
Sam Sriramadhesikan
14 August 2012

Scripting

Agenda

 Architecture

 Automation Scripts application

 Launch Points

 Variables

 Deep Dive into Launch Points

 Logging

 Resources

User Need
 Ability to rapidly extend packaged applications
 Typical user challenges

– Limited to no Java skills; avoid Java-based development
– Reduce system downtime across the product environments

 Primary customization areas
– Business object extensions
– Field validations
– Workflow / Escalation actions

 Driven by customer and exploiter requirements
– Maximo Advisory Council
– IBM Service Management product family

What is a script?
 Short pieces of code

 Simplified programming model

 Usually used to glue or extend applications

 Usually interpreted (vs compiled Java or C/C++)
 Example – add all asset spare part quantities together and

set total into ASSET.SPAREQTY:
 spPartSet = mbo.getMboSet('sparepart')

 partCount = spPartSet.count()
 totalQty = 0.0
 for i in range(partCount):
 partMbo = spPartSet.getMbo(i)
 totalQty += partMbo.getDouble('quantity')
 mbo.setValue('spareqty',totalQty)

Why scripting?
 Java skills and implementation increase IT costs

– Java/JEE developers

– API knowledge/compatibility

– Performance/functionality issues

– Build process for WAR, EAR, JAR files

– Server shutdown / re-starts

 Scripting promotes simplified programming model

 Scripting is completely dynamic (no server re-starts)

Scripting Strategy for 7.5
 Tpae 7.5 exploits scripting API that is part of JDK 6

– JSR 223 – standardized scripting API for Java

 Supports two script engines out of the box
– Rhino JavaScript (embedded with JDK 6, compliant with JSR 223)

– Jython 2.5.2 (newer version compliant with JSR 223)

 Other JSR-223 compliant script engines can be seamlessly
plugged in
– Provides programming flexibility to clients and practitioners

– Example: Jacl, JRuby, Groovy, Jawk

– Place JARs in application server classpath and re-start server

Scripting Strategy for 7.5

 Tpae scripting can be enabled for many different
configurations
– No longer limited to just actions

– Script creation and management remains the same

 Tpae scripting supports simple coding approach
– Launch points offer closer alignment with Tpae applications and

configurations

– Script variables and bindings to pass in data and return results

– Detailed knowledge and experience of Maximo APIs not a pre-requisite

Runtime

Script Driver

Script Engine
Script Engine

Design Time

Scripting architecture in 7.5

Tpae Database

Script

Script Driver

Script Engine

Script

Launch Point Action
Launch
Point

Object
Launch
Point

Attribute
Launch
Point

Condition
Launch
Points

Field
ValidationsObject EventsAction

UI constructs

Workflow

Escalation

Conditional
UI

Workflow
Condition

Node

Scripting constructs in 7.5

Script

Variables

Objects
Attributes

Actions

Tpae native
configuration or

application

Configuration or application
context for script

Input and output variables
to script

Script executed passing
inputs and returning

outputs

Bindings
Launch Point

Binding
application/configuration

data to variables

Conditions

Automation Scripts application

 Creation and maintenance of launch points, scripts and
variables

 Wizards to create launch points
– Object Launch Point

• Execute scripts on MBO events such as init, add, update, or delete

• Execute scripts conditionally (based on criteria)

– Attribute Launch Point
• Execute scripts during field validations

– Action Launch Point
• Execute scripts in the context of workflow/escalation actions

– Custom Launch Point
• Workflow conditions and conditional expressions can be enabled

Automation Scripts application

 Declare input and output variables

 Bind variables to MBO attributes, system properties,
MAXVARs or literals

 Share script among multiple launch points

 Import existing script files created externally into application

 Promote scripts and launch points from development to
production with Migration Manager

 Specify logging level and place log statements within script

Automation Scripts application
 Go To->System Configuration-

>Platform Configuration->Automation
Scripts

 Security Group MAXADMIN granted
access to the application out of the
box

 Standard power application with four
tabs
– List

– Automation Script

– Variables

– Launch Points

Automation Scripts application - creation

 Create raw script
– Script can be subsequently associated with launch point

 Create launch point associated with variables and scripts
– Wizards to guide users through creation sequence

Automation Scripts application - maintenance

 Maintain existing launch points, variables and scripts from
main tabs
– Modify script code

– Add or modify variables

– Reconfigure launch point

– Deactivate or activate launch point

– Delete existing launch points, variables and scripts

Launch Points

 Launch Point is a complete script configuration

 Launch point configuration consists of three parts
– Target application or context the script should execute on

– Body of the script

– Variables to be passed between application and script

Variables Script

Launch Point

Objects Attributes Actions Workflow
Conditions

Security
ConditionsObjects Attributes ActionsObjects Attributes Workflow

ConditionsActionsObjects Attributes Security
Conditions

Workflow
ConditionsActionsObjects Attributes

Variables
 Variables enable data to be passed to and returned from

script

 Exploiting variables simplifies script code

 Variables have these characteristics:
– Variable Type: IN (passed to) or OUT (returned from) or INOUT (both)

– Variables of type OUT are set back into a business object

– When setting back to business object the following can be controlled:

• Allowing or suppressing validation

• Allowing or suppressing access control

• Allowing or suppressing action

Variables

 Variables have these characteristics:
– Variable Binding: Variables can be bound to one of:

• Business object attribute (MAXATTRIBUTE)

• System property (SYSPROP)

• MAXVAR

• Literal value

– Variable Binding: Variables can receive a global binding value that can
be overridden per launch point

• Global binding value is common to all launch points associated with the script

• Global binding value overridden for a particular launch point, if needed

Variables
 Variables are always bound to the source or target of data

 Variable binding is declared at the script level
– Can be overridden per launch point

Variables

Script

Launch Point

Launch point associated with ASSET business
object, runs upon update of ASSET record

IN variables receive SITEID, ASSETTYPE

OUT variable sets DESCRIPTION

siteidassettype desc

Implicit Variables
 Script code made simpler by providing implicit variables
 Implicit variables are automatically available to a script
 No need to declare these separately in Automation Script application

Implicit variable Description
user IN variable only; provides currently logged in user’s ID
app IN variable only; provides application name that script is

executing against

evalresult OUT variable only; workflow condition and security condition
scripts return true / false values always

errorgroup OUT variable only; script code sets Tpae error group configured
in Database Configuration application

errorkey OUT variable only; script code sets Tpae error key configured in
Database Configuration application

params OUT variable only; script code sets an array of parameters that
populate the error message specified by errorgroup, errorkey

Additional implicit variables
 These implicit variables are associated with a primary variable
 For example, if an OUT variable called siteid is specified for a script, then

siteid_readonly will cause the associated SITEID attribute to become read-only

Implicit variable Description
_readonly Retrieve or set the read-only flag for a business object attribute
_required Retrieve or set the required flag for a business object attribute
_hidden Retrieve or set the hidden flag for a business object attribute
_internal IN variable only; provides the Tpae internal value for a

SYNONYMDOMAIN entry

_initial IN variable only; provides the initial value for an attribute as
retrieved from the MBO

_previous IN variable only; provides the previous value for an attribute as
retrieved from the MBO

_modified IN variable only; provides a flag indicating if the value for an
attribute has been modified

Variables bound to attributes
 Variables that are bound to business object attributes can be configured in a

number of ways

Variable Binding Description

Attribute Variable receives its value from the business
object’s attribute

Relationship.Attribute Variable receives its value from a related
business object’s attribute (multiple relationships
can be traversed using Tpae standard ‘dot’
notation)

Arrays Variable receives an array of values from a
business object’s attribute (multiple relationships
can be traversed)

Array Notations

 Array notations only allowed on IN variables with
MAXATTRIBUTE bindings

 Existing 7.1.x support:
– POLINE.POCOST.costlinenum

From PO business object, traverse the ‘POLINE’ relationship and retrieve
the first POLINE record, traverse the relationship ‘POCOST’ and
retrieve first POCOST record and return the value of COSTLINENUM

– POLINE[i].POCOST[j].costlinenum

From PO business object, traverse the ‘POLINE’ relationship and retrieve
the ith POLINE record, traverse the relationship ‘POCOST’ and retrieve
jth POCOST record and return the value of COSTLINENUM

Result of these expressions is a single value

Array Notations
 Support in 7.5:

 Existing 7.1.x features carried forward

 Array of values can be obtained in a qualified manner

– POLINE.POCOST

Return all POCOST records for all POLINE records

– POLINE[linecost>100].POCOST[percentage<100].loadedcost*

Return an array of loadedcost values for those POCOST records where
percentage is less than 100 for all POLINE records where linecost is greater
than 100

– POLINE[linecost>100].POCOST[cond:COSTCONDN].loadedcost*

Return an array of loadedcost values for those POCOST records that satisfy the
Condition Expression specified by COSTCONDN for all POLINE records where
linecost is greater than 100

Array Notations
 Business objects can be traversed in the following ways:

– By index (example, POCOST[j])

– By SQL filter (example, POLINECOST[linecost>100]

– By condition expression (example, POCOST[cond: COSTCONDN])

 Results of traversal always end with a single attribute value or array of
attribute values

– POLINE[i].POCOST[j].costlinenum

– POLINE[linecost>100].POCOST[percentage<100].loadedcost*

Variables with binding to business object attributes can be
initialized using the scripting framework array notations rather

than coding with Tpae API within the body of the script.

Object Launch Point

 Defines a script configuration executed during business
object events
– Initialize

– Insert

– Update

– Delete

 Supports both persistent and non-persistent objects

 Business object events can be filtered to meet specific
criteria

 Three-step wizard to create configuration

Object Launch Point Demo

 Scripting ingredients to implement this requirement:
1. Define an Object launch point that executes whenever a newly inserted asset record is saved

2. Define the script that associated prefix with and associate with the Object launch point

3. Test the Object launch point and script immediately and activate or de-activate as desired

Requirement:

When a new asset record is created with the Assets application,
the asset number should adhere to the following naming

convention: asset number should be prefixed with the type of
asset being created.

Asset Type Prefix
FACILITIES FT
FLEET FL
IT IT
PRODUCTION PR

Attribute Launch Point

 Defines a script configuration executed during field
validations
– Script executes against the validate() method of MboValueAdapter

 Supports both persistent and non-persistent attributes

 Script can trigger display of informational, warning or error
messages based on validation logic

 Three-step wizard to create configuration

Attribute Launch Point Demo

 Scripting ingredients to implement this requirement:
1. Define an Attribute launch point that executes whenever Purchase Price field is

tabbed out of

2. Define the script that configures the fields and associate with the Attribute launch
point

3. Test the Object launch point and script immediately and activate or de-activate as
desired

Requirement:

If Purchase Price on an asset is more than $100, Vendor field
must be populated. If Purchase Price on an asset is less than

$100, Vendor field is not required. For any Purchase Price,
Replacement Cost should be half the Purchase Price.

Action Launch Point
 Defines a script configuration executed as part of workflow process or

escalation point

– Action record is generated during launch point creation

– Action record is of type ‘CUSTOM’

– Tpae 7.5 scripting provides out of the box Java class callable from action to
execute script

– Out of the box Java class accepts three parameters:

Param 1 Script name
Param 2 Launch Point name
Param 3 Action name

– Parameters are auto-populated during launch point creation

Action Launch Point Demo

 Scripting ingredients to implement this requirement:
1. Define an Action launch point that computes target contact and start dates and

generates work log entry

2. Define the workflow process that incorporates the Action launch point

3. Test the workflow process, action launch point and script immediately and activate
or de-activate as desired

Requirement:

As part of a workflow process operating on a Service Request
record, system initiated processing computes target contact and
target start dates and also creates a work log entry against the

Service Request.

Custom Condition Launch Point
 Conditions are commonly configured in Tpae

 Two types of conditions are enabled for scripting in Tpae 7.5

– Worflow Conditions (as defined in Condition Node)

– Security / Conditional UI (as defined in Condition Expression Manager

 Two steps to fully enable scripted conditions:

– Define the Custom Condition Launch Point

– Associate the Launch Point with workflow Condition Node or Condition Expression Manager

 Condition Node and Condition Expression Manager configuration must be performed in
native applications

– Workflow Designer (define CUSTOM condition in workflow canvas)

– Condition Expression Manager (define CUSTOM expression)

• Type=CLASS, Class=com.ibm.tivoli.maximo.script.ScriptCustomCondition

• Expression should hold launch point information: <script name>:<launchpoint name>

 Tpae 7.5 scripting provides out of the box Java class callable from either type of condition

 Script must always return true or false (evalresult OUT variable)

Custom Condition Launch Point Demo

 Scripting ingredients to implement this requirement:
1. Define an Custom Condition launch point evaluates the status of an asset record

2. Define the condition expression that will invoke this script

3. Define the signature option that will controls access to the Spare Parts tab

4. Associate the condition expression and signature option with MAXADMIN security
group

5. Test the complete configuration immediately and activate or de-activate as desired

Requirement:

For all users in the MAXADMIN security group, for assets that
have status of DECOMMISSIONED, Assets application must not

display the Spare Parts tab.

Skills
 Scripting is targeted at exploiters and implementers

 Exploiters may deliver out of the box script content for their
product capabilities
– TSRM Service Catalog shopping cart scripts

– CCMDB / RBA script to trigger provisioning workflows in TPM

 Implementers create scripts to accelerate production roll out

 Experience with Tpae configurations is a pre-requisite
– Data model and relationship knowledge extremely valuable

 Knowledge of scripting language syntax and operations is a
pre-requisite

 Knowledge of Tpae business object API is an advantage,
though not required

Deployment approach

 Scripts should be created and tested in development
environments

 Application behavior with and without scripts can be
measured – simply activate or de-activate the script

 Scripts can be packaged using Migration Manager and
distributed to pre-production and production environments
– Migration group SCRIPTCFG

– DMSCRIPT object structure

– DMLAUNCHPOINT object structure

– Launch points that were active in source will be migrated and set active
in target

Script Logging

 autoscript logger set to ERROR level out of the box

 All log statements from scripting framework and individual
scripts processed by autoscript logger

 Logging for individual scripts
– Place print statements inside the script

– Print output redirected to autoscript logger

– Each script can configure the log level of its print statements

– All print statements inside body of script redirected to same log: no
support to generate mixed logs (example, ERROR and DEBUG)

 Recommendation is to redirect scripting logs to dedicated log
file

Script Logging
 Log statement indicates execution time

– Irrespective of log level

– System property mxe.logging.CorrelationEnabled must be enabled
15 Mar 2011 22:45:40:333 [INFO] [MXServer] [CID-MXSCRIPT-102] Correlation started.
15 Mar 2011 22:45:40:423 [INFO] [MXServer] [CID-MXSCRIPT-102] The total time taken to execute

the CONCATSR script for the CONCAT launch point is 16 ms.
15 Mar 2011 22:45:40:423 [INFO] [MXServer] [CID-MXSCRIPT-102] Correlated data: BEGIN

evalScriptTime:89 app:SR Script:CONCATSR MboId:288 MboName:SR LaunchPoint:CONCAT
evalINParamsTime:1 UserName:SR evalOUTParamsTime:0 ElapsedTime:90 ms END

 Specify DEBUG level in autoscript logger to obtain additional execution details on
a script

– Prior to executing, print the binding values for script variables

– After executing, print the updated values

– If errorkey and errorgroup being set, indicate if the message successfully retrieved

Script Compilation and Execution

 Upon save, script is compiled and cached
– A pre-compiled script can be executed multiple times without the need

to reparse or recompile

– Pre-compilation can be done only with those scripting engines that
support compilation

– Pre-compilation and cacheing make script execution more efficient

 Any syntax errors found reported in application as popup
message

 Jython / JavaScript standard interpreter executes script

 If additional imports are used, then the corresponding
libraries must be present in application server CLASSPATH

Resources

 Maximo 7.5 Information Center for Automation Scripts
application help

 Jython scripting
– http://www.jython.org

 Javascript (Rhino) scripting
– http://www.mozilla.org/rhino/

 JSR-223 scripting for Java specification
– http://jcp.org/aboutJava/communityprocess/pr/jsr223/

 Tpae 7.5 Scripting Cookbook
– http://ibm.co/pPl32E

 Service Management Connect blogs
– https://www.ibm.com/developerworks/servicemanagement/am/index.html

http://www.jython.org/
http://www.mozilla.org/rhino/
http://jcp.org/aboutJava/communityprocess/pr/jsr223/
http://ibm.co/pPl32E
https://www.ibm.com/developerworks/servicemanagement/am/index.html

	Scripting
	Agenda
	User Need
	What is a script?
	Why scripting?
	Scripting Strategy for 7.5
	Slide 7
	Scripting architecture in 7.5
	Scripting constructs in 7.5
	Automation Scripts application
	Slide 11
	Slide 12
	Automation Scripts application - creation
	Automation Scripts application - maintenance
	Launch Points
	Variables
	Slide 17
	Slide 18
	Implicit Variables
	Additional implicit variables
	Variables bound to attributes
	Array Notations
	Slide 23
	Slide 24
	Object Launch Point
	Object Launch Point Demo
	Attribute Launch Point
	Attribute Launch Point Demo
	Action Launch Point
	Action Launch Point Demo
	Custom Condition Launch Point
	Custom Condition Launch Point Demo
	Skills
	Deployment approach
	Script Logging
	Slide 36
	Script Compilation and Execution
	Resources

