
IBM DB2 RUNSTATS Utility and
Real-time Statistics
Bryan F. Smith bfsmith@us.ibm.com

2

Abstract

� This presentation reviews the basics of the
RUNSTATS utility (What it does; Why you need to run
it; How DB2 uses the information), and explores new

statistics collected on data and indexes, including:
partition level information on Data Partitioned

Secondary Indexes; non-uniform distribution statistics
on non-indexed columns; and historical statistics.

The real-time statistics are also reviewed. Upon
completion of this session, the attendee, whose skill
level may range from low to high, will be able to

understand how to get the most out of DB2's statistics
and operate at optimal efficiency.

3

Topics

� Why RUNSTATS?

� Invoking RUNSTATS
� Commonly asked questions (about the stats)

� Real-time Statistics

� Rebinding considerations
� Reorg recommendations

� When is RUNSTATS needed?
� New/changed data statistics

� New/changed index statistics

� Handling part level statistics for DPSIs
� Distribution Statistics Enhanced

� HISTORY statistics changes
� Flushing the dynamic statement cache

� What statistics should I gather?

4

Why RUNSTATS?

� The RUNSTATS utility computes statistics on
a specified table space or index and updates
the DB2 catalog

� Two types of statistics

– Access path statistics
Those used by BIND/PREPARE in its process of

optimization to determine access path (some can
also be used to help determine when to REORG)

– Space
Those used by the DBA to monitor space usage; to

assist in capacity planning; to help determine when
to reorg; etc.

5

Statistics gathered by RUNSTATS

� SYSIBM.SYSTABLES_HIST
– CARD/F
– NPAGES/F
– PCTPAGES

– PCTROWCOMP
– AVGROWLEN
– SPACEF

� SYSIBM.SYSTABSTATS_HIST

– CARD/F

– NPAGES

– PCTPAGES

– NACTIVE

– PCTROWCOMP

� SYSIBM.SYSCOLUMNS_HIST

– COLCARD/F

– HIGH2KEY

– LOW2KEY

– STATS_FORMAT

� SYSIBM.SYSCOLDIST_HIST

– CARDF

– COLGROUPCOLNO

– COLVALUE

– TYPE

– FREQUENCY/F

– NUMCOLUMNS

� SYSIBM.SYSTABLESPACE
– NACTIVE/F
– AVGROWLEN
– SPACEF

� SYSIBM.SYSINDEXES_HIST
– CLUSTERRATIO/F
– CLUSTERED
– FIRSTKEYCARD/F

– FULLKEYCARD/F
– NLEAF
– NLEVELS
– AVGKEYLEN

– SPACEF

� SYSIBM.SYSINDEXPART_HIST
– AVGKEYLEN
– CARDF
– DSNUM

– EXTENTS
– FAROFFPOSF
– LEAFNEAR
– LEAFFAR
– NEAROFFPOS

– LEAFDIST
– PSUEDO_DEL_ENTRIES
– SPACEF
– PQTY
– SECQTYI

� SYSIBM.SYSTABLEPART_HIST
– AVGROWLEN
– CARD/F

– DSNUM
– EXTENTS
– NEARINDREF
– FARINDREF
– PAGESAVE

– PERCACTIVE
– PERCDROP
– SPACE/F
– PQTY
– SQTY

– SECQTYI

� SYSIBM.SYSLOBSTATS_HIST

– FREESPACE
– ORGRATIO
– AVGSIZE

� SYSIBM.SYSINDEXSTATS_HIST

– FIRSTKEYCARD/F

– FULLKEYCARD/F

– NLEAF

– NLEVELS

– IOFACTOR

– PREFETCHFACTOR

– KEYCOUNT/F

– CLUSTERRATIO/F

– FULLKEYCARDDATA

� SYSIBM.SYSCOLSTATS

– COLCARD

– HIGHKEY

– HIGH2KEY

– LOWKEY

– LOW2KEY

– COLCARDDATA

– STATS_FORMAT

Access path statistic
Access path (not used)
Space statistic

� SYSIBM.SYSCOLDISTSTATS

– CARDF

– COLGROUPCOLNO

– COLVALUE

– TYPE

– FREQUENCY/F

– NUMCOLUMNS

– KEYCARDDATA

Table in DSNDB06.SYSDBASE
Table in DSNDB06.SYSHIST

Table in DSNDB06.SYSSTATS

Collected from table space scan

Collected from index scan

either

aggregatesaggregates

a
g
g
re

g
a
te

s

a
g
g
re

g
a
te

s

6

Invoking RUNSTATS

Scans the tablespace

Scans the index

7

Invoking RUNSTATS

colgroup-spec

Affects the collection of column-statistics
from the table space scan (expensive)

8

KEYCARD (Recommended)

� Collects all of the distinct values in all of the 1 to n key column combinations for
the specified indexes. n is the number of columns in the index. For example,
suppose that you have an index defined on three columns: A, B, and C. If you
specify KEYCARD, RUNSTATS collects cardinality statistics for column A, column
set A and B, and column set A, B, and C.

� So these are cardinality statisics across column sets... if we had a 3-column index
that had these values:

Col1 Col2 Col3

A B C

A B D

A B E

A B E

A C A

A C A

A D A

B B B

then these stats would be collected:
– Col1 cardinality = 2

– Col1 and Col2 cardinality = 4

– Col 1, Col2, and Col3 cardinality = 6

9

Commonly asked questions about the

stats
� What is SYSIBM.SYSINDEXPART.LEAFDIST?

– LEAFDIST is 100 times the average number of pages

between successive leaf pages of the index

LEAFDIST = 100 x
summation of distance between pages

Number of leaf pages

1 2 3 987654

gaps 0 0 0 0 0 0 0 0 summation of gaps = 0

LEAFDIST = 100 * (0/9) = 0 (%)

number of leaf pages = 9

index leaf pages

10

Commonly asked questions about the

stats
� Another example of LEAFDIST

� If there were more gaps than active pages, LEAFDIST would be
larger

� FREEPAGE on an index can certainly affect the calculation of
LEAFDIST

� We used to use this value to determine when to reorg an index,
but now we have better stats to determine this
(LEAFFAR/NEAR)

1 2 984

gaps 0 1 3 0 summation of gaps = 4

LEAFDIST = 100 * (4/5) = 80

number of leaf pages = 5

index leaf pages

11

Commonly asked questions about the

stats
� What is SYSIBM.SYSINDEXPART.LEAFNEAR and LEAFFAR?

– LEAFNEAR/FAR measure the disorganization of physical leaf
pages

• Number of pages that are not in an optimal position due to

– index pages being deleted or

– index leaf page splits caused by an insert that cannot fit onto a full page

Logical and physical views of an index in which LEAFNEAR=1 and LEAFFAR=3

0th jump

12

Commonly asked questions about the

stats
� SYSIBM.SYSINDEXES.CLUSTERRATIO

– An access path statistic that can also helps in
determining when to REORG

– % of the rows that are in cluster order

– Rows are counted as being “clustered” if they
are in a greater (within the prefetch range*) or
equal page number of the previous row

– This is a statistic that describes the data in the
table(space), even though it is reported in
SYSINDEXES – REORG INDEX will never
affect this statistic

*As of DB2 9

13

CLUSTERRATIO

A
B
D

E
F
K
H

I
C

J
L
G

page 1

page 2

page 3

page 4

Cluster Count

1

2

3

4

5

6

7

8

A, 1
B, 1
C, 3
D, 1
E, 2
F, 2
G, 4
H, 2
I, 3
J, 4
K, 2
L, 4

Clustering index
(key, page#)

<-
<-

<-
<-
<-

<-
<-

<-

CC incremented

8

Optimal would be 11

14

Commonly asked questions about the

stats
� How does NEAR|FAR INDREF and NEAR|FAR

OFFPOS contribute to CLUSTERRATIO?

� *INDREF correlates closely with the cluster count if
the keys are in cluster order and then rows are
relocated to another page, but we can create cases

where these stats are correlated and cases where
they are not correlated

� *OFFPOS directly affects the cluster count. A single
“jump” counts as two OFFPOS’, so almost always, the

cluster count is ½ of the sum of the *OFFPOS’.

15

Example where INDREF is correlated

with Cluster Count -> CLUSTERRATIO

A
B

D

E
F
C

H
I
K

J

L
G

PCTFREE

PCTFREE

PCTFREE

PCTFREE

page 1

page 2

page 3

page 4

INDREF Cluster Count

1

X

2

X

3

4

X

5

6

7

X

8

4 8

Optimal would be 11

A, 1
B, 1
C, 3
D, 1
E, 2
F, 2
G, 4
H, 2
I, 3
J, 4
K, 2
L, 4

Clustering index
(key, page#)

8

Optimal would
be 11

<-
<-

<-
<-
<-

<-
<-

<-

16

Example where INDREF is not

correlated with Cluster Count ->

CLUSTERRATIO
A
B

C

D
E
F

G
H
I

J

K
L

PCTFREE

PCTFREE

PCTFREE

PCTFREE

page 1

page 2

page 3

page 4

INDREF Cluster Count

1

X

2

X

3

4

5

X

6

7

8

9

X

10

11

4 11

Cluster count is perfect

A, 1
B, 1
C, 1
D, 2
E, 2
F, 2
G, 3
H, 3
I, 3
J, 4
K, 4
L, 4

Clustering index
(key, page#)

<-
<-
<-
<-
<-
<-
<-
<-
<-
<-
<-

11

Optimal!

17

Example where OFFPOS is correlated

with Cluster Count -> CLUSTERRATIO

A
B
D

E
F
K
H

I
C

J
L
G

page 1

page 2

page 3

page 4

OFFPOS

X

X

X

X

X

X

A, 1
B, 1
C, 3
D, 1
E, 2
F, 2
G, 4
H, 2
I, 3
J, 4
K, 2
L, 4

Cluster Count

1

2

3

4

5

6

7

8

8

Optimal would be 11
6

OFFPOS / 2 = 3
So, Cluster Count is off by 3

Clustering index
(key, page#)

<-
<-

<-
<-
<-

<-
<-

<-

18

Exercise for the reader…

We just saw an example where *OFFPOS is
correlated to the cluster count (which is used to
compute CLUSTERATIO). Can an example be
created showing non-correlation between these

two metrics?

19

Commonly asked questions

� Can you collect stats and have them stored in the catalog without affecting any
binds/prepares?

–Yes (by specifying REPORT YES UPDATE NONE or UPDATE NONE HISTORY
ALL)

� Should you collect statistics on the DB2 Catalog?
–Yes. Will it benefit DB2 processing like BIND or PREPARE?

• No, …but SQL against the catalog can benefit

� Is there any difference between running
RUNSTATS TABLESPACE DB1.TS1 INDEX (ALL)

vs.

RUNSTATS TABLESPACE DB1.TS1

RUNSTATS INDEX(ALL) TABLESPACE DB1.TS1 -- ??

–No, they are semantically equivalent, but you could run these two utility statements in
parallel to reduce overall elapsed time

� Can/should you update the statistics in the DB2 Catalog?
–It depends

� What is the semantic difference between RUNSTATS TABLESPACE and
RUNSTATS TABLESPACE TABLE (ALL)?

–The TABLE keyword triggers collection of column statistics

20

Extra credit

� Is there any difference between running

RUNSTATS TABLESPACE DB1.TS1 TABLE (ALL)

INDEX (ALL)

vs.

RUNSTATS TABLESPACE DB1.TS1 TABLE (ALL)

RUNSTATS INDEX(ALL) TABLESPACE DB1.TS1

-- ??

There is a difference – what is it?

21

Real-time Statistics

� Introduced in V7

� Contain “space” and some “accesspath” statistics in user-
defined tables:

– SYSIBM.TABLESPACESTATS (one row per partition)

– SYSIBM.INDEXSPACESTATS (one row per partition)

– In DB2 9, these are moved into the DB2 Catalog
(DSNDB06.SYSRTSTS) as

• SYSIBM.SYSTABLESPACESTATS

• SYSIBM.SYSINDEXSPACESTATS

� Intended to eliminate running RUNSTATS for reasons of

running utilities by exception

� Access path selection doesn’t use RTS in V7, V8 or V9

22

Real-time statistics tables in DSNRTSDB.DSNRTSTS

Index SYSIBM.DSNRTX01

(dbid, psid, partition.instance)

Index SYSIBM.DSNRTX02

(dbid, isobid, partition.instance)

Reorg

Statistics

Runstats

Statistics

Copy

Statistics

SYSIBM.SYSTABLESPACESTATS

Reorg
Statistics

Runstats
Statistics

Copy
Statistics

SYSIBM.SYSINDEXSPACESTATS

New in
V9

Global

Statistics

Global
Statistics

Incremental Statistics Incremental Statistics

DSNDB06.SYSRTSTS

23

Contents of real-time statistics tables

• SYSTABLESPACESTATS

• Global

• NACTIVE

• NPAGES

• EXTENTS

• SPACE

• TOTALROWS

• DATASIZE

• UNCOMPRESSEDDATASIZE

• UPDATESTATSTIME

• SYSINDEXSPACESTATS

• Global

• NACTIVE

• NLEVELS

• NPAGES

• NLEAF

• EXTENTS

• SPACE

• TOTALENTRIES

• LASTUSED

• UPDATESTATSTIME

• Incremental
• REORG Statistics

• LASTTIME

• INSERTS

• UPDATES

• DELETES

• DISORGLOB
• UNCLUSTINS

• MASSDELETE

• NEARINDREF

• FARINDREF

• COPY Statistics
• LASTTIME

• UPDATEDPAGES

• CHANGES

• UPDATELRSN
• UPDATETIME

• RUNSTATS Statistics

• LASTTIME

• INSERTS

• UPDATES
• DELETES

• MASSDELETE

• Incremental Statistics
• REORG Statistics

• REBUILDLASTTIME

• LASTTIME

• INSERTS

• UPDATES

• DELETES
• APPENDINSERT

• PSEUDODELETES

• MASSDELETE

• LEAFNEAR

• LEAFFAR
• NUMLEVELS

• COPY Statistics

• LASTTIME

• UPDATEDPAGES
• CHANGES

• UPDATELRSN

• UPDATETIME

• RUNSTATS Statistics

• LASTTIME
• INSERTS

• DELETES

• MASSDELETE

24

Enable/Disable Real Time Statistics in

V7/V8
� START DATABASE (DSNRTSDB)

– Validate table space, table and index definitions

– Enable real time statistics collection

– Issue this command to enable RTS after the statistics tables and
indexes are first created

– Data may not be accurate until a new REORG/RUNSTATS/COPY
is done

� START DB2

– Implicitly to enable real time statistics if

• DSNRTSDB is not STOPPED and

• DB2 Catalog is accessible

� STOP DATABASE(DSNRTSDB)

– Flush all in-memory statistics

� In V9, RTS are a part of the catalog and are always enabled

25

Collect Real Time Statistics in Memory

Data Sharing

Member

DB2A

Real-time

Statistics

Tables

Data Sharing

Member

DB2B

� Allocate RTS blocks
– At first update for table spaces since the pageset/partition is opened

– At open time for indexes since we collect SYSINDEXSPACESTATS.LASTUSED

– In DBM1 Address Space (~140 bytes per pageset/partition – moved above bar in V9)

– 0/32KB per pageset/partition – above the bar in V9)

� Free RTS blocks when
– Pagesets/Partitions are closed

– After statistics are written to RTS tables

� In a data sharing system, statistics are collected by each member

� In-memory statistics are always collected even if RTS is not enabled

26

When to externalize in-memory

statistics?
� On a timer interval

– STATSINT in ZPARM - default 30 minutes

– REAL TIME STATS in DSNTIPO install panel

• Range: 1 to 1,440 minutes

� STOP/START DATABASE SPACENAM command

– Flush in-memory statistics for all target objects

� STOP/START DATABASE(DSNRTSDB) in V7/8

– Flush all in-memory statistics

� STOP DB2 MODE(QUIESCE)

� A utility operation (e.g. LOAD, REORG, RUNSTATS,

COPY, REBUILD, RECOVER)

27

Process to externalize in-memory

statistics
� RTS manager externalizes in-memory statistics to the RTS

Tables

� RTS manager runs under a system task in DBM1 address

space

– CPU time is included in DBM1's SRB time

– The system task is created during START DB2

� RTS manager is triggered on a timer interval

– Default is 30 minutes

– Scan in-memory statistics blocks

• Free dormant statistics blocks that belong to closing data sets

– Order active statistics blocks in clustering order

– Insert/update rows in the RTS tables via the clustering index

� Each data sharing member externalizes its own statistics

28

When to collect statistics for DB2

Objects?
� Newly created table spaces and indexes

– Rows are inserted into RTS tables at CREATE

• Loadrlasttime and Reorglasttime is set to CREATE timestamp

• Stats/Copylasttime are set to NULL

• Totalrows/Totalentries are set to zero, all other global counters are set
to null or a known value, incremental counters are set to zero

� Table spaces and Indexes existed before RTS is enabled

– Rows are inserted when the objects are first updated

• At the next STATSINT timer interval

• All statistics values are set to NULL (except for Nactive, Space,
Extent)

• Reorg/Stats/Copy/Loadr-lasttime are set to NULL

• Statistics values will be set after the first REORG, RUNSTATS, or
COPY

– No RTS rows for read only table space accessed objects
(LASTUSED will be updated for read only indexes)

29

How SQL affects table space statistics?

� CREATE/DROP TABLESPACE

– Insert/delete a row in SYSIBM.TABLESPACESTATS

� Insert

– Increment Inserts,Totalrows, Copy Changes counters

– May update Nactive, Space, Extents, Uncluster_Inserts, Distinct
Updated Pages, Update LRSN, Update Timestamp, Datasize

� Update

– Increment Updates, Copy Changes counters

– May update NearIndRef/FarIndRef, Nactive, Space, Extents for
VARCHAR Tables, Distinct Updated Pages, Update LRSN,
Update Timestamp, Datasize

� Delete

– Increment Deletes, Copy Changes counters, Datasize

30

How SQL affects table space statistics?

...
� Delete without the WHERE clause or DROP TABLE for

Segmented Table Spaces

– Increments the Mass Deletes/Drops counter

� Rollback

– Insert

• Increment Deletes counter

– Delete

• Increment Inserts counter

– Update

• Increment Update counter

– Mass Delete/Drop Table

• Will not decrement the Mass Deletes/Drops counter

� Statistics counters will not be updated during DB2 Restart

� Triggers may cause statistics updated for other tables

31

How SQL affects index space

statistics?
� CREATE/DROP INDEX

– Insert/delete a row in/from SYSIBM.INDEXSPACESTATS

� Insert
– Increment Inserts,TotalEntries counters
– May update Append_Inserts, LeafNear, LeafFar,

ReorgNumLevels, Nactive, Space, Extents, Nleaf

� Delete
– Increment Deletes counter
– May update Pseudo Deletes, ReorgNumLevels

� COPY YES indexes (Insert/Delete)
– Maintain Copy Changes, Distinct Updated Pages, Update LRSN,

Update Timestamp

� Delete without a WHERE clause or DROP TABLE
– Increment Mass Deletes counter

� Rollbacks/Restart - same as for table space statistics

32

How Utility affects real-time statistics?

� REORG

– Set Last_REORG_Timestamp

– Reset REORG related statistics

– Log apply changes for online REORG will be treated as
Inserts/Deletes/Updates

� RUNSTATS

– Set Last_RUNSTATS_Timestamp

– Reset RUNSTATS related statistics

� COPY

– Set Last_COPY_Timestamp

– Reset COPY related statistics

� LOAD REPLACE

– Set Last_Load_Replace Timestamp

– Reset REORG related statistics

33

How Utility affects real-time statistics?

...
� REORG/LOAD REPLACE PART

– Will not reset REORG statistics for non-partitioned indexes

– Statistics for NPIs will be updated as INSERT and DELETE

� COPY with the DSNUM option
– Will not reset Last_Copy_Timestamp

– Will not reset COPY related statistics

– We maintain statistics if DSNUM <> 0 refers to partitioned object

– If DSNUM references a data set, statistics are NOT maintained for the
data set

� RECOVER TORBA/TOCOPY
– Set Last_REORG, Last_RUNSTATS, Last_COPY, Last_Load_Replace,

Last_Rebuild_Index to NULL

– Reset REORG, RUNSTATS, COPY statistics to NULL

� REBUILD INDEX
– Set Last_Rebuild_Index_Timestamp

– Reset REORG related statistics

� Online LOAD Resume
– Treated as Inserts

34

Accuracy of the statistics

� Always delayed by the timer interval

– Controlled by ZPARM STATSINT (default 30 minutes)

� Loss all in-memory statistics when DB2 is crashed or STOP

DB2 MODE(FORCE)

� Unable to externalize statistics when DSNRTSDB is stopped or

statistics tables are unavailable

� Need to run REORG, RUNSTATS, COPY to establish a

reference point

� Statistics could be inaccurate if running vendor utilities without

flushing the in-memory statistics

� Only physical space statistics (i.e. Nactives, Space, Extents)

are maintained for DSNDB07 and the TEMP databases

35

Guideline for SQL/Utility to access RTS

objects
� Avoid Timeouts or Deadlocks with RTS manager

– Use Uncommitted Read lock isolation when accessing RTS tables

– Use SHRLEVEL CHANGE when running REORG, RUNSTATS,
COPY on the RTS objects

� Don't mix RTS objects with other user objects in a utility list

operation

– If mixed, RTS statistics will not be reset for all objects in the list

� For Disaster Recovery

– Recover RTS objects after DB2 catalog and directory objects are
recovered

– Explicitly issue START DATABASE(DSNRTSDB) after RTS
objects are recovered

36

What is DSNACCOR?

� A DB2 stored procedure that accesses the RTS
tables

� And makes IFI calls

– to gain -DISPLAY status on DB2 objects

� Primary purpose -

– To recommend any DB2 object that requires a:

• REORG

• RUNSTATS

• IMAGE COPY

� New version of DSNACCOR in DB2 9 is named

DSNACCOX

37

Historical RTS

� There is no historical capability in RTS

� This can easily be built manually
– Create

SYSIBM.TABLE/INDEXSPSTATS_HIST LIKE
SYSIBM.SYSTABLE/INDEXSPACESTATS and
add CAPTURE_TIME AS TIMESTAMP NOT
NULL WITH DEFAULT cols

– Periodically (daily?) insert into history tables
with a subselect from the RTS tables those
rows that aren’t already in the history tables;
and delete old information. Code this up in a
stored proc?

38

Determining which objects are missing RTS
V8

*

* objects that don't exist in tablespacestats

* -> Run REORG TABLESPACE

SELECT P.DBNAME, P.TSNAME, P.PARTITION

FROM SYSIBM.SYSTABLESPACE S

INNER JOIN SYSIBM.SYSTABLEPART P

ON P.DBNAME = S.DBNAME

AND P.TSNAME = S.NAME

WHERE NOT EXISTS

(SELECT 1

FROM SYSIBM.TABLESPACESTATS T

WHERE S.DBID=T.DBID

AND S.PSID=T.PSID

AND P.PARTITION=T.PARTITION)

ORDER BY P.DBNAME, P.TSNAME, P.PARTITION

FOR FETCH ONLY WITH UR;

*

* objects that don't exist in indexspacestats

* -> Run REORG INDEX

SELECT P.IXCREATOR,

P.IXNAME,

P.PARTITION

FROM SYSIBM.SYSINDEXES X

INNER JOIN SYSIBM.SYSINDEXPART P

ON P.IXCREATOR = X.CREATOR

AND P.IXNAME = X.NAME

WHERE NOT EXISTS

(SELECT 1

FROM SYSIBM.INDEXSPACESTATS T

WHERE X.DBID=T.DBID

AND X.ISOBID=T.ISOBID

AND P.PARTITION=T.PARTITION)

ORDER BY P.IXCREATOR, P.IXNAME, P.PARTITION

FOR FETCH ONLY WITH UR;

V9

*

* objects that don't exist in systablespacestats

* -> Run REORG TABLESPACE

SELECT P.DBNAME, P.TSNAME, P.PARTITION

FROM SYSIBM.SYSTABLESPACE S

INNER JOIN SYSIBM.SYSTABLEPART P

ON P.DBNAME = S.DBNAME

AND P.TSNAME = S.NAME

WHERE NOT EXISTS

(SELECT 1

FROM SYSIBM.SYSTABLESPACESTATS T

WHERE S.DBID=T.DBID

AND S.PSID=T.PSID

AND P.PARTITION=T.PARTITION)

ORDER BY P.DBNAME, P.TSNAME, P.PARTITION

FOR FETCH ONLY WITH UR;

*

* objects that don't exist in sysindexspacestats

* -> RUN REORG INDEX

SELECT P.IXCREATOR,

P.IXNAME,

P.PARTITION

FROM SYSIBM.SYSINDEXES X

INNER JOIN SYSIBM.SYSINDEXPART P

ON P.IXCREATOR = X.CREATOR

AND P.IXNAME = X.NAME

WHERE NOT EXISTS

(SELECT 1

FROM SYSIBM.SYSINDEXSPACESTATS T

WHERE X.DBID=T.DBID

AND X.ISOBID=T.ISOBID

AND P.PARTITION=T.PARTITION)

ORDER BY P.IXCREATOR, P.IXNAME, P.PARTITION

FOR FETCH ONLY WITH UR;

39

Rebinding considerations

� Consider the following guidelines regarding when to rebind

– CLUSTERRATIOF changes to less or more than 80% (a value of
0.80)

– NLEAF changes more than 20% from the previous value

– NLEVELS changes

– NPAGES changes more than 20% from the previous value

– NACTIVEF changes more than 20% from the previous value

– The range of HIGH2KEY to LOW2KEY range changes more than
20% from the range previously recorded

– Cardinality changes more than 20% from previous range

– Distribution statistics change the majority of the frequent column
values

40

Reorg recommendations

� These are generic and do not apply in all
cases – there is no absolutely reliable
statistic as to when reorganization of table
spaces or indexes should occur; however,
understanding the rules of thumb will help in
understanding data disorganization

� If REORG for performance, then track
performance over time

� DSNACCOR (V7/8) /DSNACCOX (V9)
usage

41

Reorg table space (incl. LOBs in V9)
recommendations

� Consider running REORG TABLESPACE in the following situations:
– Real-time statistics (TABLESPACESTATS)

• REORGUNCLUSTINS (number of records inserted since the last Reorg that are not well-
clustered)/TOTALROWS > 10%

– Irrelevant if predominantly random access

– REORGUNCLUSTINS is only an indication of the insert behavior and is correlated to the cluster ratio only if there are no
updates or deletes. To prevent DSNACCOR/X from triggering on these, identify such objects and put them in exception
list

• (REORGNEARINDREF+REORGFARINDREF (number of overflow rows since the last
Reorg))/TOTALROWS > 5% in data sharing, >10% in non-data sharing

• REORGINSERTS (number of records inserted since the last Reorg)/TOTALROWS > 25%

• REORGDELETES (number of records deleted since the last Reorg)/TOTALROWS > 25%

• EXTENTS (number of extents) > 254

• REORGDISORGLOB (number of LOBs inserted since the last Reorg that are not perfectly
chunked)/TOTALROWS > 50%

• SPACE > 2 * (DATASIZE / 1024) (when free space is more than used space)

• REORGMASSDELETE > 0 (mass deletes on seg tsp and DROP on multi-table tsps)

– RUNSTATS
• PERCDROP > 10%

• SYSIBM.SYSLOBSTATS.ORGRATIO < 50% (changed to a value 0-100 in PQ96460 on V7/V8)

• (NEARINDREF + FARINDREF) / CARDF > 10% non-data-sharing, > 5% if data sharing

• FAROFFPOSF / CARDF > 10%
– Or, if index is a clustering index, CLUSTERRATIOF < 90% (irrelevant if predominantly random access)

– Other
• Tsp is in REORP or adv reorg pending status (AREO*) as result of an ALTER TABLE stmnt

• Index on the tsp is in adv REBUILD pend state (ARBDP) as result an ALTER stmnt

42

Reorg table space (incl. LOBs in V9)
recommendations

� Consider running REORG TABLESPACE in the following situations:
– Real-time statistics (TABLESPACESTATS)

• REORGUNCLUSTINS (number of records inserted since the last Reorg that are not well-
clustered)/TOTALROWS > 10%

– Irrelevant if predominantly random access

– REORGUNCLUSTINS is only an indication of the insert behavior and is correlated to the cluster ratio only if there are no
updates or deletes. To prevent DSNACCOR/X from triggering on these, identify such objects and put them in exception
list

• (REORGNEARINDREF+REORGFARINDREF (number of overflow rows since the last
Reorg))/TOTALROWS > 5% in data sharing, >10% in non-data sharing

• REORGINSERTS (number of records inserted since the last Reorg)/TOTALROWS > 25%

• REORGDELETES (number of records deleted since the last Reorg)/TOTALROWS > 25%

• EXTENTS (number of extents) > 254

• REORGDISORGLOB (number of LOBs inserted since the last Reorg that are not perfectly
chunked)/TOTALROWS > 50%

• SPACE > 2 * (DATASIZE / 1024) (when free space is more than used space)

• REORGMASSDELETE > 0 (mass deletes on seg tsp and DROP on multi-table tsps)

– RUNSTATS
• PERCDROP > 10%

• SYSIBM.SYSLOBSTATS.ORGRATIO < 50% (changed to a value 0-100 in PQ96460 on V7/V8)

• (NEARINDREF + FARINDREF) / CARDF > 10% non-data-sharing, > 5% if data sharing

• FAROFFPOSF / CARDF > 10%
– Or, if index is a clustering index, CLUSTERRATIOF < 90% (irrelevant if predominantly random access)

– Other
• Tsp is in REORP or adv reorg pending status (AREO*) as result of an ALTER TABLE stmnt

• Index on the tsp is in adv REBUILD pend state (ARBDP) as result an ALTER stmnt

Don’t use RUNSTATS statistics as a trigger to consider running REORG

43

Reorg table space (incl. LOBs in V9)
recommendations

� Consider running REORG TABLESPACE in the following situations:
– Real-time statistics (TABLESPACESTATS)

• REORGUNCLUSTINS (number of records inserted since the last Reorg that are not well-
clustered)/TOTALROWS > 10%

– Irrelevant if predominantly random access

– REORGUNCLUSTINS is only an indication of the insert behavior and is correlated to the cluster ratio
only if there are no updates or deletes. To prevent DSNACCOR/X from triggering on these, identify
such objects and put them in exception list

• (REORGNEARINDREF+REORGFARINDREF (number of overflow rows since the last
Reorg))/TOTALROWS > 5% in data sharing, >10% in non-data sharing

• REORGINSERTS (# of records inserted since the last Reorg)/TOTALROWS > 25%
• REORGDELETES (# of records deleted since the last Reorg)/TOTALROWS > 25%
• EXTENTS (number of extents) > 254
• REORGDISORGLOB (number of LOBs inserted since the last Reorg that are not perfectly

chunked)/TOTALROWS > 50%
• SPACE > 2 * (DATASIZE / 1024) (when free space is more than used space)
• REORGMASSDELETE > 0 (mass deletes on seg tsp and DROP on multi-table tsps)

– Other
• Tsp is in REORP or adv reorg pending status (AREO*) as result of an ALTER TABLE stmnt
• Index on the tsp is in adv REBUILD pend state (ARBDP) as result an ALTER stmnt

44

Reorganizing LOBs in V7 and V8

� Generally not recommended

– Only possible with SHRLEVEL NONE

– Small performance gain that can be achieved is
outweighed by

• Loss of availability

• Likelihood of increasing the size of the LOB table space

� With DB2 9’s REORG support of LOBs with
SHRLEVEL REFERENCE

– Chunkiness (REORGDISORGLOB/TOTALROWS >
50%

– Space reclamation SPACE > 2 * (DATASIZE / 1024)

45

Reorg index recommendations

� Consider running REORG INDEX in the following cases:
– Real-time statistics (SYSINDEXSPACESTATS)

• REORGPSEUDODELETES (number of index entries pseudo-deleted since the
last Reorg)/TOTALENTRIES > 10% in non-data sharing, 5% if data sharing as
pseudo-deleted entry can cause S-lock/unlock in Insert for unique index

• REORGLEAFFAR (number of index leaf page splits since the last Reorg and
the new leaf page far from the original leaf page)/NACTIVE > 10%

• REORGINSERTS (number of index entries inserted since the last
Reorg)/TOTALENTRIES > 25%

• REORGDELETES (number of index entries inserted since the last
Reorg)/TOTALENTRIES > 25%

• REORGAPPENDINSERT / TOTALENTRIES > 20%
• EXTENTS (number of extents) > 254

– RUNSTATS
• LEAFFAR / NLEAF > 10% (NLEAF is a column in SYSIBM.SYSINDEXES and

SYSIBM.SYSINDEXPART)
• PSEUDO_DEL_ENTRIES / CARDF > 10% for non-data sharing and > 5% for

data sharing

– Other
• The index is in advisory REORG-pending status (AREO*) or advisory-

REBUILD-pending status (ARBDP) as the result of an ALTER statement

46

When is RUNSTATS needed?

�When the data changes sufficiently to warrant new statistics

–REORG of table space or index (use inline stats!)

–LOAD REPLACE of table space (use inline stats!)

–After "significant" application changes for the tablespace or index

• Periodically (weekly, monthly) except for read only data?

• Application tracks updates with activity tables?

• After percentage of pages changed since last RUNSTATS (RTS)?

�Understand implications for access paths!

�SHRLEVEL

–REFERENCE drains writers

–CHANGE runs like application with ISOLATION (UR)
(claim reader for allocation duration)

47

New/Changed Data Statistics (V8)

� SPACEF at the table space level

– 4096 partitions can hold a lot of data!

� HIGHKEY/HIGH2KEY/LOWKEY/LOW2KEY expanded

– From CHAR(8) to VARCHAR(2000)

• 8 bytes not adequate for multi-byte character representations especially with
Unicode

– Optimizer has better information to estimate filter factors and determine
access paths

� AVGROWLEN at the table space/partition level

– V7 only collected at the table level

– Useful for estimating current number of rows of table space from file size
without having to run RUNSTATS

– Conversely, can calculate table space size allocation more accurately

– UNLOAD utility space allocation

– REORG & LOAD space allocation

• work datasets

• sort space

48

Part level statistics for DPSIs

� Statistics are not kept at the partition level for logical partitions
of NPIs

� Data Partitioned Secondary Indexes need to have the same
partition independence and capabilities (from a statistics
gathering perspective) as classic partitioning indexes.

� Partition level statistics for DPSIs are stored in
SYSCOLDISTSTATS with rollup to SYSCOLDIST

� Rollup requires SYSCOLDISTSTATS rows to be sorted
requiring new parameters

– SORTDEVT (defaults to SYSALLDA)

– SORTNUM

� If not specified then SORT will use sort product defaults

� Can also use FORCEROLLUP to aggregate partition level
statistics when not all partitions have statistics

49

Distribution Statistics Enhanced

� As queries become…

– more complex

– less predictable

…Data skew becomes more important

� Problem with skewed data and regular statistics

– Optimizer assumes inaccurate distribution of values

– Less efficient join sequence could be chosen

– Less efficient method of accessing individual tables

� DSTATS program could be downloaded to collect statistical
data for non-indexed columns

– Great improvement in access path selection, however

– Run separate from RUNSTATS

– Slow with big impact to DB2 work file database

50

Filter factors and catalog statistics

� SYSCOLDIST contains frequency (or
distribution)

� If frequency statistics do not exist, DB2
assumes that the data is uniformly distributed

� For example:

AGE_CATEOGRY FREQUENCY

INFANT 5%

CHILD 15%

ADOLESCENT 25%

ADULT 40%

SENIOR 15%

51

Distribution Statistics Enhanced

� Non-uniform distribution statistics on non-indexed columns

– Now part of RUNSTATS

– Significant performance improvement - no impact on DB2 work file
and data only has to be scanned once

– Uses external sort requiring new parameters

• SORTDEVT

• SORTNUM

• If not specified then SORT will use sort product defaults

� Extend non-uniform to collect on index or non-index

– most frequent values

– least frequent values

– both

� As part of this, the previous limit of 10 names in the COLUMN
parameter has been removed.

52

Distribution Statistics Enhanced

� Changed/new syntax

R
U

N
S

T
A

T
S

 I
N

D
E

X
R

E
B

U
IL

D
,

R
E

O
R

G
 I
N

D
E

X
R

U
N

S
T

A
T

S
 T

A
B

L
E

S
P

A
C

E

53

KEYCARD versus Distribution Statistics from an

index

� KEYCARD collects all of the distinct

values in all of the 1 to n key column

combinations

� So these are cardinality statistics

across column sets... if we had a 3-

column index on State, City, Zipcode:

State City Zipcode
CA San Jose 95123
CA San Jose 95110
CA San Jose 95141
CA San Jose 95141
CA Riverside 92504
CA Riverside 92504
CA Glendora 91741
TX Austin 78732

� FREQVAL NUMCOLS 3 collects

1/8 = 0.125TX, Austin, 78732

1/8 = 0.125CA, Glendora, 91741

2/8 = 0.25CA, Riverside, 92504

2/8 = 0.25CA, San Jose, 95141

1/8 = 0.125CA, San Jose, 95110

1/8 = 0.125CA, San Jose, 95123

FrequencyColvalue

63

42

21

CardNumcolumns

54

Distribution Statistics Enhanced

� Example: Collect distribution statistics for specific columns in a table
space and retrieve the most and least frequently occurring values.
Collect statistics for the columns EMPLEVEL, EMPGRADE, and
EMPSALARY and use the FREQVAL and COUNT keywords to collect
the 10 most frequently occurring values for each column and the 10
least frequently occurring values for each column.

� RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

TABLE(DSN8810.DEPT)

COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY)

FREQVAL COUNT 10 BOTH

55

Distribution Statistics Enhanced

� Example: Collect distribution statistics for specific columns in a table
space and retrieve the most and least frequently occurring values.
Collect statistics for the columns EMPLEVEL, EMPGRADE, and
EMPSALARY and use the FREQVAL and COUNT keywords to collect
the 10 most frequently occurring values for each column and the 10
least frequently occurring values for each column.

� RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

TABLE(DSN8810.DEPT)

COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY)

FREQVAL COUNT 10 BOTH

Not currently collected via in-line statistics from LOAD and REORG

56

HISTORY statistics without updating

main statistics
� V7 required update of main catalog statistics if history statistics

were wanted

� V8 relaxes this and history statistics can now be kept without

updating current statistics.

– Monitor statistics such as SYSTABLES.CARDF

– No surprises for dynamic SQL access paths

– CAUTION: If you use this you have to be remember that your static
packages bound in that time frame may not have used the
statistics in the history tables.

� For example,

– in V7 UPDATE NONE HISTORY OPTIMIZER was prohibited.

– in V8 UPDATE NONE HISTORY OPTIMIZER is allowed and you
can monitor statistics changes over time without concern that
access paths may change.

57

Flushing the dynamic statement cache

� RUNSTATS with UPDATE NONE REPORT NO

� Any statement in the Dynamic Statement Cache

which is dependent on the affected table space or
index space will be removed from the cache.

� Why? If users manually update the statistics in the

catalog tables, the related dynamic SQL in the cache
needs to be invalidated and the next prepare of the

statements will cause the access paths to be
reevaluated.

� Granularity is at the table space/index level (not the
table level)

58

What statistics should I gather?

� No simple answer

– Some collect no or insufficient statistics

• Prime reason for poor performing access paths

– Do you want to collect statistics on every column and

permutations of combination of columns?

• No way!

� Requires similar analysis of SQL as for index design

– Have to include columns which you may not benefit

from adding to an index

– Analysis of queries labor intensive

– Iterative process analyzing explain data (as always)

59

Input SQL, Click start

60

Suggestions for one Siebel query

Click here to run…
that’s it!

61

Statistics Advisor Current Status

� Statistics Advisor is integrated with VE now as a no-charge item

� Used as a serviceability tool

– Service team use prototype on real problems

– Demonstrates research of automation of query analysis

� Identifying, addressing areas of improvement

– Move forward from prototype status

62

DB2 V9 for z/OS Changes to

RUNSTATS
� New histogram statistics

– Think of these as frequency distribution statistics on a

range of data

– Ideal for numeric, date, and time data types

� CPU reduction for RUNSTATS INDEX: 30-40%

0

5

10

63

Summary

� Why RUNSTATS?

� Invoking RUNSTATS

� Commonly asked questions (about the stats)

� Real-time Statistics
� Rebinding considerations

� Reorg recommendations

� When is RUNSTATS needed?

� New/changed data statistics

� New/changed index statistics
� Handling part level statistics for DPSIs

� Distribution Statistics Enhanced

� HISTORY statistics changes

� Flushing the dynamic statement cache

� What statistics should I gather?

64

Take advantage of the following information resources available for
DB2 UDB for z/OS:

� Information center

http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

� Information roadmap

http://ibm.com/software/db2zos/roadmap.html

� DB2 for z/OS library page

http://ibm.com/software/db2zos/library.html

� Examples trading post

http://ibm.com/software/db2zos/exHome.html

� DB2 for z/OS support

http://ibm.com/software/db2zos/support.html

� Official Introduction to DB2 for z/OS

http://ibm.com/software/data/education/bookstore

DB2 for z/OS information resources

65

Important Disclaimer

THE INFORMATION CONTAINED IN THIS PRESENTATION IS
PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS
AND ACCURACY OF THE INFORMATION CONTAINED IN THIS
PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO
CHANGE BY IBM WITHOUT NOTICE.

IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING
OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS
PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO,
OR SHALL HAVE THE EFFECT OF:

• CREATING ANY WARRANTY OR REPRESENTATION FROM IBM (OR ITS
AFFILIATES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS); OR

• ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE
LICENSE AGREEMENT GOVERNING THE USE OF IBM SOFTWARE.

66

Bryan F. Smith
IBM

bfsmith@us.ibm.com

IBM DB2 RUNSTATS Utility and Real-time Statistics

67

Thank You for Joining Us today!

Go to www.ibm.com/software/systemz to:

�Replay this teleconference

�Replay previously broadcast teleconferences

�Register for upcoming events

