
©MacFarland Consulting 2012
Page 1 of 8

System z Compilers and Business Technology

Evolution

By Anne MacFarland
August 2012

In Lewis Carroll’s Alice in Wonderland, the tea table used by the Mad Hatter, March Hare and Dormouse

has enough room that, when things get messy, they can move on to new place settings. Most of us have

found that this strategy only works in Wonderland. It works badly in business, where, even in chaotic

markets, the experience of the past informs the opportunities of the present and the strategies for the

future. It works even worse when the table settings are enterprise software. The exacting expectations

of users (core business applications and end users) will require extensive customization and testing.

Crafting an evolutionary path to a desired state is often the more prudent way forward. Four IBM

customers share their experiences in this paper – on different platforms and in different situations.

What they have in common is a focus on evolving their entire software stack, including the compilers, to

optimize their IT environments.

Businesses focus on the next deal in much the way that sharks focus on their next meal. Today, many

CIOs fret about how to generate the agility needed to support next-deal ambitions with existing (legacy)

applications. In rapidly reconfiguring markets (as many are), the ability to evolve in ways that fully

leverage existing infrastructure has huge business value. In data centers, this is usually achieved by a

coordinated ballet of processors and the instruction sets they hold, middleware, and the compilers that

translate programming into executable code.

Optimization of existing assets depends not just on the asset itself, but on how it has been maintained.

With cars, for example, maintenance is a matter of mundane things like checking the tire pressure. With

a business’s technology assets, it is a matter of updating to get new features and higher performance, of

extending monitoring to address new concerns, and of formulating and delivering on larger, longer term

strategies to support business agility. When business technology assets are properly kept up, they

become incredibly strategic because they fully reflect the specifics of business operations and also

leverage the evolution built into the latest versions of technology assets.

The Tangible Benefits of Using the Latest Compilers
IBM’s latest compilers and middleware (CICS, DB2, IMS) fully leverage new instructions in the latest

System z processors. Today, core business information and applications are kept on System z because of

the scale at which business critical applications and data are used, and for security reasons. A Foresights

Software Survey published in Q4, 2010, showed that modernizing legacy applications is the highest

priority item for all software leaders who participated in the study. Compilers increase the efficiency of

business logic and provide features that enable modernization of applications. The latest versions of

©MacFarland Consulting 2012
Page 2 of 8

middleware were designed to increase the efficiency of the application tiers that support business

operations, collaboration, self-service functionality, and all the modern elements that help a business

thrive.

IBM has found that keeping mainframe processors, compilers and middleware current has considerable

value. IBM customers have experienced a 20-60% improvement in application performance with the

latest compilers.1 By leveraging modern application development tooling, companies have reported a

22-37% improvement in developer productivity2. Companies who have deployed IBM Rational’s

collaborative application lifecycle solution saw significant improvements in their team productivity and a

15-20% decrease in development cycle time3. These are impressive numbers.

IBM System z and the z/OS operating system provide strong backward compatibility support. This means

that applications will continue to run even if applications are not upgraded to use the latest version of

the middleware software or re-compiled with the latest version of the compilers. However, these

applications will not perform as well as they could. And in an environment where 80%+ system

utilization is the norm, that’s a lot of performance waste, and a lot of hardware and middleware

functionality that are not accessible. Remaining on out-of-date compilers impairs the ROI of your

mainframe budget.

The C/C++ Customer Experience
Joe Devlin, Managing Director, R&D, Rocket

Software, is particularly pleased with the way

the Metal C feature of the IBM z/OS® XL C/C++

compiler significantly increased efficiency,

reduced development time and enabled his

company to leverage their C programming skills

in developing low level applications on System z.

Rocket Software is a global software

development organization that produces

enterprise infrastructure products in the areas of

business intelligence, storage, networks,

terminal emulation, integration, security and

databases. Their products mainly run on IBM

System z. The company also licenses them to

original equipment manufacturers (OEMs).

1
Results are based on a compute-intensive integer benchmark suite compiled with z/C/C++ v1.9 executing on a System z10 and

compared to the same benchmark compiled with z/OS C/C++ v1.12 executing on System zEnterprise 196.

2
 "2010 IBM Rational Benchmarking study on IDE efficiency and developer productivity

3
 IBM customer case study

IBM z/OS XL C/C++ v1.13 Compiler
The benchmarks tell the story.

The IBM z/OS XL C/C++ v1.13 compiler achieved a 4% increase

in the compute-intensive integer benchmark suite and a 7%

increase in the compute-intensive floating point benchmark

suite, when compared to the XL C/C++ v1.12 compiler.

The compiler is optimized for the target architecture without

requiring source code modification. It has ISA exploitation and

performance tuning. It understands and applies the instruction

and scheduling trade-offs on the specific hardware being

targeted. Continued attention to source and binary

compatibility enables more straightforward porting of C/C++

applications to the z/OS platform.

METAL C functionality allows programmers to avoid dealing

with the HLASM Assembler language. METAL C code looks and

feels like C/C++, and is usable by those with C/C++ skills. This

addresses, and may solve, a skills issue.

©MacFarland Consulting 2012
Page 3 of 8

Joe is responsible for programming and developing

operational and monitoring software for performance and

capacity management at Rocket Software. His challenge is to

find a tool that can increase efficiency and time to market for

their software products for System z. Development of mainframe software often involves integrating

with existing applications, many of which are large and complex. Therefore, it’s essential to use the

right language for the job. High-level programming languages aren’t always useful for low-level

application development. Rocket Software takes on new projects and products constantly and needs to

have the right tools to support their development efforts and keep up with their growth. They started

to use the Metal C feature of the IBM z/OS® XL C/C++ compiler on a test project. The results were so

successful that the company decided to use it to develop their software products. They were able to

build a compliance product in four months. In the past, such a project might have taken two to three

times as long to complete. With Metal C, developers can also take advantage of advanced optimization

technology in the z/OS XL C/C++ compiler to produce high-performance code that works seamlessly with

code written in IBM High-Level Assembler language (HLASM). C programmers, who do have extensive

mainframe backgrounds, can also work on these projects, significantly broadening the company’s

resource pool. Since this project, Rocket Software has

continued to train and add developers to the group

using the Metal C feature. As Joe puts it, “Metal C in

z/OS XL C/C++ is yet another powerful tool helping to

turn the economics of System z software development

into a completely new equation.”

The Enterprise COBOL Customer Experience
Company B is a very large insurance company that prefers to remain anonymous. An Infrastructure

Planning Engineer from this organization has compiled and shared a long list of tangible benefits from

leveraging System z enhancements and the current version of the Enterprise COBOL compiler. His focus

is at the application and middleware level – and on implementing new mainframe functionality to

support his organization’s business goals. He manages a large enterprise Java and COBOL shop with

multiple simultaneous short- and long-term projects. This company’s primary focus is on cost savings

(often driven by reductions in MIPS use) and process improvements.

The Planning Engineer says that IBM’s Enterprise COBOL v4.2 has enabled them to eliminate post

processing on XML data that is to be exported via a Web Service. This saved them both time and energy

costs. Both CICS and IMS were endowed with Web Service functionality, and Web Services are heavily

used in his applications. The engineer remarks that CICS supports top-down Web Services while IMS

remains more bottom up in orientation. He prefers the top-down, modeled approach to Web Services in

both CICS and IMS. His frequent participation in beta tests and early releases enables him to test new

features in both compilers and middleware and provide timely feedback to IBM.

Metal C in XL C/C++ optimizes system

programs for new zArchitecture

without changes to the source code!

The IBM z/OS XL C/C++ v1.13 Compiler

has an advanced high-level optimizer

which enables powerful capabilities such

as loop, whole program and profile-

directed optimizations.

©MacFarland Consulting 2012
Page 4 of 8

Company B’s Planning Engineer is also pleased

with Enterprise COBOL v4.2’s support for XML

System Service (z/OS XML) parser. This feature

has already yielded significant savings for his

organization. z/OS XML is a system level XML

parser that is intended to be used by system

components, middleware and applications.

z/OS XML also allows XML documents to be

offloaded to a zAAP specialty engine for

processing, so companies can reduce their

MIPS cost.

Chargeback is a way of life at Company B, and

the Planning Engineer is delighted that CICS

v4.2 supports more granular chargeback. His

environment is still 60-70% custom code but

there is a careful transition to new packages,

and he notes that these packages often

generate more (not fewer) IMS and CICS transactions. One strategy to combat the growth of MIPs

charges is to build Web Services that generate XML to prune the data transfers between the packages.

He likes the COBOL support in the IBM Fault Analyzer that now has new functions to deal with storage

violations. He strongly recommends to other companies that they keep current on IBM’s Debug Tool

that enables “jump-to” project debugging.

Overall, he is very pleased with the breadth of new compiler functionality that can support major

projects such as standardization of the Enterprise COBOL Code checking process, and propagating a DB2

and CICS integrated co-processor in the Enterprise COBOL compiler. More recently, he has begun a

modernization project that requires COBOL programs to interoperate with Java programs. He used

Rational Development and Test Environment for System z, RD&T, (formerly known as RDz Unit Test),

which provides a local test environment for unit testing System z applications on a PC running Linux, to

design and test the application. RD&T gave flexibility to development teams while providing MIPS

savings. The COBOL modernization project will be well-instrumented and documented. They plan to

publish time and cost improvements when the project is completed. Dramatic savings are expected,

and there is a strong foundation for continuing to move in this direction in the future.

Two PL/I Customer Experiences

Company C also wishes to remain anonymous, but they shared their PL/I experiences with us. They are

a very large financial institution that uses a bevy of zEnterprise 196 servers to support their global

operations. Their core applications are written in PL/I and COBOL. They also use C/C++ and Java for

some applications.

IBM Enterprise COBOL for z/OS v4.2 Compiler
Version 4.2 supports significantly improved UNICODE

performance; provides better integration of existing applications

with Web Services; provides an integrated CICS and SQL pre-

processor; and supports the latest CICS and DB2 features.

Java interoperability with COBOL is achieved through

development using object-oriented COBOL syntax. This enables

integration of COBOL applications with Web applications. COBOL

applications can access enterprise beans running on WebSphere

Application Server or J2EE-compliant Enterprise Java Bean

Servers. Version 4.2 enables COBOL applications to work with

Java 5 and Java 6 SDKs.

The support for high speed XML parsing built into the v4.2

COBOL compiler is particularly useful in an era where many kinds

of data are being used in new ways. Encoding in UTF-8, UTF-16

and EBCDIC codepages are supported, as is the offloading of XML

parsing to the zAAP processor.

©MacFarland Consulting 2012
Page 5 of 8

This company is committed to PL/I because they have millions of lines of well-performing PL/I code that

their core business relies on. New modules are mostly developed in Enterprise COBOL. They are

currently upgrading from Enterprise v3.9 to v4.2 to improve application performance on their new

zEnterprise 196 hardware. Although the project is still in progress, their 500 mainframe developers are

able to optimize PL/I code in remarkable ways. One of their teams expects to cut their MIPS usage by

50% with the latest compiler optimizations.

This company finds IBM’s support for compiler-

related issues to be excellent. They respect the

warnings generated by the PL/I compiler, such

as, for example, one about CICS and static

variables, and the remedial recommendations

that accompany them. They urge all

programmers to follow IBM’s advice. Their

development teams are also adopting Rational

Team Concert (RTC), a collaborative application

lifecycle management solution. Rational Asset

Analyzer (RAA) provides in-depth information

on the structure of the applications and maps

dependencies, setting the stage for efficient

modernization. They are also working on

modernizing legacy code that would benefit

from the newer compiler’s optimization

features.

Company D is a major bank in northern Europe with 30,000 MIPS in production, which also wishes to

remain anonymous. Their environment is 70% mainframe and 30% PC networks. Their mainframe

portfolio includes PL/I, COBOL, EGL/VAG (VisualAge Generator), HLASM (High Level Assembler), and

C/C++. A few years ago, they migrated their core PL/I applications (40+ million lines of code) from a

legacy PL/I compiler to Enterprise PL/I v3. Moving to Enterprise PL/I solved storage contention issues

between their many CICS load modules, and enabled them to reduce the size of PL/I load modules and

CICS MIPS consumption. They approached this modernization project very carefully because many of

their programs have not been touched in years.

They divided the project into 3 phases. The first phase focused on fixing compatibility issues between

the old and new PL/I compilers. The second phase targeted interoperability between the old and new

compilers, since not all programs can be fully migrated to the new compiler. Rational Asset Analyzer

(RAA) was instrumental in this phase. It helped the team scope the impact of their code changes. The

team used this information to mitigate their risk. The last phase focused on implementing line items

with new features supported in Enterprise PL/I v3. They were able to successfully complete this project

on time and within budget. Recently, they have upgraded to Enterprise PL/I v4. They recompiled their

most frequently used programs in their applications and achieved significant MIPS savings. This upgrade

 IBM Enterprise PL/I for z/OS v4.2
PL/I is a strategic language originally designed for scientific and

engineering applications, but it has been well adapted for

business applications. IBM’s first Enterprise PL/I compiler was

released in 2001, and it has been updated every year since.

Version 4.2, the current version, shares optimizing back-end

technology with the IBM z/OS XL C/C++ compiler. Enterprise

PL/I for z/OS also provides a migration path from PL/I for MVS

and VM Compilers.

The latest PL/I compiler delivers some significant

improvements in functionality beyond the traditional

performance boost (up to 10%), and enhanced support of

XML, Web Services and new processor instructions. A smaller,

faster and more powerful SQL pre-processor is 8x smaller and

40% faster in processing SQL source data, which will be

significant for certain workloads. In addition, the integration

of CICS and SQL pre-processors supporting the latest versions

of CICS and DB2 will simplify application modernization

operations.

©MacFarland Consulting 2012
Page 6 of 8

went smoothly without any compatibility issues, and many of the programs that were recompiled have

significantly reduced storage access and CPU consumption by up to 50%.

Interview Take-Aways
These companies all had very different kinds of challenges – but in every case, use of the latest

compilers delivered significant and enduring value. Data centers must blend both tactical and strategic

application development as part of their operational strategy. The application rejuvenation process has

been greatly enhanced by IBM innovations such as the COBOL-Java integration, XML support, and the

METAL C. The evolutionary paths of the PL/I users were quite different but both addressed large

challenges in a sensible fashion and took advantage of the latest enhancements in PL/I compilers to

improve application performance and improve their return-on-investment of their System z hardware.

Improved Programming Support for Middleware
New compilers provide improved programming support for new features in middleware (i.e., CICS, DB2

and IMS). Enterprise COBOL v4.2 provides new SQL data types that were first introduced in DB2 v9.

Enterprise PL/I v4.2 provides improved support for DB2 applications with multi-row insert and multi-row

fetch. PL/I v4.2 improved performance of processing SQL statements by up to 40% with up to 8X less

memory footprint. In addition, COBOL and PL/I have improved problem determination support and can

process XML documents received from IBM middleware.

Rational Broadens the Horizon
IBM Rational offers a broad set of development and application lifecycle management solutions for

System z. IBM Rational Developer for System z software (RDz) enables development of COBOL, PL/I,

C++, HLASM (High Level Assembler), and Java applications for batch, CICS, IMS, and DB2. It also helps

developers to rapidly create web applications that interoperate with CICS, and IMS transaction

applications and WebSphere environments.

IBM Rational Team Concert (RTC) is an application lifecycle management solution that improves

collaboration between members of development teams to maximize business agility. It provides

functions for task tracking, source control, agile planning, managing governance, and continuous builds.

Companies B and C are currently running pilot projects in their respective organizations for RDz and RTC.

Their early results are very positive. Both companies are currently planning to increase their use of these

tools within their respective development communities.

Rational Development and Test Environment for System z, (RD&T), which was formerly named Rational

Developer for System z Unit Test (RDz-UT), provides a low cost test environment for System z

applications. It creates a personal z/OS environment on an x86 desktop or a shared server, reducing

MIPS usage on System z for developing and testing applications. It runs with full System z fidelity. Final

build as well as production testing must still be done on a production System z server. Company B used

RD&T in their modernization project. It provided them with increased flexibility and MIPS savings.

Rational Asset Analyzer (RAA) was an essential tool used by Companies C and D. It provided insight into

©MacFarland Consulting 2012
Page 7 of 8

the structure of their large PL/I applications. Understanding the relationships of existing applications

helped the companies better plan their migration efforts, and reduced the overall risk of their projects.

RAA also enabled them to focus on comprehensive testing, which helped both companies complete

their projects on time and within budget.

A Look into the Future
IBM Fellow Kevin Stoodley sees System z compilers as an exciting space to work in because of the

breadth of the benefits that modern compilers now offer. An ongoing and significant story is the

modernization of COBOL itself. It is a preparatory step to the larger vision of a common back end for all

IBM compilers on System z. The new COBOL infrastructure will enable full exploitation of current and

future z/Architecture and provides a solid foundation to support 64-bit application development. A

managed beta of the new COBOL compiler currently in progress allows companies that use System z to

more fully understand the benefits of upcoming compiler releases and contribute to the development

process.

In the very near future, optimizations will address the whole program scope and optimization decisions

will be guided by performance profiles. Some of these features are currently available in C/C++

compilers. Stoodley believes that COBOL and PL/I could follow a similar evolutionary path. The

common optimization technology that Stoodley envisions will expose new potentials for efficiency and

agility for all supported programming languages.

Stoodley believes that Metal C will continue to leverage advanced optimization features of the C/C++

compiler to help developers deploy optimized, low-level applications, as well as system programs to all

z/Architecture without source code modification. He also mentioned that C/C++, COBOL and PL/I are

strategic to the System z platform, and IBM engineers are working hard to bring new innovation and

value to these compilers.

 IBM System z Evolutionary Opportunities
Businesses with IBM System z have a wide variety of evolutionary paths open to them.

 The rapid evolution of recent IBM System z hardware is significant. z10 started the new

accelerated cadence, and z/114 and z/196, with optional z/BX “sidecar” for UNIX and Windows

workloads, take it a lot further.

o New instructions on System z processors coordinate with enhancements in middleware

by means of compilers. At IBM, these three efforts have been coordinated over

decades.

o IBM’s active collaboration with its large global customer base allow them to better plan

what new functionalities should be evolved and which are the most urgent.

o A very large variety of partners, ISVs and distributors give opportunities for

customization and building in additional business differentiation.

©MacFarland Consulting 2012
Page 8 of 8

Conclusion
The performance of the technical infrastructure that underpins business operations determines the

cadence of business operations and the satisfaction of their customers. Compilers are a key part of this

support, not just for their own innovation, but because of how they complement middleware. They are

the least expensive element in the software stack and can offer significant MIPS savings in running your

applications. Therefore, the best practice is to upgrade compilers when you upgrade System z

hardware, z/OS, or middleware (CICS, DB2, IMS). You can leverage programming support provided by

compilers for new middleware features, maximize application performance, and improve programmer

productivity. Best of all, you can do this with one quality assurance cycle. Upgrading compilers does not

require you to recompile your entire application. You need only recompile the parts you modified.

System z was built with the assumption of multi-tenancy, and z/OS has the controls to prioritize the

dynamic assignment of resources – it’s the secret behind its high utilization rates and low latency. You

probably wouldn’t trade it for a sprawl of under-utilized assets, like the Mad Hatter’s tea table. The

more you talk with other companies about their use of mainframe assets, the more opportunities you

will find for application optimization.

(excerpts from IBM podcasts on the joint value of compilers and middleware)

Question: Do I need to recompile my application when I upgrade my compilers?

“I understand the concern about recompiling entire applications. Recompiling an entire application is a very

time-consuming effort; it can also be quite expensive, but there's really good news here: COBOL and PL/I have

maintained very good source and binary compatibility. This means that users only need to recompile the specific

files that have been changed and link in the old objects. There is no need to recompile their entire application.”

“There are other ways to minimize the risk for upgrading compilers. Scoping the impact of the change you would

like to make is very important. The compilers work with IBM's set of advanced programming tools that cover the

entire application lifecycle.”

 “Rational Asset Analyzer collects information about your software assets and shows you the impact of your

planned changes. So, if you want to touch a file, it shows you what the impact of that change will be.”

“And, Rational Team Concert is a collaborative application lifecycle management tool that helps improve

collaboration between developers and the entire change management process.”

“These tools can help mitigate risk and prioritize the parts of your application for recompiling or modernizing.”

“Upgrading compilers at the same time as you upgrade middleware also has an additional cost benefit: you can

leverage the same testing cycle to achieve both upgrades. If you upgrade separately, you'll need to employ a

whole separate testing cycle, and we all know that could be very costly.”

