
Eligibility Rules customization 13
Conditional verifications customization 13

Chapter 5. Customizing plan
management 15
Integration with Plan Management 15
The plan management adapter interface 15

Configuring the plan management adapter . . . 16
Plan management web services provided by Cúram 17
Configuration parameters for plan management . . 17
Callback URLs for plan management 18
Batch processing for plan management 18

Employer enrollment notification batch process 18
Plan management web service API reference . . . 19

Health Care Reform web services 19
retrieveDemographicsAndEligibilityDetails . . 19
getEntitlementDetails 19
getHouseholdSummaryDetails 20
policyIDAvailable 20
updateEmployerEnrollment 20

Health Care Reform schema elements 21

Chapter 6. Customizing change of
circumstances 27
Change of circumstances process flow 28

Change of Circumstances workflow 29
Customizing the default change of circumstances
implementation 30

Customizing the change of circumstances IEG
script 31

Adding custom entities through the change of
circumstances script 31
Modifying entities through the change of
circumstances script 32
Removing entities through the change of
circumstances script 32

Customizing the Change of Circumstances
workflow 33

Configuring the change of circumstance evidence
submission workflow 33

Chapter 7. Customizing appeal
requests 35
Setting the appeals requests IEG script and data
store schema 35
Customizing the appeal request summary PDF
document 35

Chapter 8. Customizing the handling of
closed cases 37
Configuring the permanent closure of closed cases 37
Configuring the reassessment strategy for closed
cases 37
Customizing the reassessment implementation for
closed cases 37

Chapter 9. Implementing periodic data
matching and annual renewals 39
Storing all existing program group determinations 39

BulkRunProgramGroupEligibility batch process 40
Developer overview of periodic data matching and
annual renewals 40
Polling external systems 42
Adding evidence from external systems 42

Creating a run configuration for annual renewals
or periodic data matching 42
Implementing case selection 43

© Copyright IBM Corp. 2011, 2014 iii

Inserting evidence from external systems with
the PDMEvidenceMaintenance API 44

Advising caseworkers about income evidence
mismatches 44
Implementing citizen notices 45

Implementing citizen notice generation 45
Implementing the calculation of APTC for
inclusion in notices 47
Configuring XML server load balancing for
notices 49

Configuring and running the periodic data
matching batch processes 50

Configuring automatic completion intervals for
periodic data matching 50
Running the periodic data matching batch
processes 51

PDMProjectedEligibility batch process . . . 51
PDMProcessAutoCompletions batch process 52

Configuring and running the annual renewals batch
processes 53

Configuring automatic completion intervals for
annual renewals 53
Running the annual renewals for QHP batch
processes 53

QHPProjectedEligibility batch process . . . 54
QHPProcessAutoCompletions batch process 54

Running the annual renewals for Medicaid batch
process 55

MedicaidProcessAnnualRenewals batch
process 55

Running the annual renewals for CHIP batch
process 56

CHIPProcessAnnualRenewals batch process 57
Reviewing any Medicaid or CHIP cases that were
not automatically renewed 57

Checking for batch processing errors and
reprocessing failed cases 57
Extracting rule objects snapshots to SessionDoc style
HTML 59
Customizing periodic data matching and annual
renewals 59

Customizing the storage of program group
determinations 59
Customizing projected eligibility for periodic
data matching and annual renewals 60

Customizing projected eligibility evidence
handlers 61
Customizing an external evidence handler . . 70
Disabling an evidence handler 71
Enabling projected eligibility logging 72

Customizing the citizen account with new
evidence types 72

Customizing the citizen account for periodic data
matching and annual renewals 72

Configuring contestable evidence types 73
Adding contestable evidence types to the
citizen account 73

Modifying periodic data matching home page
messages 73
Modifying periodic data matching My Updates
page messages 74

Modifying annual renewals home page messages 74
Modifying the annual renewals My Updates page 75

Customizing evidence converters 75
External evidence converters 75
Implementing a new external evidence converter 76
Customizing an external evidence converter . . 77
Disabling an external evidence converter . . . 78

Chapter 10. Customizing inconsistency
period processing 81
Creating a custom event handler for inconsistency
period processing 81
InconsistencyPeriod workflow 82
Inconsistency period workflow APIs 82
Inconsistency Period Evidence Activation batch
process 83
Inconsistency Period Evidence Activation Stream
batch process 83

Chapter 11. Configuring Account
Transfer with the Federally Facilitated
Exchange 85
The FederalExchange component 85
Configuring Federal Exchange 85

Activating Account Transfer 85
Enabling batch processing of account transfer
applications 85
Configuring the sending of Account Transfers to
Cúram 86
Selecting the source data set for outbound
mapping 86
Setting the identity of the sender US state . . . 86
Setting the Account Transfer agency type . . . 87
Setting the federal exchange code 87
Linking the Datastore schema name to the
Account Transfer person reference 87
Setting the data store schema name for the FFE
schema 87
Configuring Account Transfer date/time formats 88

Extending Federally Facilitated Exchange data
mappings 88

Adding or updating the attributes for a data
store entity 88
Adding an entity as a child of a mapped data
store entity 89
Adding or replacing a top-level data store entity 90
Adding or updating entities for an outbound
response to the FFE. 91

The Web Service Java API 91
Inbound Account Transfer payload processing . . 92

Inbound payload identification and routing . 92
Inbound payload mapping configuration . . 93
Process inbound Account Transfer COC
payloads in batch 93

Outbound processing 93
HCRFedExchangeAppStatus code table
descriptions 94

Adding a new entity 95
Writing an EntityMapper 95

iv Health Care Reform Developer Guide

Updating the Federal Exchange data store
schema 96

Account transfer workflows 97

Chapter 12. Monitoring Health Care
Reform. 99
Monitoring HCR applications 99

HCR application intake process overview . . . 99
Monitoring HCR intake reports 102

HCR Intake Reports 103
Monitoring HCR intake process instance errors 105

Monitoring Cúram processes 105
Monitoring workflow process instances. . . . 105
Monitoring Process Instance Errors 106

Process Instance Errors 106

Chapter 13. Health Care Reform
Glossary 107
A 107
C 107
E 108
I. 108
N 108
P 108
R 109
T 109

Notices 111
Privacy Policy considerations 113
Trademarks 114

Contents v

vi Health Care Reform Developer Guide

About this information

Describes how to customize the IBM Cúram Solution for Health Care Reform for
your environment.

Overview of Health Care Reform support
The Affordable Care Act (ACA) introduced new requirements for states in relation
to making affordable healthcare available to state residents. Healthcare is available
not just through the existing Medicaid and Children's Health Insurance Programs,
but also through the introduction of new programs to provide state residents with
help in paying for private health insurance.

In support of the ACA legislation, the IBM Cúram Income Support and IBM
Cúram Income Support for Medical Assistance products were extended. These
solution modules now support the Health Care Reform provisions of the
Affordable Care Act (ACA) with the addition of the Cúram Solution for Health
Care Reform.

Intended audience
This publication is intended for developers who are customizing the IBM Cúram
Solution for Health Care Reform.

Readers must be familiar with the following topics:
v IBM Cúram Solution for Health Care Reform.
v Cúram Server Developers Guide
v Cúram Server Modeling Guide
v Persistence Cookbook
v Cúram Universal Access Configuration Guide
v Cúram Universal Access Customization Guide
v Working with Cúram Intelligent Evidence Gathering
v Authoring Scripts Using Intelligent Evidence Gathering
v Working with Cúram Express Rules
v Cúram Express Rules Reference Manual
v Inside Cúram Eligibility and Entitlement Using Cúram Rules
v Cúram Dynamic Evidence Configuration Guide
v Cúram Evidence Broker Developers Guide
v Cúram Verification Guide
v Cúram Batch Processing Guide
v Cúram Web Services Guide

© Copyright IBM Corp. 2011, 2014 vii

viii Health Care Reform Developer Guide

Chapter 1. Configuring Health Care Reform

Complete some or all of the following tasks to configure your Health Care Reform
implementation.

Configuring appeal requests
If you plan to use IBM Cúram Appeals with HCR, you must ensure that
application programs of any status can be appealed.

Procedure
1. Log in to the Cúram Administration application as a user with administrator

permissions.
2. Select Universal Access > Application Cases.
3. Select the application case name.
4. In the Appeals Processing section, set the Appeal All Programs check box to

true.

Appeal case types and appeals process configuration
If you are licensed for the Cúram Appeals enterprise module, you can install
Cúram Appeals with HCR. By default in the HCR application, each of the HCR
case types are appealable and the appeals process is configured.

By default, the 'appealable' indicator is set to true on all of the HCR case types.
Caseworkers can appeal any denied application, product delivery case or product
delivery determination, regardless of its status.

By default, the Appeals process is set up as follows:
v

1. Stage 1 = 'Any'
– The HCR Evidentiary Hearing, which is normally the first stage in the

process, maps to the Cúram Hearing type. However, it is possible that the
HHS Appeal (which maps to a Hearing Review) can happen first, so to
support this, the type for stage 1 should be 'Any'.

2. Stage 2 = 'Hearing Review'
– This stage maps to the HHS Appeal as described in the federal rules.

3. Stage 3 = 'Judicial Review'
– This stage maps to the Judicial Review as described in the federal rules.

Configuring the resilient option for the process intake application
workflow

After you install version 6.0.5.5 or later, ensure that you set the resilient option for
the process intake application workflow, which enables a more granular workflow
with better error handling.

Procedure
1. Log in to the Cúram Administration application as a user with Administrator

privileges.

© Copyright IBM Corp. 2011, 2014 1

2. Set the curam.intake.use.resilience configuration property to true.
Related concepts:
“HCR application intake process overview” on page 99
Use this information to understand how HCR applications are processed, from the
submission of an application to the creation of product delivery cases.

2 Health Care Reform Developer Guide

Chapter 2. Customizing the Health Care Reform portal

The Health Care Reform portal uses the IBM Cúram Universal Access Motivation
infrastructure for the online application processes required by ACA legislation.

Each Health Care Reform motivation is associated with an IEG script, a data store
schema, and a display rule set. The following Health Care Reform motivations are
available by default:
v Find Assistance
v Browse for plans
v Quick Shopping
v Employer Sponsored Coverage
v Apply for an exemption

For more information about motivations, see the IBM Cúram Universal Access
Customization Guide.

IEG scripts customization
The default Health Care Reform portal IEG scripts are in the HCROnline
component. You can customize the default IEG scripts by creating a custom copy.

For more information about customizing IEG scripts, see the Authoring Scripts
Using Intelligent Evidence Gathering (IEG) guide.

Eligibility Display Rules customization
When an IEG script completes, the eligibility results page is displayed according to
the eligibility results display rules. You can write custom display rules to
customize eligibility calculations for the eligibility results page. In addition, Health
Care Reform provides several other mechanisms for customizing rule sets.

The default display rules reference the default eligibility rule sets to determine
eligibility. The curam.healthcare.eligibility.ruleset.name property points to the
name of this rule set. You must update this property if custom eligibility rules are
to be used.

For information about configuring properties, see "Configuring Application
Properties" in the Cúram System Configuration Guide.

For information about customizing rule sets in a compliant manner, see the Curam
Express Rules Reference Manual and the Cúram Development Compliancy Guide.

There are several areas in the script rules where you can provide a custom
implementation as follows.

Customizing the conditional display of IRS income
information

You can customize the eligibility rules that determine the display of retrieved
income from the IRS.

© Copyright IBM Corp. 2011, 2014 3

About this task

IRS income data that is retrieved for members in a tax household is not displayed
if any of the following conditions are true:
v There is more than one financial household within the overall household.
v There are any American Indians or Alaskan Natives in the household.
v The household income is below the Medicaid or CHIP threshold for any of the

applicants in the household.

These rules are implemented by the IRSIncomeDisplayDeterminator rule class
available in the default HealthCareReformEligibilityRuleset rule set.

Procedure
1. Create a custom rule class that adheres to the default structure provided in the

Abstract Eligibility rule set,
AbstractEligibilityRuleset.IRSIncomeDisplayDeterminator This custom rule
class must ultimately extend the
AbstractEligibilityRuleset.DefaultIRSIncomeDisplayDeterminator rule class.

2. Update the curam.healthcare.displayirsincome.invoking.ruleclass.name
property to point to the fully qualified name of the custom rule class. For
example, MyRuleSet.MyRuleClass.

Customizing the conditional display of specific questions for
Medicaid, CHIP, or IA

You can override the default eligibility rules that determine which specific
questions are asked based on eligibility for Medicaid, CHIP, or IA.

About this task

Certain eligibility rules are run as the citizen progresses through the script. These
rules control the flow of the script according to the citizen's eligibility for certain
programs. When the user enters income information for the household, these rules
run. The results of these rules allow the script to ask intelligent questions pertinent
to the program for which a household member is considered eligible.

Procedure
1. Create a custom rule class that adheres to the default structure provided in the

AbstractEligibilityRuleset.EligibilityDeterminationCalculator rule class.
This custom rule class must ultimately extend the
AbstractEligibilityRuleset.DefaultEligibilityDetermination rule class.

2. Update the curam.healthcare.eligibility.invoking.ruleclass.name property
to point to the fully qualified name of the custom rule class. For example,
MyRuleSet.MyRuleClass.

Customizing the determination of projected annual income for
a citizen

You can override the default eligibility rules that determine the projected annual
income for a client.

About this task

Income calculation rules are run after you capture a household member's complete
income details, including any deductions or exclusions. The projected annual

4 Health Care Reform Developer Guide

income is then calculated by rules that are based on these details. The citizen can
choose to attest to the determined projected annual income or chose to enter a
different value. If the customer enters a different value, the rules take this value
into consideration for calculating final eligibility.

Projected annual income is determined by invoking MemberIncomeCalculator
available in the default HealthCareReformEligibilityRuleset. The property is
“curam.healthcare.memberincome.invoking.ruleclass.name” and is set to a default
implementation of the
HealthCareReformEligibilityRuleset.MemberIncomeCalculator rule class.

Procedure
1. Create a custom rule class that adheres to the default structure provided in the

Abstract Eligibility rule set
AbstractEligibilityRuleset.MemberIncomeCalculator. This custom rule class
must ultimately extend the
AbstractEligibilityRuleset.DefaultMemberIncomeCalculator rule class.

2. Update the curam.healthcare.memberincome.invoking.ruleclass.name property
to point to the fully qualified name of the custom rule class. For example,
MyRuleSet.MyRuleClass.

Chapter 2. Customizing the Health Care Reform portal 5

6 Health Care Reform Developer Guide

Chapter 3. Integration with external systems

The Health Care Reform solution can call external systems at certain points to
gather information necessary for application processing. For example, a call can be
made to the Federal Hub to verify SSN and citizenship status for a citizen.

The customization and configuration options for these integration points are as
follows:

Customizing the external system implementations
By default, Health Care Reform provides several interfaces and corresponding
implementations for integrating with external systems. Customers are free to
provide their own implementations for these integration points.

About this task

Note: You might want to customize the default Federal Hub implementation by
using the provided customization points.

The following table lists the default external system interfaces, default
implementations, and Federal Hub implementations.

Interface Default Implementation Federal Hub Implementation

curam.hcr.verification.service.impl.
SSACompositeBusinessService

curam.hcr.verification.service.impl.
SSAVerificationServiceImpl

curam.hcr.verification.service.impl.
FederalSSACompositeServiceImpl

curam.hcr.verification.service.impl.
AnnualIncomeDataService

curam.hcr.verification.service.impl.
AnnualIncomeDataServiceImpl

curam.hcr.verification.service.impl.
FederalAnnualIncomeVerificationServiceImpl

curam.hcr.verification.service.impl.
IRSHouseholdDataService

curam.hcr.verification.service.impl.
IRSHouseholdDataServiceImpl

No service available

curam.hcr.verification.service.impl.
LawfulPresenceVerificationService

curam.hcr.verification.service.impl.
LawfulPresenceVerificationServImpl

curam.hcr.verification.service.impl.
FederalLawfulPresenceVerificationServiceImpl

curam.hcr.verification.service.impl.
MECVerificationService

curam.hcr.verification.service.impl.
MECVerificationServiceImpl

curam.hcr.verification.service.impl.
FederalMECVerificationServiceImpl

curam.hcr.verification.service.impl.
ResidencyVerificationService

curam.hcr.verification.service.impl.
ResidencyVerificationServiceImpl

No service available

curam.hcr.verification.service.impl.
IncomeDataService

curam.hcr.verification.service.impl.
IncomeDataServiceImpl

curam.hcr.verification.service.impl.
FederalCurrentIncomeVerificationServiceImpl

curam.hcr.verification.service.impl.
CloseDHSCaseService

curam.hcr.verification.service.impl.
CloseDHSCaseServiceImpl

curam.hcr.verification.service.impl.
FederalCloseDHSCaseService

curam.hcr.verification.service.impl.
ESIVerificationService

curam.hcr.verification.service.impl.
ESIVerificationServiceImpl

curam.hcr.verification.service.impl.
FederalESIVerificationServiceImpl

curam.hcr.verification.service.ridp.
fars.impl.FARSVerificationService

curam.hcr.verification.service.ridp.
fars.impl.FARSVerificationServiceImpl

curam.hcr.verification.service.ridp.
fars.impl.FederalFARSServiceImpl

curam.hcr.verification.service.ridp.
primary.impl.
RIDPPrimaryRequestVerificationService

curam.hcr.verification.service.ridp.
primary.impl. RIDPPrimaryRequest
VerificationServiceImpl

curam.hcr.verification.service.ridp. primary.impl.
FederalRIDPPrimaryRequestServiceImpl

curam.hcr.verification.service.ridp.
secondary.impl. RIDPSecondaryRequest
VerificationService

curam.hcr.verification.service.ridp.
secondary.impl. RIDPSecondaryRequest
VerificationServiceImpl

curam.hcr.verification.service.ridp.
secondary.impl. FederalRIDPSecondary
RequestServiceImpl

© Copyright IBM Corp. 2011, 2014 7

Procedure
1. To create a custom implementation, write a new class that extends one of the

external system default implementations.
2. Bind the custom implementation to the corresponding interface by using a

Guice module. For example:
public class CustomModule extends AbstractModule {
@Override
protected void configure() {

binder().bind(IncomeDataService.class).to(CustomIncomeDataService.class);
}

}

3. Ensure that the module is added to a custom Module Class Name .DMX file. For
example:
<?xml version="1.0" encoding="UTF-8"?>

<table name="MODULECLASSNAME">
<column name="moduleClassName" type="text" />

<row>
<attribute name="moduleClassName">

<value>gov.myorg.CustomModule</value>
</attribute>

</row>
</table>

Customizing request or response fields for external system
calls

You can customize the request and response fields that are used by the external
system interfaces by extending the respective request or response classes. You can
then use the updated request or response classes in the custom implementation of
the external system interface.

Procedure
1. Extend the request or response classes. For example:

CustomCitizenshipVerificationRequestDetails
extends CitizenshipVerificationRequestDetails {
//Define custom attributes
//Define getter and Setter methods
}
CustomCitizenshipVerificationResponseDetails
extends CitizenshipVerificationResponseDetails {

//Define custom attributes
//Define custom getter and setter methods

}

2. Use the updated request or response classes in the custom implementation of
the external system interface. For example:
CustomCitizenshipVerificationServiceImpl
implements CitizenshipVerificationService {

CustomCitizenshipVerificationResponseDetails
verify(CustomCitizenshipVerificationRequestDetails requestDetails){
}
}

8 Health Care Reform Developer Guide

External system processors
During the application process, external system Java classes that are called
processors callout to external systems and store the information received in the
data store. For example, a call is made to the Federal Hub to verify SSN and
citizenship by using the CombinedSSAServiceViewProcessor processor. The
response is stored in the data store by the processor and can be used later to
facilitate the electronic verification process. By default, the following processors are
available:
v curam.hcr.verification.datastore.impl.CombinedSSAServiceViewProcessor

v curam.hcr.verification.datastore.impl.AnnualIncomeViewProcessor

v curam.hcr.verification.datastore.impl.CurrentIncomeViewProcessor

v curam.hcr.verification.datastore.impl.LawfulPresenceViewProcessor

v curam.hcr.verification.datastore.impl.MECViewProcessor

v curam.hcr.verification.datastore.impl.RIDPFARSViewProcessor

v curam.hcr.verification.datastore.impl.RIDPPrimaryViewProcessor

v curam.hcr.verification.datastore.impl.RIDPSecondaryViewProcessor

Configuring the Federal Hub implementation
By default, all external system calls are routed to the default (empty)
implementations for the external system interfaces. Complete the following steps to
route the external system calls to the Federal Hub implementations. You must
restart the server after you update these values.

About this task

For information about configuring properties, see "Configuring Application
Properties" in the Cúram System Configuration Guide.

Procedure
1. Set the curam.healthcare.test.registerMockExternalSystems property to

false.
2. Set the curam.fed.hub.verification.system.name property to the Federal Hub

system name.
3. Set the curam.fed.hub.verification.system.registered property to true.
4. Restart the server.

Configuring a State systems implementation
You might want to implement a custom implementation to call State systems as
well as calling the Federal Hub.

About this task

For example, you might want to retrieve Current Income from the State Quarterly
Wages system, and to fall back on the corresponding Federal Hub service only if
the information is not available.

Procedure

Create a custom implementation for the service that first calls the State system, and
then calls the Federal Hub implementation.

Chapter 3. Integration with external systems 9

Customizing electronic verifications
External systems are also used for electronic verification of information that is
provided in the application. Health Care Reform provides support for integrating
with external systems such as state systems or third-party commercial applications
that are identified by states as data sources. You can also customize electronic
verification.

By default, Health Care Reform provides processing for Electronic Verification of
data such as Citizenship, Residency, or SSN. The framework for Electronic
Verification supports adding implementations for custom verification processing
for data elements that are either not covered by default processing or those data
elements that are added as part of the custom implementation. Also, it is possible
to override the default Verification Processing, if needed.

Default verification processors
By default, the following verification processors are available.
v curam.hcr.verification.online.impl.ResidencyVerificationProcessor - Considers the

Residency to be verified if it was indicated (isStateResident attribute of the
Person data store entity or has address with the state to be configured state) that
a Person was a state resident (or) If the Person was indicated to be a state
resident and the information that is retrieved about the person from external
system (stored in the ExternalSystemResidencyInformation data store entity) also
indicates that the person is a state resident. This processing is completed for all
the persons who are marked as applicant (isApplicant attribute of the Person
data store entity) on the case.

v curam.hcr.verification.online.impl.CitizenshipVerificationProcessor - Considers
the Citizenship to be verified if it was indicated (isUSCitizen or isUSNational or
lawfullyPresent attribute of the Person data store entity) that a Person was a US
citizen or US Nation or Lawfully Present alien and the information that is
retrieved about the person from external system (stored in the
ExternalSystemCitizenshipInformation data store entity) also indicates that the
person citizenship verified. This processing is completed for all the persons who
are marked as applicant (isApplicant attribute of the Person data store entity) on
the case.

v curam.hcr.verification.online.impl. IncarcerationVerificationProcessor - Considers
the Incarceration status to be verified if it was indicated (isIncarcerated attribute
of the Person data store entity) that a Person is incarcerated (or) If the Person
was indicated to be not incarcerated or incarcerated pending disposition and the
information that is retrieved about the person from external system (stored in
the RetrievedPersonInformation data store entity) also indicates the same. This
processing is completed for all the persons who are marked as applicant
(isApplicant attribute of the Person data store entity) on the case.

v curam.hcr.verification.online.impl.HouseholdSSNVerificationProcessor -
Considers the SSN to be verified if the SSN was provided (ssn attribute of the
Person data store entity) and the information that is retrieved about the person
from the external system (stored in the ExternalSystemSSNInformation data store
entity) also indicates that the given SSN was verified. This processing is
completed for all the persons who are marked as applicant (isApplicant attribute
of the Person data store entity) on the case.

v curam.hcr.verification.online.impl.IncomeVerificationProcessor - Considers the
Income data to be verified if the Income was provided(IncomeItem data store
entity has records) and the information that is retrieved about the person from

10 Health Care Reform Developer Guide

the external system (store in the IRSAnnualTaxReturn or ExternalSystemIncome
data store entity) are reasonably compatible/E verified. This processing is
completed for all the persons.

v curam.hcr.verification.online.impl. MECVerificationProcessor - Considers the
MEC to be verified if the person indicated to not receiving benefits
(isReceivingBenefits attribute of the Person data store entity) and the information
that is retrieved about the person from the external system (stored in the
ExternalSystemMECDetails data store entity) also indicates the same. This
process is completed for all the persons.

Adding custom verification processing
Complete the following steps to add custom verification processing.

Procedure
1. Edit CT_VerificationItemType.ctx to add an entry to the VerificationItemType

code table.
2. Create an implementation of the

curam.hcr.verification.online.impl.VerificationProcessorinterface. Ensure that the
getVerificationType() API returns the code table code you added.

3. Install the custom implementation by using a custom Guice module. The
custom Verification Processing implementation can be bound by using a Guice
Set MultiBinder. For example:
public class CustomModule extends AbstractModule {

@Override
protected void configure() {

Multibinder<VerificationProcessor> binder = Multibinder.newSetBinder(
binder(), VerificationProcessor.class);
binder.addBinding().to(CustomVerificationProcessor.class);

}
}

4. Add an entry that contains the custom Guice module name to a .DMX file for
ModuleClassName entity.

Overriding the default verification processing
Complete the following steps to override the default verification processing.

About this task

Each entry in the VerificationItemType represents a kind of data item, such as
Citizenship.

Procedure
1. Review CT_VerificationItemType.ctx to identify the code for the data item type

for which the default processing must be overridden.
2. Create an implementation of the

curam.hcr.verification.online.impl.VerificationProcessorinterface. Ensure that the
getVerificationType() API returns the code table code you identified.

3. Install the custom implementation by using a custom Guice module. The
custom Verification Processing implementation can be bound by using a Guice
Set MultiBinder. For example:
public class CustomModule extends AbstractModule {

@Override
protected void configure() {

Multibinder<VerificationProcessor> binder = Multibinder.newSetBinder(

Chapter 3. Integration with external systems 11

binder(), VerificationProcessor.class);
binder.addBinding().to(CustomVerificationProcessor.class);

}
}

4. Add an entry that contains the custom Guice module name to a .DMX file for
ModuleClassName entity.

12 Health Care Reform Developer Guide

Chapter 4. Customizing case management

You can customize Health Care Reform case management artifacts such as dynamic
evidence, eligibility rule sets, and conditional verifications.

Dynamic evidence customization
Health Care Reform provides a number of dynamic evidence configurations in the
HCR component. The Health Care Reform dynamic evidence configurations model
information that is captured and maintained for the various ACA programs.

For information about customizing dynamic evidence, see the Cúram Dynamic
Evidence Configuration Guide.

Eligibility Rules customization
Health Care Reform provides a default set of eligibility rule sets in the HCR
component. You can customize these eligibility rules for your custom requirements.

For information about customizing eligibility rules, see the Inside Cúram Eligibility
and Entitlement Using Cúram Express Rules guide.

For information about compliantly customizing the default rule sets, see the Cúram
Development Compliancy Guide.

Conditional verifications customization
Health Care Reform application cases and integrated cases are configured to use
the verification framework. You can customize conditional verification rule sets in
the same way as other rule sets.

For more information about configuration of verifications and conditional
verifications, see the Cúram Verification Guide.

For information about compliantly customizing the default rule sets, see the Cúram
Development Compliancy Guide.

© Copyright IBM Corp. 2011, 2014 13

14 Health Care Reform Developer Guide

Chapter 5. Customizing plan management

Complete the following tasks to customize the default plan management
implementation.

Integration with Plan Management
When a citizen applies for insurance affordability assistance through Cúram, they
must go to a plan management vendor's website to view and purchase plans. To
facilitate this access, you must integrate a plan management vendor with the
Cúram application. You can integrate with the plan management vendor of your
choice.

Important: IBM Cúram implements a vendor-agnostic approach to plan
management integration and does not include an implementation of the plan
management adapter in the product. Each project is responsible for implementing
their own integration between the Cúram system and the plan management system
of choice.

Plan management integration is accomplished with a combination of both user
interface and web services integration.

A plan management vendor's user interface is shown in an inline frame on a
Cúram page.

Information is exchanged between Cúram and the plan management vendor
through two categories of web services:
v Web services that are owned by Cúram (inbound)
v Web services that are owned by the plan management vendor (outbound)

This approach allows the citizen to enroll on a plan on the plan management
vendor's system with the eligibility information that is determined on the Cúram
side. In addition, Cúram can query the plan management vendor's web services to
read and store any plans in which a citizen enrolls.

The plan management adapter interface
A plan management interface is provided which customers must implement. The
custom implementation allows customers to communicate with their chosen plan
management vendor through web services.

The methods in the interface are called at different points during processing. For
example, the getEnrollmentDetails() method is called to determine the plan details
after a citizen successfully enrolls on a plan in the plan management system.

A default curam.planmanagement.adapter.impl.PlanManagementAdapterDefault
implementation of the plan management adapter interface is provided. To provide
some insulation from future changes, extend this class instead of directly
implementing the interface.

curam.planmanagement.adapter.impl.PlanManagementAdapter

v getBenchmarkPlanDetails()

© Copyright IBM Corp. 2011, 2014 15

Retrieves the benchmark plan amount and essential health benefit premium
amount from a plan management vendor.

v getEnrollmentDetails()

Retrieves the enrollment details for a completed enrollment. For example, the
enrolled plan details.
You can customize the Enrollment evidence mapping by using the following
mechanisms:
– Provide a custom implementation of EnrollmentEventProcessor, and

optionally EnrollmentSanitizer
– Override the event ENROLLMENT.ENROLLMENT_ADDED

v getAvailableEmployerPlanDetails()

Retrieves the available employer insurance plans for an employee.
v getBenchmarkPlanDetailsForBenefitMembers()

Retrieves the benchmark plan amount and essential health benefit premium
amount from a plan management vendor.

v updateEntitlementDetails()

Informs the plan management vendor of a change in entitlement for a specific
enrollment.

v getPlanUpdates()

Retrieves any updates to plans for an enrollment, typically called during
re-enrollment.

v continueEnrollment()

Informs the plan management vendor that an existing enrollment on a plan is to
be continued, typically called during the re-enrollment period.

v getPolicyID()

Retrieves the policy identifier for a specific enrollment.
v getEmployerOpenEnrollmentDetails()

Retrieves the open enrollment details for an employer.

Note: For more information about the plan management adapter interface, see the
Javadoc in the HCR component.

For more information, see "Events and Event Handlers" in the IBM Cúram Server
Developer's Guide.
Related reference:
Events and Event Handlers

Configuring the plan management adapter
The custom plan management adapter typically communicates with a plan
management vendor over a web service with stubs generated from the plan
management vendor's WSDL file.

Procedure
1. Create a directory that is named axis in a custom component.
2. Add a ws_outbound.xml file to this directory. This file must reference the WSDL

file that is provided by a plan management vendor. , For example:
<?xml version="1.0" encoding="UTF-8"?>
<services>
<service

16 Health Care Reform Developer Guide

https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/ServerDeveloper/r_SERDEV_Handlers1EventsEventHandlers1.html

location="components/CustomComponent/axis/PlanMgmtWebService/PlanManagementVendor.wsdl"
name="PlanManagementVendor"

/>
</services>

3. From a command prompt under the EJBServer directory, run build
wsconnector2 to generate the stubs to the build directory. These stubs are now
available to call in the custom PlanManagementAdapter implementation.

4. Create an implementation of the plan management adapter interface and bind
it using a Guice module. For example:
@Override
protected void configure() {

bind(PlanManagementAdapter.class).to(CustomPlanManagementAdapter.class);
}

For more information about bindings in Guice, see the Persistence Cookbook.
5. Code the custom implementation of the plan management adapter by using the

generated stubs.
For more information about web services in Cúram, see the Cúram Web Services
Guide.

Plan management web services provided by Cúram
A plan management vendor must call Cúram web services to be able to populate
their screens and for plan management processing.

For example, when a household is enrolling on a plan in the plan management
vendor's system, the vendor requires details about the household such as names,
date of births, address, and eligibility information. Cúram provides the
retrieveDemographicsAndEligibilityDetails() web service for this purpose.

The following web services are provided:

curam.planmanagement.adapter.intf.HealthCareWebService

v retrieveDemographicsAndEligibilityDetails()

v getHouseholdSummaryDetails()

v getEntitlementDetails()

v policyIDAvailable()

v updateEmployerEnrollment()

For more information about these web services, see the Javadoc in the HCR
component.
Related concepts:
“Health Care Reform web services” on page 19
The web services that are available for Health Care Reform.

Configuration parameters for plan management
The following configuration properties exist for plan management integration.

Property Description

curam.healthcare.planManagementVendorUrl The plan management vendor URL
for the main find assistance flow.

A unique enrollment identifier is
appended to this URL.

Chapter 5. Customizing plan management 17

Property Description

curam.healthcare.planManagementVendorBrowseForPlansUrl The plan management URL used to
allow a citizen to browse for (but
not purchase) insurance plans.

A unique enrollment identifier is
appended to this URL.

curam.healthcare.planManagementVendor
EmployerCoverageUrl

The plan management URL used to
allow employees to shop for
insurance plans provided by their
employer.

A unique enrollment identifier is
appended to this URL.

curam.healthcare.planManagementVendorAvailable This property indicates whether a
plan management vendor is
available. By default, it is set to
false to enable testing but must be
set to true when integrated with a
plan management vendor.

Callback URLs for plan management
Callback URLs are the URLs that a plan management vendor uses to return control
to the Cúram user interface. For example, after an enrollment completes, a callback
URL is used to redirect back to the Cúram results page.

The default callback URLs are listed in this table.

Callback URL Description

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_finishEnrollmentPage.do?o3ctx=4096

A plan management vendor redirects to this URL upon
successful completion of an enrollment.

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_saveAndExitEnrollmentPage.do?o3ctx=4096

A plan management vendor redirects to this URL if a
user chooses to save and exit from the plan management
vendor's screens. This option would enable a user to
resume the enrollment later.

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_cancelEnrollmentPage.do?o3ctx=4096

A plan management vendor redirects to this URL if a
user chooses to cancel/quit from the plan management
vendor's screens.

Batch processing for plan management
The following plan management batch processes are available.

For more information about batch processes, see the Cúram Batch Processing Guide.

Employer enrollment notification batch process
The purpose of this batch process is to generate notifications for employees to
indicate that the open enrollment period for their employer is about to begin.

This batch process looks at active EmployerEnrollment records on the database.
For each one, it calls out to the plan management vendor by using the
curam.planmanagement.adapter.impl.PlanManagementAdapter.

18 Health Care Reform Developer Guide

getEmployerOpenEnrollmentDetails() API. Using the response from the plan
management vendor, a pro-forma communication is generated and stored against
each employee returned.

Plan management web service API reference
The plan management web services that are available for the IBM Cúram Solution
for Health Care Reform and the schema that is used for the data.

Health Care Reform web services
The web services that are available for Health Care Reform.
Related concepts:
“Plan management web services provided by Cúram” on page 17
A plan management vendor must call Cúram web services to be able to populate
their screens and for plan management processing.

retrieveDemographicsAndEligibilityDetails
A plan management vendor requests eligibility details for an enrollment. The
eligibility details and details for each person in the enrollment are returned from
IBM Cúram Health Care Reform.

Table 1. Request

Data Member Type Description

EnrollmentDetails EnrollmentDetails The health care reform
retrieve eligibility request
that contains the enrollment
ID.

Table 2. Response

Data Member Type Description

EligibilityAnd
DemographicDetails

EligibilityAnd
DemographicDetails

Response containing
eligibility details, details
about each person in the
enrollment group, previous
enrollments for each person
that is being enrolled and
details about assistors.

getEntitlementDetails
A plan management vendor calls the IBM Cúram Health Care Reform solution to
get updated entitlement details for an existing enrollment.

Table 3. Request

Data Member Type Description

EnrollmentDetails EnrollmentDetails The health care reform
retrieve eligibility request
that contains the enrollment
ID.

Chapter 5. Customizing plan management 19

Table 4. Response

Data Member Type Description

EntitlementUpdateDetails EntitlementUpdateDetails Response containing the
updated tax credit amount

getHouseholdSummaryDetails
A plan management vendor calls the IBM Cúram Health Care Reform solution to
notify any change in the status of an existing enrollment. For example, when a
carrier finishes processing the enrollment and made a policy ID available.

Table 5. Request

Data Member Type Description

EnrollmentDetails EnrollmentDetails Contains the enrollment ID
for which the request is
being made

Table 6. Response

Data Member Type Description

HouseholdSummaryDetails HouseholdSummaryDetails Response containing
eligibility details, details
about each person in the
enrollment group, previous
enrollments for each person
that is being enrolled and
details about assistors.

policyIDAvailable
A plan management vendor calls the IBM Cúram Health Care Reform solution to
notify that a carrier has finished processing the enrollment and made a policy ID
available.

Table 7. Request

Data Member Type Description

EnrollmentDetails EnrollmentDetails Contains the ID of the
enrollment for which a
policy ID is available.

updateEmployerEnrollment
A plan management vendor calls this API to notify the agency that the open
enrollment period has begun for a specific employer.

Table 8. Request

Data Member Type Description

EmployerEnrollment EmployerEnrollment Contains the
employerEnrollmentID for
the employer with an open
enrollment period.

20 Health Care Reform Developer Guide

Table 9. Response

Data Member Type Description

EmployerEnrollmentReceived EmployerEnrollmentReceived An indicator that represents
successful receipt and
storage of the employer
identifier.

Health Care Reform schema elements
The schema that is used for Health Care Reform data.

Table 10. EnrollmentDetails

Data Member Type Description

enrollmentID Long The enrollment key.

Table 11. EligibilityAndDemographicDetails

Data Member Type Description

eligibilityDetails eligibilityDetails

persons persons

previousEnrollments previousEnrollments

assistors assistors

employerDetails employerDetails

Table 12. eligibilityDetails

Data Member Type Description

program String Values are as follows:

EP1 Insurance Assistance

EP2 CHIP

EP3 Medicaid

EP4 State Basic Plan

EP5 None (for when the
household is just shopping
for plans)

maxPremiumTaxCredit Double

maxPremiumTaxCreditAnnual Double The amount of premium
tax credit that remains for
the year.

monthsRemaining Int The number of months that
remains in the plan year.

costSharingSubsidy Double

premiumPayment Double

maximumCoPay Double

stateSubsidy Double

Chapter 5. Customizing plan management 21

Table 12. eligibilityDetails (continued)

Data Member Type Description

enrollmentPeriod String Values are as follows:

EPD1 Open

EPD2 Special

coverageStartDate Date

coverageEndDate Date

Table 13. persons

Data Member Type Description

person List of person

Table 14. person

Data Member Type Description

personID Long Unique identifier for a
person within the exchange

ssn String

firstName String

middleName String

lastName String

dateOfBirth Date

gender String Values are as follows:

SX1 Male

SX2 Female

tobaccoUser Boolean

coverageCategory String Values are as follows:

CC1 Parent/Caretaker

CC2 Pregnant Woman

CC3 Adult

CC4 Child

address Address

phoneNumber PhoneNumber

emailAddress String

nativeAmerican Boolean Indicates whether the person
is an American Indian or
Alaskan Native.

isPrimaryContact Boolean Indicates whether the person
is the primary contact for the
group that is being enrolled

costSharingEliminated Boolean True for AI/NA individual
with household income less
than or equal to 300% of FPL

22 Health Care Reform Developer Guide

Table 14. person (continued)

Data Member Type Description

subscriberID Long Unique identifier of the
primary client that is
assigned to each member.

taxFilerRelationshipList TaxFilerRelationshipList

Table 15. Address

Data Member Type Description

addressLine1 String

addressLine2 String

city String

county String

state String

zip String

Table 16. TaxFilerRelationshipList

Data Member Type Description

taxFilerRelationships List of TaxFilerRelationship

Table 17. TaxFilerRelationship

Data Member Type Description

relatedPersonID Long

taxFilerRelationshipType String Values are as follows:

TFRT26001 Dependent

TFRT26002 Spouse

TFRT26003 Tax Filer

Table 18. previousEnrollments

Data Member Type Description

enrollment List of enrollment objects

Table 19. enrollment

Data Member Type Description

enrollmentID Long

planID String

policyID String

coverageEndDate Date

previousPremium Double

previousTaxCredit Double

previousEnrollees previousEnrollees

Chapter 5. Customizing plan management 23

Table 20. previousEnrollees

Data Member Type Description

enrollee List of enrollee objects

Table 21. enrollee

Data Member Type Description

personID Long

Table 22. assistors

Data Member Type Description

assistor List of assistor objects

Table 23. assistor

Data Member Type Description

firstName String

lastName String

address Address

phoneNumber PhoneNumber

certificationNumber String

assistorType String

assistorID Long

agencyOrganisationID Long

Table 24. PhoneNumber

Data Member Type Description

countryCode String

areaCode String

phoneNumber String

Extension String

Table 25. EmployerDetails

Data Member Type Description

employerID Long

coverageStartDate Date

Table 26. EntitlementUpdateDetails

Data Member Type Description

enrollmentID Long

updatedPremiumTaxCredit Double

Table 27. HouseholdSummaryDetails

Data Member Type Description

effectiveDate String

24 Health Care Reform Developer Guide

Table 27. HouseholdSummaryDetails (continued)

Data Member Type Description

zipCode String

personList PersonList

Table 28. PersonList

Data Member Type Description

persons List of Person

Table 29. person

Data Member Type Description

dateOfBirth Date

tobaccoUser Boolean

isPrimaryContact Boolean Indicates whether the person
is the primary contact for the
group being enrolled

Table 30. EmployerEnrollment

Data Member Type Description

employerEnrollmentID String The employer enrollment
identifier.

Table 31. EmployerEnrollmentReceived

Data Member Type Description

employerEnrollmentReceived Boolean Indicates that the employer
enrollment identifier was
successfully received and
stored.

Chapter 5. Customizing plan management 25

26 Health Care Reform Developer Guide

Chapter 6. Customizing change of circumstances

To customize change of circumstances for your environment, you must be familiar
with the default implementation. Use this information to understand the process
flow, and to identify the steps that you must complete to customize your system.
Related tasks:
Chapter 10, “Customizing inconsistency period processing,” on page 81
Inconsistency period processing allows a caseworker to give a client a reasonable
opportunity period to provide outstanding verifications for evidence that requires
verification. Cases can proceed during that period as if outstanding verifications
were provided. The default inconsistency period processing infrastructure consists
of a batch process, a workflow, and the inconsistency period processing APIs. You
can create a custom event handler to customize the default inconsistency period
processing.

© Copyright IBM Corp. 2011, 2014 27

Change of circumstances process flow
Use this information to understand how the components work together to handle
changes in client circumstances.

�1� A citizen with an existing application logs in to the Health Care Reform
portal

They can see a read-only summary of some of their evidence, such as SSN,
Address, Household Members, and Income by clicking the View your
information to provide updates link on the landing page, or the My
Information menu option. They can also see the history of their submitted
life events in My Updates.

The read-only data that is shown is the most current information for each
evidence type, specifically the most recent active evidence. If the citizen
has recently created an in-edit version of evidence by a previous change of
circumstances, that in-edit version is displayed instead.

Figure 1. Change of circumstances process flow

28 Health Care Reform Developer Guide

�2� The citizen decides to update their data

After they review the information, the citizen can click the Update My
Information link to update their information. This link is only available if
there is no outstanding change of circumstances for the citizen. Clicking
the link starts the following processing:

�2a� The change of circumstances Datastore Builder retrieves the evidence
from the ongoing Insurance Affordability integrated case and creates a data
store instance for the data retrieved. This data store instance becomes the
data store used for the change of circumstances IEG script.

�2b� The change of circumstances IEG script opens with the data
pre-populated for the citizen to make the required changes. The citizen can
add, update, or remove data. Remove refers to end-dating particular
evidence types. The citizen continues through the script and completes
their updates.

�3� The citizen submits their change of circumstances updates

When the citizen clicks submit, the following processing starts:

�3a� Online and special enrollment rules
HCR Online rules, and optionally special enrollment rules, are run
to generate a results page for the citizen. Citizens can enroll only
on Advanced Premium Tax Credit (APTC) plans outside the
configured open enrollment period if they meet the special
enrollment criteria. A set of special enrollment rules are run to
determine whether the reported change qualifies an individual for
special enrollment.

A results page with the outcome of those rules is displayed to the
citizen. Depending on the results, the citizen can proceed to
enrollment.

�3b� Life Event Infrastructure

The change of circumstances process uses the Life Event
infrastructure as the mechanism for updating the ongoing
Insurance Affordability case with the new or modified data that is
supplied by the citizen. When the life event associated with the
change of circumstances is submitted, the following processing is
triggered:
1. The state of the life event is updated to pending. The Update

My Information link is disabled to prevent the citizen from
triggering a second change of circumstances while there is still
one in progress.

2. The change of circumstances workflow is started.

Change of Circumstances workflow
View the default Change of Circumstances workflow in the Workflow section of
the Administration Workspace.

The default Change of Circumstances workflow should be viewed in the Process
Definition Tool. In the Administration Workspace, navigate to the workflow from
the left hand navigation menu: Workflow > Released Processes >
ChangeOfCircumstances.

Chapter 6. Customizing change of circumstances 29

Customizing the default change of circumstances implementation
Complete the following steps to customize the default change of circumstances
implementation to suit your custom environment.

Before you begin

You must complete a full analysis of your requirements, and identify the
information that you want citizens to be able to modify.

Procedure
1. Customize the default change of circumstances IEG script and data store

schema.
/components/HCROnline/data/initial/clob/ChangeOfCircumstance.xml
/components/HCROnline/data/initial/clob/ChangeOfCircumstance.xsd

a. In most cases, you are updating the default change of circumstances IEG
script to align it with the existing enrollment and internal caseworker
scripts. For example, you might want to make one of the following changes:
v Create a custom evidence entity for which you want to capture data.
v Customize a default evidence entity, typically by adding one or more

attributes.
v Customize the flow of the script. For example, by modifying control

questions.
v Customize the script to facilitate adding, updating, or removing evidence

for a newly added evidence type.
b. Depending on the changes to the script, you might need to make parallel

changes to the schema that is associated with the script.
2. Configure the change of circumstances life event to call your custom script by

overriding the change of circumstances entry in the following files:
/components/HCROnline/data/initial/LifeEventContext.dmx
/components/HCROnline/data/initial/LifeEventType.dmx

3. To add a custom evidence entity, you must write new prepopulator and
updater implementations.
Customization of Enrolment evidence differs slightly from customization of
other evidence types. For Enrolment evidence, use the prepopulator mechanism
that is described here. However, for the updater/mapper for Enrolment
Evidence use the plan management adapter interface. Important:
Customization of Enrolment evidence differs slightly from customization of
other evidence types. For Enrolment evidence use the prepoulator mechanism
described here. However for the updater/mapper for Enrolment Evidence use
the plan management adapter interface.
a. A prepopulator takes the data from a dynamic evidence instance and puts

that data into data store format so that it can be read by the script. For
information about configuring a new prepopulator, see the Javadoc of the
following class:
curam.healthcare.lifeevents.coc.prepopulators.impl.Recertification

b. An updater, or mapper, takes the data store information after a change of
circumstance and identifies which evidence on the ongoing case must be
added, modified, or removed. For information about configuring a new
updater, see the Javadoc of the following class:
curam.healthcare.lifeevents.coc.mappers.impl.LifeEventDefaultEvidenceMapper

30 Health Care Reform Developer Guide

4. If you are extending a default entity, you must extend the provided
prepopulator and mapper classes that are associated with this type and add the
custom code. For a list of all of the prepopulator and mapper classes that can
be extended, see the following class:
curam.healthcare.lifeevents.impl.Module

5. Configure the online and program group logic rules to reflect your custom
changes. The existing portal and case management rule sets were updated to
cater to change of circumstances.
You can find the online rules in the following location:

./EJBServer/components/HCROnline/CREOLE_Rule_Sets/HealthCareReformEligibilityRuleset.xml

You can find the main program group logic rules in the following location:
./EJBServer/HCR/CREOLE_Rule_Sets/HCRProgramGroupRuleSet

You can find a rule set per program in the following location:
./EJBServer/HCR/CREOLE_Rule_Sets

6. Thoroughly test the custom changes made to the change of circumstances
process. You must ensure the following results:
v The correct online results are been achieved.
v The correct information is being written to the ongoing case.
v The correct program group logic results are being achieved.

7. Customize the change of circumstances workflow.
Related concepts:
“The plan management adapter interface” on page 15
A plan management interface is provided which customers must implement. The
custom implementation allows customers to communicate with their chosen plan
management vendor through web services.

Customizing the change of circumstances IEG script
You can complete one or more of the following tasks to customize the change of
circumstances script for your custom environment.

About this task

The change of circumstances script starts with a summary page. From this
summary page, all of the necessary change of circumstance actions can be done.
For example, add, modify and remove, where remove refers to the end-dating of
evidence.

Adding custom entities through the change of circumstances
script
To add custom entities through the change of circumstance script, you must make
the following changes to the script.

Procedure
1. Provide an Add link on the summary page. This link must point at an existing

page.
2. Add a new data store entity to reflect the new custom evidence entity.
3. Add an attribute called evidenceCoCStatus to this data store entity. This

attribute is based on the code-table EVIDENCECOCSTATUS, which contains
the following values:
v ADDED

Chapter 6. Customizing change of circumstances 31

v MODIFIED
v REMOVED

The default for this data store schema attribute is a blank value.
4. Set the newly added attribute to ADDED after the IEG page that gathers the

data for this new entity is submitted. This is achieved through invoking the
UpdateEvidenceCoCStatus custom function, which takes the name of the entity
as a parameter.

5. This attribute can be used as follows in conditions to display or hide data:
“IsRecordAdded() or <MyEntity>.evidenceCoCStatus=="ADDED"”

6. The evidence updater can use the value of this attribute to determine any data
store entity that must be added as evidence. The ADDED status can also be
deduced by using the localID for the entity in question as this is not set for
newly added entities. The localID attribute is used to hold the unique identifier
of evidence on the database.

Modifying entities through the change of circumstances script
To modify entities through the change of circumstance script, you must make the
following changes to the script.

Procedure
1. Provide a Change link on the summary page. This link must point at an

existing page.
2. Set the evidenceCoCStatus attribute to MODIFIED. This is achieved by

comparing the attributes. New validations are added that call a custom
function (HasChanged or HasAttrValueChanged, which always return true).
The parameters are the new value and the fully qualified attribute name. This
function can deduce if the attribute has changed by looking up its original
value.

3. An additional Boolean attribute dataSubmitted, which defaults to false, is
added to the schema on the data store entity. It is needed in case other page
validations fail. The custom function SetDataSubmitted is called in the last
validation, setting the flag to true. This has the effect of resetting
evidenceCoCStatus to a blank value if this flag is set. The flag is reset to false
in the custom function following the page, UpdateEvidenceCoCStatus.

Removing entities through the change of circumstances script
To remove entities through the change of circumstance script, you must make the
following changes to the script.

Procedure
1. Provide a Change link on the summary page. This link must point at an

existing page.
2. Set the evidenceCoCStatus attribute to REMOVED. This is achieved by

comparing the attributes. New validations are added that call a custom
function (HasChanged or HasAttrValueChanged, which always return true).
The parameters are the new value and the fully qualified attribute name. This
function can deduce if the attribute has changed by looking up its original
value.

3. An extra Boolean attribute dataSubmitted, which defaults to false, is added to
the schema on the data store entity. It is needed in case other page validations
fail. The custom function SetDataSubmitted is called in the last validation,
setting the flag to true. This has the effect of resetting evidenceCoCStatus to a

32 Health Care Reform Developer Guide

blank value if this flag is set. The flag is reset to false in the custom function
following the page, UpdateEvidenceCoCStatus.

Customizing the Change of Circumstances workflow
You can use the following steps to customize the default Change of Circumstances
workflow.

Before you begin

You can find the Change of Circumstances workflow in the following location:

./EJBServer/components/HCROnline/workflow/ChangeOfCircumstances_v3.xml

Procedure
1. If you want to or add or remove steps, or to change the flow structure of the

existing workflow, create a version of the workflow to make your custom
changes.

2. Customize the Change of Circumstances workflow in the standard supported
fashion of customizing workflows as follows:
a. Using the Process Definition Tool, view the latest version of the process

definition that requires modification. Create a version of that process
definition by using the tool.

b. Make the changes, validate it and release the workflow.
c. Export the newly released workflow process definition by using the PDT

and place it into the workflow subdirectory of the ..\EJBServer\
components\custom directory.

3. If you are not happy with the structure and the steps in the default workflow,
you can implement your own version of each step.

4. To customize the automatic steps in the workflow, use the following hook
points to implement your own version of a step. Once those implementations
are complete, you can bind them by using Guice to ensure that those
customized versions of the automatic steps are called when the workflow is
enacted. The automatic steps that are available for customization are as follows:
a. curam.healthcare.lifeevents.coc.sl.impl.PreEvidenceProcessing
b. curam.healthcare.lifeevents.coc.sl.impl.CaseAndParticipantProcessing
c. curam.healthcare.lifeevents.coc.sl.impl.EvidenceUpdater
d. curam.healthcare.lifeevents.coc.sl.impl.PostEvidenceUpdater
e. curam.healthcare.lifeevents.coc.sl.impl.EvidenceActivator
f. curam.healthcare.lifeevents.coc.sl.impl.CompleteCoC

5. To change a manual activity step in the Change of Circumstances workflow,
update the process definition metadata with your change.

Related concepts:
Process definition life cycle

Configuring the change of circumstance evidence submission
workflow

Use curam.healthcare.coc.auto.activate.evidence to configure the submission
stage of the change of circumstance workflow.

Chapter 6. Customizing change of circumstances 33

https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/WorkflowReference/c_WORKREF_Creating1ProcessDefinitionLifeCycle1.html

About this task

The application property allows the change of circumstance evidence to be
automatically activated on the associated integrated case, provided there are no
outstanding verifications. When set to True, if there are no outstanding
verifications, the changes are automatically activated and the product delivery
cases are reassessed. The life event status is then set to complete. If there are
outstanding verifications, a task is generated to the user to indicate the need for
manual intervention by a caseworker. When the verification is actioned by the
caseworker and the changes are manually activated, the life event status is set to
complete.

The property can also be configured to allow for change of circumstance evidence
to be manually reviewed by a caseworker. When set to false, the workflow is
configured for manual review of submitted evidence. The reported changes are
mapped to the integrated case in an in-edit state, and the life event status is set to
complete. The caseworker must manually activate the evidence to redetermine or
reassess the eligibility for the household on the product delivery cases.

The default value for this property is True.

Procedure
1. Log in to the Cúram System Administration application as a user with system

administrator permissions.
2. From the left navigation menu, select Application Data > Property

Adminstration

3. Select curam.healthcare.coc.auto.activate.evidence in the Application -
Insurance Affordability Settings category.

4. Change the value to true to have the submission process attempt to
automatically activate the evidence on submission. Change it to false to
configure the workflow for manual review and activation of the submitted
evidence.

34 Health Care Reform Developer Guide

Chapter 7. Customizing appeal requests

After you install the application, complete the following steps to customize the
default implementation of appeal requests to suit your specific requirements.

Procedure
1. If required, update the Citizen Account for your specific requirements.

a. Create a custom appeal request IEG script and data store schema for your
specific requirements. You can copy and modify the default IEG script and
schema:
v \EJBServer\components\HCROnline\data\initial\clob\

OnlineAppealsSchema.xsd

v \EJBServer\components\HCROnline\data\initial\clob\
OnlineAppealsSchema.xml

b. Implement
curam.citizenworkspace.pageplayer.impl.AppealDatastorePrepopulator to
populate the data store.

c. Confirm that the data store prepopulator returns the appropriate set of
potential appellants.

d. Set the application properties to point to the new custom appeal request
IEG script and data store schema.

2. Review the generated PDF to ensure that it meets your specific requirements. If
required, create an XSL template to modify the PDF to your requirements.

Setting the appeals requests IEG script and data store schema
In the administration application, set the appeals requests properties to point to the
appropriate appeals requests IEG script and data store schema.

Procedure
1. Log in to the Cúram System Administration application as a user with system

administration permissions.
2. Click System Configurations > Application Data > Property Administration

3. In the Citizen Portal - Online Appeals Configuration

4. Set the following properties to point to the appeal requests IEG script and data
store schema:
curam.citizenworkspace.appeals.datastore.schema
curam.citizenworkspace.appeals.script.id

Customizing the appeal request summary PDF document
By default, a PDF that summarizes the information that is entered by a citizen
during an appeal request is created when a citizen submits an appeal. You can
configure the XSL template of this PDF to change the default PDF document to
suit your specific requirements.

About this task

The default XSL template file is CURAM_DIR\EJBServer\components\HCROnline\data\
initial\blob\XSLTEMPLATEINST001.xsl.

© Copyright IBM Corp. 2011, 2014 35

36 Health Care Reform Developer Guide

Chapter 8. Customizing the handling of closed cases

Complete the following tasks to configure and customize how closed cases are
handled to your specific requirements.

Configuring the permanent closure of closed cases
Complete the following steps to configure the closed case reason so that a closed
case remains closed permanently. Overriding the default behavior for closed cases
ensures that cases that were created in error, or that you want remain closed are
not reopened during the routine processing of case changes.

Procedure

To define the closed reasons that will prevent a case from ever being reopened, set
the curam.miscapp.productDeliveryReactivateClosedReason property to a
comma-separated list of the code table values for the closed reasons.

Results

If the case is closed with a reason that is configured in this property, then the case
is not reassessed on closure and is never reopened. If the case is closed with a
reason that is not configured in this property, then the case is reassessed on closure
and can be reopened.

Configuring the reassessment strategy for closed cases
By default, the reassessment strategy is set to 'Do not reassess closed cases' for
HCR product delivery cases. The reassessment strategy for the product delivery
cases can be configured with 'Do not reassess closed cases' or 'Automatically
reassess all cases'.

Procedure
1. Log in to the Cúram Administration application as a user with administrator

permissions.
2. Click Shortcuts > Case > Product Delivery Cases

3. Open the HCR PD Case Home Page.
4. Click Rule Sets > Published > Eligibility Determination

5. Set the value of Reassessment strategy to Do not reassess closed cases or to
Automatically reassess all cases.

Customizing the reassessment implementation for closed cases
By default, product delivery cases that are closed as created in error are not
reassessed. Complete the following steps if you want to change the reassessment
implementation for closed cases

About this task

For more information, see "Eligibility and Entitlement Engine Hooks" in the IBM
Cúram Developing with Eligibility and Entitlement by using Cúram Express Rules.

© Copyright IBM Corp. 2011, 2014 37

Procedure

To customize the reassessment implementation for closed cases implement the
Eligibility and Entitlement engine hook
curam.core.sl.infrastructure.assessment.impl.ReassessEligiblityHook

Related concepts:
Eligibility and Entitlement Engine Hooks

38 Health Care Reform Developer Guide

https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Customizability1EligibilityEntitlementEngineHooks1.html

Chapter 9. Implementing periodic data matching and annual
renewals

From a technical perspective, annual renewals is a specific use case of periodic
data matching, with some specific annual renewal requirements. The shared
technical infrastructure that is provided for periodic data matching and annual
renewals contains the required configuration, customization, and extension points
for you to implement your custom solution.

Storing all existing program group determinations
Before version 6.0.5.5 interim fix 2, program group determinations were not saved
in the database. If you upgrade from an earlier version, you must run the
BulkRunProgramGroupEligibility batch process on your system before you run any
of the periodic data matching or annual renewals batch processes. The
BulkRunProgramGroupEligibility batch process identifies and stores all of the
current program group determinations in your system. This once-off task for each
system captures information that is required for projected eligibility comparisons.

About this task

Before you run the BulkRunProgramGroupEligibility batch process to store the
determinations, you can run SQL commands to identify how many cases will be
processed by the batch process (Count A), and the number of stored program
group determinations (Count B), which should be zero before you run the batch
process. After the batch process is completed, you can run the same SQL to
identify the actual number of program group determinations that were stored
(Count C).

After the batch process is run, the batch log file shows the number of cases
processed (Count D) and the number of cases skipped (Count E). To verify the
results, you compare the count values.

Procedure
1. Run the following SQL command to identify all cases that are processed by the

batch process (Count A).
SELECT COUNT(*) FROM CASEHEADER WHERE CASETYPECODE= ’CT5’ AND
STATUSCODE= ’CS4’ AND INTEGRATEDCASETYPE= ’CT26301’

2. Run the following SQL command to show the number of stored program group
determinations, which should be zero before you run the batch process (Count
B).
SELECT COUNT(*) FROM PROGRAMGROUPDETERMINATION WHERE
CREOLEPROGGRPDETERMINATIONID IS NOT NULL AND RECORDSTATUS=’RST1’;

3. Run the BulkRunProgramGroupEligibility batch process to store determinations
for cases.

4. Run the following SQL command to determine the actual number of program
group determinations that were stored (Count C).
SELECT COUNT(*) FROM PROGRAMGROUPDETERMINATION WHERE
CREOLEPROGGRPDETERMINATIONID IS NOT NULL AND RECORDSTATUS=’RST1’;

5. Review the batch log file for any technical issues.

© Copyright IBM Corp. 2011, 2014 39

6. Verify your results by getting the remaining count values from the log files
and comparing the different count values. The batch log file shows the number
of cases processed (Count D) and the number of cases skipped (Count E).
To verify the results, compare following count values:
v Count B should equal 0
v Count C should equal Count D
v Count A should equal (Count D + Count E)
If Count E>0 then that indicates that the batch encountered an error, review the
batch log for details.

Related tasks:
“Customizing the storage of program group determinations” on page 59
From version 6.0.5.5 interim fix 2 onwards, all program group determinations are
stored in the database by default. Over time the number of determinations can
become significant and increase the size of the database table. You can use the
provided hook point to suppress the storage of identical program group
determinations to reduce the size of the database table.

BulkRunProgramGroupEligibility batch process
This once-off batch process runs the program group logic with the current evidence
and stores the results in the database.

The determinations are stored in the CreoleProgGrpDetermination and
CreoleProgGrpDeterData tables. For each active determination, a row is added and
the batch process updates a new CREOLEPROGGRPDETERMINATIONID field on
the PROGRAMGROUPDETERMINATION table with the active determination ID.

Class and method

curam.healthcare.sl.intf.BulkRunProgramGroupEligibility.process

Developer overview of periodic data matching and annual renewals
Use this overview diagram to understand the development tasks required to
implement a custom periodic data matching or annuals renewals solution.

40 Health Care Reform Developer Guide

Polling external systems
Identify the timing, cases, and clients for which external systems are polled
for data and ensure that client authorization is available for accessing their
data. Review the mappings of data to the Cúram external evidence types.
Customize your implementation to poll the external systems and retrieve
the data.

Adding evidence from external systems
Using a run configuration to track each individual run, write the received
data for the selected cases to the Cúram application with the provided API.

Determining projected eligibility and generating citizen notices
Implement your custom notices, calculating the APTC values for annual
renewals only. Run the appropriate batch processes for periodic data
matching, or annual renewals for QHP, Medicaid, or CHIP.

Automatically process completions after interval
Run the automatic completion batch process for periodic data matching or
annual renewals for QHP at a defined interval after you run projected
eligibility, by default 30 days. External evidence converters convert external
evidence to evidence on the case. You must create a custom
implementation for your organization to process the cases that cannot be
automatically processed.

Automatically renewing Medicaid or CHIP cases
Annual renewals for Medicaid or CHIP are automatically completed where
possible. You must create a custom implementation for your organization
to process the cases that cannot be automatically renewed.

For annual renewals, if a client has outstanding verifications against their
client-attested evidence, caseworkers can give them a reasonable
opportunity period to provide the verifications, allowing the case to
temporarily proceed as if verifications had been provided.

external system calls
Implement

processing for
client-attested evidence

(AR) Inconsistency

that cannot
be processed

Reprocess cases

citizen notices

clients, and authorizations

that cannot
be automatically renewed

(AR) Reprocess cases

Identify times, cases

eligibility and generate
Determine projectedAdd evidence

for external system calls

Select cases

Create run configuration

Insert evidence

External Systems

Implement notices

Run PDM and AR
batch processes (BP)

Run PDM and
AR for QHP

auto-completion BPs

external system calls

Identify evidence
(AR) Calculate APTC

Poll
from external systems

mappings for

Automatically process
completions after interval

(AR) Automatically renew

Medicaid/CHIP cases

Figure 2. Developer tasks associated with the respective high-level process steps

Chapter 9. Implementing periodic data matching and annual renewals 41

Polling external systems
The goal of periodic data matching is to ensure that an organization has the most
up-to-date client information so that the system can correctly assess each citizen for
eligibility and provide the correct entitlements. To achieve this goal, an
organization can use trusted data source (TDS) services to query external systems
for current data. TDS services provide services such as verifying annual tax return
information, or verifying a citizens birth and death details or current address.

From the Cúram application perspective, TDS services are just another means of
adding evidence to a case, like a caseworker who adds evidence through the
caseworker application.

For example, when a client is applying for a program, TDS services are used to
verify information that is provided by the prospective client and that the
information is stored on the citizens case.

The method of retrieving information from TDS services during periodic data
matching is different from the initial intake process. During periodic data
matching, the TDS services are typically accessed in a bulk request mode.
Information for 10,000's or 100'000's of citizens is acquired through a single request
through a dedicated bulk service. The Cúram application does not provide any
explicit functions for connecting to TDS services. However, bespoke periodic data
matching APIs are available to handle the creation of the large volumes of
evidence records that are expected to be returned from TDS bulk services.

Adding evidence from external systems
Complete the following tasks to write information that was retrieved from external
systems to the Cúram system.

Creating a run configuration for annual renewals or periodic
data matching

A run configuration is mandatory for all annual renewal or periodic data matching
batch process runs. Each run configuration contains a unique run ID that you must
use to link all of the individual batch process steps for a particular periodic data
matching or annual renewals run. You need a new run configuration for each run.

About this task

To insert evidence for a periodic data matching run, you must create a periodic
data matching run configuration before you call the PDMEvidenceMaintanence
API. The ID in the run configuration supports linking batch jobs that are all part of
the same run. For example, to process the volume of renewals that are needed for
annual renewals 2014, you need multiple run iterations over a series of batch
windows.

Procedure
1. Log in to the Cúram Administrator application as a user with administrator

permissions.
2. Open the Administration Workplace tab.
3. Expand the shortcuts pane and select Health Care Reform > PDM Run

Configuration.

42 Health Care Reform Developer Guide

4. On the PDM Run Configuration page select New. The New PDM Run
Configuration window opens.

5. Identify the run type.
v If you are creating a run configuration for an annual renewal, select the

Annual Renewal Indicator check box and select the annual renewal type
from the Renewal for menu.

v If you are creating a run configuration for a periodic data match, clear the
Annual Renewal Indicator check box.

6. Enter a unique run ID. For example,
v QHP_2014
v CHIP_2014
v PDM_2014_Q1

Note the run ID value as you need this value when you run the batch
processes.

7. Optional: Enter a short name for the run configuration.
8. Click Save.

Implementing case selection
Before you run a periodic data matching or annual renewal, you must ensure that
all of the required cases are selected for processing. The cohort of cases that you
select for a run depends on the requirements of your process. Before you add case
to a run, you must ensure that the client has consented to have their data polled
and eligibility checked.

Before you begin

Before you add cases to a periodic data matching or annual renewal run, you must
define a run configuration Attempting to add cases to a non-existent run causes
errors.

About this task

For a typical periodic data matching run, you generally need to reassess only those
cases for which updated evidence is received. In this case, adding evidence to the
run through the PDM Evidence Maintenance API is sufficient to ensure that the
cases are processed.

For an annual renewal run, you must ensure that all of the mandatory cases are
selected for processing.

If you want to reassess cases regardless of whether updated evidence is received,
as in the case of a typical annual renewal run, you must explicitly add cases to the
run. You can add cases by first implementing a custom batch streaming process to
select all of the cases of interest. Then, use the addCase method of the Run Case
Control Manager API to add these cases to the run if they are not present

Example code snippet:
public BatchProcessingSkippedRecord processRecord(
final BatchProcessingID batchProcessingID, final YOUR_PROCESS_KEY key)
throws AppException, InformationalException {

final String runID = key.runID;
final long caseID = batchProcessingID.recordID;

Chapter 9. Implementing periodic data matching and annual renewals 43

if (pdmRunCaseControlManager.getCase(runID, caseID) == null) {
pdmRunCaseControlManager.addCase(runID, caseID);
}

}

For more information about the PDMRunCaseControlManager API, see the Javadoc
for the API.

Inserting evidence from external systems with the
PDMEvidenceMaintenance API

Use the PDMEvidenceMaintenance API to add evidence that you have retrieved
from external systems to integrated cases as external evidence by using a bulk
update of dynamic or static evidence.

Before you begin

Ensure that current client information was retrieved from external systems through
a custom TDS service.

About this task

The PDMEvidenceMaintenance API provides an integration point that hooks
external evidence into the annual renewal and periodic data matching processes by
creating corresponding periodic data matching run evidence control records for
each piece of external evidence. Evidence that is created or updated through this
API is recorded as In-Edit evidence and associated with the appropriate periodic
data matching run case control record.

If required, you can optionally activate the evidence by using the standard
EvidenceControllerInterface. The EvidenceControllerInterface ignores whether the
evidence type is static or dynamic. However, evidence activation is not required to
drive these processes as projected eligibility and notice generation operates on both
In Edit and Active evidence.

For more information, see the Javadoc for the PDMEvidenceMaintenance API.

Procedure
1. Create a periodic data matching run configuration and note the run ID, which

you must associate with each of the process steps in the run.
2. Insert evidence by using the PDMEvidenceMaintanence API and passing in the

run ID as a parameter.

Advising caseworkers about income evidence mismatches
Use the sample ARIncomeAdvisorRuleSet Advisor rule set as a example
implementation of building advice for evidence mismatches.

A sample Advisor rule set is provided which can be used to advise a caseworker
when client attested income evidence that is part of an annual renewal that is
submitted by the case worker needs to be reviewed for re-verification.

The Advisor rule set compares client attested income and income evidence that
was added as a result of polling the external system. When evidence items are not

44 Health Care Reform Developer Guide

reasonably compatible with each other, advice is displayed on the Integrated Case
home page and Evidence Dashboard page. When a case worker completes an
annual renewal, they are asked to confirm that the client attested evidence on the
case has been reviewed and verified as necessary. When the case worker confirms
that the evidence is reviewed and verified, the advice is no longer displayed.

You can implement advice for other evidence types using Advisor rule sets and
including configurations for where this advice should appear. The advice category
for this type of annual renewal Advisor rules should be set to AREVDMIS in the
AdviceCategory code table.
Related concepts:
Configuring Advisor
Use this information to configure the advisor. Advisor rule sets contain rule classes
rule items and rule attributes. You can configure the advice context (which defines
the context in which advice is shown). The rule object converter converts evidence
data into rule objects.

Implementing citizen notices
Complete the following tasks to implement citizen notices and to configure the
load balancing of the XML server.

Implementing citizen notice generation
During the periodic data matching or annual renewals processes, notices must be
generated and sent to citizens to inform them of the process and the implications it
has for their eligibility, entitlement, and coverage. By default no notice is
generated. Use the following information to help you implement notice generation
for both periodic data matching and annual renewals.

About this task

To implement citizen notice generation for both periodic data matching and annual
renewals, you must decide on the notices that you want to generate and their
contents. You must create a custom XSL template to present the information. You
must then create an implementation that retrieves data to populate and call the
notice generation.

Citizen notices are generated through the periodic data matching and annual
renewals batch processes. These batch processes call the notices infrastructure,
which uses the curam.hcr.pdm.notices.impl.PDMNotificationTemplate interface to
get the XSL template to generate the notice.

For more information about specific APIs, see the Javadoc for the API.

Procedure
1. Complete a business analysis task to identify the information that you need in

each notice.
2. Create a custom XSL template that sets up the layout and data placeholders for

the notice.
3. Create a custom implementation that retrieves the identifier of the custom XSL

template.
a. This implementation should extend

curam.hcr.pdm.notices.impl.PDMNotificationTemplateImpl for future
compatibility as new methods are added over time. Each method represents

Chapter 9. Implementing periodic data matching and annual renewals 45

https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/AdvisorConfiguration/ctr_AdvisorConfigurationGuide.html

a point in the business process at which a notice is sent. All methods should
return a code table entry from the TemplateIDCode code table. You must
add an entry to this code table for each template identifier returned.

b. Register the custom implementation by using Guice bindings to bind the
implementation to the PDMNotificationTemplate interface. You must
register new Guice modules adding a row to the ModuleClassName
database table.

Example Binding
public class ExampleModule extends AbstractModule {
public void configure() {
bind(PDMNotificationTemplate.class).to(ExampleNoticeTemplateImpl.class);
}

}

Example Citizen Notice Template Implementation
public class ExampleNoticeTemplateImpl extends PDMNotificationTemplateImpl {

@Override
public TEMPLATEIDCODEEntry getNotificationTemplate(
final PDMARNotificationWrapperDetails details)
throws AppException, InformationalException {

return TEMPLATEIDCODEEntry.EXAMPLETEMPLATE;
}

@Override
public TEMPLATEIDCODEEntry getRenewalNotificationTemplate(
final PDMARNotificationWrapperDetails details)
throws AppException, InformationalException {

return TEMPLATEIDCODEEntry.EXAMPLERENEWALTEMPLATE;
}

4. Create a custom implementation that retrieves the data for the notice.
a. This implementation should implement the

curam.healthcare.sl.impl.HCRNotificationGenerator interface and provide an
implementation for the generateNotification method. Use this method to
populate the data for the notice and call the notice generation.

b. You can retrieve the data for the notice by using the
curam.hcr.pdm.notices.impl.PDMNotificationDataRetrieval API. If you want
to retrieve extra data with this API, then you must extend the default
implementation
curam.hcr.pdm.notices.impl.PDMNotificationDataRetrievalImpl.

c. Register the custom implementation by using Guice bindings to bind the
implementation to the HCRNotificationGenerator interface. The binding
happens on the ID of the template. You must register new Guice modules
by adding a row to the ModuleClassName database table.

Example Binding
public class SampleModule extends AbstractModule {
public void configure() {
final MapBinder<Long, HCRNotificationGenerator> mapbinder =

MapBinder.newMapBinder(binder(), Long.class, HCRNotificationGenerator.class);
mapbinder.addBinding(12345).to(ExampleNoticeGenerator.class);

}
}

Example Citizen Notice Implementation
public class ExampleNoticeGenerator implements HCRNotificationGenerator {

public HCRNotificationDetails generateNotification(
final NotificationGenerationDetails notificationGenerationDetails)
throws AppException, InformationalException {

final HCRProFormaDataGenerator<PDMARNotificationDetails>
documentGenerator =
new HCRProFormaDataGenerator<PDMARNotificationDetails>();

final PDMNotificationDataRetrievalImpl pdmNotificationDataRetrival =

46 Health Care Reform Developer Guide

new PDMNotificationDataRetrievalImpl();

final PDMARNotificationDetails notificationDetails =
new PDMARNotificationDetails();

// Example of retrieving data using the PDMNotificationDataRetrievalImpl API
notificationDetails.primaryClient = pdmNotificationDataRetrival

.getPrimaryCorrespondentName(notificationGenerationDetails
.getCaseKey());

// Invoke notice generation
final HCRNotificationDetails hcrNotificationDetails =
documentGenerator.generateHCRNotification(notificationDetails,
notificationGenerationDetails.getXslTemplateInstanceKey(),
“SampleNotice”);

return hcrNotificationDetails;
}

}

Implementing the calculation of APTC for inclusion in notices
During annual renewals processes, the Annual Premium Tax Credit (APTC)
amount must be calculated for the coming coverage period and included in the
notification sent to customers. Use the following information to help you
implement the calculation.

About this task

To implement the inclusion of the APTC amount, create a new type of evidence
that is identical to BenchmarkPlan. Create an evidence handler that converts that
evidence into a BenchmarkPlan RuleObject to be used in the APTC calculation. You
must implement an event that retrieves the BenchmarkPlanDetails and creates your
new evidence by using these details. Within the event, you must then run
executeProgramGroupProjectedEligibility and from the returned
ProgramGroupProjectedEligibility calculate the APTC amount. The original
ProgramGroupProjectedEligibility must be updated to reflect this change.

The APTC is calculated through the annual renewals batch processes.

Procedure
1. Create a type of evidence that is identical to the BenchmarkPlan evidence. For

example, ProjectedBenchmarkPlan.
2. Create an Evidence handler that converts the new evidence type into an

in-memory RuleObject for use in the APTC calculation.
a. This event implementation implements

curam.healthcare.sl.impl.ProjectedEligibilityEvidencehandler and provides
an implementation for the defineInMemoryRuleClasses and
createRuleObjects methods. The defineInMemoryRuleClasses method
returns a list of fully qualified rule classes to be created in memory by the
Evidence Handler. By returning a rule class, the handler prevents rule
objects for this rule class from being loaded from the database. The
createRuleObjects method uses the evidence above to create the specified in
memory RuleObject. For example, BenchmarkPlan.

b. Register the evidence to the Evidence Handler by using Guice bindings.
Register new Guice modules by adding a row to the ModuleClassName
database table.

Example defineInMemoryRuleClasses method
public Set<String> defineInMemoryRuleClasses(final CaseKey caseKey, final Session session,

final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType) {
return new HashSet<String>() {

Chapter 9. Implementing periodic data matching and annual renewals 47

{
add("BenchmarkPlanDataRuleSet.BenchmarkPlan");

}
};

Example Binding
public class SampleModule extends AbstractModule {

protected void configure() {

// final Bind ProjectedBenchmarkPlan evidence to
// the evidence handler

final MapBinder<String, ProjectedEligibilityEvidenceHandler> projectedEligibilityRules =
MapBinder.newMapBinder(binder(), String.class,
ProjectedEligibilityEvidenceHandler.class);

projectedEligibilityRules.addBinding(
CASEEVIDENCE.PROJECTEDBENCHMARKPLAN)

.to(ProjectedBenchmarkPlanEvidencehandlerImpl.class);
}

}

3. Create an event implementation that retrieves the BenchmarkPlan details, adds
the custom BenchmarkPlan evidence to the case, recalculates the
ProgGrpProjectedEligibility and the APTC amount.
a. This event implementation implements

curam.hcr.pdm.sl.impl.PDMBatchEvents and provide an implementation of
postProjectedEligibility method from which the APTC amount is calculated.

b. Read the HCRProgramGroup RuleObject from the
ProgGrpProjectedEligibility method parameter.

Example reading RuleObject from ProgGrpProjectedEligibility
// Get the HCRProgramGroup RuleObject from the Snapshot

final RuleObject hcrProgramRuleObject =
programGroupProjectedEligibility.getDetermination()

.getRuleObject();

c. Get the list of Eligible Programs (RuleObjects) from the HCRProgramGroup.
Loop through each IA program.
1) Read the “eligibleProgramsTimeline” for the HCRProgramGroup

RuleObject.
2) Loop through each interval of the eligible programs timeline.
3) Loop through the programs from each interval.
4) Return a list of programs whose “pdCreationCheckStartDate” &

“pdCreationCheckEndDate” overlap with the interval start and end
date.

d. Loop through each program of type Insurance Assistance. Retrieve the
coverage start date and create a list of benefit members.
1) Retrieve the “benefitUnitTimeline” from the program
2) Read the value of this timeline on the program’s coverage start date.
3) Iterate through each of the RuleObjects previously returned in the point

and read the “caseParticipantRoleRecord” RuleObjects.
4) Return a list of “caseParticipantRoleRecord” numbers that are retrieved

from each case participant role records above.
e. Create the list of BenchmarkPlanApplicantDetails with the list of benefit

members that you previously created.
f. Create a web service call to get BenchmarkPlan Details, passing the

BenchmarkPlan Applicant Details that you previously created and the
enrollment type, which is Annual Renewals in this case.

Example BenchmarkDetails web service call

48 Health Care Reform Developer Guide

@Inject
private PlanManagementAdapter planManagementAdapter;

final BenchmarkPlanDetails benchmarkPlanDetails =
planManagementAdapter.getBenchmarkPlanDetailsForBenefitMembers(
benchmarkPlanApplicantDetailsList, enrollmentType);

g. Create your custom evidence and apply the changes to the case. For
example, ProjectedBenchmarkPlan evidence.

Example getBenchmarkApplicantDetailsList method
@Inject

private PlanManagementAdapter planManagementAdapter;

final BenchmarkPlanDetails benchmarkPlanDetails =
planManagementAdapter.getBenchmarkPlanDetailsForBenefitMembers(
benchmarkPlanApplicantDetailsList, enrollmentType);

h. Add the EvidenceDescriptorDtls related to the ProjectedBenchmarkPlan
evidence that you previously created to the EvidenceDescriptorDtlsList
(postProjectedEligibility method parameter). Run
ProgramGroupProjectedEligibilityManager
.executeProgramGroupProjectedEligibility passing in the CaseKey,
EvidenceDescriptorDtlsList, and ProjectedEligiblity Type, which recalculates
the ProgramGroupProjectedEligibility.

i. Read back the HCRProgramGroup RuleObject from this new
ProgramGroupProjectedEligibility as done in point 4b. Loop through every
eligible program of type IA and Calculate the APTC amount by call getValue
on its RuleObject attribute.

Example Calculating APTC by calling its Rule’s value
final RuleObject eligibilityCalculator =

(RuleObject) program.getAttributeValue(
HCRCaseConst.kEligibilityCalculator).getValue();

final RuleObject financialsCPRCalculator =
(RuleObject) eligibilityCalculator.getAttributeValue(
"financialsCPRCalculator").getValue();

// Calculate APTC
financialsCPRCalculator.getAttributeValue("maximumPremiumTaxCredit")

.getValue();

j. Update the ProgramGroupProjectedEligibility on the database with the
CREOLEProgramGroupDetermination from the new
ProgramGroupProjectedEligibility obtained in point 4i.

Example Updating ProgramGroupProjectedEligibility
// Get new creoleProgramGroupDetermination
final CREOLEProgramGroupDetermination creoleProgramGroupDetermination =

programGroupProjectedEligibility2.getDetermination();

// update programGroupProjectedEligibility with new
// creoleProgramGroupDetermination
programGroupProjectedEligibility
.setDetermination(creoleProgramGroupDetermination);

programGroupProjectedEligibility.modify();

k. Register the custom event by using Guice binding to bind the implantation
to the PDMBatchEvents interface.

Example Binding
// PDMBatchEvent binding to PDMBatchEventImpl

final Multibinder<PDMBatchEvents> pdmBatchEventsListener =
Multibinder.newSetBinder(binder(), PDMBatchEvents.class);

pdmBatchEventsListener.addBinding().to(PDMBatchEventsImpl.class);

Configuring XML server load balancing for notices
If you plan to generate large volumes of notices by using the XML Server, ensure
that the load is shared among a number of servers. Set the curam.xmlserver.host
and curam.xmlserver.port properties to specify the appropriate ports and servers
for load balancing and failover.

Chapter 9. Implementing periodic data matching and annual renewals 49

About this task

The curam.xmlserver.host property specifies the names of the computers that host
the XML Server as a forward-slash (/) separated list of host names.

The curam.xmlserver.port property specifies the ports on which the XML Server is
running as a forward-slash (/) separated list of entries.

There is a one-to-one mapping between the servers and ports that are specified.

Procedure

You can specify the XML servers in one of two ways as follows:
1. In the Administration application, set the curam.xmlserver.host and

curam.xmlserver.port properties. For example:
curam.xmlserver.host="host1/host2"
curam.xmlserver.port="port1/port2"

1. When you run a batch process, specify the -Dcuram.xmlserver.host and
-Dcuram.xmlserver.port parameters: For example:

-Djava.jvmargs="-Dcuram.xmlserver.host=host1/host2"
-Djava.extra.jvmargs="-Dcuram.xmlserver.port=port1/port2"

Configuring and running the periodic data matching batch processes
Complete the following tasks to configure and run the periodic data matching
batch processes.
Related concepts:
Developing batch processes
Use this information to learn how to specify, write, manage, configure, and run
batch processes. The batch processing framework allows an external task scheduler
to execute process class operations without user intervention. Users can request
that certain batch processes be ran on their behalf. When started by a task
scheduler, the batch launcher processes these requests and start the relevant batch
processes with the parameters specified by the user.
Developing streamed batch programs
Use this information to design and develop streamed batch programs. Processing
load is divided into streams of independent processing, for processing on separate
computers as required. A chunker process identifies the processing units and
clusters them into chunks of a predefined size. The stream processes then process
one chunk at a time.

Configuring automatic completion intervals for periodic data
matching

You can modify the number of days that are allowed for citizens to respond to
changes that result from periodic data matching. Complete the following steps to
modify the default expiry intervals for your requirements.

About this task

The default expiry period for periodic data matching is 30 days.

Procedure
1. Log in to the Cúram application as a user with administrator permissions.

50 Health Care Reform Developer Guide

https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/BatchProcessing/ctr_CuramBatchProcessingGuide.html
https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/BatchStreamingDeveloper/ctr_CuramBatchStreamingDevelopersGuide.html

2. Modify the value of the curam.citizenaccount.periodicdatamatch.expiry.days
property.

Running the periodic data matching batch processes
Complete the following tasks to run the periodic data matching batch processes.
Periodic data matching is split between two batch processes that you must
schedule independently.

Before you begin

Important: Ensure that the current client information was retrieved from external
systems through your custom TDS service and was written to the integrated cases
as external evidence by using the PDMEvidenceMaintenance API.

Before running a periodic data matching run, ensure that no other period data
matching or annual renewals runs are in process. It is recommended that period
data matching or annual renewal runs do not overlap.

About this task

The first batch process runs projected eligibility and calls the custom generate
notices implementation to send the appropriate citizen notices.

The second batch process picks up cases based on the notice generation date,
completes the processing, and notifies the client of any changes to their coverage.

You must run this batch process approximately 31 days from the date that the
notice generation occurred. The number of days is dependent on the date the
notice was sent to the user. If you run the first batch process late at night, some
notices can be generated a day later than others. By default, the batch process
picks up cases where the notification was sent 30+1 days prior.

Procedure
1. Create or identify a run configuration in the Cúram Administration application.
2. Run the PDMProjectedEligibility batch process, passing in the run ID as a

parameter.
3. Run the PDMProcessAutoCompletions batch process, passing in the run ID as a

parameter.

PDMProjectedEligibility batch process
This batch process is used to run the projected eligibility and notice generation
processes for a specified list of cases as part of periodic data matching.

For periodic data matching runs, inserting evidence by using the
PDMEvidenceMaintanence API automatically ensures that the case is processed by
periodic data matching projected eligibility and notice generation processes.

Class and method

curam.hcr.pdm.sl.intf.PDMProjectedEligibility.process

Chapter 9. Implementing periodic data matching and annual renewals 51

Parameters

Parameter Description Default value

runID Mandatory. The run ID value
that you specified in the
periodic data matching run
configuration in the Cúram
Administration application.

A different value is required
for each run.

instanceID Optional. An instance ID can
be used by the batch
infrastructure to stop or
restart a batch process.

BPN26007

processingDate Optional. The current date.

runInstanceID Do not set. An internal batch
field for communicating the
Run Instance ID between the
batch main and batch stream
components.

Not applicable

PDMProcessAutoCompletions batch process
This batch process completes periodic data matching processing after a
configurable period. If a citizen has not contested or confirmed the changed
information at the end of the specified period, either online or through a
caseworker, this batch process redetermines their eligibility as per the evidence in
the projected eligibility notice.

You must schedule the batch process to run after a period of
curam.citizenaccount.periodicdatamatch.expiry.days +1 days. All cases that are in
the "Notice Generated" state for that period are processed. By default, the value of
curam.citizenaccount.periodicdatamatch.expiry.days is 30 days.

Class and method

curam.hcr.pdm.sl.intf.PDMProcessAutoCompletions.process

Parameters

Parameter Description Default value

runID Mandatory. The run ID value
that you specified in the
periodic data matching run
configuration in the Cúram
Administration application.

A different value is required
for each run.

instanceID Optional. An instance ID can
be used by the batch
infrastructure to stop or
restart a batch process.

BPN26007

processingDate Optional. The current date.

runInstanceID Do not set. An internal batch
field for communicating the
Run Instance ID between the
batch main and batch stream
components.

Not applicable

52 Health Care Reform Developer Guide

Configuring and running the annual renewals batch processes
Complete the following tasks to configure and run annual renewals batch
processes for Qualified Health Plans (QHPs), Medicaid, and Children's Health
Insurance Plan (CHIP).

Configuring automatic completion intervals for annual
renewals

The number of days that are allowed for citizens to respond to changes that result
from annual renewals are set out by legislation and are subject to change.
Complete the following steps to modify the default expiry intervals for your
requirements.

About this task

The default expiry period for annual renewals is 30 days.

Procedure
1. Log in to the Cúram application as a user with administrator permissions.
2. Modify the value of the curam.citizenaccount.annualrenewal.expiry.days

property.

Running the annual renewals for QHP batch processes
Complete the following tasks to run the annual renewals for QHP batch processes.
The annual renewals for QHPs process is split between two batch processes that
you must schedule independently

Before you begin

Important: Ensure that the current client information was retrieved from external
systems through your custom TDS service and was written to the integrated cases
as external evidence by using the PDMEvidenceMaintenance API.

Before running an annual renewals run, ensure that no other period data matching
or annual renewals runs are in process. It is recommended that period data
matching or annual renewal runs do not overlap.

About this task

The first batch process runs projected eligibility and calls the custom generate
notices implementation to send the appropriate citizen notices.

The second batch process picks up cases based on the notice generation date,
completes the processing, and notifies the client of any changes to their coverage.

You must run this batch process approximately 31 days from the date that the
notice generation occurred. The number of days is dependent on the date the
notice was sent to the user. If you run the first batch process late at night, some
notices can be generated a day later than others. By default, the batch process
picks up cases where the notification was sent 30+1 days prior.

Procedure
1. Create or identify a run configuration in the Cúram Administration application.

Chapter 9. Implementing periodic data matching and annual renewals 53

2. Run the QHPProjectdEligibility batch process, passing in the run ID as a
parameter.

3. Run the QHPProcessAutoCompletions batch process, passing in the run ID as a
parameter.

QHPProjectedEligibility batch process
This batch process is used to run the projected eligibility and notice generation
processes for a specified list of cases as part of annual renewals for Qualified
Health Plans.

Inserting evidence by using the PDMEvidenceMaintanence API automatically
ensures that the case is processed by annual renewal projected eligibility and
notice generation processes. There can also be cases for which no evidence was
received, but still must be processed as part of an annual renewal.

Class and method

curam.hcr.pdm.sl.intf.QHPProjectedEligibility.process

Parameters

Parameter Description Default value

runID Mandatory. The run ID value
that you specified in the
periodic data matching run
configuration in the Cúram
Administration application.

A different value is required
for each run.

instanceID Optional. An instance ID can
be used by the batch
infrastructure to stop or
restart a batch process.

BPN26008

processingDate Optional. The current date.

runInstanceID Do not set. An internal batch
field for communicating the
Run Instance ID between the
batch main and batch stream
components.

Not applicable

QHPProcessAutoCompletions batch process
This batch process completes annual renewals for QHP after a configurable period.
If a citizen has not submitted an annual renewal at the end of the specified period,
either online or through a caseworker, this batch process redetermines their
eligibility as per the evidence in the projected eligibility notice.

You must schedule the batch process to run after a period of
curam.citizenaccount.annualrenewal.expiry.days +1 days. All cases that are in the
"Notice Generated" state for that period are processed. By default, the value of
automatic-completion curam.citizenaccount.annualrenewal.expiry.days is 30 days.

Class and method

curam.hcr.pdm.sl.intf.QHPProcessAutoCompletions.process

54 Health Care Reform Developer Guide

Parameters

Parameter Description Default value

runID Mandatory. The run ID value
that you specified in the
periodic data matching run
configuration in the Cúram
Administration application.

A different value is required
for each run.

instanceID Optional. An instance ID can
be used by the batch
infrastructure to stop or
restart a batch process.

BPN26008

processingDate Optional. The current date.

runInstanceID Do not set. An internal batch
field for communicating the
Run Instance ID between the
batch main and batch stream
components.

Not applicable

Running the annual renewals for Medicaid batch process
Complete the following tasks to run the annual renewals for Medicaid batch. This
batch process runs projected eligibility, calls the custom generate notices
implementation to send the appropriate citizen notices, and automatically renews
Medicaid for eligible citizens where eligibility is unchanged.

Before you begin

Important: Ensure that the current client information was retrieved from external
systems through your custom TDS service and was written to the integrated cases
as external evidence by using the PDMEvidenceMaintenance API.

Before running an annual renewals run, ensure that no other period data matching
or annual renewals runs are in process. It is recommended that period data
matching or annual renewal runs do not overlap.

About this task

This batch process renews Medicaid cases only where the eligibility is unchanged.
The batch process renews Medicaid cases and progresses the run case control
record to the Automatically Completed state. For all other cases, the case run
control record is set to failed. As part of your implementation, you must decide
what further custom processing you can apply to these cases.

Procedure
1. Create or identify a run configuration in the Cúram Administration application.
2. Run the MedicaidProcessAnnualRenewals batch process, passing in the run ID

as a parameter.

MedicaidProcessAnnualRenewals batch process
This batch process runs projected eligibility, calls the custom generate notices
implementation to send the appropriate citizen notices, and automatically renews
Medicaid for eligible citizens where eligibility is unchanged.

Chapter 9. Implementing periodic data matching and annual renewals 55

Class and method

curam.hcr.pdm.sl.intf.MedicaidProcessAnnualRenewals.process

Parameters

Parameter Description Default value

runID Mandatory. The run ID value
that you specified in the
periodic data matching run
configuration in the Cúram
Administration application.

A different value is required
for each run.

instanceID Optional. An optional
instance ID that used by the
batch infrastructure to stop
or restart a batch process.

BPN26008

processingDate Optional. The current date.

runInstanceID Do not set. An internal batch
field for communicating the
Run Instance ID between the
batch main and batch stream
components.

Not applicable

Running the annual renewals for CHIP batch process
Complete the following steps to run annual renewals for the Children's Health
Insurance Program (CHIP) batch process. This batch process runs projected
eligibility, calls the custom generate notices implementation to send the appropriate
citizen notices, and automatically renews CHIP for eligible citizens.

Before you begin

Important: Ensure that the current client information was retrieved from external
systems through your custom TDS service and was written to the integrated cases
as external evidence by using the PDMEvidenceMaintenance API.

Before running an annual renewals run, ensure that no other period data matching
or annual renewals runs are in process. It is recommended that period data
matching or annual renewal runs do not overlap.

About this task

This batch process renews CHIP cases only where the eligibility is unchanged. The
batch process renews CHIP cases and progresses the run case control record to the
Automatically Completed state. For all other cases, the case run control record is
set to failed. You can use an API to query this table for the list of non-renewed
cases. As part of your implementation, you must decide what further custom
processing you can apply to these cases.

Procedure
1. Create or identify a run configuration in the Cúram Administration application.
2. Run the CHIPProcessAnnualRenewals batch process, passing in the run ID as a

parameter.

56 Health Care Reform Developer Guide

CHIPProcessAnnualRenewals batch process
This batch process runs projected eligibility, calls the custom generate notices
implementation to send the appropriate citizen notices, and automatically renews
CHIP for eligible citizens where eligibility is unchanged.

Class and method

curam.hcr.pdm.sl.intf.CHIPProcessAnnualRenewals.process

Parameters

Parameter Description Default value

runID Mandatory. The run ID value
that you specified in the
periodic data matching run
configuration in the Cúram
Administration application.

A different value is required
for each run.

instanceID Optional. An optional
instance ID that used by the
batch infrastructure to stop
or restart a batch process.

BPN26008

processingDate Optional. The current date.

runInstanceID Do not set. An internal batch
field for communicating the
Run Instance ID between the
batch main and batch stream
components.

Not applicable

Reviewing any Medicaid or CHIP cases that were not
automatically renewed

After you run annual renewals for Medicaid or CHIP, you must identify each of
the cases that were not automatically renewed and reprocess the cases.
Reprocessing and following up on failed cases is a custom development task

About this task

Medicaid or CHIP cases typically cannot be renewed for one of two reasons:
v The citizen is ineligible. Someone on the case is not eligible for Medicaid or

CHIP for the next 12 months as determined by their projected eligibility.
v A technical problem prevented the determination of projected eligibility,

typically if corrupted or bad data cannot be constructed as evidence.

You can use the PDMRunCaseControlManager API to help you to identify the
cases. For more information about the PDMRunCaseControlManager API, see the
Javadoc for the API.

Checking for batch processing errors and reprocessing failed cases
After you run periodic data matching or annual renewal batch processes, you must
identify any batch processing errors and reprocess any failed cases. Reprocessing
and following up on failed cases is a custom development task

Chapter 9. Implementing periodic data matching and annual renewals 57

About this task

You can use the PDMRunCaseControlManager API to help you with tasks related
to the following 4 main error processing scenarios. Typically, you can complete
these tasks by implementing a custom batch or batch-streaming process.
v Capturing a list of cases that failed to process for reporting purposes.
v Reviewing the reasons for technical case processing failures.
v Resetting cases that failed for technical reasons so they can be reprocessed when

the issues are resolved.
v Listing the cases that failed for a business reason to follow up with a

caseworker.

For more information about the PDMRunCaseControlManager API, see the Javadoc
for the API.

The procedure for implementing a batch-streaming process involves 2 main steps:
1. Determining the list of cases to review.
2. Determining what work you need to do on each case.

Procedure
1. Determine the list of cases to review. You can use the default APIs to determine

the list of cases as follows.
a. The list of all failed cases:

final BatchStreamHelper batchStreamHelper = new BatchStreamHelper(); batchStreamHelper.setStartTime();
batchStreamHelper.runChunkMain(key.instanceID, key, <YourBatchMainWrapper>, pdmRunCaseControlManager.listCasesByRunIDAndState(key.runID,

PDMRUNCASECONTROLSTATUSEntry.FAILURE, chunkMainParameters, <YourBatchStreamWrapper>);

b. The list of all cases that failed for a technical reason:

final BatchStreamHelper batchStreamHelper = new BatchStreamHelper(); batchStreamHelper.setStartTime();
batchStreamHelper.runChunkMain(key.instanceID, key, <YourBatchMainWrapper>,
pdmRunCaseControlManager.listFailedCasesByRunIDAndFailureType(key.runID, PDMRUNCASEFAILURETYPECODEEntry.TECHNICAL),

chunkMainParameters, <YourBatchStreamWrapper>);

c. The list of all cases that failed for a business reason:
final BatchStreamHelper batchStreamHelper = new BatchStreamHelper(); batchStreamHelper.setStartTime();

batchStreamHelper.runChunkMain(key.instanceID, key, <YourBatchMainWrapper>,
pdmRunCaseControlManager.listFailedCasesByRunIDAndFailureType(key.runID, PDMRUNCASEFAILURETYPECODEEntry.BUSINESS),

chunkMainParameters, <YourBatchStreamWrapper>);

2. Determine the work that you need to do on each case. The
PDMRunCaseControlManager APIs helps you to complete the following tasks:
a. Reviewing the reasons for technical case processing failures.

final PDMRunCaseControlExt pdmRunCaseControlExt = pdmRunCaseControlManager.getCase(key.runID, batchProcessingID.recordID)
final PDMRunCaseControlFailureExt failureDetails = pdmRunCaseControlExt.getCurrentFailureDetails();

log.logFailedCaseAndFailureDetails(pdmRunCaseControlExt, failureDetails.getDateTime(), failureDetails.getReasonCode(),
failureDetails.getMessage(), failureDetails.getDetails());

b. Resetting cases that failed for technical reasons so they can be reprocessed
when the issues are resolved.

final PDMRunCaseControlExt pdmRunCaseControlExt = pdmRunCaseControlManager.getCase(key.runID, batchProcessingID.recordID);
pdmRunCaseControlExt.resetCase();

c. Listing the cases that failed for a business reason to follow up with a
caseworker.

final PDMRunCaseControlExt pdmRunCaseControlExt = pdmRunCaseControlManager.getCase(key.runID, batchProcessingID.recordID);
final PDMRunCaseControlFailureExt failureDetails = pdmRunCaseControlExt.getCurrentFailureDetails();
if (failureDetails.getDateTime().before(<TimeLimitForFollowup>)) { log.sendCaseWorkerAndSupervisorFollowupNote(pdmRunCaseControlExt); }

58 Health Care Reform Developer Guide

Extracting rule objects snapshots to SessionDoc style HTML
You can extract the rule objects snapshot for a program group determination to
SessionDoc style HTML by running a build target from the runtime directory for
the rule objects snapshot of a program group determination.

About this task

This build target extracts an active or superseded program group determination by
referencing the CREOLEPROGGRPDETERMINATIONID field from the
PROGRAMGROUPDETERMINATION table. You can also extract a projected
eligibility program group determination by referencing the
CREOLEPROGGRPDETERMINATIONID field from the
PROGGRPPROJECTEDELIGIBILITY table.

The following input parameters are used by the
creole.extract.programgroupruleobjects build target:
v outputDir The folder where the HTML output pages are placed by the tool.

Ensure the folder is writable. This is a mandatory parameter.
v programGroupDeterminationID The unique identifier of the program group

determination for which you are extracting the rule objects snapshot. This is the
CreoleProgGrpDetermination.creoleProgGrpDeterminationId field on the database.
This is a mandatory parameter.

Procedure

Run the following command from the runtime directory: build
creole.extract.programruleobjects -DoutputDir={outputDir value}
-DprogramGroupDeterminationID={programGroupDetermainationID value}

Customizing periodic data matching and annual renewals
Use the following information to help you to customize your periodic data
matching or annual renewals implementation to your requirements.
Related tasks:
Chapter 10, “Customizing inconsistency period processing,” on page 81
Inconsistency period processing allows a caseworker to give a client a reasonable
opportunity period to provide outstanding verifications for evidence that requires
verification. Cases can proceed during that period as if outstanding verifications
were provided. The default inconsistency period processing infrastructure consists
of a batch process, a workflow, and the inconsistency period processing APIs. You
can create a custom event handler to customize the default inconsistency period
processing.

Customizing the storage of program group determinations
From version 6.0.5.5 interim fix 2 onwards, all program group determinations are
stored in the database by default. Over time the number of determinations can
become significant and increase the size of the database table. You can use the
provided hook point to suppress the storage of identical program group
determinations to reduce the size of the database table.

Chapter 9. Implementing periodic data matching and annual renewals 59

About this task

If you create an implementation that can identify if the new eligibility
determination is the same as the current active eligibility determination, you can
use the hook to suppress the storage of the new determination. Suppressing the
storage of the determination means that no information is inserted into the
PROGRAMGROUPDETERMINATION, CREOLEPROGGRPDETERMINATION and
CREOLEPROGGRPDETERDATA entities.

Note: You must ensure that your implementation correctly stores a determination
when required. For example, if an updated determination is not stored, then future
comparisons for this value can be affected.

Procedure
1. Create a class that implements

curam.healthcare.sl.impl.ProgramGroupDeterminationStorageHook, which
contains the single ProgramGroupDeterminationStorageHook
.storeDetermination(ProgramGroupDeterminationDetails) method with the
following options.
v Returns true to indicate to store the program group determination because it

is different from the current active program group determination.
v Returns false to indicate not to store the program group determination

because it is considered equivalent to the current active program group
determination.

2. Add a Guice link binding to the existing custom module class, linking the
implementation that you created for
curam.healthcare.sl.impl.ProgramGroupDeterminationStorageHook to the
ProgramGroupDeterminationStorageHook interface. For example:

protected void configure() {

// Existing bindings

// Guice Link binding linking custom implementation of ProgramGroupDeterminationStorageHook
//(e.g. CustomProgramGroupDeterminationStorageHookImpl) to
// the ProgramGroupDeterminationStorageHook interface
bind(ProgramGroupDeterminationStorageHook.class).to(CustomProgramGroupDeterminationStorageHookImpl.class);

}

Related tasks:
“Storing all existing program group determinations” on page 39
Before version 6.0.5.5 interim fix 2, program group determinations were not saved
in the database. If you upgrade from an earlier version, you must run the
BulkRunProgramGroupEligibility batch process on your system before you run any
of the periodic data matching or annual renewals batch processes. The
BulkRunProgramGroupEligibility batch process identifies and stores all of the
current program group determinations in your system. This once-off task for each
system captures information that is required for projected eligibility comparisons.

Customizing projected eligibility for periodic data matching
and annual renewals

Complete the following tasks to customize the default projected eligibility
implementation to include extra external evidence types. By default, the Death
Status, Minimum Essential Coverage, Income Details, and Annual Tax Return
external evidence types are supported.

60 Health Care Reform Developer Guide

Procedure
1. Update your TDS services implementation to handle the new evidence types.
2. Configure dynamic evidence entities for the new external evidence types.
3. Customize the projected eligibility evidence handlers to handle the new

evidence types.
4. Where necessary, customize the citizen account to include the new evidence

types.

Customizing projected eligibility evidence handlers
Use this information to customize evidence handlers if you want to include an
extra external data evidence type in your eligibility projections. You can also
modify or replace the default evidence handler mapping of external data to
internal rule objects.

Before you begin

Important: Implementing a new evidence handler or replacing an existing handler
is a non-trivial task. An incorrectly implemented error handler that encounters
errors or incorrectly constructs rule objects can cause the projected eligibility rules
to encounter errors at run time or can cause incorrect eligibility determinations. It
is important to thoroughly test all custom evidence handlers before deployment in
a live environment.

Projected eligibility:

Projected eligibility is the process where the HCR Program Group Rules are run in
a mode that uses the active data on the case, supplemented by data that is
obtained from external sources, to determine and inform a citizen of the affect that
the external data would have if it was applied to their case.

Depending on the projection type, the projection can be for the current period or
for an eligibility period in the future, such as the next enrollment period.

Important: External evidence must not be directly referenced by eligibility and
entitlement rule sets as this will lead to case redeterminations each time external
evidence is added to a case. Redetermining cases as part of evidence polling might
lead to performance issues and removes the ability to generate eligibility
projections that use the external data.

Projected eligibility evidence handlers:

Projected eligibility evidence handlers enable HCR rules to use external data in
eligibility projections. These evidence handlers convert external data into rule
objects that are used when the rules run. Then, the data that was sourced from
external sources and added as evidence to the case can be used to determine
eligibility and entitlement in the case.

You can replace or disable the default evidence handlers. You can also add custom
evidence handlers for external evidence types that not supported by default.

You use the ProjectedEligibilityEvidenceHandler API to implement a projected
eligibility evidence handler. For more information about the
ProjectedEligibilityEvidenceHandler API, see the Javadoc for the API.

Chapter 9. Implementing periodic data matching and annual renewals 61

External evidence:

External evidence is evidence that is not provided by the citizen but acquired from
trusted data sources, such as the Social Security Administration, or the Internal
Revenue Service. It is applied to the integrated case to be used only in eligibility
projections.

External evidence can be associated with verifications that ensure that the values
are compatible with client-attested values. For example, client-reported yearly
income must be reasonably compatible with the external evidence type of 'Annual
Tax Return', otherwise the client must provide proof that the evidence from the
trusted data source is incorrect.

Important: External evidence must not be directly referenced by eligibility and
entitlement rule sets as this causes case redeterminations each time external
evidence is added to a case. Redetermining cases as part of evidence polling might
lead to performance issues, and removes the ability to generate eligibility
projections that use the external data.

Implementing a new evidence handler:

Use this information to customize evidence handlers if you want to include an
extra external data evidence type in your eligibility projections. You can also
modify or replace the default evidence handler mapping of external data to
internal rule objects.

What to do next

Important: Implementing a new evidence handler or replacing an existing handler
is a non-trivial task. An incorrectly implemented error handler that encounters
errors or incorrectly constructs rule objects can cause the projected eligibility rules
to encounter errors at run time or can cause incorrect eligibility determinations. It
is important to thoroughly test all custom evidence handlers before deployment in
a live environment.

Identifying rule classes for the evidence handler:

Complete the following analysis to identify which rule classes must be returned by
the defineInMemoryRuleObjects() method.

About this task

Typically, but not always, an evidence handler only creates rule objects of a single
type.

You must follow the chain from External Evidence to Data Rule. The link between
External Evidence and Rule Class is a multi-step chain as shown:

External Evidence > Evidence > Evidence Propagator > Data Rule Set > Data
Rule Class > Rule Objects of the Rule Class type

The following procedure illustrates how to navigate the chain by using an
example. To determine which rule class must be returned for a new evidence type,
you must repeat this procedure for each new handler that you create.

62 Health Care Reform Developer Guide

Procedure

1. Identify the evidence type associated with the external evidence type.
A business analyst should be able to identify the client attested evidence type
which is associated with an external evidence type.
Annual Tax Return data that is obtained from external data sources is stored on
the ‘Annual Tax Return’ external evidence type. This external evidence maps to
the ‘Income’ evidence on the case that is used by the HCR eligibility rules. For
your custom handler, you must determine to which evidence type the external
evidence is mapped before proceeding to the next step in the chain analysis.

Note: In some instances, multiple external evidence types map to the same
evidence type, for example ‘Income Details’ and ‘Annual Tax Return’ both map
to ‘Income’. In this scenario, the same evidence handler converts the data from
both external evidence types into rule objects.

2. Identify the evidence propagator associated with the evidence type.
After you identify the evidence type, there should be only one Active
Succession Propagator Configuration, type “ROPT2005", associated with this
evidence type. The ‘Income’ evidence type code is “DET0026030”. Use this
evidence type code to search all of the propagation configuration files to
identify the associated active succession set propagation configuration file. In
this example, searching all of files on the system for the text ’<propagator
type="ROPT2005">’ and ’<evidence type="DET0026030">’ yields
the IncomePropagatorConfiguration.xml file with the following contents:
<?xml version="1.0" encoding="UTF-8"?>
<propagator type="ROPT2005">

<configuration>
<evidence type="DET0026030">

<ruleset name="IncomeDataRuleSet"/>
</evidence>

</configuration>
</propagator>

For your custom handler, you must determine the propagator configuration file
to which the evidence type is mapped before proceeding to the next step in the
chain analysis.

Note: If the file search results in multiple active succession set propagator
configuration files, then the evidence may be linked to multiple data rule sets.
In this scenario, you must do the next step in the chain analysis for each
propagator configuration that you identified.

3. Identify the data rule set associated with the evidence propagator.
After you identify the Evidence Propagator Configuration file, then this will
contain the name of the data rule set. For example, the
IncomePropagatorConfiguration file is associated with the IncomeDataRuleSet
as indicated in the highlighted XML.
<?xml version="1.0" encoding="UTF-8"?>
<propagator type="ROPT2005">

<configuration>
<evidence type="DET0026030">

<ruleset name="IncomeDataRuleSet"/>
</evidence>

</configuration>
</propagator>

For your custom handler, you must determine the data rule set the evidence
propagator is mapped to before proceeding to the next step in the chain
analysis.

Chapter 9. Implementing periodic data matching and annual renewals 63

4. Identify the data rule class associated with the data rule set.
Once you have identified the Data Rule Set file, then examination of this file
should allow you to locate the associated Data Rule Class. In our example, the
IncomeDataRuleSet.xml rule set contains one rule class ‘Income’ as indicated in
the highlighted XML.
<RuleSet name="IncomeDataRuleSet">

<Class
extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet"
name="Income"

>

For your custom handler, you need to determine the rule class the data rule set
is mapped to.

5. Determine the fully qualified rule class name.
Finally, the fully qualified rule class name is obtained by concatenating the rule
set name with the rule class name. For example, the fully qualified rule class
name is ‘IncomeDataRuleSet.Income’. For your custom handler, you must
determine the fully qualified rule class name. This fully qualified rule class
name is to be returned by the defineInMemoryRuleObjects() method when you
create a custom evidence handler.

What to do next

The initial analysis is complete and you now have enough information to start
implementation of the custom evidence handler.

External evidence to qualified rule class name mappings:

The default mappings of external evidence to qualified rule class name.

Table 32. Default mappings of external evidence to qualified rule class name
External
Evidence Type

Mapped Evidence
Type Mapped Data Rule Set Mapped Rule Class Name Fully Qualified Rule Class Name

Death Status Application
Details Birth and
Death Details

HCRApplicantDataRuleSet
PDCBirthAndDeathDataRuleSet

HCRApplicant PDCBirthAndDeath HCRApplicantDataRuleSet.HCRApplicant
PDCBirthAndDeathDataRuleSet.PDCBirthAndDeath

Minimum
Essential
Coverage

Benefit HCRBenefitDataRuleSet HCRBenefit HCRBenefitDataRuleSet.HCRBenefit

Income Details Income IncomeDataRuleSet Income IncomeDataRuleSet.Income

Annual Tax
Return

Income IncomeDataRuleSet Income IncomeDataRuleSet.Income

Rule objects in projected eligibility:

Rule objects are created before running rules. For active eligibility and entitlement
determinations, a rule object converter reads underlying business tables to obtain
the appropriate data and populate rule objects in memory. For Projected Eligibility,
the normal rule object converter is bypassed and instead responsibility for creating
all rule objects is delegated to the projected eligibility evidence handler for the rule
class types that are specified by the defineInMemoryRuleClasses() method. These
rule objects are created by the createRuleObject() method, which is implemented by
each evidence handler.

Each evidence handler must replicate the work that is normally done by the rule
object converter. Before you can start creating rule objects, you need to determine

64 Health Care Reform Developer Guide

which rule object creation strategy the handler should use. The default evidence
handlers use three different rule object creation strategies. However, you can
choose to implement a new strategy.

Creating a custom evidence handler:

Complete the following steps to create the custom evidence handler
implementation.

Before you begin

Use the following naming convention for custom projected eligibility evidence
handlers:
{Custom Identifier}{Evidence Name}ProjectedEligibilityEvidenceHandlerImpl

For example, you might call a custom version of an Income evidence handler
CustomIncomeProjectedEligibilityEvidenceHandlerImpl.

Procedure

1. Using the identified the rule class for the rule objects that are created by the
handler, implement the defineInMemoryRuleObjects() method.
The default income evidence handler implementation of the
defineInMemoryRuleObjects() method is shown. This method returns a list with
containing the one rule class that is created by the handler
‘IncomeDataRuleSet.Income’
public class IncomeProjectedEligibilityEvidenceHandlerImpl implements

ProjectedEligibilityEvidenceHandler {

public class SampleIncomeProjectedEligibilityEvidenceHandlerImpl implements
ProjectedEligibilityEvidenceHandler {

/**
* {@inheritDoc}
*/
@Override
public Set<String> defineInMemoryRuleClasses(final CaseKey caseKey,

final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType) {

return new HashSet<String>() {

{
add("IncomeDataRuleSet.Income");

}
};

}

2. To complete the implementation of the custom evidence handler, you must
implement the createRuleObjects() method to create rule objects for projected
eligibility. The createRuleObjects() method is defined as follows:
void createRuleObjects(final CaseKey caseKey, final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType)
throws AppException, InformationalException;

Chapter 9. Implementing periodic data matching and annual renewals 65

Adding logging to custom evidence handlers:

Logging can be added to custom evidence handlers by invoking the log() method
on the ProgramGroupProjectedEligiblityHelper class. Adding logging to custom
evidence handlers can help in the investigation of unexpected projected eligibility
results.

Procedure

Use the following code to add logging to a custom evidence handler:
ProgramGroupProjectedEligibilityHelper helper =

new ProgramGroupProjectedEligibilityHelper();
helper.log(Level.INFO, message);

Please refer to the ProgramGroupProjectedEligibilityHelper API for more
information on the log() method.

Implementing the creation of rule objects for projected eligibility:

Completing the implementation of a custom evidence handler requires
implementing the createRuleObjects() method. This is by far the most complex step
in creating a custom evidence handler. The createRuleObject() method is
responsible for creating all rule objects for the rule class types that are specified by
the defineInMemoryRuleClasses() method. Therefore business logic is required by
the createRuleObjects() to determine which data to use when constructing the rule
object.

About this task

There are many different sources of data or strategies that this method could use
when creating the rule objects. For example the method could:
v Exclusively use only the active evidence on the case; not necessarily useful as

this would result in the same decision as the current active decision.
v Exclusively use the external evidence on the case; what happens if there are

missing fields on the external evidence that must be specified on the rule object?
v Use all the active evidence on the case and all the external evidence; what

happens if this results in duplicated rule objects resulting in an ineligible
decision because for example income was double counted?

When implementing the default evidence handlers, business analysts defined three
different strategies that were required so that the evidence handlers used the
correct data when constructing the rule objects. These are discussed in detail in the
following topic as they may be applicable to custom evidence handlers. When
implementing a new evidence handler, identifying the correct data to use when
constructing the rule object is critical and will probably require business analyst
input.

Rule object creation strategies:

The default evidence handlers use three different rule object creation strategies in
their createRuleObjects() implementations to correctly construct rule objects that
represent the active client attested evidence and the external evidence. However,
you can choose to implement a new strategy if you prefer.

Load active internal evidence and external evidence as rule objects
The first strategy is to create rule objects that represent all the active
internal evidence and to supplement this evidence by creating additional

66 Health Care Reform Developer Guide

rule objects for the external data. This strategy can be used when there is
no overlap between evidence that is on the case and evidence that was
sourced externally, in other words the external evidence is orthogonal to
the evidence already used in the determination.

Load active internal evidence as rule objects, clone rule objects and modify
attributes

The second strategy is to load rule objects that represent all the active
internal evidence, however rather than creating rule objects for the external
evidence, the loaded rule objects are cloned, which certain rule attribute
values being replaced with the external data. Use this strategy if the
external evidence attributes only maps to a subset of attributes on the
internal evidence.

Create rule objects by overlaying active evidence with external evidence
This is the most complex rule object creation strategy because for those
external evidence records that are deemed equivalent by a business-defined
evidence-matching algorithm, you need to effective date or overlay the
external evidence information with the active evidence. For equivalent
evidence that needs to be effective dated, the rule objects that are created
from the active evidence details are end dated while the external evidence
records have a start date, which ensures the rule objects created are never
processed by the rules for a common date. For active and external evidence
records that are not deemed equivalent by the evidence matching
algorithm, this strategy follows the 'Load active internal evidence and
external evidence as rule objects' strategy.

An example of this strategy is used in the default Income evidence
handler. The income evidence handler merges active Income evidence with
two external evidence types – Annual Tax Return and Income Details to
create rule objects that represent data from the three separate sources. An
income merging rule object algorithm was developed to combine active
income evidence with the external evidence. The algorithm takes the form:

v If active income evidence is equivalent to external evidence, based on an income
type and participant match algorithm:
– Load the income rule object, and clone and end-date income rule object.
– Create a rule object by using the external evidence and start date, effectively

v If income is not equivalent to the external income:
– Load the income rule object that represents active income evidence.
– Create new rule objects that represent the external evidence.

Techniques for filtering evidence and creating rule objects:

Each of the default rule object creation strategies uses the following techniques to
filter evidence and create rule objects. You can use the same techniques in a custom
handler.

Filtering external evidence by evidence type:

When each evidence handler’s createRuleObject() method is invoked by the
projected eligibility manager, the method is passed a list of evidence descriptor
records associated with the projection (EvidenceDescriptorDtlsList
evidenceDescriptorDtlsList).

Chapter 9. Implementing periodic data matching and annual renewals 67

Procedure

Each handler should filter this list of evidence by evidence type and before
converting the filtered list to rule objects as per the creation strategy being
implemented. To filter the evidence the following code can be added to a custom
handler:

// Filter external MEC evidence details
final EvidenceDescriptorDtlsList filteredEvidenceDescriptorList =
new EvidenceDescriptorDtlsList();

filteredEvidenceDescriptorList.dtls
.addAll(evidenceDescriptorDtlsList.dtls);

// Filter input evidence details list by type
org.apache.commons.collections.CollectionUtils.filter

(filteredEvidenceDescriptorList.dtls,
new org.apache.commons.collections.Predicate() {

@Override
public boolean evaluate(final Object input) {

return ((EvidenceDescriptorDtls) input).evidenceType
.equals(CASEEVIDENCE.MEC);

// update to evidence type associated with the custom handler
}

});

Creating rule objects from active evidence:

Active internal evidence can be converted into rule objects by invoking the default
rule object converter for the rule class.

About this task

Using the associated Data Rule Set and Data Rule Class identified in the
‘Identifying rule classes for the evidence handler’ task and specifying the case id in
the search criteria, the converter will convert the active evidence on the case into
rule objects. Once the existing rule objects have been loaded, they must be cloned,
creating new rule objects in the current session that are used by the session when
the rules execute.

Procedure

Add a code equivalent to the following example to the custom handler, updating
the rule set and rule class as appropriate.
// Load rule objects based on active internal evidence

final RuleSet ruleSet =
ruleSetManager.readRuleSet("HCRBenefitDataRuleSet");

final RuleClass ruleClass = ruleSet.findClass("HCRBenefit");

final SingleAttributeMatch ruleObjectSearchCriteria =
new SingleAttributeMatch(ruleClass, "caseID", caseKey.caseID);

final RuleClass soughtRuleClass = ruleObjectSearchCriteria.ruleClass();

final RuleObjectConverter ruleObjectConverter =
ruleClassConverterMapper.getRuleObjectConverter(soughtRuleClass);

final List<RuleObject> ruleObjectList =
ruleObjectConverter.convert(session, ruleObjectSearchCriteria);

// Clone rule objects, creating new rule objects in the current session
for (final RuleObject ruleObjectItem : ruleObjectList) {

final RuleObject ruleObject = session.createRuleObject(ruleClass);

for (final RuleAttribute ruleAttribute : ruleClass.allAttributes()) {

68 Health Care Reform Developer Guide

ruleObject.getAttributeValue(ruleAttribute.name()).specifyValue(
ruleObjectItem.getAttributeValue(ruleAttribute.name()).getValue());

}
}

Creating rule objects from external evidence:

The filtered external evidence descriptor list can be used to create new rule objects
in memory representing the external data using the following technique.

About this task

Modify the rule object attributes and external evidence attributes in the example to
match the data rule class and external evidence that is associated with the custom
handler.

// Looping the filtered evidence records,
// create new rule objects for external evidence

for (final EvidenceDescriptorDtls
activeEvidenceDtls : filteredEvidenceDescriptorList.dtls) {

final RuleObject ruleObject = session.createRuleObject(ruleClass);

ruleObject.getAttributeValue("caseID").specifyValue(caseKey.caseID);

final EvidenceTypeKey evType = new EvidenceTypeKey();
evType.evidenceType = activeEvidenceDtls.evidenceType;

final EvidenceCaseKey evidenceCaseKey = new EvidenceCaseKey();
evidenceCaseKey.evidenceKey.evidenceID = activeEvidenceDtls.relatedID;
evidenceCaseKey.evidenceKey.evType = activeEvidenceDtls.evidenceType;

// read external evidence
final DynamicEvidenceObjectInf dynamicEvidenceObject =
dynamicEvidenceMaintenanceExt.readEvidence(evidenceCaseKey);

// set rule object values using external evidence details
final long caseParticipantRoleID =
(Long) dynamicEvidenceObject
.getAttributeValue("caseParticipantRoleID");

ruleObject.getAttributeValue("caseParticipantRoleID").specifyValue(
caseParticipantRoleID);

final Date startDate =
(Date) dynamicEvidenceObject.getAttributeValue("startDate");

ruleObject.getAttributeValue("startDate").specifyValue(startDate);

// set additional fields on rule object as appropriate

ruleObject.getAttributeValue("successionID").specifyValue(
activeEvidenceDtls.successionID);

}

When creating rule objects, you need to specify the value for all rule object
attributes that have <specified/> derivation.

In the previous example, the HCRBenefit rule class has a number of attributes that
have the ‘specified’ derivation. Each of these attribute values is set using the
external evidence data. The following snippet of the HCRBenefit rule class shows
the ‘specified’ derivation type for the ‘startDate’ rule attribute displayed in bold.

<Attribute name="startDate">
<Annotations>
<Label
label-id="startDate"
name="The date on which the unearned income commenced."

/>
</Annotations>
<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>
<specified/>

</derivation> </Attribute>

Chapter 9. Implementing periodic data matching and annual renewals 69

When implementing a custom evidence handler you need to search the associated
rule class for all attributes with the specified derivation and specify the attribute
value on the rule object using data that is obtained from the external evidence
record. For the startDate attribute, the following code reads the external evidence
attribute value and specifies the rule object attribute value with this date.

final Date startDate =
(Date) dynamicEvidenceObject.getAttributeValue("startDate");

ruleObject.getAttributeValue("startDate").specifyValue(startDate);

Cloning and modifying active evidence rule objects:

In some scenarios, business logic determines that an active evidence record is
actually equivalent or partially equivalent to an external evidence record. Perhaps,
by means of a partial field match. In this situation, business logic is needed to
define an algorithm to create rule objects with attribute values that are specified
either from the active evidence field values, or from external evidence field values.

About this task

For example, business logic might define an algorithm where the external evidence
value is used to populate the rule attribute value unless there is no equivalent field
on the external evidence. In that case, the active evidence value is used to populate
the rule attribute value.

You might encounter this scenario if not all of the rule attribute fields that need to
be specified map to fields on the external evidence type. In this situation, data
from the active evidence needs to be used to supplement the rule object being
created.

Procedure

1. Load active evidence as rule objects.
2. Loop the rule object list, for each existing rule object.

a. Create a cloned rule object.
b. Loop each attribute on the existing rule object, depending on the attribute

name. You can use one of the following options:
1) Specify a cloned rule object attribute value using the existing rule object

value.
2) Specify a cloned rule object attribute value using the external evidence.
The decision per attribute name requires business logic to determine the
correct source to be used when specifying the rule object attribute value.

Customizing an external evidence handler
Complete the following steps to customize or replace a default projected eligibility
evidence handler with a custom implementation.

Before you begin

Create a new Projected Eligibility Evidence Handler implementation that replaces
the default handler. You can implement an entirely new handler or use the default
evidence handler as the starting point for your customization.

70 Health Care Reform Developer Guide

About this task

Assuming that you have successfully created a customized handler
implementation, you must modify the Guice bindings so that the new evidence
handler is used by projected eligibility rather than the default evidence handler.

Procedure
1. Modify the new custom evidence handler to extend the default evidence

handler that you are replacing. For example, change
public class SampleIncomeProjectedEligibilityEvidenceHandlerImpl implements
ProjectedEligibilityEvidenceHandler {

to
public class SampleIncomeProjectedEligibilityEvidenceHandlerImpl extends

IncomeProjectedEligibilityEvidenceHandlerImpl {

2. Create a module class, which creates a Guice link binding replacing the default
evidence handler with the customized evidence handler or add the new link
binding to an existing module class. For example, see this custom module,
which contains a link binding to replace the default income evidence handler
with a binding to a custom income handler.

/**
* Contains modified projected eligibility evidence handler Guice bindings.
*/
@AccessLevel(AccessLevelType.EXTERNAL)
public class SampleProjectedEligibilityModule extends AbstractModule {

/**
* {@inheritDoc}
*/
@Override
protected void configure() {

// Link binding replacing the default income projected evidence
// handler with a custom income projected eligibility handler
bind(IncomeProjectedEligibilityEvidenceHandlerImpl.class)

.to(SampleIncomeProjectedEligibilityEvidenceHandlerImpl.class);
}

3. If you created a new module class, update the ModuleClassname.dmx file to
reference this new module.

Disabling an evidence handler
Complete the following steps to disable a projected eligibility evidence handler by
replacing the default evidence handler with a custom evidence handler that has an
empty implementation.

Procedure
1. Create a custom disabled evidence handler with no implementation that

extends the default evidence handler that you are disabling. For example, see
this custom Income Projected Eligibility Evidence Handler that contains no
implementation.

/**
* {@inheritDoc}
*/
public final class SampleDisabledIncomeProjectedEligibilityEvidenceHandlerImpl extends
IncomeProjectedEligibilityEvidenceHandlerImpl {

@Override
public Set<String> defineInMemoryRuleClasses(final CaseKey caseKey,
final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType) {

// no rule objects will be created in memory by this handler
return new HashSet<String>();

}

@Override

Chapter 9. Implementing periodic data matching and annual renewals 71

public void createRuleObjects(final CaseKey caseKey, final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType)
throws AppException, InformationalException {

// create no rule objects
}

}

2. Create a module class, which creates a Guice link binding replacing the default
evidence handler with the customized evidence handler or add the new link
binding to an existing module class. For example, see this custom module,
which contains a link binding to replace the default income evidence handler
with a custom disabled income handler.

/**
* Contains disabled projected eligibility evidence handler Guice bindings.
*/
@AccessLevel(AccessLevelType.EXTERNAL)
public class SampleProjectedEligibilityModule extends AbstractModule {

/**
* {@inheritDoc}
*/
@Override
protected void configure() {

// Link binding replacing the default income projected evidence handler
// with a custom income projected eligibility handler that does nothing
bind(IncomeProjectedEligibilityEvidenceHandlerImpl.class)
.to(SampleDisabledIncomeProjectedEligibilityEvidenceHandlerImpl.class);

}

3. If you created a new module class, update the ModuleClassname.dmx file to
reference this new module.

Enabling projected eligibility logging
The default external evidence handlers can output log/trace information while
being executed. This log output can be used to aid in the investigation of
unexpected projected eligibility results in conjunction with other tools like
SessionDoc. This log output is disabled by default.

About this task

Add Logging to custom external evidence handlers to aid investigation of
projected eligibility issues.

Procedure
1. Log in to the Cúram application as a user with system administrator

permissions.
2. Modify the value of the 'Projected Eligibility Message Logging Level' property

to be 'trace_on'.
3. Publish changes.

Customizing the citizen account with new evidence types
After you add new external evidence types, you might want to update the citizen
account to reflect any new citizen choices. You might also want to change the
evidence types that you want customers to be able to contest.

Customizing the citizen account for periodic data matching and annual
renewals

You can modify the citizen account to change the evidence that citizens can
contest, and you can customize the periodic data matching and annual renewals
messages that are displayed to the citizen.

72 Health Care Reform Developer Guide

Configuring contestable evidence types
By default, the Death Status and MEC evidence types are contestable for periodic
data matching, and the income evidence type is contestable for annual renewals. A
Contest button and a cluster containing the contestable evidence types are
displayed in the citizen account, for each contestable evidence type. Complete the
following steps to configure the contestable evidence types.

About this task

Contestable evidence types are specified in the
curam.healthcare.pdm.contestable.evidences property in the "HEALTHCARE"
section.

Procedure
1. Log in to the Cúram Administration application as a user with administrator

permissions
2. Modify the curam.healthcare.pdm.contestable.evidences property to add or

remove EvidenceTypes codes.

Adding contestable evidence types to the citizen account
After you add a contestable evidence type for periodic data matching and annual
renewals, you must complete the following steps to enable citizens to contest the
evidence from the citizen account.

About this task

By default, the Death Status and MEC evidence types are contestable for periodic
data matching, and the income evidence type is contestable for annual renewals.

Procedure
1. Modify the webclient\components\HCROnline\CitizenAccount\lifeevents\

CitizenAccount_arpdm.vim file to include clusters for the new evidence types.
2. Override the EJBServer\components\HCROnline\source\curam\healthcare\

pdm\sl\impl\HealthCarePDMProcessingImpl.java Service Layer
implementation to incorporate the changes. This service class implements the
HealthCarePDMProcessing interface.

3. Modify the ContestableEvidenceDetailsList struct to capture the data for the
new evidence.

Modifying periodic data matching home page messages
Complete the following steps to modify the default set of messages that can be
displayed on the periodic data matching home page.

About this task

Procedure
1. To modify the messages in the DMX files:

a. Modify the messages in the following DMX files:
v CITIZENHOMEMENUITEM
v LOCALIZABLETEXT
v TEXTTRANSLATION

Chapter 9. Implementing periodic data matching and annual renewals 73

b. Override the HealthCarePDMProcessingImpl Java class or create and
associate a new Java class.

2. To create messages in the DMX files:
a. Create an entry in the CITIZENHOMEMENUITEM table.
b. Create a Java class containing the implementation of the new business logic

to determine on what condition the menu item message is displayed.
c. Associate the new Java class file name to respective entry in the

CITIZENHOMEMENUITEM table for the column "CLASSNAME".
3. To modify the messages in the AnnualRenewal.properties file:

a. Modify the messages in the data\initial\blob\prop\
CitizenMessagesForPDM.properties file.

b. If required, override the PDMMessagesEventListener class.
c. The messages are inserted into the PARTICIPANTMESSAGECONFIG table.

Use the Administration Application to modify the messages.

Modifying periodic data matching My Updates page messages
Complete the following steps to modify the default set of messages that can be
displayed on the default periodic data matching cluster on the My Updates page
messages.

About this task

The messages that can be displayed on My Updates page are read from the
EJBServer\components\HCROnline\message\PDMUpdates.xml. These messages are
populated at run time in the Service layer implementation.

Procedure
1. Modify the messages in the PDMUpdates.xml file.
2. HealthCarePDMProcessingImpl is provided with a default implementation. You

can create your own implementation by providing a new implementation for
the HealthCarePDMProcessing interface.

Modifying annual renewals home page messages
Complete the following steps to modify the default set of messages that can be
displayed on the annual renewals home page.

Procedure
1. To modify messages in the DMX files:

a. Modify the messages in the following DMX files:
v CITIZENHOMEMENUITEM
v LOCALIZABLETEXT
v TEXTTRANSLATION

b. Override the AnnualRenewalMenuItemProducer Java class or create and
associate a new Java class.

2. To create messages in the DMX files:
a. Create an entry in the CITIZENHOMEMENUITEM table.
b. Create a Java class containing the implementation of the new business logic

to determine on what condition the menu item message is displayed.
c. Associate the new Java class file name to respective entry in the

CITIZENHOMEMENUITEM table for the column "CLASSNAME".

74 Health Care Reform Developer Guide

3. To modify the messages in the AnnualRenewal.properties file:
a. Create a file to extend the AnnualRenewalMessageHelper interface. Extend

the AnnualRenewalMessageHelperImpl and override the required APIs. The
messages are inserted into the PARTICIPANTMESSAGECONFIG table.

b. Modify the CURAM_DIR\EJBServer\components\HCROnline\data\initial\
blob\prop\AnnualRenewal.properties file to add new messages or to
modify the existing messages.

Modifying the annual renewals My Updates page
By default, the annual renewals implementation includes the
CASEEVIDENCE.EXTERNALINCOMEDETAILS,
CASEEVIDENCE.ANNUALTAXRETURN evidence types. Complete the following
steps to modify the default annual renewal My Updates page to add new evidence
types or to add new columns on the page.

Procedure
1. Implement the AnnualRenewalHelper interface. You can provide a new

implementation or extend the AnnualRenewalHelperImpl. Inject the new
implementation class.

2. Model the existing structs to accommodate the new evidence changes:
a. Add a Boolean attribute in EvidenceTypeDetails struct to display a new

cluster for the evidence type and ensure that the cluster is visible only when
it contains records.

b. Add a new attribute to hold the details of new evidence type. The data type
for this list should be of type
curam.citizenaccount.annualrenewal.facade.struct.EvidenceDetails.

c. Modify the EvidenceDetails struct to add the new attribute for display on
the UI.

3. Update the HCROnline\CitizenAccount\lifeevents\CitizenAccount_arpdm.vim
file to add the new columns or a new cluster.

Customizing evidence converters
Complete the following tasks to customize the default evidence mappings by
modifying the evidence converters.

External evidence converters
External evidence converters create or modify the existing evidence on a case
according to the external evidence on the case. Each evidence converter must
implement the ExternalEvidenceConverter interface.

Registered external evidence converters are used by the automatic-completion
batch processes to create evidence from polled external evidence. External evidence
converters are responsible for converting one specific type of polled evidence into
evidence on the case. An evidence converter cannot convert more than one polled
evidence type. Depending on business requirements, an evidence converter either
creates new evidence on a case, modifies existing evidence on the case or does
both. A converter usually only creates or modifies evidence of one specific type.
However, this is not a requirement. It is possible that a piece of polled evidence
can map to several different evidence records on a case. The evidence converter
converts one evidence record per invocation, so in situations where there are
several different items of the same external polled evidence, the converter must be
invoked for each polled evidence record.

Chapter 9. Implementing periodic data matching and annual renewals 75

Implementing a new external evidence converter
Complete the following steps to implement a new evidence converter by using an
abstract helper class. The creation of custom external evidence converters is
simplified by the inclusion of the abstract helper class,
CommonExternalEvidenceConverter.

About this task

Several default converters are provided to convert polled evidences of types 'Death
Status', 'MinimumEssentialCoverage', 'Annual Tax Return' and 'Income Details'.
The ExternalEvidenceConverterManager invokes all registered converters that
match the evidence types that were polled. You can implement and register
additional external evidence converters for other types of polled evidence. Custom
evidence converters can be created for the default polled evidence types or a new
custom dynamic evidence type. All evidence that is created by the default evidence
converters has an evidence change reason specified as 'Reported by External Party'.

While evidence converters usually create new evidence on a case, there are
instances where they also need to modify existing evidence on the case. In some
situations, the evidence that is created by the converter needs to replace or end
date the evidence on the case. To achieve this an evidence converter needs to
modify the existing evidence record before adding the new evidence. In situations
where there are multiple evidence records to be modified, business logic might
need to be incorporated into the evidence converter to identify the correct evidence
records to modify. In some situations, a converter might only need to modify
existing evidence and not insert any new evidence records.

Procedure
1. Create a class that extends CommonExternalEvidenceConverter, specifying the

source evidence type and the target evidence type.
public class SampleEvidenceTypeExternalEvidenceConverterImpl extends
CommonExternalEvidenceConverter<SOURCE_EVIDENCE_TYPE, TARGET_EVIDENCE_TYPE> {

In the example after this procedure, the source evidence type is a Dynamic
evidence static evidence type AnnualTaxReturnDtls while the target is dynamic
evidence.

2. The new class must implement all abstract methods that are defined in the
CommonExternalEvidenceConverter class:
protected abstract CASEEVIDENCEEntry getSourceEvidenceType();

protected abstract CASEEVIDENCEEntry getTargetEvidenceType();

protected abstract TT getCreateEvidenceDetails(final ST sourceEvidenceObject,
final EvidenceDescriptorDtls descriptor);

protected abstract void mapModifyEvidenceDetails(

3. The new class must also override the following methods, which are defined in
the CommonExternalEvidenceConverter class:
protected boolean shouldModifyEvidence(final ST sourceEvidenceObject,
final TT targetEvidenceObject)

protected boolean shouldCreateEvidence(final ST sourceEvidenceObject)

Example

The following example code snippet shows a sample evidence converter which
converts polled Foreign Residency (static) evidence into Demographics (dynamic)
evidence on the case.

76 Health Care Reform Developer Guide

Note: This example is not a valid source/target evidence conversion mapping.
/**
* External Foreign Residency evidence converter into Demographics evidence.
*/
public class SampleForeignResidencyExternalEvidenceConverterImpl

extends
CommonExternalEvidenceConverter<ForeignResidencyDtls, DynamicEvidenceObject> {

@Override
protected CASEEVIDENCEEntry getTargetEvidenceType() {

return CASEEVIDENCEEntry.FOREIGNRESIDENCY;
}

@Override
protected CASEEVIDENCEEntry getSourceEvidenceType() {

return CASEEVIDENCEEntry.DEMOGRAPHICS;
}

@Override
protected DynamicEvidenceObject getCreateEvidenceDetails(

final ForeignResidencyDtls sourceEvidenceObject,
final EvidenceDescriptorDtls descriptor) throws AppException,
InformationalException {

final DynamicEvidenceObject targetEvidenceObject =
new DynamicEvidenceObject(descriptor.caseID, descriptor.receivedDate,

getTargetEvidenceType().getCode());

targetEvidenceObject.setAttributeValue("concernRoleID",
sourceEvidenceObject.concernRoleID);

targetEvidenceObject.setAttributeValue("comments",
sourceEvidenceObject.comments);

// set remaining attributes on target evidence record

return targetEvidenceObject;
}

@Override
protected void mapModifyEvidenceDetails(

final ForeignResidencyDtls sourceEvidenceObject,
final DynamicEvidenceObject targetEvidenceObject) throws AppException,
InformationalException {

// End date target evidence
targetEvidenceObject.setAttributeValue("endDate",

sourceEvidenceObject.startDate.addDays(-1));
targetEvidenceObject.setAttributeValue("source",

HCINCOMESOURCE.EXTERNALSYSTEM);
}

@Override
protected boolean shouldModifyEvidence(

final ForeignResidencyDtls sourceEvidenceObject,
final DynamicEvidenceObject targetEvidenceObject) throws AppException,
InformationalException {

// Add business logic to determine if existing evidence records on case
// need to be modified.

// Simple implementation, don’t modify existing records
return false;

}

@Override
protected boolean shouldCreateEvidence(

final ForeignResidencyDtls sourceEvidenceObject) throws AppException,
InformationalException {

// Add business logic to determine if new evidence record is required
// on case.

// Simple implementation, always add new record representing polled source
// evidence.
return true;

}

Customizing an external evidence converter
Complete the following steps to customize or replace a default external evidence
converter with a custom implementation.

Chapter 9. Implementing periodic data matching and annual renewals 77

Before you begin

Create a new External Evidence Converter implementation that replaces the default
converter. You can implement an entirely new converter or extend the default
evidence converter overriding specific methods as required in your customization.

About this task

Assuming that you have successfully created a customized converter
implementation, you must modify the Guice bindings so that the new evidence
converter is used by the external evidence converter manager rather than the
default evidence converter.

Procedure
1. Modify the new custom evidence converter to extend the default evidence

converter that you are replacing. For example, change:
public class SampleAnnualTaxReturnExternalEvidenceConverterImpl extends

CommonExternalEvidenceConverter<AnnualTaxReturnDtls, DynamicEvidenceObject> {

to
public class SampleAnnualTaxReturnExternalEvidenceConverterImpl extends

AnnualTaxReturnExternalEvidenceConverterImpl {

Note: If you are replacing specific methods of an existing evidence converter,
then your custom implementation already extends this default implementation.

2. Create a module class, which creates a Guice link binding replacing the default
evidence converter with the customized evidence converter, or add the new
link binding to an existing module class. For example, see this custom module,
which contains a link binding to replace the default Annual Tax Return external
evidence converter with a binding to a custom Annual Tax Return evidence
converter.
/**

* Contains modified external evidence converter Guice bindings.
*/
@AccessLevel(AccessLevelType.EXTERNAL)
public class SampleExternalEvidenceConverterModule extends AbstractModule {

/**
* {@inheritDoc}
*/
@Override
protected void configure() {

// Link binding replacing the default Annual Tax Return external
// external converter with a custom Annual Tax Return evidence converter.
bind(AnnualTaxReturnExternalEvidenceConverterImpl.class)

.to(SampleAnnualTaxReturnExternalEvidenceConverterImpl.class);
}

3. If you created a new module class, update the ModuleClassname.dmx file to
reference this new module.

Disabling an external evidence converter
Complete the following steps to disable an external evidence converter by
replacing the default evidence converter with a custom evidence converter that
performs no evidence conversion.

Procedure
1. Create a custom disabled evidence converter which extends the default

evidence converter that you are disabling. The custom converter needs to
override the convert() method so that no evidence is converted. For example,
see this custom Annual Tax Return external evidence converter that contains an
implementation which converts no evidence.

78 Health Care Reform Developer Guide

/**
* {@inheritDoc}
*/
public class SampleDisabledAnnualTaxReturnExternalEvidenceConverterImpl extends

AnnualTaxReturnExternalEvidenceConverterImpl {

@Override
public Set<EvidenceKey> convert(final CaseKey caseKey,

final EvidenceDescriptorDtls evidenceDescriptorDtls) throws AppException,
InformationalException {

// return empty set indicating no evidence was converted by this evidence converter
final Set<EvidenceKey> evidenceSet = new HashSet<EvidenceKey>();

return evidenceSet;
}

}

2. Create a module class, which creates a Guice link binding that replaces the
default evidence converter with the customized evidence converter, or add the
new link binding to an existing module class. For example, see this custom
module, which contains a link binding to replace the default Annual Tax
Return external evidence converter with a custom disabled Annual Tax Return
external evidence converter.
/**

* Contains disabled external evidence converter Guice bindings.
*/
@AccessLevel(AccessLevelType.EXTERNAL)
public class SampleDisabledExternalEvidenceConverterModule extends AbstractModule {

/**
* {@inheritDoc}
*/
@Override
protected void configure() {

// Link binding replacing the default Annual Tax Return external evidence
// converter with a custom disabled Annual Tax Return evidence converter.

bind(AnnualTaxReturnExternalEvidenceConverterImpl.class)
.to(SampleDisabledAnnualTaxReturnExternalEvidenceConverterImpl.class);

}

3. If you created a new module class, update the ModuleClassname.dmx file to
reference this new module.

Chapter 9. Implementing periodic data matching and annual renewals 79

80 Health Care Reform Developer Guide

Chapter 10. Customizing inconsistency period processing

Inconsistency period processing allows a caseworker to give a client a reasonable
opportunity period to provide outstanding verifications for evidence that requires
verification. Cases can proceed during that period as if outstanding verifications
were provided. The default inconsistency period processing infrastructure consists
of a batch process, a workflow, and the inconsistency period processing APIs. You
can create a custom event handler to customize the default inconsistency period
processing.
Related tasks:
Chapter 6, “Customizing change of circumstances,” on page 27
To customize change of circumstances for your environment, you must be familiar
with the default implementation. Use this information to understand the process
flow, and to identify the steps that you must complete to customize your system.
“Customizing periodic data matching and annual renewals” on page 59
Use the following information to help you to customize your periodic data
matching or annual renewals implementation to your requirements.

Creating a custom event handler for inconsistency period processing
By default in HCR, an inconsistency period is created only once for the lifetime of
a case. This behavior is coded in the
curam.hcrcase.sl.event.impl.MilestoneCreationEventHandler. You can create a
custom event handler to modify this default behavior.

About this task

By default, the
curam.hcrcase.sl.event.impl.MilestoneCreationEventHandler.eventRaised(Event)
event handler is used, where the Event object contains caseID as primary event
data and relatedID as secondary event data. The handler reads a list of milestone
configuration details with the curam.core.sl.entity.intf.MilestoneLink
.searchMilestoneConfigDetailsByCreationEventAndConfigID(CreationEvent) API.
The list is then iterated and MilestoneDelivery is created when caseID and
milestone configurationID have no associated milestones deliveries and when
milestone is in "INPROGRESS" or "NONSTARTED" state.

By default, Program Group Manager raises an inconsistency period event when a
case contains evidence with outstanding verifications. The event is raised by
curam.healthcare.sl.impl.ProgramGroupManager.manageProgramGroup(CaseKey).
This event is registered through the /EJBServer/components/HCR/events/
handler_config.xml file with event class identifier of INCONSISTENCYPERIOD.
You can find the default event handler at
curam.hcrcase.sl.event.impl.MilestoneCreationEventHandler.
MilestoneCreationEventHandler results in the creation of the inconsistency period
milestone if no milestones were previously created for the case.

For more information, see "Merging Event Files" in the IBM Cúram Server
Developer's Guide.

© Copyright IBM Corp. 2011, 2014 81

Procedure
1. Create a handler_config.xml file at /EJBServer/components/

%custom_component_name%/events/.
2. Disable the existing event handler. You can disable it with the following

event-registration. It is important to provide a removed="true" attribute and
point to the correct existing event handler.

<event-registration handler="curam.hcrcase.sl.event.impl.MilestoneCreationEventHandler" removed="true">
<event-classes>

<event-class identifier="INCONSISTENCYPERIOD"/>
</event-classes>

</event-registration>

3. Create a custom event handler. For example,
curam.custom.event.impl.CustomMilestoneCreationCustomerEventHandler.

4. Register a custom event handler as shown:
<event-registration handler="curam.hcrcase.sl.event.impl.MilestoneCreationCustomerEventHandler">

<event-classes>
<event-class identifier="INCONSISTENCYPERIOD"/>

</event-classes>
</event-registration>

5. Ensure that the new custom component takes precedence in the component
order. You must do a clean server build when you modify component order.

Related concepts:
Program Authorization
Authorization of each program on an application case is required in order to
process the application case to completion. The authorization process varies
depending on the nature of the programs that are being applied for. An
authorization strategy can be configured for an application case.
Related reference:
Merging Event Files

InconsistencyPeriod workflow
The InconsistencyPeriod workflow processes cases after the inconsistency period
finishes.

This workflow takes MilestoneDelivery ID as an input. The workflow first checks
whether any outstanding verifications or issues are pending against the Insurance
Affordability integrated case of the milestone delivery ID. If no verifications exist,
the workflow ends and the milestone is set to complete. If verifications are present,
the workflow checks whether the outstanding issues and verifications have
associated evidence that has been retrieved from an external system such as the
federal hub. This external evidence is used to verify the information to which the
client has attested.

If all the external evidence is present, then the workflow changes the waiver date
to 10 days after the current date. After the workflow moves the waiver date, the
workflow copies the external evidence to the client-attested evidence, updates the
ClntAttestModifiedEvidence entity, and sends the potential eligibility notification to
the primary client. After the notification is sent, the workflow completes the
milestone. If the external evidence is not present against active outstanding issues
or verifications, then the workflow suspends the product delivery cases and
completes the milestone.

Inconsistency period workflow APIs
By default, the following APIs are called by the inconsistency period workflow.

curam.healthcare.sl.intf.HCREvidenceIssueVerifications.checkForOutstandingVerificationsAndIssues

82 Health Care Reform Developer Guide

https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/HCR/c_HCR_ProgramAuthorization.html
https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/ServerDeveloper/r_SERDEV_Handlers1MergingEventFiles1.html

Checks for all the outstanding verifications and issues against a given milestone
delivery ID. Returns Boolean value indicating if there are pending outstanding
verifications or issues.

curam.healthcare.sl.intf.HCREvidenceIssueVerifications.checkExtSystemDataForAvailability

Checks if all the active outstanding issues and verifications against given milestone
ID have the respective external system evidence. The external system evidences
checked against are INCARCERATION, ESI, MEC and
EXTERNALINCOMEDETAILS.

curam.healthcare.sl.intf.HCREvidenceIssueVerifications.pushWaiversDateForInconsistencyPeriod

Pushes the waivers date by 10 days for the insurance affordability integrated case.
The number of days is configurable and is configured with the help of
ENV_INCONSISTENCY_PERIOD_DUE_EXTENSION_DAYS variable in
Environment.xml.

curam.healthcare.sl.intf.HCREvidenceIssueVerifications.overrideClientAttestedEvidence

Copies the external evidences to client attested evidence. This method ends the
existing client attested evidence with current date and creates a new evidence with
the available external system evidence. ClntAttestModifiedEvidence entity is used
to store the case and evidence details.

curam.healthcare.sl.intf.HCREvidenceIssueVerifications.sendPotentialEligiblityNotification

Sends potential eligibility notification to the primary client.
curam.healthcare.sl.intf.HCREvidenceIssueVerifications.suspendPDCasesByMileStoneDelivery

Suspends all the product delivery cases with the given milestone delivery ID.
curam.healthcare.sl.intf.HCREvidenceIssueVerifications.endMilestoneForInconsistencyPeriod

Completes the milestone for a given milestone ID related to the inconsistency
period.

Inconsistency Period Evidence Activation batch process
This batch process activates the evidence that is created or modified by the
InconsistencyPeriod workflow.

Inconsistency Period Evidence Activation initiates the following processing steps:
1. Reads all the cases from ClntAttestModifiedEvidence, taking the date as input.
2. Activates the created or modified evidence for the case and updates the record

status on ClntAttestModifiedEvidence.

Parameters

Parameter Description Default value

processingDate Current date Not applicable

Inconsistency Period Evidence Activation Stream batch process
This batch process supports streaming for the inconsistency period Insurance
Affordability cases.

Chapter 10. Customizing inconsistency period processing 83

Parameters

Parameter Description Default value

processingDate Current date Not applicable

84 Health Care Reform Developer Guide

Chapter 11. Configuring Account Transfer with the Federally
Facilitated Exchange

You can configure how Account Transfer applications are processed and sent and
received between Cúram and the Federally Facilitated Exchange.

This implementation uses the Cúram data store and the Cúram Persistence
Infrastructure.

The FederalExchange component
The FederalExchange component helps state agencies to process Account Transfer
applications that originate from the Federally Facilitated Exchange (FFE). In
addition, the FederalExchange component sends applications that originate from
the state agency to the FFE for applicants that are not eligible for Medicaid or
CHIP.

Configuring Federal Exchange
Configure Account Transfer to and from the federal exchange by modifying the
appropriate properties.

About this task

For information about configuring properties, see "Configuring Application
Properties" in the Cúram System Configuration Guide.

Activating Account Transfer
Account Transfer is switched off by default. When you activate Account Transfer,
eligibility determinations are processed and prepared to be sent to the FFE by the
FederalExchange component.

Procedure

To activate Account Transfer, set the
curam.healthcare.account.transfer.activate.outbound.mapping property to true.

Enabling batch processing of account transfer applications
If you want to process Account Transfer applications by batch processing, you can
modify a property to stop the account transfer application data from being sent to
Cúram for inbound applications and to the FFE for outbound applications.

About this task

Enabling batch processing prevents the mapping of the data and the processing of
that mapped data by Cúram or the FFE. The FederalExchangeApplication entity
stores the jobs that are pending for each batch process.

© Copyright IBM Corp. 2011, 2014 85

Procedure

To process Account Transfer applications by batch processing, change the value of
the curam.healthcare.account.transfer.processing.mode property from the
default value of online to batch.

Configuring the sending of Account Transfers to Cúram
You might want to complete the mappings in real time and to stop the processing
just before the Account Transfer is sent to Cúram for case processing.

About this task

If you stop processing applications, the applications remain in a PENDING state
on the FederalExchangeApplication entity.

For other possible states for entries on this entity, see the
HCRFedExchangeAppStatus code table.

Procedure

To ensure that no Account Transfer applications are sent to Cúram, update the
curam.healthcare.account.transfer.auto.submit property from true to false.

Selecting the source data set for outbound mapping
Outbound mapping can be completed from two different sets of source data, intake
and case processing. Different data store schemas are used to store the data in each
case.

About this task

The following sets of source data are available:

Intake The data that is stored in the data store as a result of a case worker
completing the internal case worker intake application for Health Care
Reform.

Case processing
The data that is stored in the data store as a result of running an
implementation of HCRDatastoreBuilder to convert case and person
evidence for a Health Care Reform application to data store data.

Procedure
1. Set the curam.healthcare.account.transfer.outbound.mapping.source property

to intakefor the data store data from the intake application for Health Care
Reform, or caseprocessingfor the data that is derived from case and person
evidence.

2. Set the curam.healthcare.account.transfer.internal.datastore.schema
property to the correct schema name depending on the source of the data.

Setting the identity of the sender US state
Ensure that the sender is identified correctly by setting the correct US state. The
codes that are used to denote the sender state are stored as properties.

86 Health Care Reform Developer Guide

About this task

Procedure

Update the following properties for the US state for which HCR is implemented:
curam.healthcare.account.transfer.sender.state.code
curam.healthcare.account.transfer.sender.county
curam.healthcare.account.transfer.sender.category.code

Setting the Account Transfer agency type
You can configure the Account Transfer Agency type to be Medicaid, CHIP, or
both.

Procedure

Update the curam.healthcare.account.transfer.agency.type property with the
Account Transfer agency type. The agency type can be M (Medicaid), C CHIP, or B
(Both). The default value is B.

Setting the federal exchange code
You can set the code or name for the federal exchange that is included with
inbound and outbound Account Transfer requests.

Procedure

Update the curam.healthcare.account.transfer.federal.exchange.code property
with the code or name of the federal exchange that is included in with inbound
and outbound account transfer requests.

Linking the Datastore schema name to the Account Transfer
person reference

You can configure the Datastore schema name that links the Account Transfer
external person reference to the Cúram person reference. The Datastore schema
name is also used for the mapped reference of the person after data mapping has
been performed.

Procedure

Update the curam.healthcare.account.transfer.person.link.schema property
with the Datastore schema name.

Setting the data store schema name for the FFE schema
You can set the schema name for the data store schema representation of the FFE
schema.

Procedure

Set the schema name for the data store schema representation of the FFE schema in
the curam.healthcare.fedexchange.version.schema property.

Chapter 11. Configuring Account Transfer with the Federally Facilitated Exchange 87

Configuring Account Transfer date/time formats
You can configure the date/time formats for inbound and outbound Account
Transfers to ensure consistency between inbound and outbound payloads and their
destinations.

Procedure
1. Set the date/time formats for inbound Account Transfers by configuring the

following application properties.

Application property Description

curam.healthcare.account
.transfer.mapping.curam.date.format

Date format that is used to create the date in
the Datastore based on the FFM date for
inbound Account Transfers.

curam.healthcare.account
.transfer.mapping.curam.datetime.format

Date time format that is used to create the
Cúram date time that is based on the FFM
date time for inbound Account Transfers.

2. Set the date/time formats for outbound Account Transfers by configuring the
following application properties.

Application property Description

curam.healthcare.account
.transfer.mapping.ffm.date.format

Date format that is used to create the FFM
date that is based on the Cúram date for
outbound Account Transfers.

curam.healthcare.account
.transfer.mapping.ffm.datetime.format

Date time format that is used to create the
FFM date time that is based on the Cúram
date time for outbound Account Transfers.

Extending Federally Facilitated Exchange data mappings
You can modify the default Federally Facilitated Exchange data mappings to add
attributes or entities to the data that is sent or received.

Federally Facilitated Exchange (FFE) mappings are called when data is received
from the FFE (inbound) or sent to the FFE (outbound).

When you receive data from the FFE, you must map data from the FFE data
schema to the Cúram data store schema so that Cúram can process that data.

When you send data to the FFE, you must map data from the Cúram data store
schema to the FFE data schema so that the FFE can process that data.

Adding or updating the attributes for a data store entity
Modify the properties of the appropriate Persistence Infrastructure event to add or
update an attribute.

About this task

After an entity is mapped by the FederalExchange component, a Persistence
Infrastructure event is sent to allow custom listeners of the event to add or update
the attributes on the entity.

88 Health Care Reform Developer Guide

As with all data-store processing, the attributes that are added to an entity must
conform to the data store schema that is configured for that instance of data store
data. For information about the event signature and more information on usage,
see the Javadoc.

Procedure

To add or update an attribute, configure the appropriate event for the custom
listeners:
v Inbound

curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.customInboundMap

v Outbound
curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.customOutboundMap

Example listener:
/**

* Raised when in-bound mapping (from FFM to Curam) has been completed
* on a given
* data store entity.
*
* @param mappedEntity
* The data store entity that contains mapped data.
* Note that if the entity is a child it will not have
* been added to its parent at this point and will therefore
* not have a unique identifier. The result of this is that
* no children can be added to this entity during the
* processing
* of this method.
* @param originalElement
* The original data that can act as the source for the
* mapped data.
*
* @throws AppException
* Generic Exception Signature.
* @throws InformationalException
* Generic Exception Signature.
*/

public void customInboundMap(Entity mappedEntity,
Element originalElement)

throws AppException, InformationalException{}

Adding an entity as a child of a mapped data store entity
When an entity is mapped and you add child entities to the entity, an event is sent
that allows custom listeners to add extra child entities to the entity.

About this task

Any child entity types that are added must exist in the data store schema for the
data store data that is being processed.

Procedure

To add a child entity, configure the appropriate event for the custom listeners:
v Inbound

curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.

v Outbound
curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.
customOutboundMapChildren

Chapter 11. Configuring Account Transfer with the Federally Facilitated Exchange 89

Example listener:
/**
* Raised when in-bound mapping (from FFM to Curam) has been completed * on a given

* data store entity and when children can be added to that entity.
* Custom processing should check for an existing child before
* creating one.
*
* @param mappedEntity
* The data store parent entity that contains mapped data.
* This entity can be used to create valid child entities
* underneath.
* @param originalElement
* The original data that can act as the source for the
* mapped child data. It is possible to traverse up or down
* the DOM tree using the originalElement as the starting
* point
*
* @throws AppException
* Generic Exception Signature.
* @throws InformationalException
* Generic Exception Signature.
*/
public void customInboundMapChildren(Entity mappedEntity,
Element originalElement)

throws AppException, InformationalException{}

Adding or replacing a top-level data store entity
An element mapping provider can map implementations for a target entity type.
You can use this element mapping provider to add custom processing to create an
entity that is at a top level.

About this task

Typically, a child of the Application root entity or another entity type that can have
only a single instance.

Procedure

Use the appropriate events to add a custom mapping implementation for the
element mapping provider:
v Inbound

curam.hcr.fedexchange.mapper.impl.ElementMapperEvent.
addElementMapperEvent(Map elementMappers)

The elementMappers contains a map of entity types and mapping
implementations to which you can append extra entity types and custom
mapping implementations that are called as part of the element mapping
provider processing.

v Outbound
curam.hcr.fedexchange.mapper.ffe.impl.FFEElementMapperEvent.
addFFEElementMapperEvent(Map elementMappers)

A custom listener to this event is implemented in much the same way as for the
listener for the inbound provider event. The target entity type that is being
added to the map is an entity type in the Federal Exchange data store schema.
The mapping implementation maps data from the Cúram data store schema to
the Federal Exchange data store schema.

Example listener:

90 Health Care Reform Developer Guide

/**
* Raised when {@linkplain ElementMapperProvider} is initialized to
* allow
* additional EntityMapper to be included.
*
* @param elementMappers
* The map containing a string that represents the
* element being mapped from and the mapping implementation
* that creates and maps to the corresponding element on the
* target schema.
*
* @throws AppException
* Generic Exception Signature.
* @throws InformationalException
* Generic Exception Signature.
*/
public void addElementMapperEvent(Map<String,

Provider<? extends EntityMapper>> elementMappers)
throws AppException, InformationalException;

Adding or updating entities for an outbound response to the
FFE

When the response to be sent to the FFE is built by the FederalExchange
component, an event is sent with all of the response data. Listeners to this event
can then update the response data before they send it to the FFE.

Procedure

To add or update outbound entities, configure the following event:
curam.hcr.fedexchange.mapper.impl.EntityMapper.
MapEvent.customOutboundMapResponse

Example listener:
/**

* Raised when out-bound mapping (from Curam to FFM) has been completed on the
* response being

* sent to the FFM.
* Custom processing should check for an existing response entity before
* creating one.
*
* @param mappedEntity
* The data store parent entity that contains mapped data.
* This entity for an applicant can be used to create valid response
* entities.
* @param originalElement
* The original data that can act as the source for the
* mapped response data.
*
* @throws AppException
* Generic Exception Signature.
* @throws InformationalException
* Generic Exception Signature.
*/
public void customOutboundMapResponse(Entity mappedEntity,

Element originalElement)
throws AppException, InformationalException{}

The Web Service Java API
You can use the Federal Exchange component Java API for data that is received
from or sent to the Account Transfer web service, or to send data to the FFE.

Chapter 11. Configuring Account Transfer with the Federally Facilitated Exchange 91

Inbound Account Transfer payload processing
You can use the Java API as entry and exit points for data that is sent or received
from the Account Transfer web service.

Use the
curam.hcr.fedexchange.ws.impl.AccountTransferWS.initiateAccountTransfer
method to send an account transfer to Cúram from the FFE or to send an account
transfer response to Cúram from the FFE.

An application case of type 'Account Transfer COC Application Case' is created
when a payload is identified as an inbound COC payload. A program of type
'Account Transfer COC Program' is associated with this case type. Evidence types
that are associated with the Insurance Affordability application case are also
associated with the Account Transfer COC application case. The Account Transfer
COC application case is otherwise the same as the Insurance Affordability
application case.

Verifications are not configured for the default Account Transfer COC application
case. The evidence broker is configured to not automatically accept or activate
evidence from the Account Transfer COC application case to the integrated case.
Evidence that is not modified is filtered out and the caseworker is shown only
evidence that is modified. The caseworker can manually accept or reject the
evidence on the integrated case.

If evidence brokering from the Account Transfer COC application case to the
integrated case fails, then the Account Transfer COC application case remains
open. If an Account Transfer COC application case is open and another COC
payload is subsequently processed for any of the case members from the original
case, then a task is raised by the system informing the caseworker of the presence
of one or more active COC applications in progress. If multiple integrated cases are
found for the Account Transfer COC application case, then a task is raised by the
system informing the caseworker of the presence of multiple integrated cases.

Inbound payload identification and routing
Use the global application ID of the payload to identify and track inbound COC
payloads. Depending on the signature date of the payload and whether it is a
duplicate payload, different processing will be enacted.

If the global application ID of the payload is the same as one of the payloads
which has been processed and the original signature date is different from the
processed payload; then the payload is identified as a COC payload and will be
processed as an Account Transfer COC application.

If multiple payloads with the same application ID and different original signature
dates are received, these payloads are treated as multiple change of circumstances
reported by the applicant. Each payload requires separate processing.

If multiple payloads with the same application ID and same original signature date
are received, then the first received payload is processed as the Account Transfer
COC. The other payloads are ignored.

If the global application ID and transfer ID of an incoming payload is found to be
same as that of a payloads that has already been processed, then the payload is not
processed further. This represents a duplicate payload received by the account
transfer system.

92 Health Care Reform Developer Guide

Inbound payload mapping configuration
Use the mapping configuration XML files for the Account Transfer COC
application case to customize the mapping for inbound payloads.

In the mapping configuration XML, the initial application date is mapped to the
evidence start date.

You can configure the Account Transfer COC mappings using the following files:
v EJBServer\components\FederalExchange\data\initial\clob\

ATCOCEvidenceMappingConfiguration_1_6.xml

v ..\clob\ATCOCEvidenceMappingConfiguration_1_7.xml

v ..\clob\ATCOCEvidenceMappingConfiguration_1_8.xml

Process inbound Account Transfer COC payloads in batch
You can use the Java API to create a batch process that takes Change of
Circumstance Account Transfers in a 'Pending' state and passes them for
subsequent processing.

Use the
curam.hcr.fedexchange.ws.impl.AccountTransferWS.initiateAccountTransfer
method to implement a batch process for Account Transfer COC payloads. Use the
Account Transfer payload as the argument for the batch process. All inbound
payloads on the FederalExchangeApplication entity with a status of
IBD_UPDATE_PENDING should be processed in the batch.

For more information about batch processes, see the IBM Cúram Batch Processes
Guide.
Related concepts:
Developing batch processes
Use this information to learn how to specify, write, manage, configure, and run
batch processes. The batch processing framework allows an external task scheduler
to execute process class operations without user intervention. Users can request
that certain batch processes be ran on their behalf. When started by a task
scheduler, the batch launcher processes these requests and start the relevant batch
processes with the parameters specified by the user.
Related tasks:
“Enabling batch processing of account transfer applications” on page 85
If you want to process Account Transfer applications by batch processing, you can
modify a property to stop the account transfer application data from being sent to
Cúram for inbound applications and to the FFE for outbound applications.

Outbound processing
To send data to the FFE, the API includes events that provide the data to be sent.
curam.hcr.fedexchange.ws.impl.AccountTransferWS.
OutBoundDataEvent.sendOutBoundTransferDataEvent

This property sends an account transfer application from Cúram. The listener that
receives this event can alter the data to meet specific custom needs (if not already
catered for by the custom mapping processing) and then send that data to the FFE
by a web service. Any mapping updates that must be made by custom processing
must use the events that are sent during data mapping.
curam.hcr.fedexchange.ws.impl.AccountTransferResponseWS.
OutBoundResponseEvent.sendOutBoundResponseEvent

Chapter 11. Configuring Account Transfer with the Federally Facilitated Exchange 93

https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/BatchProcessing/ctr_CuramBatchProcessingGuide.html

This property sends a response of an account transfer application from Cúram. The
listener that receives this event can alter the data to meet their specific needs and
then send the data to the FFE through a web service. Any mapping updates that
must be made by custom processing must use the events that are sent during
outbound response processing.

HCRFedExchangeAppStatus code table descriptions
A list of the possible status states of the FederalExchangeApplication that uses the
HCRFedExchangeAppStatus code table. For clarity, the status states are divided by
the direction of the request. The status states are listed in the same sequence in
which the transitions happen.

Table 33. Account Transfer from FFM to State Medicaid Agency

Code Java Identifier Full Description

HCRIFEIP IBD_IN_PROGRESS The initial status on creation of a Federal Exchange Application. On
creation, the record contains the root data store entity ID of the external
data store that is used to store the Account Transfer payload from the
Federally-Facilitated Marketplace (FFM).

HCRIFEUD IBD_UPDATE_PENDING This state is the other initial state that is possible for an Account Transfer
received by the State. The Federal Exchange Application is created in this
state if there is an existing Account Transfer with the same Global
Application ID. In other words, this transfer is considered to be a change
of circumstance.

HCRIRSAK IBD_ACKNOWLEDGED Set after an inbound request is stored and successfully acknowledged.

HCRIFEER IBD_ERROR Set when any issues are encountered during the mapping of the FFM
payload to the internal data store, or when the FFM payload is stored in
the external data store.

HCRORSIP OBD_RESPONSE_IN_PROGRESS Set when the processing for sending a response to the FFM is initiated.

HCRORSAK OBD_RESPONSE_ACKNOWLEDGED Set after the response sent by the State Medicaid Agency is acknowledged
successfully by the Federally-Facilitated Exchange (FFE).

HCRIFEPD IBD_PENDING If transfers are configured to happen in batch mode. The Account Transfer
payload is stored in the external data store but no further processing
happens as part of the online processing.

Table 34. Account Transfer from State Medicaid agency to FFM

Code Java Identifier Full Description

HCROFEIP OBD_IN_PROGRESS Set on a new instance of FederalExchangeApplication that is created for a
transfer from the State to the FFM.

HCROFEPD OBD_PENDING Set if transfers are configured to happen in batch mode. No further
processing is done for this transfer as part of online processing.

HCROFEAK OBD_ACKNOWLEDGED Set after a transfer from the State is acknowledged successfully by the
FFE.

HCROFEER OBD_ERROR Set if an acknowledgement to an outbound transfer was not received or is
not successful. Also set if there are any issues during mapping from the
HCR data store to the FFM data store. If there were errors during
mapping, Federal Exchange Applications are not transferred.

HCRIRSIP IBD_RESPONSE_IN_PROGRESS Set on receiving the response from the FFM for an Account Transfer from
the State.

HCRIFEAK IBD_RESPONSE_ACKNOWLEDGED Set when the response from the FFM for an Account Transfer from the
State is successfully acknowledged

HCRIRAER IBD_RESPONSE_ACKNOWLEDGE
_ERROR

Set if any issues were encountered when the response to an outbound
account transfer is stored, or if there were issues with the generation of an
acknowledgement.

94 Health Care Reform Developer Guide

Adding a new entity
You can add a new entity to replace an existing entity or to create an entity that is
not mapped and created by default. For each new entity, write an entity mapper
and add the new entity to the Federal Exchange data store schema.

Writing an EntityMapper
You must write an EntityMapper for each new entity. An EntityMapper must
implement the curam.hcr.fedexchange.mapper.impl.EntityMapper interface.

About this task

An implementation of curam.hcr.fedexchange.mapper.impl.ElementMapperUtil is
provided in the map method to facilitate searching for required elements and
attributes in the source XML to be used to populate the entity or entities that are
being created.

Procedure
1. Using the provided example, implement an EntityMapper.
2. After you implement the EntityMapper, register it by using the

ElementMapperEvent inbound or outbound event as appropriate. This depends
whether the Mapper implementation is being called for inbound or outbound
processing.

Example

This example outlines how IncomeItem entities might be mapped from the
FederalExchange external system into Cúram and added to the data store.
/**
* Sample entity mapping implementation that creates a new
* data store entity and appends it to a parent entity.
*/
public class SampleEntityMapperImpl implements EntityMapper {

/** The source element to map from, the source elements of interest can be
* searched for by using this element **/
private Element source;
/** The FederalExchangeApplication persistence infrastructure implementation
* for the FederalExchangeApplication entity **/
private FederalExchangeApplication federalExchangeApplication;

@Override
public void setSource(Element source) {

this.source = source;
}

@Override
public void map(Entity parent, ElementMapperUtil elementMapperUtil) {

Datastore ds = parent.getDatastore();
//get the element from the source i.e. the element from the FederalExchange
//XML
List<Element> incomeItems =

elementMapperUtil.getElements(FFEEntityType.PERSONINCOME.entityType(),
source);

for(Element incomeItemSource : incomeItems){
//create the new entity in the target data store
Entity incomeItem = ds.newEntity(EntityType.INCOMEITEM.entityType());
//set the attributes on the new target entity
incomeItem.setTypedAttribute(IncomeItemFieldMap.STARTDATE.hcrField(),

Chapter 11. Configuring Account Transfer with the Federally Facilitated Exchange 95

FieldMapperUtil.formatDate(
elementMapperUtil.getAttribute(incomeItemSource,
elementMapperUtil.createFindAttributeQuery(

IncomeItemFieldMap.STARTDATE.ffeField()))));
incomeItem.setTypedAttribute(IncomeItemFieldMap.ENDDATE.hcrField(),

FieldMapperUtil.formatDate(
elementMapperUtil.getAttribute(incomeItemSource,

elementMapperUtil.createFindAttributeQuery(
IncomeItemFieldMap.ENDDATE.ffeField()))));

incomeItem.setTypedAttribute(IncomeItemFieldMap.INCOMEAMOUNT.hcrField(),
elementMapperUtil.getAttribute(incomeItemSource,

elementMapperUtil.createFindAttributeQuery(
IncomeItemFieldMap.INCOMEAMOUNT.ffeField())));

//add the new entity as a child of the parent entity
parent.addChildEntity(incomeItem);

}
}

@Override
public void postMap(Entity rootEntity, Entity personEntity) {

//no post map processing required
}

@Override
public void setFederalExchangeApplication(

FederalExchangeApplication federalExchangeApplication) {
this.federalExchangeApplication = federalExchangeApplication;

}
}

Updating the Federal Exchange data store schema
If a new entity is being added by custom processing, then you must update the
data store schema that is used to store the entity for inbound and outbound
mapping.

Before you begin

It is important to note the following when you update the Federal Exchange data
store schema for Account Transfer.
v If element text exists in the payload from the Federal Exchange, then this text is

converted into an attribute. This allows the text to be stored in the data store.
For example:
<IncomeAmount>1200</IncomeAmount>

You define that Federal Exchange payload XML in the data store schema as
follows:
<xsd:element name="IncomeAmount">

<xsd:complexType>
<xsd:attribute name="value" type="d:SVR_STRING"/>

</xsd:complexType>
</xsd:element>

Note the use of the attribute value to store the element text.
v If the element in the Federal Exchange payload contains a name space prefix,

then the data store schema must contain an attribute that defines the name space
prefix value as the default value. For example:
<hix-core:IncomeAmount>1200</hix-core:IncomeAmount>

96 Health Care Reform Developer Guide

You define that Federal Exchange payload XML in the data store schema as
follows:
<xsd:element name="IncomeAmount">

<xsd:complexType>
<xsd:attribute name="value" type="d:SVR_STRING"/>
<xsd:attribute name="nameSpacePrefix" type="d:SVR_STRING"

default="hix-core:"/>
</xsd:complexType>

</xsd:element>

Procedure
1. Identify the relevant data store schema. The name of the data store schema

name that stores the Federal Exchange data for Account Transfer is denoted by
the curam.healthcare.fedexchange.version.schema property.

2. Update the data store schema with the new entity.

Account transfer workflows
View the default Account transfer workflows in the Workflow section of the
Administration Workspace.

The default Account Transfer workflows can be viewed in the Process Definition
Tool. In the Administration Workspace, navigate to the workflow from the left
navigation menu: Workflow > Released Processes > Account Transfer Inbound
COC or Account Transfer Straight Through Authorise.

The Account Transfer Inbound COC workflow raises tasks for the related
integrated case if there is evidence that requires attention in the inbound change of
circumstance. The Account Transfer Inbound COC workflow can be customized to
automate the evidence transfer process.

The Account Transfer Straight Through Authorise workflow is enacted in the
following scenarios:
v When no evidence on the inbound change of circumstance requires attention
v When there are only person participants on the change of circumstance

application and no open duplicate account transfer change of circumstance
applications exist for those members

Chapter 11. Configuring Account Transfer with the Federally Facilitated Exchange 97

98 Health Care Reform Developer Guide

Chapter 12. Monitoring Health Care Reform

The extensive and fine-grained customization options that are available in Cúram
enable you to fully reflect the current Federal and State legislation. However, this
fine-grained customization means that you must monitor your installation for the
arrival of the unusual or non-routine applications that can arise when legislation is
tested in practice. Use the following monitoring options in Cúram to identify
incoming exceptions to your custom implementation that might require action on
your part.

Monitoring HCR applications
Use the following HCR views to monitor the progress of applications though the
system, and to help you to troubleshoot issues.

HCR application intake process overview
Use this information to understand how HCR applications are processed, from the
submission of an application to the creation of product delivery cases.

For documentation purposes, the process diagram is split into two parts.

A citizen or caseworker submits an application
A citizen or caseworker completes the dynamic application questionnaire
and submits the application.

IEG

Workflow
corrects

evidence issues

Caseworker
StraightThroughAuthorise

Manual Processing

Citizen

Workflow
ProcessIntakeApplication

Straight-through

Data from
External Systems

Submit

HCR Process Instance

corrects
technical issues

Administrator

Errors view

On Error

Processing

Caseworker

Electronic verification

Figure 3. Application intake process diagram: Part 1

© Copyright IBM Corp. 2011, 2014 99

Qualified citizen data is verified with external systems
Data that is configured to be verified with external systems is compared
with the specified external data sources and the data store is updated
where required.

The citizen submits the application and the intake process starts
When the citizen clicks submit, the ProcessIntakeApplication workflow
starts. An application case is created and data from the data store is
applied to the application case as evidence. The ProcessIntakeApplication
workflow has a resilient mode of operation to gracefully handle certain
types of error. You can enable this resilient application handling by setting
the curam.intake.use.resilience property to true. When resilient mode is
enabled, ProcessIntakeApplication handles invalid evidence by creating as
much evidence as possible and then assigning the application case to a
caseworker for manual processing.

The straight-through processing workflow
If none of the data on the case requires manual processing, the case
is routed to the StraightThroughtProcessing workflow.
Straight-through applications are authorized automatically. On
authorization, the deferred transaction EVIDENCE_SHARE_BULK
is started and evidence is shared to the integrated case.

Manual processing
If any of the data on the case requires manual processing, the case
is routed to the deferred transaction process
APPLICATIONAUTHORIZATION for manual processing. A
caseworker can correct the evidence issues and authorize the case.
On authorization, the deferred transaction
EVIDENCE_SHARE_BULK is started and evidence is shared to the
integrated case.

HCR Process Instance Errors view
Some errors can occur because of technical issues in source code or
rules. These errors cannot be corrected by a caseworker and are
sent to the Process Instance Error Queue. You can see these errors
in the HCR Intake Process Errors view.

100 Health Care Reform Developer Guide

Where possible, evidence from the application case is brokered directly to the
integrated case

On authorization, the EVIDENCE_SHARE_BULK deferred transaction
process is started and evidence is shared to the integrated case. Program
group logic processing is triggered automatically.

If brokering fails partially, then evidence from the application case is added as
in-edit or incoming evidence to the integrated case, manual intervention is then
needed

The evidence is directed to the
EVIDENCE_SHARE_BULK_AUTO_ACCEPT_ONLY deferred transaction
process. A caseworker accepts the in-edit or incoming evidence, corrects
any issues, and applies the changes. Program group logic processing is
triggered when the changes are applied.

If brokering fails fully, manual intervention is then needed
If adding the evidence as ‘Incoming’ evidence fails, then the
EVIDENCE_BROKER_ROLLBACK deferred transaction process initiates a
number of fallback actions:
v The application case is set to Authorization Failed status to indicate that

authorization process failed.

Program Group Rules run and
create Product Delivery cases

APPLICATIONAUTHORISATION

Deferred Transaction Process

From Manual Processing

evidence issues

Caseworker

Manual Processing

corrects
technical issues

Administrator

On Failure

HCR Process Instance
Errors view

corrects

Deferred Transaction Process

EVIDENCE_BROKER_ROLLBACK

Deferred Transaction Process

EVIDENCE_SHARE_BULK_AUTO

_ACCEPT_ONLY
Deferred Transaction Process

EVIDENCE_SHARE_BULK

From Straight Through Processing

Figure 4. Application intake process diagram: Part 2

Chapter 12. Monitoring Health Care Reform 101

v Any new integrated cases or product delivery cases that were created
are closed.

v The evidence on the application case reverts to in-edit status.

When the cause of the authorization failure is addressed, the caseworker
submits the application case for authorization.

The program group logic runs on the integrated case and creates the required
product delivery cases

Program group logic is triggered when evidence changes are applied to the
integrated case and creates the required product delivery cases.

Program group logic is triggered automatically by the
EVIDENCE_SHARE_BULK deferred transaction process, and each time a
caseworker applies evidence changes on the integrated case.

Note: The Health Care Reform program group logic to determine which potential
multiple product delivery cases are to be created depends on predefined rule sets
and therefore bypasses the Common Intake product delivery creation process. This
logic does not configure the product delivery type for the program and therefore
does not use the productDeliveryCaseID field on the programauthorisationdata
table. For the Common Intake process, if a product delivery type is configured
against a program, this product delivery type is created as part of a successful
program authorization and recorded in the ProgramAuthorisationData entity.
Related tasks:
“Configuring the resilient option for the process intake application workflow” on
page 1
After you install version 6.0.5.5 or later, ensure that you set the resilient option for
the process intake application workflow, which enables a more granular workflow
with better error handling.

Monitoring HCR intake reports
Use HCR Intake Reports to monitor all HCR applications that are being processed
by the system, from initiation through to an eligibility decision. The reports
provide a count of applications in each state and highlights applications that
require intervention to progress.

Before you begin

Note: Refreshing these reports generates significant load on the system and can
prevent intake applications from being processed. Before you refresh the reports,
ensure that no ongoing intake applications or other system activities are affected.

About this task

If technical issues require investigation, a message is displayed under Intervention
Required . To investigate these issues, open the HCR Intake Process Errors view to
get more detailed information.

Procedure
1. Log in to the Cúram Administration application as a user with administrator

permissions.
2. Select Administration Workspace > Process Monitoring > HCR Intake

Reports. A confirmation page opens.

102 Health Care Reform Developer Guide

3. Confirm that you want to run the reports by clicking Yes, or close the tab to
exit without running the reports.

HCR Intake Reports
HCR Intake Reports provide a business view of all HCR applications that are being
processed by the system, from initiation through to an eligibility decision. The
reports provide a count of applications in each state and highlights applications
that require intervention to progress.

Note: Refreshing these reports generates significant load on the system and can
prevent intake applications from being processed. Before you refresh the reports,
ensure that no ongoing intake applications or other system activities are affected.

You can choose to view the current status of applications that have been submitted
since a specified date. By default, this date is set to one week in the past from the
present date.

HCR Intake Reports display the status of applications and programs as follows:

Incoming Applications
The total number of applications that are started is shown, divided into the
number of applications that are started and pending submission, and the
number of applications that were submitted. The applications are
categorized by the source of the application:

Account Transfer
Applications that are submitted from external systems through
account transfer.

Caseworker
Applications that are submitted from the Cúram application by a
caseworker.

Online
Applications that are submitted from an online citizen account by a
citizen.

Applications Received
The total number of applications that are received by the agency is shown
and this number generally matches the total number of applications that
are submitted as represented in Incoming Applications.

Note: Occasionally, these two numbers might not match due to the short
time interval between the submission and receipt of an application.

The applications are categorized by their status:

In Progress
Applications that are currently in progress.

Closed
Applications that progressed to the completion of the intake
process and for which an eligibility decision is available.

Withdrawn
Applications that a citizen withdrew after they submitted them.

Intervention Required
The number of in-progress applications that could not be processed
automatically and that require intervention to progress them further. The
applications are categorized by the type of intervention that is needed.

Chapter 12. Monitoring Health Care Reform 103

Outstanding Registrations
Applications where person registration is incomplete, that is, which
are associated with one or more prospect persons. All applications
with outstanding registrations are assigned to this category,
irrespective of any other interventions that they might require.

Outstanding Verifications
Applications that have evidence that requires verification,
excluding applications with outstanding registrations.

Failed Validations
Applications that are in the Awaiting Resolution state, due to
invalid evidence.

Failed to Determine Eligibility
Integrated cases where an eligibility decision could not be made,
typically because of incoming or in-edit evidence.

Failed to Broker Evidence
Application cases in the Authorization Failed state, where evidence
could not be brokered from the application case onto other cases.

If technical errors require investigation, a message is displayed. To
investigate technical errors, open the HCR Intake Process Errors view.

Eligible Programs
The number of currently active HCR programs, which are categorized by
type.

Table 35. Default Programs and abbreviations

Abbreviation Program

CHIP Children's Health Insurance Program

EMA Emergency Medicaid

ESI Employer Sponsored Insurance

Exem Exemption

IA Insurance Assistance

MA Streamlined Medicaid

SBHP State Basic Health Plan

UQHP Unassisted Qualified Health Plan

Note:

Reports depend on the curam.intake.use.resilience application property that
was introduced in IBM Cúram 6.0.5.5. Reports are not intended for use with
applications that pre-date this release.

The application process is considered complete once an eligibility decision is made
on the application. The report tracks applications up to that point. It does not track
subsequent inconsistency period processing that may arise for some applications.

Customization of these reports is not recommended. These reports rely on
underlying functions that have the potential to change in future releases.

104 Health Care Reform Developer Guide

Monitoring HCR intake process instance errors
Use the HCR Intake Process Errors view to monitor technical problems that occur
in the intake process. This view is an intake-oriented summary view of the process
instance error queue that identifies the background workflow and deferred
processes that are used in intake, and quantifies any instances of those processes
that require technical intervention.

About this task

Important: While these processes are the only ones used in Intake, some processes
identified on the dashboard are shared processes. That is, they might also be used
by other business processes outside Intake.

The workflow chart tracks all outstanding errors, so an error is presented here if it
occurred in the selected time period and is not yet resolved. In contrast, deferred
processing has no distinction between resolved and outstanding errors, so the
deferred processing chart presents all errors that occurred over the selected time
period.

From each process instance error count that is displayed on the dashboard, you
can link to a list of process instance errors for that particular process. You can then
do a root cause analysis and take remedial action.

Procedure
1. Log in to the Cúram Administration application as a user with administrator

permissions.
2. Select Administration Workspace > Process Monitoring > HCR Process

Instance Errors to open the view.

Monitoring Cúram processes
Use the following Cúram views to monitor and troubleshoot problems with
process instances and to see process instance errors.

About this task

Use these views to see workflow processes and see specific errors in workflow and
deferred processes. Plan to monitor the information in the following locations
regularly for potential errors or exceptions. You can troubleshoot problems by steps
such as suspending process instances or overriding event waits, or by retrying or
aborting failed workflow process instances.

Monitoring workflow process instances
Use the Process Instances view to see the status of each workflow process instance.
By searching and filtering, you can see the current process instances and their
status. Generally, the complete or in-progress processes are of most interest.

About this task

For troubleshooting, you have the following options:
v You can suspend a process instance that is in progress. You must resume the

process instance before any further activities can run.
v You can stop a process instance that is in progress. Once aborted, a process

instance cannot be resumed.

Chapter 12. Monitoring Health Care Reform 105

v All activities that wait for events to be raised have a failure mode where the
event they are waiting on is raised before the activity runs. To progress such
process instances, you can override the event wait.

Procedure
1. Log in to the Cúram Administration application as a user with administrator

permissions.
2. Select Administration Workspace > Process Monitoring > Process Instances

3. Use the search and filtering options to see the current workflow processes on
the system.

Monitoring Process Instance Errors
Use the Process Instance Errors view to find workflow process or deferred process
errors.

About this task

Plan to monitor the Process Instance Errors view regularly for potential operational
errors or exceptions. You can abort or retry failed workflow process instances.

Procedure
1. Log in to the Cúram Administration application as a user with administrator

permissions.
2. Select Administration Workspace > Process Monitoring > Process Instance

Errors

3. Use the search and filtering options to find process instance errors.
4. Click the error details for more information.

Process Instance Errors
The Workflow Engine records information about errors that occur during the
lifetime of a workflow process instance. You can use this information for
troubleshooting problems with the process instance.

This troubleshooting includes retrying or aborting failed workflow process
instances.

Retrying a failed process instance instructs the Workflow Engine to re-enact the
workflow process instance from where it failed.

Aborting stops the process instance and its activities and closes any tasks that are
associated with manual activities in the process instance. Depending on where the
process was aborted, some manual steps might be required before the process is
fully stopped.

106 Health Care Reform Developer Guide

Chapter 13. Health Care Reform Glossary

This glossary includes terms and definitions for IBM Cúram Solution for Health
Care Reform.

The following cross-references are used in this glossary:
v See refers you from a term to a preferred synonym, or from an acronym or

abbreviation to the defined full form.
v See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/
globalization/terminology (opens in new window).

A
annual eligibility redetermination

The process of using evidence that is returned from periodic data matching
to redetermine eligibility during annual renewals.

annual renewals
The annual process of renewing insurance affordability entitlements for
each qualifying citizen.

annual renewals initialization
The process of ensuring that all federally mandated cases are queued for
projected eligibility and notification processing.

annual renewal notice
A document that is sent to the citizen to notify them of the initiation of the
renewal process, their requirement to update their details, and to verify
that the information provided by the state in the notice is correct including
any updated details sources from external systems.

appeal request
A request to review a decision that is made on a program application,
product delivery case, product delivery determination, or issue case.

application case
An application case type is configured with the specific evidence types and
verifications required only by a specific program application. Application
cases manage each of the options for which a citizen or employee can
apply.

C
change of circumstances

The process of a citizen updating their own details through their online
citizen account or by contacting a caseworker and the submission of the
updated information to their insurance affordability case.

contestable evidence
External evidence that citizens can contest on receipt of a projected
eligibility notice. You can customize which types of evidence are
contestable.

© Copyright IBM Corporation 2013 © IBM 2011, 2014 107

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

E
electronic validation

The online validation of information that is provided by a citizen during
their online application from their citizen account by comparing it with
information from a trusted external source. See also, trusted data source
services.

evidence handler
Projected eligibility evidence handlers convert external data into rule
objects that are used when the rules run.

external evidence
External evidence is evidence that is not provided by the citizen but is
acquired from external systems, such as the Social Security Administration,
or the Internal Revenue Service.

external evidence converter
External evidence converters create or modify the existing evidence on a
case according to the external evidence on the case.

I
income support

Social programs that provide food, cash, and medical assistance benefits to
citizens in need.

intake The collection of data about one or more individuals and their
circumstances. Data is collected once and can be reused across multiple
agencies to access benefits and services

Intelligent evidence gathering (IEG)
An automated evidence gathering process that supports self-service
operations by providing scripted interview tools.

N
notice generation

The process of generating citizen notices after running periodic data
matching or annual renewals.

P
periodic data matching

The process of periodically processing current citizen information that is
received from external systems and applying any changes as incoming
evidence on an integrated case. For a specified period, any updates are
made available for confirmation by the citizen or a caseworker and on
expiry of that period, the updates are applied permanently to the citizen's
integrated case.

Projected eligibility
The process of running the HCR program group rules in a mode that uses
the active data on the case, supplemented by data that was obtained from
external sources, to determine and forewarn a citizen of the affect that the
external data would have if applied to their case.

108 Health Care Reform Developer Guide

plan management vendor
The provider of a plan management system that allows a citizen to select a
plan directly from their citizen account by interacting with Cúram through
web services calls.

plan management adapter
A vendor-agnostic adapter that supports the integration of Cúram with a
plan management system by using web service calls.

R
reasonable compatibility

Information does not always have to be an exact match. If the match is
close enough that the result is the same, then no supporting documentation
is required.

run ID
For periodic data matching or annual renewal runs, a mandatory unique
run ID links each of the different process steps in an individual run.

T
trusted data source (TDS)

An external system that contains current information about citizens that is
sufficiently trusted for you to use to verify citizen information. For
example, systems such as the Social Security Administration, or the
Internal Revenue Service.

trusted data source services
Custom implementations that query data from external systems and return
data changes to be passed to the Cúram periodic data matching APIs. See
also, electronic validation.

Chapter 13. Health Care Reform Glossary 109

110 Health Care Reform Developer Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2011, 2014 111

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

112 Health Care Reform Developer Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 113

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

114 Health Care Reform Developer Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

����

Printed in the Republic of Ireland

	Contents
	About this information
	Overview of Health Care Reform support
	Intended audience

	Chapter 1. Configuring Health Care Reform
	Configuring appeal requests
	Appeal case types and appeals process configuration

	Configuring the resilient option for the process intake application workflow

	Chapter 2. Customizing the Health Care Reform portal
	IEG scripts customization
	Eligibility Display Rules customization
	Customizing the conditional display of IRS income information
	Customizing the conditional display of specific questions for Medicaid, CHIP, or IA
	Customizing the determination of projected annual income for a citizen

	Chapter 3. Integration with external systems
	Customizing the external system implementations
	Customizing request or response fields for external system calls

	External system processors
	Configuring the Federal Hub implementation
	Configuring a State systems implementation
	Customizing electronic verifications
	Default verification processors
	Adding custom verification processing
	Overriding the default verification processing

	Chapter 4. Customizing case management
	Dynamic evidence customization
	Eligibility Rules customization
	Conditional verifications customization

	Chapter 5. Customizing plan management
	Integration with Plan Management
	The plan management adapter interface
	Configuring the plan management adapter

	Plan management web services provided by Cúram
	Configuration parameters for plan management
	Callback URLs for plan management
	Batch processing for plan management
	Employer enrollment notification batch process

	Plan management web service API reference
	Health Care Reform web services
	retrieveDemographicsAndEligibilityDetails
	getEntitlementDetails
	getHouseholdSummaryDetails
	policyIDAvailable
	updateEmployerEnrollment

	Health Care Reform schema elements

	Chapter 6. Customizing change of circumstances
	Change of circumstances process flow
	Change of Circumstances workflow

	Customizing the default change of circumstances implementation
	Customizing the change of circumstances IEG script
	Adding custom entities through the change of circumstances script
	Modifying entities through the change of circumstances script
	Removing entities through the change of circumstances script

	Customizing the Change of Circumstances workflow

	Configuring the change of circumstance evidence submission workflow

	Chapter 7. Customizing appeal requests
	Setting the appeals requests IEG script and data store schema
	Customizing the appeal request summary PDF document

	Chapter 8. Customizing the handling of closed cases
	Configuring the permanent closure of closed cases
	Configuring the reassessment strategy for closed cases
	Customizing the reassessment implementation for closed cases

	Chapter 9. Implementing periodic data matching and annual renewals
	Storing all existing program group determinations
	BulkRunProgramGroupEligibility batch process

	Developer overview of periodic data matching and annual renewals
	Polling external systems
	Adding evidence from external systems
	Creating a run configuration for annual renewals or periodic data matching
	Implementing case selection
	Inserting evidence from external systems with the PDMEvidenceMaintenance API

	Advising caseworkers about income evidence mismatches
	Implementing citizen notices
	Implementing citizen notice generation
	Implementing the calculation of APTC for inclusion in notices
	Configuring XML server load balancing for notices

	Configuring and running the periodic data matching batch processes
	Configuring automatic completion intervals for periodic data matching
	Running the periodic data matching batch processes
	PDMProjectedEligibility batch process
	PDMProcessAutoCompletions batch process

	Configuring and running the annual renewals batch processes
	Configuring automatic completion intervals for annual renewals
	Running the annual renewals for QHP batch processes
	QHPProjectedEligibility batch process
	QHPProcessAutoCompletions batch process

	Running the annual renewals for Medicaid batch process
	MedicaidProcessAnnualRenewals batch process

	Running the annual renewals for CHIP batch process
	CHIPProcessAnnualRenewals batch process

	Reviewing any Medicaid or CHIP cases that were not automatically renewed

	Checking for batch processing errors and reprocessing failed cases
	Extracting rule objects snapshots to SessionDoc style HTML
	Customizing periodic data matching and annual renewals
	Customizing the storage of program group determinations
	Customizing projected eligibility for periodic data matching and annual renewals
	Customizing projected eligibility evidence handlers
	Projected eligibility
	Projected eligibility evidence handlers
	External evidence
	Implementing a new evidence handler

	Customizing an external evidence handler
	Disabling an evidence handler
	Enabling projected eligibility logging

	Customizing the citizen account with new evidence types

	Customizing the citizen account for periodic data matching and annual renewals
	Configuring contestable evidence types
	Adding contestable evidence types to the citizen account

	Modifying periodic data matching home page messages
	Modifying periodic data matching My Updates page messages
	Modifying annual renewals home page messages
	Modifying the annual renewals My Updates page

	Customizing evidence converters
	External evidence converters
	Implementing a new external evidence converter
	Customizing an external evidence converter
	Disabling an external evidence converter

	Chapter 10. Customizing inconsistency period processing
	Creating a custom event handler for inconsistency period processing
	InconsistencyPeriod workflow
	Inconsistency period workflow APIs
	Inconsistency Period Evidence Activation batch process
	Inconsistency Period Evidence Activation Stream batch process

	Chapter 11. Configuring Account Transfer with the Federally Facilitated Exchange
	The FederalExchange component
	Configuring Federal Exchange
	Activating Account Transfer
	Enabling batch processing of account transfer applications
	Configuring the sending of Account Transfers to Cúram
	Selecting the source data set for outbound mapping
	Setting the identity of the sender US state
	Setting the Account Transfer agency type
	Setting the federal exchange code
	Linking the Datastore schema name to the Account Transfer person reference
	Setting the data store schema name for the FFE schema
	Configuring Account Transfer date/time formats

	Extending Federally Facilitated Exchange data mappings
	Adding or updating the attributes for a data store entity
	Adding an entity as a child of a mapped data store entity
	Adding or replacing a top-level data store entity
	Adding or updating entities for an outbound response to the FFE

	The Web Service Java API
	Inbound Account Transfer payload processing
	Inbound payload identification and routing
	Inbound payload mapping configuration
	Process inbound Account Transfer COC payloads in batch

	Outbound processing
	HCRFedExchangeAppStatus code table descriptions

	Adding a new entity
	Writing an EntityMapper
	Updating the Federal Exchange data store schema

	Account transfer workflows

	Chapter 12. Monitoring Health Care Reform
	Monitoring HCR applications
	HCR application intake process overview
	Monitoring HCR intake reports
	HCR Intake Reports

	Monitoring HCR intake process instance errors

	Monitoring Cúram processes
	Monitoring workflow process instances
	Monitoring Process Instance Errors
	Process Instance Errors

	Chapter 13. Health Care Reform Glossary
	A
	C
	E
	I
	N
	P
	R
	T

	Notices
	Privacy Policy considerations
	Trademarks

