

Analyzing IT Value and Cost Considerations – Maximizing The Value of Your Mainframe

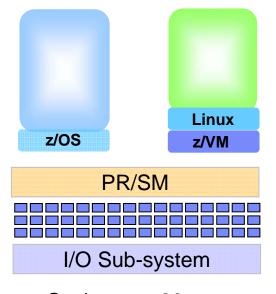
Ray Jones, Vice President, Worldwide System z Software Sales, IBM Software Group

March 21, 2012

Smarter Computing

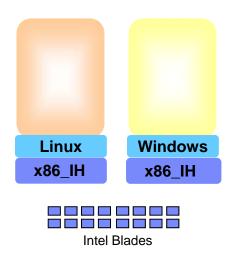
Strategies to achieve breakthrough reductions in IT cost

Ascertain true elements of cost:

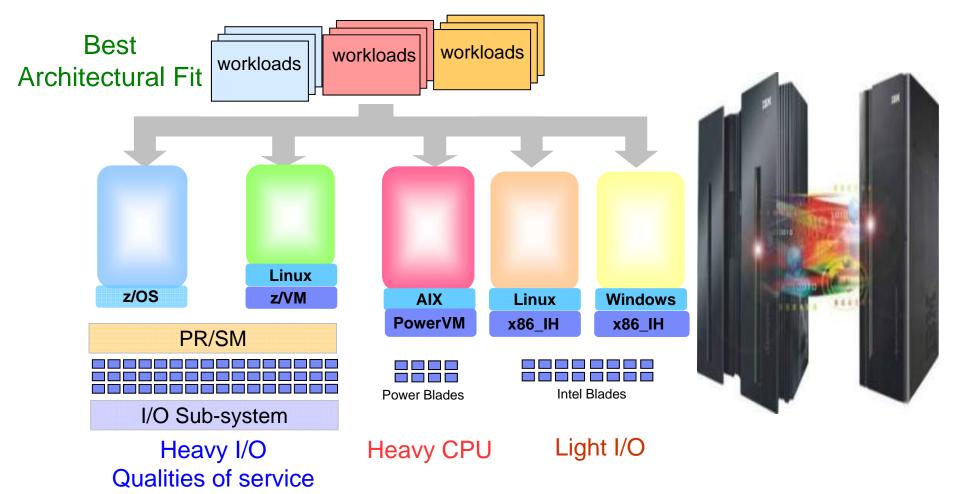

New metric for the age of Smarter Computing

Hardware/Software/Maintenance Networking Energy Labor Storage

COST PER WORKLOAD


A Closer Look At Fit-For-Purpose Workload Assignment

- Scale up to 80 cores in a frame (z/OS clusters with sysplex)
- Dedicated I/O subsystem
- Superior qualities of service



- Scales to 8 cores per blade
- 4 fast processing threads per core
- Floating point accelerators

- Scales to 16 cores per blade
- 2 fast processing threads per core
- Commodity I/O
- Modest qualities of service

Workload Characteristics Influence The Best Fit Deployment Decision

Deploy or consolidate workloads on the environment best suited for each workload to yield lowest cost
Maximizing the value of your mainframe

Deploying Stand Alone Workloads With Heavy CPU Requirements

Benchmark to determine which platform provides the lowest TCA over 3 years

2 workloads per Intel blade

Scale to 16

cores

Virtualized on Intel 16 core HX5 Blade \$200,055 per workload

Best Fit

Heavy CPU workloads

1 workload per POWER7 blade

PowerVM on PS701 8 core POWER7 Blade \$216,658 per workload

- IBM WebSphere ND
- Monitoring software
- On 8 core Nehalem servers

Online banking workloads, each driving **460** transactions per second with light I/O

10 workloads per 32-way z/VM

z/VM on z196 CPC

\$328,477 per workload

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer workload profiles/characteristics. Prices will vary by country.

Deploying Stand Alone Workloads With Light CPU Requirements

Benchmark to determine which platform provides the lowest TCA over 3 years

47 workloads per Intel blade

Virtualized on Intel 16 core HX5 Blade \$8,165 per workload

Light workloads

IBM WebSphere ND

Monitoring softwareOn 4 core "older" Intel

28 workload per POWER7 blade

Fast low cost threads

PowerVM on PS701 8 core POWER7 Blade \$7,738 per workload Best Fit

Online banking workloads, each driving **22** transactions per second with moderate

155 workloads per 32-way z/VM

z/VM on z196 CPC

\$21,192 per workload

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer workload profiles/characteristics. Prices will vary by country.

© 2012 IBM Corporation

Deploying Stand Alone Workloads With Heavy I/O Requirements

Benchmark to determine which platform provides the lowest TCA over 3 years

1 workload per Intel blade

Virtualized on Intel 16 core HX5 Blade \$400,109 per workload

Heavy I/O workloads

1 workload per POWER7 blade

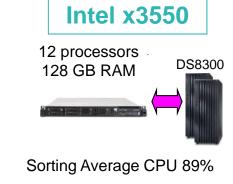
PowerVM on PS701 8 core POWER7 Blade \$216,658 per workload

- IBM WebSphere ND
- Monitoring software
- On 4 core "Older" Intel

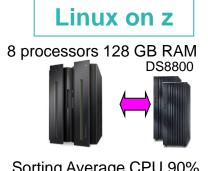
Online banking workloads, each driving 22 transactions per second, with 1 MB I/O per transaction

40 workloads per 32-way z/VM

I/O bandwidth large scale pool


z/VM on z196 CPC 32 IFLs


\$82,119 per workload


Best Fit

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer workload profiles/characteristics. Prices will vary by country.

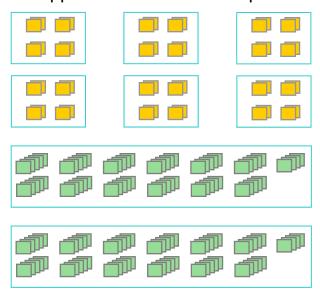
Benchmarks Show System z And z/OS Are **Optimized For Batch Processing**

Corting / Wordge	3 61 6 66 76	ung/worage of 6 6276	orang / Worago Or O 00/0	Corting / Working Cr C / 2/0			
SORT Job: Sort a 3 GB transaction file – Repetitions: 300							
Total Time (secs) Concurrency Rate (MB/sec)	7,680 12 240	6,900 20 280	2,590 18 746.2	644 45 3,000			
	MERGE Job: M	erge 30 sorted files into a 90	0 GB master tile – Repetit	ions: 10			
Total Time (secs) Concurrency Rate (MB/sec)	11,709 10 157	7,920 10 244	2,799 10 690.5	558 10 3,460			

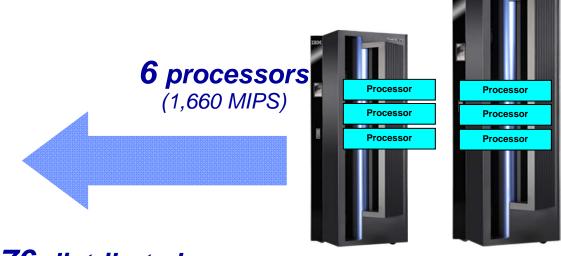
Results:

- 1. Running same software, x86 batch window is 3.6x greater than System z
- 2. On System z, Linux batch window is 4.5x greater than z/OS

157


3. Off-loading batch from z/OS to x86 leads to as much as 16x increase in batch window

244


Core Proliferation for a Mid-sized Offload Project

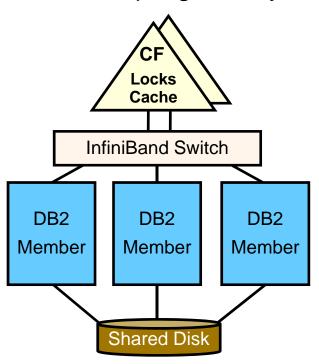
6x 8-way Production / Dev 2x 64-way Production / Dev Application/MQ/DB2/Dev partitions

2x z900 3-way Production / Dev / QA / Test

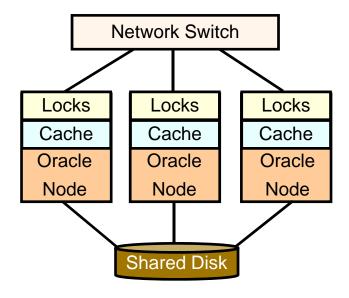
\$25.4M TCO (5yr)

176 distributed processors (800,072 Performance units)

\$17.9M TCO (5yr)


482 Performance Units per MIPS

Clusters Grow Database Processing Power Beyond Single Server Solutions


DB2 for z/OS

Centralized Coupling Facility Design

Efficient lock and buffer management achieve near linear scalability

Oracle RAC Distributed Design

Inefficient distributed locking and buffer management limits scaling

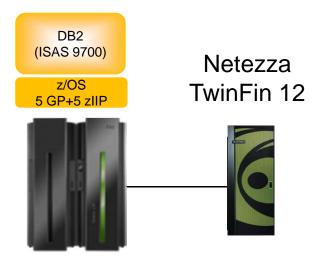
ISAS 9700 + IDAA Delivers

5X Performance At 25% The Unit Cost

Competitor

Unit Cost (3yr TCA) \$97/RpH

RpH (Reports/Hour)	29,572
Exadata V2 (HW+SW+Stora ge)	\$2.9M


ISAS 9700

Unit Cost (3yr TCA) \$62/RpH

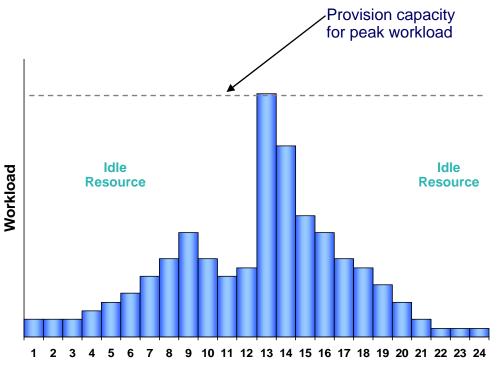
RpH (Reports/Hour)	57,904
ISAS 9700 (HW+SW+Stora ge)	\$3.6M

ISAS 9700 + IDAA

Unit Cost (3yr TCA) \$24/RpH

RpH (Reports/Hour)	154,893
ISAS 9700 10-cores (HW+SW+Storage)	\$1.5M
NZ TF12 (HW+SW+Storage)	\$2.1M

Utilization of Distributed Servers & Storage

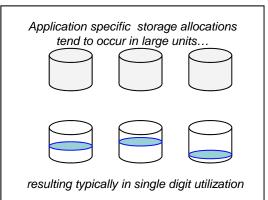

Typical utilization of:

Windows Servers 5-10% UNIX Servers 10-20% System z Servers 85-100%

Server dedicated to one application

The cost of storage is typically three times more in distributed environments

Storage Allocation


- Application-specific resulting in over-allocations
- Fine grained storage allocation mechanisms characteristic of mainframe storage are uncommon in distributed environments.

Storage Utilization

- Single digit utilization for distributed environments is not uncommon
- Storage utilization of 80% + is typical for mainframe

Storage Management

- Data disaster recovery, synchronization, and transfer requirements add complexity and cost

What Is A Typical Value Of Sigma?

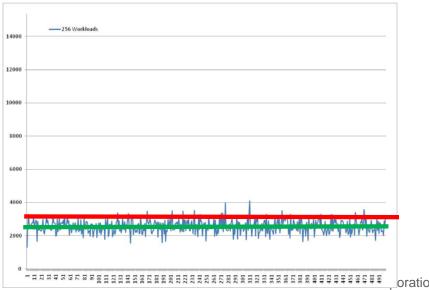
IBM Survey Of Workload Variability In 3200 Servers

Type Of Workload	Average Utilization	Peak Utilization	Sigma
Infrastructure	6%	35%	2.5 * Mean
Web Server	4%	24%	2.5 * Mean
Application	4%	34%	3.75 * Mean
Database	5%	37%	3.25 * Mean
Terminal	6%	45%	3.25 * Mean
E-Mail	4%	34%	3.75 * Mean

IBM System x[™] Servers and VMware Virtual Machine Sizing Guide

Legacy workloads on XEON 2.5-2.8GHz Servers

Normal probability distribution


New Workload Scenarios – Beware Benchmarks

Stress test benchmarks have no variability!

- They drive the system under test to 100% utilization with no variation
- Comparing mean throughputs at 100% utilization doesn't give a realistic view of the resources required for deployment

Running a new workload with variability Sigma=2.5*Mean requires processing capacity equal to 6 times the Mean workload demand

Adding a new workload to a pool of 256 existing workloads will require incremental processing capacity equal* to the **Mean** workload demand

^{*} If we add one more workload to a pool of 256 consolidated workloads the computing resource required for the pool goes up by 1.00047 * Mean

Case Study: Network Costs – Before Consolidation (483 Servers to 2 System z's)

Backbone

High Utilization Switch Module	14
Low Utilization Switch Module	12
Switch Interconnect Module	6
50 Ft UTP Cable	966
10GB Eth Fiber Cable	12
Switch Chassis	3

Hardware Acquisition \$748K Network Annual Costs \$597K

Shows 30 of the 483 Servers

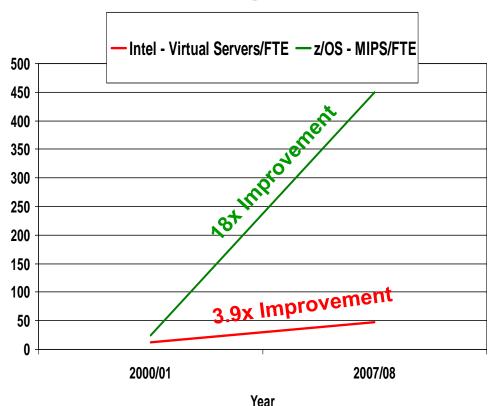
Case Study: Network Costs – After Consolidation (483 Servers to 2 System z's)

New Hardware Acquisition \$0 (reuse some of old network hardware) \$253K After Network Annual Cost **Backbone** Network Annual Cost Savings \$344K

Why Does Core Proliferation Happen?

De-consolidation of applications to dedicated servers

- Dedicated servers for functional roles application, database, security, batch, systems management
- Separate servers for production, development, quality assurance test
- Low utilization due to provisioning for the peak on each server and pre-provisioning for growth


Disaster Recovery

- 100% coverage doubles the number of cores required
- As a result, full DR is rarely implemented

Processing comparisons

- Language expansion (CICS/COBOL path lengths are highly optimized)
- Networking drives up cycles spent on protocols
- Mainframe has dedicated processors for I/O operations, distributed does not
- Converting classic file systems to relational results in up to 3x expansion
- Zero network traffic on mainframe reduces computation (and latency)

System z Labor Cost Trends Favor A Centralized Approach To Management

Large scale consolidation and structured management practices drive increases in labor productivity

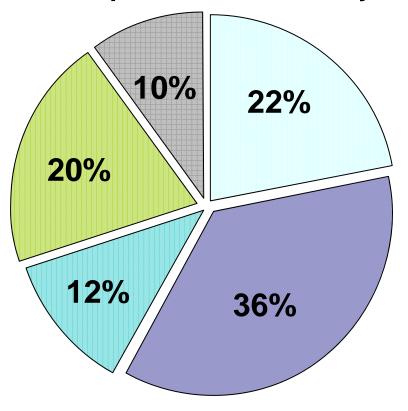
Small scale consolidation achieves lesser gains

The more workloads you consolidate and manage with structured practices...

the lower the management labor cost

Source: IBM Scorpion Studies

Accumulated Field Data For Labor Costs


- Average of quoted infrastructure labor costs
 - 30.7 servers per FTE (dedicated Intel servers)
 - 67.8 hours per year per server for hardware and software tasks
 - 52.5 Virtual Machines per FTE (virtualized Intel servers)
 - 39.6 hours per year per Virtual Machine for software tasks and amortized hardware tasks
 - Typical 8 Virtual Machines per physical server

Best fit data indicates

- Hardware tasks are 32 hours per physical server per year
 - Assume this applies to Intel or Power servers
 - Internal IBM studies estimate 320 hours per IFL for zLinux scenarios
- Software tasks are 36 hours per software image per year
 - Assume this applies to all distributed and zLinux software images

Five Key IT Processes For Infrastructure Administration

Time spent on each activity

Deployment Management

- Hardware set-up and software deployment

Incident/Capacity Management

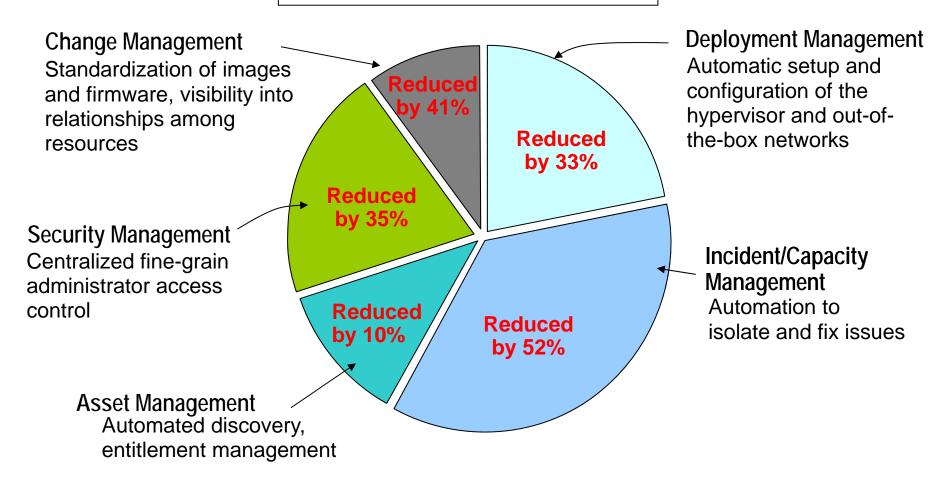
- Monitor and respond automatically

Asset Management

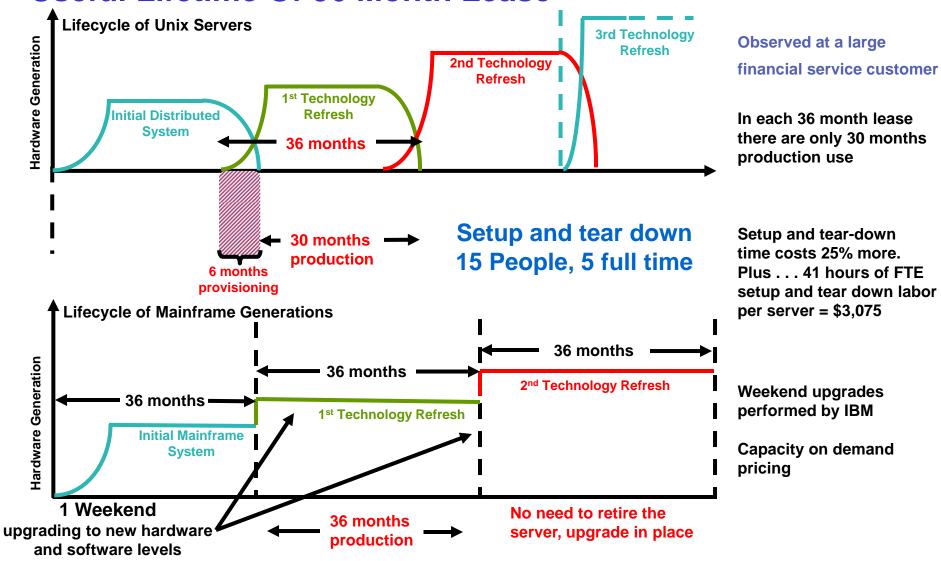
- Hardware and software asset tracking

Security Management

- Access control


Change Management

Hardware and software changes



zManager Labor Cost Reduction Benefits Case Study

5032 total hours per year reduced by 38% to 3111 hours per year

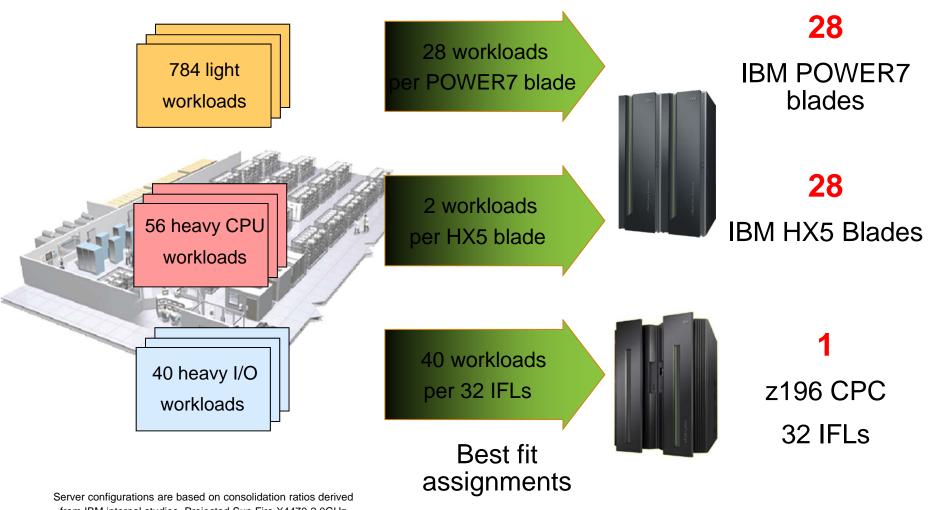
New York Financial Services Company – Useful Lifetime Of 36 Month Lease

Cost Ratios in all TCO Studies

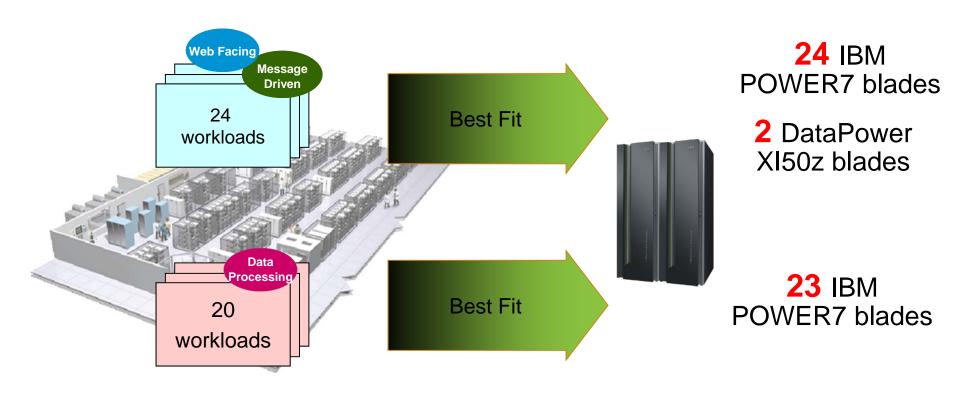
Average Cost Ratios (z vs Distributed)

Attorage Cost Hatico (2 to Distributou)					
		z	Distributed	z vs distributed (%)	
	5-Year TCO	\$16,351,122	\$31,916,262	51.23%	
	Annual Operating Cost	\$2,998,951	\$4,405,510	68.07%	
	Software	\$10,932,610	\$16,694,413	65.49%	
ad	Hardware	\$3,124,013	\$3,732,322	83.70%	
Offload	System Support Labor	\$3,257,810	\$4,429,166	73.55%	
ğ	Electricity	\$45,435	\$206,930	21.96%	
	Space	\$59,199	\$154,065	38.42%	
	Migration	\$438,082	\$10,690,382	4.10%	
	DR	\$854,266	\$2,683,652	31.83%	
	Average MIPS	3,954			
	Total MIPS	217,452			
	5-Year TCO	\$5,896,809	\$10,371,020	56.86%	
	Annual Operating Cost	\$716,184	\$1,646,252	43.50%	
Consolidation	Software	\$2,240,067	\$6,689,261	33.49%	
Jati	Hardware	\$2,150,371	\$1,052,925	204.23%	
∺	System Support Labor	\$1,766,403	\$2,395,693	73.73%	
nSu	Electricity	\$129,249	\$365,793	35.33%	
ပိ	Space	\$84,033	\$205,860	40.82%	
	Migration	\$678,449	\$0		
	DR	\$354,735	\$411,408	86.22%	
	Average MIPS	10,821			
	Total MIPS	292,165			

Case Study – Consolidate 880 Standalone Workloads And Integrate 44 Hybrid Workloads On zEnterprise


- Standalone distributed workload profile is a mix of
 - 784 light
 - 56 heavy CPU
 - 40 heavy I/O
- Hybrid workload profile is a mix of
 - 24 Web front-end workloads to CICS on z/OS
 - 20 SAP application workloads with DB2 on z/OS
- What is the most cost effective way to consolidate/deploy all these workloads?

Sun Fire X4170


What Is Best Fit For 880 Standalone Workloads On zEnterprise?

Server configurations are based on consolidation ratios derived from IBM internal studies. Projected Sun Fire X4470 2.0GHz 2ch/16co from x3550 2.66GHz 2ch/12co measurements. Prices are in US currency, prices will vary by country

What Is Best Fit For 44 Hybrid Workloads On zEnterprise?

CICS and DB2 components are Best Fit on z/OS

Compare Server Hardware And Software Cost Of Acquisition

56 heavy CPL 784 light **20 SAP** 24 WAS and 40 heavy I/O workloads workloads workloads DP workloads workloads

Deployed on Sun + **HP** servers

123 Sun Fire X4170

1476 cores

183 servers

2,060 cores

\$46.0M Total

3yr TCA HW+SW

24 Sun Fire X4170

34 Sun T4-1

560 cores

2 DL380

24 cores

Best fit on zEnterprise

z196

32 IFLs

106 servers 1,080 cores

105 Blades

1,048 cores

43% less

\$26.1M Total

3yr TCA HW+SW

Server configurations are based on consolidation ratios derived from IBM internal studies. Prices are in US currency, prices will vary by country

Compare Network Cost Of Acquisition

40 heavy I/O workloads

56 heavy CPU workloads

56 heavy CPU workloads

24 WAS and DP workloads

workloads

Deployed on Sun + HP servers

Additional network parts

37 switches

814 cables

740 adapters

1,591 total network parts

\$0.45M Total

Network configuration is based on IBM internal studies.

Prices are in US currency, prices will vary by country

Best fit on zEnterprise

Additional network parts

1 switch

10 cables

10 adapters

94% less

21 total network parts

\$0.03M Total

Compare Power Consumption

Deployed on Sun + HP servers

183 servers

3 years @ \$0.10 per kWh

Best fit on zEnterprise

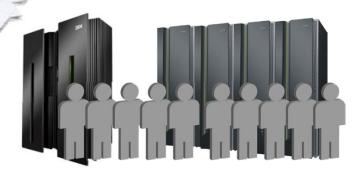
106 servers

53.4 kW

\$0.14M Total

3 years @ \$0.10 per kWh 57% less

Compare Server Infrastructure Labor Costs


Deployed on Sun + HP servers

18.83 administrators

\$9.02M Total

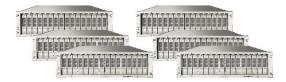
3 years @ \$159,600/yr Best fit on zEnterprise

26,441 labor hrs/yr

12.71 administrators

\$6.09M Total

3 years @ \$159,600/yr **32% less**


Server configurations are based on consolidation ratios derived from IBM internal studies. Prices are in US currency, prices will vary by country

Compare Storage Costs

Deployed on Sun

Sun Storage 6180 Array Sun F5100 Storage Flash Array

232.8TB embedded storage

36.57% utilization 70 points of admin

\$8.58M TCO(3 years)

75GB/240GB active storage required per workload

Best fit on zEnterprise

Incremental add on DS8800

143.04TB provisioned storage

59.52% utilization

1 points of admin

45% less

\$4.6M TCO (3 years)

Compare Total Cost Of Ownership

Deployed on Sun + HP servers

183 servers

2,060 cores

\$64.38M Total

or \$70K per workload

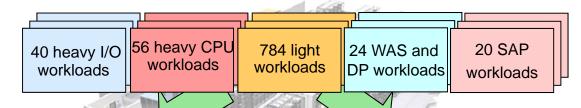
3yr TCO
Server configurations are based on consolidation ratios derived from IBM internal studies. Prices are in US currency, prices will vary by country

Best fit on zEnterprise

106 servers

1,080 cores

\$36.96M Total


43% less

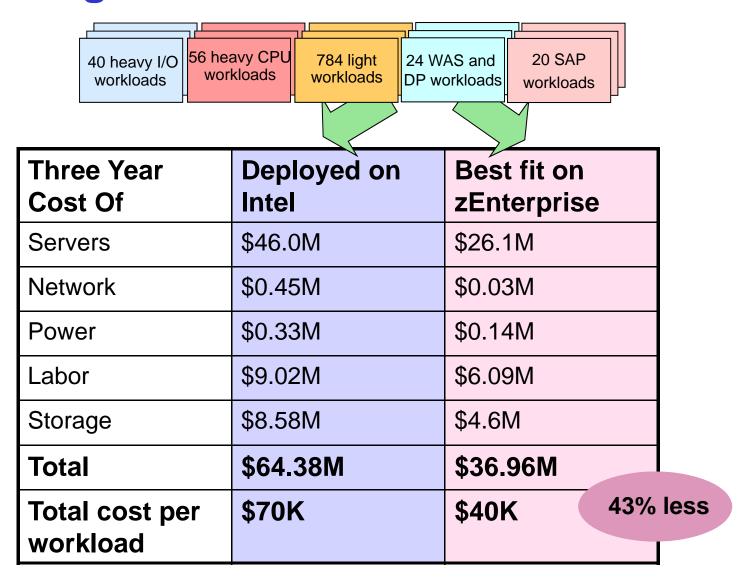
or \$40K per workload

3yr TCO

Fewer Parts to Assemble and Manage

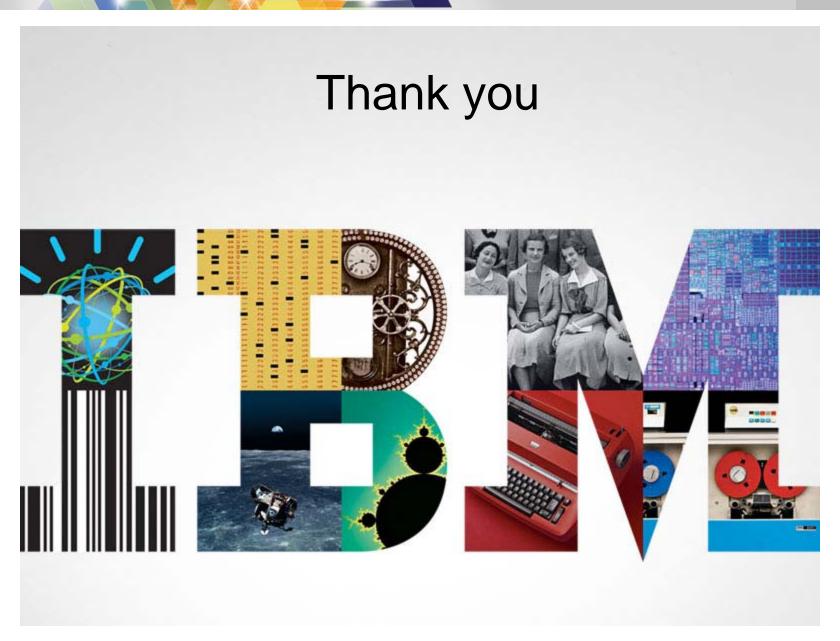
Deployed on Intel		
183		
1592		
124		
19		
70		

Servers


Network (parts)
Power (KW)
Administrators
Storage points

1	Best fit on zEnterprise						
	1 z196 + 1 zBX (with 105 blades total)						
	21						
	53						
	13						
	1						

The Savings Are Cumulative

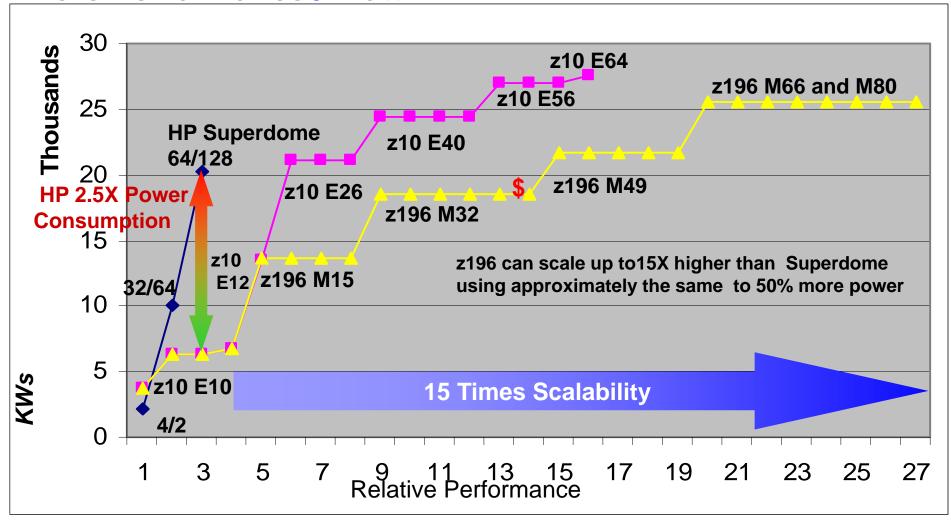

Summary

- Cost per workload is the key metric for the new IT economics
 - Mainframe cost per work goes down as workload increases

- Fit for purpose reduces cost of acquisition per workload
- zEnterprise's integrated management reduces cost per workload with extreme automation for simplicity

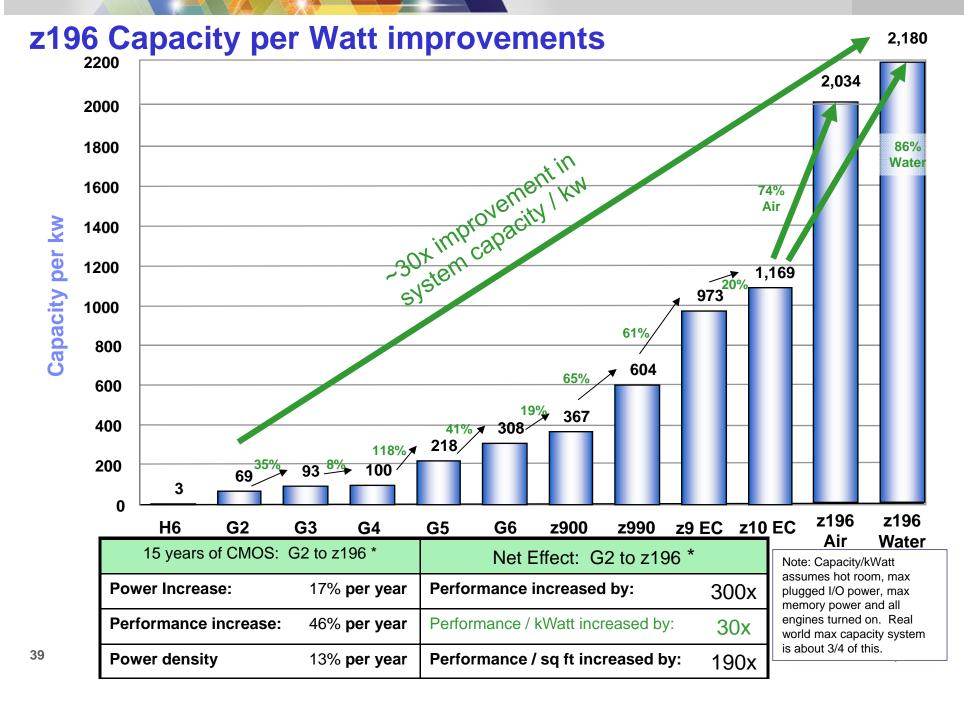
© 2012 IBM Corporation

Surveys Confirm Mainframes Are Lowest Cost For Core Business Workloads

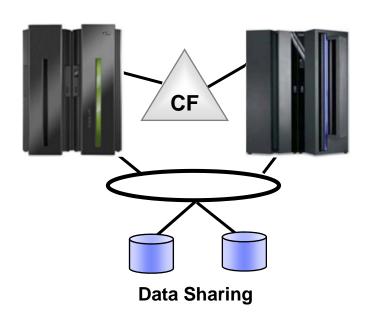

Industry	Measure	Average IT Cost of Goods	Mainframe Biased	Server Biased	% Improvement
Bank	Per Teller Transaction	\$0.31	\$0.12	\$0.35	-66%
Mortgage	Per Approved Loan	\$263.67	\$98.38	\$290.80	-66%
Credit Card	Per Transaction	\$0.16	\$0.10	\$0.18	-44%
Railroads	Per Ton Mile	\$0.0014	\$0.0012	\$0.0018	-33%
Armed Service	Per Person	\$8,036	\$6,871	\$9,839	-30%
Automotive	Per Vehicle	\$333	\$275	\$370	-26%
Retail	Per Store (Door)	\$494,818	\$421,346	\$560,300	-25%
Utilities	Per MegaWatt Hour	\$2.63	\$2.21	\$2.94	-25%
Hospitals	Per Bed per Day	\$64.30	\$54.4	\$71.7	-24%
Oil & Gas	Per Barrel of Oil	\$2.10	\$1.78	\$2.32	-23%
Consulting	Per Consultant	\$53,060	\$48,900	\$62,344	-22%
Trucking	Per Road Mile	\$0.177	\$0.155	\$0.194	-20%
Airlines	Per Passenger Mile	\$0.007	\$0.0061	\$0.0076	-20%
Chemicals	Per Patent	\$57,717	\$55,800	\$59,552	-6%
Web Sites	Per Search	\$0.042	\$0.046	\$0.041	12%

Most businesses running core workloads on mainframes had 6% to 66% lower IT costs per good than those using distributed servers

From Rubin Worldwide analysis of customer data and Gartner Research IT costs



Mainframe Scales 2.5 to 15X Superdome More Performance / Watt


Notes: Performance as per Eagle TCO studies. Multiply by 2 for MIPS. HP performance based on 122 perf units / MIPS. z10 and z196 power is max value. It is very rare that any mainframe is even 80% of max. Typical mainframe power is less - approximately 60% of maximum as per field data. Mainframe Power scales by model or book package.

z/OS Sysplex - Optimized For Efficient Clustering

- Specialized hardware Coupling Facility
 - Dedicated processor with specialized microcode to coordinate shared resources
 - High speed inter-connect to clustered systems
 - Hardware invalidation of local cache copies
 - Special machine instructions
- Exploited by IMS, CICS, DB2, MQ, and other middleware on z/OS for transaction processing scale

A single 80-way zEnterprise delivers 52,286 transaction processing MIPs. Up to 32 of these can be clustered in a parallel sysplex, delivering ultimate scalability and availability.