
IBM Cúram Social Program Management
Version 6.0.5

Cúram Universal Access Customization
Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 91

Revised: August 2014

This edition applies to IBM Cúram Social Program Management v6.0.5.5 interim fix 2 and to all subsequent releases
unless otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Customizing Universal Access 1
The Black Box Engineering Philosophy 1

It Saves Time and Money 1
It Makes For Easier Upgrades 1
It Is Still Configurable and Customizable 1

Configuring the application banner, menus &
navigation 2

Application Configuration 2
Navigation Configuration 4

Securing Universal Access 5
Background information for UA Security 5
The Universal Access Security Model 5

The Public Citizen Account 5
Anonymous Accounts 6
Registered Accounts 6
Linked Accounts 6
Authorization Roles and Groups. 7

Deployment Considerations 7
Managing User names and Passwords 8

Account Management 8
Data Caching 9

Browser Caching 9
External Security Authentication 9

Analysis 9
Example UA customization requirements . . 10
Configuration Tasks 10
Configure the Application Server to use LDAP
for Authentication 10
Deploy Cúram Universal Access in Identity
Only mode for Registered Users 10
Configure Cúram Universal Access so that
Create Account Screens are not Displayed . . 12
Configure Cúram Universal Access so that
users are directed to register with an External
System 12
Development Tasks 13

Customizing Universal Access Triage 14
Available triage events. 14

Standard persistence events 15
Triage Referral Event 15

Customizing Universal Access Screening 15
How to Track the Volume, Quality, and Results of
Screenings 15
How to Populate a Custom Screening Results
Page. 15

Customizing Application Intake Processing 16
How to Pre-populate the Intake Script 16
How to Add a Validation for Program Selection 16

Customizing the Handling of Submitted
Applications 16

How to Customize the Process Intake
Application Workflow 17
How to Customize the Generic PDF for
Processed Applications 18
How to Use Events to Extend Intake Application
Processing 19
How to Customize the Concern Role Mapping
Process 19

Enable the ConcernRoleMappingStrategy API 20
Use the ConcernRoleMappingStrategy API . . 20

How to Send Applications to Remote Systems for
Processing 20

Customizing the Citizen Account 20
Citizen Account Technical Overview 21
Citizen Account Security Considerations. . . . 21

Ensuring the currently logged in user is of the
correct type 21
Ensuring the currently logged in user has
access to the specific records they have
requested. 22

How to Add a New Page to Citizen Account . . 22
Create a custom, external client component . . 22
Create a UIM page in the new component . . 23
Add a navigation entry for the new page . . 23
Create a Facade 23

How to Customize Universal Access Style Sheets
in Citizen Account 24
Customizing Locale. 24
Citizen Account home page 24

Customizing display text 24
Outreach Campaigns 25
My Messages 30

Customizing existing pages 37
My Payments Page Customization. 37
My Applications Page Customization 37
Contact Information Page Customization . . . 38
Customizing Appeal Requests 38

Displaying appeals request status from an
external appeals system 38

Customizing Life Events 39
Introduction to Life Events 39
How to Build a Life Event 40

Analysis 40
Customizing Advanced Life Events 41

Advanced Life Events and when to use them . . 41
How to Build a Life Event 41

Analysis 41
Building The Components of a Life Event . . 43

Life Events API Guide 62
Event APIs for Life Events 62

Universal Access Web Services 63
Inbound and outbound web services 63
Web Services Security Considerations. 63
Process Application Service 64

Receive Application 64
Receive Withdrawal Request. 65

© Copyright IBM Corp. 2012, 2014 iii

Update Application Service 66
Intake Program Application Update 66
Withdrawal Request Update 66

Life Event Service 67
Create Account Service 67
Link Service 68
Unlink Service 69
Citizen Message 69
Payment Service 70
Contact Service 71
Case Service 72
Sample SOAP Requests 72

Intake Program Application Update 72
Withdrawal Request Update 73
Create Account 74
Account Link 74
Account UnLink 75
Citizen Message 75
Payment (Simple) 76
Payment (Batched) 76
Contact 77
Cases 78

Motivations 78
Motivations Overview 78
Rule Sets 79
Data Rule Sets 79
Results Datastore Population 79
Mapping Rule Objects 79
Sample Mapping From Rules Output To
Datastore 80
Sample Rules: Processing Rule Objects 83

Sample Rules: Complex Attributes (Single Rule
Object) 83
Sample Rules: Complex Attributes (Single Rule
Object, Annotated) 84
Sample Rules: Complex Attributes (List Of Rule
Objects). 85
Sample Rules: Simple Attributes 86

Fully Customizable Universal Access Artifacts . . . 86
Customizable Universal Access Page Content . . 86

Text and Online Help 86
Images 87
Translation 87
Universal Access Page Player Look and Feel 88
General Universal Access Settings 88

Customizable Universal Access Public APIs. . . 89
Extendable Code Tables 89

Universal Access Artifacts with Limited Scope for
Customization 89

Model 89
Universal Access Page Player XML 89
JSP and JSPX pages. 89
Javascript files 89
Renderer configuration 89
Client-side Java artifacts 90
Code Tables 90

Notices 91
Privacy Policy considerations 93
Trademarks 94

iv IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Figures

1. Intake Application Workflow. 17
2. Sample custom navigation entry for custom

citizen account page 23
3. Holding Evidence XML Example 47
4. Data Store XML Sample 47
5. XSLT Transform for Vehicle Resource

Information 48
6. Evidence XML with Updates 53

7. Datastore Schema Sample 81
8. Processing Rule Objects Sample 83
9. Complex Attributes 83

10. Complex Attributes (Single Rule Object,
Annotated). 84

11. Complex Attributes (List Of Rule Objects) 85
12. Simple Attributes 86

© Copyright IBM Corp. 2012, 2014 v

vi IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Tables

1. Relevant attributes on the application element 2
2. Relevant attributes on the landing-page element 2
3. Relevant attributes on the banner-menu element 3
4. Relevant attributes on the menu-item type 3
5. Relevant attributes on the param type 3
6. Relevant attributes on the navigation type 4
7. Relevant attributes on the application element 4
8. Relevant attributes on the navigation-page

element 4
9. Relevant attributes on the highlight element 5

10. Account configurations 8

11. Account events. 8
12. Message Properties Files 30
13. Payment messages and related properties 35
14. Payment message expiry property 35
15. Meeting messages 36
16. Meeting message display date property 36
17. Activity types for which to generate meeting

messages 36
18. Application acknowledgment message expiry

property 37
19. Contact Information Customization properties 38

© Copyright IBM Corp. 2012, 2014 vii

viii IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Customizing Universal Access

Use this information to customize the IBM Cúram Universal Access enterprise
module. Universal Access consists of the CitizenWorkspace,
CitizenWorkspaceAdmin, and WorkspaceServices components. The major
customizable features are triage, screening, intake, security, the citizen account, and
life events.

The Black Box Engineering Philosophy
Universal Access is a black box product. This means that it has been designed from
the outset to be extremely flexible with the ability to change many aspects of its
functionality at runtime simply through configuration. Many other aspects can be
modified by using the UA APIs. If, after reading this information, you are still
unable to do what you require, then you can request a feature in a Service Pack or
other future release. By choosing this route the feature you are getting will be
incorporated into the product with all the testing and quality assurance that this
implies.

It Saves Time and Money
A black box engineered product can help save time and money. IBM is committed
to responding to requests for enhancements in a satisfactory time frame. This
ensures that you won't have to put time and expense into developing
enhancements including all the support and expense that such work entails. IBM is
also committed to developing the product where we see sensible enhancements
and new configurations where they don't currently exist.

It Makes For Easier Upgrades
UA is a strategic platform for the deployment of social enterprise services to an
agency's clients.
v Universal Access is a platform – it provides a set of APIs and extension points

that can be used to build out a solution that suits the needs of individual
customers.

v Universal Access is strategic – from the outset it has been built with upgrade
concerns in mind. The goal is that upgrades are simple and each one brings in a
host of new backward compatible features.

The second point is a key tenet of the Universal Access design philosophy: By
using and extending Universal Access in the recommended ways, you can take on
new versions with minimal effort and in doing so take advantage of all the new
features offered through upgrades. If customers stray outside of the recommended
guidelines set out in this document, then there is an increased risk of running into
difficulties during an upgrade.

It Is Still Configurable and Customizable
Along with our commitment to the black box engineering philosophy, there are a
number of customization and configuration options already in place. The UA
Platform has been built to cover as many configuration points as possible out of
the box, this information describes these options.

© Copyright IBM Corp. 2012, 2014 1

Configuring the application banner, menus & navigation
You can configure the application banner, including mega and other menus, and
the navigation bar. The application banner is configured in the internal application
configuration file, with the extension .app and you can reuse and extend this
content to support the external applications. You can also use the existing
navigation configuration files, with the extension .nav, to support the new external
navigation bar.

Application Configuration
The full schema for the existing .app files can be found in the
JDECommons/lib/schema folder, specifically the application-view.xsd file.

The following outlines the additional content that will be added or where existing
content will be used in a different context.

Relevant attributes on the application element:

Table 1. Relevant attributes on the application element
Attribute Description/Use New/Existing

id Existing attribute, which identifies the unique id
of the application and must match the name of
the file. For internal applications this is linked to
the APPLICATION_CODE codetable and the
users home page. This is not the case for
external applications.

Existing

title A reference to content in the .properties file.
This content is not displayed on the application
banner, but used by the administration screens
to identify the internal application.

Existing

subtitle A reference to content in the .properties file.
This content is not displayed on the application
banner, but used by the administration screens
to identify the internal application.

Existing

mode Where this is not set, it is assumed the .app file
is for an internal style application. Where this is
set to external, the only supported value for
now, this indicates that the .app file defines an
external style application. This will be used to
handle content and validation differently for
both styles of application .

New

All other attributes are unsupported and ignored for mode="external" .app files.

The following are new elements that will be supported as direct children of the
application element. All elements are optional.
v landing-page

The icon and text displayed on the left corner of the application banner,
including the hyperlink to what is known as the landing page. When an
application is first loaded, it is this page that is opened, if defined. This is unlike
an internal application which uses the users APPLICATION_CODE value. Note:
If no page-id or landing-page element is specified, then the first entry in the
navigation will be used as the landing page. It is possible for no landing-page
element to be defined and the renderer will display nothing in this case.

Table 2. Relevant attributes on the landing-page element
Attribute Description Required

title A reference to the text displayed under the icon. Yes

page-id The page to open when the icon/text is clicked. Yes

2 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Table 2. Relevant attributes on the landing-page element (continued)
Attribute Description Required

icon A reference to the image icon to display. No

v banner-menu

There are three types of banner-menu supported in the application banner:
– mega - A mega main, which is the first menu displayed.
– person - The person menu, which usually displays the users name/welcome

message and options to logout.
– help - A menu of help/contact links. This is similar in style to the

mega-menu.
It is possible to have no banner-menu elements and the renderer will display
nothing in this case. In addition, a banner-menu can have no menu-items and
again the renderer will handle this. In other words, these elements are optional.

Table 3. Relevant attributes on the banner-menu element
Attribute Description Required

type mega, help and person are the currently
supported values. And only one of each can be
defined.

Yes

title A reference to the title text to display. Yes

page-id A reference to the page to open. This is optional
and only supported for the person menu in the
first version.

No

A banner-menu can have 0 to n menu-item elements as children, with the
following attributes:

Table 4. Relevant attributes on the menu-item type
Attribute Description Required

id A unique id for the menu item. This must be
unique within the file.

Yes

icon A reference to the icon to display. No

title A reference to the title text. Yes

text A reference to a longer description text. No

page-id A reference to the page to open. Yes

A menu-item can have 0..n child elements called param. The params are
hard-coded values that will be passed as parameters to the link associated with
the menu-item. They will have the following attributes:

Table 5. Relevant attributes on the param type
Attribute Description Required

name The name of the parameter to pass with the
link.

Yes

value A reference to the value of the parameter. This
can be localized and if not, will be passed as is.

Yes

A param is being used to set the "motivation" of the link. So in most cases the
name will be motivation with some value. The value is localizable, but if it does
not exist in the .properties file, the value specified in the xml will be sent.

v navigation

A reference to the navigation file (.nav), which contains the list of items to
display in the navigation bar for the application. Navigation bars are usually
defined at a tab level, but in this case it is for the full application.

Customizing Universal Access 3

Table 6. Relevant attributes on the navigation type
Attribute Description Required

id A reference to the id of the .nav file, which is
the name of the file, e.g. <id>.nav

Yes

width A reference to the value to be used as the pixel
width of the navigation bar. This is to allow for
localisation configuration on a per application
basis.

No

Navigation Configuration
The full schema for the existing .app files can be found in the
JDECommons/lib/schema folder, specifically the application-view.xsd file.

The following outlines the additional content that will be added or where existing
content will be used in a different context.

Relevant attributes on the application element:

Table 7. Relevant attributes on the application element

Attribute Description/Use New/Existing

id The identifier for the navigation file,
which must match the name of the
file.

Existing

loader-registry A list of loaders that can be used to
dynamically control the display of
the content.

Existing

nodes The list of navigation items Existing

The nodes element supports two children:
v navigation-group

This child element is not applicable for an external application navigation.
v navigation-page

1..n navigation-page elements can be added to the navigation. Each represents a
link in the navigation bar. The applicable attributes are:

Table 8. Relevant attributes on the navigation-page element

Attribute Description/Use New/Existing

id The unique id of the entry, used to
prevent conflicts during contribution.

Existing

title A reference to the title of the
navigation item.

Existing

description A reference to an admin description
for the item.

Existing

visible A boolean indicating if the item is
visible or invisible by default.

Existing

dynamic A boolean indicating if the item's
visibility can be controlled by a
loader.

Existing

page-id A reference to the page to be opened
when the item is clicked.

Existing

4 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Table 8. Relevant attributes on the navigation-page element (continued)

Attribute Description/Use New/Existing

icon A reference to the icon to display for
the entry.

New

A new child element, highlight, will be supported under the navigation-page
element, only within the context of an external application. This will contain one
attribute, but 0..n entries can be defined:

Table 9. Relevant attributes on the highlight element

Attribute Description

page-id The id of a UIM page, which when displayed in the
content area will result in this navigation item being
highlighted.

Securing Universal Access
Use this information to understand the Universal Access Security Model and how
to customize Universal Access securely in line with this model.

Background information for UA Security
Universal Access is designed to give citizens access to their most sensitive personal
data over the Internet. Security must be a primary concern when developing
citizen account customisations. All projects built on Universal Access must have
highly focused on delivering security. This requires the project team to think of
security from the very beginning rather just testing it at the end. It is
recommended that all projects take at least the following steps to ensure the
security of their delivery:
v Ensure that the project team are familiar with the principles of secure application

development, and common vulnerabilities such as the OWASP Top Ten
v Develop a Threat Model and apply it
v Employ security experts to test everything from requirements to the finished

deployment
v Plan for how the application will be used in public spaces like libraries and

kiosks

The Universal Access Security Model
Universal Access has a number of different account types, in order to support both
anonymous and registered users using the application. As users progress through
their use of UA, they transition through a number of these different account types.
The user types can be summarized as:
v The Public Citizen Account
v Anonymous Accounts
v Registered Accounts
v Linked Accounts

The Public Citizen Account
When the user views the front page of Universal Access they are automatically
logged in under the publiccitizen account. This account only has access to the
home page and pages that allow for entry or reset of passwords.

Customizing Universal Access 5

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Threat_Risk_Modeling

Anonymous Accounts
When the user clicks on a link to perform Triage, Screening or Intake, they are
automatically logged out as publiccitizen and logged back in under an
anonymous account with a randomly generated user name. This username can be
used for the duration of a session during which the user might perform Triage,
Screening and/or Intake. There are good security reasons for associating each
individual session with a different generated account. One of the core principles of
UA is that users should not have access to the data of other users. If all Intake and
Screenings were performed using a single user account, publiccitizen, for
example, then there is potential for one user to end up seeing data that has been
entered by another user.

Registered Accounts
Accounts of this type are standard accounts created by citizens. Citizens can create
accounts when they first arrive at the application, or during processes like
screening or intake. These accounts differ from Anonymous accounts in that they
allow citizens to continue previously saved Screenings, re-start Intake Applications
that were previously unfinished and review or withdraw previously submitted
Intake Applications.

Linked Accounts
The final account type is Linked Accounts. Linked Accounts are accounts that have
been linked with an underlying Concern Role ID for a Person entity in Cúram.
These users have access to detailed information about their benefits and cases in
the Cúram system, via citizen account. Users with a linked account can submit Life
Events such as "I Lost my Job" or "I got married". They also have access to
information about benefit payments. Because of the sensitivity of this information,
customers must ensure that they have a robust process for creating linked user
accounts.

Some typical scenarios for linking are presented below. These are examples only,
the actual processes for linking will be unique to each customer. A client requests a
Citizen Account. The client is asked to present themselves at their local Social
Welfare office with drivers license and other personal identification. The case
worker, uses custom developed Cúram functionality to enter details for the new
linked account after verifying the identity of the client.

A client creates a user account for Universal Access and submits an Intake
Application. They are contacted by their case worker who asks them if they want
access to more services using the Universal Access system. The client agrees and
presents themselves at the local office with identification such as a passport. The
case worker is able to link the client to the account they used to submit the Intake
Application.

In both of these cases the case worker does not have access to the client's
password. Instead, the linking process triggers a batch job that generates a letter,
sent to the client's home address. The letter contains the password and a separate
letter then contains an electronic code card. All of this functionality is developed
by the customer however it is supported by UA APIs that allow a UA username to
be linked to a Concern Role ID.

Continuing the above scenario, the client receives a letter from the Social
Enterprise containing their initial password (in the case of the first scenario) and
instructing them that a code card will arrive shortly. The code card arrives by post
the next day and the client is able to log in to their Citizen Account. The login
screen contains a username and password as before, however there are also

6 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

additional authentication factors - The client must enter their date of birth, social
security number and a code from their electronic code card. This is called
Multi-Factor Authentication.

Authorization Roles and Groups
The various account types described above are assigned different authorization
roles. These roles limit the methods that can be invoked. No additional
permissions should be granted to UA authorization roles except for Linked
accounts, which use the LINKEDCITIZENROLE. If adding additional custom
methods to citizen account, additional permissions will be required. For more
information, see "Customizing the citizen account".

If only a subset of the functionality offered by UA is being used, permission to
invoke the unused methods should be removed from the database. For example, if
citizen account is not being used, the LINKEDCITIZENROLE and other related
authorization artifacts should be removed, as they are not needed. Projects not
using citizen account should also consider the deployment implications. For more
information, see "Customizing the citizen account".

Authorization roles should be configured only for the areas of functionality that
are actually being used. It is recommended that unused SIDs should be removed
from the database. For example, if citizen account is not being used, the
LINKEDCITIZENROLE and other related authorization artifacts should be
removed, as they are not needed. Projects not using citizen account should also
consider the deployment implications. For more information, see "Citizen Account
Security Considerations".

Proper use of the UA Authorization Roles and Groups will ensure that no user can
access functions for which they have no permission. It will not however, prevent
users from using these functions to access data belonging to user users. This is the
preserve of Data-based Security. UA provides a framework for Data-based Security
and all customizations should use this framework. For more information, see
"Citizen Account Security Considerations".

Deployment Considerations
Client components can be divided into those that form part of internal
applications, and those that form part of public facing applications (such as UA).
Components that contain artifacts intended for use in internal applications should
not be deployed into public facing applications such as UA. Customisations should
be split between internal and public facing client components in order to achieve
this. Internal components should never be added to the UA deployment packaging,
as this will mean that artifacts intended for case workers or administrators will be
deployed into the public facing application.

The UA client-side artifacts are divided between the citizenworkspace and
citizenaccount client components. This is done for good reason: the
citizenaccount component includes UIM pages that expose sensitive data to
citizens (including life events functionality), whereas the citizenworkspace
component includes the artifacts needed to offer triage, screening and online
application functionality. Accordingly, if the citizen account functionality is not
being used, the citizenaccount client component should not be deployed, i.e. it
should be removed from the UA deployment packaging. Please see the Cúram
deployment guide related to your specific application server for more information
on deployment and deployment packaging. For more information about securing
the citizen account, see "Citizen Account Security Considerations".

Customizing Universal Access 7

Managing User names and Passwords
There is a range of ways to customize and configure the validations that are
invoked when creating user accounts in UA. These can be used to enforce certain
patterns on a username and password, for example, to prevent the username and
password being identical, or to enforce a minimum number of characters for either.

Account Management
A description of the way you can customize account creation and management.

Account management configurations: A number of configurations properties are
used to define the behavior of the validations in this area. Please see table below:

Table 10. Account configurations
Property Description

curam.citizenworkspace.username.min.length Minimum number of characters in the username.

curam.citizenworkspace.password.min.length Minimum number of characters in the password.

curam.citizenworkspace.password.min.special.chars Minimum number of special characters and/or numbers
in the password.

The values of these configuration properties can be updated by logging in as
sysadmin and selecting: Application Data->Property Administration. Select
category "Citizen Portal - Configuration"

Account management events: Events are raised at key points during account
processing. These can be used to add custom validations to the account
management process. For more information on using events, please see the Curam
Server Developer Guide. All of the following events can be found in the class
curam.citizenworkspace.security.impl.CitizenWorkspaceAccountEvents

Table 11. Account events
Event Interface Description

CitizenWorkspaceCreateAccountEvents Events raised around account creation. Please see the
related Javadoc in the WorkspaceServices component for
more information.

CitizenWorkspacePasswordChangedEvent Event raised when a user is changing their password.
Please see the related Javadoc in the WorkspaceServices
component for more information.

CitizenWorksapceAccountAssociations Events raised when a user is linked or unlinked from an
associated Person Participant. Please see the related
Javadoc in the WorkspaceServices component for more
information.

PasswordReuseStrategy API:

Customers are free to use the
curam.citizenworkspace.security.impl.PasswordReuseStrategy API to add their
own password change validations.

As part of the password reset function, Universal Access provides a default
validation that prevents a user from entering a new password that is the same as
the user's current password. Using the PasswordReuseStrategy API, custom
validations can be added to restrict users from changing their passwords to current
or previous values if required. For example, a customer might want to implement
a password reuse strategy that prevents users from reusing a previous password
until after six password changes.

For further details, see the API Javadoc.

8 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

CitizenWorkspaceAccountManager API: The
curam.citizenworkspace.security.impl.CitizenWorkspaceAccountManager API is
used to manage the creation and linking of UA accounts. It is envisaged that
customers can use this API to build out custom functionality that supports case
workers linking accounts, and creating accounts on behalf of the citizen. The API
offers methods that support account management, including:
v Creating standard UA accounts
v Creating 'linked' UA accounts
v Removing links between Participants and accounts.
v Retrieving account information

Please see the API Javadoc for full details.

Data Caching
Customers need to be aware of the dangers posed by caching data in both browser
and server caches. Care must be taken to minimize the risk of citizens being able
to access each others' data from these caches. This can occur when the citizen uses
the browser back button or history to retrieve data previously entered by other
users, or when application PDF files are cached locally on the computer that was
used to make the application.

HTTP Servers like Apache provide the ability to set cache-control response headers
to not store a cache. We recommend this approach be taken with UA deployments
to prevent access to data using the browser back button or history.

Browser Caching
Browsers can be configured never to cache content. If UA is to be offered in a
"kiosk" or other publicly available guise, then the browser should be configured
never to cache content.

Furthermore, it is advisable to customize UA in order to provide this guidance to
citizens accessing the site via their own browsers. They should be advised to clear
their cache and close all browser windows they have used when they are finished
using UA. Citizens should also be made aware that PDF documents that they
download from UA may need to be removed from the browser's temporary
Internet files.

External Security Authentication
As an ever greater number of government services move to the Internet, there is a
drive to ensure that citizens can be authenticated for any of these services using a
single set of credentials. This provides benefits for the government in streamlining
the authentication process and also for the citizen because they do not have to
remember endless lists of usernames and passwords. This, in turn, increases
security by making it less likely that citizens will write down their usernames and
passwords and by focusing security efforts on implementing best practice in a
single Enterprise Security System. In its Out-of-the-Box form, Universal Access uses
its own authentication system which is backed up by a database of registered
users. Universal Access can also be configured to integrate with External Security
Systems.

Analysis
Consider this example analysis that is required in preparation for integration with
an External Security System. Any analysis of requirements for External Security
Integration should ask at least the following questions.

Customizing Universal Access 9

1. Is the Universal Access deployment to support anonymous Screening and/or
Intake?

2. Is Account Management to be supported in Universal Access or in the External
Security System? (for example, will account creation and password reset screens
live in the External Security System or Universal Access).

3. Is Single Sign On Required?

Example UA customization requirements
In this example the team deploying Universal Access have the following
requirements. This example will be used for reference when describing the
configuration and development tasks.
1. Users can access Universal Access and perform anonymous Screening or Intake.
2. Users who want to access their saved Screening or Intake information must

first create an account on a system called CentralID.
3. Users logging in to Universal Access with the Universal Access login screen can

use their CentralID username/password to authenticate.
4. Users perform all of their account management using an external system we're

calling CentralID (for example, resetting password, creating a new account,
changing account details).

5. CentralID stores all user records in a secure LDAP server.
6. Because all account management is now performed in CentralID, the account

creation screens and password reset screens are to be removed from Universal
Access.

7. Users should be able to log in to Universal Access as soon as they have
registered with CentralID, there should be no delay waiting for id to propagate
to Universal Access.

All of these requirements are supported by the Universal Access External Security
Integration. At the time of writing, addressing Single Sign On is beyond the scope
of the External Security Integration – please contact Cúram Global Services for
more information about how to support Single Sign On requirements.

Configuration Tasks
Taking the Analysis example, the following configuration tasks must be
undertaken:
1. Configure the Application Server to use LDAP for authentication.
2. Deploy Cúram Universal Access in Identity Only mode for registered users.
3. Configure Cúram Universal Access so that Create Account screens are not

displayed.
4. Configure Cúram Universal Access so that users are directed to register with

the External System.

Configure the Application Server to use LDAP for Authentication
Please refer to the relevant Application Server documentation for information on
how to configure your Application Server to use LDAP for authentication.

Deploy Cúram Universal Access in Identity Only mode for
Registered Users
Add the following properties to AppServer.properties:
curam.security.check.identity.only=true
curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN

To re-configure the application server run:

10 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

appbuild configure

The curam.security.check.identity.only property ensures that application
security is set to work in Identity Only mode. For more information about Identity
Only authentication mode please refer to the Cúram Deployment Guide for
WebSphere or Cúram Deployment Guide for WLS as appropriate. In Identity Only
mode authentication only uses the internal user table to check for the existence of
the user. The validation of the password is left to a subsequent module, either a
JAAS module (Oracle WebLogic) or the User Registry (IBM® WebSphere®).

Take the example of a user, "johnsmith", who has been registered with the
CentralID LDAP server. In order for John Smith to be able to use Cúram Universal
Access, there must also be a "johnsmith" entry in the ExternalUser table. When
John Smith logs in, his authentication request is passed to the Cúram JAAS Login
Module. This checks that the user "johnsmith" exists in the Cúram ExternalUser
table but does not check the password. The authentication then proceeds to the
User Registry (WebSphere) or LDAP JAAS Module (WebLogic) where the
username and password are checked against the contents of the CentralID LDAP
server. For this to work correctly it is necessary to configure the application server
with the connection details for the secure LDAP server.

The Identity Only configuration allows the application to defer to an external
security system such as an LDAP-based directory service for the authentication of
user credentials. This does not work for anonymous users of Universal Access
however. When a user accesses the front page of Universal Access for the first
time, they are automatically logged in as the "publiccitizen" user. If they
subsequently choose to Screen themselves or perform an Intake Universal Access
creates a new "generated" anonymous user. Each generated user is unique and this
ensures that the data belonging to that user is kept confidential. Neither the
publiccitizen nor the generated users are inserted into the LDAP directory so they
cannot be authenticated using the Identity Only mechanism. This is the purpose of
the following line of configuration:
curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN

This line ensures that users with the user type EXT_AUTO (the publiccitizen) and
EXT_GEN (generated users) are authenticated against Cúram's External User table.
Once the server has been configured with the above configuration and started,
perform the following configuration steps:
1. Log in as sysadmin.
2. Select Application Data -> Property Administration.
3. Select Category "Citizen Account - Configuration".
4. Set the property 'curam.citizenaccount.public.included.user to the value

EXT_AUTO'.
5. Set the property 'curam.citizenaccount.anonymous.included.user to the value

EXT_GEN'.
6. Publish the property changes.

One final configuration entry is required in order to ensure that Universal
Access operates correctly with respect to authentication, this change can be
made as follows.

7. Log in as sysadmin.
8. Select Application Data -> Property Administration.
9. Select Category "Infrastructure – Security parameters".

Customizing Universal Access 11

10. Set curam.custom.externalaccess.implementation to
'curam.citizenworkspace.security.impl.CitizenWorkspacePublicAccessSecurity'.

11. Publish the property changes.

Finally, logout and restart the server. This configuration task should be complete at
this point.

Configure Cúram Universal Access so that Create Account
Screens are not Displayed
In the example above requirement 4 indicates that all Account Management
functions are to be handled by the external system, CentralID. These include
creation of a new account and performing a password reset. By default, Universal
Access provides screens for these functions. These screens must be configured out
in order to meet requirement 4 above:
1. Log in as sysadmin.
2. Select Application Data -> Property Administration.
3. Select Category "Citizen Portal - Configuration".
4. Set the property 'curam.citizenworkspace.enable.account.creation' to "NO".
5. Publish the property changes.

The above steps remove references to Account Creation pages from Universal
Access. The Login Screen still contains a link to a Universal Access page for
changing passwords. In this example the team implementing want to retain this
link but change it to launch a new browser window on the CentralID password
reset page. This can be achieved as follows:
1. Log in as sysadmin.
2. Select Application Data -> Property Administration.
3. Select Category "Citizen Portal - Configuration".
4. Set the property 'curam.citizenworkspace.forgot.password.url' to something like

"http://www.centralid.gov/resetpassword"
5. Publish the property changes.

In order to remove the reset password link altogether use the following steps:
1. Log in as sysadmin.
2. Select Application Data -> Property Administration.
3. Select Category "Citizen Portal - Configuration".
4. Set the property 'curam.citizenworkspace.display.forgot.password.link' to "NO".
5. Publish the property changes.

Configure Cúram Universal Access so that users are directed to
register with an External System
Out of the Box Universal Access invites users to log in with the message: "Please
enter your User Name and Password and click the Next button to continue."
Replacing this message is a good way of directing the non-registered user towards
the CentralID screen for registration. For example the message on the Logon screen
could read something like:
"<p>If you are registered with CentralID enter your username

and password to log in. To register go to
 The CentralID
registration page.</p>"

12 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

The properties for controlling the Login Page message can be found in
<CURAM_DIR>/EJBServer/components/Data_Manager/Initial_Data/blob/prop/
Logon.properties

To customize the message displayed, follow the procedure in Customizable Universal
Access Page Content.

Development Tasks
The configuration tasks described so far allow customers to fulfill the requirements
listed in the example with the exception of requirement:
"7 - Users should be able to log in to Universal Access

as soon as they have registered with CentralID, there
should be no delay waiting for id to propagate to other
systems".

In order to function correctly, Cúram Universal Access requires each user to have
an entry in the ExternalUser table. The customer could build a batch process to
import users from the LDAP directory into the Cúram ExternalUser table but this
would not satisfy requirement 7 since the user must be able to register with
CentralID and then immediately use Universal Access. Another option would be to
build a web service or similar mechanism that would be invoked when a new user
registers with CentralID. The implementation of the web service would create the
appropriate entry in the ExternalUser table.

This document however, now describes a simpler option which is to override the
default login behavior to create new accounts on-the-fly, after checking that the
relevant entry exists in the LDAP server.

Overriding the default login behavior in Universal Access can be done by
extending the curam.citizenworkspace.security.impl.SecurityStrategy class and
overriding the authenticate() method. The code below outlines how to use the
SecurityStrategy and other security APIs to meet the requirements described above:
public class CustomSecurityStrategy extends SecurityStrategy {

@Inject
private CitizenWorkspaceAccountManager cwAccountManager;
...
@Override
public String authenticate(final String username,

final String password)
throws AppException, InformationalException {

final String retval = null;
if (username.equals(PUBLIC_CITIZEN)) {

return super.authenticate(username, password);
}
// Authenticate generated accounts as normal
if (cwAccountManager.isGeneratedAccount(username)) {

return super.authenticate(username, password);
}
// Check that the user exists in LDAP
// This prevents hackers from registering a lot of bogus
// accounts that exist in Curam but not in LDAP
if (!isUserInLDAP(username)) {

return SECURITYSTATUS.BADUSER;
}
// If there’s no account for this user
if (!cwAccountManager.hasAccount(username)) {

createUserAccount(username);
}
return SECURITYSTATUS.LOGIN;

}
private void createUserAccount(final String username)

Customizing Universal Access 13

throws AppException, InformationalException {
final CreateAccountDetails newAcctDetails;
...
cwAccountManager.createStandardAccount(newAcctDetails);

}
}

The code above checks to see if the user logging in is the publiccitizen user or a
generated account. In both of these cases, authentication logic is delegated to the
default SecurityStrategy. In the case of a registered user the Security Strategy
checks the LDAP directory to ensure that the user exists there. If the user exists in
the LDAP directory and does not exist yet in Cúram then a new user account is
created. Note, the custom code does not need to authenticate the user against
LDAP since the authentication is handled by the User Registry in WebSphere or
the LDAP JAAS Module in WebSphere. It is important to note that the password
parameter of the authenticate() method is encrypted using a one-way hash. This
ensures that it can be safely transmitted from the Client Side of the Cúram
application to the Server Side of the application.

In order to install the CustomSecurityStrategy it must be bound in place of the
Default Security Strategy. This can be done by using a Guice Module to bind the
implementation:
public class CustomModule extends AbstractModule {

@Override
protected void configure() {

binder().bind(SecurityStrategy.class).to(
CustomSecurityStrategy.class);

}
}

The CustomModule must be configured at startup. This can be achieved by adding
a DMX file to the custom component as follows:
<CURAM_DIR>/EJBServer/custom/data/initial/MODULECLASSNAME.dmx

<?xml version="1.0" encoding="UTF-8"?>
<table name="MODULECLASSNAME">

<column name="moduleClassName" type="text" />
<row>

<attribute name="moduleClassName">
<value>gov.myorg.CustomModule</value>

</attribute>
</row>

</table>

Customizing Universal Access Triage
A description of the customization points for the triage process.

For information about configuring and administering triage, see the Cúram
Universal Access Guide.

Available triage events
There are a number of events which are fired during the triage process. These
events can be broken into two categories, persistence events and custom events.
The persistence events are standard data access events fired by the persistence
infrastructure. The custom event is something that has been added to allow custom
processing when the user performs a particular action. Both of these events are
outlined below.

14 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Standard persistence events
On running the triage rule set, the results of the session are persisted to the
TriageResult entity. This triggers the invocation of the pre and post insert events.
For information about how to make use of the PersistenceEvent API, see "Events"
in the Persistence Cookbook.

Triage Referral Event
The curam.triage.impl.TriageEvents.ReferralEvent.referralEmailSent event is
fired immediately after a citizen refers themselves for a service using Universal
Access. For more information, see the API Javadoc for ReferralEvent in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/doc.

Customizing Universal Access Screening
Use the supported customization points to customize screening.

For information on setting up and configuring screening, see the Cúram Universal
Access Configuration Guide.

How to Track the Volume, Quality, and Results of Screenings
The curam.citizenworkspace.impl.CWScreeningEvents class is used for access to
the events fired around screening, this could typically be used for tracking the
volume or results of screening for reporting purposes. For further details, refer to
the API Javadoc for CWScreeningEvents. This can be found in
<CURAM_DIR>/EJBServer/components/CitizenWorkspace/doc

How to Populate a Custom Screening Results Page
The curam.citizenworkspace.security.impl.UserSession API contains a
performScreening operation. You can use this operation to facilitate the population
of a custom Screening Results page.

The Screening Results page is displayed when an IEG screening script is executed.
The operation executes the configured rule set for the selected screening type. The
results of the screening, that is, the list of eligible and undecided programs, are
stored against the user's session.

The screeningResultsForDisplay return type of the operation allows access to three
objects. These objects contain the information that is required to populate either the
default or custom Screening Results page.

The three objects are as follows:

ScreeningType
The screening type that the user selected.

List<Program>
A list of the programs that the user was screened for. The
ScreeningResultsOrderingStrategy dictates the order of the programs listed.

Map<String, ProgramType>
A join.util.map that contains a mapping of strings to ProgramTypes where
the string contains the unique reference for that ProgramType.

A sample usage is illustrated below:

Customizing Universal Access 15

UserSession userSession = userSessionDAO.get(sessionID);
ScreeningResultsForDisplay screeningResultsForDisplay =

userSession.performScreening();

A sample interface definition is illustrated below:
/**

* Executes the Screening rule set associated with the current screening IEG
* script data. The return object, {@link ScreeningResultsForDisplay},
* contains all of the information required to be displayed on the
* Screening Results page.
*
* @return object containing the ordered screening results, the selected
* {@link ScreeningType} and a map of {@link ProgramType} records.
*
* @throws InformationalException
* Generic exception signature.
* @throws AppException
* Generic exception signature.
*/
ScreeningResultsForDisplay performScreening() throws InformationalException,

AppException;

For further details, refer to the API Javadoc for the
curam.citizenworkspace.security.impl.UserSession. This can be found in
<CURAM_DIR>/EJBServer/components/CitizenWorkspace/doc.

Customizing Application Intake Processing
Use these customization points to customize the application intake process up to
the point of submitting an intake application.

For more information about configuring an intake application, see the Cúram
Universal Access Guide.

How to Pre-populate the Intake Script
The StartIntakeEvents.startIntake is raised before an intake script is executed.
This can be used to edit the contents of the data store before the intake process
begins. Typically this will be done where, for example, a citizen has gone through
screening and added some basic data as part of that process. This customization
point allows for the transfer of this basic data to the intake. Note that the signature
supplies a link to the datastore for pre-population. For further details, refer to the
API Javadoc for StartIntakeEvents. This can be found in <CURAM_DIR>/EJBServer/
components/WorkspaceServices/doc

How to Add a Validation for Program Selection
An event is raised when processing the data entered by the user on the Select
Intake Program screen. The event,
curam.citizenworkspace.impl.ProgramSelectionEvents.intakeProgramsSelected,
allows the validation of the programs selected by the user. This can be used to
further apply business rules to an intake application for a citizen, where product
combinations cannot be combined, for example. For further details, refer to the API
Javadoc for ProgramSelectionEvents. This can be found in <CURAM_DIR>/EJBServer/
components/CitizenWorkspace/doc

Customizing the Handling of Submitted Applications
Use these customization points to customized the application intake process after
an intake application is submitted.

16 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

For more information about configuring an intake application, see the Cúram
Universal Access Guide.

How to Customize the Process Intake Application Workflow
The Intake Application Workflow is summarized in the figure below.

Create Intake PDF
This automatic activity creates a PDF document based on the content of the
application. Customizing the generated PDF is described in “How to
Customize the Generic PDF for Processed Applications” on page 18.

InvokeLegacySystemProcessing
This automatic activity sends applications to legacy systems via Web
Services. This path is taken only if there are legacy systems associated with
at least one of the programs on the application.

CreateParticipantsAndCases
This automatic activity creates participants for the submitted application
and then creates a case or cases for the various programs associated with
the application. In most cases, an Application Case or Cases are created.
This path is taken if the value of the configuration property
curam.intake.use.resilience is set to true. For reasons of backward

Create Intake PDF

Any programs processed by legacy systems?

Process Intake Application (Resilient)

y

n

InvokeLegacySystemProcessing

CreateParticipantsAndCases

Any programs processed by Cúram?

Is intake resilient?

n

y

y

n

PostMapping

EvidenceCorrections

n

y

Mapping

Creates/locates participants and cases. Failure at this point
causes the process to go into the Process Instance Error Queue.

Evidence validation failed?

A worker resolves evidence validation
issues and them re-submits the application.

Invokes the next stage of intake processing which is either performed
by a case worker or using a Straight Through Processing ‘No touch’ workflow.

CreateParticipantsCasesAndMapEvidence

Functions identically to
the older non-resilient flow.

Maps Evidence to the Case using the Cúram Data Mapping Engine (CDME)
The implementation of this will:
- Change the state of the ApplicationCase to ‘Awaiting Resolution’
- Re-assign ownership to a configurable worker

Figure 1. Intake Application Workflow

Customizing Universal Access 17

compatibility, this property is set to false by default, however it is strongly
recommended that all production systems set this value to true. For more
information on the implications of setting this value to true, see “How to
Use Events to Extend Intake Application Processing” on page 19.

Mapping
This automatic activity uses the Cúram Data Mapping Engine (CDME) to
map data collected in the application script into Case Evidence. Under
most circumstances this will proceed smoothly. In the event that a
validation issue occurs with the mapped evidence, this activity will be
automatically re-tried. During the re-try, if there is a single Application
Case, the validations will be disabled and a WDO flag
IntakeCaseDetails.mappingValidInd set to false.

EvidenceCorrections
This manual task is invoked if the Mapping activity failed due to a
validation error (IntakeCaseDetails.mappingValidInd set to false). The
assignment of this task is configurable. For more information, see Evidence
Issues Ownership Strategy in the Intake Configuration Guide. The
assigned caseworker or operator will resolve the evidence validation issues
and then re-submit the application.

PostMapping
This automatic activity kicks off the next stage of application processing by
invoking the event
IntakeApplication.IntakeApplicationEvents.postMapDataToCuram().

CreateParticipantsCasesAndMapEvidence
This path is followed when the configuration property
curam.intake.use.resilience is set to false. This automatic activity
behaves identically to the old, non-resilient workflow. It creates cases and
participants and performs all evidence mapping in a single transaction.
This makes the process less resilient in the event of a failure.

Customers are free to customize the workflow in the usual recommended manner
as described in the Cúram Development Compliancy Guide and Cúram Workflow
Management System Guide. Note that customers should not make any changes to
the enactment structs used by these workflows.

How to Customize the Generic PDF for Processed
Applications

Universal Access provides functionality to map all intake applications to a generic
PDF that records the values of all the information entered by the user. This PDF is
rendered by the Cúram XML Server. Customers can override the default formatting
of the generic PDF as follows:

copy:
v CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manager/InitialData/

XSLTEMPLATEINST.dmx

to:
v CURAM_DIR/EJBServer/components/custom/Data_Manager/InitialData

Edit the project\config\datamanager_config.xml to replace the entry for:
v CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manager/InitialData/

XSLTEMPLATEINST.dmx

18 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/IntakeConfiguration/c_CINConfig_ApplicationCasesEvidenceIssuesOwnership.html
https://www-01.ibm.com/support/knowledgecenter/SS8S5A_6.0.5/com.ibm.curam.content.doc/IntakeConfiguration/c_CINConfig_ApplicationCasesEvidenceIssuesOwnership.html

with an entry for:
v CURAM_DIR/EJBServer/components/custom/Data_Manager/InitialData/

XSLTEMPLATEINST.dmx

copy:
v CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manager/InitialData/

blob/WSXSLTEMPLATEINST001

to the directory:
v CURAM_DIR/EJBServer/components/custom/Data_Manager/InitialData/blob.

Edit this file to suit the needs of the project.

How to Use Events to Extend Intake Application Processing
The interface IntakeApplication.IntakeApplicationEvents contains events that get
fired after the client has submitted an intake application for processing. These
events can be used to change the way that intake applications get handled, for
example to supplement or replace the standard CDME mapping or to perform an
action after an application has been sent to a remote system using web services.
For further details, please refer to the API JavaDoc for
IntakeApplication.IntakeApplicationEvents. This can be found in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/doc.

The interface IntakeProgramApplication.IntakeProgramApplicationEvents contains
events that are fired at key stages during the processing of an application for a
particular program. For further details, please refer to the API JavaDoc for
IntakeProgramApplication.IntakeProgramApplicationEvents. This can be found in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/doc.

Note: As of Cúram 6.0.5.5, there is a change to the ordering of the
IntakeApplication.IntakeApplicationEvents.preMapDataToCuram() and
postMapDataToCuram() events within the Intake Application Workflow when the
configuration property curam.intake.use.resilience is set to true. When this
property is set to true,
IntakeApplication.IntakeApplicationEvents.preMapDataToCuram() is called in the
Mapping activity prior to Evidence mapping. This means that
the IntakeApplication.IntakeApplicationEvents.preMapDataToCuram() event is
called after the cases and participants have been created by the
CreateParticipantsAndCases activity. Previous versions of the intake process
invoked this event prior to participant and case creation. When the configuration
property curam.intake.use.resilience is set to true, the
IntakeApplication.IntakeApplicationEvents.postMapDataToCuram() event is fired
in the PostMapping activity.

How to Customize the Concern Role Mapping Process
The curam.workspaceservices.applicationprocessing.impl package contains a
ConcernRoleMappingStrategy API that provides a customization point into the
online application process.

Use the ConcernRoleMappingStrategy API to implement custom behavior
following the creation of each new concern role that is added to an application. For
example, customers who have customized the prospect person entity might want
to store information on that entity that cannot be mapped using the default CDME
processing.

Customizing Universal Access 19

Enable the ConcernRoleMappingStrategy API
In the administration application, enable the ConcernRoleMappingStrategy API by
setting the Enable Custom Concern Role Mapping property to true.

Procedure
1. Log in to the Cúram System Administration application as a user with system

administration permissions.
2. Click System Configurations>Application Data>Property Administration.
3. In the Application - Intake Settings category.
4. Search for the property curam.intake.enableCustomConcernRoleMapping.
5. Edit the property to set its value to true.
6. Save the property.
7. Select the Publish action.

Use the ConcernRoleMappingStrategy API
When enabled, use the ConcernRoleMappingStrategy API to implement a strategy
for mapping information to a custom concern role.

About this task

The curam.workspaceservices.applicationprocessing.impl package contains the
ConcernRoleMappingStrategy API.

Procedure
1. Provide an implementation of the customization point.
2. Bind your custom implementation by creating or extending your custom

mapping module as follows:
package com.myorg.custom;
class MyModule extends AbstractModule {

@Override
protected void configure() {

bind(ConcernRoleMappingStrategy.class).to(
MyCustomConcernRoleMapping.class);

3. Add your MyModule class to the ModuleClassName table using an appropriate
DMX file if you have not already done so.

How to Send Applications to Remote Systems for Processing
The Citizen Workspace can be used to send applications to remote systems for
processing using web services. An event
ReceiveApplicationEvents.receiveApplication is raised before the application is
sent to the remote system. This can be used to edit the contents of the data store
used to gather application data before transmission. For further details, refer to the
API Javadoc for ReceiveApplicationEvents. This can be found in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/doc.

Customizing the Citizen Account
The Citizen Account is a facility within Universal Access that allows a linked UA
user to log in to a secure area where they can screen and apply for programs. The
citizen can also view information relevant to them, including individually tailored
messages, system-wide announcements, updates on their payments, contact
information for agency staff and Outreach campaigns that may be relevant to

20 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

them. Citizen Account also provides a framework for customers to build their own
citizen account pages or override the existing pages.

For a full description of the default functionality, and for more information about
linked UA users, see the Cúram Universal Access Guide.

Citizen Account Technical Overview
Unlike the rest of the UA application, the citizen account framework is defined in
UIM. This means that customers can override existing pages, add their own, and
customize the navigation of the framework as they can customize the case worker
application.

Citizen account is built on top of the user interface infrastructure. It uses only a
sub set of the user interface and navigation components offered by the
infrastructure, in order to achieve a simple, usable application that citizens can
understand and use without any specific training.

Linked UA users will perform UA actions of triage, screening and online
application via their account. Accordingly, citizen account includes UIM pages that
are a view onto the triage, screening and online application functionality. These
pages are not configurable or customizable: the functionality that they offer is
configurable via administration as specified in the documentation for these areas.
The UIM pages related to triage, screening and online application should not be
modified or overridden.

Citizen Account Security Considerations
Exposing sensitive data to citizens over the web is inherently dangerous and
security must be a primary concern when developing citizen account
customizations. For more information, see "Securing Universal Access". All public
facing applications must undergo rigorous security analysis and testing before
being deployed. You must contact IBM support to discuss unusual customizations
that might have specific security issues.

Permission to invoke the server facade methods that serve data to citizen account
pages is managed by the standard authorization model. Please see the Cúram
Server Developer's Guide for more information. In addition to the standard
authorization checks, each facade method that is invoked by a citizen account page
must perform the following security checks in order to ensure the user associated
with the transaction (the currently logged in user) has permission to access the
data they are requesting:
v Ensure that the currently logged in user is of the correct type. They must be an

External user with an applicationCode of "CITWSAPP", and have a UA account
of type 'Linked'.

v Ensure that the currently logged in user has permission to access the specific
records that they are reading, i.e. validate any page parameters passed in to
ensure that the records requested are related to the currently logged in user in
some way.

Ensuring the currently logged in user is of the correct type
The curam.citizenaccount.security.impl.CitizenAccountSecurity API offers a
method performDefaultSecurityChecks that will ensure that the user is of the
correct type. This method will check the user type, and if not acceptable, will write
a message to the logs and fail the transaction. This should be called in the first line of
every custom facade method, before any processing or further validation has taken place:

Customizing Universal Access 21

public CitizenPaymentInstDetailsList listCitizenPayments()
throws AppException, InformationalException {

// perform security checks
citizenAccountSecurity.performDefaultSecurityChecks();

// validate any page parameters (none in this case)

// invoke business logic
return citizenPayments.listPayments();

}

Ensuring the currently logged in user has access to the specific
records they have requested.
A malicious user logged in to a valid linked UA account could send requests to the
system requesting data related to other users. In order to prevent this from
happening, all page parameters must be validated to ensure that they are somehow
traceable back to the currently logged in user. How this is determined is different
for each type of record. For example, a Payment can be traced back to the
Participant via the Case it was issued on.

The curam.citizenaccount.security.impl.CitizenAccountSecurity API offers
methods to perform these checks for the types of records that are served to citizens
by the OOTB pages. Please review the Javadoc of this API for specific information.
For custom pages that serve different kinds of data, additional checks must be
implemented to validate the page parameters. These should be added to a custom
security API and invoked by the façade methods in question. The methods should
check to see if the record requested can be traced back to the currently logged in
user, and if not, it should log the user name, method name and other data, and fail
the transaction immediately (as opposed to adding the issue to the validation
helper and allowing the transaction to proceed):
if (paymentInstrument.getConcernRole().getID()

!= citizenWorkspaceAccountManager
.getLoggedInUserConcernRoleID().getID()) {

/**
* the payment instrument passed in is not related
* to the logged in user log the user name of the
* current user, the method invoked and any other
* pertinent data
*/

// throw a generic message
throw PUBLICUSERSECURITYExceptionCreator

.ERR_CITIZEN_WORKSPACE_UNAUTHORISED_METHOD_INVOKATION();
}

While as much information as possible regarding the infraction should be logged,
it is important to ensure that the exceptions thrown do not expose any information
that may be useful to malicious users. A generic exception should be thrown, that
does not contain any information relating to what went wrong. The
curam.citizenaccount.security.impl.CitizenAccountSecurity API throws a
generic message stating "You are not privileged to access this page."

How to Add a New Page to Citizen Account
The following tasks must be carried out to add a custom page to citizen account.

Create a custom, external client component
Artifacts that form part of public facing applications such as UA should be stored
in separate components in order to avoid deploying internal pages intended for

22 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

administrators or case workers into public facing applications. Accordingly, the
first step in adding a custom page to citizen account is to set up a new custom
client-side component in which to put your page. Please refer to the instructions in
'External Client Applications' of the IBM Cúram Server Developer Guide on how
to do this. This component should include the artifacts to be deployed to UA, and
should not include any artifacts intended for use by administrators or case
workers. This component must be added to the deployment packaging for the UA
EAR file. The important point below is that the deployment_packaging.xml,
shipped in the <CURAM_DIR>/EJBServer/project/config/ folder will contain the
minimum entries for the components that need to be built, namely CitizenAccount,
CitizenWorkspace, IntelligentEvidenceGathering and CEFWidgets.

Create a UIM page in the new component
Develop the custom UIM page in the new client component. The user interface
infrastructure offers a wide array of complex functionality. Bear in mind that the
target audience of this page are citizens that will not be familiar with complex user
interfaces, so it is advisable to keep citizen account pages relatively simple,
compared with the complex user interfaces developed for experienced user types
such as case workers or administrators.

Add a navigation entry for the new page
This is done in the standard way. Please refer to the Cúram User Interface
Developers Guide for information regarding how to extend navigation.

Create a Facade
Develop a facade that the page can call. This facade will retrieve data based on
either the currently logged in user, or page parameters that are passed in.
Generally, citizen account pages read data related to the logged in user's linked
accounts. Specifically, if the logged in user is linked to a Cúram participant, i.e. a
concernRoleID then data relating to that concern role, their cases, and their
evidence is played. If the user is linked to remote case processing systems then
data from those remote systems can be displayed in the Citizen Account. The
curam.citizenworkspace.security.impl.CitizenWorkspaceAccountManager API
offers a convenience method that can be used to retrieve the linked identities of a
currently logged in user including their linked ConcernRole if they have one. It is
recommended that customers use this API to retrieve linked identities, as it has
'baked-in' security checks to ensure that the user in question is in fact a linked UA
user.

Relevant authorization entries must be added in DMX in order to give the linked
UA users permission to invoke the new facade method. Add an entry for the new
method to the LINKEDCITIZENWORKSPACEGROUP. For example:
<row>

<attribute name="groupName">
<value>LINKEDCITIZENWORKSPACEGROUP</value>

</attribute>

<nc:navigation id="CitizenAccount">
<nc:nodes>

<nc:navigation-page
id="home" page-id="CitizenAccount_certification"

title="leaf.title.certification" />
</nc:nodes>

</nc:navigation>

Figure 2. Sample custom navigation entry for custom citizen account page

Customizing Universal Access 23

<attribute name="sidName">
<value>MyCustomFacadeName.myCustomFacadeMethodName</value>

</attribute>
</row>

How to Customize Universal Access Style Sheets in Citizen
Account

Citizen account UA style sheets are customizable in the standard way for UIM
pages. Please refer to the Curam User Interface Developers Guide for information.
The citizen account style sheets are located in webclient/components/
CitizenAccount/css.

Customizing Locale
It is important to note that the method for adding new locales to citizen account is
the same as for standard UIM pages as opposed to the dynamic manner by which
public UA pages can be globalized. In order to add different locales to citizen
account, the client project must be rebuilt to generate the JSPs in the new locale.
Please refer to the Cúram Web Client Developer Guide for more information on
managing UIM pages that are to be offered in multiple locales. The
CT_APPLICATION_CODE codetable is used to map External User application
codes to the specific UIM page they should be routed to when they log in. The
client infrastructure uses these configurations to determine where the user should
be routed following a successful authentication. UA ships with an entry for its
default locale of "en":
<code default="false" java_identifier="CITIZEN_WORKSPACE"
status="ENABLED" value="CITWSAPP">
<locale language="en" sort_order="0">

<description>CitizenAccount_home</description>
</locale>

</code>

When adding additional locales to UA, additional entries must be added to this
codetable for each locale that is being added. All should contain the same
description, which contains the value of the citizen account home page. This is also
true of other code tables that are used by UA, such as CT_SecretQuestionType. The
names of the secret questions must be added in each locale that UA is to be offered
in. For more information about globalization , see "Fully Customizable Self Service
Artifacts".

Citizen Account home page
The citizen account home page offers a range of functionality to offer pertinent
information to the citizen. Please refer to the IBM Cúram Universal Access Guide.
The various areas are configured in different ways, which are outlined in the Cúram
Universal Access Configuration Guide.

When referring to customizing the Citizen Account home page this guide is
referring the constituent parts of this page, the Outreach (Did You Know?), and My
Messages Panels.

Customizing display text
The welcome message, cluster titles and text of the last logged on message are
stored in a properties file in the resource store. The logged in user name is
appended to the property citizenaccount.welcome.caption property to display the
welcome message on the home page. To change the welcome message this
property needs to be changed in the properties file. The file is located at

24 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

EJBServer\components\CitizenWorkspace\data\initial\blob\prop\
CitizenMessageMyPayments.properties. The text can be customized by uploading a
new version to the resource store with a name attribute of "CitizenAccountHome".

Outreach Campaigns
Outreach campaigns are designed to display targeted campaign messages to the
citizen. These can include images and links to both UA pages and to external
websites. Whether or not a specific campaign should be displayed to a particular
citizen is determined by a CER rule set that is associated with the campaign in
Administration. Outreach is developed using Advisor and CER, and the campaign
output is recorded as Advice Items. Please see the Cúram Universal Access
Configuration Guide for more information.

How to configure a new Citizen Campaign: Please refer to the Universal Access
Configuration Guide for information regarding configuring new Outreach
campaigns in Administration.

Outreach Campaign rule sets: Outreach is built on top of Advisor infrastructure,
and the CoreCitizenCampaignRuleset which all Outreach campaigns should extend
in turn inherits from the CoreAdvisorRuleset. The CoreCitizenCampaignRuleset is
located at /EJBServer/components/citizenworkspace/CREOLE_Rule_Sets.

The CoreCitizenCampaignRuleset defines two rule classes that are used to drive
Outreach campaigns:

CitizenCampaignAdmin rule class

This is a CER rules representation of a CitizenCampaign administration record.
The name, expiry date time and image reference for a campaign are propagated. A
rule object of this class exists for each active Outreach campaign in the system.
These are managed internally by the Outreach infrastructure.

AbstractCampaignAdviceItem rule class

This class extends AbstractAdviceItem (see Advisor documentation). This is the
class that concrete Outreach campaign rule classes must extend. Concrete Outreach
campaign rules classes must specify the following attributes that are inherited form
this rule class:
v citizenCampaignName

Names are unique across campaigns as they are used as a unique identifier. The
citizenCampaignName specified in the rule set and the name of the Outreach
campaign when it is created in Administration must be identical. Accordingly,
when creating the new Outreach campaign in Administration, the name of the
new campaign must match the citizenCampaignName specified in its associated
rule set.

v campaignShowAdvice
This attribute is where the campaign business logic lives. It should return true if
the participant in question meets the criteria to display the campaign.

The AbstractCampaignAdviceItem class sets the "showAdvice" attribute of its
parent based on whether a CitizenCampaignAdmin rule object exists for the
campaign in question (i.e. is the campaign active in Administration) and based on
the value of the "campaignShowAdvice" attribute.

Customizing Universal Access 25

By default, the expiry date time of a campaign is taken from the Outreach
campaign administration record. This allows administrators to configure the expiry
of campaigns. However, it is also possible to determine the expiry date time based
on business logic or other rules if they want, by overriding the "expiryDateTime"
attribute of the AbstractCampaignAdviceItem class in their child implementation of
this class.

Concrete campaign rule classes must also declare a class that extends the Advisor
AbstractAdviceContext. Please see the Advisor documentation and the following
sample campaign rule set for more information.
<RuleSet name="SampleCampaignRuleSet">

<!-- This class is infrastructure used by Advisor,
please refer to the Advisor documentation for more
information. -->

<Class extends="AbstractAdviceContext"
extendsRuleSet="CoreAdvisorRuleSet"

name="SampleCampaignContext">

<!-- populated by advisor propagator -->
<Attribute name="concernRoleID">

<type>
<ruleclass name="NumberParameter"

ruleset="CoreAdvisorRuleSet"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- populated by advisor propagator -->
<Attribute name="adviceContextID">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="advice">
<type>

<javaclass name="List">
<ruleclass name="AbstractCampaignAdviceItem"

ruleset="CoreCitizenCampaignRuleset"/>
</javaclass>

</type>
<derivation>

<fixedlist>
<listof>

<ruleclass name="AbstractCampaignAdviceItem"
ruleset="CoreCitizenCampaignRuleset"/>

</listof>
<members>
<!-- This list of members must include the custom rule

class that extends AbstractCampaignAdviceItem -->
<create ruleclass="SampleCampaign">

<this/>
</create>

</members>
</fixedlist>

</derivation>
</Attribute>

</Class>

26 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

<!-- Concrete Campaign / Advisor class that extends
AbstractCampaignAdviceItem -->

<Class extends="AbstractCampaignAdviceItem"
extendsRuleSet="CoreCitizenCampaignRuleset"

name="SampleCampaign">

<!-- initialise the Advisor context. Please see Advisor
documentation for more information -->

<Initialization>
<Attribute name="sampleCampaignContext">

<type>
<ruleclass name="SampleCampaignContext"/>

</type>
</Attribute>

</Initialization>

<!-- This is a reference to the campaign text stored in the
resource store. Please see the Advisor documentation
for more information. -->

<Attribute name="adviceText">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="propertyName"/>
</derivation>

</Attribute>

<!-- This is a reference to the advice context ID.
Please see the Advisor documentation for more
information. -->

<Attribute name="adviceContext">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<reference attribute="adviceContextID">
<reference attribute="sampleCampaignContext"/>

</reference>
</derivation>

</Attribute>

<!-- This is used by the parent abstract class to read the
campaign rule object. This name must be identical to
the name given to the Outreach campaign in
Administration -->

<Attribute name="citizenCampaignName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="SampleCampaign"/>
</derivation>

</Attribute>

<!-- Whether or not to display the campaign for the given
participant (provided the campaign is Active) -->

<Attribute name="campaignShowAdvice">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- business logic for campaign goes here. -->
<true/>

Customizing Universal Access 27

</derivation>
</Attribute>

</Class>
</RuleSet>

Images and Links: Advisor and therefore Outreach support including images and
links as part of an Advice Item / campaign. The image itself is uploaded when
creating a new Outreach campaign. By default, if an image is specified when
creating the campaign in Administration, it is displayed as part of the campaign
without a link. However, it is possible to specify a link within the rule set, and
within that link to specify an image, referencing the image that has been
configured for the campaign.

Within the custom concrete campaign rule set, define a link:
<Class extends="AbstractLink"

extendsRuleSet="CoreAdvisorRuleSet"
name="ChildCareOptionLinkWithImage">

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="childCareOptionLinkImage"/>
</derivation>

</Attribute>

<Attribute name="target">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="http://www.yourtargeturl.com"/>
</derivation>

</Attribute>

<Attribute name="modal">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<false/>
</derivation>

</Attribute>

<Attribute name="external">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<true/>
</derivation>

</Attribute>

<Attribute name="linkImage">
<type>

<ruleclass name="Image" ruleset="CoreAdvisorRuleSet"/>
</type>
<derivation>
<!-- note that this is specified. The parent rule class will

specify the image reference from the campaign -->
<specified/>

28 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

</derivation>
</Attribute>

</Class>

When declaring this link within the custom implementation of
AbstractCampaignAdviceItem, you specify the reference to the image configured in
administration: Please refer to the Advisor documentation for further information
on defining links and images.
<Attribute name="childCareOptionLinkWithImage">

<type>
<ruleclass name="ChildCareOptionLinkWithImage"/>

</type>
<derivation>

<create ruleclass="ChildCareOptionLinkWithImage">
<specify attribute="linkImage">

<reference attribute="campaignImage"/>
</specify>

</create>
</derivation>

</Attribute>

In order for the links related to image only campaigns to be persisted to the
Advisor database tables (and therefore displayed in Outreach Campaigns), an entry
in the properties file related to that campaign is required. For example:
AdviceItem.imageOnlyText={link::imageCampaignLinkWithImage}

This entry does not designate a name for the link, but references name of the rules
object defined in the campaign rule set to represent this link.

Performance Considerations: Campaigns refer to CER rule objects in order to
determine whether to display campaigns. Therefore, when the underlying data that
these rule objects depend on changes, CER reassessment will be triggered. This
will cause Advisor to re-calculate whether the campaign should be displayed or
not. This can affect performance and needs to be considered. There are two
different kinds of data changes involved:

Changes to the Participants' data

These kinds of changes affect a specific participant. Take for example, a campaign
that references a citizen's address. Every time the user changes their address, this
change would be propagated to the rule object representing that participants
address. Because the campaign rule object is dependent on this, reassessment
would be triggered. This means that every time the participant changes his
address, the campaign rules will be executed to determine if it should still be
displayed. Therefore, it is important to consider how often a piece of data may
change, and for how many citizens, and whether referencing it in a campaign may
cause a performance issue within the system.

Changes to Outreach Campaigns in Administration

These kinds of changes affect all the rule executions related to the campaign in
question. This means that it will trigger reassessment for every citizen that has
been assessed for eligibility for this campaign. For example, if the image associated
with a campaign is changed, the system will re-execute the rules for each citizen
that has been considered for this campaign. This could require a significant
amount of processing that could have a performance impact on the system.
Accordingly, we recommend that changes in campaign administration are

Customizing Universal Access 29

performed when the system is not under a heavy load, or has been taken offline
for maintenance.

My Messages
Please refer to the Cúram Universal Access Guide for an overview of the
functionality offered by the messages panel and the specific messages offered
out-of-the-box.

When a linked citizen logs in, messages are gathered from around the system, and
from remote systems, for display. This work is done by the
curam.citizenmessages.impl.CitizenMessageController API. It reads persisted
messages by participant from the ParticipantMessage database table, and also
raises the CitizenMessagesEvent.userRequestsMessages event, inviting listeners to
add messages to a list it passes as part of the event parameter. The messages
gathered from each source are sorted, turned into XML and returned to the client
for display.

Configuring Citizen Messages: There are global configurations that can be
specified for citizen messages, such as enabling certain types and configuring their
display order. The different types of messages also include their own configuration
points. Specific information regarding how to customize the various message types
is provided later. Please refer to the IBM Cúram Universal Access Configuration
Guide for more information on how to change the global configurations and on
delivering Citizen Messages using web services.

The textual content of a given message type can also be configured. Each message
type has a related properties file that includes the localizable text entries for the
various messages displayed for that given type. These properties also include
placeholders that are substituted for real values related to the citizen at runtime.

The wording of this text can be customized, by inserting a different version of the
properties file into the resource store. Please see the table below which defines
which properties file should be changed for each type of message:

Table 12. Message Properties Files

Message type Property file name

Payments CitizenMessageMyPayments.properties

Application
Acknowledgment

CitizenMessageApplicationAcknowledgement.properties

Verifications CitizenMessageVerificationMessages.properties

Meetings CitizenMessageMeetingMessages.properties

Referral CitizenMessagesReferral.properties

Service Delivery CitizenMessagesServiceDelivery.properties

It is also possible to remove placeholders (which are populated with live data at
runtime) from the properties. However, there is currently no means to add further
placeholders to existing messages. A custom type of message must be implemented
in this situation.

Adding a new type of Citizen Message: Messages are gathered by the controller
in two ways: the controller reads messages that have been persisted to the
database via the curam.citizenmessages.persistence.impl.ParticipantMessage

30 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

API, and also gathers them by raising the
curam.participantmessages.events.impl.CitizenMessagesEvent

A decision needs to be made regarding whether to "push" the messages to the
database, or else have them generated dynamically on the fly by a listener that
listens for the event that is raised when the citizen logs in. The specific
requirements of the message type need to be considered, along with the benefits
and drawbacks of each option.

Persisted Messages

In this scenario, when something takes place in the system that may be of interest
to the citizen, a message is persisted to the database. For example, when a meeting
invitation is created, an event is fired. Our OOTB meeting messages functionality
listens for this event, and if the meeting invitee is a participant with a linked UA
account, a message is written to the ParticipantMessage table informing the citizen
that they have been invited to the meeting.

One benefit of this approach is that there is very little processing performed when
the citizen logs in to see this message: the message is simply read from the
database and displayed, as opposed to calculation taking place that would
determine if the message was required or not. However, the implementation needs
to also handle any changes to the underlying data that may invalidate or change
the message, and take appropriate action. For example, our meeting message
functionality also listens for changes to meetings in order to ensure the meeting
time, location, and so on, are up to date, and to issue a new message to the citizen
informing that the location or time has changed.

Dynamic Messages

These messages are generated when the citizen logs in, by event listeners that
listen for the curam.participantmessages.events.impl.
CitizenMessagesEvent.userRequestsMessages event.

A benefit is that because the message is generated at runtime, code is not required
to manage change over time: the message is generated based on the data within
the system each time the citizen logs in, so if some underlying data changes, the
next time the citizen logs in, they will get the correct message.

A drawback to this approach is that significant processing may be required at
runtime in order to generate the message. Care must be taken to ensure that this
does not adversely affect the load time of the citizen account home page.

Performance considerations must be evaluated against the effort involved to
manage change to the data that the message is related to over time, and the
requirements of the specific message type. For example, the OOTB verification
message is dynamic, when a citizen logs in it checks to see if any outstanding
verifications exist for that citizen. This is a relatively simple database read, whereas
it would have been complicated to listen for various events in the Verification
Engine and ensure an up-to-date message was stored in the database regarding the
participants' outstanding verifications. On the other had, the meeting messages
need to inform the citizen of changes to their meetings, so functionality had to be
written to manage changes to the meeting record and its related message over
time.

Customizing Universal Access 31

Implementing a new message type: In order to implement a new message type,
regardless of whether the message will be persisted or generated dynamically, the
following must be done:

Common Tasks

v Add a new entry to the CT_ParticipantMessageType codetable to represent the
new message type. This will be used in administration to configure the new
message type.

v Add a DMX entry for the ParticipantMessageConfig database table. This will
store the type and sort order of the new message type and is used for
administration. For example:
<row>

<attribute name="PARTICIPANTMESSAGECONFIGID">
<value>2110</value>

</attribute>
<attribute name="PARTICIPANTMESSAGETYPE">

<value>PMT2001</value>
</attribute>
<attribute name="ENABLEDIND">

<value>1</value>
</attribute>
<attribute name="SORTORDER">

<value>5</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

</row>

v Add a properties file to the App Resource store that contains the text properties
and image reference for the message.

v Add an image for this message type to the resource store.

Implementing a dynamic message

In order to implement a dynamic style message, an event listener needs to be
implemented, to listen for the CitzenMessagesEvent.userRequestsMessages event.
This event argument contains a reference to the Participant and a list, to which the
listener will add curam.participantmessages.impl.ParticipantMessage Java
objects. For further details please consult the Javadoc API for CitzenMessagesEvent.
This can be found in <CURAM_DIR>/EJBServer/components/core/doc

Developers should also refer to the Javadoc API for
curam.participantmessages.impl.ParticipantMessage and
curam.participantmessages.impl.ParticipantMessages for a full explanation.

The message text is stored in a properties file in the resource store. A dynamic
listener will retrieve the relevant properties from the resource store, and create the
ParticipantMessage object accordingly. The message text for a given message can
include placeholders. Values for placeholders are added to ParticipantMessage
objects as parameters. The CitizenMessagesController will resolve these
placeholders, replacing them with the real values related to the participant in
question that have been added as parameters to the message object.

Take for example this entry from the CitizenMessageMyPayment.properties file:
Message.First.Payment=

Your next payment is due on {Payment.Due.Date}

32 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

The actual payment due date of the payment in question will be added to the
ParticipantMessage object as a parameter (see example code below). The
CitizenMessagesController then resolves the placeholders, populating the text with
real values, and then turns the message into XML that is rendered on the citizen
account home page (there is also a public CitizenMessageController method that
will return all messages for a citizen as a list, please see the Javadoc)

From curam.participantmessages.impl.ParticipantMessage API:
/**
* Adds a parameter to the map. The paramReference
* should be present in the message title or body so
* it can be replaced by the paramValue before the message
* is displayed.
*
* @param paramReference
* a string place holder that is present in either the
* message title or body. Used to indicate where the value
* parameter should be positioned in a message.

* @param paramValue
* the value to be substituted in place of the place holder
*/
public void addParameter(final String paramReference,

final String paramValue) {

parameters.put(paramReference, paramValue);
}

The call to the method would look like this:
participantMessage.addParameter("Payment.Due.Date", "1/1/2011");

Messages can also include links. Similarly to placeholders, links are resolved at
runtime. Links can use placeholder values as the text to be displayed for that link.
A link is defined in a properties file as such:
Click {link:here:paymentDetails} to view the payment details.

In this example, "here" is the text to display, and "paymentDetails" refers to the
name of the link that is to be inserted at that point in the text. Please see the
Advisor Developer's Guide for more information. In order for a dynamic listener
to populate this link with a target, it would create a
curam.participantmessages.impl.ParticipantMessageLink object, specifying a
target and a name for the link. The code would look like this:
ParicipantMessageLink participantMessageLink =

new ParticipantMessageLink(false,
"CitizenAccount_listPayments", "paymentDetails");

participantMessage.addLink(participantMessageLink);

Before composing the message, the dynamic listener must check to ensure that the
message type in question is currently enabled. The
curam.participantmessages.configuration.
impl.ParticipantMessageConfiguration record for that message type should be
read, and the isEnabled method used to determine if this message type is enabled.
If not, no further processing should occur.

* It is recommended to separate the code that listens for the event and the code
that composes a specific message, in order to adhere to the philosophy of "doing
one thing and doing it well".

Customizing Universal Access 33

Implementing a persisted message

In order to have a persisted message displayed to the citizen, it must be written to
the database via the
curam.citizenmessages.persistence.impl.ParticipantMessage API. Message
arguments are handled by persisting a curam.advisor.impl.Parameter record and
associating it with the ParticipantMessage record, and links by the
curam.advisor.impl.Link API. Parameter names should map to placeholders
contained within the message text. Link names should relate to the names of links
specified in the message text. Please refer to the Javadoc of
curam.citizenmessages.persistence.impl.ParticipantMessage,
curam.advisor.impl.Parameter and curam.advisor.impl.Link for more
information.

An expiry date time must be specified for each ParticipantMessage. After this date
time, the message will no longer be displayed.

Messages can be removed from the database. If a message needs to be replaced
with a modified version, or removed for another reason, this can be done via the
curam.citizenmessages.persistence.impl.ParticipantMessage API.

Each message has a related ID and type. This is used to track the record that the
message is related to. For example, meeting messages will store the Activity ID
and a type of "Meeting". Messages can be read by participant, related ID and type
via the ParticipantMessageDAO.

Before persisting the message, the dynamic listener must check to ensure that the
message type in question is currently enabled. The
curam.participantmessages.configuration.
impl.ParticipantMessageConfiguration record for that message type should be
read, and the isEnabled method used to determine if this message type is enabled.
If not, no further processing should occur.

Customizing specific message types: You can customize the default message
types in various ways. See the Cúram Universal Access Guide for a description of
the various message types.

Referral Message

This message type creates messages related to referrals. This is a dynamic message.
When the citizen logs in, a message will be created for each referral that exists for
the citizen in the system, provided that referral has a referral date of today or in
the future, and provided that a related Service Offering has been specified for this
referral. The properties file EJBServer\components\CitizenWorkspace\data\
initial\blob\prop\CitizenMessageReferral.properties contains the properties for
the referral message text, message parameters, links and images. This properties
file is stored in the resource store. This resource is registered under the resource
name CitizenMessageReferral. To change the message text of the message, or to
remove placeholders or change links, a new version of this file must be uploaded
into the resource store.

Service Delivery Message

This message type creates messages related to service deliveries. This is a dynamic
message. When the citizen logs in, a message will be created for each service
delivery that exists for the citizen in the system, provided that service delivery has

34 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

a status of 'In Progress' or 'Not Started'. The properties file EJBServer\components\
CitizenWorkspace\data\initial\blob\prop\
CitizenMessageServiceDelivery.properties contains the properties for the service
delivery message text, message parameters, links and images. This properties file is
stored in the resource store. This resource is registered under the resource name
CitizenMessageServiceDelivery. To change the message text of the message, or to
remove placeholders or change links, a new version of this file must be uploaded
into the resource store.

Payment Messages: This message type creates messages based on the payments
issued, canceled, an so on, for a citizen. These messages are persisted to the
database. They replace each other, for example, if a payment is issued and then
canceled, the payment issued message will be replaced with a payment canceled
message. The properties file EJBServer\components\CitizenWorkspace\data\
initial\blob\prop\CitizenMessageMyPayments.properties contains the properties
for financial message text, message parameters, links and images. This properties
file is stored in the resource store. This resource is registered under the resource
name CitizenMessageMyPayments. To change the message text of financial messages,
or to remove placeholders or change links, a new version of this file must be
uploaded into the resource store. The table below describes the messages created
when various events related to payments occur in the system, and the property in
CitizenMessageMyPayments.properties that relates to each message created.

Table 13. Payment messages and related properties
Payment event Message Property

First payment issued on a case Message.First.Payment

Latest payment issued Message.Payment.Latest

Last payment issued Message.Last.Payment

Payment canceled Message.Cancelled.Payment

Payment reissued Message.Reissue.Payment

Payment stopped (case suspended) Message.Stopped.Payment

Payment / Case unsuspended Message.Unsuspended.Payment

Customization of the Payment Messages Expiry Date

The number of days the payment for which the message will be displayed to the
citizen can be configured using a system property. By default the property value is
set to 10 days, however, this can be overridden from property administration.

Table 14. Payment message expiry property
Name Description

curam.citizenaccount.payment.message.expiry.days The number of days the payment message will be
displayed to the participant.

Meeting Messages: This message type creates messages based on meetings that the
citizen is invited to, provided that they are created via the
curam.meetings.sl.impl.Meeting API. This API raises events that the meeting
messages functionality consumes. There are other ways of creating Activity records
without this API, but meetings created in these ways will not have related
messages created as the events will not be raised. These messages are persisted to
the database. They replace each other, for example, if a meeting is scheduled and
then the location is changed, the initial invitation message will be replaced with
one informing the citizen of the location change. The properties file
EJBServer\components\CitizenWorkspace\data\initial\blob\prop\
CitizenMessageMeetingMessages.properties contains the properties for the

Customizing Universal Access 35

meeting messages text, message parameters, links and images. This properties file
is stored in the resource store. This resource is registered under the resource name
CitizenMessageMeetingMessages. To change the message text of meeting messages,
or to remove placeholders or change links, a new version of this file must be
uploaded into the resource store. The table below describes the messages created
when various events related to meetings occur in the system, and the properties in
CitizenMessageMeetingMessages.properties that relates to each message created.
Different versions of the message text are displayed depending on whether the
meeting is an all day meeting, whether a location has been specified, and whether
the meeting organizer has contact details registered in the system. Accordingly, the
property values in this table are approximations that relate to a range of properties
within the properties file. Please refer to the properties file for a full list of the
message properties.

Table 15. Meeting messages
Meeting event Message Properties

Meeting invitation Non.Allday.Meeting.Invitation.*,
Allday.Meeting.Invitation.*

Meeting update Non.Allday.Meeting.Update.*, Allday.Meeting.Update.*

Meeting canceled Allday.Meeting.Update.*, Allday.Meeting.Cancellation.*

Customization of the Meeting Messages Display Date

The number of days before the meeting start date that the message should be
displayed to the citizen can be configured using a system property. By default the
property value is set to 10 days, however, this can be overridden from property
administration.

The meeting message expires (i.e. it is no longer displayed to the citizen) at the
end of the meeting, i.e. the date time at which the meeting is scheduled to end.

Table 16. Meeting message display date property
Name Description

curam.citizenaccount.meeting.message.effective.days The number of days before the meeting start date that
the message should be displayed to the citizen.

Customization of Activity types for which to create Meeting Messages

Meetings are stored on the Activity entity. There are different types of Activity,
which are stored in the CT_ActivityType codetable. The list of activity types for
which to create messages can be customized using the following property. The
default code is 'AT2' which represents Meeting.

Table 17. Activity types for which to generate meeting messages
Name Description

curam.citizenaccount.meeting. activity.types.to.generate.messages A configuration setting to dictate the types of
activities for which messages will be
generated.

Application Acknowledgment Message: This message type creates a message when an
application is submitted by a citizen. This message is persisted to the database. The
properties file EJBServer\components\CitizenWorkspace\data\initial\blob\prop\
CitizenMessageApplicationAcknowledgment.properties contains the properties for
the messages text, message parameters, links and images. This properties file is
stored in the resource store. This resource is registered under the resource name

36 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

CitizenMessageApplicationAcknowledgment. To change the message text of the
message, or to remove placeholders or change links, a new version of this file must
be uploaded into the resource store.

Customization of Application Acknowledgment Message Expiry Date

The number of days the Application Acknowledgment message will be displayed
to the citizen can be configured using a system property. By default the property
value is set to 10 days, however, this can be overridden from property
administration.

Table 18. Application acknowledgment message expiry property
Name Description

curam.citizenaccount.
intake.application.acknowledgement.message.expiry.days

The number of days the application
acknowledgment message will be displayed
to the participant.

Customizing existing pages
The My Payments, My Applications and My Activities pages that are shipped
OOTB are customizable. The UIM pages can be replaced higher up the component
order and changes made as required, as with standard UIM pages.

On the server side, the APIs that drive these pages are customizable and live in the
curam.citizenaccount.impl package. These can be customized along with the
structs that they return in order to return additional information. This is
preferential to customizing the curam.citizenaccount.facade.impl.CitizenAccount
facade, which is internal and should not be called.

The required security checks live in the CitizenAccount facade as opposed to in
the APIs located in curam.citizenaccount.impl. Custom facades must implement
the required checks.

The structs that are used to serve these pages with data are also customizable. The
model files that contain these structs are located at EJBServer\components\
CitizenWorkspace\model\Packages\CitizenAccount. Unlike the other model
artifacts in UA, these are customizable in the standard way.

My Payments Page Customization
Data for this page is retrieved using the
curam.citizenaccount.impl.CitizenPayments API. The listPayments method is
used to list the payments on the page. The in line instruction details page calls the
readPaymentInstructionByInstrument method to retrieve the payment instruction
details.

My Applications Page Customization
Data for this page is retrieved using the
curam.citizenaccount.impl.CitizenPayments API. The listPayments method is
used to list the payments on the page. The in line instruction details page calls the
readPaymentInstructionByInstrument method to retrieve the payment instruction
details. Please consider the required security checks when consuming this API in
custom facades.

Customizing Universal Access 37

Contact Information Page Customization
This page displays case worker contact details for each Case related to the citizen,
along with the citizen's contact information. It is customizable in a number of
ways, described in the table below.

Table 19. Contact Information Customization properties
Name Description Default

curam.citizenaccount.
contactinformation.show.caseworker.details

Whether to display case worker contact
information on this page.

true

curam.citizenaccount.
contactinformation.show.casemember.cases

Whether to display case worker details
where the citizen is a case member, as
opposed to the primary participant.

true

curam.citizenaccount.
contactinformation.show.businessphone

Whether to display the case workers'
business phone number.

true

curam.citizenaccount.
contactinformation.show.mobilephone

Whether to display the case workers' cell /
mobile phone number.

true

curam.citizenaccount.
contactinformation.show.faxnumber

Whether to display the case workers' fax
number.

true

curam.citizenaccount.
contactinformation.show.pagernumber

Whether to display the case workers' pager
number.

true

curam.citizenaccount.
contactinformation.show.emailaddress

Whether to display the case workers' email
address.

true

Adding additional contact information.

A customer might want to display additional contact information, e.g. Twitter
handle, for a case worker. To do this a customer should implement
curam.citizenaccount.impl.CitizenContactHelper interface. This interface allows
the addition of extra case worker contact details to the Contact Information screen
in the Citizen Account. The CaseWorkerContacts.name attribute resolves to a
property entry in CitizenAccountContactInformation.properties which must be
defined. For example CaseWorkerContacts.setName("twitterhandle"); would
require an entry similar to twitterhandle=Twitter in
CitizenAccountContactInformation.properties.

Customizing Appeal Requests
Complete the following steps to customize Appeal Requests in the Citizen Account
to your requirements.

Displaying appeals request status from an external appeals
system
You can create an implementation to enable the display of appeal request status
from an external appeals system in the citizen account by using the provided API.

About this task

The curam.core.onlineappealrequest.impl.OnlineAppealRequestStatus interface
takes an appeal request as an input and passes back a code table value. You can
modify code table entries as required.

Procedure
1. Identify the appeal request ID from the caseworker application.
2. Use the appeal request ID to associate the appeal request status from the

external system with the appeal request status in Universal Access.
3. Implement the curam.core.onlineappealrequest.impl.OnlineAppealRequestStatus

interface to return the appropriate code table value based on the

38 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

OnlineAppealRequest. For example, a custom implementation of this class
might call a remote system and map the return value to an appropriate code
table value.

4. Customize an appeal status message to display in the Citizen Account.

Customizing Life Events
A description of the high-level architecture of Life Events and how to perform the
analysis and development tasks in building a Life Event. Use this information to
understand Life Event and why they are useful, and how to develop Simple Life
Events.

Many types of Life Events can be built entirely by analysts, some will require input
from developers. This information will help analysts to understand how to
perform the analysis for a new Life Event and how to determine whether input is
needed from developers.

Introduction to Life Events
Life Events are intended to capture a holistic view of what is happening in a
person's life. Life Events provide, not only raw information about a person's
circumstances, income and so on but also context.

Consider the following scenario: James Smith has lost his job after the company he
is working with shuts down. James logs in to his Citizen Account and goes to the
Life Event section. He chooses the "Lost my Job" Life Event. The system launches
an IEG2 script to collect information about the Job Loss event. The script asks
James a number of relevant questions about the circumstances of his Job Loss.
These questions are not necessarily relevant to any particular Social Assistance
Program that James might be on. A Life Event Script is typically short and to the
point. Some of the information in the script might be pre-filled with information
already known about James Smith. For example, the name and address of his
former employer are displayed in the script (this is known as pre-population of the
IEG script). James confirms that indeed this is the employer that laid him off.

After completing the Life Event script, a set of recommendations is displayed.
These recommendations include:
v Services in the community that can provide him with help and support
v Government run Programs that may be relevant to James' situation, for example

Unemployment Benefit

A couple of days after submitting the Life Event, James logs in to his Citizen
Account again. He sees a message on his home page. James is on a Benefit Case,
and as a result of the changes in the Life Event the agency administering this
benefit needs to collect some more information about James' income. After
completing another question script, James returns to the Life Event pages and
reviews information about his previously submitted "Lost my Job" Life Event. He
can see the information he sent to the agency and also remind himself of the
services recommended as a result.

From James' point of view he has:
v Told one or possibly several different agencies about his misfortune, he hasn't

had to contact them separately

Customizing Universal Access 39

v He has been recommended services that are in his community and close to
where he lives. He may not have been even aware that such services existed
before

v He has been recommended to apply for appropriate government programs

From the point of view of interested Social Enterprises:
v They get context. They not only know that James has applied for a program,

they now know what has prompted him to apply
v James has been triaged by the Citizen Account system, saving valuable resources
v James has been directed towards community / voluntary resources that can help

him
v If James has existing cases that are being managed using Cúram, then

information from the Life Event can be fed automatically into these cases

How to Build a Life Event
Details of how to perform the analysis and development tasks in building a Life
Event.

Analysis
You must undertake an analysis in order to design a Life Event for Universal
Access. It is possible to build Life Events for case workers or indeed to use Life
Event infrastructure to drive other processes like certification, but these topics are
beyond the scope of this information. Java coding skills are not a prerequisite for
developing all Life Events. Depending on requirements, many and in some cases
all of the artifacts required can be developed by an Analyst. This topic will help
Analysts to determine whether Java developers will be needed to complete the
implementation of a Life Event.

Broadly speaking, Life Events for Citizens come in two flavors:
v Standard Life Events
v Round Tripping Life Events

Standard Life Events allow the Citizen to enter new information and then submit it
to the agency. For example: Imagine, that Linda logs in to Universal Access and
submits a "Having a Baby" life event. This is all new information, it doesn't really
need relate to anything that has gone before. If it turns out that she has made a
mistake in the information she submitted, say the name of the obstetrician, then
she simply launches a new Life Event and re-enters all the new information again
before submitting.

Round Tripping Life Events are more complex. The distinction between these Life
Events and Standard Life Events is determined by whether the data that is
pre-populated into the Life Event is allowed to be changed by the user. If the
Citizen is expected to update pre-populated information, rather than just adding
new information then the Life Event should be considered a Round Tripping Life
Event. It is considerably harder to design scripts for this type of Life Event.

The primary artifacts that constitute a Simple Life Event are:
v An IEG script and its associated data store schema
v An IEG script to review answers in a previously submitted Life Event (optional)
v A Cúram Data Mapping Engine specification that describes how to map data

from the IEG script into evidence on the client's cases

40 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

All of these artifacts can be configured using the Administrator's User Interface.
For more information about configuring Simple Life Events using the
Administrator's UI, see "Configuring Life Events" in the IBM Cúram Universal
Access Configuration Guide.

The Life Events system can take information entered by the user and do either of
two things with that information:
1. If the user is linked to the local Cúram case processing system, then the Life

Events system can update related evidence in any cases they have.
2. If the user is linked to remote systems then the Life Events system can send

updates to related remote systems via web services.

If the Life Event is a Round Tripping Life Event or it is required to update the
person's evidence in Cúram then some development work will be needed. See the
Life Events APIs needed to meet these requirements or indeed to supplement the
standard Life Event behavior with additional custom functionality.

Customizing Advanced Life Events
Use this information to understand what distinguishes an Advanced Life Event
from a Simple Life Event, and how to develop Advanced Life Events. This
information describes the high-level architecture of Advanced Life Events and
details how to perform the analysis and development tasks in building an
Advanced Life Event. It also describes the Advanced Life Events Java API.

Advanced Life Events and when to use them
Advanced Life Events enable fully automated round-tripping of data. This means
that client evidence is read into the datastore for an IEG script. It is then updated
by the client. When the Life Event is submitted, the original client evidence that
was read into the IEG script is updated. Advanced Life Events are only required
when this level of automated round tripping of data is required. Under all other
circumstances Simple Life Events are the recommended approach. Project
Architects should consider carefully whether round tripping is required or whether
the data entered by a client can be treated as new evidence to be integrated into
the client's cases.

Advanced Life Events cannot be configured through the Administration user
interface, they must be created by developers.

How to Build a Life Event

Analysis
The distinction between these Round Tripping Life Events and Standard Life
Events is determined by whether the data that is pre-populated into the Life Event
is allowed to be changed by the user. If the Citizen is expected to update
pre-populated information, rather than just adding new information then the Life
Event should be considered a Round Tripping Life Event. It is considerably harder
to develop this type of Life Event. The Advanced Life Events subsystem is
designed to cater for Round Tripping Life Events. The following information
describes how to develop an Advanced Life Event that supports Round Tripping of
the client's information.

The primary artifacts that constitute an Advanced Life Event are:
v An IEG script and its associated data store schema

Customizing Universal Access 41

v An IEG script to review answers in a previously submitted Life Event (optional)
v An Recommendations Ruleset, that produces the set of recommendations based

on the information entered in the IEG script (optional)

The Life Events system can take information entered by the user and do either of
two things with that information:
1. If the user is linked to the local Cúram case processing system, then the Life

Events system can update related evidence in any cases they have.
2. If the user is linked to remote systems then the Life Events system can send

updates to related remote systems via web services.

The Life Events system can be configured to seek the user's permission before
sending Life Event information to any remote systems.

A standard Life Event that is configured only to send information to remote
systems can be configured through the administration application. See Universal
Access Configuration Guide for details.

If the Life Event is a Round Tripping Life Event or it is required to update
evidence in the local case processing system then some development work will be
needed to configure the Life Event. Round Tripping Life Events must be
pre-populated. Currently pre-population of Life Events is only supported for users
linked to the local Cúram case processing system via a concern role. To read
information from cases and update those cases, the Life Events system relies on a
subsystem called the Citizen Data Hub.

The remainder of this topic outlines the work needed to configure the Citizen Data
Hub.

The Life Event Broker uses the Data Hub to get the data it needs to populate the
Life Event, so the developer must configure the Data Hub to extract this data. The
Life Event Broker also sends the updated data back through the Data Hub. The
Data Hub must be configured to tell it what to do with this updated data.

These are some of the artifacts used to configure the Citizen Data Hub for reading
information:
v Transform - Translates data from the Holding Case into Data Store XML
v Filter Evidence Links - When reading Citizen Data, these links filter out only the

evidence entities of interest when reading from the Holding Case
v View Processors - Java classes for extracting non-evidence data into the Data

Store XML

These are some of the artifacts that are used to configure the Citizen Data Hub for
updating information:
v Transforms - Convert a Data Store XML Difference Description back into

Holding Case Evidence
v Update Processors - Perform other update tasks or update non-evidence data

relating to the Citizen

Considerations for Life Events Analysis: Here are some of the considerations
that affect the complexity of developing a particular Life Event that must read
from, or write to, an evidence or participant-related data store in Cúram. These
considerations should inform any analysis of Life Events development and any
resulting estimates.

42 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

1. Is the Life Event a Standard Life Event or a Round Tripping Life Event
2. What information needs to be pre-populated into the IEG2 script?
3. What Evidence data is read by the Life Event?
4. What Evidence data is updated by the Life Event?
5. What non-Evidence data is read/updated by the Life Event
6. How many Programs/Case Types will be affected by the Life Event
7. If a Life Event shares to multiple Cases, will those case types also share

evidence with each other using Evidence Broker?
8. Does a Life Event have associated Recommendations? If so, do they relate to

Community Services, Government Programs or both?

Of these items dealing with Non-Evidence Entities presents the greatest challenge.
Any Life Event that updates non-evidence entities will require developers with
Java skills.

Building The Components of a Life Event
A description of how to build the component parts of a Life Event that uses the
Citizen Data Hub. This information does not require any knowledge of Java.
v How to write Life Event IEG Scripts, including Review Scripts
v How to write Life Events Recommendations Rule Sets
v How to pre-populate a Life Event Script using the Citizen Data Hub
v How to process Life Event Updates using the Citizen Data Hub
v How to put all the components together

Overview: An outline of how to build the component parts of a Life Event that
uses the Citizen Data Hub. This information does not require any knowledge of
Java.
v How to write Life Event IEG Scripts, including Review Scripts
v How to write Life Events Recommendations Rule Sets
v How to pre-populate a Life Event Script using the Citizen Data Hub
v How to process Life Event Updates using the Citizen Data Hub
v How to put all the components together

Writing Life Event IEG Scripts: Writing a Life Event IEG script is much like
writing any other IEG script for more information on writing IEG2 Scripts in
general please refer to the Developer Guide Authoring Scripts In IEG2. However
there are some special considerations for Life Event scripts. In the main these
depend on whether the Life Event is a Round Tripping Life Event or a Standard
Life Event. Recall that in a Round Tripping Life Event, Citizen Data is read into the
Data Store used by the IEG script and then this data can be modified by the
Citizen as they go from page to page in the Life Event script. Take for example a
piece of Income data that is read into the Life Event script. The Citizen modifies
this Income information and then submits. The Life Event Broker must ensure that
when the Citizen changes the Income data, that this change is detected and that
the changes are correctly propagated back to the Income entity from which the
data was originally read. The Life Event Broker needs a way to "track" data from
its origin in the Income entity, through the Life Event Script and back to the same
Income entity. In order to facilitate this the IEG script designer must place a
"marker" into the data store schema. Here is an example of the definition of an
Income Data Store:

Customizing Universal Access 43

1 <xsd:element name="Income">
<xsd:complexType>

<xsd:attribute name="incomeType" type="INCOME_TYPE"
default=""/>

5 <xsd:attribute name="cgissIncomeType"
type="CGISS_INCOME_TYPE"/>

<xsd:attribute name="incomeFrequency"
type="INCOME_FREQUENCY" default=""/>

<xsd:attribute name="incomeAmount" type="IEG_MONEY"
10 default="0"/>

<xsd:attribute name="localID" type="IEG_STRING"/>
<xsd:complexType>

</xsd:element>

The attribute localID is used by the Cúram Life Event Broker to track the unique
identity of the entity from which the Income Data was drawn. When this entity is
changed by the user and submitted, the Life Event Broker can use the value of
localID to locate the correct entity to update as a result of the changes in the Life
Event. There are some other special markers that can be placed in the schema to
aid with providing automatic updates to Cúram evidence entities.

When designing a script for a Round Tripping Life Event the designer should bear
in mind the effects that pre-population of data can have on the flow of the script.
One particular example of this is conditional clusters. Life Event Scripts should
avoid conditional clusters that are associated with pre-populated data. These are
common in Intake scripts but don't work well when the data store has been
pre-populated. Take for example a Life Event around losing a job, a boolean flag
on the Person entity, hasJob is used to indicate that person has a job. The IEG
script presents the user with a question: "Does anyone in your household have a
job?". This is used to drive the display of a conditional cluster that identifies which
household members who have jobs. If the data in the data store is pre-populated
however, there's a good chance that one or more there will be one or more Person
entities with hasJob already be set to "true". In the current implementation of IEG2
however it is not possible to get the "Does anyone in your household have a job?"
Control Question to default to true even when hasJob is true for one or more
household members. For this reason the general rule should be to avoid control
questions for conditional clusters like this when the fields they control are
pre-populated.

Writing Life Event Review Scripts

Users who have previously submitted a Life Event can return to review the
answers they gave. IEG Scripts are an ideal way to present this kind of information
in a page-by-page, easily readable format. A script that is suitable for data
collection however is not necessarily suited for use in the review of previously
submitted data. For one thing, the fields should not be editable in a review script.
IEG provides a "summary page" feature that can be used for rendering summaries
of data that have been already entered. Summary pages are recommended as a
good way of writing Life Event Review Scripts. For more information on writing
IEG2 Scripts please refer to the Developer Guide Authoring Scripts In IEG2. If a
review script is not supplied, then the question script is launched in read-only
mode when a user elects to review their Life Event.

Writing Life Event Recommendations Rule Sets: After submitting a Life Event
the user is presented with a Screen showing Community Services in their area that
are deemed suitable based on the Life Event they have just submitted. The same
screen can also list recommended Government Programs for which to Self Screen

44 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

or perform Intake. Life Event Recommendations Rule Sets must extend the
TriageInterface rule set and extend AbstractTriageResult. As follows:
<RuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=
"../../../../CREOLEInfrastructure/xsd/curam/

creole/xsd/RuleSet.xsd"
name="LifeEventRecommendationsRuleSet">
<Class name="LifeEventRecommendation"

extends="AbstractTriageResult"
extendsRuleSet="TriageInterfaceRuleSet">
...

</Class>
...

</RuleSet>

For the most part, writing a Life Event Recommendations rule set resembles
writing a Triage Rule Set, see "Customizing Triage". Where Rules for Life Event
Recommendations differ is that they can make decisions based on whether a given
Data Store entity was changed by the user executing the Life Event Script and, if it
was changed, what was the nature of the change. For example, the Rule Set could
make one recommendation based on the addition of a new Income entity or a
different one based on a change to an existing Income Entity. The example below
shows how to add rule attributes in support of Life Event Recommendations to a
Person class.
<Class name="Person" xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Attribute name="curamDataStoreUniqueID">

<type>
<javaclass name="Long"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="curamHasChanged">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="curamChangeType">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

Following the submission of a Life Event, the Life Event Broker initializes a Rule
Session and creates Rule Objects corresponding to the Data Store Entities for the
Life Event. It then modifies these Rule Objects based on the Difference Command
that corresponds to that Data Store entity. Taking the example of the Person Rule
Class described above: If the Person entity in the data store was changed as a
result of the execution of the Life Event IEG script then the curamHasChanged
attribute will return true. The curamChangeType will return the type of change that
was made:

Customizing Universal Access 45

v DCMDT10001 - The entity was added by the Life Event IEG Script
v DCMDT10002 - The entity was changed by the Life Event IEG Script
v DCMDT10003 - The entity was removed by the Life Event IEG Script

Pre-Populating a Life Event: A description of the artifacts that need to be
developed in order to pre-populate a Life Event script:
v How the Data Hub Works for reading data
v How to author Read Transforms
v How to use Pre-Packaged View Processors

How the Data Hub Works for Reading

The Data Hub is a means of collecting data about Citizens from many different
locations and returning it as an XML document in a datastore. The Data Hub can
be used to hide the complexities of where data comes from and how it is
represented in it original locations. For example, to drive a "Lost my Job" Life
Event it might be necessary to gather information about a person's Income,
Address and Employment. These three pieces of information might be represented
differently on the underlying system, indeed they might live on three or more
different systems. The caller doesn't need to know this. The Citizen Data Hub
allows its clients to get these pieces of information in one single operation.
Operations of this type are named uniquely, each is called a "Data Hub Context".
To animate the "Lost my Job" example we define a Data Hub Read Context called
"CitizenLostJob" that allows the collection of Income, Address and Employment
information in a single query.

One of the sources that the Data Hub can draw on is Evidence on Cases. In
particular, Evidence on the Citizen's Holding Case. The Holding Case can use the
Evidence Broker to gather data from many disparate Integrated Cases or even from
other Systems via Web Services. The Holding Case is a little different from other
Cases. There is only ever one per Citizen on a given Cúram system. The Holding
Case has an interface that allows all of the Evidence it contains to be extracted in
XML format. This XML format is optimized for the description of Evidence in
particular. Because it is optimized for the description of Evidence, it isn't
necessarily in a format suitable for insertion into a data store. Fortunately it is
relatively easy to translate data in one XML format into another format that
contains the same information. This can be done using a language called XSLT For
more information on XSLT please refer to, http://www.w3.org/TR/xslt.

Authoring Read Transforms

You can write XSLT Transforms for use in the Data Hub. To write Citizen Data
Hub Transforms it is necessary to understand, the structure of the Holding
Evidence XML that is the source data and the Data Store schema that is the target.
The "CitizenLostJob" Life Event is significantly complex so, for the purposes of an
introductory example, this section describes a simple fictitious Life Event for
Citizens who have bought a new car. This Life Event is associated with the Data
Hub Context "CitizenBoughtCar". This would not be considered a "Life Event" in
the real world but it nevertheless provides an example of some of the principles of
building a Round Tripping Life Event. For the purposes of this example consider
this fragment of Holding Evidence XML that is used to describe a Vehicle:

46 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

The client element represents data belonging to the participant with concern role
id 101. In Cúram demo data this is James Smith. The client contains a single
evidence entity of type ET10081. In the Cúram Common Evidence layer, ET10081 is
the Evidence Type identifier for Vehicle Evidence. The localID attribute plus the
evidence type uniquely identifies the underlying evidence object for the Vehicle.
This data has to be mapped to data store XML so that it can be used to populate
an IEG Script. Consider how the above data is to be represented in data store
XML:

This XML data must conform to the schema used to build the IEG script. Notice
that the XML above conforms to a schema that is a superset of the
CitizenPortal.xsd schema. It is recommended that the CitizenPortal.xsd schema
be used as a starting point for the schemas used in Customer Life Events. To these
schemas need to be added the "marker" attributes needed for Life Events. These
marker attributes include the use of localID as discussed previously. Datastore
schemata for entities can also include the following special markers that are

<?xml version="1.0" encoding="UTF-8"?>
<client-data
xmlns="http://www.curamsoftware.com/schemas/ClientEvidence">

<client localID="101" isPrimaryParticipant="true">
<evidence>

<entity localID="-416020015578349568" type="ET10081">
<attribute name="vehicleMake">VM2</attribute>
<attribute name="versionNo">2</attribute>
<attribute name="startDate">20110301</attribute>
<attribute name="usageCode">VU1</attribute>
<attribute name="amountOwed">3,200.00</attribute>
<attribute name="numberOfDoors">0</attribute>
<attribute name="evidenceID">

-5315936410157449216
</attribute>
<attribute name="monthlyPayment">0.00</attribute>
<attribute name="vehicleModel">159</attribute>
<attribute name="year">2008</attribute>
<attribute name="equityValue">0.00</attribute>
<attribute name="endDate">10101</attribute>
<attribute name="fairMarketValue">17,000.00</attribute>
<attribute name="curamEffectiveDate">20110301
</attribute>

</entity>
</evidence>

</client>
</client-data>

Figure 3. Holding Evidence XML Example

<?xml version="1.0" encoding="UTF-8"?>
<Application>

<Person localID="101" isPrimaryParticipant="true"
hasVehicle="true">

<Resource resourcePageCategory="RPC4001"
localID="-416020015578349568" vehicleMake="VM2"
versionNo="2" amountOwed="3,200.00" vehicleModel="159"
year="2008" fairMarketValue="17,000.00"
curamEffectiveDate="20110301">

<Descriptor/>
</Resource>

</Person>
</Application>

Figure 4. Data Store XML Sample

Customizing Universal Access 47

specialized for representing Evidence in the Holding Case: The following XSLT
fragment shows how to transform Vehicle Holding Evidence into a corresponding
Data Store Entity:
v curamEffectiveDate - This maps to the effective date of a piece of Cúram

Evidence

The Life Event author who adds this transform to their Life Event can turn Vehicle
Evidence recorded on any Integrated Case into a Data Store format that can be

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:x="http://www.curamsoftware.com/
schemas/DifferenceCommand"
xmlns:fn="http://www.w3.org/2006/xpath-functions"

version="2.0">
<xsl:output indent="yes"/>

<xsl:strip-space elements="*"/>

<xsl:template match="update">
<xsl:for-each select="./diff[@entityType=’Application’]">

<xsl:element name="client-data">
<xsl:apply-templates/>

</xsl:element>
</xsl:for-each>

</xsl:template>

<xsl:template match="diff[@entityType=’Person’]">
<xsl:element name="client">

<xsl:attribute name="localID">
<xsl:value-of select="./@identifier"/>

</xsl:attribute>
<xsl:element name="evidence">

<xsl:apply-templates/>
</xsl:element>

</xsl:element>
</xsl:template>

<xsl:template match="diff[@entityType=’Resource’]">
<xsl:element name="entity">

<xsl:attribute name="type">ET10081</xsl:attribute>
<xsl:attribute name="action">

<xsl:value-of select="./@diffType"/>
</xsl:attribute>
<xsl:attribute name="localID">

<xsl:value-of select="./@identifier"/>
</xsl:attribute>
<xsl:for-each select="./attribute">

<xsl:copy-of select="."/>
</xsl:for-each>

</xsl:element>
</xsl:template>

<xsl:template match="*">
<!-- do nothing -->

</xsl:template>
</xsl:stylesheet>

Figure 5. XSLT Transform for Vehicle Resource Information

48 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

displayed in an IEG script with all the information pre-populated from the
Evidence Record.

Defining Filters for Evidence

When the Holding Case is called upon to return an XML representation of its
evidence, by default it will return all evidence for the citizen concerned. This could
be a very large query that returns much more information than is required. The
purpose of a Filter Evidence Link is to define, for each Data Hub Context, which
Evidence Types are of interest. A Filter Evidence Link can be defined by adding
entries to a Filter Evidence Link dmx file. The example below shows a Filter
Evidence Link dmx file that defines the information that should be returned for the
"CitizenBoughtCar" Life Event:
<?xml version="1.0" encoding="UTF-8"?>
<table name="FILTEREVIDENCELINK">

<column name="FILTEREVLINKID" type="id" />
<column name="FILTERNAME" type="text" />
<column name="EVIDENCETYPECODE" type="text" />
<row>

<attribute name="FILTEREVLINKID">
<value>175</value>

</attribute>
<attribute name="FILTERNAME">

<value>CitizenBoughtCar</value>
</attribute>
<attribute name="EVIDENCETYPECODE">

<value>ET10081</value>
</attribute>

</row>
</table>

Using Pre-Packaged View Processors

Up to this point has focused on how Transforms can be used turn Evidence data
into Data store XML for use in a Life Event Script. However there are other
important pieces of information that are not represented as Evidence. In general
the Life Event author must develop custom Java code in order to populate any
information that is not represented as evidence. Using Java it is possible to develop
View Processors which can be used to extract non-evidence data and translate this
data into data store xml. By associating these View Processors with the right Data
Hub Context, they can add their information into the data store in addition to the
data put there by the transforms. The Life Events Broker ships with some
pre-packaged View Processors that are capable of inserting certain frequently used
non Evidence Data.
v Household View Processor
v The Person Address View Processor

The Household View Processor will find all Persons related to the currently
Logged in user and pull them into the data store along with information on how
they are related to the logged in Citizen. This information is based on the CEF
ConcernRoleRelationship entity.

The Person Address View Processor populates the most important details of the
logged in Citizen, such as name and Social Security Number. It also pulls in the
Residential and Mailing addresses of the logged in Citizen. Both the Household
View processor and the Person Address View Processor can be used together in the
same Life Event Context but the Person Address View Processor should be run

Customizing Universal Access 49

after the Household View Processor. The excerpt below shows how to configure
these two View Processors to execute for the "CitizenBoughtCar" Life Event.
<?xml version="1.0" encoding="UTF-8"?>

<table name="VIEWPROCESSOR">
<column name="VIEWPROCESSORID" type="id"/>
<column name="LOGICALNAME" type="text" />
<column name="CONTEXT" type="text" />
<column name="VIEWPROCESSORFACTORY" type="text" />
<column name="RECORDSTATUS" type="text"/>
<column name="VERSIONNO" type="number"/>
<row>

<attribute name="VIEWPROCESSORID">
<value>4</value>

</attribute>
<attribute name="LOGICALNAME">

<value>CitizenLostJob0</value>
</attribute>
<attribute name="CONTEXT">

<value>CitizenBoughtCar</value>
</attribute>
<attribute name="VIEWPROCESSORFACTORY">

<value>
curam.citizen.datahub.internal.impl.
+HouseholdCustomViewProcessorFactory
</value>

</attribute>
<attribute name="RECORDSTATUS">

<value>RST1</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

</row>
<row>

<attribute name="VIEWPROCESSORID">
<value>5</value>

</attribute>
<attribute name="LOGICALNAME">

<value>CitizenLostJob1</value>
</attribute>
<attribute name="CONTEXT">

<value>CitizenBoughtCar</value>
</attribute>
<attribute name="VIEWPROCESSORFACTORY">

<value>
curam.citizen.datahub.internal.impl.
+CustomPersonAddressViewProcessorFactory
</value>

</attribute>
<attribute name="RECORDSTATUS">

<value>RST1</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

</row>
</table>

Note the use of the CONTEXT field. This links the ViewProcessor to the
"CitizenBoughtCar" Life Event Context. This ensures that this ViewProcessor is
called whenever the "CitizenBoughtCar" Data Hub Context is called. Notice also
the use of a logicalName which uniquely distinguishes each View Processor. View
Processors for a given Data Hub Context are executed in lexical order, so a View
Processor name with a logicalName of "AAA" for the DataHubContext
"CitizenBoughtCar" will be executed before one with a logicalName of "AAB".

50 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Driving Updates from Life Events: A description of the artifacts that need to be
developed in order to process the data submitted from a Life Event script. This
information describes:
v How the Data Hub Works for updating data
v How to author Update Transforms
v How to create new Case Participants from Update Transforms
v How to configure Evidence Brokering for the Holding Case

How the Data Hub Works for Updating

Just as the Citizen Data Hub has a notion of Data Hub Context for reading so also
does it have Data Hub Contexts for updating. Life Events will typically use the
same Data Hub Context name for the read and updates associated with the same
Life Event, so the "CitizenBoughtCar" context describes, not only, a set of artifacts
for pre-populating a "CitizenBoughtCar" Life Event script but also a set of artifacts
for handling updates to the Citizen's data when the "CitizenBoughtCar" Life Event
script is complete.

An update operation for a given Citizen Data Hub Context can lead to many
different individual entities being updated in a single transaction. The artifacts,
provided to a Data Hub following a script submission are:
v A Data Store root entity
v A Difference Command
v A Data Hub Context Name

The Data Store root entity is the root of the data store that has been updated via
the Life Events IEG script. The Difference Command is an entity that describes
how this data store is different to the one that was passed to the IEG script before
it was launched. In other words it describes how the user has changed the data as
a result of executing the Life Event Script. These differences are broken down into
three basic types:
v Creations - The user has created a data store entity as a result of running the

IEG script
v Updates - The user has updated an entity as a result of running the IEG script
v Removals - The user has removed an entity as a result of running the IEG script

Of these three, Creations and Updates are the most common. Allowing users to
remove items in Life Events scripts should generally be considered bad practice.
Standard Life Events tend to be characterized by a number of Creations whereas
Round Tripping Life Events tend to be a mixture of Creations and Updates. The
Difference Command is generated automatically by the Life Event Broker after a
Life Event is submitted.

To turn a Data Hub Update Operation into automatic updates to evidence entities
on the Holding Case we need to specify a Data Hub Update Transform. In cases
where there is a requirement to update non-evidence entities, an Update Processor
must be developed. These Update Processors involve Java code development.

Writing Transforms for Updating

Update Transforms, like Read Transforms are specified using a simple XSLT
syntax. In order to write update Transforms, the author must understand both the
input XML, and the output Evidence XML format. The following examples are

Customizing Universal Access 51

built around a "CitizenHavingABaby" Life Event. This Life Event allows the user to
report that they are due to have a baby. They can enter a number of unborn
children to indicate, for example, that they are expecting twins. The user can also
enter a due date and they can nominate a father for the unborn child. The father
can be an existing case participant or someone else entirely. In the latter case they
must enter name, address, Social Security Number etc. This Life Event is not a
"Round Tripping" Life Event, it is concerned with the creation of new Evidence
rather than the update of existing Evidence. The input to an Update Transform is
an XML-based description of the Data Store Difference Command. A sample
difference command XML for the "CitizenHavingABaby" is depicted below:
<update>

<diff diffType="NONE" entityType="Application">
<diff diffType="NONE" entityType="Person" identifier="102">

<diff diffType="CREATE" entityType="Pregnancy">
<attribute name="numChildren">1</attribute>
<attribute name="dueDate">20110528</attribute>
<attribute name="curamDataStoreUniqueID">385</attribute>

</diff>
</diff>
<diff diffType="UPDATE" entityType="Person" identifier="101">

<attribute name="isFatherToUnbornChild">true</attribute>
<attribute name="curamDataStoreUniqueID">399</attribute>

</diff>
</diff>

</update>

The difference command XML corresponds node-for-node with the data store XML.
Each diff node describes how the corresponding data store entity has been
modified by the execution of the IEG script. The curamDataStoreUniqueID attribute
identifies which data store entity has changed. The diffType attribute identifies the
nature of the change, for example CREATE, UPDATE, NONE or REMOVE. Attributes that
are listed are those that have changed or been added to each data store entity. In
the above example, the user has registered a pregnancy to Linda Smith (concern
role ID 102) with one unborn child, due on May 28 th 2011. The father is listed as
being James Smith (concern role ID 101). For more information on difference
command XML please see the schema in Difference Command XML Schema
section. There are a couple of additional attributes and elements used when
updating XML that are illustrated below:

52 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Note the use of the action attribute which describes the action to be taken to the
underlying evidence, for example, to create the evidence or to update existing
evidence. The next section will discuss the meaning of the <entity-data> element.
An example of the XSLT used to transform the above difference XML into the
above Evidence XML is depicted below:
<?xml version="1.0" encoding="UTF-8"?>
<!-- This script plucks out and copies all resource-related -->
<!-- entities from output built by the XMLApplicationBuilder -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:x="http://www.curamsoftware.com/
schemas/DifferenceCommand"

xmlns:fn="http://www.w3.org/2006/xpath-functions"
version="2.0">
<xsl:output indent="yes"/>
<xsl:strip-space elements="*"/>
<xsl:template match="update">

<xsl:for-each select="./diff[@entityType=’Application’]">
<xsl:element name="client-data">

<xsl:apply-templates/>
</xsl:element>

</xsl:for-each>
</xsl:template>
<xsl:template match="diff[@entityType=’Person’]">

<xsl:element name="client">
<xsl:attribute name="localID">

<xsl:value-of select="./@identifier"/>
</xsl:attribute>
<xsl:element name="evidence">

<xsl:apply-templates/>
</xsl:element>

<?xml version="1.0" encoding="UTF-8"?>
<client-data>

<client localID="102">
<evidence>

<entity type="ET10074" action="CREATE" localID="">
<attribute name="numChildren">1</attribute>
<attribute name="dueDate">20110528</attribute>
<entity-data entity-data-type="role">

<attribute type="LG"/>
<attribute roleParticipantID="102"/>
<attribute

entityRoleIDFieldName="caseParticipantRoleID"/>
</entity-data>
<entity-data entity-data-type="role">

<attribute type="FAT"/>
<attribute roleParticipantID="101"/>
<attribute participantType="RL7"/>
<attribute

entityRoleIDFieldName="fahCaseParticipantRoleID"/>
</entity-data>

<entity type="ET10125" action="CREATE">
<attribute name="comments"> Unborn child 1</attribute>
<entity-data entity-data-type="role">

<attribute type="UNB"/>
<attribute roleParticipantID="102"/>
<attribute

entityRoleIDFieldName="caseParticipantRoleID"/>
</entity-data>

</entity>
</entity>

</evidence>
</client>

</client-data>

Figure 6. Evidence XML with Updates

Customizing Universal Access 53

</xsl:element>
</xsl:template>
<xsl:template match="diff[@entityType=’Pregnancy’]">

<xsl:element name="entity">
<xsl:attribute name="type">ET10074</xsl:attribute>
<xsl:attribute name="action">

<xsl:value-of select="./@diffType"/>
</xsl:attribute>
<xsl:attribute name="localID">

<xsl:value-of select="./@identifier"/>
</xsl:attribute>
<xsl:for-each select="./attribute">

<xsl:copy-of select="."/>
</xsl:for-each>
<xsl:element name="entity-data">

<xsl:attribute name="entity-data-type">
role

</xsl:attribute>
<xsl:element name="attribute">

<xsl:attribute name="type">LG</xsl:attribute>
</xsl:element>
<xsl:element name="attribute">

<xsl:attribute name="roleParticipantID">
<xsl:value-of select="../@identifier"/>

</xsl:attribute>
</xsl:element>
<xsl:element name="attribute">

<xsl:attribute name="entityRoleIDFieldName">
caseParticipantRoleID

</xsl:attribute>
</xsl:element>

</xsl:element>
<xsl:element name="entity-data">

<xsl:attribute name="entity-data-type">
role

</xsl:attribute>
<xsl:element name="attribute">

<xsl:attribute name="type">FAT</xsl:attribute>
</xsl:element>
<xsl:for-each select=
"../../diff[@entityType=’Person’]/attribute[

@name=’isFatherToUnbornChild’
and ./text()=’true’]">

<!-- Copy the participant id if a family -->
<!-- member is the father -->
<xsl:element name="attribute">

<xsl:attribute name="roleParticipantID">
<xsl:value-of select="

../@identifier"/>
</xsl:attribute>

</xsl:element>
</xsl:for-each>
<!-- Copy details of absent parent -->
<xsl:call-template name="absentFather"/>
<xsl:element name="attribute">

<xsl:attribute name="entityRoleIDFieldName">
fahCaseParticipantRoleID

</xsl:attribute>
</xsl:element>

</xsl:element>
<xsl:variable name="numBabies">

<xsl:value-of select="attribute[
@name=’numChildren’
]/text()"/>

</xsl:variable>
<xsl:call-template name="unbornChildren">

<xsl:with-param name="count" select="$numBabies"/>

54 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

</xsl:call-template>
</xsl:element>

</xsl:template>

<xsl:template name="unbornChildren">
<xsl:param name="count" select="1"/>
<xsl:if test="$count > 0">

<xsl:element name="entity">
<xsl:attribute name="type">ET10125</xsl:attribute>
<xsl:attribute name="action">

<xsl:value-of select="./@diffType"/>
</xsl:attribute>
<xsl:element name="attribute">

<xsl:attribute name="name">
comments

</xsl:attribute>
Unborn child <xsl:value-of select="$count"/>

</xsl:element>
<xsl:element name="entity-data">

<xsl:attribute name="entity-data-type">
role

</xsl:attribute>
<xsl:element name="attribute">

<xsl:attribute name="type">
UNB

</xsl:attribute>
</xsl:element>
<xsl:element name="attribute">

<xsl:attribute name=
"roleParticipantID">
<xsl:value-of select="

../@identifier"/>
</xsl:attribute>

</xsl:element>
<xsl:element name="attribute">

<xsl:attribute name=
"entityRoleIDFieldName">
caseParticipantRoleID

</xsl:attribute>
</xsl:element>

</xsl:element>
</xsl:element>
<xsl:call-template name="unbornChildren">

<xsl:with-param name="count" select="$count - 1"/>
</xsl:call-template>

</xsl:if>
</xsl:template>

<xsl:template name="absentFather">
<xsl:element name="attribute">

<xsl:attribute name="participantType">
<xsl:text>RL7</xsl:text>

</xsl:attribute>
</xsl:element>

<xsl:if test="attribute[@name=’fahFirstName’]">
<xsl:element name="attribute">

<xsl:attribute name="firstName">
<xsl:value-of select="attribute[

@name=’fahFirstName’
]/text()"/>

</xsl:attribute>
</xsl:element>

</xsl:if>

<!-- etc. map other personal details such as -->
<!-- SSN, date of birth -->

Customizing Universal Access 55

<xsl:if test="diff[@entityType=’ResidentialAddress’]">
<xsl:if test="diff[

@entityType=’ResidentialAddress’]/attribute[
@name=’street1’]">

<xsl:element name="attribute">
<xsl:attribute name="street1">

<xsl:value-of select=
"diff[
@entityType=’ResidentialAddress’]

/attribute[
@name=’street1’]/text()"/>

</xsl:attribute>
</xsl:element>

</xsl:if>
<!-- etc. map other parts of residential address -->

</xsl:if>
</xsl:template>

<xsl:template match="*">
<!-- do nothing -->

</xsl:template>
</xsl:stylesheet>

Writing Transforms that create new case participants

Readers who are familiar with Evidence will know that Evidence Entities
frequently refer to third parties. For example, Pregnancy evidence refers to the
father via a Case Participant Role. The associated father can be a Person or a
Prospect Person. Other evidence types such as Student may refer to a School
which is entered as a Representative Case Participant Role.

The Evidence XML schema provides a generic element called <entity-data> which
can be used to provide special handling instructions to the Citizen Data Hub. The
type of handling depends on the <entity-data-type> specified. Cúram provides a
special processor for the entity-data-type role. This role entity data processor can
be used to create new Case Participant Roles or reference existing Case Participant
Roles for existing Case Participants. Referring to the Evidence XML output in listed
in the previous section the attribute denoted by type is used to denote the Case
Participant Role Type e.g. FAT for Father or UNB for Unborn Child. The value
provided here should be a codetable value from the CaseParticipantRoleType code
table. The roleParticipantID denotes the ConcernRoleID of an existing participant
on the system. If this is supplied then the system will not attempt to create a new
Case Participant, rather it will reuse a case participant with this id. The
entityRoleIDFieldName is the field name in the corresponding Evidence Entity. In
the case of the Pregnancy evidence entity for example, the name of this field is
fahCaseParticipantRoleID. In the case where a new participant needs to be created
the following fields are supported by the Role Entity Data Processor.
v participantType - this is a code table entry from the ConcernRoleType code table.

For example, use RL7 to create a new Prospect Person
v firstName
v middleInitial
v lastName
v SSN
v dateOfBirth
v lastName
v lastName

56 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

v street1
v city
v state
v zipCode

Updating Non Evidence Entities

Previous Sections have illustrated how it is possible to configure Life Events to
automatically map updates through to Evidence Entities on multiple integrated
cases. Sometimes Life Events will be required to update non-Evidence entities such
as a Residential Address, Employment or some other customer specific
non-Evidence entity. Typically these entities will be shared across multiple cases. It
is also typical that these entities would not follow the same controlled Life Cycle
as evidence entities. Evidence has many advantages:
v It is temporal
v It is case specific, with sharing of updates between cases being controlled

through the Evidence Broker
v Case Workers can veto acceptance of updates that come from external sources

like Universal Access
v It has an in-edit/approval cycle
v It has support for verifications

Non evidence entities have none of these advantages and safeguards. A decision
by Analysts to update non Evidence entities based on Life Events should be made
with due care, especially if the changes can be applied simultaneously across
multiple cases. It is possible to update non Evidence entities but this will always
involve custom code. It is strongly recommended that the design of such
functionality includes safeguards to ensure that at least one Agency worker gets to
manually approve the changes before they are applied to the system.

Configuring the Evidence Broker for use with the Holding Case: The Holding Case is of
little value by itself, it is simply, as the name implies, a Holding Area for Evidence
before it is sent somewhere else. Normally the goal once data has been updated on
the Holding Case, is to broker these updates to Integrated Cases so that Case
Workers can vet the changes and apply them to the relevant cases. Once the data is
accepted onto the Integrated Cases then James will start to see the positive impact
of submitting a Life Event as the updated data can start to have an impact on his
benefits. The bridge between the Holding Case and the Integrated Cases can only
be crossed if the appropriate Evidence Broker configuration is defined. This section
demonstrates how that can be achieved. For background on the Evidence Broker
the reader is referred to the Developer Guide: Cúram Evidence Broker Developers
Guide.

Configuring Sharing from The Holding Case

Below is an example evidence configuration for sharing of Pregnancy evidence
from the Holding Case to an Integrated Case.
<?xml version="1.0" encoding="UTF-8"?>

<table name="EVIDENCEBROKERCONFIG">
<column name="EVIDENCEBROKERCONFIGID" type="id"/>
<column name="SOURCETYPE" type="text" />
<column name="SOURCEID" type="id" />
<column name="TARGETTYPE" type="text" />
<column name="TARGETID" type="id"/>
<column name="SOURCEEVIDENCETYPE" type="text"/>

Customizing Universal Access 57

<column name="TARGETEVIDENCETYPE" type="text"/>
<column name="AUTOACCEPTIND" type="bool"/>
<column name="WEBSERVICESIND" type="bool"/>
<column name="SHAREDTYPE" type="text"/>
<column name="RECORDSTATUS" type="text"/>
<column name="VERSIONNO" type="number"/>
<row>

<attribute name="EVIDENCEBROKERCONFIGID">
<value>10003</value>

</attribute>
<attribute name="SOURCETYPE">

<value>CT10301</value>
</attribute>
<attribute name="SOURCEID">

<value>10330</value>
</attribute>
<attribute name="TARGETTYPE">

<value>CT5</value>
</attribute>
<attribute name="TARGETID">

<value>4</value>
</attribute>
<attribute name="SOURCEEVIDENCETYPE">

<value>ET10000</value>
</attribute>
<attribute name="TARGETEVIDENCETYPE">

<value>ET10074</value>
</attribute>
<attribute name="AUTOACCEPTIND">

<value>0</value>
</attribute>
<attribute name="WEBSERVICESIND">

<value>0</value>
</attribute>
<attribute name="SHAREDTYPE">

<value>SET2002</value>
</attribute>
<attribute name="RECORDSTATUS">

<value>RST1</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

</row>
</table>

When sharing from the Holding Case to another Integrated Case, the source type
should be CT10301 and the source id should be set to 10330. The source evidence
type should be set to ET10000, which is the code for all Evidence stored in Holding
Cases. Evidence of this type is known as Holding Evidence. The target evidence
type in this case is ET10074. In Cúram Common Evidence this identifies Pregnancy
Evidence. The evidence sharing type should be set to SET2002 which is the code for
Non-Identical Sharing. Note, that the AUTOACCEPTIND is set to 0. It is strongly
recommended that this always be set to 0 when sharing from a Holding Case to an
Integrated Case. This setting means that a Case Worker will always get to vet any
changes that have come in from the Citizen's Holding Case. Assuming the Case
Worker agrees with the changes, the "Incoming Evidence" link of the Integrated
Case Evidence page can be used to synchronize the data from the Holding Case in
the normal way.

To establish Evidence Broker Configuration for a custom component, a dmx file
must be created containing configuration that follows the example given above.
For example: %SERVER_DIR%\components\Custom\data\initial\EBROKER_CONFIG.dmx

58 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

In sharing Holding Evidence to a Standard Evidence Entity like a Pregnancy the
Evidence Broker "copies" the Holding Evidence containing the Pregnancy data into
a new Pregnancy Evidence Record in the target Integrated Case. Previously this
guide has alluded to the fact that Holding Evidence is not "standard" Evidence. In
fact it is stored in an XML representation, so in the process of copying the Holding
Evidence to the Target Evidence type the Evidence Broker must perform a
conversion of the XML data into standard Evidence data. To assist with this
conversion process it is necessary to supply meta-data. An example of this
meta-data is illustrated below:
<?xml version="1.0" encoding="UTF-8"?>
<data-hub-config>

<evidence-config package="curam.holdingcase.evidence">
<entity name="HoldingEvidence" ev-type-code="ET10000">

<attribute name="entityStruct">
curam.citizen.datahub.holdingcase.holdingevidence.struct.
+HoldingEvidenceDtls

</attribute>
</entity>
<entity name="Pregnancy" ev-type-code="ET10074">

<attribute name="entityStruct">
curam.evidence.entity.struct.PregnancyDtls

</attribute>
<related-entity>

<case-participant-role>
<attribute name="linkAttribute">

fahCaseParticipantRoleID
</attribute>

</case-participant-role>
<case-participant-role>

<attribute name="linkAttribute">
caseParticipantRoleID

</attribute>
</case-participant-role>

</related-entity>
</entity>

</evidence-config>
</data-hub-config>

The metadata describes each of the entities that can be copied from the Holding
Case to an Integrated Case and vice versa. The metadata describes the dtls structs
that are used to build the target evidence. It also describes which of the attributes
in Case Evidence refer to case participant roles. This information ensures that
when the Holding Evidence is copied, it doesn't just blindly copy case participant
role identifiers from holding evidence, instead it looks for the equivalent case
participant role id on the target case and, if it doesn't exist, then creates one.

This metadata is stored in a an AppResource (For more information about
AppResources, refer to the Cúram Developer Guide Authoring Scripts in IEG2).
The resource store key is identified by the Cúram Environment Property
curam.workspaceservices.datahub.metadata. Out of the box the value for this
variable defaults to the value curam.workspaceservices.datahub.metadata. This
points to some default Holding Evidence Data Hub Meta Data. The following steps
can be used to replace the default Holding Evidence Data Hub Meta Data with a
custom version to support all Evidence Types that need to be brokered from the
Holding Case to all Integrated Cases.
v Copy the contents of %SERVER_DIR%\components\WorkspaceServices\data\

initial\clob\DataHubMetaData.xml to %SERVER_DIR%\components\Custom\data\
initial\clob\CustomDataHubMetaData.xml

v Edit the contents of CustomDataHubMetaData.xml to describe all the Evidence
Entities that need to be updated by the Data Hub.

Customizing Universal Access 59

v Create a file %SERVER_DIR%\components\Custom\data\initial\APP_RESOURCES.dmx.
Add an entry to this file as follows.
<?xml version="1.0" encoding="UTF-8"?>

<table name="APPRESOURCE">
<column name="resourceid" type="id" />
<column name="localeIdentifier" type="text"/>
<column name="name" type="text"/>
<column name="contentType" type="text"/>
<column name="contentDisposition" type="text"/>
<column name="content" type="blob"/>
<column name="internal" type="bool"/>
<column name="lastWritten" type="timestamp"/>
<column name="versionNo" type="number"/>
<row>

<attribute name="resourceID">
<value>10700</value>

</attribute>
<attribute name="localeIdentifier">

<value/>
</attribute>
<attribute name="name">

<value>custom.datahub.metadata</value>
</attribute>
<attribute name="contentType">

<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">

<value>inline</value>
</attribute>
<attribute name="content">

<value>
./Custom/data/initial/clob/CustomDataHubMetaData.xml

</value>
</attribute>
<attribute name="internal">

<value>0</value>
</attribute>
<attribute name="lastWritten">

<value>SYSTIME</value>
</attribute>
<attribute name="versionNo">

<value>1</value>
</attribute>

</row>
</table>

v Create or append to the file %SERVER_DIR%\components\Custom\properties\
Environment.xml adding an entry along the following lines:
<environment>

<type name="dynamic_properties">
<section code="WSSVCS"

name="Workspace Services - Configuration">
<variable name="curam.workspaceservices.datahub.metadata"

value="custom.datahub.metadata" onlyin="all"
type="STRING">
<comment>

Identifies an AppResource used to configure DataHub
meta-data.

</comment>
</variable>

</section>
</type>

</environment>

60 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Round Tripping and Configuring Sharing to The Holding Case

The previous section described how data is shared from the Holding Case to
Integrated Cases. Analysts may also want to consider whether evidence should be
transferred in the opposite direction, that is from the Integrated Cases to the
Holding Case. When sharing is configured from the Integrated Case to the Holding
Case, changes made by the Case Worker to selected evidence can be propagated
back to the Holding Case. This is essential for Life Events that need to
pre-populate data from Evidence Entities in existing Integrated Cases. The example
below shows how to configure Pregnancy Evidence for Sharing to the holding
case.
<?xml version="1.0" encoding="UTF-8"?>
<table name="EVIDENCEBROKERCONFIG">

<column name="EVIDENCEBROKERCONFIGID" type="id"/>
<column name="SOURCETYPE" type="text" />
<column name="SOURCEID" type="id" />
<column name="TARGETTYPE" type="text" />
<column name="TARGETID" type="id"/>
<column name="SOURCEEVIDENCETYPE" type="text"/>
<column name="TARGETEVIDENCETYPE" type="text"/>
<column name="AUTOACCEPTIND" type="bool"/>
<column name="WEBSERVICESIND" type="bool"/>
<column name="SHAREDTYPE" type="text"/>
<column name="RECORDSTATUS" type="text"/>
<column name="VERSIONNO" type="number"/>
<row>

<attribute name="EVIDENCEBROKERCONFIGID">
<value>2</value>

</attribute>
<attribute name="SOURCETYPE">

<value>CT5</value>
</attribute>
<attribute name="SOURCEID">

<value>4</value>
</attribute>
<attribute name="TARGETTYPE">

<value>CT10301</value>
</attribute>
<attribute name="TARGETID">

<value>10330</value>
</attribute>
<attribute name="SOURCEEVIDENCETYPE">

<value>ET10074</value>
</attribute>
<attribute name="TARGETEVIDENCETYPE">

<value>ET10000</value>
</attribute>
<attribute name="AUTOACCEPTIND">

<value>1</value>
</attribute>
<attribute name="WEBSERVICESIND">

<value>0</value>
</attribute>
<attribute name="SHAREDTYPE">

<value>SET2002</value>
</attribute>
<attribute name="RECORDSTATUS">

<value>RST1</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

</row>
</table>

Customizing Universal Access 61

Note that, unlike Sharing from Holding Case to Integrated Case, the
AUTOACCEPTIND is set to 1. This is because the target case is a Holding Case
and Holding Cases are designed to operate unattended. It is not expected that
Case Workers should need to review items being shared onto the Holding Case as
they come from an authoritative source, i.e. the Integrated Case.

Issues for Consideration

With suitable configuration, It is possible to share data from the Holding Case to
many different Integrated Cases. Imagine that two different Integrated Cases A and
B are configured to share information with a James' Holding Case H. Both cases A
and B have separately recorded an Income Evidence record for James. In James'
Holding Case this will show up as two separate Income Records and as far as
cases A and B are concerned they are two entirely separate records, A's view of
James' Income and B's view of James' Income. To James however this might not
make much sense - he has only one Income and is using one Portal to
communicate with the SEM or SEMs concerned. Why should he see two records
for the same Income? In cases like this, where there is sharing to multiple
Integrated Cases from a single Holding Case, consideration should be given to
creating another set of sharing relationships should be established from A to B and
B to A. This is an issue that will require proper consideration early on in the
project Life Cycle.

Putting it all Together: Previous topics have discussed how to create all the
constituent pieces of a Life Event, this topic discusses how to join all these pieces
together to make a completed Life Event. New Life Events can be configured using
the Life Event Administration pages. Please refer to the IBM Cúram Universal Access
Guide for more information on how to do this. Using the Administration Pages it is
possible to create new Life Event Types and Life Event Channels, add rich text
descriptions and associate the Life Events with IEG Scripts and Recommendation
Rule Sets. Once all of the required Entities have been created in the Administration
screens, the data can be extracted into a set of DMX files that can be used as a
basis for ongoing development. The following set of commands can be used to
extract the relevant dmx files:
build extractdata -Dtablename=LifeEventType
build extractdata -Dtablename=LifeEventContext
build extractdata -Dtablename=LifeEventCategory
build extractdata -Dtablename=LifeEventCategoryLink
build extractdata -Dtablename=LocalizableText
build extractdata -Dtablename=TextTranslation

The LocalizableText and TextTranslation tables contain all of the Life Event
descriptions but they will also be filled with text translations that do not relate to
Life Events. Developers should audit these DMX files removing any entries that do
not correspond to the relevant Life Event descriptions before copying the dmx files
to %SERVER_DIR%\components\Custom\data\initial\.

Life Events API Guide
A description of how to use the Java API for Life Events and the Citizen Data Hub.

Event APIs for Life Events
The Life Event Broker is instrumented with Guice events. Developers can write
listeners that can be bound to these events. The available events are:
v PreCreateLifeEvent - Invoked before launching a Life Event
v PostCreateLifeEvent - Invoked after the Life Event has been initialized. That is

after the Data Hub Transform and View Processors have been executed.

62 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

v PreSubmitLifeEvent - Invoked after the Life Event has been submitted but before
the Update Processors have been run.

v PostSubmitLifeEvent - Invoked after the Life Event has been submitted.

Note that both the Pre and Post SubmitLifeEvent events are executed from within
a Deferred Process so the current user is expected to be SYSTEM. Life Event Events
should never attempt to change the contents of the Life Event. The code extract
below shows how a Listener class, MyPreCreateListener can be bound to one of
these Life Events:
Multibinder<LifeEventEvents.PreCreateLifeEvent>

preCreateBinder =
Multibinder.newSetBinder(binder(),

new TypeLiteral<LifeEventEvents.PreCreateLifeEvent>() { /**/
});

preCreateBinder.addBinding().to(MyPreCreateListener.class);

Universal Access Web Services
A description of Universal Access web services with some sample SOAP requests,
and how to develop peer code to communicate with those web services. In some
scenarios, customers will deploy Universal Access to handle interactions with
clients over the Internet, but will use an existing legacy system for case processing.
To cater for these scenarios, Universal Access can be configured to communicate
with various remote systems using web services.

Inbound and outbound web services
Universal Access supports the following outbound web services:
v Send an application for benefits.
v Withdraw an application for benefits.
v Send a Life Event.

Universal Access supports the following inbound web services:
v Create a citizen account on Universal Access.
v Link a user to a remote system (gives them the right to send information to

those systems and receive information from them in turn).
v Unlink a user from a remote system.
v Receive an update to the status of a submitted application.
v Receive an update to the status of a request to withdraw an application.
v Receive a citizen message (for display on a citizen account home page).
v Receive payment information.
v Receive case contact information.

Web Services Security Considerations
Universal Access is designed to communicate with an arbitrary number of remote
systems. These may be configured through the remote systems configuration page
in the Cúram Administrator application.

Remote systems can invoke web services on Universal Access and must supply
username/password credentials as part of the SOAP header, details of how to do
this are described using sample web service requests. It is strongly recommended
that a different username and password be assigned to each remote system. The
username associated with a remote system is set in the Source User Name field of

Customizing Universal Access 63

the remote system configuration page. Having a different user name for each
remote system allows Universal Access to perform proper data-based security
checks on the incoming service requests. This prevents one remote system sending
requests to update data that is properly the concern of a different remote system.

Process Application Service
The Process Application Service web services.

Receive Application
This outbound web service is invoked by Universal Access on remote systems. It is
used to communicate an application for benefits for one or more social programs.
WSDL describing this service can be found in <CURAM_DIR>\EJBServer\
components\WorkspaceServices\axis\ProcessApplicationService\
ProcessApplicationService.wsdl.

A web service request of this type contains the following information:
v intakeApplicationType - An ID that uniquely identifies an Intake Application

Type.
v applicationReference – A unique reference for a particular application. This is a

human-readable id that is displayed to clients after they complete an application.
For example, "512" or "756". The application reference is used as an argument to
other web services and should be stored by the receiver.

v applicationLocale – Denotes the preferred locale of the user who entered the
application. For example "en_US". This information should be stored by the
receiver. Remote systems can send a variety of information back to the client's
account. Some of this information must be localized by the sender to the
preferred locale of the client.

v submittedDateTime – The date and time at which the application was submitted.
This is in XML Schema dateTime format. For example, 2012-05-
29T15:34:49.000+01:00.

v programsAppliedFor – This contains a list of the programs that were applied for
as part of this application. Each program is referred to by a unique reference.
This corresponds to the value of the Reference field configured in the Programs
section of Universal Access configuration. For example:
<ns1:programsAppliedFor>

<ns1:programTypeReference>CashAssistance</ns1:programTypeReference>
<ns1:programTypeReference>SNAP</ns1:programTypeReference>

</ns1:programsAppliedFor>

v applicationData – Contains a base64 encoded representation of the intake data.
This intake data is the XML representation of the XML datastore associated with
an application.

v applicationSchemaName – The name of the schema used to create the data store
for the application.

v senderIdentification – Identifies the sender of the request. The sender
identification contains two parts, 1) the identifier of the system from which the
request originates, 2) The Citizen Workspace Account ID of the user that created
the request. The second part is optional, applications submitted anonymously do
not contain part two but applications submitted by a logged in user do.

v supplementaryInformation – optional, reserved for future use.

The receiver of this information is expected to record the details of the application
keyed against sender identification and intake application reference.

64 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

On success, the implementation of this web service must return the Boolean value
"true" to indicate that the request has been successfully processed. In the case that
there is a problem processing the request, a fault must be returned containing a
string to indicate the nature of the problem. The String should be localized to the
locale of the Universal Access Server since it will appear in the server log files.

Note: The receiver can receive multiple applications with the same Intake
Application reference but the intake application reference is always unique for a
particular sender. For example Systems A and B send a receiveApplication()
request to system X. Both requests have the applicationReference 256. Note,
however, that the receiver should never receive two applications from A with an
application reference of 256.

Receive Withdrawal Request
This outbound web service is invoked by Universal Access on remote systems. It is
used by clients to withdraw an application that they have previously submitted
using the Receive Application Service. WSDL describing this service can be found
in <CURAM_DIR>\EJBServer\components\WorkspaceServices\axis\
ProcessApplicationService\ProcessApplicationService.wsdl. A web service request
of this type contains the following information:
v applicationReference – A unique reference for the application to be withdrawn.

This refers to the id transmitted with the Receive Application service request.
v programTypeReference – A reference that identifies the program being

withdrawn. Each program type is referred to by a unique reference. This
corresponds to the value of the Reference field configured in the Programs
section of Universal Access configuration. For example "CashAssistance".

v requestSubmittedDateTime – A timestamp indicating when the request was
submitted in XML Schema dateTime format. For example, 2012-05-
29T15:34:49.000+01:00

v withdrawalRequestReason – The value is taken from the code table
WithdrawalRequestReason. Values for this code table are
– WRES1001 – Attained employment
– WRES1002 – Change of circumstances
– WRES1003 – Filed in error

v withdrawalRequestID – An id that uniquely identifies this withdrawal request
from the sending instance of Universal Access.

v senderIdentification – Identifies the sender of the request. The sender
identification contains two parts, 1) the identifier of the system from which the
request originates, 2) The Citizen Workspace Account ID of the user that created
the request.

v supplementaryInformation – optional, reserved for future use.

The expected result following successful processing is a
receiveWithdrawalRequestResponse as follows:
<receiveWithdrawalRequestResponse>

<result>true</result>
</receiveWithdrawalRequestResponse>

The service implementation should return a fault if there is an error processing the
request. The fault string should be globalized to the locale of the Universal Access
Server since it will appear in the server log files. Some problems that may arise
include:

Customizing Universal Access 65

v A withdrawal request with the given ID has already been sent by the given
instance of Universal Access.

v The application reference referred to is not recognized as an application
previously transmitted in a Receive Application service invocation from the
same Universal Access instance.

The withdrawal request application is processed by the receiving agency after
which a response should be sent in the form of a withdrawal request update. See
the sample SOAP request for this web service.

Update Application Service
The Update Application Service web services.

Intake Program Application Update
This is an inbound web service invoked by remote systems on Universal Access. It
is used to inform the Universal Access System of changes to the status of an
application for benefits that was previously received via the Receive Application
web service. The status of an application can transition to Approved, Denied or
Withdrawn. Where an application is denied a reason can be included in the web
service message. The schema for the payload of web service requests of this type
can be found in <CURAM_DIR>\EJBServer\components\WorkspaceServices\
webservices\UpdateApplication.xsd. See the sample SOAP request for this web
service.

A web service request of this type contains the following information:
v curamReferenceID – This must match the applicationReference element for the

corresponding Receive Application request.
v programApplicationStatus – This can take the following values:

– IPAS1002 – Withdrawn
– IPAS1003 – Approved
– IPAS1004 – Denied

v programApplicationDisposedDateTime – This is a formatted date time string in
the standard IBM Cúram ISO8601 format – "YYYYMMDD HH:MM:SS".

v programApplicationDenialReason – Optional, if the status sent is IPAS1004, this
contains free text describing the reason for denial. The denial reason should be
taken from the code table IBM Cúram IntakeProgApplDenyReason.

The web service request needs to be sent with a Cúram security credential (see a
sample SOAP message for details). The user name placed within the credential
must match the Source User Name entered into the Remote System entry
corresponding to the peer system sending the request.

Withdrawal Request Update
This is an inbound web service invoked by remote systems on Universal Access. It
is used to inform the Universal Access System of changes to the status of a
Withdrawal Request that was previously submitted using the Receive Withdrawal
Request web service. The schema for the payload of web service requests of this
type can be found in <CURAM_DIR>\EJBServer\components\WorkspaceServices\
webservices\UpdateApplication.xsd. See the sample SOAP request for this web
service.

A web service request of this type contains the following information:

66 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

v curamReferenceID – This must match the withdrawalRequestID in the
corresponding Receive Withdrawal Request message.

v withdrawalRequestStatus – This an enumeration taking the following values:
– WREQ1002 – Approved
– WREQ1003 – Denied

v resolvedDateTime – A time stamp in the standard IBM Cúram ISO8601 format –
"YYYYMMDD HH:MM:SS".

v withdrawalRequestDenialReason – Optional. In the case there the withdrawal
request was denied, a textual explanation for the denial. The sender must
localize this to the locale of the client who originally submitted the application.

See the sample SOAP request for the Withdrawal Request Update operation.

On success this operation returns a document indicating that the request has
succeeded. On failure, a fault is raised. Reasons for failure include:
v The withdrawal request id does not match a known withdrawal request id.
v The withdrawal request state transition is invalid.

Life Event Service
This outbound web service is invoked by Universal Access on remote systems.
WSDL describing this service can be found in <CURAM_DIR>\EJBServer\
components\WorkspaceServices\axis\LifeEventService\LifeEvent.wsdl.

A request for this web service contains the following fields:
v lifeEventReference – Describes the type of the Life Event, for example "Change

of Address"
v senderIdentification – Identifies the sender of the request. The sender

identification contains two parts, 1) the identifier of the system from which the
request originates, 2) The Citizen Workspace Account ID of the user that created
the request.

v lifeEventData - Contains a base64 encoded representation of the Life Event data.
This Life Event data is the XML representation of the XML datastore associated
with an Life Event.

v lifeEventSchemaName – The name of the schema used to create the data store
for the Life Event.

v submittedDateTime – The date and time when the Life Event was submitted. An
XML Schema dateTime. For example, 2012-05-29T15:34:49.000+01:00

v supplementaryInformation – optional, reserved for future use.

The implementation should return a response of type lifeEventResponse with the
content "true" when the Life Event is successfully processed. If there is an error
processing the Life Event then the system should return a fault in accordance with
the WSDL specification.

Create Account Service
This is an inbound web service invoked by remote systems on Universal Access. It
is used to create a Citizen Workspace Account for users who previously submitted
an Intake Application anonymously. The service actually performs two discrete
functions:
v Create an account for a previously anonymous user.

Customizing Universal Access 67

v Link that account to the remote system that is invoking the Create Account Web
Service.

If a Citizen Workspace user is "linked" to a remote system, it means that user is
registered on the remote system and the remote system will recognize requests
from that Citizen Workspace user as relating to a particular case, cases or an
individual on the remote system. This has serious security implications on the
remote system – The remote system sending a request to link a user or create an
account for a user must be convinced of the identity of the individual who owns
the account. The schema for the payload of web service requests of this type can
be found in <CURAM_DIR>\EJBServer\components\WorkspaceServices\
webservices\ExternalAccountCreate.xsd. See the sample SOAP request for this web
service.

A create account request contains the following information:
v firstName – The client's first name.
v middleName – The client's middle name. Optional.
v surname – The client's last name.
v username – The username for the newly created account.
v password – The password for the newly created account.
v confirmPassword – Confirmation of the password. Must match password.
v secretQuestionType – The type of secret question selected to unlock the user's

account. Values should correspond to entries from the SecretQuestionType code
table. For example, SQT1 – Mother's maiden name.

v answer – An answer to the secret question. Non empty.
v termsAndConditionsAccepted – Boolean indication that the client has accepted

the terms and conditions on which the account is created.
v intakeApplicationReference – Refers to the unique applicationReference passed

in as part of the receive application request. If this is specified, a link will be
created between the application and the newly created account.

v clientIDOnRemoteSystem – This is a unique identifier that can be used to
identify the user of this account on the remote system. There is no prescribed
form for this id, it could be a Social Security Number for example. It must be
capable of uniquely identifying the client on the remote system.

v sourceSystem – Identifies the remote system that sent this request. This must
match the name of a remote system configured in the administration application.
For more information about configuring remote systems, see "Configuring
Remote Systems" in the IBM Cúram Universal Access Configuration Guide.

If successful this returns the id of the created citizen workspace account. Problems
that occur during the processing of the request are flagged by a fault response.
Possible issues include:
v An account has already been associated with the intake application reference.
v The username already exists.
v The user name or password do not meet minimum mandatory criteria such as

password strength, user name length.

Link Service
This is an inbound web service invoked by remote systems on Universal Access. It
is used to link a Citizen Workspace Account to a remote system. See the section on
Create Account Service for a general discussion of the implications of linking a
user. The schema for the payload of web service requests of this type can be found

68 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

in <CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalAccountLink.xsd. See the sample SOAP request for this web service.

This web service request contains the following information:
v sourceSystem – The name of the remote system sending the request. Must match

the name of a remote system configured in the system.
v citizenWorkspaceAccountID – The unique citizen workspace account id.
v clientIDOnRemoteSystem - This is a unique identifier that can be used to

identify the user of this account on the remote system. There is no prescribed
form for this id, it could be a Social Security Number for example. It must be
capable of uniquely identifying the client on the remote system.

v createdByUsername – The username on the remote system responsible for this
request.

On success this operation returns a document indicating that the request has
succeeded. On failure, a fault is raised. Reasons for failure include:
v The citizen workspace account id is invalid, does not exist or is associated with

a de-activated account.
v The citizen workspace account in question is already linked to this remote

system.

Unlink Service
This is an inbound web service invoked by remote systems on Universal Access. It
is used to unlink a Citizen Workspace Account from a remote system. After
executing this service it will not be possible for the user of the unlinked account to
submit Life Events to this remote system, for example. The schema for the payload
of web service requests of this type can be found in <CURAM_DIR>\EJBServer\
components\WorkspaceServices\webservices\ExternalAccountUnlink.xsd. See the
sample SOAP request for this web service.

This web service request contains the following information:
v sourceSystem – The name of the remote system sending the request.
v citizenWorkspaceAccountID – The unique ID of the Citizen Workspace Account

being unlinked.

On success this operation returns a document indicating that the request has
succeeded. On failure, a fault is raised. Reasons for failure include:
v The indicated account does not exist or is not active.
v The indicated account is not linked to the remote system sending the request.

Citizen Message
This is an inbound web service invoked by remote systems on Universal Access. It
is used to send Citizen Messages that are displayed on a user's Home Page when
they log in to the Citizen Account. The schema for the payload of web service
requests of this type can be found in <CURAM_DIR>\EJBServer\components\
WorkspaceServices\webservices\ExternalCitizenMessage.xsd. See the sample
SOAP request for this web service.

This web service request contains the following information:
v sourceSystem – The name of the remote system sending the request.
v citizenWorkspaceAccountID – The unique citizen workspace account id.

Customizing Universal Access 69

v cityIndustryType – Denotes the type of industry associated with the message.
The values for this element must match codes from the CityIndustry code table.

v relatedID – Refers to the id of an underlying entity in the remote system to
which the message refers. For example, if the message concerns a payment then
the related ID identifies the ID of the payment within the remote system.

v externalCitizenMessageType – The external citizen message type, taken from the
ExternalCitizenMessageType codetable.

v messageTitle – The title of the message. It is the responsibility of the remote
system to localize this to the locale of the end user.

v messageBody – The body of the message. It is the responsibility of the remote
system to localize this to the locale of the end user.

v effectiveDate – Optional. The date from which the message is effective. It will
only be displayed from this date onwards. The date must be in the format –
"YYYY-MM-DD". If an effective date is not provided then the current date is
taken as the effective date.

v expiryDate – The date that the message is set to expire. Following this date, the
message will not be displayed to the user. The date must be in the format –
"YYYY-MM-DD".

v priority – A boolean value to indicate whether this message is a high priority.

Some messages are designed such that a newer message can replace an older one.
For example, a message is sent concerning a meeting. The time of the meeting
changes and a new message is sent with the updated time for the meeting. The
client does not see both messages, rather the second message replaces the first and
only the second message is seen. One external message will automatically replace
another external message if the following fields match those of an existing
message: sourceSystem, externalCitizenMessageType and relatedID.

Payment Service
This is an inbound web service invoked by remote systems on Universal Access.
This service is used to transmit information about one or more payments. The
schema for the payload of web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalPayment.xsd. See the sample SOAP request for this web service.

This web service request can contain one or more Payments. This allows the
remote system to batch up payments and send them as a single request for
performance reasons. Each payment can relate to an entirely separate Universal
Access account. A single payment may contain a payment breakdown. A payment
breakdown may contain one or more payment line items.

A single Payment contains the following information:
v paymentID – Together with the source system, this uniquely identifies a

payment.
v sourceSystem – The name of the remote system sending the request. Must match

the name of a remote system configured in the system.
v citizenWorkspaceAccountID – The unique citizen workspace account id.
v cityIndustryType – Denotes the type of industry associated with the payment.

The values for this element must match codes from the CityIndustry code table.
Optional.

v paymentAmount – The headline value for the payment as a whole. This
payment may optionally be further broken into a number of line items.

70 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

v currency – The currency in which the payment was made, contains values from
the Currency code table. Optional.

v paymentMethod – The method by which the payment was made, contains
values from the MethodOfDelivery code table.

v paymentStatus – The status of the payment, for example cancelled, processed,
suspended etc. Contains values from PmtReconciliationStatus code table.

v effectiveDate – The effective date of the payment in the format "YYYY-MM-DD".
v coverPeriodFrom – The start date of the period covered by this payment. In the

format "YYYY-MM-DD".
v coverPeriodTo – The end date of the period covered by this payment. In the

format "YYYY-MM-DD".
v dueDate – The date that the payment was due to be paid. In the format

"YYYY-MM-DD".
v payeeName – The name of the payee for this payment.
v payeeAddress – The address that the payment was sent to (in the case of a

cheque). Optional.
v paymentReferenceNo – Uniquely identifies a payment within a given remote

system.
v bankSortCode - The sort code of the bank account to which this payment is

delivered.
v bankAccountNo – The bank account number to which payment is made.
v A payment may contain a Payment Breakdown (optional).

A Payment Breakdown contains one or more Payment Line Items. A Payment Line
Item contains the following information:
v caseName – The human readable name of the case on the remote system with

which this payment is associated.
v The case name must be localised to the locale of the client. This case name must

match the case name displayed on the Contact Information page.
v caseReference – This uniquely identifies the case on a given remote system.
v componentType – This contains a code from the FinComponentType code table.
v debitAmount – The amount debited if this payment was a debit.
v creditAmount – The amount credited if this payment was a credit.
v coverPeriodFrom - The start date of the period covered by this payment. In the

format "YYYY-MM-DD".
v coverPeriodTo – The end date of the period covered by this payment. In the

format "YYYY-MM-DD".

It is important to note that payments can supersede previously submitted
payments. For example, a payment is submitted from TestSystem with paymentID
1234. Subsequently another payment arrives from TestSystem with the same
paymentID, 1234. This payment replaces the previous payment. The previous
payment is physically removed along with all its related payment line items. A
typical example of where this might occur is when a previously issued payment is
cancelled.

Contact Service
This is an inbound web service invoked by remote systems on Universal Access.
This service is used to update a register of case worker contact details relating to a
remote system. The schema for the payload of web service requests of this type

Customizing Universal Access 71

can be found in <CURAM_DIR>\EJBServer\components\WorkspaceServices\
webservices\ExternalContact.xsd. See the sample SOAP request for this web
service.

A contact web service request contains the following information:
v sourceSystem – The name of the remote system sending the request. Must match

the name of a remote system configured in the system.
v contactReference – A reference for the contact, unique within the source remote

system.
v fullName – The full name of the case worker.
v phoneNumber – The phone number of the case worker. Optional.
v mobilePhoneNumber – The mobile/cell phone number of the case worker.

Optional.
v faxNumber – The fax number for the case worker. Optional.
v email – The email address of the case worker. Optional.

If a request is received with the same source system and contact reference as a
pre-existing entry then the information in the newer request supersedes the
pre-existing information.

Case Service
This is an inbound web service invoked by remote systems on Universal Access.
This service is used to update details of cases associated with a particular Citizen
Account. The schema for the payload of web service requests of this type can be
found in <CURAM_DIR>\EJBServer\components\WorkspaceServices\
webservices\ExternalCase.xsd. See the sample SOAP request for this web service.

A web service request of this type contains the following information:
v sourceSystem – The name of the remote system sending the request. Must match

the name of a remote system configured in the system.
v contactReference – A reference for the contact, unique within the source remote

system, this must match a contact reference previously transmitted via a Contact
Service request.

v caseReference – This is a case reference and must be unique within the remote
system that is the source of this request.

v caseName - The human readable name of the case on the remote system. The
case name must be localised to the locale of the client. Case names used in the
Payment web service should match case names provided in this request.

v citizenWorkspaceAccountID – The unique citizen workspace account id.

If a request is received with the same source system and case reference as a
pre-existing entry then the information in the newer request supersedes the
pre-existing information.

Sample SOAP Requests
A list of sample SOAP requests to help with development.

Intake Program Application Update
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices
.curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">

72 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

<Username>userforpeersystem</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:updateIntakeProgramApplication>
<rem:xmlMessage>
<intakeProgramApplicationUpdate>

<applicationReference>256</applicationReference>
<applicationProgramReference>joannesprogram

</applicationProgramReference>
<programApplicationStatus>IPAS1004</programApplicationStatus>
<programApplicationDisposedDateTime>

20120528 17:19:47
</programApplicationDisposedDateTime>
<programApplicationDenialReason>IPADR1001

</programApplicationDenialReason>
</intakeProgramApplicationUpdate>

</rem:xmlMessage>
</rem:updateIntakeProgramApplication>

</soapenv:Body>
</soapenv:Envelope>

Withdrawal Request Update
<?xml version="1.0" encoding="UTF-8"?>

<table name="SEARCHSERVICEFIELD">

<column name="
searchServiceFieldId
" type="text" />

<column name="
searchServiceId
" type="text" />

<column name="
name
" type="text" />

<column name="
indexed
" type="bool" />

<column name="
type
" type="text" />

<column name="
stored
" type="bool" />

<column name="
entityName
" type="text" />

<column name="
analyzerName
" type="text" />

<column name="
untokenized
" type="bool" />

<row>
<attribute name="searchServiceFieldId">

<value>
field0
</value>

</attribute>
<attribute name="searchServiceId">

<value>
PersonSearch
</value>

</attribute><attribute name="name">
<value>

Customizing Universal Access 73

primaryAlternateID
</value>

</attribute><attribute name="indexed"> <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:rem="http://remote.externalservices.workspaceservices.curam"
xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>userforpeersystem</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:updateWithdrawalRequest>
<rem:xmlMessage>

<withdrawalRequestUpdate>
<curamReferenceID>-6897262829317914624</curamReferenceID>
<withdrawalRequestStatus>WREQ1002</withdrawalRequestStatus>
<resolvedDateTime>20120525 11:30:50</resolvedDateTime>

</withdrawalRequestUpdate>
</rem:xmlMessage>

</rem:updateWithdrawalRequest>
</soapenv:Body>

</soapenv:Envelope>

Create Account
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:createAccount>
<!--Optional:-->
<rem:xmlMessage>

<!--Optional:-->
<cre:AccountCreate xmlns:cre="http://www.curamsoftware.com/

WorkspaceServices/ExternalAccountCreate">
<firstName>John</firstName>
<middleName>M</middleName>
<surname>Doe</surname>
<username>johnmdoe</username>
<password>password1</password>
<confirmPassword>password1</confirmPassword>
<secretQuestionType>SQT1</secretQuestionType>
<answer>mypassword1</answer>
<termsAndConditionsAccepted>true</termsAndConditionsAccepted>
<intakeApplicationReference>256</intakeApplicationReference>
<clientIDOnRemoteSystem>112233445566</clientIDOnRemoteSystem>
<sourceSystem>TestSystem</sourceSystem>

</cre:AccountCreate>
</rem:xmlMessage>

</rem:createAccount>
</soapenv:Body>

</soapenv:Envelope>

Account Link
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">

74 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:linkTargetSystemToAccount>
<rem:xmlMessage>
<lnk:AccountLink xmlns:lnk="http://www.curamsoftware.com/

WorkspaceServices/ExternalAccountLink">
<sourceSystem>TestSystem</sourceSystem>
<citizenWorkspaceAccountID>7081910414040104960

</citizenWorkspaceAccountID>
<clientIDOnRemoteSystem>112233445566</clientIDOnRemoteSystem>
<createdByUsername>testuser</createdByUsername>
</lnk:AccountLink>
</rem:xmlMessage>

</rem:linkTargetSystemToAccount>
</soapenv:Body>

</soapenv:Envelope>

Account UnLink
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:unlinkTargetSystemFromAccount>
<!--Optional:-->
<rem:xmlMessage>
<unl:AccountUnlink xmlns:unl="http://www.curamsoftware.com/

WorkspaceServices/ExternalAccountUnlink">
<sourceSystem>TestSystem</sourceSystem>
<citizenWorkspaceAccountID>7081910414040104960

</citizenWorkspaceAccountID>
</unl:AccountUnlink>
</rem:xmlMessage>

</rem:unlinkTargetSystemFromAccount>
</soapenv:Body>

</soapenv:Envelope>

Citizen Message
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">

<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:createMessage>
<rem:xmlMessage>

<cm:CitizenMessage xmlns:cm="http://www.curamsoftware.com/
WorkspaceServices/ExternalCitizenMessage">

<sourceSystem>TestSystem</sourceSystem>
<cityIndustryType>CMI9001</cityIndustryType>
<citizenWorkspaceAccountID>7081910414040104960

</citizenWorkspaceAccountID>
<relatedID>6060</relatedID>
<externalCitizenMessageType>PMT2004</externalCitizenMessageType>

Customizing Universal Access 75

<messageTitle>Hello, World!</messageTitle>
<messageBody>This is the body of the message.</messageBody>
<effectiveDate>2000-01-01</effectiveDate>
<expiryDate>2020-01-01</expiryDate>
<priority>false</priority>

</cm:CitizenMessage>
</rem:xmlMessage>

</rem:createMessage>
</soapenv:Body>

</soapenv:Envelope>

Payment (Simple)
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:create>
<rem:xmlMessage>

<tns:Payment xmlns:tns="http://www.curamsoftware.com/
WorkspaceServices/ExternalPayment">

<paymentID>1554</paymentID>
<sourceSystem>TestSystem</sourceSystem>
<cityIndustryType>CMI9001</cityIndustryType>
<citizenWorkspaceAccountID>7081910414040104960

</citizenWorkspaceAccountID>
<paymentAmount>50.00</paymentAmount>
<currency>EUR</currency>
<paymentMethod>CHQ</paymentMethod>
<paymentStatus>PRO</paymentStatus>
<effectiveDate>2012-01-01</effectiveDate>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>
<dueDate>2012-01-01</dueDate>
<payeeName>Dorothy</payeeName>
<payeeAddress>12 Gloster St., WA 6008</payeeAddress>
<paymentReferenceNo>F</paymentReferenceNo>
<bankSortCode>933384</bankSortCode>
<bankAccountNo>88776655</bankAccountNo>
<PaymentBreakdown>

<PaymentLineItem>
<caseName>I</caseName>
<caseReferenceNo>J</caseReferenceNo>
<componentType>C10</componentType>
<debitAmount>22.45</debitAmount>
<creditAmount>50.76</creditAmount>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>

</PaymentLineItem>
</PaymentBreakdown>

</tns:Payment>
</rem:xmlMessage>

</rem:create>
</soapenv:Body>
</soapenv:Envelope>

Payment (Batched)
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

76 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:create>
<rem:xmlMessage>

<tns:Payments xmlns:tns="http://www.curamsoftware.com/
WorkspaceServices/ExternalPayment">

<Payment>
<paymentID>2346</paymentID>
<sourceSystem>TestSystem</sourceSystem>
<cityIndustryType>CMI9001</cityIndustryType>
<citizenWorkspaceAccountID>8306889512684879872

</citizenWorkspaceAccountID>
<paymentAmount>48.00</paymentAmount>
<currency>EUR</currency>
<paymentMethod>CHQ</paymentMethod>
<paymentStatus>PRO</paymentStatus>
<effectiveDate>2012-01-01</effectiveDate>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>
<dueDate>2012-01-01</dueDate>
<payeeName>D</payeeName>
<payeeAddress>E</payeeAddress>
<paymentReferenceNo>F</paymentReferenceNo>
<bankSortCode>G</bankSortCode>
<bankAccountNo>H</bankAccountNo>
<PaymentBreakdown>

<PaymentLineItem>
<caseName>I</caseName>
<caseReferenceNo>J</caseReferenceNo>
<componentType>C24000</componentType>
<debitAmount>22.45</debitAmount>
<creditAmount>49.76</creditAmount>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>

</PaymentLineItem>
<PaymentLineItem>

<caseName>I</caseName>
<caseReferenceNo>J</caseReferenceNo>
<componentType>C24000</componentType>
<debitAmount>22.45</debitAmount>
<creditAmount>49.76</creditAmount>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>

</PaymentLineItem>
</PaymentBreakdown>

</Payment>
</tns:Payments>

</rem:xmlMessage>
</rem:create>

</soapenv:Body>
</soapenv:Envelope>

Contact
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">

<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>

Customizing Universal Access 77

<soapenv:Body>
<rem:updateExternalContact>

<rem:xmlMessage>
<con:ContactInfo xmlns:con="http://www.curamsoftware.com/

WorkspaceServices/ExternalContact">
<sourceSystem>TestSystem</sourceSystem>
<contactReference>CON_100</contactReference>
<fullName>Harry Neilan</fullName>
<phoneNumber>1-800-CALL-ME</phoneNumber>
<mobilePhoneNumber>1-800-CALL-MOB</mobilePhoneNumber>
<faxNumber>1-800-CALL-FAX</faxNumber>
<email>harry@x.org</email>

</con:ContactInfo>
</rem:xmlMessage>

</rem:updateExternalContact>
</soapenv:Body>

</soapenv:Envelope>

Cases
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
<soapenv:Header>

<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:updateExternalCase>
<rem:xmlMessage>

<cas:CaseInfo xmlns:cas="http://www.curamsoftware.com/
WorkspaceServices/ExternalCase">

<sourceSystem>TestSystem</sourceSystem>
<contactReference>CON_100</contactReference>
<caseReference>CAS_109</caseReference>
<caseName>My Benefit Case - 103</caseName>
<citizenWorkspaceAccountID>8306889512684879872

</citizenWorkspaceAccountID>
</cas:CaseInfo>

</rem:xmlMessage>
</rem:updateExternalCase>

</soapenv:Body>
</soapenv:Envelope>

Motivations
A description of the Universal Access motivations implementation and how to
implement a motivation.

Motivations Overview
Motivations allow customers to define their own processes and make them
available from the citizen portal, for example, Apply For Healthcare. A motivation
consists of:
v An IEG script used to collect data from clients.
v A datastore schema used to define the structure of the data collected in the IEG

script.
v A display ruleset defines how the motivation results page will appear.
v A data ruleset (optional) Provide for transferring data store entities into rule

objects in a rule set that is separate from the display rule set.

78 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Running a motivation ends in a configurable results page. The script is used to
define a set of questions that is displayed to a citizen when they initiate a
motivation. The datastore stores the answers provided by a citizen in the script.
The display ruleset and data ruleset are used to output the results on the results
page.

Rule Sets
Motivations define a display rule set and, optionally, a data rule set. The display
rule set drives the display of the results page with different page elements on the
results page relating to the contents of the results datastore. Whilst an abstract
ruleset(MotivationRuleSet) is provided which customers may use for reference
and/or extend, the contract for the results page is only driven by the results
schema, ie whether a customer chooses to refer to/extend the out of the box
abstract ruleset or not the output of the customers' rules must conform to the
results schema.

Data Rule Sets
Data rule sets are used to meet common requirements for converting data captured
in the IEG data store into rule objects. The Motivations runtime can store the
converted data store entities either in the Display rule set or a data rule set. In
some situations it is more practical to add the converted data into the data rule set.
This is because it is best practice to have a separate eligibility rule set for each
program. The display rule set depends on the eligibility rule sets but it is
inadvisable to have a circular dependency from the eligibility rule sets back on the
display rule set. For this reason the data store entities can be converted into rule
objects in a separate data rule set and the eligibility rule sets can depend on that
rule set without any circular dependencies arising.

Results Datastore Population
Population of the results datastore is based on mapping the output from the rules
to the results datastore, hence the requirement that the requirement that the output
of the rules be tailored to the results datastore schema. The actual mapping is for
the most part automatic but customers can influence this mapping via annotations.
The Motivation_Display_Element annotation's resultSchemaElement allows a
RuleObject outputted by the rules to be mapped to an element in the result schema
where the name of the RuleClass and the name of the logically equivalent element
in the result schema are different. If the RuleClass name and the the name of the
logically equivalent element in the result schema are the same, mapping is
automatic and no annotation is required. Irrespective of the mapping being driven
by an annotation or not, the mapping is driven by the contents of the result
schema..

Mapping Rule Objects
When a RuleObject (ie an attribute of a RuleObject which is itself another
RuleObject) is added to the datastore, it is added as a new datastore entity as a
child of the datastore entity which was added for the parent RuleObject. This only
happens in the instance that the RuleObject's rule object name exists in the schema
as a child element of an element, where the parent element's name matches the
rule object name of the parent RuleObject. The matching here is case sensitive,
person in the RuleObject and Person in the schema will not be considered a match.
A RuleObject's rule object name is the resultSchema attribute of the
Motivation_Display_Element, if an annotation exists. If no annotation exists, a
RuleObject's rule object name is the name of the RuleClass. This is important

Customizing Universal Access 79

because this is what is used for comparison with and mapping to the datastore,
where appropriate based on what the schema allows.

When a simple attribute (an attribute of a RuleObject which is not itself a
RuleObject, example a String or codetable value) is added to the datastore, it is
added as an attribute of the datastore entity which was added for the RuleObject
the attribute is on. This only happens in the instance that an attribute with the
same name exists on the element in the schema which corresponds to the owning
RuleObject's datastore entityType. The comparison of attribute names is case
sensitive, dateOfBirth in the RuleObject and dateOFBIRTH in the schema will not
be considered a match.

Sample Mapping From Rules Output To Datastore
Presuming a MotivationType record exists which specifies the following results
schema, note that not all elements here are in the abstract rule set or required in
the results datastore, they are just present for demonstrations purposes. These
demonstrate how a customer would go about getting custom data from their
ruleset populated in the result datastore.

80 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:d="http://www.curamsoftware.com/BaseDomains" elementFormDefault="qualified">

<xsd:import namespace="http://www.curamsoftware.com/BaseDomains">
<xsd:include schemaLocation="IEGDomains">
<xsd:include schemaLocation="MotivationResultDomains">
<xsd:element name="Eligibility">

<xsd:complexType>
<xsd:sequence minOccurs="0">

<xsd:element ref="Context" minOccurs="0" maxOccurs="1">
<xsd:element ref="Results" minOccurs="0" maxOccurs="1">
<xsd:element ref="ElementNameFromAnnotation" minOccurs="0" maxOccurs="1">

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Context">

<xsd:complexType>
<xsd:sequence minOccurs="0">

<xsd:element ref="Person" minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Summary" minOccurs="0" maxOccurs="1">

</xsd:sequence>
<xsd:attribute name="extratAttributeNotFromAbstractRuleSet" type="IEG_INT64">

</xsd:complexType>
</xsd:element>
<xsd:element name="ElementNameFromAnnotation">

<xsd:complexType>
<xsd:attribute name="attributeFromAnnotation" type="IEG_INT64">

</xsd:complexType>
</xsd:element>
<xsd:element name="Person">

<xsd:complexType>
<xsd:attribute name="personID" type="IEG_INT64">
<xsd:attribute name="firstName" type="IEG_STRING">
<xsd:attribute name="lastName" type="IEG_STRING">
<xsd:attribute name="dateOfBirth" type="IEG_DATE">
<xsd:attribute name="status" type="CW_MOTIVATION_RESULTS_MEMBER_STATUS">
<xsd:attribute name="gender" type="IEG_GENDER">

</xsd:complexType>
</xsd:element>
<xsd:element name="Summary">

<xsd:complexType>
<xsd:attribute name="isRichText" type="IEG_BOOLEAN">
<xsd:attribute name="summaryText" type="IEG_STRING">
<xsd:attribute name="title" type="IEG_STRING">

</xsd:complexType>
</xsd:element>

<xsd:element name="Results">
<xsd:complexType>

<xsd:sequence minOccurs="0">
<xsd:element ref="Category" minOccurs="0" maxOccurs="unbounded">

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Category">
<xsd:complexType>

<xsd:sequence minOccurs="0">
<xsd:element ref="Result" minOccurs="0" maxOccurs="unbounded">

</xsd:sequence>
<xsd:attribute name="categoryID" type="IEG_STRING">
<xsd:attribute name="type" type="IEG_STRING">
<xsd:attribute name="isPrimary" type="IEG_BOOLEAN">
<xsd:attribute name="order" type="IEG_INT16">
<xsd:attribute name="help" type="IEG_STRING">
<xsd:attribute name="status" type="IEG_STRING">
<xsd:attribute name="extratAttributeNotFromAbstractRuleSet" type="IEG_INT64">

</xsd:complexType>
</xsd:element>
<xsd:element name="Result">

<xsd:complexType>
<xsd:sequence minOccurs="0">

<xsd:element ref="Person" minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Benefit" minOccurs="0" maxOccurs="unbounded">

Customizing Universal Access 81

Conceptually, the above schema only allows the datastore to be populated by the
rules as follows. Anything else output by the rules will be ignored.
v Benefit.benefitType
v Benefit.benefitValue
v Benefit.explanation
v Result.Person
v Result.Benefit
v Result.resultID
v Result.type
v Result.resultDescription
v Result.status
v Category.Result
v Category.categoryID
v Category.type
v Category.isPrimary
v Category.order
v Category.help
v Category.status
v Category.extratAttributeNotFromAbstractRuleSet
v Context.Person
v Context.Summary
v Context.extratAttributeNotFromAbstractRuleSet
v Results.Category
v ElementNameFromAnnotation.attributeFromAnnotation
v Eligibility.Context
v Eligibility.Results
v Eligibility.ElementNameFromAnnotation
v Person.personID
v Person.firstName
v Person.lastName
v Person.dateOfBirth
v Person.status
v Person.gender
v Summary.isRichText
v Summary.summaryText
v Summary.title

82 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Sample Rules: Processing Rule Objects

Taking the RuleClass above, where Eligibility is the first RuleClass in the ruleset
(this must always be the case), the motivation processing will add a datastore
entity named Eligibility, and for each of the Context, Results and
AnnotatedElement attributes process their attributes (and their attributes' attributes
etc), adding new datastore entities and attributes to existing entities as appropriate
relative to the schema.

Sample Rules: Complex Attributes (Single Rule Object)

<Class name="Eligibility" extends="AbstractEligibility"
extendsRuleSet="MotivationRuleSet"
xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Attribute name="context">
<type>
<ruleclass name="AbstractContext" ruleset="MotivationRuleSet">
</type>

<derivation>
<create ruleclass="Context">
</derivation>

</Attribute>
<Attribute name="results">

<type>
<ruleclass name="AbstractResults" ruleset="MotivationRuleSet">
</type>

<derivation>
<create ruleclass="Results">
</derivation>
</Attribute>

<Attribute name="annotatedAttributeElementWillBeAnnotated">
<type>
<ruleclass name="AnnotatedElement">
</type>
<derivation>

<create ruleclass="AnnotatedElement">
</derivation>

</Attribute>
</Class>

Figure 8. Processing Rule Objects Sample

<Class name="Eligibility" extends="AbstractEligibility"
extendsRuleSet="MotivationRuleSet"
xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Attribute name="context">
<type>

<ruleclass name="AbstractContext" ruleset="MotivationRuleSet">
</type>
<derivation>

<create ruleclass="Context">
</derivation>

</Attribute>
... Other attributes ..

</Class>

<Class name="Context" extends="AbstractContext" extendsRuleSet="MotivationRuleSet"
xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/CreoleRulesSchema.xsd">
... Attributes ...

</Class>

Figure 9. Complex Attributes

Customizing Universal Access 83

Context has not been annotated so the name used for the corresponding datastore
entity will be the RuleClass name, ie Context. The processing will check the
schema to see if Eligibility.Context is allowed (ie a combination of the parent
RuleObject's name and this RuleObject's name), the schema does allow this so a
Context entity will be added and appended to the Eligibility entity. For attributes
that refer to a RuleObject, the name of the attribute on the parent RuleClass is not
important (ie in the Eligibility RuleClass above, the name of context attribute is
ignored). The matching is based on the name of the parent RuleObject and the
name of the RuleObject itself, not the name of the attribute that refers to the
RuleObject on the parent RuleObject.

Sample Rules: Complex Attributes (Single Rule Object,
Annotated)

AnnotatedElement has been annotated so the name used for the corresponding
datastore entity will be the resultSchemaElement attribute of the annotation, ie
ElementNameFromAnnotation. The processing will check the schema to see if
Eligibility.ElementNameFromAnnotation is allowed (ie a combination of the parent
RuleObject's name and this RuleObject's name), the schema does allow this so an
ElementNameFromAnnotation entity will be added and appended to the Eligibility
entity. For attributes that refer to a RuleObject, the name of the attribute on the
parent RuleClass is not important (ie in the Eligibility RuleClass above, the name
of annotatedAttributeElementWillBeAnnotated attribute is ignored). The matching
is based on the name of the parent RuleObject and the name of the RuleObject
itself, not the name of the attribute that refers to the RuleObject on the parent
RuleObject. Note that if the annotation was not present, the name that would be
used for the potential datastore entity would be AnnotatedElement. The schema
does not allow Eligibility.AnnotatedElement and so this entity would not be
created. This demonstrates that a RuleClass which is intended to be present in the
results datastore must be annotated to match the expected elements in the schema.

<Class name="Eligibility" extends="AbstractEligibility"
extendsRuleSet="MotivationRuleSet"
xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/CreoleRulesSchema.xsd">

.. Other attributes ..
<Attribute name="annotatedAttributeElementWillBeAnnotated">

<type>
<ruleclass name="AnnotatedElement">

</type>
<derivation>

<create ruleclass="AnnotatedElement">
</derivation>

</Attribute>
</Class>

<Class name="AnnotatedElement"
xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Annotations>

<Motivation_Display_Element resultSchemaElement="ElementNameFromAnnotation">
</Annotations>

.. Attributes ..

</Class>

Figure 10. Complex Attributes (Single Rule Object, Annotated)

84 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Sample Rules: Complex Attributes (List Of Rule Objects)

The attribute householdMembers above is a complex attribute, returning a List of
RuleObjects. Each of the RuleObjects in the list will result in a new datastore entity
being created and appended to the Context datastore entity, provided the name of
these RuleObjects is appropriate for the schema. In this case, the processing will
check the schema to see if Context.Person is allowed (ie a combination of the
parent RuleObject's name and this RuleObject's name), the schema does allow this
so a number of Person entities will be added and appended to the Context entity.
For attributes that refer to a List of RuleObjects, the name of the attribute on the
parent RuleClass is not important (ie in the Context RuleClass above, the name of
householdMembers attribute is ignored). The matching is based on the name of the
parent RuleObject and the name of each RuleObject itself, not the name of the
attribute that refers to each RuleObject on the parent RuleObject.

<Class name="Context" extends="AbstractContext" extendsRuleSet="MotivationRuleSet"
xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Attribute name="householdMembers">

<type>
<javaclass name="List">

<ruleclass name="AbstractPerson" ruleset="MotivationRuleSet">
</javaclass>

</type>
<derivation>

<readall ruleclass="Person">
</derivation>

</Attribute>
.. Other attributes ..

</Class>

<Class name="Person" extends="AbstractPerson" extendsRuleSet="MotivationRuleSet"
xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/CreoleRulesSchema.xsd">

.. Attributes ..
</Class>

Figure 11. Complex Attributes (List Of Rule Objects)

Customizing Universal Access 85

Sample Rules: Simple Attributes

The attributes above, personID and medicaidCategory are simple attributes, ie they
are not RuleObjects. Rather than being added as child entities in the datastore, they
will be added as attributes of the datastore entity created for their parent
RuleObject, provided the names of the attributes are appropriate for the schema.
Unlike attributes which are RuleObjects where the name of the attribute in the
parent RuleObject is not important, for simple attributes the attribute name IS
important. The processing will check whether Person.personID and
Person.medicaidCategory are appropriate for the schema. Person.personID is
appropriate so the personID will be added as an attribute of the Person entity.
Person.medicaidCategory is not contained in the schema and this will not be
added to the Person entity in the datastore.

Fully Customizable Universal Access Artifacts
A description of the artifacts that are fully customizable in Universal Access and
how to customize these artifacts.

Customizable Universal Access Page Content
Universal Access public pages are driven by page player XML pages that are made
available in the app resource store. Each page has a corresponding property file
and images used in rendering these page that are also stored in the app resource
store. To navigate to the application resource store you must log in to the
administration application, go to Universal Access, select Application Resource and
filter your search here. Text, online help, and images for page content are all
customizable and localizable.

Text and Online Help
Initial data for text and online help used in Universal Access pages are found in:
v CURAM_DIR\EJBServer\components\CitizenWorkspace\Data_Manager\

Initial_Data\blob\prop directory

<Class name="Person" extends="AbstractPerson" extendsRuleSet="MotivationRuleSet"
xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Attribute name="personID">
<type>

<javaclass name="Long">
</type>
<derivation>

<specified>
</derivation>

</Attribute>

<Attribute name="medicaidCategory">
<type>

<codetableentry table="MotivationTestCategory">
</type>
<derivation>

<specified>
</derivation>

</Attribute>

</Class>

Figure 12. Simple Attributes

86 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Universal Access makes use of the Application Resource Store mechanism to
configure online help, images and page text for our pages. Taking the example of
help text – this can be associated with any page in the Universal Access
application. The help is displayed in a hidden panel at the top of the page which
the user can access using the 'Help' link.

Every Universal Access page has a corresponding application resource of type
'property' shipped with it. To change the online help for one of the Universal
Access pages, the developer needs to know the name of the page and the
corresponding properties file. For example, the 'ScreeningOptionalLogin' page (the
Getting Started page that is displayed after selecting 'Am I Eligible' on the Citizen
Portal Home page). The corresponding properties file can be found at:
v CURAM_DIR\EJBServer\components\CitizenWorkspace\Data_Manager\

Initial_Data\blob\prop\ScreeningOptionalLogin.properties

This is referenced from the DMX file:
v CURAM_DIR\EJBServer\components\CitizenWorkspace\Data_Manager\

Initial_Data\APPRESOURCE_PROP.dmx

As a change is being made to initial DMX data, the procedure to follow is the
same as the recommended procedure for changing any DMX data as outlined in
the Cúram Server Developer's Guide.

Simply edit your version of the ScreeningOptionalLogin.properties file and change
the property text as required. All text controlled by page Player XML properties
files can be altered in the same manner.

Images
Initial data for images used on the Universal Access pages are found in:
v CURAM_DIR\EJBServer\components\CitizenWorkspace\Data_Manager\

Initial_Data\blob\img

The process for replacing icons/images is the same as that used to replace text. For
example, take the 'ScreeningOptionalLogin' page. The page XML source file is
located at:
v Data_Manager\Initial_Data\blob\xml\ScreeningOptionalLogin

Note that the icon associated with the page header is the "title_getting_started"
icon. This file is located at:
v Data_Manager\Initial_Data\blob\img

To replace this image with another, follow the same process indicated for replacing
page text/help text above.

Translation
It is possible to use separate properties files to provide translations of Page
Content to different languages. The following example shows how to add a new
translation for the ScreeningOptionalLogin page. Broadly speaking, this example
follows the guidelines for adding new entries to DMX files as described in the IBM
Cúram Server Developer's Guide.

To create a French translation of the ScreeningOptionalLogin page, create a new
DMX file,
v CURAM_DIR\EJBServer\components\custom\Data_Manager\Initial_Data\

APPRESOURCE_PROP.dmx.

Customizing Universal Access 87

Add a row to this file which references a new file blob\prop\
ScreeningOptionalLogin_fr.properties. The resource name needs to be the same as
the resource name for the English version of the properties, i.e.
ScreeningOptionalLogin. However, the 'localeIdentifier' column will contain
<value>fr</value>.

Add a new entry to project\properties\datamanager_config.xml which references:
v CURAM_DIR\EJBServer\components\custom\Data_Manager\Initial_Data\

APPRESOURCE_PROP.dmx

Create the file CURAM_DIR\EJBServer\components\custom\Data_Manager\
Initial_Data \blob\prop\ScreeningOptionalLogin_fr.properties and enter French
translations for all relevant property values.

For information about adding new languages to citizen account pages, see
"Customizing the citizen account".

Universal Access Page Player Look and Feel
The look and feel of the Universal Access can be changed (to a certain extent)
through changing/customizing its appearance properties and style sheet. The
general appearance properties are initialized from the file:
v CitizenWorkspace\Data_Manager\Initial_Data\blob\css\cp-config.properties

It is referred to by the Application Resource name cp-config-properties.

The main style sheet is initialized from:
v CitizenWorkspace\Data_Manager\Initial_Data\blob\css\cp-css-template.css

It is referred to by the Application Resource name cp-css-template.

The banner is similarly initialized from:
v CitizenWorkspace\Data_Manager\Initial_Data\blob\css\banner-css-template.css

It is referred to by the Application Resource name banner-css-template.

Note the use of properties in the.css files such as 'banner.icon'. When Universal
Access loads the style sheet template, it substitutes these properties from
cp-config.properties into the template to create the actual style sheet, so many
aspects of the page player appearance can be changed simply by changing this
properties file without any need to modify the.css files. As with the previous
examples in this section the css-templates and associated properties can be
changed through taking a copy of the application resource DMX data into the
custom component.

For information regarding customizing the look and feel of citizen account pages,
see "Customizing the citizen account".

General Universal Access Settings
The file:
v CitizenWorkspace\Data_Manager\Initial_Data\blob\prop\CPPagePlayer*.properties

and its translated equivalents like CPPagePlayer_es.properties, control general
purpose text and images associated with the Universal Access application. For
example, text for 'Next' and 'Back' buttons, text on page banners, etc. This resource

88 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

is registered under the resource name 'CPPagePlayer' and can be changed in the
same manner described by the sections above concerning Content/Help text.

Customizable Universal Access Public APIs
The CitizenWorkspace and WorkspaceServices components contain APIs. The
javadoc for these APIs can be located in the doc sub-directory of each of
v <CURAM_DIR>\EJBServer\components\CitizenWorkspace\doc and
v <CURAM_DIR>\EJBServer\components\WorkspaceServices\doc respectively.

A limited number of these APIs are customizable by Event and Strategy patterns as
described in the IBM Cúram Development Compliancy Guide.

Extendable Code Tables
Customers are advised to refer to the IBM Cúram Development Compliancy Guide for
a list of restricted code tables.

Universal Access Artifacts with Limited Scope for Customization
A description of the included Universal Access artifacts that have restrictions on
their use. Customers that are looking to change these artifacts should consider
alternatives or request an enhancement to Universal Access.

Model
Customers are not supported in making changes to any part of the Universal
Access model. Changes in the model such as changing the data types of domains
are likely to cause failure of the Universal Access system and upgrade issues. This
applies to the model files in the following packages:
v WorkspaceServices
v CitizenWorkspace
v CitizenWorkspaceAdmin

Universal Access Page Player XML
Customers are not supported in making changes to the Page Player XML files.

JSP and JSPX pages
Customers are not supported in making changes to any default JSP or JSPX files.

Javascript files
Customers are not supported in making changes to any default JavaScript files in
the following components:
v WorkspaceServices
v CitizenWorkspace
v CitizenWorkspaceAdmin

Renderer configuration
Customers are not supported in making changes to any of the renderer
configuration files.

This applies to the XML files in the following locations:
v webclient\components\WorkspaceServices\Configuration

Customizing Universal Access 89

v webclient\components\CitizenWorkspace\Configuration
v webclient\components\CitizenWorkspaceAdmin\Configuration

Client-side Java artifacts
Universal Access delivers all of its client-side Java artifacts in
CitizenWorkspace_source.jar. This JAR file contains all of the classes required for
UA renderers and servlets. Customers are not supported to attempt to extend,
modify, or replace any of the delivered classes.

Code Tables
Customers are advised to refer to the IBM Cúram Development Compliancy Guide for
a list of restricted code tables.

90 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2012, 2014 91

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of this
program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

92 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and

Notices 93

http://www.ibm.com/privacy

IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Adobe, the Adobe logo and Portable Document Format (PDF), are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Apache is a trademark of Apache Software Foundation.

WebLogic Server, Java and all Java-based trademarks and logos are registered
trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

94 IBM Cúram Social Program Management: Cúram Universal Access Customization Guide

http://www.ibm.com/privacy/details
http://www.ibm.com/legal/us/en/copytrade.shtml

����

Printed in USA

	Contents
	Figures
	Tables
	Customizing Universal Access
	The Black Box Engineering Philosophy
	It Saves Time and Money
	It Makes For Easier Upgrades
	It Is Still Configurable and Customizable

	Configuring the application banner, menus & navigation
	Application Configuration
	Navigation Configuration

	Securing Universal Access
	Background information for UA Security
	The Universal Access Security Model
	The Public Citizen Account
	Anonymous Accounts
	Registered Accounts
	Linked Accounts
	Authorization Roles and Groups

	Deployment Considerations
	Managing User names and Passwords
	Account Management
	Account management configurations
	Account management events
	PasswordReuseStrategy API
	CitizenWorkspaceAccountManager API

	Data Caching
	Browser Caching

	External Security Authentication
	Analysis
	Example UA customization requirements
	Configuration Tasks
	Configure the Application Server to use LDAP for Authentication
	Deploy Cúram Universal Access in Identity Only mode for Registered Users
	Configure Cúram Universal Access so that Create Account Screens are not Displayed
	Configure Cúram Universal Access so that users are directed to register with an External System
	Development Tasks

	Customizing Universal Access Triage
	Available triage events
	Standard persistence events
	Triage Referral Event

	Customizing Universal Access Screening
	How to Track the Volume, Quality, and Results of Screenings
	How to Populate a Custom Screening Results Page

	Customizing Application Intake Processing
	How to Pre-populate the Intake Script
	How to Add a Validation for Program Selection

	Customizing the Handling of Submitted Applications
	How to Customize the Process Intake Application Workflow
	How to Customize the Generic PDF for Processed Applications
	How to Use Events to Extend Intake Application Processing
	How to Customize the Concern Role Mapping Process
	Enable the ConcernRoleMappingStrategy API
	Use the ConcernRoleMappingStrategy API

	How to Send Applications to Remote Systems for Processing

	Customizing the Citizen Account
	Citizen Account Technical Overview
	Citizen Account Security Considerations
	Ensuring the currently logged in user is of the correct type
	Ensuring the currently logged in user has access to the specific records they have requested.

	How to Add a New Page to Citizen Account
	Create a custom, external client component
	Create a UIM page in the new component
	Add a navigation entry for the new page
	Create a Facade

	How to Customize Universal Access Style Sheets in Citizen Account
	Customizing Locale
	Citizen Account home page
	Customizing display text
	Outreach Campaigns
	How to configure a new Citizen Campaign
	Outreach Campaign rule sets
	Images and Links
	Performance Considerations

	My Messages
	Configuring Citizen Messages
	Adding a new type of Citizen Message
	Implementing a new message type
	Customizing specific message types

	Customizing existing pages
	My Payments Page Customization
	My Applications Page Customization
	Contact Information Page Customization
	Customizing Appeal Requests
	Displaying appeals request status from an external appeals system

	Customizing Life Events
	Introduction to Life Events
	How to Build a Life Event
	Analysis

	Customizing Advanced Life Events
	Advanced Life Events and when to use them
	How to Build a Life Event
	Analysis
	Considerations for Life Events Analysis

	Building The Components of a Life Event
	Overview
	Writing Life Event IEG Scripts
	Writing Life Event Recommendations Rule Sets
	Pre-Populating a Life Event
	Driving Updates from Life Events
	Putting it all Together

	Life Events API Guide
	Event APIs for Life Events

	Universal Access Web Services
	Inbound and outbound web services
	Web Services Security Considerations
	Process Application Service
	Receive Application
	Receive Withdrawal Request

	Update Application Service
	Intake Program Application Update
	Withdrawal Request Update

	Life Event Service
	Create Account Service
	Link Service
	Unlink Service
	Citizen Message
	Payment Service
	Contact Service
	Case Service
	Sample SOAP Requests
	Intake Program Application Update
	Withdrawal Request Update
	Create Account
	Account Link
	Account UnLink
	Citizen Message
	Payment (Simple)
	Payment (Batched)
	Contact
	Cases

	Motivations
	Motivations Overview
	Rule Sets
	Data Rule Sets
	Results Datastore Population
	Mapping Rule Objects
	Sample Mapping From Rules Output To Datastore
	Sample Rules: Processing Rule Objects
	Sample Rules: Complex Attributes (Single Rule Object)
	Sample Rules: Complex Attributes (Single Rule Object, Annotated)
	Sample Rules: Complex Attributes (List Of Rule Objects)
	Sample Rules: Simple Attributes

	Fully Customizable Universal Access Artifacts
	Customizable Universal Access Page Content
	Text and Online Help
	Images
	Translation
	Universal Access Page Player Look and Feel
	General Universal Access Settings

	Customizable Universal Access Public APIs
	Extendable Code Tables

	Universal Access Artifacts with Limited Scope for Customization
	Model
	Universal Access Page Player XML
	JSP and JSPX pages
	Javascript files
	Renderer configuration
	Client-side Java artifacts
	Code Tables

	Notices
	Privacy Policy considerations
	Trademarks

