
®

© 2010 IBM Corporation

ITM 6.x – Scenario-based troubleshooting
Scenario #1 : Missing real data on TEP console

Yew Hoong Ng – Global Response Team Asia Pacific

© 2010 IBM Corporation
2

Scenario #1

 User cannot get performance data on TEP console.

 User gets wrong performance data on TEP console.

 Slow response time to get performance data from agent.

© 2010 IBM Corporation
3

Requirements

 Increase trace level of TEPS to ERROR (UNIT:ctsql

INPUT,ERROR).

 Increase trace level of TEMS to ERROR (UNIT:kdssqprs INPUT)

(UNIT:kpx ALL).

 Increase trace level of TEMA to ERROR (UNIT:kra ALL).

 Simulate the problem and collect RAS1 log files from all components.

 All log files' timestamp must be synchronized in time.

© 2010 IBM Corporation
4

Diagram and flow description

TEP Desktop TEPS TEMS TEMA

User clicks on a Workspace

TEPS receives the request (unit:ctdatabus)

SQL statement is created with query id as a unique identifier (unit:ctsqlstatement)

TEPS’ SQL request is parsed (unit:kdssqprs) and TEMS’ SQL request is created (unit:kpxreqds)

A unique request handle is created

RPC request to TEMA is created with request handle as identifier (unit:kpxrpcrq)

A request is received (unit:kraafmgr) and data collection is started (unit:kraafira)

The result is sent back to TEMS using request handle as a reference (unit:kraadspt)

The request handle is used as a reference

TEMS receives the result using request handle as identifier (unit:kpxrpcrq)

TEPS receives the result using query id as identifier (unit:ctsqlaccesssql1)

10

1 2 3 4 5 6

789

User sees the result on a Workspace10

1

2

3

4

5

6

7

8

9

© 2010 IBM Corporation
5

Example (TEPS)

 SQL statement is created with query id as a unique identifier

 (4BD16F49.0055-11:ctsqlstatement.cpp,212,"SQLStatement::SQLStatement")

TEMS(74): SELECT UNIXDISK.ORIGINNODE, UNIXDISK.UMOUNTPT,

UNIXDISK.UDSKNAME, UNIXDISK.DSKSIZE, UNIXDISK.SPCAVAIL, UNIXDISK.SPCUSED,

UNIXDISK.PCTSPCUSED, UNIXDISK.INODESIZE, UNIXDISK.INODEFREE,

UNIXDISK.INODEUSED, UNIXDISK.PCTINDUSED, UNIXDISK.TIMESTAMP FROM

OMUNX.UNIXDISK AT('TEMS') WHERE (UNIXDISK.ORIGINNODE = ?) AND

SYSTEM.PARMA("TIMEOUT","600",3)

 (4BD16F49.0056-11:ctsqlstatement.cpp,237,"SQLStatement::SQLStatement")

TEMS(74): Values: 'IS11:KUX'

© 2010 IBM Corporation
6

Example (TEMS)

 TEPS’ SQL request is parsed (unit:kdssqprs) and TEMS’ SQL request is created (unit:kpxreqds); A
unique request handle is created
 (4BD16F49.002C-E:kpxreq.cpp,400,"AddTarget") Entry

 (4BD16F49.002D-E:kpxreq.cpp,408,"AddTarget") Adding target <IS11:KUX> to req
*.UNIXDISK <294655258>

 (4BD16F49.002E-E:kpxreqi.cpp,134,"RequestImp_constr") RequestImp RES1 Create handle
294655257, owner 294655258, obj 34F32758, node "IS11:KUX"

 (4BD16F49.004B-E:kpxreqds.cpp,482,"Update") Request <294655257> to node IS11:KUX now
has status 1

 (4BD16F49.004F-E:kpxreqi.cpp,778,"UseRequestImp") RequestImp RES1 Use handle
294655257: 34F32758

 (4BD16F49.0051-E:kpxreqmg.cpp,310,"QueueTask") Queing START PRIO req 0x34F32758
handle 294655257 node IS11:KUX

 RPC request to TEMA is created with request handle as identifier (unit:kpxrpcrq)

 (4BD16F49.0057-F:kpxreqi.cpp,835,"startRequestTask") Starting req @0x34F32758
<294655257>

 (4BD16F49.0059-F:kpxrpcrq.cpp,365,"PrintSelf") RPC request <294655257> to node
IS11:KUX address ip.pipe:#172.16.202.24[6015]

 (4BD16F49.005A-F:kpxreqi.cpp,721,"RequestImp__PrintSelf") Request to IS11:KUX,
<294655257,0> obj: 0x34F32758, retries:0, flags:0x98000000, status:1,
owner:0x3503FF88

 (4BD16F49.0063-F:kpxreqds.cpp,482,"Update") Request <294655257> to node IS11:KUX now
has status 3

 (4BD16F49.0069-F:kpxreqi.cpp,794,"BaseDrop") RequestImp RES1 Drop handle 294655257:
34F32758

© 2010 IBM Corporation
7

Example (TEMA)

 A request is received (unit:kraafmgr) and data collection is started

(unit:kraafira); The request handle is used as a reference.

 (4BD16F49.000C-1:kraafmgr.cpp,590,"Start") Start received

<294655257,0> on *.UNIXDISK

 (4BD16F49.0027-1:kraafmgr.cpp,622,"Start") Start complete

<294655257,428868573> on *.UNIXDISK, status = 0

 (4BD16F49.002D-5:kraafira.cpp,568,"DriveDataCollection")

OMUNX.UNIXDISK, <294655257,428868573> expired.

 (4BD16F49.00BA-5:kraux02b.cpp,292,"PrintSelf")

omunx_unixdisk_base @1107A0390 <294655257,428868573>

 The result is sent back to TEMS using request handle as a reference

(unit:kraadspt)

 (4BD16F49.0244-5:kraadspt.cpp,270,"sendDataToProxy") Sending 14

rows for OMUNX.UNIXDISK, <294655257,428868573>

© 2010 IBM Corporation
8

Example (TEMS)

 TEMS receives the result using request handle as identifier (unit:kpxrpcrq)
 (4BD16F49.0128-55:kpxreqi.cpp,778,"UseRequestImp") RequestImp RES1 Use

handle 294655257: 34F32758

 (4BD16F49.0129-55:kpxreqi.cpp,794,"BaseDrop") RequestImp RES1 Drop handle
294655257: 34F32758

 (4BD16F49.012B-55:kpxreqi.cpp,778,"UseRequestImp") RequestImp RES1 Use
handle 294655257: 34F32758

 (4BD16F49.012C-55:kpxrpcrq.cpp,743,"IRA_NCS_Sample") Rcvd 14 rows sz 1088
tbl *.UNIXDISK req <294655257,428868573> node <IS11:KUX>

 (4BD16F49.012E-55:kpxreqds.cpp,482,"Update") Request <294655257> to node
IS11:KUX now has status 7

 (4BD16F49.013C-55:kpxreqi.cpp,794,"BaseDrop") RequestImp RES1 Drop handle
294655257: 34F32758

 (4BD16F49.0150-E:kpxreqi.cpp,814,"BaseDestroy") RequestImp RES1 Destroy
handle 294655257: 34F32758

 (4BD16F49.0151-E:kpxreqi.cpp,794,"BaseDrop") RequestImp RES1 Drop handle
294655257: 34F32758

 (4BD16F49.0155-E:kpxreqi.cpp,144,"RequestImp_destr") RequestImp RES1
Delete handle 294655257, owner 294655258, obj@34F32758

 (4BD16F49.0156-E:kpxreqds.cpp,482,"Update") Request <294655257> to node
IS11:KUX now has status 8

© 2010 IBM Corporation
9

Example (TEPS)

 TEPS receives the result using query id as identifier (unit:ctsqlaccesssql1)

 4BD16F49.005F-

C:ctsqlaccesssql1.cpp,1001,"CTSQLEvaluatorSQL1_i::AccessElement:

:pullSequenceWithTimeout") TEMS(74): Rows returned: 14

© 2010 IBM Corporation
10

Reference – TEMS Proxy request table

0 = CTIRA_init

1 = CTIRA_connect_requested

2 = CTIRA_disconnect_requested

3 = CTIRA_connected

4 = CTIRA_connect_failure

5 = CTIRA_disconnected

6 = CTIRA_disconnect_failure

7 = CTIRA_data_arrived

8 = CTIRA_deleted

9 = CTIRA_persist_connect_requested

10 = CTIRA_persist_connected

11 = CTIRA_persist_connect_failed

