
Whitepaper
IBM Software Group Information Management

Planning for IBM DB2 10
for z/OS Upgrade

2 Planning for IBM DB2 10 for z/OS Upgrade

Executive Summary
In the spring of 2010, DB2 10 for z/OS was released to
24 worldwide customers for beta testing. The evaluation
focused on regression testing, “outof- the-box” performance,
and additional performance and scalability, as well as other
new functions.

Customer experience and feedback about the program have
been mainly positive, and most customers who were involved
in the program plan to start migration to DB2 10 for z/OS in
2011. An incremental improvement was observed in the
effectiveness of the program, in terms of the quality of the
issues and problems found, relative to the respective programs
for DB2 Version 8 and Version 9. Some customers did very
well with regression and new function testing; others provided
only limited qualification about what they did and what
they achieved.

After the early stages of planning and execution, it is often
difficult for customers to sustain the effort required during a
six-month period, due to competing business and technical
priorities. People, hardware, and time are usually constrained
to varying degrees. As of the end of the beta program, no
customers were in “true, business production.”

The release of DB2 10 for z/OS provides many opportunities
for price/ performance and scalability improvements. But
there is a tradeoff in terms of some increased real storage
consumption.Customers need to carefully plan, provision,
and monitor their real storage consumption.

The new, 64-bit SQL runtime can provide generous, 31-bit
virtual storage constraint relief in the DB2 DBM1 address
space. This support provides enhanced vertical performance
scalability of an individual DB2 subsystem or DB2 member.
It also opens opportunities for further price/performance
improvement, through greater use of persistent threads
running with the BIND option RELEASE(DEALLOCATE),
DB2 member consolidation, and LPAR consolidation.

Introduction
This paper focuses on the planning stage of migrating to IBM
DB2 10 for z/OS. The key points of emphasis are:

•	 Make sure everyone is educated as to what is needed to ensure
project success.

•	 Production of a detailed project plan, communicated to all
involved, is crucial for success.

•	 Some preparation can occur very early, in terms of
understanding, obtaining, and installing the prerequisites.

The release of DB2 10 for z/OS was announced on February 9,
2010, and began shipping on March 12, 2010. It was the
largest beta test program in the history of DB2 for z/OS.

The information in this paper is drawn from the lessons
learned in cooperation with 24 of IBM’s largest customers,
representing a variety of industries and countries around the
world. An extended beta test program started in Q3 2010 and
lasted for six months. The program also included 73 parties in
vendor programs.

These customers were looking mainly for 31-bit virtual
storage constraint relief in the DBM1 address space and all
opportunities for price/performance improvement. Other
areas of interest included:r.

•	 Regression testing (Be sure to approach regression testing in the
order in which you plan to move to production.)

•	 “Out-of-the-box” performance
•	 Additional performance improvements
•	 Scalability enhancements
•	 New functions

IBM Business Unit Identifier 3

Stages of migration
The primary stages of migration to a new version are:

1. Planning
 – Early stages:

 ˚ Making the decision to migrate

 ˚ Determining what can be gained

 ˚ Planning for prerequisites

 ˚ Avoiding incompatibilities

 ˚ Planning performance and storage

 ˚ Assessing available resources
2. Migration
3. Implementation of the new improvements

Needed application changes can be made over a longer period
to make the migration process easier and less costly. Plans for
monitoring virtual and real storage resource consumption, as
well as performance, are necessary. An early health check,
communication of the required changes, and staging of the
work will make the project go much more smoothly.

Highlights of the Beta Test
DB2 10 for z/OS delivers great value by reducing CPU
resource consumption in most customer cases. IBM internal
testing and early beta customer results revealed that,
depending on the specific workload, many customers could
achieve “out-of-the-box” DB2 CPU savings of up to
10 percent for traditional OLTP workloads and up to
20 percent for specific new workloads (e.g., native SQL
procedures), compared with running the same workloads
on DB2 9 for z/OS.

The objective of providing and proving generous, 31-bit
virtual storage constraint relief in the DBM1 address space
was achieved by the end of the program. This achievement is
significant in terms of the enhanced vertical scalability of an
individual DB2 subsystem or DB2 member of a data sharing
group. We are confident that customers can scale up, in
practical terms, the number of active threads by 5 to 10
times to meet their demands.

Further opportunities for price/performance improvement
are made possible through the use of persistent threads with
the BIND option RELEASE(DEALLOCATE). Examples
of using persistent threads include protected ENTRY
threads with Customer Information Control system (CICS®),
Wait For Input (WFI) regions with Information Management
System/Transaction Manager (IMS/TM), and high-
performance database access threads (DBATs) for incoming
Distributed Data Facility (DDF) workloads.

Another goal was to improve INSERT performance,
particularly in the area of universal table spaces (UTS).
We wanted to ensure that insert performance for UTS
was equal to, or better than, the classic table space types,
such as segmented and partitioned. This goal was achieved
in most cases.

Hash access was good, provided we hit the smaller-than-
expected “sweet spot.” Results for complex queries were
also good.

Provided users chose the correct value, the performance of
inline large objects (LOBs) was also impressive. Support for
inline LOB column values has the potential to save even more
on performance by avoiding indexed access to the auxiliary
table space. However, it is important to note that the value
you choose for the inline LOB value must ensure that most
of the LOB column values are 100 percent inline in the base
table space.

In the area of latch contention reduction, we focused on the
hot latches in DB2 10 for z/OS in such a way that, once we
solved the 31-bit virtual storage constraint in the DBM1
address space, enabling you to scale five to ten times, we
wanted to be sure there were no secondary issues related to
latch contention that would inhibit the vertical scalability of a
single DB2 subsystem or DB2 member.

As the beta program progressed, the reliability of, and
customer confidence in, DB2 10 for z/OS greatly improved.

4 Planning for IBM DB2 10 for z/OS Upgrade

Generally speaking, online transaction processing (OLTP)
performance improvements were as predicted. We were
aiming for a target of 5 percent to 10 percent reduction in
CPU resource consumption for most traditional OLTP
workloads. During testing, several customers ran benchmarks
showing that such reductions could be achieved. However,
in cases where the transactions consisted of a few very simple
SQL statements, the 5 percent to 10 percent target was
not achieved.

This is where the increase in package allocation cost
outweighed the improvement in SQL runtime optimization.
However, we did identify some steps that can be taken to
improve this. We have delivered an Authorized Program
Analysis Report (APAR) to reduce package allocation cost.
It is also possible to mitigate this situation by making more
use of persistent threads with the BIND option
RELEASE(DEALLOCATE).

Another issue was single-thread BIND/REBIND performance.
Even in Conversion Mode (CM), the performance, in terms of
CPU resource consumption and elapsed time, was degraded.
One reason for this result was that in DB2 10 for z/OS the
default for access plan stability is EXTENDED. Also, DB2 10
for z/ OS uses indexed access, even in CM, to access the
respective DB2 Catalog and Directory tables.

Another area where we had mixed results was SQL Data
Definition Language (DDL) concurrency. We had hoped that
by restructuring the DB2 Catalog and Directory to introduce
row-level locking, remove hash link access, and more, we could
improve concurrency when running parallel SQL DDL and
parallel BIND/REBIND operations. The concurrency
improvement was eventually achieved for parallel BIND/
REBIND activity. Although it also helped in some cases with
SQL DDL, most customers will still have to run SQL DDL
activity single-threaded.

The final issue was access path lockdown. Two new options in
DB2 10 for z/OS, APREUSE and APCOMPARE, enable you
to generate a new SQL runtime while in most cases keeping
the old access paths. Unfortunately, there were some issues
with the underlying OPTHINTS infrastructure inherited
by DB2 10 for z/OS, which is used by APREUSE and
APCOMPARE. The introduction of APREUSE and
APCOMPARE was delayed until these issues were addressed.
These features are now available in the service stream via
APARs, and their use is strongly recommended.

In general terms, the results of the beta program were mainly
positive customer experiences, and we received good feedback
about the program. A majority of customers in the beta
program plan to start migrating to DB2 10 for z/OS in 2011.
We observed incremental improvement in the program
over what we experienced with the DB2 8 and DB2 9 for
z/OS programs.

There was really no “single voice” or message across the
customer set. We saw significant variation in terms of customer
commitment and achievement. A small subset of customers
did a very good job on regression and new function testing
and provided good feedback. Others, due to limited resources,
provided only limited qualification about what they were
going to do and what they were able to achieve.

It is worth keeping in mind, for those who have never been
involved in a Quality Partnership Program (QPP)/beta
program, that it can be a challenge for customers to sustain
the effort over a six-month period, due to competing business
and technical priorities as well as constraints on people,
hardware resources, and time.

By the end of the program, no customers were in true,
business production. But we also need to appreciate that a
QPP/beta program is not the same as an Early Support
Program. We continue to develop and test the DB2 for
z/OS product as the program progresses.

IBM Business Unit Identifier 5

One of the benefits of DB2 10 for z/OS is that it provides
many opportunities for price/performance (cost reduction)
improvements. It is a major theme of this release. In
discussions with customers, these opportunities for price/
performance improvement are most welcome.

Also keep in mind that customers can be intimidated by some
of the marketing “noise” about improved price/performance,
often because of the raised expectation level of their respective
CIOs. But in some cases, it is because when they run their own
workloads, they do not see the anticipated improvements in
CPU resource consumption and elapsed time performance.
Many customers saw big improvements for certain workloads,
while for other workloads, they saw little, if any, improvement.

Also note that if you have small test workloads that are
untypical of the total mixed workload running in production,
this can skew expectations on savings—either positively or
negatively. Once DB2 10 for z/OS is in production, the
results with the full, mixed workload may differ. We found
that some measurements and quotes were overly positive
and should be ignored.

A remaining question is: “How do you extrapolate from a
small workload and project what the savings would be for the
total, mixed workload in production?” Estimating with
accuracy and high confidence is not practical, or possible,
without proper benchmarking using a workload that truly
represents production. Most customers reported incremental
improvement over the DB2 8 and DB2 9 for z/OS programs.

Overall, most tests identified opportunities for price/
performance (cost savings) improvements, which is the
major theme of this release. Some customers reported big
improvements in CPU and elapsed time reduction for certain
workloads, while others did not. Keep in mind that smaller
workloads may skew expectations on savings.

Summary of results
The DB2 10 for z/OS beta program confirmed improvements
in the following areas:

•	 31-bit virtual storage constraint relief in the DBM1
address space

•	 Insert performance
•	 Hash access good when hitting the smaller-than-expected

sweet spot
•	 Complex queries
•	 Inline large objects (LOBs) and structured large

objects (SLOBs)
•	 Latch contention reduction
•	 Quality of problems and issues found
•	 Reliability and confidence as program progressed

Performance and Scalability
One of the key lessons learned in the beta program was the
need to plan on additional real storage. A 10 percent to 30
percent increase of real memory is a very rough estimate.
For small systems with tiny buffer pools, the increase will be
toward the high end of the range; for big systems with large
buffer pools, it will be toward the low end of the range. It is
important for customers to properly provision and monitor
real storage consumption.

Many traditional OLTP workloads saw a 5 percent to 10
percent reduction in CPU utilization in CM mode after
REBIND under DB2 10 for z/OS (some more, some less).
On the initial migration to DB2 10 for z/OS, most customers
will not perform a mass REBIND of all plans and packages.
So, before REBINDing plans and packages, you may see
little or no reduction in CPU resource consumption.

6 Planning for IBM DB2 10 for z/OS Upgrade

To maximize the price/performance benefits after migrating to
CM, take these two steps:

1. REBIND your packages and plans to generate the new 64-bit
SQL runtime. This way, you avoid the overhead of making
the runtime for migrated packages from earlier releases look
like the DB2 10 for z/OS runtime and re-enable fast column
(SPROC) processing, which would otherwise be disabled.

2. Take advantage of 1 MB size real storage page frames to
reduce translation lookaside buffer (TLB) misses. The 1 MB
size real storage page frames are available on the z10™ and
z196 processors. The prerequisite for using them is to
specify the long-term page fix option for your local buffer
pools. Long-term page fix buffer pools, which were
introduced in DB2 8, provide an opportunity to reduce
CPU resource consumption by avoiding the repetitive cost
of page fix and page free operations for each page involved
in an I/O operation.

The lesson is, be sure to use PGFIX=YES on your local buffer
pools, provided there is sufficient real storage provisioned to
fully back the requirement of the total DB2 working set below
and above the 2 GB bar.

In a few cases, customers saw less than 5 percent saving in
CPU resource consumption for traditional OLTP with
very light transactions—“skinny” packages with a few simple
SQL statements. This result is due partly to the increasing
cost of package allocation, which overrides the benefit of
the SQL runtime optimizations. APAR PM31614 may solve
this issue by improving package allocation performance.
Another way to address this is to use persistent threads with
the BIND option RELEASE(DEALLOCATE) to amortize
away the repetitive cost of package allocation/deallocation
per transaction.

Regarding customers’ measurements, keep in mind that—
unlike the DB2 Lab environment, where a dedicated
environment is used—customer measurements are typically
performed in a shared environment, and the measurement
results are not always consistent and repeatable. There can
be wide variation on measurement “noise” in customer
measurements, especially regarding elapsed time performance.

In most cases, customers were not running in a dedicated
environment or at the scale/size of true business production.
Many customers ran a subset (maybe a high-volume subset) of
the total production workload. Sometimes, they used a
synthetic test workload to study specific enhancements.

In cases where customers had very large numbers that they
were not able to reproduce, the numbers on CPU and elapsed
time reductions were not trusted.

Recommendation

Customers should not spend anticipated price/performance
(cost reduction) savings until they actually see the
improvements in their own true business production
environment.

Early results
Table 1.1 summarizes some of the beta program results
reported by customers. Some of the additional savings
were due to features such as using 1 MB size real storage
page frames for selective buffer pools, enabling high-
performance DBATs, and respecting the package BIND
option RELEASE(DEALLOCATE). Another reason was
the improvement in COMMIT processing for applications
that commit frequently. We now perform parallel writes to
the active log dataset pair even when rewriting a log control
interval (CI) that was partially filed and written out previously.

IBM Business Unit Identifier 7

Workload Customer results

CICS online transactions Approximately 7% CPU reduction in

DB2 10 CM after REBIND; additional

reduction when 1 MB size real storage

page frames were used for selective

buffer pools

CICS online transactions Approximately 10% CPU reduction from

DB2 9

CICS online transactions Approximately 5% CPU reduction from

DB2 8

CICS online transactions 10+% CPU increase

Distributed concurrent

insert

50% DB2 elapsed time reduction; 15%

chargeable CPU reduction after enabling

high-performance DBAT

Data sharing heavy

concurrent insert

38% CPU reduction

Queries Average CPU reduction 28% from V8 to

DB2 10 NFM

Batch Overall 20–25% CPU reduction after

rebind packages

Table 1.1: Workload results reported by DB2 10 for z/OS beta
program customers

Now, let us discuss the use of the 1 MB size real storage page
frames on the z10 and z196 processors. The potential exists for
reduced CPU resource consumption through fewer TLB
misses; however, the local buffer pools must be defined as long-
term, page-fixed (PGFIX=YES). This feature was introduced
in DB2 8 to mitigate CPU regression and reduce CPU
resource consumption for I/O-intensive buffer pools.

Many customers are still reluctant to use the PGFIX=YES
option because they are running too close to the edge on
the usage of the amount of real storage provisioned and
are in danger of paging to auxiliary (DASD) storage.
They understand the value of PGFIX=YES, but it applies
only for an hour or two each day. Another factor is that this
decision is a long-term one; in most cases, implementing this

buffer pool attribute requires a recycle of the DB2 subsystem.
A change to the attribute goes pending and is materialized
when the buffer pool goes through reallocation. It is also
worth noting that a 75 percent cost reduction on real storage is
incurred on the z196 processor relative to the z10 processor.

Here are a few more things to remember about the use of
1 MB size real storage page frames on the z10 and z196
processors: The actual amount of memory that is allocated as
1 MB size real storage page frames is specified by the
LFAREA=nn% parameter in the IEASYSnn parmlib member
and is changeable only by IPL. You are partitioning out the
total real storage provisioned between 4K size frames and 1
MB size frames. 1 MB size real storage page frames are
nonpageable. If these page frames are overcommitted, DB2 10
for z/OS will start using 4 K size real storage page frames.

Recommendation

Assuming you have provisioned sufficient real storage in
production to fully back the total requirement of the DB2
working set:

1. Define all the local buffer pools as long-term page fixed
(PGFIX=YES),

2. Sum up the total buffer pool storage requirement across all
the local buffer pools defined as PGFIX=YES, and

3. Reflect that value in the LFAREA specification. (You may
want to add an additional 10 percent to 20 percent in size
to allow for some growth and tuning.)

8 Planning for IBM DB2 10 for z/OS Upgrade

Figure 1.1 shows three sets of customer measurements.

The first measurement (shown in the left column of the figure)
is the virtual storage footprint of DB2 9 for z/OS.

The middle column shows the virtual storage footprint of DB2
10 for z/OS in CM without the REBIND static SQL plans and
packages. The issue here is that the footprint actually
increased, compared with DB2 9 for z/OS. This issue was
corrected ahead of GA of DB2 10 for z/OS.

The third column shows that once you do the REBIND of
static SQL plans and packages, the 31-bit virtual thread
storage footprint decreases dramatically. This result illustrates
the value of the DBM1 31-bit virtual storage constraint relief
in DB2 10 for z/OS.

Note

Make sure you have applied critical preventative z/OS
maintenance before using 1 MB size real storage page
frames. One of the lessons learned in the beta program is
that the 1 MB size real storage page frames are relatively
new and DB2 10 for z/OS is the first major subsystem to
exploit them. We observed a reduction of up to 6 percent in
CPU resource consumption. There is a customer requirement
for a new parameter to be able to use PGFIX=YES indepen-
dently from the use of 1 MB size real storage page frames.
This requirement will be addressed in a future release of DB2
for z/OS.

DBM1 virtual storage constraint relief (VSCR) with a near-full
64-bit SQL runtime is available for use as soon as you go to
CM. To accrue maximum benefit, you must REBIND static
SQL plans and packages. We are confident that we have
addressed the previous vertical scalability issue on the limited
number of active threads that could be supported, and we have
achieved very good results.

This support offers a “real-world” proposition of scaling up
the number of active threads from, say, 500 active threads
to 2,500–3,000 active threads or more per DB2 subsystem.
The limiting factors now on vertical scalability (number of
threads times average thread storage footprint) are most
likely to be the amount of real storage provisioned on the
logical partition (LPAR), followed by extended system queue
area/extended common service area (ESQA/ECSA) (31-bit)
storage constraints and the active log write performance
(log latch contention).

Figure 1.1. Initial DBM 1 31-bit thread storage customer
measurements in DB2 9 for z/OS vs. DB2 10 for z/OS
(corrected prior to General Availability [GA])

IBM Business Unit Identifier 9

Figure 1.2 shows another group of customer measurements

Here, the first column is the DB2 9 for z/OS thread footprint.
The second column is the DB2 10 for z/OS CM without the
REBIND of static SQL plans and packages. In columns three
and four, you can see that after the fix is applied (even without
the REBIND), the thread storage footprint is greatly reduced.

DBM1 virtual storage constraint relief with 64-bit
SQL runtime
REBINDing static plans and packages maximizes
the DBM1 31-bit VSCR and ensures we have a 64-bit SQL
runtime. Not only does this step solve scalability issues, but it
also can provide opportunities for further price/performance
improvements—beyond the 5 percent to 10 percent.

For example, prior to DB2 10 for z/OS, many customers have
been heavily constrained on available, 31-bit virtual storage in
the DBM1 address space and, as a result, on the number of
active threads that can be supported in a single DB2 subsystem
or DB2 member. They have had to make compromises, trading
additional CPU resource consumption to reduce the 31-bit
virtual storage footprint and be able to support more active
threads in a single DB2 subsystem or DB2 member.

This tradeoff involved reducing the number of persistent
threads and restricting the use of the BIND option
RELEASE(DEALLOCATE) for packages running on those
threads. These tactics saved on DBM1 31-bit virtual storage
resource consumption at the cost of incurring additional CPU
resource consumption.

With DB2 10 for z/OS, provided you have additional
storage provisioned over and above the 10 percent to 30
percent previously mentioned, you can use more persistent
threads and make more use of the BIND option RELEASE
(DEALLOCATE) with existing or new persistent threads.
This capability has the potential to reduce CPU resource
consumption and improve price/performance (cost reduction)
beyond the previously mentioned 5 percent to 10 percent.
However, it does require additional real storage to be
provisioned to support the increased number of persistent
threads running with RELEASE(DEALLOCATE).
This is in addition to the 10 percent to 30 percent increase
in real storage requirement discussed previously.

Figure 1.2. Initial DBM1 31-bit thread storage customer
measurements in DB2 9 for z/OS vs. DB2 10 for z/OS
[GA after fix applied])

With or without the REBIND of static SQL plans and
packages, the 31-bit thread storage footprint in the DBM1
address space is reduced in DB2 10 for z/OS. However,
to accrue maximum benefit in terms of 31-bit VSCR in the
DBM1 address space, rebinding static SQL plans and
packages is strongly recommended.

10 Planning for IBM DB2 10 for z/OS Upgrade

The next, and new, opportunity for price/performance
improvement is with regard to Distributed Relational
Database Architecture™ (DRDA) and DDF server workloads.
In DB2 10 for z/OS, starting with CM there is the potential
to reduce CPU resource consumption for DRDA transactions
by using highperformance database access threads. DB2 10
for z/OS provides the same opportunity for thread reuse with
persistent threads that we have, for example, in CICS with
protected ENTRY threads and/or by queuing on an
unprotected ENTRY thread.

To take advantage of this improvement, the first prerequisite
is that at least one of the packages associated with the
transaction must be bound with RELEASE(DEALLOCATE).
The second prerequisite is to issue the MODIFY DDF
PKGREL (BNDOPT) command so that the BIND option
RELEASE(COMMIT|DEALLOCATE) is respected.

After taking these steps, you will be able to achieve thread
reuse for the same connection. At the same time, DDF
will start respecting the BIND option of RELEASE
(DEALLOCATE). Before DB2 10 for z/OS, you could
BIND distributed packages with the RELEASE
(DEALLOCATE) attribute, but the availability of this
option was a moot point because RELEASE(COMMIT)
was always forced at execution time (i.e., the BIND option
of RELEASE(DEALLOCATE) was not respected).

Now, in DB2 10 for z/OS, we have the same possibility as with
CICS and IMS/TM workloads—to have persistent threads, in
this case with highperformance DBATs, and to have the BIND
option of RELEASE(DEALLOCATE) respected.

The recommendation is that once you plan to start using
high-performance DBATs, consider provisioning additional
real storage—beyond the previously discussed 10 percent
to 30 percent increase. Do not adopt a “one size fits all”
strategy when using more persistent threads with the BIND
option RELEASE(DEALLOCATE) with IMS/TM, CICS,
or DDF workloads. Most installations cannot support
making all threads persistent threads, with all the associated
packages bound with RELEASE(DEALLOCATE),
because of the potential for dramatic increase in the total
real storage requirement.

You simply cannot afford to use the BIND option
RELEASE(DEALLOCATE) for all plans and packages.
Target persistent threads for thread reuse at high-volume
simple transactions, and couple them with use of
RELEASE(DEALLOCATE) for highuse packages with
many SQL statements that are frequently executed.

For example, take your Open Database Connectivity (ODBC)
and Java Database Connectivity (JDBC) packages as used
by distributed client applications and BIND them twice—
into two different package collections: BIND them with
RELEASE(DEALLOCATE) in one collection, and BIND
them with RELEASE(COMMIT) in the other collection.

In this way, you can target the high-volume transactions that
would benefit the most from the use of persistent threads with
BIND option RELEASE(DEALLOCATE) and connect those
transactions to a data source that points to the collection where
the packages are bound with RELEASE(DEALLOCATE).
Packages must be bound with RELEASE(DEALLOCATE)
to be eligible to use high-performance DBATs and be reused
for the same connection. The remaining transactions would
connect to a data source that points to the collection where
the packages are bound with RELEASE(COMMIT).

IBM Business Unit Identifier 11

The story is similar with CICS and IMS/TM. For CICS,
you would choose only protected ENTRY threads for
high-volume transactions and couple that with the use of
BIND option RELEASE(DEALLOCATE) for frequently
executed packages. Allow the rest of the transactions to run
as POOL threads.

For DRDA workloads, do not overuse BIND option
RELEASE(DEALLOCATE) on packages, because it
will drive up the MAXDBAT requirement.

Another point to remember is that when you use persistent
threads with RELEASE(DEALLOCATE), there is a
tradeoff. Doing so will impact BIND/REBIND and SQL
DDL concurrency. When you have a high-volume
transaction that justifies use of persistent threads with
RELEASE(DEALLOCATE), then BIND/REBIND and
DDL activity cannot break in.

Many customers fail to see the benefit of thread reuse and
avoiding the repetitive cost of thread create and thread
terminate per transaction. Here is the explanation as it relates
to CICS: If you are incurring the overhead of thread create
and thread terminate, you cannot see the overhead in the
DB2 accounting record. On the other hand, if you avoid the
overhead of thread create and thread terminate, you also
cannot see the overhead saved in the DB2 accounting record.

CICS uses the L8 TCB to process DB2 work, regardless of
whether the application is thread safe or not. The CPU time
associated with thread create and terminate (or the avoidance
thereof) shows up in the CICS System Management Facilities
(SMF) Record Type 110 record. Note that before the
introduction of the Open Transaction Environment (OTE)
in CICS, CICS did not even capture the cost of thread create
and terminate in the SMF Record Type 110 record. The CPU
cost of thread create and terminate was not captured. Provided
successful thread reuse is achieved, the benefit of using BIND
option RELEASE(DEALLOCATE) will show up in a
reduction in the Class 2 TCB Time in the DB2 Accounting
Record (SMF Record Type 101).

For some customer installations, DB2 10 for z/OS also has
the potential to reduce the number of DB2 members in a
data sharing group. Some customers had to grow their DB2
processing capacity horizontally due to the 31-bit virtual
storage constraint in the DBM1 address space by growing
the width of the data sharing group by adding additional
DB2 members. Some of these same customers decided to
run multiple members from the same DB2 sharing group
on the same LPAR.

Why? They wanted to limit the number of LPARs running
on the faster z10 and z196 systems because of increasing
LPAR overheads. But they needed to keep the existing DB2
members, or even add DB2 members, to have enough thread
processing capacity.

12 Planning for IBM DB2 10 for z/OS Upgrade

Now, with the generous DBM1 31-bit virtual storage
constraint relief in DB2 10 for z/OS, such customers have
the ability to reduce the total number of DB2 members in
a data sharing group. This change can reduce the number
of DB2 members from the same data sharing group running
on the same LPAR down to one, and can possibly reduce
the total number of LPARs as well. The ability to reduce
the total number of DB2 members and/or the number
of LPARs will provide further price/performance
(cost reduction) improvements.

Before you consolidate DB2 members and LPARs, there
are some issues to consider. For example, what will happen
to the logging rate when you push more workload through a
single DB2 subsystem? And, can the size of the active log
configuration, the dataset placement, and the I/O subsystem
cope with the load? Will log latch contention be aggravated?

By running more workload through an individual DB2
subsystem, you will drive up the aggregate logging rate for
that DB2 subsystem. Also, you need to consider the increase
in SMF data volume per LPAR. In DB2 10 for z/OS, you can
now enable DB2 compression of instrumentation record data
written to SMF (e.g., DB2 accounting trace data) to reduce the
SMF data volume. DB2 instrumentation data, such as statistics
trace and accounting trace records, are typically written out to
SMF and can benefit from this enhancement.

A new DB2 system parameter (ZPARM) called SMSCOMP,
once enabled, turns on DB2 compression of the SMF output
records. This compression applies to any instrumentation
record, not just statistics and accounting, that is written out
to SMF. We have observed a 70 percent to 80 percent
reduction in the volume of SMF data when the DB2
compression is turned on. The CPU overhead incurred is
only about 1 percent— representing a very good tradeoff.

This enhancement provides an opportunity for improved
problem determination (PD) and problem source identification
(PSI) by offering the possibility of turning off the use of
accounting roll-up for DDF and Recovery Resource Services
attachment facility (RRSAF) workloads (default). We
introduced this support in DB2 8 to reduce SMF data volume,
but one of the drawbacks of accounting roll-up was that it
compromised performance PD/PSI.

By rolling up the transaction activity for multiple transactions
into a single accounting record, we lose information about
outlying, badly performing transactions. The information
about the poor performance of outlying transactions gets
“amortized” away by the accounting roll-up. Given the
introduction of SMF data compression in DB2 10 for z/OS,
SMF compression may be a better option to control SMF
data volume than using the accounting roll-up.

Another consideration when migrating to any new DB2
for z/OS release is the impact of increased dump size due to
growth in the total DB2 working set size (and the need to
avoid partial dump capture). Make sure sufficient real storage
is provisioned on the LPAR for the increased DUMPSRV
and MAXSPACE requirement.

Finally, we want to re-emphasize the continued business and
technical value of DB2 data sharing to differentiate the z/OS
platform in terms of providing continuous availability across
both planned and unplanned outages. You want to avoid large
single points of failure. For example, consider a minimum
configuration of four-way data sharing for true, continuous
availability, assuming a twoprocessor (CEC) configuration.

IBM Business Unit Identifier 13

By “four-way data sharing,” we mean when you have two boxes
(CECs) and two LPARs on each box (a total of four LPARs).
A single DB2 member would run on each LPAR. That is the
minimum recommendation for true, continuous availability
and to maintain performance, if you want to maintain your
service level agreement (SLA).

In this four-way configuration, if you were to lose a DB2
member on one LPAR, the surviving DB2 member on the
alternate LPAR on the same box can take on 100 percent
of the workload and use all the CPU processing capacity
available on the box.

Planning for real storage
Let us discuss now, in more detail, the need to carefully plan,
provision, and monitor real storage consumption. Most DB2
8 and DB2 9 for z/OS customers are properly configured and
provisioned in terms of real memory. However, some are
running so low on available real memory that part of the
DB2 working set is often being paged out, intermittently,
to auxiliary (DASD) storage.

Worse still, if a dump were to be taken on the system, the
dump capture would take several minutes instead of a few
seconds to complete, and it could spread “sympathy sickness”
around a data sharing group. Information about real and
auxiliary frames used is already recorded in the IFCID 225
record generated by DB2 for z/OS. However, although the
provided information has been improved, with more details
recorded in DB2 10 for z/OS, the information furnished in
IFCID 225 has not allowed a customer installation to
effectively monitor 64-bit shared and 64-bit common storage
when running multiple DB2 subsystems on the same LPAR.

A new DB2 APAR PM24723 for DB2 10 for z/OS provides
the needed capability. The new APAR uses the enhanced
capability provided with MVS APAR OA35885, which
provides a new callable service to Real Storage Manager (RSM)
to report REAL and AUX usage for a given addressing range
for shared objects. APAR PM24723 will have this new MVS
APAR as a prerequisite.

The other advantage is that this same DB2 APAR provides a
much-needed real storage management function within DB2
when available real storage is overcommitted and the system
starts to be paged out.

Some customers have used a hidden system parameter
(ZPARM) called SPRMRSMX (real storage “kill switch”)
when running multiple DB2 subsystems on the same LPAR.
SPRMRSMX protects individual DB2 subsystems and other
subsystems running on the LPAR such that if one of the DB2
subsystems were to “run away” in terms of virtual memory use,
that subsystem would be “sacrificed” so that the other DB2
subsystems could continue to run.

Customers using system parameter SPRMRSMX have
calculated the “normal” working set of a DB2 subsystem,
multiplied that value by 2 (as a contingency), and used the
resulting value as the SPRMRSMX setting. Customers
currently using this system parameter will need to carefully
re-evaluate the value set when migrating to DB2 10 for z/OS.

In DB2 10 for z/OS, you will need to factor in the increased
use of 64-bit shared and common storage to establish the new
DB2 for z/OS storage footprint. IPL amounts for the LPAR
will need to be adjusted based on the number of DB2 members
running on that LPAR. The following values are on a “per
DB2 subsystem” (i.e., you would double these numbers when
running two DB2 subsystems on an LPAR, triple them for
three, and so on):

14 Planning for IBM DB2 10 for z/OS Upgrade

Storage area IPL amount

64-bit private 1 TB

64-bit shared 128 GB

64-bit common 6 GB

Note carefully that these values are not indicative of real
memory to be used, or even of virtual memory to be allocated;
they simply represent reserving an addressing range for DB2
for z/OS to use. These large memory object areas are allocated
above the 2 GB bar, and they will be sparsely populated.
Virtual memory is not allocated until the pieces of storage
are actually referenced.

INSERT performance
INSERT is one of the most important SQL statements in
DB2 for z/OS. It is also one of the most challenging for any
database management system (DBMS) to handle. Previous
DB2 for z/OS releases have focused on improving INSERT
performance. DB2 10 for z/OS provides some improvements
for all table space types. There was particular focus on
improving INSERT performance for universal table spaces,
both partition by range (PBR) and partition by growth (PBG).

Over the longer term, what we want to do in DB2 for z/OS is
converge all the classic table space types to be UTS and
deprecate the old, classic table space types. DB2 10 for z/OS
includes two specific enhancements to improve UTS
performance. First, UTS now supports MEMBER CLUSTER
to help where there is excessive page latch and page p-lock
contention on space map pages and on data pages when using
row-level locking. Second, changes were made to the space
search algorithm, making the algorithm used by UTS now
more like that used by the classic partitioned table space.

The performance goal for INSERT in DB2 10 for z/OS was
for UTS to be equal to, or better than, the classic partitioned
table space. While we are not there yet, the performance is
dramatically improved. The improvement is very workload
dependent. There is still a tradeoff between space reuse versus
throughput and reduced contention. We still have some work
to do on UTS, in the area of both PBR/PBG with row-level
locking and sequential insert activity.

Three specific improvements to INSERT in DB2 10 for z/OS
should help all table space types. The first is reduced log
record sequence number (LRSN) spin for inserts to the same
index or data page. As processors become faster, such as z10
and z196, the possibility of duplicate LRSN values and spins
having to occur increases. When a spin occurs, processing
loops in the DB2 code wait for the LRSN value to change.
The LRSN value is used in data sharing to serialize restart/
recovery actions, and it is the high-order six bytes of the store
clock (STCK) value.

The LRSN is incremented every 16 microseconds. As
processors get faster, there is increased potential for LRSN
duplicate values and the need to spin. We already made
some improvements in DB2 8 and DB2 9 for z/OS
regarding this issue.

In DB2 10 for z/OS, when we have multi-row inserts (MRI)
or single inserts within an application loop, we avoid the
LRSN spins for the same page that would have occurred
previously. The results have been very impressive. This
improvement applies when you use multi-row inserts to the
same page or have INSERT within an application loop to
the same page, in a data sharing environment.

IBM Business Unit Identifier 15

The second improvement, which works very well, is an
optimization for “pocket” sequential insert activity. This is
where you have multiple “hot spots”in the key range and the
INSERTs are “piling in” on these hot spots. During insert,
DB2 Index Manager (IM) identifies to the DB2 Data Manager
the candidate row ID (RID) value (page) to be used to place
the new data row. DB2 Index Manager now returns the next
lowest key RID value. The end result achieved is a much
better chance to find the space and avoid a space search.

The third improvement relates to parallel index read I/O,
which works very well and is best-suited when it is activated
where there random index key inserts. This mechanism is
used when three or more indices exist on the table and you
are performing random index key INSERTs. Previously,
you would have had a lot of random sync read I/O. We now
do parallel index read I/O when there are three or more
indices on the table. This reduces the elapsed time by taking
the synchronous read I/O activity out of the elapsed time.

To compensate elsewhere for the increase in CPU resource
consumption, DB2 will now make the CPU resource
consumption associated with prefetch engines (sequential
prefetch, list prefetch, and limit prefetch) and deferred write
engines eligible for zIIP offload. These types of processing
are now offloaded to zIIP processors to compensate for the
increase in CPU when doing parallel index read I/O for
random key INSERTs.

Accounting Trace Class 3 enhancement
In DB2 10 for z/OS, there are now separate counters for
IRLM Lock/Latch Wait and DB2 Latch Wait events in the
DB2 accounting trace. Previously, both types of wait events
were included in a single counter. When analyzing application
performance problems, you had to try to figure out which type
of wait activity was elevated.

The next improvement relates to data sharing. One of the
disadvantages of having very large, local buffer pools with
many group buffer pool (GBP) dependent objects, was that
DB2 for z/OS used to scan the local buffer pool for each
GBP-dependent object during DB2 shutdown. These scans
added a lot of delay in shutting down the DB2 subsystem.
DB2 also used to scan the local buffer pool when an object
went into or out of GBP dependency. This activity could add
a lot of overhead, depending on how often these transitions
were made.

In DB2 10 for z/OS, we expect faster DB2 shutdown
times because we avoid the local buffer pool scan per
GBP-dependent object during the shutdown. We now also
avoid the local buffer pool scan when an individual object
(pageset/ partition) transitions into or out of GBP dependency.

Inline LOB column values are now supported in DB2 10 for
z/OS. The size of the inline portion can be specified as a
system parameter (ZPARM) or on an individual object basis.
There is no “one size fits all” value for the use of inline LOBs.
So, using a general value as a system parameter is unlikely to
be a good choice.

16 Planning for IBM DB2 10 for z/OS Upgrade

You will get more value by setting the inline LOB value on
the SQL DDL for the specific object. The performance
tuning goal is to avoid access to the auxiliary table space for
the majority of LOB column values. This function is aimed
primarily at applications that have many, small LOB columns
values (i.e., up to a few hundred bytes).

The design goal for the inline LOB value is to store the
complete column value inline, in the base table row, and
to avoid access altogether to the auxiliary table space.
The potential exists for significant CPU and elapsed time
improvement if this can be achieved by setting the right
value for the inline portion.

However, if you store the LOB column value inline, in the
base table row, and then very rarely reference the LOB column
value, you may impact performance elsewhere because you
will get fewer rows per page. In any event, you may need to
consider increasing the data page size.

In the worst case, if you have made a poor choice for the inline
LOB column value, you will have the first part of most LOB
column values in the base table and the remaining part of the
LOB column values in the auxiliary table space. So, not only
will you get no benefit, but you will actually increase CPU
overhead and waste DASD space. But another advantage to
inline LOBs is that the portion of the LOB that is stored in
the base table row is now eligible for data compression.

Another performance enhancement to DB2 10 for z/OS relates
to active log writes. Before DB2 10 for z/OS, DB2 active log
writes were always done serially to log copy 1 and log copy 2
when rewriting a previously written log CI that was partially
filled previously. DB2 would write to log copy 1, wait, and

then, when it was successful, write to log copy 2. The reason
for this was that, prior to RAID devices, we had single, large,
expensive disks (SLEDs). We were always concerned that,
when we rewrote a previously partially filled log CI, we might
destroy the previous version and its contents.

With the increased reliability provided by RAID devices,
there is no longer any reason to do these rewrites of log CIs
serially. DB2 10 for z/OS now always performs active log
writes in parallel. This enhancement can generate significant
elapsed time improvements and improvements in applications
that commit frequently or when other forced writes occur
(e.g., related to index leaf page splits).

Hash access vs. index-only access
Hash access basically “competes” with clustered index access,
and specifically with index-only access. In an effort to reduce
CPU resource consumption, hash access tries to avoid going
through an index B-tree structure with many levels to access
the data row. The advantage that clustered index access has is
that DB2 still tries to maintain clustered data row access.
Index-only access avoids access to the data row completely.
DB2 10 for z/OS also provides the opportunity to have a
unique index with INCLUDE columns.

Today, you may have multiple indices on a table. One index is
there to enforce the uniqueness of the primary key. You may
have added another index to improve performance. The
leading columns may be the same in both indices. You may
now include additional columns in a unique index and still use
that same index as before to enforce the unique constraint.

IBM Business Unit Identifier 17

Now, the advantage of a unique index with INCLUDE
columns is that it gives you the ability to satisfy the unique
constraint check and provide the performance benefits you
want for query. The result is that you can reduce the number
of indexes required for performance reasons. For every index
you can avoid, you will improve the performance of INSERT
and DELETE and possibly improve UPDATE performance,
as well.

A number of customers evaluated both methods to try to
find the “sweet spot.” There is definite value from hash access,
provided you can determine that sweet spot. However, in
practice, the sweet spot has proved to be relatively small.
Here are guidelines for identifying the sweet spot:

•	 High NLEVELS in index (more than two)
•	 Access by applications needs to be purely direct row access

by primary key
•	 Truly random access
•	 Read-intensive, not volatile
•	 No range queries (minimize BETWEENs, >, <, and so on)
•	 Many rows per page

One of the key points about hash access performance is that
you want to “tune” the space allocation of the fixed-sized hash
area so that you reduce the number of rows that go into the
overflow index (i.e., control overflow). If the primary fixed
hash area is too small, you will have many rows in the overflow
index; on the other hand, if the primary area is too large,
you will have too much random I/O.

To help with sizing the fixed hash area size, DB2 10 for
z/OS provides a new option on the REORG utility called
AUTOESTSPACE(YES). When you perform REORG with
this option, it uses information from Real Time Statistics
(RTS) to resize the primary fixed hash area and reduce the
number of rows in the overflow index. However, even after
such a REORG, there may still be some small number of data
rows in the overflow index.

Finally, when you migrate to hash access, you will see some
degradation in the elapsed time for both LOAD and REORG
utility executions.

Availability
There are a number of enhancements in DB2 10 for z/OS to
reduce planned outages for applications and to improve the
success of the online REORG utility.

Online Schema Evolution
“Deferred Alter” is a new feature in DB2 10 for z/OS. With
this mechanism, when you make a schema change, the change
goes “pending” and it is stored in the DB2 Catalog. The next
time you perform an online REORG, the online REORG will
materialize the pending changes. You can set up many deferred
alters. Each of the changes will go pending in the DB2 Catalog
until the subsequent online REORG, when the changes will be
materialized. Why is this important? This mechanism now
gives you a migration path away from the classic table space
types of simple, segmented, and partitioned—which contain a
single table—over to universal table spaces.

18 Planning for IBM DB2 10 for z/OS Upgrade

Note

UTS is a prerequisite for some of the DB2 10 for z/OS
functions, such as hash access, inline LOB, and currently
committed. It is also a prerequisite for the cloned table
function in DB2 9 for z/OS. If a table space is a simple table
space or a segmented table space, you can have only one
table per table space to be able to use this migration path to
UTS, because UTS supports only one table per table space.

To summarize, the benefits of Deferred Alter are:

•	 Streamlining the move to UTS
•	 Reducing the administrative time and cost associated

with moving to UTS
•	 Helping minimize errors
•	 Reducing outages

Another new option is the FORCE option of online REORG.
In the last part of the REORG, when you are in the final
attempt to drain the object and are about to make the switch,
if there are “active” threads blocking, the FORCE option
allows DB2 10 for z/OS to kill the active threads.

Early beta customers found limited value to this function
because if the threadswere active in DB2, DB2 would cancel
the threads (good). But if the threads were inactive, the
FORCE function did not kill them, and the online REORG
failed. Then, when the inactive threads came back to life after
the online REORG failed, the threads were canceled on their
way back in. So the FORCE option is not a guaranteed way
to kill all blocking threads and allow the online REORG to
always make the switch.

Also new with DB2 10 for z/OS, the online REORG of LOB
table spaces provides a DISCARD option. Early customers
thought this feature was of limited value because it cannot
handle LOB column values greater than 32 K.

Note

This migration path to UTS is a “one-way ticket” only.
Once you migrate to UTS, you cannot go back using the
same Deferred Alter mechanism to simple, segmented, or
partitioned table spaces. To return to using the classic table
space types, you would have to unload the data, drop the
table space, redefine the table space as it was before, and
reload the data.

Note also that point-in-time recovery to a point before a
successful materializing online REORG is not possible. If,
for example, you have incorrect results from REORG, possibly
because the wrong rows were discarded or an application
change needs to be rolled back, you cannot recover to a point
before the online REORG.

Now, once you have migrated to UTS PBG/PBR, you can
change attributes such as DSSIZE and index page size. You can
turn MEMBER CLUSTER on and off or migrate to and from
hash access. These abilities are all provided by the Deferred
Alter mechanism, followed by the online REORG. This
function works very well and can help reduce the number of
destructive database changes that previously caused database
downtime.

IBM Business Unit Identifier 19

Other Issues
First, there is the ability to create classic partitioned table
spaces (PTS). In DB2 10 for z/OS, the classic PTS is now
deprecated, meaning that, by default, you will not be able to
create any new PTS. An attempt will be made to honor the
request by creating a UTS PBR. However, a CREATE of
UTS will support only the table-based controlled partitioning
syntax. The legacy index-based control partitioning syntax is
not supported for UTS.

So, by default, you may not be able to create any new, classic
PTS. However, customers demanded the continued ability to
create classic PTS because there are still a few areas where
classic PTS has value over UTS.

The good news is that you can still create classic PTS in DB2
10 for z/OS, and these table spaces are still officially supported.
There are two ways to continue to create classic PTS:

1. Specify SEGSIZE=0 on the CREATE TABLESPACE
statement.

2. Set new system parameter (ZPARM) DPSEGSZ to zero
(the default is 32).

Either of these methods will let you create classic PTS in
DB2 10 for z/OS. For customers who still have old COBOL
and PL/1 programs, the DB2 7 lookalike precompiler
(DSNHPC7) for COBOL and PL/I is still provided in
DB2 10 for z/OS.

The concurrency issues with parallel SQL DDL execution are
not absolutely solved in DB2 10 for z/OS, despite the DB2
Catalog restructure. While the restructure was eventually
successful for parallel BIND/REBIND activity, most
customers still experience deadlocks when running parallel
jobs with heavy SQL DDL against different databases within
the same commit scope. Therefore, some customers will still
have to run their SQL DDL jobs single-threaded.

BIND/REBIND issues
With single-thread BIND/REBIND, early customers have
reported degraded CPU and elapsed time performance on
entry into DB2 10 for z/OS CM. There are two reasons for
this experience:

•	 PLANMGMT is now ON by default, and its default value
is EXTENDED.

•	 New indexes defined for post–Enable New Function Mode
(ENFM) processing, when hash links are eliminated, are
being used even in CM.

Because we have a single code path (no dual path processing)
across the different modes of DB2 10 for z/OS, those indices
are now used even in Conversion Mode. For most customers,
single thread BIND/REBIND performance remains important
because there are no concurrency improvements until after the
DB2 Catalog restructure is completed at the end of ENFM.

With parallel BIND/REBIND jobs, particularly in data
sharing mode, we identified and addressed a number of
concurrency and performance problems prior to general
availability, including:

•	 Performance problems related to the repetitive DELETE/
INSERT process

•	 Space growth in SPT01 for both LOB table spaces and
base table spaces

20 Planning for IBM DB2 10 for z/OS Upgrade

The concurrency of parallel BIND/REBIND jobs is now
working well. There are several relevant APARs:

APAR Description

PM24721 Inefficient space search for out-of-line

LOB in data shar

PM27073 Inline LOB with compression for SPT01
to address SPT01

PM27973 More efficient space reuse for base table
and UTS

With these APARs applied, concurrent BIND/REBIND
activity in data sharing mode works well after you get past
ENFM processing.

Once beyond ENFM processing, we recommend that
customers change existing procedures to run BIND/REBIND
activity in parallel (but you should not do this until after
ENFM). Doing so gives customer installations the opportunity
to get back to and improve upon the elapsed time performance
levels experienced in DB2 8 and DB2 9 for z/OS and to reduce
application downtime when implementing new enterprise
application releases.

Incompatible Changes
The most important incompatibility relates to the CHAR()
scalar function. As an application programmer, you may want
to use this function and apply it against a decimal column value
to pull out a numeric value to assign to particular fields.

The incompatible change is documented in the install guide.
The challenge for customers is how to identify what the
rogue applications are that need be corrected. How do you
identify what the exposure is? How can you support a
phased migration?

By working with customers in the beta program, we were able
to identify the issue. APAR PM29124 was created to restore
the compatible behavior of pre–DB2 10 for z/OS, by default,
for the CHAR() scalar function. In a subsequent APAR, wewill
give you the capability to put on a new trace that will identify
those applications that are potentially exposed and require
investigation. You will then be able, at the individual package
BIND level, to indicate whether you want the new behavior.

The next incompatibility issue is with SQL stored procedures.
If you have a native SQL procedure that was implemented
and/or regenerated under DB2 10 for z/OS and you need to
fall back to DB2 9 for z/OS, that native SQL procedure will
not run. The workaround is to run ALTER PROCEDURE
REGENERATE on the DB2 9 for z/OS member. APAR
PM13525 will deal with this issue automatically for you.

Finally, there is an issue with Create Trigger for triggers
that are created on DB2 10 for z/OS. If you fall back to
DB2 9 for z/OS, such triggers will not work. The workaround
is to drop and re-create these triggers under DB2 9 for z/OS
after fallback.

Migration and Planning Considerations
This section reviews key migration and planning
considerations to take note of in planning for DB 10 for z/OS.

Migration Strategy
As in previous releases, we recommend a short time for
mixed-release coexistence in data sharing. A short period for
ENFM is also highly recommended. Support from vendors
may affect the migration staging. One concern for CM is that
some new performance improvements cannot be used.

IBM Business Unit Identifier 21

The timing for moving from Test to QA to Production
involves more options to consider. There are better controls
for preventing the use of new functions, but a long gap
between Test and Production levels is not advisable. You now
have more granularity in the migration process and can move
through mode by mode. Some customers migrate both Test
and Production to CM and then change to New Function
Mode (NFM) in a short time.

The chart shown in Figure 1.3 summarizes the history of
DB2 releases. The top line tracks the year when each release
became generally available (GA). The arrows show that the
only releases where it was possible to skip a release were from
DB2 5 to DB2 7 and from DB2 8 to DB2 10 for z/OS.

The lower part of the chart indicates the steps within the
upgrade path from DB2 8 or DB2 9 for z/OS to DB2 10 for
z/OS. The double-headed arrows indicate where you can
“go back” a step, if necessary.

Note

If you are migrating from DB2 8, you have a decision to
make. Should you go to DB2 9 for z/OS, or skip it and go
directly to DB2 10 for z/OS? Once you decide to migrate to
DB2 10 for z/OS CM8, you can still return to DB2 8. But you
cannot then try to migrate to DB2 9 for z/OS CM.

Planning considerations
In general, the DB2 10 for z/OS migration process is
very similar to that for both DB2 8 and DB2 9 for z/OS.
It works well, with few customers experiencing problems with
migration fallback. The ENFM process in DB2 10 for z/OS
runs a lot longer than it did for DB2 9 for z/OS and even
longer than it was on DB2 8.

You can migrate to DB2 10 for z/OS CM from either DB2 8
for z/OS NFM or DB2 9 for z/OS NFM. You cannot migrate
through either of the following two scenarios:

•	 Once you migrate forward from V8 NFM to DB2 10 for
z/OS CM8, you can always fall back to V8 NFM, but you
cannot then migrate forward to DB2 9 for z/OS CM.

•	 Once you migrate forward from V8 NFM to DB2 9 for
z/OS CM, you can always fall back to V8 NFM, but you
cannot then migrate forward to DB2 10 for z/OS CM8.

Here are some important APARs to remember:

•	 Fallback Toleration SPE:
 – APAR PK56922

•	 Early Code for DB2 V8/V9:
 – APAR PK87280 (supersedes APAR PK61766)

•	 Information APARs:
 – II14474: V8 to V10
 – II14477: V9 to V10

Figure 1.3. Timeline of DB2 releases and upgrade paths.

22 Planning for IBM DB2 10 for z/OS Upgrade

If you are migrating from DB2 8 NFM, the bootstrap data set
(BSDS) must be reformatted for the larger number of active/
archive log tracking.

For those who operate DB2 Connect™, the minimum level
supported is DB2 9.1 FP1. DB2 9.7 FP3A is required to
support the new DB2 for z/OS functions.

Many customers still use DDF Private Protocol under DB2 8
and DB2 9 for z/ OS. There is zero tolerance for DDF Private
Protocol in DB2 10 for z/OS. You must absolutely eliminate
all use of DDF Private Protocol before starting DB2 10 for
z/OS in CM.

Many customers have local plans and packages (CICS, IMS™,
batch, and so on) that have been accidentally mistagged as
requiring the use of DDF Private Protocol. These plans and
packages, which have been mistagged, will be tolerated.
However, if any of these packages really do perform an external
call that uses DDF Private Protocol, the call will be prevented
and the application will fail immediately.

In DB2 10 for z/OS, database request modules (DBRMs)
bound directly into plans are no longer supported. However,
if any DBRMs bound into plans are found at execution time,
DB2 will automatically trigger AUTOBIND to generate
packages on first allocation after entry into DB2 10 for z/OS.
We choose a standard collection name to put these packages
in, but the recommended best practice is to deal with DBRMs
bound directly into plans before migrating to DB2 10 for z/
OS. Any old plans and packages bound prior to DB2 V6 will
also be invalidated and go through an AUTOBIND.

During ENFM processing on DB2 10 for z/OS, all the
new indexes and new table spaces in the DB2 Catalog and
Directory will be created as SMS-controlled, requiring
extended addressability (EA) and extended format (EF)
attributes. Some customers still do not use SMS management
for the DB2 Catalog and Directory. Once you get to the
ENFM process in DB2 10 for z/OS, the datasets of the
DB2 Catalog and Directory must be SMS-managed.

For those of you coming from DB2 8, partitioned data sets
extended (PDSEs)—as opposed to partitioned data sets
(PDSs)—are required for SDSNLOAD, SDSNLOD2,
and ADSNLOAD libraries.

The environment created by the DSNTIJSS job is only for
DB2 Catalog and Directory data sets, which must be SMS-
controlled in DB2 10 for z/OS. Other DB2 subsystem data
sets, such as logs and the BSDS, are not accounted for in
this environment.

The DSNHDECP module supports the NEWFUN
parameter with the following options: V10, V9, or V8.
This provides a way of stopping both static and dynamic
SQL applications from using new SQL functions.

Many customers have old EXPLAIN table formats. DB2 10
for z/OS brings some changes in this space. First, if you have
any plan tables that use a format prior to DB2 8, they will
not work with EXPLAIN in DB2 10 for z/OS. The format
and the ASCII/EBCDIC Coded Character Set Identifier
(CCSID) from previous releases are deprecated in DB2 10
for z/OS. They will fail with an SQLCODE –20008. If you
have plan tables in DB2 8 or DB2 9 for z/OS format, youcan
still use them, but they will generate a warning SQLCODE
+20520, regardless of whether they are CCSID EBCDIC
or UNICODE.

IBM Business Unit Identifier 23

If you use the DB2 10 for z/OS format, you must use
UNICODE as the CCSID. If you try to use CCSID
EBCDIC with DB2 10 for z/OS format, you will get the
following errors:

1. EXPLAIN fails with RC=8 DSNT408I SQLCODE = –878.
2. BIND with EXPLAIN fails with RC=8 DSNX200I.

We recommend using the DB2 10 for z/OS extended format
of the plan tables with a CCSID value of UNICODE. APAR
PK85068 can help you migrate existing plan tables in DB2 8 or
DB2 9 for z/OS table format over to the new DB2 10 for z/OS
format with a CCSID of UNICODE.

Should you “skip” DB2 9?
If you decide to migrate from DB2 8 directly to DB2 10 for
z/OS, you are, by definition, an early adopter of the new DB2
10 for z/OS release. This is because the end of support for
DB2 8 is the end of April 2012. Quite clearly, the DB2 8 to
DB2 9 for z/OS migration is the safer path to take because
DB2 9 for z/OS has been in the field for almost four years
and is quite stable.

Early customer adopters of DB2 10 for z/OS, whether
migrating from DB2 8 or DB2 9 for z/OS, should expand their
plans and take extra care to mitigate the risk of instability. This
is not a statement of, nor an implication that, the DB2 10 for
z/OS release has any endemic problems of instability. These
same recommendations would apply to any release of DB2 or
any other major software product.

First, you should perform application regression and stress
testing to keep problems away from production. Next, plan
to be proactive with regard to the continual application of
preventive service maintenance. Plan to stay more current
than two full, major preventive service maintenance drops
per year. Regular, full, major preventive service maintenance
drops, including HIPERs/ PEs, are essential and required
for about a year.

We strongly recommend planning for four major preventive
service maintenance drops in the first year, based on the
quarterly RSU. Then, you can move to two major and two
minor preventive service maintenance drops as the release
passes through the early adopter curve. In between these
drops, be vigilant and take advantage of the Enhanced
HOLDDATA on a regular basis to find out which critical
HIPERs/PEs are available.

One of the advantages of the CST/RSU process for
recommended service maintenance, as opposed to the PUT
route, is that it enables you to stay current on HIPERs/PEs
that have gone through more testing but lets you stay further
back on non-HIPERs/PEs maintenance. This capability
provides some level of protection against PTFs in Error (PEs).

Finally, you have to be able to accept some level of risk and be
able to handle some “bumps in the road” during the migration.

24 Planning for IBM DB2 10 for z/OS Upgrade

Security Considerations When Removing
DDF Private Protocol
As previously mentioned, there is zero tolerance in DB2 10
for z/OS for DDF Private Protocol. Ahead of migrating to
DB2 10 for z/OS, you need to plan for and work on
eliminating all use of DDF Private Protocol and converting it
to DRDA before you leave DB2 8 NFM or DB2 9 for z/OS
NFM. There are fundamental differences in how authorization
is performed, based on which distributed protocol you use and
whether the protocols are used in combination.

Private Protocol is unique to the DB2 for z/OS requester and
supports static SQL statements only. The plan owner must
have authorization to execute all SQL requests executed on the
DB2 for z/OS server. The plan owner is authenticated on the
DB2 for z/OS requester and not at the DB2 for z/OS server.

Now, let us compare that with the DRDA Protocol. DRDA
supports both static and dynamic SQL statements. The
primary auth ID and associated secondary auth IDs must have
authorization to execute both static SQL packages and
dynamic SQL at the DB2 for z/OS server. The primary auth
ID authenticated and secondary auth IDs are associated at the
DB2 for z/OS server.

Until DB2 10 for z/OS, Private Protocol and DRDA protocols
can be used by the same application within the same commit
scope. You can “mix and match.” Private Protocol security
semantics are used due to possible inconsistent behavior,
which is dependent on how the programs are coded and
executed. That is a brief history of the differences between
Private Protocol and DRDA Protocol.

Things have changed with APAR PM37300, which applies to
DB2 8 and DB2 9 for z/OS. It provides control over the
authorization checks performed when migrating from Private
Protocol to DRDA Protocol. In DB2 10 for z/OS, Private
Protocol security semantics are no longer used because the
default is to use DRDA Protocol for access from a DB2 for
z/OS requester.

DB2 8 and DB2 9 for z/OS will now use DRDA
authorization checks and will use the DB2 system parameter
PRIVATE_PROTOCOL to determine what security checks
should be performed. This system parameter was previously
introduced for customers to prevent new use of Private
Protocol after all the previous use was eliminated. To do this,
a customer would set PRIVATE_PROTOCOL to NO.

So, before you disable Private Protocol by setting
PRIVATE_PROTOCOL to NO, ensure that all the
appropriate grants are in place by granting execute privileges
to any user who plans to run a package or stored procedure
package from a DB2 for z/OS requester at the DB2 for z/OS
server. It will be treated like any other DRDA client
application at the DB2 for z/OS server.

Clearly, this is a major change that could have a big impact.
To help customers migrate to DRDA Protocol and the changes
in security checking, both DB2 8 and DB2 9 for z/OS still
provide the option to continue to prevent the introduction of
new Private Protocol requests, but now provide the option to
continue to use the Private Protocol authorization checks.
This is achieved by changing the setting of the DB2 system
parameter PRIVATE_PROTOCOL from NO to AUTH.

IBM Business Unit Identifier 25

Save critical access paths and accounting data
BIND REPLACE and REBIND activity can cause unwanted
access path changes. You should identify important queries,
plans, and packages. Be sure that plan tables contain access
paths and costs. ALTER current plan tables to add new DB2
10 for z/OS columns. REBIND may change access paths, so
extract plans and run REBIND with EXPLAIN under a
dummy collection or a different application or program name.

Keep accounting reports for crucial queries and applications.
If you have a problem and send in accounting layout long
reports and the plan table data, we will be able to troubleshoot
the problems more quickly. If you do not have the reports and
the data, then we must guess.

Items Planned for Post-GA Delivery
The first item to mention is APREUSE and APCOMPARE.
These features are introduced with APAR PM25679. These
options of BIND REPLACE and REBIND provide a way to
generate a new SQL runtime but, at the same time, ask DB2
10 for z/OS to give you the old access path wherever possible.
So, if you have previously re-bound under DB2 9 for z/OS,
this will mitigate the risk of access path change on the first
BIND REPLACE or REBIND in DB2 10 for z/OS.
Additional items planned for post-GA delivery include
the following:

•	 In DB2 10 for z/OS, you will be able to delete a data
sharing member. This function was introduced by APAR
PM31009. Deletion of a DB2 member will require a quiesce
of the data sharing group.

•	 Inline LOBs will be introduced for SPT01 to gain the
benefits of data compression and improve BIND/REBIND
performance. This function is introduced with APAR
PM27811.

•	 Enhancements for new DBA authorities are introduced with
APAR PM28296:

 – Prevent privileged users from stopping audit traces
 – No implicit system privileges for DBADM

•	 Online REORG concurrency for materializing deferred
ALTERs is introduced with APAR PM25648.

•	 Temporal enhancements:
 – TIMESTAMP WITH TIMEZONE support
(APAR PM31314)

 – Enhancement for data replication (APAR PM31315)
 – ALTER ADD COLUMN, propagate to history table
(APAR PM31313).

•	 New system profile filters based on “client info” fields is
introduced with APAR PM28500:

 – Three new columns for userid, appname,
and workstation

 – Wildcard support: if column is ‘*’ then all threads pass
that qualification.

•	 A new DB2 system parameter (ZPARM) to force deletion
of coupling facility (CF) structures on group restart (APAR
PM28925). This feature is aimed at disaster recovery. We
want to avoid a situation during a disaster restart of using
“stale” information in the CF structures. When the DB2
member starts and it is the first member to connect to the
structure, it wipes out those structures and forces a group
restart.

•	 Relief for the incompatible change in CHAR of decimal data
by using APAR PM29124 to restore the previous behavior
that existed prior to DB2 10 for z/OS.

•	 Real storage monitoring enhancements to be provided in
APAR PM24723; this APAR also provides protection for
over-commitment of available real storage.

•	 Hash LOAD performance (APAR PM31214)
•	 DSSIZE greater than 64GB (APAR yet to be announced).
•	 REORG REBALANCE SHRLEVEL CHANGE (APAR

yet to be announced).

26 Planning for IBM DB2 10 for z/OS Upgrade

Note

RSM APAR OA35885 is a prerequisite to the enhanced
storage monitoring capability provided by DB2 APAR
PM24723. DB2 APAR PM24723 is strongly recommended
for production use of DB2 10 for z/OS.

We strongly advise customers not to go into a major
production environment without the proper monitoring of
real and auxiliary storage usage as provided by this APAR
and DB2 APAR PM24723. Together, these two APARs
provide DB2 10 for z/OS with statistics on real and auxiliary
storage use in relation to the 64-bit memory object allocated
by DB2 for z/OS above the 2 GB bar.

DB2 10 for z/OS can request z/OS to provide information
about real and auxiliary storage, based on a particular
addressing range. It provides proper monitoring when you
have multiple DB2 subsystems running on the same LPAR.
It also provides some protection against the system paging,
overcommitting real storage, or running out of AUX storage.
DB2 can free unused memory back to the z/OS operating
system.

When should you migrate to DB2 10 for z/OS?
A “normal” migration is moving one version at a time every
three years. For customers with even earlier versions, the
ability to skip a migration cycle will be attractive, but this
ability is not “something for nothing.” Customers need to
consider the tradeoffs and challenges in a “skip version”
migration. Most customers who migrate to a new version
by three years after the general announcement (GA) of the
respective new release are already on DB2 9 for z/OS.

The project for skipping a release is larger. While the testing
and rollout are only a little greater than a single version
migration, the education and remediation work is roughly
double the size; most project plans estimate 150 percent.
Consider the timing carefully. Improvements in DB2 9 for
z/OS are delayed with a “skip” release migration plan.
You may need to have extended service on DB2 8.

You will find more details about the “when to migrate”
decision, the IBM Technote at http://www.ibm.com/support/
docview.wss?uid=swg21006951.

In summary:

•	 We recommend the regular application of preventive service
maintenance. It should be a continual process.

•	 Testing should be performed over and above that performed
by DB2 for z/OS Development.

•	 CST testing still does not replace customer regression/
stress testing.

•	 You must be prepared to tolerate some “bumps in the road.”
•	 Customers who are not prepared to take mitigating actions

and have no tolerance for “bumps in the road” should not be
early adopters and should migrate directly to DB2 9 for z/OS.

For customers who are still running DB2 V7, the option to
skip from DB2 8 to DB2 10 for z/OS is very attractive and
makes the current path clear. Customers who have just
migrated to DB2 8 may like this alternative, for the short term.
DB2 10 for z/OS supports migration from DB2 9 for z/OS
NFM or from DB2 8 NFM. Customers not yet running
DB2 8 or DB2 9 for z/OS should plan to migrate first to
DB2 for z/OS V8, as preparation for an eventual migration
to DB2 10 for z/OS.

We estimate that about one in five customers migrated using
a “skip version” technique from DB2 V5 to DB2 V7, and we
expect to see a similar proportion this time. The savings for
skipping a version migration are less than 50 percent, since the
education and needed application and administration changes
are about the same. Customers who do skip migration report
that the project takes longer, about 50 percent longer than a
normal migration path.

IBM Business Unit Identifier 27

Changing from DB2 8 or earlier to DB2 10 for z/OS will
require a cultural shift that some describe as “culture shock.”
If customers spend the bulk of their migration project time in
testing, savings could be up to 40 percent. But most customer
plans should expect 20 to 25 percent reduction, compared with
two migrations.

The tradeoff for skipping is primarily the later delivery of DB2
9 for z/OS improvements, namely CPU savings, especially in
utilities and disk savings via compression for indexes, improved
insert and update rates, improved SQL, and pureXML for
developer productivity, as well as better availability.

Summary
To summarize, DB2 10 for z/OS is a very good release in terms
of the opportunities for price/performance and scalability
improvements. There is significant DBM1 31-bit VSCR after
rebind as soon as DB2 10 for z/OS CM. You can use 1 MB size
real storage page frames on z10 and z196 processor. But the
key is the use of long-term page fix on local buffer pools.
There are also improvements in terms of reduced latch
contention and latch management overhead.

Over and above the “out-of-the-box” performance
improvements as a result of BIND/REBIND and the use of
1 MB size real storage page frames, there are opportunities for
further price/performance improvements provided you have
enough real memory. It is a classic tradeoff between increased
real storage provision in order to reduce CPU resource
consumption. This includes making more use of persistent
threads both for legacy CICS and IMS/TM applications, as
well as the use of high-performance DBATs for DDF
workloads.

If you have enough real memory, you can make greater use of
the BIND option RELEASE(DEALLOCATE) with these
persistent threads. But you must recognize that increased use
of the BIND option RELEASE(DEALLOCATE) is a tradeoff;
it will lead to increased storage consumption, and you will
need to plan for additional real memory over and above the
required 10 percent to 30 percent increase just to stand still
when migrating to DB2 10 for z/OS.

The use of the BIND option RELEASE(DEALLOCATE)
with persistent threads can also reduce concurrency because
BIND/REBIND and SQL DDL activity will not be able to
break in to work.

DB2 10 for z/OS also provides opportunity for the greatly
enhanced vertical scalability of an individual DB2 member in
data sharing and the potential for LPAR/DB2 consolidation.

You must carefully plan, provision, and monitor real storage
consumption. Early customer adopters of DB2 10 for z/OS,
migrating from either DB2 8 or DB2 9 for z/OS, should make
plans and take extra care to mitigate the risk of instability.
Those steps include:

•	 Plan regular full “major” maintenance drops.
•	 Use CST/RSU recommended maintenance.
•	 Perform application regression and stress testing to keep

problems away from production
•	 Be prepared to tolerate some “bumps in the road.”

Please Recycle

© Copyright IBM Corporation 2011

IBM Global Services
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
October 2011
All Rights Reserved

IBM, the IBM logo and ibm.com are trademarks or registered trademarks
of International Business Machines Corporation in the United States, other
countries, or both. If these and other IBM trademarked terms are marked
on their first occurrence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published.
Such trademarks may also be registered or common law trademarks in
other countries. A current list of IBM trademarks is available on the Web
at “Copyright and trademark information” at ibm.com/legal/copytrade.
shtml Other company, product and service names may be trademarks or
service marks of others.

References in this publication to IBM products and services do not
imply that IBM intends to make them available in all countries in
which IBM operates.

IML14294-USEN-00

