
© 2011 IBM Corporation

Gain insight into DB2 9
and DB2 10 for z/OS
performance updates
and save costs
Florence Dubois
fldubois@uk.ibm.com

IBM System z Technology Summit

© 2011 IBM Corporation2

Disclaimer:
Information regarding potential future products is intended to outline our general product direction
and it should not be relied on in making a purchasing decision. The Information mentioned
regarding potential future products is not a commitment, promise, or legal obligation to deliver any
material, code or functionality. Information about potential future products may not be incorporated
into any contract. The development, release, and timing of any future features or functionality
described for our products remains at our sole discretion.

Performance Disclaimer:
This document contains performance information based on measurements done in a controlled
environment. The actual throughput or performance that any user will experience will vary
depending upon considerations such as the amount of multiprogramming in the user’s job stream,
the I/O configuration, the storage configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve throughput or performance
improvements equivalent to the numbers stated here.

© 2011 IBM Corporation3

DB2 10 Performance Preview
 Abstract

– This session offers a look at performance impact of DB2 9 and DB2 10
for z/OS with particular emphasis on the DB2 10 improvements

 Agenda
– DB2 10 for z/OS performance goals and expectations
– Scalability and buffer pool enhancements
– INSERT improvement
– FETCH/SELECT improvement
– JDBC and DDF performance
– LOB, XML, and SQL procedure performance
– Monitoring enhancements

© 2011 IBM Corporation4

DB2 10 Performance Objective

added 64 bit support

Historical goal of <5% version-to-version performance regression
Goal of 5% -10% performance improvement for DB2 10

Average %CPU improvements
version to version

-15
-10
-5
0
5

10
15

V3 V4 V5 V6 V7 V8 V9 V10

© 2011 IBM Corporation5

DB2 10 Performance Expectation

Most of workloads…
• Up to 10% CPU reduction after REBIND packages
• Higher improvement with workload with scalability issues in V8/V9 or
accessed thru DRDA

Sweet Spots…
- Workload using native SQL procedures: up to 20% CPU reduction after
DROP/CREATE or REGENERATE the procedures
- Query workload with positive access path changes
- Workload with frequent access on small LOB (NFM with Inline LOB)
- Workload with random, singleton select/update (NFM with Hash
access)

© 2011 IBM Corporation6

DBM1 Virtual Storage Constraint Relief
 DBM1 below 2GB

– 75-90% less usage in V10
compared to V9

– Some of working storage (stack,
xproc storage) stays below 2GB

 Larger number of threads
– Possible data sharing member

consolidation

 Improve CPU with storage
– More thread reuse
– More release deallocate
– High performance DBATs
– Larger MAXKEEPD values for

KEEPDYNAMIC=YES

V10

SKCT
SKPT

Global DSC

DBD
CT/PT

Local DSC

Thread / Stack

75-90% less usage
DBM1 below

Thread / Stack/ working

© 2011 IBM Corporation7

Virtual Storage Reduction from SAP Workload

 412 concurrent threads

 Virtual storage below the bar
– 997 MB with DB2 9
– 63 MB in DB2 10

 No significant increase in real storage

0

200

400

600

800

1000

1200

DB2 9 DB2 10

#o
f u

se
rs

 /
 D

B
M

1
vi

rtu
al

(M

B)

4.4
4.6
4.8
5
5.2
5.4
5.6
5.8
6
6.2

C
PU

 ti
m

e

Thread DBM1 below virtual CPU time per tran

© 2011 IBM Corporation8

DBM1 VSCR Monitoring
 More focus on

– Real storage usage (PM24723)
– Common storage (ECSA and ESQA) usage

 New statistics in IFCID 225 reports
– DBM1 and DIST address space: virtual below and above, real, and aux
– Common and Shared storage usage (z/OS APAR OA33106 SRB ESQA

reduction)

DBM1 AND MVS STORAGE BELOW 2 GB QUANTITY
-- --------------
TOTAL NUMBER OF ACTIVE USER THREADS 2694.28
 NUMBER OF ALLIED THREADS 386.00
 NUMBER OF ACTIVE DBATS 2275.06
 NUMBER OF POOLED DBATS 33.21
REAL AND AUXILIARY STORAGE FOR DBM1 QUANTITY

 -- -------------
 REAL STORAGE IN USE (MB) 5396.07
 31 BIT IN USE (MB) 289.45
 64 BIT IN USE (MB) 5106.62
 HWM 64 BIT REAL STORAGE IN USE (MB) 5106.64

© 2011 IBM Corporation9

Performance Scalability - DB2 Latches (CM)
 Most of DB2 latches from 64 cp scalability evaluation will have a relief

– LC12 : Global Transaction ID serialization
– LC14 : Buffer Manager serialization
– LC19 : Log write in both data sharing and non data sharing
– LC24 : EDM thread storage serialization (Latch 24)
– LC24 : Buffer Manager serialization (Latch 56)
– LC25 : EDM hash serialization
– LC27 : WLM serialization latch for stored proc/UDF
– LC32 : Storage Manager serialization
– IRLM : IRLM hash contention
– CML : z/OS Cross Memory Local suspend lock
– UTSERIAL : Utility serialization lock for SYSUTILX (NFM)

© 2011 IBM Corporation10

Performance Scalability - H/W synergy
 Exploitation of z10 and z196 features

– CPU improvement using z10 and z196 prefetch instructions
– Large fixed page frames for buffer pools

• Buffer pools with PGFIX=YES
• Define IEASYSxx LFAREA 1MB page frames
• Reduction of hit miss in TLB (translation lookaside buffer)

– Observed 1-4% CPU reduction

 In-memory buffer pool with large real
– DB2 managed in-memory buffer pool

• PGSTEAL = NONE
• Pre-load the data at the first open or at ALTER BPOOL
• Avoid unnecessary prefetch request
• Avoid LRU maintenance no LRU latch (LC14)

© 2011 IBM Corporation11

INSERT Performance Improvement

DB2 9
• Large index pages
• Asymmetric index split
• Data sharing Log latch
contention and LRSN spin loop
reduction
• More index look aside
• Support APPEND option
• RTS LASTUSED support

DB2 10 CM
• Space search improvement
• Index I/O parallelism
• Log latch contention reduction and
faster log I/O during commit
• Additional index look aside

DB2 10 NFM
• INCLUDE index
• Support Member Cluster in UTS
• Complete LRSN spin avoidance

© 2011 IBM Corporation12

Universal Table Space (UTS) – Member Cluster (NFM)
 Member Cluster option in create table space

– Assigns a set of pages and associated space map page to each member
– Remove the “hot spots” in concurrent sequential insert in data sharing
– It does not maintain data cluster during the INSERT
– Data cluster needs to be restored via REORG
– Each space map contains 10 segments

 Altering to MEMBER CLUSTER

– REORG to materialize the pending alter

ALTER TABLESPACE MyTableSp

MEMBER CLUSTER YES/NO;

© 2011 IBM Corporation13

INSERT Performance Improvement

Sequential key insert into 3 tables from JDBC 240 clients in two way data sharing members. Using
Multi Row Insert (batch size 100). Each member resides on LPARs with z10 8CPs.

Sequential Insert Performance

0

20000

40000

60000

80000

100000

120000

V9 SEG V10 SEG V9 PBG V10 PBG V10
PBG/MC

Th
ro

ug
hp

ut
 R

at
e

(R
ow

s
pe

r s
ec

)

0

20

40

60

80

100

120

140

160

180

C
PU

 (m
ill

i s
ec

on
d)

Throughput Rate CPU

© 2011 IBM Corporation14

I/O Parallelism for Index Updates (CM)

V9 During insert, DB2 executes index updates sequentially
Tables with many non-clustering indexes may suffer high synchronous read
I/O wait

V10 I/O parallelism by prefetching index pages to overlap the I/Os against non-
clustering indexes

 New zparm INDEX_IO_PARALLELISM (default YES)
– Parallel read I/Os for additional indexes by using prefetch
– Enabled only when there are index I/Os (buffer pool miss)
– Applicable with all table space types except segmented table space
– Enabled with 3 or more indexes

 Elapsed time reduction
– Effective to reduce I/O wait for large indexes that cannot fit in the buffer pools

© 2011 IBM Corporation15

Additional Non-key Columns in a Unique Index (NFM)

V9 Multiple indexes per table

An index is used to enforce uniqueness constraint

Additional indexes are necessary to achieve index-only access on columns
not part of the unique constraint during queries

Higher Insert / Delete CPU time, increased storage requirements

V10 Additional Non-key Columns in a unique index

Reduce index maintenance cost during insert, DASD space savings

© 2011 IBM Corporation16

Additional Non-Key Columns in a Unique Index
 V9 definition

 Possible V10 definition

 The following restrictions will apply:
– INCLUDE columns are not allowed in non-unique indexes
– Indexes on Expression will not support INCLUDE columns
– Indexes with INCLUDEd columns can not have additional unique

columns ALTER ADDed to the index

CREATE UNIQUE INDEX i1 ON t1(c1,c2,c3) INCLUDE (c4,c5)
 or

ALTER INDEX i1 ADD INCLUDE (c4,c5) and DROP INDEX i2

CREATE UNIQUE INDEX i1 ON t1(c1,c2,c3)
CREATE INDEX i2 ON t1(c1,c2,c3,c4,c5)

© 2011 IBM Corporation17

SELECT/FETCH Performance Improvement

V9 Plan Stability for static SQL statements
Sort performance improvement, in memory workfile/sparse index
Index on Expression
Many access path related improvements
Histogram stats, etc.

V10 CPU reduction on index predicate evaluation
Better performance using a disorganized index
Row Level Sequential Detection
Group by using Hash, More in memory workfile usage
Dynamic statement cache support for literal constants
Many access path related enhancements
-Parallelism improvement
-IN list access improvement
-Auto stats…and more

© 2011 IBM Corporation18

CPU reduction in Predicate Evaluation (CM)
 Optimize in index predicate evaluation process

– Applicable in any workload but query with many predicates shows
higher improvement

 Performance improvement
– Average improvement shows average 20% CPU reduction from generic

150 queries
– Individual queries show between 1 and 70% improvement

© 2011 IBM Corporation19

Improvement in using Disorganized Index (CM)
 Index scan using disorganized index causes high sync I/O wait

 Disorganized index detection at execution

 Use List Prefetch on index leaf pages with range scan
– Reduce Synchronous I/O waits for queries accessing disorganized

indexes
– Reduce the need of REORG Index
– Throughput improvement in Reorg, Runstats, Check Index
– Limited to forward index scan

 Performance results
– Observed 2 to 6 times faster with simple SQL statements with small key

size using list prefetch compared to Sync I/Os

© 2011 IBM Corporation20

Row Level Sequential Detection (CM)
 Problem

– Dynamic prefetch sequential works poorly when the number of rows per
page is large

 Solution
– Row Level Sequential Detection (RLSD)
– Count rows, not pages to track the sequential detection
– Since DB2 10 will trigger prefetch more quickly, it will use progressive

prefetch quantity
• For example, with 4K pages the first prefetch I/O reads 8 pages, then 16

pages, then all subsequent I/Os will prefetch 32 pages (like today)
• Also applies to indexes

© 2011 IBM Corporation21

Index Data Range Scan

Row level sequential detection (RLSD) preserves good sequential performance
for the clustered pages

Row size = 49 bytes, page size = 4K (81 rows per page)
Read 10% of the rows in key sequential order

Query Time (seconds)

0
2
4
6
8

10

100 98 96 94 92
Cluster ratio

V9
V10

Dynamic Prefetch I/Os

0
100
200
300
400
500

100 98 96 94 92

Cluster ratio

V9
V10

© 2011 IBM Corporation22

Index to Data Access Path vs. Hash Access

 Index->Data access
– Traverse down Index Tree
– For a 5 Level Index

• 6 GETP
• 2 I/O’s

– 5 index page searches

 Hash Access
– Locate a row without having to use

an index
– Single GETP in most cases
– 1 Synch I/O in common case
– Greatly reduced search CPU

expense

= Page in Bufferpool

= Page Read from Disk

© 2011 IBM Corporation23

Hash Access and Hash Space
 Optimal to get from fixed area

– 1 getpage, 1 I/O
 Overflow

– 3 getpages, 2-3 I/Os
 Use REORG with

AUTOESTSPACE YES unless
you know better

 Real Time Statistics (RTS)
– # of overflow

TOTALENTRIES
– TOTALENTRIES /

TOTALROWS < 10%
 FREEPAGE is not valid for

HASH space but PCTFREE is
honored

Hash
Overflow

Index

Part 3

Hash
Overflow

Index

Part 2

Hash
Overflow

Index

Part 1

Fixed Hash Areas
PBR

Overflow
Index

Fixed Hash Area

Part 1

PBG

Part 2 Part 3

© 2011 IBM Corporation24

Hash Access Summary
 Performance benefit

– Up to 30% DB2 CPU reduction with random access
• Higher improvement with large table with small rows
• Savings in index maintenance once you remove the clustering index

– Possible reduction in Hotspots
• Rows are randomly distributed

 Performance concern
– Not for sequential fetch nor insert

• Significant Sync I/O increase if accessed in clustering order
• No Member Cluster support
• Careful research is necessary on picking the candidate

– Statement level of monitoring for GetPage and I/Os
– Significant impact on LOAD utility using input data with clustering order

• Relief is coming soon
– Possible INCREASE in I/O or BP space in some cases

• In case of small ‘active’ working set
• In case of many “row not found”

© 2011 IBM Corporation25

Local JDBC and ODBC Application Performance
 Local Java and ODBC applications did not always perform faster compared to

the same application called remotely
– DDF optimized processing with DBM1 that was not available to local ODBC and

JDBC application
– zIIP offload significantly reduced chargeable CP consumption

 Open support of DDF optimization in DBM1 to local JCC type 2 and ODBC
z/OS driver
– Limited block fetch
– LOB progressive streaming
– Implicit CLOSE

 Expect significant performance improvement for applications with
– Queries that return more than 1 row
– Queries that return LOBs

© 2011 IBM Corporation26

High Performance DBATs
 Re-introducing RELEASE(DEALLOCATE) in distributed packages

– Could not break in to do DDL, BIND
– V6 PQ63185 to disable RELEASE(DEALLOACTE) on DRDA DBATs

 High Performance DBATs reduce CPU consumption by
– RELEASE(DEALLOCATE) to avoid repeated package allocation/deallocation
– Avoids processing to go inactive and then back to active
– Bigger CPU reduction for short transactions

 Using High Performance DBATs
– Stay active if there is at least one RELEASE(DEALLOCATE) package exists
– Connections will turn inactive after 200 times (not changeable) to free up DBAT
– Normal idle thread time-out detection will be applied to these DBATs
– Good match with JCC packages
– Not for KEEPDYNAMIC YES users

© 2011 IBM Corporation27

Enable High Performance DBATs
 Two steps to enable High Performance DBAT

– REBIND with RELEASE(DEALLOCATE)
• Default BIND option in DB2 client driver will be RELEASE (DEALLOCATE) for

the client matching with DB2 10 (DB2 connect and JCC 9.7 FP3a)
– Then command -MODIFY DDF PKGREL (BNDOPT)

• -DISPLAY DDF shows the option currently used

 To disable
– -MODIFY DDF PKGREL (COMMIT) to overlay BNDOPT option

– Same as V9 inactive connection behavior
– Will allow BIND and DDL to run concurrently with distributed work

 To monitor
– GLOBAL DDF activity

• Statistics report

GLOBAL DDF ACTIVITY QUANTITY
-------------------------- ---------
CUR ACTIVE DBATS-BND DEALLC 5.39
HWM ACTIVE DBATS-BND DEALLC 10.00

© 2011 IBM Corporation28

Inline LOBs (NFM)
 CREATE or ALTER TABLE INLINE LENGTH on UTS

– INLINE to base table up to 32K bytes

 Completely Inline LOBs
– Reduce DASD space

• No more one LOB per page, Compression
– CPU and I/O saving

• Avoid LOB aux indexes overhead

 Split LOBs
– A part of LOB resides in base and other part in LOB TS
– Incur the cost of both inline and out of line
– Index on expression can be used for INLINE portion

© 2011 IBM Corporation29

Inline LOBs (NFM) …
 Inline is good, if

– Most of LOBs are small and only a few are
large ones

– Compress well

 Inline is not good, if
– Most of LOBs become “split LOB” unless

indexing is important for inlined portion
– Majority of SQLs do not touch the LOB

columns

 Base table becomes larger with Inline
– Buffer hit ratio for base table may decrease
– Image copy of base table becomes largerVery small LOBs select, insert shows

Up to 70% elapsed time reduction
with INLINE LOBs

Elapsed time in random select

0

10

20

30

40

50

60

70

80

Se
co

nd
s

OUTLINE INLINE

Select 10,000 x 200 byte LOBs

© 2011 IBM Corporation30

XML Performance Improvement
 Significant Performance improvement in V9 service stream

 DB2 10 performance improvement
– Binary XML support

• Avoid the cost of XML parsing during insert
• Reduce the XML size
• Measured 10-30% CPU and elapsed time improvement

– Schema Validation in engine
• No more UDF call for validation
• Utilize XML System Service Parser

– 100% zIIP / zAAP eligible for validation parser cost

– XML Update
• No more full document replace

© 2011 IBM Corporation31

SQL Procedure Performance (CM)

V9 Introduced native SQL Procedure
Improvement by executing procedures in DBM1 instead of WLM address space

V10 Further performance optimization for Native SQL Procedures
Specific CPU reduction in commonly used areas

-Pathlength reduction in IF statement

-Optimization in SELECT x from SYSDUMMY1

© 2011 IBM Corporation32

Measurements – SQLPL (CM)
 OLTP using SQLPL

– 20% CPU reduction with V10 CM
– 89% DBM1 Below the Bar usage reduction
– 5% resp time improvement due to latch contention relief

200

300

400

500

600

700

800

900

1000

V9 V10-CM
0.001000

0.002000

0.003000

0.004000

0.005000

Throughput CPU per transaction

© 2011 IBM Corporation33

DB2 10 Monitoring Enhancements and Changes
 New Monitor Class 29 for statement detail level monitoring

– IFCID 316/318 for dynamic, 400/401 for static

 Record index split with new IFCID 359

 Separate Accounting to identify DB2 latch and transaction lock in Class3

 Package LASTUSED

 Storage statistics (IFCID225) for DIST address space, shared and common
storage

 Specialty Engines
– Possible redirection value (zIIP SECP) is no longer supported, always zero SE

CPU (actual offloaded CPU time) continues to be available
– Portion of RUNSTATS utility (redirect rate depends on RUNSTATS parms)
– Parsing process of XML Schema validation
– Prefetch and Deferred Write Engines redirected 100%

© 2011 IBM Corporation34

DB2 10 Monitoring Enhancements and Changes
 Package accounting information with rollup

 Statistics trace interval
– Always 1 minute interval in V10 no matter what you use in STATIME for

critical statistics records

 Compression for DB2 trace data in SMF
– New zparm SMFCOMP
– Overhead is minimum (up to 1% measured)
– Up to 90% SMF data set saving from measurements
– Trace formatter needs to be modified to call z/OS services to

decompress the data

© 2011 IBM Corporation35

Beta Customers’ Feedback – Workload level
Workload Results

CICS online transactions Approx. 7% CPU reduction in DB2 10 CM after REBIND, 4%
additional reduction when 1MB page frames are used for selective
buffer pools

CICS online transactions Approx 10% CPU reduction from DB2 9

CICS online transactions Approx 5-10% CPU reduction from DB2 8

CICS online transactions Approx 10% CPU increase -> investigating
Candidate for release deallocate usage

Distributed Concurrent
Insert

50% DB2 elapsed time reduction, 15% chargeable CPU reduction
after enabling high perf DBAT

Data sharing heavy
concurrent insert

38% CPU reduction

Queries Average CPU reduction 28% from V8 to DB2 10 NFM

Batch Overall 20-25% CPU reduction after rebind packages

© 2011 IBM Corporation36

Beta Customers’ Feedback – Line Item Focused
Workload Results

Multi row insert 33% CPU reduction from V9, 4x improvement from V8 due to LRSN
spin reduction

Query with 10 stage 1
predicates

5 index matching, 1 index screening, range and IN predicates
60% CPU reduction with same access path

Parallel Index Update 30-40% Elapsed time improvement with class 2 CPU time reduction

Inline LOB SELECT LOB shows 80% CPU reduction

Include Index 17% CPU reduction in insert after using INCLUDE INDEX

Hash Access 20-30% CPU reduction in random access
No improvement or some degradation in CICS workload
16% CPU reduction comparing Hash Access and Index-data access
5% CPU reduction comparing Hash against Index only access
20x elapsed time increase in sequential access

© 2011 IBM Corporation37

Thank you !

Florence Dubois (fldubois@uk.ibm.com)

	Gain insight into DB2 9 and DB2 10 for z/OS performance updates and save costs
	Slide 2
	DB2 10 Performance Preview
	DB2 10 Performance Objective
	DB2 10 Performance Expectation
	DBM1 Virtual Storage Constraint Relief
	Virtual Storage Reduction from SAP Workload
	DBM1 VSCR Monitoring
	Performance Scalability - DB2 Latches (CM)
	Performance Scalability - H/W synergy
	INSERT Performance Improvement
	Universal Table Space (UTS) – Member Cluster (NFM)
	Slide 13
	I/O Parallelism for Index Updates (CM)
	Additional Non-key Columns in a Unique Index (NFM)
	Additional Non-Key Columns in a Unique Index
	SELECT/FETCH Performance Improvement
	CPU reduction in Predicate Evaluation (CM)
	Improvement in using Disorganized Index (CM)
	Row Level Sequential Detection (CM)
	Index Data Range Scan
	Index to Data Access Path vs. Hash Access
	Hash Access and Hash Space
	Hash Access Summary
	Local JDBC and ODBC Application Performance
	High Performance DBATs
	Enable High Performance DBATs
	Inline LOBs (NFM)
	Inline LOBs (NFM) …
	XML Performance Improvement
	SQL Procedure Performance (CM)
	Measurements – SQLPL (CM)
	DB2 10 Monitoring Enhancements and Changes
	Slide 34
	Beta Customers’ Feedback – Workload level
	Beta Customers’ Feedback – Line Item Focused
	Slide 37

