
White Paper
IBM Software Group Information Management

Improved query
performance in IBM DB2
11 for z/OS
By Terry Purcell, Senior Technical Staff Member,
IBM DB2 development

The immediate performance improvement message in IBM® DB2® 10
for z/OS® (DB2 10) resonated well with DB2 clients. It also provided
motivation for the DB2 for z/OS Optimizer development team to look
for opportunities to continue this theme in DB2 11 for z/OS (DB2 11).

For the Optimizer, DB2 clients pointed out that performance was not
immediate, considering that static SQL needs a REBIND option to
take advantage of new access paths, runtime optimizations or both.
However, minimal actions, such as using a REBIND command to
achieve performance gains, are preferred over rewriting queries or
creating extra indexes to achieve performance improvement. Although
not all database administrator (DBA) involvement is eliminated in DB2
11 for z/OS, we listened to our clients and are giving you the “closer to
immediate” performance you want in DB2 11.

Most business intelligence and business analytics workloads use dynamic
SQL. For dynamic SQL, the first execution results in a new prepare
statement so that dynamic SQL can achieve immediate optimization.
Also, with the ad hoc nature of SQL requests in these environments,
minimal effort to achieve performance improvements is preferred.

A major goal for the Optimizer development team was to increase
focus on query performance improvements in DB2 11 for z/OS that
required minimal action. Considering the amount of diversity in
customer workloads, the first question was how do you identify what
would benefit the broadest set of clients?

Fortunately, some operations are common to most workloads, but are
not necessarily part of the DB2 Optimizer. As such, DB2 11 delivers
performance enhancements to the decompression of data rows, sort, and
numerous internal code path optimizations (not explained in this paper).
Each of these enhancements can generally improve query performance.

Contents

 2 Predicate indexability

 3 Duplicate removal

 4 Hash join and sparse index

 4 Page-range screening and
indexing for partitioned
table spaces

 6 RUNSTATS enhancements

 7 Additional performance
improvements

 7 Summary

 7 For more information

White Paper
IBM Software Group Information Management

2

The first task for the Optimizer development team was
to identify common query patterns, which involved the
following tasks:

• Investigating customer workloads that the DB2
development team obtained for performance testing

• Analyzing IBM and other enterprise resource planning
(ERP) vendor packaged applications and query generators

• Gathering input from level 2 support on challenging
query patterns

• Reviewing lessons learned from client proof of concepts
(POCs) and migrations from other platforms

The results of the analysis were used to identify common
patterns to target for DB2 11.

DB2 11 for z/OS offers several query performance enhancements
that require the least DBA interaction to implement.

Predicate indexability
Over the years, IBM clients were taught that indexable
predicates are the most efficient, and stage 2 predicates are the
least efficient. In traditional applications, developers were
instructed by their DBAs to write their predicates so that
matching index access was achievable for their queries.
However, query generators, ERP applications, rapid
development or geographically dispersed users can all result in
limited ability for a DBA to control the quality of the SQL.
Therefore, the preference is for DB2 to internally perform
these rewrites or to optimize predicate performance.

DB2 11 rewrites some of the more common stage 2 local
predicates, including the following predicates, to an
indexable form:

• YEAR(DATE_COL)
• DATE(TIMESTAMP_COL)
• value BETWEEN C1 AND C2
• SUBSTR(C1,1,10) SUBSTR from position 1 only

DB2 9 for z/OS delivered the ability to create an index on an
expression, which required the developer or DBA to identify
the candidate queries and create the targeted indexes. The DB2
11 predicate rewrites allow optimal performance without
needing this intervention. In some cases, an index on expression
can result in better performance for the query. For this reason,
if an index on expression exists, the predicate is not rewritten to
an indexable form in DB2 11. Index on expression carries other
work, such as resolution of the expression during insert or
update, and applicability only to the targeted expression.
Coupled with the need for the DBA or user to identify the need
for the index, the anticipation is that many of these use cases
today do not already have an applicable index on expression.

CASE expressions are also enhanced to support indexability as
shown in Figure 1. More common, complex resolution of code
values to their business value are being included in a view or
table expression to be used within a query, rather than using a
code table or dimension table for this purpose. When used in
predicates, DB2 11 can now use these expressions as indexable,
rather than stage 2 predicates as in previous releases.

Figure 1: CASE expression indexability

Indexability for local predicate
SELECT * FROM T1
WHERE COL = CASE (CAST(? AS INT))

WHEN 1 THEN 'A'
WHEN 2 THEN 'B'
ELSE 'C' END;

Indexability for a join predicate
• A CASE expression must be evaluated before the join.
• In the following example, the join predicate is indexable if T1 is

accessed before T2.

SELECT * FROM T1, T2
WHERE T2.COL = CASE WHEN T1.COL = ‘Y’

THEN T1.COL2
ELSE T1.COL3
END;

White Paper
IBM Software Group Information Management

3

Other patterns that are optimized include OR and IN predicate
combinations, which are common in ERP applications. In some
cases, single matching index access is now possible where
previously only multi-index access was available. In other cases,
multi-index access is available, where matching index access was
not possible.

In addition, query generators are known to add dummy
WHERE clause predicates to simplify their generation
framework, for example, WHERE 1=1. DB2 11 enhances
these patterns by removing unnecessary “always true” and
“always false” predicates in some instances. For clients who
historically used such query tricks as OR 0=1 or OR 0<>0,
DB2 still accepts these tricks.

Another enhancement is predicate pushdown. Before the
release of DB2 11, simple predicates were pushed inside
materialized views, such as views that contain DISTINCT
or UNION clauses, and table expressions. DB2 11 extends
predicate pushdown to include OR predicates, stage 2 predicates,
and outer join ON clause predicates. This method allows the
filtering to be applied before materialization. This method
also benefits workloads that include views or table expressions
with DISTINCT or GROUP BY clauses and that are used in
outer joins.

These predicate patterns cover a broad array of ERP applications
and are known customer concerns.

Duplicate removal
Duplicate removal by using DISTINCT or GROUP BY
clauses is another common usage in query processing. DB2
11 is enhanced to improve performance of DISTINCT,
GROUP BY, and non-correlated subqueries when an index
exists to provide order. In previous releases, DB2 could
avoid or minimize the sort overhead for duplicate removal
by scanning a candidate index in sequence.

Optimization of DISTINCT and other duplicate removal
patterns extends to join queries in DB2 11 where the join is
coded as an existence check. In such queries, any duplicates that
are introduced from the join are not required for the final result.

Figure 3 demonstrates two examples of the targeted query
patterns. DB2 11 can select an early-out join for the inner
table as soon as the first match is found rather than processing
all matching rows. Before DB2 11, this type of early-out join
was available only to correlated EXISTS subqueries that were
transformed to a join.

Figure 2 illustrates a simplified example of how DB2 11 can
use the non-leaf key information to skip forward to find the
next distinct key value. This technique is applicable for
DISTINCT, GROUP BY, and non-correlated subqueries.
Before DB2 11, DB2 would scan the leaf pages and
internally remove duplicates before returning the data to
the application. DB2 11 can remove the duplicates earlier
by skipping them within the index, regardless of whether
the distance between distinct entries is short or long. A
greater performance benefit is gained when whole index
leaf pages can be skipped.

Figure 2: DB2 11 index key skipping

100 .RID.RID.RID.RID 100.RID.RID. 101 .RID 101.RID.RID.RID.RID 101.RID.102 .RID.RID

100.101.101.102Non-leaf

Leaf

SELECT C1
FROM T

GROUP BY C1

White Paper
IBM Software Group Information Management

4

Correlated subqueries can also have improved performance in
DB2 11 because of optimized usage of a subquery cache that
has existed since DB2 V2. Figure 4 shows a simple example of
a common query pattern that is used in temporal-based or
time-based implementations where the most recent (or least
recent) version is required by the query. DB2 11 optimizes
this pattern by recognizing when order is provided and by
adjusting the cache size as needed.

Hash join and sparse index
Most database management systems (DBMS) provide a hash
join method for efficient join performance when a suitable join
index does not exist or if a large percentage of the rows will be
joined. In these cases, a hash join can be more efficient than a
nested loop join or merge scan join. Sparse index support has
existed since DB2 V4 for noncorrelated subqueries. It was used
in DB2 V7 for star joins and was opened to nonstar joins in
DB2 9. DB2 10 added hash support, which was limited to cases
with no index to support a join.

DB2 11 extends its hash join support by allowing hash joins
to be chosen in more cases. It also optimizes memory usage,
including runtime validation of available system memory,
and appropriately falls back to a sparse index when the result
cannot be contained in memory.

These enhancements are available after the first REBIND
action for static SQL or the next dynamic SQL execution.
However, use of a hash join is controlled by the MXDTCACH
zparm. This zparm is conservatively set to 20 MB, which you
might consider increasing to gain further improvement.
Although optimal setting of MXDTCACH might require some
skill, the accounting and statistics reports provide a record of
the number of sparse indexes where a work file was built. This
information and the number of synchronous reads in the sort
workfile buffer pool can be used as a guide to increase
MXDTCACH or to reduce VPSEQ in the sort buffer pool.

Page-range screening and indexing for
partitioned table spaces
When local predicates exist in the partitioning columns, DB2
can limit the access to only the qualified partitions. In DB2 11,
this support is extended to join predicates. This support and
other DB2 11 enhancements should increase scenarios where
data partitioned secondary indexes (DPSIs) can be used in place
of nonpartitioned secondary indexes (NPSIs) for improved
utility performance without compromising query performance.

Figure 3: Early-out join

Figure 4: Correlated subquery pattern optimized in DB2 11

In DB2 11, each inner table probe will stop after the first match
is found:

Early-out join also applies to non-Boolean term join conditions with
an early-out table:

SELECT DISTINCT T1.*
FROM T1, T2
WHERE T1.C1 = T2.C1

SELECT DISTINCT T1.*
FROM T1, T2
WHERE T1.C1 = 1

OR T1.C1 = T2.C1

SELECT *
FROM POLICY P1
WHERE P1.POLICY_DATE =
(SELECT MAX(P2.POLICY_DATE)
FROM POLICY P2
WHERE P2.CUSTNO = P1.CUSTNO)

White Paper
IBM Software Group Information Management

5

In a partitioning scheme where the table is partitioned by
columns used in queries as join predicates, DB2 11 can use
those predicates to filter out unnecessary partitions and probe
only the qualified parts. This enhancement is most effective
when the index for the join is a DPSI and the partitioning
columns are excluded from the index or not the leading index
columns. Before DB2 11, optimal join performance could be
achieved for this partitioning scheme only in either of the
following situations:

• The index was created as an NPI.
• The index was partitioned (a partitioning index (PI), not

a DPSI), but the partitioning columns were the leading
index columns.

Figure 5 demonstrates a join between T1 and T2, where the
inner table of the join (T2) uses a DPSI (on C1) and a join
predicate exists on the nonindexed YEAR column. In this
example, each probe to the inner table can use the join
predicate on the partitioning column to ensure that only the
necessary partition is accessed for each inner table access.

Figure 5: Page-range screening from a join

Join recognizes page range screening
• First composite row probes 1 part.
• Second composite row probes 1 part.
• And so on.

T2
DPSI on C1

Partition by YEAR

2009 2010 2011 2012 2013

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.YEAR = T2.YEAR

YEAR
2009
2010
2011

C1
1
2
3

Only qualified parts are probed
on the inner table.

Before DB2 11, each inner table access probed all partitions,
resolving the YEAR join predicate after the data page was
accessed. The benefit of the page-range screening enhancement is
that clients can convert to using a DPSI, which can ultimately
enhance utility performance if fewer NPIs result in a table.

To further expand the usage of DPSIs in DB2 11, additional
enhancements are available for workloads that already use
DPSIs or are considering moving more of their NPIs to
DPSIs. However, although DB2 11 increases the use of
DPSIs, still several scenarios exist where having one index
b-tree structure (as with NPIs) has considerably better query
performance than having one b-tree per partition.

When a query contains an ORDER BY, GROUP BY, or
DISTINCT clause, and the query requires a subset of the
table rows, an index is more efficient to provide that order
rather than introducing a sort. For a partitioned table space,
both a PI and an NPI can provide order that can match an
ORDER BY, GROUP BY or DISTINCT clause. However,
a DPSI provides order only within a partition, not across the
entire table space.

DB2 can use one of two methods to allow a DPSI to provide
order without requiring a sort:

• Have parallelism provide order, where each child task
processes one partition and the parent task merges the
results to provide one ordered set.

• Use DPSI merge (also known as DPSI return in order),
where DB2 processes each partition serially, but a merge
process returns the result in order across all partitions.

The DPSI merge process is enhanced in DB2 11. First, index
on expression can now use the DPSI merge, and second,
DPSI merge has general performance enhancements such as
improved index lookaside and, thus, getpage avoidance.

White Paper
IBM Software Group Information Management

6

The next enhancement to DPSIs involves using parallelism for
improved join performance when the partitioned table space is
the inner table of a join. To benefit from this enhancement, the
partitioning scheme must be based on columns that are not
included as join predicates in a query. Figure 6 demonstrates
the enhancement, which is referred to as a part-level join. In
this example, the table is partitioned by YEAR (where each
partition is numbered 2009 — 2013), although the query
includes only join predicates on C1.

Figure 6: Part-level join

T2
DPSI on C1

2009 2010 2011 2012 2013

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1

C1
1
2
3

C1
1
2
3

C1
1
2
3

C1
1
2
3

C1
1
2
3

With the part-level join, each parallel child task processes
only one partition, and the composite (outer) table is shared
or replicated to each child task. This method allows each
child task to act as though it is a two-table join (involving
one partition) rather than a join to multiple partitions.

A common complaint with DPSI join performance is that the
join results in a large amount of random I/O because each
partition was probed on the inner table of the join. However, in
DB2 11, both page-range screening from join predicates and
part-level join should improve join performance for DPSIs.
These enhancements might also potentially allow more
workloads to convert NPIs to use DPSIs.

RUNSTATS enhancements
The RUNSTATS utility is crucial to the DB2 for z/OS
Optimizer to ensure that accurate information is used for access
path selection. Although running the RUNSTATS utility is not a
feature of DB2 that is devoid of DBA or user involvement, many
clients have automated or regular schedules for RUNSTATS
collection. Therefore, any enhancements are important that
simplify integration with their schedule, improve the ability to
recognize important statistics to collect, or both.

DB2 10 delivered statistics profiles, so that clients could
combine the complexity of individualized statistics into a
stored profile, and subsequent RUNSTATS executions could
use that profile to ensure consistency of statistics collection.
DB2 11 supports integrating those profiles into a LISTDEF
control statement. Therefore, the USE PROFILE keyword
can be added to the LISTDEF control statement. Tables with
a profile collect their specialized statistics, and those tables
without continue to collect the basic statistics.

Simplified syntax in DB2 11 clears the statistics for a table and
its associated index. The RESET ACCESSPATH keyword of
the RUNSTATS command resets all statistics for the named
objects back to -1s and clears any specialized frequency,
cardinalities, or histograms from the catalog. After the statistics
are cleared, you can collect the desired statistics again.

The RUNSTATS enhancement entails guidance that is provided
by the DB2 11 for z/OS Optimizer about the statistics that were
missing as part of a BIND or REBIND, dynamic PREPARE, or
EXPLAIN action. While determining the access path, the
Optimizer externalizes whether the statistics that could be used
by the Optimizer are missing or conflicting. This information
is externalized to the catalog (from the New Function Mode), a
new explain table (if such a table exists), or both. The DBA can
use this information to determine which RUNSTATS
information to collect to potentially improve the Optimizer’s
chance at choosing an optimal performing access path.
Alternatively, IBM Optim™ Query Workload Tuner can
interpret the information and provide the RUNSTATS input.

White Paper
IBM Software Group Information Management

7

Externalizing the statistics recommendations as part of
general query processing is a significant step forward
compared to individually analyzing a query or having tools
collect a workload for analysis.

Additional performance improvements
Up to this point, the focus was on DB2 11 performance
improvements that might or might not apply to your
workload. DB2 11 also features performance improvements
that apply generally to an entire workload.

In recent DB2 releases, sort performance was a high priority,
considering that most workloads involve sorting. Workload
sorting is an area of resource contention because all tasks
converge on the same sort buffer pool and data sets. DB2 11
extends in-memory sort capabilities for smaller sorts and
temporary storage of intermediate results for some correlated
table expressions and subqueries. DB2 11 also provides
general code path-length optimizations for sort and reduced
workfile usage for final sort. Simplifying this task means
reducing contention for workfile resources and improved
performance for workloads that involve sorting.

Decompression performance is also improved in DB2 11. This
enhancement benefits workloads that issue queries against
compressed table spaces. Similar to the sorting enhancement, no
DBA involvement is needed to benefit from the enhancement.

Similarly, DB2 11 includes numerous internal optimizations
such as to the DECFLOAT data type. This data type is used
extensively in XML and when workloads involve local or join
predicates with mismatched data types such as character to
numeric. In such cases, DB2 uses the DECFLOAT function
as an intermediate data type to cast for the conversion.
DECFLOAT users can see considerable performance
improvements in DB2 11.

Summary
DB2 11 for z/OS is full of query optimization enhancements.
Many of these enhancements require minimal involvement
to use than in any recent previous DB2 release. The key
enhancements in DB2 11 include predicate indexability,
duplicate removal, and hash join and sparse index. They also
include page-range screening and indexing for partitioned
table spaces, RUNSTATS, and other performance
improvements. DB2 11 also includes more query optimization
enhancements, but that require greater DBA involvement.

For more information
For more information about IBM DB2 for z/OS, see
ibm.com/software/data/db2/zos/family.

http://www.ibm.com/software/data/db2/zos/family

© Copyright IBM Corporation 2013

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
September 2013

IBM, the IBM logo and ibm.com are trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on
the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

This document is current as of the initial date of publication and may
be changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT ANY WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM
products are warranted according to the terms and conditions of the
agreements under which they are provided.

SWW14016-USEN-00

Please Recycle

http://www.ibm.com/legal/copytrade.shtml

