
© 2009 IBM Corporation

The future runs on System z

Hints and Tips to Get Most out of DB2 for z/OS 9

© 2009 IBM Corporation

© Copyright IBM Corporation 2009. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 and DB2 for z/OS are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked
on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered
or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

© 2009 IBM Corporation

DB2 9 – A Rich, Feature-Filled Release
� SHRLEVEL(REFERENCE) for REORG of

LOB table spaces

� Online RENAME COLUMN

� Online RENAME INDEX

� Online CHECK DATA and CHECK LOB

� Online REBUILD INDEX

� Online ALTER COLUMN DEFAULT

� More online REORG by eliminating
BUILD2 phase

� Faster REORG by intra-REORG
parallelism

� 256K tape block size

� Renaming SCHEMA, VCAT, OWNER,
CREATOR

� LOB Locks reduction

� Skipping locked rows option

� Tape support for BACKUP and
RESTORE SYSTEM utilities

� Recovery of individual table spaces
and indexes from volume-level
backups

� Enhanced STOGROUP definition

� Conditional restart enhancements

� Histogram Statistics collection and
exploitation

� WS II OmniFind based text search

� DB2 Trace enhancements

� WLM-assisted Buffer Pools
management

� . . .

� Global query optimization

� Generalizing sparse index and in-
memory data caching method

� Optimization Service Center

� Autonomic reoptimization

� Logging enhancements

� LOBs network flow optimization

� Faster operations for variable-length
rows

� NOT LOGGED table spaces

� Index on expressions

� Universal table spaces

� Partition-by-growth table spaces

� APPEND option at insert

� Autonomic index page split

� Different index page sizes

� Support for optimistic locking

� Faster and more automatic DB2 restart

� RLF improvements for remote
application servers such as SAP

� Preserving consistency when
recovering individual objects to a prior
point in time

� CLONE Table: fast replacement of one
table with another

� Index compression

� Index key randomization

� . . .

� DECIMAL FLOAT

� BIGINT

� VARBINARY, BINARY

� TRUNCATE TABLE statement

� MERGE statement

� FETCH CONTINUE

� ORDER BY and FETCH FIRST n ROWS
in sub-select and full-select

� ORDER OF extension to ORDER BY

� INTERSECT and EXCEPT Set Operations

� Instead of triggers

� Various scalar and built-in functions

� Cultural sort

� LOB File Reference support

� XML support in DB2 engine

� Enhancements to SQL Stored
Procedures

� SELECT FROM UPDATE/DELETE/MERGE

� Enhanced CURRENT SCHEMA

� IP V6 support

� Unified Debugger

� Trusted Context

� Database ROLEs

� Automatic creation of database objects

� Temporary space consolidation

� ‘What-If’ Indexes

� . . .

Continuous OperationsTCO Reduction Performance Scalability SQL Portability

© 2009 IBM Corporation

Agenda

� Administration

– Partition By Growth

– Reordered Row Format

– Merged workfile/temp space

– Utilities

� LOBs and XML

– What is pureXML?

– Progressive LOB streaming

– Fetch Continue

� Index Management

– Large page sizes

– Compression

– What if?

� SQL

– Native SQL procedures

– Select from Update/Delete/Merge

– New data types

– Skipping locked rows

– Append

– Truncate table

– Merge

© 2009 IBM Corporation

Administration

© 2009 IBM Corporation

Universal Table Spaces – Partition By Growth

� Why use PBG?

– PBG is a better answer for partitioning than key range
partitioning when the size is unknown or no natural
partitioning key exists

• DB2 automatically adds partitions on demand

• Single table only

� DROP / CREATE to migrate existing page sets

� Incompatible with MEMBER CLUSTER, ADD PARTITION, ROTATE
PARTITION

� Simple table spaces can not be created

– Default table space is now Segmented (CM) or PBG (NFM)

© 2009 IBM Corporation

Partition By Growth – Reorg Considerations

2048102451225664 GB

40962048102451232 GB

409640962048102416 GB

40964096409620488 GB

40964096409640961 – 4 GB

32K16K8K4K
Page
Size

DSSIZE

� MAXPARTITIONS can be ALTERed but observe the limits that are dependent

from page size and DSSIZE

� REORG can add new partitions (except if there are LOB columns).

� REORG will not remove empty partitions, but it can shrink them to contain a

header and space map page, again, subject to absence of LOB columns

� If a table space contains a LOB column, REORG cannot move a row from one
partition to another

© 2009 IBM Corporation

Reordered Row Format (RRF) …

� Potential for significant reduction in CPU resource consumption when
accessing many rows with many varying length columns

– Implements CPU tuning recommendation to place fixed length columns ahead of

varying length columns

– Provides for direct access to each varying length column

� On by default in DB2 9 (NFM) and applies to all table space types

� Application transparent

� REORG and LOAD REPLACE utilities override KEEPDICTIONARY during
first time migration when using data compression of variable-length rows

� RRF may not compress as well as BRF (Basic Row Format) if the row has

many small VARCHARs (e.g. VARCHAR(1))

Prefix Fixed Length Cols Varchar Pointers Varying Length Cols

© 2009 IBM Corporation

Reordered Row Format (RRF) …

� Recommend applying APARs PK78958, PK78959, PK79127, PK87348,

PK85881

� SPRMRRF opaque online changeable zparm

– Default value is SPRMRRF=ENABLE

� CREATE honors SPRMRRF, except XML table spaces are always RRF

� Adding a partition honors SPRMRRF except:

– For existing table space with Editproc, always use the format of existing

partitions

© 2009 IBM Corporation

Reordered Row Format (RRF) …

� REORG and LOAD REPLACE

– If SPRMRRF=ENABLE, converts from BRF to RRF

– If SPRMRRF=DISABLE, does not convert

– Compression attribute does not affect the choice of format

– A new utility keyword ROWFORMAT (RRF or BRF) may be

specified to choose the format

• Requires NFM, no affect on catalog, directory, LOB, XML, UTS
participating in a CLONE relationship

© 2009 IBM Corporation

More Efficient Workfiles Usage
V8 V9

• 32K-page workfiles are used much more

aggressively

• 4K-page workfiles are now used only for

small records

- where the limit of 255 rows per page results
in waste of space

- e.g. over 90% wasted space on 32K page for
10-byte records

• Recommendations

�Assign a larger 32K workfile buffer pool

�Allocate more 32K workfile space

� If 4K workfile buffer pool activity is
significantly lower, then the corresponding
buffer pool size and work file datasets can
be reduced.

�Monitor new statistics on how often more
optimal 32K workfiles ran out and 4K
workfiles had to be used instead, or vice
versa

• 4K-page workfiles are used
whenever row is smaller than 4KB

• Since work file access is often

sequential, using larger page size
can be more efficient

• E.g. for 2050-byte records:

15 records on one 32K page

vs.

8 records on eight 4K pages

© 2009 IBM Corporation

Managing WORKFILEs with PK70060

� Problem:

– DGTTs get SQLCODE -904 more often in V9 than in V8 for lack of needed space

due to the fact that DGTTs had their own TEMP data base prior to V9, but in V9
they compete for space with work files in the WORKFILE data base; and DGTTs
(unlike work files) cannot span across multiple table spaces.

� PK70060 and PM02528*

© 2009 IBM Corporation

LOBs and XML

© 2009 IBM Corporation

What is pureXML?

� XML native storage

� Query Capability

� Indexing Inside of XML Documents

� Publishing Relational Data as XML

� XML Schema Validation Capability

� Database Utilities and Monitoring

DB2 Engine

ApplicationTextual XML

Relational

XML

XSR

© 2009 IBM Corporation

LOB Improvements: Faster & Easier

� Progressive Streaming for LOB Locator Values

– DB2 uses LOB size to determine whether to send LOB data to Java or DB2 CLI
clients in one (<32KB), in chunks (<1MB) or as LOB locator (>=1MB) [Transparent
to application using LOB locators]

� Reduced use of LOB locks

� Utility Changes

– REORG LOB reclaim space (SHRLEVEL REFERENCE)

– Logging for > 1GB LOBs

– Online CHECK LOB and DATA using Flashcopy

– Better performance of LOB file reference variables

© 2009 IBM Corporation

LOB Streaming Performance Results

� Elapsed time to retrieve 1000 CLOB values of varying size
streamBufferSize=70000

� Progressive Locator processing

– 1K LOB send inlined in query result

– 20K and 40K LOB send chained to query result

– 80K LOB send via locator

0

10

20

30

40

50

60

1K 20K 40K 80K

old Locator

materialized
LOB

progressive
Locator

© 2009 IBM Corporation

New Technique to Retrieve LOBs: FETCH CONTINUE

� Why use it?
– A method of reading a large LOB sequentially, without

needing to use locators or SUBSTR function
• No need to free a locator variable

• DB2 returns the LOB/XML length and indicates if truncated

– A fast method of scanning rows when
• most LOBs can be skipped, or

• most LOBs are small enough to fit in a host variable, or

• only the first piece of most LOBs need to be examined.

� Cannot use with multi-row fetch with FETCH CONTINUE

� Use locator variables to randomly position within a LOB

� How to use
– FETCH WITH CONTINUE to fetch base row information

– FETCH CURRENT CONTINUE if LOB was truncated

© 2009 IBM Corporation

Index

Management

© 2009 IBM Corporation

Indexing enhancements

� Larger index pages

� Index compression provides page-level
compression

– Data is compressed to 4K pages on
disk

– 32K/16K/8K pages results in up to
8x/4x/2x disk savings

– No compression dictionaries and no
LOAD or REORG required

� Rebuild Index SHRLEVEL CHANGE

4K
8K

16K

32K

© 2009 IBM Corporation

Index Compression

� Run DSN1COMP before using index
compression

EVALUATION OF COMPRESSION WITH DIFFERENT INDEX PAGE SIZES:

--

8 K Page Buffer Size yields a

51 % Reduction in Index Leaf Page Space

The Resulting Index would have approximately

49 % of the original index's Leaf Page Space

No Bufferpool Space would be unused

--

...

8K

16K

32K

© 2009 IBM Corporation

Comparing table space vs. index compression

Index compression uses sophisticated software
compression algorithmsNoYesHardware assist

Page size on DASD:

� for table spaces, equivalent to page size in the
associated buffer pool

� for indexes, always 4K

Only for 8K, 16K
and 32K-page

indexes
No

Page size
restrictions

Hence, CPU overhead affected by BP hit ratio.
Larger buffer pools strongly recommended for
compressed indexes.
Do not use page-fix for these buffer pools

at I/Oat insert and fetch
compression
timing

No changes in accounting CPU time if index pages
brought in by prefetch

Accounting &
DBM1 SRB
Statistics

Accounting
Compression CPU
cost reported in

At the first insert
or update

After the first Reorg
or Load

When does
compression start

NoYes
Compression
dictionary used

Maximum CR limited by index page size: 50% for
8K, 75% for 16K and 87.5% for 32K

Use DSN1COMP to predict compression ratio
25 – 75%10 – 90%

Typical ratio for
compression

on disk only
on disk, in buffer

pools, in logs
Where is data
compressed

Index non-leaf pages are not compressed, but that‘s
typically less than 5% of the entire indexPageRow

Unit of
compression

RemarksIndex Table space

© 2009 IBM Corporation

Compression Rules of Thumb

� Calculate disk space used by indexes

� Avoid high IO situations or add memory to compensate

� Choose large indexes, over 10 MB

– Especially if long index keys (over 400 bytes), or padded

indexes

� Use DSN1COMP to estimate compression

� Where compression is

– Over 45% and under 70%, use 8K pages

– Over 70% and under 85%, use 16K pages

– Over 85% use 32K pages

� Test and stage in implementation

© 2009 IBM Corporation

Identifying Unused Indexes
V8 V9

• For each index, a new real-time statistics

column (LASTUSED) is maintained in table

SYSIBM.SYSINDEXSPACESTATS

• It is updated whenever the index is used in

- SELECT/FETCH

- searched UPDATE/DELETE

- Referential Integrity checking

• The column is not updated for INSERT,

LOAD, etc.

• If an index has not been used for a period

that covers the entire applications life-cycle

(e.g. do not forget periodic processes such

as period closing), it can be safely dropped

• Be careful with indexes that enforce

uniqueness

• In order to improve the

performance of different types of

queries, some customers create
many indexes just in case one of

them can be useful.

• However, there is a significant

cost in maintaining such indexes

during Insert, Delete, Load,
Reorg, ...

• Some of the indexes are no longer

needed and they could be
dropped, but how can we be sure

that they have not been used for a

very long time?

© 2009 IBM Corporation

Virtual Indexes a.k.a. ‘What If’ Indexes
V8 V9

• Virtual i.e. hypothetical indexes can be

specified and made visible to statement

EXPLAIN STATEMENT FOR

• Table DSN_VIRTUAL_INDEXES is used to

specify virtual indexes

• Table columns include selected columns
from SYSINDEXES and SYSKEYS

• Users need to create the table manually,
unless tooling such as Index Advisor does it
automatically. Appropriate script is provided.

• To create/drop an index, the table needs to
be populated with a row that provides an
appropriate description of index

• At EXPLAIN time, during query optimization,

the virtual indexes compete with regular

indexes on the tables in a cost-based

fashion and the dropped indexes are not

considered

• In many cases predicting based on

modeling is not reliable due to query

complexity

• Indiscriminate adding of indexes

creates permanent overhead for

most operations (SQL and utilities)

• Creating a new index is obtrusive for

concurrent operations

• Using a test system for

experimenting lacks potentially

crucial environmental factors that

affect access path selection

How to determine that a new index
would benefit a given dynamic SQL
query?

How to determine that dropping an index
will not negatively affect a given query?

© 2009 IBM Corporation

Ordering ('A' or 'D') of the last column in the index key.ORDERING64

Column # of the last column in the index key. Needs to be populated only when # index keys = 64COLNO64

......

Ordering ('A' or 'D') of the first column in the index keyORDERING1

Column # of the first column in the index keyCOLNO1

Indicates whether keys within the index are padded for varying-length column data ('Y' or 'N')PADDED

Clustering ratio. . If unknown, the value must be -1.CLUSTERRATIOF

Number of distinct values of the key. If unknown, the value must be -1.FULLKEYCARDF

Number of distinct values of the first key column. If unknown, the value must be -1.FIRSTKEYCARDF

Size, in bytes, of the leaf pages in the index: 4K, 8K, 16K, 32KPGSIZE

The index type: '2' - NPSI; 'D' - DPSIINDEXTYPE

Number of levels in the index tree. If unknown, the value must be -1.NLEVELS

Number of active leaf pages in the index. If unknown, the value must be -1.NLEAF

Whether the index is clustered ('Y' or 'N')CLUSTERING

The number of columns in the keyCOLCOUNT

Whether the index is unique: D for No (duplicates are allowed); U for YesUNIQUERULE

Whether the index is being created ('C') or dropped ('D')MODE

Whether this index specification will be processed ('Y') or not ('N').ENABLE

Name of the indexIXNAME

Authorization ID (or schema in V9) of the owner of the indexIXCREATOR

Name of the table on which the index is being created or droppedTBNAME

Authorization ID of owner (or schema in V9) of table on which the index is being created/droppedTBCREATOR

D
S

N
_

V
IR

T
U

A
L
_
IN

D
E

X
E

S
 T

a
b

le

© 2009 IBM Corporation

SQL

© 2009 IBM Corporation

Native SQL Procedures

� Potential for significant reduction in CPU resource consumption by
avoiding

– Overhead of stored procedure invocation overhead

– Overhead of roundtrip between WLM and DBM1 address spaces for each
SQL call

� Short running SQL procedure could achieve up to an 40% ITR
improvement

� But little or no improvement for long-running SQL procedure

� zIIP-eligible if DRDA as it runs in DBM1, not WLM, address space
under DDF enclave SRB

� Easy to code, develop and manage

� Conversion from external SQL procedures to native SQL procedures
is easy

© 2009 IBM Corporation

SELECT FROM UPDATE/DELETE/MERGE

• Identity columns
• Sequence values
• User-defined defaults
• Expressions
• Columns modified by BEFORE
INSERT trigger

• ROWIDs

V8 V9

SELECT FROM INSERT

Retrieves columns values
created by INSERT in a single
SELECT statement including:

SELECT FROM INSERT

UPDATE

DELETE
MERGE

One SQL call to DB2 modifies the
table contents and returns the
resultant changes to the
application program.

Avoids possible expensive
access path that separate
SELECT might be using

© 2009 IBM Corporation

ORDER BY and FETCH FIRST in Subselect
V8 V9

ORDER BY and FETCH FIRST
can be specified only as part of
select-statement, i.e. one can
write:
SELECT * FROM T1

ORDER BY C1

FETCH FIRST 1 ROW ONLY

but not the following:
INSERT INTO T2
(SELECT * FROM T1
ORDER BY C1
FETCH FIRST 1 ROW ONLY)

This will give a syntax error

The restriction has been removed –
the clauses can be specified in
either a subselect or fullselect.

Interesting example: a loop over
the statement followed by a
COMMIT deletes rows without
acquiring too many locks

DELETE FROM T1 X

WHERE EXISTS
(SELECT * FROM T1 Y

WHERE X.KEY1=Y.KEY1

AND X.KEY2=Y.KEY2
AND delete_predicate

FETCH FIRST 10000
ROWS ONLY)

© 2009 IBM Corporation

New Data Types

� BIGINT, 8 byte integer

� BINARY, 1 to 255 bytes

� VARBINARY, 1 to 32704 bytes

– Unlike FOR BIT DATA the new BINARY and VARBINARY use x’00’ as a

padding character

– Comparison rule:

• If two strings are equal up to the length of the shorter string , the shorter string is

considered less than the longer string.

� DECFLOAT

– IEEE 754r number with a decimal point. The position of the decimal point is

stored in each decimal floating-point value. The maximum precision is 34

digits.

© 2009 IBM Corporation

Skipping Locked Rows

New SQL clause: SKIP LOCKED DATA

Applies to:

• select-statements, SELECT INTO,
PREPARE, searched UPDATE, searched
DELETE, UNLOAD utility

• Isolation levels CS or RS

• Row or page level locking

It allows a transaction to skip over rows
that are incompatibly locked by other
transactions, without being blocked.

Application does not scale well
due to increased lock
contention.

Application semantics requires
committed and available rows
only.

An example of such an
application is a messaging
system:

• only committed and
available messages can
be processed

• those locked at the time
will be processed later.

The difference between uncommitted (WITH

UR) data and skip locked rows :

� In the case of uncommitted data,

uncommitted rows can show up in the

result set.

� In the case of skip locked rows, only

committed rows show up, although not

all committed rows may show up.

V8 V9

© 2009 IBM Corporation

APPEND
V8 V9

• APPEND YES avoids CPU cost of
space search at the cost of DASD

space

• After populating with the APPEND
option, space may be reclaimed or

reused by Reorg

CREATE TABLE … APPEND YES | NO

ALTER TABLE … APPEND YES | NO• Critical, high insert rate workload
needs better performance and all
the conventional tuning steps

have already been applied.

• Clustering is either not beneficial

or more frequent reorganizations

are acceptable
• Member clustering insert is not

fast enough or cannot be used:
� MEMBER CLUSTER

� FREEPAGE=PCTFREE=0

All of the following applies:

© 2009 IBM Corporation

TRUNCATE TABLE

• DELETE without WHERE
clause is not fast enough as
the table includes delete
triggers

• Using LOAD REPLACE with
empty input data set (even
when called via DSNUTILS) is
not DBMS agnostic

• Storage occupied by deleted
rows should be released
faster

New DML statement:

TRUNCATE table
DROP | REUSE STORAGE
IGNORE | RESTRICT DELETE TRIGGERS
IMMEDIATE

Alternative way of deleting the
entire table is needed for any
of these reasons:

Under the cover it’s DELETE
without WHERE clause, but
without delete triggers processing
overhead.
Therefore it is fast for tables in
segmented and universal table
spaces for which there are no
CDC, MLS and VALIDPROC enabled
attributes.

V8 V9

© 2009 IBM Corporation

MERGE Statement
V8

For a set of input rows update the target table when the key exists
and insert the rows for which keys do not exist.
E.g.

• For activities whose description has been changed, update the
description in table archive.

• For new activities, insert into archive.

Prior to V9 this has been coded as a loop over conditional INSERT
and UPDATE statements

MERGE INTO archive AR
USING VALUES (:hv_activity, :hv_description) FOR :hv_nrows ROWS
AS AC (ACTIVITY, DESCRIPTION)

ON (AR.ACTIVITY = AC.ACTIVITY)
WHEN MATCHED THEN UPDATE SET DESCRIPTION = AC.DESCRIPTION
WHEN NOT MATCHED THEN INSERT (ACTIVITY, DESCRIPTION)

VALUES (AC.ACTIVITY, AC.DESCRIPTION)
NOT ATOMIC CONTINUE ON SQLEXCEPTION

V9

© 2009 IBM Corporation

MERGE Example

account AS T

MERGE INTO account AS T

USING VALUES (:hv_id, :hv_amt) FOR 5 ROWS AS S (id, amt)

ON T.id = S.id

WHEN MATCHED THEN UPDATE SET balance = T.balance + S.amt

WHEN NOT MATCHED THEN INSERT (id, balance) VALUES (S.id, S.amt)

NOT ATOMIC CONTINUE ON SQLEXCEPTION

501

205

4010

105

301

amtid

100315

4000500

300300

600200

50010

10001

balanceid

305

100315

4000500

300300

600200

54010

10801

balanceid

account AS TVALUES AS S

MERGE

© 2009 IBM Corporation

Summary

� Administration

– Partition By Growth

– Reordered Row Format

– Merged workfile/temp space

– Utilities

� LOBs and XML

– What is pureXML?

– Progressive LOB streaming

– Fetch Continue

– File Reference Variables

– LOB Append

� Index Management

– Large page sizes

– Compression

– What if?

� SQL

– Native SQL procedures

– Select from Update/Delete/Merge

– New data types

– Skipping locked rows

– Append

– Truncate table

– Merge

© 2009 IBM Corporation

References

� DB2 9 for z/OS Migration Planning and Experience, John
Campbell and Florence Dubois

– ftp://ftp.software.ibm.com/software/systemz/pdf/db2techconf20

09/DB2Conf_DB2_9_for_zOS_Migration_Planning_and_Expe
rience.pdf

© 2009 IBM Corporation

DB2 9 in IBM Redbooks Publications
1. DB2 9 Technical Overview SG24-7330
2. DB2 9 Performance Topics SG24-7473 updated Dec. 2009
3. DB2 9 Stored Procedures SG24-7604
4. Index Compression with DB2 9 for z/OS redp4345
5. SQL Reference for Cross-Platform Development
6. Enterprise Database Warehouse, SG24-7637
7. 50 TB Data Warehouse on System z, SG24-7674
8. New Tools for Query Optimization SG24-7421
9. LOBs with DB2 for z/OS SG24-7270
10. Deploying SOA Solutions SG24-7663
11. Enhancing SAP - DB2 9 SG24-7239
12. SAP Application on Linux z SG24-6847
13. Best practices SAP BI - DB2 9 SG24-6489-01
14. Data Sharing in a Nutshell, SG24-7322
15. Securing DB2 & MLS z/OS SG24-6480-01
16. Data Sharing: Distributed Load Balancing & Fault Tolerant

Configuration redp4449
17. Considerations on Small & Large Packages redp4424
18. Backup and Recovery Considerations redp4452
19. Powering SOA with IBM Data Servers SG24-7259
20. Packages Revisited, SG24-7688
21. Data Studio V2.1 Web Services redp4510
22. Ready to Access Solid-State Drives redp4537
23. Distributed Functions SG24-6952
24. Buffer Pool Monitoring & Tuning redp4604
25. Securing & Auditing Data SG24-7720
26. Serialization and Concurrency SG24-4725-01 new
27. Utilities SG24-6289-01 draft

