Leveraging Information for Smarter Business Outcomes

Hints and Tips to get the most out of DB2 9 for z/OS

John J. Campbell - IBM Distinguished Engineer

Introduction

•DB2 9 for z /OS is a major release of DB2 for the IBM System Z platform

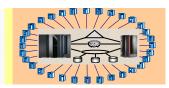
•Many features that provide technical and business benefit across the following areas:-

- •Price/performance (reduced cost)
- Improved availability
- •Reduced total cost of ownership
- Application enablement and support for new workloads

John Campbell - IBM Distinguished Engineer

Email: John Campbell1/UK/IBM@IBMGB

Agenda


Economic downturn – changing the game

DB2 9 for z/OS – Business Value & Benefits

- Price/performance (reduced cost)
- Improved availability
- Reduced total cost of ownership
- Application enablement and support for new workloads

Next Steps

Succeeding in Turbulent times Top 3 Challenges for CIOs

- Reducing Costs of Information Technology
- Boost Business Resilience and Reduce Risks
- Demand to drive more innovative solutions

Improved Price/Performance (Reduced Cost) DB2 9 for z/OS

Larger index page size

- Available in V9 NFM
- Can be used with or without index compression
- Index must be defined in 8 KB, 16 KB, or 32 KB bufferpool
- Potential to reduce the number of index leaf page splits, which are painful especially for GBP-dependent index (data sharing)
 - Reduce index tree lotch contention ٠
 - Reduce index tree p-lock contention
 - Reduce active log write I/O
- Potential to reduce the number of index levels
 - Reduce the number of getpages for index traversal •
 - Reduce CPU resource consumption
- Possibility that large index page size may aggravate index bufferpool hit ratio • for random access

Large Index Page Size Examples

Rows In Table	1,000,000,000								
Key Length	4	8	16	32	64	128	256	512	1024
Page Size									
4096									
Entries/Leaf	336	252	168	100	56	29	15	7	3
Leafs	2,976,191	3,968,254	5,952,381	10,000,000	17,857,143	34,482,759	66,666,667	142,857,143	333,333,334
Non-Leaf fanout	331	242	158	93	51	26	13	7	3
Index Levels	4	4	5	5	6	7	9	11	19
8192									
Entries/Leaf	677	508	338	203	112	59	30	15	7
Leafs	1,477,105	1,968,504	2,958,580	4,926,109	8,928,572	16,949,153	33,333,334	66,666,667	142,857,143
Non-Leaf fanout	666	488	318	187	103	54	27	14	7
Index Levels	4	4	4	4	5	6	7	8	11
16,384									
Entries/Leaf	1360	1020	680	408	226	120	61	31	15
Leafs	735,295	980,393	1,470,589	2,450,981	4,424,779	8,333,334	16,393,443	32,258,065	66,666,667
Non-Leaf fanout	1,336	980	639	376	207	108	55	28	14
Index Levels	3	4	4	4	4	5	6	7	8
32,768									
Entries/Leaf	2725	2044	1362	817	454	240	123	62	31
Leafs	366,973	489,237	734,215	1,223,991	2,202,644	4,166,667	8,130,082	16,129,033	32,258,065
Non-Leaf fanout	2,676	1,963	1,280	755	414	218	111	56	28
Index Levels	3	3	3	4	4	4	5	6	7

Improved Price/Performance (Reduced Cost) DB2 9 for z/OS

- Standard SQL type language that programmers on all platforms will be able to easily understand
 - No need for COBOL skills
 - No need for external C program which must be prepared and executed
- Potential for significant reduction in CPU resource consumption by avoiding
 - Overhead of stored procedure invocation overhead
 - Overhead of roundtrip between WLM and DBM1 address spaces for each SQL call
- Short running SQL procedure could achieve up to an 40% ITR improvement
- But little or no improvement for long-running SQL procedure
- When invoked from DRDA connection over TCP/IP
 - zIIP eligible
 - As it runs in DBM1 address space under DDF enclave SRB
- Easy to code, develop and manage
- Selective application re-engineering may be required when migrating existing SQL procedures to Native SQL Procedures

Improved Price/Performance (Reduced Cost) DB2 9 for z/OS is here

- **Stored Procedures Performance of different languages** •
 - Environment Configuration
 - z/OS 1.9
 - DB2 9 for z/OS
 - Universal Driver 3.52.76
 - JDK 1.4.2 (SQLJ/JDBC stored procedures)
 - 3 CP's
 - 2 zIIP's
 - 2 zAAP's
 - IRWW OLTP workload

More Quick Hits ...

• Stored Procedures - Performance of different languages ...

Language/API	Base CPU/tran Cost	Billable CPU/tran Cost after zIIP and/or zAAP redirect		
COBOL stored proc	1X (BASE)	.88x		
C stored proc	.95x	.83x		
SQLJ stored proc	1.7x	1.15x (zIIP + zAAP)		
JDBC stored proc	2.95x	1.76x (zIIP + zAAP)		
External SQL stored proc	1.62x	1.49x		
Native SQL stored proc	1.14x	.65x		
Remote SQLJ	1.78x	1.06x		

Improved Price/Performance (Reduced Cost) DB2 9 for z/OS

- Performance relief for sequential key insert with better space utilization
- Reduce number of painful index leaf page splits

Fast table APPEND ('insert at the end')

- Reduced space searching
- Use with MEMBER CLUSTER if GBP-dependent

Data sharing logging improvement

- Now only necessary to generate unique LRSNs when log records are for same index or data page
- Reduced LRSN spin when holding log latch saves CPU
- Identify and remove unused indexes
 - Difficult to determine in a dynamic SQL environment
 - SYSINDEXSPACESTATS.LASTUSED (RTS) records last used date
 - Improved insert and delete performance

Improved Price/Performance (Reduced Cost)

- Improved sort avoidance and performance
 - Use of in-memory workfile if number of rows can fit into one page
 - Use of 32KB workfile if row size > = 100 bytes to reduce IO
 - New GROUP BY sort group collapsing during sort input phase
 - Sort avoidance for DISTINCT on non-unique index

• SELECT, INSERT, UPDATE, DELETE for LOBs

- Improved performance
- Significant reduction in locking and holding locks for shorter duration
- No lock escalation
- New dynamic data format (progressive streaming) for JCC T4 applications

Reduced CPU for LOAD and REORG for charge back

 Improvements related to reduced index manager costs, use of shared memory objects to avoid data movement, improved index key generation

Improved Availability

Online REORG

- Eliminates the BUILD2 phase for REORG PART operation
- NPIs also shadowed and implicitly reorganised
- Partition level unload/reload/log apply parallelism
- Removes prime cause of outage

Online REBUILD INDEX

Good for CREATE INDEX DEFER YES

CLONE Table

- Fast replacement of one table with another (flip-flop)
- Addresses requirement to replace the entire contents of a table while maintaining access to the old data until the new dataset has been loaded
 - Aka 'Online LOAD REPLACE SHRLEVEL(CHANGE)'
- Reduce or even eliminate service outage caused by batch processes

Improved Availability ...

- REORG of LOB table space
 - Complete REORG of LOB data to reclaim space

• Modify EARLY code with no IPL needed

• New command to refresh early code and then recycle DB2

Consistent RECOVER

- Automatically detects uncommitted transactions that are running at the PIT recovery point
- Rolls back changes on the object to be recovered to ensure data consistency after the PIT recovery
- URs that are INFLIGHT, INABORT, POSTPONED ABORT are rolled back
- Leaves the recovered objects in a consistent state from a transaction point of view
- Reduces even eliminates the need for taking successful QUIESCE points

Improved Availability ...

- Data sharing restart availability enhancements
 - Initiating automatic GRECP recovery at the end of restart
 - Deferring the updates of SYSLGRNX beyond end of restart
 - Opening data sets earlier in restart processing
 - Removing need for conversion locks during special open
 - Allowing table-level retained locks to support postponed abort unit of recovery
- Cancel in progress database commands
- Online schema change
 - RENAME COLUMN and RENAME INDEX
 - Eliminate destructive changes

Reduced Total Cost of Ownership

• Plan stability

- Ability to backup your static SQL packages
- Save old copies of packages in Catalog/Directory
- Can switch back to previous or original version when bad access path change
- Removes the fear of REBIND

Histogram statistics

- Represents pockets of data
- Improved filter factor estimation when gaps in the range
- Universal Table Space Partition-by-Growth (PBG)
 - New partition added automatically when more space needed
 - Max size controlled by MAXPARTITIONS, DSSIZE, and page size
 - Help deal with potentially large unpredictable data volumes

Reduced Total Cost of Ownership ...

Trusted network context and SQL ROLE

- Addresses security/audit issue in 3-tier architectures where a 'surrogate' user id (or function id) is used to access DB2
- Provides better control access to applications
- Provides better audit ability both when making database change and when a user executes 'transactions'

Selective tracing

- New trace filters available to help minimize trace overhead
- Filters include the ability to include or exclude data with wild card capability
- Use filters to target detailed trace classes selectively and reduce CPU overhead

Reduced Total Cost of Ownership ...

- Incremental DBM1 31-bit storage VSCR (5-10%)
 - Reduced EDM Pool requirement for static SQL
 - Reduced Local Dynamic Statement Cache when using KEEPDYNAMIC(YES)

Index compression for informational systems

- Save DASD space
- Requires large index page size
- Target large indexes e.g., NPIs

Utility TEMPLATE switching

- Extends the capability of the template command to allow different output locations to be specified based on the size of the dataset
- Reduces the ongoing effort required to monitor and maintain backup jobs by automatically selecting the correct output location as DB2 tables grow over time

MODIFY RECOVERY

• Simplication and safety

Reduced Total Cost of Ownership ...

- Exploitation of volume level backups
 - Tape support/control for BACKUP and RESTORE SYSTEM utilities
 - Recovery of individual tables paces and indexes from volume-level backups
 - Exploitation of Incremental FlashCopy

Automatic object creation

- Implicit creation of
 - Database
 - Primary key index
 - Unique key index
 - ROWID index
 - LOB table space, table & auxiliary index

Application enablement and support for new workloads

Integrated XML support

- Declarative language, reduce complexity, dramatically improve application development productivity
- Directly store and query XML in inherent hierarchical format
 - No decomposition/composition
 - No normalize/de-normalize
- Native processing with good XML index design = high performance
- Ideally suited
 - Versatile schemas that are diverse and evolve, and end-user customizable applications
 - Sparsely populated attribute values (null vs. absence)
- Manage XML data with ACID properties, auditing and regulatory compliance, together with relational data

Application enablement and support for new workloads

INSTEAD OF triggers

- Usability feature provides an extension to the updatability of views
- Trigger logic performs the operation against the table on behalf of the view
- Transparent to the application

Index on expression

- General application for multi key column browsing
- Eliminate non-matching index scans
- Remove column concatenation
- Reduce number of destructive index changes

Application enablement and support for new workloads

• FETCH FIRST and ORDER BY in subselect

Can perform mass insert/update/delete in increments

Optimistic locking control

- Positioned updates and deletes performed with optimistic concurrency control method
- Uses RID and a row change token to test whether data has been changed by another application since the last read operation
- Ensures data integrity while limiting the time that locks are held
- Faster and more scalable than database locking for concurrent data access

Next Steps & More Information !

• Are you ready to Migrate to DB2 9 for z/OS ?

Contact your local IBM representative or email WW DB2 for z/OS Market Manager <u>Surekha21@uk.ibm.com</u>

- Need More Information
- DB2 for z/OS Landing page
- Whitepaper
 DB2 9 for z/OS Data On Demand
- IBM Redbooks
 Latest Redbooks

Univar Case Study

Univar uses DB2 9 for z/OS with pureXML to speed development and reduce cost

- Join <u>"The World of DB2 for z/OS !"</u>
- Twitter DB2: http://twitter.com/IBMDB2

