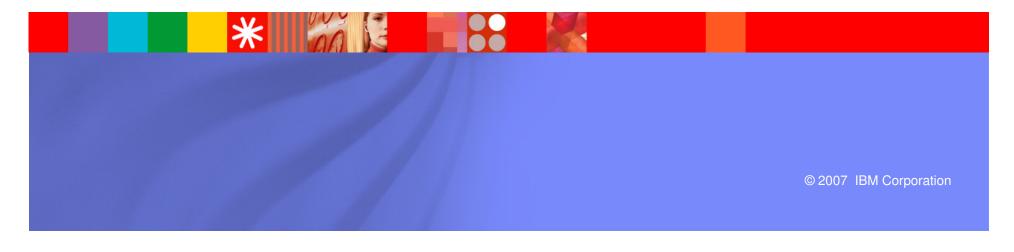
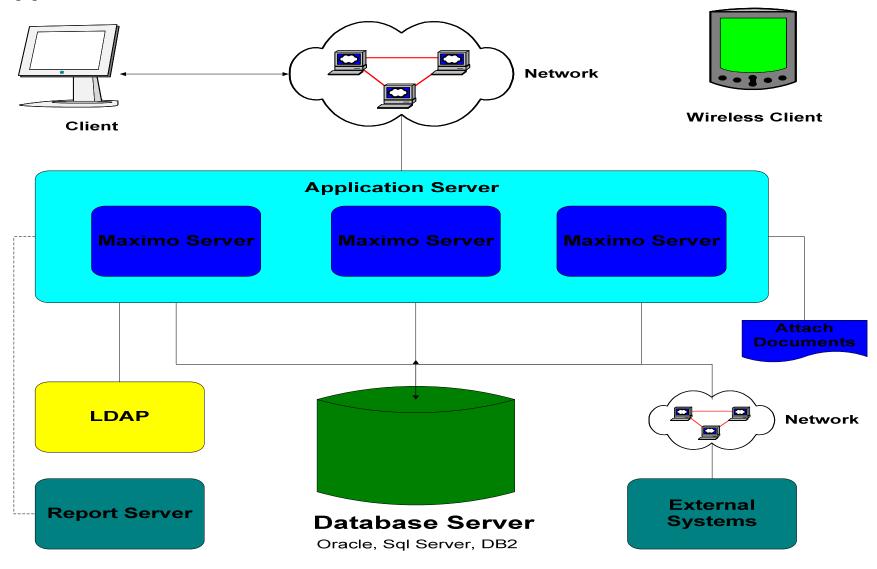


Maximo Performance Best Practices

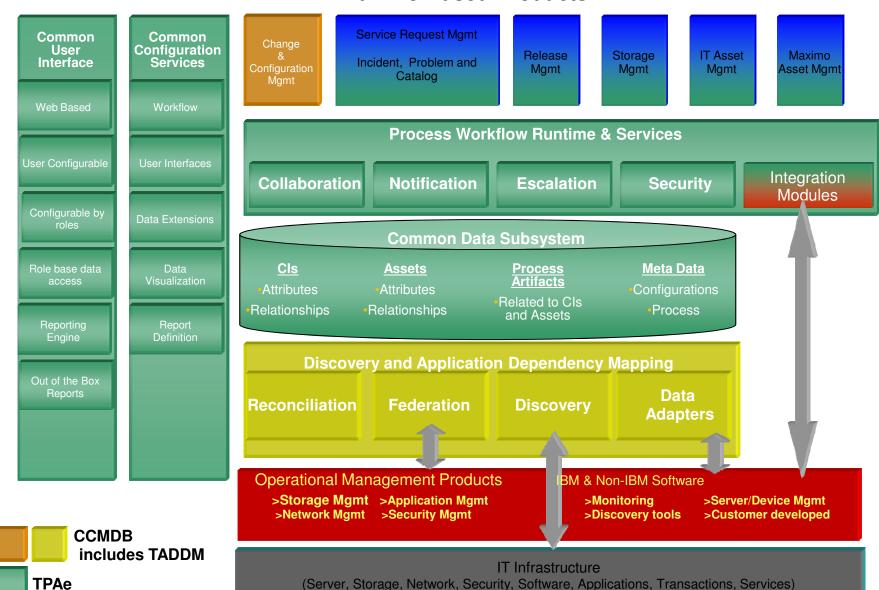
Tivoli software

Overview


- Application Architecture
- Approaches to Performance Tuning
 - Sizing and Planning Pre-implementation (proactive)
 - Best Practices
 - Problem Resolution (Reactive responding to issues)
- Proactive Approach
 - Hardware and Storage Sizing
 - Application Sizing, Software Clustering
 - End to End Tuning
- Best Practices
 - Best Practices Tuning
- Reactive Approach
 - Problem Identification
 - Successful Resolution Identification
- Questions

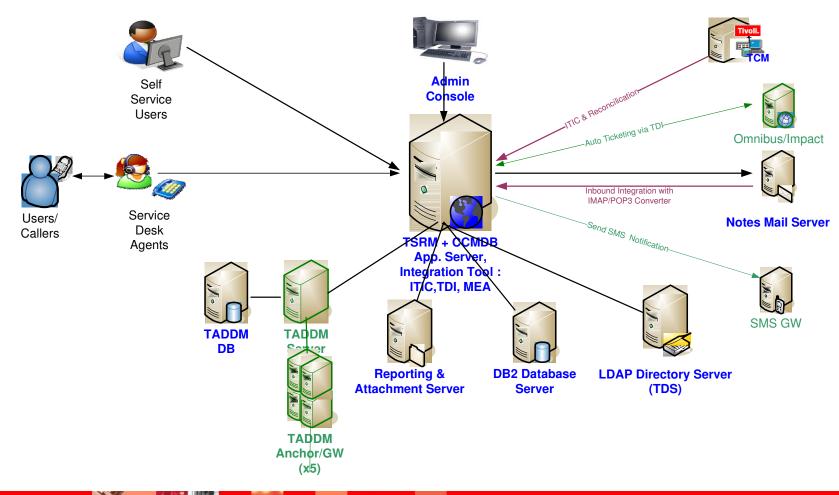

Application Architecture

Tivoli software



Application Architecture

Maximo Based Products

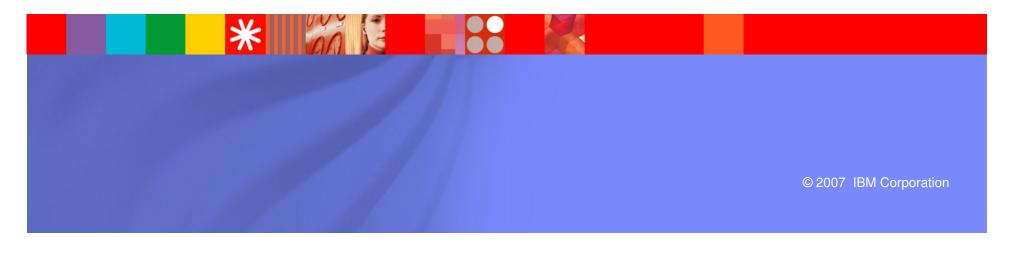


Application Architecture

Sample Production System

Approaches to Performance Tuning

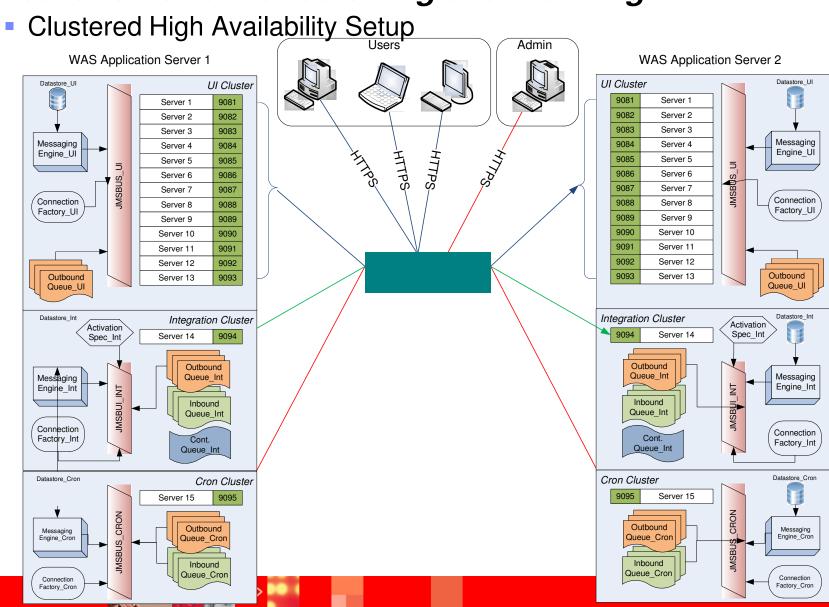
Tivoli software


Approaches to Performance Tuning

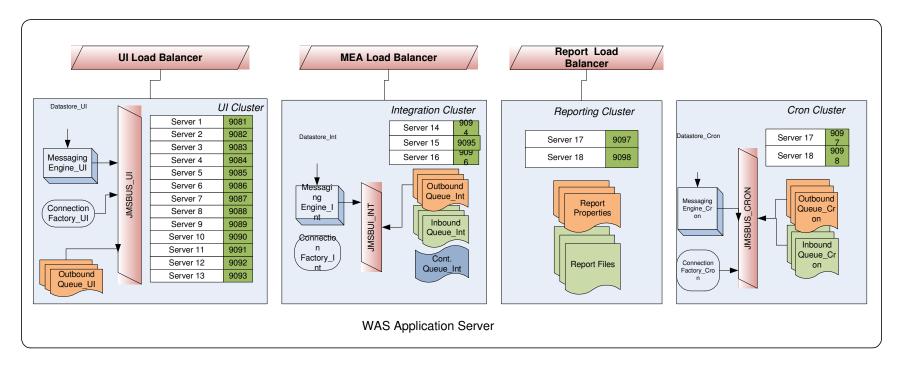
- Proactive
 - Usually done during roll out to prepare for go live loads
 - Planning hardware for required loads and throughput
 - Clustering for required loads and fault tolerance
 - Planning storage requirements
 - Implementation Options
- Best Practices
 - Implementation experiences
 - UAT Testing
 - Load Testing
- Reactive
 - Usually done in response to a problem. (this is the least preferable option as it means that users have already been impacted)
 - Expensive and time consuming
 - Focuses on analysis and most likely cause

Tivoli software

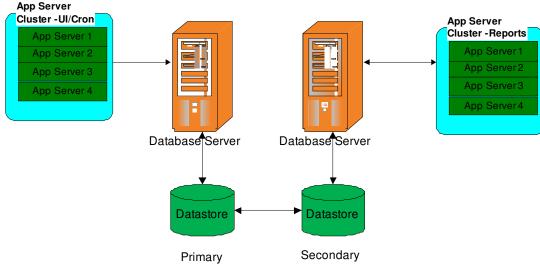
- Size your environment
 - Hardware Sizing
 - Application Server
 - Database Server
 - Reporting and LDAP Server
 - Application Server Sizing
 - JVM
 - Memory Both physical memory and JVM memory
 - Integration Component Sizing
 - Transaction rates
 - Clustering
 - Database Sizing
 - Disk Usage sizing
 - CPU sizing
 - Database memory


- Application Server Sizing and Setup
 - Application Servers should always be setup in a cluster
 - Cluster member JVM's should be sized based on the user load
 - Why is clustering so important?
 - Various clusters of the system
 - UI Cluster Supports end users.
 - Crontask Cluster Supports background tasks
 - Integration Cluster Supports integration transactions
 - Reporting Cluster Supports reporting in a high performance, high availability mode

- Keep JVM and Application Server fix packs updated
 - Within the same version, updated to latest fix packs to take advantage of application server fixes
- 32-bit environment versus 64-bit environment
 - 32-bit environment has memory limitations for JVM
 - Due to memory limitations, server stability becomes an issue
 - Convert 32-bit JVM environment to 64-bit environment



- High Performance Clustering
 - Create separate clusters to gain high throughput
 - UI, MEA, Reporting, Cron task
 - Transactions get load balanced across multiple servers



- High Availability Database Setup
 - Platform Specific
 - DB2 provides HACMP and HADR
 - Oracle has RAC
 - SQL Server High Availability
 - High Availability helps in failover

Separate reporting database helps reduce load on the primary database.

Best Practices

Best Practices

- JVM clusters for like functionality (UI, Integration, Cron, Reports, etc.)
- Application Server/JVM settings
- User queries and search types
- Reporting database
- IBM HTTP Server settings
- Database connection pooling properties
- Database parameters/indexes/statistics
- Network acceleration/compression/cache
- Load test before going live
 - If adding new sites or increasing user load, repeat load test
- Maximo 7 Performance Best Practices
 - http://www-01.ibm.com/support/docview.wss?uid=swg21440192
- Best practice tip
 - Keep a spreadsheet of your entire setup information

Application Server/JVM Best Practices

- JVM clusters for like functionality (UI, Integration, Cron, Report, etc.)
- JVM heap memory settings are very important and play a big role in application server performance
 - Heap memory setting varies between 32 bit application servers and 64 bit application servers
 - 32 bit Maximum is 3GB based on the platform. Windows 32 but machine can only handle 1.8GB of heap for a JVM
 - 64 bit You can increase the heap memory.
 - Initial heap size and Max heap size
 - What is the best setting?
- -Dsun.rmi.dgc.ackTimeout=10000
 - Extremely important setting for Maximo due to heavy use of java rmi objects
 - Without this setting, maximo objects are held in memory for longer duration, which can lead to
 - Out of Memory situations
 - Too many database connections

Database Best Practices

- Tune database as per install and best practices documents
- Database tuning gives the best ROI for performance
 - Database is the most critical part of Maximo application
- Database specific settings are documented in install guide and best practices document
 - Oracle cursor sharing, increase SGA
 - DB2 lock timeout, memory settings
 - SQL Server turn off page level locking, Maximo properties for SQL Server
- Analyze database memory and user I/O
 - Maximo fetches lot of data into application server
 - Increase system memory. Helps reduce user I/O
- Separate tablespaces and mount points to optimize I/O
- Educate users on ad-hoc queries
 - Check for newly created user gueries and optimize them
- Reduce start center data retrieval
 - Keep the default start center to be a simple minimal data fetch
 - There can be multiple start center, but the first one displayed should be simple to avoid excessive data fetch

Database Best Practices

- Setup an index statistics update schedule
 - Weekly update helps in better performance
- Purge / Archive data
 - Transactional data needs archiving plus purging
 - Non-transaction data should be purged on a regular basis
 - E.g. Workflow transaction data, login tracking, start center
- Add indexes as they are needed
 - Do not be scared to add indexes
 - In Maximo, 80% is data fetch, 20% is data insert/update
 - Lack of right index causes more performance problem than slowing down on insert/update
- If possible, change WILD card searches to EXACT and educate users to use % wild card option in search fields
 - This reduces un-necessary like searches and greatly improves database query timings

Database Best Practices

- Use Maximo tool Integrity Checker to find Maximo schema problems that can affect applications as well as performance
 - Integrity Checker can be found in the Maximo tools folder
 - Integrity Checker should be done in development phase to production phase

Report Performance Best Practice

- Decide whether to have separate report server cluster or use the UI cluster for reporting
- Each one has its own pros and cons. Both are fine as long as they are configured right
- UI Cluster for reporting
 - Pros
 - Able to utilize the UI JVM's for reporting
 - Less complex setup
 - Less Infrastructure needs
 - Cons
 - May experience user response degradation due to very large / complex reports taking up JVM resources
- BROS cluster for reporting
 - Pros
 - Separate JVM's provide better response
 - Cons
 - More complex setup
 - More infrastructure needs

Report Performance Best Practice

- BROS option
 - Helpful when using a separate reporting database
- Identify long running reports from report usage and tune them
 - Can identify poor performing ad hoc reports
- Scheduled report cron tasks
 - Separate these out of UI servers
 - mxe.crontask.donotrun=REPORTSCHEDULE
 - No need to explicitly mention the instance name, just put REPORTSCHEDULE in the do not run list to separate them out of UI server
- BIRT Reporting Performance document link
 - https://www-304.ibm.com/support/entdocview.wss?uid=swg21305031

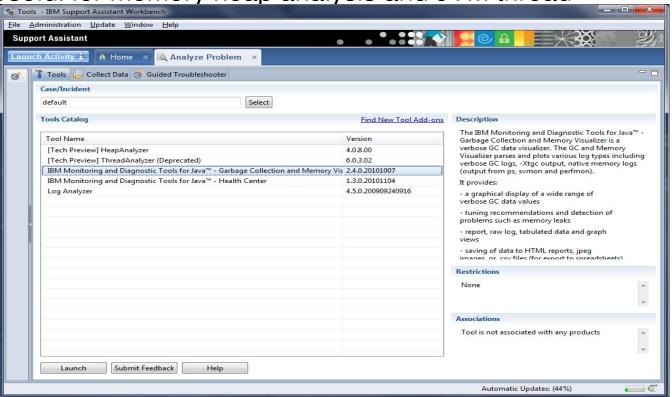
Logging Best Practices

- Keep Maximo as well as application server logging to minimal level unless investigating a problem
 - Set everything except Maximo root logger to ERROR
 - Maximo logging adds 5% + overhead
- Clean up log folders from filling up
 - Watch out for heap dumps as these files are very large
- Since logging changes can be applied dynamically, turn logging on when needed and turn it off when done
- For SQL performance analysis
 - Use logSQLTimeLimit , extremely useful
 - Collect them in separate log files
- If analyzing memory usage
 - Use verbose GC logging. Clean up old log files
 - Use Garbage Collection and Memory Visualizer to analyze

Maximo Built in Tools to Help Troubleshoot

- FetchStopLimit
 - Enable and use until you reach a stable state. Returns an error to the end user. Can collect the information from the log and contact support
 - mxe.db.fetchStopLimitEnabled
 - mxe.db.fetchResultStopLimit
 - mxe.db.fetchResultStopLimit.OBJECTNAME
 - mxe.db.fetchStopExclusion
 - Using fetch stop limits to prevent out-of-memory errors
 - https://www-304.ibm.com/support/docview.wss?uid=swg21412865
- FetchResultLogLimit
 - This greatly helps in identifying excessive data fetch
 - Use this to identify the code that is fetching excessive data
 - Depending on data or code fix, adjust the data or get a code fix

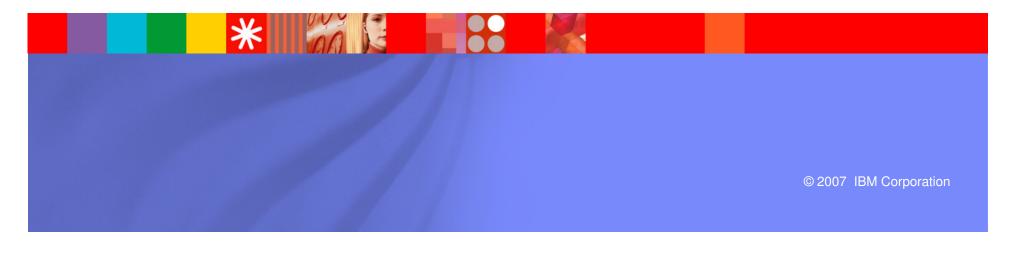
Maximo Tools to Help Troubleshoot


- System Properties used as part of logging
 - Enabled through System Properties application. Dynamic, can be enabled without re-building application ear file
 - SQL logging to collect all SQL statements Logging Application
 - Use the following system properties to collect useful log information
 - mxe.mbocount (5.2 P05 and later)
 - mxe.db.fetchResultLogLimit (5.2 P02A and later)
 - mxe.db.logSQLTimeLimit (5.2 P02A and later)
 - mxe.db.logSQLPlan (6.0 P01 and later; Oracle only)
 - mxe.db.sqlTableScanExclude (6.0 P01 and later; Oracle only)
- Use Maximo tool Integrity Checker to find Maximo schema problems that can affect applications as well as performance
 - Integrity Checker can be found in the Maximo tools folder
 - Integrity Check should be done in development phase to production phase

IBM Support Assistant

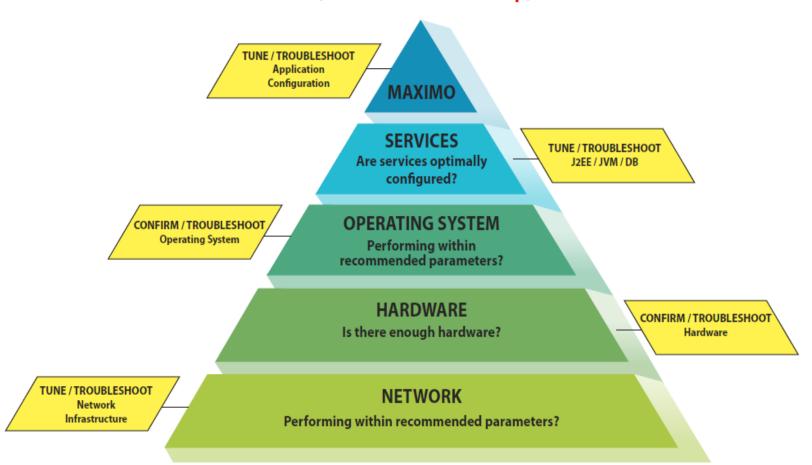
- Available from IBM Support Site
- Contains many add-on tools

Useful for memory heap analysis and JVM thread


Best Practices

- Implementation Options
 - RMI Server Deployment Deploy RMIREG.WAR
 - Search Methodologies Default to "EXACT"
 - User Training Best practices and procedures for tasks
 - Network Appliances Riverbed, Juniper, Citrix
 - Task Focused Screen Design Create small screen
 - Off Hours WO Generation, Reorder, Crons, and Reporting
 - Client Browser Configuration Page refresh to Automatic

Tivoli software


- Define problem, resolution, and focus
 - Analyze and clearly define reported problem
 - Reported problems are often not clear. Understand what is being reported.
 "Application is slow" is not a definition. Find out what is slow. See it for yourself if possible.
 - Determine/define what is "successful resolution"
 - Don't allow client perception to interfere with a solution. Get a clear definition of what is acceptable so you have a measure for success.
 - Focus on technologies that might impact issue
 - If users at one plant are affected but users at another plant are not affected, it is likely not a server problem. Focus on items that can impact the affected area.

Identifying Problem Areas

(End to End / Bottom Up)

- Indentifying Problem Areas
 - Application Physical Server
 - Operating System (AIX,HP-UX,Linux,Solaris,Windows)
 - Java Application Server (WebSphere/WebLogic)
 - Java Virtual Machine
 - Application (Maximo, CCMDB, SRM, TAMIT, etc)
 - Database Physical Server
 - Operating System
 - Database Server (DB2, Oracle, SQL Server)
 - Network Connections (DB and Client)
 - Client Physical Equipment
 - Client Browser Configuration
- * Bold items most common with highest impact

Maximo Index Analysis

- Use database tools to find long running queries and recommended indexes
- In Maximo, use Maximo logging to collect long running queries and analyze index usage
 - If needed alter the query to better utilize existing indexes
 - Enable mxe.db.logSQLTimeLimit = 1000 to collect all SQL statements that are longer than 1 second
 - Extract from logs and order by longest time consuming queries
 - Run them through SQL development tools and add required indexes
 - Always make sure the indexes are added through Maximo DB Configure to retain during fixpack application and upgrades
 - Add non-standard indexes through scripts and run the script after each database configuration (configdb) operation

Search Methodology Change

- Converting WILDCARD search to EXACT match has resulted in better performance
- Application users need to be educated
 - Change impact on them
 - How it improves the performance
 - Resulting benefits
- This change improves
 - Query retrieval times
 - Reduces data volume
 - Improves the overall database response
- End users can still use %value% to achieve WILDCARD searches
 - The default behavior is set to EXACT
- Change LIKE functionality in stored queries and custom relationships

- Maximo Logging and Activity Dashboard
 - Activity Dashboard Used to be called as performance monitor
 - Not a monitor, but a debugging tool
 - Available by default from Maximo 7.1.1.6 onwards
 - It was introduced during Maximo 5.2, but is part of the product now
 - Enable in development / test / breakfix area to identify the problem
 - Enabled through web.xml and requires a ear file rebuild and re-deployment
 - Do not use in production environment, uses lot of memory and will bring down the server
 - You can identify the SQL statements for a transaction and the time taken
 - Can also identify for the origin of the sql statement
 - SQL timings are noted
 - Object counts are noted

Maximo Performance Monitor Configuration

https://www-304.ibm.com/support/docview.wss?uid=swg21448706

Application Server

- IBM WebSphere Tuning (can cause application to hold objects too long if not set correctly)
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21261874
- Oracle WebLogic Tuning
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21261853

Network Performance

- Network caching and compression properties
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21262009
- Browser Caching (Helps with Wide Area Network -WAN- performance and high latency)
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21292557

Database Server Performance

- All SQL Server Environments (applies to all SQL Server 7, 2000,2005)
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21261979
- SQL Server 2000 with Maximo 6.2 and above (required additional parameters)
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21313428
- SQL Server 2000 with Maximo 6.1 and below (correct parameter settings)
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21295983
- SQL Server 2005 (correct parameter settings)
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21296072
- SQL Server 2005 (row versioning)
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21440598

Database Server Performance

- Oracle Cursor Sharing (All Oracle Releases)
 - http://www.ibm.com/support/docview.wss?rs=3214&uid=swg21262959
- DB2 Performance
 - https://www-304.ibm.com/support/docview.wss?uid=swg21421645
- DB2 Parameter Tuning
 - https://www-304.ibm.com/support/docview.wss?uid=swg21451593

Troubleshooting

- Debug properties
 - http://www-01.ibm.com/support/docview.wss?uid=swg21291250
- Must Gather General Information
 - http://www-01.ibm.com/support/docview.wss?uid=swg21313647
- Must Gather Performance
 - http://www-01.ibm.com/support/docview.wss?uid=swg21313341
- Logging
 - http://www-01.ibm.com/support/docview.wss?uid=swg21264064
- Logging Appenders
 - http://www-01.ibm.com/support/docview.wss?uid=swg21446599

Best Practices

- Maximo 5 and 6 Performance Best Practices
- http://www-01.ibm.com/support/docview.wss?uid=swg21395387
- Maximo 7.1 Performance Best Practices
 - -http://www-01.ibm.com/support/docview.wss?uid=swg21440192
- Maximo 7.5 Performance Best Practices
 - http://www.ibm.com/support/docview.wss?uid=swg21591070
- Maximo Wiki
 - http://www.ibm.com/developerworks/wikis/display/maximo/Home

