
 © 2011 IBM Corporation

IBM System z Technology Summit

DB2 10 for z/OS Query Technology features

Andrei Lurie

alurie@us.ibm.com

© 2011 IBM Corporation2

© Copyright IBM Corporation 2011. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 and z/OS are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their
first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common
law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or
common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

http://www.ibm.com/legal/copytrade.shtml

© 2011 IBM Corporation3

Agenda

 DB2 10 Optimizer
– Plan management
– Hints/Bind options
– Explain
– Dynamic Statement Caching
– Optimizer costing
– Runtime query performance

 DB2 10 SQL/Application Enablement
– SQL table functions and non-inline SQL scalar functions
– Implicit casting
– Datetime constants and TIMESTAMP WITH TIMEZONE
– Extended indicator variables

© 2011 IBM Corporation4

Plan Management Notes (DB2 9)
 REBIND PACKAGE options:

– PLANMGMT (BASIC)
2 copies: Current and Previous
– PLANMGMT (EXTENDED)
3 copies: Current, Previous, Original

 REBIND PACKAGE options:
– SWITCH(PREVIOUS)
Switch between current & previous
– SWITCH(ORIGINAL)
Switch between current & original

 Most bind options can be changed at REBIND
– But a few must be the same …

 FREE PACKAGE …
– PLANMGMTSCOPE(ALL) – Free package

completely
– PLANMGMTSCOPE(INACTIVE) – Free old

copies

 Catalog support
– SYSPACKAGE reflects active copy only
– SYSPACKDEP reflects dependencies of all

copies
– Other catalogs (SYSPKSYSTEM, …) reflect

metadata for all copies

 Invalidation and Auto Bind
– Each copy invalidated separately

© 2011 IBM Corporation5

DB2 10 Updates to Plan Management

 SYSIBM.SYSPACKCOPY
– New catalog table

– Hold SYSPACKAGE-style metadata for any previous or original package
copies

– No longer need to SWITCH to see information on inactive copies

 APRETAINDUP option of REBIND
– Default YES

• Retain duplicate for BASIC or EXTENDED
– Optional NO

• Do not retain duplicate access path as PREVIOUS or ORIGINAL
– PREVIOUS/ORIGINAL must be from DB2 9 or later

 Native SQL Stored Procedure packages are supported

© 2011 IBM Corporation6

Retrieving Access Path with EXPLAIN(NO)
 EXPLAIN PACKAGE

– Extract existing PLAN_TABLE information for packages
• NOT a new explain
• The package/copy must be created on DB2 9 or later

– Useful if you didn’t BIND with EXPLAIN(YES)
• Or PLAN_TABLE entries are lost

• COPY-ID can be ‘CURRENT’, ‘PREVIOUS’, ‘ORIGINAL’

>>-EXPLAIN----PACKAGE----------->

>>-----COLLECTION--collection-name--PACKAGE--package-name--------->

>----+--------------------------+----+-------------------+-------->
 | | | |
 +---VERSION-version-name---+ +---COPY--copy-id---+

© 2011 IBM Corporation7

What-if? BIND

 BIND package to see what's new

 Bind package EXPLAIN(ONLY) and/or SQLERROR(CHECK)
– Existing package copies are not overwritten

• Performs explain or syntax/semantic error checks on SQL

– Requires BIND, BINDAGENT, or EXPLAIN privilege.

– Supported for BIND only
• Not REBIND
• Targeted to application changes

– E.g. Development environment is DB2 LUW, production DB2 for z/OS

© 2011 IBM Corporation8

Access Path Stability with statement level hints

 Current limitations in hint matching
– QUERYNO is used to link queries to their hints – a bit fragile
– For dynamic SQL, require a change to apps – can be impractical

 New mechanisms:
– Associate query text with its corresponding hint … more robust
– Hints enforced for the entire DB2 subsystem

• irrespective of static vs. dynamic, etc.
– Hints integrated into the access path repository

 PLAN_TABLE isn’t going away

 Only the “hint lookup” mechanism is being improved.

© 2011 IBM Corporation9

Statement level hints (cont.)

 Steps to use new hints mechanism
– Populate a user table DSN_USERQUERY_TABLE with query text

and QUERYNO
– Populate PLAN_TABLE with the corresponding hints
– Run new command BIND QUERY

• To integrate the hint into the repository.
– FREE QUERY command can be used to remove the hint.

© 2011 IBM Corporation10

Statement-level BIND options

 Statement-level granularity may be required rather than:
– Subsystem level ZPARMs (STARJOIN, SJTABLES, MAX_PAR_DEGREE)

– Package level BIND options (REOPT, DEF_CURR_DEGREE)

 For example
– Only one statement in the package needs REOPT(ALWAYS)

 New mechanism for statement-level bind options:
– Similar to mechanism used for hints
– DSN_USERQUERY_TABLE can also hold per-statement options

© 2011 IBM Corporation11

Literal Replacement
 Dynamic SQL with literals can now be re-used in the cache

– Literals replaced with &
• Similar to parameter markers but not the same

 To enable:
– Put CONCENTRATE STATEMENTS WITH LITERALS in the PREPARE

ATTRIBUTES clause
– Or set LITERALREPLACEMENT in the ODBC initialization file
– Or set the keyword enableLiteralReplacement=’YES’ in the JCC Driver

 Lookup Sequence
– Original SQL with literals is looked up in the cache
– If not found, literals are replaced and new SQL is looked up in the cache

• Additional match on literal usability
• Can only match with SQL stored with same attribute, not parameter marker

– If not found, new SQL is prepared and stored in the cache

© 2011 IBM Corporation12

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = 123456

SQL statement comes in ...

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

© 2011 IBM Corporation13

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = 123456

First lookup

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

find match?

© 2011 IBM Corporation14

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = 123456

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

NO

© 2011 IBM Corporation15

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

- Replace literal with & and look up DSC again

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

find match?

© 2011 IBM Corporation16

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

NO

© 2011 IBM Corporation17

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

- PREPARE and save into DSC

(note that PREPARE is done on & “version”, not on original statement with literal)

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

© 2011 IBM Corporation18

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = 678900

- new statement (new literal)

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

© 2011 IBM Corporation19

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = 678900

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

find match?

© 2011 IBM Corporation20

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = 678900

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &NO

© 2011 IBM Corporation21

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

- Replace literal with & and look up DSC again

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

find match?

© 2011 IBM Corporation22

Literal Replacement …
 Example:

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

- Match found :) avoids PREPARE

Statement Cache (DSC)
SELECT NAME FROM CUSTOMER
WHERE ...

SELECT BALANCE
FROM CUSTOMER
WHERE ACCOUNT_NUMBER = &

© 2011 IBM Corporation23

Literal Replacement …

 Performance Expectation
– Using parameter marker still provides best performance
– Biggest performance gain for repeated SQL with different literals
– NOTE: Access path is not optimized for literals

• True for parameter markers/host variables today
• Need to use REOPT for that purpose

© 2011 IBM Corporation24

Histogram Statistics (DB2 9)
 RUNSTATS will produce equal-depth histogram

– Each quantile (range) will have approx same number of rows
• Not same number of values

– Another term is range frequency

 Example
• 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced)

– Lets cut that into 3 quantiles.
• 1, 3, 3, 4 ,4 6,7,8,9 10,12,15

Seq No Low Value High Value Cardinality Frequency

1 1 4 3 5/12

2 6 9 4 4/12

3 10 15 3 3/12

© 2011 IBM Corporation25

Histogram Statistics Notes

 RUNSTATS
– Maximum 100 quantiles for a column
– Same value columns WILL be in the same quantile
– Quantiles will be similar size but:

• Will try to avoid big gaps inside quantiles
• Highvalue and lowvalue may have separate quantiles
• Null WILL have a separate quantile

 Supports column groups as well as single columns

 Think “frequencies” for high cardinality columns

© 2011 IBM Corporation26

Histogram Statistics Example

 Customer uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007
– FF = (high-value – low-value) / (high2key – low2key)
– FF = (200612 – 200601) / (200711 – 200602)

– 10% of rows estimated to return

Data Distribution - Even Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly
distributed between low
and high range

© 2011 IBM Corporation27

Histogram Statistics Example

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

• Example (cont.)
– Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms
– 45% of rows estimated to return

No data between
200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612

© 2011 IBM Corporation28

Autonomic Statistics Solution Overview

 Autonomic Statistics is implemented through a set of Stored Procedures

– Stored procedures are provided to enable administration tools and
packaged applications to automate statistics collection.

• ADMIN_UTL_MONITOR
• ADMIN_UTL_EXECUTE
• ADMIN_UTL_MODIFY

– Working together, these SP’s
• Determine what stats to collect
• Determine when stats need to be collected
• Schedule and Perform the stats collection
• Records activity for later review

– See Chapter 11 "Designing DB2 statistics for performance" in the DB2 10 for z/OS Performance
Monitoring and Tuning Guide for details on how to configure autonomic monitoring directly within DB2.

© 2011 IBM Corporation29

RUNSTATS Simplification/Performance Overview

 RUNSTATS options to SET/UPDATE/USE a stats profile
– Predefine set of options (one per table)

• RUNSTATS … TABLE tbl COLUMN(C1) … SET PROFILE
– Alternatively use SET PROFILE FROM EXISTING STATS

• RUNSTATS … TABLE tbl COLUMN(C5)… UPDATE PROFILE
• RUNSTATS … TABLE tbl USE PROFILE

 New option for page-level sampling
– But what percentage of sampling to use?

• RUNSTATS … TABLE tbl TABLESAMPLE SYSTEM AUTO

© 2011 IBM Corporation30

DB2 10 - Minimizing Optimizer Challenges

 Potential causes of sub-optimal plans
– Insufficient statistics
– Unknown literal values used for host variables or parameter markers

 DB2 10 Optimizer will evaluate the risk for each predicate
– For example: WHERE BIRTHDATE < ?

• Could qualify 0-100% of data depending on literal value used
– As part of access path selection

• Compare access paths with close cost and choose lowest risk plan

© 2011 IBM Corporation31

Improvements to predicate application
 Major enhancements to OR and IN predicates

– Improved performance for AND/OR combinations and long IN-lists
• General performance improvement to stage 1 predicate processing

– IN-list matching
• Matching on multiple IN-lists
• Transitive closure support for IN-list predicates
• List prefetch support

– SQL pagination
• Single index matching for complex OR conditions

 Many stage 2 expressions to be executed at stage 1
– Stage 2 expressions eligible for index screening

• Not applicable for list prefetch
• e.g. WHERE SUBSTR(SSN,8,4) = :hv, WHERE C1*2 > :hv ...

– Externalized in DSN_FILTER_TABLE column PUSHDOWN

© 2011 IBM Corporation32

IN-list Table - Table Type 'I' and Access Type 'IN'
 The IN-list predicate will be represented as an in-memory table if:

– List prefetch is chosen, OR
– More than one IN-list is chosen as matching.

– The EXPLAIN output associated with the in-memory table will have:
• New Table Type: TBTYPE – ‘I’
• New Access Type: ACTYPE – ‘IN’

SELECT *
 FROM T1
 WHERE T1.C1 IN (?, ?, ?);

QBNO PLANNO METHOD TNAME ACTYPE MC ACNAME QBTYPE TBTYPE PREFETCH

1 1 0 DSNIN001(01) IN 0 SELECT I
1 2 1 T1 I 1 T1_IX_C1 SELECT T L

© 2011 IBM Corporation33

IN-list Predicate Transitive Closure (PTC)

 Without IN-list PTC (DB2 9)
– Optimizer will be unlikely to consider T2 as the first table accessed

 With IN-list PTC (DB2 10)
– Optimizer can choose to access T2 or T1 first.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1
 AND T1.C1 IN (?, ?, ?)
 AND T2.C1 IN (?, ?, ?) Optimizer can generate

this predicate via PTC

The idea:
If A = B and B = C
then A = C

© 2011 IBM Corporation34

SQL Pagination (range list index scan)

 Targets 2 types of queries
– Cursor scrolling (pagination) SQL

• Retrieve next n rows
– Common in COBOL/CICS and any screen scrolling application

• Not to be confused with “scrollable cursors”
– Complex OR predicates against the same columns

• Common in SAP

 In both cases:
– The OR (disjunct) predicate refers to a single table only.
– Each OR predicate can be mapped to the same index.
– Each disjunct has at least one matching predicate.

© 2011 IBM Corporation35

• Scroll forward to obtain the next 20 rows
– Assumes index is available on (LASTNAME, FIRSTNAME)
– WHERE clause may appear as:

– DB2 10 supports
• Single matching index access with sort avoided

– DB2 9 requires
• Multi-index access, list prefetch and sort
• OR, extra predicate (AND LASTNAME >= ‘JONES’) for matching

single index access and sort avoidance

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY')
 OR (LASTNAME>'JONES')
ORDER BY LASTNAME, FIRSTNAME;

Simple scrolling – Index matching and ORDER BY

© 2011 IBM Corporation36

• Given WHERE clause
– And index on one or both columns

• DB2 9 requires
– Multi-index access with list prefetch

• DB2 10 supports
– Matching single index access – no list prefetch
– Or, Multi-index access with list prefetch

WHERE (LASTNAME='JONES' AND FIRSTNAME='WENDY')
 OR (LASTNAME='SMITH' AND FIRSTNAME='JOHN');

Complex OR predicates against same index

© 2011 IBM Corporation37

Minimizing impact of RID failure

 RID overflow can occur for
– Concurrent queries each consuming shared RID pool
– Single query requesting > 25% of table or hitting RID pool limit

 DB2 9 will fallback to tablespace scan*

 DB2 10 will continue by writing new RIDs to workfile
– Work-file usage may increase

• Mitigate by increasing RID pool size (default increased in DB2 10).
• MAXTEMPS_RID zparm for maximum WF usage for each RID list

* Hybrid join can incrementally process. Dynamic Index ANDing will use WF for failover.

© 2011 IBM Corporation38

Removal Of Parallelism Restrictions

 Allow parallelism if a parallel group contains a work file
– DB2 generates temporary work file when view or table expression is

materialized

– This type of work file can not be shared among child tasks in previous
releases of DB2, hence parallelism is disabled

– DB2 10 will make the work file shareable
• only applies to CP mode parallelism and no full outer join case

 Support parallelism for multi-row fetch (READ ONLY cursors)
– In previous releases parallelism is disabled for the last (top level query block) select

– Example: SELECT * FROM CUSTOMER;

© 2011 IBM Corporation39

Parallelism Enhancements - Effectiveness

 Previous Releases of DB2 may use Key Range Partitioning
– Key Ranges Decided at Bind Time
– Based on Statistics (low2key, high2key, column cardinality)

• Assumes uniform data distribution
• Histograms can help

– But rarely collected

– If Statistics are outdated or data is not uniformly distributed what
happens to performance?

© 2011 IBM Corporation40

Parallelism Enhancements - Effectiveness

 Previous Releases of DB2 may use Key Range Partitioning
– Key Ranges Decided at Bind Time
– Based on Statistics (low2key, high2key, column cardinality)

• Assumes uniform data distribution
• Histograms can help

– But rarely collected

– If Statistics are outdated or data is not uniformly distributed what
happens to performance?

© 2011 IBM Corporation41

Key range partition – before DB2 10
Large_T

10,000,000 rows
C2 C3

Workfile

SELECT *
FROM Medium_T M,
 Large_T L
WHERE M.C2 = L.C2
 AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

M.C1 is date column, assume currentdate is 8-31-2007, after the
between predicate is applied, only rows with date between
06-03-2007 and 8-31-2007 survived, but optimizer chops up the key
ranges within the whole year after the records are sorted :-(

SORT
ON C2

2,500 rows

3-degree parallelism

Partition the
records according
to the key ranges

25%

12-31-2007

09-30-2007
08-31-2007

01-01-2007

05-01-2007
04-30-2007

Medium_T
10,000 rows
C1 C2

5,000,000 rows

© 2011 IBM Corporation42

Parallelism Effectiveness – Record range

 DB2 10 can use Dynamic record range partitioning
– Results divided into ranges with equal number of records
– Division doesn't have to be on the key boundary

• Unless required for group by or distinct function
– Record range partitioning is dynamic

• no longer based on the key ranges decided at bind time
– Now based on number of composite records and parallel degree

• Data skew, out of date statistics etc. will not have any effect on performance

© 2011 IBM Corporation43

Dynamic record range partition

Large_T
10,000,000 rows

C2 C3

Workfile

SELECT *
FROM Medium_T M,
 Large_T L
WHERE M.C2 = L.C2

 AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

SORT
ON C2

2,500 rows

3-degrees parallelism

Partition the records -
each range has same
number of records

Medium_T
10,000 rows
C1 C2

© 2011 IBM Corporation44

Parallelism Effectiveness - Straw Model

 Previous releases of DB2 divide the number of keys or pages by the
number representing the parallel degree
– One task is allocated per degree of parallelism
– The range is processed and the task ends
– Tasks may take different times to process

 DB2 10 can use the Straw Model workload distribution method
– More key or page ranges will be allocated than the number of parallel degrees
– The same number of tasks as before are allocated (same as degree)
– Once a task finishes it’s smaller range it will process another range
– Even if data is skewed this new process should make processing faster

© 2011 IBM Corporation45

STRAW Model
SELECT *
FROM Medium_T M
WHERE M.C1 BETWEEN 20 AND 50

100

Medium_T
10,000 rows
C1 C2

index on C1

50
47
44
41
38
35
32
29
26
23
20

0

degree=3
#ranges=10

100

Medium_T
10,000 rows
C1 C2

index on C1

50

0

20

30

40

degree = 3

Divided in key ranges with Straw ModelDivided in key ranges before DB2 10

Task 1

Task 3

Task 2

© 2011 IBM Corporation46

Agenda

 DB2 10 Optimizer
– Plan management
– Hints/Bind options
– Explain
– Dynamic Statement Caching
– Optimizer costing
– Runtime query performance

 DB2 10 SQL/Application Enablement
– SQL table functions and SQL scalar functions
– Implicit casting
– Datetime constants / TIMESTAMP WITH TIME ZONE
– Extended indicator variables

© 2011 IBM Corporation47

SQL table functions

 DB2 10 supports simple SQL table functions
– Can use single RETURN control statement in function body
– Can define parameter as: distinct type, transition table
– No package is generated; reference is replaced similar to inline SQL scalar

CREATE FUNCTION TRYTABLE(P1 CHAR(3))
RETURNS TABLE(FIRSTNAME VARCHAR(12), LASTNAME VARCHAR(15))
RETURN SELECT FIRSTNME, LASTNAME FROM DSN8A10.EMP WHERE WORKDEPT = P1;

SELECT * FROM TABLE(TRYTABLE('A00')) X;
 +--------------------------------+

| FIRSTNAME | LASTNAME |
+--------------------------------+
CHRISTINE	HAAS
VINCENZO	LUCCHESI
SEAN	O'CONNELL
DIAN	HEMMINGER
GREG	ORLANDO
+--------------------------------+

© 2011 IBM Corporation48

SQL non-inline scalar functions

DB2 10 differentiates between inline SQL scalar and non-inline SQL scalar
functions

– Inline: functions with the same capability as in prior releases
• No package is generated; reference is replaced by the expression

– Non-inline
• Package is created (note REBIND PACKAGE rebinds only SQL in

function body; does not rebind SQL control statements – use ALTER
FUNCTION REGENERATE).
e.g.: CREATE FUNCTION TEST_FN(P1 TABLE LIKE EMP AS LOCATOR)
 RETURNS INT LANGUAGE SQL …
 BEGIN
 DECLARE VAR1 INT;
 SET VAR1 = (SELECT ID FROM TABLE(P1 LIKE EMP));
 IF VAR1 <> 42 THEN INSERT INTO REPORT VALUES(...);
 END IF;
 RETURN VAR1;
 END#

© 2011 IBM Corporation49

SQL non-inline scalar functions

DB2 10 differentiates between inline SQL scalar and non-inline SQL scalar
functions

– Inline: functions with the same capability as in prior releases
• No package is generated; reference is replaced by the expression

– Non-inline
• Package is created (note REBIND PACKAGE rebinds only SQL in

function body; does not rebind SQL control statements – use ALTER
FUNCTION REGENERATE).
e.g.: CREATE FUNCTION TEST_FN(P1 TABLE LIKE EMP AS LOCATOR)
 RETURNS INT LANGUAGE SQL …
 BEGIN
 DECLARE VAR1 INT;
 SET VAR1 = (SELECT ID FROM TABLE(P1 LIKE EMP));
 IF VAR1 <> 42 THEN INSERT INTO REPORT VALUES(...);
 END IF;
 RETURN VAR1;
 END#

REBIND PACKAGE
ALTER … REGENERATE

© 2011 IBM Corporation50

SQL scalar function versioning

Similar to Native SQL Stored Procedure versioning:

-- Create a non-inline SQL scalar function with initial version V1
CREATE FUNCTION TRYVER()
RETURNS VARCHAR(20)
VERSION V1
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version1';

© 2011 IBM Corporation51

SQL scalar function versioning

Similar to Native SQL Stored Procedure versioning:

-- Create a non-inline SQL scalar function with initial version V1
CREATE FUNCTION TRYVER()
RETURNS VARCHAR(20)
VERSION V1
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version1';

-- Add a second version V2 of the function created above
ALTER FUNCTION TRYVER ADD VERSION V2 ()
RETURNS VARCHAR(20)
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version2';

© 2011 IBM Corporation52

SQL scalar function versioning

Similar to Native SQL Stored Procedure versioning:

-- Create a non-inline SQL scalar function with initial version V1
CREATE FUNCTION TRYVER()
RETURNS VARCHAR(20)
VERSION V1
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version1';

-- Add a second version V2 of the function created above
ALTER FUNCTION TRYVER ADD VERSION V2 ()
RETURNS VARCHAR(20)
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version2';

-- Invoke the function
SELECT TRYVER() FROM SYSIBM.SYSDUMMY1;
result: Running version1

© 2011 IBM Corporation53

SQL scalar function versioning

Similar to Native SQL Stored Procedure versioning:

-- Create a non-inline SQL scalar function with initial version V1
CREATE FUNCTION TRYVER()
RETURNS VARCHAR(20)
VERSION V1
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version1';

-- Add a second version V2 of the function created above
ALTER FUNCTION TRYVER ADD VERSION V2 ()
RETURNS VARCHAR(20)
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version2';

-- Invoke the function
SELECT TRYVER() FROM SYSIBM.SYSDUMMY1;
result: Running version1
-- Now make V2 version the active version
ALTER FUNCTION TRYVER ACTIVATE VERSION V2;

© 2011 IBM Corporation54

SQL scalar function versioning

Similar to Native SQL Stored Procedure versioning:

-- Create a non-inline SQL scalar function with initial version V1
CREATE FUNCTION TRYVER()
RETURNS VARCHAR(20)
VERSION V1
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version1';

-- Add a second version V2 of the function created above
ALTER FUNCTION TRYVER ADD VERSION V2 ()
RETURNS VARCHAR(20)
LANGUAGE SQL
DETERMINISTIC ...
RETURN 'Running version2';

-- Invoke the function
SELECT TRYVER() FROM SYSIBM.SYSDUMMY1;
result: Running version1
-- Now make V2 version the active version
ALTER FUNCTION TRYVER ACTIVATE VERSION V2;
-- Invoke the function again
SELECT TRYVER() FROM SYSIBM.SYSDUMMY1;
result: Running version2

© 2011 IBM Corporation55

Implicit cast support for strings and numerics

 Character or graphic strings and numeric data types are compatible (except for
 LOBs and non-Unicode graphic strings)
 DB2 can perform an implicit cast between those data types
 You can directly insert or compare the values of those data types:
 e.g.: ... WHERE EMP_ID = '100', INSERT INTO(CHARCOL) VALUES(123), etc.
 Implicit cast result data type is determined based on the following table:

© 2011 IBM Corporation56

Date-time constants

DB2 10 supports ANSI/ISO SQL standard form of a datetime constant:

DATE '18.01.1977' -- date (EUR format)

TIME '15.30.00' -- time (EUR format)

TIMESTAMP '2007-05-14 11:55:00.1234' -- timestamp
TIMESTAMP '2007-05-14T11:55:00.1234' -- timestamp

TIMESTAMP '2007-05-14 11:55:00.1234+08:00' -- timestamp with time zone UTC+8
TIMESTAMP '2007-05-14 11.55.00Z' -- timestamp with time zone UTC

SELECT … WHERE DATECOL > '2011-01-01' -- date column compared to string literal
SELECT … WHERE DATECOL > DATE'2011-01-01' -- date column compared with date literal

SELECT HEX(DATE'2010-08-06') -- display date constant
FROM SYSIBM.SYSDUMMY1;
-- result: 20100806 -- i.e. DATE'2010-08-06' is a 4-byte date

SELECT HEX('2010-08-06') -- display character string constant
FROM SYSIBM.SYSDUMMY1;
-- result: F2F0F1F060F0F860F0F6 -- i.e. '2010-08-06' is a 10-byte string

© 2011 IBM Corporation57

Extended indicator variables

There are frequent situations where an application needs to insert or update data
only for a subset of columns for a given table.

The application developers are faced with a dilemma of how to provide an
application that could handle all possible insert or update requests when it is not
known which columns are being inserted to or updated until application execution
time:

 “custom” dynamic SQL queries
 Code all combinations ahead of time
 One SQL but application must determine values for all needed columns

 New extended indicator variable values:
 -5 means DEFAULT
 -7 means UNASSIGNED (treat as if it was not specified)
 -1, -2, -3, -4, -6 means NULL

 EXTENDEDINDICATOR BIND/REBIND PACKAGE option
 WITH EXTENDED INDICATORS PREPARE attribute

© 2011 IBM Corporation58

Extended indicator variables

Special extended indicator variable values can be specified only for host variables
(parameter markers) that appear in:

(

 Set assignment list of an UPDATE operation in UPDATE or MERGE statements
 The values list of an INSERT operation in INSERT or MERGE statements
 The select list of an INSERT statement in the FROM clause of the SELECT
 statement
 The source-table parameter of a MERGE statement

Furthermore, the host variable cannot be part of an expression other than an
explicit cast (if the target column is not nullable, the explicit cast can be only to the
same data type as the target column).

© 2011 IBM Corporation59

Extended indicator variables - Example

 ...
 memset(&hv_indicators, 0, sizeof(hv_indicators));
 strcpy(hv_name, "Michael"); /* use value */

 strcpy(hv_country, "Australia"); /* use value */

 hv_indicators.hvi_name = -7; /* skip update */
 hv_indicators.hvi_country = -5; /* use DEFAULT */
 hv_indicators.hvi_city = -7; /* skip update */
 hv_indicators.hvi_zip = -7; /* skip update */
 EXEC SQL
 UPDATE TRYINDVAR SET
 NAME = :hv_name:hvi_name
 ,COUNTRY = :hv_country:hvi_country
 ,CITY = :hv_city:hvi_city
 ,ZIP = :hv_zip:hvi_zip
 ;

© 2011 IBM Corporation60

Timestamp with TIME ZONE

New data type: TIMESTAMP WITH TIME ZONE

Timestamp plus time zone: 2010-08-06 12.30.00-8:00 (UTC-8)
(UTC is 2010-08-06 20.30.00 - subtract UTC part to convert)

Valid range for time zone:
 SQL standard specification: -12:59 to +14:00
 W3C XML standard for XSD schema definition specifies: -14:00 to +14:00

Because the valid range for a CURRENT TIME ZONE special register is -24:00 to
+24:00, the valid range for the time zone offset was chosen to also be -24:00 to
24:00 for compatibility.

© 2011 IBM Corporation61

Timestamp with TIME ZONE

Determining the implicit TIME ZONE:

DSNHDECP parameter IMPLICIT_TIMEZONE and a new special register
SESSION TIME ZONE aid in determining the implicit time zone.

The implicit time zone is determined as follows:
 If IMPLICIT_TIMEZONE is not specified or is specified as CURRENT, the implicit
 time zone is the value of the CURRENT TIME ZONE special register.

 If IMPLICIT_TIMEZONE is specified as SESSION, the implicit time zone is the
 value of the SESSION TIME ZONE special register.

 If IMPLICIT_TIMEZONE is specified as a character string in the format of '±th:tm',
 the implicit time zone is the time zone value represented by that character string.

© 2011 IBM Corporation62

Time zone specific expressions

You can use time zone specific expressions to adjust timestamp values and
character-string or graphic-string representations of timestamp values to specific
time zones

AT LOCAL – value adjusted for the local time zone using SESSION TIME ZONE
 special register value.
AT TIME ZONE ‘±th:tm’ - value adjusted for the specified time zone

© 2011 IBM Corporation63

Time zone specific expressions - Examples

-- establish session time zone as UTC+2
SET SESSION TIMEZONE = '+2:00';

© 2011 IBM Corporation64

Time zone specific expressions - Examples

SET SESSION TIMEZONE = '+2:00';

-- adjust column/literal to LOCAL
SELECT '2007-05-14-11:55:00.0 -8:00' AT LOCAL
FROM SYSIBM.SYSDUMMY1;
-- result: 2007-05-14-21.55.00.000000+02:00

© 2011 IBM Corporation65

Time zone specific expressions - Examples

SET SESSION TIMEZONE = '+2:00';

-- adjust column/literal to LOCAL
SELECT '2007-05-14-11:55:00.0 -8:00' AT LOCAL
FROM SYSIBM.SYSDUMMY1;
-- result: 2007-05-14-21.55.00.000000+02:00
-- how did it get calculated:
-- 1) … 11:55:00.0 -8:00 is 19:55 in UTC
-- 2) SESSION TIMEZONE has '+2:00'
-- so we add that to UTC: 19:55 + 2:00 = 21:55

© 2011 IBM Corporation66

Time zone specific expressions - Examples

SELECT '2007-05-14-11:55:00.0 -8:00' AT TIME ZONE '+00:00'
FROM SYSIBM.SYSDUMMY1;
-- result: 2007-05-14-19.55.00.000000+00:00
-- this is UTC

SELECT '2007-05-14-11:55:00.0 -8:00' AT TIME ZONE ('-'||'7'||':'||'00')
FROM SYSIBM.SYSDUMMY1;
-- result: 2007-05-14-12.55.00.000000-07:00

© 2011 IBM Corporation67

Time zone specific scalar functions

The TIMESTAMP_TZ function returns a TIMESTAMP WITH TIME ZONE value
from the input arguments.

Examples (assume implicit time zone is '+8:00')

TIMESTAMP_TZ(TIMESTAMP '2007-05-14-12.55.00') ==> 2007-05-14-12.55.00+08:00
TIMESTAMP_TZ(TIMESTAMP '2007-05-14-12.55.00+2:00') ==> 2007-05-14-12.55.00+02:00
TIMESTAMP_TZ(TIMESTAMP '2007-05-14-12.55.00','-7:00') ==> 2007-05-14-12.55.00-07:00

© 2011 IBM Corporation68

Time zone – Application programming

Declarations generated by DCLGEN:

For Java:
TIMESTAMP(p) WITH TIME ZONE ==> java.sql.TimestampTZ

For more on SQL and Application Enablement, see “DB2 10 for z/OS Technical Overview”
(SG24-7892-00)

 © 2011 IBM Corporation

Thank you !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

