
CIMS Lab, Inc.
CIMS Chargeback
Report Writer User Guide

Version 2.7.1

Supports CIMS/MVS 11.3
and CIMS/VSE 10.2

Title and Publication Number

CIMS Lab Publication Number: RW-UG-271-01

Printed: November, 1999

Information in this guide is subject to change without notice and does not constitute a commitment on the
part of CIMS Lab, Inc. It is supplied on an “as is” basis without any warranty of any kind, either explicit or
implied. Information may be changed or updated in this guide at any time.

Copyright Information

CIMS is ©copyright 1974 - 1999 by CIMS Lab, Inc. and its subsidiaries. This guide is ©copyright 1974 - 1999
by CIMS Lab, Inc., and its subsidiaries and may not be reproduced in whole or in part, by any means,
without the written permission of CIMS Lab, Inc. and its subsidiaries.

Names marked ™ or ® and other company and product names may be trademarks or registered trademarks
of their respective vendors or organizations.

Mailing Address

CIMS Lab, Inc.
3013 Douglas Blvd., Suite 120
Roseville, CA 95661-3842

Preface

As companies continue to integrate computer technology into their business operations,
it becomes increasingly important to properly administer the IT function, particularly
with respect to performance and cost. And the best way to control costs is to plan for
them.

CIMS Chargeback is a comprehensive, flexible software solution that consolidates a wide
variety of accounting data for multiple operating systems into a single file that may be
accessed from either the mainframe or a workstation. Simply put, CIMS Chargeback is
an essential component of an effective financial management system.

Philosophy 0

Originally developed in 1974, CIMS has focused on meeting the financial and resource
reporting requirements of Information Services Departments. CIMS has evolved with
corporate IT management requirements. Focused commitment to client service and
support sets CIMS apart from competing products. Our goal is to provide the best
chargeback and resource reporting software in the world at the lowest possible cost to
our customers.

The CIMS Lab strongly believes in and executes the concept of continuous product
improvement. Customers have access to CIMS product development personnel to
ensure that customer feedback and other critical issues are incorporated into the next
release of the product.
CIMS Chargeback Report Writer User Guide ■

■ Preface

Contacting the CIMS Lab
Contacting the CIMS Lab 0

You can contact us with any questions or problems you have. Please use one of the
methods below to contact us.

For product assistance or information, contact:
USA & Canada, toll free (800) 283-4267
International (916) 783-8525
FAX (916) 783-2090
World Wide Web www.cimslab.com

Our Mailing Address is:
CIMS Lab, Inc.
3013 Douglas Blvd., Suite 120
Roseville, CA 95661-3842

Related Publications 0

As you use this guide, you might find it helpful to have these additional books available
for reference:

■ CIMS Chargeback MVS User Guide

■ CIMS Chargeback CICS User Guide

■ CIMS Chargeback VM/CMS User Guide

■ CIMS Chargeback VSE User Guide

■ CIMS Chargeback Report Writer Sample Reports for MVS
■ CIMS Chargeback Report Writer User Guide

i

Table of Contents

List of Fi gures .viii

How to Use This Manual . xi
What Should You Read?. xi
How This Manual Is Organized . xi

Part 1. User’s Guide
Chapter 1. Introduction . 1

What Is Report Writer?. 2
Create Brand–New Reports in Minutes. 2
Use Mainframe Data in Any PC Program . 3
Create Custom Mainframe Files in Minutes. 4
Ways that Report Writer Benefits You!. 4
Avoid the Million Dollar Mistake! . 6
Report Writer Pays for Itself Fast! . 7
Report Writer Features. 8

Chapter 2. How to Request a Report . 11
Lesson 1. How to Produce a Report in 5 Minutes. 17

How to Use the INPUT Statement . 17
How to Use the COLUMNS Statement . 18
Another 5–Minute Report Example. 20
Using Your Company's Files . 20

Lesson 2. How to Specify Which Records to Include In Your Report. 24
How to Use the INCLUDEIF Statement. 24
How to Write Conditional Expressions. 26

Lesson 3. How to Create Your Own Fields. 30
Creating Numeric Fields. 30
Creating Character Fields. 32
Assigning Values to Fields Based on Conditions. 34

Lesson 4. How to Make Your Own Report Titles. 38
How to Use the TITLE Statement. 38
More Date and Time Features. 40
How to Align the Title . 40

Lesson 5. Changing the Format of Your Report. 44
Using Display Formats . 44
Specifying Column Headings . 44
Specifying a Column's Width. 46

Lesson 6. How to Specify the Report Order. 48
How to Use the SORT Statement. 48
Automatic Sorting . 48

Lesson 7. How to Create Control Breaks. 52
How to Use the BREAK Statement. 52
How to Specify Control Break Spacing . 54
How to Print Statistics at a Control Break. 56
How to Request Multiple Control Breaks. 58

Lesson 8. How to Create Summary Reports . 62
How to Create a Summary Report . 62

Lesson 9. How to Use Data from More Than One File. 65
How Auxiliary Input Files Are Processed . 65
How to Use the READ Statement. 66

ii

Chapter 3. How to Request a PC File . 73
Lesson 1. How to Produce a PC File in 5 Minutes. 78

Using the OPTIONS Statement to Name the PC Program . 80
How to Use the INPUT and COLUMNS Statements. 80
Importing Your PC File into Lotus 1–2–3. 81
Another 5–Minute Example. 82
Using Your Company's Files . 82

Lesson 2. How to Include Only Certain Records In Your PC File. 86
How to Use the INCLUDEIF Statement. 86
How to Write Conditional Expressions. 88

Lesson 3. How to Create Your Own Fields. 92
Creating Numeric Fields. 92
Creating Character Fields. 94
Assigning Values to Fields Based on Conditions. 96

Lesson 4. How to Specify the PC File Order. 100
How to Use the SORT Statement. 100
Automatic Sorting . 100

Lesson 5. How to Create Control Breaks. 104
How to Use the BREAK Statement. 104
Customizing the Control Break. 106

Lesson 6. How to Create Summary Files . 110
How to Create a Summary File . 110

Lesson 7. How to Use Data from More Than One File. 113
How Auxiliary Input Files Are Processed . 113
How to Use the READ Statement. 114

Chapter 4. Be yond the Basics . 121
Additional Features in the COLUMNS Statement . 123

Writing Print Expressions. 123
How to Change the Column Headings . 127
How to Change the Width of a Column. 131
How to Change the Way Dates, Times and Numbers Are Formatted. 132
Formatting Tips for International Users. 137
How to Blank Out Repeating Values . 140
How to Change the Justification of Data within a Column . 142
How to Specify Which Columns to Total. 144
How to Produce Multi–Line Reports. 147
How to Change the Report Margins . 150
How to Print Bar Graphs. 150
How to Print Vertical Lines between Report Columns. 152
How to Print a Variable Number of Lines Per Input Record. 154
Variable Number of Lines — Strategy 1 . 154
Variable Number of Lines — Strategy 2 . 159
Putting a Variable Number of Items on a Single Line . 162

What If You Run Out of Room?. 163
Why Do I See ****X**** in M y Report? . 164
Customizing the Report Titles. 165

How to Include Data from a File in the Title. 165
How to Include the Page Number, Date and Time in a Title. 168
How to Change the Appearance of Items in the Title. 170
How to Split the Title into Left, Center, and Right Parts . 174
How to Print "Titles" at the Bottom of Each Page . 180

Customizing the Control Breaks. 182
How to Change the Control Break Spacing . 183
How a Default Total Line Looks . 186
Computing True Percentages and Ratios at Control Breaks. 187

iii

How to Customize the Total Line at a Control Break. 190
How to Suppress the Total Line at a Control Break. 193
How to Customize the Statistical Lines at a Control Break. 194
How to Print Customized Footing Lines at a Control Break. 196
How to Print the Number of Items in a Control Group. 206
How to Print Header Lines at the Beginning of a Control Group. 208

Printing a "Line Number" in Your Report. 210
Reports with Multiple Control Breaks. 211
How to Customize the Grand Totals. 214
How to Produce Summary Reports. 218
How to Create "Top 10" Type Reports. 220
How to Count "Occurrences" in a File. 222
How to Total a Field by "Category" . 226
Working With Multiple Input Files. 228

Using Multiple READ Statements for the Same File. 228
How to Chain READ Statements. 230
How to Name the Input File Records. 232
How Missing Records Are Handled. 233
Using Generic and KGE Keys . 234
How to Perform "One–to–Many" Reads. 235

Working with "Batched" Input Files. 238
Creating PC Files from Existing Reports . 241
Working with SMF Records. 246
Working with Time Fields. 253
Producing Files for Other PC Programs . 256
Producing Files for Mainframe Programs . 260

How to "Subset" Mainframe Files. 263
How to Sort Mainframe Files. 263

Chapter 5. How To Define Your Input Files . 265
How to Define a File. 269

How to Use the FILE Statement –– MVS . 269
How to Override a File Definition –– MVS . 271
How to Use the FILE Statement –– VSE . 273
How to Override a File Definition –– VSE . 274

How to Define a Field. 275
How to Define a Character Field . 275
How to Define a Numeric Field. 278
Should You Define a Field as Character or Numeric?. 282
How to Define a Date Field . 283
How to Define a Time Field. 286
How to Define a Bit Field. 289
How to Specify a Field's Location in a Record. 292
Field Location in Variable Length Files . 294
Variably Located Fields. 295
How to Specify a Field's Column Heading . 296
How to Define a Field Created by a Data Exit . 297

Keeping Your File Definitions in a Copy Library . 301
Including the Definition Statements "In–Line". 301
A Better Way: Using the Copy Library . 304
How to Use a Copy Library Alias . 308
Defining One–Time Fields. 309

Using Cobol and Assembler Record Layouts . 311
Live Runs Using Cobol Record Layouts . 311
Live Runs Using Assembler Record Layouts . 315
Handling Date and Time Fields. 318

iv

How Report Writer Handles Arrays . 321
Converting Cobol and Assembler Layouts to FIELD Statements. 322
How to Copy Cobol and Assembler Record Layouts from Libraries. 325
Mixing FIELD Statements with COBOL and ASM Statements. 326
The Starting Column of a Cobol or Assembler Layout . 327
The "Default Location" After a Cobol or Assembler Layout . 327
The Scope of the COBOL and ASM Statements. 328
Other Features Available in COBOL and ASM Statements. 328
Technical Notes on Cobol Support. 328
Technical Notes on Assembler Support. 330

Chapter 6. Workin g with Databases . 335
Using Report Writer with DB2 Databases. 336

Using DB2 Data in Reports. 338
Using DB2 Data in PC Programs . 340
What Fields Are in Your DB2 Table?. 340
Using the WHERE Parm . 342
Using the ORDERBY Parm . 344
Using Multiple DB2 Tables . 345
Using Data from Three DB2 Tables. 348
WHERE Parm Syntax . 350
Customizing Your DB2 Fields . 352
Saving DB2 File Definitions. 353
DB2 Restrictions. 354

Chapter 7. Operatin g System Considerations . 355
MVS Operating System Considerations. 357

Execution JCL for Reports –– MVS . 358
Execution JCL for PC and Mainframe Files –– MVS . 360
Report Writer PROC –– MVS . 362
Output File Options –– MVS . 362
Setting Up File Definitions –– MVS . 364
Copy Library DD –– MVS . 366
Input File DDs –– MVS . 367
Specifying Shop–Wide Options –– MVS . 368
Completion Codes –– MVS . 369

VSE Operating System Considerations. 370
Execution JCL for Reports –– VSE . 370
Execution JCL for PC and Mainframe Files –– VSE . 372
Output File Options –– VSE . 374
Downloading PC Files –– VSE . 375
Setting Up File Definitions –– VSE . 376
Input File DLBL/TLBLs –– VSE . 379
The Control Statement Listing –– VSE . 380
The EXEC Statement's SIZE Parm –– VSE . 380
Specifying Sort Work Files –– VSE . 381
Completion Codes –– VSE . 381

Part 2. Reference Manual
Chapter 8. General S yntax Rules . 383
Control Statements. 384

What Is a Control Statement?. 384
How to Write Control Statements. 384
How to Continue a Control Statement Onto Multiple Lines. 385
The Order of Control Statements. 386

v

How to Put Comments in Your Control Statements. 387
How to Put Page Breaks in the Control Listing . 387

Names of Files, Fields, and Records. 388
Rules for Assigning Names. 388
How to Make Field Names Unique. 389

How to Write Literals . 389
The Five Types of Data. 389
Character Literals. 390
Numeric Literals . 391
Date Literals . 391
Time Literals . 392
Bit Literals . 392
When Do You Need Quotes Around a Number?. 392

PICTURE Display Formats. 393
Examples of PICTUREs . 394
How PICTUREs Work. 395
Time PICTUREs . 398

Conditional Expressions. 399
How to Specify a Relation Condition. 400
Comparing Character Operands of Different Lengths . 402
Comparing Fields of Different Data Types . 403
Conditions Involving Explicit Literals . 404
How to Specify a Bit Field Condition. 405
How to Specify Multiple Conditions . 405
Conditional Expressions That Use AND . 405
Conditional Expressions That Use OR . 406
Conditional Expressions That Use Both AND and OR . 407
How to Shorten Long Expressions. 408
How to Negate Conditions. 409
Examples of Conditional Expressions . 410

Computational Expressions. 410
Operands in Computational Expressions. 411
Operators in Computational Expressions. 412
Order of Operations. 413
Examples of Computational Expressions. 413

Chapter 9. Control Statement S yntax . 417
Syntax Notation. 418
ASM Statement. 419
BREAK Statement. 421
COBOL Statement. 432
COLUMNS Statement. 437
COMPUTE Statement. 444
COPY Statement. 455
FIELD Statement. 460
FILE Statement. 470
FOOTNOTE Statement. 476
INCLUDEIF Statement. 481
INPUT Statement. 485
OPTIONS Statement . 494
READ Statement. 510
SORT Statement. 524
TITLE Statement. 531

Appendix A. Data T ypes . 539
Character Data Types . 539
Numeric Data Types . 540

vi

Date Data Types . 542
Time Data Types . 545
Bit Data Types . 549

Appendix B. Displa y Formats . 550
Display Formats for Any Type of Field . 551
Numeric Display Formats. 552
Date Display Formats . 554
Time Display Formats. 557
Default Display Formats. 559

Appendix C. Built–In Fields . 560
Character Built–In Fields. 562
Numeric Built–In Fields. 563
Date Built–In Fields . 564
Time Built–In Fields. 565

Appendix D. Built–In Functions . 566
Functions that Return a Character Value. 569
Functions that Return a Numeric Value. 575
Functions that Return a Date Value. 579
Functions that Return a Time Value. 580
Functions that Return a Bit Value. 581

Appendix E. Error Indicators . 582
Suppressing Error Indicators. 583
Propagation of Error Indicators. 584
Testing for Invalid Data . 584

Appendix F. Files Used in Examples . 586

Appendix G. Sample Data Exit Pro gram . 591

Appendix H. How to Import PC Files . 596
Importing a PC file into Lotus 1–2–3 for Windows. 597
Importing a PC file into Lotus 1–2–3 (DOS Versions). 597
Importing a PC File into Excel. 597
Importing a PC File into Quattro Pro. 598
Importing a PC File into Paradox for Windows. 598
Importing a PC File into Paradox (DOS Versions). 599
Importing a PC File into Microsoft Works. 599
Importing a PC File into Corel Chart. 599
Importing a PC File into PowerPoint. 600
Importing Files into Harvard Graphics. 600
Importing a PC File into dBASE IV. 601
Importing a PC File into R:BASE. 601
Importing Files into Word Processing Programs . 602

Appendix I. Speed–Up Tips . 603
INCLUDEIF Statement. 603
Conditional COMPUTE Statements. 606
COMPUTE Statements with RETAIN . 607
Intermediate Computational Expressions. 608
Intermediate Conditional Expressions. 608
READ Statements with the MULTI parm . 609
VSAM I/O . 609
Replace an Auxiliary Fileb with a "Table Lookup". 612
Clearing I/O Areas . 613
Development Cycle . 613

vii

Using Explicit Literals in Conditional Expressions. 614

Appendix J. Year 2000 Information . 616
How to Prepare for the Year 2000 and Beyond . 617

Appendix K. I/O Exits . 620

Updates to This Manual . 635

Index . 637

viii

List of Fi gures

Figure 1 A report produced with just two control statements. 19
Figure 2 An employee directory produced with only two control statements. 21
Figure 3 Using an INCLUDEIF statement to specify which records to include in a report. 25
Figure 4 Including records in a report if either of two conditions is true. 27
Figure 5 Using the COMPUTE statement to create numeric fields. 31
Figure 6 Using the COMPUTE statement to create character fields. 33
Figure 7 Assigning values to computed fields based on conditions. 35
Figure 8 Using the TITLE statement to specify your own titles . 39
Figure 9 Using slashes to align the different parts of a title. 41
Figure 10 Using override display formats, column headings and column widths. 45
Figure 11 Using a SORT statement to specify the sort order of a report. 49
Figure 12 Using the BREAK statement to create a control break. 53
Figure 13 A BREAK statement that produces a page break. 55
Figure 14 A report that prints statistical information at control breaks. 57
Figure 15 A report with two levels of control breaks. 59
Figure 16 Producing a summary report . 63
Figure 17 A report that uses only the primary input file . 67
Figure 18 A report that uses a READ statement to specify an auxiliary input file . 69
Figure 19 A report that uses two READ statements to specify two auxiliary input files 71
Figure 20 A Lotus 1–2–3 spreadsheet obtained from just three control statements. 79
Figure 21 A Quattro Pro employee directory produced with just three control statements. 83
Figure 22 Using an INCLUDEIF statement to specify which records to include in a PC file. 87
Figure 23 Using the COMPUTE statement to create numeric fields for a PC file. 93
Figure 24 Using the COMPUTE statement to create character fields for a PC file. 95
Figure 25 Assigning values to computed fields based on conditions. 97
Figure 26 Using a SORT statement to specify the sort order of a PC file. 101
Figure 27 Using the BREAK statement to create a control break with subtotals in a PC file. 105
Figure 28 Using FOOTING parms to customize the total row and create blank rows. 107
Figure 29 A spreadsheet containing only summary data. 111
Figure 30 A spreadsheet that uses only the primary input file . 115
Figure 31 A spreadsheet that uses a READ statement to specify an auxiliary input file 117
Figure 32 A spreadsheet that uses two READ statements to specify two auxiliary input files 119
Figure 33 Using spacing factors and literal texts in the COLUMNS statement. 125
Figure 34 Specifying your own column headings . 129
Figure 35 Specifying the width of report columns. 133
Figure 36 Customizing the way dates and numbers are formatted in a report. 135
Figure 37 A report with international formatting options . 139
Figure 38 A report that blanks out repeating values . 141
Figure 39 Specifying how to justify data within the report columns. 143
Figure 40 Specifying which columns to total. 145
Figure 41 Using multiple COLUMNS statements to print multi–line reports. 148
Figure 42 A report with a bar graph column. 151
Figure 43 A report with vertical lines separating the columns. 153
Figure 44 A sample file containing sales data for up to 6 sales per record. 155
Figure 45 A report with "no strategy" to deal with unused array items. 156
Figure 46 Strategy 1 — just add the SKIPZERODET option . 157
Figure 47 Adding literal identifiers to variable lines. 161
Figure 48 A report title that includes data from a file. 167
Figure 49 A title that shows the current day of the week, date, time and page number 169
Figure 50 Using width, display format and justification parms in the title. 173
Figure 51 A report with left and right title parts . 175

ix

Figure 52 A report with left, center, and right title parts. 176
Figure 53 Titles with the date, 24–hour time, and page number on the left side of the report. 178
Figure 54 A title with the date (spelled out), time, and page number on the right side of the report. 179
Figure 55 Using the FOOTNOTE statement to add footnotes to a report. 181
Figure 56 A BREAK statement that requests a page break and resets the page number. 185
Figure 57 Using the DIVTOTS parm to get accurate percentages at control breaks. 189
Figure 58 A report with a customized total line at the control breaks. 191
Figure 59 A report that prints statistical lines (average, maximum, minimum) at control breaks. 195
Figure 60 Using the FOOTING parm to print a customized line at a control break. 197
Figure 61 A report which prints a field's average value in a footing line . 203
Figure 62 Printing a field's total, average, and maximum values on a single line . 205
Figure 63 A report that prints the number of items in a control group . 207
Figure 64 A report that prints control group headings . 209
Figure 65 A report with two levels of control breaks. 213
Figure 66 A report with customized Grand Totals. 215
Figure 67 A summary report that uses two levels of control breaks. 219
Figure 68 "Top 3 Sales in Region" report . 221
Figure 69 Counting how many times something occurs in a file. 223
Figure 70 Breaking down "count" statistics further. 224
Figure 71 Accumulating fields by a category (such as gender). 227
Figure 72 A report with multiple READ statements for the same file. 229
Figure 73 A report with chained READ statements. 231
Figure 74 A report that uses the MULTI parm . 236
Figure 75 An input file with header and detail records, and its definition statements. 239
Figure 76 A Lotus file produced from an input file with header and detail records. 240
Figure 77 A typical mainframe report that has been written to a disk file. 242
Figure 78 Report Writer statements to define the "report file" shown above. 242
Figure 79 Creating a Lotus 1–2–3 spreadsheet from a mainframe report. 245
Figure 80 File definition of selected fields in SMF type 30 records. 247
Figure 81 SMF "Daily ABEND" report produced by the control statements on page 250 251
Figure 82 SMF "TSO Sessions" report produced by the control statements on page 250 252
Figure 83 SMF "TSO Sessions" report produced by the control statements on page 250 257
Figure 84 An output file created with the MAINFRAME option . 261
Figure 85 Converting a Cobol copybook to Report Writer definition statements. 268
Figure 86 A report with FIELD statements that define character fields. 277
Figure 87 A report with FIELD statements that define numeric fields. 281
Figure 88 A report with FIELD statements that define date fields. 285
Figure 89 A report with FIELD statements that define time fields. 288
Figure 90 A report with FIELD statements that define bit fields. 291
Figure 91 A Report Writer report that does not use a copy library –– MVS . 302
Figure 92 A Report Writer report that does not use a copy library –– VSE . 303
Figure 93 A report which uses Report Writer's Copy Library –– MVS . 306
Figure 94 A report which uses Report Writer's Copy Library –– VSE . 307
Figure 95 A report produced using a Cobol record layout . 314
Figure 96 A report produced using an Assembler record layout . 317
Figure 97 Creating true date and time fields from a Cobol layout . 320
Figure 98 Converting a Cobol record layout to Report Writer FIELD statements. 324
Figure 99 A Report Writer DB2 report. 339
Figure 100 Using DB2 data in a Lotus 1–2–3 spreadsheet. 341
Figure 101 Using the WHERE parm to select certain rows from a DB2 table. 343
Figure 102 A report that uses data from 2 different DB2 tables. 347
Figure 103 A report that uses data from 3 different DB2 tables. 349
Figure 104 Sample Report Writer JCL for reports –– MVS . 359
Figure 105 Sample Report Writer JCL for PC files –– MVS . 361
Figure 106 Sample Report Writer JCL for reports –– VSE . 371

x

Figure 107 Sample Report Writer JCL for PC files –– VSE . 373
Figure 108 A report that uses a data exit program . 595

xi

How to Use This Manual

What Should You Read?

It is not necessary to read this entire manual in order to start producing custom reports and
PC files with Report Writer. To learn how to use Report Writer, we suggest the following
steps:

Step 1. Read Chapter 1, "Introduction" to learn just what Report Writer is and
what it can do for you.

Step 2. If you will be producing custom reports, read Chapter 2, "How to Request
a Report." There you will learn the basics of producing reports with
Report Writer.

Step 3. If you want to produce PC files, read Chapter 3, "How to Request a PC
File." That chapter teaches you the basics of producing PC files with
Report Writer.

Step 4. Start producing your own reports and PC files! When questions come up,
use the Index at the end of this manual to locate the section that explains
how to do what you want.

Note: if you are responsible for initially installing Report Writer and defining your
input files, also read Chapter 5, "How to Define Your Input Files" and Chapter
7, "Operating System Considerations."

How This Manual Is Or ganized

This manual is divided into two major parts.

Part 1 is the User's Guide, which explains in non–technical terms how to produce reports
and PC files with Report Writer. The User's Guide contains over 100 examples of actual
Report Writer runs. It also explains how to define files and setup the JCL needed to execute
Report Writer. Just read the parts of the User's Guide that explain what you need to do.

Part 2 is the Reference Manual, which provides complete syntax information about each of
the Report Writer control statements. You will only need to refer to this portion of the
manual when you have specific questions about control statement syntax.

Following the Reference Manual is a section titled "Updates to This Manual" . Be sure to
file any documentation updates that you receive in this section. And remember to check this
section for the latest features available in your shop's current version of Report Writer.

The User's Guide and Reference Manual are divided into 9 chapters, plus Appendices and
Index. Following is a brief synopsis of each chapter and appendix.

How This Manual is Or ganized

xii

Chapter 1, "Introduction"
This chapter explains just what Report Writer is, and what it can do to save you time and
effort. Everyone should read this chapter.

Chapter 2, "How to Request a Report"
This chapter is a tutorial on producing custom reports. It is divided into nine easy
lessons. These lessons show you how to write the control statements that tell Report
Writer how to produce a report. Everyone who will be producing reports with Report
Writer should read at least some of the lessons in this chapter.

Chapter 3, "How to Request a PC File"
This chapter is a tutorial on producing PC files from your shop's mainframe data. It is
divided into seven easy lessons. These lessons show you how to write the control
statements that tell Report Writer how to produce a PC file. Everyone who will be
producing PC files with Report Writer should read at least some of the lessons in this
chapter.

Chapter 4, "Beyond the Basics"
This chapter shows how to use of some of Report Writer's more advanced features to
create more complex reports and output files. After you feel comfortable with the basics,
scan the headings and examples in this chapter to get an idea of what else Report Writer
is capable of doing. You may find that you can use Report Writer to produce reports that
you thought were too complicated for a Report Writer.

Chapter 5, "How to Define Your Input Files"
This chapter shows how to define your company's files to Report Writer. This one–time
setup is necessary before your company's files can be used in reports or PC files. The
analyst or programmer responsible for setting up Report Writer file definitions should
read this chapter.

Chapter 6, "Workin g with Databases"
This chapter shows how to produce reports and PC files using data from special
databases (instead of standard files.) Read this chapter if you will be using Report
Writer with a special database.

Chapter 7, "Operatin g System Considerations"
This chapter explains what "job control language" (JCL) is necessary to run a Report
Writer job under different operating systems. The analyst or programmer responsible
for setting up the JCL to run Report Writer should read this chapter.

Chapter 8, "General Syntax Rules"
This chapter explains some of the general rules to follow in writing control statements.
For example, it explains: the rules for naming fields; how to split a long control
statement into multiple lines; the rules for writing computational expressions; etc. It is
not necessary to read through this entire chapter. Rather it is intended to be a reference
chapter. Refer to the appropriate section whenever you need help writing a control
statement.

How This Manual Is Or ganized

xiii

Chapter 9, "Control Statement Syntax"
This chapter shows the complete syntax for each of Report Writer's control statements.
It is not necessary to read through this entire chapter. It is also a reference chapter.
Refer to the appropriate section whenever you need help writing a control statement.

Appendix A, "Data Types"
This appendix lists the types of data that Report Writer supports in input files.

Appendix B, "Display Formats"
This appendix lists the many ways that Report Writer can format data in your reports and
output files.

Appendix C, "Built-In Fields"
This appendix lists Report Writer's built–in fields which are available for use in your
requests.

Appendix D, "Built-In Functions"
This appendix lists Report Writer's built–in functions which are available for use in the
COMPUTE statement.

Appendix E, "Error Indicators"
This appendix lists Report Writer's error indicators (such as ,), explains their
meaning, and shows ways that they can be handled.

Appendix F, "Sample File Definitions"
This appendix shows the Report Writer file definitions (and the raw contents) of the
sample files used for the examples in this manual.

Appendix G, "Sample Data Exit Pro gram"
This appendix shows a sample data exit program and a sample run that uses it.

Appendix H, "How to Import PC Files"
This appendix shows the exact steps used to import PC files into a number of popular
PC programs.

Appendix I, "Speed-Up Tips"
This appendix explains various techniques that can be used to optimize Report Writer's
run–time efficiency.

Appendix J, “Year 2000 Information“
This appendix discusses issues related to the Year 2000.

Appendix K, “I/O Exits“
This appendix explains how to use I/O Exits for special file processing. It includes a
sample I/O Exit program.

(This page left blank intentionally.)

Chapter 1. Introduction 1

Part 1.
User's Guide

Chapter 1. Introduction

Chapter Table of Contents

Chapter 1. Introduction . 1

What Is Report Writer?. 2
Create Brand–New Reports in Minutes. 2
Use Mainframe Data in Any PC Program . 3
Create Custom Mainframe Files in Minutes. 4
Ways that Report Writer Benefits You! . 4
Avoid the Million Dollar Mistake! . 6
Report Writer Pays for Itself Fast!. 7
Report Writer Features. 8

2 Report Writer User’s Guide

Chapter 1. Introduction

What Is Report Writer?

Report Writer is three powerful programs in one.

1) It's an easy–to–use, full function 4GL report writer.

2) It's a powerful PC–format utility. Use its 4GL language to easily turn any
mainframe data into PC files that can be used in all popular PC programs!

3) It's also a mainframe file formatting utility . It's 4GL language lets you easily
create your own custom mainframe output files.

Create Brand–New Reports in Minutes

Report Writer makes it easy to produce custom reports from your company's existing files.
Programmer productivity increases dramatically with Report Writer.

To produce a new report without Report Writer, a programmer has to write a new program
in a language such as COBOL. The programmer must code all of the I/O routines, the
selection logic, the computations, summarization, sorting, formatting, page breaks, titles,
column headings, etc. The process of coding, testing, and debugging takes many days, if not
weeks. Then there's the whole cycle all over again when the users need "a few minor
changes."

Create Brand-New Reports in Minutes

Chapter 1. Introduction 3

The easy alternative is to use Report Writer. With Report Writer, you no longer need to write
detailed programming instructions. You simply describe the desired report to Report Writer
with a few simple control statements (much like SQL allows you to do with DB2 data.) In
fact, you can produce a complete report with Report Writer using only two statements. Try
that with COBOL! Add a few more statements and you can produce more complex reports.

With Report Writer you'll have your results in minutes, instead of days or weeks. And if you
need to change something later, modifications are a snap with Report Writer.

Report Writer also lets end users get the information they need with less intervention from
programmers. Set up a model report for the users once — then let them modify and submit
it over and over. If new selection criteria are needed in a report, or a different sort order or
different title is wanted, they can make the changes themselves, without taking up a
programmer's time at all. The end users get their results faster, and the programming staff
has fewer interruptions. Everyone benefits with Report Writer.

Use Mainframe Data in An y PC Program

Report Writer's PC–formatting feature makes it easier than ever to use mainframe data in
your favorite PC programs (such as Lotus 1–2–3, Excel, Paradox, Quattro Pro, Access,
FoxPro, Harvard Graphics and many others.)

Use Mainframe Data in An y PC Program

4 Report Writer User’s Guide

Report Writer is a great help for the PC users in your shop. Are users at your company
manually keying data from mainframe reports into PC spreadsheets or databases? That's a
tedious, time–consuming process that is highly prone to errors. Report Writer lets you give
accurate mainframe data to your PC users in a format that's especially designed for their
PC program. A few keystrokes is all it takes to "import" the data into their PC program.
That means they can begin productive work right away.

Just moving data from the mainframe to a PC is easy. But being able to use that data in your
PC software, easily and efficiently, is another matter. That's where Report Writer comes in.

Report Writer lets you use "non–PC–compatible" mainframe data in your PC. This
includes such things as bit fields, Julian dates, packed numbers, binary numbers, hexadecimal
fields, etc. PC programs can't handle such data, but Report Writer reformats these fields into
standard ASCII data that your PC program can use.

Report Writer lets you choose the PC program you prefer. Report Writer knows the quirks
of each PC program and automatically formats the data appropriately.

Create Custom Mainframe Files in Minutes

Report Writer creates mainframe output files just as easily as PC–formatted files. Use its
4GL language to: select the input records you want; combine data from multiple input files;
optionally summarize data; sort data; etc. Then have Report Writer write out the desired data
in any format you choose. Use Report Writer to easily convert binary fields to packed fields
(or vice versa), to reformat date fields (perhaps changing YY dates to YYYY dates), etc. Add
new computed fields to your output; or eliminate unneeded fields. You'll find a thousand and
one uses for custom mainframe files once you see how easy it is to create them.

Ways that Report Writer Benefits You!

Here are a few examples of the ways that Report Writer's custom reports, PC files and
mainframe files will:

� make you more productive!

� delight your end–users!

� impress your boss!

Easil y Make Qualit y Production Reports
The reports produced by Report Writer look every bit as professional as those produced by
individual report programs. Titles are perfectly centered, or flush with the report margins.
Column headings are neatly aligned above the data, and underlined. At control breaks, totals
are aligned under the numeric columns, with the name of the break field clearly identified, etc.
This attention to detail means you can use Report Writer to quickly produce your regular
production reports. Its usefulness is not limited to just ad hoc reports.

Ways that Report Writer Benefits You!

Chapter 1. Introduction 5

Fast One–Time Queries
Report Writer is also great for those frequent requests for "one–shot" runs. Now you'll be
able to satisfy requests that there just wasn't time for without Report Writer. You'll wonder
how you ever got along without it.

Provide Reports for CICS S ystems
Report Writer is ideal for handling the batch reporting side of online CICS applications. Use
your CICS system for online inquiries and updates. Use Report Writer to produce production
reports and custom queries from that system.

Save Mone y on Special Anal yses
Without Report Writer, what happens when a special study is needed? Someone probably
ends up manually going through the "closest" existing report, copying the needed data onto
paper or into a spreadsheet, performing manual calculations, etc. With Report Writer, you
can quickly deliver the exact report that's needed and reduce the amount of expensive manual
effort required.

Reduce Your CPU Usa ge
Some programming tools are real "CPU Hogs." No wonder many systems programmers
hesitate to encourage programmers to develop new applications using them. Because Report
Writer is written entirely in efficient assembly language, your reports run amazingly fast.

In many cases, there is no significant difference between Report Writer's run time, and the run
time of a COBOL program written to produce the same report. And when you consider the
CPU cycles saved in development (fewer compiles, test runs, debugging, etc.), Report Writer
can actually lighten the load on your CPU.

Delight Your PC End–Users
 When the users would really prefer to manipulate the mainframe data themselves, Report
Writer allows you to give it to them in PC format. The users can then process the mainframe
data however they like in their spreadsheet, database or word processing program. And the
programmers can get back to programming.

Report Writer delights PC users with many exciting new possibilities. With mainframe data
in their PCs, they'll be able to:

� perform "what if" calculations in PC spreadsheets

� maintain their own PC database, for personal access or LAN use

� print high quality graphics on laser printers

� create color graphics, overhead transparencies and slides for fabulous
presentations

Report Writer's PC files also make it easy for you to provide mainframe data to people
without access to your mainframe. Copy the PC file to a diskette and send it to other
departments in your company. Or, mail it to your offices around the world.

Use Mainframe Data in An y PC Program

6 Report Writer User’s Guide

Perfect for Downsizin g Applications
Use Report Writer for one–time file conversions needed when downsizing mainframe
applications to run on PC systems. Report Writer converts the packed, binary, and bit fields
to the kind of ASCII data that is needed on the PC system.

Reduce PC Download Time and
Hard Disk Usa ge
Report Writer reduces download time and hard disk usage by letting you download only the
data you actually need (not the entire mainframe file.) Why tie up a PC for hours
downloading records and fields that won't even be used?

Some PC–based products require you to download entire reports to the PC. Then, the PC
program must process the entire, gigantic report just to extract the few lines of data that the
PC user actually needs. Report Writer lets you do the extraction on the mainframe, before you
download the data.

Save Wasted Emplo yee Time Caused b y Slow PC Processin g
Report Writer eliminates hours of needless PC processing by moving much of that processing
from the PC to the mainframe. Here's a few of the ways Report Writer lets your PC users zip
along rather than idling over slow PCs.

No more waiting on slow PC sorts. Let your mainframe perform the sort for you at
mainframe speed. Then download the sorted file.

Instead of summarizing data in your PC, let Report Writer summarize it on the mainframe.
Then just download the small summary file to your PC.

Rather than wait on your PC to compute new columns in your spreadsheet, let Report Writer
create the new columns on your mainframe. Then download them along with the other
mainframe data.

Disk I/O is slow on PCs. So why merge data from multiple files on your PC? Use Report
Writer to combine data from multiple mainframe files (or DB2 tables) into a single file before
you download it to the PC.

Avoid the Million Dollar Mistake!

You've probably read one of those sad stories in the computer magazines. In order to save
a little money, a company decides to continue using a manual process rather than automate.
Someone manually keys data from a report into a PC spreadsheet. Sure it takes that person
an hour or more a day to type it all in, but the company saves the money that the automated
software would have cost. This slow manual process works well enough for a while. Then
one day–– disaster! A critical number is typed in wrong and goes unnoticed. The
spreadsheet computes a bid or some other critical figure based on the incorrect data. A bid
goes out the door that could cost the company hundreds of thousands, even millions, of
dollars. All because they "couldn't afford" to automate by buying the right tool. Report
Writer lets you avoid making the Million Dollar Mistake!

Chapter 1. Introduction 7

Report Writer Pa ys for Itself Fast!

Report Writer quickly pays its own way in a shop — maybe even the first time you use it!

Report Writer greatly increases programmers' productivity. It slashes the programming effort
required to create reports and PC files by 90% or more. That means more completed
projects, in less time, without an increase in staff. And if Report Writer eliminates the need,
even once, to bring in contract programmers to help overburdened staff with a project—
you'll recover its cost right there.

Report Writer also increases the productivity of your PC users. If they are manually entering
data now, the time savings will be enormous. But even if you have an existing download
application, Report Writer reduces the "dead–time" associated with it. You'll eliminate the
wasted time spent downloading unnecessary data. And you'll shift much of the slow sorting
and number–crunching functions from the PC back up to the mainframe. You'll recover all
the productivity your shop is losing every day to idle time when PC users are just waiting on
their PCs. And with Report Writer, there are no expensive PC components to purchase and
maintain. All you need is Report Writer and your existing file transfer facility.

Add together the cumulative value of the hours saved by the programming staff and your
end–users. You'll see that it won't take long to recoup your small investment in Report
Writer.

8 Report Writer User’s Guide

Report Writer Features

Here are some of Report Writer's major features:

� Year 2000 ready

� control statements use an easy, free format, English–like syntax that's easily learned by
non–technical users

� user–friendly field names can be up to 70 characters long (unlike some report writers that
restrict you to 8–byte names.) This allows full compatibility with COBOL, PL/1 and
Assembler data names.

� you can easily combine data from flat files, VSAM files and DB2 tables

� use your existing COBOL or Assembler record layouts instead of creating a data
dictionary. Or, use Report Writer's simple data dictionary for added functionality.

� no data definition required for DB2 tables — Report Writer accesses the definition from
your DB2 system

� produces efficient internal machine code that is easy on your CPU

� produces output files for mainframe use, as well as PC files

� report lines are not limited to only 132 characters. Report Writer can format a report as
wide as your laser printer will support.

� automatically prints bar graphs

� ability to print full–page forms

� ability to skip to a new sheet of paper at control breaks (not just the next "page")

� has a logical default for every aspect of the report, from the report titles, to how to format
numeric fields, to the layout of the Grand Total line

� allows complete control over formatting of numeric fields, including handling of special
cases like telephone numbers, social security numbers, etc.

� formats dates in over 40 ways, including MM/DD/YY, DD/MM/YY, MM/DD/YYYY, etc. Or,
with the month name spelled out, or abbreviated, and many more

� has special numeric, date and time formatting options for international users

� allows complete control over report titles, column headings, and footnotes

� has a "forgiving" error philosophy which results in at least a partial report almost every
try

� has thorough, clear documentation, including a User's Guide in non–technical language
for end–users

� validity–checks numeric data before processing it, so that no S0C7 abends occur

� ability to display file data in hexadecimal format, for analyzing invalid data

� translates fields from ASCII to EBCDIC and vice verse

� supports full "boolean logic" (the use of AND, OR and NOT) in conditional expressions

� ability to scan free format fields, to see if a certain text appears anywhere within the field

� comparisons and computations are allowed between any numeric fields, (even if one is
packed and one is binary, for example.)

� comparisons are allowed between any date fields (even if one is Julian and one is
Gregorian, for example.)

� supports dates with 2–digit or 4–digit years

Report Writer Features

Chapter 1. Introduction 9

� supports your 2–digit years even after the year 2000, with its century windowing feature

� supports every imaginable type of mainframe data, including over 30 kinds of date fields,
and over 20 kinds of time fields.

� you can create your own new fields, optionally using different formulas depending on one
or more conditions

� full mathematical calculations are supported when creating new fields, including the use
of many built–in functions

� supports a full range of functions to manipulate string data, including powerful parse and
compress features

� "compress" formatting features lets you, for example, compress separate city, state and
ZIP fields into a normal address line format

� lets you use data from existing mainframe reports (rather than mainframe files) in PC
programs

� handles complicated record layouts, including variably–located fields, fields located by
pointer or pointer expressions, etc.

� supports records that contain arrays with varying number of entries

� lets you specify your own spreadsheet column headings, or use defaults

� easily summarizes mainframe data

� automatically computes statistics (such as total, average, maximum, minimum)

� allows an unlimited number of input files for a single report or PC file

� allows an unlimited number of control breaks per report or PC file

� allows an unlimited number of print lines per input record

� allows complete customization of control breaks

� allows complete customization of Grand Totals at end of report

� built–in fields provide the system date, time, jobname, etc.

� special features for speedy report development, such as limiting the number of records
processed, or the number of report lines printed

� can limit input files to a certain key range to eliminate unnecessary I/O

� user exit interfaces for any special handling required at the field level or record level

� prints end of job statistics, such as how many records read from each input file, and how
many records included in report

10 Report Writer User’s Guide

(This page left blank intentionally.)

Chapter 2. How to Request a Report 11

Chapter 2. How to Request a Report

Chapter Table of Contents

Chapter 2. How to Request a Report . 11

Lesson 1. How to Produce a Report in 5 Minutes. 17
How to Use the INPUT Statement . 17
How to Use the COLUMNS Statement . 18
Another 5–Minute Report Example. 20
Using Your Company's Files . 20

Lesson 2. How to Specify Which Records to Include In Your Report. 24
How to Use the INCLUDEIF Statement. 24
How to Write Conditional Expressions. 26

Lesson 3. How to Create Your Own Fields. 30
Creating Numeric Fields. 30
Creating Character Fields. 32
Assigning Values to Fields Based on Conditions. 34

Lesson 4. How to Make Your Own Report Titles. 38
How to Use the TITLE Statement. 38
More Date and Time Features. 40
How to Align the Title . 40

Lesson 5. Changing the Format of Your Report. 44
Using Display Formats . 44
Specifying Column Headings . 44
Specifying a Column's Width. 46

Lesson 6. How to Specify the Report Order. 48
How to Use the SORT Statement. 48
Automatic Sorting . 48

Lesson 7. How to Create Control Breaks. 52
How to Use the BREAK Statement. 52
How to Specify Control Break Spacing . 54
How to Print Statistics at a Control Break. 56
How to Request Multiple Control Breaks. 58

Lesson 8. How to Create Summary Reports . 62
How to Create a Summary Report . 62

Lesson 9. How to Use Data from More Than One File. 65
How Auxiliary Input Files Are Processed . 65
How to Use the READ Statement. 66

12 Report Writer User’s Guide

Chapter 2. How to Request a Report

This chapter teaches you how to use Report Writer control statements to request custom
reports.

Report Writer's language is non–procedural, which means you just describe the result you
want, not the programming steps needed to do it. That means you can produce new reports
in a matter of minutes, rather than days or weeks.

Describe your new report with a few simple "control statements". You can create a report
with just two control statements. For example:

,1387�����6$/(6²),/(
&2/8016���5(*,21��(03/²1$0(��6$/(6²'$7(��6$/(6²7,0(��&86720(5��$02817��7$;

The above statements are all that is needed to produce a complete report with Report Writer.
(See page 19.)

The box on page 15 lists all of the Report Writer control statements, and tells you which
aspect of the report each one deals with. The lessons in this chapter illustrate how these
control statements work.

Once you've written the necessary control statements, submit a batch job to execute Report
Writer. Report Writer examines the control statements describing the report you want. It
also automatically reads the appropriate "file definition" statements stored in a copy library.
(These statements define the input files needed for your report.) Report Writer then accesses
the input file(s) and prepares the desired report. Reports can be sent directly to a printer. Or,
use your company's sysout browsing facility (such as ISPF, IOF or POWER) to view your
report online, as soon as it is finished.

The remainder of this chapter is divided into nine easy lessons that explain how to use Report
Writer's control statements to create custom reports. After reading just the first lesson, you
will be able to produce useful reports with Report Writer. The other lessons introduce
additional control statements, and explain their roles in producing increasingly sophisticated
reports. It is not necessary to read all of the other lessons initially. Nor is it necessary to
read the lessons in sequential order. Read the summaries below and decide which lessons you
need for the kind of reports you want to produce.

Lesson 1. How to Produce a Report in 5 Minutes
This lesson shows how to produce reports using just two simple control
statements— the INPUT and the COLUMNS statements. You will use these
two statements for almost every report you request.

Lesson 2. How to Specify Which Records to Include in Your Report
This lesson shows how to use the INCLUDEIF statement to select which
records will appear in your report.

Lesson 3. How to Create Your Own Fields
This lesson shows you how to create your own fields by performing
computations on existing fields. This is done with the COMPUTE statement.

How to Request a Report

Chapter 2. How to Request a Report 13

How to Request a Report

14 Report Writer User’s Guide

Lesson 4. How to Make Your Own Report Titles
This lesson introduces the TITLE statement, and shows how you can specify
your own report titles.

Lesson 5. Changing the Format of Your Report
This lesson shows how you can customize the appearance of your report.
It introduces some of the parms available in the COLUMNS statement. These
parms let you change: column headings; column width; and the way dates
and numbers are formatted.

Lesson 6. How to Specify the Report Order
This lesson shows how to sort your reports into whatever order you want.
The use of the SORT statement is explained.

Lesson 7. How to Create Control Breaks
This lesson shows how to break a report up into sections, printing subtotals
for each section. The use of the BREAK statement to request such "control
breaks" is explained.

Lesson 8. How to Create Summary Reports
This lesson shows you how to turn a report with subtotals into a "summary
report."

Lesson 9. How to Use Data from More than One File
This lesson shows how easy it is to read records from additional files when
producing a report. By adding a single READ statement, you automatically
have access to all of the fields from an additional file.

Keep in mind that these lessons show you the most common use of each control statement.
Most control statements also have additional features that are not discussed in these lessons.
Additional ways to use these control statements are discussed in Chapter 4, "Beyond the
Basics." The complete syntax for each control statement is shown in Chapter 9, "Control
Statement Syntax."

How to Request a Report

Chapter 2. How to Request a Report 15

REPORT WRITER CONTROL STATEMENTS

(GROUPED BY FUNCTION)

Statements that Define Data
),/(Defines a file
),(/' Defines a field within a file
$60 Lets you define a file using an Assembler record layout
&2%2/ Lets you define a file using a Cobol record layout

Statements that Make Data Available to a Report
,1387 Specifies the primary input file
5($' Specifies an auxiliary input file
&20387(Creates a new field

Statements that Describe the Body of a Report
,1&/8'(,) Specifies which input records to include in the report
&2/8016 Specifies the report columns and column headings
7,7/(Specifies the report titles
)227127(Specifies footnotes at the bottom of each page

Statements that Define the Report Order, and Control Breaks
6257 Specifies report order, and optionally specifies control break fields
%5($. Specifies control break processing

Miscellaneous Statements
237,216 Specifies various special options, such as double spacing, or

summary reports
&23< Copies additional control statements for processing

16 Report Writer User’s Guide

(This page left blank intentionally.)

Chapter 2. How to Request a Report 17

Lesson 1. How to Produce a Report
in 5 Minutes

This lesson teaches you how to produce a complete report using just two simple control
statements. These statements are:

� the INPUT statement

� the COLUMNS statement

You only need these two statements to create a report with Report Writer. For example:

,1387�����6$/(6²),/(
&2/8016���5(*,21��(03/²1$0(��6$/(6²'$7(��6$/(6²7,0(��&86720(5��$02817��7$;

Figure 1 (page 19) shows a report created with just these two statements.

How to Use the INPUT Statement

Your company probably has many files stored on its disk drives and magnetic tapes. For
example, the personnel department of your company probably has an employee file,
containing information about each employee. The accounting department probably has
numerous files, such as an accounts receivable file, an accounts payable file, etc. A sales
department might have a sales file, with information about sales that have been made, and
so forth.

The very first step in requesting a report is to tell Report Writer which one of your company's
files has the data needed for your report. Use the INPUT statement to do this. For example:

,1387���6$/(6²),/(

The above statement tells Report Writer that you want to use a file named SALES–FILE as the
input for your report.

All Report Writer control statements begin in column 1 with the name of the statement (for
example, INPUT), followed immediately by a colon. What follows next will depend on the
particular control statement involved. With an INPUT statement, you simply put the name of
the file to be used as the input for the report. In the above example we named SALES-FILE.

Note: SALES–FILE is a sample file that we will use for many examples in this
manual. The SALES–FILE contains information about the sales made by the
employees of an imaginary company. Each record in this file contains data about
one sale, including the name of the employee who made the sale, their employee
number, their sales region, the date and time of the sale, the customer's name, the
amount of the sale, and so on. Each of these items of data is called a field. A
complete description of this sample SALES–FILE is shown in Appendix F, "Sample
File Definitions" (page 587.)

Lesson 1. How to Produce a Report in 5 Minutes

18 Report Writer User’s Guide

How to Use the COLUMNS Statement

After identifying the input file to use, the next step is to tell Report Writer which fields from
that file you want to see in your report. Use the COLUMNS statement to do that. Each field
named in this statement will appear as one column of data in the report. For example:

,1387�����6$/(6²),/(
&2/8016���5(*,21��(03/²1$0(��6$/(6²'$7(��6$/(6²7,0(��&86720(5��$02817��7$;

The COLUMNS statement above tells Report Writer that we want columns in our report that
show the sales region, the employee name, the sales date, the sales time, the customer's name,
the amount of the sale, and the tax amount.

Note: Normally, reports are a maximum of 132 characters wide. You probably
won't be able to fit all of a file's fields into that much space. Decide, then, which
fields you need to see in your particular report, and put them in the COLUMNS

statement. You may specify as many fields as there is room for in the report.

With just the two statements shown above, we have given Report Writer everything it needs
to produce a report. The report produced is shown in Figure 1.

You now see how easy it is to produce reports with Report Writer. With just two simple
statements we have produced an attractive report that has:

� a default title containing the name of the input file, as well as the date, time, day
of the week, and page number

� the columns of data that we requested, appearing in the same order as we
requested

� neat, underlined column headings identifying each column of data

� date, time and numeric fields properly formatted

� a Grand Totals line which shows totals for each of the numeric columns

� an item count, showing the number of records printed in the report

Lesson 1. How to Produce a Report in 5 Minutes

Chapter 2. How to Request a Report 19

,1387����6$/(6�),/(
&2/8016��5(*,21�(03/�1$0(�6$/(6�'$7(�6$/(6�7,0(�&86720(5�$02817�7$;

These control statements:

Notes:
• this report was produced from just two statements: the INPUT and the

COLUMNS statements
• the data used in this report comes from the SALES–FILE
• the seven columns of data in the report correspond to the field names in the

COLUMNS statement
• the default column headings used are the field names themselves, broken

apart at each dash
• the report has a default title which includes the name of the input file
• the report has a Grand Total line showing totals for the two numeric

columns
• the number of items listed in the report is shown

Figure 1 A report produced with just two control statements

78(�������������������$0�����'$7$�)520�6$/(6�),/(�������������������3$*(������

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���7+20$6�����������������������<2*857�&,7<�������������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������

�*5$1'�727$/�����,7(06���

Produce this report:

Lesson 1. How to Produce a Report in 5 Minutes

20 Report Writer User’s Guide

Another 5–Minute Report Example

Now let's make another report, this time using a different input file. This time we will request
a report from the EMPL–FILE. That's a sample employee file, described in Appendix F,
"Sample File Definitions" (page 588.) We will print a simple employee directory from this
file. We want the report to have columns showing employee number, last name, first name,
sex, social security number, date hired, and their city and state. We only need the following
two statements:

,1387����(03/²),/(
&2/8016��(03/²180��/$67²1$0(��),567²1$0(��6(;��62&,$/²6(&²180
���������+,5(²'$7(��&,7<��67$7(

The INPUT statement above specifies that the input file for our report will be the employee file
(EMPL–FILE). The COLUMNS statement specifies the columns of data we want our report to
have. Notice that we needed two lines for the COLUMNS statement in this example. You can
continue a control statement onto as many lines as you like. Just leave at least 1 blank space
at the beginning of each continuation line.

The report produced by the above statements is shown in Figure 2.

You have now seen two examples showing just how easy it is to request a report with Report
Writer. That's all there is to it! You should now be able to request basic reports from the
files at your company. Just identify the file you wish to use in your report with an INPUT

statement. And then identify the fields that you want to see in the report with a COLUMNS

statement.

Usin g Your Compan y's Files

You may be wondering how Report Writer knows the names of your company's files and
fields. The answer is that your company's files are defined to Report Writer by other control
statements that are kept in a Report Writer "copy library." For example, the statements used
to define the SALES–FILE that we used earlier in this lesson are shown on page 587.

For a list of the file names and field names available for you to use, ask your programmer.
They can print that information from the Report Writer Copy Library, in a format similar to
that shown on page 587.

If you already know the name of the file to use, you can also get a list of all of its fields by
adding the SHOWFLDS(YES) parm to your INPUT statement like this:

,1387��6$/(6²),/(��6+2:)/'6�<(6�

The above statement tells Report Writer to print (in the control statement listing) a list of all
of the fields defined for the SALES–FILE.

If a file that you need has not yet been defined, see Chapter 5, "How to Define Your Input
Files" for information on doing that.

Lesson 1. How to Produce a Report in 5 Minutes

Chapter 2. How to Request a Report 21

,1387����(03/�),/(
&2/8016��(03/�180��/$67�1$0(��),567�1$0(��6(;�62&,$/²6(&²180
���������+,5(�'$7(��&,7<��67$7(

These control statements:

Notes:
• the INPUT statement names the EMPL–FILE as the input file for this report
• the COLUMNS statement specifies which fields to print as columns in the report
• notice that we split the COLUMNS statement onto two lines, with the "continued" line beginning with

at least one blank space

Figure 2 An employee directory produced with only two control statements

78(�������������������$0��������'$7$�)520�(03/�),/(����������������������3$*(������

���62&,$/
(03/������/$67������������),567��������������6(&�������+,5(
180�������1$0(������������1$0(�������6(;�����180�������'$7(��������&,7<�������67$7(

�����-21(6�����������-(55<������������0�����������������������6$1�)5$1&,6&2����&$
�����-2+1621���������7+20$6�����������0�����������������������6&2776'$/(�������$=
�����-2+1621���������/,1'$������������)�����������������������6$17$�526$�������&$
�����0$&'21$/'�������5,&+$5'����������0�����������������������3/($6$1721�������&$
�����6,03621���������7,027+<����������0�����������������������$5&$',$����������&$
�����0255,621��������0,&+$(/����������0�����������������������*/(1'$/(���������&$
�����&+5,6723+(5621��0(/,66$����������)�����������������������3+2(1,;����������$=
�����%$.(5�����������9,9,$1�����������)�����������������������:$/187�&5((.�����&$
�����7+20$6����������0$57,1�����������0�����������������������&21&25'����������&$

�*5$1'�727$/���,7(06�

Produce this report:

Lesson 1. How to Produce a Report in 5 Minutes

22 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� an INPUT statement is needed to tell Report Writer which input file to use for a
particular report

� a COLUMNS statement is needed to tell Report Writer what columns of data to
print in your report

� by using just these two statements you can produce a complete report

The next lesson will teach you how to limit the records that are included in your report.

To Learn More
To learn more about writing control statements in general, see Chapter 8, "General Syntax
Rules." In that chapter you will learn such things as:

� how long each line can be (page 384)

� how to continue control statements onto multiple lines (page 385)

There are some additional features associated with the INPUT and COLUMNS statements which
we have not covered in this lesson. Some of these additional features are discussed in this
chapter in Lesson 5, "Changing the Format of Your Report". Other topics are discussed in
Chapter 4, "Beyond the Basics." The additional features include:

� how to specify your own column headings for a report (pages 44 and 127)

� how to make a column in the report wider or narrower (pages 46 and 131)

� how to change the way that numbers, dates and times are formatted in your
report (pages 44 and 132)

� how to make a report column that contains a literal text (page 124)

� how to specify the number of spaces to leave between columns in your report
(page 124)

� how to specify which numeric columns to include in the Grand Totals (page
144)

� how to print multiple report lines for each input record (page 147)

� how to produce reports that are wider than 132 characters (see page 362 or
374)

The complete syntax for the INPUT and COLUMNS statements is given in Chapter 9, "Control
Statement Syntax."

Chapter 2. How to Request a Report 23

(This page left blank intentionally.)

24 Report Writer User’s Guide

Lesson 2. How to Specif y Which Records to Include
In Your Report

This lesson teaches you how to select only certain records from the input file for inclusion
in your report. The control statement discussed is:

� the INCLUDEIF statement

How to Use the INCLUDEIF Statement

The reports we produced in the previous lesson included all of the records found in the input
file. When no INCLUDEIF statement is specified, Report Writer defaults to including every
record from the input file. For example, the report on page 19 included all sales from the
SALES–FILE. And the report on page 21 listed all of the employees in the EMPL–FILE.

Often you want a report to include only selected records from the input file. Use the
INCLUDEIF statement to tell Report Writer to "include" a record in the report only "if" one or
more conditions are met.

For example, assume that we want to print another list of sales from the SALES–FILE similar
to the one on page 19. But this time we only want to print sales made by the employee named
Jones. We would simply add the following INCLUDEIF statement to our other control
statements:

,1&/8'(,)���(03/²1$0(� �
-21(6

The above INCLUDEIF statement tells Report Writer to "include" records from the SALES-FILE

"if" the EMPL–NAME field is equal to '-21(6'. Report Writer still reads through the entire
SALES–FILE, just like before. But now it examines each record before including it in the
report. If the record's EMPL–NAME field contains the value '-21(6', then the record is included
in the report. If the EMPL–NAME field contains any other value, then that record is not
included in the report. Figure 3 shows a report produced using the above statement. Only
the sales made by Jones appear in that report.

The INCLUDEIF statement may appear anywhere after the INPUT statement. Only one
INCLUDEIF statement is allowed per report, but it may contain as many conditions as you like.

By the way, the INCLUDEIF statement can refer to any of the fields in the input file. You are
not limited to just those fields that are listed in the COLUMNS statement.

Lesson 2. How to Specif y Which Records to Include In Your Report

Chapter 2. How to Request a Report 25

,1387������6$/(6�),/(
,1&/8'(,)��(03/²1$0(� �
-21(6

&2/8016����5(*,21�(03/�1$0(�6$/(6�'$7(�6$/(6�7,0(�&86720(5�$02817�7$;

These control statements:

Notes:
• the report now includes only those records whose EMPL–NAME field is equal to '-21(6'

Figure 3 Using an INCLUDEIF statement to specify which records to include in a report

78(�������������������$0�����'$7$�)520�6$/(6�),/(�������������������3$*(������

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������

�*5$1'�727$/����,7(06��

Produce this report:

Lesson 2. How to Specif y Which Records to Include In Your Report

26 Report Writer User’s Guide

How to Write Conditional Expressions

The INCLUDEIF statement consists of a conditional expression. The complete rules for
writing conditional expressions are explained beginning on page 399. Briefly, a conditional
expression contains one or more "conditions", separated with words such as AND and OR. A
condition usually involves comparing the contents of one field with the contents of another
field, or with a literal value. Let's look at some more examples of INCLUDEIF statements and
their conditional expressions.

Note: if you are a programmer, you will notice that the syntax for conditional
expressions is very similar to the syntax used in "IF statements" in COBOL, PL/1,
and BASIC. If you are familiar with any of these languages, you should find it
especially easy to write INCLUDEIF statements.

You may want your report to include all records which do not contain a certain value. Do this
by specifying "not equal" in your condition. For example:

,1&/8'(,)���(03/²1$0(�¤ �
-21(6

The above statement specifies that the report should include all records from the input file
whose EMPL–NAME field is not equal to '-21(6'.

Note: In addition to ¬=, you can also use <> to indicate "not equal", like this:

,1&/8'(,)��(03/²1$0(��!�
-21(6

You may want to include a record in your report if either of two conditions is true. To do
this, use an INCLUDEIF statement with two conditions, separated by the word OR. Consider
the following statement:

,1&/8'(,)���(03/²1$0(� �
-21(6
��25��$02817�!����

The above statement states that a record should be included in the report "if the EMPL–NAME

field is equal to '-21(6', or if the AMOUNT field is greater than 100." The word OR indicates
that records from the input file will be included if either one (or both) of the conditions is
true. Figure 4 shows a report that uses the above statement. All sales listed in that report
were either made by Jones or were for an amount over $100.

Notice in the above statement that we enclosed '-21(6' in single quotation marks, while we did
not use quotation marks around the 100. That is because EMPL–NAME is a character field,
while AMOUNT is a numeric field. Character literals (such as '-21(6') must be enclosed in
quotation marks. You can use either single (') or double (") quotation marks. But numeric
literals (such as 100), as well as date and time literals, are not enclosed in quotation marks.
Numeric literals also must not contain commas. (The rules for writing literals are thoroughly
explained beginning on page 389).

Lesson 2. How to Specif y Which Records to Include In Your Report

Chapter 2. How to Request a Report 27

,1387������6$/(6�),/(
,1&/8'(,)��(03/�1$0(� �
-21(6
��25��$02817�!����
&2/8016����5(*,21�(03/�1$0(�6$/(6�'$7(�6$/(6�7,0(�&86720(5�$02817�7$;

These control statements:

Notes:
• records are included in the report if either the EMPL–NAME field is equal to '-21(6', or the AMOUNT

field is greater than 100

Figure 4 Including records in a report if either of two conditions is true

78(�������������������$0�����'$7$�)520�6$/(6�),/(�������������������3$*(������

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
1257+��-2+1621����������������������9,//$�+27(/�������������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������

�*5$1'�727$/����,7(06��

Produce this report:

Lesson 2. How to Specif y Which Records to Include In Your Report

28 Report Writer User’s Guide

As another example, you may want to include records in your report when both of two
conditions are true. For example, let's say we want a listing only of sales that were made by
Jones and that were also for an amount over $100. For this report, two conditions must both
be true: the EMPL–NAME field must be equal to '-21(6' and the AMOUNT field must be over 100.
Use the word AND to specify that both conditions must be true, like this:

,1&/8'(,)���(03/²1$0(� �
-21(6
��$1'��$02817�!����

Now as Report Writer reads each record from the input file, it will include a record in the
report only "if the EMPL–NAME field is equal to '-21(6' and the AMOUNT field is greater
than 100."

Here is an example of including records in a report based on the contents of a date field:

,1&/8'(,)���6$/(6²'$7(��!�����������

The above statement specifies that records should be included in the report only if their
SALES–DATE field contains a date greater than (after) April 15, 1995.

Here is an example of including records in a report based on the contents of a time field:

,1&/8'(,)���6$/(6²7,0(�������������

The above statement specifies that records should be included in the report only if their
SALES–TIME field contains a time less than (before) 17:00:00 (which is 5 PM.)

If your INCLUDEIF statement contains both the words OR and AND, you should use parentheses
to indicate the order in which to perform the comparisons. Consider the following statement:

,1&/8'(,)���(03/²1$0(� �
-21(6
��25
�������������6$/(6²'$7(�!������������$1'��6$/(6²'$7(�������������

In the above statement, records will be included if the EMPL–NAME field is equal to '-21(6', or
if both of the SALES–DATE comparisons are true. The parentheses cause the two SALES–DATE

comparisons to be treated as one condition. That condition is true if the SALES–DATE is
greater than April 15, 1995 and is less than April 30, 1995.

Lesson 2. How to Specif y Which Records to Include In Your Report

Chapter 2. How to Request a Report 29

Summar y
Here is a summary of what we learned in this lesson:

� use the INCLUDEIF statement when you want to include only certain records from
the input file in your report

� the INCLUDEIF statement may contain one or more conditions, separated by the
words AND or OR

� groups of conditions can be enclosed in parentheses, to indicate the order in
which the comparisons should be performed

The next lesson will show you how to compute your own new fields for use in your report.

To Learn More
There are some additional features associated with the INCLUDEIF statement which we have
not covered in this lesson. These additional features are discussed in Chapter 9, "Control
Statement Syntax," beginning on page 481. The additional features include:

� how to use symbols rather than the actual words AND and OR in your conditional
expressions

� how to scan a character field, to see if a certain text exists anywhere within the
field

� how to specify conditions based on bit fields

� how to specify a condition based on a field's raw hexadecimal value

� how to specify date literals in DD/MM/YY or DD/MM/YYYY format (page 137), like
this:

,1&/8'(,)��6$/(6²'$7(�!����������

� you may also be able to use the KEYRANGE parm of the INPUT statement to limit
the records included in your run (page 485)

30 Report Writer User’s Guide

Lesson 3. How to Create Your Own Fields

This lesson teaches you how to create your own fields to use in producing your report. The
control statement discussed is:

� the COMPUTE statement

Sometimes the data you need for a report is not contained in the input file. Yet the necessary
data might be easily computed from one or more fields which are in the input file. In such
cases, simply create a new field by using the COMPUTE statement.

Creatin g Numeric Fields

A COMPUTE statement specifies the name of the new field to create and supplies a
computational expression to use in assigning a value to that field. The complete rules for
computational expressions are discussed beginning on page 410. Generally, your expression
will consist of one or more mathematical operations performed on numeric fields or numeric
literals.

For example, the sample SALES–FILE has numeric fields named AMOUNT and TAX. We can use
the COMPUTE statement to create a new field containing the total amount due just by adding
those two fields together, like this:

&20387(���727$/²$02817� �$02817���7$;

The above statement creates a new field named TOTAL–AMOUNT. It is computed by adding
the AMOUNT field and the TAX field together. Now that the TOTAL–AMOUNT field has been
created, we can use that field in any way that other fields can be used. For example, a
computed field can be used: as a column in the body of the report; in the report titles; as a sort
field; as a control break field; as part of a conditional expression (in the INCLUDEIF

statement); even as an operand in subsequent COMPUTE statements to create other fields.
Figure 5 shows a report that uses the above COMPUTE statement.

Note: COMPUTE statements normally appear after the INPUT statement, but must
appear before any other control statements that refer to the field being created. In
the example on page 31, the COMPUTE statement for TOTAL–AMOUNT had to come
before the COLUMNS statement, since the COLUMNS statement referred to that field.

You can perform addition, subtraction, multiplication, and division in the COMPUTE

statement. Use the +, –, * and / symbols, respectively. You may also use parentheses as
needed to indicate the order in which the operations should be performed.

Note: when performing subtraction, always put a blank space before and after the
minus sign. Otherwise, the minus sign may appear to be a part of a field name.
Blanks are optional around the other operator symbols.

Lesson 3. How to Create Your Own Fields

Chapter 2. How to Request a Report 31

,1387����6$/(6�),/(
&20387(��727$/�$02817����� �$02817���7$;
&20387(��6$/(6�&200,66,21� �727$/�$02817�����
&2/8016��(03/�1$0(��&86720(5��$02817��7$;��727$/�$02817��6$/(6�&200,66,21

These control statements:

78(�������������������$0��������'$7$�)520�6$/(6�),/(�����������������������3$*(������

���(03/���727$/�����������6$/(6
���1$0(�������&86720(5���������$02817���������7$;���������$02817��������&200,66,21���

-2+1621����$&(�(/(&75,&$/��
%$.(5������-$&.6�&$)(��
0255,621���67$5�0$5.(7���
0255,621���$��3+272*5$3+<��
6,03621����(8523($1�'(/,���
-2+1621����9,//$�+27(/���
-2+1621����0$5<6�$17,48(6��
%$.(5������-$&.6�&$)(��
7+20$6�����<2*857�&,7<���
-21(6������(=�*52&(5<��
-21(6������72<�72:1��
-21(6������72<�72:1��
-2+1621����$&0(�%8,/',1*���
6,03621����-�	�6�/80%(5��

�*5$1'�727$/���������,7(06�
���

Produce this report:

Notes:
• the column heading used for computed fields is (by default) the field name itself, broken apart at each

dash
• computed numeric fields receive Grand Totals just like other numeric fields

Figure 5 Using the COMPUTE statement to create numeric fields

Lesson 3. How to Create Your Own Fields

32 Report Writer User’s Guide

As another example of a creating a numeric field, let's say we wanted to compute a sales
commission for each sale. The commission will be 33% of the total value of the sale,
including the tax. We could compute the sales commission with the following statement:

&20387(���6$/(6²&200,66,21� �727$/²$02817�����

This statement creates a new field called SALES–COMMISSION which is computed by
multiplying TOTAL–AMOUNT by .33. Notice that we used the result of our previous COMPUTE

statement to perform the computation in this statement.

Figure 5 (page 31) shows a report that uses the COMPUTE statement shown above.

In addition to the basic arithmetic operations, there are also a number of built–in functions
that you can use in the COMPUTE statement. These built–in functions allow you to perform
more complex mathematical operations on numeric operands. A complete list of built–in
functions is found in Appendix D, "Built-In Functions" (page 566.)

Creatin g Character Fields

So far we have been creating numeric fields. Now let's consider how to create your own
character fields. There is only one operation used in computing character fields. It is the
concatenation operation. (Don't let that word scare you if it is new to you. "Concatenating"
simply means "stringing together" two or more character fields.) The plus sign (+) is used
as the symbol for concatenation. For example:

&20387(��:+2/(²1$0(� �/$67²1$0(���),567²1$0(

The above statement creates a new field named WHOLE–NAME. It is created by concatenating
the contents of the LAST–NAME field and the contents of the FIRST–NAME field. The result is
a single field which now contains both the first and last names of the employee. The new
field will be 30 bytes long — the combined length of the two operands.

You can also concatenate more than two fields together. For example,

&20387(��0$,/,1*²&2'(� �67$7(���
²
���(03/²180

This example creates a new field called MAILING–CODE which consists of the contents of the
STATE field, followed by a dash, followed by the contents of the EMPL–NUM field.

In addition to the concatenation operation, there are also a number of built–in functions that
can be used when creating character fields. For example, the #LEFT function can be used to
extract the leftmost n bytes of a character field. Here is an example of how to use
the #LEFT built–in function:

&20387(��),567²,1,7,$/� ��/()7�),567²1$0(���

This statement creates a new character field which consists of only the first character (that
is, the leftmost 1 byte) of the FIRST–NAME field.

Lesson 3. How to Create Your Own Fields

Chapter 2. How to Request a Report 33

,1387�����(03/�),/(
&20387(���:+2/(�1$0(� �/$67�1$0(���),567�1$0(
&20387(���0$,/,1*�&2'(� �67$7(���
�
���(03/�180
&20387(���),567�,1,7,$/� ��/()7�),567�1$0(���
&2/8016���(03/�180��:+2/(�1$0(��0$,/,1*�&2'(��),567�,1,7,$/��&,7<��67$7(

These control statements:

78(�������������������$0���'$7$�)520�(03/�),/(�����������������3$*(������

(03/�������������:+2/(��������������0$,/,1*��),567
180���������������1$0(���������������&2'(���,1,7,$/������&,7<�������67$7(

�����-21(6����������-(55<�����������&$���������-����6$1�)5$1&,6&2����&$
�����-2+1621��������7+20$6����������$=���������7����6&2776'$/(�������$=
�����-2+1621��������/,1'$�����������&$���������/����6$17$�526$�������&$
�����0$&'21$/'������5,&+$5'���������&$���������5����3/($6$1721�������&$
�����6,03621��������7,027+<���������&$���������7����$5&$',$����������&$
�����0255,621�������0,&+$(/���������&$���������0����*/(1'$/(���������&$
�����&+5,6723+(5621�0(/,66$���������$=���������0����3+2(1,;����������$=
�����%$.(5����������9,9,$1����������&$���������9����:$/187�&5((.�����&$
�����7+20$6���������0$57,1����������&$���������0����&21&25'����������&$

�*5$1'�727$/����,7(06�

Produce this report:

Notes:
• the column heading used for computed fields is (by default) the field name itself, broken apart at each

dash

Figure 6 Using the COMPUTE statement to create character fields

Lesson 3. How to Create Your Own Fields

34 Report Writer User’s Guide

There are a number of other built–in functions which can also be used. A complete list of
built–in functions is found in Appendix D, "Built-In Functions" (page 566.)

Figure 6 (page 33) shows a report that uses each of the COMPUTE statements shown in the
preceding examples.

Assi gnin g Values to Fields Based on Conditions

Up until now we have been using "simple" COMPUTE statements. In a simple COMPUTE

statement, the value of the new field is defined by a single computational expression.

But it is also possible to use conditional logic in a COMPUTE statement. In "conditional"
COMPUTE statements, one of several different expressions will be used to assign a value to
the new field. The expression that is used will depend on one or more conditions that you
specify. Conditional COMPUTE statements can be very powerful tools in producing reports.
Here is an example of a conditional COMPUTE statement:

&20387(��%2186� �:+(1�+,5(²'$7(���������������$66,*1�727$/²6$/(6������
�����������������:+(1�+,5(²'$7(�! ������������$66,*1�727$/²6$/(6������

The above statement creates a field named BONUS. However, in this example the BONUS field
can be computed in one of two ways: for employees hired before January 1, 1980, the bonus
is 8 percent of total sales (TOTAL–SALES * .08). But, for employees hired on or after
January 1, 1980, the bonus is only 5 percent of total sales (TOTAL–SALES * .05).

When assigning a value to the BONUS field, Report Writer evaluates the conditional
expression in each WHEN parm. As soon as a WHEN expression is found that is true, the
computational expression from the corresponding ASSIGN parm is used to assign a value
to BONUS.

You are allowed to have as many pairs of WHEN and ASSIGN parms as you like in a COMPUTE

statement. If none of the WHEN expressions are true, a value of zero will be assigned to the
field. To assign some other value when none of the WHEN parms are true, you may use the
ELSE parm. For example:

&20387(��%2186� �:+(1�+,5(²'$7(���������������$66,*1�727$/²6$/(6������
�����������������(/6(�������������������������$66,*1�727$/²6$/(6������

The above statement has the same effect as the previous example, but is a little simpler. It
has only one WHEN expression. For employees whose hire date is before January 1, 1980,
the bonus will be computed based on 8 percent. For all other cases, the bonus will be
computed based on 5 percent.

You may also use conditional COMPUTE statements to create character fields. For example:

&20387(��7,7/(� �:+(1�6(;� �
0
���$66,*1�
05
�
�����������������(/6(�������������$66,*1�
06
�

The above statement creates a new field called TITLE. The contents of TITLE will be "05" if the
SEX field contains an "0", and "06" otherwise.

Lesson 3. How to Create Your Own Fields

Chapter 2. How to Request a Report 35

,1387�����(03/²),/(
&20387(���%2186� �:+(1�+,5(²'$7(���������������$66,*1�727$/²6$/(6������
������������������:+(1�+,5(²'$7(�! ������������$66,*1�727$/²6$/(6������
&20387(���7,7/(� �:+(1�6(;� �
0
���$66,*1�
05
�
������������������(/6(�������������$66,*1�
06
�
&2/8016���7,7/(��/$67²1$0(��),567²1$0(��6(;��+,5(²'$7(��727$/²6$/(6��%2186

These control statements:

78(�������������������$0��������'$7$�)520�(03/�),/(�����������������������3$*(������

�����������/$67������������),567������������+,5(��������727$/
7,7/(������1$0(������������1$0(�������6(;���'$7(��������6$/(6������������%2186������

�05���-21(6�����������-(55<������������0��
�05���-2+1621���������7+20$6�����������0��
�06���-2+1621���������/,1'$������������)��
�05���0$&'21$/'�������5,&+$5'����������0��
�05���6,03621���������7,027+<����������0��
�05���0255,621��������0,&+$(/����������0��
�06���&+5,6723+(5621��0(/,66$����������)��
�06���%$.(5�����������9,9,$1�����������)��
�05���7+20$6����������0$57,1�����������0��

�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• the BONUS field is calculated differently, depending on the contents of the HIRE–DATE field
• the value assigned to the TITLE field is based on the contents of the SEX field

Figure 7 Assigning values to computed fields based on conditions

Lesson 3. How to Create Your Own Fields

36 Report Writer User’s Guide

Figure 7 (page 35) shows a report that uses some of the conditional COMPUTE statements just
discussed.

When defining character fields with a conditional COMPUTE statement, a value of spaces will
be assigned if none of the WHEN expressions are true and no ELSE parm is specified.

All of our examples so far have used just a single condition within the WHEN parm. You can,
however, use any valid conditional expression within the WHEN parm. The conditional
expression can contain as many different conditions as you like, separated with the words
AND and OR, and optionally grouped with parentheses. (A conditional expression is the sort
of expression that is allowed in the INCLUDEIF statement, as was described in Lesson 2 on
page 26.) The complete rules for writing conditional expressions are given beginning on page
399. Additional examples of COMPUTE statements are shown beginning on page 451.

Summar y
Here is a summary of what we learned in this lesson:

� the COMPUTE statement is used to create new fields

� a simple COMPUTE statement assigns the result of a single computational
expression to the new field

� a conditional COMPUTE statement uses one of several different computational
expressions, depending on the conditions that you specify

The next lesson will show you how to specify your own report titles.

To Learn More
There are some additional features associated with the COMPUTE statement which we have
not covered in this lesson. Some of these additional features are discussed under the
COMPUTE statement in Chapter 9, "Control Statement Syntax" (page 444). Other additional
features are discussed in Chapter 4, "Beyond the Basics." Examples of the additional topics
include:

� how to create date type fields (page 452)

� how to create time type fields (page 254)

� how to create bit type fields (page 452)

� how to specify how many decimal places a numeric or time field should contain
(page 450)

� how to specify column headings for the fields you create (page 449)

� how to specify how your field should be formatted when it is printed in a report
(page 447)

� how to specify whether a numeric or time field should be totalled in the
Grand Totals line at the end of the report (page 144)

� how to retain the value of a COMPUTE field in certain cases (page 238)

Chapter 2. How to Request a Report 37

(This page left blank intentionally.)

38 Report Writer User’s Guide

Lesson 4. How to Make Your Own Report Titles

This lesson teaches you how to specify your own report titles. The control statement
discussed is:

� the TITLE statement

How to Use the TITLE Statement

As we've seen in the previous lessons, a TITLE statement is not required to produce a report.
If you do not supply a TITLE statement when requesting your report, Report Writer provides
a default title.

To specify your own report titles, simply use one or more TITLE statements. For each TITLE

statement you supply, Report Writer will print one title line at the top of each page of the
report. TITLE statements may appear anywhere after the INPUT statement.

After the word TITLE and the colon, enclosed your desired title in either single or double
quotation marks. For example:

7,7/(���
$%&�&203$1<����5(&(17�6$/(6

Note: if your title is too big to fit on a single line, you may continue it onto
additional lines. See page 385 for more information on continuing control statement.

You will probably want to include the date and page number in your titles. Do this by using
the special built–in fields named #TODAY and #PAGENUM. (Don't let the pound sign scare you.
All of Report Writer's built–in field names begin with this character. That is to distinguish
them from fields in your own files that may have similar names.)

When using #TODAY and #PAGENUM in your TITLE statement, do not enclose them in quotation
marks. Anything enclosed in quotation marks is printed as is in the title. The words #TODAY

and #PAGENUM are the names of fields, whose contents we want to print in the title. Here is
an example of specifying titles that contain the date and page number:

7,7/(���
$%&�&203$1<����5(&(17�6$/(6

7,7/(����72'$<
7,7/(���
3$*(
��3$*(180

The three TITLE statements above result in three title lines in the report. The first title line is
the literal text "$%&�&203$1<�³�5(&(17�6$/(6". The second title line just contains the current
date. The third title line contains the word "PAGE", followed by the page number itself. This
third title line illustrates a new point: a TITLE statement can contain more than one item. In
this case, it contains one literal text (
3$*(
) and one field name (#PAGENUM).

Figure 8 shows a report produced using the above TITLE statements. Notice that the titles are
automatically centered over the report.

Lesson 4. How to Make Your Own Report Titles

Chapter 2. How to Request a Report 39

,1387����6$/(6�),/(
7,7/(����
$%&�&203$1<����5(&(17�6$/(6

7,7/(�����72'$<
7,7/(����
3$*(
��3$*(180
&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

�������������������������$%&�&203$1<����5(&(17�6$/(6
���
����������������������������������3$*(�����

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���7+20$6�����������������������<2*857�&,7<�������������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������

�*5$1'�727$/�����,7(06���

Produce this report:

Notes:
• the report now has three title lines, corresponding to the three TITLE statements
• the second title line simply contains the current date (#TODAY)
• the third title line contains the literal word "3$*(", followed by the page number (#PAGENUM)
• all title lines are centered over the report

Figure 8 Using the TITLE statement to specify your own titles

Lesson 4. How to Make Your Own Report Titles

40 Report Writer User’s Guide

More Date and Time Features

When you use #TODAY in your title, Report Writer formats it in the standard default date
format (MM/DD/YY.) If you want to spell out the month name in the date, specify the LONG1

"display format" after #TODAY, like this:

7,7/(���72'$<�/21*��

The above statement would cause, for example, "'(&(0%(5��������" to appear in the title,
rather than "��������". The report in Figure 9 uses the LONG1 display format. The use of
LONG1 and other display formats is discussed in more detail beginning on page 170. For a
complete list of display formats to choose from when formatting dates in your titles, see
Appendix B, "Display Formats" (page 550.)

In addition to the current date, you can also use the built–in fields #TIME and #DAYNAME in
your TITLE statement. These allow you to print the time of day and the day of the week in
your titles.

Figure 9 also illustrates the #TIME built–in field.

How to Ali gn the Title

What if we want just a single title line that contains the date, time and the page number along
with our literal text? The following example shows how to do that:

7,7/(���72'$<��7,0(�����
$%&�&203$1<�³�(03/2<((�',5(&725<
�����
3$*(
��3$*(180

Notice that the above TITLE statement contains two slashes (/). These are used to separate
the title line into three parts. When slashes are not used (as in the previous examples), the
whole title is simply centered over the report. But when slashes are used, the first part of the
title (#TODAY and #TIME, in the case above) is aligned with the left edge of the report. The
middle part (the literal text) is centered over the report. The last part ("3$*(" and #PAGENUM)
is aligned with the right edge of the report. The use of slashes in the TITLE statement gives
you the maximum control over how your title lines look.

Figure 9 shows a sample report that illustrates the use of slashes to align a title.

Lesson 4. How to Make Your Own Report Titles

Chapter 2. How to Request a Report 41

,1387����6$/(6�),/(
7,7/(�����72'$<�/21*�����7,0(�����
5(&(17�6$/(6
�����
3$*(
���3$*(180
&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

Notes:
• the two slashes divide the TITLE statements into three parts
• the first part (the date and time) is left aligned over the report
• the second part (the name of the report) is centered over the report
• the third part (the page number) is right aligned over the report
• the LONG1 "display format" causes the month name to be spelled out in the date

Figure 9 Using slashes to align the different parts of a title

'(&(0%(5�����������������$0������5(&(17�6$/(6������������������������3$*(�����

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���7+20$6�����������������������<2*857�&,7<�������������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������

�*5$1'�727$/�����,7(06���

Produce this report:

Lesson 4. How to Make Your Own Report Titles

42 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� use the TITLE statement to specify your own titles for a report

� if more than one TITLE statement is used, the title lines print in the same order
in which the TITLE statements appear

� use Report Writer's built–in fields to include the date, time, day of the week,
and page number in your titles

� use slashes to separate your title into left, center, and right aligned parts

The next lesson will teach you how to customize the formatting of your report.

To Learn More
There are some additional features associated with the TITLE statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, "Beyond the Basics." Examples of additional features include:

� how to include data from the input file in your title (page 55 and 165)

� how to change the way the dates, times and numbers are formatted in the title
(page 170)

� how to use any combination of left aligned, centered, and right aligned title
parts (page 174)

� how to print "footnotes" at the bottom of each page of the report (page 180)

The complete syntax for the TITLE statement is given in Chapter 9, "Control Statement
Syntax" (page 531.)

Chapter 2. How to Request a Report 43

(This page left blank intentionally.)

44 Report Writer User’s Guide

Lesson 5. Chan ging the Format of Your Report

This lesson teaches you how to specify your own formatting options for a report. The
formatting options discussed are:

� display formats

� column headings

� column widths

Usin g Displa y Formats

Report Writer provides many "display formats" that you can choose from when displaying
fields in a report. A complete list of display formats is found in Appendix B, "Display
Formats" (page 550.) When no display format is specified (as in most of the examples in the
previous lessons), Report Writer uses a default format. To specify your own display format,
just place it in parentheses after the appropriate field name. (Do not leave a space between
the field name and the open parenthesis.) Display formats are allowed in most statements.
For example:

7,7/(�����72'$<�/21*��
&2/8016��6$/(6�'$7(�6+257����6$/(6�7,0(�++�00����$02817�'2//$5�

The above statements specify a display format for each field:

� the #TODAY field (in the title) will be formatted in Report Writer's LONG1 format
(that is, as 000000000�''��<<<<.)

� the SALES–DATE field will be formatted in the SHORT3 format (that is,
''�000�<<.)

� the SALES–TIME field will be formatted in the HH–MM format. That is, the time
will be rounded to the nearest minute and formatted as ++�00.

� the AMOUNT field will be formatted as a dollar value, with a floating dollar sign

Figure 10 shows a report that illustrates these display formats.

Specif ying Column Headin gs

Another way to customize your report is with override column headings. You remember that
Report Writer uses the field name itself as the default column heading. To specify your own
column heading, just place the desired text in parentheses after the appropriate field name in
the COLUMNS statement. For example:

&2/8016��(03/�1$0(�
6$/(6�3(5621
�

In the above statement, we specified our own column heading for the EMPL–NAME field. As
you can see in the report in Figure 10, the EMPL–NAME column now has "6$/(6�3(5621" as its
column heading.

Note: to break your column heading text into multiple lines, use the vertical bar ()
as a line separator. For example:

&2/8016��(03/²1$0(�
6$/(6 3(5621
�

Lesson 5. Chan ging the Format of Your Report

Chapter 2. How to Request a Report 45

,1387����6$/(6�),/(
7,7/(�����72'$<�/21*�������
(;$03/(6�2)�63(&,$/�)250$77,1*
������3$*(180
&2/8016��5(*,21���(03/�1$0(�
6$/(6�3(5621
���6$/(6�'$7(�6+257��
���������6$/(6�7,0(�++�00���&86720(5��$02817�'2//$5���7$;���

These control statements:

Notes:
• The display formats (LONG1, SHORT3, HH–MM and DOLLAR) specify how the data is formatted in

the report
• The override column heading changes the column heading for the EMPL–NAME field
• The override width parm makes the TAX column 5 bytes wide
• Changes made to the detail line formatting are also reflected in the Grand Total line

Figure 10 Using override display formats, column headings and column widths

'(&(0%(5�������������(;$03/(6�2)�63(&,$/�)250$77,1*����������������������

����������������������6$/(6���6$/(6
5(*,21�6$/(6�3(5621���'$7(����7,0(�����&86720(5���������$02817�������7$;�

6287+���-2+1621��������0$5����������$&(�(/(&75,&$/�����������������������
:(67����%$.(5����������0$5����������-$&.6�&$)(���������������������������
($67����0255,621�������0$5����������67$5�0$5.(7��������������������������
($67����0255,621�������0$5����������$��3+272*5$3+<�����������������������
($67����6,03621��������$35����������(8523($1�'(/,������������������������
1257+���-2+1621��������$35����������9,//$�+27(/��������������������������
1257+���-2+1621��������$35����������0$5<6�$17,48(6�����������������������
:(67����%$.(5����������$35����������-$&.6�&$)(���������������������������
:(67����7+20$6���������$35����������<2*857�&,7<��������������������������
1257+���-21(6����������$35����������(=�*52&(5<���������������������������
1257+���-21(6����������$35����������72<�72:1�����������������������������
1257+���-21(6����������$35����������72<�72:1�����������������������������
6287+���-2+1621��������$35����������$&0(�%8,/',1*������������������������
($67����6,03621��������$35����������-�	�6�/80%(5�������������������������

�*5$1'�727$/�����,7(06��

Produce this report:

Lesson 5. Chan ging the Format of Your Report

46 Report Writer User’s Guide

Specif ying a Column's Width

One other way to customize your report is to specify a column width for a particular column.
When no column width is specified, Report Writer chooses a default column width. You may
want a larger column width (to hold larger numeric values, for example.) Of, you may want
a smaller column width (to save space so you can squeeze more columns into your report.)
Just specify the desired column width in parentheses after the field name. For example:

&2/8016��7$;���

The above statement tells Report Writer to make the TAX column just 5 bytes wide in the
report. This is also illustrated in the report in Figure 10 (page 45.)

Note: you can specify more than one override for a single field. The order is not
important. Just separate the overrides with spaces and/or a comma. For example,
the following statement specifies a override column heading and display format and
width:

&2/8016���$02817�
$02817 2) 6$/(6
��'2//$5����

Summar y
Here is a summary of what we learned in this lesson:

� use a display format to change the way a field is formatted in a report

� use override column headings to change the column headings in a report

� specify a column width to change the width of a column in a report

� each of these overrides should be put in parentheses after the appropriate field
name

The next lesson will teach you how to sort your report into whatever order you want.

To Learn More
There are many additional ways to change the format of your report. Some of these
additional features are discussed as topics in Chapter 4, "Beyond the Basics." Examples of
additional formatting features include:

� how to align data within its column (page 142)

� how to blank out repeating values (page 140)

� how to blank out zero values (page 126)

� how to change the spacing between columns in a report (page 124)

� how to use a character other than the vertical bar () to separate column
headings into multiple lines (page 127)

� how to change the default display format for all fields in a report (page 500)

� how to format reports using international (non–USA) conventions (see page
137)

Chapter 2. How to Request a Report 47

(This page left blank intentionally.)

48 Report Writer User’s Guide

Lesson 6. How to Specif y the Report Order

This lesson teaches you how to sort your report into any order you want. The control
statement discussed is:

� the SORT statement

How to Use the SORT Statement

When no SORT statement is specified, Report Writer defaults to printing the report records
in their original input file order. For example, the records in the sample SALES–FILE are
stored in sales date order. Therefore, the sales reports in the previous lessons all appeared
in sales date order. (For example, see the report on page 19.) The EMPL–FILE sample file is
a VSAM file stored in EMPL–NUM order. Therefore, all previous reports from that file have
been in employee number order (page 21.)

To print a report in a different order, just add a SORT statement. The SORT statement can
appear anywhere after the INPUT statement. Only one SORT statement is allowed per report,
but it may contain as many "sort fields" as you like. Report Writer will sort your report on
all of the sort fields.

For example, let's request a report from the SALES–FILE and sort it on three fields:

6257���5(*,21��(03/²1$0(��6$/(6²'$7(

To begin with, the report will be sorted according to the first sort field — REGION. If there
are multiple records for the same REGION, then those records will be further sorted using the
second sort field, EMPL–NAME. Records having the same value for both the REGION and the
EMPL–NAME fields will be further sorted on the third sort field — SALES–DATE. Figure 11
shows a report produced with the above statement.

By default, Report Writer sorts reports into ascending order on each sort field. If you want
to sort the report into descending order for a field, put the DESCENDING parm (or just DESC)
in parentheses immediately after the field name. For example, to sort a sales report into
reverse employee number order, you could use this SORT statement:

6257���(03/²180�'(6&�

Automatic Sortin g

If you prefer, you can let Report Writer automatically sort your report for you. To have your
report automatically sorted on the first 5 columns of data, simply specify the AUTOSORT

option, like this:

237,216��$8726257

Lesson 6. How to Specif y the Report Order

Chapter 2. How to Request a Report 49

,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
7,7/(����
5(&(17�6$/(6

7,7/(����
6257('�%<�5(*,21��(03/2<((�1$0(��$1'�6$/(6�'$7(

&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

���������������������������������5(&(17�6$/(6
���������������6257('�%<�5(*,21��(03/2<((�1$0(��$1'�6$/(6�'$7(

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������
1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���7+20$6�����������������������<2*857�&,7<�������������������������������

�*5$1'�727$/�����,7(06���

Produce this report:

Notes:
• the SORT statement causes the report to be sorted on REGION, EMPL–NAME and SALES–DATE

Figure 11 Using a SORT statement to specify the sort order of a report

Lesson 6. How to Specif y the Report Order

50 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� use the SORT statement to sort your report

� you can sort on multiple sort fields

� you can sort in either ascending or descending order

The next lesson will show you how to create control breaks and print subtotals and other
statistics in your reports.

To Learn More
There are some additional features associated with the SORT statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in Chapter
4, "Beyond the Basics." Examples of additional features include:

� creating a control break from the SORT statement (page 182)

� specifying control break spacing from the SORT statement (page 183)

� requesting totals and statistics in the SORT statement (page 194)

The complete syntax for the SORT statements is given in Chapter 9, "Control Statement
Syntax" (page 524.)

Chapter 2. How to Request a Report 51

(This page left blank intentionally.)

52 Report Writer User’s Guide

Lesson 7. How to Create Control Breaks

This lesson teaches you what control breaks are, and shows how to request them in your
report. This lesson also shows how to print totals and other statistics in reports. The control
statement discussed is:

� the BREAK statement

How to Use the BREAK Statement

If you are not a programmer, the term "control break" may be new to you. But it is a very
simple concept. And as you will see, control breaks can make your reports much more useful.

Consider the result of sorting a report on some field. By sorting the report on a field, we
group together all the report lines that contain a particular value for that field. For example,
in the report in Figure 11 (page 49) we sorted first of all on the REGION field. As you can
see, this caused the report lines to be grouped together by region. All of the report lines for
the East region appear together at the beginning of the report. Next come all of the report
lines for the North region, and so on. By sorting on the REGION field, we grouped together
all of the records for each region.

Often it is desirable to perform special processing whenever one such group of records ends
and another group is about to begin. For example, you might want to print a line of totals for
the group that just ended. Or, you might want to print a few blank lines before the next group
starts printing, or even skip to a new page. This processing is called control break
processing. A control break is said to occur whenever one group of records ends and
another group is about to begin. The field that is being grouped (for example, REGION) is
called the control break field (or often just the break field.) A control break field must also
be a sort field, since it is by being sorted that records are grouped together in the first place.

You may designate any sort field as a control break field. Just name the field in a BREAK

statement:

%5($.��5(*,21

The above statement makes REGION a control break field. Now we will get REGION totals in
the report whenever one region finishes printing and another region is about to begin.

After these totals, two blank lines will print. Then the report lines for the next region start
to print, and so on.

Figure 12 shows a report that uses the above BREAK statement to produce a control break.

Lesson 7. How to Create Control Breaks

Chapter 2. How to Request a Report 53

Notes:
• REGION is a sort field in this report
• the BREAK statement makes REGION a control break field
• whenever the value of the REGION column changes, a control break occurs
• at each control break a total line prints, followed by two blank lines

Figure 12 Using the BREAK statement to create a control break

���������������������������������5(&(17�6$/(6
������������������������������727$//('�%<�5(*,21

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������
�727$/�)25�($67�����,7(06��

1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
�727$/�)25�1257+����,7(06��

6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������
�727$/�)25�6287+����,7(06��

:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���7+20$6�����������������������<2*857�&,7<�������������������������������
�727$/�)25�:(67�����,7(06��

�*5$1'�727$/�����,7(06��

Produce this report:

,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
%5($.����5(*,21
7,7/(����
5(&(17�6$/(6

7,7/(����
727$//('�%<�5(*,21

&2/8016��5(*,21�(03/�1$0(�6$/(6�'$7(�6$/(6�7,0(�&86720(5�$02817��7$;

These control statements:

Lesson 7. How to Create Control Breaks

54 Report Writer User’s Guide

How to Specif y Control Break Spacin g

You can use additional parms in the BREAK statement to customize your control break. For
example, you can specify a break spacing parm. This parm tells Report Writer what kind
of spacing to perform at the control break. By default, Report Writer prints two blank lines
at each control break (after the totals line). You can use a spacing parm to request either
a different number of blank lines, or to request a page break.

For example, the following statement makes REGION a break field and specifies that 3 blank
lines should print at the control break:

%5($.���5(*,21��63$&(���

If you want to skip to a new page whenever the contents of the REGION field changes, use
the PAGE spacing parm, like this:

%5($.���5(*,21��63$&(�3$*(�

The SPACE(PAGE) parm specifies that, rather than printing 2 blank lines whenever the
REGION field changes, the report should skip to a new page.

The report in Figure 13 illustrates the use of the PAGE spacing parm to request a page
break.

Lesson 7. How to Create Control Breaks

Chapter 2. How to Request a Report 55

Notes:
• the SPACE(PAGE) parm causes the report to skip to a new page whenever the REGION field

changes value
• since each page contains data for only a single region, we chose to include the REGION field in the

title

Figure 13 A BREAK statement that produces a page break

,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
%5($.����5(*,21��63$&(�3$*(�
7,7/(����
6$/(6�)25�5(*,21�
��5(*,21�������
3$*(
���3$*(180
&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

6$/(6�)25�5(*,21��6287+��3$*(�����

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������

(other report lines not shown)

6$/(6�)25�5(*,21��1257+��3$*(�����

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
�727$/�)25�1257+����,7(06��

6$/(6�)25�5(*,21��($67���3$*(�����

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������
�727$/�)25�($67�����,7(06��

Produce this report:

Lesson 7. How to Create Control Breaks

56 Report Writer User’s Guide

How to Print Statistics at a Control Break

You may want to print statistics other than totals at a control break. The total line, as we
have seen, prints automatically at control breaks. By supplying the appropriate parm in the
BREAK statement, you can also print up to five additional statistical lines at a control break.
These additional lines are:

� an average line

� a non–zero average line (the average of all non–zero values)

� a maximum line

� a minimum line

� a non–zero minimum line (the minimum non–zero value)

The parms that correspond to these statistical lines are:

� AVERAGE (or AVG)

� NZAVERAGE (or NZAVG)

� MAXIMUM (or MAX)

� MINIMUM (or MIN)

� NZMINIMUM (or NZMIN)

You can specify as many of these parms as you like in the BREAK statement. The parms may
be specified in any order. (The statistic lines in the report, however, will always print in a
standard fixed order.) For example:

%5($.���5(*,21��$9(5$*(��0$;,080

The BREAK statement above requests that an average line and a maximum line (in addition
to the totals line) print whenever the contents of the REGION field changes.

Figure 14 shows a sample report that uses the preceding BREAK statement.

Lesson 7. How to Create Control Breaks

Chapter 2. How to Request a Report 57

Notes:
• the AVERAGE and MAXIMUM parms (in the BREAK statement) cause 2 statistical lines to print

 (in addition to the totals line) whenever the REGION field changes value
• at the Grand Total, the same statistical lines also print

Figure 14 A report that prints statistical information at control breaks

���������������������������������5(&(17�6$/(6
������������������������������727$//('�%<�5(*,21

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������
�727$/�)25�($67�����,7(06��
�$9(5$*(�9$/8(���
�0$;,080�9$/8(���

1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
�727$/�)25�1257+����,7(06��
�$9(5$*(�9$/8(���
�0$;,080�9$/8(���

(other report lines not shown)

�*5$1'�727$/�����,7(06��
�$9(5$*(�9$/8(��
�0$;,080�9$/8(��

Produce this report:

,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
%5($.����5(*,21��$9(5$*(��0$;,080
7,7/(����
5(&(17�6$/(6

7,7/(����
727$//('�%<�5(*,21

&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

Lesson 7. How to Create Control Breaks

58 Report Writer User’s Guide

How to Request Multiple Control Breaks

You may designate more than one sort field as a control break field. Report Writer even
allows all of your sort fields to be control break fields. However, most reports look best
when no more than the first two or three sort fields are used as control breaks. The following
example makes the first two sort fields control break fields:

6257���5(*,21��(03/²1$0(��6$/(6²'$7(
%5($.��5(*,21����63$&(���
%5($.��(03/²1$0(�63$&(���

In the statements above, we made both REGION and EMPL–NAME control break fields. A
control break will occur whenever the REGION field changes values (as in the previous
examples). A total line will print for the region, and then 3 blank lines will print. But in this
example, the second sort field, EMPL–NAME, is also designated a control break field. So, a
control break will also occur whenever the EMPL–NAME field changes value. A total line will
print for the employee, followed by 1 blank line. Figure 15 shows a sample report that uses
the above statements.

Note: when multiple BREAK statements are used, they may appear in any order.
However, all BREAK statements must appear after the SORT statement.

Lesson 7. How to Create Control Breaks

Chapter 2. How to Request a Report 59

Notes:
• the two BREAK statements make both REGION and EMP–NAME control break fields
• when the EMPL–NAME field changes, employee totals print, followed by 1 blank line
• when the REGION field changes, region totals print, followed by 3 blank lines
• the employee total line begins with 3 asterisks, while the region total line begins with 6 asterisks, and

the Grand Total line has 9 asterisks (indicating the level of the break)

Figure 15 A report with two levels of control breaks

��������������������6$/(6�727$//('�%<�(03/2<((�$1'�5(*,21

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
�727$/�)25�0255,621������,7(06���

($67���6,03621����������������������(8523($1�'(/,�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������
�727$/�)25�6,03621�������,7(06���

�727$/�)25�($67�����,7(06���

1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
�727$/�)25�-2+1621�������,7(06���

1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
�727$/�)25�-21(6���������,7(06���

�727$/�)25�1257+����,7(06���

(other report lines not shown)

�*5$1'�727$/�����,7(06���

Produce this report:

,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
%5($.����5(*,21��63$&(���
%5($.����(03/�1$0(��63$&(���
7,7/(����
6$/(6�727$//('�%<�(03/2<((�$1'�5(*,21

&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

Lesson 7. How to Create Control Breaks

60 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� use the BREAK statement to specify a control break field

� control break fields must also be sort fields

� use the SPACE parm to specify your own spacing at the control break

� use one or more statistical parms to request that certain statistical lines print at
a control break

� you can specify multiple control breaks in the same report

The next lesson will show you how to turn reports with control breaks into "summary
reports."

To Learn More
There are some additional features associated with the BREAK statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in Chapter
4, "Beyond the Basics ." Examples of additional topics include:

� additional control break spacing parms, including one that skips to a new sheet
of paper (page 183)

� how to print one or more customized lines at the beginning of a control break
(page 208)

� how to print one or more customized lines at the end of a control break (page
196)

� how to customize the total line, and the other statistical lines (page 190 and
194)

� how to suppress the total line at a control break (page 193)

� how to print only the total lines to produce a summary report (page 62 and
218)

� how to compute percentages and ratios that apply to an entire control group
(page 187)

The complete syntax for the BREAK statement is given in Chapter 9, "Control Statement
Syntax" (page 421).

Chapter 2. How to Request a Report 61

(This page left blank intentionally.)

62 Report Writer User’s Guide

Lesson 8. How to Create Summar y Reports

This lesson teaches you how to produce summary reports. The control statement
discussed is:

� the OPTIONS statement

How to Create a Summar y Report

A summary report is one which does not show the detail information for every record
included in the report. Instead the detail information is summarized and only the totals are
printed in the report.

Control breaks are used to create the desired total lines. Consider the report shown earlier
on page 53. It is a detail report that lists each sale made in every region. The control break
on REGION causes a total line to print after the detail lines for each region have printed. By
adding the following statement, we can suppress the detail lines and print just the region
totals:

237,216��6800$5<

Figure 16 shows a summary report that uses the above statement.

Lesson 8. How to Create Summar y Reports

Chapter 2. How to Request a Report 63

237,216��6800$5<
,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
%5($.����5(*,21
7,7/(����
5(*,21$/�6$/(6�6800$5<

&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

����������������������������5(*,21$/�6$/(6�6800$5<

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

�727$/�)25�($67�����,7(06��
�727$/�)25�1257+����,7(06��
�727$/�)25�6287+����,7(06��
�727$/�)25�:(67�����,7(06��

�*5$1'�727$/������,7(06���

Produce this report:

Notes:
• this is the same report as on page 53, except for the additional OPTIONS statement
• the SUMMARY parm (in the OPTIONS statement) suppresses the detail report lines, leaving just a

summary report
• in summary reports, only the numeric columns are filled in (with total values)

Figure 16 Producing a summary report

Lesson 8. How to Create Summar y Reports

64 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� use the SUMMARY option (in the OPTIONS statement) to create a summary
report

� a summary report must have at least one control break field

The next lesson will show you how to use data from more than one input file in a report.

To Learn More
There are some additional features associated with summary reports which we have not
covered in this lesson. Some of these additional features are discussed as topics in Chapter
4, "Beyond the Basics." Examples of additional features include:

� customizing the summary lines in your report (page 190)

� printing statistics (such as averages, maximums and minimums) in your
summary report (page 194)

� creating multiple levels of summarization (page 211)

� printing a limited number of detail records in each control group, creating
reports such as "The Top 3 Sales in Each Region" (page 220)

Chapter 2. How to Request a Report 65

Lesson 9. How to Use Data from More Than One File

This lesson teaches you how to read records from additional input files for use in your report.
The control statement discussed is:

� the READ statement

All of the sample reports produced so far have used data from only one input file. The data
has come from the file specified in the INPUT statement, called the primary input file . There
are times when all of the data needed for a particular report will not be found in just a single
file. One of Report Writer's most powerful features is its ability to use any number of input
files to produce a report.

How Auxiliar y Input Files Are Processed

Each report is allowed to have only one primary input file, specified in the INPUT statement.
When data from additional input files is required to produce a report, a READ statement is
used. The READ statement causes a record to be read from another input file, called an
auxiliary input file . You may have as many READ statements as you like in a single report.

Here is how Report Writer processes the primary and auxiliary input files. Report Writer first
reads a single record from the primary input file. (This file is always read sequentially,
beginning with the first record in the file.) Next, if any auxiliary input files were specified,
Report Writer also reads one record from each of those files. (These files are always read
randomly, using a key.) At this point, Report Writer will have read one record from each of
the input files. The fields from all of these records are now available for use in producing
the report. These fields can be used:

� as columns in the body of the report

� in titles

� as sort fields

� as control break fields

� in conditional expressions

� in calculations

� and in any other way that other fields can be used

After processing this set of records, Report Writer then repeats the process. Another record
is read sequentially from the primary input file. Then random reads are performed to each
of the auxiliary input files. This next group of records is then used in making the report, and
so on. This process is repeated until there are no more records left in the primary input file.

By simply adding a READ statement to your report request, you automatically make all of the
data fields from another whole file available for use in producing your report.

There is one important thing about auxiliary input files to keep in mind. Since these files are
ready randomly, they must be keyed files (or DB2 tables.) Most VSAM files are keyed files.

Lesson 9. How to Use Data from More Than One File

66 Report Writer User’s Guide

In a keyed file, each record has a unique "key" value associated with it. When a random read
is made to such a file, a read key must be specified to identify which record to read. What
read key should Report Writer use when reading a record from an auxiliary input file? In
order to be useful, the auxiliary input record should be somehow related to the primary input
record. Usually, the record from the primary input file will contain the key of a corresponding
record in the auxiliary input file. That key from the primary input file will be used as the read
key.

Note: if you are not familiar with such terms as "keyed files" and "read keys", ask
your programmer to help you determine whether a particular file is keyed or not, and
also to help you decide what read key to use.

How to Use the READ Statement

Now let's look at a concrete example of how to use the READ statement. Begin by considering
Figure 17, which shows a simple report that uses only a primary input file (the SALES–FILE).
This report shows information about each sale made by an employee.

This report includes columns for two fields that we haven't used in previous examples, so
we'll explain them. They are the EMPL––NUM field and the PRODUCT–CODE field. The
EMPL–NUM is the employee number of the employee who made the sale. The PRODUCT–CODE

is a code that identifies which product was sold to the customer.

Lesson 9. How to Use Data from More Than One File

Chapter 2. How to Request a Report 67

Notes:
• all fields used in this report come from the SALES–FILE

Figure 17 A report that uses only the primary input file

�������������������������5(&(17�6$/(6

���(03/����(03/��6$/(6����������������������������������352'8&7
���1$0(����180����'$7(������&86720(5���������$02817������&2'(��

-2+1621������������������$&(�(/(&75,&$/����������������������
%$.(5��������������������-$&.6�&$)(��������������������������
0255,621�����������������67$5�0$5.(7�������������������������
0255,621�����������������$��3+272*5$3+<����������������������
6,03621������������������(8523($1�'(/,�����������������������
-2+1621������������������9,//$�+27(/�������������������������
-2+1621������������������0$5<6�$17,48(6����������������������
%$.(5��������������������-$&.6�&$)(��������������������������
7+20$6�������������������<2*857�&,7<�������������������������
-21(6��������������������(=�*52&(5<��������������������������
-21(6��������������������72<�72:1����������������������������
-21(6��������������������72<�72:1����������������������������
-2+1621������������������$&0(�%8,/',1*�����������������������
6,03621������������������-�	�6�/80%(5������������������������

�*5$1'�727$/�����,7(06������������������������������

Produce this report:

,1387����6$/(6�),/(
7,7/(����5(&(17�6$/(6

&2/8016��(03/�1$0(��(03/�180��6$/(6�'$7(��&86720(5��$02817��352'8&7�&2'(

These control statements:

Lesson 9. How to Use Data from More Than One File

68 Report Writer User’s Guide

Now, let's assume that we need this same report to also show each employee's social security
number. The social security number is not available in the SALES–FILE. But it is a field in
the EMPL–FILE. (See the report on page 21.) In order to produce such a report, we need data
from a second input file— the EMPL–FILE.

The EMPL–FILE is a keyed VSAM file. Its key is the 3–byte employee number. The records in
the SALES–FILE also contain an employee number, so we can use that field as the "read key"
to use in reading the EMPL–FILE. We can make the EMPL–FILE an auxiliary input file, then, by
simply adding this statement:

5($'���(03/²),/(���5($'.(<�(03/²180�

This READ statement tells Report Writer to use the EMPL–NUM field from each record in the
SALES–FILE as a key for reading an auxiliary record from the EMPL–FILE. All control
statements after this READ statement may now refer to the fields in the EMPL–FILE, as well as
to those in the SALES–FILE. So, we can now add the SOCIAL–SEC–NUM field from the
EMPL–FILE to our COLUMNS statement:

5($'������(03/²),/(��5($'.(<�(03/²180�
&2/8016���(03/²1$0(��6$/(6²),/(�(03/²180��62&,$/²6(&²180
����������6$/(6²'$7(��&86720(5��$02817��352'8&7²&2'(

Notice that in the above COLUMNS statement we must now prefix the EMPL–NUM field with
a record name (like this: SALES–FILE.EMPL–NUM). This is because after the READ statement,
EMPL–NUM is no longer a unique field name. A field by that name exists in both the
SALES–FILE and the EMPL–FILE. (See Appendix F, "Sample File Definitions.") Since the
EMPL–NUM will have the same value in both of the records, it doesn't really matter which one
we specify in the COLUMNS statement, but we do have to specify a unique name. In this case
we specified the EMPL–NUM field from the SALES–FILE. (For more information on using
"record names" to qualify field names, see page 232.)

Figure 18 shows a sample report which uses the above statements. The report now has the
desired new column showing each employee's social security number. Notice that we also
sorted the report on SOCIAL–SEC–NUM. Remember that you can use fields from auxiliary
input files in any way that you use fields from the primary input file.

Lesson 9. How to Use Data from More Than One File

Chapter 2. How to Request a Report 69

�������������������6$/(6�6257('�%<�62&,$/�6(&85,7<�180%(5

�����������6$/(6
�����������),/(����62&,$/
���(03/����(03/������6(&������6$/(6���������������������������������352'8&7
���1$0(�����180������180�������'$7(������&86720(5���������$02817������&2'(��

-2+1621�������������������������������0$5<6�$17,48(6����������������������
-2+1621�������������������������������9,//$�+27(/�������������������������
-21(6���������������������������������(=�*52&(5<��������������������������
-21(6���������������������������������72<�72:1����������������������������
-21(6���������������������������������72<�72:1����������������������������
6,03621�������������������������������-�	�6�/80%(5������������������������
6,03621�������������������������������(8523($1�'(/,�����������������������
7+20$6��������������������������������<2*857�&,7<�������������������������
%$.(5���������������������������������-$&.6�&$)(��������������������������
%$.(5���������������������������������-$&.6�&$)(��������������������������
0255,621������������������������������$��3+272*5$3+<����������������������
0255,621������������������������������67$5�0$5.(7�������������������������
-2+1621�������������������������������$&(�(/(&75,&$/����������������������
-2+1621�������������������������������$&0(�%8,/',1*�����������������������

�*5$1'�727$/�����,7(06���

Produce this report:

Notes:
• the READ statement makes the fields from the EMPL–FILE available for use
• the COLUMNS statement includes the SOCIAL–SEC–NUM field from the EMPL–FILE
• we also sorted the report on the SOCIAL–SEC–NUM field from the EMPL–FILE
• the EMPL–NUM field must be prefixed with a record name in the COLUMNS statement, since a field by that

name exists in both input files

Figure 18 A report that uses a READ statement to specify an auxiliary input file

,1387����6$/(6�),/(
5($'�����(03/�),/(��5($'.(<�(03/�180�
6257�����62&,$/²6(&²180
7,7/(����
6$/(6�6257('�%<�62&,$/�6(&85,7<�180%(5

&2/8016��(03/�1$0(��6$/(6�),/(�(03/�180��62&,$/�6(&�180
���������6$/(6�'$7(��&86720(5��$02817��352'8&7�&2'(

These control statements:

Lesson 9. How to Use Data from More Than One File

70 Report Writer User’s Guide

How to Use Multiple READ Statements

You are allowed to use an unlimited number of READ statements in requesting a report. The
sample report in Figure 19 uses two READ statements. The primary input file is once again
the SALES–FILE, which contains one record for each sale made by an employee.

To obtain additional data about the employee who made each sale, we use a READ statement
for the EMPL–FILE (just like in the preceding example.) The EMPL–NUM field in the
SALES–FILE contains the key necessary to read the correct EMPL–FILE record.

To obtain additional information about each product sold, a second READ statement names
the PRODUCT–FILE as an another auxiliary input file. (The PRODUCT–FILE is described in
Appendix F, "Sample File Definitions.")

However, there is one minor complication in reading records from this file. The key in the
PRODUCT–FILE records is 4 bytes long. It consists of the letter "P" followed by a 3–byte
product code. The SALES–FILE does not contain a field which can be used directly as the read
key to the PRODUCT–FILE. But, it does contain the 3–byte PRODUCT–CODE field, which we
can use to build the 4–byte read key. A COMPUTE statement is therefore used to create a new
field (called PRODKEY) which consists of the letter "P" followed by the product code. This
computed field is then used as the read key in the READ statement for the PRODUCT–FILE:

&20387(��352'.(<� �
3
���352'8&7²&2'(
5($'�����352'8&7²),/(���5($'.(<�352'.(<�

By having two READ statements in addition to the INPUT statement, the report now has three
input files. Data from all of these files can be used in any of the subsequent control
statements. In the sample report in Figure 19, the COLUMNS statement uses two fields from
the auxiliary input files. It uses the SOCIAL–SEC–NUM field from the EMPL–FILE, and the
PRODUCT–DESC field from the PRODUCT–FILE.

Lesson 9. How to Use Data from More Than One File

Chapter 2. How to Request a Report 71

����������������������������������6$/(6�6257('�%<�62&,$/�6(&85,7<�180%(5

������������6$/(6
������������),/(���62&,$/
���(03/�����(03/�����6(&������6$/(6����������������������������������352'8&7�����352'8&7
���1$0(�����180������180�������'$7(������&86720(5���������$02817������&2'(��������'(6&�����

-2+1621�������������������������������0$5<6�$17,48(6�������������������������0$,/,1*�/$%(/6
-2+1621�������������������������������9,//$�+27(/����������������������������'(6.�&$/(1'$56
-21(6���������������������������������(=�*52&(5<�����������������������������3$3(5�&/,36
-21(6���������������������������������72<�72:1�������������������������������3$3(5�&/,36
-21(6���������������������������������72<�72:1�������������������������������,1.3$'6
6,03621�������������������������������-�	�6�/80%(5���������������������������5('�3(16
6,03621�������������������������������(8523($1�'(/,��������������������������5('�3(16
7+20$6��������������������������������<2*857�&,7<����������������������������0$,/,1*�/$%(/6
%$.(5���������������������������������-$&.6�&$)(�����������������������������5('�3(16
%$.(5���������������������������������-$&.6�&$)(�����������������������������+2/(�381&+(56
0255,621������������������������������$��3+272*5$3+<�������������������������*5((1�3(16
0255,621������������������������������67$5�0$5.(7����������������������������,1.3$'6
-2+1621�������������������������������$&(�(/(&75,&$/�������������������������3(1&,/6��12����
-2+1621�������������������������������$&0(�%8,/',1*��������������������������&+$,56

�*5$1'�727$/�����,7(06���

Produce this report:

Notes:
• all fields from the SALES–FILE, the EMPL–FILE and the PRODUCT–FILE are available for use in

the report
• the key to the PRODUCT–FILE is a computed field
• the EMPL–NUM field must be prefixed with a record name in the COLUMNS statement, since a field

by that name exists in two input files (SALES–FILE and EMPL–FILE)
• the SOCIAL–SEC–NUM field comes from the EMPL–FILE auxiliary input file
• the PRODUCT–DESC field comes from the PRODUCT–FILE auxiliary input file

Figure 19 A report that uses two READ statements to specify two auxiliary input files

,1387�����6$/(6²),/(
5($'������(03/²),/(������5($'.(<�(03/²180�
&20387(���352'.(<� �
3
���352'8&7²&2'(
5($'������352'8&7²),/(���5($'.(<�352'.(<�
7,7/(�����
6$/(6�6257('�%<�62&,$/�6(&85,7<�180%(5

&2/8016���(03/²1$0(�
����������6$/(6²),/(�(03/²180
����������62&,$/²6(&²180
����������6$/(6²'$7(
����������&86720(5
����������352'8&7²&2'(
����������352'8&7²'(6&

These control statements:

Lesson 9. How to Use Data from More Than One File

72 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� the READ statement is used to read records from auxiliary input files

� you may have as many READ statements as you like in a single report

To Learn More
There are some additional features associated with the READ statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in Chapter
4, "Beyond the Basics." Examples of additional features include:

� how to assign a record name to the records read from auxiliary input files
(page 232)

� how to read more than one record from the same auxiliary input file (page 228)

� how to use data from one auxiliary input file as the read key to another
auxiliary input file (page 230)

� what happens when no record is found for a particular read key (page 233)

� how to determine whether the read for a particular key was successful or not
(page 233)

� how to use the READ statement to obtain data from a DB2 table or view
(page 338)

The complete syntax for the READ statement is given in Chapter 9, "Control Statement
Syntax" (page 510).

Chapter 3. How to Request a PC File 73

Chapter 3. How to Request a PC File

Chapter Table of Contents

Chapter 3. How to Request a PC File . 73

Lesson 1. How to Produce a PC File in 5 Minutes. 78
Using the OPTIONS Statement to Name the PC Program . 80
How to Use the INPUT and COLUMNS Statements. 80
Importing Your PC File into Lotus 1–2–3. 81
Another 5–Minute Example. 82
Using Your Company's Files . 82

Lesson 2. How to Include Only Certain Records In Your PC File. 86
How to Use the INCLUDEIF Statement. 86
How to Write Conditional Expressions. 88

Lesson 3. How to Create Your Own Fields. 92
Creating Numeric Fields. 92
Creating Character Fields. 94
Assigning Values to Fields Based on Conditions. 96

Lesson 4. How to Specify the PC File Order. 100
How to Use the SORT Statement. 100
Automatic Sorting . 100

Lesson 5. How to Create Control Breaks. 104
How to Use the BREAK Statement. 104
Customizing the Control Break. 106

Lesson 6. How to Create Summary Files . 110
How to Create a Summary File . 110

Lesson 7. How to Use Data from More Than One File. 113
How Auxiliary Input Files Are Processed . 113
How to Use the READ Statement. 114

74 Report Writer User’s Guide

Chapter 3. How to Request a PC File

This chapter teaches you how to turn mainframe data into PC files to use in your favorite PC
program. Report Writer makes using mainframe data in PC programs as easy as 1-2-3.

1. Use Report Writer to create a custom PC file on your mainframe.
Report Writer's language is non–procedural, which means you just describe the result
you want, not the programming steps needed to do it. Describe your PC file with a few
simple "control statements". (These control statements are the same ones you already
learned about in the previous chapter.) You can create a PC file with just three control
statements. The lessons in this chapter teach you how the control statements work.

Once you've written the necessary control statements, submit a batch job to execute
Report Writer. Report Writer examines the control statements describing the PC file you
want. It automatically locates the appropriate "file definition" statements stored in a
copy library. (These statements define your mainframe files.) Report Writer then
accesses the mainframe data and creates the desired PC file on your mainframe.

2. Download the PC file to your PC.
Just use your shop's existing download facility to transfer the PC file to your PC.

3. Use the PC file into your PC program.
Start up your PC program and "open" or "import" the PC file with a few simple
keystrokes. (Appendix H, "How to Import PC Files" describes the exact steps to use in
many popular PC programs.) The PC program then reads the PC file and automatically
moves the data into the correct rows and columns. Each downloaded record results in
one row in a spreadsheet. And each field becomes a column in a spreadsheet.

Using mainframe data in your PC is as easy as that with Report Writer!

How to Request a PC File

Chapter 3. How to Request a PC File 75

Figure 4

How to Request a PC File

76 Report Writer User’s Guide

The box on page 77 lists all of the Report Writer control statements used in requesting PC
files and describes the function of each one.

The remainder of this chapter is divided into seven easy lessons that explain how to use the
various control statements to request PC files.

After reading just the first lesson, you will be able to produce useful PC files with Report
Writer. The other lessons introduce additional control statements, and explain their roles in
producing increasingly sophisticated PC files. It is not necessary to read all of the other
lessons initially. Nor is it necessary to read the lessons in sequential order. Read the
summaries below and decide which lessons you need for the kind of PC files you want to
produce.

Lesson 1. How to Produce a PC File in 5 Minutes
This lesson shows how to produce PC files using just three simple control
statements— the INPUT, COLUMNS and OPTIONS statements. You will use
these three statements for almost every PC file you request.

Lesson 2. How to Include Only Certain Records in Your PC File
This lesson shows how to use the INCLUDEIF statement to specify which
mainframe records to include in your PC file.

Lesson 3. How to Create Your Own Fields
This lesson shows you how to create your own fields by performing
computations on existing fields. This is done with the COMPUTE statement.

Lesson 4. How to Specify the PC File Order
This lesson shows how to sort your PC file into whatever order you want.
The use of the SORT statement is explained.

Lesson 5. How to Create Control Breaks
This lesson shows how to break a PC file up into sections, with subtotals
appearing at the end of each section. The use of the BREAK statement to
request such "control breaks" is explained.

Lesson 6. How to Create Summary Files
This lesson shows you how to turn a PC file with subtotals into a small
summary file that is more easily downloaded to a PC.

Lesson 7. How to Use Data from More than One File
This lesson shows how easy it is to read records from additional files when
producing PC files. By adding a single READ statement, you automatically
have access to all of the fields from an additional file.

Keep in mind that these lessons show you the most common use of each control statement.
Most control statements also have additional features that are not discussed in these lessons.
Additional ways to use these control statements are discussed in Chapter 4, "Beyond the
Basics." The complete syntax for each control statement is shown in Chapter 9, "Control
Statement Syntax."

How to Request a PC File

Chapter 3. How to Request a PC File 77

CONTROL STATEMENTS USED TO CREATE PC FILES

(GROUPED BY FUNCTION)

Statements that Define Data
),/(Defines a mainframe file
),(/' Defines a field within a mainframe file
$60 Lets you define a mainframe file using an Assembler record layout
&2%2/ Lets you define a mainframe file using a Cobol record layout

Statements that Make Data Available to a PC File
,1387 Specifies the primary input file
5($' Specifies an auxiliary input file
&20387(Creates a new field

Statements that Describe the Body of a PC File
,1&/8'(,) Specifies which input records to include in the PC file
&2/8016 Specifies the PC file columns and column headings

Statements that Define the PC File Order, and Control Breaks
6257 Specifies PC file order, and optionally specifies control break fields
%5($. Specifies control break processing

Miscellaneous Statements
237,216 Specifies the kind of PC file needed, as well as various other

special options
&23< Copies additional control statements for processing

78 Report Writer User’s Guide

Lesson 1. How to Produce a PC File
in 5 Minutes

This lesson teaches you how to produce a PC file using just three simple control statements.
These statements are:

� the OPTIONS statement

� the INPUT statement

� the COLUMNS statement

You only need three statements to create a PC file with Report Writer. For example:

237,21���/2786
,1387����6$/(6²),/(
&2/8016��5(*,21��(03/²1$0(��6$/(6²'$7(��6$/(6²7,0(��&86720(5��$02817��7$;

The OPTION statement above tells Report Writer that you want to convert mainframe data into
a PC file to use in Lotus 1–2–3.

The INPUT statement identifies the mainframe file containing the data you want to use in
Lotus 1–2–3. In this case, we specified 6$/(6²),/(. This is a sample "sales file" that is used
in many of the examples in this manual. This file contains information about each sale made
by the employees in an imaginary company.

The COLUMNS statement specifies which columns of data we want in our Lotus spreadsheet.
Each field listed in this statement becomes one column in the spreadsheet. In this case we've
requested columns for: the sales region, the employee name, the sales date, the sales time, the
customer's name, the amount of the sale, and the tax amount.

With just these three statements, we've given Report Writer everything it needs to turn
mainframe data into a PC file for Lotus 1–2–3!

Figure 20 illustrates this. The box on top shows the three control statements we just
discussed. Based on these statements, Report Writer creates a PC file containing the
requested data in Lotus import file format.

The PC screen shows the Lotus 1–2–3 spreadsheet obtained by importing the PC file. The
spreadsheet contains the mainframe data we requested, properly laid out into rows and
columns. There are even column headings for each column.

Once the mainframe data is in your PC spreadsheet, the possibilities of how to use it are
limitless. As an example, Figure 20 shows a simple Lotus graph created from the AMOUNT

and TAX columns in the spreadsheet.

That's all there is to creating custom PC files with Report Writer. With just three simple
statements we did what would otherwise have taken an entire COBOL program to do!

The following pages discuss these three control statements (and the importing process) in a
little more detail.

Lesson 1. How to Produce a PC File in 5 Minutes

Chapter 3. How to Request a PC File 79

Figure 20 A Lotus 1–2–3 spreadsheet obtained from just three control statements

237,216��/2786
,1387����6$/(6²),/(
&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�6$/(6²7,0(�&86720(5�$02817�7$;

These control statements:

 Result in this Lotus 1–2–3 spreadsheet:

Lesson 1. How to Produce a PC File in 5 Minutes

80 Report Writer User’s Guide

Usin g the OPTIONS Statement to Name
the PC Pro gram

Different PC programs have slightly different formatting requirements for the "import files"
they accept. Report Writer creates PC files for all of the major PC spreadsheet, database and
graphics programs. Just use an OPTIONS statement to tell Report Writer which PC program
you want the PC file for. In the example on page 79, we created a PC file to use in a Lotus
1–2–3 spreadsheet. We used this statement:

237,216��/2786

All Report Writer control statements begin in column 1 with the name of the statement (for
example, OPTIONS), followed immediately by a colon. What follows next will depend on the
particular control statement involved. With an OPTIONS statement, you simply add a keyword
that identifies the kind of PC file wanted. In the above example, we specified LOTUS, which
is the keyword for a Lotus 1–2–3 file. Here are some other keywords you can use to request
PC files for other PC programs.

KEYWORD PC PROGRAM
ACCESS Access
COREL Corel Chart
CSV "Generic" Comma–Separated–Values
DBASE3 dBASE III
DBASE4 dBASE IV
EXCEL Excel
FOXPRO FoxPro
HARVARD Harvard Graphics
LOTUS Lotus 1–2–3
MS–WORKS Microsoft Works
PARADOX Paradox
QUATTRO Quattro Pro
RBASE R:Base

Note: if the PC program you want is not listed above, see page 256. It explains
how to create a PC file for other PC programs.

In other lessons in this chapter we will use some of the above PC options.

How to Use the INPUT and COLUMNS Statements

The INPUT and COLUMNS statements perform the same functions when creating PC files as
they do when creating reports. The INPUT statement names the mainframe file to be used as
input for the run. And the COLUMNS statement names the fields from that file that should be
written to the PC file.

Lesson 1. How to Produce a PC File in 5 Minutes

Chapter 3. How to Request a PC File 81

Importin g Your PC File into Lotus 1–2–3

The three control statements discussed above result in Report Writer extracting data from the
sales file on the mainframe and turning it into a PC file in Lotus format. Here are a few lines
from the actual PC file created by Report Writer:

�����(03/���6$/(6���6$/(6�������������
�5(*,21���1$0(���'$7(���7,0(���&86720(5���$02817���7$;�
���������������������������
�6287+���-2+1621����������������������������$&(�(/(&75,&$/�����������������
�:(67����%$.(5������������������������������-$&.6�&$)(���������������������
���

But how did we get this PC file loaded into Lotus as a spreadsheet? After creating this PC
file, we simply performed two additional steps to get the spreadsheet shown on page 79:

1) We downloaded the PC file to our PC. Just use whatever file transfer
program your company normally uses. For example, if your company uses
Attachmate's EXTRA! as its terminal emulator program, use EXTRA!'s file
transfer facility.

2) We ran Lotus 1–2–3 and "opened" the downloaded PC file as a comma
delimited file. For example, here's how you import a PC file into Lotus
1–2–3 for Windows (Release 5.) From an empty spreadsheet:

� From the FILE menu, choose OPEN (this brings up an Open File
dialog box)

� Fill in the File Name

� Choose TEXT for the File Type

� Click the OK button

Note: A similar process is used to import PC files into other
versions of Lotus 1–2–3. The exact steps may vary a little from
version to version. To be sure, just check your PC program's
manual (or the online Help) for exact instructions on "importing"
comma delimited ASCII files.

Note: the exact steps for importing PC files into various other PC programs are
shown in Appendix H, "How to Import PC Files" (page 596.)

Note: the JCL used to create this PC file is shown on page 361 (MVS) and page 373
(VSE).

Lesson 1. How to Produce a PC File in 5 Minutes

82 Report Writer User’s Guide

Another 5–Minute Example

Now let's make another PC file, this time using a different input file. This time we will create
a Quattro Pro spreadsheet using data from the EMPL–FILE. EMPL–FILE is a sample employee
file, described in Appendix F, "Sample File Definitions" (page 588.) We will create a simple
employee directory from that file. We want the spreadsheet to have columns showing
employee number, last name, first name, sex, social security number, date hired, and their city
and state. We only need the following three statements:

237,216��48$7752
,1387����(03/²),/(
&2/8016��(03/²180��/$67²1$0(��),567²1$0(��6(;��62&,$/²6(&²180
���������+,5(²'$7(��&,7<��67$7(

The OPTIONS statement above specifies that we want a PC file to use in Quattro Pro. The
INPUT statement above specifies that the input file for our PC file will be the employee file
(EMPL–FILE). The COLUMNS statement specifies the columns of data we want our spreadsheet
to have. Notice that we needed two lines for the COLUMNS statement in this example. You
can continue a control statement onto as many lines as you want. Just leave at least one blank
space at the beginning of each continuation line.

The Quattro Pro spreadsheet obtained by using the above statements is shown in Figure 21.

You have now seen two examples showing just how easy it is to create PC files with Report
Writer. That's all there is to it! You should now be able to request basic PC files from the
files at your company.

Usin g Your Compan y's Files

You may be wondering how Report Writer knows the names of your company's files and
fields. The answer is that your company's files are defined to Report Writer by other control
statements that are kept in a Report Writer "copy library." For example, the statements used
to define the SALES–FILE that we used earlier in this lesson are shown on page 587.

For a list of the file names and field names available for you to use, ask your programmer.
They can print that information from the Report Writer Copy Library, in a format similar to
that shown on page 587.

If you already know the name of the file to use, you can also get a list of all of its fields by
adding the SHOWFLDS(YES) parm to your INPUT statement like this:

,1387��6$/(6²),/(��6+2:)/'6�<(6�

The above statement tells Report Writer to print (in the control statement listing) a list of all
of the fields defined for SALES–FILE.

If a file that you need has not yet been defined, see Chapter 5, "How to Define Your Input
Files" for information on doing that.

Lesson 1. How to Produce a PC File in 5 Minutes

Chapter 3. How to Request a PC File 83

Figure 21 A Quattro Pro employee directory produced with just three control statements

237,216��48$7752
,1387����(03/²),/(
&2/8016��(03/²180��/$67²1$0(��),567²1$0(��6(;��62&,$/²6(&²180
���������+,5(²'$7(��&,7<��67$7(

These control statements:

 Result in this Quattro Pro spreadsheet:

Lesson 1. How to Produce a PC File in 5 Minutes

84 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� the OPTIONS statement tells Report Writer which PC program to format the PC
file for

� the INPUT statement tells Report Writer which input file contains the data needed
in your PC file

� the COLUMNS statement tells Report Writer what columns of data to put in your
PC file

� by using just these three statements you can produce a PC file

The next lesson will teach you how to limit the records that are included in your PC file.

To Learn More
To learn more about writing control statements in general, see Chapter 8, "General Syntax
Rules." In that chapter you will learn such things as:

� how long each line can be (page 384)

� how to continue control statements onto multiple lines (page 385)

There are some additional features associated with the INPUT and COLUMNS statements which
we have not covered in this lesson. Some of these additional features are discussed in
Chapter 4, "Beyond the Basics." Examples of additional features are:

� how to specify your own column headings for a PC file (page 127)

� how to suppress column headings in your PC file (page 127)

� how to reserve more room for numeric columns in your PC file (page 131)

� how to create a column that contains a literal text (page 124)

� how to produce multiple rows in the PC file for each input record (page 147)

� how to turn data from DB2 tables and views into PC files (page 340)

� how to turn data from existing reports into PC files (page 241)

The complete syntax for the OPTIONS, INPUT and COLUMNS statements is given in Chapter
9, "Control Statement Syntax."

Chapter 3. How to Request a PC File 85

(This page left blank intentionally.)

86 Report Writer User’s Guide

Lesson 2. How to Include Onl y Certain Records
In Your PC File

This lesson teaches you how to select only certain records from the input file for inclusion
in your PC file. The control statement discussed is:

� the INCLUDEIF statement

How to Use the INCLUDEIF Statement

In the previous lesson we saw how to select certain fields to be downloaded. (We used the
COLUMNS statement to identify the fields that we wanted.) Now let's look at how to download
only selected records from the mainframe file. We will use the INCLUDEIF ("include if")
statement.

When no INCLUDEIF statement is specified, Report Writer includes every record from the
mainframe file. Use the INCLUDEIF statement to tell Report Writer to "include" a record in the
PC file only "if" one or more conditions are met.

This feature is very useful when you are working with large mainframe files that might take
hours to download (and which might use up half of your hard disk in the process.) Using the
INCLUDEIF statement lets you download only the records that you actually need.

For example, assume that we want to download data from the SALES–FILE to a spreadsheet
similar to the one on page 79. But this time let's just download the data for the employee
named Jones. We simply add the following INCLUDEIF statement to the other control
statements:

,1&/8'(,)���(03/²1$0(� �
-21(6

The above INCLUDEIF statement tells Report Writer to "include”records from the SALES–FILE

"if” the EMPL–NAME field is equal to '-21(6'. Report Writer still reads through the entire
SALES–FILE, just like before. But now it examines each record before including it in the PC
file. If the record's EMPL–NAME field contains the value '-21(6', then the record is included in
the PC file. If the EMPL–NAME field contains any other value, then that record is not included
in the PC file.

Figure 22 shows an Excel spreadsheet produced using the above statement. Only the sales
made by Jones appear in that spreadsheet.

The INCLUDEIF statement may appear anywhere after the INPUT statement. Only one
INCLUDEIF statement is allowed per run, but it may contain as many conditions as you like.

By the way, the INCLUDEIF statement can refer to any of the fields in the input file. You are
not limited to just those fields that are listed in the COLUMNS statement.

Lesson 2. How to Include Onl y Certain Records in Your PC File

Chapter 3. How to Request a PC File 87

237,216����(;&(/
,1387������6$/(6�),/(
,1&/8'(,)��(03/²1$0(� �
-21(6

&2/8016����5(*,21�(03/�1$0(�6$/(6�'$7(�6$/(6�7,0(�&86720(5�$02817�7$;

These control statements:

Figure 22 Using an INCLUDEIF statement to specify which records to include in a PC file

 Result in this Excel spreadsheet:

Lesson 2. How to Include Onl y Certain Records in Your PC File

88 Report Writer User’s Guide

How to Write Conditional Expressions

The INCLUDEIF statement consists of a conditional expression. The complete rules for
writing conditional expressions are explained beginning on page 399. Briefly, a conditional
expression contains one or more "conditions", separated with words such as AND and OR. A
condition usually involves comparing the contents of one field with the contents of another
field, or with a literal value. Let's look at some more examples of INCLUDEIF statements and
their conditional expressions.

Note: if you are a programmer, you will notice that the syntax for conditional
expressions is very similar to the syntax used in "IF statements" in COBOL, PL/1,
and BASIC. If you are familiar with any of these languages, you should find it
especially easy to write INCLUDEIF statements.

You may want your PC file to include all records which do not contain a certain value. Do
this by specifying "not equal" in your condition. For example:

,1&/8'(,)���(03/²1$0(�¤ �
-21(6

The above statement specifies that the PC file should include all records from the input file
whose EMPL–NAME field is not equal to '-21(6'.

Note: In addition to ¬=, you can also use <> to indicate "not equal", like this:

,1&/8'(,)��(03/²1$0(��!�
-21(6

You may want to include a record in your PC file if either of two conditions is true. To do
this, use an INCLUDEIF statement with two conditions, separated by the word OR. Consider
the following statement:

,1&/8'(,)���(03/²1$0(� �
-21(6
��25��$02817�!����

The above statement states that a record should be included in the PC file "if the EMPL–NAME

field is equal to '-21(6', or if the AMOUNT field is greater than 100." The word OR indicates
that records from the input file will be included if either one of the conditions is true. (Of
course, records will also be included if both conditions are true.)

Notice in the above statement that we enclosed '-21(6' in single quotation marks, while we did
not use quotation marks around the 100. That is because EMPL–NAME is a character field,
while AMOUNT is a numeric field. Character literals (such as '-21(6') must be enclosed in
quotation marks. You can use either single (') or double (") quotation marks. But numeric
literal (such as 100), as well as date and time literal, are not enclosed in quotation marks.
Numeric literal also must not contain commas. (The rules for writing literal are thoroughly
explained beginning on page 389).

As another example, you may want to include records in your PC file when both of two
conditions are true. For example, let's say we want a listing only of sales that were made by
Jones and that were also for an amount over $100. For this PC file, two conditions must both
be true: the EMPL–NAME field must be equal to '-21(6' and the AMOUNT field must be over 100.
Use the word AND to specify that both conditions must be true, like this:

,1&/8'(,)���(03/²1$0(� �
-21(6
��$1'��$02817�!����

Lesson 2. How to Include Onl y Certain Records in Your PC File

Chapter 3. How to Request a PC File 89

Now as Report Writer reads each record from the input file, it will include a record in the PC
file only "if the EMPL–NAME field is equal to '-21(6' and the AMOUNT field is greater than 100."

Here is an example of including records in a PC file based on the contents of a date field:

,1&/8'(,)���6$/(6²'$7(��!�����������

The above statement specifies that records should be included in the PC file only if their
SALES–DATE field contains a date greater than (after) April 15, 1995.

Here is an example of including records in a PC file based on the contents of a time field:

,1&/8'(,)���6$/(6²7,0(�������������

The above statement specifies that records should be included in the PC file only if their
SALES–TIME field contains a time less than (before) 17:00:00 (which is 5 PM.)

If your INCLUDEIF statement contains both the words OR and AND, you should use parentheses
to indicate the order in which to perform the comparisons. Consider the following statement:

,1&/8'(,)��(03/²1$0(� �
-21(6
��25
������������6$/(6²'$7(�!������������$1'��6$/(6²'$7(�������������

In the above statement, records will be included if the EMPL–NAME field is equal to '-21(6', or
if both of the SALES–DATE comparisons are true. The parentheses cause the two SALES–DATE

comparisons to be treated as one condition. That condition is true if the SALES–DATE is
greater than April 15, 1995 and is less than April 30, 1995.

Lesson 2. How to Include Onl y Certain Records in Your PC File

90 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� use the INCLUDEIF statement when you want to include only certain records from
the input file in your PC file

� the INCLUDEIF statement contains one or more conditions, separated by the
words AND or OR

� groups of conditions can be enclosed in parentheses, to indicate the order in
which the comparisons should be performed

The next lesson will show you how to compute your own new fields to download to your PC.

To Learn More
There are some additional features associated with the INCLUDEIF statement which we have
not covered in this lesson. These additional features are discussed in Chapter 9, "Control
Statement Syntax," (page 481.) Examples of additional features include:

� how to use symbols rather than the actual words AND and OR in your conditional
expressions

� how to scan a character field, to see if a certain text exists anywhere within the
field

� how to specify conditions based on bit fields

� how to specify a condition based on a field's raw hexadecimal value

� how to specify date literal in DD/MM/YY or DD/MM/YYYY format (page 137), like
this:

,1&/8'(,)��6$/(6²'$7(�!����������

� you may also be able to use the KEYRANGE parm of the INPUT statement to limit
the records included in your run (page 485)

Chapter 3. How to Request a PC File 91

(This page left blank intentionally.)

92 Report Writer User’s Guide

Lesson 3. How to Create Your Own Fields

This lesson teaches you how to create your own fields to include in your PC file. The control
statement discussed is:

� the COMPUTE statement

Sometimes the data you need to download to your PC program is not contained in the input
file. Yet the necessary data might be easily computed from one or more fields which are in
the input file. In such cases, simply create a new field by using the COMPUTE statement.

Creatin g Numeric Fields

A COMPUTE statement specifies the name of the new field to create and supplies a
computational expression to use in assigning a value to that field. The complete rules for
computational expressions are discussed beginning on page 410. Generally, your expression
will consist of one or more mathematical operations performed on numeric fields or numeric
literal.

For example, the sample SALES–FILE has numeric fields named AMOUNT and TAX. We can use
the COMPUTE statement to create a new field containing the total amount due just by adding
those two fields together, like this:

&20387(���727$/²$02817� �$02817���7$;

The above statement creates a new field named TOTAL–AMOUNT. It is computed by adding
the AMOUNT field and the TAX field together. Now that the TOTAL–AMOUNT field has been
created, we can use that field in any way that other fields can be used. For example, a
computed field can be used: as a column of data in your PC file; as a sort field; as a control
break field; as part of a conditional expression (in the INCLUDEIF statement); even as an
operand in subsequent COMPUTE statements to create other fields. The Paradox table in
Figure 23 was obtained by using the above COMPUTE statement.

Note: COMPUTE statements normally appear after the INPUT statement, but must
appear before any control statement that refers to the field being created. In the
example on page 93, the COMPUTE statement for TOTAL–AMOUNT had to come before
the COLUMNS statement, since the COLUMNS statement referred to that field.

You can perform addition, subtraction, multiplication, and division in the COMPUTE

statement. Use the +, –, * and / symbols, respectively. You may also use parentheses as
needed to indicate the order in which the operations should be performed.

Note: when performing subtraction, always put a blank space before and after the
minus sign. Otherwise, the minus sign may appear to be a part of a field name.
Blanks are optional around the other operator symbols.

Lesson 3. How to Create Your Own Fields

Chapter 3. How to Request a PC File 93

Figure 23 Using the COMPUTE statement to create numeric fields for a PC file

237,216��3$5$'2;
,1387����6$/(6�),/(
&20387(��727$/�$02817����� �$02817���7$;
&20387(��6$/(6�&200,66,21� �727$/�$02817�����
&2/8016��(03/�1$0(��&86720(5��$02817��7$;��727$/�$02817��6$/(6�&200,66,21

These control statements:

 Result in this Paradox table:

Lesson 3. How to Create Your Own Fields

94 Report Writer User’s Guide

As another example of a creating a numeric field, let's say we wanted to compute a sales
commission for each sale. The commission will be 33% of the total value of the sale,
including the tax. We could compute the sales commission with the following statement:

&20387(���6$/(6²&200,66,21� �727$/²$02817�����

This statement creates a new field called SALES–COMMISSION which is computed by
multiplying TOTAL–AMOUNT by .33. Notice that we used the result of our previous COMPUTE

statement to perform the computation in this statement.

The Paradox table in Figure 23 (page 93) also uses the above statement.

In addition to the basic arithmetic operations, there are also a number of built–in functions
that you can use in the COMPUTE statement. These built–in functions allow you to perform
more complex mathematical operations on numeric operands. A complete list of built–in
functions is found in Appendix D, "Built-In Functions" (page 566.)

Creatin g Character Fields

So far we have been creating numeric fields. Now let's consider how to create your own
character fields. There is only one operation used in computing character fields. It is the
concatenation operation. (Don't let that word scare you if it is new to you. "Concatenating"
simply means "stringing together" two or more character fields.) The plus sign (+) is used
as the symbol for concatenation. For example:

&20387(��:+2/(²1$0(� �/$67²1$0(���),567²1$0(

The above statement creates a new field named WHOLE–NAME. It is created by concatenating
the contents of the LAST–NAME field and the contents of the FIRST–NAME field. The result is
a single field which now contains both the last and first names of the employee. The new
field will be 30 bytes long — the combined length of the two operands.

You can also concatenate more than two fields together. For example,

&20387(��0$,/,1*²&2'(� �67$7(���
³
���(03/²180

This example creates a new field called MAILING–CODE which consists of the contents of the
STATE field, followed by a dash, followed by the contents of the EMPL–NUM field.

In addition to the concatenation operation, there are also a number of built–in functions that
can be used when creating character fields. For example, the #LEFT function can be used to
extract the leftmost n bytes of a character field. Here is an example of how to use the #LEFT

built–in function:

&20387(��),567²,1,7,$/� ��/()7�),567²1$0(���

This statement creates a new character field which consists of only the first character (that
is, the leftmost 1 byte) of the FIRST–NAME field.

Lesson 3. How to Create Your Own Fields

Chapter 3. How to Request a PC File 95

237,216��/2786
,1387����(03/�),/(
&20387(��:+2/(�1$0(� �/$67�1$0(���),567�1$0(
&20387(��0$,/,1*�&2'(� �67$7(���
�
���(03/�180
&20387(��),567�,1,7,$/� ��/()7�),567�1$0(���
&2/8016��(03/�180��:+2/(�1$0(��0$,/,1*�&2'(��),567�,1,7,$/��&,7<��67$7(

These control statements:

 Result in this Lotus 1–2–3 spreadsheet:

Figure 24 Using the COMPUTE statement to create character fields for a PC file

Lesson 3. How to Create Your Own Fields

96 Report Writer User’s Guide

There are a number of other built–in functions which can also be used. A complete list of
built–in functions is found in Appendix D, "Built-In Functions" (page 566.)

Figure 24 (page 95) shows a spreadsheet obtained by using the COMPUTE statements
 shown above.

Assi gnin g Values to Fields Based on Conditions

Up until now we have been using "simple" COMPUTE statements. In a simple COMPUTE

statement, the value of the new field is defined by a single computational expression.

But it is also possible to use conditional logic in a COMPUTE statement. In "conditional"
COMPUTE statements, one of several different expressions will be used to assign a value to
the new field. The expression that is used will depend on one or more conditions that you
specify. Conditional COMPUTE statements can be very powerful tools in producing PC files.
Here is an example of a conditional COMPUTE statement:

&20387(��%2186� �:+(1�+,5(²'$7(���������������$66,*1�727$/²6$/(6������
�����������������:+(1�+,5(²'$7(�! ������������$66,*1�727$/²6$/(6������

The above statement creates a field named BONUS. However, in this example the BONUS field
can be computed in one of two ways: for employees hired before January 1, 1980, the bonus
is 8 percent of total sales (TOTAL–SALES * .08). But, for employees hired on or after January
1, 1980, the bonus is only 5 percent of total sales (TOTAL–SALES * .05).

When assigning a value to the BONUS field, Report Writer evaluates the conditional
expression in each WHEN parm. As soon as a WHEN expression is found that is true, the
computational expression from the corresponding ASSIGN parm is used to assign a value
to BONUS.

You are allowed to have as many pairs of WHEN and ASSIGN parms as you like in a COMPUTE

statement. If none of the WHEN expressions are true, a value of zero will be assigned to the
field. To assign some other value when none of the WHEN parms are true, you may use the
ELSE parm. For example:

&20387(��%2186� �:+(1�+,5(²'$7(���������������$66,*1�727$/²6$/(6������
�����������������(/6(�������������������������$66,*1�727$/²6$/(6������

The above statement has the same effect as the previous example, but is a little simpler. It
has only one WHEN expression. For employees whose hire date is before January 1, 1980,
the bonus will be computed based on 8 percent. For all other cases, the bonus will be
computed based on 5 percent.

You may also use conditional COMPUTE statements to create character fields. For example:

&20387(��7,7/(� �:+(1�6(;� �
0
���$66,*1�
05
�
�����������������(/6(�������������$66,*1�
06
�

The above statement creates a new field called TITLE. The contents of TITLE will be "05" if the
SEX field contains an "0", and "06" otherwise.

Lesson 3. How to Create Your Own Fields

Chapter 3. How to Request a PC File 97

237,216���/2786
,1387�����(03/²),/(
&20387(���%2186� �:+(1�+,5(²'$7(���������������$66,*1�727$/²6$/(6������
������������������:+(1�+,5(²'$7(�! ������������$66,*1�727$/²6$/(6������
&20387(���7,7/(� �:+(1�6(;� �
0
���$66,*1�
05
�
������������������(/6(�������������$66,*1�
06
�
&2/8016���7,7/(�/$67²1$0(�),567²1$0(�6(;�+,5(²'$7(��727$/²6$/(6��%2186

These control statements:

Figure 25 Assigning values to computed fields based on conditions

 Result in this Lotus 1–2–3 spreadsheet:

Lesson 3. How to Create Your Own Fields

98 Report Writer User’s Guide

Figure 25 (page 97) shows a Lotus spreadsheet obtained by using some of the conditional
COMPUTE statements just discussed.

When defining character fields with a conditional COMPUTE statement, a value of spaces will
be assigned if none of the WHEN expressions are true and no ELSE parm is specified.

All of our examples so far have used just a single condition within the WHEN parm. You can,
however, use any valid conditional expression within the WHEN parm. The conditional
expression can contain as many different conditions as you like, separated with the words
AND and OR, and optionally grouped with parentheses. (A conditional expression is the sort
of expression that is allowed in the INCLUDEIF statement, as was described in Lesson 2 on
page 88.) The complete rules for writing conditional expressions are given beginning on page
399. Additional examples of COMPUTE statements are shown beginning on page 451.

Summar y
Here is a summary of what we learned in this lesson:

� the COMPUTE statement is used to create new fields

� a simple COMPUTE statement assigns the result of a single computational
expression to the new field

� a conditional COMPUTE statement uses one of several different computational
expressions, depending on the conditions that you specify

The next lesson will teach you how to sort your PC file into whatever order you want.

To Learn More
There are some additional features associated with the COMPUTE statement which we have
not covered in this lesson. Some of these additional features are discussed under the
COMPUTE statement in Chapter 9, "Control Statement Syntax" (page 444). Other additional
features are discussed in Chapter 4, "Beyond the Basics." Examples of the additional topics
include:

� how to create date type fields (page 452)

� how to create time type fields (page 254)

� how to create bit type fields (page 452)

� how to specify how many decimal places a numeric or time field should contain
(page 450)

� how to specify column headings for the fields you create (page 449)

� how to specify whether a numeric or time field should be totalled at control
breaks (page 144)

� how to retain the value of a COMPUTE field in certain cases (page 238)

The complete syntax for the COMPUTE statement is given in Chapter 9, "Control Statement
Syntax" (page 444).

Chapter 3. How to Request a PC File 99

(This page left blank intentionally.)

100 Report Writer User’s Guide

Lesson 4. How to Specif y the PC File Order

This lesson teaches you how to sort your PC file into any order you want. The control
statement discussed is:

� the SORT statement

How to Use the SORT Statement

When no SORT statement is specified, Report Writer defaults to writing out the PC file
records in their original input file order. For example, the records in the sample SALES–FILE

are stored in sales date order. Therefore, the sales spreadsheets in the previous lessons all
appeared in sales date order. (For example, see the spreadsheet on page 79.) The EMPL–FILE

sample file is a VSAM file stored in EMPL–NUM order. Therefore, the earlier spreadsheet from
that file was in employee number order (page 83.)

To create a PC file in a different order, just add a SORT statement. The SORT statement can
appear anywhere after the INPUT statement. Only one SORT statement is allowed per run, but
it may contain as many "sort fields" as you like. Report Writer will sort your PC file on all
of the sort fields.

For example, let's request a PC file from the SALES–FILE and sort it on three fields:

6257���5(*,21��(03/²1$0(��6$/(6²'$7(

To begin with, the PC file will be sorted according to the first sort field — REGION. If there
are multiple records for the same REGION, then those records will be further sorted using the
second sort field, EMPL–NAME. Records having the same value for both the REGION and the
EMPL–NAME fields will be further sorted on the third sort field — SALES–DATE. Figure 26
shows a Microsoft Works spreadsheet obtained by using the above statement.

By default, Report Writer sorts PC files into ascending order on each sort field. If you want
to sort the PC file into descending order for a field, put the DESCENDING parm (or just DESC)
in parentheses immediately after the field name. For example, to sort a PC file into reverse
employee number order, you could use this SORT statement:

6257���(03/²180�'(6&�

Automatic Sortin g

If you prefer, you can let Report Writer automatically sort your PC file for you. To have
your PC file automatically sorted on its first 5 columns of data, simply specify the AUTOSORT

option, like this:

237,216��$8726257

Lesson 4. How to Specif y the PC File Order

Chapter 3. How to Request a PC File 101

237,216��06²:25.6
,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

Figure 26 Using a SORT statement to specify the sort order of a PC file

 Result in this Microsoft Works spreadsheet:

Lesson 4. How to Specif y the PC File Order

102 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� use the SORT statement to sort your PC files

� you can sort on multiple sort fields

� you can sort in either ascending or descending order

The next lesson will teach you how to create control breaks and include subtotals in your PC
file.

To Learn More
There are some additional features associated with the SORT statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in Chapter
4, "Beyond the Basics." Examples of additional features include:

� creating a control break from the SORT statement (page 182)

� requesting totals and statistics in the SORT statement (page 194)

The complete syntax for the SORT statements is given in Chapter 9, "Control Statement
Syntax" (page 524).

Chapter 3. How to Request a PC File 103

(This page left blank intentionally.)

104 Report Writer User’s Guide

Lesson 5. How to Create Control Breaks

This lesson teaches you what control breaks are, and shows how to request them for your PC
file. This lesson also shows how to include subtotals and other statistics in your PC file. The
control statement discussed is:

� the BREAK statement

How to Use the BREAK Statement

If you are not a programmer the term "control break" may be new to you. But it is a very
simple concept. And as you will see, control breaks can make your PC files much more
useful.

Consider the result of sorting a PC file on some field. By sorting on a field, we group
together all the rows that contain a particular value for that field. For example, in the
spreadsheet on page 101 we sorted first of all on the REGION field. As you can see, this
caused the spreadsheet rows to be grouped together by region. All of the rows for the East
region appear together at the beginning of the spreadsheet. Next come all of the rows for the
North region, and so on. By sorting on the REGION field, we grouped together all of the rows
for each region.

Often it is desirable to perform special processing whenever one such group of rows ends and
another group is about to begin. For example, you might want to have a row of totals for the
group that just ended. You might also want a few blank rows after the totals to separate the
different groups. Such processing is called control break processing. A control break is
said to occur whenever one group of rows ends and another group is about to begin. The field
that is being grouped (for example, REGION) is called the control break field (or often just
the break field.) A control break field must also be a sort field, since it is by being sorted
that rows are grouped together in the first place.

You may designate any sort field as a control break field. Just name the field in a BREAK

statement:

%5($.��5(*,21

The above statement makes REGION a control break field. Now we will get REGION totals in
the resulting spreadsheet whenever one region ends and another region is about to begin.

Figure 27 shows a spreadsheet obtained by using the BREAK statement above to produce a
control break.

Lesson 5. How to Create Control Breaks

Chapter 3. How to Request a PC File 105

237,216��(;&(/
,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
%5($.����5(*,21
&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

Figure 27 Using the BREAK statement to create a control break with subtotals in a PC file

 Result in this Excel spreadsheet:

Lesson 5. How to Create Control Breaks

106 Report Writer User’s Guide

Customizin g the Control Break

The Excel spreadsheet in the previous example (page 105) shows what Report Writer's
default total row looks like. It begins with the value of the break field just ended (the REGION

field, in this example.) The next column contains the number of items in the control group
just ended. (For example, there were 4 items in the control group for the East region.)
Following this are columns containing the total values for each numeric column in the
spreadsheet (the AMOUNT and TAX fields, in this example.)

The most common use of total rows is in "summary files" where the detail rows are
suppressed, leaving just the total rows (see next lesson.) Therefore, this default total row is
designed to contain just the significant information for a control group. It does not contain
any empty columns. If you are producing a spreadsheet that contains both detail rows and
total rows, however, you may want to insert some blank columns in the total row. That lets
you put your numeric totals in the same spreadsheet column as the corresponding detail
values.

You can customize the total line at a control break by using the FOOTING parm in the BREAK

statement. Consider this BREAK statement:

%5($.��5(*,21��12727$/6
�������)227,1*�5(*,21�
�
��
�
��
�
��
�
��$02817�727$/���7$;�727$/��

The above statement does two new things:

� the NOTOTALS parm suppresses Report Writer's default total row at the control
break

� the FOOTING parm describes a custom row to replace the default total row at
each control break

The FOOTING parm works very much like the COLUMNS statement. You remember that the
COLUMNS statement tells Report Writer which columns are wanted in the detail rows. The
FOOTING parm tell Report Writer what columns are wanted in the control break row. The
FOOTING parm above specifies that the contents of the REGION field should go in the first
column. Then there will be four blank columns. (Each
�
 is a blank literal which results in
a column that just contains a blank.) After the blank columns, the FOOTING parm specifies
a column containing the total value of the AMOUNT field. And the last column contains the
total value of the TAX field. By inserting four blank columns, the total AMOUNT and total TAX

values line up with the detail rows. You can have as many FOOTING parms as you want in a
BREAK statement. Each FOOTING parm describes one row to insert into the PC file at the
control break.

You can also control the number of blank rows that appear at control breaks. By default,
Report Writer puts two blank rows after the total row at a control break (see page 105). Use
the SPACE parm in your BREAK statement to request a different number of blank lines. For
example:

%5($.��5(*,21�63$&(���

The above statement requests just one blank row at the REGION control break. You may also
specify SPACE(0) if you want no blank rows in your spreadsheet.

Figure 28 uses the FOOTING, NOTOTALS and SPACE parms to customize the control break.

Lesson 5. How to Create Control Breaks

Chapter 3. How to Request a PC File 107

237,216��(;&(/
,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
%5($.����5(*,21��12727$/6
���������63$&(���
���������)227,1*�5(*,21�
�
��
�
��
�
��
�
��$02817�727$/���7$;�727$/��
&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

Figure 28 Using FOOTING parms to customize the total row and create blank rows

 Result in this Excel spreadsheet:

Lesson 5. How to Create Control Breaks

108 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� use the BREAK statement to specify a control break field

� control break fields must also be sort fields

� use the FOOTING parm to customize the total row at a control break

� use the SPACE parm to specify the number of blank rows at a control break

The next lesson will show you how to turn PC files with control breaks into "summary files."

To Learn More
There are some additional features associated with the BREAK statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in Chapter
4, "Beyond the Basics." Examples of additional topics include:

� how to write one or more customized rows at the beginning of a control break
(page 208)

� how to write one or more customized rows at the end of a control break (page
196)

� how to customize the total row, and the other statistical rows (page 190 and
194)

� how to suppress the total row at a control break (page 193)

� how to show various statistics at control breaks (page 202)

� how to compute percentages and ratios that apply to an entire control group
(page 187)

� how to have multiple levels of control breaks (page 211)

The complete syntax for the BREAK statement is given in Chapter 9, "Control Statement
Syntax" (page 421).

Chapter 3. How to Request a PC File 109

(This page left blank intentionally.)

110 Report Writer User’s Guide

Lesson 6. How to Create Summar y Files

This lesson teaches you how to produce summary files. The control statement discussed is:

� the OPTIONS statement

How to Create a Summar y File

Sometimes you only need summarized data in your PC— not the detail data for each
individual record. It's a waste of time to download the entire mainframe file and then use your
PC program to summarize the data. Instead, let Report Writer perform the summarization
for you on the mainframe. Then just download the small summary file to your PC.

Summarizing a mainframe file with Report Writer is very easy.

For example, consider the Excel spreadsheet we created back on page 105. It is a detail
spreadsheet that lists every sale made in every region. The control break on REGION causes
a total row to appear after the detail rows for each region.

For this example, let's say we only want to download the total sales amount and tax amount
for each region rather than the amounts for each individual sale. To do that, we need to
summarize the file by region.

By adding the following statement, we can suppress the detail rows and retain just the region
totals:

237,216��6800$5<

Figure 29 shows a Paradox table obtained by using the above statement. As you can see, the
table has just four rows of actual data — one for each region in the mainframe file. The first
column in each row contains a region name. The second column shows the number of records
that were summarized in order to create that region's total. The last two columns are the total
sales amount and tax amount for the sales in that region.

Using Report Writer's summarization feature can be a tremendous benefit when working with
very large mainframe files (perhaps containing millions of records.) The summarization is
done at mainframe speed, and you end up with a much smaller PC file to download to your
PC.

Lesson 6. How to Create Summar y Files

Chapter 3. How to Request a PC File 111

237,216��3$5$'2;��6800$5<
,1387����6$/(6�),/(
6257�����5(*,21��(03/�1$0(��6$/(6�'$7(
%5($.����5(*,21
&2/8016��5(*,21��(03/�1$0(��6$/(6�'$7(��6$/(6�7,0(��&86720(5��$02817��7$;

These control statements:

Figure 29 A spreadsheet containing only summary data

 Result in this Paradox table

Lesson 6. How to Create Summar y Files

112 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� use the SUMMARY option (in the OPTIONS statement) to create a summary file

� a summary file must have at least one control break field

The next lesson will show you how to use data from more than one input file in a PC file.

To Learn More
There are some additional features associated with summary files which we have not covered
in this lesson. Some of these additional features are discussed as topics in Chapter 4,
"Beyond the Basics." Examples of additional features include:

� customizing the summary rows in your PC file (page 190)

� obtaining statistics (such as averages, maximums and minimums) in your
summary file (page 194)

� creating multiple levels of summarization (page 211)

� including a limited number of detail records in each control group, creating
spreadsheets such as "The Top 3 Sales in Each Region" (page 220)

Chapter 3. How to Request a PC File 113

Lesson 7. How to Use Data from More Than One File

This lesson teaches you how to read records from additional input files for use in your PC
file. The control statement discussed is:

� the READ statement

All of the sample PC files produced so far have used data from only one input file. The data
has come from the file specified in the INPUT statement, called the primary input file . There
are times when all of the data needed for a particular PC file will not be found in just a single
file. One of Report Writer's most powerful features is its ability to use any number of input
files to produce a PC file.

How Auxiliar y Input Files Are Processed

Each PC file is allowed to have only one primary input file, specified in the INPUT statement.
When data from additional input files is required, a READ statement is used. The READ

statement causes a record to be read from another input file, called an auxiliary input file .
You may use as many READ statements as you like in a single run.

By simply adding a READ statement to your request, you automatically make all of the fields
from another whole file available for use in producing your PC file.

Here is how Report Writer processes the primary and auxiliary input files. Report Writer
first reads a single record from the primary input file. (This file is always read sequentially,
beginning with the first record in the file.) Next, if any auxiliary input files were specified,
Report Writer also reads one record from each of those files. (These files are always read
randomly, using a key.) At this point, Report Writer will have read one record from each of
the input files. The fields from all of these records are now available for use in producing
the PC file. These fields can be used:

� as columns of data

� as sort fields

� as control break fields

� in conditional expressions

� in calculations

� and in any other way that other fields can be used

After processing this set of records, Report Writer then repeats the process. Another record
is read sequentially from the primary input file. Then random reads are performed to each
of the auxiliary input files. This next group of records is then used in making the PC file, and
so on. This process is repeated until there are no more records left in the primary input file.

There is one important thing about auxiliary input files to keep in mind. Since these files are
read randomly, they must be keyed files (or DB2 tables.) Most VSAM files are keyed files.

In a keyed file, each record has a unique "key" value associated with it. When a random read
is made to such a file, a read key must be specified to identify which record to read. What
read key should Report Writer use when reading a record from an auxiliary input file? In

Lesson 7. How to Use Data from More Than One File

114 Report Writer User’s Guide

order to be useful, the auxiliary input record should be somehow related to the primary input
record. Usually, the record from the primary input file will contain the key of a corresponding
record in the auxiliary input file. That key from the primary input file will be used as the read
key.

Note: if you are not familiar with such terms as "keyed files" and "read keys", ask
your programmer to help you determine whether a particular file is keyed or not, and
also to help you decide what read key to use.

How to Use the READ Statement

Now let's look at a concrete example of how to use the READ statement. Begin by considering
Figure 30, which shows a spreadsheet that uses only a primary input file (the SALES–FILE).
This spreadsheet shows information about each sale made by an employee. This spreadsheet
includes columns for two fields that we haven't used in previous examples, so we'll explain
them. They are the EMPL–NUM field and the PRODUCT–CODE field. The EMPL–NUM is the
employee number of the employee who made the sale. The PRODUCT–CODE is a code that
identifies which product was sold to the customer.

Lesson 7. How to Use Data from More Than One File

Chapter 3. How to Request a PC File 115

237,216��(;&(/
,1387����6$/(6�),/(
&2/8016��(03/�1$0(��(03/�180��6$/(6�'$7(��&86720(5��$02817��352'8&7�&2'(

These control statements:

Figure 30 A spreadsheet that uses only the primary input file

 Result in this Excel spreadsheet:

Lesson 7. How to Use Data from More Than One File

116 Report Writer User’s Guide

Now, let's assume that we want this spreadsheet to also show each employee's social security
number. The social security number is not available in the SALES–FILE. But it is a field in
the EMPL–FILE. (See page 83.) In order to produce such a spreadsheet, we need data from a
second input file — the EMPL–FILE.

The EMPL–FILE is a keyed VSAM file. Its key is the 3–byte employee number. The records in
the SALES–FILE also contain an employee number, so we can use that field as the "read key"
to use in reading the EMPL–FILE. We can make the EMPL–FILE an auxiliary input file, then, by
simply adding this statement:

5($'���(03/²),/(���5($'.(<�(03/²180�

This READ statement tells Report Writer to use the EMPL–NUM field from each record in the
SALES–FILE as a key for reading an auxiliary record from the EMPL–FILE. All control
statements after this READ statement may now refer to the fields in the EMPL–FILE, as well as
to those in the SALES–FILE. So, we can now add the SOCIAL–SEC–NUM field from the
EMPL–FILE to our COLUMNS statement:

&2/8016��(03/²1$0(��6$/(6²),/(�(03/²180��62&,$/²6(&²180�
���������6$/(6²'$7(��&86720(5��$02817��352'8&7²&2'(

Notice that in the above COLUMNS statement we must now prefix the EMPL–NUM field with
a record name (like this: SALES–FILE.EMPL–NUM). This is because after the READ statement,
EMPL–NUM is no longer a unique field name. A field by that name exists in both the
SALES–FILE and the EMPL–FILE. (See Appendix F, "Sample File Definitions.") Since the
EMPL–NUM will have the same value in both of the records, it doesn't really matter which one
we specify in the COLUMNS statement, but we do have to specify a unique name. In this case
we specified the EMPL–NUM field from the SALES–FILE. (For more information on using
"record names" to qualify field names, see page 232.)

Figure 31 shows an Excel spreadsheet obtained by using the above statements. The
spreadsheet now has the desired new column showing each employee's social security
number. Notice that we also sorted the PC file on SOCIAL–SEC–NUM. Remember that you can
use fields from auxiliary input files in any way that you use fields from the primary input file.

Lesson 7. How to Use Data from More Than One File

Chapter 3. How to Request a PC File 117

237,216��(;&(/
,1387����6$/(6�),/(
5($'�����(03/�),/(��5($'.(<�(03/�180�
6257�����62&,$/�6(&�180
&2/8016��(03/�1$0(��6$/(6�),/(�(03/�180��62&,$/�6(&�180
���������6$/(6�'$7(��&86720(5��$02817��352'8&7�&2'(

These control statements:

Figure 31 A spreadsheet that uses a READ statement to specify an auxiliary input file

 Result in this Excel spreadsheet:

Lesson 7. How to Use Data from More Than One File

118 Report Writer User’s Guide

How to Use Multiple READ Statements

You are allowed to use an unlimited number of READ statements in requesting a PC file. For
example, the Excel spreadsheet in Figure 32 uses two READ statements.

The primary input file is once again the SALES–FILE, which contains one record for each sale
made by an employee. It is specified in the INPUT statement:

,1387��6$/(6²),/(

To obtain additional data about the employee who made each sale, we use a READ statement
for the EMPL–FILE (just like in the preceding example.) The EMPL–NUM field in the
SALES–FILE contains the key necessary to read the correct EMPL–FILE record.

5($'���(03/²),/(��5($'.(<�(03/²180�

To obtain additional information about each product sold, a second READ statement names
the PRODUCT–FILE as an another auxiliary input file. (The PRODUCT–FILE is described in
Appendix F, "Sample File Definitions.")

However, there is one minor complication in reading records from this file. The key in the
PRODUCT–FILE records is 4 bytes long. It consists of the letter "P" followed by a 3–byte
product code. The SALES–FILE does not contain a field which can be used directly as the read
key to the PRODUCT–FILE. But, it does contain the 3–byte PRODUCT–CODE field, which we
can use to build the 4–byte read key. A COMPUTE statement is therefore used to create a new
field (called PKEY) which consists of the letter "P" followed by the product code. This
computed field is then used as the read key in the READ statement for the PRODUCT–FILE:

&20387(��3.(<� �
3
���352'8&7²&2'(
5($'�����352'8&7²),/(���5($'.(<�3.(<�

By having two READ statements in addition to the INPUT statement, the PC file now has three
input files. Data from all of these files can be used in any of the subsequent control
statements. In the Excel spreadsheet in Figure 32, the COLUMNS statement uses two fields
from the auxiliary input files. It uses the SOCIAL–SEC–NUM field from the EMPL–FILE, and the
PRODUCT–DESC field from the PRODUCT–FILE:

&2/8016��(03/²1$0(
���������6$/(6²),/(�(03/²180
���������62&,$/²6(&²180
���������6$/(6²'$7(
���������&86720(5
���������352'8&7²&2'(
���������352'8&7²'(6&

Lesson 7. How to Use Data from More Than One File

Chapter 3. How to Request a PC File 119

237,216��(;&(/
,1387����6$/(6�),/(
5($'�����(03/�),/(�����5($'.(<�(03/�180�
&20387(��3.(<� �
3
����352'8&7�&2'(
5($'�����352'8&7�),/(��5($'.(<�3.(<�
6257�����62&,$/�6(&�180
&2/8016��(03/�1$0(��6$/(6�),/(�(03/�180��62&,$/�6(&�180
���������6$/(6�'$7(��&86720(5��$02817
���������352'8&7�&2'(��352'8&7�'(6&

These control statements:

Figure 32 A spreadsheet that uses two READ statements to specify two auxiliary input files

 Result in this Excel spreadsheet:

Lesson 7. How to Use Data from More Than One File

120 Report Writer User’s Guide

Summar y
Here is a summary of what we learned in this lesson:

� the READ statement is used to read records from auxiliary input files

� you may have as many READ statements as you like in a single run

To Learn More
There are some additional features associated with the READ statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in Chapter
4, "Beyond the Basics." Examples of additional features include:

� how to assign a record name to the records read from auxiliary input files (page
232)

� how to read more than one record from the same auxiliary input file (page 228)

� how to use data from one auxiliary input file as the read key to another
auxiliary input file (page 230)

� what happens when no record is found for a particular read key (page 233)

� how to determine whether the read for a particular key was successful or not
(page 233)

� how to use the READ statement to obtain data from a DB2 table or view (page
340)

The complete syntax for the READ statement is given in Chapter 9, "Control Statement
Syntax" (page 510).

Chapter 4. Beyond the Basics 121

Chapter 4. Be yond the Basics

Chapter Table of Contents

Chapter 4. Be yond the Basics . 121

Additional Features in the COLUMNS Statement . 123
Writing Print Expressions. 123
How to Change the Column Headings . 127
How to Change the Width of a Column. 131
How to Change the Way Dates, Times and Numbers Are Formatted. 132
Formatting Tips for International Users. 137
How to Blank Out Repeating Values . 140
How to Change the Justification of Data within a Column . 142
How to Specify Which Columns to Total. 144
How to Produce Multi–Line Reports. 147
How to Change the Report Margins . 150
How to Print Bar Graphs. 150
How to Print Vertical Lines between Report Columns. 152
How to Print a Variable Number of Lines Per Input Record. 154
Variable Number of Lines — Strategy 1 . 154
Variable Number of Lines — Strategy 2 . 159
Putting a Variable Number of Items on a Single Line . 162

What If You Run Out of Room?. 163

Why Do I See ****X**** in M y Report? . 164

Customizing the Report Titles. 165
How to Include Data from a File in the Title. 165
How to Include the Page Number, Date and Time in a Title. 168
How to Change the Appearance of Items in the Title. 170
How to Split the Title into Left, Center, and Right Parts . 174
How to Print "Titles" at the Bottom of Each Page . 180

Customizing the Control Breaks. 182
How to Change the Control Break Spacing . 183
How a Default Total Line Looks . 186
Computing True Percentages and Ratios at Control Breaks. 187
How to Customize the Total Line at a Control Break. 190
How to Suppress the Total Line at a Control Break. 193
How to Customize the Statistical Lines at a Control Break. 194
How to Print Customized Footing Lines at a Control Break. 196
How to Print the Number of Items in a Control Group. 206
How to Print Header Lines at the Beginning of a Control Group. 208

Printing a "Line Number" in Your Report. 210

Reports with Multiple Control Breaks. 211

How to Customize the Grand Totals. 214

122 Report Writer User’s Guide

Chapter Table of Contents (Continued)

How to Produce Summary Reports. 218

How to Create "Top 10" Type Reports. 220

How to Count "Occurrences" in a File. 222

How to Total a Field by "Category" . 226

Working With Multiple Input Files. 228
Using Multiple READ Statements for the Same File. 228
How to Chain READ Statements. 230
How to Name the Input File Records. 232
How Missing Records Are Handled. 233
Using Generic and KGE Keys . 234
How to Perform "One–to–Many" Reads. 235

Working with "Batched" Input Files. 238

Creating PC Files from Existing Reports . 241

Working with SMF Records. 246

Working with Time Fields. 253

Producing Files for Other PC Programs . 256

Producing Files for Mainframe Programs . 260
How to "Subset" Mainframe Files. 263
How to Sort Mainframe Files. 263

Chapter 4. Beyond the Basics 123

Chapter 4. Be yond the Basics

This chapter is a user's guide to some of Report Writer's additional features. Many of the
control statements introduced earlier in Chapters 2 and 3 are discussed in more detail in this
chapter. Many reports and PC files won't require these more advanced features. But as your
requests become more and more sophisticated, you may want to use some of the techniques
and features illustrated in this chapter.

Additional Features in the COLUMNS Statement

We saw in previous chapters that the basic purpose of the COLUMNS statement is to name the
columns desired in a report or PC file. The COLUMNS statement also has many other features
that can be used to customize how a report or PC file looks. The following sections explain:

� how to include a column of literal text in a report or PC file (page 124)

� how to change the spacing between report columns (page 124)

� how to change the column headings (page 127)

� how to change the width of a column (page 131)

� how to change the way dates, times and numbers are formatted (page 132)

� how to format dates, times and numbers for international users (page 137)

� how to change the justification of data within a column (page 142)

� how to change which columns are totalled (page 144)

� how to produce multi–line reports or multi–row PC files (page 147)

� how to print bar graphs in a report (page 150)

� how to put a text (such as a vertical line) between report columns (page 152)

� how to change the report margins (page 150)

Writin g Print Expressions

This section explains:

� how to write print expressions for the COLUMNS statement

� which fields may appear in the COLUMNS statement

� how to include literal texts in the report lines

� how to specify the number of spaces that should appear between columns

� how parms can be used to customize the way a column is processed

Some of the features discussed in this section are illustrated in the sample report shown in
Figure 33 on page 125.

Writin g Print Expressions

124 Report Writer User’s Guide

The contents of the COLUMNS statement is simply a print expression. Print expressions are
used in a number of different control statements. They tell Report Writer how to build one
print line that will be used in a report. In the COLUMNS statement, the print expression tells
how to build a detail report line for the main body of the report. (When creating
PC files, the print expression tells how to build the output records.)

As with other print expressions in Report Writer, just list one or more items to print.

&2/8016��LWHP��LWHP��LWHP������

Each item can be either a literal text or a field name.

To put a literal text in a column of the report, simply enclose the text in either apostrophes
or quotation marks. For example, the following statement causes the words
 1(:�7(/����������� to appear in each line of a report:

&2/8016��
1(:�7(/�����������

To put data from an input file in a column of the report, simply list the desired field name.
(Do not put the field name in apostrophes or quotation marks.) For example, the following
statement causes the contents of the TELEPHONE field to appear in a report column:

&2/8016��7(/(3+21(

Each field listed must be "available" to Report Writer at the time the COLUMNS statement is
processed. That is, each field name must be one of the following:

� a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

� a computed field (defined in a preceding COMPUTE statement)

� a built–in field (see Appendix C, "Built-In Fields" for a complete list of built–in
fields)

As in other print expressions, you may also customize the print line by using optional
spacing factors and parms. So, the full syntax for the COLUMNS statement is this:

&2/8016���>Q@�LWHP��SDUPV��>Q@�LWHP��SDUPV��>Q@�LWHP��SDUPV�����

The optional spacing factor [n] is the number of blank spaces to leave between two columns
in the report. If you omit the spacing factor, the default is for one blank space to appear
between columns. (A spacing factor of zero is allowed if you want no spaces between two
columns of your report.) As an example, the following statement causes 2 blanks to appear
between the LAST–NAME and the FIRST–NAME columns, and causes 5 blanks to appear between
the FIRST–NAME and the HIRE–DATE columns:

&2/8016��/$67²1$0(���),567²1$0(���+,5(²'$7(

Note: to change the default spacing factor, use the COLSPACE parm of the OPTIONS

statement (page 498.)

The optional parms are used to provide details about how to display individual columns in
the report. You may specify one or more parms, enclosed in parentheses, immediately
following an item in the print expression. (Do not leave a space between the item and the

Writin g Print Expressions

Chapter 4. Beyond the Basics 125

Notes:
• the LAST–NAME column is 5 spaces over from the EMPL–NUM column
• the literal texts "2/'�7(/�" and "1(:�7(/������������" appear in each line of the report
• the spacing factor of zero puts zero spaces between the "2/'�7(/�" column and the TELEPHONE

column
• the literal text columns do not have default column headings

Figure 33 Using spacing factors and literal texts in the COLUMNS statement

,1387�����(03/�),/(
7,7/(�����
7(/(3+21(�6,*183�/,67

&2/8016���(03/²180�����
����������/$67²1$0(
����������),567²1$0(
����������
2/'�7(/�
���
����������7(/(3+21(����
����������
1(:�7(/������������

These control statements:

�������������������������������7(/(3+21(�6,*183�/,67�

(03/����������/$67������������),567�
180�����������1$0(������������1$0(�����������������7(/(3+21(������������������������

���������-21(6�����������-(55<�����������2/'�7(/�����������������1(:�7(/�������������
���������-2+1621���������7+20$6����������2/'�7(/�����������������1(:�7(/�������������
���������-2+1621���������/,1'$�����������2/'�7(/�����������������1(:�7(/�������������
���������0$&'21$/'�������5,&+$5'���������2/'�7(/�����������������1(:�7(/�������������
���������6,03621���������7,027+<���������2/'�7(/�����������������1(:�7(/�������������
���������0255,621��������0,&+$(/���������2/'�7(/�����������������1(:�7(/�������������
���������&+5,6723+(5621��0(/,66$���������2/'�7(/�����������������1(:�7(/�������������
���������%$.(5�����������9,9,$1����������2/'�7(/�����������������1(:�7(/�������������
���������7+20$6����������0$57,1����������2/'�7(/�����������������1(:�7(/�������������
�
�*5$1'�727$/����,7(06��

Produce this report:

Writin g Print Expressions

126 Report Writer User’s Guide

first parenthesis.) You may use any combination of parms, in any order. Separate the parms
with a comma and/or with one or more blanks. For example, the following statement has a
width parm and a justification parm for the LAST–NAME field:

&2/8016��/$67²1$0(����&(17(5���),567²1$0(

The following table shows what parms are available in the COLUMNS statement. Subsequent
sections of this chapter explain in detail how to use each of these parms.

COLUMN STATEMENT PARMS

PARM DESCRIPTION

ACCUM/NOACCUM Specifies whether the column should be accumulated or not.
Accumulated columns receive totals at control breaks and at the
end of the report. For more information on using these parms, see
page 144. The following example specifies that the TOTAL–SALES

column should not be accumulated (and therefore not totalled):

&2/8016���727$/²6$/(6�12$&&80�

BIZ Means “blank if zero.” Specifies that the column should be left
blank whenever the numeric, date or time item contains zeros.
The following example specifies that the TOTAL-SALES and
SALES-TIME columns should be left blank whenever their value is
zero.

&2/8016���727$/�6$/(6�%,=���6$/(6�7,0(�%,=�

'column headin g' Specifies the column heading to be used for an item. For more
information on using the column heading parm, see page 127.
The following example specifies that the column heading for the
LAST–NAME column should be "6(//(56�/$67�1$0(":

&2/8016���/$67²1$0(�
6(//(56�/$67�1$0(
�

display–format Specifies how to format the field in the report column. A
complete list of display formats appears in Appendix B, "Display
Formats" (page 550.) For more information on using a display
format parm, see page 132. The following example specifies that
the HIRE–DATE column should be displayed in the LONG1 format,
with the month name spelled out:

&2/8016���+,5(²'$7(�/21*��

Writin g Print Expressions

COLUMN STATEMENT PARMS

PARM DESCRIPTION

Chapter 4. Beyond the Basics 127

LEFT/CENTER/RIGHT Specifies how to justify the contents of a column. For more
information on using a justification parm, see page 142. The
following example specifies that the contents of the LAST–NAME

column should be center justified:

&2/8016���/$67²1$0(�&(17(5�

NOREPEAT/
NOREPEATPAGE

Specifies that "repeating values" in a column should not be
printed. (Blanks will appear instead.) NOREPEAT specifies that
repeated values should not be printed anywhere except in the first
line of each page and the first line of each control group.
NOREPEATPAGE specifies that repeated values should not be
printed anywhere except in the first line of each page. For
example:

&2/8016���/$67²1$0(�125(3($7�

width This numeric parm specifies how wide the report column should
be. For more information on using a width parm, see page 131.
The following example specifies that the TOTAL–SALES column of
the report should be only 6 characters wide:

&2/8016���727$/6²6$/(6���

How to Chan ge the Column Headin gs

This section explains:

� how Report Writer determines default column headings

� how to specify your own column headings

� how to suppress column headings

Most of the features discussed in this section are illustrated in the sample report in Figure
34 on page 129.

If you do not specify a column heading for a field in the COLUMNS statement, Report Writer
uses a default column heading. The default heading will be:

� the column heading (if any) specified when the field was first defined (in a FIELD

or COMPUTE statement), or

� the field name itself, broken apart at each dash or underscore, with each part of
the name going onto a separate heading line. (For example, the default column

How to Chan ge the Column Headin gs

128 Report Writer User’s Guide

heading for LAST–NAME is a two–line heading, with "/$67" on one line and "1$0("
on the next line, as illustrated in Figure 33 on page 125.)

Note: by default, column headings are not automatically generated for multi–line
reports (those using more than one COLUMNS statement.) To learn how to create
column headings for multi–line reports, see the section titled "How to Produce
Multi–Line Reports" beginning on page 147.

To specify your own column heading for a field, put your column heading in parentheses
immediately after the field name. (Do not leave a space between the field name and the first
parenthesis.) Enclose the column heading in either apostrophes or quotation marks.
For example:

&2/8016���/$67²1$0(��(03/2<((
6�/$67�1$0(��

The above statement would cause the text "(03/2<((
6�/$67�1$0(" to be used as the column
heading for the LAST–NAME column. Since this is a rather long heading, you may want to split
it onto two lines. Use the "vertical bar" character () within the column heading text to
indicate where to split the text into separate lines. You may use as many lines for the column
heading as you like, but most reports look best with no more than three or four lines of
column headings. Here is an example of the use of the vertical bar to break the column
heading into two lines:

&2/8016���/$67²1$0(��(03/2<((
6/$67�1$0(��

The example above will cause a two–line column heading to be used for the LAST–NAME

column. The first heading line will contain the word "(03/2<((
6", and the second line will
have the words "/$67�1$0(". The following example shows how to make a three–line column
heading for the SEX column:

&2/8016���6(;�
6(;
�

In the above statement, each of the three column headings lines now has only one character.
Since the SEX field is also only one character long, the column will now default to being one
character wide, rather than three. Stacking column headings like this can help you squeeze
more columns into your report.

Note: the vertical bar is the "Shift 1" key on most mainframe terminals. Some PC
keyboards that emulate mainframe terminals do not have a key that shows the
straight vertical bar. (The "pipeline" character is not the same as the vertical bar.)
On many of these keyboards, the right–hand square bracket key (]) is used to send
a vertical bar to the mainframe while in emulator mode.

You may use the HDGSEP parm of the OPTION statement to select a different
character to use as the separator character for column heading texts. (See page
501.) Here is an example that uses a slash, rather than a vertical bar, to separate
column headings lines:

237,21���+'*6(3�
�
�
&2/8016��/$67²1$0(��(03/2<((
6�/$67�1$0(����6(;�
6�(�;
�

How to Chan ge the Column Headin gs

Chapter 4. Beyond the Basics 129

,1387� ��(03/�),/(
7,7/(����
(03/2<((�/,67,1*

&2/8016��/$67�1$0(��(03/2<((
6 /$67�1$0(��
���������),567�1$0(�
1$0(�����������
�
���������(03/�180�
��
�
���������+,5(�'$7(�

�
���������6(;�
6 (;
�
���������6(;
���������
����������
�
'(/,9(5< '$7(
�

These control statements:

����������������������(03/2<((�/,67,1*
���6
��(03/2<((
6���������������������������������(������'(/,9(5<
���/$67�1$0(����1$0(�������������������������;�6(;����'$7(���

-21(6�����������-(55<������������������������0��0������������
-2+1621���������7+20$6�����������������������0��0������������
-2+1621���������/,1'$������������������������)��)������������
0$&'21$/'�������5,&+$5'����������������������0��0������������
6,03621���������7,027+<����������������������0��0������������
0255,621��������0,&+$(/����������������������0��0������������
&+5,6723+(5621��0(/,66$����������������������)��)������������
%$.(5�����������9,9,$1�����������������������)��)������������
7+20$6����������0$57,1�����������������������0��0������������

�*5$1'�727$/����,7(06�

Produce this report:

Notes:
• the FIRST–NAME column heading ("1$0(") is left–justified
• the EMPL–NUM column has no column heading, but does have the underscores
• the HIRE–DATE column has no column heading, and no underscores
• the SEX column with the stacked heading takes up only one character
• the column of literal text now has a column heading

Figure 34 Specifying your own column headings

How to Chan ge the Column Headin gs

130 Report Writer User’s Guide

Note: if you find that you frequently have to override column headings in the
COLUMNS statement, consider changing the field's default column heading. Default
column headings are specified in the FIELD statement (page 296) or the COMPUTE

statement (page 444.)

Column headings are automatically centered over their columns in reports (but not in PC
files.) Therefore, you do not need to try to add extra spaces within your column headings to
force correct alignment. If for some reason you want left– or right–justified column headings,
then you could include enough leading or trailing blanks within the heading text to take up
the whole width of the column. For example, if LAST–NAME is a 15 character column, and you
want the column heading "1$0(" to be appear left–justified over it, use 11 trailing blanks
within the column heading text, like this:

&2/8016���/$67²1$0(�
1$0(�����������
�

You can also use leading blanks to force right–justification of a column heading:

&2/8016���$02817�
������$02817
�

If you do not want any column heading for a particular column, you can use an all blank
column heading text, like this:

&2/8016��/$67²1$0(�
�
�

The above example causes blanks to be used as the column heading for the LAST–NAME

column in the report.

Following the last column heading line, Report Writer prints an additional line of underscores
to indicate the exact width of each column. (This underscore line overprints the final column
heading text line— it is not a separate print line.) These underscores appear even for
columns with blank column heading texts. To suppress even the underscores for a column,
use a null column heading text — without even blanks within it. For example:

&2/8016���/$67²1$0(�

�

The above example causes the LAST–NAME column to appear with no column headings and
with no underscores.

To suppress all column headings, use the NOCOLHDGS parm of the OPTIONS statement
(page 503.) This option means that no column headings (and no underscore line) should
print. This is often used when you want to specify all of the column heading lines yourself,
using TITLE statements.

Some printers do not support the overprinting of lines (as is needed to properly print the
underscore line after the column headings.) If this is the case and you want to suppress the
entire underscore line, use the NOOVERPRINT parm of the OPTION statement (as described on
page 504.)

Column headings are not automatically generated for columns of literal text. You may,
however, specify your own column headings for literal texts just as you would for a field.
The following example illustrates how to specify a column heading for a column of literal
text:

&2/8016���
����������
�
'(/,9(5<'$7(
�

Chapter 4. Beyond the Basics 131

How to Chan ge the Width of a Column

This section explains:

� how Report Writer determines the default width of a column

� how to specify your own column width

Most of the features discussed in this section are illustrated in the sample report in Figure
35 on page 133.

Report Writer considers several factors when deciding what size to make each column,
including:

� the number of characters in a character field (or literal)

� how many digits will likely be needed to display numeric fields, including the
Grand Total value at the end of the report

� the width of the column heading

Based on these considerations, Report Writer chooses a default width for each column. You
may need to change this width in some cases. Do this by enclosing a numeric width parm
in parentheses immediately after the field name. (Do not leave a space between the field
name and the first parenthesis.)

For example, there may be too much data in a report to fit on the page. In this case, you
might use a width parm to shorten some of the larger character fields. The following
example shortens the LAST–NAME field to only 10 characters:

&2/8016��/$67²1$0(����

Of course, any last names containing more than 10 characters will be truncated in the report
column.

Note: Numeric columns are never truncated. Doing so might lead to misleading
figures appearing in the report. Instead, if a column is too small to display all
significant digits (or a minus sign) for a numeric field, the column will be filled with
a "size" error indicator (which looks like this: 6). Figure 35 (page 133)
shows an example of this.

When shortening columns, it is possible to specify a column width that is shorter than the
column headings. In this case, the column headings will also be truncated. Therefore, when
specifying a shorter column width you may also need to specify new column headings. The
new column headings should be broken into parts small enough to fit within the specified
column width. Here is an example of a COLUMNS statement which specifies a column width
of only 3, and also specifies column headings that are only 3 characters long:

&2/8016��/$67²1$0(���
/671$0
�

As mentioned above, you may occasionally see a "size" error indicator (6) in a
numeric column. This means that the column wasn't wide enough to display all the digits in
the number. Sometimes, a column will be wide enough to display the numeric value in the
regular report lines, but will not be big enough to display the Grand Total value at the end of
the report. In these cases you need to widen the column to provide enough room to display

How to Chan ge the Width of a Column

132 Report Writer User’s Guide

the Grand Total value. For example, the following COLUMNS statement allows 22 characters
for the TOTAL–SALES field:

&2/8016��727$/²6$/(6����

Note that this does not mean that there will be room for 22 digits to print in the column. The
22 character width of the column will also includes such things as commas, a decimal point,
and a minus sign, if necessary.

Another way to widen a numeric column is to use a large PICTURE as an override display
format. (Display formats are discussed beginning on page 132.) The following example also
widens the TOTAL–SALES column to 22 characters, and has the advantage of making it easier
to visualize how many digits that will accommodate:

&2/8016��727$/²6$/(6�3,&
===�===�===�===�==����
�

How to Chan ge the Way Dates, Times and
Numbers Are Formatted

This section explains:

� what a display format is

� the default display formats used to display data

� how to specify your own display format

PC File Note: display formats should not normally be used when creating PC files.
Report Writer chooses the display format needed to create an import file for the PC
program specified in the OPTIONS statement. After importing your PC file into a PC
spreadsheet, you can use the PC program's features to change the way dates or
numbers are formatted.

Most of the features discussed in this section are illustrated in the sample report in Figure
36 on page 135.

When formatting data in a report (especially dates, times and numbers), there are several
decisions to make. For example, a date might be formatted in any of the following ways (to
list just a few possibilities):

��������
'(&(0%(5���������
���'(&���

Similarly, a numeric value might be formatted in any of these ways (and others):

�����
���������
����
�������
������
�����

How to Chan ge the Way Dates, Times and Numbers Are Formatted

Chapter 4. Beyond the Basics 133

,1387����(03/�),/(
7,7/(����
(03/2<((�/,67,1*

&2/8016��(03/�180���
���������/$67�1$0(
���������/$67�1$0(����
���������/$67�1$0(���
/67 1$0
�
���������+,5(�'$7(
���������+,5(�'$7(���
���������727$/�6$/(6����
���������727$/�6$/(6���

These control statements:

��������������������������������(03/2<((�/,67,1*

(03������/$67����������/$67����/67���+,5(���+,5(����������727$/�����������727$/
180������1$0(����������1$0(����1$0���'$7(���'$7(����������6$/(6�����������6$/(6��

����-21(6�����������-21(6������-21���������������������������������������6
����-2+1621���������-2+1621����-2+���������������������������������������6
����-2+1621���������-2+1621����-2+���������������������������������������6
����0$&'21$/'�������0$&'21$/'��0$&���
����6,03621���������6,03621����6,0���
����0255,621��������0255,621���025���������������������������������������6
����&+5,6723+(5621��&+5,6723+(�&+5���������������������������������������6
����%$.(5�����������%$.(5������%$.���������������������������������������6
����7+20$6����������7+20$6�����7+2���������������������������������������6

�*5$1'�727$/����,7(06���6

Produce this report:

Notes:
• the EMPL–NUM column is 3 bytes wide, causing the default column headings to be truncated
• the second LAST–NAME column has been shortened to 10 bytes
• the third LAST–NAME column is shortened to 3 bytes, and also specifies shortened column headings
• the second HIRE–DATE column has been shortened to 5 characters so that only the month and day

appear
• the first TOTAL–SALES column has been widened to accommodate numbers into the hundreds of

trillions
• the second TOTAL–SALES column has been shortened so much that "size" errors now occur for large

values, resulting in the 6 size error indicator

Figure 35 Specifying the width of report columns

How to Chan ge the Way Dates, Times and Numbers are Formatted

134 Report Writer User’s Guide

Time values can be formatted in the following ways, among others:

��������
�����

Report Writer supports many different display formats that indicate exactly how to format
a field in a report. A complete list of these display formats is found in Appendix B, "Display
Formats" (page 550.)

If you do not specify a display format in the COLUMNS statement, Report Writer uses a default
display format. This will be:

� the display format (if any) specified when the field was first defined (in a FIELD

or COMPUTE statement), or

� the display format (if any) specified in a previous OPTIONS statement's FORMAT

parm (see page 500.) (Use the FORMAT option if you want to change the way all
dates, times or numbers in your report are formatted.)

� the default display format shown in the table on page 559.

To specify your own display format for a field, put a display format parm in parentheses
immediately after the field name. (Do not leave a space between the field name and the first
parenthesis.) Be sure to use a display format that is valid for the field's data type. (For
example, you cannot request that a numeric field be displayed with a date display format.)

Here is an example of specifying display formats in the COLUMNS statement:

&2/8016��/$67²1$0(
���������62&,$/²6(&²180�3,&
���²��²����
�
���������+,5(²'$7(�/21*��
���������67$786²%<7(�+(;�
���������727$/²6$/(6�'2//$5�

The above statement specifies that:

� the SOCIAL–SEC–NUM field should be formatted with leading zeros not
suppressed, and with dashes in the appropriate positions

� the HIRE–DATE field should be formatted with the month name completely
spelled out

� the STATUS–BYTE field should be shown in it hexadecimal representation

� the TOTAL–SALES field should be formatted with a floating dollar sign.

Note: you can change the delimiter used to format date fields by using the
DATEDELIM option. For example:

237,216��'$7('(/,0�
³
�

The above statement causes a dash (—) to be used as the delimiter, rather than a
slash (/), when formatting dates. Thus, if the above statement was used, a date
formatted with the DD–MM–YY display format might look like this:

��²��²��

How to Chan ge the Way Dates, Times and Numbers Are Formatted

Chapter 4. Beyond the Basics 135

,1387����(03/�),/(
7,7/(����
(03/2<((�/,67,1*

&2/8016��(03/�180
���������/$67�1$0(
���������62&,$/�6(&�180�3,&
�����������
�
���������+,5(�'$7(�/21*��
���������67$786�%<7(�+(;�
���������727$/�6$/(6�'2//$5�

These control statements:

�����������������������������(03/2<((�/,67,1*

�����������������������62&,$/
(03/������/$67�����������6(&������������+,5(��������67$786������727$/
180�������1$0(�����������180������������'$7(���������%<7(�������6$/(6������

�����-21(6�����������������������-$18$5<��������������&��������������������
�����-2+1621���������������������-81(�����������������&��������������������
�����-2+1621���������������������129(0%(5�������������&��������������������
�����0$&'21$/'�������������������-8/<��������������������������������������
�����6,03621���������������������'(&(0%(5�������������&��������������������
�����0255,621��������������������129(0%(5�������������&��������������������
�����&+5,6723+(5621��������������$8*867���������������&��������������������
�����%$.(5�����������������������-81(�����������������&��������������������
�����7+20$6����������������������-81(�����������������&��������������������

�*5$1'�727$/����,7(06���

Produce this report:

Notes:
• the SOCIAL–SEC–NUM column shows leading zeros, and has dashes in the appropriate places
• the HIRE–DATE columns shows the date in the LONG1 format, with the month name spelled out
• the STATUS–BYTE is shown in its hexadecimal representation
• the TOTAL–SALES column has a floating dollar sign
• the Grand Total line uses the same display format for TOTAL–SALES as the regular report lines

Figure 36 Customizing the way dates and numbers are formatted in a report

How to Chan ge the Way Dates, Times and Numbers are Formatted

136 Report Writer User’s Guide

Note: you can change the delimiter used to format time fields by using the
TIMEDELIM option. For example:

237,216��7,0('(/,0�
�
�

The above statement causes a dot (.) to be used as the delimiter, rather than a colon
(:), when formatting times. Thus, if the above statement was used, a time formatted
with the HH–MM display format might look like this:

�����

Note: the same display format used in formatting data for the regular report lines
is also used to format the data in the total line, and in any other statistical lines
requested. This means, for example, that if you want to see an extra decimal digit
for a column's average value (at a control break), you should specify a PICTURE that
has the correct number of decimal digits in the COLUMNS statement. Figure 40 on
page 145 shows an example of this.

Note: you can also specify the BIZ (“blank if zero”) parm along with a display
format. That causes all non-zero data to be formatted according to the display
format. However, whenever the value to be formatted is zero, the column will be left
blank. You can use the BIZ parm with numeric, date and time fields.

Chapter 4. Beyond the Basics 137

Formattin g Tips for International Users

This section

� suggests some options that international users may wish to use when creating
reports.

The following table contains a number of options of special interest to international users.
The report in Figure 37 (page 139) uses some of these options.

OPTIONS OF INTEREST TO INTERNATIONAL USERS

OPTIONS Statement Parm Description Example

FORMAT(DD–MM–YY) Makes DD–MM–YY the default date
display format. All dates in the
report will now appear as
"''�00�<<" by default.

��������

DATEDELIM('.')
DATEDELIM('–')

Makes a dot (or dash) the standard
delimiter used to format all dates in
the report.

��������
��²��²��

TIMEDELIM('.')
TIMEDELIM('–')

Makes a dot (or dash) the standard
delimiter used to format all times in
the report.

��������
��²��²��

FORMAT(DOTSEP) Makes DOTSEP the default display
format for all numeric fields in the
report. A dot is used to separate
thousands and millions, etc. A
comma indicates where the decimal
digits begin.

������������

FORMAT(PIC'ZZZ ZZZ ZZ9.9') Makes the default numeric display
format the specified picture. Spaces
are used to separate thousands,
millions, etc.

�����������

FORMAT(PIC'ZZ ZZZ ZZ9V,9') Makes the default numeric display
format the specified picture. Spaces
are used to separate thousands,
millions, etc. A comma is used to
separate the decimal digits.

�����������

Formattin g Tips for International Users

OPTIONS OF INTEREST TO INTERNATIONAL USERS

OPTIONS Statement Parm Description Example

138 Report Writer User’s Guide

PIC'ZZZ.ZZ9V,99 DM' Use a PICTURE display format
similar to this to print currency
symbols (like DM) after a numeric
value.

�����������'0

DDMMYYLIT Tells Report Writer that all date
literals in the control statements are
in ''�00�<< or ''�00�<<<< format.
Note: the slash is always used as
the delimiter in date literals. The
DATEDELIM option, if any, only
changes the way dates are
formatted in the output— not the
way date literals are written in
control statements.

,1&/8'(,)�
�6$/(6²'$7(
��!���������
������$1'
�������������

Of course, you can use any combination of the above options in a single OPTIONS statement:

237,216���)250$7�'276(3�''²00²<<���'$7('(/,0�
²
���7,0('(/,0�
�
���''00<</,7

If you would like to use some of these options as the default for all reports in your company,
put the desired OPTIONS statement in a special member of your Report Writer Copy Library.
Then, under MVS, use the SWOPTION DD to point to that member. Report Writer will process
the statements in that member before it processes the other control statements (page 368.)
Under VSE, use a COPY statement to copy that member at the beginning of your requests.

Formattin g Tips for International Users

Chapter 4. Beyond the Basics 139

237,216����)250$7�'276(3��''�00�<<���'$7('(/,0�
�
��''00<</,7
,1387������(03/�),/(
7,7/(������
,17(51$7,21$/�(03/2<((�/,67,1*

7,7/(������
+,5('�$)7(5����'(&(0%(5�����

,1&/8'(,)��+,5(�'$7(�!�����������
&2/8016����(03/�180
�����������/$67�1$0(
�����������+,5(�'$7(
�����������727$/�6$/(6
�����������727$/�6$/(6�3,&
===�==�9���
�

These control statements:

�������������,17(51$7,21$/�(03/2<((�/,67,1*
��������������+,5('�$)7(5����'(&(0%(5�����

(03/������/$67���������+,5(��������727$/��������727$/
180�������1$0(���������'$7(��������6$/(6��������6$/(6���

�����-21(6��
�����-2+1621��
�����0$&'21$/'��
�����6,03621��
�����0255,621���
�����&+5,6723+(5621�������������������������������������
�����%$.(5��
�����7+20$6���

�*5$1'�727$/����,7(06��������������������������������

Produce this report:

Notes:
• the FORMAT option makes DOTSEP and DD–MM–YY the default numeric and date display formats for

the report.
• the DATEDELIM('.') option causes all dates to be formatted using dots rather than slashes.
• the DDMMYYLIT options means that all date literals will be in DD/MM/YY (or DD/MM/YYYY) format.

Note that slashes are still required in date literals.
• the INCLUDEIF statement uses a date literal in DD/MM/YY format to select records whose HIRE–DATE is

after December 31, 1975
• the first TOTAL–SALES column uses the default display format (DOTSEP)
• the second TOTAL–SALES column uses an override PICTURE that has blanks as the separator character

and a comma as the decimal character.

Figure 37 A report with international formatting options

140 Report Writer User’s Guide

How to Blank Out Repeatin g Values

This section explains:

� how to print blanks in a column instead of a repeating value

� how a repeating value in the first line of a control group is handled

Most of the features discussed in this section are illustrated in the sample report in Figure
38.

The NOREPEAT parm in a COLUMNS statement tells Report Writer to blank out a column
whenever it would contain the same value as in the previous line. However, the column's
value is always shown (even if it is a repeated value) in two cases:

� in the first detail line of each new page

� in the first detail line of a new control group (that is, in the first detail line after
a control break)

For example:

&2/8016��/$67²1$0(�125(3($7�

The above statement tell Report Writer not to print repeating values of the LAST–NAME field.

If you prefer to also blank out repeating values in the first line of each control group, use the
NOREPEATPAGE parm instead of NOREPEAT. That parm causes repeat values to be blanked
out everywhere except in the first detail line of each new page.

How to Blank Out Repeatin g Values

Chapter 4. Beyond the Basics 141

,1387����6$/(6�),/(
7,7/(����
/,67�2)�6$/(6�%<�5(*,21

6257�����5(*,21�(03/�1$0(
&2/8016��5(*,21�125(3($7�
���������(03/�1$0(�125(3($7�
���������(03/�1$0(
���������6$/(6�'$7(
���������&86720(5
���������$02817
���������7$;

These control statements:

����������������������������/,67�2)�6$/(6�%<�5(*,21

����������(03/�������(03/�����6$/(6
5(*,21����1$0(�������1$0(������'$7(������&86720(5���������$02817���������7$;����

($67���0255,621���0255,621������������$��3+272*5$3+<����������������������������
������������������0255,621������������67$5�0$5.(7�������������������������������
�������6,03621����6,03621�������������-�	�6�/80%(5������������������������������
������������������6,03621�������������(8523($1�'(/,�����������������������������
1257+��-2+1621����-2+1621�������������0$5<6�$17,48(6����������������������������
������������������-2+1621�������������9,//$�+27(/�������������������������������
�������-21(6������-21(6���������������(=�*52&(5<��������������������������������
������������������-21(6���������������72<�72:1����������������������������������
������������������-21(6���������������72<�72:1����������������������������������
6287+��-2+1621����-2+1621�������������$&0(�%8,/',1*�����������������������������
������������������-2+1621�������������$&(�(/(&75,&$/����������������������������
:(67���%$.(5������%$.(5���������������-$&.6�&$)(��������������������������������
������������������%$.(5���������������-$&.6�&$)(��������������������������������
�������7+20$6�����7+20$6��������������<2*857�&,7<�������������������������������

�*5$1'�727$/�����,7(06���

Produce this report:

Notes:
• the NOREPEAT parm for REGION and EMPL–NAME causes repeated values in those columns to be

blanked out
• the second EMPL–NAME column does not use the NOREPEAT parm, for comparison

Figure 38 A report that blanks out repeating values

142 Report Writer User’s Guide

How to Chan ge the Justification of Data
within a Column

This section explains:

� how data is normally justified within a column

� how to specify that the data within a column should be left–, center–, or
right–justified

Most of the features discussed in this section are illustrated in the sample report in Figure
39 on page 143.

By default, Report Writer justifies fields in the following manner:

TYPE OF DEFAULT
DATA JUSTIFICATION

Character None
Numeric Right–justified
Date None
Time Right–justified
Bit None

To change the way data is justified within a column, simply specify a justification parm
(LEFT, CENTER, or RIGHT) in parentheses immediately after the field name. (Do not leave a
space between the field name and the first parenthesis.)

For example, the following statement specifies that the LAST–NAME field should be
right–justified, the FIRST–NAME field should be center–justified, and the TOTAL–SALES field
should be left–justified.

&2/8016��/$67²1$0(�5,*+7���),567²1$0(�&(17(5���727$/²6$/(6�/()7�

Note: you may also abbreviate LEFT, CENTER and RIGHT as LJ, CJ and RJ,
respectively.

Note: the maximum width allowed for columns that are to be justified is 256
characters.

Note: the use of a large column heading or a large width parm can result in a report
column that is bigger than the area actually needed to display the contents of
character, date and bit fields. In such cases, the field's actual (smaller) display area
is centered within the area reserved for the entire column. Justification, if any, is
performed only within the (smaller) area actually used to display the field's contents.

How to Chan ge the Justification of Data within a Column

Chapter 4. Beyond the Basics 143

,1387����(03/�),/(
7,7/(����
(03/2<((�/,67,1*

&2/8016��(03/�180
���������/$67�1$0(�5,*+7�
���������),567�1$0(�&(17(5�
���������727$/�6$/(6�/()7�

These control statements:

������������������(03/2<((�/,67,1*

(03/������/$67������������),567�����������727$/
180�������1$0(������������1$0(������������6$/(6�����

���������������-21(6������-(55<������������������
�������������-2+1621�����7+20$6������������������
�������������-2+1621������/,1'$������������������
�����������0$&'21$/'�����5,&+$5'�����������������
�������������6,03621�����7,027+<�����������������
������������0255,621�����0,&+$(/�����������������
������&+5,6723+(5621�����0(/,66$�����������������
���������������%$.(5�����9,9,$1������������������
��������������7+20$6�����0$57,1������������������

�*5$1'�727$/����,7(06�������������������������

Produce this report:

Notes:
• the EMPL–NUM column has no justification parm
• the LAST–NAME column is right–justified
• the FIRST–NAME column is center–justified
• the TOTAL–SALES column is left justified
• the Grand Total line uses the same justification for TOTAL–SALES as the regular report lines

Figure 39 Specifying how to justify data within the report columns

144 Report Writer User’s Guide

How to Specif y Which Columns to Total

This section explains:

� how Report Writer determines which columns to print totals (and other
statistics) for

� how to explicitly specify that a column should or should not be included in total
and statistics lines

� how to print totals for time fields

Most of the features discussed in this section are illustrated in the sample report in Figure
40 on page 145.

There are a number of statistical lines that can be printed at the end of a report, as well as
at control breaks. The total line is the most common statistical line. By default, a total line
automatically prints at the end of the report (the "Grand Totals") and at each control break.
The other statistical lines are:

� the average line
� the non–zero average line
� the maximum line
� the minimum line
� the non–zero minimum line

These other statistical lines do not print unless specifically requested (in either a SORT or a
BREAK statement.)

For a column to appear in any of the statistical lines, Report Writer must accumulate
information about it as the report is being produced. For example, it must accumulate the
column's total value, its average value, etc. Each field that is accumulated automatically
appears in all statistical lines printed.

Which fields are accumulated? By default, all numeric columns are accumulated. So, by
default, all numeric columns appear in the total line, and any of the other statistical lines that
are printed.

The one exception to this rule is numeric fields that are displayed using a PICTURE which
contains special characters. (Special characters include such things as parentheses,
imbedded dashes, asterisks, etc.) By default, numeric fields displayed with such a PICTURE

are not accumulated and therefore do not appear in the total line and other statistical lines.
To illustrate this exception, consider the following COLUMNS statement:

&2/8016��7(/(3+21(�3,&
���������²����
�

The telephone number column in this report would not be accumulated, even though
TELEPHONE is defined as a numeric field (see Appendix F, "Sample File Definitions.") The
special characters in the PICTURE (namely the parentheses) suggest that totals, averages, etc.
would not be appropriate for this field.

To state Report Writer's default more precisely: all numeric columns except those formatted
with special characters are accumulated and appear in the statistical lines of the report.

How to Specif y Which Columns to Total

Chapter 4. Beyond the Basics 145

,1387����(03/�),/(
7,7/(����
(03/2<((�/,67,1*

&2/8016��(03/�180
���������/$67�1$0(
���������7(/(3+21(�3,&
��������������
�
���������727$/�6$/(6
���������727$/�6$/(6�12$&&80�
���������180�$&&28176�3,&
=�==���
�
%5($.����*5$1'�$9(5$*(

These control statements:

������������������������������(03/2<((�/,67,1*

(03/������/$67���������������������������727$/�����������727$/��������180
180�������1$0(���������7(/(3+21(���������6$/(6�����������6$/(6������$&&28176

�����-21(6��
�����-2+1621��
�����-2+1621��
�����0$&'21$/'��
�����6,03621��
�����0255,621���
�����&+5,6723+(5621���
�����%$.(5��
�����7+20$6���

�*5$1'�727$/����,7(06��
�$9(5$*(�9$/8(���

Produce this report:

Notes:
• the TELEPHONE field is not accumulated by default, since its PICTURE includes special characters
• the first TOTAL–SALES column is accumulated by default, and appears in the total and average lines
• the second TOTAL–SALES is not accumulated (due to the NOACCUM parm) and does not appear in

the total or average lines
• the NUM–ACCOUNTS column is displayed with a PICTURE that includes one decimal digit, so that

the average line will also contain one decimal digit for that column
• the BREAK: #GRAND statement specifies that averages should print along with the Grand Totals at

the end of the report

Figure 40 Specifying which columns to total

How to Specif y Which Columns to Total

146 Report Writer User’s Guide

You may, however, override this default and explicitly state whether any numeric field is to
be accumulated or not. Take as an example the DEPT–NUM field, which is defined as a
numeric field (see Appendix F, "Sample File Definitions.") By default, the DEPT–NUM

column would be accumulated since it is a numeric field. Yet, it makes no sense to total or
to average the department number. In the case of this field you want to specify that the
DEPT–NUM field should not be accumulated.

This is normally done when a field is first defined— in either a FIELD or a COMPUTE

statement. Specifying the NOACCUM parm in those statements indicates that the field should
not be accumulated. By specifying this parm when a field is first defined, you avoid having
to specify NOACCUM in the COLUMNS statement of every report that uses that field. Here is
how the DEPT–NUM field was defined so that it is not accumulated (and therefore does not
appear in totals lines):

),(/'��'(37²180��/(1*7+�����7<3(�180���12$&&80

A similar parm is available in the COMPUTE statement to specify that a computed field should
not be accumulated:

&20387(��1(:²'(37²180�12$&&80�� �������'(37²180

There is also a similar ACCUM parm that can be specified when a field is defined. This parm
explicitly specifies that a numeric field should be accumulated and appear in the total (and
statistical) lines. Use this parm if you do wish to total a field that is formatted with special
characters.

You may also explicitly state whether or not to accumulate a particular numeric field directly
in the COLUMNS statement. Use the ACCUM or NOACCUM parm in parenthesis immediately
after the field name. Such a parm in the COLUMNS statement overrides (for the current report
only) any other parm that may have been specified in the FIELD or COMPUTE statement. For
example:

&2/8016��727$/²6$/(6�$&&80���'(37²180�12$&&80�

In the above example, the total sales column would be accumulated, and the department
number field would not be accumulated, regardless of what was specified in their FIELD

statements. Therefore, the TOTAL–SALES columns would appear in the total and other
statistical lines. And the DEPT–NUM field would not appear in any of the statistical lines.

By default, Report Writer does not total any time fields. However, if you have a time field
which is a duration or interval (as opposed to a time of day), you may want to total it in your
report. You can do this by specifying the ACCUM parm for your time field. For example:

&2/8016��7,0(²21²3+21(�$&&80�

The above statement would cause the TIME–ON–PHONE field to be totalled at the Grand Total
line and at control breaks. It makes sense to total this time field, since it represents a duration
(time spent on the telephone) rather than a time of day.

Note: the same display format used in formatting data for the regular report lines
is also used to format the data in the total line, and in any other statistical lines
requested. This means, for example, that if you want to see two decimal digits for
a particular field in the average line, you should also specify that two decimal digits
print in the regular report column. Do this by specifying a PICTURE that has two

How to Specif y Which Columns to Total

Chapter 4. Beyond the Basics 147

decimal digits in the COLUMNS statement. An example of this (but using only one
decimal digit) is shown in Figure 40. (For information on specifying PICTURES, see
page 393.)

Note: to suppress the entire total line at a control break, see page 193.

Note: to suppress the entire Grand Total line, use the NOGRANDTOTAL parm on the
OPTION statement. For more information on customizing the Grand Totals, see
page 214.

How to Produce Multi–Line Reports

This section explains:

� how to print more than one report line for each input file record

� how to write more than one output record to a PC file for each input file
record

PC File Note: the following discussion of multi–line reports also applies to creating
PC files. With reports, each COLUMNS statement results in one print line being
printed in the report. With PC files, each COLUMNS statement results in one output
record being written to the PC file.

Most of the techniques discussed in this section are illustrated in Figure 41 on page 148.

All of our report examples until now have used a single COLUMNS statement. However, you
are allowed to specify as many COLUMNS statements for a report as you like. Each COLUMNS

statement results in one print line in the body of the report. Thus, a report with a single
COLUMNS statement will produce a report having a single line for each record included in the
report. A report with three COLUMNS statements will print three lines for each input record,
and so on. The report lines will print in the same order that the COLUMNS statements appear
in.

Note: to print a variable number of lines per input record, see page 154.

Reports with multiple COLUMNS statements are useful when you need to display a large
amount of data from each record. They are also useful when a single record has several
related fields that you want to print stacked on top of each other, rather than listed alongside
each other.

A few tips will help your multi–line reports look better.

To align the columns from the different COLUMNS statements neatly, you may need to use
explicit spacing factors and width parms. (Spacing factors are discussed on page 124;
width parms are discussed on page 131.) Consider the sample report in Figure 41. The first
field listed on each COLUMNS statement is not the same size. If the spacing factors had not
been used after the LAST–NAME, ADDRESS, CITY, and STATE field names, the subsequent
columns on each line (the literal text and the quarterly sales figures) would have been skewed.
The spacing factors compensated for the first columns' different widths and caused the
subsequent columns to line up neatly.

How to Produce Multi-Line Reports

148 Report Writer User’s Guide

237,216��'28%/(
,1387����(03/�),/(

7,7/(����
(03/2<((�$''5(66(6��:,7+�48$57(5/<�6$/(6

7,7/(�
7,7/(����
�������$''5(66����������48$57(5��������6$/(6�����
��
7,7/(����
BBBBBBBBBBBBBBBBBBBB�BBBBBBBBBBBB�BBBBBBBBBBBBBBB
��

&2/8016��/$67�1$0(���
�67�48$57(5�
��6$/(6�475�
&2/8016��$''5(66�����
�1'�48$57(5�
��6$/(6�475�
&2/8016��&,7<��������
�5'�48$57(5�
��6$/(6�475�
&2/8016��67$7(�������
�7+�48$57(5�
��6$/(6�475�

These control statements:

�������(03/2<((�$''5(66(6��:,7+�48$57(5/<�6$/(6

�������$''5(66����������48$57(5��������6$/(6�����

-21(6�����������������67�48$57(5�����������������
����0$,1�675((7�������1'�48$57(5�����������������
6$1�)5$1&,6&2���������5'�48$57(5�����������������
&$��������������������7+�48$57(5�����������������

-2+1621���������������67�48$57(5�����������������
�����/,1'$�9,67$������1'�48$57(5�����������������
6&2776'$/(������������5'�48$57(5�����������������
$=��������������������7+�48$57(5�����������������

-2+1621���������������67�48$57(5�����������������
���/,1&2/1�'5,9(������1'�48$57(5�����������������
6$17$�526$������������5'�48$57(5�����������������
&$��������������������7+�48$57(5�����������������

(other report lines not shown)

�*5$1'�727$/����,7(06�������������������������
���
���
���

Produce this report:

Notes:
• the DOUBLE option is used to print a blank line between each input record's data
• a spacing factor is used before the second item in each COLUMNS statement, to force correct

alignment of subsequent columns
• a width parm is used to make the STATE "column" only 2 bytes wide. Otherwise, its larger default

column heading (�67$7(�) would have resulted in a 5–byte column.
• the use of multiple COLUMNS statements suppresses the printing of the default column headings
• the second TITLE statement puts a blank line between the real report title and the title line used to

make column headings
• the third and fourth TITLE statements have a trailing slash, to left–align the column heading text

Figure 41 Using multiple COLUMNS statements to print multi–line reports

How to Produce Multi-Line Reports

Chapter 4. Beyond the Basics 149

Use the DOUBLE parm of the OPTION statement (page 507) to double space the report after
all the report lines for a particular input record have printed. Otherwise, it will be hard to tell
which report lines are related to each other. The DOUBLE option tells Report Writer to double
space before printing a new record's data. It does not mean to double space within the report
lines for the same input record. (To do that, use empty COLUMNS statements wherever you
want a blank line to appear.)

Another thing to remember about reports with multiple COLUMNS statements: column
headings are not automatically generated. To print column headings in a multi–line report,
you have two options:

� use the MULTICOLHDG parm in an OPTIONS statement

� use TITLE statements to create your own column headings

Let's examine each of these options. The MULTICOLHDG option tells Report Writer to create
column headings as it normally would for the first COLUMNS statement. If those column
headings would be appropriate for your report, this is the easiest method to use. Of course,
you can also use column heading parms in that first COLUMNS statement to override the
default column headings as desired.

If the column headings from the first COLUMNS statement would not be appropriate, you can
use the second method to create column headings in a multi–line report. Use additional TITLE

statements to supply your own headings. After the regular TITLE statements, add a blank
TITLE to cause a blank line to print. Then use one or more TITLE statements to specify your
column headings.

To prevent these titles from being centered (and therefore not lining up correctly with the
report columns) use a trailing slash. The trailing slash causes these title lines to be
left–aligned, rather than centered.

If you want to underline your columns headings, use a final TITLE statement that contains
nothing but underscores and blanks. Report Writer will "overprint" any title line that contains
only blanks and underscore characters.

You can also use literal texts within the COLUMNS statements as a sort of row heading,
which works in conjunction with the more generalized column heading. (An example of a
row heading is the literal text "�67�48$57(5" in the report in Figure 41.) Together, the row and
column headings make clear exactly what each item of data in the report is.

Notice that the Grand total lines do not contain these literal texts ("�67�48$57(5", etc.) This
is because only numeric columns appear in the Grand totals. To add such texts to the
Grand Total lines, you could use several BREAK statement FOOTING parms, as discussed in
the section beginning on page 214.

Tip: by using a large of number of COLUMNS statements, you can create "reports"
where each input record prints one entire page. Use this technique to print special
forms. Specify one COLUMNS statement per line of the form, mixing literal text and
field names as desired. Use empty COLUMNS statements where blank lines should
appear. Use enough trailing blank COLUMNS statements to fill out the page.

150 Report Writer User’s Guide

How to Chan ge the Report Mar gins

This section explains:

� how to increase the left margin in a report

� how to increase the top margin in a report

� how to change the bottom margin in a report

To shift the whole report (including titles, body, Grand Totals, etc.) to the right, use the
LEFTMARGIN parm of the OPTION statement (discussed on page 502.) For example:

237,216��/()70$5*,1����

The above statement would create a left margin of 10 blank spaces.

The first title in a report is always printed at the "top of form" position. (The exact location
of the "top of form" line depends on the printer you are using.) Putting the first title on the
"top of form" line at your shop may result in the titles printing too high on the page. To solve
this problem, simply use one or more blank TITLE statements before the normal ones. This
has the effect of increasing your report's top margin. The first few titles (which will still
start printing at the "top of form" line) will only be blank lines. The following statements
would cause the report title to print 3 lines down from where it would normally print:

7,7/(�
7,7/(�
7,7/(�
7,7/(��
(03/2<((�',5(&725<

Use the PAGELEN option (in the OPTIONS statement) to adjust the report's bottom margin.
The PAGELEN value tells Report Writer how many lines of each page to use when printing the
report. The bottom margin of the report is simply the unused lines at the bottom of each
sheet of paper.

The default PAGELEN value is 60. That means that 60 lines are used on each page.
Specifying a smaller PAGELEN will increase the bottom margin in the report. Specifying a
larger value will decrease the bottom margin. For example, the following statement will
cause 5 additional blank lines to be left at the bottom of each page:

237,216��3$*(/(1����

How to Print Bar Graphs

In the section beginning on page 132, we learned how to specify a display format along with
a field name in the COLUMNS statement. The display format specifies just how a field's data
should be formatted in a report. One of the display formats you can use for numeric fields
is called BARGRAPH (or just BAR.) It specifies that the field should be formatted as a
horizontal bar graph (or "histogram.") For example:

&2/8016���(03/²1$0(��&86720(5��$02817�%$5*5$3+�

The above statement specifies that the AMOUNT field appear as a bar graph in the report. By
default, bar graph columns are 20 characters wide. The column will contain a number of

How to Print Bar Graphs

Chapter 4. Beyond the Basics 151

Notes:
• the BAR display format (in the COLUMNS statement) causes the second SALES–IN–THOUSANDS

column to be displayed as a bar graph
• the override column width of 30 causes the bar graph column to be 30 characters wide
• a COMPUTE statement is used to create a field whose value is between 0 and 30, to correspond with

the width of the bar graph column
• the (0) parm in the COMPUTE statement results in SALES–IN–THOUSANDS having zero decimal

digits

Figure 42 A report with a bar graph column

,1387����(03/²),/(
7,7/(����
%$5�*5$3+�2)�),567�48$57(5�6$/(6

&20387(��6$/(6²,1²7+286$1'6���� �6$/(6²475��������
6257�����6$/(6²475��'(6&�
&2/8016��/$67²1$0(��),567²1$0(��6$/(6²475�
���������6$/(6²,1²7+286$1'6��6$/(6²,1²7+286$1'6�%$5����

These control statements:

�����������������������������%$5�*5$3+�2)�),567�48$57(5�6$/(6

��6$/(6���������������6$/(6
�����/$67������������),567�����������6$/(6���������,1�������������������,1
�����1$0(������������1$0(������������475��������7+286$1'6�����������7+286$1'6���������

0255,621��������0,&+$(/�����������������������������������
-2+1621���������7+20$6������������������������������������
%$.(5�����������9,9,$1������������������������������������
7+20$6����������0$57,1������������������������������������
-2+1621���������/,1'$�������������������������������������
&+5,6723+(5621��0(/,66$�����������������������������������
-21(6�����������-(55<�������������������������������������
6,03621���������7,027+<�����������������������������������
0$&'21$/'�������5,&+$5'�����������������������������������

�*5$1'�727$/����,7(06���������������������������������

Produce this report:

How to Print Bar Graphs

152 Report Writer User’s Guide

asterisks equal to the rounded value of the numeric field (up to a maximum of 20). For
example, when the AMOUNT field is equal to 5.25, the column will contain 5 asterisks: when
the AMOUNT field is equal to 17.89, the column will contain 18 asterisks.

Of course many fields will have values much larger than 20. The TOTAL–SALES field, for
example, contains values into the tens of thousands. Use a COMPUTE statement to reduce
large fields down to a value between 0 and 20. Then display the COMPUTE field using the
BAR display format. This is illustrated in Figure 42 (page 151.)

Also, you may use an override column width parm to increase (or decrease) the default
column width of 20 characters. The report on page 151 shows a bar graph column that is 30
characters wide. (The use of the width parm was discussed beginning on page 131.)

How to Print Vertical Lines
between Report Columns

Report Writer normally leaves one blank space between each report column. You can use the
COLSEP parm of the OPTIONS statement to specify some other "column separator" text. For
example,

237,216��&2/6(3�
� �
�

The above statement specifies a 3–character text that should appear between each column of
the report. The text consists of a blank, a vertical bar character, and another blank. Using
this OPTIONS statement results in a report with a vertical bar running down between the report
columns. This gives the report a spreadsheet–like appearance.

The report in Figure 43 shows a report that uses the above statement.

Note: the vertical bar is the Shift "1" key on most mainframe terminals. Some PC
keyboards that emulate mainframe terminals do not have a key that shows the
straight vertical bar. (The "pipeline" character is not the same as the vertical bar.)
On many of these keyboards, the right–hand square bracket key (]) is used to send
a vertical bar to the mainframe.

PC File Note: the COLSEP parm should not be used when creating PC files. Report
Writer will choose an appropriate column delimiter for your PC program.

How to Print Vertical Lines between Report Columns

Chapter 4. Beyond the Basics 153

Notes:
• the COLSEP option specifies a 3–character "column separator" text, consisting of a vertical bar

surrounded by blanks

Figure 43 A report with vertical lines separating the columns

237,216��&2/6(3�
� �
�
,1387����(03/�),/(
7,7/(����
'(021675$7,21�2)�9(57,&$/�%$56�%(7:((1�&2/8016

&2/8016��(03/�180��/$67�1$0(��),567�1$0(��'(37�180
���������6(;�������+,5(�'$7(��727$/�6$/(6

These control statements:

�������������������'(021675$7,21�2)�9(57,&$/�%$56�%(7:((1�&2/8016

(03/��������/$67��������������),567���������'(37�������������+,5(����������727$/�����
180���������1$0(��������������1$0(�����������180�����6(;�����'$7(����������6$/(6�����

����� �-21(6����������� �-(55<����������� ��������� ��0�� ���������� ����������������
����� �-2+1621��������� �7+20$6���������� ��������� ��0�� ���������� ����������������
����� �-2+1621��������� �/,1'$����������� ��������� ��)�� ���������� ����������������
����� �0$&'21$/'������� �5,&+$5'��������� ��������� ��0�� ���������� ����������������
����� �6,03621��������� �7,027+<��������� ��������� ��0�� ���������� ����������������
����� �0255,621�������� �0,&+$(/��������� ��������� ��0�� ���������� ����������������
����� �&+5,6723+(5621�� �0(/,66$��������� ��������� ��)�� ���������� ����������������
����� �%$.(5����������� �9,9,$1���������� ��������� ��)�� ���������� ����������������
����� �7+20$6���������� �0$57,1���������� ��������� ��0�� ���������� ����������������

�*5$1'�727$/����,7(06���

Produce this report:

154 Report Writer User’s Guide

How to Print a Variable Number of Lines Per Input Record

In some input files the records may contain an unknown, variable number of occurrences of
a field. The SKIPZERODET option may be useful in such cases. It causes Report Writer to
skip (that is, to not write out) any detail lines that contain only zero values. Let's look at how
this option can be used.

Consider the sample SALES–HISTORY file shown on page 155. This file contains 3 fields in
fixed positions (the name, the city, and a numeric field that tells how many sales "slots" are
used in the following array.) After these 3 fields there is an array of 6 sales slots. Each "slot"
contains the date and the amount of a sale. But not all 6 slots are actually filled in for each
record. As you can see, some records have only 1 slot filled in. Others have 2 or 3. One
record has all 6 filled in. The unused slots within a record contain zeros.

Our goal is to produce a report that shows all the sales made by each employee. But we do
not want to see all the unused (or "zero") sales slots. We'll consider two different strategies
to accomplish this objective.

Variable Number of Lines — Strate gy 1

Let's start by seeing what our report would look like if we did nothing to remove the "zero"
sales fields. We'll use one COLUMNS statement for the constant information in each record
(the name and city). Then we will use one additional COLUMNS statement for each of the 6
sales slots, showing the date and amount of a sale. If we do nothing else, Report Writer will
always print 7 lines for each input record (one line per COLUMNS statement.) The resulting
report is shown on page 156. It isn't very attractive. It also wastes a lot of paper showing
sales data for non–existent sales.

The first strategy to remove the "zero" sales data from the report is this: simply specify the
SKIPZERODET option. This causes Report Writer to skip (suppress) all detail report lines (or
PC file records) that contains only zeros. In our sample report, this means that the lines for
unused sales slots (lines with only a zero date and a zero amount) will be suppressed. The
report now contains only the lines that actually have real sales data in them. The report on
page 157 illustrates this strategy. (Note that we also specified DOUBLE to double–space the
report, making it easier to read.)

Once again, the SKIPZERODET option simply means that a detail line will not be output if it
contains only "zero" items. The following are considered "zero" items for this purpose:

� blanks (for character fields)
� zero numeric values (0, 0.00, etc.)
� 00/00/00 (zero dates)
� 00:00:00 (zero times)

Note: for the purposes of this option, "detail lines" means: the lines printed for each
individual input record (COLUMNS statement lines); the total lines printed at control
breaks (if any); and the Grand Totals lines (if any.) Title lines, column heading lines
and break heading lines are not affected by this option.

How to Print a Variable Number of Lines per Input Record

Chapter 4. Beyond the Basics 155

Notes:
• this "Sales History" file contains 100–byte records
• each record contains: the salesperson's name, city, and information about up to 6 sales
• each "sales slot" in the record consists of a sales date and a sales amount
• a one–byte field after the city tells how many slots are in use
• unused slots contain all zeros

Figure 44 A sample file containing sales data for up to 6 sales per record

%$.(5�����%26721���
&+$9(=����0,$0,��
-())(5621�&+,&$*2��
-2+1621���'$//$6���
-21(6�����$7/$17$��
0255,621��1(:�<25.���
6+$53�����3257/$1'���
60,7+�����67�/28,6���

Contents of SALES–HISTORY file:

),/(���6$/(6�+,6725<�''1$0(�6$/(+,67��/5(&/������
),(/'��1$0(���������/(1�����
),(/'��&,7<���������/(1�����
),(/'��180�6/276����/(1����7<3(�180��
),(/'��6$/(�'$7(�����������7<3(�<<00''��
),(/'��6$/(�$07�����/(1����7<3(�180������'(&����
),(/'��6$/(�'$7(�����������7<3(�<<00''��
),(/'��6$/(�$07�����/(1����7<3(�180������'(&����
),(/'��6$/(�'$7(�����������7<3(�<<00''��
),(/'��6$/(�$07�����/(1����7<3(�180������'(&����
),(/'��6$/(�'$7(�����������7<3(�<<00''��
),(/'��6$/(�$07�����/(1����7<3(�180������'(&����
),(/'��6$/(�'$7(�����������7<3(�<<00''��
),(/'��6$/(�$07�����/(1����7<3(�180������'(&����
),(/'��6$/(�'$7(�����������7<3(�<<00''��
),(/'��6$/(�$07�����/(1����7<3(�180������'(&���

File Definition Statements for SALES–HISTORY file:

How to Print a Variable Number of Lines per Input Record

156 Report Writer User’s Guide

Figure 45 A report with "no strategy" to deal with unused array items

,1387�����6$/(6²+,6725<
&2/8016���1$0(��&,7<
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�

These control statements:

�
021�������������������30���'7�)520�6$/(6�+,6725<���3$*(�������

�%$.(5������%26721�
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
�&+$9(=�����0,$0,�
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
�-())(5621��&+,&$*2�
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
�-2+1621����'$//$6�
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
�

(other report lines not shown)

Produce this report:

How to Print a Variable Number of Lines per Input Record

Chapter 4. Beyond the Basics 157

Figure 46 Strategy 1 — just add the SKIPZERODET option

237,216���6.,3=(52'(7��'28%/(
,1387�����6$/(6²+,6725<
&2/8016���1$0(��&,7<
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²'$7(���6$/(²$07²�

These control statements:

�021�������������������30���'7�)520�6$/(6�+,6725<���3$*(�������

�%$.(5������%26721�
��������������������������
��������������������������

�&+$9(=�����0,$0,�
��������������������������

�-())(5621��&+,&$*2�
��������������������������
��������������������������

�-2+1621����'$//$6�
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�-21(6������$7/$17$�
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�0255,621���1(:�<25.�
��������������������������
��������������������������
��������������������������

(other report lines not shown)

Produce this report:

How to Print a Variable Number of Lines per Input Record

158 Report Writer User’s Guide

Note: only the first 256 bytes of each line are examined when checking for zero
detail lines. This is generally not a problem, since detail lines are usually not this
long.

Note: a related option named SKIPBLANKDET is also available. It suppresses lines
only when they are completely blank. It is for occasions when you want to suppress
blank detail lines, but still print lines that have zeros in them.

Of course, there are many variations that you can use with this technique. For example, you
might want to include the data from the first sale in the first COLUMNS statement (along with
the constant information.) Then you would just have 5 additional COLUMNS statements for
the remaining 5 sales slots.

&2/8016��1$0(�&,7<��6$/(²'$7(²���6$/(²$07²�
&2/8016�������������6$/(²'$7(²���6$0(²$07²�
&2/8016�������������6$/(²'$7(²���6$0(²$07²�
&2/8016�������������6$/(²'$7(²���6$0(²$07²�
&2/8016�������������6$/(²'$7(²���6$0(²$07²�
&2/8016�������������6$/(²'$7(²���6$0(²$07²�

Or, you might want to combine 2 or more sales slots on each COLUMNS statement.
For example:

&2/8016��1$0(��&,7<
&2/8016��6$/(²'$7(²���6$0(²$07²���6$/(²'$7(²���6$0(²$07²�
&2/8016��6$/(²'$7(²���6$0(²$07²���6$/(²'$7(²���6$0(²$07²�
&2/8016��6$/(²'$7(²���6$0(²$07²���6$/(²'$7(²���6$0(²$07²�

This will take up less space in your report. And again, any line with only "zero" information
in it will be suppressed. Of course, you could still end up with a line that has good sales
information for one sale, and zero data for the other sale on that line. See "Putting a Variable
Number of Items on a Single Line" (page 162) for a solution to that problem.

There is another option that may also be useful in reports such as these. It is the SPLITDETAIL

option. It tells Report Writer that it may split the detail lines for a single input record across
pages in the report. If you do not specify this option, Report Writer will skip to a new page
if the current page does not have enough room to show all of the detail lines for an input
record. For example, if a record from the SALES–HISTORY file had all 6 sales slots filled in
(thus requiring 7 report lines in the example on page 157), Report Writer would skip to the
next page if there were not 7 lines left in the current page.

Normally you will probably not use SPLITDETAIL, since it is easier to view related data when
it is all on a single page. But that does use extra paper. And, it may be impractical if you are
listing 30 or 40 items from each input record, since virtually every record would end up
requiring a new page. In these cases, you may specify SPLITDETAIL to allow Report Writer
to fill up each page before going on to the next page of the report.

Note: remember that anytime multiple COLUMNS statements are specified, Report
Writer does not produce column headings by default. Use the MULTICOLHDG option
if you want the column headings for the first COLUMNS statement to appear in the
report.

Note: this technique (unlike the next one discussed) did not require use of the
NUM–SLOTS field at all. As long as your unused data contains only zeros or blanks,
you can use Strategy 1 even when there is no field that explicitly tells you how many
slots in a record are used.

How to Print a Variable Number of Lines per Input Record

Chapter 4. Beyond the Basics 159

Variable Number of Lines — Strate gy 2

The technique discussed above (Strategy 1) is the easiest way to suppress unwanted lines
from your report or PC file. But it only works as long as your unused "slots" always contain
valid zero values (for numeric, date and time fields) and blanks (for character fields). In some
cases, your unused slots may contain "low–values" or some other kind of invalid data.

Note: if you know that the unused fields in your input record will contain invalid
data, you can just use the ZEROINVDATA option. That option causes fields with
invalid data to be treated as if they contained zeros. That will enable the
SKIPZERODET option to work for you as described under Strategy 1 above.

There may be cases when it is not safe to treat all invalid values as zeros. Or, the unused
fields in your record may contain something other than invalid values (such as all 9's, like
99/99/99). In such cases, you can use Strategy 2.

Strategy 2 also uses the SKIPZERODET option. But in this case, we don't use the fields from
the actual input record in the COLUMNS statements (since those fields might contain invalid
data.) Instead, we create a set of corresponding COMPUTE fields, which we use in the
COLUMNS statements. Each COMPUTE field will be assigned one of two values:

1) the value from its corresponding record field (when that field contains "good
data"), or

2) a zero value (if the corresponding record field does not contain "good data.")

We use conditional COMPUTE statements to selectively move data from just the filled–in sales
"slots" to this set of corresponding COMPUTE fields. The COMPUTE statement will contain a
WHEN condition so that the record value is only assigned to the compute field when the record
value contains good data. Otherwise, no WHEN condition will be true and the COMPUTE field
will be assigned a default value of zeros.

We create one COMPUTE statement for each field which might potentially not contain good
data. In our present example, we create a COMPUTE field for each of the 6 date and amount
fields:

&20387(��6²'$7(²�� �:+(1�180²6/276�! �����$66,*1�6$/(²'$7(²��
&20387(��6²$07²��� �:+(1�180²6/276�! �����$66,*1�6$/(²$07²��

&20387(��6²'$7(²�� �:+(1�180²6/276�! �����$66,*1�6$/(²'$7(²��
&20387(��6²$07²��� �:+(1�180²6/276�! �����$66,*1�6$/(²$07²��

���

&20387(��6²'$7(²�� �:+(1�180²6/276�! �����$66,*1�6$/(²'$7(²��
&20387(��6²$07²��� �:+(1�180²6/276�! �����$66,*1�6$/(²$07²��

In the above statements, we used the NUM–SLOTS field to determine whether a particular sales
slot has good data or not. (In the SALES–HISTORY file, NUM–SLOTS is used like an OCCURS

DEPENDING ON variable in Cobol that tells how many slots in the sales array are in use.)

The first COMPUTE statement above will assign the SALE–DATE–1 value to the COMPUTE field
named S–DATE–1 only if the first slot is actually used. (That is, only if NUM–SLOTS is at
least 1.) If NUM–SLOTS is zero, then S–DATE–1 will be assigned a zero date value. (That is
the default value assigned when no WHEN conditions are met.) The next statement does the

How to Print a Variable Number of Lines per Input Record

160 Report Writer User’s Guide

same thing for the amount value in the first slot. It assigns the record's value to S–AMT–1 only
if the first slot was actually used. Otherwise, S–AMT–1 will be assigned a value of zero.

We do the same thing for the second sales slot. If NUM–SLOTS is at least 2, we assign the
sales date and amount from the second slot to S–DATE–2 and S–AMT–2. Otherwise, S-DATE–2

and S–AMT–2 remain zero. And so on with slots 3 through 6.

In our COLUMNS statement, we now use these COMPUTE fields rather than the actual fields
from the input record. That is because we know for sure that our COMPUTE fields contain
either valid sales information or zeros. Thus, the SKIPZERODET option will work just fine.

&2/8016��1$0(��&,7<
&2/8016��6²'$7(²���6²$07²�
&2/8016��6²'$7(²���6²$07²�
&2/8016��6²'$7(²���6²$07²�
&2/8016��6²'$7(²���6²$07²�
&2/8016��6²'$7(²���6²$07²�
&2/8016��6²'$7(²���6²$07²�

You can also use a similar technique to assign constant "line identifier" values to each line
of your report or PC file. For example, let's assume that you want the words "6$/(���" to
appear beside the values for the first sale. You can't just put that literal on the COLUMNS

statement, because then that report line would never be all blanks and zeros, and therefore
would never be suppressed. (It would always say "6$/(��:", which is not blanks or zeros.)
Instead, conditionally assign your literal text to a COMPUTE field the same way you do the
other data. Assign the literal value to the compute field only when the related sales data is
present:

&20387(��6$/(6²,'²�� �:+(1�180²6/276�! �����$66,*1�
6$/(���
�
&20387(��6$/(6²,'²�� �:+(1�180²6/276�! �����$66,*1�
6$/(���
�
&20387(��6$/(6²,'²�� �:+(1�180²6/276�! �����$66,*1�
6$/(���
�
&20387(��6$/(6²,'²�� �:+(1�180²6/276�! �����$66,*1�
6$/(���
�
&20387(��6$/(6²,'²�� �:+(1�180²6/276�! �����$66,*1�
6$/(���
�
&20387(��6$/(6²,'²�� �:+(1�180²6/276�! �����$66,*1�
6$/(���
�

&2/8016��6$/(²,'²���6$/(²'$7(²���6$/(²$07²�
&2/8016��6$/(²,'²���6$/(²'$7(²���6$/(²$07²�
���

The "SALE–ID" fields computed above will be blank when the associated sales fields are not
used. Use these COMPUTE fields in your COLUMNS statement. Your report line will still result
in only blanks and zeros for sales slots that are not used. Such lines will not print in the
report. But for slots containing a sales value, the SALE–ID field will contain the desired literal
value and will appear before the sales amount in the report. The report on page 161
illustrates this.

What if your record does not contain a numeric field that tells you how many slots are used?
More than likely you can still use this technique. You will just need to find another way of
determining whether a slot is filled in or not. For example, if there is a character field within
each slot, you might be able to compare it to blanks to see if the whole slot is in use or not.
If our file had a Customer Name field within each sales slot, we could test that field like this:

&20387(��6²'$7(²�� �:+(1�6$/(²&86720(5²1$0(²��¤ �
�
���$66,*1�6$/(²'$7(²��
&20387(��6²$07²��� �:+(1�6$/(²&86720(5²1$0(²��¤ �
�
���$66,*1�6$/(²$07²��
&20387(��6²'$7(²�� �:+(1�6$/(²&86720(5²1$0(²��¤ �
�
���$66,*1�6$/(²'$7(²��
&20387(��6²$07²��� �:+(1�6$/(²&86720(5²1$0(²��¤ �
�
���$66,*1�6$/(²$07²��
���
&2/8016��6$/(²&86720(5²1$0(²���6²'$7(²���6²$07²�
&2/8016��6$/(²&86720(5²1$0(²���6²'$7(²���6²$07²�
���

How to Print a Variable Number of Lines per Input Record

Chapter 4. Beyond the Basics 161

Figure 47 Adding literal identifiers to variable lines

237,216���6.,3=(52'(7��'28%/(
,1387�����6$/(6²+,6725<

&20387(���6$/(6²,'²�� �:+(1�180²6/276�! ����$66,*1�
6$/(���
�
&20387(���6$/(6²,'²�� �:+(1�180²6/276�! ����$66,*1�
6$/(���
�
&20387(���6$/(6²,'²�� �:+(1�180²6/276�! ����$66,*1�
6$/(���
�
&20387(���6$/(6²,'²�� �:+(1�180²6/276�! ����$66,*1�
6$/(���
�
&20387(���6$/(6²,'²�� �:+(1�180²6/276�! ����$66,*1�
6$/(���
�
&20387(���6$/(6²,'²�� �:+(1�180²6/276�! ����$66,*1�
6$/(���
�

&2/8016���1$0(��&,7<
&2/8016���6$/(²,'²���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²,'²���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²,'²���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²,'²���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²,'²���6$/(²'$7(���6$/(²$07²�
&2/8016���6$/(²,'²���6$/(²'$7(���6$/(²$07²�

These control statements:

�
�021�������������������30���'7�)520�6$/(6�+,6725<���3$*(�������
�
�%$.(5������%26721�
�6$/(�����������������������������
�6$/(�����������������������������
�
�&+$9(=�����0,$0,�
�6$/(�����������������������������
�
�-())(5621��&+,&$*2�
�6$/(�����������������������������
�6$/(�����������������������������
�
�-2+1621����'$//$6�
�6$/(�����������������������������
�6$/(�����������������������������
�6$/(�����������������������������
�6$/(�����������������������������
�6$/(�����������������������������
�
�-21(6������$7/$17$�
�6$/(�����������������������������
�6$/(�����������������������������
�6$/(�����������������������������
�6$/(�����������������������������
�6$/(�����������������������������
�6$/(�����������������������������

(other report lines not shown)

Produce this report:

How to Print a Variable Number of Lines per Input Record

162 Report Writer User’s Guide

If there is no character field for you to test, you can even test the date or amount field itself.
Remember that Report Writer considers any conditional expression "false" if one or more of
its operands contain invalid data. So, if your slot contains hex zeros for unused slots (which
is "invalid data" for YYMMDD fields and for most numeric fields), you could use these
COMPUTE statements:

&20387(��6²'$7(²�� �:+(1�6$/(²'$7(²�� �6$/(²'$7(²����$66,*1�6$/(²'$7(²��
&20387(��6²$07²��� �:+(1�6$/(²$07²�� �6$/(²$07²������$66,*1�6$/(²$07²��

The WHEN parm in the first statement above will be true if SALE–DATE–1 contains any valid
date, and will be false if it contains invalid data. Likewise, the WHEN parm in the second
statement will be true if SALE–AMT–1 contains any valid value, and false if it contains invalid
data.

Puttin g a Variable Number of Items on a
Single Line

The methods just discussed work by suppressing output lines that contain only zero or blank
data. To use these methods, you generally must put each element of your array on a separate
line. But what if you want to put multiple array elements on a single report line (or PC file
record) and not see a lot of zeros for the unused slots? Here is a technique for doing that.

This technique is similar to strategy 2 above in that we use a COMPUTE statement for each
record field which may or may not be filled in.

&20387(��6²'$7(²�� �:+(1�6$/(²&86720(5²1$0(²��¤ �
�
���$66,*1�6$/(²'$7(²��
&20387(��6²$07²��� �:+(1�6$/(²&86720(5²1$0(²��¤ �
�
���$66,*1�6$/(²$07²��
&20387(��6²'$7(²�� �:+(1�6$/(²&86720(5²1$0(²��¤ �
�
���$66,*1�6$/(²'$7(²��
&20387(��6²$07²��� �:+(1�6$/(²&86720(5²1$0(²��¤ �
�
���$66,*1�6$/(²$07²��
���

You can then list as many of these COMPUTE fields as you want in a single COLUMNS

statement. By using the BIZ (“blank if zero”) parm, we ensure that all unused fields appear
as blanks in the output line:

&2/8016��1$0(�&,7<�6²'$7(²��%,=��6²$07²��%,=��6²'$7(²��%,=��6²$07²��%,=�
&2/8016������������6²'$7(²��%,=��6²$07²��%,=��6²'$7(²��%,=��6²$07²��%,=�

Now your report will show the date and amount of each sales slot that was filled in in the
input record. Blanks will appear for unused slots. And, as long as you use the SKIPZERODET

(or SKIPBLANKDET) option, any line that contains only blanks will still be suppressed
altogether.

Chapter 4. Beyond the Basics 163

What If You Run Out of Room?

The standard size of a report line is 132 characters. Therefore, the print expressions you
specify (in COLUMNS statements, TITLE statements, etc.) must produce a line no longer than
132 characters. If it exceeds 132 characters, Report Writer will truncate part of the line. If
you have trouble fitting all the information you need into a report, try some of the following
solutions:

If you are printing on a laser printer:

� try using a condensed font (or "form") that allows more than 132 characters per
line. Also, under MVS, change the JCL to specify a larger LRECL for the
SWOUTPUT DD (page 362.) Report Writer will then allow your report to be as
wide as the LRECL value that you specify. It will not be limited to 132 characters
in that case.

VSE Note: increase the RECSIZE value in the OUTATTR parm and in the JCL to
achieve the same result (page 374.)

Note: you may need to send a "setup string" to your laser printer at the
beginning of the report in order to use the desired printer form. See the
PRTSETUP option (page 506) for information on doing this.

If you are printing on a regular line printer:

� shorten long column headings, by rewording them, or by breaking the heading
up into several lines (see Figure 34, page 129.) See the section titled "How to
Change the Column Headings" beginning on page 127.

� shorten the width of one or more columns. See the section titled "How to
Change the Width of a Column", beginning on page 131.

� use smaller spacing factors between the report columns

� move constant information (information that does not change from page to
page) out of the individual report lines and into the title lines or break lines. For
an example of putting data in the title, see Figure 56 on page 185.

� use multiple COLUMNS statements to create a report with more than one report
line for each input file record. See the section titled "How to Produce
Multi–Line Reports" beginning on page 147.

164 Report Writer User’s Guide

Why Do I See ****X**** in M y Report?

This section explains:

� why asterisks sometimes appear in your report

Sometimes an error prevents Report Writer from being able to display the desired data in a
report. Rather than abandon the whole report, Report Writer prints a number of asterisks
where that data should have appeared. A single letter will be imbedded in the asterisks. That
letter is an error code which tells you exactly what kind of error occurred. The following
table lists these error codes. Appendix E, "Error Indicators" (page 582) discusses each of
these errors in more detail, including suggestions for correcting the error. A discussion on
propagating error conditions is also found in that Appendix.

ERROR
CODE MEANING

$ Ambiguous reference.

(Error in definition.

) Error computing a field's offset value.

, Invalid data.

6 Size error (not enough room to print all digits).

8 Undefined field.

9 Overflow occurred.

= Divide by zero occurred.

Chapter 4. Beyond the Basics 165

Customizin g the Report Titles

The following sections show various ways that you can customize the titles in a report. The
following sections explain:

� how to include file data in a title (page 165)

� how to put the page number, date and time in your titles (page 172)

� how to change the way dates, times and numbers are formatted in the titles
(page 170)

� how to split the title into left, center and right parts (page 174)

How to Include Data from a File in the Title

This section explains:

� how to print literal texts in a title

� how to print data from an input file in a title

The contents of the TITLE statement is simply a print expression. Print expressions tell
Report Writer how to build one print line that will be used in a report. The print expression
in a TITLE statement specifies how to build a title line.

The contents of the COLUMNS statement is also a print expression— one that tells how to
build the report lines for the main body of the report. Thus, the contents of a TITLE statement
is very similar to the contents of a COLUMNS statement, which you are already familiar with.

As with other print expressions in Report Writer, just list one or more items to print.

7,7/(��LWHP��LWHP��LWHP������

Each item can be either a literal text or a field name.

To put a literal text in the title, simply enclose the text in either apostrophes or quotation
marks. For example, the following statement causes the words (03/2<((�',5(&725< to appear
in the title:

7,7/(��
(03/2<((�',5(&725<

To put data from an input file in your title, simply list the desired field name. (Do not put
the field name in apostrophes or quotation marks.) For example, the following statement
causes the contents of the LAST–NAME field to appear in the report title.

7,7/(��/$67²1$0(

The data that appears in the title will be the field's value from the next record that would print
in the report.

How to Include Data from a File in the Title

166 Report Writer User’s Guide

By the way, the TITLE statement can refer to any field from the input file(s). You are not
limited to just those fields that are listed in the COLUMNS statement. Field names used in the
TITLE statement may be any of the following:

� any field from an input file. (An input file is a file named in the INPUT

statement, or in an optional READ statement.)

� a computed field (created in a preceding COMPUTE statement)

� a built–in field (see Appendix C, "Built-In Fields" for a complete list of built–in
fields)

Figure 48 (page 167) shows an example of a title which uses one literal text and one data
field from the input file. (Another example of printing data from a file in the title is shown
in Figure 56 on page 185.)

How to Include Data from a File in the Title

Chapter 4. Beyond the Basics 167

,1387����(03/²),/(
7,7/(����
(03/2<((�',5(&725<�²
��/$67²1$0(
6257�����/$67²1$0(��),567²1$0(
&2/8016��/$67²1$0(��),567²1$0(��+,5(²'$7(��$''5(66��&,7<

These control statements:

��������������������(03/2<((�',5(&725<���%$.(5

�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(���������$''5(66�������������&,7<������

%$.(5�����������9,9,$1�����������������������&5(67+$9(1�%/9'��:$/187�&5((.�
&+5,6723+(5621��0(/,66$������������������������7,0%(5,'*(�5'��7255$1&(�
-2+1621���������/,1'$�����������������������/,1&2/1�'5,9(�����6$17$�526$�
-2+1621���������7+20$6������������������������/,1'$�9,67$�����6&2776'$/(�
-21(6�����������-(55<������������������������0$,1�675((7������6$1�)5$1&,6&2�
0$&'21$/'�������5,&+$5'����������������������)227+,//�'5,9(���3/($6$1721�
0255,621��������0,&+$(/���������������������6287+�/$.(6,'(�'5�*/(1'$/(�
6,03621���������7,027+<������������������������:(67����675((7�$5&$',$�
7+20$6����������0$57,1�������������������������6��+817,1*721��&21&25'�

�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• the value used for LAST–NAME in the title is taken from the next report line to print
• by default, the literal text is separated from the LAST–NAME field by one blank
• by default, the title is centered over the report

Figure 48 A report title that includes data from a file

168 Report Writer User’s Guide

How to Include the Pa ge Number, Date and
Time in a Title

This section explains:

� how to include data from built–in fields in a title

Most reports will include the page number and the current date and time somewhere in the
title. Report Writer has a number of built–in fields that can be used for this purpose. You
may use these fields in your TITLE statement just like real fields from input files. The built–in
fields available are:

BUILT–IN
FIELD NAME CONTAINS

�3$*(180 a numeric field containing the current page number. (May also be
abbreviated �3$*()

�72'$< a date field containing the system date on which the program began
execution.

�&20'$7((VSE only) a date field containing the date from the DATE JCL statement,
if any

�'$<1$0(a character field containing the day of the week (Monday, etc.) on
which the program began execution.

�7,0(a character field containing the formatted time of day at which the
program began execution (formatted in 12–hour format including AM
or PM)

�7,0(�� a character field containing the formatted time of day at which the
program began execution (formatted in 24–hour format)

�++0066 a time field containing the time of day on which the program began
execution

�-2%1$0(an 8–byte character field containing the jobname of the job executing
Report Writer

How to Include the Pa ge Number, Date and Time in a Title

Chapter 4. Beyond the Basics 169

,1387����(03/²),/(
7,7/(����
(03/2<((�',5(&725<

7,7/(�����'$<1$0(���72'$<���7,0(
7,7/(����
3$*(
���3$*(180
6257�����/$67²1$0(��),567²1$0(
&2/8016��/$67²1$0(��),567²1$0(��+,5(²'$7(��$''5(66��&,7<

These control statements:

�����������������������������(03/2<((�',5(&725<�
�������������������������)5,'$<�������������������30�
����������������������������������3$*(������
�
�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(���������$''5(66�������������&,7<������

%$.(5�����������9,9,$1�����������������������&5(67+$9(1�%/9'��:$/187�&5((.�
&+5,6723+(5621��0(/,66$������������������������7,0%(5,'*(�5'��3+2(1,;�
-2+1621���������/,1'$�����������������������/,1&2/1�'5,9(�����6$17$�526$�
-2+1621���������7+20$6������������������������/,1'$�9,67$�����6&2776'$/(�
-21(6�����������-(55<������������������������0$,1�675((7������6$1�)5$1&,6&2�
0$&'21$/'�������5,&+$5'����������������������)227+,//�'5,9(���3/($6$1721�
0255,621��������0,&+$(/���������������������6287+�/$.(6,'(�'5�*/(1'$/(�
6,03621���������7,027+<������������������������:(67����675((7�$5&$',$�
7+20$6����������0$57,1�������������������������6��+817,1*721��&21&25'�
�
�
�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• the #DAYNAME built–in field causes the day of the week to appear in the title
• the #TODAY built–in field causes the current date to appear in the title
• the #TIME built–in field causes the current time to appear in the title
• the #PAGENUM built–in field causes the page number to appear in the title

Figure 49 A title that shows the current day of the week, date, time and page number

How to Include the Pa ge Number, Date and Time in a Title

170 Report Writer User’s Guide

The sample report in Figure 49 shows report titles that use several of these built–in fields.
The techniques discussed in the following sections of this chapter can be used to improve the
appearance of the current date in your title. For example, you may want to spell out the name
of the month in the current date. You may also want to line up the date and page number with
the left or right report margin.

Note: these built–in fields can also be used in the FOOTNOTE statement. Use the
FOOTNOTE statement when you want to print the date, page number, etc. at the
bottom of your report pages. (See page 180.)

How to Chan ge the Appearance of Items
in the Title

This section explains how to:

� specify the number of spaces that should appear between items in a title

� specify the width of an item in the title

� specify the display format to use when formatting dates, times and numbers in
the title

� justify the contents of fields printed in the title

As in other print expressions, you may customize the title line by using optional spacing
factors and parms. So, the full syntax for the TITLE statement is this:

7,7/(���>Q@�LWHP��SDUPV��>Q@�LWHP��SDUPV��>Q@�LWHP��SDUPV�����

The optional spacing factor [n] is the number of blank spaces to leave between items in a
title. If you omit the spacing factor, the default is for one blank space to appear between each
item. (A spacing factor of zero is allowed if you want no spaces to appear between two items
in a title.) For example, the following statement causes 5 blanks to appear between the
literal text "(03/2<((�',5(&725<" and the contents of the LAST–NAME field in the title:

7,7/(���
(03/2<((�',5(&725<
�����/$67²1$0(

The optional parms are used to provide details about how to display data fields in a title.
You may specify one or more parms, enclosed in parentheses, immediately following a field
name. (Do not leave a space between the field name and the first parenthesis.) You may use
any combination of parms, in any order. Separate the parms with a comma and/or with one
or more blanks. For example, the following statement has both a width parm and a
justification parm for the LAST–NAME field:

7,7/(���/$67²1$0(����&(17(5�

The following table shows what parms are available in the TITLE statement. The sample
report in Figure 50 (page 173) illustrates the use of each these parms.

How to Chan ge the Appearance of Items in the Title

Chapter 4. Beyond the Basics 171

TITLE STATEMENT PARMS

PARM DESCRIPTION

BIZ Means “blank if zero.” Specifies that the title area should be left
blank whenever the numeric, date or time item contains zeros.
The following example specifies that the SALES-DATE field should
be left blank whenever its value is zero.

7,7/(���¶'$7(�¶��6$/(6�'$7(�%,=�

display–format Specifies how to format a field in the title. A complete list of
display formats is found in Appendix B, "Display Formats"
(page 550.) This parm works just like the display format parm in
the COLUMNS statement, which is explained in more detail
beginning on page 132. The following example specifies that the
current date field (#TODAY) should be displayed in the LONG1

format –– with the month name spelled out:

7,7/(����72'$<�/21*��

LEFT/CENTER/RIGHT Specifies how to justify a field's data within the area reserved for
it in the title. These parms work just like the justification parms
in the COLUMNS statement, which are explained in more detail
beginning on page 142. The section titled "How to Split the Title
into Left, Center, and Right Parts" (page 174) also illustrates the
use of justification parms. The following example specifies that
the contents of the current date field (#TODAY) should be center
justified (as well as being formatted in the LONG1 display format.)

7,7/(����72'$<�&(17(5�/21*��

width This numeric parm specifies how many characters should be
reserved for an item in the title. This parm works just like the
width parm in the COLUMNS statement, which is explained in
more detail beginning on page 131. As an example, the following
statement specifies that only one character of the LAST–NAME field
should appear in the title:

7,7/(���/$67²1$0(���

How to Chan ge the Appearance of Items in the Title

172 Report Writer User’s Guide

If a field is specified in a TITLE statement without any parms, Report Writer chooses a default
width, display format and justification.

Notice in the sample report in Figure 50 that the #TODAY field in the second title line does
not appear to be exactly centered over the report. This is because the contents of the #TODAY

field does not fill the whole area reserved for it in the title. The default width reserved for a
date in the LONG1 format is 18 characters — big enough to handle the largest possible value
(for example "6(37(0%(5� ���� ����"). When a smaller value (for example "0$<� ��� ����")
appears in this 18–character area with no justification, it is padded with blanks on the right.
Therefore the date does not look like it is centered.

In other words, the 18–character area reserved to display the #TODAY field is centered over
the report. But, the value within the 18–character area is not centered. To correct this, a
justification parm of CENTER was specified for the #TODAY field in the third title line of that
report. The CENTER justification parm causes the contents of the 18–character #TODAY field
to be centered.

For a similar problem that can arise when dates are lined up over the right margin of a report,
see page 177.

How to Chan ge the Appearance of Items in the Title

Chapter 4. Beyond the Basics 173

,1387�����(03/²),/(
7,7/(�����
(03/2<((�',5(&725<�²
��/$67²1$0(���
7,7/(������72'$<�/21*��
7,7/(������72'$<�&(17(5�/21*��
6257������/$67²1$0(��),567²1$0(
&2/8016���/$67²1$0(��),567²1$0(��+,5(²'$7(��$''5(66��&,7<

These control statements:

Notes:
• the width of the LAST–NAME field in the first title has been shortened to 1 byte
• the LONG1 display format causes the current date (#TODAY) to be spelled out in the second and third

titles
• the CENTER justification parm causes the current date to be correctly centered in the third title line

Figure 50 Using width, display format and justification parms in the title

���������������������������(03/2<((�',5(&725<���%�
�����������������������������-81(���������
��������������������������������-81(���������

�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(���������$''5(66�������������&,7<������
�
%$.(5�����������9,9,$1�����������������������&5(67+$9(1�%/9'��:$/187�&5((.�
&+5,6723+(5621��0(/,66$������������������������7,0%(5,'*(�5'��7255$1&(�
-2+1621���������/,1'$�����������������������/,1&2/1�'5,9(�����6$17$�526$�
-2+1621���������7+20$6������������������������/,1'$�9,67$�����6&2776'$/(�
-21(6�����������-(55<������������������������0$,1�675((7������6$1�)5$1&,6&2�
0$&'21$/'�������5,&+$5'����������������������)227+,//�'5,9(���3/($6$1721�
0255,621��������0,&+$(/���������������������6287+�/$.(6,'(�'5�*/(1'$/(�
6,03621���������7,027+<������������������������:(67����675((7�$5&$',$�
7+20$6����������0$57,1�������������������������6��+817,1*721��&21&25'�

�*5$1'�727$/����,7(06��

Produce this report:

174 Report Writer User’s Guide

How to Split the Title into Left, Center,
and Ri ght Parts

This section explains:

� how to split the title into left, center and right parts

Until now, all of our TITLE statements have consisted of a single print expression. The
contents of that print expression has been centered over our reports.

A TITLE statement is actually allowed to have up to three print expressions, separated with
slashes (/).

7,7/(���SULQW²H[SUHVVLRQ���>��SULQW²H[SUHVVLRQ�@��>��SULQW²H[SUHVVLRQ�@

Note: do not confuse multiple items within a single print expression with multiple
print expressions. A single print expression may contain as many items (literal texts
and field names) as you like. A new print expression begins only when a slash is
encountered. See the section titled "How to Include Data from a File in the Title" on
page 165 for a review of what a print expression is.

Each print expression is called a title part . Report Writer aligns each title part differently,
depending on how many parts there are. Here is how title parts are aligned:

NUMBER OF
TITLE PARTS ALIGNMENT

1 the title is centered

2 the first part is left aligned, and the second part is right aligned

3 the first part is left aligned, the second part is centered, and the third
part is right aligned

Thus, a simple TITLE statement with no slashes (and therefore with just a single part) will
result in a title that is centered across the report. The sample reports in the preceding pages
show examples of titles with only a single part.

A TITLE statement with two parts (separated by a slash) results in a title that has a left aligned
part and a right aligned part. The report in Figure 51 shows an example of such a title.

A TITLE statement with three parts results in a title with: a left aligned part, a centered part,
and a right aligned part. The report in Figure 52 (page 176) shows an example of a title that
has 3 parts.

How to Split the Title into Left, Center, and Ri ght Parts

Chapter 4. Beyond the Basics 175

,1387����(03/²),/(
7,7/(����
(03/2<((�',5(&725<�²
��/$67²1$0(���
���������
$%&�&203$1<

6257�����/$67²1$0(��),567²1$0(
&2/8016��/$67²1$0(��),567²1$0(��+,5(²'$7(��$''5(66��&,7<

These control statements:

(03/2<((�',5(&725<���%$.(5��$%&�&203$1<�
�
�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(���������$''5(66�������������&,7<������
�
%$.(5�����������9,9,$1�����������������������&5(67+$9(1�%/9'��:$/187�&5((.�
&+5,6723+(5621��0(/,66$������������������������7,0%(5,'*(�5'��7255$1&(�
-2+1621���������/,1'$�����������������������/,1&2/1�'5,9(�����6$17$�526$�
-2+1621���������7+20$6������������������������/,1'$�9,67$�����6&2776'$/(�
-21(6�����������-(55<������������������������0$,1�675((7������6$1�)5$1&,6&2�
0$&'21$/'�������5,&+$5'����������������������)227+,//�'5,9(���3/($6$1721�
0255,621��������0,&+$(/���������������������6287+�/$.(6,'(�'5�*/(1'$/(�
6,03621���������7,027+<������������������������:(67����675((7�$5&$',$�
7+20$6����������0$57,1�������������������������6��+817,1*721��&21&25'�

�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• the slash in the TITLE statement splits the title into left and right parts

Figure 51 A report with left and right title parts

How to Split the Title into Left, Center, and Ri ght Parts

176 Report Writer User’s Guide

,1387����(03/²),/(
7,7/(����
$%&�&203$1<
���
���������
(03/2<((�',5(&725<�²
��/$67²1$0(���
���������
6$/(6�'(3$570(17

6257�����/$67²1$0(��),567²1$0(
&2/8016��/$67²1$0(��),567²1$0(��+,5(²'$7(��$''5(66��&,7<

These control statements:

$%&�&203$1<���������(03/2<((�',5(&725<���%$.(5���������������6$/(6�'(3$570(17�
�
�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(���������$''5(66�������������&,7<������
�
%$.(5�����������9,9,$1�����������������������&5(67+$9(1�%/9'��:$/187�&5((.�
&+5,6723+(5621��0(/,66$������������������������7,0%(5,'*(�5'��7255$1&(�
-2+1621���������/,1'$�����������������������/,1&2/1�'5,9(�����6$17$�526$�
-2+1621���������7+20$6������������������������/,1'$�9,67$�����6&2776'$/(�
-21(6�����������-(55<������������������������0$,1�675((7������6$1�)5$1&,6&2�
0$&'21$/'�������5,&+$5'����������������������)227+,//�'5,9(���3/($6$1721�
0255,621��������0,&+$(/���������������������6287+�/$.(6,'(�'5�*/(1'$/(�
6,03621���������7,027+<������������������������:(67����675((7�$5&$',$�
7+20$6����������0$57,1�������������������������6��+817,1*721��&21&25'�

�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• the two slashes in the TITLE statement split the title into three parts
• the first title part is aligned with left margin of the report
• the second title part is centered
• the third title part is aligned with the right margin of the report

Figure 52 A report with left, center, and right title parts

How to Split the Title into Left, Center, and Ri ght Parts

Chapter 4. Beyond the Basics 177

What if you want your whole title to be left aligned or right aligned, without splitting it into
multiple parts? Use a leading or a trailing slash. This has the effect of creating a TITLE

statement with two parts, but where one of the parts is an empty print expression. Since the
TITLE statement has two parts, one will be left aligned and one will be right aligned. But the
part that has no print expression will be all blank.

For example, a trailing slash causes a title to be left aligned. Figure 53 (page 178) shows
an example of this.

This use of a trailing slash to prevent the centering of a single title part is also helpful when
creating column headings with the TITLE statement. An example of this appears in Figure
41 (page 148.)

You can also use a trailing slash in conjunction with a spacing factor to print a title in a
certain column. For example, to print the text "5(*,21" in column 62 of the title, you would
use this statement:

7,7/(�����
5(*,21
���

The above statement specifies that 61 blanks should be left before the first item in the title.
Therefore, the word "5(*,21" would begin in column 62. The trailing slash prevents Report
Writer from trying to center the title.

On the other hand, you can use a leading slash to force the whole title to be aligned on the
right side of the report. Figure 54 (page 179) shows an example of this.

The reports on pages 178 and 179 also illustrate one other possibility. By using an empty
print expression in the appropriate place, you can also create titles that have a left and a
center aligned part, but no right aligned part. Or, you can create a title with a center and a
right aligned part, but with no left aligned part.

You may sometimes specify a right aligned title only to find that the last character in the title
does not line up with the last character of the body of the report. Two things can cause this
to occur:

� the body of the report may be smaller than the total length of the title. By
necessity the title will extend beyond the right margin of the report.

� the last field listed in the title may not have completely filled the area reserved
for it. Thus, there would be trailing blanks within the last field in the title, and
the title would not appear to be right aligned. In other words, while the end of
the field lined up with the right edge of the report, the data within the field did
not extend to its last character. You should right–justify the contents of the last
field by specifying the RIGHT parm for that field. This will make the last
characters in the title line up with the right edge of the report. Figure 54 on
page 179 shows a sample report that uses this technique to correctly right align
the current date in a title.

A similar problem can occur with centered title parts. Sometimes they do not appear to be
centered correctly. Two things can cause this to occur:

� this can happen when the contents of a centered field does not completely fill the
area reserved for it in the title. In that case, the field may be centered correctly,
but the data within the field may not be centered. Use the CENTER parm to
center the contents of the field. The second title line in the report in Figure 50

How to Split the Title into Left, Center, and Ri ght Parts

178 Report Writer User’s Guide

,1387����(03/²),/(
7,7/(����
'$7(�
���72'$<�������
(03/2<((�',5(&725<
���
7,7/(����
7,0(�
���7,0(������
7,7/(����
3$*(�
���3$*(180���
6257�����/$67²1$0(��),567²1$0(
&2/8016��/$67²1$0(��),567²1$0(��+,5(²'$7(��$''5(66��&,7<

These control statements:

'$7(�������������������������(03/2<((�',5(&725<�
7,0(�������
3$*(�������
�
�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(���������$''5(66�������������&,7<������
�
%$.(5�����������9,9,$1�����������������������&5(67+$9(1�%/9'��:$/187�&5((.�
&+5,6723+(5621��0(/,66$������������������������7,0%(5,'*(�5'��7255$1&(�
-2+1621���������/,1'$�����������������������/,1&2/1�'5,9(�����6$17$�526$�
-2+1621���������7+20$6������������������������/,1'$�9,67$�����6&2776'$/(�
-21(6�����������-(55<������������������������0$,1�675((7������6$1�)5$1&,6&2�
0$&'21$/'�������5,&+$5'����������������������)227+,//�'5,9(���3/($6$1721�
0255,621��������0,&+$(/���������������������6287+�/$.(6,'(�'5�*/(1'$/(�
6,03621���������7,027+<������������������������:(67����675((7�$5&$',$�
7+20$6����������0$57,1�������������������������6��+817,1*721��&21&25'�

�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• the built–in fields #TODAY, #TIME24, and #PAGENUM are utilized
• using #TIME24 results in a 24–hour time, without the AM or PM
• the use of a trailing slash in the first title produces a left aligned and a centered title part
• the use of a trailing slash in the second and third titles produces a left aligned title

Figure 53 Titles with the date, 24–hour time, and page number on the left side of the report

How to Split the Title into Left, Center, and Ri ght Parts

Chapter 4. Beyond the Basics 179

,1387����(03/²),/(
7,7/(�������
(03/2<((�',5(&725<

�������������72'$<�/21*��5,*+7�
7,7/(��������7,0(
7,7/(�������
3$*(�
���3$*(180���
6257�����/$67²1$0(��),567²1$0(
&2/8016��/$67²1$0(��),567²1$0(��+,5(²'$7(��$''5(66��&,7<

These control statements:

�����������������������������(03/2<((�',5(&725<����������������$35,/����������
���30�
���3$*(�����
�
�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(���������$''5(66�������������&,7<������
�
%$.(5�����������9,9,$1�����������������������&5(67+$9(1�%/9'��:$/187�&5((.�
&+5,6723+(5621��0(/,66$������������������������7,0%(5,'*(�5'��7255$1&(�
-2+1621���������/,1'$�����������������������/,1&2/1�'5,9(�����6$17$�526$�
-2+1621���������7+20$6������������������������/,1'$�9,67$�����6&2776'$/(�
-21(6�����������-(55<������������������������0$,1�675((7������6$1�)5$1&,6&2�
0$&'21$/'�������5,&+$5'����������������������)227+,//�'5,9(���3/($6$1721�
0255,621��������0,&+$(/���������������������6287+�/$.(6,'(�'5�*/(1'$/(�
6,03621���������7,027+<������������������������:(67����675((7�$5&$',$�
7+20$6����������0$57,1�������������������������6��+817,1*721��&21&25'�

�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• the built–in fields #TODAY, #TIME, and #PAGENUM are displayed in the titles
• the system date field (#TODAY) is displayed using the LONG1 format, and is right–justified
• the page number field (#PAGENUM) is only 2 characters wide
• the use of a leading slash in the first title produces a centered and a right aligned title part
• the use of a leading slash in the second and third titles produces a right aligned title

Figure 54 A title with the date (spelled out), time, and page number on the right side of the report

How to Split the Title into Left, Center, and Ri ght Parts

180 Report Writer User’s Guide

(page 173) exhibits this problem. The third title line in that same report uses the
CENTER parm to correct the problem.

� sometimes correctly centering a title part would cause it to overlap with title
parts that are aligned over the left or right margins. In these cases, Report
Writer shifts the center title part to prevent overlap.

How to Print "Titles" at the Bottom of Each Pa ge

To print "titles" at the bottom of each page of the report, use the FOOTNOTE statement. The
FOOTNOTE statement works just like the TITLE statement, except that the footnote lines print
at the bottom of each page, rather than at the top. For example:

)227127(��
7+(�,1)250$7,21�,1�7+,6�5(3257�,6�&21),'(17,$/

)227127(��
3$*(
��3$*(180

The two FOOTNOTE statements above cause two lines to print at the bottom of each page of
the report. The first footnote line contains the literal text ("7+(�,1)250$7,21�,1�7+,6�5(3257

,6�&21),'(17,$/") centered under the report. The second footnote line has the word "3$*(",
followed by the page number. Figure 55 shows a sample report which uses these two
FOOTNOTE statements. FOOTNOTE statements may appear anywhere after the INPUT

statement.

All of the features allowed in TITLE statements are also allowed in FOOTNOTE statements.
(Using the TITLE statement is discussed beginning on page 165) Specifically, you can:

� include the current date, time, page number, etc. in the footnote, by using the
built–in fields #TODAY, #DAYNAME, #TIME, #TIME24, #HHMMSS and #PAGENUM.
(See page 172)

� separate the footnote line into left, center, and right aligned parts, by using
slashes within the FOOTNOTE statement. (See page 174)

� include data from the input file(s) in your footnote line. Just list the desired field
name in the FOOTNOTE statement. The data that will appear in the footnote will
be the field's value from the previous report record. (See page 165)

� specify exactly how data should be formatted in the footnote, by using the width,
display–format, and justification parms. (See page 170)

How to Print "Titles" at the Bottom of Each Pa ge

Chapter 4. Beyond the Basics 181

,1387�����(03/²),/(
7,7/(�����
$%&�&203$1<����(03/2<((�',5(&725<

6257������/$67²1$0(��),567²1$0(
&2/8016���/$67²1$0(��),567²1$0(��(03/²180��6(;��'(37²180
����������+,5(²'$7(��&,7<��67$7(
)227127(��
7+(�,1)250$7,21�,1�7+,6�5(3257�,6�&21),'(17,$/

)227127(��
3$*(
���3$*(

These control statements:

���������������������$%&�&203$1<����(03/2<((�',5(&725<�
�
�����/$67������������),567������(03/�����'(37���+,5(�
�����1$0(������������1$0(�������180��6(;�180����'$7(�������&,7<�������67$7(�
�
%$.(5�����������9,9,$1����������������)����������������:$/187�&5((.�����&$�
&+5,6723+(5621��0(/,66$���������������)����������������3+2(1,;����������$=�
-2+1621���������/,1'$�����������������)����������������6$17$�526$�������&$�
-2+1621���������7+20$6����������������0����������������6&2776'$/(�������$=�
-21(6�����������-(55<�����������������0����������������6$1�)5$1&,6&2����&$�
0$&'21$/'�������5,&+$5'���������������0����������������3/($6$1721�������&$�
0255,621��������0,&+$(/���������������0����������������*/(1'$/(���������&$�
6,03621���������7,027+<���������������0����������������$5&$',$����������&$�
7+20$6����������0$57,1����������������0����������������&21&25'����������&$�
�
�
�*5$1'�727$/����,7(06��
�
�
�
�
�
�
�
�
�
�
���������������7+(�,1)250$7,21�,1�7+,6�5(3257�,6�&21),'(17,$/�
���������������������������������3$*(������

Produce this report:

Notes:
• the report has two footnote lines that correspond to the two FOOTNOTE statements
• since no slashes are used, each footnote is centered under the report

Figure 55 Using the FOOTNOTE statement to add footnotes to a report

182 Report Writer User’s Guide

Customizin g the Control Breaks

This section discusses:

� using the SORT statement to request a control break

� using the BREAK statement to request a control break

� some of the parms available for customizing control breaks

The easiest way to request a control break is to specify a break parm after a field name
right in the SORT statement. For example, the TOTAL parm in the following SORT

statement requests that a control break occur whenever the REGION field changes value:

6257���5(*,21�727$/�

At a control break, the following things happen by default:

� a total line prints, showing the number of items in the control group, as
well as the totals for all numeric columns in the report

� two blank lines print, before continuing with the report

Another way to request a control break is to use the BREAK statement. The BREAK

statement names a sort field and makes that field a control break field. Only a field
named in an earlier SORT statement can be named in a BREAK statement. For
example, the following two statements have the same effect as the above SORT

statement.

6257���5(*,21
%5($.��5(*,21

We could also have included the TOTAL parm on the BREAK statement. However, since
TOTAL is the default, it was not necessary.

There are several advantages to using a BREAK statement. The BREAK statement has
parms that gives you complete control over what prints at control breaks. These parms
are discussed in the sections that follow:

� how to specify the report spacing at a control break with the SPACE parm
(page 183)

� how the default total line looks, and tips on getting the most out of it
(page 186)

� how to print break–wide percentages and ratios in the total line
(page 187)

� how to customize the total line using the TOTAL parm (page 190)

� how to suppress totals at a control break (page 193)

� how to print statistical lines using the AVERAGE, MAXIMUM, MINIMUM,
NZAVERAGE and NZMINIMUM parms (page 194)

� how to print customized "footing" lines at the end of a control group
using the FOOTING parm (page 196)

� how to print the number of items contained in a control group
(page 206)

Customizin g the Control Breaks

Chapter 4. Beyond the Basics 183

� how to print customized "heading" lines at the beginning of a control
group using the HEADING parm (page 208)

How to Chan ge the Control Break Spacin g

This section explains:

� the default control break spacing in a report

� how to specify your own control break spacing in a report

� the SPACE parm in the BREAK statement

By default, Report Writer prints two blank lines whenever a control break occurs.
(These blank lines print after any footing lines, total lines and statistical lines have
printed.) For example, the sample report in Figure 12 (page 53) uses default spacing
at control breaks.

If you want something other than two blank lines, specify a spacing option in either
the SORT or the BREAK statement. (A complete list of spacing options is shown on the
next page.) By coding the appropriate value for this parm, you can request that some
other number of blank lines print (including zero lines), or you can request one of
several types of "page breaks."

If you only want to customize the spacing of a control break, you do not need to use a
BREAK statement. All break spacing options can be specified directly in the SORT

statement. Simply put the spacing parm in parentheses immediately after the
appropriate field name. For example the following SORT statement requests that
5 blank lines print whenever the REGION field changes value:

6257���5(*,21���

The mere presence of the break spacing factor in the SORT statement above implies that
REGION should be a control break field. The following SORT statement requests a page
break. That is, whenever a new region starts printing, it will begin on a new page.

6257���5(*,21�3$*(�

In a BREAK statement, use the SPACE parm to specify the desired control break spacing.
The following statements specify that 5 blank lines should print whenever the REGION

field changes value:

6257���5(*,21
%5($.��5(*,21��63$&(���

And the following statements request a page break for the REGION field.

6257���5(*,21
%5($.��5(*,21��63$&(�3$*(�

Figure 56 (page 185) shows a sample report that uses a similar BREAK statement to
request a page break.

How to Chan ge the Control Break Spacin g

184 Report Writer User’s Guide

There are other spacing options that are especially useful for reports that are printed on
a laser printer, using both sides of the paper. You may want to distribute the individual
pages of your report to, for example, a company's various regions. To do this, the
different regions must print on separate sheets of paper, not just on a new page. (A
new page might only be the back side of the same sheet of paper where another region
printed.) The NEWSHEET spacing option does this.

There are also spacing options that will reset the page number after a control break.
When skipping to a new page after a control break, you may also want to start the page
numbering over again with page one. This is especially useful when you will be
distributing the various sections of the report to different people, and you want each
section to start with page one. The PAGE1, NEWSHEET1 and ODDPAGE1 options do this.

The following table lists the control break spacing options available:

SPACING
OPTION DESCRIPTION

n Skips this number of blank lines.

PAGE Skips to the top of the next page of the report.

PAGE1 Works like PAGE, but also resets page number to "one".

NEWSHEET Skips to a new sheet of paper. In order for this feature to work,
you must also use the OPTION statement's PRTSHEET parm to
specify a character string that can be sent to your printer to tell it
to skip to a new sheet of paper. (The PRTSHEET option is
described starting on page 506.)

NEWSHEET1 Works like NEWSHEET, but also resets page number to "one".

ODDPAGE Skips to the next odd numbered page. This parm accomplishes
the same thing as the NEWSHEET parm, but can be used even if
you do not have a character string to send to your printer to force
it to skip to a new sheet. However, for this option to work you
must ensure that the first page of your report prints on the front
side of a sheet of paper. As long as page 1 of your report prints
on the front side of a sheet of paper, all other odd numbered
pages will also be on front sides.

ODDPAGE1 Works like ODDPAGE, but also resets page number to "one".

PC File Note: only the n spacing parm (for "n" blank lines) is allowed when
creating PC files. Since PC files do not have "pages", the other spacing parms
are meaningless for PC files.

How to Chan ge the Control Break Spacin g

Chapter 4. Beyond the Basics 185

Notes:
• specifying PAGE1 (in the BREAK statement) causes the report to skip to a new page whenever the

REGION field changes value, and also resets the page number to 1
• since we printed the REGION in the title of each page, we could now eliminate the REGION column

making room in the report for other data

Figure 56 A BREAK statement that requests a page break and resets the page number

,1387����6$/(6²),/(
7,7/(����
6$/(6�)25�5(*,21�
��5(*,21����
3$*(
���3$*(180
&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257�����5(*,21
%5($.����5(*,21�63$&(�3$*(��

These control statements:

6$/(6�)25�5(*,21��($67��������������������������������������3$*(������
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������67$5�0$5.(7��������������������������������
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������
�727$/�)25�($67�����,7(06��

Produce this report:

6$/(6�)25�5(*,21��1257+�������������������������������������3$*(������
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
1257+��-2+1621�������������9,//$�+27(/��������������������������������
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
�727$/�)25�1257+����,7(06��

6$/(6�)25�5(*,21��6287+�������������������������������������3$*(������
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
6287+��-2+1621�������������$&(�(/(&75,&$/�����������������������������

(other report lines not shown)

186 Report Writer User’s Guide

How a Default Total Line Looks

This section explains:

� how the default total line looks

� tips on making the default total line look its best

Before we examine the various custom lines that we can print at a control break, let's look at
what happens by default at a control break.

By default, Report Writer prints one total line at every control break. The report in Figure
56 (page 185) shows an example of the default total lines. They look something like this:

�727$/�)25�($67���������,7(06�����������������������������������

Default total lines contain the following information:

� a number of asterisks (three, in this example) which serve to set the total line
off from the regular report lines. The asterisks also serve as a visual indicator
of the "level" of the break. The higher the break level, the more asterisks that
print. (Break levels are discussed in the section that begins on page 211.)

� the words 727$/�)25, which identifies this as the total line

� the value of the break field in the control group that just ended (in this example
($67.)

� the number of items that were included in the control group (in this example 4.)
The number of items is the number of primary input file records included in the
control group. Usually, it is also the number of report lines printed for the
control group.

� the control group total for each numeric column in the report (in this example
the AMOUNT and TAX columns.) (For more information on exactly which columns
are totalled, see the section beginning on page 144.)

Sometimes the text at the beginning of the total line will extend into the area where the first
column total should print. This normally happens when the first numeric column is fairly
close to the left margin of the report. When the total line text would overlap with one or more
actual column totals, Report Writer skips to a new line to print the column totals.

To prevent this splitting of the total line, design your reports so that the first numeric column
is well away from the left margin of the report. You might do this by printing large character
fields (such as names, descriptions, etc.) in the first columns of the report, and putting the
numeric columns after that. That is what we have done for most examples in this manual.
Or, you can use an initial spacing factor in the COLUMNS statement to shift all columns to the
right, like this:

&2/8016�������$02817��7$;

The report in Figure 67 (page 219) uses a COLUMNS statement with a large initial spacing
factor.

To prevent splitting the total line, you could also specify a shorter text to being the total line
with. Use the TOTAL parm to specify a shorter text (page 190).

How a Default Total Line Looks

Chapter 4. Beyond the Basics 187

When printing large reports you may see a number of asterisks in the total line. For example,
you might see a total line that looks like this:

�727$/�)25�($67���������,7(06�����������6�����������

The “size” error indicator (6) indicates that there wasn't enough room to display all
of the digits in a number. In this case, the report column is not wide enough to display the
total value. Use a width parm in the COLUMNS statement to make the column wider (see
page 131.) For example, the following COLUMNS statement makes the AMOUNT column 20
characters wide, so that even huge numbers will fit in the total line:

&2/8016��5(*,21��(03/²1$0(��6$/(6²'$7(��&86720(5��$02817������7$;

If there is a very large number of records in a control group, there may not be enough room
to print the number of items in the total line. In that case you might see something like this:

�727$/�)25�($67���6�,7(06�����������������������������������

To correct this problem, specify your own total line text using the TOTAL parm (see
page 190.) Be sure to specify a width parm (page 201) that leaves plenty of room to display
the #ITEMS built–in field, like this:

%5($.��5(*,21
�������727$/�
�727$/�)25
��5(*,21���,7(06������
,7(06
�

The built–in field #ITEMS is discussed beginning on page 206.

Computin g True Percenta ges and Ratios at
Control Breaks

By default, Report Writer prints the total value of each numeric column at control breaks.
For some computed fields this is not what is really desired. Consider the following COMPUTE

statement:

&20387(��3(5&(17²7$;� �7$;���$02817

The above statement computes a field called PERCENT–TAX, which is computed by dividing
the amount of the tax by the amount of the sale. At control breaks, it is probably not helpful
to see the sum of all of the PERCENT–TAX percentages. Instead it would be helpful to see the
PERCENT–TAX percentage for the entire control group. To get this value, we need to divide
the control group's total value for TAX by the control group's total value for AMOUNT.

You can do this by specifying the DIVTOTS ("divide totals") parm in the COMPUTE statement,
like this:

&20387(��3(5&(17²7$;�',97276�� �7$;���$02817

The above statement tells Report Writer to divide the total value of the numerator by the total
value of the denominator at control breaks. In this case the total value of TAX will be divided
by the total value of AMOUNT. This group–wide percentage is what will appear in the total
line at the control breaks and in the Grand Total line. You may also abbreviate DIVTOTS as
DT.

Computin g True Percenta ges and Ratios at Control Breaks

188 Report Writer User’s Guide

Figure 57 (page 189) shows a report that uses the ',97276 parm.

DIVTOTS may only be specified for COMPUTE statements that meet all of the following
requirements:

� At its highest level, the expression must consist of a single division operation.
The numerator and/or denominator themselves, however, can be expressions
within parentheses. All of the following statements qualify as consisting of a
"single high level division":

&20387(��$� �%���&
&20387(��$� �%����&���'���(�
&20387(��$� ��%���&�����'���(�
&20387(��$� ��%�&�����'�(�

� Neither the numerator nor the denominator may be literal values. Each must be
either a field or an expression. That is, DIVTOTS would not be allowed for the
following:

&20387(��$� �%������

Computations involving division by a literal value (like the one above) are not
ratios or percentages. A regular total for such fields is more appropriate at
control breaks. If you need a literal in a DIVTOTS COMPUTE statement for some
reason, assign the literal value to a field and then refer to that field in the
COMPUTE statement:

&20387(��+81'5(' ����
&20387(��$�',97276�� �%���+81'5('

� Only simple COMPUTE statements may use the DIVTOTS parm. It is not allowed
in conditional COMPUTE statements. (Conditional COMPUTE statements are
those that use the WHEN and ASSIGN parms to assign different values to a field.)
However, either or both of the numerator and the denominator can be COMPUTE

fields that may have been computed with conditional COMPUTE statements.

Computin g True Percenta ges and Ratios at Control Breaks

Chapter 4. Beyond the Basics 189

Notes:
• The PERC–TAX field is computed by dividing TAX by AMOUNT.
• The PERCENT–TAX is computed the same way, but has the DIVTOTS parm.
• The total lines show the sum of the PERC–TAX field, which is meaningless for a percentage.
• The DIVTOTS parm means the PERCENT–TAX value in the total lines is computed by dividing the

region's total TAX by the region's total AMOUNT.
• The PERCENT–TAX field in the Grand Total line is similarly computed by dividing the Grand Total

TAX by the Grand Total AMOUNT.

Figure 57 Using the DIVTOTS parm to get accurate percentages at control breaks

,1387����6$/(6²),/(
7,7/(����
&20387,1*�%5($.²:,'(�3(5&(17$*(6

&20387(��3(5&²7$;������������� �7$;���$02817
&20387(��3(5&(17²7$;�',97276�� �7$;���$02817
6257�����5(*,21�727$/�
&2/8016��(03/²1$0(�5(*,21�&86720(5�7$;�$02817�
���������3(5&²7$;��3(5&(17²7$;

These control statements:

����������������������������&20387,1*�%5($.²:,'(�3(5&(17$*(6

���(03/���3(5&��������3(5&(17
���1$0(����5(*,21����&86720(5���������7$;��������$02817���������7$;�����������7$;�����

0255,621���($67���67$5�0$5.(7���
0255,621���($67���$��3+272*5$3+<��
6,03621����($67���(8523($1�'(/,���
6,03621����($67���-�	�6�/80%(5��
�727$/�)25�($67�����,7(06��

-2+1621����1257+��9,//$�+27(/���
-2+1621����1257+��0$5<6�$17,48(6��
-21(6������1257+��(=�*52&(5<��
-21(6������1257+��72<�72:1��
-21(6������1257+��72<�72:1��
�727$/�)25�1257+����,7(06��

(other report lines not shown)

�*5$1'�727$/��������,7(06��

Produce this report:

190 Report Writer User’s Guide

How to Customize the Total Line at
a Control Break

This section explains:

� how to customize the total line at a control break

� how to use the TOTAL parm in the BREAK statement

Report Writer automatically prints a total line at the end of each control group. As we saw
earlier, the default total line begins with a text something like this:

�727$/�)25�($67���������,7(06�

This text is then followed by the actual totals for each numeric column. You may prefer to
print your own text at the beginning of the total line. Use the TOTAL parm of the BREAK

statement to do that.

Here is an example of a BREAK statement with a TOTAL parm:

%5($.��5(*,21
�������727$/�
5(*,21�727$/6
�

When you specify a text in a TOTAL parm, Report Writer uses your text, rather than the
default text, in its total line. The above statement specifies that the total line should begin
with the words 5(*,21� 727$/6. After that, the actual totals appear, lined up under the
appropriate report columns. Figure 58 shows a sample report that uses the above BREAK

statement.

The contents of the TOTAL parm is actually a print expression. Print expressions tell Report
Writer how to build one print line to use in a report. In the TOTAL parm, the print expression
tells how to build the first part of the total line.

The contents of the COLUMNS statement is also a print expression— one that tells how to
build the report lines for the main body of the report. Thus, the contents of the TOTAL parm
is very similar to the contents of a COLUMNS statement, which you are already familiar with.

Briefly, the TOTAL parm print expression can contain literal text, data from input records, data
from built–in fields, and certain statistical values for numeric data fields. The section titled
"How to Print Customized Footing Lines at a Control Break" (page 196) describes in detail
how to write a FOOTING parm print expression. Those same rules apply to writing TOTAL

parm print expressions.

Here is an example of a TOTAL print expression which consists of one literal item and one
field name:

%5($.��5(*,21�
�������727$/�
727$/6�)25�5(*,21�
��5(*,21�

The total line produced by the statement above would begin with:

727$/6�)25�5(*,21��[[[[[

where [[[[[would be the name of the region that had just finished printing.

How to Customize the Total Line at a Control Break

Chapter 4. Beyond the Basics 191

Notes:
• the total line now begins with the text "5(*,21�727$/6", as specified in the TOTAL parm of the

BREAK statement

Figure 58 A report with a customized total line at the control breaks

,1387����6$/(6²),/(
7,7/(����
6$/(6�%<�5(*,21

&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257�����5(*,21
%5($.����5(*,21��727$/�
5(*,21�727$/6
�

These control statements:

���������������������������6$/(6�%<�5(*,21�
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������67$5�0$5.(7��������������������������������
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������
5(*,21�727$/6���
�
�
1257+��-2+1621�������������9,//$�+27(/��������������������������������
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
5(*,21�727$/6���
�
�
6287+��-2+1621�������������$&(�(/(&75,&$/�����������������������������
6287+��-2+1621�������������$&0(�%8,/',1*������������������������������
5(*,21�727$/6���
�
�
:(67���%$.(5���������������-$&.6�&$)(���������������������������������
:(67���%$.(5���������������-$&.6�&$)(���������������������������������
:(67���7+20$6��������������<2*857�&,7<��������������������������������
5(*,21�727$/6���
�
��
�
�*5$1'�727$/�����,7(06��

Produce this report:

How to Customize the Total Line at a Control Break

192 Report Writer User’s Guide

You may also put a blank print expression in the TOTAL parm, like this:

%5($.��5(*,21�727$/�
�
�

The example above results in a total line with no beginning text— just the actual numeric
totals themselves.

Only one TOTAL parm is allowed in the BREAK statement. If you need to print more than one
line at a control break, use one or more FOOTING parms along with the TOTAL parm.
(FOOTING parms are discussed beginning on page 196.) For example:

%5($.��5(*,21�
�������)227,1*�
(1'�2)�5(*,21�
�5(*,21�
�������)227,1*�
9(5,)<�7+(�)2//2:,1*�727$/6�:,7+�$&&2817,1*
�
�������727$/�
727$/�6$/(6
�

The statement above would cause three lines to print at the control break: the two footing
lines first, followed by the total line. The total line would begin with the text 727$/�6$/(6,
followed by the numeric totals.

The total line at a control break always prints immediately after the last footing line (if any),
regardless of where the TOTAL parm is specified in the BREAK statement.

If you want the total line to be separated from the footing lines, (or from the last detail report
line) use a blank FOOTING parm, like this:

%5($.��5(*,21�
�������)227,1*�
(1'�2)�5(*,21
�5(*,21
�
�������)227,1*�
9(5,)<�7+(�)2//2:,1*�727$/6�:,7+�$&&2817,1*
�
�������)227,1*�
�
�
�������727$/�
727$/�6$/(6�$6�2)
��72'$<�

This will cause a blank footing line to print after the first two footings and before the total
line.

Notice in the above statement that we used the built–in field #TODAY to print the current date
in the total line.

Note: to customize the Grand Totals line, see page 214.

Chapter 4. Beyond the Basics 193

How to Suppress the Total Line at a
Control Break

This section explains:

� how to suppress the total line at a control break

� the NOTOTAL parm in the BREAK and SORT statements

Even when a report has no numeric columns, a total line still prints at control breaks. That
is because the total line contains other useful information such as the value of the break field,
and the number of items in the control group.

To suppress the total line at a control break, specify NOTOTAL in the SORT or BREAK

statement. For example, if you did not want to see region totals at the REGION control break,
you would write:

%5($.��5(*,21�12727$/

The above example would still result in a control break whenever the REGION field changed
value. But region totals would not print at the break. Two blank lines (the default spacing
option) is all that would print at the control break.

You can also use the NOTOTAL parm directly in the SORT statement, either alone or in
combination with a break spacing parm. Here are two examples:

6257��5(*,21�12727$/�
6257��5(*,21�3$*(�12727$/�

The first example causes a control break to occur whenever the REGION field changes value,
but prevents region totals from printing. (The presence of the NOTOTAL parm implies that a
control break should occur.) The default spacing of two blank lines will be printed at the
control break.

The second example above also causes a control break on the REGION field, but specifies that
each new region should start printing on a new page. Again, no region totals would print at
the control break.

Note: to just suppress totals for a particular column , see page 144.

Note: to suppress the Grand Total line, see the section beginning on page 214.

194 Report Writer User’s Guide

How to Customize the Statistical Lines at a
Control Break

This sections explains:

� how to print statistical lines at a control break

� how these statistical lines look by default

� how to customize the statistical lines

� the AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE and NZMINIMUM parms in the
SORT and BREAK statements

The sample report in Figure 59 (page 195) illustrates most of the features discussed in this
section.

There are a number of statistical lines that can be printed at a control break. The total line
is the most common statistical line. By default, the total line automatically prints at each
control break, as well as at the end of the report. The other statistical lines do not appear
unless specifically requested. You may request them by specifying the appropriate parm in
either the BREAK statement or the SORT statement. The statistical parms (and their
abbreviations) are

PARM STATISTIC LINE

AVERAGE/AVG average line

NZAVERAGE/NZAVG non–zero average line. (A non–zero average is the average
obtained when zero values are excluded from the calculation.)
This value may be useful when the data in some records is
missing.

MAXIMUM/MAX maximum line

MINIMUM/MIN minimum line

NZMINIMUM/NZMIN non–zero minimum line. (A non–zero minimum is the
minimum value, not considering zero values.) This value may
be useful when the data in some records is missing.

The following example requests that a line showing averages and a line showing maximum
values be printed at the control break. (Of course, the total line will also print, since the
NOTOTAL parm was not specified to suppress it.)

%5($.��5(*,21��$9(5$*(��0$;,080

It is also possible to request the same thing directly in the SORT statement:

6257��5(*,21�$9(5$*(�0$;,080�

The presence of the statistical parms in the above SORT statement imply that REGION should
be a break field.

When the average line prints at a control break, it begins with the text $9(5$*(�9$/8(, followed
by the averages themselves lined up under the numeric columns. Just as with

How to Customize the Statistical Lines at a Control Break

Chapter 4. Beyond the Basics 195

Notes:
• the print expression in parentheses after each statistical parm determines the initial wording of the

statistical lines
• to customize the Grand Total statistical lines, we could add another BREAK statement (see page 214)

Figure 59 A report that prints statistical lines (average, maximum, minimum) at control breaks

,1387����6$/(6²),/(
7,7/(����
6$/(6�67$7,67,&6�%<�5(*,21

&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257�����5(*,21
%5($.����5(*,21
���������727$/�
����727$/�6$/(6�)25�5(*,21�
�5(*,21�
���������$9(5$*(�
����$9(5$*(�6$/(�,1�5(*,21
�
���������0$;,080�
����%,**(67�6$/(�,1�5(*,21
�
���������0,1,080�
����60$//(67�6$/(�,1�5(*,21
�

These control statements:

���������������������6$/(6�67$7,67,&6�%<�5(*,21�
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������67$5�0$5.(7��������������������������������
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������
����727$/�6$/(6�)25�5(*,21��($67��������������������������������������
����$9(5$*(�6$/(�,1�5(*,21��
����%,**(67�6$/(�,1�5(*,21��
����60$//(67�6$/(�,1�5(*,21���
�
�
1257+��-2+1621�������������9,//$�+27(/��������������������������������
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
����727$/�6$/(6�)25�5(*,21��1257+�������������������������������������
����$9(5$*(�6$/(�,1�5(*,21��
����%,**(67�6$/(�,1�5(*,21��
����60$//(67�6$/(�,1�5(*,21���

(other report lines not shown)

�*5$1'�727$/�����,7(06��
�$9(5$*(�9$/8(��
�0$;,080�9$/8(��
�0,1,080�9$/8(��

Produce this report:

How to Customize the Statistical Lines at a Control Break

196 Report Writer User’s Guide

the total line, you can change the beginning text to be anything you like. Simply specify a
print expression in parentheses immediately after the AVERAGE parm:

%5($.��5(*,21��$9*�
$9(5$*(6�)25�5(*,21�
�5(*,21�

The other statistical lines (maximum, minimum, etc.) begin with similar texts (0$;,080�9$/8(,
0,1,080�9$/8(, etc.) You can override the text for any of these lines in the same way as for
total or average lines:

%5($.��5(*,21��0$;,080�
%,**(67�6$/(�,1�5(*,21�
�5(*,21�
���������������0,1,080�
60$//(67�6$/(�,1�5(*,21�
�5(*,21�

As with the TOTAL parm discussed earlier, the contents of these additional statistical parms
is simply a print expression. Briefly, the print expression can contain literal text, data from
input records, data from built–in fields, and certain statistical values for numeric and time
fields. The section titled "How to Print Customized Footing Lines at a Control Break"
(page 196) describes in detail how to write a FOOTING parm print expression. Those same
rules apply to writing print expressions for the statistical parms.

Any statistical lines requested at a control break will print after all footing lines have printed.
The statistical lines always print in the following order:

� the total line
� the average line
� the non–zero average line
� the maximum line
� the minimum line
� the non–zero minimum line

Note: for information on which columns receive averages and other statistics, see
page 144.

Note: notice the statistical lines after the Grand Totals on page 195. They still
begin with the default wording (� $9(5$*(� 9$/8(, etc.) To customize the
statistical lines at the Grand Totals, see page 214.

How to Print Customized Footin g Lines at a
Control Break

This section explains:

� how to specify customized "footing" lines to print at the end of a control group

� the detailed syntax for print expressions used within the BREAK statement's
FOOTING, TOTAL, AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE and NZMINIMUM

parms

PC File Note: this section discusses the FOOTING parm as it is used when creating
reports. Some of this discussion does not apply to creating PC files. The use of the
FOOTING parm for PC files is discussed on page 106.

How to Print Customized Footin g Lines at a Control Break

Chapter 4. Beyond the Basics 197

Notes:
• the footing line (specified in the BREAK statement) prints before the total line at each control break

Figure 60 Using the FOOTING parm to print a customized line at a control break

,1387����6$/(6²),/(
7,7/(����
6$/(6�%<�5(*,21

7,7/(����
(;$03/(�2)�$�6,1*/(�)227,1*�/,1(

6257�����5(*,21
%5($.����5(*,21�)227,1*�
(1'�2)�6$/(6�,1�5(*,21�
��5(*,21�
&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;

These control statements:

���������������������������6$/(6�%<�5(*,21�
������������������(;$03/(�2)�$�6,1*/(�)227,1*�/,1(
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������67$5�0$5.(7��������������������������������
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������
(1'�2)�6$/(6�,1�5(*,21��($67�
�727$/�)25�($67�����,7(06��
�
�
1257+��-2+1621�������������9,//$�+27(/��������������������������������
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
(1'�2)�6$/(6�,1�5(*,21��1257+�
�727$/�)25�1257+����,7(06��
�
�
6287+��-2+1621�������������$&(�(/(&75,&$/�����������������������������
6287+��-2+1621�������������$&0(�%8,/',1*������������������������������
(1'�2)�6$/(6�,1�5(*,21��6287+�
�727$/�)25�6287+����,7(06��

(other report lines not shown)
�
�*5$1'�727$/�����,7(06��

Produce this report:

How to Print Customized Footin g Lines at a Control Break

198 Report Writer User’s Guide

Report Writer automatically prints a total line at the end of each control group. You may
want to print certain lines of your own at a control break (either in place of, or in addition to,
the total line.) Use the FOOTING parm of the BREAK statement to do that.

The FOOTING parm of the BREAK statement lets you specify a control break "footing line."
This line prints just before the totals line (if any) at a control break. This line can contain
literal text, data from input records, data from built–in fields, and certain statistical values
for numeric and time fields.

Here is an example of a BREAK statement with a simple FOOTING parm:

%5($.��5(*,21
�������)227,1*�
(1'�2)�6$/(6�,1�5(*,21�
��5(*,21�

This FOOTING parm causes a line reading (1'�2)�6$/(6�,1�5(*,21��[[[[[to print immediately
after the last report line in each region (where [[[[[is the name of the region.) The report in
Figure 60 (page 197) uses the above BREAK statement.

Note: the following discussion of the BREAK statement's FOOTING parm syntax also
applies to the TOTAL, AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE, and NZMINIMUM

parms (discussed in the sections beginning on pages 190 and 194.) In addition, the
syntax of the HEADING parm is almost identical–– the only differences are explained
in the section on the HEADING parm, beginning on page 208.

The contents of the FOOTING parm is simply a print expression. Print expressions tell
Report Writer how to build one print line to use in a report. In a FOOTING parm, the print
expression tells how to build a line to print at a control break.

The contents of the COLUMNS statement is also a print expression–– one that tells how to
build the report lines for the main body of the report. Thus, the contents of the FOOTING

parm is very similar to the contents of a COLUMNS statement, which you are already familiar
with.

As with other print expressions in Report Writer, just list one or more items to print.

)227,1*��LWHP��LWHP��LWHP�������

Each item can be either a literal text or a field name.

To include a literal text in a footing line, simply enclose the text in either apostrophes or
quotation marks. For example the following statement causes the words (1'�2)�6$/(6�,1

5(*,21� to appear in the footing line:

%5($.��5(*,21�)227,1*�
(1'�2)�6$/(6�,1�5(*,21�
�

To put data from an input file in your footing line, simply list the desired field name. (Do
not put the field name in apostrophes or quotation marks.) For example the following
statement causes the contents of the REGION field to appear in the footing line:

%5($.��5(*,21�)227,1*�5(*,21�

How to Print Customized Footin g Lines at a Control Break

Chapter 4. Beyond the Basics 199

Field names used in the FOOTING parm may be any of the following:

� a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

� a computed field (defined in a preceding COMPUTE statement)

� a built–in field (see Appendix C, "Built-In Fields" for a complete list of built–in
fields)

By default, the data that appears in the footing line will be the field's value from the last
record of the preceding control group. For numeric and time fields you may use a statistical
parm to cause the field's total value, average value, etc. to print in the footing line. Statistical
parms are discussed later in this section.

Figure 60 shows an example of a footing line that uses one literal text and one data field
from the input file.

As in other print expressions, you may customize your footing line by using optional spacing
factors and parms. So, the full syntax for the FOOTING parm is this:

)227,1*��>Q@�LWHP��SDUPV���>Q@�LWHP��SDUPV���>Q@�LWHP��SDUPV�������

The optional spacing factor (n) is the number of blank spaces to leave between items in the
footing line. If you omit the spacing factor, the default is for one blank space to appear
between each item. (A spacing factor of zero is allowed if you want no spaces to appear
between two items in a footing.) The following statement causes 5 blanks to appear between
the literal text (1'�2)�6$/(6�,1�5(*,21� and the contents of the REGION field:

%5($.��5(*,21�)227,1*�
(1'�2)�6$/(6�,1�5(*,21�
���5(*,21�

The optional parms are used to provide details about how to display data fields in the
footing. You may specify one or more parms, enclosed in parentheses, immediately following
a field name. (Do not leave a space between the field name and the open parenthesis.) You
may use any combination of parms, in any order. Separate the parms with a comma, and/or
with one or more blanks. For example, the following FOOTING parm uses both a statistical
parm and a display format parm for the AMOUNT field:

%5($.��5(*,21
�������)227,1*�
$9(5$*(�6$/(�)25�5(*,21�
��$02817�$9*�'2//$5��

The following table shows what parms may be used in BREAK statement print expressions:

BREAK STATEMENT PRINT EXPRESSION PARMS

PARM DESCRIPTION

AVERAGE/AVG Allowed only with numeric and time fields. Specifies that the
field's average value for the control group should be printed. The
following example specifies that the average value of the AMOUNT

field should print in the footing line:

%5($.��5(*,21
�������)227,1*�
$9(5$*(�$02817�,6
�$02817�$9*��

How to Print Customized Footin g Lines at a Control Break

BREAK STATEMENT PRINT EXPRESSION PARMS

PARM DESCRIPTION

200 Report Writer User’s Guide

BIZ Means “blank if zero.” Specifies that a field in the footing
should be left blank whenever the numeric, date or time item
contains zeros. The following example specifies that the HIRE-

DATE field should be left blank whenever its value is zero.

%5($.��+,5(²'$7(
�������)227,1*�
(1'�2)�(03/2<((6�+,5('

���������������+,5(²'$7(�%,=��

display–format Specifies how to format a field in the footing. A complete list of
display formats appears in Appendix B, "Display Formats"
(page 550). This parm works just like the display format parm in
the COLUMNS statement, which is explained in more detail
beginning on page 132. The following example specifies that the
HIRE–DATE field should be displayed in the LONG1 format–– with
the month name spelled out:

%5($.��+,5(²'$7(
�������)227,1*�
(1'�2)�(03/2<((6�+,5('

���������������+,5(²'$7(�/21*���

LEFT/CENTER/RIGHT Specifies how to justify a field's data within the area reserved for
it in the footing. These parms work just like the justification
parms in the COLUMNS statement, which are explained in more
detail beginning on page 142. The following example specifies
that the contents of the HIRE–DATE field should be center justified
(as well as being formatted in the LONG1 display format):

%5($.��+,5(²'$7(
�������)227,1*�+,5(²'$7(�/21*���&(17(5��

MAXIMUM/MAX Allowed only with numeric and time fields. Specifies that the
field's maximum value in the control group should be printed.
The following example specifies that the maximum value of the
AMOUNT field should print in the footing line:

%5($.��5(*,21
�������)227,1*�
0$;,080�$02817�,6
�$02817�0$;��

MINIMUM/MIN Allowed only with numeric and time fields. Specifies that the
field's minimum value in the control group should be printed.
The following example specifies that the minimum value of the
AMOUNT field should print in the footing line:

%5($.��5(*,21
�������)227,1*�
0,1,080�$02817�,6
�$02817�0,1��

How to Print Customized Footin g Lines at a Control Break

BREAK STATEMENT PRINT EXPRESSION PARMS

PARM DESCRIPTION

Chapter 4. Beyond the Basics 201

NZAVERAGE/NZAVG Allowed only with numeric and time fields. Specifies that the
field's non–zero average value for the control group should be
printed. (A non–zero average is the average obtained when zero
values are excluded from the calculation.) The following example
specifies that the non–zero average value of the AMOUNT field
should print in the footing line:

%5($.��5(*,21
�������)227,1*�
$9(5$*(�$02817�,6
�$02817�1=$9*��

NZMINIMUM/NZMIN Allowed only with numeric and time fields. Specifies that the
field's non–zero minimum value in the control group should be
printed. (A non–zero minimum is the minimum value, not
considering zero values.) The following example specifies that
the non–zero minimum value of the AMOUNT field should print in
the footing line:

%5($.��5(*,21
�������)227,1*�
0,1,080�$02817�,6
�$02817�1=0,1��

TOTAL/TOT Allowed only with numeric and time fields. Specifies that the
field's total value for the control group should be printed. The
following example specifies that the total value of the AMOUNT

field should print in the footing line:

%5($.��5(*,21
�������)227,1*�
727$/�$02817�,6
�$02817�727$/��

Note: when using TOTAL with computed fields defined with the
DIVTOTS parm, be aware that the "total" value is not simply the
sum of each individual value. Instead, the total value of the
compute expression's numerator is divided by the total value of
its denominator. This group–wide calculation is used whenever
the "total" value of such fields is called for.

width This numeric parm specifies how many characters should be
reserved for an item in the footing. This parm works just like the
width parm in the COLUMNS statement, which is explained in
more detail beginning on page 131. As an example, the following
statement specifies that only one character of the REGION field
should appear in the footing:

%5($.��5(*,21
�������)227,1*�
(1'�2)�6$/(6�,1�5(*,21�
�5(*,21����

How to Print Customized Footin g Lines at a Control Break

202 Report Writer User’s Guide

The width, BIZ, display–format and justification parms specify how a data field will appear
in the footing line. The other statistical parms determine what value will appear in the
footing line. Normally when a field is used as an item in a footing print expression, the value
for the field is taken from the last record in the control group. By using one of the statistical
parms (TOTAL, AVERAGE, etc.) for a numeric field, you can print a statistical value for the
field, instead of its value in the previous record.

Consider the following example:

%5($.��5(*,21
�������)227,1*�
$9(5$*(�6$/(�)25
��5(*,21��
5(*,21�,6
��$02817�$9*��

This footing print expression consists of 4 items: two literals, and two field names. Here is
how each item will be processed:

� the two literals ($9(5$*(�6$/(�)25 and 5(*,21�,6) appear in the footing line just
as they are.

� the first field (REGION) has no parms in parentheses after it. Therefore, the
value used for REGION in the footing line will be taken from the REGION field in
the last record of the control group. Since REGION is the break field, all records
in the control group have the same value for region. So in this case, taking the
value from the last record is fine.

� the second field in the print expression (AMOUNT) has the AVG parm in
parentheses after it. This means that the average of all AMOUNT fields in the
control group will appear in the footing line. For this field, it would have been
meaningless to simply print the AMOUNT field from the last record in the control
group.

Figure 61 (page 203) shows a sample report which uses the above statement.

Notice that there are two different ways to use the statistical keywords TOTAL, AVERAGE,
MAXIMUM, etc:

� We have just discussed their use as a parm within parentheses after a specific
field name. When used this way, they specify what value to print for a particular
field in a print line at a control break. For example:

%5($.��5(*,21��)227,1*�
5(*,21�727$/�,6
��$02817�$9(5$*(��

� The other use is as a BREAK statement parm similar to the FOOTING parm. In
that use, the single keyword causes a whole line of totals, averages, maximum
values, etc. to print at the control break. (See pages 190 and 194 for more
information on this.) For example:

%5($.��5(*,21�$9(5$*(

Let's look at some more examples of FOOTING parms. Here's an example of using three
parms with the AMOUNT field.

%5($.��5(*,21
�������)227,1*�
$9(5$*(�6$/(�)25
��5(*,21��
5(*,21�,6

���������������$02817�$9(5$*(��3,&
�������
��/()7��

The AVERAGE parm tells Report Writer to print the average value of AMOUNT for the control
group.

How to Print Customized Footin g Lines at a Control Break

Chapter 4. Beyond the Basics 203

Notes:
• the footing line contains the AMOUNT field's average value for each region
• the example on page 205 shows how to remove the excess space that appears between the text and the

average value in the footing line

Figure 61 A report which prints a field's average value in a footing line

,1387����6$/(6²),/(
7,7/(����
6$/(6�%<�5(*,21

7,7/(����
(;$03/(�2)�35,17,1*�$9(5$*(6�,1�)227,1*�/,1(6

&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257�����5(*,21
%5($.����5(*,21��)227,1*�
$9(5$*(�6$/(�)25
�
�������������������������5(*,21
�������������������������
5(*,21�,6

�������������������������$02817�$9*��

These control statements:

���������������������������6$/(6�%<�5(*,21�
������������(;$03/(�2)�35,17,1*�$9(5$*(6�,1�)227,1*�/,1(6
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������67$5�0$5.(7��������������������������������
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������
$9(5$*(�6$/(�)25�($67��5(*,21�,6����������������
�727$/�)25�($67�����,7(06��
�
�
1257+��-2+1621�������������9,//$�+27(/��������������������������������
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
$9(5$*(�6$/(�)25�1257+�5(*,21�,6����������������
�727$/�)25�1257+����,7(06��
�
�
6287+��-2+1621�������������$&(�(/(&75,&$/�����������������������������
6287+��-2+1621�������������$&0(�%8,/',1*������������������������������
$9(5$*(�6$/(�)25�6287+�5(*,21�,6����������������
�727$/�)25�6287+����,7(06��
�

(other report lines not shown)
��
�*5$1'�727$/�����,7(06��

Produce this report:

How to Print Customized Footin g Lines at a Control Break

204 Report Writer User’s Guide

The PIC'$$$,$$$' parm shows how to format the average sales amount in the footing line. It
specifies that a floating dollar sign should be used, and that only whole dollars be displayed.
The size of the PICTURE (7 characters) also determines how many characters are reserved in
the footing line for that field.

The LEFT justification parm specifies that the average AMOUNT field should be left–justified
within the 7 characters reserved for it in the footing line. This eliminates the extra blank
spaces that appeared between the literal text and the actual amount in Figure 61 (page 203.)
Figure 62 (page 205) shows an example of a footing line that uses the LEFT parm.

Here is another example of a FOOTING parm. In this example, we print a footing line instead
of a total line at the control break. The footing line will contain the total sales amount, the
average sales amount, and the maximum sales amount for a region.

����%5($.��5(*,21���12727$/
�����������)227,1*�
6$/(6�67$7,67,&6�)25
��5(*,21���
�������������������
727$/�
�$02817�727�/()7�
�������������������
$9*�
���$02817�$9*�/()7�
�������������������
0$;�
���$02817�0$;�/()7��

There are several things to notice about this example:

� the NOTOTAL parm prevents the normal total line from printing at the control
break (see the section beginning on page 193.)

� within the FOOTING print expression, the spacing factor of 5 helps separate the
REGION field from the statistics that follow.

� the LEFT parm used along with the statistical parms (TOT, AVG, and MAX) causes
the statistical value to be left justified. This arranges each value closer to its
"identifier" in the footing line.

The sample report in Figure 62 uses a BREAK statement similar to the one above.

You may specify as many FOOTING parms as you like in a single BREAK statement. Each
FOOTING parm describes one footing line. At the control break, the footing lines will print
in the same order as they appear in the BREAK statement.

The first footing line always prints immediately after the last regular report line of the control
group. If you want the first footing line to be separated from the regular report lines, specify
a blank footing line in your first FOOTING parm, like this:

%5($.��5(*,21
�������)227,1*�
�
�
�������)227,1*�
(1'�2)�5(*,21�
��5(*,21�
�������)227,1*�
$9(5$*(�6$/(�
��$02817�$9*��

The example above will cause a blank footing line to print immediately after the last regular
report line, followed by the other two footing lines. See Figure 62 for a sample report that
uses a blank FOOTING parm.

Note: in the FOOTING line, you may print statistical values for any numeric or time
field in the input file(s). You are not limited to just those fields that appear in the
COLUMNS statement.

How to Print Customized Footin g Lines at a Control Break

Chapter 4. Beyond the Basics 205

Notes:
• the blank FOOTING parm causes a blank line to print before the real footing line
• the NOTOTAL parm in the BREAK statement suppresses the normal total line at the control break
• the footing line now displays the total, average, and maximum values for the AMOUNT field
• the LEFT justification parm causes the numeric values to be left justified, and therefore closer to their

respective identifiers

Figure 62 Printing a field's total, average, and maximum values on a single line

,1387����6$/(6²),/(
7,7/(����
6$/(6�%<�5(*,21

7,7/(����
(;$03/(�2)�$�)227,1*�/,1(�:,7+�67$7,67,&6

&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257�����5(*,21
%5($.����5(*,21��12727$/
���������)227,1*�
�
�
���������)227,1*�
6$/(6�67$7,67,&6�)25
��5(*,21���
�����������������
727$/�
�$02817�727�/()7��
�����������������
$9*�
���$02817�$9*�/()7��
�����������������
0$;�
���$02817�0$;�/()7��

These control statements:

���������������������������6$/(6�%<�5(*,21�
��������������(;$03/(�2)�$�)227,1*�/,1(�:,7+�67$7,67,&6�
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������67$5�0$5.(7��������������������������������
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������

6$/(6�67$7,67,&6�)25�($67������727$/�����������������$9*�����������������0$;��������
�
�
1257+��-2+1621�������������9,//$�+27(/��������������������������������
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������

6$/(6�67$7,67,&6�)25�1257+�����727$/�����������������$9*�����������������0$;���������
�
�
6287+��-2+1621�������������$&(�(/(&75,&$/�����������������������������
6287+��-2+1621�������������$&0(�%8,/',1*������������������������������

6$/(6�67$7,67,&6�)25�6287+�����727$/�����������������$9*�����������������0$;���������

(other report lines not shown)

Produce this report:

206 Report Writer User’s Guide

How to Print the Number of Items in a
Control Group

This section explains:

� how to use the special built–in fields that are available for use in the BREAK

statement

We saw earlier that the default total line shows the number of items that appear in a control
group. If you choose to specify a custom total line, you may also want to show the number
of items that are in a control group. The special built–in field #ITEMS allows you to do this.
There are also some other related built–in fields that you may wish to use in BREAK statement
print expressions. These are:

BUILT–IN
FIELD NAME DESCRIPTION

#ITEMS this numeric field contains the number of records included in the
current control group.

#COUNTER this numeric field always contains the total number of records
included in the report so far. It is similar to #ITEMS except that it
is not reset to zero after a control break.

#ITEM–ENDING This character field contains either the letter "6", or a blank,
depending on the value of #ITEMS. When #ITEMS equals one,
#ITEM–ENDING is a blank. Otherwise, #ITEM–ENDING is an "6". This
field can be concatenated to another word to form the proper plural
or singular ending for the word.

You can use these built–in fields just like real data fields in the print expressions for the
FOOTING parm, TOTAL parm, AVERAGE parm, etc. For example:

%5($.��5(*,21
�������727$/�5(*,21��
5(*,21�+$6
���,7(06��
6$/(6
�

As with other fields, you may also include a parm list in parentheses after the built–in field
name. The following example requests that only 2 bytes be reserved in the footing line for
displaying the number of items in the control group:

%5($.��5(*,21
�������727$/�5(*,21��
5(*,21�+$6
���,7(06�����
6$/(6
�

Note that if a control group only contains one record, the preceding total line would read
"[[[[[�5(*,21�+$6����6$/(6" (which "ain't" good English.) We can use the #ITEM–ENDING

built–in field to so that the word 6$/(appears in the text when the control group contains only
1 record, and the word 6$/(6 appears when the control group contains multiple records.
Notice that we use a spacing factor of zero, to prevent a blank space from appearing between
"6$/(" and the ending "6".

%5($.��5(*,21
�������727$/�5(*,21��
5(*,21�+$6
���,7(06�����
6$/(
������,7(0²(1',1*�

Figure 63 shows a sample report that uses the above BREAK statement.

How to Print the Number of Items in a Control Group

Chapter 4. Beyond the Basics 207

Notes:
• the customized total line uses the #ITEMS field to show the number of records included in the control

group
• the width parm after #ITEMS causes only two spaces to be reserved for the number of items
• the #ITEM–ENDING built–in field contains the proper ending for the word "6$/(" in the total line
• the spacing factor of 0 in the TOTAL parm puts zero spaces between the word "6$/(" and the contents

of the #ITEM–ENDING built–in field

Figure 63 A report that prints the number of items in a control group

,1387�����6$/(6²),/(
7,7/(�����
6$/(6�%<�5(*,21

&2/8016���5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257������5(*,21
%5($.�����5(*,21�
����������727$/�5(*,21��
5(*,21�+$6
��,7(06���
����������������
6$/(
����,7(0²(1',1*�

These control statements:

���������������������������6$/(6�%<�5(*,21�
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������67$5�0$5.(7��������������������������������
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������
($67��5(*,21�+$6����6$/(6���
�
�
1257+��-2+1621�������������9,//$�+27(/��������������������������������
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+�5(*,21�+$6����6$/(6���
�
�
6287+��-2+1621�������������$&(�(/(&75,&$/�����������������������������
6287+��-2+1621�������������$&0(�%8,/',1*������������������������������
6287+�5(*,21�+$6����6$/(6���
��
�

(other report lines not shown)

�*5$1'�727$/�����,7(06��

Produce this report:

How to Print the Number of Items in a Control Group

208 Report Writer User’s Guide

Note: the special built–in fields discussed in this section may not be used in
HEADING print expressions. Since the heading lines print before a control group, the
number of items that the control group will contain is not yet known.

How to Print Header Lines at the Be ginnin g
of a Control Group

This section explains:

� how to print header lines at the beginning of a control group

� how to print header lines at the top of each page

� how to use the HEADING and REPEAT parms of the BREAK statement

In earlier sections we learned how to print lines at the end of a control group. You may also
want to print one or more lines of text at the beginning of a control group. For example, you
might want to print ($67�5(*,21�6$/(6�)2//2: at the beginning of the report lines for the East
region. Use the HEADING parm of the BREAK statement to accomplish this. For example:

%5($.��5(*,21
�������+($',1*�5(*,21�
5(*,21�6$/(6�)2//2:
�

Figure 64 shows a sample report that uses the above BREAK statement.

You may have as many HEADING parms in a BREAK statement as you like. Each HEADING

parm describes one heading line that will print at the beginning of a control group. The
heading lines will print in the same order as the HEADING parms appear in.

The contents of the HEADING parm is simply a print expression. Print expressions tell
Report Writer how to build one print line to use in a report. In the HEADING parm, the print
expression tells how to build a line that will print at the beginning of a new control group.

The contents of the COLUMNS statement is also a print expression–– one that tells how to
build the report lines for the main body of the report. Thus, the contents of the HEADING

parm is very similar to the contents of a COLUMNS statement, which you are already familiar
with.

Briefly, the HEADING print expression can contain literal text and data from input records.
The section titled "How to Print Customized Footing Lines at a Control Break" (page 196)
describes how to write a FOOTING parm print expression in detail. Most of the same rules
apply to writing HEADING parm print expressions.

There are, however, certain restriction on the print expression allowed in a HEADING parm.
The special built–in fields #ITEMS, #COUNTER, and #ITEM–ENDING may not be used in a
HEADING parm. Similarly, the statistical parms (TOTAL, AVERAGE, MAXIMUM, etc.) may not
be used with numeric and time fields in the HEADING parm's print expression. The reason,
of course, is that Report Writer will not know what those values are until all of the records
in the control group have been processed.

The value used for all fields appearing in a heading line will be taken from the first record of
the control group that follows. If you want the heading lines for a control group to be printed

How to Print Header Lines at the Be ginnin g of a Control Group

Chapter 4. Beyond the Basics 209

Notes:
• the text specified in the HEADING parm (of the BREAK statement) prints at the beginning of each

control group
• the data used for the REGION field in the heading line comes from the first record in the following

control group
• the spacing factor of 5 in the COLUMNS statements shifts the report columns to the right, so that the

heading and total lines stand out

Figure 64 A report that prints control group headings

,1387�����6$/(6²),/(
7,7/(�����
6$/(6�%<�5(*,21

&2/8016�����5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257������5(*,21
%5($.�����5(*,21�
����������+($',1*�5(*,21��
5(*,21�6$/(6�)2//2:
�

These control statements:

�����������������������������6$/(6�%<�5(*,21�
�
���������������(03/�����6$/(6�
�����5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67��5(*,21�6$/(6�)2//2:�
�����($67���0255,621������������67$5�0$5.(7��������������������������������
�����($67���0255,621������������$��3+272*5$3+<�����������������������������
�����($67���6,03621�������������(8523($1�'(/,������������������������������
�����($67���6,03621�������������-�	�6�/80%(5�������������������������������
�727$/�)25�($67�����,7(06���
�
�
1257+�5(*,21�6$/(6�)2//2:�
�����1257+��-2+1621�������������9,//$�+27(/��������������������������������
�����1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
�����1257+��-21(6���������������(=�*52&(5<���������������������������������
�����1257+��-21(6���������������72<�72:1�����������������������������������
�����1257+��-21(6���������������72<�72:1�����������������������������������
�727$/�)25�1257+����,7(06���
�
�
6287+�5(*,21�6$/(6�)2//2:�
�����6287+��-2+1621�������������$&(�(/(&75,&$/�����������������������������
�����6287+��-2+1621�������������$&0(�%8,/',1*������������������������������
�727$/�)25�6287+����,7(06���
�

(other report lines not shown)
��
�*5$1'�727$/�����,7(06���

Produce this report:

How to Print Header Lines at the Be ginnin g of a Control Group

210 Report Writer User’s Guide

at the top of each page of the report, add the REPEAT ("repeat headings") parm to the BREAK

statement:

%5($.��5(*,21�5(3($7
�������+($',1*�
6$/(6�,1�5(*,21
�5(*,21�

The above statement specifies a heading line to print at the beginning of each region's control
group. If any such control group is large enough to print on multiple pages, the heading line
will also be printed at the top of each subsequent page. Such heading lines print after the
report titles and column headings, and before the first detail line of the report. The value used
for all fields appearing in a repeated heading line is taken each time from the next detail
record after the heading line.

Printin g a "Line Number" in Your Report

You have already seen how to use the #ITEM built–in field in BREAK statements. In the BREAK

statement, #ITEM represents the total number of records in a control group. This is the same
value that appears in the default total line printed at control breaks.

You can also specify #ITEM as a field in your COLUMNS statement. It's value will be an
ascending, sequential "item number" representing the number of items included in the control
group so far. That is, it will be "1" for the first item printed in a control group, "2" for the
next item and so on. #ITEM's value is reset to zero after each control break. It then begins
again numbering the items in the next control group. (Of course, if your report has no control
breaks, the value of �,7(0 will not be reset.)

Using #ITEM in your COLUMNS statement allows you to print a "rank" or a "line number" for
each record printed in your report.

You might also want to print an "item number" and not have it reset at each control break.
To allow this, there are additional built–in fields named #ITEM2, #ITEM3, and so on through
#ITEM9. #ITEM2 is similar to #ITEM, but is not reset at the lowest level of control break.
However, if you have two levels of control breaks in your report, #ITEM2 will be reset to zero
whenever the higher level control break occurs. Similarly, #ITEM3 is not reset at the two
lowest level control breaks, but is reset when the third level of control break occurs. By using
the appropriate #ITEM built–in field, you can print item numbers and have them reset
whenever you like for reports with up to 9 levels of control breaks.

The report in Figure 68 (page 221) uses the #ITEM built–in field.

Note: #ITEM may also be spelled #ITEM1.

Chapter 4. Beyond the Basics 211

Reports with Multiple Control Breaks

This section explains:

� what break levels are

� what happens when a higher level break occurs

You may have more than one control break in a report. Report Writer allows an unlimited
number of control breaks. Just remember that each of the break fields must be a sort field.

When a report has more than one control break, each break is thought of as having a "level."
The order in which the break fields are listed in the SORT statement determines each break's
level. The break field appearing first in the SORT statement is considered the "highest" level
break field. The break field appearing next in the SORT statement is considered the "next
highest" level break field, and so on to the lowest level break field. For example, consider the
following SORT statement:

6257��5(*,21�727$/���(03/²1$0(�727$/���&86720(5

This SORT statement contains three sort fields. The TOTAL parm after the first two fields
makes them control break fields. REGION is the higher level break field, since it appears first
in the SORT statement. EMPL–NAME is the lower level break field.

Even when BREAK statements are used to identify break fields, it is still the order of the fields
in the SORT statement that determines the level of the break fields. The order in which the
BREAK statements appear is not significant. (All BREAK statements must, however, appear
after the SORT statement.) Consider the following statements:

6257���5(*,21��(03/²1$0(��&86720(5
%5($.��(03/²1$0(
%5($.��5(*,21

The preceding statements produce the very same result as the earlier example that used a
SORT statement alone. REGION will be the high level break field, and EMPL–NAME will be a
lower level break field.

Here is why a break's level is important: whenever a control break occurs for a particular
break field, all lower level breaks are "forced." That is, a control break is automatically
processed for all lower level control breaks, whether or not the contents of those break fields
changed value.

For example, consider the report shown in Figure 65 (page 213) which uses a SORT

statement to request two levels of control breaks. By making both REGION and EMPL–NAME

break fields, the report shows the totals sales for each employee within a region, as well as
for each region.

Consider what happens as Report Writer is printing the report and the REGION field changes
value. The control break for REGION must be processed, with region totals being printed.
But, there is a lower level break than REGION, namely EMPL–NAME. So, Report Writer will
first process the EMPL–NAME control break, printing the sales totals for the last employee
within the region. Then the control break for REGION will be processed, with the sales totals
being printed for the whole region.

Reports with Multiple Control Breaks

212 Report Writer User’s Guide

Now consider a place in the report, where the EMPL–NAME field changes, but the REGION field
does not change. In this case Report Writer will process only the EMPL–NAME control break,
because there are no lower level breaks to be forced.

As a means of helping you visualize the level of the control breaks, Report Writer uses a
slightly different total line for each level of control break. For the lowest level control break,
the total line begins with three asterisks. The total line for the next higher level break begins
with six asterisks. Each higher level control break gets three additional asterisks. This helps
when you are scanning a report for a particular level of break totals. Just scan down the left
side of the report looking for the total line with the appropriate number of asterisks.

When more than one control break is used in a report, it is often desirable to use a larger
spacing factor for the higher level break(s). For example we might want to just skip 1 line
whenever the EMPL–NAME changes, but skip to a whole new page whenever the REGION

changes. This would be specified by using a break spacing parm in either the SORT statement
or the BREAK statement (see page 183). For example:

6257���5(*,21��(03/²1$0(��&86720(5
%5($.��5(*,21�����63$&(�3$*(�
%5($.��(03/²1$0(��63$&(���

Or, to specify the same spacing parms in the SORT statement:

6257��5(*,21�3$*(���(03/²1$0(�����&86720(5

Reports with Multiple Control Breaks

Chapter 4. Beyond the Basics 213

Notes:
• the total line for EMPL–NAME, the lower level break, begins with three asterisks
• the total line for REGION begins with six asterisks, indicating its higher level
• the SORT statement specifies that 3 blank lines should print after the REGION totals, and only 1 blank

line after the EMPL–NAME totals

Figure 65 A report with two levels of control breaks

,1387����6$/(6²),/(
7,7/(����
6$/(6�%<�(03/2<((�:,7+,1�5(*,21

&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257�����5(*,21�����(03/²1$0(�����&86720(5

These control statements:

�������������������6$/(6�%<�(03/2<((�:,7+,1�5(*,21
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���0255,621������������67$5�0$5.(7��������������������������������
�727$/�)25�0255,621������,7(06�������������������������������������
�
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������
�727$/�)25�6,03621�������,7(06�������������������������������������
�
�727$/�)25�($67�����,7(06���������������������������������������

�
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-2+1621�������������9,//$�+27(/��������������������������������
�727$/�)25�-2+1621�������,7(06�������������������������������������
�
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
�727$/�)25�-21(6���������,7(06�������������������������������������
�
�727$/�)25�1257+����,7(06���������������������������������������
�

(other report lines not shown)

��
�*5$1'�727$/�����,7(06���������������������������������������

Produce this report:

214 Report Writer User’s Guide

How to Customize the Grand Totals

This section explains:

� how the Grand Totals are processed by default

� how to print additional statistical lines (average, maximum and minimum) at
the Grand Total

� how to customize the Grand Total lines

� how to suppress the Grand Totals

Report Writer treats the end of a report like one final control break. The "control group" for
this break includes the entire report. As with any other control break, Report Writer prints
a total line at this special control break. This break total line is what appears as the "Grand
Total" line.

You may customize the Grand Total control break by using a BREAK statement, just like you
do for regular control breaks. Use the special field name #GRAND on the BREAK statement.
For example:

%5($.���*5$1'��$9(5$*(��0$;,080��0,1,080

In the above statement the field name #GRAND specifies that the information on this BREAK

statement pertains to the Grand Total break at the end of the report. The AVERAGE parm
specifies that a line of averages should print at the control break (that is, at the end of the
report.) The MAXIMUM and MINIMUM parms specify that a line of maximums and a line of
minimums should also print. Figure 66 shows a sample report that uses this BREAK

statement

You may use any of the BREAK statement parms except for SPACE in the BREAK statement for
#GRAND. See the section titled "Customizing the Control Breaks" (page 182) to learn what
all you can do with a BREAK statement.

Here is another example of a #GRAND BREAK statement:

%5($.���*5$1'��727$/��,7(06�
6$/(6�/,67('�,1�5(3257
�
���������������$9(5$*(�
$9(5$*(�6$/(�,1�5(3257
�

The above statement uses the TOTAL parm to specify a custom total line. The text
"QQQ�QQQ�6$/(6�/,67('�,1�5(3257" will now appear in the Grand Total line rather than the usual
"*** *5$1'�727$/��QQQQQ�,7(06�". The AVERAGE parm causes a line of averages to print at the
end of report. It also specifies what text the average line should begin with ("$9(5$*(�6$/(
,1�5(3257").

The FOOTING parm may also be specified in the #GRAND BREAK statement. Footing lines
print at the end of a control group. The entire report is the control group for the Grand
Total control break. Therefore, any footing lines specified in this statement will print only
once –– at the end of the report. (Use the FOOTNOTE statement to print lines at the bottom
of each page.)

The HEADING parm may also be used in the #GRAND BREAK statement. Any HEADING lines
specified will print once at the very beginning of the report (after the title lines and column
headings). If the REPEAT parm is also specified, the HEADING lines will be repeated at the top
of each page of the report.

How to Customize the Grand Totals

Chapter 4. Beyond the Basics 215

Notes:
• the BREAK statement for #GRAND specifies how to process the Grand Total "control break"
• the AVERAGE, MAXIMUM and MINIMUM parms cause those statistical lines to print along with the

Grand Total line
• the TOTAL parm was not needed, since total lines print at control breaks by default

Figure 66 A report with customized Grand Totals

,1387�����6$/(6²),/(
7,7/(�����
6$/(6�%<�5(*,21

7,7/(�����
6+2:,1*�&203$1<²:,'(�67$7,67,&6

&2/8016���5(*,21�(03/²1$0(�6$/(6²'$7(�&86720(5�$02817�7$;
6257������5(*,21�(03/²1$0(�6$/(6²'$7(
%5($.������*5$1'��$9(5$*(��0$;,080��0,1,080

These control statements:

���������������������������6$/(6�%<�5(*,21�
�������������������6+2:,1*�&203$1<�:,'(�67$7,67,&6�
�
����������(03/�����6$/(6�
5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����
�
($67���0255,621������������67$5�0$5.(7��������������������������������
($67���0255,621������������$��3+272*5$3+<�����������������������������
($67���6,03621�������������(8523($1�'(/,������������������������������
($67���6,03621�������������-�	�6�/80%(5�������������������������������
1257+��-2+1621�������������9,//$�+27(/��������������������������������
1257+��-2+1621�������������0$5<6�$17,48(6�����������������������������
1257+��-21(6���������������(=�*52&(5<���������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
1257+��-21(6���������������72<�72:1�����������������������������������
6287+��-2+1621�������������$&(�(/(&75,&$/�����������������������������
6287+��-2+1621�������������$&0(�%8,/',1*������������������������������
:(67���%$.(5���������������-$&.6�&$)(���������������������������������
:(67���%$.(5���������������-$&.6�&$)(���������������������������������
:(67���7+20$6��������������<2*857�&,7<��������������������������������
�
�
�*5$1'�727$/�����,7(06���
�$9(5$*(�9$/8(���
�0$;,080�9$/8(���
�0,1,080�9$/8(���

Produce this report:

How to Customize the Grand Totals

216 Report Writer User’s Guide

As mentioned earlier, a total line prints at the Grand Total control break by default. In
addition, any other statistical lines that printed at a real control break will also print by default
at the Grand Total control break. Thus, for example, if an average line and a maximum line
printed at a real control break, an average line and maximum line will also print at the Grand
Total control break. As shown in the previous example, you may also explicitly request any
of these statistical lines, even if no other control break specified them.

The SPACE parm in a BREAK statement is used to specify the spacing to perform after a
control break. Since there is no more report following the Grand Total control break, any
SPACE parm specified for it will be ignored.

Spacing before the Grand Total break is determined as follows. If any other control breaks
specified a SPACE parm of NEWSHEET, then the Grand Totals will also be printed on a new
sheet of paper. Otherwise, if any real control breaks specified ODDPAGE, then the Grand
Total will also go on the next odd page. Otherwise, if any real control break specified PAGE,

then the Grand Totals will go on a new page.

In addition, if the NEWSHEET1, ODDPAGE1, or PAGE1 parm was used in any of these cases, the
Grand Total page will be numbered page 1 as well.

If no real control breaks used any of the page spacing options, then the Grand Totals will be
printed after skipping two blank lines.

To suppress the Grand Total line altogether, you can do one of two things.

You can use the NOGRANDTOTAL parm in an OPTIONS statement, like this:

237,216��12*5$1'727$/

Figure 68 (page 221) uses the above statement.

Or, you can use a BREAK statement for the #GRAND break and specify the NOTOTAL parm, like
this:

%5($.���*5$1'�12727$/

Chapter 4. Beyond the Basics 217

(This page left blank intentionally.)

218 Report Writer User’s Guide

How to Produce Summar y Reports

This section explains:

� what a summary report is

� how to convert a regular report into a summary report

A summary report is one which does not show detail information about every record included
in the report. Instead, the detail information is summarized, with just the totals actually
appearing in the report. Chapter 2, "How to Request a Report" included a lesson on creating
summary reports (page 62.) And a lesson in Chapter 3, "How to Request a PC File" showed
how to create summary PC files (page 110.)

In each case, an OPTIONS statement with the SUMMARY parm was used:

237,216��6800$5<

The SUMMARY parm causes two things to happen:

� it specifies that zero detail lines will print. This is the same as specifying:

237,216��'(7$,/���

The only lines that print in such a report are lines associated with control breaks:
heading lines, footing lines, totals line, average lines, etc.

� it sets the break spacing value for the lowest level break to zero blank lines.
This prevents two blank lines from appearing between every line in the summary
report (the default break spacing value.)

Figure 67 on page 219 shows another example of a summary report. This report contains
two levels of breaks. It is very similar to the detail report shown earlier in Figure 65
(page 213). The main difference is that in Figure 67 the detail lines have been suppressed
and only the EMPL–NAME and REGION total lines are printed.

Notice that in summary reports only numeric columns are filled in. That is natural since only
numeric columns can be totalled, or "summarized." Therefore, in this report we eliminated
the non–numeric columns such as REGION, EMPL–NAME, SALES–DATE, etc. We added a
spacing of 40 to the COLUMNS statement ahead of the first field in order to push that field 40
spaces over in the report. That was necessary to prevent overlap between the total line text
("�727$/�)25����") and the first actual total (in the AMOUNT column). If we had not done
that, the control break total lines would have split onto two lines, making a less attractive
report.

Note: if you request a SUMMARY report and do not specify any control breaks, your
report will contain only the Grand Total line. This is useful when you want to
summarize all of the detail lines in a report.

How to Produce Summar y Reports

Chapter 4. Beyond the Basics 219

Notes:
• no regular report lines print–– only the total lines from the two levels of control breaks
• the total line for EMPL–NAME, the lower level break, begins with three asterisks
• the total line for REGION begins with six asterisks, indicating its higher level
• the spacing factor of 40 (in COLUMNS statement) move the AMOUNT column over 40 spaces,

leaving room for the total line text to print on the same line as the totals themselves
• note that it is okay to sort a report on fields which do not appear in the COLUMNS statement

Figure 67 A summary report that uses two levels of control breaks

237,21���6800$5<
,1387����6$/(6²),/(
7,7/(����
(03/2<((�6$/(6�6800$5<

&2/8016������$02817��7$;
6257�����5(*,21�727$/���(03/²1$0(�727$/�

These control statements:

����������������������(03/2<((�6$/(6�6800$5<�
�
��$02817���������7$;����
�
�727$/�)25�0255,621������,7(06����������������������������������
�727$/�)25�6,03621�������,7(06����������������������������������
�727$/�)25�($67�������,7(06����������������������������������
�
�
�727$/�)25�-2+1621�������,7(06����������������������������������
�727$/�)25�-21(6���������,7(06����������������������������������
�727$/�)25�1257+������,7(06����������������������������������
�
�
�727$/�)25�-2+1621�������,7(06����������������������������������
�727$/�)25�6287+������,7(06����������������������������������
�
�
�727$/�)25�%$.(5���������,7(06����������������������������������
�727$/�)25�7+20$6��������,7(0�����������������������������������
�727$/�)25�:(67�������,7(06����������������������������������
�
�
�
�
�*5$1'�727$/��������,7(06���������������������������������

Produce this report:

220 Report Writer User’s Guide

How to Create "Top 10" T ype Reports

This section explains:

� how to create "Top 10" type reports

� how to use the DETAIL parm in the OPTIONS statement

The DETAIL(nnn) option tells Report Writer to print only a limited number of detail records in
the report for each control group. We saw in an earlier section that specifying the SUMMARY

option causes the DETAIL(0) option to be in effect. DETAIL(0) requests that no detail records
be printed for each control group in the report.

To produce a "Top 5" or "Top 10" type of report, use the DETAIL parm with whatever value
is appropriate for your report. For example:

237,216��'(7$,/���

In the above example we request that only 3 detail lines print for each control group. That
will cause just the first 3 records in each control group to print in our report.

Consider the "Top 3 Sales" report in Figure 68 which uses the above statement. This report
is sorted first in REGION order, and then in descending AMOUNT order. We also made REGION

a control break. The result is that within each REGION, the largest sale prints first, the next
largest sale prints next, and so on. By using the DETAIL(3) option, our report shows only the
3 largest sales in each region.

Here are a few other things to note about this kind of report:

� the DETAIL option specifies the maximum number of records to print per control
group. If a control group does not contain that many records, all records for that
control group are printed. (In Figure 68, the "6287+" region is an example of
this. There are only 2 sales for that region.)

� the control group totals will still contain the total value of the entire control
group –– not just the total of the records that are printed. You can use the
NOTOTALS parm in the BREAK statement to suppress the totals if you prefer (as
we did in Figure 68).

� if a report with a DETAIL(nnn) option does not have any control breaks, the whole
report is treated as a single control group. In that case, the first nnn records of
the report will print.

How to Create "Top 10" T ype Reports

Chapter 4. Beyond the Basics 221

Notes:
• the DETAIL(3) option causes only 3 detail lines per control group to print
• the #ITEM built–in field lets us print a "rank" for each detail record
• the NOTOTALS parm (in the BREAK statement) suppresses the control break totals (which would not

be the sum of the detail records printed)
• the NOGRANDTOTAL option suppresses the Grand Totals, which would not be the sum of the detail

records printed

Figure 68 "Top 3 Sales in Region" report

237,216��'(7$,/�����12*5$1'727$/
,1387����6$/(6�),/(
7,7/(����
723���6$/(6�,1�($&+�5(*,21

6257�����5(*,21��$02817�'(6&�
%5($.����5(*,21��12727$/6
&2/8016���,7(0�
5$1.
�
���������5(*,21��(03/�1$0(��6$/(6�'$7(��&86720(5��$02817��7$;

These control statements:

�������������������������723���6$/(6�,1�($&+�5(*,21

�����������������(03/�����6$/(6
�5$1.��5(*,21����1$0(������'$7(������&86720(5���������$02817���������7$;����

�������($67���0255,621������������67$5�0$5.(7�������������������������������
�������($67���0255,621������������$��3+272*5$3+<����������������������������
�������($67���6,03621�������������-�	�6�/80%(5������������������������������

�������1257+��-2+1621�������������9,//$�+27(/�������������������������������
�������1257+��-21(6���������������72<�72:1����������������������������������
�������1257+��-21(6���������������72<�72:1����������������������������������

�������6287+��-2+1621�������������$&0(�%8,/',1*�����������������������������
�������6287+��-2+1621�������������$&(�(/(&75,&$/����������������������������

�������:(67���%$.(5���������������-$&.6�&$)(��������������������������������
�������:(67���%$.(5���������������-$&.6�&$)(��������������������������������
�������:(67���7+20$6��������������<2*857�&,7<�������������������������������

Produce this report:

222 Report Writer User’s Guide

How to Count "Occurrences" in a File

This section explains:

� how to count the number of times a certain value occurs in a file

Say that we wanted to know how many of the employees in the EMPL–FILE are based in
California. Or, what if we wanted to know the count of male and female employees. To get
statistics like these from a file, we use a special type of summary report. Figure 69 and
Figure 70 show examples of such reports.

In these reports, we first create a number of new fields using conditional COMPUTE

statements. These fields are used as "counter" fields. They count the number of times that
a certain field contains a particular value. For example, the NUMBER–OF–MALE field counts
the number of times that the SEX field in the EMPL–FILE contains "0". Consider the following
statement:

&20387(��180%(5²2)²0$/(� �:+(1�6(;
0
���$66,*1���

After each record is read from the input file, the value of the NUMBER–OF–MALE field is
computed. Its value will always be either 1 or 0. When the SEX field contains the value "0",
the NUMBER–OF–MALE field will contain a 1. Otherwise, the NUMBER–OF–MALE field will
contain a 0 (the default value when no WHEN expressions are true.) By adding up all of the
NUMBER–OF–MALE fields in the report, we can get a total count of the records whose SEX field
contained an "0".

We set up a similar counter field for each statistic that we are interested in. These counter
fields are then listed in the COLUMNS statement. The Grand Total line shows us the total
value for each of these "counters".

You would normally use the SUMMARY option to suppress all of the detail lines leaving just
the statistics. In Figure 69 we printed the detail lines to better illustrate how the counter
fields work.

You can break your statistics down further by simply adding one or more control breaks to
such a report. For example, by sorting and breaking on the DEPT–NUM field, we can get the
same statistics by department number. That is, we can see the number of males and females
in each department. The sample report in Figure 70 (page 224) shows an example of
printing statistics by department number. In this report we used the SUMMARY option to
suppress the individual detail lines. We also removed from the COLUMNS statement those
fields which do not print in the total lines.

Note: Another way to get "count" statistics is to simply sort the report on the item
you want to count (the STATE field, for instance), and make it a control break. Each
time the STATE field changes value, a control break will occur and the number of
"items" in that state will print. The disadvantage of this method is that only one
"thing" can be counted at a time. You would have to run a different report, for
example, to count the number of male and female employees.

How to Count "Occurrences" in a File

Chapter 4. Beyond the Basics 223

Notes:
• several "counter" fields are created using conditional COMPUTE statements
• the counter fields are totalled at the end of the report, giving us our statistics
• you would normally use an OPTIONS: SUMMARY statement to suppress the detail lines from such a

report

Figure 69 Counting how many times something occurs in a file

,1387����(03/²),/(
7,7/(����
(03/2<((�),/(�&28176

&20387(��180%(5²2)²0$/(������� �:+(1�6(;
0
�����$66,*1���
&20387(��180%(5²2)²)(0$/(����� �:+(1�6(;
)
�����$66,*1���
&20387(��180%(5²,1²&$/,)251,$� �:+(1�67$7(
&$
��$66,*1���
&20387(��180%(5²,1²$5,=21$���� �:+(1�67$7(
$=
��$66,*1���
&20387(��180%(5²2)²)8//7,0(��� �:+(1�)8//²7,0(���$66,*1���

&2/8016��/$67²1$0(��),567²1$0(��'(37²180��67$7(
���������180%(5²2)²0$/(���������180%(5²2)²)(0$/(
���������180%(5²,1²&$/,)251,$���180%(5²,1²$5,=21$
���������180%(5²2)²)8//7,0(

These control statements:

���������������������������������(03/2<((�),/(�&28176�
�
���180%(5��180%(5����180%(5���180%(5���180%(5�
�����/$67������������),567������'(37���������2)������2)��������,1�������,1�������2)�
�����1$0(������������1$0(�������180��67$7(��0$/(���)(0$/(��&$/,)251,$�$5,=21$�)8//7,0(�
�
-21(6�����������-(55<�����������������&$���
-2+1621���������7+20$6����������������$=���
-2+1621���������/,1'$�����������������&$���
0$&'21$/'�������5,&+$5'���������������&$���
6,03621���������7,027+<���������������&$���
0255,621��������0,&+$(/���������������&$���
&+5,6723+(5621��0(/,66$���������������$=���
%$.(5�����������9,9,$1����������������&$���
7+20$6����������0$57,1����������������&$���
�
�
�*5$1'�727$/����,7(06���

Produce this report:

How to Count "Occurrences" in a File

224 Report Writer User’s Guide

Notes:
• this report is similar to the report in the preceding figure
• in this report we added a control break for DEPT–NUM, giving us department totals as well as Grand

Totals
• the OPTIONS: SUMMARY statement suppressed all detail lines from the report
• the COLUMNS statement only lists the counter fields, since no detail records are printed
• the initial spacing factor of 40 (in the COLUMNS statement) moves the first column 40 spaces to the

right, leaving room for the total line text to print

Figure 70 Breaking down "count" statistics further

237,216��6800$5<
,1387����(03/²),/(
7,7/(����
(03/2<((�),/(�&28176��%<�'(3$570(17

&20387(��180%(5²2)²0$/(������� �:+(1�6(;
0
�����$66,*1���
&20387(��180%(5²2)²)(0$/(����� �:+(1�6(;
)
�����$66,*1���
&20387(��180%(5²,1²&$/,)251,$� �:+(1�67$7(
&$
��$66,*1���
&20387(��180%(5²,1²$5,=21$���� �:+(1�67$7(
$=
��$66,*1���
&20387(��180%(5²2)²)8//7,0(��� �:+(1�)8//²7,0(���$66,*1���

6257�����'(37²180
%5($.����'(37²180��727$/�
&28176�)25�'(3$570(17
�'(37²180�

&2/8016����
���������180%(5²2)²0$/(��������180%(5²2)²)(0$/(
���������180%(5²,1²&$/,)251,$��180%(5²,1²$5,=21$
���������180%(5²2)²)8//7,0(

These control statements:

������������������������(03/2<((�),/(�&28176��%<�'(3$570(17�
�
��180%(5��180%(5����180%(5���180%(5���180%(5�
��2)������2)��������,1�������,1�������2)�
���0$/(���)(0$/(��&$/,)251,$�$5,=21$�)8//7,0(�
�
&28176�)25�'(3$570(17���
&28176�)25�'(3$570(17���
&28176�)25�'(3$570(17���
&28176�)25�'(3$570(17���
�
�
�*5$1'�727$/����,7(06���

Produce this report:

Chapter 4. Beyond the Basics 225

(This page left blank intentionally.)

226 Report Writer User’s Guide

How to Total a Field b y "Cate gory"

This section explains:

� how to compute totals "by category" (such as "by sex")

In the preceding section, we saw how to count the number of males and females in a control
group. Now let's take that a step further. What if we wanted to calculate the total sales made
by males and females? We are no longer simply counting occurrences, but accumulating a
field's total by category.

Of course, one way to do that is to sort and break on the SEX field. That would cause all
records for each sex to be grouped and printed together, with control break totals printed for
each group. If we listed TOTAL–SALES in the report, the control break totals would show the
total sales for each sex. But assume we want such totals by sex without having to sort on the
SEX field? And assume we want to see the male and female totals together in the same line,
rather than in separate total lines.

There is another technique we can use to accomplish this. Again, we use a conditional
COMPUTE statement:

&20387(��0$/(²6$/(6� �:+(1�6(;
0
���$66,*1�727$/²6$/(6�

After each new record is read from the input file, the value of MALE–SALES will be computed.
Its value will always be either 0 or the employee's total sales amount (from the TOTAL–SALES

field.) When the SEX field contains an "0", the MALE–SALES field will contain the
TOTAL–SALES value. Otherwise, the MALE–SALES field will contain a 0. By adding up all of
the MALE–SALES fields in the report, we can get the total sales made by all males.

To get the amount sold by females, we use a similar statement:

&20387(��)(0$/(²6$/(6� �:+(1�6(;
)
���$66,*1�727$/²6$/(6�

Figure 71 shows a report that uses the above statements. We put the MALE–SALES and
FEMALE–SALES field in the COLUMNS statement. Those fields are then automatically totalled
and printed at each control break, as well as at the Grand Totals.

By adding the SUMMARY option, we could suppress the detail lines and see just the total lines.

This technique can often be used total a field by category, instead of just getting a single total
for it. Use one COMPUTE statement for each possible value of the "category" field. Of
course, this technique cannot be used if all of the possible values of the category field are not
known in advance.

How to Total a Field b y Category

Chapter 4. Beyond the Basics 227

Notes:
• in the detail lines, MALE–SALES and FEMALE–SALES each contains either 0 or the value from the

TOTAL–SALES field.
• the totals for those fields show the total sales made by male and female employees

Figure 71 Accumulating fields by a category (such as gender)

,1387�����(03/�),/(
7,7/(�����
6$/(6�727$/6��%<�*(1'(5

&20387(���0$/(�6$/(6��� ��:+(1�6(;
0
�����$66,*1�727$/�6$/(6�
&20387(���)(0$/(�6$/(6�� �:+(1�6(;
)
�����$66,*1�727$/�6$/(6�

6257������'(37�180
%5($.�����'(37�180��727$/�
6$/(6�,1�'(3$570(17
�'(37�180�

&2/8016���/$67�1$0(����),567�1$0(���'(37�180����6(;
����������727$/�6$/(6��������0$/(�6$/(6�������)(0$/(�6$/(6����

These control statements:

�����������������������������6$/(6�727$/6��%<�*(1'(5

�����/$67������������),567�������'(37����������727$/���������0$/(��������)(0$/(
�����1$0(������������1$0(���������180���6(;����6$/(6��������6$/(6��������6$/(6����

-2+1621���������7+20$6�������������������0��
&+5,6723+(5621��0(/,66$������������������)��
6$/(6�,1�'(3$570(17���

-21(6�����������-(55<��������������������0��
-2+1621���������/,1'$��������������������)��
0$&'21$/'�������5,&+$5'������������������0��
6$/(6�,1�'(3$570(17���

6,03621���������7,027+<������������������0��
0255,621��������0,&+$(/������������������0��
6$/(6�,1�'(3$570(17���

%$.(5�����������9,9,$1�������������������)��
7+20$6����������0$57,1�������������������0��
6$/(6�,1�'(3$570(17���

�*5$1'�727$/����,7(06���

Produce this report:

228 Report Writer User’s Guide

Workin g With Multiple Input Files

The following sections discuss various topics involving runs that use multiple input files.
The topics discussed are:

� reading more than one record from the same auxiliary input file (page 228)

� how to use a field from one auxiliary input file as the READKEY for another
auxiliary file (page 230)

� how to assign and use record names (page 232)

� how "missing" records are handled (page 233)

� how to read records using generic and KGE (key greater than or equal) keys
(page 234)

� how to perform "one–to–many" reads by reading more than one record for
each READKEY value (page 235)

Usin g Multiple READ Statements for
the Same File

This section explains:

� how to read more than one record from the same auxiliary input file

In Chapter 2, "How to Request a Report" we learned how to produce a report using two
auxiliary input files. (See Figure 19 on page 71.) We used two fields from the primary input
file (SALES–FILE) as keys to read records from other files. The SALES–FILE contains yet
another field that could be used as a read key for an auxiliary input file. That is the
BACKUP–EMPL–NUM field, which is the employee number of the backup salesperson for a sale.
This field can be used as a read key to the EMPL–FILE.

But our report already has one READ statement for the EMPL–FILE. That READ statement uses
the EMPL–NUM field as the read key. This is no problem. Report Writer allows you to have
an unlimited number of READ statements for the same file. The sample report in Figure 72
shows the addition of a second READ statement for the EMPL–FILE.

The second READ statement uses a different read key from the earlier READ statement, in order
to read a different record from the EMPL–FILE. This means that two different EMPL–FILE

records will be available for use in subsequent control statements. The first READ statement
will read the employee file record for the main salesperson. The second READ statement will
read the employee file record for the backup salesperson.

There is one thing to be careful about when you use more than one READ statement from the
same file. All of the data fields from that auxiliary input file will now exist multiple times
–– once in each record. You can't simply specify HIRE–DATE, for example, in the COLUMNS

statement now, because there are two such fields.

To solve this problem of ambiguous field names, we used the RECNAME parm in each of the
READ statements for the EMPL–FILE. This parm assigns unique names to the two records. The

Usin g Multiple READ Statements from the Same File

Chapter 4. Beyond the Basics 229

,1387����6$/(6�),/(
5($'�����(03/�),/(��5($'.(<�(03/�180����������5(&1$0(�6$/(60$1�
5($'�����(03/�),/(��5($'.(<�%$&.83�(03/�180���5(&1$0(�%$&.83�

&20387(��352'.(<� �
3
���352'8&7�&2'(
5($'�����352'8&7�),/(��5($'.(<�352'.(<�

7,7/(����
/,67,1*�2)�5(&(17�6$/(6��:,7+�%$&.83�(03/2<((�,1)2

&2/8016��(03/�1$0(
���������6$/(6�),/(�(03/�180
���������6$/(60$1�+,5(�'$7(
���������%$&.83�(03/�180
���������%$&.83�/$67�1$0(
���������%$&.83�+,5(�'$7(
���������352'8&7�&2'(
���������352'8&7�'(6&

These control statements:

������������������/,67,1*�2)�5(&(17�6$/(6��:,7+�%$&.83�(03/2<((�,1)2

�����������6$/(6
�����������),/(��6$/(60$1�%$&.83�����%$&.83�������%$&.83
���(03/����(03/����+,5(����(03/�������/$67���������+,5(���352'8&7�������352'8&7
���1$0(�����180����'$7(����180��������1$0(���������'$7(����&2'(����������'(6&�������
-2+1621��������������������������6,03621��������������������������3(1&,/6��12����
%$.(5����������������������������7+20$6���������������������������+2/(�381&+(56
0255,621�������������������������-21(6����������������������������,1.3$'6
0255,621�������������������������7+20$6���������������������������*5((1�3(16
6,03621��������������������������-2+1621��������������������������5('�3(16
-2+1621��������������������������-21(6����������������������������'(6.�&$/(1'$56
-2+1621��������������������������%$.(5����������������������������0$,/,1*�/$%(/6
%$.(5����������������������������-2+1621��������������������������5('�3(16
7+20$6���������������������������-2+1621��������������������������0$,/,1*�/$%(/6
-21(6����������������������������0255,621�������������������������3$3(5�&/,36
-21(6����������������������������-2+1621��������������������������,1.3$'6
-21(6����������������������������-2+1621��������������������������3$3(5�&/,36
-2+1621��������������������������0255,621�������������������������&+$,56
6,03621��������������������������0255,621�������������������������5('�3(16

�*5$1'�727$/�����,7(06�

Produce this report:

Notes:
• for every SALES–FILE record read, two records are read from the EMPL–FILE
• each EMPL–FILE record has a different name, assigned by the RECNAME parm (in the READ

statement)
• the COLUMNS statement uses a record name to prefix each field name from the EMPL–FILE

Figure 72 A report with multiple READ statements for the same file

Usin g Multiple READ Statements from the Same File

230 Report Writer User’s Guide

record read using the EMPL–NUM field as the read key is named SALESMAN. The record read
using the BACKUP–EMPL–NUM field as the read key is named BACKUP.

 In the COLUMNS statement, we qualified all references to fields from the EMPL–FILE with one
of these two record names. The use of the record name made it clear which record's data was
intended in each instance.

How to Chain READ Statements

This section explains:

� how to use fields from one auxiliary input file to read a record from another
auxiliary input file

The sample report in the previous section used all of the fields in the primary input file that
could be used as read keys to other files. But we can still read another record from an
auxiliary input file. How? By using a field from an existing auxiliary input file as the key
to another auxiliary input file. This is called "file chaining."

File chaining is when one auxiliary file contains the key used to read a record from another
auxiliary input file, which may contain the key to yet another auxiliary input file, and so on.
Report Writer allows file chaining to any level.

Let's look at an example of file chaining. In the sample report in Figure 72 (page 229), the
EMPL–FILE is an auxiliary input file. The EMPL–FILE contains the address of the employee,
including his 2–byte STATE. But the STATE field can be used as a key to read from another
auxiliary input file –– the STATE–FILE (described in Appendix F, "Sample File Definitions.")
By reading the STATE–FILE record we can obtain the full state name for use in our report.
Figure 73 shows a report that does this.

When chaining files, the order of the READ statements is important. Be sure to follow the
rule that the READKEY field specified in each READ statement must already be available to
Report Writer in an existing input file record. For that reason, the READ statement to the
EMPL–FILE must come before the READ statement to the STATE–FILE. The field used as the
READKEY to the STATE–FILE isn't available until after the read to the EMPL–FILE.

How to Chain READ Statements

Chapter 4. Beyond the Basics 231

,1387����6$/(6²),/(
5($'�����(03/²),/(���5($'.(<�(03/²180�
5($'�����67$7(²),/(��5($'.(<�67$7(�

7,7/(����
/,67,1*�2)�5(&(17�6$/(6

7,7/(����
:,7+�(03/2<((�$''5(66�,1)250$7,21

&2/8016���(03/²1$0(
����������&86720(5
����������6$/(6²'$7(
����������6$/(6²),/(�(03/²180�
(03/180
�
����������&,7<
����������67$7(
����������67$7(²1$0(

These control statements:

�������������������������/,67,1*�2)�5(&(17�6$/(6�
��������������������:,7+�(03/2<((�$''5(66�,1)250$7,21�

���(03/���������������������6$/(6���(03/�������������������������67$7(�
���1$0(�������&86720(5�������'$7(���180�������&,7<�������67$7(����1$0(���

-2+1621����$&(�(/(&75,&$/����������������6&2776'$/(�������$=���$5,=21$�
%$.(5������-$&.6�&$)(��������������������:$/187�&5((.�����&$���&$/,)251,$�
0255,621���67$5�0$5.(7�������������������*/(1'$/(���������&$���&$/,)251,$�
0255,621���$��3+272*5$3+<����������������*/(1'$/(���������&$���&$/,)251,$�
6,03621����(8523($1�'(/,�����������������$5&$',$����������&$���&$/,)251,$�
-2+1621����9,//$�+27(/�������������������6$17$�526$�������&$���&$/,)251,$�
-2+1621����0$5<6�$17,48(6����������������6$17$�526$�������&$���&$/,)251,$�
%$.(5������-$&.6�&$)(��������������������:$/187�&5((.�����&$���&$/,)251,$�
7+20$6�����<2*857�&,7<�������������������&21&25'����������&$���&$/,)251,$�
-21(6������(=�*52&(5<��������������������6$1�)5$1&,6&2����&$���&$/,)251,$�
-21(6������72<�72:1����������������������6$1�)5$1&,6&2����&$���&$/,)251,$�
-21(6������72<�72:1����������������������6$1�)5$1&,6&2����&$���&$/,)251,$�
-2+1621����$&0(�%8,/',1*�����������������6&2776'$/(�������$=���$5,=21$�
6,03621����-�	�6�/80%(5������������������$5&$',$����������&$���&$/,)251,$�

�*5$1'�727$/�����,7(06��

Produce this report:

Notes:
• a record is read from the EMPL–FILE, using the employee number from the primary input file as the

key
• the STATE field from the EMPL–FILE is then used to read an additional record from the

STATE–FILE
• an override column heading is specified for EMPL–NUM in the COLUMNS statement (for aesthetic

purposes only)

Figure 73 A report with chained READ statements

232 Report Writer User’s Guide

How to Name the Input File Records

This section explains:

� what record names are

� the default record name assigned to each input file

� how to assign your own record name to an input file

Report Writer assigns a name to the records that it reads from each input file. These are
called record names. By default, records from a file are given the same name as the file
itself. For example:

,1387��6$/(6²),/(

Since no record name was explicitly stated in the above statement, the record name for
records from the SALES–FILE file will also be "SALES–FILE."

Record names are necessary to distinguish between fields that have the same name but are
in different input files. For example, a field named EMPL–NUM exists in both the EMPL–FILE

and in the SALES–FILE (see Appendix F, "Sample File Definitions.") If a particular report
uses both of these files as inputs, simply specifying EMPL–NUM as a field name would be
ambiguous. You need to prefix EMPL–NUM with a record name to indicate which record's
EMPL–NUM field you are referring to. (Prefixing a field name with a record name and a period
is called qualifying a field name.) Consider the following statements:

,1387����6$/(6²),/(
5($'�����(03/²),/(��5($'.(<�(03/²180�
&2/8016��(03/²180
���������6$/(6²),/(�(03/²180
���������(03/²),/(�(03/²180

The above COLUMNS statement would have the following result. The first column
(EMPL–NUM by itself) would result in an error message –– the name is ambiguous since such
a field exists in more than one of the input files. The first column in the report would contain
only the "ambiguous reference" error indicator (that is, $). The second column would
contain the EMPL–NUM field from the SALES–FILE file, since the field name was qualified with
that record name. The third column, similarly, would contain the EMPL–NUM field from the
EMPL–FILE file.

If you want to specify a record name other than the file name, use the RECNAME parm of the
INPUT or READ statement. For example:

,1387��6$/(6²),/(�5(&1$0(�6$/(60$1�

The above statement would make SALESMAN the record name for the SALES–FILE file. To
specify the EMPL–NUM from the SALES–FILE in this case, you would use:

&2/8016��6$/(60$1�(03/²180

If you do specify a RECNAME parm, it is not required that you always use it when referring
to fields from that file. Just use it when necessary to avoid ambiguity.

The ability to specify your own record names is especially important in reports where the
same file is used in both the INPUT and a READ statement, or in multiple READ statements.
In that case, since the same file is serving as multiple inputs to the report, just using the file
name to qualify a field would still result in an ambiguous name.

How to Name the Input File Records

Chapter 4. Beyond the Basics 233

You are allowed to qualify fields with record names in any control statement–– not just the
COLUMNS statement. Here are examples of qualifying field names in other control statements:

7,7/(������
(03/2<((�',5(&725<�²²�
��6$/(6²),/(�(03/²180
&20387(����0$,/,1*²&2'(� �(03/²),/(�(03/²180���/$67²1$0(
,1&/8'(,)��(03/²),/(�(03/²180�!�
���

The report in Figure 72 (page 229) illustrated the use of record names.

How Missin g Records Are Handled

This section explains:

� what happens when no record is found for a particular read key

� how to test whether or not a read was successful

Sometimes the auxiliary input file will not contain a record with a key equal to the read key's
value. When this happens, Report Writer assigns a default value to each of the fields in the
"missing record." The default value depends on the data type of the field, as shown in the
following table:

DEFAULT VALUE FOR
FIELD TYPE MISSING RECORDS

Character Blanks
Numeric Zero
Date Zeros (00/00/0000)
Time Zeros (00:00:00)
Bit OFF

A simple way to determine whether a record was successfully read or not is to examine the
contents of some field in that record. Pick a character field from the record that would not
normally be blank–– perhaps the key field itself.

For example, assume we are using the SALES–FILE as the primary input for a report. In the
report we also want to print the salesperson's department number. The DEPT–NUM field is in
the EMPL–FILE, so we have a READ statement for the EMPL–FILE. Now assume that some
employee numbers found in the SALES–FILE will not have corresponding records in
the EMPL–FILE.

We need to test whether we have successfully read an EMPL–FILE record for each person. For
those people who do not have EMPL–FILE records, we want the report to list their department
number as "9". You could use the following statements to do this:

,1387����6$/(6²),/(
5($'�����(03/²),/(��5($'.(<�(03/²180�
&20387(��'(3$570(17� �:+(1�/$67²1$0(� �
�
���$66,*1���
����������������������(/6(�������������������$66,*1�'(37²180�
&2/8016��(03/²1$0(��'(3$570(17��6$/(6²'$7(��&86720(5

Notice that in the COLUMNS statement above we did not list the DEPT–NUM field from the
EMPL–FILE. Instead we computed a new field named DEPARTMENT. Its value is equal to the
DEPT–NUM field from the EMPL–FILE, except when the EMPL–FILE record is missing. To
determine if that record is missing, we examine the LAST–NAME field (which is in the

How Missin g Records Are Handled

234 Report Writer User’s Guide

EMPL–FILE.) When the LAST–NAME field is equal to blanks, we know that the read was not
successful. In that case, we assign a value of "9" to the DEPARTMENT field.

Usin g Generic and KGE Ke ys

This section explains:

� how to use generic READKEYs

� how to read records that are greater than or equal to the READKEY

By default, Report Writer assumes that the value in the READKEY parm specifies an entire,
exact key. When performing the READ, Report Writer looks for a record on the file that has
that exact value as its full key. If no key in the file contains the exact value of the READKEY

parm, the record is considered to be "missing."

Sometime you may know a portion, but not all, of the key in the record that you want to read.
The READ statement has two parms that can be useful in such cases.

The GENERIC parm means that your READKEY value may be shorter than the key length
defined for the VSAM file. Thus, it may not contain the complete key of the record you want
to read, but only a leading portion of the desired key. When GENERIC is specified, Report
Writer reads the first record from the file which has an exact match on that portion of the key
specified in the READKEY parm.

For example, assume a VSAM file contains records with the following 3–byte keys:

$��
$��
$��
$��
&��
&��

Given a file with the above keys, the READ statements below would give the indicated result:

KEY OF RECORD
STATEMENT READ

5($'��),/(²;�5($'.(<�
$
����*(1(5,& $��
5($'��),/(²;�5($'.(<�
$�
���*(1(5,& $��
5($'��),/(²;�5($'.(<�
$��
��*(1(5,& �PLVVLQJ�
5($'��),/(²;�5($'.(<�
%
����*(1(5,& �PLVVLQJ�

A related parm is the KGE ("key greater or equal") parm . This parm can be used with
either a complete key or a generic key. It tells Report Writer that, if no record on the file has
a key (or partial key) that is exactly equal to the READKEY value, to use the first record whose
key (or partial key) is greater than the READKEY value.

Usin g Generic and KGE Ke ys

Chapter 4. Beyond the Basics 235

Given a file with the same keys shown above, the READ statements below would give the
indicated result:

KEY OF RECORD
STATEMENT READ

5($'��),/(²;�5($'.(<�
$
�����*(1(5,&�.*($��
5($'��),/(²;�5($'.(<�
$�
����*(1(5,&�.*($��
5($'��),/(²;�5($'.(<�
$��
���*(1(5,&�.*($��
5($'��),/(²;�5($'.(<�
$��
�����������.*($��
5($'��),/(²;�5($'.(<�
%
�����*(1(5,&�.*(&��

Note: the GENERIC and KGE parms may only be used in READ statements that have
a READKEY parm. Thus, they may not be used in READ statements for DB2 tables.

How to Perform "One–to–Man y" Reads

This section explains:

� how to perform "one–to–many" reads by reading multiple records for a single
READKEY value (or WHERE parm condition)

By default, each time Report Writer reads a new record from the primary input file, it also
attempts to read a single record from each file named in a READ statement.

However, there are times when there may be more than one record in an auxiliary input file
for a given READKEY value. For example, this is often the case when reading from an
alternate index path (where duplicate alternate key values can occur.) Also, when using a
generic READKEY there may be more than one record in a file that matches that generic key.
And, when reading from a DB2 table, there may be more than one row that satisfies the
conditions in your WHERE parm.

Use the MULTI parm in your READ statement if you want Report Writer to read all of the
records that match your READKEY value (or WHERE parm conditions.) For example:

,1387��(03/²),/(
5($'���6$/(6²$,;��5($'.(<�(03/²180���08/7,

The INPUT statement above makes EMPL–FILE the primary input to our report. That file
contains one record per employee. We then use a READ statement to read a record from the
SALES–AIX file. The SALES–AIX file is actually a path to the SALES–FILE through an alternate
index. The key for this alternate index is the EMPL–NUM field in the SALES–FILE. But we
know that some employees have more than one record in the SALES–FILE. Without the MULTI

parm, Report Writer would simply read the first record for a given EMPL–NUM from the
SALES–AIX file and use that record in the report. It would then proceed to read the next
primary input file record and continue in the normal way.

By specifying the MULTI parm in the READ statement above, Report Writer will now read all
of the SALES–AIX records that match the EMPL–NUM in the EMPL–FILE record. The report in
Figure 74 uses the above statements.

Here's how Report Writer processed the input files in Figure 74. It first read a record from
the primary input file, EMPL–FILE. That record had an EMPL–NUM of 036.

How to Perform "One-to-Man y" Reads

236 Report Writer User’s Guide

,1387����(03/�),/(
5($'�����6$/(6�$,;��5($'.(<�(03/�180���08/7,
7,7/(����
(03/2<((�/,67,1*��:,7+�5(&(17�6$/(6

&2/8016��/$67�1$0(��),567�1$0(��+,5(�'$7(
���������(03/�),/(�(03/�180
���������6$/(6�$,;�(03/�180
���������6$/(6�'$7(��$02817

These control statements:

��������������������(03/2<((�/,67,1*��:,7+�5(&(17�6$/(6

���(03/�6$/(6
���),/(��$,;
�����/$67������������),567��������+,5(���(03/�(03/���6$/(6
�����1$0(������������1$0(���������'$7(���180���180����'$7(�������$02817����

-21(6�����������-(55<��
-21(6�����������-(55<��
-21(6�����������-(55<��
-2+1621���������7+20$6���
-2+1621���������7+20$6���
-2+1621���������/,1'$��
-2+1621���������/,1'$��
0$&'21$/'�������5,&+$5'��
6,03621���������7,027+<��
6,03621���������7,027+<��
0255,621��������0,&+$(/��
0255,621��������0,&+$(/��
&+5,6723+(5621��0(/,66$��
%$.(5�����������9,9,$1���
%$.(5�����������9,9,$1���
7+20$6����������0$57,1���

�*5$1'�727$/�����,7(06��

Produce this report:

Notes:
• the MULTI parm in the READ statement causes Report Writer to read multiple records from the

SALES–AIX file for each record read from the EMPL–FILE

Figure 74 A report that uses the MULTI parm

How to Perform "One-to-Man y" Reads

Chapter 4. Beyond the Basics 237

Report Writer then read the first record from the SALES–AIX file that had a key of 036. Using
these two records as one "logical input record", Report Writer then produced one line of the
report.

Then, before reading the next record from the EMPL–FILE, Report Writer read an additional
record from the SALES–AIX file. It then used this "logical input record" (consisting of the
original EMPL–FILE record and the second matching SALES–AIX record) in the report. This
process continued until there were no more records in the SALES–AIX file with a key of 036.
At that point, Report Writer proceeded to read the next record from the primary input file.
Using the EMPL–NUM from this new record (037), it then read each SALES–AIX file record with
a key of 037, and so on.

For a more complete description of how Report Writer processes MULTI–type READ

statements, see the Notes section of the READ statement in Chapter 9, "Control Statement
Syntax" (page 520).

Speed–up tip: READ statements with the MULTI parm are less efficient than regular
READ statements. To reduce CPU and I/O usage, do not specify MULTI if you know
that a file contains unique keys. (In other words, do not specify MULTI if you know
the READKEY will only find one matching record in the file.)

Speed–up tip: if you have some READ statements that use the MULTI parm and some
that do not, put the READ statement(s) without the MULTI parm ahead of the other
READ statements (when possible). This may reduce the amount of I/O that is
performed.

238 Report Writer User’s Guide

Workin g with "Batched" Input Files

Some input files are organized as "batches" of data. Each batch begins with a header record
and is followed by a number of detail records. A trailer record may also appear at the end
each batch. The COMPUTE statement's RETAIN feature is useful when working with "batches"
of records.

The RETAIN parm lets you save information from the header record in such files. You can
then use this saved information along with the information in the detail lines to produce your
Report Writer report or PC file.

Here is an example of using the RETAIN parm in a &20387(statements:

&20387(��6$9(²1$0(� �:+(1�5(&²7<3(� �
$
���$66,*1�(03²1$0(�
���������������������(/6(�5(7$,1

The above statement creates a new field called SAVE–NAME. As with all computed fields,
Report Writer assigns a value to SAVE–NAME each time it reads a new record from the input
file. Assume that our input file has two types of records. The header records begin with an
"$" in column 1. These header records contain the name of the employee whose data follows.
The second type of record contains a "%" in column 1. These are the detail records. Each
detail record contains the date and the amount of a sale made by the employee. When Report
Writer processes a header record, the WHEN condition in the above statement will be true
(REC–TYPE will equal "$") and SAVE–NAME will be assigned the value of the EMP–NAME field.
Otherwise (when the input record is a detail record), Report Writer does not change the
contents of the SAVE–NAME field. It just "retains" whatever value it already has. (Note that
if (/6(�5(7$,1 had not been specified, Report Writer would set the SAVE–NAME field to blanks
whenever the REC–TYPE field was not equal to "$".)

Figure 75 (page 239) shows a sample "batch" type file with header and detail records. The
lower box on that page shows the Report Writer definition statements for the file. Figure
76 (page 240) shows a PC file produced from this sample batch file.

Here are some general points to follow whenever using a header/detail type of input file:

� use FIELD statements to define all the fields in both the header records and the
detail records. (Report Writer allows you to define more than one field with the
same starting column.)

� use one COMPUTE statement for each field that you want to retain from the
header records.
– use the WHEN parm to identify the header records in the input file
– use the ASSIGN parm to name the header record field whose data you want

to save
– use ELSE RETAIN so that the field's value is not changed when the

subsequent detail records are processed

� use an INCLUDEIF statement to select only the detail records for your Report
Writer report (or PC file). This is because you don't want to write out a report
line containing just the data from the header record. You just want to save data
from the header records as they go by, and only write out report lines for each
of the detail records in the input file. (Of course you can add further conditions
to your INCLUDEIF statement if you want to include only certain detail records
from the input file.)

Workin g with "Batched" Input Files

Chapter 4. Beyond the Basics 239

Notes:
• The input file (shown in the top box) has two types of records
• Header records begin with the letter "$" and contain only an employee name
• Detail records begin with the letter "%" and contain the date and the amount of a sale
• Any number of detail records may follow a header record
• The Report Writer definition statements (lower box) define the fields in both types of records
• Comment lines indicate which fields can be found in which records

Figure 75 An input file with header and detail records, and its definition statements

$-2+1621
%��������������
%��������������
%��������������
$0255,621
%��������������
%��������������
$&/$5.
%��������������
%��������������
%��������������

Raw Input File

),/(��6$/(6²/2*�''1$0(�6$/(/2*�

�127(��7+(�)2//2:,1*�),(/'�(;,676�,1�$//�5(&25'�7<3(6
)/'���5(&²7<3(��&2/�����/(1���

�127(��7+(�)2//2:,1*�),(/'�(;,676�21/<�,1��$��5(&25'6
)/'���(03²1$0(��&2/�����/(1����

�127(��7+(�)2//2:,1*�),(/'6�(;,67�21/<�,1��%��5(&25'6
)/'���6$/(²'$7(�&2/�����7<3(�00''<<�
)/'���6$/(²$07����������7<3(�180�����/(1�����'(&���

File Definition Statements for the Above File

Workin g with "Batched" Input Files

240 Report Writer User’s Guide

Notes:
• The PC file above contains one line for each detail record in the input file
• Each line includes "retained" data from the previous header record
• The COMPUTE statement saves the EMP–NAME field from the header records in a new field called

SAVE–NAME
• The INCLUDEIF statement selects just the detail records to appear in the Lotus output file
• The COLUMNS statement creates a column in the Lotus file for the SAVE–NAME field taken from

the header record, as well as for the two fields from the detail records

Figure 76 A Lotus file produced from an input file with header and detail records

237,21������/2786
,1387�������6$/(6²/2*
&20387(�����6$9(²1$0(� �:+(1�5(&²7<3(� �
$
�$66,*1�(03²1$0(�
������������������������(/6(�5(7$,1
,1&/8'(,)���5(&²7<3(� �
%

&2/8016�����6$9(²1$0(��6$/(²'$7(��6$/(²$07

These control statements:

��-2+1621�����������������������������
��-2+1621�����������������������������
��-2+1621�����������������������������
��0255,621����������������������������
��0255,621����������������������������
��&/$5.�������������������������������
��&/$5.�������������������������������
��&/$5.�������������������������������

Produce this PC File:

Workin g with "Batched" Input Files

Chapter 4. Beyond the Basics 241

� in your COLUMNS statement, you can refer to the retained data from the header
records (that is, the COMPUTE fields) as well as all of the fields from the detail
records

� note that information from any "trailer" record cannot be used with this
technique. As the detail records are being processed, Report Writer has not yet
seen the trailer record. Therefore no data from that record is available. The
conditions in the INCLUDEIF statement should ensure that the trailer records are
not included in the report.

Creatin g PC Files from Existin g Reports

This section shows how to:

� turn existing mainframe reports into PC files for your favorite PC program

� how to use the RETAIN parm in the COMPUTE statement

Normally Report Writer creates PC files from the data in mainframe files. Sometimes,
however, the data you want to download may not be in a file, but in a report already produced
on your mainframe. Perhaps someone in your shop must manually key data from such a
report into a PC program such as Lotus 1–2–3. Report Writer can let you automate that
process, increasing accuracy and saving hours of manual work.

The technique used is to first write your existing report to a file (rather than to a printer).
Then simply define this "report file" to Report Writer as if it were any other input file.
Consider the sample mainframe report in Figure 77. This is an accounts payable report. It
lists each cost center's outstanding invoices, including such information as the invoice
number, the customer number, the date the invoice is due and the amount due. When defining
this report as a file to Report Writer we can say that an INVOICE–NUM field begins in column
2 and is 6 bytes long. Then, the CUST–NUM field starts in column 11 and is 4 bytes long. And
we can define the CUSTOMER, DUE–DATE, and AMOUNT fields similarly. Figure 77 shows
Report Writer definition statements for this sample report. (We'll explain shortly the other
fields defined in this Figure.)

Now let's consider some unique situations that arise when we use reports as input files:

� The first column in each report line usually contains a "carriage control"
character. This character is normally hidden from you when you view reports
online or have them printed on paper. However, this character must be taken
into account when specifying a field's beginning column. So when defining a
report's fields, remember that what you normally think of as the first column in
a report is actually column 2. In the report in Figure 77 we have shown the
carriage control characters. They are the characters "1", "0" and " " that you see
in the first column of each report line.

Creatin g PC Files from Existin g Reports

242 Report Writer User’s Guide

��
�$%&�&203$1<����$&&28176�3$<$%/(�/,67,1*���������������������581�'$7(������������
�,7(06�)25�&267�&(17(5��������$&&2817,1*�������������������������������3$*(�����
�
�,192,&(��&867��
�180%(5���180%(5����&86720(5���������'$7(�'8(��$02817�'8(�
�
������$�������������3,3�35,17,1*��������������������������
��������������������)('(;���������������������������������
�1�$����������������$��$&&2817,1*�������������������������
�����������������������������&267�&(17(5�727$/������������

�$%&�&203$1<����$&&28176�3$<$%/(�/,67,1*���������������������581�'$7(������������
�,7(06�)25�&267�&(17(5��������23(5$7,216�������������������������������3$*(������
�
�,192,&(��&867��
�180%(5���180%(5����&86720(5���������'$7(�'8(��$02817�'8(�
�
��������������������$&0(�&$7(5(5��������������������������
�$%�����������������$7	7����������������������������������
�����������������������������&267�&(17(5�727$/������������

�$%&�&203$1<����$&&28176�3$<$%/(�/,67,1*���������������������581�'$7(������������
�,7(06�)25�&267�&(17(5��������3(56211(/��������������������������������3$*(������
�
�,192,&(��&867��
�180%(5���180%(5����&86720(5���������'$7(�'8(��$02817�'8(�
�
��������������������*$6�&203$1<���������������������������
��������������������)$67�75$9(/���������������������������
�.������������������&,7,%$1.������������������������������
������$�������������3,3�35,17,1*��������������������������
�����������������������������&267�&(17(5�727$/������������

Figure 77 A typical mainframe report that has been written to a disk file

),/(��$3�5(3257�''1$0(�5(3257,1�

�)2//2:,1*�7(67�),(/'6�$5(�86('�72�'(7(50,1(�7<3(�2)�5(&25'�
)/'���&2/���������������&2/������/(1����
)/'���&2/6��7+58��������&2/������/(1����

�)2//2:,1*�),(/'6�$5(�21/<�,1�7+(��1'�7,7/(�/,1(�2)�5(3257�
)/'���7,7/(�&267�&(17(5�&2/������/(1����
)/'���7,7/(�&&�1$0(�����&2/������/(1�����

�)2//2:,1*�),(/'6�$5(�21/<�,1�7+(�'(7$,/�/,1(6�2)�5(3257�
)/'���,192,&(�180�������&2/������/(1����
)/'���&867�180����������&2/������/(1����
)/'���&86720(5����������&2/������/(1�����
)/'���'8(�'$7(����������&2/���������������7<3(�00�''�<<��
)/'���$02817������������&2/������/(1������7<3(�180���'(&����

Figure 78 Report Writer statements to define the "report file" shown
above

Creatin g PC Files from Existin g Reports

Chapter 4. Beyond the Basics 243

� Report files usually contain some lines which you'll want to completely ignore.
These lines do not contain any data that you want to download to the PC. For
example, in the report in Figure 77 we would want to completely ignore:

� the first title line on each page ("$%&�&203$1<���")

� the column heading lines

� the cost center total lines (we can always use Report Writer to compute
the totals if we want them in our PC file)

� and all blank lines (such as those between the title line and the column
headings)

We'll see shortly how to use the INCLUDEIF statement to have Report Writer
ignore certain lines in your report.

� Other report lines may contain data which applies to all of the other report lines
on the same page. An example of such data in our sample report in Figure 77
is the cost center number and the cost center name which appear in the second
title line of each page. (For example, ",7(06�)25� &267� &(17(5�� ���� ²

$&&2817,1*".) This cost center information is printed only once per page. It does
not appear in each detail report line. This kind of data from title lines must be
"retained" so that it is available along with the detail line's data when Report
Writer writes each record to the PC file. We'll see how to use COMPUTE

statements to retain data from title lines.

Now let's look at how to handle each of these special situations when creating PC files from
reports.

How to I gnore Certain Report Lines
The INCLUDEIF statement tells Report Writer which records from the input file to include in
the PC file. When using report files for input, we use the INCLUDEIF statement to identify just
those report lines that actually contain the data we need in our PC file–– that is, the detail
report lines. By examining the different lines in your report (the title lines, the column
heading lines, blank lines, total lines and detail lines) you should be able to come up with a
conditional expression that selects only the detail lines. For the sample report Figure 77, an
easy way to do that is with the following statement:

,1&/8'(,)��&2/��� �
�

The above statement tells Report Writer to include report records in the PC file only if the
field named COL40 contains a slash. (Note in the file definition statements in Figure 77 that
we defined COL40 as a 1–byte field at column 40.) In looking at the report, you'll notice that
only the detail lines contain a slash in column 40 (as part of the Date Due value.) The titles,
column headings, blank lines, etc. will all be excluded from the PC file since none of those
lines contains a slash in column 40.

Your report may not have such a unique identifying character in its detail lines. In that case
you will need to use more than one test in your INCLUDEIF statement. For example, if the
report in Figure 77 had not had a date field with a slash in it, we might have used the
following statement instead:

,1&/8'(,)��&2/��� �
�
��$1'��&2/²�²7+58²��¤ �
�����

Creatin g PC Files from Existin g Reports

244 Report Writer User’s Guide

The above statement selects the detail records by examining what they have in 2 places.
Report lines must have a decimal point in column 55 (where the Amount field appears.) That
test alone, however, would also include the total lines since they have a decimal point in
column 55 too. We do not want to include total lines in our PC file because they do not
contain the other fields we need (such as invoice number, customer number, etc.) The second
test requires that columns 2 through 6 not contain blanks. The detail lines will pass this test
(since they have Invoice Numbers in those columns), while the total lines (which have blanks
in those columns) will not pass the test. So, the only records which do contain a decimal
point in column 55 and do not contain blanks in columns 2 through 6 are our report detail
records.

How to Retain Data from Report Titles
We saw in the preceding section how to eliminate the title and other unwanted lines from our
PC file and include only the detail lines. But what if the report titles contain some data that
we want to download to the PC along with the data in the detail lines? To do this we need for
Report Writer to capture data from the title lines as they are processed and "retain" that data
until it comes to the detail lines. We use a COMPUTE statement with the RETAIN option to
accomplish this. For example, to retain the cost center from the second title line in our report
we could use this statement:

&20387(��&267²&175� �:+(1�&2/²�²7+58²�� �
,7(06
���$66,*1�7,7/(²&267²&(17(5�
���������������������(/6(�5(7$,1

The statement above is a "conditional" COMPUTE statement. That is, the value assigned to
COST–CNTR depends on a logical condition. In this case, when columns 2 thru 6 of the report
line contain ",7(06" (that is, when the input record being processed is the second title line of
a page), we assign the value of TITLE–COST–CENTER (in columns 25 though 27 of the report)
to our new field. When processing any input record other than the second title line, this new
field will simply retain its current value. That is, it will retain the value of the Cost Center
from the most recent title line processed. We use a similar COMPUTE statement to retain the
cost center name from the same title line:

&20387(��&267²&175²1$0(� �:+(1�&2/²�²7+58²�� �
,7(06
���$66,*1�7,7/(²&&²1$0(�
��������������������������(/6(�5(7$,1

Now we can use these two retained fields in our COLUMNS statement to create columns in our
PC file containing the cost center and the cost center name. For example:

&2/8016��&267²&175��&267²&175²1$0(��,192,&(²180��&867²180��&86720(5�����

Why couldn't we simply put TITLE–COST–CNTR and TITLE–CC–NAME directly in our COLUMNS

statement? Remember that our INCLUDEIF statement is written to include only the detail
report records in our PC file. And the cost center is not present in the detail records. The
same columns where the cost center appears in the title lines contain other data in the detail
lines. If we specified TITLE–COST–CNTR in our COLUMNS statement, we would just get
"garbage" in our PC file.

You may wonder why we couldn't "include" both title lines and detail lines in the PC file to
solve this problem. The answer is that the title lines don't contain the other information
needed in the PC file (such as invoice number, customer number, etc.) If we included title
records, the TITLE–COST–CNTR data would look just fine in our PC file, but the INVOICE–NUM

and other fields would then contain "garbage."

Creatin g PC Files from Existin g Reports

Chapter 4. Beyond the Basics 245

Figure 79 Creating a Lotus 1–2–3 spreadsheet from a mainframe report

237,21�������/2786�
,1387��������$3�5(3257�
&20387(������&267�&175�� �����:+(1�&2/6��7+58��� �
,7(06
��$66,*1�7,7/(�&267�&(17(5��
������������������������������(/6(�5(7$,1�
&20387(������&267�&175�1$0(� �:+(1�&2/6��7+58��� �
,7(06
��$66,*1�7,7/(�&&�1$0(��
������������������������������(/6(�5(7$,1�
,1&/8'(,)����&2/��� �
�
�
&2/8016������&267�&175��&267�&175�1$0(��,192,&(�180��&867�180�
�������������&86720(5��'8(�'$7(��$02817�
6257���������&267�&175��'8(�'$7(�

These control statements:

 Result in this Lotus 1–2–3 spreadsheet:

Creatin g PC Files from Existin g Reports

246 Report Writer User’s Guide

The correct way to use data from both titles and detail lines is to "include" only the detail
records, and use COMPUTE statements to save data from the title lines as they are read. Then
we use that saved title data along with the data in the detail lines to write our PC file records.
By using the techniques discussed in this section, you can apply all of Report Writer's
extracting and PC–formatting power to the existing reports in your shop.

Figure 79 (page 245) shows an actual example of creating a Lotus 1–2–3 spreadsheet from
the report shown in Figure 77 (page 242). Notice that we had Report Writer re-sort the PC
file into cost center and due date order.

Workin g with SMF Records

You can use Report Writer to produce many useful reports from your shop's SMF files. In
addition, Report Writer can also turn your SMF data into PC files, letting you work with
extracted SMF data in your favorite PC spreadsheet program. This section provides some tips
on using Report Writer with SMF files.

The SMF files are among the most complicated files in any shop. But Report Writer makes
it easy to produce reports from them. Here are some specific points to keep in mind when
dealing with SMF files. Some of these points are illustrated in the SMF file definition
statements shown in Figure 80 (page 247.)

� SMF records can be big. So to be safe, specify Report Writer's largest LRECL value
(32,767) when defining the file. Do this in either the FILE statement or the INPUT

statement. For example:

),/(��60)��''1$0(�60)���/5(&/�������

This will ensure that Report Writer allocates a big enough I/O area to handle the
largest SMF records.

� You should not need to specify DCB information in your DD statement. Report
Writer gets this information from the file's label. If you do give explicit DCB

information, be sure your LRECL and BLKSIZE values are correct for the input file.

� Report Writer normally ignores the 4–byte RDW (record descriptor word) at the
beginning of variable–length records (such as SMF records.) That is, Report Writer
considers "column 1" of the SMF record to be the first byte after the RDW. If you
prefer to include the RDW as part of the input record, specify the KEEPRDW option.
Do this in either the FILE statement, the INPUT statement, or an OPTIONS statement.
For example:

),/(��60)��''1$0(�60)���/5(&/���������.((35':

When KEEPRDW is specified, "column 1" of the SMF record becomes the first byte
of the RDW. One reason you may want to specify KEEPRDW is to use the field offsets
listed in the SMF manual as a guide when writing your FIELD statements. The SMF

manual gives field offsets relative to the beginning of the RDW.

Workin g With SMF Records

Chapter 4. Beyond the Basics 247

),/(��60)�''1$0(�60)��/5(&/��������.((35':
�
�60)�+($'(5�),(/'6�)2//2:�
)/'��5(&�/(1����������������7<3(�+$/):25'��
)/'��5(&�7<3(�����',63������7<3(�%,1���������/(1����12$&&�
)/'��60)�7,0(���������������7<3(�%�6(&6������'(&����/(1����
)/'��60)�'$7(���������������7<3(�3�&<<'''�
)/'��68%�7<3(�����',63������7<3(�+$/):25'��
�
�2))6(7�$1'�/(1*7+�,1)2�)25�6(/(&7('�6(&7,216�,1�7<3(����5(&
)/'��,'²2))6(7����',63������7<3(�)8//:25'�
)/'��,'²/(1�����������������7<3(�+$/):25'�
)/'��,'²180�����������������7<3(�+$/):25'�
)/'��,2²2))6(7��������������7<3(�)8//:25'�
)/'��,2²/(1�����������������7<3(�+$/):25'�
)/'��,2²180�����������������7<3(�+$/):25'�
)/'��&203²2))6(7������������7<3(�)8//:25'�
)/'��&203²/(1���������������7<3(�+$/):25'�
)/'��&203²180���������������7<3(�+$/):25'�
)/'��352&²2))6(7������������7<3(�)8//:25'�
)/'��352&²/(1���������������7<3(�+$/):25'�
)/'��352&²180���������������7<3(�+$/):25'�
�
�6(/(&7('�),(/'6�)520�7+(�,'�6(&7,21�
)/'��-2%1$0(����������������/(1������2))6(7�,'²2))6(7�
)/'��3*01$0(����������������/(1����
)/'��67(31$0(���������������/(1����
)/'��86(5,'�����������������/(1����
)/'��-(6�-2%,'��������������/(1����
)/'��67(3�180���������������7<3(�+$/):25'�������12$&&�
)/'��-2%�&/$66��������������/(1����
)/'��'(9�$//2&�7,0(���������7<3(�%�6(&6��'(&����/(1����',63�����
)/'��3*0�67$57�7,0(���������7<3(�%�6(&6��'(&����/(1����
)/'��67(3�67$57�7,0(��������7<3(�%�6(&6��'(&����/(1����
)/'��67(3�67$57�'$7(��������7<3(�3�&<<'''�
)/'��5'5�67$57�7,0(���������7<3(�%�6(&6��'(&����/(1����
)/'��-2%�67$57�'$7(���������7<3(�3�&<<'''�
)/'��5'5�(1'�7,0(�����������7<3(�%�6(&6��'(&����/(1����
)/'��5'5�(1'�'$7(�����������7<3(�3�&<<'''�
)/'��3*05�1$0(��������������/(1�����
�
�6(/(&7('�),(/'6�)520�7+(�,�2�$&7,9,7<�6(&7,21�
)/'��180�&$5'6��������������7<3(�)8//:25'���2))6(7�,2²2))6(7�
)/'��180�73876��������������7<3(�)8//:25'���',63����
)/'��180�7*(76��������������7<3(�)8//:25'��
�
�6(/(&7('�),(/'6�)520�7+(�&203/(7,21�6(&7,21�
)/'��&203�&2'(��������������/(1����)250$7�+(;��2))6(7�&203²2))6(7�
)/'��$%(1'������������������%,7����217(;7�
$%(1'
��2))7(;7�
�
��
)/'��)/86+������������������%,7����
�
�6(/(&7('�),(/'6�)520�7+(�352&(6625�$&&2817,1*�6(&7,21�
)/'��'357<������������������7<3(�+$/):25'��12$&&��2))6(7�352&²2))6(7�
)/'��67(3�7&%�6(&6����������7<3(�)8//:25'��'(&����',63�����
)/'��67(3�65%�6(&6����������7<3(�)8//:25'��'(&����
)/'��,1,7�7&%�6(&6����������7<3(�)8//:25'��'(&����
)/'��,1,7�65%�6(&6����������7<3(�)8//:25'��'(&����

Figure 80 File definition of selected fields in SMF type 30 records

Workin g With SMF Records

248 Report Writer User’s Guide

� When defining fields to Report Writer, you can use either the COLUMN parm or the
DISP (DISPLACEMENT) parm to specify where a field begins in a record. Since the
SMF manual indicates field locations as offsets (displacements), it's generally more
convenient to use the DISP parm in your FIELD statements.

),(/'��5(&²7<3(��',63�����/(1*7+�����7<3(�%,1���12$&&

� Report Writer has a number of date and time "data types" that are especially
intended for use with SMF data. Use these in the TYPE parm of your FIELD statements
to define SMF dates and times. Some common data types for SMF records are:

P–CYYDDD This is a packed Julian date which includes a single–digit century
indicator. Most SMF dates are stored in this format (written 0cyydddF
in the SMF manual.) Here is an example of defining a date field and
then using it to select the SMF records to include in a report:

),(/'������60)²'$7(��',63������7<3(�3²&<<'''�
,1&/8'(,)��5(&²7<3(� ����$1'��60)²'$7(� ����������

B–SECS This is a "binary seconds" time field. Most time–of–day and elapsed
time fields in SMF records are of this type. You should specify
LENGTH(4) for most SMF time fields. Also use the DEC(2) parm to
indicate that the binary seconds value contains hundredths of seconds.
Here is an example of defining a time field and using it to select SMF

records for a report:

),(/'������60)²7,0(��',63�����7<3(�%²6(&6���/(1*7+�����'(&���
,1&/8'(,)��5(&²7<3(� ����$1'
������������60)²7,0(�!����������$1'������������

BIT Some SMF data is contained in bits. For example, there is a bit in Type
5 records that indicates whether a job has ABENDed or not. This bit
is in the byte at offset 66, and is bit number 6 under IBM's bit numbering
convention. Remember that Report Writer numbers bits from 1 to 8
(rather than 0 to 7) from left to right. Thus the ABEND field in the type
5 record can be defined like this:

),(/'��$%(1'��',63������%,7���

To test a bit field, just name the field in your conditional expression.
For example, to include all type 5 records which completed with an
ABEND, use this statement:

,1&/8'(,)��5(&²7<3(� ����$1'��$%(1'

You can list bit fields in your COLUMNS statement as well.

&2/8016��60)²'$7(��60)²7,0(��-2%1$0(��$%(1'

By default the word "$%(1'" will print in the report if the bit is on, and
the words "127�$%(1'" will print if the bit is off. Use the ONTEXT and
OFFTEXT parms in the FIELD statement if you want to print different
texts. (See an example of this on page 247.)

When defining bit fields, keep one other thing in mind. You should
explicitly specify a DISP or COLUMN parm for the first field following
the bit fields. Report Writer does not automatically increment the

Workin g With SMF Records

Chapter 4. Beyond the Basics 249

current location counter after FIELD statements for bit fields. (This is
to allow you to define additional bits within the same byte.) An easy
way to specify the DISP of the field following a bit field is to use
',63����:

),(/'��%,7²),(/'²$�%,7���
),(/'��%,7²),(/'²%�%,7���
),(/'��1(;7²),(/'�',63�����/(1*7+�������

� In general you should work with only one type of SMF record at a time. Use the
INCLUDEIF statement to include only the appropriate type of records in your report.
You can use additional tests to further narrow down which records are included.

,1&/8'(,)��5(&²7<3(� �����$1'��60)²'$7(�! ���������

� Production SMF reports often report on "yesterday's" data. Rather than having to
change the date literal in your INCLUDEIF statement for each run, you can COMPUTE

yesterday's date, like this:

&20387(����<(67(5'$<� ��0$.('$7(��0$.(180��72'$<��²��
,1&/8'(,)��5(&²7<3(� �����$1'��60)²'$7(� �<(67(5'$<

� Some SMF records are variably formatted. That is, a field may be located at one
offset in one record, and at a different offset in another record of the same type. This
usually occurs when the record contains segments that are repeated a variable
number of times (such as one segment per DD statement in a step.) Use Report
Writer's OFFSET parm to define variably located fields. This parm is used in the
FIELD statement to specify an additional offset value to use when determining where
a field is located within a record. (This value is added to any COLUMN or DISP parm
value.) The advantage of the OFFSET parm is that, unlike the COLUMN and DISP

parms, it need not contain a constant numeric value. The OFFSET parm can be any
type of numeric expression. For example, it might be something as simple as the
name of a previously defined numeric field:

),(/'��,2²2))6(7�',63�����7<3(�)8//:25'�����2))6(7�72�,'�6(&7,21����
���
),(/'��-2%1$0(�',63����2))6(7�,2²2))6(7��/(1������67�,7(0�,1�,'�6(&7,21�

Or, the OFFSET value might be a complex calculation, such as would be needed to
compute the location of a field that follows a variable–length array (such as an
OCCURS DEPENDING ON array) in a record. For example:

),(/'��/$67²),(/'
�������2))6(7��������180²,7(06²,1²$55$<��,7(0²6,=(���',63�����/(1*7+����

When using the OFFSET parm, remember that the OFFSET parm remains in effect for
all subsequent FIELD statements (until a new OFFSET parm is encountered.) Thus,
you only need to specify the OFFSET parm for the first field in any variably–located
segment. Specify OFFSET(0) if you wish to resume defining FIELDs that do not
require any OFFSET value.

The following pages show some sample SMF reports produced with Report Writer.

Workin g With SMF Records

250 Report Writer User’s Guide

,1387��60)�

7,7/(��
%$7&+�-2%�67(36�7+$7�$%(1'('�21
�67(3�67$57�'$7(�
7,7/(��
�����$1'�����$%(1'6�127�,1&/8'('�
�

,1&/8'(,)��5(&�7<3(� ����	�68%�7<3(� ���	�$%(1'�	�180�7*(76� ���
�����������	�&203�&2'(�¤ �;
����
�	�¤ �;
����
�

&2/8016��-(6�-2%,'�
���������67(3�180����
���������-2%1$0(�
���������67(31$0(�
���������3*01$0(�
���������&203�&2'(�
���������-2%�&/$66�
���������'357<����
���������3*05�1$0(�
���������67(3�67$57�'$7(�
���������67(3�67$57�7,0(�
���������60)�7,0(�
67(3(1'7,0(
�

6257�����67(3�67$57�'$7(��67(3�67$57�7,0(�

Control Statements to Produce a "Daily ABEND" report (shown on page 251)

,1387��60)�

7,7/(��
762�6(66,216�21
�67(3�67$57�'$7(�

,1&/8'(,)��5(&�7<3(� ����	�68%�7<3(� ���	�180�7*(76�!���	�
�����������&203�&2'(�¤ �;
����
�	�¤ �;
����
�

&20387(��6(66,21�0,187(6� �
�����������0$.(180�60)�7,0(�����0$.(180�67(3�67$57�7,0(��������
&20387(��6(66,21�&267� �6(66,21�0,187(6��������

&2/8016��-2%1$0(�
���������3*05�1$0(�
���������67(3�67$57�'$7(�
67$57'$7(
��
���������67(3�67$57�7,0(�
67$577,0(
��
���������60)�7,0(�
(1'7,0(
��
���������6(66,21�0,187(6�3,&
===�==���
��
���������6(66,21�&267�3,&
��������
��
���������180�73876����
���������180�7*(76����
���������67(3�7&%�6(&6����
���������67(3�65%�6(&6����

6257��3*05�1$0(�����67(3�67$57�'$7(��67(3�67$57�7,0(�

Control Statements to Produce a "TSO Sessions" Report (shown on page 252)

Workin g With SMF Records

Chapter 4. Beyond the Basics 251

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
%
$
7
&
+
�
-
2
%
�
6
7
(
3
6
�
7
+
$
7
�
$
%
(
1
'
(
'
�
2
1
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
$
1
'
�
�
�
�
�
$
%
(
1
'
6
�
1
2
7
�
,
1
&
/
8
'
(
'
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
6
7
(
3
�
�
�
�
�
�
6
7
(
3
�
�
�
�
�
�
�
�
6
7
(
3
�

�
�
-
(
6
�
�
�
�
6
7
(
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
&
2
0
3
�
�
-
2
%
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
3
*
0
5
�
�
�
�
�
�
�
�
�
�
6
7
$
5
7
�
�
�
�
�
�
6
7
$
5
7
�
�
�
�
�
�
�
�
(
1
'
�

�
-
2
%
,
'
�
�
�
1
8
0
�
�
-
2
%
1
$
0
(
�
�
6
7
(
3
1
$
0
(
�
3
*
0
1
$
0
(
�
�
&
2
'
(
�
&
/
$
6
6
�
'
3
5
7
<
�
�
�
�
�
�
�
�
�
1
$
0
(
�
�
�
�
�
�
�
�
�
�
�
'
$
7
(
�
�
�
�
�
�
7
,
0
(
�
�
�
�
�
�
�
�
7
,
0
(
�
�
�
�

6
7
&
�
�
�
�
�
�
�
�
�
�
�
&
,
&
6
�
�
;
�
�
-
,
/
/
+
5
6
�
�
'
)
+
6
,
3
�
�
�
�
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

6
7
&
�
�
�
�
�
�
�
�
�
�
�
&
,
&
6
�
�
�
�
�
&
,
&
6
�
�
�
�
�
'
)
+
6
,
3
�
�
�
�
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
3
&
7
1
�
�
8
0
8
'
�
�
�
�
�
;
$
0
8
'
�
�
�
�
�
�
&
�
�
�
�
�
�
�
�
�
�
�
�
�
�
3
5
2
'
�
&
2
1
7
5
2
/
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
3
&
7
'
7
�
8
6
/
:
�
�
�
�
�
,
'
&
$
0
6
�
�
�
�
�
�
�
�
�
�
7
�
�
�
�
�
�
�
�
�

2
�
+
$
5
5
,
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
3
&
7
'
7
�
8
'
3
;
�
�
�
�
�
;
$
'
3
;
�
�
/
�
�
�
&
)
�
�
�
7
�
�
�
�
�
�
�
�
�

2
�
+
$
5
5
,
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
3
&
7
'
7
�
8
6
/
:
�
�
�
�
�
;
$
6
/
:
�
�
�
�
�
�
�
�
�
�
�
7
�
�
�
�
�
�
�
�
�

2
�
+
$
5
5
,
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
*
�
�
&
2
0
3
5
6
�
�
�
3
*
�
�
5
�
�
$
�
�
�
�
%
�
�
�
0
�
�
�
�
�
�
�
�
�

�
1
'
�
)
/
5
�
:
(
6
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
*
�
�
&
2
0
3
5
6
�
�
�
3
*
�
�
5
�
�
$
�
�
�
�
%
�
�
�
0
�
�
�
�
�
�
�
�
�

�
1
'
�
)
/
5
�
:
(
6
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
*
�
�
&
2
0
3
5
6
�
�
�
3
*
�
�
5
�
�
$
�
�
�
�
%
�
�
�
0
�
�
�
�
�
�
�
�
�

�
1
'
�
)
/
5
�
:
(
6
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

6
7
&
�
�
�
�
�
�
�
�
�
�
�
6
8
%
-
2
%
�
�
�
6
�
�
�
�
�
�
�
�
$
&
)
3
5
2
'
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
*
�
�
&
2
0
3
5
6
�
�
�
3
*
�
�
5
�
�
$
�
�
�
)
&
�
�
�
0
�
�
�
�
�
�
�
�
�

�
1
'
�
)
/
5
�
:
(
6
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

6
7
&
�
�
�
�
�
�
�
�
�
�
�
&
,
&
6
�
�
�
�
�
&
,
&
6
�
�
�
�
�
'
)
+
6
,
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
*
�
�
&
2
0
3
5
6
�
�
�
3
*
�
�
5
�
�
$
�
�
�
)
&
�
�
�
0
�
�
�
�
�
�
�
�
�

�
1
'
�
)
/
5
�
:
(
6
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
*
�
�
&
2
0
3
5
6
�
�
�
3
*
�
�
5
�
�
$
�
�
�
)
&
�
�
�
0
�
�
�
�
�
�
�
�
�

�
1
'
�
)
/
5
�
:
(
6
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
(
:
7
�
/
�
8
:
&
;
�
�
�
�
�
;
�
�
&
;
�
�
�
�
�
�
�
%
�
�
�
7
�
�
�
�
�
�
�
�
�
,
0
6
�
2
3
(
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
*
�
�
&
2
0
3
5
6
�
�
�
3
*
�
�
5
�
�
$
�
�
�
)
&
�
�
�
0
�
�
�
�
�
�
�
�
�

�
1
'
�
)
/
5
�
:
(
6
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
*
�
�
&
2
0
3
5
6
�
�
�
3
*
�
�
5
�
�
$
�
�
�
�
%
�
�
�
0
�
�
�
�
�
�
�
�
�

�
1
'
�
)
/
5
�
:
(
6
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

6
7
&
�
�
�
�
�
�
�
�
�
�
�
,
0
6
0
5
*
1
�
�
0
,
1
,
5
*
1
�
�
'
)
6
5
5
&
�
�
�
�
�
%
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
&
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
$
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

6
7
&
�
�
�
�
�
�
�
�
�
�
�
&
,
&
6
�
�
�
�
�
&
,
&
6
�
�
�
�
�
'
)
+
6
,
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
9
�
�
$
3
�
6
7
(
3
�
�
�
�
�
,
(
%
*
(
1
(
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
$
3
�
-
2
1
(
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
)
0
7
*
=
�
1
3
$
:
�
�
�
�
�
3
1
3
$
:
�
�
&
�
�
�
&
�
�
�
�
8
�
�
�
�
�
�
�
�
�
:
$
6
+
,
1
*
7
2
1
�
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
7
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
$
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
7
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
$
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
7
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
$
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
7
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
$
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
:
�
�
$
;
�
/
.
(
'
�
�
�
�
�
,
(
:
/
�
�
�
�
�
�
'
�
�
�
�
�
7
�
�
�
�
�
�
�
�
�
&
2
%
2
/
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
7
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
$
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
7
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
$
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
7
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
$
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

6
7
&
�
�
�
�
�
�
�
�
�
�
�
&
,
&
6
�
�
�
�
�
&
,
&
6
�
�
�
�
�
'
)
+
6
,
3
�
�
�
�
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
&
6
�
�
�
�
�
�
�
�
�
�
;
$
6
6
5
�
�
�
�
�
�
�
�
�
�
�
0
�
�
�
�
�
�
�
�
�
7
+
2
0
$
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
3
&
7
1
�
�
8
0
8
'
�
�
�
�
�
;
$
0
8
'
�
�
�
�
�
�
(
$
�
�
�
�
�
�
�
�
�
�
�
�
�
6
2
8
7
+
�
3
5
2
'
�
�
�
0
8
'
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
&
�
�
$
�
�
$
0
,
/
/
�
�
�
�
0
�
;
'
1
5
�
�
�
�
�
&
�
�
�
�
7
�
�
�
�
�
�
�
�
�
-
2
1
(
6
�
/
$
5
5
<
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
'
3
7
6
6
7
&
3
�
6
�
�
�
�
�
�
�
�
,
(
%
*
(
1
(
5
�
�
�
�
�
�
�
�
0
�
�
�
�
�
�
�
�
�
3
5
,
1
7
�
2
8
7
3
8
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
;
�
�
0
�
�
$
7
�
8
3
'
;
�
�
�
�
�
3
5
'
$
;
�
�
%
�
�
%
%
�
�
�
�
7
�
�
�
�
�
�
�
�
�
$
&
&
2
8
1
7
,
1
*
�
�
5
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
3
&
7
1
�
�
6
5
&
,
1
�
�
�
�
,
(
%
*
(
1
(
5
�
�
�
�
�
�
�
�
7
�
�
�
�
�
�
�
�
�
6
0
,
7
+
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
3
&
7
1
�
�
6
5
&
,
1
�
�
�
�
,
(
%
*
(
1
(
5
�
�
�
�
�
�
�
�
7
�
�
�
�
�
�
�
�
�
6
0
,
7
+
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

-
2
%
�
�
�
�
�
�
�
�
�
�
�
8
6
�
3
&
7
1
�
�
6
7
(
3
�
�
�
�
�
7
6
0
8
'
�
�
.
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
.
$
5
(
1
�
6
0
,
7
+
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
*
5
$
1
'
�
7
2
7
$
/
�
�
�
�
�
,
7
(
0
6
�

Figure 81 SMF "Daily ABEND" report produced by the control statements on page 250

Workin g With SMF Records

252 Report Writer User’s Guide

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
7
6
2
�
6
(
6
6
,
2
1
6
�
2
1
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
6
7
(
3
�
�
�
�
�
6
7
(
3
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
3
*
0
5
�
�
�
�
�
�
�
�
�
�
6
7
$
5
7
�
�
�
�
�
�
6
7
$
5
7
�
�
�
�
�
�
�
�
(
1
'
�
�
�
�
�
�
6
(
6
6
,
2
1
�
�
6
(
6
6
,
2
1
�
�
�
�
1
8
0
�
�
�
�
�
1
8
0
�
�
�
�
�
7
&
%
�
�
�
�
�
�
6
5
%
�

-
2
%
1
$
0
(
�
�
�
�
�
�
�
�
�
�
1
$
0
(
�
�
�
�
�
�
�
�
�
�
�
'
$
7
(
�
�
�
�
�
�
7
,
0
(
�
�
�
�
�
�
�
�
7
,
0
(
�
�
�
�
�
�
0
,
1
8
7
(
6
�
�
�
�
&
2
6
7
�
�
�
�
7
3
8
7
6
�
�
�
7
*
(
7
6
�
�
�
�
6
(
&
6
�
�
�
�
�
6
(
&
6
�
�

'
�
�
&
'
7
�
�
�
-
2
(
�
&
$
7
5
,
1
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

'
�
�
&
'
7
&
�
�
-
2
(
�
&
$
7
5
,
1
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

'
�
�
&
'
7
�
�
�
-
2
(
�
&
$
7
5
,
1
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

'
�
�
&
'
7
�
�
�
-
2
(
�
&
$
7
5
,
1
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

'
�
�
&
'
7
&
�
�
-
2
(
�
&
$
7
5
,
1
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

'
�
�
&
'
7
�
�
�
-
2
(
�
&
$
7
5
,
1
$
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
7
2
7
$
/
�
)
2
5
�
-
2
(
�
&
$
7
5
,
1
$
�
�
�
�
�
�
�
�
�
�
�
�
�
,
7
(
0
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� $
�
�
'
�
�
$
�
�
-
2
+
1
�
$
�
'
(
1
1
(
<
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
7
2
7
$
/
�
)
2
5
�
-
2
+
1
�
$
�
'
(
1
1
(
<
�
�
�
�
�
�
�
�
�
�
�
,
7
(
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� %
�
�
'
=
7
�
�
�
-
2
+
1
�
$
/
:
2
5
7
+
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
'
=
7
�
�
�
-
2
+
1
�
$
/
:
2
5
7
+
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
'
=
7
�
�
�
-
2
+
1
�
$
/
:
2
5
7
+
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
7
2
7
$
/
�
)
2
5
�
-
2
+
1
�
$
/
:
2
5
7
+
�
�
�
�
�
�
�
�
�
�
�
�
,
7
(
0
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� =
�
�
7
3
7
�
�
�
-
2
+
1
�
7
(
0
3
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
7
2
7
$
/
�
)
2
5
�
-
2
+
1
�
7
(
0
3
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
,
7
(
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� %
�
�
&
�
�
$
�
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
&
�
�
$
�
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
&
�
�
$
�
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
&
�
�
$
�
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
&
�
�
$
�
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
&
�
�
$
�
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
&
�
�
$
�
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
�
�
&
�
�
$
�
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
7
2
7
$
/
�
)
2
5
�
-
2
+
1
�
;
�
&
$
5
/
,
6
/
(
�
�
�
�
�
�
�
�
�
,
7
(
0
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�)
�
�
3
'
7
-
�
�
-
2
6
(
3
+
�
%
5
2
:
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
�
�
3
'
7
-
�
�
-
2
6
(
3
+
�
%
5
2
:
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
�
�
3
'
7
-
�
�
-
2
6
(
3
+
�
%
5
2
:
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
7
2
7
$
/
�
)
2
5
�
-
2
6
(
3
+
�
%
5
2
:
1
�
�
�
�
�
�
�
�
�
�
�
�
,
7
(
0
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� $
�
�
&
5
�
�
�
�
-
2
<
�
.
5
$
0
(
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

$
�
�
&
5
�
�
�
�
-
2
<
�
.
5
$
0
(
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

$
�
�
&
5
�
�
�
�
-
2
<
�
.
5
$
0
(
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

$
�
�
&
5
�
�
�
�
-
2
<
�
.
5
$
0
(
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

$
�
�
&
5
�
�
�
�
-
2
<
�
.
5
$
0
(
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
7
2
7
$
/
�
)
2
5
�
-
2
<
�
.
5
$
0
(
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
,
7
(
0
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 82 SMF "TSO Sessions" report produced by the control statements on page 250

Chapter 4. Beyond the Basics 253

Workin g with Time Fields

This section offers some tips that you may find useful when working with time fields.

Report Writer supports two dozen different types of time fields commonly found in data files.
These "time data types" are listed in Appendix A, "Data Types" (page 545.) For information
on defining the time fields in your input files, see the section beginning on page 286.

Time fields, regardless of how they are stored in the input file, are normally formatted in your
reports like this:

++�00�66

However, time fields defined as containing only hours and minutes (the HHMM data type, for
example) will be formatted like this:

++�00

A number of time display formats are available if you want to format your time fields
differently. The time display formats are listed in Appendix B, "Display Formats"
(page 557.) For example, you can specify the HH–MM display format if you want a time field
to be displayed without showing the seconds. Report Writer will round the time to the nearest
minute.

You may also specify a "time picture" to change the formatting of time fields in your report.
A time picture is similar to a regular numeric picture, except that it begins with TPIC or TP

(rather than PIC or P.) For example, to format a time field so that leading zeros in the hours
are suppressed, you could use a time picture like this:

&2/8016��67$57²7,0(�73,&
=�������
�

Time pictures can also specify decimal digits if needed for the time field:

&2/8016��-2%²(1'�73
=�������������
�

By default, time fields are not totalled in reports. If you want to total a time field, you may
specify the ACCUM parm in either the FIELD, COMPUTE or COLUMNS statement (just as with
numeric fields.) If you do print totals for a time field, you may also need to specify additional
display digits for the hour portion of the total (in case the total is more than 99 hours):

&2/8016��'85$7,21�$&&80�73
==�==�������
�

You may also choose to format time fields in your report as hours and decimal portions of
an hour. That is, the time 04:15:00 would be displayed as 4.25 (4 and one–fourth hours).
The HOURS display format does this. There are also MINS and SECS formats to display time
fields as a number of minutes or a number of seconds. The number of decimal digits printed
with such display formats is the number of decimal digits the field is defined as having (which
is usually 0.) To force a certain number of decimal digits to print with these display formats,
use a COMPUTE statement to change a field's decimal precision. For example, to print
START–TIME in hours, with 3 decimal digits, do this:

),(/'����67$57²7,0(�&2/�����7<3(�++0066�
&20387(��;²67$57²7,0(���� �67$57²7,0(
&2/8016��;²67$57²7,0(�+2856�

Workin g with Time Fields

254 Report Writer User’s Guide

You may use time fields in conditional expressions. They can be compared with other time
fields or with time literals. Time literals must be expressed as HH:MM:SS with optional
decimal parts of seconds also allowed. Here are some examples of using time fields and time
literals in INCLUDEIF statements:

,1&/8'(,)��67$57²7,0(�!�(1'²7,0(
,1&/8'(,)��67$57²7,0(�!���������
,1&/8'(,)��/2*²7,0(�!������������$1'�������������

You may also use time fields in computational expressions. For example:

&20387(��'85$7,21� �(1'²7,0(�²�67$57²7,0(

The above statement computes a time field called DURATION, whose value is the difference
between the END–TIME and the START–TIME. For example, if END–TIME had a value of ��������
and START–TIME was ��������, then DURATION would have a value of ��������.

If the start and end times might occur on different days, you should also convert the start and
end dates into seconds and use those in the computation as well:

&20387(��'85$7,21� ����0$.(180�(1'²'$7(��������������(1'²7,0(�
������������������²����0$.(180�67$57²'$7(������������67$57²7,0(�

Note: there are 86,400 seconds in one day.

When computing time fields, you are allowed to mix time fields and numeric fields in the
computational expression. Any numeric fields (or numeric literals) in the expression are
considered to represent a number of seconds. For example:

&20387(��1(;7²0,187(� �67$57²7,0(�����

The above statement creates a new time field call NEXT–MINUTE whose value is equal to
START–TIME plus 60 seconds.

Two built–in functions are provided to allow you to convert time fields to numeric fields and
vice verse. Use the #MAKENUM function to convert a time field into a numeric field. For
example:

&20387(��67$57²6(&21'6� ��0$.(180�67$57²7,0(�

The above statement creates a new numeric field named START–SECONDS. If START–TIME

contained ��������, START–SECONDS' value would be 9005. (Two hours is 7200 seconds, 30
minutes is another 1800 seconds, plus the 5 seconds.)

To convert numeric fields (which are considered as a number of seconds) into a time field,
use the #MAKETIME function:

&20387(��(1'²7,0(� ��0$.(7,0(�(1'²6(&21'6�

If END–SECONDS contained 3600, then END–TIME would be �������� (since 3600 seconds is
one hour.)

You can also use the #MAKETIME function to convert a character value (in HHMMSS format)
into a time field. For example:

&20387(��(1'²7,0(� ��0$.(7,0(�&+$5²72'�

Workin g with Time Fields

Chapter 4. Beyond the Basics 255

If CHAR–TOD was a 6–byte character field containing 191059, then END–TIME would be a time
field with a value of ��������.

Report Writer has a built–in field named #HHMMSS which contains the system time that
Report Writer began running. You can use this field like any other time field in creating
reports or PC files.

Note: Report Writer automatically converts STCKTIME times from GMT to local time.
The hours added or subtracted to the GMT time are determined by your installation's
system parm. To change this default, use the STCKADJ option to specify the number
of hours that should be added to the STCKTIME time. For example, to suppress
conversion and leave STCKTIME times in GMT, you could specify the following:

237,216��67&.$'-���

256 Report Writer User’s Guide

Producin g Files for Other PC Pro grams

Chapter 3, "How to Request a PC File" showed how to use Report Writer's control statements
to produce PC files for various PC programs. Appendix H, "How to Import PC Files" gives
specific information on how to import PC files into a number of PC programs.

The specific PC programs discussed in those areas are not the only ones that will accept files
formatted by Report Writer. Most PC programs have very similar criteria for the files that
they will import.

We will discuss three methods that you can use to create PC files for use in other PC
programs. These three methods are:

� use the PC option to create a "standard" delimited ASCII file for PCs

� use your own combination of special options to specify in detail how the PC file
is to be formatted

� create a "fixed format ASCII" file (rather than a "delimited ASCII" file), if your
PC program will import such files. Fixed format ASCII files generally are not
as easy to import, since you must describe the file's exact record layout to your
PC program.

� use a two–step process. For example, if your PC program will import Lotus
spreadsheets, use Report Writer to create a Lotus file. Then import the PC file
into Lotus and save it as a spreadsheet file, which your PC program can then
use. See page 600 for an example of this.

Standard Delimited PC File
Most popular PC programs will import data that is formatted as a delimited ASCII file. The
first method, then, is to create an output file in this standard format and try to import it into
your PC program. Use the following statement to create a standard delimited ASCII file:

237,216��3&

Figure 83 shows a sample PC file created using the above statement. The output file has the
following features:

� fields are separated from each other with commas

� character data is enclosed within quotation marks

� numbers are formatted without imbedded commas

� dates are formatted in MM/DD/YY format and are enclosed in quotation marks

� times are formatted in HH:MM:SS format and are enclosed in quotation marks

� no titles or Grand total lines are included

� a "carriage control" character is not inserted in the first byte of each output
record

For instructions on importing delimited ASCII files into your PC program, check the
program's online help (or printed manual) under "importing" or "ASCII". You might also
check under various other names that are commonly used for this kind of file, such as:
"delimited files", "comma separated values", "CSV", "DIF files", "DOS files" "ASCII files"
or "text files".

Producin g Files for Other PC Pro grams

Chapter 4. Beyond the Basics 257

Notes:
• specifying PC causes the "report" to be formatted as a "delimited ASCII" file
• all character data is enclosed in quotation marks
• all numbers are formatted without commas
• all dates are formatted as MM/DD/YY, and enclosed in quotation marks
• each column is separated from the next column with a comma
• all titles and column headings are suppressed
• the Grand Total line is suppressed
• this file can be downloaded to a PC and imported directly into many PC programs

Figure 83 SMF "TSO Sessions" report produced by the control statements on page 250

237,216����3&
,1387������(03/²),/(
&2/8016����/$67²1$0(��+,5(²'$7(���6$/(6²475���6$/(6²475�
����������������������������������6$/(6²475���6$/(6²475�

These control statements:

�-21(6��
�-2+1621��
�-2+1621��
�0$&'21$/'��
�6,03621��
�0255,621���������������������·���
�&+5,6723+(5621���
�%$.(5��
�7+20$6���

Produce this PC File:

Producin g Files for Other PC Pro grams

258 Report Writer User’s Guide

Custom PC File
If your PC program does not import delimited ASCII files properly, it may have its own special
requirements for import files. Study the special OPTIONS statement parms below to find the
ones that will enable you to format your output file correctly. By specifying these options in
various combinations you can create an output file in just about any format. (Each of these
options is discussed in more detail in Chapter 9, "Control Statement Syntax," beginning on
page 494.)

OPTION DESCRIPTION

COLHDGONCE This option suppresses all title lines and causes the column
headings to print just once (at the very beginning of the PC file).

COLSEP This option lets you specify a "column separator" character. When
producing PC files, you usually want to separate ("delimit") the
data columns with commas. The following statement does that:

237,216��&2/6(3�
�
�

If your PC program requires that fields be separated with a tab
character (as Excel does), try this statement:

237,216��&2/6(3�;
��
�

FORMAT This option allows you to specify any display format you want as
the default display format. This is useful when you want to
change the way all fields in your output are formatted. For
example, when creating PC files you might specify:

237,216��)250$7�4&+$5��12&200$��4²00²''²<<<<��4²++²00²66�

The above statement makes QCHAR, NOCOMMA, Q–MM–DD–YYYY

and Q–HH–MM–SS the default display formats for character,
numeric, date and time fields, respectively. Therefore, by default:
all character fields will be enclosed within quotation marks; all
numeric fields will be formatted without imbedded commas; all
dates will be formatted in MM/DD/YYYY format and be enclosed
within quotation marks; and all times will be formatted in
HH:MM:SS format and be enclosed within quotation marks.

Use this option to select the display formats that are appropriate
for your PC program. (A complete list of display formats is found
in Appendix B, "Display Formats," on page 550.) For example, if
your PC program requires that dates be formatted in Julian YYDDD

format, you might use this statement:

237,216��)250$7�4&+$5��12&200$��<<'''�

HGCOLHDG This option specifies that "Harvard Graphics" style column
headings are wanted. This option causes the column headings to
appear in a single line in the output file (rather than being split onto
multiple lines.) The "blank" line that normally separates the
column headings from the actual data is also suppressed. This

Producin g Files for Other PC Pro grams

Chapter 4. Beyond the Basics 259

option is useful when the PC program which will be importing your
output file expects the first line of input to contain a legend for the
data in the subsequent lines.

NOCC This option suppresses the "carriage control" character in the report
records. The carriage control character is needed when sending a
report to a printer, but is not normally desired when writing output
records to a dataset.

NOCOLHDGS This option suppresses all column headings from the report.

NOGRANDTOTAL This option suppresses the Grand Totals from the report.

NOTITLES This option suppresses all titles, footnotes and page breaks from
the report.

OUTPUT You may specify the OUTPUT option parm, like this:

237,216��287387

The OUTPUT option tells Report Writer that you are creating some
form of output file rather than a report. It produces the following
results, which are normally desired for output files:

� it suppresses all titles
� it suppresses the Grand Totals line
� it suppresses the "carriage control" character
� it suppresses the maximum pages/lines message

(which is normally printed when the MAXPAGE or
MAXPRINT option is used.)

Fixed Format ASCII Files
Some PC programs import Fixed Format (or "fixed width") ASCII files. To create a fixed
format ASCII file, use the following combination of options:

237,216��287387�12&2/+'*�)250$7�&+$5��12&200$��00²''²<<��++²00²66�

The above statement results in an output file with the following features:

� there is one blank space between each field in the output record

� character data is written "as is"

� numbers are formatted without imbedded commas

� dates are formatted in MM/DD/YY format

� times are formatted in HH:MM:SS format

� no titles, column headings, or Grand Total lines are included

� a "carriage control" character is not inserted in the first byte of each output
record

As mentioned earlier, when importing a fixed format ASCII file into a PC program, you must
define the PC file records to that PC program. Check your PC program's on–line Help (or

Producin g Files for Other PC Pro grams

260 Report Writer User’s Guide

its printed manual) for instructions on how to import fixed format files. Try using such
keywords as "import", "fixed", "format", "ASCII", and "record".

Producin g Files for Mainframe Pro grams

Output files that will be used in mainframe programs will be considerably different from
output files intended for PC programs. The exact requirements for a mainframe output file
will depend, of course, on the particular program that will process the file. This section
discusses various options that you'll find helpful when creating mainframe output files.

Simply specifying MAINFRAME is one way to produce a "generic" mainframe output file:

237,216��0$,1)5$0(

Figure 84 shows a sample output file created using the above statement. Files in this format
are compatible with COBOL, PL/1 and Assembler language programs. The output file has the
following features:

� there are no blank spaces (nor commas) between the fields in the output record

� character data is written "as is"

� numbers are formatted in the DISPLAY format (no imbedded commas, no leading
zero suppression, the last digit includes the sign)

� dates are formatted in YYMMDD format

� times are formatted in HHMMSS format

� no titles, column headings, or Grand Total lines are included

� a "carriage control" character is not inserted in the first byte of each output
record

If the standard "mainframe formatted" output file described above is not what you need, you
can specify various other individual options to customize your output file. The following
paragraphs discuss some of these options.

When creating mainframe output files, you probably will not want blank spaces between
fields in the output records. This will save disk space in the output file. You can accomplish
this by specifying zero in the "column spacing" option:

237,216��&2/63$&(���

In mainframe files, you may want some numeric fields to be "packed" in order to take up less
room in the file. ("Packed" is the same as COMP–3 in COBOL, and FIXED DECIMAL in PL/1.) To
do this, just use the PACKED display format for those numeric fields. You can specify PACKED

directly in the COLUMNS statement for individual fields, like this:

&2/8016��(03/²1$0(��6$/(6²475��3$&.('�����6$/(6²475��3$&.('���

Producin g Files for Mainframe Pro grams

Chapter 4. Beyond the Basics 261

Notes:
• specifying MAINFRAME causes the "report" to be formatted as a mainframe file
• all character data is written "as is"
• all numbers are formatted in the DISPLAY display–format
• all dates are formatted as YYMMDD
• there are no blank spaces or delimiters between fields
• all titles and column headings are suppressed
• the Grand Total line is suppressed

Figure 84 An output file created with the MAINFRAME option

237,216��0$,1)5$0(
,1387����(03/²),/(
&2/8016��/$67²1$0(��+,5(²'$7(��6$/(6²475���6$/(6²475�
�������������������������������6$/(6²475���6$/(6²475�

These control statements:

-21(6���
-2+1621���
-2+1621���
0$&'21$/'���
6,03621���
0255,621��
&+5,6723+(5621��
%$.(5���
7+20$6��

Produce this output file:

Producin g Files for Mainframe Pro grams

262 Report Writer User’s Guide

The above statement causes SALES–QTR1 and SALES–QTR2 to be formatted as 6–byte packed
fields in the output file. You can also make PACKED the default numeric display format by
using the FORMAT option, like this:

237,216��)250$7�3$&.('�
&2/8016��(03/²1$0(��6$/(6²475������6$/(6²475����

The above statements also cause the two sales fields to be output as 6–byte packed fields.

If you want your output file to contain binary data (COMP in COBOL, FIXED BINARY in PL/1),
use the BINARY display format in a similar way:

&2/8016��(03/²1$0(��'(37²180�%,1$5<�����727$/²6$/(6�3$&.('���

The above statement formats DEPT–NUM as a 1–byte binary field, and TOTAL–SALES as an
8–byte packed field. Note that the output format you specify for a field can be different than
the way the field is formatted in the input file. For example, TOTAL–SALES is defined as a
7–byte "display" numeric field in our sample EMPL–FILE. Yet we chose to output it as an
8–byte packed number in the example above.

You can also use the HALFWORD and FULLWORD display formats as a shorthand way to
output 2–byte and 4–byte binary fields, respectively:

&2/8016��(03/²1$0(��'(37²180�+$/):25'���727$/²6$/(6�)8//:25'�

Also use display formats to specify how you want date fields to be output. For example:

&2/8016��(03/²1$0(��+,5(²'$7(�3²<<'''�

The above statement formats HIRE–DATE as a 3–byte packed, Julian date. (This is equivalent
to 3,&785(�6�����&203²� in COBOL.)

Again, you can use the FORMAT option to change the default way that date fields are
formatted in your mainframe file:

237,216��)250$7�<<<<00''�
&2/8016��+,5(�'$7(�

The above statements cause the HIRE-DATE field (and any other date fields) to be formatted
in YYYYMMDD format.

A complete list of display formats available for formatting numeric, date and time fields in
your output records is found in Appendix B, "Display Formats" (page 550.)

When creating mainframe files you probably will not want titles, columns headings or Grand
Total lines. You will also not want a carriage control character in the first byte of the output
records. Use the following options to suppress any or all of these items:

237,216��127,7/(6��12&2/+'*6��12*5$1'727$/��12&&

When creating mainframe output files, you may want your records to be larger (or smaller)
than the standard 133–byte output record. Chapter 7, "Operating System Considerations"
explains how to specify any record length you want for your output file. See page 362 (MVS)
or page 374 (VSE).

Producin g Files for Mainframe Pro grams

Chapter 4. Beyond the Basics 263

How to "Subset" Mainframe Files

One common reason for creating mainframe files is to select certain whole records from the
input file and write them to a "subset" file. For example, we might want to create an output
file consisting of complete EMPL–FILE records, but only for those employees in department
2. It would take a lot of effort to write a COLUMNS statement containing each individual field
name from the EMPL–FILE along with its desired output format. A much simpler way is to
define a single character field which corresponds to the entire input record, and just write
that one field to your output file:

237,216����0$,1)5$0(
,1387������(03/²),/(
),(/'������5(&25'��&2/801�����/(1*7+�����
,1&/8'(,)��'(37²180� ��
&2/8016����5(&25'

The above statements create an output file which contains the EMPL–FILE records for
employees in department 2.

How to Sort Mainframe Files

Similarly, you can use Report Writer to sort mainframe files. One advantage of using Report
Writer is that you can simply name the fields that you want to sort on (rather than having to
specify the exact columns, lengths and data types of the sort fields.) Here is an example of
sorting a mainframe file.

237,216��0$,1)5$0(
,1387����(03/²),/(
),(/'����5(&25'��&2/801�����/(1*7+�����
6257�����'(37²180��/$67²1$0(��),567²1$0(
&2/8016��5(&25'

The above statements create an output file which contains all of the EMPL–FILE records, sorted
into DEPT–NUM, LAST–NAME and FIRST–NAME order.

264 Report Writer User’s Guide

(This page left blank intentionally.)

Chapter 5. How To Define Your Input Files 265

Chapter 5. How To Define Your Input Files

Chapter Table of Contents

Chapter 5. How To Define Your Input Files . 265

How to Define a File. 269
How to Use the FILE Statement –– MVS . 269
How to Override a File Definition –– MVS . 271
How to Use the FILE Statement –– VSE . 273
How to Override a File Definition –– VSE . 274

How to Define a Field. 275
How to Define a Character Field . 275
How to Define a Numeric Field. 278
Should You Define a Field as Character or Numeric?. 282
How to Define a Date Field . 283
How to Define a Time Field. 286
How to Define a Bit Field. 289
How to Specify a Field's Location in a Record. 292
Field Location in Variable Length Files . 294
Variably Located Fields. 295
How to Specify a Field's Column Heading . 296
How to Define a Field Created by a Data Exit . 297

Keeping Your File Definitions in a Copy Library . 301
Including the Definition Statements "In–Line". 301
A Better Way: Using the Copy Library . 304
How to Use a Copy Library Alias . 308
Defining One–Time Fields. 309

Using Cobol and Assembler Record Layouts . 311
Live Runs Using Cobol Record Layouts . 311
Live Runs Using Assembler Record Layouts . 315
Handling Date and Time Fields. 318
How Report Writer Handles Arrays . 321
Converting Cobol and Assembler Layouts to FIELD Statements. 322
How to Copy Cobol and Assembler Record Layouts from Libraries. 325
Mixing FIELD Statements with COBOL and ASM Statements. 326
The Starting Column of a Cobol or Assembler Layout . 327
The "Default Location" After a Cobol or Assembler Layout . 327
The Scope of the COBOL and ASM Statements. 328
Other Features Available in COBOL and ASM Statements. 328
Technical Notes on Cobol Support. 328
Technical Notes on Assembler Support. 330

266 Report Writer User’s Guide

Chapter 5. How To Define Your Input Files

This chapter is intended primarily for programmers "setting up" new files for Report Writer.
Users who simply request reports and PC files from input files that have already been set up
do not need to read this chapter.

Report Writer needs to know a few things about your company's files before it can use those
files to produce reports. For example, it needs to know: whether a file is a VSAM file or not;
the names of the fields present in the file; which column each field begins in, and so on.

There are two control statements that supply this information about your files to Report
Writer:

� the FILE statement, which gives information about the overall characteristics of
a file

� the FIELD statement, which gives information about one individual field within
a file

A Report Writer file definition simply consists of a single FILE statement, followed by a
number of FIELD statements. (Appendix F, "Sample File Definitions" shows some sample file
definitions.)

Defining a file is a one–time thing. You will write these "definition" statements once and
then save them in Report Writer's copy library. After that, you can produce as many different
reports and PC files from the file as you like, without having to worry about these definition
statements again.

For this reason a certain amount of care should be given to writing these definition
statements. For example, a little time spent at this point in assigning useful column
headings to each field may save you a lot of time in the future. If you specify a HEADING

parm in your FIELD statement, you will not have to specify column headings in the COLUMNS

statement of every report requested in the future. (Of course, if the field name itself makes
a suitable column heading, then there's no need to specify a different column heading.) Here
is an example of specifying a column heading when defining a field:

),(/'���5(&$²0675²(03/²),567²1$0(��/(1������+($',1*�
),567�1$0(
�

Another example is the use of the NOACCUM parm. When defining numeric fields that
should not be totalled (such as employee numbers, cost center numbers, telephone numbers,
social security numbers, etc.) specify the NOACCUM parm in the FIELD statement to prevent
totalling. This keeps the user from having to specify it in each report requested later on.
Here is an example of specifying NOACCUM when defining a field that should not be totalled:

),(/'���'(37²180��7<3(�180���/(1�����12$&&80

Also, you should specify a FORMAT parm for any field that should normally be displayed in
a special way. For example, a U.S. telephone number will normally be display with
parentheses around the first three digits (the area code) and with a dash before the last 4
digits. If you specify such a PICTURE in the FIELD statement, you won't need to specify it in
COLUMNS statements later on. You may also want to specify the NOCOMMA format for
numeric fields that should not be displayed with commas (such as cost centers, subscription

How To Define Your Input Files

Chapter 5. How To Define Your Input Files 267

numbers, etc.) Here are some examples of specifying a display format when defining fields:

),(/'���7(/(3+21(����7<3(�180���/(1������)250$7�3,&
���������²����
�
),(/'���&267²&(17(5��7<3(�180���/(1������)250$7�12&200$���12$&&80

The remainder of this chapter is divided into four sections.

� the first section explains how to use the FILE statement to define the overall
characteristics of a file (page 269)

� the second section explains how to use FIELD statements to define each
individual field within the file (page 275)

� the third section describes how to store these statements in Report Writer's copy
library, to make requesting reports easy (page 301)

� the fourth section shows how to use Cobol or Assembler record layouts to define
your files to Report Writer. You can use such record layouts in place of a
Report Writer file definition. Or, you can use the record layouts to create a
standard Report Writer file definition. (Page 311.)

Sometimes a picture is worth a thousand words. So, before we get into the details of how to
define files, notice the box on the following page. It shows a typical Cobol definition of a
file, and how the same file would be defined to Report Writer.

How To Define Your Input Files

268 Report Writer User’s Guide

),/(²&21752/�
����6(/(&7�5(&$²0675²),/(��$66,*1�72�87²6²0675''�
���
)'��5(&$²0675²),/(
����/$%(/�5(&25'6�$5(�67$1'$5'
����5(&25'�&217$,16����&+$5$&7(56
����%/2&.�&217$,16���5(&25'6�

����5(&$²0675²5(&25'�
�������5(&$²0675²/$67²1$0(�������������3,&�;�����
�������5(&$²0675²),567²1$0(������������3,&�;�����
�������5(&$²0675²-8/,$1²%,57+²'$7(�����3,&������
�������5(&$²0675²6$/$5<����������������3,&�6����9���&203²��
�������5(&$²0675²'(3$570(17²180��������3,&���
�������5(&$²0675²+,5(²'$7(�
����������5(&$²0675²+,5(²'$7(²<<�������3,&����
����������5(&$²0675²+,5(²'$7(²00�������3,&����
����������5(&$²0675²+,5(²'$7(²''�������3,&����
�������5(&$²0675²48$57(5/<²6$/(6²7$%/(������2&&856���7,0(6�
����������5(&$²0675²6$/(6²475����������3,&�6����9������&203²��
�������5(&$²0675²180%(5²2)²6$/(6�������3,&�6�����&203�
�������),//(5��������������������������3,&�;����

These Cobol Statements:

),/(���0675²),/(��������''1$0(�0675''���/5(&/����

),(/'��/$67²1$0(��������/(1*7+����
),(/'��),567²1$0(�������/(1*7+����
),(/'��%,57+²'$7(�������������������7<3(�<<'''�
),(/'��6$/$5<�����������/(1*7+������7<3(�&203²�����'(&,0$/���
),(/'��'(3$570(17²180���/(1*7+������7<3(�180�������12$&&80
),(/'��+,5(²'$7(��������������������7<3(�<<00''�
),(/'��+,5(²'$7(²<<�����/(1*7+������7<3(�180�������&2/801�²��
),(/'��+,5(²'$7(²00�����/(1*7+������7<3(�180�
),(/'��+,5(²'$7(²''�����/(1*7+������7<3(�180�
),(/'��6$/(6²475²�������/(1*7+������7<3(�&203²�����'(&,0$/���
),(/'��6$/(6²475²�������/(1*7+������7<3(�&203²�����'(&,0$/���
),(/'��6$/(6²475²�������/(1*7+������7<3(�&203²�����'(&,0$/���
),(/'��6$/(6²475²�������/(1*7+������7<3(�&203²�����'(&,0$/���
),(/'��180%(5²2)²6$/(6��/(1*7+������7<3(�&203�

Are equivalent to these Report Writer (MVS) statements:

Notes:
• the FILE statement for Report Writer VSE would be:

),/(��0675²),/(�$775�'$6'�
0675''
��������
• the common prefix (RECA–MSTR) was dropped to make the field names more user friendly
• for numeric fields, Report Writer always requires the length (in bytes) that a field occupies in the input

record, rather than the number of digits it contains
• the DECIMAL parm specifies the number of decimal digits in a field
• the COLUMN(*–6) parm for HIRE–DATE–YY is used to "back up 6 bytes" to redefine the

HIRE–DATE field
• the OCCURS table in the Cobol layout is defined as 4 individual fields for Report Writer

Figure 85 Converting a Cobol copybook to Report Writer definition statements

Chapter 5. How To Define Your Input Files 269

How to Define a File

This section explains:

� how to use the FILE statement to define a file to Report Writer

� how to later override aspects of a file definition in the INPUT or READ

statement

Input files are defined to Report Writer with the FILE statement. If desired, the INPUT or READ

statements can also be used to provide, or to modify, a file definition (for a single run.) (As
a reminder, an INPUT statement is required for all runs, and specifies the primary input file for
a run. READ statements are optional, and identify any additional input files required for a
particular run.)

The following sections show how to use these statements to define your input files to Report
Writer.

The parms used in the FILE statement differ between Report Writer MVS and Report Writer
VSE. Please refer to the correct section for your operating system:

� for MVS, see below.

� for VSE, see page 273.

How to Use the FILE Statement –– MVS

There are a number of parms that can be used in a FILE statement to provide information
about a file. (The complete syntax of the FILE statement is found beginning on page 470.)
Only a few of these parms are actually required. The others are optional, and are only needed
in unusual cases.

The four things that Report Writer must know about a file are:

� the file name (that is, the "user friendly" name by which it will be referred to in
other Report Writer control statements)

� the TYPE of file (that is, the access method to be used when reading the file)

� the LRECL of the file (that is, the size of the largest record that Report Writer
could encounter when reading the file)

� the DDNAME that identifies the file in the job control language (JCL)

The first item in a FILE statement is always the file name. For example:

),/(���6$/(6²),/(

The above statement defines a file named SALES–FILE. You may choose any name you like
for a file (within the rules governing file names given on page 388.) This is the name that
will be used in Report Writer control statements when referring to this file. It does not have
to be the actual DSNAME ("data set name") of the file.

After the filename parm, the other parm(s) may appear in any order in the FILE statement.

How To Use the FILE Statement -- MVS

270 Report Writer User’s Guide

Use the TYPE parm to tell Report Writer what type of file is being defined. This tells Report
Writer which access method to use when performing I/O to the file. Report Writer supports
two types of files:

� SEQUENTIAL (or just SEQ)

� VSAM

If the TYPE parm is not specified, the default file type is SEQUENTIAL. The FILE statement
shown above did not specify a file type, so the SALES–FILE is assumed to be sequential.
Report Writer uses SAM/QSAM I/O with sequential files. The "sequential" file type covers most
non–VSAM files. Sequential files include:

� "flat" disk files, such as those maintained with TSO editors

� members of partitioned data sets (PDS)

� most files stored on magnetic tapes

The second type of file supported by Report Writer is a VSAM file:

),/(���(03/²),/(��7<3(�96$0�

The above statement defines a file named EMPL–FILE as being a VSAM file. Report Writer
supports KSDS, ESDS and RRDS VSAM files.

Note: you can also use other types of files with Report Writer. However, you will
need to write an I/O Exit program in order to do that. I/O Exits are discussed in
Appendix K, “I/O Exits.“

Use the DDNAME parm to supply the name of a DD statement that will be present in the
execution JCL. This DD statement will contain the actual DSNAME (data set name) of the file.
Report Writer uses the DDNAME in order to "open" an input file and read from it. For
example:

),/(���6$/(6²),/(��''1$0(�6$/(6''�

The above statement defines a file named SALES–FILE. When Report Writer needs this file
to produce a report, it will open and read the dataset named in the SALESDD DD statement in
the JCL.

Use the LRECL (logical record length) parm to specify the size of the largest record that the
file will possibly contain. For example:

),/(���6$/(6²),/(��''1$0(�6$/(6''���/5(&/������

The above statement specifies that a record as large as 5000 bytes may be encountered in the
SALES–FILE. This statement tells Report Writer to provide a 5000–byte I/O area to use when
reading records from this file. If no LRECL parm is present, Report Writer reserves a 1000
byte I/O area as a default.

Note: it is not a problem to specify a larger LRECL value than is actually needed. In
fact, if you suspect that a file's LRECL may grow in the future, you may want to
specify a larger LRECL with some "growth" room in it. On the other hand, specifying
an excessively large LRECL may result in higher CPU usage in certain circumstances.

How To Use the FILE Statement -- MVS

Chapter 5. How To Define Your Input Files 271

Note: when defining variable length SEQ files, the LRECL should include the length
of the 4–byte record descriptor word (RDW) at the beginning of each record.

Records in variable length SEQ files contain a 4–byte record prefix called the record
descriptor word (RDW). This RDW appears before the actual user data in each record. By
default, Report Writer ignores this RDW. Thus, a field defined as beginning in column 1
always refers to the first byte of actual user data in a record. It does not refer to the first byte
of the RDW, if any. If for some reason you want column 1 of your record to refer to the RDW,

use the KEEPRDW parm in the FILE statement. For example:

),/(���6$/(6²),/(��''1$0(�6$/(6''���.((35':

The above statement tells Report Writer to consider the RDW as part of the input record's user
data. Thus a field defined as starting in column 1 will point to the RDW within the record.

The only other parm available in the FILE statement is the EXITPARM parm. This parm is not
normally used. However, if any of the fields defined for this file use a data exit program (see
page 297), you may want to use this parm. Whenever a data exit program is called, it is
passed certain information to assist it in preparing the data to return to Report Writer. One
item of information that is passed to the data exit program is the contents of the FILE

statement's EXITPARM parm. For example,

),/(���6$/(6²),/(��''1$0(�6$/(6''���(;,73$50�
$%&'()*
�

The above statement specifies the 7–byte text '$%&'()*' as the file's exit parm data. If any
fields defined for the SALES–FILE are created in a data exit program, the string '$%&'()*' will
be passed to that exit program when it is called. The exit program could then use this data
in any way it wanted.

How to Override a File Definition –– MVS

Remember that the FILE statement simply defines a file to Report Writer for later use. It does
not make that file an input file to a report. The INPUT and READ statements request a file as
input for a particular report. When an INPUT or READ statement specifies a particular file,
Report Writer will know all about that file from the FILE statement processed earlier.

Sometimes you may want to change one or more aspects of the file definition for just one
particular run. You may do this by specifying one or more file definition parms directly in
the INPUT or READ statement. These parms will override any such parm that may also have
been specified in the FILE statement–– but only for the current run. The file definition parms
that can be specified in the INPUT and READ statements are:

� DDNAME

� TYPE

� LRECL

� KEEPRDW

� EXITPARM

For example, assume that the FILE statement for EMPL–FILE stated that the DDNAME to use was
"SWINPUT." But, for one particular report you want to use a DDNAME of "EMPLOYEE" instead.

How To Override a File Definition -- MVS

272 Report Writer User’s Guide

There is no need to change the FILE statement just to run this particular report. You would
simply code an override DDNAME parm directly in the INPUT statement:

,1387���(03/²),/(��''1$0(�(03/2<((�

The above example lets you use the EMPLOYEE DD for the current report without having to
change the FILE statement (which may be located in the copy library and difficult to modify.)

Similarly, you can override the file's TYPE parm in an INPUT or READ statement. For example,
assume that the FILE statement defined EMPL–FILE as being a "sequential" file. But you may
have loaded a VSAM file from the sequential file and want to use that VSAM file as an auxiliary
input for a report. You would override the file type, for that report only, like this:

5($'���(03/²),/(��5($'.(<�(03/²180���7<3(�96$0�

The above example causes the EMPL–FILE to be opened as a VSAM file, not as a normal
sequential file.

You can also specify a different LRECL from the one specified in the FILE statement. Here is
an example of specifying an override LRECL parm in an INPUT statement:

,1387���(03/²),/(��/5(&/������

Similarly, if you need to specify a different exit parm text from the one specified in the FILE

statement, do that in the INPUT or READ statement like this:

,1387���(03/²),/(��(;,73$50�
$%&;<=
�

Chapter 5. How To Define Your Input Files 273

How to Use the FILE Statement –– VSE

The FILE statement's ATTR parm is used to describe the attributes of a VSE file to Report
Writer. Here is an example of an ATTR parm in a FILE statement:

),/(���6$/(6²),/(��$775�'$6'�
6$/(),/
��������

The statement above defines a file called SALES–FILE. It has the following attributes:

� it is a SAM file on DASD. (Other possibilities are SAM files on TAPE, and VSAM

files)

� the DLBL name used for this file in the JCL is SALEFIL

� the records in this file are 80 bytes long

� the blocks in this file are 160 bytes long

Note: the complete syntax of the ATTR parm is shown on page 470.

Here is another example of defining a VSE file with the ATTR parm. In this example, we
define a VSAM file to Report Writer:

),/(���(03/²),/(��$775�96$0�
(03),/(
�����

The EMPL–FILE defined above is a VSAM file. The DLBL name used in the JCL is EMPFILE. The
records in the file may be up to 150 bytes long. No block size is used with VSAM files.

Note: use VSAM only for true VSAM ESDS, KSDS or RRDS datasets. DASD should be
used for all SAM files on disk, even SAM files that are in VSAM–managed space.

Here is an example of defining a file with variable–length blocked records:

),/(���9$5²),/(��$775�'$6'�
),/(,1
�9����������

The file defined above is a SAM file on DASD. The DLBL name used in the JCL is FILEIN. The
records are variable length. The largest record that the file might contain is 100 bytes long.
The longest block that the file might contain is 5000 bytes long.

Note: when defining variable length SAM files, the record size should include the
length of the 4–byte record descriptor word (RDW) at the beginning of each record.
Likewise, the block size should include the 4–byte block prefix.

Records in variable length SAM files contain a 4–byte record prefix called the record
descriptor word (RDW). This RDW appears before the actual user data in each record. By
default, Report Writer ignores this RDW. Thus, a field defined as beginning in column 1
always refers to the first byte of actual user data in a record. It does not refer to the first byte
of the RDW, if any. If for some reason you want column 1 of your record to refer to the RDW,

use the KEEPRDW parm in the FILE statement. For example:

),/(���9$5²),/(��$775�7$3(�
),/(,1
�9������������.((35':

The above statement tells Report Writer to consider the RDW as part of the input record's user
data. Thus a field defined as starting in column 1 will point to the RDW within the record.

How to Use the FILE Statement -- VSE

274 Report Writer User’s Guide

The only other parm available in the FILE statement is the EXITPARM parm. This parm is not
normally used. However, if any of the fields defined for this file use a data exit program (see
page 297), you may want to use this parm. Whenever a data exit program is called, it is
passed certain information to assist it in preparing the data to return to Report Writer. One
item of information that is passed to the data exit program is the contents of the FILE

statement's EXITPARM parm. For example,

),/(���6$/(6²),/(��$775�'$6'�
6$/(),/
����������(;,73$50�
$%&'()*
�

The above statement specifies the 7–byte text '$%&'()*' as the file's exit parm data. If any
fields defined for the SALES–FILE are created in a data exit program, the string '$%&'()*' will
be passed to that exit program when it is called. The exit program could then use this data
in any way it wanted.

How to Override a File Definition –– VSE

The ATTR parm can also be used in the INPUT and READ statements. This temporarily changes
the way a file is defined for a single Report Writer run.

If an INPUT or READ statement contains an ATTR parm, the information from that ATTR parm
overrides the information from the ATTR parm in the FILE statement. Also, you may omit the
ATTR parm in the FILE statement altogether, as long as you specify it each time in the INPUT

or READ statement.

For example, assume that for a single run we wanted to use a tape backup copy of the
SALES–FILE defined above (instead of the copy on disk.) Rather than changing the FILE

statement, we could just use an ATTR parm in our INPUT statement, like this:

,1387���6$/(6²),/(��$775�7$3(�
6$/(),/
�6<6�����������

The statement above changes the attributes of the SALES–FILE (for the current run only) to the
following:

� the file is on tape

� the TLBL name for this file in the JCL is SALEFIL

� the tape will be mounted on the tape drive at logical unit SYS004

� the records in the file are 80 bytes long

� the blocks in the file are 160 bytes long

Note that even though the record size and block size did not change from their values in the
FILE statement, we had to specify them in this ATTR parm. If you specify an ATTR parm in an
INPUT or READ statement, you must specify all of the required items in that parm. None of
the ATTR information from the FILE statement is retained.

Chapter 5. How To Define Your Input Files 275

How to Define a Field

This section explains:

� how to use the FIELD statement to define individual fields to Report Writer

There are five general types of fields used in Report Writer:

� character
� numeric
� date
� time
� bit

Each type of field is defined somewhat differently. For example, the following statement
defines a character field:

),(/'���/$67²1$0(��/(1*7+����

The FIELD statement necessary to define a numeric field that is stored in packed format and
which includes two decimal digits is a little longer:

),(/'���727$/²6$/(6��/(1*7+�����7<3(�3$&.('���'(&,0$/���

In the sections that follow we discuss how to define each type of field. The complete syntax
for the FIELD statement is given beginning on page 460.

Note: Report Writer MVS and Report Writer VSE both use exactly the same FIELD

statements.

How to Define a Character Field

This section explains:

� what a character field is

� which parms are required to define a character field

� which optional parms can be used when defining character fields

Most of the examples used in this section are illustrated in the sample report in Figure 86 on
page 277.

Character fields can contain any combination of letters, numerals, spaces, punctuation marks,
and other special characters. Character fields contain such things as names, addresses,
descriptions, etc.

Note: fields defined as character fields cannot be used in arithmetic comparisons
or calculations, even if the field contains only numeric characters. If you wish to
treat such fields as numeric data, define them as numeric rather than character fields.
See page 282 for more on this subject.

How To Define a Character Field

276 Report Writer User’s Guide

Character fields are the easiest kind of field to define. When no TYPE parm is supplied in a
FIELD statement, a character field is assumed. Therefore, the only parms required to define
a character field are:

� ILHOGQDPH

� LENGTH

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 388.

After the fieldname, the other parm(s) may appear in any order in the FIELD statement.

The LENGTH parm is required to tell Report Writer how many bytes (or "characters") the
field occupies in the record. For example:

),(/'���/$67²1$0(��/(1*7+����

The above example defines a field named LAST–NAME that occupies 15 bytes of the input
record. It is a character field by default, since no TYPE parm was specified. If you wish to
include the TYPE parm for clarity or consistency, you can do so like this:

),(/'���/$67²1$0(��/(1*7+������7<3(�&+$5�

Report Writer assumes that the LAST–NAME field occupies the 15 bytes immediately after the
previously defined field. If you want to explicitly specify where the 15–byte field is located,
use the COLUMN or the DISP parm. The use of these parms is discussed beginning on page
292. As an example, if the LAST–NAME field begins in the fourth byte of the record, we could
define it like this:

),(/'���/$67²1$0(��/(1*7+������&2/801���

By default, whenever a field appears as a column in a report, the field name itself is used as
the column heading. To specify a different column heading, use the HEADING parm in the
FIELD statement. The use of the HEADING parm is discussed beginning on page 296. As an
example, we could specify a column heading for the LAST–NAME field like this:

),(/'���/$67²1$0(��/(1*7+������+($',1*�
(03/2<((�/$67�1$0(
�

The FORMAT parm of the FIELD statement specifies the default display format to use when
displaying a field in a report. The FORMAT parm is not normally used when defining character
fields. One instance when you might want to use it is when you have a character field that
you normally want to display in its hexadecimal representation. (A status byte might be an
example of such a field.) You can specify a display format of HEX when defining such a field.
The following statement defines a 1–byte character field named STATUS–BYTE and specifies
that, by default, it should be displayed in hexadecimal notation when it appears in a report.

),(/'���67$786²%<7(��/(1*7+�����)250$7�+(;�

How To Define a Character Field

Chapter 5. How To Define Your Input Files 277

),/(���(03/²),/(��''1$0(�(03/),/(���7<3(�96$0�
),(/'��/$67²1$0(��������&2/801�����/(1*7+����
),(/'��),567²1$0(������������������/(1*7+����
),(/'��67$786²%<7(������&2/801�����/(1*7+����
),(/'��+(;²67$786²%<7(��&2/801�����/(1*7+�����)250$7�+(;�
������������������������+($',1*�
(03/2<((67$786�%<7(
�

,1387�����(03/²),/(
7,7/(�����
(;$03/(6�2)�'(),1,1*�&+$5$&7(5�),(/'6

6257������/$67²1$0(��),567²1$0(
&2/8016���/$67²1$0(��),567²1$0(��67$786²%<7(
����������+(;²67$786²%<7(

These control statements:

������(;$03/(6�2)�'(),1,1*�&+$5$&7(5�),(/'6�
�
�����/$67������������),567������67$786��(03/2<((�
�����1$0(������������1$0(��������%<7(��67$786�%<7(�
�
%$.(5�����������9,9,$1������������$��������&��
&+5,6723+(5621��0(/,66$�����������$��������&��
-2+1621���������/,1'$�������������$��������&��
-2+1621���������7+20$6������������$��������&��
-21(6�����������-(55<�������������$��������&��
0$&'21$/'�������5,&+$5'�����������������������
0255,621��������0,&+$(/�����������$��������&��
6,03621���������7,027+<�����������$��������&��
7+20$6����������0$57,1������������$��������&��
�
�
�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• a COLUMN parm was used in the first FIELD statement, since the LAST–NAME field does not begin

in the first column of the record
• no COLUMN parm was required for FIRST–NAME, since that field begins immediately after the

previously defined field
• the HEX–STATUS–BYTE field occupies the same byte in the record as the STATUS–BYTE field. It

simply has a different default display format.
• the HEADING parm specifies the column heading to use when the HEX–STATUS–BYTE field

appears as a report column –– the other columns have the field names themselves as column headings

Figure 86 A report with FIELD statements that define character fields

278 Report Writer User’s Guide

How to Define a Numeric Field

This section explains:

� what a numeric field is

� which parms are required to define a numeric field

� which optional parms can be used when defining numeric fields

Most of the examples used in this section are illustrated in the sample report in Figure 87 on
page 281.

Numeric fields contain numeric values. Examples of numeric fields are costs, salaries, sales
volumes, interest rates, etc. There are a number of different ways that a numeric field can be
stored in a record. It can be stored as character–type digits, as packed data, or as binary data,
to name a few possibilities. The FIELD statement's TYPE parm tells Report Writer exactly how
a field is stored in the record.

Note: once a numeric field has been defined, you do not need to remember how it
is stored in the record. You may freely compare any kind of numeric field with any
other numeric field. Report Writer automatically takes care of any conversion that
may be necessary. You may also mix any combination of numeric fields (packed,
binary, etc.) when performing arithmetic computations.

The only parms required to define a numeric field are:

� fieldname

� TYPE

� LENGTH

The following optional parms also relate specifically to numeric fields:

� DECIMAL

� ACCUM/NOACCUM

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 388.

After the fieldname, the other parm(s) may appear in any order in the FIELD statement.

When defining a numeric field to Report Writer the TYPE parm is required. This parm
indicates the exact way in which the numeric data is stored in the record. There are several
ways that are commonly used to store numeric values in a record. Report Writer needs to
know which method is used for a particular field in order to process it correctly. A complete
list of numeric data types appears in Appendix A, "Data Types" (page 540.) Here is an
example of defining a numeric field:

),(/'���727$/²6$/(6��7<3(�180���/(1*7+���

The above statement defines a numeric field named TOTAL–SALES. Its data is stored in the
record in "display numeric" format (that is, using numeric digits in character format.) Report
Writer's NUM data type is equivalent to Cobol's USAGE DISPLAY. Other common numeric data
types are:

� PACKED or COMP–3, which correspond to Cobol's COMP–3, and

� BINARY or COMP, which correspond to Cobol's COMP

How To Define a Numeric Field

Chapter 5. How To Define Your Input Files 279

The LENGTH parm is required to tell Report Writer how many bytes the field occupies in the
record. (Note that for some types of numeric data the LENGTH parm is not necessarily the
same as the number of digits.)

Note: to determine how many bytes a PACKED (COMP–3) field occupies in a record,
use this formula: add 1 to the total number of digits; then divide this sum by 2,
throwing away any remainder. The result is the number of bytes the field occupies
in the record.

As an example, take the RECA–MSTR–SALARY field (in Figure 85 on page 268.) It
has a total of 9 digits (seven before the decimal point and two after.) Adding 1 to
this gives us 10. Dividing 10 by 2 gives us its length–– 5 bytes.

Fields stored as BINARY data (COMP) are usually either 2 or 4 bytes long. If the
BINARY field contains no more than 4 digits, it is usually 2 bytes long. If the field has
more than 4 digits, it is generally 4 bytes long.

Report Writer assumes that the TOTAL–SALES field defined in the previous example occupies
the 7 bytes immediately after the previously defined field. If you want to explicitly specify
where the 7–byte field is located, use the COLUMN or the DISP parm. The use of these parms
is discussed beginning on page 292. As an example, if the TOTAL–SALES field began in the
56th byte of a record, we could define it like this:

),(/'���727$/²6$/(6��7<3(�180���/(1*7+�����&2/801����

Since no DECIMAL parm was specified in the preceding examples, Report Writer would
assume that the TOTAL–SALES field contained no decimal digits. If a numeric field does
contain one or more decimal digits, use the DECIMAL parm to indicate that. For example, if
the data for TOTAL–SALES includes two decimal digits, we would use the following statement
to define the field:

),(/'���727$/²6$/(6��7<3(�180���/(1*7+�����'(&,0$/���

The DECIMAL parm above tells Report Writer that the last two digits in the field are to be
considered decimal digits. The DECIMAL parm may be used with any numeric field, regardless
of which TYPE parm is used.

The ACCUM and NOACCUM parms can also be used when defining numeric fields. They
specify whether or not to accumulate the field when it appears as a column in a report. Fields
which are accumulated receive Grand Totals at the end of the report, as well as control break
totals at each control break. Accumulated fields also appear in any other statistical lines that
appear in a report (such as average lines, maximum lines, etc.)

By default, all numeric fields (except those displayed with certain non–numeric PICTUREs)
are accumulated. Some numeric fields, such as a telephone number, a department number,
or an employee number, should not be totalled. Use the NOACCUM parm to prevent these
kinds of numeric fields from appearing in the total lines. For example:

),(/'���'(37²180��/(1*7+�����7<3(�180���12$&&80

The above statement specifies that the DEPT–NUM field should not be accumulated when it
appears as a column in a report. Therefore, the DEPT–NUM column will not be totalled at
control breaks and at the end of the report, even though it is defined as a numeric field. For

How To Define a Numeric Field

280 Report Writer User’s Guide

a more detailed discussion about which fields are accumulated and appear in the total lines,
see page 144.

Another parm you may want to use when defining numeric fields is the FORMAT parm. By
default, all numeric fields (regardless of their TYPE) are displayed with the NUMERIC display
format. The NUMERIC display format: suppresses leading zeros; uses commas to separate
groups of 3 digits; and adds a leading minus sign (for negative values). If you want a numeric
field to have a different default display format, use the FORMAT parm. For example:

),(/'���&267²&(17(5��7<3(�180���)250$7�12&200$���12$&&80

The above statement specifies that whenever the COST–CENTER field is displayed in a report,
the NOCOMMA format should be used. The NOCOMMA format does not use commas to
separate groups of digits. When displaying fields like cost centers, employee numbers,
account numbers, etc, you normally do not want them formatted with commas. (You also do
not want them totalled, which is why we also specified NOACCUM in the above statement.)

A complete list of numeric display formats is found in Appendix B, "Display Formats" (page
552.)

The PICTURE display format gives you great flexibility in describing how a numeric field
should be formatted. For example:

),(/'���'2//$5²6$/(6��/(1*7+�����7<3(�3$&.('���'(&,0$/���
��������)250$7�3,&
�����������
�

The above statement uses a PICTURE to specify the display format of the DOLLAR–SALES field.
In this example, a total of 11 positions (the size of the PICTURE text) will be reserved for
displaying the field. A floating dollar sign will precede the first non–zero digit in the amount.
No decimal digits will be displayed. (The two decimal digits contained in the raw data will
be rounded out when the field is formatted for the report.)

Here is another example of using a PICTURE in the FORMAT parm to customize the way a
numeric field is displayed:

),(/'���7(/(3+21(��/(1*7+������7<3(�180�
��������)250$7�3,&
���������²����
�

This example uses parentheses and a dash as part of the PICTURE in order to display the
TELEPHONE field's 10 digits in the standard format:

���������²����

Page 393 explains the rules for writing PICTURES.

Note: the FORMAT parm specifies the default display format that will be used for
a field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.

By default, whenever a field appears as a column in a report, the field name itself is used as
the column heading. To specify a different column heading, use the HEADING parm in the

How To Define a Numeric Field

Chapter 5. How To Define Your Input Files 281

),/(���(03/²),/(��''1$0(�(03/),/(���7<3(�96$0�

),(/'��/$67²1$0(������&2/�����/(1����

),(/'��'(37²180�������&2/�����/(1����7<3(�180��12$&&80

),(/'��727$/²6$/(6����&2/�����/(1����7<3(�180��'(&���
������������������������������+($',1*�
<($5/<�6$/(6�727$/
�

),(/'��'2//$5²6$/(6���&2/�����/(1����7<3(�180��'(&���
������������������������������)250$7�3,&
�����������
�

),(/'��7(/(3+21(������&2/������/(1�����7<3(�180��
�������������������������������)250$7�3,&
���������²����
�

,1387�����(03/²),/(
7,7/(�����
(;$03/(6�2)�'(),1,1*�180(5,&�),(/'6

&2/8016���/$67²1$0(��7(/(3+21(��727$/²6$/(6
����������'2//$5²6$/(6��'(37²180

These control statements:

�����������������(;$03/(6�2)�'(),1,1*�180(5,&�),(/'6�
�
�����/$67���'2//$5�����'(37�
�����1$0(���������7(/(3+21(����<($5/<�6$/(6�727$/����6$/(6������180��
�
%$.(5���
&+5,6723+(5621��
-2+1621���
-2+1621���
-21(6���
0$&'21$/'���
0255,621��
6,03621���
7+20$6��
�
�
�*5$1'�727$/����,7(06��������������������������������������

Produce this report:

Notes:
• we used abbreviations for the COLUMNS, LENGTH and DECIMAL parms. See page 461 for a list of

abbreviations allowed in the FIELD statement
• the NOACCUM parm prevents the DEPT–NUM column from being totalled
• the PICTURE in the FORMAT parm causes DOLLAR–SALES to be displayed with a leading dollar

sign, and with no decimal digits
• the use of special characters (namely, the parentheses) in the PICTURE for TELEPHONE keeps that

column from being totalled

Figure 87 A report with FIELD statements that define numeric fields

How To Define a Numeric Field

282 Report Writer User’s Guide

FIELD statement. The use of the HEADING parm is discussed beginning on page 296. As an
example, we could specify a column heading for the TOTAL–SALES field like this:

),(/'���727$/²6$/(6��7<3(�180���/(1*7+���
��������+($',1*�
<($5/<�6$/(6�727$/
�

Should You Define a Field as Character or
Numeric?

This section explains:

� how to decide whether a field that contains only numeric digits should be defined
as a character field or as a numeric field

Most files have some fields that contain only numeric digits, stored in "display numeric"
format. When defining these fields you must decide whether you want to define them as
character or numeric fields.

It is better to define certain types of fields as character fields, even though they contain only
numeric digits. Examples of such fields are: employee numbers, department numbers, and
product code numbers. If such fields were defined as numeric, they would be formatted as
numbers (by default), with commas inserted among the digits. They would also be totalled
(by default) at the end of the report. They would appear in any statistical lines printed in the
report. This kind of processing is not normally wanted for such things as employee numbers
and department numbers. To avoid this, define the fields as character fields rather than as
numeric fields. Character fields are always displayed just as they are (no commas are
inserted) and they are never totalled. Remember to use character literals (in quotation
marks) when working with fields defined as character:

,1&/8'(,)� (03/²180� �
���

On the other hand, there is one advantage to defining certain of these fields as numeric fields.
You can use a PICTURE to specify special display formats for numeric fields. Some examples
of fields that you might want to use a PICTURE with are telephone numbers and social security
numbers. For example, you might want to use a PICTURE such as 3,&
���������²����
 to
format a telephone number in a report. Or, you way want to format a social security number
using 3,&
���²��²����
. If you want to use a PICTURE to specify a customized display format,
you must define the field as numeric. (PICTUREs are not allowed for character fields.)
Remember to use numeric literals (no quotation marks) when working with fields defined as
numeric:

,1&/8'(,)� 7(/(3+21(� �����������

Once you have decided how to define a field, you can still "change your mind."

If you find that you need to treat a character field as a number, you can convert it to a numeric
value by using the #MAKENUM built–in function in a COMPUTE statement. (See page 575.) For
example, if EMPL–NUM has been defined as a character field, and you want to add 900 to it,
you could do that by first converting it to a numeric value:

&20387(��1(:²(03/²180� ��0$.(180�(03/²180�������

Should You Define a Field as Character or Numeric?

Chapter 5. How To Define Your Input Files 283

The result field (NEW–EMPL–NUM) will be numeric, since the computational expression was
numeric. (It involved the addition of two numeric operands.) You would use numeric literals
(no quotes) when working with this field:

,1&/8'(,)���1(:²(03/²180� ����

If you find the need to treat a numeric field as a character field, you can convert it to a
character value using the #FORMAT built–in function. (See page 570.) Assume that
TELEPHONE has been defined as a numeric field. You can make a character field that contains
the formatted telephone number by using the following statement:

&20387(��&+$5²7(/(3+21(� ��)250$7�7(/(3+21(��3,&
���������²����
�

The result field (CHAR–TELEPHONE) will be a 14–byte character field (the size of the
PICTURE.) You would use character literals (with quotes) when working with this field:

,1&/8'(,)���&+$5²7(/(3+21(� �
���������²����

You could also extract certain digits out of this telephone number now that it is character
data:

&20387(���$5($²&2'(� ��68%675�&+$5²7(/(3+21(�����

How to Define a Date Field

This section explains:

� what a date field is

� which parms are required to define a date field

� which optional parms can be used when defining date fields

Most of the examples used in this section are illustrated in the sample report in Figure 88 on
page 285.

Date fields contain calendar dates. Examples of date fields are birth dates, hire dates,
expiration dates, sales dates, etc. There are a number of different ways that a date field can
be stored in a record. It can be stored as a 6–byte character YYMMDD date, as a packed Julian
date, or as a 3–byte hexadecimal MMDDYY field, to name just a few possibilities. The FIELD

statement's TYPE parm tells Report Writer exactly how a field is stored in the record.

Note: once a date field has been defined, you do not need to remember how it is
stored in the record. You may freely compare any kind of date field with any other
date field. Report Writer automatically takes care of any conversion that may be
necessary.

The only parms required to define a date field are:

� ILHOGQDPH

� TYPE

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 388.

How To Define a Date Field

284 Report Writer User’s Guide

After the fieldname, the other parm(s) may be specified in any order in the FIELD statement.

When defining a date field to Report Writer the TYPE parm is required. This parm indicates
the exact way in which the date is stored in the record. There are a number of ways that are
commonly used to store dates in a record. Report Writer needs to know which method is used
for a particular field in order to process it correctly. A complete list of date data types
appears in Appendix A, "Data Types" (page 542.) Here are two examples:

),(/'���+,5(²'$7(���7<3(�<<00''�
),(/'���%,57+²'$7(��7<3(�+²00''<<�

The first example above defines a field named HIRE–DATE that contains a date in character
YYMMDD format (for example, "������" for December 31, 1995). This type of date field takes
up 6 bytes in the record. The second statement specifies that the BIRTH–DATE field is stored
in hexadecimal MMDDYY format (for example, X'������' for the same date.) This type of date
requires only 3 bytes in the record.

The LENGTH parm is generally not required for date fields. Depending on the particular data
type, Report Writer assumes a default length for each date field. For example, the length of
a date field in YYMMDD form is 6 bytes. The length of a date field in H–MMDDYY form is 3
bytes, and so on. The default length and the allowable lengths for each date data type are
shown in the table beginning on page 542. If Report Writer's default length is correct, you
do not need to specify the LENGTH parm (although you may do so.) However, if your field
size is different than the default, you must specify its actual length using the LENGTH parm.

Report Writer assumes that the HIRE–DATE field defined in the preceding example occupies
the 6 bytes immediately after the previously defined field. If you want to explicitly specify
where the 6–byte field is located, use the COLUMN or the DISP parm. The use of these parms
is discussed beginning on page 292. For example, if HIRE–DATE begins in the 34th column
of a record, we could define it like this:

),(/'���+,5(²'$7(��7<3(�<<00''���&2/801����

By default, all date fields are displayed in MM/DD/YY format when they appear in a report
(regardless of how they are stored in the record.) If you would like a date field to have a
different default display format, use the FORMAT parm. For example:

),(/'���+,5(²'$7(��7<3(�<<00''���)250$7�/21*��

The above example specifies that whenever the HIRE–DATE field is printed in a report, the
LONG1 format should be used. The LONG1 format spells out the name of the month
completely (for example, "-$18$5<���������"). A complete list of date display formats is
found in Appendix B, "Display Formats" (page 554.)

Note: the FORMAT parm specifies the default display format that will be used for
a field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.

By default, whenever a field appears as a column in a report, the field name itself is used as
the column heading. To specify a different column heading, use the HEADING parm in the
FIELD statement. The use of the HEADING parm is discussed beginning on page 296. As an
example, we could specify a column heading for the HIRE–DATE field like this:

),(/'���+,5(²'$7(��7<3(�<<00''���+($',1*�
'$7(�+,5('
�

How To Define a Date Field

Chapter 5. How To Define Your Input Files 285

),/(����(03/²),/(���''1$0(�(03/),/(����7<3(�96$0�

),(/'���/$67²1$0(�������&2/801������/(1*7+����
),(/'���+,5(²'$7(�������&2/801������7<3(�<<00''�
),(/'���/21*²+,5(²'$7(��&2/801������7<3(�<<00''�
������������������������������������)250$7�/21*��
������������������������������������+($',1*�
'$7(�+,5('
�

,1387����(03/²),/(
7,7/(����
(;$03/(6�2)�'(),1,1*�'$7(�),(/'6

&2/8016��/$67²1$0(����+,5(²'$7(����/21*²+,5(²'$7(

These control statements:

�����(;$03/(6�2)�'(),1,1*�'$7(�),(/'6�
�
�����/$67���������+,5(�
�����1$0(���������'$7(�������'$7(�+,5('����
�
%$.(5��������������������-81(���������
&+5,6723+(5621�����������$8*867����������
-2+1621������������������-81(����������
-2+1621������������������129(0%(5����������
-21(6��������������������-$18$5<����������
0$&'21$/'����������������-8/<���������
0255,621�����������������129(0%(5����������
6,03621������������������'(&(0%(5���������
7+20$6�������������������-81(���������
�
�
�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• the HIRE–DATE field and the LONG–HIRE–DATE field both point to the same data in the record (at

column 34)
• the HIRE–DATE field is printed in the default display format since no FORMAT parm is specified in

its FIELD statement
• the FORMAT parm causes the LONG–HIRE–DATE field to be printed in the LONG1 format, with the

month name spelled out
• the HEADING parm specifies the column heading to use for the LONG–HIRE–DATE field

Figure 88 A report with FIELD statements that define date fields

286 Report Writer User’s Guide

How to Define a Time Field

This section explains:

� what a time field is

� which parms are required to define a time field

� which optional parms can be used when defining time fields

Most of the examples used in this section are illustrated in the sample report in Figure 89
(page 288).

Time fields contain a time value consisting of a number of hours and minutes. Time fields
can optionally contain seconds as well, and even decimal portions of a second.

Time fields often indicate the time of day that an event occurred. They can also indicate an
elapsed time (the time interval between two events.) There are a number of different ways
that a time field can be stored in a record. Often they are stored as a 6–byte character
HHMMSS fields. CICS stores time fields as binary hundredths of seconds since midnight. The
S/370 STCK machine instruction represents times as the number of "timer units" since the
beginning of the century.

Report Writer supports all of these kinds of time fields and about two dozen others. The
FIELD statement's TYPE parm tells Report Writer exactly how a field is stored in the record.

Note: once a time field has been defined, you do not need to remember how it is
stored in the record. You may freely compare any kind of time field with any other
time field. Report Writer automatically takes care of any conversion that may be
necessary.

The only parms required to define a time field are:

� ILHOGQDPH

� TYPE

The following optional parms can also be used to define a time field:

� DECIMAL

� ACCUM/NOACCUM

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 388.

After the fieldname, the other parm(s) may be specified in any order in the FIELD statement.

The TYPE parm indicates the exact way in which the time is stored in the record. The valid
time data types are listed in Appendix A, "Data Types" (page 545.) Use these data types in
the FIELD statement to define time fields. For example:

),(/'���6$/(6²7,0(��7<3(�++0066�

The above statement defines a field called SALES–TIME which is a 6–byte field containing a
time in HHMMSS format.

How To Define a Time Field

Chapter 5. How To Define Your Input Files 287

The LENGTH parm is generally not required for time fields. Depending on the particular data
type, Report Writer assumes a default length for each time field. For example, the default
length of a time field in HHMMSS format is 6 bytes. The default length of a time field in
P–HHMM format is 3 bytes, and so on. The default length of each time data type is also shown
in the table beginning on page 545. If Report Writer's default length is correct, you do not
need to specify the LENGTH parm (although you may do so.) However, if your field size is
different than the default, you must specify its actual length using the LENGTH parm.

Report Writer assumes that the SALES–TIME field defined in the preceding example occupies
the 6 bytes immediately after the previously defined field. If you want to explicitly specify
where the 6–byte field is located, use the COLUMN or the DISP parm. The use of these parms
is discussed beginning on page 292. For example, if SALES–TIME begins in the 38th column
of a record, we could define it like this:

),(/'���6$/(6²7,0(��7<3(�++0066���&2/801����

You may also use the DECIMAL parm in the FIELD statement. Do this when the time field
contains decimal portions of seconds (for example, tenths of seconds, or hundredths of
seconds.) For example:

),(/'���/2*²7,0(��/(1*7+�����7<3(�%²6(&6��'(&���

The above statement defines a field called LOG–TIME which is stored as a 4–byte B–SECS

("binary seconds") value. B–SECS fields store their time as the number of seconds since
midnight. The DEC(2) parm indicates that the binary value actually represents hundredths of
seconds since midnight.

The ACCUM and NOACCUM parms can also be used when defining time fields. They specify
whether or not to accumulate the field when it appears as a column in a report. Fields which
are accumulated receive Grand Totals at the end of the report, as well as control break totals
at each control break. Accumulated fields also appear in any other statistical lines that appear
in a report (such as average lines, maximum lines, etc.)

By default, time fields are not accumulated (since it makes no sense to add up various times
of day.) However, if you have a time field which represents a time interval or a duration you
may want to total that field. Use the ACCUM parm to cause a time field to be totalled. For
example:

),(/'���5(63216(²7,0(��7<3(�++0066���/(1*7+�����'(&�����$&&80

The above statement specifies that the RESPONSE–TIME field should be accumulated when it
appears as a column in a report. Therefore, the RESPONSE–TIME column will be totalled at
control breaks and at the end of the report. For a more detailed discussion about which fields
are accumulated and appear in the total lines, see page 144.

Time fields, regardless of how they are stored in the input file, are normally formatted in
your reports and PC files like this:

++�00�66

However, time fields defined as containing only hours and minutes (the HHMM data type, for
example) will be formatted like this:

++�00

How To Define a Time Field

288 Report Writer User’s Guide

),/(����6$/(6�),/(��''1$0(�6$/(),/(�

),(/'���(03/�1$0(���������������������������������/(1*7+����
),(/'���&86720(5���������&2/801�������������������/(1*7+����
),(/'���6$/(6�7,0(�������&2/801�����7<3(�++0066�
),(/'���6$/(6�7,0(�%�����&2/801�����7<3(�++0066���)250$7�++�00�
),(/'���7,0(�21�3+21(����&2/801�����7<3(�6(&6�����/(1*7+����'(&���
),(/'���7,0(�21�3+21(�%��&2/801�����7<3(�6(&6�����/(1*7+����'(&���
������������������������������������)250$7�73,&
��������
��$&&80
),(/'���7,0(�21�3+21(�&��&2/801�����7<3(�6(&6�����/(1*7+����'(&���
������������������������������������)250$7�6(&6���$&&80
������������������������������������+($',1*�
6(&21'6�21 7(/(3+21(
�

,1387����6$/(6�),/(
7,7/(����
(;$03/(6�2)�'(),1,1*�7,0(�),(/'6

&2/8016��(03/�1$0(������&86720(5
���������6$/(6�7,0(�����6$/(6�7,0(�%
���������7,0(�21�3+21(��7,0(�21�3+21(�%��7,0(�21�3+21(�&

These control statements:

��������������������(;$03/(6�2)�'(),1,1*�7,0(�),(/'6

���7,0(
������������������������������������6$/(6����7,0(�������21
���(03/���������������������6$/(6���7,0(������21������3+21(���6(&21'6�21
���1$0(�������&86720(5�������7,0(�����%�����3+21(�������%�����7(/(3+21(�

-2+1621����$&(�(/(&75,&$/���
%$.(5������-$&.6�&$)(���
0255,621���67$5�0$5.(7��
0255,621���$��3+272*5$3+<���
6,03621����(8523($1�'(/,��
-2+1621����9,//$�+27(/��
-2+1621����0$5<6�$17,48(6���
%$.(5������-$&.6�&$)(���
7+20$6�����<2*857�&,7<��
-21(6������(=�*52&(5<���
-21(6������72<�72:1���
-21(6������72<�72:1���
-2+1621����$&0(�%8,/',1*��
6,03621����-�	�6�/80%(5���

�*5$1'�727$/�����,7(06���

Produce this report:

Notes:
• the HH–MM display format causes SALES–TIME–B to be rounded to the nearest minute.
• only those fields defined with the ACCUM parm are totalled.
• TIME–ON–PHONE–B uses a TPICTURE that does not include any decimal digits. The value is

rounded to the nearest whole second.

Figure 89 A report with FIELD statements that define time fields

How To Define a Time Field

Chapter 5. How To Define Your Input Files 289

If you would like a time field to have a different default display format, use the FORMAT

parm. For example:

),(/'���6$/(6²7,0(��7<3(�++0066���)250$7�++0066�

The above example specifies that whenever the SALES–TIME field is printed in a report, the
HHMMSS format should be used. The HHMMSS format does not use colons to separate the
hours, minutes and seconds (for example, "������"). Or, you might specify the HH–MM

display format if you want a time field to be displayed without showing the seconds. Report
Writer will round the time to the nearest minute. You can also use a "time picture" to indicate
how a time is to be formatted. A complete list of time display formats is found in Appendix
B, "Display Formats" (page 557.)

Note: the FORMAT parm specifies the default display format that will be used for
a field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.

By default, whenever a field appears as a column in a report, the field name itself is used as
the column heading. To specify a different column heading, use the HEADING parm in the
FIELD statement. The use of the HEADING parm is discussed beginning on page 296. As an
example, we could specify a column heading for the SALES–TIME field like this:

),(/'���6$/(6²7,0(��7<3(�++0066���+($',1*�
7,0(�2)�6$/(
�

How to Define a Bit Field

This section explains:

� what a bit field is

� which parms are required to define a bit field

� which optional parms can be used when defining bit fields

Most of the examples used in this section are illustrated in the sample report in Figure 90 on
page 291.

Bit fields consist of only a single bit within a byte. A single bit can only have a value of 0
(zero) or 1 (one.) We say that a bit with a value of 0 is "off", while a bit with a value of 1 is
"on." Bit fields are often used to indicate a status. For example, the FULL–TIME field in the
EMPL–FILE is a bit field. If the bit is on, it means that the employee is full–time. If the bit is
"off', the employee is not full–time.

The only parms required to define a bit field are:

� ILHOGQDPH

� BIT

The following optional parms also relate specifically to bit fields:

� ONTEXT

� OFFTEXT

How To Define a Bit Field

290 Report Writer User’s Guide

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 388.

After the fieldname, the other parm(s) may be specified in any order in the FIELD statement.

The BIT parm is required to tell Report Writer which specific bit (within a byte) the field
refers to. Every byte contains 8 bits, which are numbered from 1 to 8, starting with the
leftmost ("high order") bit. Here is an example of defining a bit field:

),(/'���)8//²7,0(��%,7���

The above example defines a bit field named FULL–TIME. The BIT(1) parm specifies that the
FULL–TIME field occupies the first (or "high order") bit within the byte.

Report Writer assumes that the byte containing the FULL–TIME bit field occurs in the input
record immediately after the previously defined field. If you want to explicitly specify where
the byte containing the FULL–TIME bit is located, use the COLUMN or the DISP parm. The use
of these parms is discussed beginning on page 292. For example, if the FULL–TIME bit is
located within the 42nd byte of the record, we could define it like this:

),(/'���)8//²7,0(��%,7�����&2/801����

The above statement explicitly specifies that the FULL–TIME bit is the first (high–order) bit in
the 42nd byte of the record.

Note: a single byte in a record will often contain more than one bit field. Therefore,
the "default location" is not incremented after FIELD statements that define bit
fields. This allows you to define multiple bit fields within the same byte of the
record. For more information on the default location, see "How to Specify a Field's
Location in a Record" (page 292.)

A bit field can be printed in a report just like any other kind of field. But remember that a bit
field can have only one of two possible values: "on" or "off". Rather than just printing the
words "on" or "off" in the report, more meaningful texts are used. One text (called the
ONTEXT) will be printed if the bit is "on". Another text (the OFFTEXT) will be printed if the
bit is "off".

By default, the ONTEXT is the name of the field itself, while the OFFTEXT is the word 127
followed by the field name itself. In the above example, the text ")8//²7,0(" would print
whenever the field's value is "on", and the text "127�)8//²7,0(" would print whenever the field
is "off".

You may specify your own ONTEXT and OFFTEXT values by using the respective parms in the
FIELD statement. For example:

),(/'���)8//²7,0(��%,7�����217(;7�
)8//
���2))7(;7�
3$57
�

The above statement causes the word)8// to print whenever the bit field is "on", and the word
3$57 to print when the field is "off."

You may also use blanks as an ONTEXT or OFFTEXT. For example:

),(/'���)8//²7,0(��%,7�����217(;7�
�
���2))7(;7�
3$57�7,0(
�

How To Define a Bit Field

Chapter 5. How To Define Your Input Files 291

),/(���(03/²),/(���''1$0(�(03/),/(��7<3(�96$0�

),(/'��/$67²1$0(����/(1������&2/������
),(/'��)8//²7,0(����%,7������&2/����

),(/'��(03/²67$786��%,7������217(;7�
)8//
�
�����������������������������2))7(;7�
3$57
�
�����������������������������+($',1*�
)8//�7,0(�67$786
�

),(/'��3$57²7,0(����%,7������217(;7�
�
�
�����������������������������2))7(;7�
3$57�7,0(
�

,1387�����(03/²),/(
7,7/(�����
(;$03/(6�2)�'(),1,1*�%,7�),(/'6

&2/8016���/$67²1$0(��)8//²7,0(��(03/²67$786��3$57²7,0(

These control statements:

������������(;$03/(6�2)�'(),1,1*�%,7�),(/'6�
�
�����/$67�����������)8//�������������������������3$57�
�����1$0(�����������7,0(������)8//�7,0(�67$786���7,0(���
�
%$.(5�����������)8//�7,0(�����������)8//�
&+5,6723+(5621��)8//�7,0(�����������)8//�
-2+1621���������)8//�7,0(�����������)8//�
-2+1621���������)8//�7,0(�����������)8//�
-21(6�����������)8//�7,0(�����������)8//�
0$&'21$/'�������127�)8//�7,0(�������3$57�������3$57�7,0(�
0255,621��������)8//�7,0(�����������)8//�
6,03621���������)8//�7,0(�����������)8//�
7+20$6����������)8//�7,0(�����������)8//�
�
�
�*5$1'�727$/����,7(06�

Produce this report:

Notes:
• all three bit fields point to the same bit in the record (bit 1 of the 42nd byte) since the "default location"

is not incremented after FIELD statements that define bit fields
• the FULL–TIME field uses the default ONTEXT and OFFTEXT, which are based on the field name
• the EMPL–STATUS field specifies its own ONTEXT and OFFTEXT, as well as a column heading
• the PART–TIME field uses blanks for the ONTEXT, to make part time employees stand out better

Figure 90 A report with FIELD statements that define bit fields

How To Define a Bit Field

292 Report Writer User’s Guide

The above statement will print only a blank when the field is "on", but prints the words 3$57

7,0(when the field is "off". The use of blanks for one of the texts helps cause the other text
to stand out whenever it appears in the report.

By default, whenever a field appears as a column in a report, the field name is used as the
column heading. To specify a different column heading, use the HEADING parm in the FIELD

statement. The use of the HEADING parm is discussed beginning on page 296. As an
example, we could specify a column heading for the FULL–TIME field like this:

),(/'���)8//²7,0(��%,7�����+($',1*�
)8//�7,0(�67$786
�

How to Specif y a Field's Location in a
Record

This section explains how to specify where a field begins within a record. This discussion
applies to fields of all types. Topics covered include:

� how a field's default location is determined

� how the default location works when defining bit type fields

� how to use the COLUMN or DISP parm to specify a field's location

� how to use the FILE parm to specify the file in which a field is located

Subsequent sections show:

� how columns are counted in variable length (VB) input files (page 294)

� how to use the OFFSET parm for variably located fields (page 295)

Some of the sample FIELD statements in the preceding sections did not use the COLUMN parm.
When no parm is used to indicate where a field begins, a default location is assumed. By
default, the first field defined for a file is assumed to begin in column 1. Subsequent fields
are assumed to begin immediately after the previously defined field. For example, assume
that the following two statements appeared together:

),(/'���/$67²1$0(���/(1*7+������&2/801���
),(/'���),567²1$0(��/(1*7+����

The first field defined above (LAST–NAME) has a COLUMN parm specifying that the field
begins in the 4th byte of the record. The field is 15 bytes long. The second field
(FIRST–NAME) does not have a COLUMN parm. Therefore, this field is assumed to begin
immediately after the LAST–NAME field. Since the LAST–NAME field begins in column 4 and
occupies 15 bytes, the FIRST–NAME field would begin in column 19.

When defining consecutive fields in a file, you will not normally need a COLUMN parm. You
will only need this parm in a few cases:

� after defining a bit field (the default location is not incremented after defining
a bit field)

� when you want to redefine part of a record

� when you want to skip over part of a record that doesn't need to be defined
(such as filler)

How To Specif y a Field's Location in a Record

Chapter 5. How To Define Your Input Files 293

Some companies prefer to think of fields in terms of displacements, rather than columns. A
field's starting displacement is simply its starting column minus one. Report Writer also lets
you use the DISP (or DISPLACEMENT) parm to indicate a field's location in a record. For
example, both of the following statements define the LAST–NAME field as beginning in the 4th
byte of the record:

),(/'���/$67²1$0(��/(1*7+������&2/801���
),(/'���/$67²1$0(��/(1*7+������',63���

There are other methods you can use to specify a field's starting column. You can use the
location of some other field as a reference point, like this:

),(/'���/$67²1$0(��/(1*7+������&2/801�),567²1$0(������

The above example specifies that the LAST–NAME field begins 25 bytes after the starting
column of the FIRST–NAME field. (For this statement to be acceptable, the FIRST–NAME field
must have already been defined in a preceding FIELD statement.)

The following example specifies that the LAST–NAME field begins 20 bytes before the start
of the FIRST–NAME field:

),(/'���/$67²1$0(��/(1*7+������&2/801�),567²1$0(�²����

Note: Be sure to put blanks around dashes that are used as minus signs (as above)
to avoid confusion with dashes that are a part of the field name. (Blanks are optional
around the plus sign.)

You may also use an asterisk (*) within the COLUMN or DISP parm. The asterisk represents
the current location within the record. In other words, it represents the starting column that
would be assigned if you did not specify a COLUMN parm at all. For example:

),(/'���/$67²1$0(��/(1*7+������&2/801������

The above example specifies that the LAST–NAME field, rather than beginning immediately
after the previously defined field, should begin 7 bytes after that.

You can also use the asterisk to "back up" the current location. This is useful when you want
to define more than one field for a given part of the record. For example, assume the
following two statements appeared together:

),(/'���+,5(²'$7(��7<3(�00''<<�
),(/'���+,5(²<($5��&2/801��²�����/(1*7+���

The first statement above defines HIRE–DATE as a 6–byte date field in the format MMDDYY.

The second field backs up 2 bytes and redefines the last 2 bytes of the hire date as a separate
field named HIRE–YEAR. HIRE–YEAR is just a 2–byte character field containing the YY portion
of the HIRE–DATE field.

The "default location" is handled a little differently when working with bit fields. A single
byte in a record will often contain more than one bit field. Therefore, the default location is
not incremented after FIELD statements that define bit fields. This allows you to define
multiple bit fields within the same byte of the record. After the FIELD statement for the last

How To Specif y a Field's Location in a Record

294 Report Writer User’s Guide

bit that you wish to define within a byte, you must use the COLUMN (or DISP) parm to specify
the location of the next field. For example:

),(/'���$&7,9(²)/$*����%,7���
),(/'���3$577,0(²)/$*��%,7���
),(/'���'(/(7(²)/$*����%,7���
),(/'���&86720(5�������&2/801������/(1*7+����

The first three FIELD statements above define bit fields. All three bit fields are located in the
same byte of the record. The default location was not incremented after processing those
FIELD statements since they defined bit fields. To define the CUSTOMER field, which begins
in the next byte of the record, we used the COLUMN parm. The "��" within that parm
specifies that the CUSTOMER field should begin in the current location (the byte containing
the bit fields), plus one byte.

Our examples up until now have not used the FILE parm of the FIELD statement. By default,
fields are assumed to exist in the "current file" –– that is, the file defined in the most recent
FILE statement. To specify that a field belongs to some other (previously defined) file, use
the FILE parm. For example, assume that the following statements appeared together:

),/(����(03/²),/(
),(/'���/$67²1$0(���&2/801�����/(1*7+����
),/(����6$/(6²),/(
),(/'���(03/²1$0(���&2/801����
),(/'���),567²1$0(��&2/801�����/(1*7+�����

The first statement above defines a file named EMPL–FILE. The next statement defines a field
named LAST–NAME. Since no FILE parm is used, that field is assumed to exist in the
EMPL–FILE –– the most recently defined file. The next statement defines a new file named
SALES–FILE. The following statement defines a field named EMPL–NAME. It also has no FILE

parm. So, it is assumed to exist in the SALES–FILE –– the most recently defined file at that
point. The last statement defines a field named FIRST–NAME. This statement does have a FILE

parm. That statement explicitly specifies that the FIRST–NAME field exists in the EMPL–FILE

–– not the most recently defined file (the SALES–FILE.)

Field Location in Variable Len gth Files

Records in non–VSAM variable length files begin with a 4–byte record prefix called the record
descriptor word (RDW). This RDW appears before the actual user data in each record.

By default, Report Writer ignores the RDW in variable length input files. It treats your
variable length input records as beginning immediately after the 4–byte RDW. That is, a field
defined as beginning in column 1 does not point to the RDW, but rather to the first byte of
data after the RDW. Consider these statements:

),/(����9$5²),/(��''1$0(�),/(,1���/5(&/������
),(/'���1$0(������&2/801����������/(1*7+����

Assuming that VAR–FILE is a variable–length file, Report Writer will ignore the 4–byte RDW

at the beginning of each record. Thus, the field that begins in column 1 (NAME) is the first
item we can define for this file. We cannot define a field that is within the RDW prefix of the
record.

How To Specif y a Field's Location in a Record

Chapter 5. How To Define Your Input Files 295

If you do not want Report Writer to ignore the RDW, use the KEEPRDW keyword in the FILE

statement (or in the INPUT or READ statement.) For example:

),/(����9$5²),/(�������''1$0(�),/(,1���/5(&/��������.((35':
),(/'���5(&25'²/(1*7+��&2/801�����7<3(�+$/):25'�
),(/'���1$0(�����������&2/801�����/(1*7+����

The KEEPRDW parm in the FILE statement above causes Report Writer to treat the RDW as
part of each input records. Thus, we defined a halfword field starting in column 1 that points
within the RDW. That field (RECORD–LENGTH) will contain the length of the record (which
is what is the first 2 bytes of the RDW contains.) The first field after the RDW, "NAME", now
starts in column 5.

Variabl y Located Fields

Some records contain fields that do not always begin at a fixed column in the record. In such
cases there is usually another field within the record that tells the "offset" to the variably
located field. Report Writer's OFFSET parm lets you easily define such fields.

The OFFSET parm can contain any numeric expression. Report Writer computes the value
of the OFFSET parm for each input record. It adds this value to the value of your COLUMN or
DISP parm and thus determines where the field is located within the input record.

For example:

),(/'���$''5²2))6(7��',63��������7<3(�+$/):25'�
),(/'���$''5²/,1(²���/(1*7+������2))6(7�$''5²2))6(7�
),(/'���$''5²/,1(²���/(1*7+����
���

In this example, our input record contains a halfword value at displacement 26. This value
is the offset within the record to an "address section" of the record. The address section
consists of two 30–byte address lines.

Here are some points to keep in mind about the OFFSET parm:

� The "default location" value is reset to displacement 0 each time an OFFSET

parm is encountered. ("Default location" means the default displacement
assumed when you do not specify a DISP or COLUMN parm in the FIELD

statement.) Thus ADDR–LINE–1 is treated as if it had a DISP(0) parm. Therefore,
if ADDR–OFFSET contains a value of 100 in a particular record, ADDR–LINE–1 will
be located at displacement 100 in that record. Of course, you can still specify
your own explicit DISP (or COLUMN) parm if you don't want the default value.
For example:

),(/'��$''5²/,1(²;�2))6(7�$''5²2))6(7��',63�����/(1*7+����

This statement would cause ADDR–LINE–X to be located at displacement 115 in
our example.

� An OFFSET parm remains in effect for all subsequent FIELD statements, until
another OFFSET parm is found. Thus, the location of ADDR–LINE–2 is also
determined by using the value in ADDR–OFFSET. Since there is no DISP parm
present, the "default location" value is assumed. The default location is 30 for

Variabl y Located Fields

296 Report Writer User’s Guide

this field (since ADDR–LINE–1 took up 30 bytes in the record.) Thus
ADDR–LINE–2 would be located at displacement 130 in the same record.

Use OFFSET(0) if you later want to define fields that do not need any OFFSET

value. Remember that specifying OFFSET(0) also resets the default record
location value to zero.

If you use an OFFSET parm in a member of the Report Writer Copy Library, it
is a good idea to have a final FIELD statement that contains an OFFSET(0) parm.
That way there will be no "surprises" if someone later adds more FIELD

statements "inline" for a report request. They might not be aware that an
OFFSET value was still in effect for their additional FIELD statements.

� A) error indicator in your report means that an "Offset Error" occurred
for a field. Offset errors occur when the sum of the OFFSET value and the DISP

value are not within the I/O area reserved for the input record. (The size of this
I/O area is determined by the record size specified in a FILE, INPUT or READ

statement.) Offset errors also occur when a computation error arises while
computing the OFFSET value. This includes division by zero, overflow, or any
reference to another field that contains invalid data.

The examples above used a single field as the OFFSET value. You are also allowed to use
numeric expressions in the OFFSET parm. For example, to define a field that appears after
an array of variable size, you might use this statement:

),(/'���/$67²),(/'��2))6(7�������180²6/276��������/(1*7+����

How to Specif y a Field's Column Headin g

This section explains:

� how to use the HEADING parm to specify column headings

The HEADING parm can be used when a defining any type of field. It specifies the default
column heading to be used whenever a field appears as a column in a report or PC file.
For example:

),(/'���),567²1$0(��/(1������+($',1*��(03/2<((
6/$67�1$0(��

The vertical bar () in the HEADING parm above indicates that the column heading should be
split onto separate lines at that point. The first part ((03/2<((
6) will go on one line, and the
second part (/$67�1$0() will go on the next line of the column heading.

Note: the vertical bar is the Shift "1" key on most mainframe terminals. Some PC
keyboards that emulate mainframe terminals do not have a key that shows the
straight vertical bar. (The "pipeline" character is not the same as the vertical bar.)
On many of these keyboards, the right–hand square bracket key (]) is used to send
a vertical bar to the mainframe.

How To Specif y a Field's Column Headin g

Chapter 5. How To Define Your Input Files 297

You can also use the HDGSEP parm of the OPTION statement to select a character
other than the vertical bar () to use as the separator character. Here is an example
of using a slash, rather than a vertical bar, to separate column headings lines:

237,216��+'*6(3�
�
�
),(/'����/$67²1$0(��/(1������+($',1*��(03/2<((
6�/$67�1$0(��

If no HEADING parm is specified when a field is defined, the field name itself will be used as
the default column heading. All dashes or underscores in the field name will be used to
separate the name into different column heading lines.

Note that the HEADING parm simply specifies the default column headings that will be used
for the field. Override column headings can be specified in the COLUMNS control statement
to change the column heading for a particular run.

For more complete information on specifying column headings, see page 127.

How to Define a Field Created b y a Data Exit

This section explains:

� what a data exit is

� which parms are required to define a field that uses a data exit

� which optional parms can be used when defining fields that use data exits

There are occasions when an external program, called a data exit program (or just "exit
program"), must manipulate data before Report Writer can use it. Examples of this include:

� data that is stored in encrypted format in a record

� date fields that are stored in an unusual format that Report Writer does not
directly support

� data that exists in files that Report Writer cannot read directly, such as certain
data base files

Even in such situations, Report Writer can still use the data to produce a report. But a data
exit program must first be called to convert the data into a standard format that Report Writer
can process. For example, in the cases listed above, a data exit program could be used to:

� decrypt the encrypted data

� convert the unusual date field into a date field that Report Writer can process

� perform its own I/O on the data base file, and pass back to Report Writer data
from that file

Note: data exit programs are not included with Report Writer. They must be
written by a programmer at your company. Most companies will not use data exit
programs at all. The data exit interface is merely provided to give the maximum
ability to use Report Writer at any shop –– even those with very "non–standard"
types of files or data. Appendix G, "Sample Data Exit Program" shows a sample
data exit program and a run that uses it.

How To Define a Field Created b y a Data Exit

298 Report Writer User’s Guide

When Report Writer needs to use a data exit field in producing a report, it temporarily passes
control to the data exit program. The exit program will be passed such information as: the
name of the field that Report Writer needs a value for; some portion of the current input
record; and, a parm text.

The exit program then performs whatever processing is required, and passes back to Report
Writer one of the following:

� a character string, of the length specified in the DXRETLEN parm (explained
below)

� a numeric value, stored as a 16–byte packed field

� a date value, stored as a 4–byte X'YYYYMMDD' field

� a time value, stored as a 16–byte packed number of seconds (or decimal parts
of seconds)

� a bit value, stored as a 1–byte character &
�
 or &
�

Once an exit program has passed data back to Report Writer, that data can then be used just
like the data from any other field in producing reports and PC files. It can be printed, sorted
on, compared with other fields, used in computations, etc.

When data exit fields are defined, several special parms must be used in the FIELD statement.
These additional parms give information about: the name of the data exit program to execute;
what data should be passed to that program; and, what kind of data Report Writer can expect
to get back from that program.

The parms required to define a field created by an exit program are:

� ILHOGQDPH

� TYPE

� DXPROG

� DXRETLEN (for character fields)
� DXRETDEC (for numeric and time fields)

The following optional parm also relates specifically to fields created by data exits:

� DXPARM

In addition, the parms that specify how to display fields in a report (such as HEADING,

FORMAT, ACCUM/NOACCUM, ONTEXT, and OFFTEXT) can also be specified for these fields.

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 388.

After the fieldname, the other parm(s) may be specified in any order in the FIELD statement.

The TYPE parm is required to tell Report Writer that the field's data is not in the input
record, but must be obtained by calling an exit program. It also tells what kind of data
(character, numeric, date, time or bit) the exit program will return.

The DXPROG parm is required to tell Report Writer the name of the program that should be
called to create the field's data.

How To Define a Field Created b y a Data Exit

Chapter 5. How To Define Your Input Files 299

The DXRETLEN parm is required for character fields that are created by a data exit program.
This parm specifies the length of the character data that will be returned to Report Writer by
the exit program.

The DXRETDEC parm is required for numeric and time fields that are created by a data exit
program. This parm specifies the number of decimal digits that will exist in the packed
number returned to Report Writer by the exit program.

Let's consider an example of a file that contains names stored in a special encrypted format.
Assume that the encrypted name starts in column 15 and is 20 bytes long. Also assume that
a program named DCRYPROG can be used to decrypt such names into a clear text 18 byte
name. Consider the following FIELD statement:

),(/'���&/($5²1$0(��&2/801������/(1*7+������7<3(�&+$5(;,7�
��������';352*�
'&5<352*
���';5(7/(1����

The above statement defines a field named CLEAR–NAME. The contents of this field will be
the name in "clear" format (that is, not encrypted). But in order to get the decrypted name,
Report Writer must call an exit program. Therefore, the field is defined with the
TYPE(CHAREXIT) parm. This specifies that a data exit program will be used, and that the exit
program will return character type data to Report Writer.

The DXPROG parm supplies the name of the exit program to call. In this example, a program
named DCRYPROG will be called. Under MVS, a load module by this name must exist in the
library named in the STEPLIB DD in the JCL. Under VSE, a phase by this name must be in a
sublibrary named in the "���/,%'()�3+$6(�6($5&+ ���" statement in the JCL.

When Report Writer calls that program it will pass it the 20 byte encrypted name, which
begins in column 15 of the record. This is specified by the COLUMN and LENGTH parms.

The TYPE and DXRETLEN parms tell Report Writer to expect an 18–byte character value back
from the exit program. It is this 18 byte character field returned from the exit program that
will be used whenever the CLEAR–NAME field appears in a report.

Here is an example of using a data exit to create a date field. Assume that in column 17 of
the input record there are 2 bytes that contain a date, stored in a special "in–house" format.
A program called DATECONV exists that can convert this date into the standard 4–byte
;
<<<<00''
 format date that Report Writer uses internally. The following statement could be
used to define the field:

),(/'���63(&,$/²'$7(��&2/801������/(1*7+�����7<3(�'$7((;,7�
��������';352*�
'$7(&219
���)250$7�/21*��

The above statement defines a field named SPECIAL–DATE that can be used just as any other
date field in Report Writer. It can be compared to other dates, printed using any date display
format, etc. In this example, we have also specified the optional FORMAT parm. It specifies
that this date field should be displayed using the LONG1 format, by default.

Following is an example of a data exit used to create a numeric field. Assume that bytes 5
through 7 of the input record contain a key that can be used to read a special "in–house" data
base file. The data base file contains the unit cost of a product. Since Report Writer cannot
read the data base file directly, an exit program named READCOST is called to read a record
from the file and return the unit cost as a 16–byte packed number. The numeric value
returned by the exit program will contain 2 decimal digits.

How To Define a Field Created b y a Data Exit

300 Report Writer User’s Guide

),(/'���81,7²&267��&2/801�����/(1*7+�����7<3(�180(;,7�
��������';352*�
5($'&267
���';5(7'(&���

The last example is of a bit field that is created using a data exit program. In this example,
we want to define a bit field that tells whether a report job is running on the shop's
production machine, or on its development machine. This information is not stored in any
record. But a program named CHEKMACH can determine which machine it is running on. In
this example, we don't specify a COLUMN or LENGTH, because the data exit program does not
require any data from our input file in order to do its processing. This exit program will
return an "on" value ("1") if the production machine is running, and an "off" value ("0') if the
development machine is running. The optional ONTEXT and OFFTEXT parms have been used
in this example.

),(/'���0$&+,1(��7<3(�%,7(;,7���';352*�
&+(.0$&+
�
��������217(;7�
352'
���2))7(;7�
'(9
�

Chapter 5. How To Define Your Input Files 301

Keepin g Your File Definitions in a Cop y Librar y

This section explains:

� how to define files without using a copy library

� how to simplify the file definition process by using a copy library to store your
FILE and FIELD statements

The preceding sections have shown how to write FILE and FIELD statements. (These
statements are called "definition statements.") But where should you put your definition
statements? This section discusses two approaches to handling these definition statements:

� you can code the definition statements "in–line" , including them right along
with the other control statements for each report

� or, a better way is to save the definition statements in the Report Writer Copy
Library , where they can be automatically accessed when needed

The following sections describe these two methods.

Includin g the Definition Statements
"In–Line"

If you like, you can produce Report Writer reports and PC files without using a copy library
at all. Simply include the necessary FILE and FIELD statements ahead of the other control
statements (that describe the report or PC file.) Figure 91 shows an MVS example of a report
which has the necessary definition statements included ahead of the other control statements.
No copy library was involved in producing this report.

Figure 92 shows the same example under VSE.

Note that if you use this method, you only need to define those fields that are actually used
in the report. It is not necessary to define every field in the file.

If a report requires more than one input file (by using one or more READ statements) be sure
to include the definition statements for each of the input files.

Includin g the Definition Statements "In-Line"

302 Report Writer User’s Guide

��63(&7:75�-2%�
5(48(67(5

��
��63(&7:75�(;(& 3*0 63(&7:75�����5(3257�:5,7(5�5(3257
�� 5(*,21 ����.
��67(3/,%��''��'61 63(&7:75�/2$'/,%�',63 6+5 /2$'/,%�72�86(
��6:/,67���''��6<6287 &21752/�/,67,1*
��6:287387�''��6<6287 5(3257�287387
��6<6287���''��6<6287 6257�67$7,67,&6
��6<68'803�''��6<6287 '803�287387
��6257:.���''��81,7 6<6'$�63$&(�&</������� 6257�:25.�),/(
��6257:.���''��81,7 6<6'$�63$&(�&</������� 6257�:25.�),/(
��6257:.���''��81,7 6<6'$�63$&(�&</������� 6257�:25.�),/(
��6$/(),/(�''��'61 352'�6$/(6�'7�',63 6+5 6$/(6�),/(
��6<6,1����''�� &21752/�67$7(0(176
�7+(6(�67$7(0(176�'(),1(�7+(�6$/(6²),/(
),/(�����6$/(6²),/(��''1$0(�6$/(),/(���/5(&/����
),(/'����(03/²1$0(/(1*7+����
),(/'����(03/²180 /(1*7+���
),(/'����$02817 ����&2/801���� /(1*7+�����7<3(�180��'(&���
),(/'����7$; /(1*7+�����7<3(�180��'(&���
),(/'����6$/(6²'$7(��&2/801���� ���7<3(�<<00''�
),(/'����&86720(5����&2/801������/(1*7+����
�7+(6(�67$7(0(176�5(48(67�$�5(3257�)520�7+(�6$/(6²),/(
,1387����6$/(6²),/(
&2/8016��(03/²1$0(��(03/²180��6$/(6²'$7(��&86720(5��$02817��7$;
6257�����(03/²1$0(
��

This JCL:

Notes:
• the EMPL–FILE is defined with the FILE statement before the INPUT statement that refers to it
• each of the fields used in the report are defined with FIELD statements before being referred to
• no SWCOPY DD is needed in the JCL to run this report, since the copy library is not used

Figure 91 A Report Writer report that does not use a copy library –– MVS

021�������������������$0������'$7$�)520�6$/(6�),/(��������3$*(�����
��
���(03/����(03/��6$/(6��
���1$0(����180����'$7(������&86720(5���������$02817���������7$;����
��
%$.(5��������������������-$&.6�&$)(����������������������������������
%$.(5��������������������-$&.6�&$)(����������������������������������
-2+1621������������������$&(�(/(&75,&$/������������������������������
-2+1621������������������9,//$�+27(/���������������������������������
-2+1621������������������0$5<6�$17,48(6������������������������������
-2+1621������������������$&0(�%8,/',1*�������������������������������
-21(6��������������������(=�*52&(5<����������������������������������
-21(6��������������������72<�72:1������������������������������������
-21(6��������������������72<�72:1������������������������������������
0255,621�����������������67$5�0$5.(7���������������������������������
0255,621�����������������$��3+272*5$3+<������������������������������
6,03621������������������(8523($1�'(/,�������������������������������
6,03621������������������-�	�6�/80%(5��������������������������������
7+20$6�������������������<2*857�&,7<���������������������������������
��
��
�*5$1'�727$/�����,7(06��

Produces this report:

Includin g the Definition Statements "In-Line"

Chapter 5. How To Define Your Input Files 303

���-2%����63(&7:75
���$66*1��6<6����6<6/67�����������������&21752/�67$7(0(17�/,67,1*
���$66*1��6<6���������������������������5(3257�287387
���/,%'()�3+$6(�6($5&+ /,%�63(&7:75
���'/%/���6$/(),/�
6$/(6�0$67(5�),/(

���(;7(17�6<6����������������
���(;(&���63(&7:75�6,=(�63(&7:75����.�
�7+(6(�67$7(0(176�'(),1(�7+(�6$/(6²),/(
),/(�����6$/(6²),/(��$775�'$6'�
6$/(),/
��������
),(/'����(03/²1$0(���������������/(1*7+����
),(/'����(03/²180����������������/(1*7+���
),(/'����$02817�����&2/801�������/(1*7+�����7<3(�180���'(&���
),(/'����7$;���������������������/(1*7+�����7<3(�180���'(&���
),(/'����6$/(6²'$7(�&2/801������������������7<3(�<<00''�
),(/'����&86720(5���&2/801�������/(1*7+����
�7+(6(�67$7(0(176�5(48(67�$�5(3257�)520�7+(�6$/(6²),/(
,1387����6$/(6²),/(
&2/8016��(03/²1$0(��(03/²180��6$/(6²'$7(��&86720(5��$02817��7$;
6257�����(03/²1$0(
�
�	

This JCL:

021�������������������$0������'$7$�)520�6$/(6�),/(�������3$*(������
��
���(03/����(03/��6$/(6��
���1$0(����180����'$7(������&86720(5���������$02817���������7$;����
��
%$.(5��������������������-$&.6�&$)(����������������������������������
%$.(5��������������������-$&.6�&$)(����������������������������������
-2+1621������������������$&(�(/(&75,&$/������������������������������
-2+1621������������������9,//$�+27(/���������������������������������
-2+1621������������������0$5<6�$17,48(6������������������������������
-2+1621������������������$&0(�%8,/',1*�������������������������������
-21(6��������������������(=�*52&(5<����������������������������������
-21(6��������������������72<�72:1������������������������������������
-21(6��������������������72<�72:1������������������������������������
0255,621�����������������67$5�0$5.(7���������������������������������
0255,621�����������������$��3+272*5$3+<������������������������������
6,03621������������������(8523($1�'(/,�������������������������������
6,03621������������������-�	�6�/80%(5��������������������������������
7+20$6�������������������<2*857�&,7<���������������������������������
��
��
�*5$1'�727$/�����,7(06��

Produces this report:

Notes:
• the EMPL–FILE is defined with the FILE statement before the INPUT statement that refers to it
• each of the fields used in the report are defined with FIELD statements before being referred to
• no OPTIONS: SUBLIB parm is needed to run this report, since a copy library is not used

Figure 92 A Report Writer report that does not use a copy library –– VSE

304 Report Writer User’s Guide

A Better Wa y: Usin g the Cop y Librar y

There is a better way to handle the definition statements. Report Writer can automatically
access the definition statements it needs for a particular report by using a "copy library." In
MVS, this copy library is just a regular partitioned data set (PDS). In VSE, this copy library is
just a regular Librarian sublibrary. The copy library will have one member for each of your
company's files that have been defined. The FILE and FIELD statements for each file will be
kept in these members.

Note to MVS programmers: the Report Writer Copy Library works in much the
same way as the following programming language libraries:

� the Cobol copybook library (SYSLIB)

� the PL/1 INCLUDE library

� the SYSLIB macro and copy library, for assembler programs

We suggest you create a new PDS to serve exclusively as your Report Writer Copy
Library. However, you can use any 80–byte PDS. Use the SWCOPY DD (in your
execution JCL) to tell Report Writer what PDS you are using as the copy library.
Chapter 7, "Operating System Considerations" gives more information on the
SWCOPY DD and on setting up file definitions in your copy library (page 364.)

Note to VSE programmers: the Report Writer Copy Library works in much the
same way as the following programming language libraries:

� the Cobol copybook library

� the PL/1 INCLUDE library

� the macro and copy library, for assembler programs

We suggest you define a separate sublibrary to serve exclusively as your Report
Writer Copy Library. However, you can use any sublibrary you choose. Use the
SUBLIB parm (in an OPTIONS statement) to tell Report Writer the name of your copy
library. The member type for all members should be SPECTWTR. (Use the OPTIONS

statement MEMTYPE parm if you need to use a different name for the member type.)
Chapter 7, "Operating System Considerations" gives more information on setting up
file definitions in your copy library (page 376.)

There are several advantages to keeping the FILE and FIELD statements in a copy library.
Among them are: easier maintenance of the definitions; standardization of file definition
among the various jobs that use the same file; and the ability for users to request reports more
easily, without concerning themselves each time with writing definition statements.

To add a file's definition to the copy library, simply create a new member in the copy library.
The member name can be either the file name itself (if it conforms to the naming rules for
PDS or Librarian members), or it can be some other name (in which case you'll create an alias
entry for it, as described beginning on page 308.) After you have created a member in the
copy library for a file, simply save its FILE and FIELD statements there. You can also add any
COMPUTE statements that are commonly used with the file. That's all there is to adding a file
to the Report Writer Copy Library.

Once a file's definition statements have been stored in the copy library, Report Writer will
automatically copy and process those statements whenever they are needed in order to
produce a report or PC file. You remember that the INPUT and the READ statement identify

A Better Wa y: Usin g the Cop y Librar y

Chapter 5. How To Define Your Input Files 305

files as inputs in a run. By default, whenever either of these statements names a file that has
not yet been defined, Report Writer attempts to copy control statements from the copy library
member that corresponds to that file. Those control statements then define the file for Report
Writer.

Thus, each input file to a report is automatically defined for you as it is needed. You don't
need to concern yourself with the FILE and FIELD statements every time you request a report
or PC file.

Figure 93 (MVS) and Figure 94 (VSE) show a sample report that allows the INPUT statement
to automatically copy the FILE and FIELD control statements from the copy library. Most of
the examples in this manual also use this method –– that is why you don't see the FILE and
FIELD statements explicitly specified in most cases. To see the contents of the copy library
members for the sample files used in this manual, see Appendix F, "Sample File Definitions."

By default, the control statements copied from the copy library are not printed in the control
listing along with the other control statements. If you would like to see all of the control
statements that are copied from the copy library, add the LIST(YES) parm to your INPUT or
READ statement, like this:

,1387���(03/²),/(��/,67�<(6�

The INPUT statement above will cause all of the statements copied from the copy library to
be printed in the control listing. If you are having errors involving "undefined files" or
"undefined fields," you should use the LIST(YES) parm to see exactly how the file and fields
are being defined.

If for any reason you do not want an automatic copy performed for an INPUT or READ

statement, you may use the COPY(NO) parm, like this:

,1387���(03/²),/(��&23<�12�

The above statement specifies EMPL–FILE as the input file and requests that no automatic copy
be performed from the copy library. (Also, remember that the default is not to perform a
copy if the file named in the INPUT or READ statement has already been defined some other
way.)

The copy library can also be used to store any other commonly used group of control
statements. To explicitly copy the contents of a copy library member into your control
statements, use the COPY statement (page 455.)

For example, you might store a set of complicated COMPUTE statements that are used by
many reports. Or, if you frequently run reports that use multiple input files, you could store
the INPUT statement, any COMPUTE statements needed to create the read keys, and the READ

statements all as one member of the copy library. That way the end–users would not need to
remember how to link all of the input files. They could just begin their report request with
a COPY statement that does all of that for them.

Under MVS, the COPY statement can also copy sequential datasets that are not partitioned
datasets. If your FILE and FIELD statements are stored in a dataset other than a PDS, you may
want to use the COPY statement to include them in your report request. Put the COPY

statement before the INPUT or READ statement.

A Better Wa y: Usin g the Cop y Librar y

306 Report Writer User’s Guide

,1387�����(03/²),/(
7,7/(�����
86,1*�7+(�&23<�/,%5$5<�72�'(),1(�),(/'6

&2/8016���/$67²1$0(��),567²1$0(��+,5(²'$7(

These control statements:

86,1*�7+(�&23<�/,%5$5<�72�'(),1(�),(/'6�
�
�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(��
�
%$.(5�����������9,9,$1�������������������
&+5,6723+(5621��0(/,66$������������������
-2+1621���������/,1'$��������������������
-2+1621���������7+20$6�������������������
-21(6�����������-(55<��������������������
0$&'21$/'�������5,&+$5'������������������
0255,621��������0,&+$(/������������������
6,03621���������7,027+<������������������
7+20$6����������0$57,1�������������������
�
�
�*5$1'�727$/����,7(06��

Produce this report:

(03/²),/(� �(03/'()

),/(� (03/²),/(��''1$0(�(03/''���7<3(�96$0�
),(/'� /$67²1$0(��&2/801����������/(1*7+����
),(/'�),567²1$0(�����������������/(1*7+����
),(/'� +,5(²'$7(������������������7<3(�<<00''�

Notes:
• the SWCOPY DD (in the execution JCL) would identify the PDS to use as the copy library
• as the INPUT statement is processed, the EMPLDEF copy library member (which defines the

EMPL–FILE) is automatically copied into this report request

• the following line appears in the SWALIAS member of the copy library:

• the following statements are stored in the EMPLDEF member of the copy library:

Figure 93 A report which uses Report Writer's Copy Library –– MVS

A Better Wa y: Usin g the Cop y Librar y

Chapter 5. How To Define Your Input Files 307

237,216���68%/,%�
/,%�63(&7:75
�
,1387�����(03/²),/(
7,7/(�����
86,1*�7+(�&23<�/,%5$5<�72�'(),1(�),(/'6

&2/8016���/$67²1$0(��),567²1$0(��+,5(²'$7(

These control statements:

86,1*�7+(�&23<�/,%5$5<�72�'(),1(�),(/'6�
�
�����/$67������������),567��������+,5(�
�����1$0(������������1$0(���������'$7(��
�
%$.(5�����������9,9,$1�������������������
&+5,6723+(5621��0(/,66$������������������
-2+1621���������/,1'$��������������������
-2+1621���������7+20$6�������������������
-21(6�����������-(55<��������������������
0$&'21$/'�������5,&+$5'������������������
0255,621��������0,&+$(/������������������
6,03621���������7,027+<������������������
7+20$6����������0$57,1�������������������
�
�
�*5$1'�727$/����,7(06��

Produce this report:

(03/²),/(� �(03/'()

),/(���(03/²),/(��$775�96$0�
(03/''
�����
),(/'��/$67²1$0(��&2/801�����/(1*7+����
),(/'��),567²1$0(������������/(1*7+����
),(/'��+,5(²'$7(�������������7<3(�<<00''�

Notes:
• the OPTIONS statement names LIB.SPECTWTR as the Librarian sublibrary to use as the Report

Writer Copy Library for this run.
• as the INPUT statement is processed, the EMPLDEF.SPECTWTR copy library member (which

defines the EMPL–FILE) is automatically copied into this report request

• the following line appears in the SWALIAS.SPECTWTR member of the copy library:

• the following statements are stored in the EMPLDEF.SPECTWTR member of the copy library:

Figure 94 A report which uses Report Writer's Copy Library –– VSE

308 Report Writer User’s Guide

How to Use a Cop y Librar y Alias

This section explains:

� which member of the copy library will be copied

� how to create an alias entry for use with the copy library

As mentioned in the preceding section, whenever an INPUT or READ statement is encountered
for a file name which has not been defined, Report Writer attempts to copy a member from
the copy library to define the file. Which member of the copy library is copied? The member
name used will be either:

� the member name specified by an "alias entry" for the file name, if any, or

� the file name itself, if that name is valid for use as a member name

If there is no alias entry for a file, and the file name itself is not valid as a member name, no
copy is attempted. If a copy is attempted, but the member does not exist in the copy library,
no copy is performed. Processing continues normally in either of these cases. The failure to
find a member to copy is not considered an error.

Alias entries are kept in a special member of the copy library. That member is named
SWALIAS. The purpose of an alias entry is to relate a Report Writer file name (which can be
up to 70 characters long) to the 8–byte name of the copy library member where that file's
definitions are stored. When the two names are the same, no alias is needed. Thus, if you
have a file named PAYROLL, and you keep its file definition statements in a member named
PAYROLL, no alias entry would be needed for that file.

But, if you'd like to use longer, more user–friendly file names in your Report Writer
statements, you can certainly do so. You'll just need to add an alias entry to the special
member named SWALIAS in your copy library. For example, let's say we wanted to call our
payroll file HEADQUARTERS–PAYROLL. That name is too big to use as the member name in
the copy library. So, you would pick a shorter member name to keep the file definition
statements in–– say HQPAYROL. Now just add an alias entry like this within SWALIAS:

+($'48$57(56²3$<52//� �+43$<52/

The above alias entry tells Report Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL.

"HEADQUARTERS–PAYROLL" is the name that users will use for the file in Report Writer
control statements (such as the INPUT statement.) It's also the name you will use in the FILE

statement when defining the file. "HQPAYROL" will only be used internally by Report Writer
as the member name for reading the definition statements from the copy library.

Consider the following statement:

,1387��+($'48$57(56²3$<52//

When Report Writer encounters the above INPUT statement it searches the SWALIAS copy
library member for a line that begins with "HEADQUARTERS–PAYROLL." It will find the alias
entry shown earlier that names HQPAYROL as the member name. Report Writer will then copy
the control statements from the HQPAYROL member of the copy library. Those statements
define the HEADQUARTERS–PAYROLL file.

How to Use a Cop y Librar y Alias

Chapter 5. How To Define Your Input Files 309

Here are some additional points to remember about the SWALIAS member:

� The alias entries in SWALIAS do not have to be in alphabetical order

� Each file name may appear only once in SWALIAS.

� You may include comment lines in the SWALIAS member by putting an asterisk
in the first column of the line.

Appendix F, "Sample File Definitions" shows the contents of the SWALIAS member used in
producing the sample reports in this manual.

Definin g One–Time Fields

The FIELD statements for a file are normally kept in the copy library member for that file.
You may, however, want to add one or more FIELD statements of your own to those kept in
the copy library.

This usually occurs when you want to define some part of a record differently than the way
it is defined in the copy library. For example, you may want to subdivide a date field into its
year, month, and day components. Or, you might want to define a cost center field as
numeric, whereas it is defined as character in the copy library.

It is very easy to add your own FIELD statements for use in your report. Just include them
in–line, along with your other control statements. Put them somewhere after the INPUT or
READ statement for the file, and before the first statement that refers to the field. Remember
to choose different names for your fields–– ones that are not used in the copy library FIELD

statements.

As an example, let's say that we want to produce a report of all employees hired in the month
of January (of any year.) To do this, we need a field that contains the month that an
employee was hired. There is no such field defined in the regular FIELD statements contained
in the copy library. The closest thing is the HIRE–DATE field, which is defined as a YYMMDD

date. We could do the following:

,1387������(03/²),/(
),(/'������+,5(²0217+��&2/801�+,5(²'$7(�����/(1*7+�����7<3(�180�
,1&/8'(,)��+,5(²0217+� ��
7,7/(������
(03/2<((6�+,5('�,1�-$18$5<�2)�620(�<($5

&2/8016����+,5(²0217+��/$67²1$0(��),567²1$0(��+,5(²'$7(

As soon as Report Writer encounters the above INPUT statement, the copy library members
for the EMPL–FILE are processed. These statements define all of the regular fields in the
EMPL–FILE. However, in this report we want the 2–byte month portion of the HIRE–DATE field
defined as a separate field. So, we add our own FIELD statement to define a new field called
HIRE–MONTH. It is located 2 bytes after the start of the HIRE–DATE field (that is, at the MM

portion of the YYMMDD date.) The HIRE–MONTH field is 2 bytes long, and is defined as a
numeric field. The INCLUDEIF statement can now refer to the HIRE–MONTH field, and select
just those records with a month value of 1. We also list the new HIRE–MONTH field in the
COLUMNS statement, along with a number of the regular fields from the EMPL–FILE.

Definin g One-Time Fields

310 Report Writer User’s Guide

Here is another example of defining an additional field in–line.

237,216����0$,1)5$0(
,1387������(03/²),/(
),(/'������5(&25'��&2/801�����/(1*7+�����
,1&/8'(,)��'(37²180� ��
&2/8016����5(&25'

In this example, we want to create an output file, rather than a report. We want to select just
the EMPL–FILE records for employees in department 2, and write those records to an output
file. To do this, we defined an additional field named RECORD. This is a character field that
includes the entire EMPL–FILE record. We use the INCLUDEIF statement to select only those
records whose DEPT–NUM field is equal to 2. Our COLUMNS statement simply lists the single
RECORD field. Thus, our output file contains the complete EMPL–FILE record for those
employees in department 2.

Note: if your report uses multiple input files, you may need to use the FILE parm in
your FIELD statement to specify which file your new field exists in. If the FILE parm
is omitted, all of the your FIELD statements will be assumed to belong to the most
recently defined file. (That is the file named in the most recent FILE statement.)

Chapter 5. How To Define Your Input Files 311

Usin g Cobol and Assembler Record La youts

This section explains how to use Cobol or Assembler record layouts with Report Writer.

Earlier in this chapter you learned how to use FIELD statements to define an input file to
Report Writer. Report Writer can also interpret most Cobol and Assembler record layouts.
If you have such a record layout for your file, it is not necessary to write FIELD statements to
define it.

There are two ways to use Report Writer's Cobol and Assembler interpreter.

1. In a "live" run. Provide a Cobol or Assembler record layout to Report Writer
and produce a custom report or PC file in the same run. With this method, you
never create a standard Report Writer file definition.

2. In a "conversion" run. Provide a Cobol or Assembler record layout to Report
Writer and let it write corresponding FIELD statements to an output file. Save
these FIELD statements in your Report Writer Copy Library for use in future
runs. This method gives you greater flexibility because you can modify and
customize the FIELD statements created by Report Writer. This lets you take
advantage of features available in FIELD statements that aren't available in Cobol
or Assembler layouts (such as specifying column headings and display formats.)

Report Writer has two special control statements that are used when working with Cobol or
Assembler record layouts. The COBOL statement tells Report Writer that a Cobol record
layout is about to follow. The ASM statement tells Report Writer that an Assembler record
layout follows. The following sections describe how to use these statements in both "live"
and "conversion" runs.

Terminology: to avoid ambiguity when using the words COBOL and "COBOL

statement", we have used the following convention throughout this chapter:

� Cobol (spelled with mixed case letters) refers to the programming language.
Thus "Cobol statement" refers to a line of code in a Cobol program.

� COBOL (spelled in upper case letters) refers to the Report Writer control
statement by that name. Thus "COBOL statement" means the Report Writer
control statement that begins with the prefix "COBOL:".

Live Runs Usin g Cobol Record La youts

This section shows how to request reports (or PC files) using a Cobol record layout to define
the input file. No additional data definition is required.

Figure 95 (page 314) shows an example of a report produced using a Cobol record layout.
Let's examine the Report Writer control statements shown in the top box in that figure.

A FILE statement is always required when a file is about to be defined. It tells Report Writer
the name of the file being defined. In this case, we named the file SALES–FILE. Normally a

Live Runs Usin g Cobol Record La youts

312 Report Writer User’s Guide

number of FIELD statements would then follow to define the fields in the file. But in this case
a COBOL statement follows instead.

The COBOL statement tells Report Writer that subsequent control statements will be in the
Cobol language, rather than in Report Writer's language. After the COBOL statement, actual
lines of a Cobol record layout appear. The Cobol code must be error–free and must be
formatted according to the rules of Cobol syntax. (For example, the first 6 columns are
reserved for sequence numbers, column 7 is reserved for continuation indicators or comment
indicators, etc.) Report Writer processes the Cobol record layout, noting the names of the
Cobol fields and their characteristics. Internally, Report Writer creates the equivalent of a
FIELD statement for each Cobol field in the record layout.

Note: see "Technical Notes on Cobol Support" on page 328 for certain limitations
on the Cobol syntax that Report Writer accepts.

Report Writer continues treating each subsequent line as Cobol code until it reaches a line
that begins with a Report Writer control statement prefix. In this example, the line beginning
"INPUT:" is recognized as a Report Writer control statement. So, starting with the INPUT

statement the lines are no longer treated as Cobol code. (The scope of the COBOL statement
is discussed more fully under "The Scope of the COBOL and ASM Statements" on page 328.)

After the Cobol record layout, we simply resumed the report request in the normal way. The
INPUT statement specifies the input file for the report. It is the SALES–FILE that we just
defined using the Cobol record layout.

The COLUMNS statement specifies which fields are wanted in the report. In the COLUMNS

statement we can refer to any of the fields defined in the Cobol record layout. The field
names used are the same names that appeared in the Cobol layout. By default, the column
headings will also be the Cobol field names, broken apart at the dashes. Of course, you can
specify an override column heading, if you like, in the normal way.

Fields defined by a Cobol record layout can be used in all of the same ways as fields defined
with FIELD statements. For example, you can use the Cobol field names in SORT statements,
COMPUTE statements, BREAK statements, and so on.

Notice in the COLUMNS statement that we used two special parms for the SALES–DATE and
SALES–TIME fields. Those two fields were defined as numeric values in the Cobol record
layout. The PIC'999999' parm specifies how those numeric values should be formatted in the
report. (Otherwise, they would have been formatted in the default way for numeric fields––
that is, as ZZZ,ZZ9.) And, the NOACCUM parm indicates that those fields should not be
accumulated (totalled). (Otherwise, those columns would have been totalled in the Grand
Total line.) For more information on handling date and time fields, see "Handling Date and
Time Fields" on page 318.

Note: To see a listing of the internal FIELD statements that Report Writer creates
from a Cobol layout, add the SHOWFLDS(YES) parm to the COBOL statement. For
example, assume we had added the SHOWFLDS(YES) parm to the COBOL statement
on page 314:

&2%2/� 6+2:)/'6�<(6�

In that case, the following FIELD statements would have been printed in the control
listing:

Live Runs Usin g Cobol Record La youts

Chapter 5. How To Define Your Input Files 313

),(/'��6$/(6�5(&�������/(1�����&2/���
),(/'��(03/²1$0(�������/(1�����&2/���
),(/'��(03/²180��������/(1���
),(/'��%$&.83²(03/²180�/(1���
),(/'��5(*,21����������/(1���
),(/'��$02817����������/(1������7<3(�180��'(&���
),(/'��7$;�������������/(1������7<3(�180��'(&���
),(/'��&200,66,21²5$7(�/(1������7<3(�180��'(&���
),(/'��6$/(6²'$7(������/(1������7<3(�180�
),(/'��6$/(6²7,0(������/(1������7<3(�180�
),(/'��&86720(5��������/(1����
),(/'��7(/(3+21(�������/(1������7<3(�180�
),(/'��7,0(²21²3+21(���/(1������7<3(�180��'(&���
),(/'��352'8&7²&2'(����/(1���
),(/'��),//(5����������/(1���

Live Runs Usin g Cobol Record La youts

314 Report Writer User’s Guide

Figure 95 A report produced using a Cobol record layout

),/(��6$/(6²),/(��''1$0(�6$/(),/(���/5(&/����
&2%2/�
�������������6$/(6�5(&�
����������������(03/�1$0(��������3,&�;�����
����������������(03/�180���������3,&�;����
����������������%$&.83�(03/�180��3,&�;����
����������������5(*,21�����������3,&�;����
����������������$02817�����������3,&�����9���
����������������7$;��������������3,&���9���
����������������&200,66,21�5$7(��3,&��9����
����������������6$/(6�'$7(�������3,&������
����������������6$/(6�7,0(�������3,&������
����������������&86720(5���������3,&�;�����
����������������7(/(3+21(��������3,&�������
����������������7,0(�21�3+21(����3,&����9��
����������������352'8&7�&2'(�����3,&�;����
����������������),//(5�����������3,&�;����
,1387����6$/(6²),/(
&2/8016��(03/²1$0(
���������6$/(6²'$7(�3,&
������
�12$&&80�
���������6$/(6²7,0(�3,&
������
�12$&&80�
���������&86720(5
���������$02817
���������7$;

These control statements:

78(�������������������$0������'$7$�)520�6$/(6�),/(�������3$*(������

���(03/����6$/(6��6$/(6
���1$0(�����'$7(���7,0(�����&86720(5���������$02817���������7$;����

-2+1621������������������$&(�(/(&75,&$/����������������������������
%$.(5��������������������-$&.6�&$)(��������������������������������
0255,621�����������������67$5�0$5.(7�������������������������������
0255,621�����������������$��3+272*5$3+<����������������������������
6,03621������������������(8523($1�'(/,�����������������������������
-2+1621������������������9,//$�+27(/�������������������������������
-2+1621������������������0$5<6�$17,48(6����������������������������
%$.(5��������������������-$&.6�&$)(��������������������������������
7+20$6�������������������<2*857�&,7<�������������������������������
-21(6��������������������(=�*52&(5<��������������������������������
-21(6��������������������72<�72:1����������������������������������
-21(6��������������������72<�72:1����������������������������������
-2+1621������������������$&0(�%8,/',1*�����������������������������
6,03621������������������-�	�6�/80%(5������������������������������

�*5$1'�727$/���������,7(06��������������������������������������

Produce this report:

Chapter 5. How To Define Your Input Files 315

Live Runs Usin g Assembler Record La youts

This section shows how to request reports (or PC files) using an Assembler record layout to
define the input file. No additional data definition is required.

Figure 96 (page 317) shows an example of a report produced using an Assembler record
layout. Let's examine the Report Writer control statements shown in the top box in that
figure.

A FILE statement is always required when a file is about to be defined. It tells Report Writer
the name of the file being defined. In this case, we named the file SALES–FILE. Normally a
number of FIELD statements would then follow to define the fields in the file. But in this case
an ASM statement followed instead.

The ASM statement tells Report Writer that subsequent control statements will be in the IBM

S/370 Assembler language, rather than in Report Writer's language. After the ASM statement,
actual lines of an Assembler record layout appear. The Assembler code must be error–free
and must be formatted according to the rules of Assembler syntax. (That is, labels must
begin in column 1, column 72 is the continuation column, etc.) Report Writer processes the
Assembler record layout, noting the names of the Assembler fields and their characteristics.
Internally, Report Writer creates the equivalent of a FIELD statement for each Assembler field
in the record layout.

Note: see "Technical Notes on Assembler Support" on page 330 for certain
limitations on the Assembler syntax that Report Writer accepts.

Report Writer continues treating each subsequent line as Assembler code until it reaches a
line that begins with a Report Writer control statement prefix. In this example, the line
beginning "INPUT:" is recognized as a Report Writer control statement. So, starting with the
INPUT statement the lines are no longer treated as Assembler code. (The scope of the ASM

statement is discussed more fully under "The Scope of the COBOL and ASM Statements" on
page 328.)

After the Assembler record layout, we simply resumed the report request in the normal way.
The INPUT statement specifies the input file for the report. It is the SALES–FILE that we just
defined using the Assembler record layout.

The COLUMNS statement specifies which fields are wanted in the report. In the COLUMNS

statement we can refer to any of the fields defined in the Assembler record layout. The field
names used are the same names that appeared in the Assembler layout. By default, the
column headings will also be the Assembler field name. Of course, you can specify an
override column heading, if you like, in the normal way.

Fields defined by an Assembler layout can be used in all of the same way as fields defined
with FIELD statements. For example, you can use the Assembler field names in SORT

statements, COMPUTE statements, BREAK statements, and so on.

Note: To see a listing of the internal FIELD statements that Report Writer creates
from an Assembler layout, add the SHOWFLDS(YES) parm to the ASM statement. For
example, assume we had added the SHOWFLDS(YES) parm to the ASM statement on
page 317:

$60��6+2:)/'6�<(6�

Live Runs Usin g Assembler Record La youts

316 Report Writer User’s Guide

In that case, the following FIELD statements would have been printed in the control
listing:

����),(/'��6$/(65(&�/(1�����&2/���
����),(/'��(03/1$0(�/(1�����&2/���
����),(/'��(03/180��/(1���
�����),(/'��%$&.(031�/(1���
����),(/'��5(*,21���/(1���
����),(/'��$02817���/(1�����7<3(�180�6/'���'(&���
���),(/'��7$;������/(1�����7<3(�180�6/'���'(&���
�����),(/'��&2005$7(�/(1�����7<3(�180�6/'���'(&���
�����),(/'��6$/('$7(�/(1���
�����),(/'��6$/(7,0(�/(1���
�����),(/'��&86720(5�/(1����
�����),(/'��7(/(3+21�/(1�����7<3(�180�6/'�
�����),(/'��7,0(3+21�/(1�����7<3(�180�6/'���'(&���
�����),(/'��352'&2'(�/(1���

Live Runs Usin g Assembler Record La youts

Chapter 5. How To Define Your Input Files 317

Figure 96 A report produced using an Assembler record layout

),/(��6$/(6²),/(��''1$0(�6$/(),/(���/5(&/����
$60�
6$/(65(&�'6����&/��
(03/1$0(�'6���&/��
(03/180��'6���&/�
%$&.(031�'6���&/�
5(*,21���'6���&/�
$02817���'6���=/�
�������

7$;������'6���=/�
�����

&2005$7(�'6���=/�
�����

6$/('$7(�'6���&/�
6$/(7,0(�'6���&/�
&86720(5�'6���&/��
7(/(3+21�'6���=/��
7,0(3+21�'6���=/�
�����

352'&2'(�'6���&/�
���������'6���&/�
,1387����6$/(6²),/(
&2/8016��(03/1$0(
���������6$/('$7(
���������6$/(7,0(
���������&86720(5
���������$02817
���������7$;

These control statements:

78(�������������������$0��'$7$�)520�6$/(6�),/(���������������3$*(������

�(03/1$0(��6$/('$7(�6$/(7,0(����&86720(5���������$02817���������7$;����

-2+1621����������������������$&(�(/(&75,&$/����������������������������
%$.(5������������������������-$&.6�&$)(��������������������������������
0255,621���������������������67$5�0$5.(7�������������������������������
0255,621���������������������$��3+272*5$3+<����������������������������
6,03621����������������������(8523($1�'(/,�����������������������������
-2+1621����������������������9,//$�+27(/�������������������������������
-2+1621����������������������0$5<6�$17,48(6����������������������������
%$.(5������������������������-$&.6�&$)(��������������������������������
7+20$6�����������������������<2*857�&,7<�������������������������������
-21(6������������������������(=�*52&(5<��������������������������������
-21(6������������������������72<�72:1����������������������������������
-21(6������������������������72<�72:1����������������������������������
-2+1621����������������������$&0(�%8,/',1*�����������������������������
6,03621����������������������-�	�6�/80%(5������������������������������

�*5$1'�727$/�����,7(06��

Produce this report:

318 Report Writer User’s Guide

Handlin g Date and Time Fields

Neither Cobol nor Assembly language have a way to explicitly define a field as a date or a
time. Date and time fields are generally defined as numeric fields (or sometimes as character
fields) in these languages. It is left up to the program code in those languages to know that
the numeric value actually represents a date or a time.

For example, consider the SALES–DATE field in the Cobol example on page 314. The file
actually contains a YYMMDD date for this field. But it is defined in Cobol simply as PIC 9(6).
Report Writer has no way of knowing that this field is anything other than a 6–digit numeric
field. In the report, therefore, it doesn't appear in MM/DD/YY format as a date field would have.
It is treated as a numeric field. By default it would have appeared in "===�==�" format in the
report (for example: �������). Also, by default that column would have been totalled at the
end of the report (like all other numeric columns.) To make the value look more like a date,
we used override parms in the COLUMNS statement to change the display format to PIC'999999'

and to suppress the totals.

The SALES–TIME field has the same problem. The file actually contains a HHMMSS time value
for this field. But since it is defined in Cobol as PIC 9(6), it's just another numeric field to
Report Writer. Again, we used override parms in the COLUMNS statement to improve its
appearance in the report.

However, there is a simple way to use Cobol and Assembler record layouts and still be able
to define fields as true date or time fields. One extra step is all that's needed. Consider the
example on page 320. In this example, we created a true date field simply by adding this
statement after the Cobol record layout:

),(/'��6$/(6²'7 &2/801�6$/(6²'$7(��7<3(�<<00''�

This statement creates a new field named SALES–DT. The field starts in the same column
as SALES–DATE, but has a data type of YYMMDD. Therefore, SALES–DT is a true date
field. That means that it is formatted like a date in the report (00�''�<<.) It also means
that date literals can be used when comparing it in a conditional expression (for example,
SALES–DT >= 12/31/1996).

By referring back to SALES–DATE in the COLUMN parm, we don't have to know what column
the field actually starts in. It starts in whatever column the SALES–DATE field starts in. And,
if the record layout is later changed and SALES–DATE moves to a different column, the FIELD

statement for SALES–DT will still be correct.

We used the same technique to define a true time field:

),(/'��67$57²70��&2/801�67$57²7,0(���7<3(�++0066�

START–TM is a true time field that starts in the same column as the numeric field START–TIME.

By using START–TM in the report, the data is formatted as a time (HH:MM:SS). And time
literals can be used when comparing it in a conditional expression (for example, START–TM

< 12:00:00).

The bottom box on page 320 shows the report created using these true date and time fields.
As you can see, the SALES–DT and SALES–TM fields are now formatted correctly. In this
example, we no longer needed override parms in the COLUMNS statement.

Handlin g Date and Time Fields

Chapter 5. How To Define Your Input Files 319

You can use this same technique for any kind of date or time field. For example, assume that
a file contains a Cobol field named JULIAN–DATE defined as PIC S9(5) COMP-3. Report Writer
would treat this field like any other 5–digit packed number. But you could create a true
Report Writer date field by adding the following statement:

),(/'���-8/,$1²'7��&2/801�-8/,$1²'$7(���7<3(�3²<<'''�

JULIAN–DT will be a true date field (stored in the packed Julian format). It is defined as
starting in the same column as the numeric field JULIAN–DATE.

To avoid adding the extra FIELD statements in each run, you may want to create a copy library
member that contains these extra FIELD statements along with the Cobol record layout. Such
a member would include everything you see in the top box on page 320 before the INPUT

statement. (That is, it would contain: a FILE statement; a COBOL (or ASM) statement; the
record layout; and the additional FIELD statements for the date and time fields.)

This copy member could then be copied automatically whenever it is needed, just like normal
Report Writer file definitions are. For example, you could then request a report in the
following manner:

,1387������6$/(6²),/(
&2/8016����&86720(5��6$/(6²'7��6$/(6²70�
,1&/8'(,)��6$/(6²'7�!����������$1'�6$/(6²70�!���������

In other words, you could request reports and PC files from the SALES–FILE just as easily as
you do with any other file. The only difference is that the SALES–FILE would now be defined
primarily via a Cobol record layout, rather than FIELD statements.

Handlin g Date and Time Fields

320 Report Writer User’s Guide

Figure 97 Creating true date and time fields from a Cobol layout

),/(��6$/(6²),/(��''1$0(�6$/(),/(�
&2%2/�
�������������6$/(6²5(&�
����������������(03/²1$0(��������3,&�;�����
����������������(03/²180���������3,&�;����
����������������5(*,21�����������3,&�;����
����������������352'8&7²&2'(�����3,&�;����
����������������$02817�����������3,&�����9���
����������������&200,66,21²5$7(��3,&��9����
����������������6$/(6²'$7(�������3,&������
����������������6$/(6²7,0(�������3,&������
����������������&86720(5���������3,&�;�����
����������������7(/(3+21(��������3,&�������
����������������%$&.83²(03/²180��3,&�;����
����������������7$;��������������3,&���9���
����������������),//(5�����������3,&�;����
),(/'��6$/(6²'7��&2/801�6$/(6²'$7(���7<3(�<<00''�
),(/'��6$/(6²70��&2/801�6$/(6²7,0(���7<3(�++0066�
,1387����6$/(6²),/(
&2/8016��(03/²1$0(
���������6$/(6²'7
���������6$/(6²70
���������&86720(5
���������$02817
���������7$;

These control statements:

78(�������������������$0��'$7$�)520�6$/(6�),/(���������������3$*(������

���(03/�����6$/(6����6$/(6
���1$0(�������'7�������70�������&86720(5���������$02817���������7$;����

-21(6������������������������72<�72:1����������������������������������
-21(6������������������������72<�72:1����������������������������������
-21(6������������������������(=�*52&(5<��������������������������������
-2+1621����������������������9,//$�+27(/�������������������������������
-2+1621����������������������0$5<6�$17,48(6����������������������������
-2+1621����������������������$&(�(/(&75,&$/����������������������������
-2+1621����������������������$&0(�%8,/',1*�����������������������������
6,03621����������������������-�	�6�/80%(5������������������������������
0255,621���������������������67$5�0$5.(7�������������������������������
0255,621���������������������$��3+272*5$3+<����������������������������
6,03621����������������������(8523($1�'(/,�����������������������������
%$.(5������������������������-$&.6�&$)(��������������������������������
%$.(5������������������������-$&.6�&$)(��������������������������������
7+20$6�����������������������<2*857�&,7<�������������������������������

�*5$1'�727$/�����,7(06��

Produce this report:

Chapter 5. How To Define Your Input Files 321

How Report Writer Handles Arra ys

Report Writer requires that each field have a unique name. You can not define a field as
being an "array" to Report Writer. Therefore, when Report Writer encounters a Cobol field
with an OCCURS clause, it creates a separate field for each occurrence of the item. Report
Writer makes these field names unique by appending a numeric suffix to the end of the name.
For example, consider the following Cobol statement with an OCCURS clause:

���$''5²/,1(�2&&856���7,0(6�3,&�;�����

Report Writer would create the following three internal FIELD statements as a result of the
above statement:

),(/'��$''5²/,1(²���/(1����
),(/'��$''5²/,1(²���/(1����
),(/'��$''5²/,1(²���/(1����

You would use the above field names in your report request (rather than ADDR–LINE alone).
For example: to include the second address line in your report, you would specify:

&2/8016��$''5²/,1(²�

Report Writer does the same thing for Assembler fields that have a repetition factor.
Consider the following Assembler statement that includes a repetition factor:

)/$*6����'6�����&/�

Report Writer would create the following four internal FIELD statements as a result of the
above statement:

),(/'��)/$*6²���/(1���
),(/'��)/$*6²���/(1���
),(/'��)/$*6²���/(1���
),(/'��)/$*6²���/(1���

Report Writer also supports nested arrays in Cobol. Report Writer assigns one numeric
suffix for each level of the array. The first suffix refers to the outer array, the second suffix
refers to the inner array. (The suffixes work in the same way as, and appear in the same order
as, Cobol subscripts.) For example, consider the following Cobol statements:

���$''5(66²$55$<�2&&856���7,0(6�
������$''5²/,1(�2&&856���7,0(6�3,&�;�����

Report Writer would create the following internal FIELD statements as a result:

),(/'��$''5(66²$55$<²��/(1����
),(/'��$''5(66²$55$<²��/(1����
),(/'��$''5²/,1(²�²����/(1�����&2/���
),(/'��$''5²/,1(²�²����/(1����
),(/'��$''5²/,1(²�²����/(1����
),(/'��$''5²/,1(²�²����/(1����
),(/'��$''5²/,1(²�²����/(1����
),(/'��$''5²/,1(²�²����/(1����

If you're not sure what suffix Report Writer has assigned, use the SHOWFLDS(YES) parm on
your COBOL or ASM statement That way you will see a complete listing of the internal FIELD

statements that Report Writer has created from your record layout.

Note: by default, Report Writer creates internal FIELD statements for up to 100
occurrences of any item that has an OCCURS clause (or a repetition factor). This is
to avoid wasting memory for items that may not actually be needed in the report run.

How Report Writer Handles Arra ys

322 Report Writer User’s Guide

If you want a higher (or lower) limit on the number of occurrences that will be
individually defined, use the MAXOCCURS parm in the COBOL or ASM statement.
(See page 434.) Note that even when all occurrences of a field are not individually
defined, the record layout is still processed correctly. That is, items appearing after
the array will still be defined in their correct locations.

Note: for Cobol items defined with the OCCURS DEPENDING ON clause, Report
Writer creates fields for the maximum possible number of occurrences (subject to
the MAXOCCURS limit just described.)

Convertin g Cobol and Assembler La youts to
FIELD Statements

Until now we have looked at examples of "live" runs. That is, runs where you provide a
Cobol or Assembler layout to Report Writer and then request a report in the same run. This
is very convenient for occasions when you need to quickly produce a custom report from a
file that you've never used with Report Writer before.

However, for input files that will be used often with Report Writer, it may be better to create
a standard Report Writer file definition (consisting of a FILE statement and many FIELD

statements.) This allows you to use features available in the FIELD statement that aren't
available in Cobol or Assembler layouts. For example, in the FIELD statement you can specify
your own default column headings. You can also specify special display formats that should
be used with certain fields (for example, telephone numbers). Using FIELD statements also
lets you define true date and time fields, which are not directly supported in either Cobol or
Assembler.

But rather than create the FIELD statements by hand, you can use Report Writer to perform
a one–time conversion of your Cobol or Assembler layout into FIELD statements. Report
Writer does all of the hard work for you–– it calculates the starting columns for each field,
it fi gures out the length of packed items based on their PICTURE clause, it handles REDEFINES

clauses, OCCURS clauses, etc. Use the resulting FIELD statements as your starting point. Then
go through them and make whatever modifications you desire. The result will be a standard
Report Writer file definition, but without all the manual work normally involved in writing
FIELD statements by hand.

How do you perform such a one–time conversion? You've seen that by using the
SHOWFLDS(YES) parm in the COBOL (or ASM) statement, you can get a listing of FIELD

statements that correspond to the Cobol (or Assembler) record layout. This listing appears
imbedded in the normal control statement listing. By using a different parm, you can have
Report Writer write those same FIELD statements to a separate output file. Figure 98 (page
324) shows an example of converting a Cobol record layout to FIELD statements. (That
example assumes an MVS operating system.)

Let's examine the control statements in the top box on page 324. Once again, a FILE

statement is required because fields must always belong to a particular file. Report Writer
won't process record layouts or FIELD statements unless it has a file it can associate the fields
with. In this case, the file name specified isn't important (since no report will be produced
from the file in this run.) Use any name you like.

Convertin g Cobol and Assembler La youts to FIELD Statements

Chapter 5. How To Define Your Input Files 323

The COBOL statement tells Report Writer to expect a Cobol record layout to follow. In this
case, we used an additional parm in the COBOL statement. The OUTDDN parm tells Report
Writer the name of a DD statement in the JCL where the FIELD statements should be written.
In this example, we told Report Writer to write the FIELD statements to a DD named FLDOUT.

(The file named in this DD statement must have a record length of 80 bytes.)

VSE Note: use the OUTATTR parm, rather than the OUTDDN parm, in the COBOL or
ASM statement. The complete syntax of the OUTATTR parm is shown on page 435.
Here is a typical example of a COBOL statement with an OUTATTR parm:

&2%2/���287$775�'$6'�
)/'287
�

The above statement causes the FIELD statements to be written to a SAM output file
on disk. It is identified in the JCL by a DLBL named FLDOUT. The file will be written
as single blocked, 80–byte records.

Report Writer examines the Cobol record layout and writes one FIELD statement to the output
file for each field present in the Cobol layout.

Since we did not want to produce an actual report in this run, we did not use an INPUT

statement or any other Report Writer statements. Report Writer writes the FIELD statements
to the output file, and then ends execution. (You will see a message saying that no report was
produced because no INPUT statement was found. That is normal.) The middle box on page
324 shows the FIELD statements produced by Report Writer.

Having created the FIELD statements automatically, you can now modify them as desired. For
example, you could add HEADING parms or FORMAT parms to specify column headings and
display formats for any or all of the fields. The bottom box on page 324 shows an example
of how the FIELD statements might be modified. In this example, we added a HEADING parm
for EMPL–NAME. And, we changed the TYPE parm in the SALES–DATE field from TYPE(NUM)

to TYPE(YYMMDD). Now SALES–DATE is defined as a true date field. We also made
SALES–TIME a true time field by changing its TYPE parm to HHMMSS. We added a FORMAT

parm and the NOACCUM parm to the FIELD statement for TELEPHONE. That prevents the
telephone number from being accumulated (totalled) and causes it to be formatted
attractively.

If the Cobol field names in your record layout are long and cumbersome, you might also want
to perform some global changes on the names themselves. For example, if all fields in your
Cobol layout began with a prefix (like "SALES–REC–EMPL–NAME", "SALES–REC–EMPL–NUM",
etc.) you might want to perform a global edit to drop the common prefix ("SALES–REC–")
from the field names.

Note: when modifying the FIELD statements, be careful not to make any change that
would affect subsequent FIELD statements. For example, changing the length of a
field might cause the following field to start in the wrong column. Also be careful
about removing FIELD statements or changing their order.

You will also add an appropriate FILE statement ahead of the FIELD statements. When you're
satisfied with your file definition, save it in your Report Writer Copy Library. You can then
produce reports and PC files using this file definition in the normal manner. You will not need
to use the Cobol record layout in subsequent runs, because you now have a standard Report
Writer file definition for your file.

Convertin g Cobol and Assembler La youts to FIELD Statements

324 Report Writer User’s Guide

Figure 98 Converting a Cobol record layout to Report Writer FIELD statements

),(/'��6$/(6�5(&�������/(1�����&2/���
),(/'��(03/�1$0(�������/(1�����&2/���
),(/'��(03/�180��������/(1���
),(/'��5(*,21����������/(1���
),(/'��352'8&7�&2'(����/(1��
),(/'��$02817����������/(1�����7<3(�180������'(&���
),(/'��&200,66,21�5$7(�/(1�����7<3(�180������'(&���
),(/'��6$/(6�'$7(������/(1�����7<3(�180�
),(/'��6$/(6�7,0(������/(1�����7<3(�180�
),(/'��&86720(5��������/(1����
),(/'��7(/(3+21(�������/(1�����7<3(�180�
),(/'��%$&.83�(03/�180�/(1���
),(/'��7$;�������������/(1�����7<3(�180������'(&���
),(/'��),//(5����������/(1���

Write these FIELD statements to a special output file:

),/(���6$/(6²),/(��''1$0(�6$/(),/(�
),(/'��6$/(6�5(&�������/(1�����&2/���
),(/'��(03/�1$0(�������/(1�����&2/������+($',1*�
(03/2<((�1$0(
�
),(/'��(03/�180��������/(1���
),(/'��5(*,21����������/(1���
),(/'��352'8&7�&2'(����/(1���
),(/'��$02817����������/(1�����7<3(�180������'(&���
),(/'��&200,66,21�5$7(�/(1�����7<3(�180������'(&���
),(/'��6$/(6�'$7(������/(1�����7<3(�<<00''�
),(/'��6$/(6�7,0(������/(1�����7<3(�++0066�
),(/'��&86720(5��������/(1����
),(/'��7(/(3+21(�������/(1�����7<3(�180���)250$7�3,&
���������²����
����12$&&80
),(/'��%$&.83�(03/�180�/(1���
),(/'��7$;�������������/(1�����7<3(�180������'(&���
),(/'��),//(5����������/(1���

(File definition after sample customization)

),/(��'800<
&2%2/��287''1�)/'287�
�������������6$/(6²5(&�
����������������(03/²1$0(��������3,&�;�����
����������������(03/²180���������3,&�;����
����������������5(*,21�����������3,&�;����
����������������352'8&7²&2'(�����3,&�;����
����������������$02817�����������3,&�����9���
����������������&200,66,21²5$7(��3,&��9����
����������������6$/(6²'$7(�������3,&������
����������������6$/(6²7,0(�������3,&������
����������������&86720(5���������3,&�;�����
����������������7(/(3+21(��������3,&�������
����������������%$&.83²(03/²180��3,&�;����
����������������7$;��������������3,&���9���
����������������),//(5�����������3,&�;����

These control statements:

Convertin g Cobol and Assembler La youts to FIELD Statements

Chapter 5. How To Define Your Input Files 325

Note: the example discussed above used a Cobol record layout. You can also create
FIELD statements from an Assembler layout in the same way. Just use the OUTDDN

parm (or OUTATTR parm) in your ASM statement.

How to Cop y Cobol and Assembler Record
Layouts from Libraries

Our examples until now have used Cobol and Assembler record layouts written "in line".
That is, they have been imbedded directly within the Report Writer control statements. But
normally Cobol and Assembler record layouts are stored as members in copy libraries, to be
used by their respective compilers. Report Writer also allows you to copy such record layouts
directly from those libraries. Just use Report Writer's COPY statement wherever you want the
Cobol or Assembler lines to be included. For example:

),/(���6$/(6²),/(��''1$0(�6$/(),/(���/5(&/����
&2%2/�
&23<���6$/(5(&
,1387��6$/(6²),/(
���

In this example, a Cobol record layout still follows the COBOL statement. But this time it's
copied from a member named SALEREC in a copy library. What library is searched for the
member named SALEREC?

Under MVS, COPY statements normally read members from the Report Writer Copy
Library –– the one pointed to by the SWCOPY DD in the JCL. However, Cobol and Assembler
record layouts are generally kept in different libraries from your Report Writer definitions
(and even in different libraries from each other.) Therefore, when processing Cobol code,
Report Writer performs copies from the PDS named by the COBLIB DD in the JCL, if one is
present. When processing Assembler record layouts, copies are performed from the library
pointed to by the ASMLIB DD, if one is present. If the appropriate DD (COBLIB or ASMLIB) is
not present, Report Writer attempts to perform the copy from the standard copy library
(SWCOPY DD.) You can also override these defaults and specify any DDNAME you like directly
in the COPY statement. Use the PDSDDN parm:

&23<��6$/(5(&��3'6''1�
&23</,%
�

The above statement would cause the member named SALEREC to be copied from the PDS

identified by the COPYLIB DD in the JCL. The PDSDDN parm is useful if you need to perform
multiple copies in a run and each copy must come from a different library.

In MVS, you can also use the COPY statement to copy a "flat" sequential file. This may be
necessary if your shop stores copy members in a proprietary library, such as PANVALET or
LIBRARIAN. Add a job step ahead of the Report Writer step to write the desired member to a
sequential dataset. Then have Report Writer copy that sequential dataset by using the
DDNAME parm in the COPY statement:

&23<��''1$0(�6$/(5(&�

The above example causes Report Writer to read in the records from the sequential file
pointed to by the SALEREC DD in the JCL.

How to Cop y Cobol and Assembler Record La youts from Libraries

326 Report Writer User’s Guide

VSE Note: under VSE, the COPY statement names a member to be copied from a
Librarian sublibrary. It can also optionally name the member type and/or the
sublibrary to use.

For example, the following COPY statements are all valid:

237,21��&2%/,%�
352'�&2%&23<
�
&2%2/��
&23<����6$/(5(&
&23<����6$/(5(&�&2%2/
&23<����6$/(5(&�68%/,%�
7(67�&2%&23<
�

The member type used will be:

� the type specified in the COPY statement itself, if any, or

� "&" (if within the scope of a COBOL statement), or

� "$" (if within the scope of an ASM statement.)

The sublibrary used will be:

� the sublibrary from the SUBLIB parm in the COPY statement itself, if any, or

� the sublibrary named in an OPTIONS: COBLIB parm, if any (if within the
scope of a COBOL statement), or

� the sublibrary named in an OPTIONS: ASMLIB parm, if any (if within the
scope of an ASM statement), or

� the sublibrary named in the OPTIONS: SUBLIB parm.

Note: we mentioned in an earlier section that Cobol processing begins immediately
after the COBOL statement and ends when the next Report Writer control statement
is encountered. The COPY statement is an exception to this rule. A COPY statement
does not signal the end of the Cobol (or Assembler) code. This allows you to embed
COPY statements within sections of Cobol or Assembler code.

Note: you may use multiple copy statements. You may also intermix in–line code
and code copied via COPY statements. For example, the following is valid:

),/(���6$/(6²),/(��''1$0(�6$/(),/(���/5(&/����
&2%2/�
����������5(&²$�
&23<���6$/(5(&$
����������5(&²%�5('(),1(6�5(&²$�
&23<���6$/(5(&%
,1387��6$/(6²),/(
���

Mixin g FIELD Statements with COBOL and
ASM Statements

You may use any combination of FIELD statements, COBOL statements and ASM statements
to define an input file. For example, the following is valid:

),/(���6$/(6²),/(��''1$0(�6$/(),/(�
&2%2/�
����������5(&²$�
&23<���6$/(5(&�
$60����67$57&2/���

Mixin g FIELD Statements with COBOL and ASM Statements

Chapter 5. How To Define Your Input Files 327

5(&%�����'6�����&/��
&23<���6$/(5(&�
),(/'��5(&²&�&2/801����/(1*7+����
,1387��6$/(6²),/(
���

The above example uses a Cobol record layout to define the fields in one type of record for
the SALES–FILE. It then uses an Assembler record layout to define the fields in a second type
of record for the file. Note the STARTCOL(1) parm in the ASM statement causes the first field
from the Assembler code to begin in column 1 (rather than picking up after the last field
defined by the Cobol record layout.) Lastly, an explicit FIELD statement defines a field called
REC–C. The COLUMN parm causes it to start in column 1 also.

The Startin g Column of a Cobol or
Assembler La yout

By default, Report Writer assigns a file's "default location" value to the first item within a
Cobol record layout. Thus, if you have no explicit FIELD statements before your Cobol record
layout, the first item in the Cobol layout will be defined as beginning in column 1. If you do
have preceding FIELD statements (or preceding COBOL or ASM statements), the first item in
the Cobol record layout will begin in the column immediately following the last field defined.
Use the STARTCOL or STARTDISP parm (in the COBOL statement) if you want the fields from
the Cobol record layout to begin in some other column.

The first field in Assembler code is also handled in the way just described.

The "Default Location" After a Cobol or
Assembler La yout

Report Writer updates a file's "default location" pointer while processing Cobol (and
Assembler) layouts just as it does when processing FIELD statements. Thus, the "default
location" after processing a Cobol layout is immediately after the last field within the layout.
Any FIELD statements appearing after the Cobol layout which do not contain a COLUMN or
DISP parm would be defined as starting immediately after the last field from the Cobol layout.
Similarly, if you use a second COBOL statement, the first item in that record layout would
immediately follow the last field from the previous Cobol layout (unless you override this
with a STARTCOL or STARTDISP parm in the second COBOL statement.)

Caution: if your Cobol code contains multiple 01–level record layouts, remember
that the last field present in the record layout may not be the field that actually
occupies the last bytes within the record. This happens when a shorter record layout
redefines a larger record layout. In that case, the default location counter would be
immediately after the last field from the second, shorter record layout–– not after the
last field in the larger record layout. The same thing is possible within a single
record layout if it ends after an explicit REDEFINES of a larger object. Within
Assembler code, a similar situation arises when a smaller DSECT follows a larger
DSECT.

328 Report Writer User’s Guide

The Scope of the COBOL and ASM
Statements

Beginning immediately after a COBOL statement, Report Writer treats input lines as Cobol
code. (However, the COBOL statement itself may be continued onto multiple lines if
necessary.) After the complete COBOL statement, subsequent lines, including lines copied via
a COPY statement, are treated as Cobol code. The Cobol code is assumed to end when the
first Report Writer control statement prefix is encountered. There are, however, two
exceptions to this rule.

1. A COPY statement does not end the scope of the COBOL statement. This lets you use
the COPY statement to include additional lines of Cobol code from a library. (Of course,
if one of the copied lines contains a Report Writer control statement, that line will end
the scope of the COBOL statement.)

2. A Report Writer comment line does not end the scope of the COBOL statement. Thus,
a line beginning with an asterisk in column 1 would be treated as Cobol code and not as
a comment line.

The scope of the ASM statement is the same as described above for COBOL.

If you have any question whether Report Writer is treating a particular input line as Cobol,
Assembler, or native Report Writer, check the control listing. The word "&2%2/" or "$60" will
appear beside each line that Report Writer is interpreting as Cobol or Assembler code. Use
the LIST(YES) option on any COPY statements to ensure that the copied lines are also printed
in the control listing.

Other Features Available in COBOL and
ASM Statements

There are a number of parms available in the COBOL and ASM statements that we have not
discussed. These parms let you control various options used in processing the record layouts.
The complete syntax for the COBOL statement begins on page 432. The complete syntax for
the ASM statement begins on page 419.

Technical Notes on Cobol Support

Report Writer will accept the vast majority of Cobol record layouts used in most shops. Still,
Report Writer is not a complete Cobol compiler and there are some valid Cobol features that
Report Writer does not support at the present.

Even when Report Writer doesn't support a particular Cobol statement, you will still save
much time by using the FIELD statement output from Report Writer as the beginning point of
your file definition. Many FIELD statements will be correct, and you can modify any incorrect
ones as needed.

It is important that the Cobol record layout be completely error free. Report Writer does not
attempt to perform all of the functions of the Cobol compiler, and may not notify you of

Technical Notes on Cobol Support

Chapter 5. How To Define Your Input Files 329

syntax errors. Do not try to develop your Cobol record layouts with Report Writer. Use the
Cobol compiler for that purpose and use only clean, tested record layouts in Report Writer.

In general, if a record layout would be accepted in the Record Description entry of an FD (File
Description), Report Writer will also accept it. In addition, Report Writer accepts many types
of edited PICTURES (like PIC $$$,$$9.99). This means that Report Writer can support many
report line structures taken from Cobol report programs. This is useful when a report written
by a Cobol program will be used as input to Report Writer.

Level Indicators
Report Writer supports level indicators between 01 and 49. Level 77 is not allowed. Levels
66 and 88 are ignored but do not interfere with the correct interpretation of the other
statements.

REDEFINES Clauses
If an item contains a REDEFINES clause, both the item and the object of its REDEFINES clause
must be within the scope of the same COBOL control statement. That is, an item within the
scope of one COBOL statement may not redefine an item within the scope of an earlier COBOL

control statement.

01–Level Implicit Redefines
As with Cobol in a FD clause, Report Writer treats each 01 level item as an implicit redefine
of the entire record. Items beginning with the 01 level are assumed to begin in the same
column as the first field following the COBOL control statement.

Unique Field Names
In Cobol, different records may contain fields with the same name. You use the "field OF

qualifier" notation in Cobol to avoid any ambiguity. Report Writer requires unique field
names for each field within a file. Therefore, if you copy multiple record layouts and the
same field name is used more than once, Report Writer makes the second field name unique
by appending a "tiebreaker" to it. The tiebreaker has the format "#nnn". For example, if the
Cobol layout(s) you use contain two fields with the name DATE, Report Writer would use
DATE for the first item and DATE#001 for the second item. A message is printed in the control
listing whenever Report Writer modifies a name in this way to make it unique.

Handlin g FILLER
Report Writer does not support FILLER as a special field name. Therefore, Report Writer
always appends a tiebreaker to FILLER fields. No message is printed when this happens, but
you can see the actual name of all fields, including FILLER fields, by using the
SHOWFLDS(YES) parm on the COBOL statement.

Handlin g 88–Level Items
Report Writer does not process 88 level field definitions automatically. However, it is not
difficult to create Report Writer equivalents for 88 items yourself. Following is an example
of how several 88 level items would be defined with Report Writer.

Technical Notes on Cobol Support

330 Report Writer User’s Guide

For often–used 88 items, you may want to manually add such statements to your file
definition. Consider these Cobol statements:

���67$786²&2'(��3,&�;����
������3$57²7,0(�9$/8(�
�
�
������)8//²7,0(�9$/8(�
�
��
�
�
������7(50,1$7('�9$/8(�
�
�7+58�
�
�

In the example above, Report Writer would create the 05 level field, STATUS–CODE, for you.
It would then ignore the 88 level statements. To define the 88 fields to Report Writer, you
could add the following statements somewhere after the Cobol record layout.

����&20387(��3$57²7,0(�� �:+(1�67$786²&2'(� �
�
������������$66,*1��21�
����&20387(��)8//²7,0(�� �:+(1�67$786²&2'(� �
�
�25�
�
�����$66,*1��21�
����&20387(��7(50,1$7('� �:+(1�67$786²&2'(�! ���$1'�� �
�
��$66,*1��21�

The above COMPUTE statements define bit–type fields which can be used in conditional
expressions in Report Writer statements just like they are used in Cobol. For example:

,1&/8'(,)���)8//²7,0(

The above statement would include all records where the FULL–TIME field was on. That would
be all records whose STATUS–CODE field contained a 2 or a 4. Unlike Cobol, you can also
print these bit fields with Report Writer. For example:

&2/8016���)8//²7,0(

The above statement causes a column to appear in the report for the FULL–TIME field. The
report column will contain (by default) the words)8//²7,0(or 127�)8//²7,0(for each input
record.

SIGN IS SEPARATE Clause
Report Writer supports the 6,*1�,6�6(3$5$7(clause for elemental items, but not for group
items.

Technical Notes on Assembler Support

Report Writer will accept most of the Assembler record layouts used in most shops. Still,
Report Writer is not a complete assembler and there are some valid Assembler features that
Report Writer does not support at the present.

Even when Report Writer doesn't support a particular Assembler statement, you will still save
much time by using the FIELD statement output from Report Writer as the beginning point of
your file definition. Many FIELD statements will be correct, and you can modify any incorrect
ones as needed.

It is important that the Assembler record layout be completely error free. Report Writer does
not attempt to perform all of the functions of the assembler, and may not notify you of syntax
errors. Do not try to develop your Assembler record layouts with Report Writer. Use the
assembler for that purpose and use only clean, tested record layouts in Report Writer.

Technical Notes on Assembler Support

Chapter 5. How To Define Your Input Files 331

In general, Report Writer supports the following Assembler statements:

� DS and DC statements

� EQU statements

� ORG statements

� DSECT statements

Character–Numeric Data
One problem with many Assembler record layouts is that they often use the "&" (Character)
data type to define numeric fields. Consider the following Assembler statement:

$02817���'6����&/��������������6$/(6�$02817�,1�&(176

Report Writer can only treat this AMOUNT field as a 6–byte character field. There is nothing
to tell Report Writer that its value is actually numeric and that it contains 2 decimal digits.

There is a different way to define such fields in Assembler which allows Report Writer to
correctly interpret them. It is to use the "=" (Zoned) data type, and to include a sample initial
value that indicates the number of decimal digits that the data contains. Consider the
following Assembler statement:

$02817���'6����=/�
�������
����6$/(6�$02817�,1�&(176

Report Writer would correctly interpret this field by creating the following FIELD statement:

),(/'���$02817��/(1�����7<3(�180²6/'���'(&���

You may want to consider this when creating future Assembler record layouts, if you wish
to use them with Report Writer.

Another way to handle this problem (without modifying your record layout) is to use a
COMPUTE statement. For example, if AMOUNT is defined simply as &/�, you could still get a
numeric field that has 2 decimal digits by adding this COMPUTE statement somewhere after
your record layout:

&20387(��5($/²$02817���� ��0$.(180�$02817�������

The above statement uses the #MAKENUM built–in function to convert the 6–byte character
value into a numeric value. It is then divided by 100 to get the correct number of decimal
digits.

If you will be using a particular file often with Report Writer, it may be better to create a
standard Report Writer file definition for it. Use Report Writer to convert the record layout
into FIELD statements. Then modify the FIELD statements as necessary to correctly define the
numeric fields.

Decimal Di gits
Report Writer creates a DEC(n) parm whenever the Assembler DS or DC statement has an
initial value that includes one or more decimal digits. Consider this DS statement for a packed
field:

6$/$5<���'6����3/��������������6$/$5<��:,7+���'(&,0$/�',*,76�

Technical Notes on Assembler Support

332 Report Writer User’s Guide

Report Writer would have no information about decimal digits and would define it like this:

),(/'��6$/$5<�/(1����7<3(�3$&.('�

But if you used this statement:

6$/$5<���'6����3/�
��������
���6$/$5<��:,7+���'(&,0$/�',*,76�

then Report Writer could correctly create the following FIELD statement:

),(/'��6$/$5<�/(1����7<3(�3$&.('��'(&���

Another way to handle decimal problems (without modifying your record layout) is to use a
COMPUTE statement. For example, if SALARY is defined simply as PL4, you could still get a
field that has 2 decimal digits by adding this COMPUTE statement somewhere after your
record layout:

&20387(��5($/²6$/$5<���� �6$/$5<������

Support for expressions
Report Writer supports some, but not all, types of expressions allowed by the IBM assembler.
The following kinds of Assembler "terms" are supported within expressions:

� previously defined symbols (that is, field names created as a result of earlier
Assembler statements). The value of such symbols is their displacement within
the record. The symbol must have been defined within the scope of the same
ASM statement.

� length constants (example: L'AMOUNT)

� numeric, character and hex literals (examples: 123, C'ABC', X'FFFF')

The following operations are supported as long as they are not nested and require no
implicit ranking of operation:

� addition

� subtraction

� multiplication

� division (with the remainder being dropped)

Following are some examples of statements containing expressions that Report Writer does
support:

/$%(/����'6����;/���
/$%(/����'6����;/�/
/$%(/�
/$%(/����'6����;/�/
/$%(/²���
/$%(/����(48���/$%(/��/
/$%(/�
/$%(/����'6����;/�/
/$%(/��/
/$%(/����
/$%(/����(48���/$%(/�;
�&
����&
3
��

Restrictions on expressions
Report Writer does not support complex expressions within an Assembler statement. It
interprets only non–nested operations that are performed strictly in left–to–right order. Thus,
the following expression is not supported because it involves a nested operation:

/$%(/����(48���$��%&�

Technical Notes on Assembler Support

Chapter 5. How To Define Your Input Files 333

Report Writer prints a warning message when an expression like the one above is
encountered.

You may however use one level of parentheses around an entire expression. Thus, the
following expression is accepted:

/$%(/����(48����;�<²=�

The following expression is not supported because it implicitly requires that the second
operation (C*D) be performed before the first operation (B+C).

/$%(/����(48���%�&'

Report Writer prints a warning message when an expression like the one above is
encountered. You can simplify such expressions, if desired, so that Report Writer can
support your record layout. For example, the above statement could be simplified by breaking
it into 2 statements:

7(03�����(48���&'
/$%(/����(48���%�7(03

The above statement are acceptable to Report Writer.

Multiple Operands
Report Writer does not support DS or DC statements with multiple operands. For example,
neither of the following statements is supported:

7$%/(����'&����$/����������
0(66$*(��'&����+
�
�&
+(//2

However, DC and DS statements with repetition factors are supported. Thus, the following
statement is acceptable to Report Writer:

7$%/(����'6�����$/�

Handlin g EQUs
When Report Writer encounters an EQU statement that contains a label, it defines a field
based on the statement's operands. (If the EQU statement has no label, the EQU statement is
ignored.) The first operand of the EQU statement must be a self–defining expression. The
value of this expression is used as the displacement for the field. If the EQU statement has
no length operand, a length of 1 is assumed. If the EQU statement has no data type operand,
character data is assumed. The "default location" is not changed as a result of an EQU

statement. Consider the following two EQU statements:

/$671$0(�(48���1$0(������
5��������(48�����

The above example would result in two fields being defined. The LASTNAME field would
begin 10 bytes after the start of the NAME field (which must have been previously defined.)
It is a character field that is 15 bytes long. The second field, R15, would be a 1–byte character
field beginning at displacement 15 in the record.

Technical Notes on Assembler Support

334 Report Writer User’s Guide

Handlin g DSECTs
When Report Writer encounters a DSECT statement, it does two things. Firstly, it resets the
default location to the value it had at the start of the Assembler code. That would be column
1 if no other fields had been defined earlier for the file. Or, it would be the value specified
in any STARTCOL or STARTDISP parm in the ASM statement. Secondly, if the DSECT statement
has a label, Report Writer defines a 1–byte character field whose name is the DSECT name

Unique field names
Report Writer requires unique field names for each field within a file. Therefore, if you copy
multiple record layouts and the same field name is used more than once, Report Writer makes
the second field name unique by appending a "tiebreaker" to it. The tiebreaker has the format
"#nnn". For example, if the Assembler code you use contains two fields with the name DATE,

Report Writer would use DATE for the first item and DATE#001 for the second item. A
message is printed in the control listing whenever Report Writer modifies a name in this way
to make it unique.

Chapter 6. Working with Databases 335

Chapter 6. Workin g with Databases

Chapter Table of Contents

Chapter 6. Workin g with Databases . 335

Using Report Writer with DB2 Databases. 336
Using DB2 Data in Reports. 338
Using DB2 Data in PC Programs . 340
What Fields Are in Your DB2 Table?. 340
Using the WHERE Parm . 342
Using the ORDERBY Parm . 344
Using Multiple DB2 Tables . 345
Using Data from Three DB2 Tables. 348
WHERE Parm Syntax . 350
Customizing Your DB2 Fields . 352
Saving DB2 File Definitions. 353
DB2 Restrictions. 354

336 Report Writer User’s Guide

Chapter 6. Workin g with Databases

At present, Report Writer supports the following databases:

� DB2

Usin g Report Writer with DB2 Databases

Report Writer's DB2 Option lets you use DB2 data with Report Writer exactly like you use
other mainframe data. That means you can:

� produce attractive custom reports from DB2 tables in just minutes.

� turn DB2 data into PC files designed especially for Lotus 1–2–3, Excel, Access,
Paradox, Harvard Graphics, and many other PC programs.

Report Writer's DB2 Option has these features:

� no data dictionary is required when using DB2 data. You just use the standard
DB2 names for your DB2 tables, views, and columns. This means you can start
using Report Writer with all of your DB2 tables right away.

� you can combine data from up to 15 different DB2 tables to create a single
report or PC file.

� you can even mix DB2 data with data from non–DB2 files. For example, you
might have a tape file as the primary input to a Report Writer job. Using data
from that file, you could read additional data from VSAM files and/or DB2 tables.
Or, you could use a DB2 table as your primary input and use data from it to read
from additional DB2 tables or VSAM files. The possibilities are endless.

It's easy to use DB2 data with Report Writer. You use the same control statements that you
already know, with just a few differences. In fact, the only statements affected by the DB2
Option are these:

� the OPTION statement

� the INPUT statement

� the READ statement (not required)

� the FILE statement (not required)

For most reports and PC files, you won't even use the READ or FILE statements.

JCL note: when using DB2 tables with Report Writer, be sure that the STEPLIB DD

in the execution JCL points to the load module where DB2's run–time modules are
located. An example of a DB2 run–time module is DSNTIAR.

In the following sections, we assume that you are already familiar with using Report Writer
to request reports and PC files. These sections explain the few differences that you need to
know in order to use DB2 data in Report Writer.

Workin g with Databases

Chapter 6. Working with Databases 337

The following sections show you how to:

� create a custom report from a DB2 table (page 338)

� create a PC file from a DB2 table (page 340)

� use the WHERE parm in the INPUT statement, as an alternate way to select certain
rows from the DB2 table (page 342)

� use the ORDERBY parm in the INPUT statement, as an alternate way to sort your
report or PC file (page 344)

� use data from multiple DB2 tables in a single run (page 345)

� customize your DB2 fields' columns heading and display format (page 352)

� create and save a Report Writer DB2 file definition (page 353)

338 Report Writer User’s Guide

Usin g DB2 Data in Reports

Let's begin by looking at an actual Report Writer report that uses DB2 data. Notice the
sample report in Figure 99. Two of the control statements in this example contain
DB2–related information. They are the OPTIONS statement and the INPUT statement.

First notice the OPTIONS statement. You'll see that we used the DB2SUBSYS option. This
option tells Report Writer which DB2 subsystem to access. Many shops have multiple DB2
subsystems. For example, a shop might have a test subsystem and a production subsystem.
This option tells Report Writer which subsystem to access for a particular run.

In our example, we specified a DB2 subsystem named "'%�7." That's the test subsystem in
our "imaginary" company.

The DB2SUBSYS option is required when using DB2 data in a run. Remember to specify this
option before your INPUT statement.

Next notice the INPUT statement. There are two names used in the INPUT statement:

� PROJECT, which is a user–assigned "Report Writer name" for this input file.
You can put any name here that you like. This name is not known to DB2 at all.
In most runs, this name will never be referred to again. (However, in runs that
use multiple input files, as you'll see later, "PROJECT" is used to refer
specifically to this input file.)

� DSN8230.PROJ, which is of course the actual name of the DB2 table. You can
name a DB2 table or a DB2 view in this parm. By the way, DSN8230.PROJ is the
name of a real "sample table" that is supplied by IBM with your DB2 system.
Therefore, you can run this same job in your own shop for practice, if you like.
This table contains information about various projects in an imaginary company.
(The sample Project table is named DSN8310.PROJ in Release 3.1 of DB2.)

The INPUT statement does two things.

� it associates an actual DB2 table with a user–friendly Report Writer "file name."
(This association is not permanent–– it lasts only during the one Report Writer
run.)

� it makes that DB2 table the primary input for your Report Writer run.

These are the only required parms for an INPUT statement for a DB2 table. Subsequent
sections of this chapter discuss other optional DB2 INPUT statement parms. (The complete
syntax for the INPUT statement appears on page 485.)

Terminology: for the sake of consistency, we'll refer to the DB2 table named in an
INPUT statement as an "input file," even though technically speaking it is not a "file".
Similarly, we'll refer to DB2 Columns as "DB2 fields" in this manual.

After your INPUT statement, you can use any of the other Report Writer statements in any way
you like. Refer to the DB2 fields by using their standard, unqualified DB2 names. Report
Writer will automatically recognize these DB2 names. For example, in the COLUMNS

statement in Figure 99, we referred to the following DB2 fields from the project table:
PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE and PRSTAFF.

Usin g DB2 Data in Reports

Chapter 6. Working with Databases 339

237,21���'%�68%6<6�
'%�7
�
,1387����352-(&7
���������'%�1$0(�
'61�����352-
�
7,7/(���
/,67,1*�2)�352-(&7�'%��7$%/(

&2/8016��352-12�
���������352-1$0(�
���������'(3712�
���������5(63(03�
���������3567'$7(�
���������3567$))�

These control statements:

��������������������/,67,1*�2)�352-(&7�'%��7$%/(�

352-12���������352-1$0(���������'(3712�5(63(03�3567'$7(����3567$))���

$'�����$'0,1�6(59,&(6������������'������������������������������������
$'�����*(1(5$/�$'�6<67(06��������'������������������������������������
$'�����3$<52//�352*5$00,1*�������'������������������������������������
$'�����3(56211(/�352*5$00*�������'������������������������������������
$'�����$&&2817�352*5$00,1*�������'������������������������������������
,)�����48(5<�6(59,&(6������������&������������������������������������
,)�����86(5�('8&$7,21������������&������������������������������������
0$�����:(/'�/,1(�$8720$7,21������'������������������������������������
0$�����:�/�352*5$00,1*�����������'������������������������������������
0$�����:�/�352*5$0�'(6,*1��������'������������������������������������
0$�����:�/�52%27�'(6,*1����������'������������������������������������
0$�����:�/�352'�&217�352*6�������'������������������������������������
23�����23(5$7,21�6833257���������(������������������������������������
23�����23(5$7,21�����������������(������������������������������������
23�����*(1�6<67(06�6(59,&(6������(������������������������������������
23�����6<67(06�6833257�����������(������������������������������������
23�����6&3�6<67(06�6833257�������(������������������������������������
23�����$33/,&$7,216�6833257������(������������������������������������
23�����'%�'&�6833257�������������(������������������������������������
3/�����:(/'�/,1(�3/$11,1*��������%������������������������������������
�
�*5$1'�727$/�����,7(06���

Produce this report:

Figure 99 A Report Writer DB2 report

Usin g DB2 Data in Reports

340 Report Writer User’s Guide

You can also use the DB2 fields in the SORT statement, COMPUTE statements, INCLUDEIF

statements, BREAK statements, and all the other Report Writer statements. Just use the DB2
fields in exactly the same way as you would use the fields from a non–DB2 input file.

That's all there is to using DB2 data with Report Writer! Here's a review of the differences
from non–DB2 Report Writer requests:

� no data definition of your DB2 file is necessary (that is, no FILE or FIELD

statements are required)

� no Report Writer Copy Library is required

� use an OPTION statement with the DB2SUBSYS parm

� use the DB2NAME parm in your INPUT statement

Note: Report Writer supports character, numeric, date and time fields from DB2
tables. DB2 "timestamps" are treated as 26–byte character fields by Report Writer.
DB2 "graphic strings" and "floating point" numbers are not supported.

Usin g DB2 Data in PC Pro grams

We've just seen how easy it is to use DB2 data in custom reports with Report Writer. It's just
as easy to turn your DB2 data into PC files with Report Writer. Simply add the appropriate
PC option to the OPTION statement. An example of using DB2 data in a Lotus 1–2–3
spreadsheet is shown in Figure 100. This example shows the same "project table" data being
used in a Lotus 1–2–3 spreadsheet.

What Fields Are in Your DB2 Table?

You may not remember the names of all of the fields defined for your DB2 table. Report
Writer will list the DB2 fields available in your DB2 file for you. Just use the
SHOWFLDS(YES) parm in your INPUT statement:

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�
�������6+2:)/'6�<(6�

The above statement causes a list to be printed showing each DB2 field available from the
DSN8230.PROJ table. This list appears in the Report Writer control statement listing. The list
also indicates the data type (character, numeric, date or time) of each of the DB2 fields.

The SHOWFLDS parm can also be used in the READ statement.

What Fields Are in Your DB2 Table?

Chapter 6. Working with Databases 341

Figure 100 Using DB2 data in a Lotus 1–2–3 spreadsheet

237,21���/2786����'%�68%6<6�
'%�7
�
,1387����352-(&7��'%�1$0(�
'61�����352-
��
&2/8016��352-12�
���������352-1$0(�
���������'(3712�
���������5(63(03�
���������3567'$7(�
���������3567$))

These control statements:

 Result in this Lotus 1–2–3 spreadsheet:

342 Report Writer User’s Guide

Usin g the WHERE Parm

Here's how Report Writer interacted with the DB2 subsystem in order to produce the report
on page 339. Report Writer first opened a "cursor" with DB2 that "selected" the DB2 fields
needed to produce the report. It then "fetched" from DB2 all the rows for that cursor. Since
no INCLUDEIF statement was used, Report Writer included in the report all the rows that were
returned by DB2.

Now let's consider a more advanced report. What if we want to include only the records for
department D21 in our report. Of course, the standard way to do that with Report Writer is
to use an INCLUDEIF statement, like this:

,1&/8'(,)��'(3712� �
'��

And that method works just fine! If you use this statement, Report Writer would again fetch
all rows from the DB2 table. Report Writer would then examine the DEPTNO field in each
row and include in the report only those rows where the DEPTNO field contained "'��".

But when using DB2 data as your input, there is another way to accomplish the same thing.
You can let DB2 do the record selection rather than Report Writer. To do this, use a WHERE

parm in the INPUT statement:

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�
�������:+(5(�'(3712� �
'��
�

The WHERE parm in the INPUT statement serves the same function as the WHERE clause in a
DB2 "SELECT" statement. It tells DB2 which rows we want from the DB2 table. If your
INPUT statement contains a WHERE parm, Report Writer will include it as a WHERE clause in
the SELECT statement that it builds for DB2. (If your INPUT statement does not have a WHERE

parm, the SELECT statement will not have a WHERE clause, and DB2 will return all rows from
the DB2 table.)

In the example above, the WHERE parm causes DB2 to return to Report Writer only those
rows from the project table whose DEPTNO field equals "'��". If you used this WHERE parm,
you would not need an INCLUDEIF statement. You would want Report Writer to include all
the rows that DB2 returned to it.

As far as the final report goes, using the WHERE parm yields identical results to using the
INCLUDEIF statement. Feel free to use whichever method you're most comfortable with. The
example on page 343 uses a WHERE parm in the INPUT statement.

Performance Note: Which one of these methods is more efficient? There is no
"right" answer for all cases. It depends on various factors, such as what percentage
of records will be included in the report. For long–running jobs, where performance
is an important consideration, you may want to try running the job each way and
choose the method that works best in your particular case.

You can also use a combination of the WHERE parm and the INCLUDEIF statement. If you do,
DB2 will pass to Report Writer all rows that meet the WHERE conditions. Of those rows,
Report Writer will then include in the report only the ones that meet the INCLUDEIF statement
conditions.

The WHERE parm is discussed in more detail under "WHERE Parm Syntax" on page 350.

Usin g the WHERE Parm

Chapter 6. Working with Databases 343

237,21���'%�68%6<6�
'%�7
�
,1387����352-(&7��'%�1$0(�
'61�����352-
��
���������:+(5(�'(3712� �
'��
��
���������25'(5%<�352-1$0(��
7,7/(���
352-(&76�)25�'(3$570(17�'��
�
&2/8016��352-12�
���������352-1$0(�
���������'(3712�
���������5(63(03�
���������3567'$7(�
���������3567$))

These control statements:

���������������������352-(&76�)25�'(3$570(17�'���

352-12���������352-1$0(���������'(3712�5(63(03�3567'$7(����3567$))���

$'�����$&&2817�352*5$00,1*�������'������������������������������������
$'�����*(1(5$/�$'�6<67(06��������'������������������������������������
$'�����3$<52//�352*5$00,1*�������'������������������������������������
$'�����3(56211(/�352*5$00*�������'������������������������������������
�
�*5$1'�727$/����,7(06��

Produce this report:

Notes:
• we could have achieved the same result by leaving out the WHERE and ORDERBY parms, and

adding these statements:

,1&/8'(,)��'(3712� �
'��

6257�������352-1$0(

Figure 101 Using the WHERE parm to select certain rows from a DB2 table

344 Report Writer User’s Guide

Usin g the ORDERBY Parm

Another optional parm in the INPUT statement is the ORDERBY parm. (Note that this parm
must be spelled with no imbedded space.)

The ORDERBY parm in Report Writer serves the same function as the ORDER BY clause in a
DB2 "SELECT" statement. It tells DB2 what order to pass us the rows in. If your INPUT

statement contains an ORDERBY parm, Report Writer will include it as an ORDER BY clause
in the SELECT statement that it builds for DB2. (If your INPUT statement does not have a
ORDERBY parm, the SELECT statement will not have an ORDER BY clause. Then DB2 will pass
Report Writer the rows in an "arbitrary" order.)

Use this parm if you want DB2 to pass its rows to Report Writer in a certain order. You may
wish to use this parm rather than using a SORT statement. When no SORT statement is used,
Report Writer outputs the data in the same order that DB2 passes it to Report Writer in.

The example on page 343 uses an ORDERBY parm in the INPUT statement.

Within the ORDERBY parm, you may list one or more DB2 fields, along with the optional
keywords ASC and DESC (for "ascending" and "descending.") Here are two examples of
INPUT statements that use the ORDERBY parm:

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�
�������25'(5%<�'(3712��352-1$0(�

The above example would cause DB2 to return the rows from the project table to Report
Writer in department number order, with "ties" being further sorted in project name order.

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�
�������:+(5(�'(3712� �
'��
�
�������25'(5%<�352-1$0(�'(6&�

The above statement would cause the rows from the project table to be returned to Report
Writer in descending project name order. As you can see, you are allowed to use both the
WHERE and ORDERBY parms, if you wish. Their order in the INPUT statement is not
important.

Note: you can use both an ORDERBY parm and a SORT statement, though this would
rarely be useful. DB2 would pass the rows from the DB2 table to Report Writer in
the order specified in the ORDERBY parm. Report Writer would then sort the final
report according to the SORT statement.

Chapter 6. Working with Databases 345

Usin g Multiple DB2 Tables

Sometimes the DB2 table in your INPUT statement will not contain all the data you need for
a report or a PC file. In that case, you can use one or more READ statements to obtain data
from additional DB2 tables.

Let's begin by reviewing how the READ statement works with VSAM files. The file named in
the INPUT statement is called the "primary input file." Report Writer always reads this
primary input file sequentially. Then, each time a record is read from the primary file, Report
Writer reads one additional record from each VSAM file named in a READ statement. The
READKEY parm (in the READ statement) tells Report Writer what key to use when performing
the read. The key is usually a field from the primary input file.

You can also use READ statements with DB2 tables. Each READ statement will cause one row
of data to be read from a DB2 table. Instead of using a READKEY parm, use the WHERE parm
to identify which row you want to read. (The WHERE parm was introduced in "Using the
WHERE Parm " on page 342. Its syntax is discussed in "WHERE Parm Syntax" on page 350.)

Let's start with the DB2 report on page 339 to illustrate the use of the READ statement. That
report shows data from the "project" DB2 table. One of the items in the project table is called
RESPEMP. This is the employee number of the project's "responsible employee." Now
suppose we want to include the employee's actual name in our report. The employee name
is not kept in the project table. But it is kept in a different DB2 table –– the employee table.

We could use the following statements to get data from both the project and the employee
tables for use in our report.

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�

5($'���(03/2<((
�������'%�1$0(�
'61�����(03
�
�������:+(5(�(0312� �5(63(03�

Notice that the READ statement, like the INPUT statement, begins with a Report Writer file
name. It also has the DB2NAME parm. And, unlike the INPUT statement, the WHERE parm is
required in a READ statement.

Here's how Report Writer will process the above statements. The primary input to the report
is the project DB2 table. So, Report Writer will retrieve all rows from the DB2 project table.
For each row from the project table, Report Writer will now also fetch a single row from the
employee table. The row from the employee table will be the row whose EMPNO field equals
the RESPEMP field from the project table.

As a result of these two statements, you now have access to any DB2 field in either the
project or the employee DB2 tables. You can use those DB2 fields in your COLUMNS

statement, SORT statement, COMPUTE statements, and so on. This simple way of linking
multiple DB2 table is one of Report Writer's most powerful features. All it takes is a single
READ statement.

The report in Figure 102 (page 347) illustrates this example. Our report now includes
LASTNAME, which is a column from the employee DB2 table. This report shows the last name
of the employee responsible for each project.

Usin g Multiple DB2 Tables

346 Report Writer User’s Guide

You can also use the ORDERBY parm in the READ statement. As mentioned, by default Report
Writer fetches only a single row from a READ file (for each row retrieved from the INPUT file.)
It is possible that the WHERE clause will not uniquely identify a single row in the READ file.
In that case, you can use the ORDERBY parm to determine which row DB2 will return first to
Report Writer. For example, if there were more than one employee with the same employee
number in the employee table, you might specify:

5($'��(03/2<((
������'%�1$0(�
'61�����(03
�
������:+(5(�(0312� �5(63(03�
������25'(5%<�/$671$0(�

The above statement specifies that DB2 should return rows from the employee table in
LASTNAME order. Therefore, if multiple rows existed for a certain employee number, DB2
would return the row whose LASTNAME came first alphabetically. If no ORDERBY parm is
specified and multiple rows meet the WHERE condition, DB2 will return the rows in an
"arbitrary" order. When processing READ statements, Report Writer always uses the first row
returned by DB2.

Note: if you want to use all of the rows that meet the WHEN parm conditions, add
the MULTI parm to your READ statement. When the READ statement has the MULTI

parm, Report Writer creates and processes "logical input records" by matching the
primary input file row with each qualifying row from the auxiliary input file. For
more information on how the MULTI parm works, see the Notes section of the READ

statement in Chapter 9, "Control Statement Syntax" (page 520.)

Additional information on the ORDERBY parm appears under "Using the ORDERBY Parm" on
page 344.

Note: the complete READ statement syntax is shown on page 510.

Note: for simplicity's sake, in this discussion we implied that Report Writer always
reads a row from each READ file. In some cases, Report Writer may be able to detect
that data from an auxiliary input table will not actually be needed in the run and, to
improve performance, will not perform the read.

Usin g Multiple DB2 Tables

Chapter 6. Working with Databases 347

����������������������������/,67,1*�2)�352-(&7�'%��7$%/(�

352-12���������352-1$0(���������'(3712�5(63(03����/$671$0(�����3567'$7(����3567$))���

$'�����$'0,1�6(59,&(6������������'�������������+$$6�����������������������������������
$'�����*(1(5$/�$'�6<67(06��������'�������������38/$6.,��������������������������������
$'�����3$<52//�352*5$00,1*�������'�������������-())(5621������������������������������
$'�����3(56211(/�352*5$00*�������'�������������60,7+����������������������������������
$'�����$&&2817�352*5$00,1*�������'�������������3(5(=����������������������������������
,)�����48(5<�6(59,&(6������������&�������������.:$1�����������������������������������
,)�����86(5�('8&$7,21������������&�������������.:$1�����������������������������������
0$�����:(/'�/,1(�$8720$7,21������'�������������+$$6�����������������������������������
0$�����:�/�352*5$00,1*�����������'�������������67(51����������������������������������
0$�����:�/�352*5$0�'(6,*1��������'�������������/87=�����������������������������������
0$�����:�/�52%27�'(6,*1����������'�������������$'$0621��������������������������������
0$�����:�/�352'�&217�352*6�������'�������������3,$1.$���������������������������������
23�����23(5$7,21�6833257���������(�������������*(<(5����������������������������������
23�����23(5$7,21�����������������(�������������+(1'(5621������������������������������
23�����*(1�6<67(06�6(59,&(6������(�������������*(<(5����������������������������������
23�����6<67(06�6833257�����������(�������������63(16(5��������������������������������
23�����6&3�6<67(06�6833257�������(�������������0(+7$����������������������������������
23�����$33/,&$7,216�6833257������(�������������/((������������������������������������
23�����'%�'&�6833257�������������(�������������*28127���������������������������������
3/�����:(/'�/,1(�3/$11,1*��������%�������������7+203621�������������������������������
�
�*5$1'�727$/�����,7(06���

Produce this report:

Figure 102 A report that uses data from 2 different DB2 tables

237,21��'%�68%6<6�
'%�7
��

,1387���352-(&7���'%�1$0(�
'61�����352-
�

5($'����(03/2<((��'%�1$0(�
'61�����(03
�
��������:+(5(�(0312� �5(63(03��

7,7/(���
/,67,1*�2)�352-(&7�'%��7$%/(
�
&2/8016��352-12
���������352-1$0(
���������'(3712
���������5(63(03
���������/$671$0(
���������3567'$7(
���������3567$))

These control statements:

348 Report Writer User’s Guide

Usin g Data from Three DB2 Tables

In the previous example, we showed how to use a READ statement to obtain data from a
second DB2 table. But you're not limited to using only two DB2 tables at a time. Report
Writer allows you to use up to 15 different DB2 tables in a single run.

In this section, we'll show another example of using multiple DB2 tables in a single run. This
time, we'll use two READ statements. That will give us access to the data from three DB2
tables altogether.

Let's pick up with the report we just produced on page 347. That report contains data from
the project DB2 table. It also shows the "responsible employee's" last name, which comes
from the employee DB2 table. Now suppose we want to show the department name for each
project (not just the department number.) Another DB2 table, called the department table,
contains the names of each department. We'll read a row from that table in order to get the
department name.

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�

5($'���(03/2<((
�������'%�1$0(�
'61�����(03
�
�������:+(5(�(0312� �5(63(03�

5($'���'(3$570(17
�������'%�1$0(�
'61�����'(37
�
�������:+(5(�'(3$570(17�'(3712� �352-(&7�'(3712�

Notice the last READ statement above. In its WHERE parm we had to use record name prefixes
to uniquely identify the DEPTNO fields. If we had written DEPTNO by itself, it would have
resulted in an "ambiguous field name" error. That's because a field named DEPTNO exists in
the project table and in the department table. We prefixed each occurrence of DEPTNO with
a record name, to eliminate any ambiguity. The WHERE parm correctly identifies the row that
we want to read from the department file. It is the row whose own DEPTNO field equals the
DEPTNO field from the project table. (The use of record names is discussed further in the
section beginning on page 350.)

The report in Figure 103 uses the three statements above.

Usin g Data from Three DB2 Tables

Chapter 6. Working with Databases 349

237,21��'%�68%6<6�
'%�7
��
,1387���352-(&7�����'%�1$0(�
'61�����352-
�

5($'����(03/2<((����'%�1$0(�
'61�����(03
�
��������:+(5(�(0312� �5(63(03��

5($'����'(3$570(17��'%�1$0(�
'61�����'(37
�
��������:+(5(�'(3$570(17�'(3712� �352-(&7�'(3712��

7,7/(��
/,67,1*�2)�352-(&7�'%��7$%/(
�
&2/8016��352-12�
���������352-1$0(�
���������'(3$570(17�'(3712�
���������'(371$0(�
���������5(63(03�
���������/$671$0(�
���������3567'$7(�
���������3567$))�

These control statements:

�����������������������������������/,67,1*�2)�352-(&7�'%��7$%/(�

����������������������������'(3$570(17
352-12�������352-1$0(���������'(3712�������'(371$0(������������5(63(03���/$671$0(���3567'$7(��3567$))
$'�����$'0,1�6(59,&(6����������'�������'(9(/230(17�&(17(5��������������+$$6��������������������������
$'�����*(1(5$/�$'�6<67(06������'�������$'0,1,675$7,21�6<67(06����������38/$6.,�����������������������
$'�����3$<52//�352*5$00,1*�����'�������$'0,1,675$7,21�6<67(06����������-())(5621���������������������
$'�����3(56211(/�352*5$00*�����'�������$'0,1,675$7,21�6<67(06����������60,7+�������������������������
$'�����$&&2817�352*5$00,1*�����'�������$'0,1,675$7,21�6<67(06����������3(5(=�������������������������
,)�����48(5<�6(59,&(6����������&�������,1)250$7,21�&(17(5��������������.:$1��������������������������
,)�����86(5�('8&$7,21����������&�������,1)250$7,21�&(17(5��������������.:$1��������������������������
0$�����:(/'�/,1(�$8720$7,21����'�������'(9(/230(17�&(17(5��������������+�$$6�������������������������
0$�����:�/�352*5$00,1*���������'�������0$18)$&785,1*�6<67(06�����������67(51�������������������������
0$�����:�/�352*5$0�'(6,*1������'�������0$18)$&785,1*�6<67(06�����������/87=��������������������������
0$�����:�/�52%27�'(6,*1��������'�������0$18)$&785,1*�6<67(06�����������$'$0621�����������������������
0$�����:�/�352'�&217�352*6�����'�������0$18)$&785,1*�6<67(06�����������3,$1.$������������������������
23�����23(5$7,21�6833257�������(�������6833257�6(59,&(6����������������*(<(5�������������������������
23�����23(5$7,21���������������(�������23(5$7,216����������������������+(1'(5621���������������������
23�����*(1�6<67(06�6(59,&(6����(�������6833257�6(59,&(�����������������*(<(5�������������������������
23�����6<67(06�6833257���������(�������62)7:$5(�6833257����������������63(16(5�����������������������
23�����6&3�6<67(06�6833257�����(�������62)7:$5(�6833257����������������0(+7$�������������������������
23�����$33/,&$7,216�6833257����(�������62)7:$5(�6833257����������������/((���������������������������
23�����'%�'&�6833257�����������(�������62)7:$5(�6833257����������������*28127������������������������
3/�����:(/'�/,1(�3/$11,1*������%�������3/$11,1*������������������������7+203621����������������������

�*5$1'�727$/���������,7(06��

Produce this report:

Figure 103 A report that uses data from 3 different DB2 tables

350 Report Writer User’s Guide

WHERE Parm Syntax

The syntax allowed within the WHERE parm is close to, but not identical to, the DB2 syntax
for a WHERE clause (in the DB2 "SELECT" statement.) This section discusses the differences
from the DB2 syntax.

The main differences in syntax concern:

� Record Name Prefixes: Report Writer allows you to prefix any field name in
the WHERE parm with a Report Writer record name (to eliminate possible
ambiguity)

� Date and Time Literals: you may use either Report Writer's own date and time
literals, or DB2's date and time literals

In a DB2 WHERE clause, each operand in a comparison can be any of the following:

� the name of a DB2 column in the table

� the name of a "host variable"

� a literal value

Report Writer also supports all 3 kinds of operands in the WHERE parm. Here is a short
discussion of each type of operand.

DB2 columns
Your comparisons can refer to any DB2 column in the "current" DB2 table. (That is, the
DB2 table named in the DB2NAME parm of the same statement.) For example:

5($'��352-(&7
������'%�1$0(�
'61�����352-�
������:+(5(�'(3712� �
'��
�

In the WHERE parm above, DEPTNO is the name of a DB2 column within the DSN8230.PROJ

table. This WHERE parm would select all rows from the project table where the DEPTNO field
is equal to the literal value ''��'.

In this example, the Report Writer WHERE parm syntax is identical to the DB2 WHERE

clause's syntax. But a problem can arise if the DB2 column name is not unique. This
happens when an earlier input file contains a field by the same name. It can also happen if
you create a COMPUTE field with the same name as a DB2 column.

Let's assume that our primary input file also has a field named DEPTNO in it. In that case, the
WHERE parm above would result in an "ambiguous field name" error. Report Writer wouldn't
know whether you were referring to the DEPTNO field in the primary input file, or the DEPTNO

field in the current (PROJECT) DB2 table.

To avoid such ambiguity, Report Writer allows you to prefix any field name within the
WHERE parm with a record name. (For more information on record names, see "How to
Name the Input File Records" on page 232. Briefly, each input record has a record name.
This record name can be specified explicitly with the RECNAME parm of the INPUT and READ

statements. If no RECNAME is specified, the record name will be the same as the file name.)
To tell Report Writer that we mean the DEPTNO field from the "current" DB2 table, we would
write:

5($'��352-(&7
������'%�1$0(�
'61�����352-�

WHERE Parm Syntax

Chapter 6. Working with Databases 351

������:+(5(�352-(&7�'(3712� �
'��
�

In the above statement, we used the record name of the "current" table (PROJECT) to prefix
the DB2 field name. Now Report Writer knows that the DEPTNO operand refers to the DB2
column within the project table itself, and not to the DEPTNO field from the primary input file.

Note: you may wonder if this Report Writer prefix will confuse DB2. The answer
is no. Because when you do use a record name prefix in the WHERE parm, Report
Writer removes it before passing the WHERE parm on to DB2.

Note: don't confuse Report Writer's record name prefix with a DB2 qualifier. DB2
qualifiers are not necessary and are not allowed within Report Writer's WHERE

parm.

Note: some COMPUTE fields are not associated with any input record, and therefore
cannot be prefixed with a record name. If you have problems with ambiguous field
names due to such a COMPUTE field, the solution may be to choose a different name
for your COMPUTE field.

Host Variables
When a field name in a WHERE parm refers to a field that is not in the current DB2 table, that
field must be passed to DB2 as a "host variable." Report Writer takes care of this for you
automatically. It substitutes a "host variable marker" in the WHERE clause that is passed to
DB2. Consider the following statements:

&20387(��7(67²'(37� �7(67²/(77(5���
��

5($'��352-(&7
������'%�1$0(�
'61�����352-�
������:+(5(�'(3712� �7(67²'(37�

In this example, we have created a COMPUTE field named TEST–DEPT. In the WHERE parm,
DEPTNO is compared to this COMPUTE field. In this case, Report Writer would recognize that
TEST–DEPT is not a field within the project DB2 table. So, it substitutes a host variable
marker for TEST–DEPT before passing the WHERE clause to DB2. Doing this provides DB2
access to Report Writer's internal value for the COMPUTE field (TEST–DEPT.)

Once again, if a host variable name is not unique, you may prefix it with a record name to
make it unique.

There is an example of a host variable in the report on page 349. Notice the READ statement
for the employee DB2 table. It looks like this:

5($'��(03/2<((
������'%�1$0(�
'61�����(03�
������:+(5(�(0312� �5(63(03�

EMPNO is a field within the current (employee) table. But Report Writer treats RESPEMP as
a host variable, since it is not a field within the employee table. (RESPEMP is a field from an
earlier DB2 table–– the project table.)

Note: do not use a colon (:) to indicate a "host variable" within the WHERE parm
(as you would when writing SQL code.) As explained above, Report Writer
examines each field name in your WHERE parm and determines whether it is the

WHERE Parm Syntax

352 Report Writer User’s Guide

name of a DB2 column within the current table or not. Report Writer automatically
takes care of passing host variables to DB2 for you.

Literals
Your WHERE parm expression can contain any valid DB2 literal. In addition, you are allowed
to use Report Writer's own literal formats. For example, if you wanted to, you could use a
date literal in DB2's ISO date format, like this:

5($'��352-(&7
������'%�1$0(�
'61�����352-�
������:+(5(�3567'$7(� �
����²��²��
�

Or, you could use a Report Writer date literal, like this:

5($'��352-(&7
������'%�1$0(�
'61�����352-�
������:+(5(�3567'$7(� �����������

Either format will yield the same result. When you use DB2 format literals, Report Writer's
passes them in the WHERE clause to DB2 unchanged. When you use a Report Writer literal,
Report Writer passes it as a "host variable" to DB2.

Note that for character and numeric literals, the formats are the same for DB2 and for Report
Writer. So your choice in choosing literals applies only to date and time literals.

Note: floating point literals are not allowed.

For simplicity, the examples in this discussion have shown only a single test in the WHERE

parm. However, you are allowed to specify as many tests as you like in your WHERE parm.
For example:

5($'��352-(&7
������'%�1$0(�
'61�����352-�
������:+(5(�3567'$7(�� �����������$1'��'(3712� �
'��
�25�'(3712� �
(��
��

Customizin g Your DB2 Fields

As we have shown, no FILE or FIELD statements are needed to define the fields in a DB2 input
file. Report Writer recognizes the actual DB2 column names that are defined for your DB2
table.

Since FIELD statements are not supported for DB2 fields, how do you permanently define such
things as:

� the column headings to use for a field

� the display format to use for a field

� whether or not a numeric field should be totalled in reports

You can use COMPUTE statements to perform such customization. Use a COMPUTE statement
that simply assigns the value of a DB2 field to the COMPUTE field. The COMPUTE statement
syntax supports column headings, display formats and the ACCUM/NOACCUM parms (which
determine whether a field is totalled or not.)

Customizin g Your DB2 Fields

Chapter 6. Working with Databases 353

For example, let's pretend that our project DB2 table contains a column named PROJTEL,

which is a telephone number stored in DB2's "integer" format. By default Report Writer
would treat it as a regular numeric field, which means it would be formatted with commas,
it would be totalled, etc. Of course, for a particular run you could change these defaults
directly in your COLUMNS statement, like this:

&2/8016��352-7(/�3,&
���������²����
��12$&&80�

In the above statement we specified an override display format (a "picture"), to make the
numeric value look like a telephone number. And we specified NOACCUM to prevent the
column from being totalled at the end of the report.

But if you will be using a field in many different reports, it would be easier to specify the
display format and the NOACCUM parm just once and then forget about them. Do that by using
a COMPUTE statement, like this:

&20387(��7(/(3+21(�3,&
���������²����
��12$&&80�� �352-7(/

Now, whenever the field TELEPHONE is used in a report, it will be formatted appropriately,
and will not be totalled. You can use the same method to define column headings for a DB2
field:

&20387(��7(/(3+21(�3,&
���������²����
��12$&&80��
7(/�
�� �352-7(/

Now TELEPHONE will have 7(/� as its default column heading in reports and PC files.

Savin g DB2 File Definitions

The previous section explained how to use COMPUTE statements to customize your DB2
fields. A convenient way to handle these COMPUTE fields is to store them in your Report
Writer Copy Library. (See the section beginning on page 301 for detailed information on
using the copy library.)

Briefly, here's what to do. Create a member in the copy library for the DB2 file you want to
define. In that member, put a FILE statement that specifies the desired filename and its DB2
name. Then add one COMPUTE statement for each DB2 field that you wish to customize.
You might also want to include COMPUTE statement for any commonly used computations
involving the DB2 fields. Do not put any FIELD statements in this member. FIELD statements
are not allowed for DB2 files.

For example, for the project DB2 table you might create a member named PROJECT in the
copy library. It might contain these statements:

����),/(�����352-(&7��'%�1$0(�
'61�����352-
�
����&20387(��7(/(3+21(�3,&
���������²����
��12$&&80��
7(/�
�� �352-7(/
����&20387(��180%(5�
352-(&7180%(5
������������������������� �352-12
����&20387(��1$0(�
352-(&71$0(
����������������������������� �352-1$0(
����&20387(��6+257²352-²1$0(��������������������������������� ��68%675�352-1$0(�����
����&20387(��<($5/<²67$))�3,&
===�
�������������������������� �3567$))����

Now we could request reports or PC files from the project DB2 table as easily as this:

,1387��352-(&7
&2/8016��180%(5��6+257²352-²1$0(��7(/(3+21(��3567$))��<($5/<²67$))

Savin g DB2 File Definitions

354 Report Writer User’s Guide

Upon seeing the INPUT statement for PROJECT, Report Writer would process the FILE and
COMPUTE statements from the PROJECT member in the copy library. Since the FILE statement
contains the DB2NAME parm for PROJECT, the INPUT statement doesn't need it.

The COLUMNS (and any other) statements can now refer to either the actual DB2 field name,
or the COMPUTE fields that we defined. Using the COMPUTE field names results in the column
headings and display formats that were specified for those fields.

This method makes DB2 files look and work just the same as non–DB2 files from your
end–users point of view. A programmer can do the small amount of setup required. Then
end–users can use DB2 data in Report Writer without necessarily even knowing it comes
from a DB2 table.

DB2 Restrictions

DB2 has certain restrictions which Report Writer must observe. In particular, you should
keep the following restriction in mind:

� DB2 allows a maximum precision of 15 digits in numeric operands. Any
decimal digits also count toward this maximum of 15 digits. (Report Writer
allows a precision of 31 digits.) This means, for example, that any Report
Writer COMPUTE field that you refer to in a WHERE clause must never have a
value smaller than –999999999999999 or greater than +999999999999999.
And, if the field contain decimal digits, the allowed range of values is reduced
even further.

Chapter 7. Operating System Considerations 355

Chapter 7. Operatin g System Considerations

Chapter Table of Contents

Chapter 7. Operatin g System Considerations . 355

MVS Operating System Considerations. 357
Execution JCL for Reports –– MVS . 358
Execution JCL for PC and Mainframe Files –– MVS . 360
Report Writer PROC –– MVS . 362
Output File Options –– MVS . 362
Setting Up File Definitions –– MVS . 364
Copy Library DD –– MVS . 366
Input File DDs –– MVS . 367
Specifying Shop–Wide Options –– MVS . 368
Completion Codes –– MVS . 369

VSE Operating System Considerations. 370
Execution JCL for Reports –– VSE . 370
Execution JCL for PC and Mainframe Files –– VSE . 372
Output File Options –– VSE . 374
Downloading PC Files –– VSE . 375
Setting Up File Definitions –– VSE . 376
Input File DLBL/TLBLs –– VSE . 379
The Control Statement Listing –– VSE . 380
The EXEC Statement's SIZE Parm –– VSE . 380
Specifying Sort Work Files –– VSE . 381
Completion Codes –– VSE . 381

356 Report Writer User’s Guide

Chapter 7. Operatin g System Considerations

This chapter discusses various topics that are related to the specific operating system under
which Report Writer is executed. It is intended primarily for programmers who are setting
up the job control language (JCL) needed to run Report Writer jobs.

The following operating systems are discussed:

� MVS (page 357)

� VSE (page 370)

Chapter 7. Operating System Considerations 357

MVS Operatin g System Considerations

The following sections discuss operating environment considerations for executing Report
Writer MVS. Report Writer MVS runs under all MVS systems, including MVS/SP, MVS/XA,

MVS/ESA and OS/390. The following topics are presented:

� sample execution JCL for custom reports (page 358)

� sample execution JCL for output files, including PC files and mainframe files
(page 360)

� sample Report Writer PROC (page 362)

� specifying the access method and LRECL to use for Report Writer's output
records (page 362)

� setting up file definitions in a Copy Library (page 364)

� the Copy Library DD statement (page 366)

� the input file DD statements (page 367)

� the DD statement available for start–up options (page 368)

� the jobstep completion codes (page 369)

358 Report Writer User’s Guide

Execution JCL for Reports –– MVS

This section explains:

� the JCL needed to produce Report Writer reports

Chapter 2, "How to Request a Report" explained how to use Report Writer's control
statements to request custom reports. The JCL needed to produce such a report is very
simple. Figure 104 shows sample JCL for producing a Report Writer report.

The JCL to produce reports from a particular input file only needs to be set up once. Once it's
written, you can use the same JCL to produce as many different reports from that file as you
like. Only the Report Writer control statements (SYSIN) will be different in each run.

Here is a description of the DD statements used by Report Writer MVS.

DDNAME REQUIRED? USED FOR

6<6,1 <HV Control statements describing the desired report or PC file

6:/,67 <HV Report Writer writes the control statement listing, error
messages, and end–of–job statistics here.

6:287387� <HV Report Writer writes the actual report or PC file here.

6:&23< 1R Points to the Report Writer Copy Library

6:237,21 1R Used for installation–wide options. Points to a dataset
containing Report Writer control statements.

6<6287 <HV Sort program statistics. (Not required if a sort will not be
performed during the run.)

6257:.��
6257:.��

6257:.����� <HV Sort work files. (Not required if a sort will not be performed
during the run, or if these files are dynamically allocated at
your shop.)

67(3/,% <HV The load library where the SPECTWTR load module (and any
exit program modules) are located. If DB2 tables will be used,
this should also point to the library where the DB2 run–time
modules (DSNTIAR, for example) are located. (Not required if
these modules are located in a default steplib library.)

;;;;;;;; <HV One DD for each input file that will be used during the run. The
DDNAME to use is specified in the DDNAME parm of the FILE

statement that defines the file.

Execution JCL for Reports -- MVS

Chapter 7. Operating System Considerations 359

78(�������������������$0�����'$7$�)520�6$/(6�),/(�������������������3$*(������

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���7+20$6�����������������������<2*857�&,7<�������������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������

�*5$1'�727$/�����,7(06���

Produces this report:

��63(&7:75�-2%�
5(48(67(5

��
��63(&7:75�(;(&��3*0 63(&7:75�����352'8&(�5(3257�:5,7(5�5(3257
�����������������5(*,21 ����.
��67(3/,%��''��'61 63(&7:75�/2$'/,%�',63 6+5�/2$'/,%�72�86(
��6:&23<���''��'61 63(&7:75�&23</,%�',63 6+5�&23<�/,%5$5<
��6:287387�''��6<6287 ����������������������5(3257�287387
��6:/,67���''��6<6287 ����������������������&21752/�/,67,1*
��6<6287���''��6<6287 ����������������������6257�67$7,67,&6
��6<68'803�''��6<6287 ���������� ����'803�287387
��6257:.���''��81,7 6<6'$�63$&(�&</���������6257�:25.�),/(
��6257:.���''��81,7 6<6'$�63$&(�&</���������6257�:25.�),/(
��6257:.���''��81,7 6<6'$�63$&(�&</���������6257�:25.�),/(
��6$/(),/(�''��'61 352'�6$/(6�'7�',63 6+5��6$/(6�),/(
��6<6,1����''�������������������������������&21752/�67$7(0(176
,1387����6$/(6²),/(
&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�6$/(6²7,0(�&86720(5�$02817�7$;
��

This JCL:

Note:
• the Report Writer control statements in SPECTWTR.COPYLIB(SALES) would automatically be

processed by Report Writer during this run. Appendix F, "Sample File Definitions" shows the
statements in that member.

• the SALEFILE DD is necessary since SALES–FILE is used as an input in the report. The FILE
statement for SALES–FILE specifies SALEFILE as the DDNAME to use.

Figure 104 Sample Report Writer JCL for reports –– MVS

360 Report Writer User’s Guide

Execution JCL for PC and Mainframe
Files –– MVS

This section explains:

� the JCL needed to produce Report Writer output files, including PC files and
mainframe files

Chapter 3, "How to Request a PC File" explained how to use Report Writer's control
statements to request PC files. Chapter 4, "Beyond the Basics" included a section on creating
mainframe output files.

The only JCL difference when creating PC (and mainframe) files is in the SWOUTPUT DD.
Rather than routing the output to SYSOUT, you will normally want to write the output records
to a dataset. That way the dataset can be downloaded to a PC or used by a subsequent
mainframe program.

Figure 105 shows sample JCL for writing a PC file to disk.

You may specify any LRECL (and corresponding BLKSIZE) that you want in the SWOUTPUT DD.
Pick a record length that will be big enough to hold all of the columns you will be writing to
the output file.

Since output files do not need the "carriage control character" found in report output lines,
you will specify a RECFM of F or FB (not FBA.)

For more information on available options for the output file, see "Output File Options" on
page 362.

Execution JCL for PC and Mainframe Files-- MVS

Chapter 7. Operating System Considerations 361

�����(03/���6$/(6���6$/(6�������������
�5(*,21���1$0(���'$7(���7,0(���&86720(5���$02817���7$;�
���������������������������
�6287+���-2+1621����������������������������$&(�(/(&75,&$/��������������������������
�:(67����%$.(5������������������������������-$&.6�&$)(������������������������������
�($67����0255,621���������������������������67$5�0$5.(7�����������������������������
�($67����0255,621���������������������������$��3+272*5$3+<��������������������������
�($67����6,03621����������������������������(8523($1�'(/,���������������������������
�1257+���-2+1621����������������������������9,//$�+27(/�����������������������������
�1257+���-2+1621����������������������������0$5<6�$17,48(6��������������������������
�:(67����%$.(5������������������������������-$&.6�&$)(������������������������������
�:(67����7+20$6�����������������������������<2*857�&,7<�����������������������������
�1257+���-21(6������������������������������(=�*52&(5<������������������������������
�1257+���-21(6������������������������������72<�72:1��������������������������������
�1257+���-21(6������������������������������72<�72:1��������������������������������
�6287+���-2+1621����������������������������$&0(�%8,/',1*���������������������������
�($67����6,03621����������������������������-�	�6�/80%(5����������������������������

Produces this PC file:

Note:
• only the SWOUTPUT DD statement is different from the JCL used to produce a report (page 359.)

Figure 105 Sample Report Writer JCL for PC files –– MVS

��63(&7:75�-2%��
5(48(67(5

��
��63(&7:75�(;(&��3*0 63(&7:75�����352'8&(�5(3257�:5,7(5�3&�),/(
�����������������5(*,21 ����.
��67(3/,%��''��'61 63(&7:75�/2$'/,%�',63 6+5 /2$'/,%�72�86(
��6:&23<���''��'61 63(&7:75�&23</,%�',63 6+5 &23<�/,%5$5<
��6:287387�''��'61 0<�/2786�),/(�',63 �1(:�&$7/*���3&�287387�),/(
���������������81,7 6<6'$�63$&(�&</����
���������������'&% �5(&)0)%�/5(&/ ����%/.6,=(�����
��6:/,67���''��6<6287 &21752/�/,67,1*
��6<6287���''��6<6287 6257�67$7,67,&6
��6<68'803�''��6<6287 '803�287387
��6257:.���''��81,7 6<6'$�63$&(�&</������� 6257�:25.�),/(
��6257:.���''��81,7 6<6'$�63$&(�&</������� 6257�:25.�),/(
��6257:.���''��81,7 6<6'$�63$&(�&</������� 6257�:25.�),/(
��6$/(),/(�''��'61 352'�6$/(6�'7�',63 6+5 6$/(6�),/(
��6<6,1����''�� &21752/�67$7(0(176
237,216��/2786
,1387����6$/(6²),/(
&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�6$/(6²7,0(�&86720(5�$02817�7$;
��

This JCL:

362 Report Writer User’s Guide

Report Writer PROC –– MVS

You may wish to create a PROC for Report Writer. That makes it much easier to set up new
Report Writer jobstreams. A PROC also makes it easier for non–technical users to run Report
Writer jobs. Here is a an example of how such a PROC might look:

��63(&7:75�352&�&23</,%
18//),/(

��63(&7:75�(;(&�3*0 63(&7:75���������������������352'8&(�5(3257�:5,7(5�5(3257
����������������5(*,21 ����.
��67(3/,%��''���'61 63(&7:75�/2$'/,%�',63 6+5����/2$'/,%�72�86(
��6:&23<���''���'61 		&23</,%��',63 6+5����������&23<�/,%5$5<
��6:/,67���''���6<6287 �������������������������&21752/�/,67,1*
��6:287387�''���6<6287 �������������������������5(3257�287387
��6<6287���''���6<6287 �������������������������6257�67$7,67,&6
��6<68'803�''���6<6287 �������������������������'803�287387
��6257:.���''���81,7 6<6'$�63$&(�&</������������6257�:25.�63$&(
��6257:.���''���81,7 6<6'$�63$&(�&</������������6257�:25.�63$&(
��6257:.���''���81,7 6<6'$�63$&(�&</������������6257�:25.�63$&(
�����������3(1'

Once the above PROC is created, you could now request a report with just the following
simple JCL:

��63(&7:75�-2%��
5(48(6725

��67(3�����(;(&�63(&7:75�&23</,%
63(&7:75�&23</,%

��6$/(),/(�''���'61 352'�6$/(6�'7�',63 6+5
,1387��6$/(6²),/(
&2/8016��5(*,21��(03/²1$0(��6$/(6²'$7(��&86720(5
��

Output File Options –– MVS

This section explains:

� the default access method Report Writer uses to write its output records, and
how to override it

� the output records' default record length (LRECL), and how to override it

By default, Report Writer writes its output (whether a report or an output file) to the
SWOUTPUT DD using QSAM I/O. This is appropriate for writing to SYSOUTs (printer output)
as well as for writing output files to standard disk and tape datasets.

If you prefer, you can write your output to an existing ESDS VSAM file. One reason to do that
is to make the output file available to CICS transactions, which can only access VSAM files.
To write your report or output file to a VSAM dataset, specify the following option in your
control statements:

237,216��2877<3(�96$0�

Most standard line printers can print only 132 characters of data per line. However, many
laser printers support "forms" that allow you to print longer print lines. And when creating
PC or mainframe files as output, you may want records that are several hundred bytes long
in order to hold all the desired data.

Report Writer supports output records up to approximately 16,000 bytes wide. Here is how
Report Writer determines what record length (LRECL) to use in a particular run.

Output File Options -- MVS

Chapter 7. Operating System Considerations 363

When writing QSAM output (Report Writer's default) the LRECL used is:

1) the LRECL specified in the DCB parm of the SWOUTPUT DD in the JCL, if any, or

2) the LRECL specified in a file's label, when writing to an existing dataset, or

3) the OUTLRECL value (from an OPTIONS statement), if any, or

4) 133

In other words, if you are printing a report (SWOUTPUT is routed to SYSOUT) and you do not
specify a LRECL either in the JCL or the control statements, Report Writer creates 133–byte
records. This allows for a standard 132–byte print line, plus a 1–byte "carriage control
character." In such runs, if you specify more fields in the COLUMNS statement than will fit
in 132 bytes, Report Writer will print a message telling you that it is truncating one or more
fields.

If you want a report that is wider than 133 bytes, you can specify your own LRECL. Do this
in either the JCL or in the Report Writer control statements. To specify the LRECL in the JCL,

just use the '&% /5(&/ QQQQQ parm, like this:

��6:287387�''�6<6287 �'&% /5(&/ ���

The above DD statement tells Report Writer to allow up to 200 characters in the report (again
reserving 1 byte for the carriage control character.) Report Writer would only truncate
columns that extended beyond column 200. (Of course, in order to print such a report your
printer must also support 201–byte print lines.)

To specify the LRECL in the control statements, use a statement like this:

237,216��287/5(&/�����

The above example accomplishes the same thing as specifying 201 in the LRECL parm in the
JCL. If you specify this option, you do not need to specify the DCB=LRECL parm in your JCL.

Note: to print wide reports on your laser printer, the laser printer may require some
"setup" information. This will tell the printer, for example, to use a condensed font
so that more characters can fit on the page. You may be able to use the PRTSETUP

parm of the OPTIONS statement to send this setup string to your printer. Here is an
example of using the PRTSETUP option (the actual setup string will be different for
each shop):

237,216��3576(783�
����'-'(��-'(���)250$7 /������'$7$ ��������(1'�
�

When creating QSAM output files, Report Writer again defaults to 133 byte records if it has
no other LRECL information. (In the case of output files, all 133 bytes are available for data,
since no carriage control character is written for output files.)

However, if you write your file to an existing dataset, Report Writer will automatically
determine the LRECL of that dataset and let you create records up to that size (before printing
truncation warning messages.)

Output File Options -- MVS

364 Report Writer User’s Guide

When writing to a new dataset, you can specify the desired LRECL in either the DCB=LRECL

parm of the JCL, or with the OUTLRECL option in your control statements. For example, to
create a 300–byte PC file, you might use this JCL statement:

��6:287387�''�'61 /2786�),/(�',63 �1(:�&$7/*��
��������������'&% �/5(&/ ����%/.6,=(�����5(&)0)%��
��������������63$&(�&</����81,7 6<6'$

In the above example, Report Writer would only truncate fields that extended beyond column
300.

For VSAM output files, the LRECL used is:

1) the OUTLRECL value from an OPTIONS statement (if it is valid for the VSAM file's
definition), if any, or

2) 133 (if it is valid for the VSAM file's definition), or

3) the maximum RECORDSIZE value from the VSAM file's definition

VSAM files are assigned an average record length and a maximum record length when they are
first defined. As long as your OUTLRECL value is no longer than the maximum record length
defined for the VSAM file, Report Writer will use that LRECL as the size of its output records.
If no OUTLRECL option is specified, Report Writer again defaults to writing 133–byte records.
However, if the VSAM dataset was defined with a maximum record size less than 133, then
Report Writer defaults to writing records the size of the maximum record size defined for the
file.

Settin g Up File Definitions –– MVS

Before running Report Writer, some one–time setup is required. This setup consists of
creating a Report Writer Copy Library PDS, and then storing descriptions of your company's
files in it. This is necessary before Report Writer can produce reports or
PC files from your company's data.

The following setup steps are needed:

Step 1.
Allocate a new PDS to be used as your Report Writer Copy Library. The purpose of this PDS

is to store definition statements about the files in your shop. The PDS's LRECL should be 80
bytes. The blocksize may be any multiple of 80. The amount of space required will depend
on how many files you expect to define to Report Writer. (A Report Writer file definition
requires approximately the same amount of space as a Cobol record layout for the same file.)
If you have no idea what size to allocate, try allocating 20 tracks, with 20 directory blocks.

If you prefer, you can use an existing 80–byte PDS (such as a Cobol copy library, etc.)
However, it is recommended that a new PDS be created to serve exclusively as the Report
Writer Copy Library.

Settin g Up File Definitions -- MVS

Chapter 7. Operating System Considerations 365

Step 2.
Create a new member in the copy library for the first file that you want to define to Report
Writer. For example, if you want to define your company's payroll file, you might create a
new member named PAYROLL. Within this member, type a FILE statement defining the payroll
file. For example, if the payroll file is a simple sequential file, you might enter the following:

),/(��3$<52//��''1$0(�3$<52//���/5(&/������

The above statement defines a sequential file that will be referred to as "3$<52//" in Report
Writer control statements. The DDNAME associated with this file will also be PAYROLL. Be
sure to specify an LRECL value that's as big as the biggest record in your file. In our PAYROLL

example, we specified 1500 as the largest record length. For more information on the FILE

statement, see "How to Define a File" on page 269.

Next, type one FIELD statement for each field in the payroll file. (For more information on
the FIELD statement, see "How to Define a Field" on page 275.) For example, if the first two
fields in the payroll file are a 10–byte last name and a 15–byte first name, you would enter
the following:

),(/'��/$67²1$0(��/(1*7+����
),(/'��),567²1$0(�/(1*7+����

It isn't required that you define all of the fields in the file to start with. If the file contains
fields that you don't care about using with Report Writer, you do not need to define those
fields. Just use the COLUMN parm where needed in subsequent FIELD statements to tell Report
Writer exactly which column a field begins in.

When you are finished, the copy library member should contain a single FILE statement,
followed by a number of FIELD statements. (Appendix F, "Sample File Definitions" shows
some examples of copy library members and their file definition statements.) Save this copy
library member when you are done.

Note: if you have a Cobol or Assembler record layout for the file you are defining,
you can use Report Writer to convert that layout into FIELD statements for you. Or,
you can even produce a report directly from the record layout, without using FIELD

statements at all. Both of these options are described in Chapter 5, "How to Define
Your Input Files" beginning on page 311. To begin with, though, we suggest you
define one or two small files manually (as described above) to get a clear idea of how
Report Writer works. That will make it easier for you to later see how Report
Writer's Cobol and Assembler interpreter fits into the picture.

Step 3.
Add an alias entry for your file. This step is not required as long as you chose an 8–byte (or
smaller) file name in Step 2, and used that same name as the member name in your PDS. That
is just what we did in our PAYROLL example in Step 2 above. We used PAYROLL both for the
file name (in the FILE statement) and for the member name in the copy library. So no alias
entry would be needed in that example.

The purpose of an alias is to relate the Report Writer file name (which can be up to 70
characters long) to the 8–byte name of the copy library member where that file's definition
is stored. When the two names are the same, no alias is needed. But you can also use longer,
more user–friendly file names if you like. You'll just need to add an alias entry to a special
member named SWALIAS in your copy library. For example, let's say we wanted to call our

Settin g Up File Definitions -- MVS

366 Report Writer User’s Guide

payroll file HEADQUARTERS–PAYROLL. That name is too big to use as the member name in
the copy library. So, you would pick a shorter member name to keep the file definition
statements in (say HQPAYROL), and just add an alias entry like this within SWALIAS:

+($'48$57(56²3$<52//� �+43$<52/

The above line tells Report Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL.

"HEADQUARTERS–PAYROLL" is the name that users will use for the file in Report Writer
control statements (such as the INPUT statement.) It's also the name you will use in the FILE

statement when defining the file. "HQPAYROL" will only be used internally by Report Writer
as the member name for reading the definition statements from the copy library. Appendix
F, "Sample File Definitions" shows an example of the SWALIAS member in a copy library.

The alias lines may appear in any order within the SWALIAS member.

Step 4.
Repeat steps 2 and 3 for each file that you wish to define to Report Writer.

Step 5.
In your execution JCL, make sure the SWCOPY DD points to the copy library that you just set
up (containing each file's definition statements, and containing the SWALIAS member.)

Your Report Writer Copy Library is now ready. You can now request all the custom
PC files and reports you want from the files that you defined.

Copy Librar y DD –– MVS

We saw in the previous section how a copy library is used to store the definition statements
for your company's files.

Use the SWCOPY DD in your execution JCL to point to the PDS that Report Writer should use
as the copy library during the run. Of course, you may want different runs to use different
copy libraries. (Perhaps different departments in your company will want to maintain and use
their own copy libraries.) Just point the SWCOPY DD to the appropriate PDS in each run.

You can also use the copy library to store any other frequently used set of control statements.
Use the COPY statement to include statements from copy library members in your report
requests.

For example, you might store a number of commonly used COMPUTE statements in the copy
library. Or, if you frequently run reports that use multiple input files, you could store the
INPUT statement, any COMPUTE statements needed to create the read keys, and the READ

statements all as one member of the copy library. That way the end–users would not need to
remember how to link all of the input files. They could just begin their report request with
a COPY statement that does all of that for them.

Chapter 7. Operating System Considerations 367

Input File DDs –– MVS

This section explains:

� how to write the DD statement(s) for the input file(s)

In order for Report Writer to produce a report (or PC or mainframe file), it must "open" and
"read" from the input file specified in the INPUT control statement. If the report uses
auxiliary input files (specified in READ statements), Report Writer must also open and read
from these files.

Make sure that the JCL used to run a Report Writer report contains one DD statement for each
input file used in the report.

How does Report Writer know which DD to use when reading these files? The file named in
an INPUT or READ statement must have been previously defined to Report Writer with a FILE

statement. The DDNAME parm in the FILE statement tells what DD to use when reading the file.
(The FILE statement is normally kept in the Report Writer Copy Library.)

An override DDNAME parm can also be specified directly in the INPUT or READ statement.
When this happens, Report Writer uses the override DDNAME, rather than the one from the
FILE statement.

Speed–Up Tip: Random reads to VSAM files can be relatively slow. VSAM

maintains two types of buffers (data and index) while processing Report Writer's
requests. When a required data record or index record is already in one of VSAM's
buffers, VSAM can use the buffer copy instead of having to perform actual disk I/O,
thus improving performance. If your report will be reading a large number of
records from a VSAM auxiliary input file, you may want to increase the number of
buffers that VSAM maintains. This may increase the likelihood that VSAM will find
a needed record already in one of its buffers. You can increase the number of data
buffers (BUFND) and/or index buffers (BUFNI) in either of two ways:

1) in the execution JCL, using the $03 �
$025*�%8)1, QQ�%8)1' QQ
� parm in the
DD statement, or

2) in the INPUT or READ statement, using the %8)1,�QQ� and %8)1'�QQ� parms.

For IBM's recommended BUFNI and BUFND values, see page 609.

CICS Users Note: One of VSAM's weaknesses is in its ability to maintain file
integrity for a VSAM file that is being accessed from multiple regions. For example,
if CICS has a VSAM file open for update at the same time that Report Writer is
reading that file, there is a possibility that Report Writer will not see all of the
records that are "in the file". The reason for this is that when updates are made to
a VSAM file under CICS, CICS may not immediately write those updates out to the
physical file; instead, it may maintain the updated records within its buffers to be
written at a later time (sometimes days later if activity for a file is very slow.) Since
Report Writer is running in another region, it does not have access to the updates
within CICS's buffers–– only to the records that have actually been written to the
VSAM file. Thus, VSAM may not pass to Report Writer all of the records that an
online CICS user would "see" in the same file. The safest way to avoid this problem
is to issue a &(07�&/26(to the VSAM file (from CICS) before running any batch job
(including Report Writer) that will read that file.

368 Report Writer User’s Guide

Specif ying Shop–Wide Options –– MVS

There may be some options that your shop will want to use in every report. For example, you
may want to always print 80 lines per page (rather than Report Writer's default of 60.) That
is specified with an OPTIONS statement:

237,216��3$*(/(1����

Or, many international users may prefer to always see dates formatted in ''²00²<< format.
They might want this statement in all of their runs:

237,216��)250$7�''²00²<<�

Or, if your shop prints to a laser printer that can skip to new sheets of paper, you may want
to specify a PRTSHEET parm. (This parm allows control breaks to skip to a new sheet of
paper, rather than merely a new side of the page.) For example:

237,216��3576+((7�
����'-'(��6,'(18)5217�(1'�
�

You could type these statements at the beginning of every report requested at your shop. But
there is an easier way. Store these (and any other similar statements) in a data set. (Most
shops use a member of the Report Writer Copy Library for this purpose, but you can also use
a flat file.) Then, use the SWOPTION DD to point to this data set. For example:

��6:237,21�''�'61 63(&7:75�&23</,%�6:237,21��',63 6+5

When a SWOPTION DD statement is present in the JCL, Report Writer processes the statements
contained in that data set before processing the SYSIN statements.

The use of the SWOPTION DD is entirely optional. You are not required to have such a DD.

Chapter 7. Operating System Considerations 369

Completion Codes –– MVS

Upon completion, Report Writer exits back to the operating system with one of the following
completion codes:

COMPLETION
 CODE MEANING

0 No errors or warning messages issued. Report Writer produced its output

normally. (Some informatory messages may have been printed.)

4 Only warning messages were issued. Report Writer produced its output as
well as it could.

12 Error messages were issued. No output (or only a partial output) was
produced.

16 Security error. Report Writer has expired or some other error was detected
in the authorization codes. No output was produced.

370 Report Writer User’s Guide

VSE Operatin g System Considerations

The following sections discuss the JCL needed to execute Report Writer VSE. Report Writer
VSE runs under DOS/VSE, VSE/SP and VSE/ESA. The following topics are presented:

� sample execution JCL for custom reports (page 370)

� sample execution JCL for output files, including PC files and mainframe files
(page 372)

� specifying the type and record size of the output file (page 374)

� various methods of downloading PC files (page 375)

� setting up file definitions in a Copy Library (page 376)

� the DLBL/TLBL statements required for input files (page 379)

� routing the control statement listing (page 380)

� specifying the SIZE parm in the EXEC JCL statement (page 380)

� using sort work files (page 381)

� the jobstep completion codes (page 381)

Execution JCL for Reports –– VSE

This section explains:

� the JCL needed to produce Report Writer reports

Chapter 2, "How to Request a Report" explained how to use Report Writer's control
statements to request custom reports. The JCL needed to produce such a report is very
simple. Figure 106 shows sample JCL for producing a Report Writer report.

The JCL to produce reports from a particular input file only needs to be set up once. Once the
JCL has been prepared, you can use it to produce as many different reports from that file as
you like. Only the Report Writer control statements (SYSIPT) will be different in each run.

Here is a list of the logical unit assignments used by Report Writer:

SYSIPT the Report Writer control statements are read from SYSIPT

SYS010 a "control listing" is written to this logical unit. It includes a listing of
your Report Writer control statements, any warning or error messages,
and the end–of–run statistics.

SYS011 the report (or output file) produced by the run. This assignment can be
changed with the OUTATTR option (see page 374.)

Note: to ensure that your report output is completely separate from the control
listing messages and statistics, be sure to assign SYS010 and SYS011 to different
virtual printers.

Execution JCL for Reports -- VSE

Chapter 7. Operating System Considerations 371

���-2%����63(&7:75
���$66*1��6<6����6<6/67���������������&21752/�67$7(0(17�/,67,1*
���$66*1��6<6�������������������������5(3257�287387
���/,%'()�3+$6(�6($5&+ /,%�63(&7:75
���'/%/���6$/(),/�
6$/(6�0$67(5�),/(

���(;7(17�6<6����������������
���(;(&���63(&7:75�6,=(�63(&7:75����.�
237,21���68%/,%�
/,%�63(&7:75
�
,1387����6$/(6²),/(
&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�6$/(6²7,0(�&86720(5�$02817�7$;
�
�	

This JCL:

78(�������������������$0�����'$7$�)520�6$/(6�),/(�������������������3$*(������

����������(03/�����6$/(6����6$/(6
5(*,21����1$0(������'$7(�����7,0(������&86720(5���������$02817���������7$;����

6287+��-2+1621����������������������$&(�(/(&75,&$/����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
($67���0255,621���������������������67$5�0$5.(7�������������������������������
($67���0255,621���������������������$��3+272*5$3+<����������������������������
($67���6,03621����������������������(8523($1�'(/,�����������������������������
1257+��-2+1621����������������������9,//$�+27(/�������������������������������
1257+��-2+1621����������������������0$5<6�$17,48(6����������������������������
:(67���%$.(5������������������������-$&.6�&$)(��������������������������������
:(67���7+20$6�����������������������<2*857�&,7<�������������������������������
1257+��-21(6������������������������(=�*52&(5<��������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
1257+��-21(6������������������������72<�72:1����������������������������������
6287+��-2+1621����������������������$&0(�%8,/',1*�����������������������������
($67���6,03621����������������������-�	�6�/80%(5������������������������������

�*5$1'�727$/�����,7(06���

Produces this report:

Note:
• the Report Writer control statements in member SALES.SPECTWTR of LIB.SPECTWTR would

automatically be processed by Report Writer during this run. Appendix F, "Sample File Definitions"
shows the statements in that member.

• the SALEFIL DLBL is necessary since SALES–FILE is used as an input in the report. The FILE
statement for SALES–FILE specifies SALEFIL as the DLBL to use.

Figure 106 Sample Report Writer JCL for reports –– VSE

372 Report Writer User’s Guide

Execution JCL for PC and Mainframe
Files –– VSE

This section explains:

� the JCL needed to produce Report Writer output files, including PC files and
mainframe files

Chapter 3, "How to Request a PC File" explained how to use Report Writer's control
statements to request PC files. Chapter 4, "Beyond the Basics" included a section on creating
mainframe output files.

The only JCL difference when creating PC (or mainframe) files concerns where the output will
be written. By default, Report Writer writes output file records to the "printer" at SYS011

(just as it writes report lines.)

If you want to download PC files from the POWER queue, this default may be just fine for
you. In that case, use the same JCL for PC files as for reports (page 371.)

However, you may prefer to write output files to actual datasets, rather than the POWER

queue. That way the dataset can be downloaded to a PC, or used by a subsequent mainframe
job.

Figure 107 shows sample JCL for creating a PC file and writing it to a disk file. In this
example, we used the OUTATTR parm to tell Report Writer to write to a disk file rather than
to a printer. We also added an appropriate DLBL statement for the output file to the JCL.

The OUTATTR option can also be used to specify the desired record size of your output file.
You can also use it to write your output file to a VSAM file or a tape. The OUTATTR parm is
discussed in more detail beginning on page 374.

Execution JCL for PC and Mainframe Files-- VSE

Chapter 7. Operating System Considerations 373

���-2%����63(&7:75
���$66*1��6<6����6<6/67����������������&21752/�67$7(0(17�/,67,1*
���/,%'()�3+$6(�6($5&+ /,%�63(&7:75
���'/%/���6$/(),/�
6$/(6�0$67(5�),/(

���(;7(17�6<6����������������
���'/%/���6:287�
/2786�),/(

���(;7(17�6<6���������������
���(;(&���63(&7:75�6,=(�63(&7:75����.�
237,21���68%/,%�
/,%�63(&7:75
�
���������/2786
���������287$775�'$6'�
6:287
����������
,1387����6$/(6²),/(
&2/8016��5(*,21�(03/²1$0(�6$/(6²'$7(�6$/(6²7,0(�&86720(5�$02817�7$;
�
�	

This JCL:

�����(03/���6$/(6���6$/(6�������������
�5(*,21���1$0(���'$7(���7,0(���&86720(5���$02817���7$;�
���������������������������
�6287+���-2+1621����������������������������$&(�(/(&75,&$/��������������������������
�:(67����%$.(5������������������������������-$&.6�&$)(������������������������������
�($67����0255,621���������������������������67$5�0$5.(7�����������������������������
�($67����0255,621���������������������������$��3+272*5$3+<��������������������������
�($67����6,03621����������������������������(8523($1�'(/,���������������������������
�1257+���-2+1621����������������������������9,//$�+27(/�����������������������������
�1257+���-2+1621����������������������������0$5<6�$17,48(6��������������������������
�:(67����%$.(5������������������������������-$&.6�&$)(������������������������������
�:(67����7+20$6�����������������������������<2*857�&,7<�����������������������������
�1257+���-21(6������������������������������(=�*52&(5<������������������������������
�1257+���-21(6������������������������������72<�72:1��������������������������������
�1257+���-21(6������������������������������72<�72:1��������������������������������
�6287+���-2+1621����������������������������$&0(�%8,/',1*���������������������������
�($67����6,03621����������������������������-�	�6�/80%(5����������������������������

Produce this PC File:

Figure 107 Sample Report Writer JCL for PC files –– VSE

374 Report Writer User’s Guide

Output File Options –– VSE

This section explains:

� the default access method Report Writer uses to write its output records, and
how to override it

� the output record's default record size, and how to override it

� how to use the OUTATTR parm (of the OPTIONS statement)

The OUTATTR ("Output Attribute") option lets you give Report Writer explicit information
about how and where to write its output. If no OUTATTR option is specified, Report Writer
makes these default assumptions:

� the output is going to a printer–type device. (Of course, in most cases the
"printer" will actually be a POWER spool file.)

� the "printer" is at logical unit SYS011

� each record will be 133 bytes long (including a 1–byte carriage control
character)

If you are creating reports, this default should work just fine for you. Your JCL will simply
assign SYS011 to SYSLST or some other "printer" device.

Still, if you like you could use OUTATTR to specify a different SYSnnn or a different record
size. For example:

237,216��287$775�357�6<6��������

The above statement tells Report Writer to write the output file to a "printer" device at
SYS007. The records should be 120 bytes long.

Note: for report output, the first byte in each record is a "carriage control character."
So in the example above, only 119 bytes would be available for the report data itself.
For PC or mainframe file output (or when using the NOCC option) no control
character is written. In that case, the entire length of the record is available for data.

When creating PC or mainframe files, you may prefer to write them to disk or tape, rather
than to the POWER queue. And you may want a record size bigger (or smaller) than 133
bytes. To change the defaults, just use Report Writer's OUTATTR option. This option lets you
specify:

� the type of device to write to (choose from a printer, a DASD file (that is, a SAM

file on disk), a VSAM file, or a tape file.)

� the logical unit to write to. (Used with printer and tape files only.)

� the length of each output record. You can choose any record size you like (up
to approximately 16K). For reports, you will probably use 133, since that is the
maximum size most printers support. When creating output files, you can
specify any record size that is big enough to hold all the data you plan to write.

The figure on page 373 shows sample JCL for writing a PC file to a SAM file on disk. In that
example, the following OUTATTR parm is used:

237,216��287$775�'$6'�
6:287
����������

Output File Options -- VSE

Chapter 7. Operating System Considerations 375

The DASD parm in the above statement tells Report Writer to write its output to a SAM disk
file. The file is defined in the JCL by a DLBL statement named SWOUT. The records will be
250 bytes long, and the block size will be 2500.

Note: When writing to a disk or tape file, you can omit the ASSGN statement for
SYS011 in your JCL.

You may use any record size (and corresponding block size) in the OUTATTR parm that you
want. Pick a record size that will be big enough to hold all of the data you will be writing to
the output file. If you do not specify a record size, Report Writer assumes a default record
size of 133 bytes.

You can also use the OUTATTR option to have Report Writer write its output to a VSAM file.
One reason to do this is so that CICS can access the output. You may want to use CICS to
download the data to a PC. Here is an example of writing to a VSAM file:

237,216��287$775�96$0�
28796$0
�����

The above statement tells Report Writer to write the output file to a VSAM file. (The VSAM

file must have been defined ahead of time, and it must be defined as an ESDS file.) The DLBL

for the VSAM file in the JCL will be named OUTVSAM. The records will be 450 bytes long.
Note that block sizes are not used for VSAM files.

Finally, here is an example of writing Report Writer's output to a tape file:

237,216��287$775�7$3(�
287),/(
�6<6��������������

The above statement tells Report Writer to write the output file to a tape mounted on logical
unit SYS009. The TLBL for the output file in the JCL will be named OUTFILE. The records will
be 200 bytes long, and the block size will be 12000.

Note: the complete syntax of the OUTATTR option is shown at page 494.

Downloadin g PC Files –– VSE

After Report Writer creates your PC file on the mainframe, just download it to your PC and
import it into your favorite PC program. Appendix H, "How to Import PC Files" shows the
commands used to import PC files for many popular PC programs.

You can use whatever download method you're most familiar with. Here are some of the
common methods of downloading datasets from VSE to a PC.

Downloading from a POWER output queue.
Use Report Writer's default to write your PC file as if it's going to a printer. In your JECL,

choose a POWER class that allows the output to remain in the queue (rather than being printed
right away.) Then, use VSE's Interactive User Interface (IUI) menus to download the POWER

queue entry to your PC. By default, Report Writer limits your output records to 133 byte.
Use the OUTATTR option to specify a larger record size if 133 is not big enough to hold all the
columns you intend to download. For example, to create a 200–byte entry in the POWER

output queue, specify:

237,216��287$775�357�6<6��������

Downloadin g PC Files -- VSE

376 Report Writer User’s Guide

Downloading from a CICS VSAM file
If you prefer, you can download a CICS VSAM file. Use the following option to have Report
Writer write its PC file to a VSAM file:

237,216��287$775�96$0�
6:287
�����

You will need to define the dataset (as an ESDS dataset) ahead of time. That dataset will also
need to be defined to CICS (via an FCT.) Then, use IUI to copy the contents of your VSAM

dataset to the Host Transfer File. You can then download it to your PC from the Host
Transfer File.

Downloading under VM
If you are running VSE under VM, you may prefer to do the download from VM (CMS). Use
your 3270 emulator package's file transfer command (probably RECEIVE) to do this. You
have a couple of options as far as getting the PC file from VSE to your VM session. You can
have Report Writer create a printer output file, which you would then spool to your VM

session as a reader file. You can then read your reader file into a CMS dataset and download
from there. Or, you could have Report Writer write to a SAM disk file on a VSE pack. Then,
link from VM to the VSE pack containing your PC file, and download that dataset to your PC.

Using Third–Party Products
Your shop may also have a third–party product that makes it easy to download mainframe
files to PCs. Products that have been mentioned to us by users include: BIM–PC/TRANSFER,

pcMainframe, PC–Link, and Outbound.

Settin g Up File Definitions –– VSE

This section explains:

� how to set up a Librarian sublibrary to serve as the Report Writer Copy
Library

� how to use the SUBLIB option to tell Report Writer the name of the copy library

Before you run Report Writer using your own files, some one–time setup is required. This
setup consists of storing descriptions of your company's files in the Report Writer Copy
Library. This is necessary before Report Writer can produce reports or PC files from your
company's data.

The following setup steps are needed to define your company's files to Report Writer:

Step 1.
Pick a Librarian sublibrary to use as your Report Writer Copy Library. We recommend that
you create a new sublibrary to be used exclusively for this purpose. However, you can use
any Librarian sublibrary as your Report Writer Copy Library.

Some shops may want to use multiple copy libraries with Report Writer. (Perhaps one for
each department in the company.) It is fine to do that. You will tell Report Writer via a
control statement the name of the copy library to use in each run.

Settin g Up File Definitions -- VSE

Chapter 7. Operating System Considerations 377

Step 2.
Create a member in the copy library for the first file that you want to define to Report Writer.
The member name can be anything that you like. The member type should be SPECTWTR.

For example, to define your company's payroll file, you might create a new member named
PAYROLL.SPECTWTR.

This member should contain a FILE statement defining certain attributes of the file. For
example, you might have the following:

),/(��3$<52//��$775�'$6'�
3$<
���������

The above statement defines a DASD SAM file that will be referred to as "PAYROLL" in Report
Writer control statements. The DLBL name associated with this file will be PAY. The records
are 80 bytes long, and the blocks are 4000 bytes long. (For more information on writing FILE

statements, see page 273.)

Next, the member should contain one FIELD statement for each field in the payroll file. (For
more information on writing FIELD statements, see page 275.) For example, if the first 2
fields in the payroll file were a 15–byte last name and a 10–byte first name, you might enter
the following:

),(/'��/$67²1$0(��/(1*7+����
),(/'��),567²1$0(�/(1*7+����

You do not need to define all of the fields in the file to start with. If the file contains fields
that you don't care about using with Report Writer, you do not need to define those fields.
Just use the COLUMN parm where needed in subsequent FIELD statements to tell Report Writer
exactly which column a field begins in.

When you are finished, the copy library member should contain a single FILE statement,
followed by a number of FIELD statements. (Appendix F, "Sample File Definitions" shows
examples of copy library members and their file definition statements.)

Note: if you have a Cobol or Assembler record layout for the file you are defining,
you can use Report Writer to convert that layout into FIELD statements for you. Or,
you can even produce a report directly from the record layout, without using FIELD

statements at all. Both of these options are described in Chapter 5, "How to Define
Your Input Files" (page 311.) To begin with, though, we suggest you define one or
two small files manually (as described above) to get a clear idea of how Report
Writer works. That will make it easier for you to later see how Report Writer's
Cobol and Assembler interpreter fits into the picture.

Step 3.
Add an alias entry for your file. This step is not required as long as you chose an 8–byte (or
smaller) file name in Step 2 and used that same name as the member name in your copy
library. That's just what we did in our PAYROLL example in Step 2 above. We used PAYROLL

both for the file name (in the FILE statement) and as the member name in the copy library.
So no alias entry would be needed in that example.

The purpose of an alias is to relate the Report Writer file name (which can be up to 70
characters long) to the 8–byte name of the copy library member where that file's definition
is stored. When the two names are the same, no alias is needed. But you can also use longer,

Settin g Up File Definitions -- VSE

378 Report Writer User’s Guide

more user–friendly file names if you like. You'll just need to add an alias entry to a special
member named SWALIAS.SPECTWTR in your copy library.

For example, let's say we wanted to call our payroll file HEADQUARTERS–PAYROLL. That
name is too big to use as the member name in the copy library. So, you would pick a shorter
member name to keep the file definition statements in (say HQPAYROL), and just add an alias
entry like this within SWALIAS.SPECTWTR:

+($'48$57(56²3$<52//� �+43$<52/

The above line tells Report Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL.SPECTWTR.

"HEADQUARTERS–PAYROLL" is the name that users will use for the file in Report Writer
control statements (such as the INPUT statement.) It's also the name you will use in the FILE

statement when defining the file. "HQPAYROL" will only be used internally by Report Writer
as the member name for reading the definition statements from the copy library. Appendix
F, "Sample File Definitions" shows an example of a SWALIAS member in a copy library.

Note that only the member name (not the member type) is specified in an alias entry.

The alias lines may appear in any order within the SWALIAS member.

Step 4.
Repeat steps 2 and 3 for each file that you wish to define to Report Writer.

Step 5.
In your Report Writer control statements, always begin with an OPTIONS: SUBLIB statement.
This will tell Report Writer the name of the copy library that you just set up. For example,
if you named your copy library LIB.SPECTWTR, you would use the following statement:

237,216��68%/,%�
/,%�63(&7:75
�

Your Report Writer Copy Library is now ready. You can now request all the custom reports
and output files that you want from the files that you have defined.

Chapter 7. Operating System Considerations 379

Input File DLBL/TLBLs –– VSE

This section explains:

� how to write the DLBL or TLBL JCL statements for your job's input files.

In order for Report Writer to produce a report (or output file), it must "open" and "read" from
the input file specified in the INPUT statement. If the run uses auxiliary input files (specified
in the READ statement), Report Writer must also open and read from those files.

How does Report Writer know which DLBL or TLBL name to use when reading these files?
The file named in an INPUT or READ statement must have been previously defined to Report
Writer with a FILE statement. The ATTR parm in the FILE statement specifies which DLBL (or
TLBL) Report Writer should use when reading the file. The ATTR parm also tells Report
Writer other important information about the file, such as its record size and block size.

Note: The FILE statement is normally kept in the Report Writer Copy Library.

Note: The syntax of the FILE statement is shown on page 470.

An override ATTR parm can also be specified directly in the INPUT or READ statement. When
this happens, Report Writer uses the override DLBL (or TLBL) name, rather than the one from
the FILE statement.

Make sure that your Report Writer JCL contains one DLBL (or TLBL) statement for each input
file needed to produce your report or output file. (An EXTENT JCL statement may also be
needed for each DLBL statement.)

Speed–Up Tip: Random reads to VSAM files can be relatively slow. VSAM

maintains two types of buffers (data and index) while processing Report Writer's
requests. When a required data record or index record is already in one of VSAM's

buffers, VSAM can use the buffer copy instead of having to perform actual disk I/O,
thus improving performance. If your report will be reading a large number of
records from a VSAM auxiliary input file, you may want to increase the number of
buffers that VSAM maintains. This may increase the likelihood that VSAM will find
a needed record already in one of its buffers. You can increase the number of data
buffers (BUFND) and/or index buffers (BUFNI) in either of two ways:

1) in the execution JCL, or

2) in the INPUT or READ statement, using the %8)1,�QQ� and %8)1'�QQ� parms.

For IBM's recommended BUFNI and BUFND values, see page 609.

CICS Users Note: One of VSAM's weaknesses is in its ability to maintain file
integrity for a VSAM file that is being accessed from multiple partitions. For
example, if CICS has a VSAM file open for update at the same time that Report Writer
is reading that file, there is a possibility that Report Writer will not see all of the
records that are "in the file". The reason for this is that when updates are made to
a VSAM file under CICS, CICS may not immediately write those updates out to the
physical file; instead, it may maintain the updated records within its buffers to be
written at a later time (sometimes days later if activity for a file is very slow.) Since
Report Writer is running in another partition, it does not have access to the updates
within CICS's buffers–– only to the records that have actually been written to the
VSAM file. Thus, VSAM may not pass to Report Writer all of the records that an

Input File DLBL/TLBLs -- VSE

380 Report Writer User’s Guide

online CICS user would "see" in the same file. The safest way to avoid this problem
is to issue a &(07�&/26(to the VSAM file (from CICS) before running any batch job
(including Report Writer) that will read that file.

The Control Statement Listin g –– VSE

The control statement listing (which lists your control statements and any diagnostic
messages, as well as end–of–run statistics) is always written to the printer–type device at
SYS010. The record size is always 133 bytes, including a 1–byte carriage control character.

You should "assign" SYS010 to a different printer device than the one that SYS011 (the actual
report) is assigned to. This prevents your control listing from being intermixed with your
report output.

The EXEC Statement's SIZE Parm –– VSE

Report Writer makes extensive use of the GETVIS portion of its partition. Therefore, you
should provide a larger than normal GETVIS area by using the SIZE parm in your EXEC

statement.

Report Writer uses the GETVIS portion of the partition for these things:

� its own control blocks, used to process your request

� VSAM’s control blocks

� any User Exits (written by your shop to perform custom processing) are also
loaded into GETVIS storage.

The program area of the partition is used for the following:

� the Report Writer phase itself (about 250K)

� the Librarian program (if you will be using Report Writer's copy library feature)

� the Sort program (if you request that your report or output file be sorted)

The Librarian and Sort programs are used at different times, so they can use the same area
in memory. Generally, reserving 300K for the Sort and/or Librarian programs is sufficient.

Therefore, we recommend using the following EXEC statement in your JCL:

���(;(&�63(&7:75�6,=(�63(&7:75����.�

Of course, special considerations may cause you to want to experiment with the SIZE parm
in your applications.

Chapter 7. Operating System Considerations 381

Specif ying Sort Work Files –– VSE

Most Report Writer jobs will involve an internal sort. This is required in order to put your
report or output file into the order specified by the SORT control statement. Report Writer
calls your shop's standard sort program to perform the sort. By default, the sort program is
told to perform the sort entirely in memory. For large reports or output files, it may not be
possible to perform the sort in memory–– external sort work files will be needed.

In that case, you should do two things:

1) provide one or more SORTWKn DLBL/EXTENT statements in your JCL. For
example, you could add JCL statements similar to the following in order to
provide the sort program with 2 work files:

���'/%/���6257:.�
���(;7(17�6<6����������������
���'/%/���6257:.�
���(;7(17�6<6����������������

2) use the SORTWORKNUM option to tell Report Writer how many sort work files
are available for the sort program to use. For example if you added the two
DLBL/EXTENT statements above, you would specify:

237,216��6257:25.180���

Completion Codes –– VSE

Report Writer exits back to the operating system with one of the following completion codes:

COMPLETION
 CODE MEANING

0 No errors or warning messages issued. Report Writer produced its output

normally. (Some informatory messages may have been printed.)

4 Only warning messages were issued. Report Writer produced its output as
well as it could.

12 Error messages were issued. No output (or only a partial output) was
produced.

16 Security error. Report Writer has expired or some other error was detected
in the authorization codes. No output was produced.

382 Report Writer User’s Guide

(This page left blank intentionally.)

Chapter 8. General Syntax Rules 383

Part 2.
Reference Manual

Chapter 8. General S yntax Rules

Chapter Table of Contents

Chapter 8. General S yntax Rules . 383

Control Statements. 384
What Is a Control Statement?. 384
How to Write Control Statements. 384
How to Continue a Control Statement Onto Multiple Lines. 385
The Order of Control Statements. 386
How to Put Comments in Your Control Statements. 387
How to Put Page Breaks in the Control Listing . 387

Names of Files, Fields, and Records. 388
Rules for Assigning Names. 388
How to Make Field Names Unique. 389

How to Write Literals . 389
The Five Types of Data. 389
Character Literals. 390
Numeric Literals . 391
Date Literals . 391
Time Literals . 392
Bit Literals . 392
When Do You Need Quotes Around a Number?. 392

PICTURE Display Formats. 393
Examples of PICTUREs . 394
How PICTUREs Work. 395
Time PICTUREs . 398

Conditional Expressions. 399

Computational Expressions. 410
Operands in Computational Expressions. 411
Operators in Computational Expressions. 412
Order of Operations. 413
Examples of Computational Expressions. 413

384 Report Writer Reference Manual

Chapter 8. General S yntax Rules

This chapter describes the general syntax rules that apply to all control statements. The
following topics are covered:

� the overall format of control statements

� how to continue a long control statement onto multiple lines

� how to include comments among the control statements

� how to force a page break in the control statement listing

� the rules governing names used for files, fields, and records

� how to write literal values (for character, numeric, date and time data)

� the rules governing the PICTURE display format

� the rules for writing conditional expressions

� the rules for writing computational expressions

Control Statements

What Is a Control Statement?

Control statements are the means by which you describe a desired report or PC file to Report
Writer. Each control statement describes some aspect of the desired report or PC file. You
can request a report with as few as two control statements. Or, you might use dozens of
statements to request a very complicated report. A PC file can be requested with as few as
three control statements.

How to Write Control Statements

You will probably type your control statements into a dataset using an editor. Each line in
your dataset will be 80 columns long. Each dataset line does not necessarily correspond to
one control statement. A single control statement may be typed onto multiple lines.

As mentioned, the lines in your dataset will each be 80 columns long. However, Report
Writer only looks at the first 72 columns of each line. (This is because some editors store
information of their own in the last 8 columns of each line.) Be sure not to type any part of
a control statement past column 72, because Report Writer will ignore that part.

Every control statement begins with a statement name. The statement name must begin in
the very first column of a line, and must be immediately followed by a colon. Here are
examples of how several common control statements begin:

,1387�
7,7/(�
&2/8016�

Control Statements

Chapter 8. General Syntax Rules 385

What follows the statement name depends on the particular statement. The complete syntax
for each control statement is given in Chapter 9, "Control Statement Syntax."

After the statement name, the rest of each control statement is "free format." That means that
you are not required to put the field names or keywords in any specific column–– you can
type them wherever you like in the line (up to column 72.) You may use as many blanks
around the words in your statement as you like, to make the statement easier to read. You
may also use commas to separate words if you like. In general, Report Writer treats commas
like blanks. The following four control statements are all equivalent, even though they are
spaced differently:

&2/8016��/$67²1$0(�),567²1$0(�727$/²6$/(6

&2/8016��/$67²1$0(��),567²1$0(��727$/²6$/(6

&2/8016����������/$67²1$0(�������),567²1$0(�727$/²6$/(6

&2/8016��/$67²1$0(
���������),567²1$0(���727$/²6$/(6

Notice that the last example above used two lines for the COLUMNS statement. You may use
as many lines as you want for a single control statement.

How to Continue a Control Statement Onto
Multiple Lines

Sometimes a control statement will contain so much information that it will have to be split
onto multiple lines. Other times, you may want to spread a control statement onto multiple
lines just to make it easier to read (and perhaps easier to modify later.)

The only rule about "continuation lines" is that they must begin with a blank in the first
column. That is how Report Writer can tell whether a line is a continuation of the preceding
statement, or the beginning of a new statement. Lines with a non–blank in column 1 are new
statements. Lines with a blank in column 1 are continuations of the preceding statement.

Where should you split a statement onto a separate line? Generally, you can end a line
anywhere that a space is allowed in the statement, and then continue on the next line. This
means that you cannot split a statement in the middle of a field name or a keyword. Split a
statement between such words, where spaces would be allowed.

You may, however, split a statement in the middle of a character literal. This is necessary,
for instance, if you have a very long literal for a TITLE statement. To continue a character
literal onto a new line, simply type the literal right up through column 72 of the first line, and
then resume typing in column 2 of the next line. (Remember that column 1 of the second line
must be left blank, since it is a continuation line.) If a third line is required, do the same
thing: type through column 72 of the second line and resume in column 2 of the third line, and
so on.

Control Statements

386 Report Writer Reference Manual

Here is an example of a TITLE statement that has a long literal text split across two lines.
(The scale shows the column numbers of the lines).

��

7,7/(��
/,67�2)�&86720(56�)25�7+(�1(:��$'9$1&('��0,1,$785,=('��62/,'�67$
�7(��=(52�:$,7�67$7(�3$3(5�&/,3

The Order of Control Statements

There is no rigid order required for the control statements. The general rule is that any file
name or field name referred to in a control statement must already have been defined (in a
preceding control statement.) For example, a COLUMNS statement that names a computed
field cannot appear before the COMPUTE statement that defines that field.

Although there is no requirement as to specific control statement order, the following
suggested order is a logical way to organize most requests:

1. Start with any OPTIONS statements needed. Some options must appear before
any other control statements, so it's a good idea to group all OPTIONS statements
together at the beginning of your request.

2. Put the INPUT statement next. Report Writer must know the input file name
early, so that it will know which field names to allow in subsequent statements.

3. If your request will use READ statements, they should appear next. Again, this
lets Report Writer know what additional field names are available for use in
subsequent statements. If your READ statement uses a computed field as it key,
place the necessary COMPUTE statement(s) just ahead of the READ statement.

4. Next comes any COMPUTE statements needed to define additional fields you will
be using in your request.

5. The TITLE, COLUMNS, SORT, and FOOTNOTE statements may now follow in any
order. BREAK statements, if used, must follow the SORT statement.

The following sample request follows the above guidelines:

237,216��6800$5<
,1387����6$/(6²),/(
&20387(��63(&,$/².(<� �������68%675�(03/²180�����
5($'�����(03/²),/(��5($'.(<�63(&,$/².(<�
&20387(��',6&2817� �$02817������
7,7/(����
6$/(6�5(3257

&2/8016��6$/(6²'$7(��&86720(5��$02817��',6&2817��/$67²1$0(
6257�����&86720(5
%5($.����&86720(5�727$/�
&86720(5�727$/
��63$&(�3$*(�

Control Statements

Chapter 8. General Syntax Rules 387

How to Put Comments in Your Control
Statements

Often it is helpful to include comments among your control statements. Comments are
ignored by Report Writer but provide good documentation to other people looking at your
control statements. There are two ways to include comments in your control statements.

� use an entire comment line, by putting an asterisk (*) in column 1 of the line

� or, embed comments in other control statements, by surrounding your comment
with the symbols /* and */

Any line that begins with an asterisk (*) in column 1 is considered a comment line. The entire
line will be ignored by Report Writer. Comment lines may appear anywhere among the
control statements.

Here is an example of how to use comment lines:

��
������7+,6�5(3257�352'8&(6�$1�(03/2<((�',5(&725<������
��

,1387��(03/²),/(
&2/8016��/$67²1$0(��),567²1$0(��727$/²6$/(6

You may also embed comments within control statements. Use a slash and asterisk pair (/*)
to indicate the beginning of your comment, and use an asterisk and slash pair (*/) to indicate
the end of your comment. Everything between these symbols will be ignored by Report
Writer. You are allowed to begin and end your comment on different lines.

Here are some examples of imbedded comments:

,1387����(03/²),/(����7+,6�,6�7+(�(03/2<((�0$67(5�),/(��
&2/8016��/$67²1$0(��),567²1$0(����/$67�<($56�6$/(6����727$/²6$/(6
6257�����727$/²6$/(6�'(6&���������6257�/$5*(67�6$/(�),567���
���������/$67²1$0(����������������7+(1�6257�%<�/$67�1$0(����

Warning: do not begin or end an imbedded comment in a comment line (one
beginning with an asterisk in column 1.) Comment lines are completely ignored,
including any /* or */ symbols within them.

Also, do not use columns 1 and 2 of any line for the /* or the */ symbols. Column
1 is reserved for statement names and asterisks only.

How to Put Pa ge Breaks in the Control
Listin g

There is one special comment line that you can use to control the paging of the control listing
report. A comment line beginning with the word "*PAGE" will cause the control listing to skip
to a new page. This is useful when you are listing many control statements and would like
to separate them into logical groups. Here is an example of using the "*PAGE" comment line:

&23<�����0675'()��/,67�<(6�
3$*(
,1387����0$67(5²),/(
&2/8016��1$0(��'$7(��$''5(66

Control Statements

388 Report Writer Reference Manual

In the control listing, the INPUT and COLUMNS statements would appear on a new page,
separate from the statements copied by the COPY statement.

Names of Files, Fields, and Records

Rules for Assi gnin g Names

You may make up your own names for the files, fields, and records you will be working with.
(These names are assigned in the FILE, FIELD, COMPUTE, INPUT, and READ statements.) The
only requirements for the names you assign are:

� all characters in the name must be one of the following

� an alphabetic character

� a numeric character

� a dash (–)

� an underscore character (_)

� an ampersand (@)

� a dollar sign ($)

� a pound sign (#)

� the first character of the name may not be a numeric character or a dash (–)

� the total length of the name must fit on a single line (about 70 characters.)
Names may not be split across lines.

Note: it is recommended that you do not name your fields beginning with the pound
sign (#). This is to avoid confusion with Report Writer's built–in fields and
functions, which all begin with a pound sign. For example, Report Writer's built–in
field that contains the current system date is named #TODAY.

Some examples of valid names are:

(03/²180
+,5(²'$7(
;
35,0$5<²68%6&5,%(56²62&,$/²6(&85,7<²180%(5
6$/$5<
$�����²�����
(03/2<((B1$0(
68%6&5,37,21�

Names of Files, Fields, and Records

Chapter 8. General Syntax Rules 389

How to Make Field Names Unique

When you are producing reports that use multiple files as input, it is possible that a field with
the same name may exist in more than one input file. For example, you may be using both
the EMPL–FILE and the SALES–FILE as inputs to a report. There happens to be a field named
EMPL–NUM in both of these files.

When this situation occurs, you can indicate which of the two fields you mean by using a
record name to "qualify" the field name. (By default, a file's record name is the same as the
file name.) A qualified name consists of a record name, followed by a period, followed by
a field name. For example, to list the EMPL–NUM field from the EMPL–FILE, you would use this
statement:

&2/8016��(03/²),/(�(03/²180

And, to list to the EMPL–NUM field from the SALES–FILE, you would use this statement:

&2/8016��6$/(6²),/(�(03/²180

If you just used EMPL–NUM by itself in the COLUMNS statements above, you would get an error
message indicating that the field name was not unique.

Record names are also discussed under "How to Name the Input File Records" on page 232.

Note: we mentioned earlier that a field name may not be split across multiple lines.
If a field name is qualified, the prefix, the period, and the field name itself must all
fit on a single line. For this reason, it is better not to make your field names too long.
Thirty to forty characters long is probably a good maximum length for field names.

How to Write Literals

A "literal" is a constant value. In other words, its value does not depend on the contents of
any input record. Literals are used in many of Report Writer's control statements.

There are five types of literals, corresponding to the five types of data recognized by Report
Writer. Before going into the syntax of literals, let's review the five types of data.

The Five T ypes of Data

All data processed by Report Writer falls into one of five general data types. This applies to
data contained in fields as well as to literal values. The five types of data are:

� character
� numeric
� date
� time
� bit

How to Write Literals

390 Report Writer Reference Manual

Report Writer knows what kind of data exists in a particular field from the TYPE parm
specified in its FIELD statement. Report Writer knows what kind of data a literal value
contains from its format (discussed below). It is important to know an item's data type for
the following reasons:

� in a conditional expression, you may only compare two items if they are of the
same type.

� in a computational expression, all operands must generally be of the same type.
Also, the operations allowed will depend on the data type of the operands.

� in print expressions, the display format parms used must be appropriate for the
data type of the field involved.

Character Literals

Character literals are always enclosed in either single quotation marks (apostrophes) or
double quotation marks (' or "). You can use whichever character you like. Whichever of
these characters you choose, be sure to begin and end the literal with the same character. If
you need to include that same character (the single or double quotation mark) within the
literal, you may do so by entering two of the characters together. Character literals may be
up to 256 characters long. (See page 385 for instructions on writing literals that don't fit on
a single line.) Here are some examples of character literals used in TITLE statements:

7,7/(���
(1'�2)�<($5�5(3257

7,7/(����/$67�48$57(5
6�($51,1*6�
7,7/(���
0$1$*(5

6�67$786�5(3257

Another way to specify character literals is to use their hexadecimal representation. This is
useful when you wish to enter a special character which has no associated key on the
keyboard, such as certain graphics characters, or the LOW–VALUE and HIGH–VALUE literals
used in Cobol. A hexadecimal literal begins with an "X", immediately followed by the
hexadecimal value enclosed in quotation marks. (Again, you can use either single or double
quotation marks.) Remember that only the digits 0 through 9, and the letters A though F are
allowed in hexadecimal literals. Here are some examples of hexadecimal literals used in
various control statements:

237,216����&2/6(3�;
��
�
&20387(����/2:²9$/8(6� �;
��������

7,7/(������;�����&��
,1&/8'(,)��(03/²180� �;
))))))

Since each byte contains 2 hex digits, your hexadecimal literals should normally contain an
even number of hex digits. Report Writer pads hexadecimal literals that do not contain an
even number of digits by adding a trailing hex "�".

How to Write Literals

Chapter 8. General Syntax Rules 391

Numeric Literals

Numeric literals should not be enclosed in quotation marks. A numeric literal may contain
only the numeric digits 0 though 9, a decimal point, and a sign character (+ or –). If a sign
character is used, it must be the first character in the literal. Commas are not allowed in
numeric literals. A numeric literal may contain a maximum of 31 digits. Here are some
examples of numeric literals used in various control statements:

&20387(����,17(5(67� ������
&20387(����)$&725��� ��²�
,1&/8'(,)��$9(5$*(��!��������
,1&/8'(,)��727$/²6$/(6���������

Date Literals

Date literals also should not be enclosed in quotation marks. Specify date literals in either
MM/DD/YYYY or MM/DD/YY format. Leading zeros in the month and day are optional. For the
year, you may use either all four digits, or just the last two digits. By default, date literals
with 2–digit years are assumed to be in the 20th century (1900–1999). However, you may
use the CENTURY option (page 497) to specify a cutover year which will allow you to use
YY–type dates for both the 20th and 21st centuries. Date literals must specify a date between
January 1, 1901 and December 31, 2099 (inclusive). Here are some examples of date literals
used in various control statements:

&20387(����67$57²'$7(�� ������������
&20387(����(1'²'$7(���� ��������
,1&/8'(,)��+,5(²'$7(�������������
,1&/8'(,)��+,5(²'$7(����������������
,1&/8'(,)��+,5(²'$7(��������������

Note: date literals must always be written using slashes (/) as the delimiter. The
DATEDELIM option, if used, applies only to how dates are formatted in the output--
it does not affect the way date literals are written.

Note: if you prefer, you can choose to write all date literals in DD/MM/YYYY (or
DD/MM/YY) format. Just place the DDMMYYLIT option (in an OPTIONS statement) at
the beginning of your control statements.

For example:

237,216����''00<</,7
���
,1&/8'(,)��+,5(²'$7(������������
&20387(����67$57²'$7(� ���������

How to Write Literals

392 Report Writer Reference Manual

Time Literals

Time literals also should not be enclosed in quotation marks. Specify time literals in
HH:MM:SS format. A leading zero in the hour portion of the time is optional. Time literals
may also contain decimal parts of seconds–– HH:MM:SS.SSS. Time literals must specify a
time between 00:00:00 and 23:59:59. Here are some examples of time literals used in
various control statements:

&20387(����67$57²7,0(����� �����������
&20387(����(1'²'$7(������� �����������
,1&/8'(,)��6$/(6²7,0(�����! ������������$1'��� ���������
,1&/8'(,)��7,0(²21²3+21(����������������

Note: time literals must always be written using colons (:) as the delimiter. The
TIMEDELIM option, if used, applies only to how times are formatted in the output—
it does not affect the way time literals are written.

Bit Literals

There are no true bit literals in Report Writer. However, there are two built–in functions
which perform the same role. Literals are generally used in two ways:

� within a comparison, in a conditional expression

� as an operand in a computational expression

Within conditional expressions, no comparisons are allowed with bit fields. A bit field name
is a condition all by itself. Therefore, no bit literal is required for comparisons. (For more
information on this, see "Conditional Expressions" on page 399.)

Within the COMPUTE statement, you may use the built–in functions #ON and #OFF as the
equivalent of bit literals. Since these are functions (which simply return the constant values
ON or OFF), they are not technically literals. Here is a sample control statement that uses
these built–in functions:

&20387(��1(:²(03/2<((� ��:+(1�+,5(²'$7(�!������������$66,*1��21�
�������������������������(/6(������������������������$66,*1��2))�

When Do You Need Quotes Around a
Number?

In most cases, matching data types comes naturally. Most people wouldn't try to compare a
date field (like HIRE–DATE) with a character field (like LAST–NAME).

But, there is one area where mistakes in mixing data types are commonly made. That is when
it comes to distinguishing between character fields that contain numeric characters, and true
numeric fields. For example, consider the EMPL–NUM field in the EMPL–FILE (described in
Appendix F, "Sample File Definitions".) Since this field contains an employee number, it is
easy to think of it as a numeric field. But in reality it is defined as a character field. (It just
happens to contain only "numeric" characters.) This means that when a comparison is made

How to Write Literals

Chapter 8. General Syntax Rules 393

to it, a character literal must be used–– not a numeric literal. For example, the following
statement is valid:

,1&/8'(,)��(03/²180� �
���

The above statement would select all records for employee number 037. The character
literal '037' (in quotes) is compatible with the character field EMPL–NUM. However, consider
the following statement:

,1&/8'(��(03/²180� ����

The above statement is in error! It is attempting to compare a character field (EMPL–NUM)
with the numeric literal 037 (without quotes).

A similar error might be made when trying to display EMPL–NUM in the report. Consider the
following statement:

&2/8016��(03/²180�3,&
==�
�

The above statement is also invalid! It attempts to use a numeric display format (a
PICTURE) to format a character field.

Of course, since the EMPL–NUM field in the records always contains a numeric character, we
could have defined EMPL–NUM as a numeric field (by using TYPE(NUM) in the FIELD

statement). Then, we could have used numeric literals and numeric display formats with the
field. Had we defined EMPL–NUM as a numeric field, we would also want to specify the
NOACCUM parm, to prevent the EMPL–NUM column from being totalled in reports.

So, when do you need quotation marks around numbers? Whenever the number is being used
as a character literal, rather than a numeric literal.

Note: to determine if a particular field has been defined as a character or a numeric
field, add the SHOWFLDS(YES) parm to your INPUT (or READ) statement. This parm
causes a listing of all of the fields defined for the file to appear in your control
statement listing. The data type of each field (character or numeric) also appears in
this listing.

Note: for more discussion on character versus numeric fields, see the section
beginning on page 282.

PICTURE Displa y Formats

A PICTURE is a special display format that describes how a numeric value should be displayed
in a report. The PICTURE display format consists of the word PICTURE (or an abbreviation,
such as PIC) immediately followed by text enclosed in either apostrophes or quotation marks.
(Do not put a space before the apostrophe or quotation mark.) For example:

3,&785(
WH[W

3,&
WH[W

PICTURE Displa y Formats

394 Report Writer Reference Manual

The characters making up the text give a "picture" of how the formatted result should look.
The PICTURE specifies such thing as:

� the size of the formatted output (that is, how many characters it will occupy in
a print line)

� whether leading zeros should be displayed or suppressed

� whether commas (or some other character) will be used to separate the
thousands, the millions, etc.

� whether a floating dollar sign should appear in the result

� where the minus sign should appear, for negative numbers

� where (and whether) a plus sign should be displayed for positive numbers

� how many decimal digits should print

� any literal characters that should be included in the formatted result

Examples of PICTUREs

If you haven't worked with PICTUREs before, the best way to learn about them is probably to
look at some examples. The following examples show the format produced by various
PICTUREs. Pick a result that is similar to what you want, and use that PICTURE as a guide.
Adjust the number of digit symbols in your PICTURE according to the size of the numbers that
you will be printing.

In the table below, a sample positive value (1,234.56) and a sample negative value
(-98,765.4) are used to demonstrate each PICTURE.

 FORMATTED FORMATTED
 PICTURE POSITIVE VALUE NEGATIVE VALUE

3,&
���������
 ��������� �6
3,&
��������
 ��������� �6
3,&
���������
 ��������� 6
3,&
������9��
 �������� 6
3,&
=====����
 ������� ²��������
3,&
=====�9��
 ������ ²�������
3,&
===�==����
 �������� ²���������
3,&
²²²�²²����
 �������� ²���������
3,&
����������
 ��������� ²���������
3,&
===�==����²
 �������� ���������²
3,&
===�==�����
 ��������� ���������²
3,&
�������������
 ��������� ���²����������
3,&
===�==�9���
 �������� ²���������
3,&
===�==�9���
 �������� ²���������
3,&
===�==�9����'0
 ���������'0 ²����������'0
3,&
=====�����
 �������� ²���������

Note: the first several examples above resulted in size error indicators (6) for
the negative value. That is because the PICTURE did not have a place where the
minus sign could be displayed. Since leading zero suppression was not used, there
were no leading blanks in which to place a minus sign. If your numbers will include
negative values, do not use all 9's in your PICTURE. Add at least one leading Z or –
to the PICTURE.

PICTURE Displa y Formats

Chapter 8. General Syntax Rules 395

Below are two additional examples that illustrate special purpose PICTUREs. Notice that
when literal text is used heavily, you should normally use "9" as your digit symbol. If you
want to display a literal character before the first numeric digit (as in the telephone number
example below), you must use "9" for all of your digit symbols.

UNFORMATTED FORMATTED
PICTURE VALUE VALUE

3,&
���������²����
 ������������� ���������²����
3,&
���²��²����
 ���������������� ���²��²����

PICTUREs can be used anywhere that a numeric display format is allowed. Following are a
few examples of how PICTUREs can be used in various control statements:

&2/8016��(03/²1$0(��727$/²6$/(6�3,&
===�===�==����²
�
7,7/(����
7(/(3+21(�',5(&725<�²²
��7(/(3+21(�3,&
���������²����
�
%5($.����5(*,21��)227,1*�
727$/�6$/(6�)25�5(*,21�

�������������������������727$/²6$/(6�727$/�3,&
�����������
��

How PICTUREs Work

This section explains in more detail exactly how PICTUREs are processed.

When a numeric value is being formatted according to a PICTURE, the following process takes
place. The PICTURE is evaluated one character at a time, from left to right. Each character
in the PICTURE is either:

� a symbol that represents one digit of the numeric value

� a literal character that, under certain conditions, will be moved into the result

The character 9 in a PICTURE always represents a digit from the numeric value. It will be
replaced by the appropriate digit of the number, even if that digit is a leading zero.

If you want to suppress leading zeros in your result, use one of the following characters to
represent leading digits in your PICTURE: Z, $, + or – . When one of these characters appears
in the PICTURE before the first 9, that character becomes the leading zero suppression
symbol for the PICTURE. Each occurrence of that symbol will be replaced by the appropriate
digit of the number as long as that digit is not a leading zero. If the digit is a leading zero,
then a blank will appear in that position of the result.

Use the $ character for the leading digits in your PICTURE if you want a floating dollar sign
to be placed just before the first significant digit in the result.

Use the + character for the leading digits in your PICTURE if you want a floating sign to be
placed just before the first significant digit in the result. A plus sign is used for positive
numbers; a minus sign is used for negative numbers; no sign is used if the number is zero.

Use the – character for the leading digits in your PICTURE if you want a floating minus sign
to be placed just before the first significant digit in the result (for negative values.) Positive
and zero values will have no sign character.

PICTURE Displa y Formats

396 Report Writer Reference Manual

When the letter Z is used for the leading digits in your PICTURE, and no trailing sign symbol
appears in the PICTURE, a floating minus sign is placed before the first significant digit in the
result (for negative values.)

Use a + character as the last byte in your PICTURE if you want a trailing sign (either plus or
minus) to be placed in that position of the result.

Use a – character as the last byte in your PICTURE if you only want a trailing minus sign to
be placed in that position of the result (for negative values.)

The letter V has a special meaning within a PICTURE. It shows where an "understood decimal
point" is located. A PICTURE may contain only one V symbol. The V symbol does not take
up a byte in the formatted output. (Thus, the result of 3,&
��9�' would be just 3 bytes long,
not 4.) If a V is present in the PICTURE, all decimal points (.) in the PICTURE are treated as
literals and are not used in determining where the decimal digits appear in the result.

The decimal point (.) is treated specially within a PICTURE. If the PICTURE contains a V
symbol, all decimal points within the PICTURE are just treated as literals. (Thus, the two
decimal points in 3,&
===�===�==�9�
 are treated as regular literals.) If no V symbol appears
within the PICTURE, a single decimal point is allowed within the PICTURE. It shows where an
"explicit decimal point" is to be located in the result.

All other characters are treated as literals. Literals are moved into the result just as they
appear in the PICTURE, with one exception. Any literal that appears before the last zero
suppression symbol in a PICTURE is blanked out if zero suppression is still in effect at that
point. Such literals are only moved to the result if one or more non–zero digits have already
been moved to the result. (Thus, the comma literals in 3,&
===�===�==����
 are blanked out
until after the first digit appears in the result.)

Any literal that appears after all zero suppression symbols in a PICTURE will always be
moved to the result. This also includes all literals in PICTUREs where no zero suppression
symbols are used (such as 3,&
���������²����'). This also means that all trailing literals are
always moved to the result. Trailing literals appear after all of the numeric positions in a
PICTURE. They are usually currency indicators (3,&
==����� 86'
) or percentage signs
(3,&
==����
). (As described earlier, trailing plus or minus signs also have special meanings.)

The following table summarizes the meaning of each character that can appear in a PICTURE.

Note: a PICTURE may contain symbols representing no more than 31 digits.
However, the entire PICTURE text (including literal characters) can be larger than 31
characters.

PICTURE Displa y Formats

Chapter 8. General Syntax Rules 397

MEANING OF SYMBOLS WITHIN A PICTURE

SYMBOL MEANING

� Replace this character with a digit from the numeric value, even if that
digit is a leading zero.

= (When used as the leading zero suppression symbol.) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a minus sign for negative numbers
(unless the PICTURE contains an explicit trailing plus or minus sign.)

� (When used as the leading zero suppression symbol.) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a dollar sign. For negative
numbers, a minus sign will appear just before the floating dollar sign
(unless the PICTURE contains an explicit trailing plus or minus sign.)

² (When used as the leading zero suppression symbol.) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain a minus sign for negative
numbers.

� (When used as the leading zero suppression symbol.) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before the
first non–suppressed digit will contain: a plus sign for positive numbers;
a minus sign for negative numbers; a blank if the number is zero.

– (Minus sign, as the last character in a picture.) Specifies that a minus
sign should appear in that position if the number is negative. Otherwise,
a blank will appear in that position.

� (Plus sign, as the last character in a picture.) Specifies that: a plus
sign should appear in that position if the number is positive; a minus sign
should appear in that position if the number is negative; a blank should
appear in that position if the number is zero.

(continued on next page)

PICTURE Displa y Formats

398 Report Writer Reference Manual

MEANING OF SYMBOLS WITHIN A PICTURE (CONTINUED)

SYMBOL MEANING

9 (Understood decimal point.) This character indicates where the
understood decimal point exists within a picture. However, no actual
decimal point will appear there. This PICTURE symbol does not affect the
size of the formatted result. When this symbol is used, any decimal
points (.) in the PICTURE are treated as literals.

� (When used as an explicit decimal point.) When a PICTURE does not
contain a V, this becomes the explicit decimal point. It is displayed as is,
unless "leading zero suppression" is still in effect. In that case, a blank
will appear in its place.

Any characters other than those listed above are considered literal characters
within a picture. These characters will appear in the formatted result just as they
are, unless "leading zero suppression" is still in effect. In that case, blanks will
appear in their place. Trailing literals are always formatted into the result.

Time PICTUREs

There is also a picture–type display format available for time fields. It is called a TPICTURE

("time picture".) It can also be abbreviated as TPIC and TP. TPICTUREs work similarly to the
regular numeric PICTURE. They are a handy way to indicate the number of digits to reserve
for the hours portion of very large time values, as well as the number of decimal digits to
display. For example, consider the following statement:

&2/8016��7,0(²21²3+21(�73,&
===���������
�

The above statement uses a TPIC to specify how the TIME–ON–PHONE field should be
displayed. It reserves 4 digits for the hours portion of the time value, and specifies leading
zero suppression up until the last hour digit. The TPIC also specifies that 1 decimal digit is
wanted in the formatted result. (The main reason for wanting to display more than 2 hour
digits is when time intervals are being added up and the Grand Total value may be large.)

When formatting times using TPICs, Report Writer treats the time value as a numeric value
of the form ...HHHHMMSS.SSSS... That is, the numeric value has 2 digits of seconds, 2 digits
of minutes, and an indefinite number of digits for hours. It also contains an indefinite number
of decimal digits. The number of digit symbols in the TPIC (characters Z and 9) will
determine how many hours digits and decimal digits (if any) are to be displayed.

Chapter 8. General Syntax Rules 399

Conditional Expressions

This section explains:

� how to write conditional expressions

Conditional expressions specify one or more conditions. Upon evaluation, a conditional
expression will either be true or false. Conditional expressions are used in:

� the INCLUDEIF statement (to specify which records to include in the report)

� the WHEN parm of the COMPUTE statements (to specify when to assign a
particular value to a field)

Topics covered in the following sections are:

� how to specify relation type conditions

� how to specify bit field type conditions

� how to specify multiple conditions, by using the keywords AND and OR

� how to shorten long conditional expressions

� how to negate conditions, using the NOT keyword

Note: most of the examples used in this section involve fields from the sample
EMPL-FILE, described in Appendix F, "Sample File Definitions."

In general, a conditional expressions consists of any number of conditions, separated by the
keywords AND and OR. You may also use parentheses around groups of conditions to
indicate the order in which they should be evaluated. Parentheses may be "nested" to any
level. Also, you may precede any condition, or parenthesized group of conditions, with the
word keyword NOT, to "negate" the result.

An individual condition can take one of the following two forms:

� a relation condition

� a bit field condition

Conditional Expressions

400 Report Writer Reference Manual

CONDITIONAL EXPRESSION SYNTAX

FRQGLWLRQ��>�$1'�25��FRQGLWLRQ�@��>�$1'�25��FRQGLWLRQ�@�����

Notes:
• in addition, any number of paired parentheses may be used to specify the

order of evaluation.
• any condition, or group of conditions in parentheses, may be preceded by

the word 127

Standard Symbol
Spelling Allowed
$1' � 	
25
127 ¤

How to Specif y a Relation Condition

A relation condition compares the value of two operands, to see if a certain relationship exists
between them. Here is an example of a relation condition:

727$/²6$/(6�!�����

The above condition is true if the value of the TOTAL–SALES field is greater than 9000.

A relation condition consists of two operands separated by a relation operator:

RSHUDQG���RSHUDWRU��RSHUDQG�

Each operand can be either a field or a literal value. The operands can be any of the
following types of data (but both operands must be of the same type):

� character
� numeric
� date
� time

Note: Bit operands are not allowed in relation conditions. A Bit operand is a
condition all by itself (see page 405.)

The relation operator may be any of the following:

RELATION
OPERATOR MEANING

= "is equal to"
> "is greater than"
< "is less than"

Conditional Expressions

Chapter 8. General Syntax Rules 401

>= "is greater than or equal to"
<= "is less than or equal to"
¬= or <> "is not equal to"
¬< "is not less than"
¬> "is not greater than"
: "contains" (for character operands only)
¬: "does not contain" (for character operands only)

A relation condition is evaluated by comparing the values of the two operands. If the
operands have the relation specified by the relation operator, then the condition is true. If the
operands do not have the relation specified by the relation operator, then the condition is
false.

Here is another example of a relation condition:

6$/(6²475���!��6$/(6²475�

This condition is evaluated by comparing the contents of the SALES–QTR1 field with the
contents of the SALES–QTR1 field. If SALES–QTR1 "is greater than" SALES–QTR2 the condition
is true. Otherwise, the condition is false. For example, if the SALES–QTR1 field contained
4000, and the SALES–QTR2 field contained 3000, then the condition above would be true,
because 4000 is greater than 3000. However, if the SALES–QTR1 field contained 4000 and
the SALES–QTR2 field contained 6000, then the condition would be false, because 4000 is not
greater than 6000.

Here is an INCLUDEIF statement that uses the condition shown above:

,1&/8'(,)��6$/(6²475���!��6$/(6²475�

The above statement specifies that only records where the SALES–QTR1 field is greater than
the SALES–QTR2 field should be included in the report.

Remember that the operands being compared in a relation condition must be of the same
general type of data. That is, numeric operands may only be compared to other numeric
operands. Character operands may only be compared to other character operands. Date
operands may only be compared to other date operands. And time operands may only be
compared to other time operands. (For more information on this, see "Comparing Fields of
Different Data Types" on page 403.)

Here is an example of a relation condition that involves date operands:

+,5(²'$7(�� ���������

The above statement contains a relation condition involving a date field (HIRE–DATE) and a
date literal (1/1/96). The condition is true if the HIRE–DATE field "is less than or equal to"
January 1, 1996. The condition is false if the HIRE–DATE field contains any date after January
1, 1996.

Here is an example of a relation condition that involves time operands:

6$/(6²7,0(�!���������

The above statement contains a relation condition involving a time field (SALES–TIME) and
a time literal (17:15:48). The condition is true if the SALES–TIME field "is greater than"

Conditional Expressions

402 Report Writer Reference Manual

17:15:48 (5:15:48 PM.) The condition is false if the SALES–TIME field contains a time less
than or equal to 17:58:48.

Here is an example of a relation condition involving character data:

/$67²1$0(� �
60,7+

The above condition is true if the LAST–NAME field is equal to "60,7+".

The list of relation operators on page 400 includes two special operators that can only be used
with character type operands. These are the contains (:) and the does not contain (¬:)
operators. Operand1 is said to "contain" operand2 if all of the characters in operand2 appear
together somewhere within operand1. Here is an example of a condition that uses the
"contains" operator:

&86720(5���
,1&

The above condition is true if, somewhere within the contents of the CUSTOMER field, the
letters ",1&" appear together. For example, the condition would be true if the CUSTOMER field
in a record contained any of the following values:

� $&0(�,1&�
� $%&�6725(6��,1&25325$7('�
� %8,/'(56�,1&��2)�$0(5,&$�

The same condition would not be true when the CUSTOMER field contained any of the
following values:

� ;<=�&25325$7,21�
� -2+1�%52:1�6725(6��/7'��
� -21(6�	�$662&,$7(6�

Note: when using the "contains" and "not contains" relation operators, operand1
should be at least as large as operand2. Otherwise, operand2 could not possibly be
contained within operand1.

Comparin g Character Operands of Different
Lengths

Consider the following conditional expression:

/$67²1$0(� �
60,7+

In this example a 15–character field (LAST–NAME) is compared with a character literal that
is only 5 characters long ('SMITH'). When character operands of different lengths are
compared, Report Writer first adds enough trailing blanks to the shorter operand to make it
the same size as the larger operand. Then the two operands, now of equal length, can be
compared byte by byte. Thus, in the example above, Report Writer is actually comparing the
LAST–NAME field with a 15–character literal, as if the following had been written:

�/$67²1$0(� �
60,7+����������

(This addition of trailing blanks does not actually modify the value of either of the operands.
The blanks are only added to a temporary copy of the operand.)

Conditional Expressions

Chapter 8. General Syntax Rules 403

Comparin g Fields of Different Data T ypes

As mentioned, the operands being compared in a relation condition must be of the same
general type of data. That is, numeric operands may only be compared to other numeric
operands. Character operands may only be compared to other character operands. Date
operands may only be compared with other date operands. And time operands may only be
compared with other time operands.

However, this does not mean that the fields being compared must have been defined with the
identical TYPE parm in their FIELD statement. (The TYPE parm is discussed on page 469.) For
example, a PACKED field may be compared to a BINARY field, since both PACKED and BINARY

are numeric data types. And a MMDDYY type date field may be compared with a P–YYDDD

(packed Julian) date field, or with any other kind of date field. Report Writer automatically
handles any data type conversion that may be necessary.

Even if you find the need to compare operands of different general data types, you may still
be able to do that. This can be accomplished by converting one of the operands to a data
type compatible with the other operand. The following built–in functions are used to convert
an operand from one data type to another. (Built–in functions are described in Appendix D,
"Built-In Functions.")

BUILT–IN
FUNCTION PURPOSE

#MAKENUM Converts a character, date or time operand to a numeric value.
#MAKEDATE Converts a character or numeric operand to a date value.
#MAKETIME Converts a character or numeric operand to a time value.
#FORMAT Converts a date, time or numeric operand to a character value.

For example, even though EMPL–NUM is a character field, we can compare it to a numeric
literal by first converting it to a numeric value:

,1&/8'(,)� �0$.(180�(03/²180��!����

As another example, even though TIME–ON–PHONE is a time field, we can compare it to a
numeric literal by first converting it to a numeric value (representing the number of seconds
in the time value):

,1&/8'(,)� �0$.(180�7,0(²21²3+21(��!���

The above example converts TIME–ON–PHONE from a HH:MM:SS time value to a numeric value
equal to the number of seconds in the time value. It then compares this number of seconds
with the numeric literal 60.

Conditional Expressions

404 Report Writer Reference Manual

Conditions Involvin g Explicit Literals

Normally, when comparing a field with a literal you do not need to know exactly how that
field is stored in the input record. Report Writer automatically performs any conversion
necessary to make both the field and the literal compatible before comparing them.

As an example, assume that SALARY is a field stored in an input record as a 5–byte packed
number. Normally, we would just compare this field to a numeric literal, like this:

,1&/8'(,)��6$/$5<� ��������

When writing the above statement we did not need to know how SALARY was stored in the
record. We use a normal numeric literal and let Report Writer take care of the details
necessary in making the comparison. The above statement would work whether SALARY was
stored in packed, binary, display numeric or any other numeric format.

However, conditions that involve an explicit hexadecimal literal (one prefixed with an X)
are handled a little differently. In these cases no conversion is performed. The field's raw
data — just as it is found in the input record — is compared with the literal. This means that
when using explicit literals, you must know exactly how a field is stored in the record. You
must know how many bytes the field occupies, as well its exact data type.

Consider the following condition that compares SALARY to an explicit hexadecimal literal:

,1&/8'(,)��6$/$5<� �;
���������&

This statement is equivalent to the previous statement that used a normal numeric literal.
Since SALARY is stored in the input records as a 5–byte packed number, the explicit literal in
the above condition also has to be 5 bytes long (10 hexadecimal digits). And the literal also
has to be in valid packed format, with a "sign" in the second nibble of the last byte.

One common reason for writing conditions with explicit literals is to compare fields that may
have invalid data. For example, assume that the input file has some records in it with hex
zeros ("low values") in the SALARY field. We want to identify and list those records so that
they can be corrected. Since hex zeros is not a valid packed value, there is no way to test for
this condition using a normal numeric literal. Instead we have to compare the SALARY field
to an explicit hexadecimal literal, like this:

,1&/8'(,)��6$/$5<� �;
����������

As a similar example, assume that we know that some HIRE–DATE fields (in our sample
EMPL–FILE) contain spaces rather than a valid character YYMMDD date. The only way to test
for this is to use an explicit literal:

,1&/8'(,)��+,5(²'$7(� �;
������������

The above statement compares the 6–byte HIRE–DATE field to 6 spaces (hexadecimal 40).

Conditional Expressions

Chapter 8. General Syntax Rules 405

How to Specif y a Bit Field Condition

The relation condition (described beginning on page 400) is the most common type of
condition. The other type of condition is a bit field condition. A bit field condition consists
of nothing more than the name of a bit type field:

ILHOGQDPH

The condition is considered true if the bit field has a value of "on." The condition is false if
the bit field has a value of "off".

Here is an example of a bit field condition:

)8//²7,0(

The above condition is true when the FULL–TIME bit field is "on" (contains a binary 1). The
condition is false when the FULL–TIME field is "off" (contains a binary 0).

Here is an INCLUDEIF statement which uses the above bit field condition:

,1&/8'(,)��)8//²7,0(

The above statement specifies that only records whose FULL–TIME bit field is "on" should be
included in the report.

How to Specif y Multiple Conditions

All of the conditional expressions shown so far have contained only a single condition (either
a relation condition or a bit field condition.) Such expressions are called simple conditional
expressions.

Report Writer, however, allows you to have an unlimited number of conditions in a
conditional expression. A conditional expression containing more than one condition is
called a complex conditional expression. Complex conditional expressions consist of two or
more conditions separated with the words AND or OR. Parentheses may also be used around
groups of conditions to specify the order in which to evaluate the individual conditions.

The following sections explain how to write complex conditional expressions.

Conditional Expressions That Use AND

If all of the conditions in a complex expression are separated by the word AND, then the
expression is true only if all of the conditions are true.

For example, consider the following expression which has two conditions separated by the
word AND:

6$/(6²475��!�������$1'��+,5(²'$7(�����������

Conditional Expressions

406 Report Writer Reference Manual

The above conditional expression is true if both of the two conditions are true. That is, the
expression is true if the SALES–QTR1 value is greater than 3000, and the HIRE–DATE field is
less than January 1, 1997. The following table shows the result of the above conditional
expression with various values for the SALES–QTR1 and the HIRE–DATE fields:

SALES–QTR1 HIRE–DATE CONDITIONAL
 VALUE VALUE EXPRESSION IS:

���� ��������� 758(
���� ���������)$/6(
���� ���������)$/6(
���� ���������)$/6(

You may mix relation conditions and bit field conditions in the same conditional expression,
as in the following example:

6$/(6²475��!�������$1'��)8//²7,0(

For the above conditional expression to be true, the SALES–QTR1 field must be greater than
5000 (a relation condition), and the FULL–TIME bit field must be "on" (a bit field condition).

A conditional expression can have as many conditions as you like. The following example
has 3 conditions, all separated with the word AND:

/$67²1$0(� �
60,7+
��$1'��+,5(²'$7(�!�����������$1'��6$/(6²475��!������

The above condition would be true if the LAST–NAME field is equal to "60,7+" and the
HIRE-DATE field is greater than January 1, 1980 and the SALES–QTR1 field is greater than
10000.

Note: you may use the ampersand symbol (&) in place of the word AND in
conditional expressions. For example, the conditional expression shown above
could also be written like this:

/$67²1$0(� �
60,7+
��	��+,5(²'$7(�!�����������	��6$/(6²475��!������

Conditional Expressions That Use OR

If all of the conditions in a complex expression are separated by the word OR, then the
expression is true as long as at least one of the conditions is true.

Consider a conditional expression using the same two conditions as shown in an earlier
example, but separated this time with the word OR, instead of AND.

6$/(6²475��!�������25��+,5(²'$7(�����������

The conditional expression is now true if either the SALES–QTR1 field is greater than 3000,
or if the HIRE–DATE field is less than January 1, 1997. The following table shows the result
of the above conditional expression for various values of the SALES–QTR1 and HIRE–DATE

fields:

Conditional Expressions

Chapter 8. General Syntax Rules 407

SALES–QTR1 HIRE–DATE CONDITIONAL
 VALUE VALUE EXPRESSION IS:

���� ��������� 758(
���� ��������� 758(
���� ��������� 758(
���� ���������)$/6(

You may mix relation conditions and bit field conditions in the same conditional expression,
as in the following example:

6$/(6²475��!�������25��)8//²7,0(

For the above conditional expression to be true, either the SALES–QTR1 field must be greater
than 5000 (a relation condition), or the FULL–TIME bit field must be "on" (a bit field
condition).

A conditional expression can have as many conditions as you like. The following example
has three conditions, all separated with the word OR:

/$67²1$0(� �
60,7+
��25��/$67²1$0(� �
-21(6
��25��6$/(6²475��!������

The above condition would be true if the LAST–NAME field was equal to either "60,7+" or
"-21(6", or if the SALES–QTR1 field was greater than 10000.

Note: you may use the vertical bar () in place of the word OR in conditional
expressions. For example, the conditional expression shown above could also be
written like this:

/$67²1$0(� �
60,7+
����/$67²1$0(� �
-21(6
����6$/(6²475��!������

Conditional Expressions That Use Both
AND and OR

You may use both the word AND and the word OR in a single conditional expression. When
this is done, parentheses are normally used to indicate the order in which the conditions
should be evaluated. For example:

�/$67²1$0(� �
-21(6
��25��/$67²1$0(� �
60,7+
���$1'��6$/(6²475��!�����

In the above expression, parentheses are used around the two conditions that are separated
by the word OR. That indicates that these conditions should be evaluated first. If the
LAST-NAME is equal to either "-21(6" or "60,7+", then the parenthesized expression is true.
Otherwise it is false. For the entire conditional expression to be true, this parenthesized result
must be true, and the remaining condition (SALES–QTR1 > 5000) must be true. In other
words, the parentheses cause the entire expression to be true if: the LAST–NAME is either
"-21(6" or "60,7+", and the SALES–QTR1 value is greater than 5000.

Now, consider what would happen if the parentheses are used around the AND conditions, like
this:

/$67²1$0(� �
-21(6
��25���/$67²1$0(� �
60,7+
��$1'��6$/(6²475��!������

Conditional Expressions

408 Report Writer Reference Manual

Again, the conditions enclosed in parentheses are evaluated first. In this case, the
parenthesized expression is true only if LAST–NAME equals "60,7+" and SALES–QTR1 is greater
than 5000. The entire expression is then true, if either the LAST–NAME equals "-21(6", or if
this parenthesized result is true. In other words, the above expressions is true if: the
LAST–NAME equals "-21(6", or if both of the following are true: the LAST–NAME equals "60,7+"
and the SALES–QTR1 value is greater than 5000.

Note: if both the words AND and OR are used in an expression, and parentheses are
not used to specify evaluation order, the conditions connected by AND will be
evaluated before those connected by OR. However, it is always best to use
parentheses in such expressions, so that there is no question or confusion about the
order of evaluation.

How to Shorten Lon g Expressions

When one operand is being compared to more than one value in a conditional expression, you
may write that expression in a shorter form. For example, consider the following:

/$67²1$0(� �
-21(6
��25��/$67²1$0(� �
60,7+
��25��/$67²1$0(� �
%52:1

The expression above is true if the LAST–NAME field is equal to any of the three character
literals ('-21(6', '60,7+', or '%52:1'). Since all three relation conditions have the same first
operand, you are allowed to omit that operand after specifying it the first time. You could
specify the same conditional expression this way:

/$67²1$0(� �
-21(6
��25� ��
60,7+
��25� �
%52:1

Here are the rules for shortening expressions. You remember that the format of a relation
condition is:

RSHUDQG���RSHUDWRU��RSHUDQG�

Rule: when two or more consecutive conditions have the same operand1, you may
omit that operand after the first condition. Thus, whenever operand1 is not specified
in a condition, the most recently specified operand1 will be used.

The conditional expression shown earlier contains three conditions, each separated with the
word OR. Those three conditions are:

� /$67²1$0(� �
-21(6

� �
60,7+

� �
%52:1

The first condition is written out fully, containing two operands and a relation operator.

The second condition contains no operand1. It just has an operator and operand2. Therefore,
the most recently specified operand1 (LAST–NAME, from the previous condition) will be used
as operand1 in the second condition.

The same thing applies to the third condition, which also lacks an operand1.

Conditional Expressions

Chapter 8. General Syntax Rules 409

We can actually simplify the conditional expression even further. Since the second and third
conditions also use the same relation operator as the first condition (namely, "="), we can
omit that operator from those conditions as well:

/$67²1$0(� �
-21(6
��25��
60,7+
��25��
%52:1

Rule: when two or more consecutive conditions have the same operand1 and the
same relation operator, you may omit those items after the first condition. Thus,
whenever neither operand1 nor a relation operator is specified in a condition, the
most recently specified operand1 and the most recently specified relation operator
will be used.

Here is an example that combines the two forms of simplification:

6$/(6²475�� �������25��������25�������

The above conditional expression contains three relation conditions, separated with the word
OR. The three conditions are:

� 6$/(6²475�� �����

� ����

� �����

The first condition is written out fully, containing two operands and a relation operator. The
second condition does not contain an operand1 nor a relation operator, so SALES–QTR1 and
"=" are assumed (from the previous condition.) The third condition does not contain an
operand1, but does contain a relation operator ("<"). So only operand1 (SALES–QTR1) is
assumed. The above conditional expression is the same, then, as the following one:

6$/(6²475�� �������25��6$/(6²475�� �������25��6$/(6²475�������

Here is one more example of a shortened conditional expression:

/$67²1$0(�¤ �
60,7+
��$1'��
-21(6
��$1'��
%52:1

The above conditional expression is true if the LAST–NAME field is not equal to "60,7+" and
is not equal to "-21(6" and is not equal to "%52:1". In other words, the expression is true if the
LAST–NAME contains anything other than those three names. The above statement is
processed as if it were written like this:

/$67²1$0(�¤ ��60,7+���$1'��/$67²1$0(�¤ ��-21(6���$1'��/$67²1$0(�¤ ��%52:1�

How to Ne gate Conditions

This section explains:

� how to use the word NOT in conditional expressions

You may precede any condition with the word NOT to negate the result of its evaluation.

For example, consider the following relation condition:

6$/(6²475��!�����

Conditional Expressions

410 Report Writer Reference Manual

The above condition would be true if SALES–QTR1 contained 8000, since 8000 is greater than
2000. However, we could negate that condition like this:

127�6$/(6²475��!�����

Now, the conditional expression would be false when SALES–QTR1 contained 8000. That is
because the condition SALES–QTR1 > 2000 which is true, is negated by the preceding NOT.

You may also negate a bit field condition. For example:

127�)8//²7,0(

The above conditional expression is true when bit field condition is false, that is, when the
FULL–TIME bit field is "off".

You may also negate a group of conditions in parentheses, as in this example:

127��6$/(6²475��!������$1'�+,5(²'$7(������������

The conditional expression above is now true whenever the complex condition within
parentheses is false.

Note: you may use the not symbol (¬) in place of the word NOT in conditional
expressions. For example, the preceding conditional expression could also be
written like this:

¤��6$/(6²475��!������$1'�+,5(²'$7(������������

Examples of Conditional Expressions

Examples of conditional expressions are found under the INCLUDEIF statement's syntax
(page 481).

Computational Expressions

This section explains:

� how to write computational expressions

Computational expressions are used to specify a value. They are used in the COMPUTE

statement to specify the value to assign to "compute" fields. A computational expression
might be nothing more than a single field name (or literal). Or, it might be dozens of lines
long and involve many mathematical operations. The syntax for a computational expression
follows.

Computational Expressions

Chapter 8. General Syntax Rules 411

COMPUTATIONAL EXPRESSION SYNTAX

RSHUDQG��>�RSHUDWRU�RSHUDQG�@��>�RSHUDWRU�RSHUDQG�@�����

Note: in addition, any number of paired parentheses may be used to specify the
order of operations.

Only the first operand is required. You may specify as many additional operator/operand
pairs as you like. In general, the data type of the first operand (character, numeric, date, time
or bit) determines the data type of the entire expression. All subsequent operands must be
of the same data type. Also, only the operators supported for that data type may be used in
the expression.

Note: there is one exception to the rule that all operands in a computational
expression must be of the same data type as the first. For time computational
expressions, the operands may be either time values or numeric values. Numeric
values are treated as being a number of seconds. Thus, the following COMPUTE

statement adds 1 minute (60 seconds) to the time value in SALES–TIME:

&20387(��1(:²7,0(� �6$/(6²7,0(�����

Operands in Computational Expressions

An operand in a computational expression specifies a data value. An operand can be any of
the following:

� a literal value. (See "How to Write Literals" on page 389.)

� a field from an input file. (An input file is a file named in the INPUT statement,
or in an optional READ statement.)

� a computed field (defined in a preceding COMPUTE statement)

� a built–in field (a complete list of built–in fields is found in Appendix C,
"Built-In Fields")

� a built–in function's result (a complete list of built–in functions is found in
Appendix D, "Built-In Functions")

Computational Expressions

412 Report Writer Reference Manual

Operators in Computational Expressions

An operator in a computational expression specifies an operation to perform on the operands.
The operators allowed in a particular expression will depend on the data type of the
expression. For character, numeric, and time expressions, the following table shows the
operators that are supported. (No operators are supported for date and bit expressions.)

CHARACTER NUMERIC AND TIME
OPERATORS OPERATORS

���FRQFDWHQDWLRQ� ���DGGLWLRQ�
²��VXEWUDFWLRQ�
��PXOWLSOLFDWLRQ�
���GLYLVLRQ�

Note: be sure to use one or more blanks both before and after the subtraction
operator (–) in computational expressions. This is required because the same
symbol is valid as a character within field names. The following:

$%&²;<=

would be considered the name of a single field, named ABC–XYZ. However, the
following:

$%&��²��;<=

would be considered a subtraction operation, where field XYZ is subtracted from field
ABC. For the other operators (+, * and /), blanks are not required around the symbol,
but are allowed.

Note: the standard numeric operations are also allowed in computational
expressions for time values. When performing these operations, Report Writer first
converts each time value into a numeric value (which corresponding to the number
of seconds in the time value.) The operations are then performed on these numeric
values. The final result is then converted back into a HH:MM:SS[.SSS...] time value.

Note: while no date operators are directly supported, it is still possible to perform
certain manipulation of date fields. Use the #MAKENUM built–in function (see page
575) to convert a date field to a numeric value. You can then perform addition,
subtraction, etc. with this numeric value. Then, use the #MAKEDATE built–in function
(page 579) to convert the modified numeric value back to a date field. An example
of this is shown on page 414.

Computational Expressions

Chapter 8. General Syntax Rules 413

Order of Operations

Operations within parentheses are performed first. If nested parentheses are encountered, the
most deeply nested operations are performed first. When parentheses are not used, or for
operations at the same level of parentheses, the order of operations is as follows:

� multiplications and divisions are performed first

� additions and subtractions are performed afterwards

Operations of equal priority are performed left to right.

Examples of Computational Expressions

Case 1. Here is an example of a COMPUTE statement with a character type
computational expression:

&20387(��;� �
$$$
���
%%%

In the above example, the second operand ("%%%") is concatenated to (or,
"appended to") the first operand "$$$". The new field X would contain the value
"$$$%%%".

Case 2. Following is an example of a numeric computational expression:

&20387(��<($5/<²6$/(6� �
�����������6$/(6²475�����6$/(6²475�����6$/(6²475�����6$/(6²475�

The above example computes the yearly sales total by adding the four quarterly
sales fields together.

Case 3. Following is an example of using parentheses within a computational
expression to indicate the order of operation:

&20387(��3(5&(17²&+$1*(�',97276�� �
�������������6$/(6²475��²�6$/(6²475�����������6$/(6²475�

The above example computes the percentage change between the second quarter
sales figure and the first quarter sales figure. The computational expression first
subtracts SALES–QTR1 from SALES–QTR2, since that is the most deeply
embedded operation. That difference is then multiplied by 100. The resulting
product is then divided by SALES–QTR1, giving the percentage change.

Note: the DIVTOTS parm tells Report Writer not to simply total the
values of this field for the Grand Totals line (or control break total
lines.) Totalling percentages often does not give a meaningful result.
Instead, the DIVTOTS parm tells Report Writer to "divide totals" –– that
is, divide the total value of the numerator by the total value of the
denominator when printing total lines. For more information on the

Computational Expressions

414 Report Writer Reference Manual

DIVTOTS parm, see "Computing True Percentages and Ratios at Control
Breaks" on page 187.

Case 4. Following is an example of using a numeric built–in function in a
computational expression:

&20387(��$%6²3(5&(17²&+$1*(� ��$%6�3(5&(17²&+$1*(�

The above example uses the numeric built–in function #ABS ("absolute value").
The percentage change computed in the preceding case might be either a positive
or a negative number. The #ABS function returns the absolute value (that is, the
positive value) of its parm (the PERCENT–CHANGE field, in this example). The
new field (ABS–PERCENT–CHANGE) now contains the percentage change as a
positive value.

Case 5. You may embed computational expressions within most built–in functions.
For example, we could have defined the ABS–PERCENT–CHANGE field all in one
computational expression by using an imbedded expression within the #ABS

function:

&20387(��$%6²3(5&(17²&+$1*(� �
� ������������$%6���6$/(6²475��²�6$/(6²475�����������6$/(6²475��

Case 6. There are no operators supported for date fields. Therefore, computational
expressions for these types of fields consists only of a single operand. For
example:

&20387(��67$57²'$7(� ���������

The above example simply assigns the literal date 1/1/1995 to the new field
START–DATE.

Case 7. The single operand in a date expression may also be a date type field, or a date
type built–in function . For example:

&20387(��'8(²'$7(� ��0$.('$7(��0$.(180�6$/(6²'$7(�������

The above example computes the DUE–DATE field by adding 10 days to the
SALES–DATE. It does this by first converting the SALES–DATE field to a number,
then adding 10 to that number, and finally converting this sum back into a date
field.

The above COMPUTE statement could also be separated into three statements,
perhaps making it easier to understand:

&20387(��180²6$/(6²'$7(� ��0$.(180�6$/(6²'$7(�
&20387(��180²'8(²'$7(��� �180²6$/(6²'$7(�����
&20387(��'8(²'$7(������� ��0$.('$7(�180²'8(²'$7(�

Computational Expressions

Chapter 8. General Syntax Rules 415

Case 8. There are no operators supported for bit fields. Bit expressions can consist only
of a single operand. That operand may be either another bit type field, or a bit
type built–in function (such as #ON and #OFF). For example:

&20387(��758(²%,7� ��21

The above example defines a new bit type field named TRUE–BIT, whose value
is ON.

416 Report Writer Reference Manual

(This page left blank intentionally.)

Chapter 9. Control Statement Syntax 417

Chapter 9. Control Statement S yntax

Chapter Table of Contents

Chapter 9. Control Statement S yntax . 417

Syntax Notation. 418

ASM Statement. 419
BREAK Statement. 421
COBOL Statement. 432
COLUMNS Statement. 437
COMPUTE Statement. 444
COPY Statement. 455
FIELD Statement. 460
FILE Statement. 470
FOOTNOTE Statement. 476
INCLUDEIF Statement. 481
INPUT Statement. 485
OPTIONS Statement . 494
READ Statement. 510
SORT Statement. 524
TITLE Statement. 531

418 Report Writer Reference Manual

Chapter 9. Control Statement S yntax

This chapter contains the complete syntax information for each Report Writer control
statement. The statements appear in alphabetical order.

Syntax Notation

In the syntax boxes throughout this chapter, the following conventions are used.

lowercase items in lower case letters represent values to be supplied by the user

uppercase items in UPPER CASE letters must be typed exactly as they appear.
(However, valid abbreviations are also accepted.)

brackets items within [square brackets] are optional

ellipsis an ellipsis (...) indicates that the preceding item(s) may be repeated any
number of times

underline underlined items indicate the default value that will be used if no other value
is specified

slash slashes (/) indicate mutually exclusive items. One and only one of the items
separated by slashes may be specified.

ASM

Chapter 9. Control Statement Syntax 419

ASM Statement

PURPOSE
Specifies that an Assembler language record layout follows. Report Writer processes the
Assembler record layout and creates "internal" FIELD statements corresponding to the
Assembler fields in the record layout. This lets you define the fields in a file by using an
Assembler record layout, rather than writing FIELD statements.

Also use this statement to have Report Writer convert an Assembler record layout into FIELD

statements and write those FIELD statements to an output file.

Beginning immediately after the ASM statement (and any of its continuation lines) Report
Writer treats input lines as Assembler code. The Assembler code is assumed to end when the
next Report Writer control statement prefix is encountered. The only exception is that Report
Writer COPY statements may be imbedded in the Assembler code and do not end the scope
of the ASM statement.

FEATURES
Use the ASM statement to:

� specify that an Assembler record layout follows

� specify whether to print or write out FIELD statements that correspond to the
Assembler record layout

� specify various options that affect the way the Assembler code is processed

LEARNING MORE

The complete syntax of the ASM statement is shown in the following box. A description of
the parms is found under the similar COBOL statement on page 432. In addition, the following
parts of the manual relate to the ASM statement:

� the use of Assembler record layouts to define input files is discussed beginning
on page 311

ASM

420 Report Writer Reference Manual

SYNTAX

ASM STATEMENT SYNTAX

$60� >�&2/801>�$//�@�',63>�$//�@ @
>�),/(�ILOHQDPH�� @
>�0$;2&&856�QQQQQ����� @
>�126(4 @
>�287$775�W\SH�
GOEO�WOEO
>�6<6QQQ@>���@>�EONVL]H@� �96(�RQO\� @
>�287''1�GGQDPH� �096�RQO\� @
>�5(/2& @
>�6+2:)/'6�<(6�12� @
>�67$57&2/�QQQQQ��67$57',63�QQQQQ� @

Standard Alternate
Spelling Spellings
&2/801 &2/
12 1
<(6 <

No parms are required. The parms may appear in any order. For a description of the parms,
see under the COBOL statement (page 432) which uses the same parms.

BREAK

Chapter 9. Control Statement Syntax 421

BREAK Statement

PURPOSE
Specifies that a control break should occur whenever the value of a certain field changes.
Only sort fields may be used to create control breaks–– that is, a field may be named in a
BREAK statement only if it has also appeared in a preceding SORT statement.

The BREAK statement is also used to customize the Grand Totals.

For summary reports (where no individual detail lines are printed), the BREAK statement
determines how the summary lines will look.

You may have more than one BREAK statement in a report. The use of multiple BREAK

statements is discussed on page 211.

Note: The SORT statement can also be used to request many control breaks. The
SORT statement can specify: which fields to break on; the control break spacing to
use; and, which, if any, of the statistical lines should print at a break. You must use
the BREAK statement, however, if you want to print footing lines, heading lines, or
customized statistical lines at a control break.

FEATURES
Use the BREAK statement to:

� specify control break spacing (whether to skip to a new page or print a number
of blank lines at a control break)

� specify one or more customized footing lines to print at the end of a control
group

� specify whether or not to print a total line at the end of a control group

� specify whether or not to print other statistical lines (such as averages,
maximums, minimums) at the end of a control group

� customize the text used in the total and other statistical lines

� specify one or more customized heading lines to print at the beginning of a
control group, and optionally at the top of subsequent pages

� specify how the Grand Total lines should look

� suppress total lines at control breaks

LEARNING MORE

The complete syntax of the BREAK statement is shown on the following pages. In addition,
the following parts of the manual relate to the BREAK statement:

� a lesson on using the BREAK statement in reports begins on page 52

� a lesson on using the BREAK statement in PC files begins on page 104

� advanced uses of the BREAK statement are discussed beginning on page 182

BREAK

422 Report Writer Reference Manual

� using the BREAK statement to produce summary reports is discussed beginning
on page 62

� using the BREAK statement to produce summary PC files is discussed beginning
on page 110

� customizing the Grand Totals with a BREAK statement is discussed beginning on
page 214

SYNTAX

BREAK STATEMENT SYNTAX

%5($.� ILHOGQDPH��*5$1'
> $9(5$*(>�SULQW²H[SUHVVLRQ�@ @
>)227,1*�SULQW²H[SUHVVLRQ����� @
> +($',1*�SULQW²H[SUHVVLRQ����� @
> 0$;,080>�SULQW²H[SUHVVLRQ�@ @
> 0,1,080>�SULQW²H[SUHVVLRQ�@ @
> 1=$9(5$*(>�SULQW²H[SUHVVLRQ�@ @
> 1=0,1,080>�SULQW²H[SUHVVLRQ�@ @
> 5(3($7 @
> 63$&(�Q�3$*(�3$*(��1(:6+((7�1(:6+((7��

2''3$*(�2''3$*(�� @
> 727$/>�SULQW²H[SUHVVLRQ�@�12727$/ @

Note: the syntax for the print-expressions is shown on page 428.

Standard Alternate
Spelling Spellings
$9(5$*($9(5��$9*
%5($. %5.
)227,1*)227
+($',1* +($'
0$;,080 0$;
0,1,080 0,1
12727$/ 12727��12727$/6��127276
1=$9(5$*(1=$9(5��1=$9*
1=0,1,080 1=0,1
3$*(3*��3
63$&(63&
727$/ 727��727$/6��7276

The fieldname is required in a BREAK statement, and must be the first item after the
statement prefix. All other parms are optional and can appear in any order on the BREAK

statement.

fieldname/#GRAND
Identifies the control break field. Whenever the contents of this field changes, a control
break will occur in the report or PC file. This field must have been specified as a sort
field in a preceding sort statement.

You may also specify #GRAND rather than an actual field name. Using #GRAND allows
you to specify control break options for the Grand Totals control break (see page 214.)

BREAK

Chapter 9. Control Statement Syntax 423

EXAMPLES :

%5($.���5(*,21

The above example specifies that a control break should occur whenever the REGION field
changes value. Since no other parms are specified, default processing will take place at
the break: a line of region totals will print, followed by 2 blank lines.

%5($.���*5$1'��$9(5$*(

The above statement specifies that an average line is wanted at the "Grand Totals"
control break. The average line will print after the Grand Total line at the end of the
report.

AVERAGE[(print–expression)]
Specifies that each numeric column's average value should print at the control break, and
optionally can specify how the average line should look. The default is not to print
averages at each break. If you simply specify the AVERAGE parm, a default average line
will print at the control break. It will begin with the following text:

�$9(5$*(�9$/8(

After the above text, the average values themselves will print, lined up under the numeric
columns of the report. If you would like the average line to begin with some other text,
specify a print expression with the AVERAGE parm. The print expression can contain any
combination of literal text, data from input files, and certain control group wide statistics
for numeric and time fields. The syntax of the print expression is shown on page 428.
The use of the AVERAGE parm is discussed on page 194.

EXAMPLES :

%5($.��5(*,21��$9(5$*(

The above example causes a default average line to print whenever the REGION field
changes value.

%5($.��5(*,21��$9(5$*(�
$9(5$*(6�)25
��5(*,21�

The above example specifies that the average line should begin with the text �$9(5$*(6
)25�[[[[[� (where [[[[[is the value of the REGION field.)

FOOTING(print–expression)
Specifies a print line to print at the end of a control group. The print line may contain
any combination of literal text, data from input files, and certain break–wide statistics
for numeric and time fields. You may have as many FOOTING parms as you like. The
footing lines will print in the order in which they appear in this statement. The first
footing line will print immediately after the last regular detail line in the control group
and before the total line, if any. The syntax of the print expression for this parm is
shown on page 428. The use of the FOOTING parm is discussed on page 196.

EXAMPLES :

%5($.��5(*,21��)227,1*�
(1'�2)�5(*,21
��5(*,21�

The above example causes a line that reads �(1'�2)�5(*,21�[[[[[" to print whenever the
REGION field changes (where [[[[[is the value of the REGION field.)

BREAK

424 Report Writer Reference Manual

%5($.��5(*,21
�������)227,1*�
727$/�$02817
�$02817�727$/��
$9(5$*(�$02817
�$02817�$9(5$*(��

The above example prints a single line that shows the AMOUNT field's total value and
average value for the control group.

HEADING(print–expression)
Specifies a print line to print at the beginning of a control group. The print line may
contain any combination of literal text and data from input files. You may have as many
HEADING parms as you like. The heading lines will print in the order in which they
appear in this statement. The syntax of the print expression for this parm is shown on
page 428. The use of the HEADING parm is discussed on page 208. Specifying the
REPEAT parm (in the BREAK statement) causes all of the HEADING lines to also be
repeated at the top of each page of the report (following the column headings).

EXAMPLE :

%5($.��5(*,21��+($',1*�
5(*,21
��5(*,21��
)2//2:6
�

The above example causes a line that reads 5(*,21�[[[[[�)2//2:6 to print whenever a new
REGION is about to start printing (where [[[[[is the value of the REGION field.)

MAXIMUM[(print–expression)]
Specifies that each numeric column's maximum value should print at the control break,
and optionally can specify how the maximum line should look. The default is not to print
maximums at each break. If you simply specify the MAXIMUM parm, a default maximum
line will print at the control break. It will begin with the following text:

�0$;,080�9$/8(

After the above text, the maximum values themselves will print, lined up under the
numeric columns of the report. If you would like the maximum line to begin with some
other text, specify a print expression with the MAXIMUM parm. The print expression can
contain any combination of literal text, data from input files, and certain control group
wide statistics for numeric and time fields. The syntax of the print expression is shown
on page 428. The use of the MAXIMUM parm is discussed on page 194.

EXAMPLES :

%5($.��5(*,21��0$;,080

The above example causes a default maximum line to print whenever the REGION field
changes value.

%5($.��5(*,21��0$;,080�
0$;,0806�)25
��5(*,21�

The above example specifies that the maximum line should begin with the text "0$;,0806
)25�[[[[[" (where [[[[[is the value of the REGION field.)

MINIMUM[(print–expression)]
Specifies that each numeric column's minimum value should print at the control break,
and optionally can specify how the minimum line should look. The default is not to print

BREAK

Chapter 9. Control Statement Syntax 425

minimums at each break. If you simply specify the MINIMUM parm, a default minimum
line will print at the control break. It will begin with the following text:

�0,1,080�9$/8(

After the above text, the minimum values themselves will print, lined up under the
numeric columns of the report. If you would like the minimum line to begin with some
other text, specify a print expression with the MINIMUM parm. The print expression can
contain any combination of literal text, data from input files, and certain control group
wide statistics for numeric and time fields. The syntax of the print expression is shown
on page 428. The use of the MINIMUM parm is discussed on page 194.

EXAMPLES :

%5($.��5(*,21��0,1,080

The above example causes a default minimum line to print whenever the REGION field
changes value.

%5($.��5(*,21��0,1,080�
0,1,0806�)25
��5(*,21�

The above example specifies that the minimum line should begin with the text "0,1,0806
)25�[[[[[" (where [[[[[is the value of the REGION field.)

NZAVERAGE[(print–expression)]
Specifies that each numeric column's average value (not considering zero values) should
print at the control break, and optionally can specify how the non–zero average line
should look. (Non–zero averages are useful if missing data (zero values) is throwing off
a column's average.) The default is not to print non–zero averages at each break. If you
simply specify the NZAVERAGE parm, a default non–zero average line will print at the
control break. It will begin with the following text:

�$9(5$*(�2)�121²=(52�9$/8(6

After the above text, the non–zero averages themselves will print, lined up under the
numeric columns of the report. If you would like the non–zero average line to begin with
some other text, specify a print expression with the NZAVERAGE parm. The print
expression can contain any combination of literal text, data from input files, and certain
control group wide statistics for numeric and time fields. The syntax of the print
expression is shown on page 428. The use of the NZAVERAGE parm is discussed on page
194.

EXAMPLES :

%5($.��5(*,21��1=$9(5$*(

The above example causes a default non–zero average line to print whenever the REGION

field changes value.

%5($.��5(*,21��1=$9(5$*(�
121²=(52�$9(5$*(6�)25
��5(*,21�

The above example specifies that the non–zero average line should begin with the text
"121²=(52�$9(5$*(6�)25�[[[[[� (where [[[[[is the value of the REGION field.)

BREAK

426 Report Writer Reference Manual

NZMINIMUM[(print–expression)]
Specifies that each numeric column's minimum value (not considering zero values)
should print at the control break, and optionally can specify how the non–zero minimum
line should look. The default is not to print non–zero minimums at each break. If you
simply specify the NZMINIMUM parm, a default non–zero minimum line will print at the
control break. It will begin with the following text:

�0,1,080�2)�121²=(52�9$/8(6

After the above text, the non–zero minimums themselves will print, lined up under the
numeric columns of the report. If you would like the non–zero minimum line to begin
with some other text, specify a print expression with the NZMINIMUM parm. The print
expression can contain any combination of literal text, data from input files, and certain
control group wide statistics for numeric and time fields. The syntax of the print
expression is shown on page 428. The use of the NZMINIMUM parm is discussed on page
194.

EXAMPLES :

%5($.��5(*,21��1=0,1,080

The above example causes a default non–zero minimum line to print whenever the
REGION field changes value.

%5($.��5(*,21��1=0,1,080�
121²=(52�0,1,0806�)25
��5(*,21�

The above example specifies that the non–zero minimum line should begin with the text
"121²=(52�0,1,0806�)25�[[[[[" (where [[[[[is the value of the REGION field.)

REPEAT
Specifies that all heading lines (defined in the HEADING parms) should be repeated at the
top of each new page (following the titles and column headings). Otherwise, the heading
lines print only once, at the beginning of the control group.

EXAMPLE :

%5($.� 5(*,21��5(3($7
+($',1*�
5(*,21
�5(*,21�
)2//2:6
�
+($',1*�

�

The above example specifies two heading lines for the REGION control break. In addition
to printing at the beginning of each new control group (which may occur in the middle
of a page), the heading lines will also be repeated at the top of each subsequent page.

SPACE(n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/ODDPAGE/ODDPAGE1)
Specifies the type of spacing desired at the control break, after any footing lines, total
lines, and statistics lines have printed. If no SPACE parm is specified, the default is to
print 2 blank lines. A description of each SPACE option is shown in the following table.

SPACING
OPTION DESCRIPTION

n Skips this number of blank lines.

PAGE Skips to the top of the next page of the report.

BREAK

Chapter 9. Control Statement Syntax 427

PAGE1 Works like PAGE, but also resets page number to "one".

NEWSHEET Skips to a new sheet of paper. In order for this feature to work, you
must also use the OPTION statement's PRTSHEET parm to specify a
character string that can be sent to your printer to tell it to skip to a new
sheet of paper. (The PRTSHEET option is described starting on page
506.)

NEWSHEET1 Works like NEWSHEET, but also resets page number to "one".

ODDPAGE Skips to the next odd numbered page. This parm accomplishes the
same thing as the NEWSHEET parm, but can be used even if you do not
have a character string to send to the printer to force it to skip to a new
sheet. However, for this option to work you must ensure that the first
page of your report prints on the front side of a sheet of paper. As long
as page 1 of your report prints on the front side of a sheet of paper, all
other odd numbered pages will also be on front sides.

ODDPAGE1 Works like ODDPAGE, but also resets page number to "one".

EXAMPLE :

%5($.���5(*,21��63$&(�3$*(��

The above example requests that the report skip to a new page whenever the REGION

field changes value. Page numbering will also start over with page one for each new
region.

TOTAL[(print–expression)]/NOTOTAL
Specifies whether or not to print totals at the control break, and optionally can specify
how the total line should look. The default is to print totals at each break. Specifying
NOTOTAL suppresses the total line at a control break.

By default, total lines begin with the following text:

�727$/6�)25�[[[[[[[���Q�QQQ�,7(06�

After the above information, the actual total values print, lined up under the numeric
columns of the report. If you would like the total line to begin with some other text,
specify a print expression within the TOTAL parm. The print expression can contain any
combination of literal text, data from input files, and certain break–wide statistics for
numeric and time fields. The syntax of the print expression is shown on page 428. The
use of the TOTAL parm is discussed on page 190.

EXAMPLES :

%5($.��5(*,21��727$/

The above example causes a default total line to print whenever the REGION field changes
value. (Since the default is to print a total line, the TOTAL parm in this example was not
necessary.)

%5($.��5(*,21��727$/�
727$/6�)25
��5(*,21�

BREAK

428 Report Writer Reference Manual

The above example specifies that the total line should begin with the text "727$/6�)25
[[[[[� (where [[[[[is the value of the REGION field.)

PRINT EXPRESSION SYNTAX

print–expression
Specifies how to build one print line that will print at the control break. The syntax for
a print expression within a BREAK statement parm is similar to print expressions used in
other statements. There are, however, some additional features that can be used in BREAK

statement print expressions. These include additional built–in fields, and certain control
group wide statistical parms to use with numeric and time fields. The complete syntax
for a print expression within a BREAK statement follows. BREAK statement print
expressions are discussed beginning on page 196.

PRINT –EXPRESSION SYNTAX (IN BREAK STATEMENT)

A print–expression consists of one or more items, optionally separated by
numeric spacing factors:

>Q@�LWHP�>Q@�LWHP�>Q@�LWHP�����

Each item can be either a fieldname or a literal text . Each item can optionally be
followed by a parm list in parentheses:

ILHOGQDPH>� > %,= @
> GLVSOD\�IRUPDW @
> /()7�&(17(5�5,*+7 @
> 727$/�$9(5$*(�0$;,080�0,1,080�

1=$9(5$*(�1=0,1,080 @
> ZLGWK @ �@

OLWHUDO
>� ZLGWK �@�

Standard Alternate
Spelling Spellings
$9(5$*($9(5��$9*
&(17(5 &-
/()7 /-
0$;,080 0$;
0,1,080 0,1
1=$9(5$*(1=$9(5��1=$9*
1=0,1,080 1=0,1
5,*+7 5-
727$/ 727

fieldname
(Within a print–expression). Specifies that the print line should contain the contents of
this field. For all print expressions that print at the end of a control group, the field's
data is taken from the last record in the control group (unless a statistical parm is

BREAK

Chapter 9. Control Statement Syntax 429

specified for it.) For heading print expressions (which print at the beginning of a control
group), the data is taken from the first record in the control group that follows.

The field must be available to Report Writer at the time the BREAK statement is
processed. That is, the field name must be one of the following:

� a field from an input file. (An input file is a file named in the INPUT

statement, or in an optional READ statement.)

� a computed field (defined in a preceding COMPUTE statement)

� a built–in field (see Appendix C, "Built-In Fields" for a complete list of
built–in fields)

Notice that several of the built–in fields listed in Appendix C are exclusively for use in
the BREAK statement. These fields may be used in any BREAK statement print expression
except within the HEADING parm. (The use of these special fields is discussed on page
206.) These special built–in fields are:

BUILT–IN
FIELD TYPE DESCRIPTION

#ITEMS Numeric Contains the number of items (records) included in
the control group that has just ended.

#COUNTER Numeric Contains the cumulative number of items (records)
that have been processed up through the control group
just ended. This field is like #ITEMS, except that it is
not reset to zero at every control break.

#ITEM–ENDING Character Contains either the letter "S", or a blank, depending
on the value of #ITEMS. When #ITEMS equals one,
#ITEM–ENDING is a blank. Otherwise, #ITEM–ENDING

is an "S".

EXAMPLE :

%5($.��5(*,21
�������)227,1*��,7(06�
,7(0
����,7(0²(1',1*�
,1�5(*,21
�5(*,21�

The print expression in the above example uses a combination of literals, fieldnames and
built–in fieldnames. It also contains one spacing factor. The resulting footing line would
print when there is only one record in the control group:

��,7(0��,1�5(*,21�[[[[[

The same statement causes a footing line like the following to print, when the control
group contains more than one record. Notice that the word ",7(06" is now plural.

��,7(06�,1�5(*,21�[[[[[

A spacing factor of 0 is used to prevent a blank space from appearing between the literal
text ",7(0" and the contents of the field #ITEM–ENDING. Without the spacing factor, the
footing line would say "��,7(0�6", rather than "��,7(06".

BREAK

430 Report Writer Reference Manual

'literal'
(Within a print–expression). Specifies that the print line should contain this literal text.

EXAMPLE :

See the example above under the fieldname parm. The FOOTING parm print expression
in that example uses the literal texts ",7(0" and ",1�5(*,21".

n
(Within a print–expression.) This is a numeric spacing factor. It specifies how many
blank spaces to leave between two items in the print line. A spacing factor of zero is
allowed. (It results in two items appearing in the print line with no blank spaces between
them.) If no spacing factor is given, the default is to leave one blank space between
items.

EXAMPLE :

See the example above under the fieldname parm. A spacing factor of 0 is used in that
example.

BIZ
(Within a print–expression.) This “blank if zero” parm specifies that blanks should
appear in the print line for the field if it has a value of zero. This parm is allowed only
for numeric, date and time fields. A date is considered to have a zero value if the month,
day and last 2 digits of the year are all zeros (regardless of the value of the century part
of the year.)

EXAMPLE :

%5($.� +,5(²'$7(
)227,1*�
(1'�2)�(03/2<((6�+,5('�21
�+,5(²'$7(�%,=��

The above example causes the HIRE–DATE field in the footing line to be left blank
whenever it contains a zero date.

displa y–format
(Within a print–expression.) Specifies how a field should be formatted in the print line.
A complete list of display formats is found in Appendix B, "Display Formats"
(page 550). If this parm is not specified, Report Writer will use the display format from:

� the FIELD or COMPUTE statement that defined the field

� an OPTIONS statement FORMAT parm

� the default display format shown in the table on page 559

EXAMPLE :

%5($.� +,5(²'$7(
)227,1*�
(1'�2)�(03/2<((6�+,5('�21
�+,5(²'$7(�/21*���

The above example causes the HIRE–DATE field in the footing line to be spelled out in
LONG1 format. For example:

(1'�2)�(03/2<((6�+,5('�21�0$<��������

BREAK

Chapter 9. Control Statement Syntax 431

LEFT/CENTER/RIGHT
(Within a print–expression.) Specifies how the data should be justified within the space
allocated for it in the print line.

EXAMPLE :

%5($.��+,5(²'$7(
�������)227,1*�
(1'�2)�(03/2<((6�+,5('�21
�+,5(²'$7(�/21*��5,*+7��

The above example also displays the HIRE–DATE field (in LONG1 format) in the footing
line. Dates displayed in LONG1 format are allocated 18 characters in a print line (in order
to print long dates like "6(37(0%(5���������".) The RIGHT parm causes the contents of the
HIRE–DATE field to be right–justified within its 18–character area in the print line.

(1'�2)�(03/2<((6�+,5('�21��������0$<��������

TOTAL/AVERAGE/MAXIMUM/MINIMUM/
NZAVERAGE/NZMINIMUM

(Within a print–expression.) Allowed only for numeric and time fields. Specifies that
a statistical value for a field should appear in the print line, rather than the field's contents
from an individual record. (These statistical parms may not be used in HEADING print
expressions.) When none of these parms is specified, the contents of a field will be taken
from the last record in the control group (for print lines that appear at the end of a control
group.) If one of these parms is specified, then the control group total (or average,
maximum, etc.) will appear in the print line instead. The use of these parms is illustrated
in the section beginning on page 196.

EXAMPLE :

%5($.��5(*,21
�������)227,1*�
/$5*(67�6$/(�,1�5(*,21�:$6
��$02817�0$;,080��
�������)227,1*�
$9(5$*(�6$/(�,1�5(*,21�:$6
��$02817�$9(5$*(��

The above example causes two footing lines to print at the end of a control group. The
first footing line will display the control group's maximum AMOUNT value. The second
footing line will show the control group's average AMOUNT value.

width
(Within a print–expression.) This numeric parm specifies the number of characters to
reserve for an item in the print line. Use this parm if the default width is too large or too
small.

EXAMPLE :

%5($.��5(*,21
�������)227,1*��,7(06�����
,7(0
����,7(0²(1',1*�
,1�5(*,21
�5(*,21�

The above example causes 11 characters to be reserved for printing the number of items
(#ITEMS) in the footing line:

QQQ�QQQ�QQQ�,7(06�,1�5(*,21�[[[[[

COBOL

432 Report Writer Reference Manual

COBOL Statement

PURPOSE
Specifies that a Cobol language record layout follows. Report Writer processes the Cobol
record layout and creates "internal" FIELD statements corresponding to the Cobol fields in the
record layout. This lets you define the fields in a file by using a Cobol record layout, rather
than writing FIELD statements.

Also use this statement to have Report Writer convert a Cobol record layout into FIELD

statements and write those FIELD statements to an output file.

Beginning immediately after the COBOL statement (and any of its continuation lines) Report
Writer treats input lines as Cobol code. The Cobol code is assumed to end when the next
Report Writer control statement prefix is encountered. The only exception is that Report
Writer COPY statements may be imbedded in the Cobol code and do not end the scope of the
COBOL statement.

FEATURES
Use the COBOL statement to:

� specify that a Cobol record layout follows

� specify whether to print or write out FIELD statements that correspond to the
Cobol record layout

� specify various options that affect the way the Cobol code is processed

LEARNING MORE

The complete syntax of the COBOL statement is shown on the following pages. In addition,
the following parts of the manual relate to the COBOL statement:

� the use of Cobol record layouts to define input files is discussed beginning on
page 311

COBOL

Chapter 9. Control Statement Syntax 433

SYNTAX

COBOL STATEMENT SYNTAX

&2%2/� >�&2/801>�$//�@�',63>�$//�@ @
>�),/(�ILOHQDPH�� @
>�0$;2&&856�QQQQQ����� @
>�126(4 @
>�287$775�W\SH�
GOEO�WOEO
�>�6<6QQQ@�>���@�>�EONVL]H@� �96(�RQO\� @
>�287''1�GGQDPH� �096�RQO\� @
>�5(/2& @
>�6+2:)/'6�<(6�12� @
>�67$57&2/�QQQQQ��67$57',63�QQQQQ� @

Standard Alternate
Spelling Spellings
&2/801 &2/
12 1
<(6 <

No parms are required. The parms may appear in any order. Note that the ASM statement
also uses these same parms.

COLUMN[(ALL)]/DISP[(ALL)]
Specifies whether the COLUMN parm or the DISP parm should be used in the FIELD

statements that Report Writer creates from the Cobol record layout. (This parm is only
meaningful if you also specify the SHOWFLDS(YES) parm and/or the OUTDDN/OUTATTR

parm.) If neither COLUMN nor DISP is specified, the COLUMN parm will be used whenever
necessary in the FIELD statements created. If ALL is specified with either parm, the
COLUMN or DISP parm will be present in all of the FIELD statements created. If ALL is not
specified, the COLUMN or DISP parm will appear only in those FIELD statements where it
is necessary (that is, in FIELD statements that define fields out of the normal sequence.)

The ALL parm may be useful if you're having problems using a new record layout.
Specify DISP(ALL) to see the displacement that Report Writer has assigned to each field.
Then compare these displacements with those printed in the Data Map section of an
actual Cobol compilation of the same record layout. This may help you locate the source
of the error.

EXAMPLES :

&2%2/��',63

The above statement specifies that the FIELD statements printed in the control listing or
written to an output file will use DISP parms (rather than COLUMN parms.) The DISP

parm will only be present in FIELD statements that define fields out of the normal order.

&2%2/��&2/801�$//�

COBOL

434 Report Writer Reference Manual

The above statement specifies that the COLUMN parm (rather than the DISP parm) should
be used in FIELD statements printed or written out. All FIELD statements will have a
COLUMN parm.

FILE(filename/*)
Specifies the file to which the fields defined by the record layout belong. An asterisk
indicates the current file (which is the default.) The current file is the file named in the
most recent FILE statement.

EXAMPLE :

&2%2/��),/(�(03/²),/(�

The above statement specifies that the fields defined by the Cobol record layout belong
to the EMPL–FILE (rather than the current file.)

MAXOCCURS(nnnnn/100)
Specifies the maximum number of occurrences for which individual field definition is
necessary. This applies only to items having an OCCURS clause (in Cobol) or a repetition
factor (in Assembler.) By default, up to 100 occurrences of each such item are defined
as individual fields. If your record layout has a field with a large number of occurrences
and you need to be able to reference all of these occurrences individually, specify a
MAXOCCURS parm with a sufficiently large value. However, if you do not need to address
such fields individually, it will save memory and processing time to leave the default in
effect. In extreme cases (with many thousands of occurrences) creating an internal field
definition for each occurrence may require more memory than is available in the region
(or partition) and an "out of memory" abnormal end could occur.

Specifying MAXOCCURS(0) means that all occurrences of each array should be defined
individually.

Note: see the section beginning on page 321 for a discussion on how the
individual fields in an array are named.

EXAMPLE :

&2%2/��0$;2&&856������

The above statement will cause up to 2000 individual fields to be defined for each array
in the record layout. (With the ASM statement, it will cause up to 2000 individual fields
to be defined for each item defined with a repetition factor.)

NOSEQ
Valid only for the COBOL statement. Specifies that numeric checking of Cobol sequence
numbers should not be performed. Report Writer normally performs this checking to
help detect a Cobol record layout that is not formatted correctly and which may result in
wrong field definitions. Use this parm if the Cobol record layout you use has
non–numerics in columns 1 through 6 and you do not want warning messages to appear
in the control listing.

Note: even when NOSEQ is not specified, Report Writer only prints warning
messages for the first 5 sequence number errors encountered.

COBOL

Chapter 9. Control Statement Syntax 435

EXAMPLE :

&2%2/��126(4

The above statement specifies that Report Writer should not examine the contents of
columns 1 through 6 of the Cobol record layout.

OUTATTR(type, 'dlbl/tlbl' [,SYSnnn] [,80] [,blksize])
VSE only. Specifies that FIELD statements corresponding to the record layout be written
to the specified output file. The output file must be defined as a fixed length file with
80–byte records. The blocksize may be any multiple of 80. The OUTATTR parm
describes various attributes of the desired output file. The allowed values within the
OUTATTR parm are:

type This parm is required. It tells Report Writer what kind of device to
write the FIELD statements to. It must be one of the following values:

'$6' a SAM file on a DASD device (disk.) Use DASD (rather than
VSAM) for VSAM–managed SAM files.

7$3(a SAM file on a magnetic tape

96$0 an ESDS VSAM file

'dlbl/tlbl' This parm is required. It tells Report Writer what DLBL or TLBL is used
in the JCL for the output file. The 1- to 7-byte name within apostrophes
(or quotation marks) must be the same as the filename in a DLBL or TLBL

statement in the execution JCL.

SYSnnn This parm is required for TAPE output. It is treated as a comment for
other output types. It identifies the logical unit to write the output to.
The value specified here must also be "assigned" in the JCL.

80 This parm is optional. It specifies the length of the output records to be
written. If specified, it must be 80, which is also the default.

blksize This parm is optional. It specifies the block size to use when writing
a DASD or TAPE output file. (This parm is not allowed for VSAM output
types.) This value must be a multiple of 80. If omitted, single record
blocking is used.

EXAMPLE :

&2%2/��287$775�'$6'�
)/'287
�

The above statement specifies that FIELD statements should be written to the disk output
file identified by the FLDOUT DLBL statement in the execution JCL.

OUTDDN(ddname)
MVS only. Specifies that FIELD statements corresponding to the record layout should be
written to an output file identified by this DDNAME in the execution JCL. The output file
must be defined as a fixed length file with 80–byte records. The blocksize may be any
multiple of 80.

EXAMPLE :

&2%2/��287''1�)/'287�

COBOL

436 Report Writer Reference Manual

The above statement specifies that FIELD statements should be written to the output file
identified by the FLDOUT DD statement in the execution JCL.

RELOC
Specifies that any FIELD statements that are printed or written out should be "relocatable"
whenever possible. This option may make it easier for you to modify your Report Writer
file definition when a record layout changes. That is, you may be able to insert new FIELD

statements without having to change all of the FIELD statements following the new one.
When RELOC is specified, Report Writer attempts to use fieldnames, rather than
numbers, in the FIELD statements' COLUMN/DISP parm whenever possible.

EXAMPLE :

&2%2/���5(/2&��287''1�)/'287�

The above statement specifies that the FIELD statements written to the FLDOUT DD should
be made as relocatable as possible.

SHOWFLDS(YES/NO)
Specifies that FIELD statements corresponding to the record layout should be printed in
the control listing. This is especially useful when working with a new record layout. It
allows you to see the names Report Writer has assigned to each field (including the
names of individual items within arrays, and items that were renamed to make them
unique). The listing also shows the data type of each field (character or numeric.)

EXAMPLE :

&2%2/��6+2:)/'6�<(6�

The above statement specifies that FIELD statements corresponding to the Cobol record
layout should be printed in the control listing.

STARTCOL(nnnnn)/
STARTDISP(nnnnn)

Specifies the column (or displacement) to be used for the first item in the record layout
that follows. If not specified, the first item defined will start in the "default location" for
the file it belongs to. If this is the first item defined for a file, the default location will be
column 1. In Cobol layouts, this starting column/displacement will also be used for the
first item in any subsequent 01 level implicit (or explicit) redefines. In Assembler
layouts, this starting column/displacement will also be used for the first item in any
subsequent DSECT.

EXAMPLE :

&2%2/��67$57&2/�����

The above statement specifies that the first field defined by the Cobol record layout
should begin in column 251. Any subsequent record layouts starting with a 01 level item
will also begin in column 251.

COLUMNS

Chapter 9. Control Statement Syntax 437

COLUMNS Statement

PURPOSE
This statement determines what columns of data the report or PC file will have. Each field
named in this statement will result in one column of data in the output. These columns will
appear in the same order as the field names appear in the COLUMNS statement.

Also use the COLUMNS statement to specify column headings and other formatting details.

You may have any number of COLUMNS statements per run. Each COLUMNS statement results
in one detail line in the report or PC file. A request with no COLUMNS statement will have no
detail lines in the output.

FEATURES
Use the COLUMNS statement to:

� specify the columns (of data fields or of literal texts) desired in the report or PC
file

� specify the column headings to be used in the report or PC file

� specify how many blank spaces should appear between each column in reports

� specify a column's width

� specify how to format the data within a column. (For example, should a
numeric field be displayed with or without commas? Should leading zeros be
printed or not? Should a date field be printed as MM/DD/YY or should the name
of the month be spelled out completely, etc.)

� specify how to justify the data within a column (left, center, or right)

� specify that repeating values should be blanked out

� specify which numeric columns should be totalled at control breaks and at the
Grand Total

LEARNING MORE

The complete syntax of the COLUMNS is shown on the following pages. In addition, the
following parts of the manual relate to the COLUMNS statement:

� a lesson on using the COLUMNS statement in reports begins on page 17

� a lesson on using the COLUMNS statement in PC files begins on page 78

� advanced uses of the COLUMNS statement are discussed beginning on page 123

� the use of multiple COLUMNS statements is discussed beginning on page 147

COLUMNS

438 Report Writer Reference Manual

SYNTAX

COLUMNS STATEMENT SYNTAX

&2/8016���SULQW²H[SUHVVLRQ

Note: the syntax for the print-expression is shown on page 439.

Standard Alternate
Spelling Spellings
&2/8016 &2/801��&2/6��&2/

The contents of the COLUMNS statement is simply a print expression. It is also valid to have
an empty COLUMNS statement. An empty COLUMNS statement results in a blank line in the
report or PC file.

COLUMNS

Chapter 9. Control Statement Syntax 439

COLUMNS STATEMENT SYNTAX

&2/8016���SULQW²H[SUHVVLRQ

PRINT –EXPRESSION SYNTAX (IN COLUMNS STATEMENT)

A print–expression consists of one or more items, optionally separated by
numeric spacing factors:

&2/8016���>Q@�LWHP�>Q@�LWHP�>Q@�LWHP�����

Each item can be either a fieldname or a literal text . Each item can optionally be
followed by a parm list in parentheses:

ILHOGQDPH>� > $&&80�12$&&80 @

> %,= @
> GLVSOD\²IRUPDW @
>
KHDGLQJ� KHDGLQJ����
 @
> /()7�&(17(5�5,*+7 @
> 125(3($7�125(3($73$*(@
> ZLGWK @ �@

OLWHUDO
>� >
KHDGLQJ� KHDGLQJ����
 @
> ZLGWK @ �@

Standard Alternate
Spelling Spellings
$&&80 $&&
&(17(5 &-
&2/8016 &2/801��&2/6��&2/
/()7 /-
12$&&80 12$&&
125(3($7 125(3
125(3(73*(125(33$*(
5,*+7 5-

fieldname
Names a field that should appear as a column in the report or PC file. The field must be
available to Report Writer at the time the COLUMNS statement is processed. That is, the
field must be one of the following:

� a field from an input file. (An input file is a file named in the INPUT

statement, or in an optional READ statement.)

� a computed field (defined in a preceding COMPUTE statement.)

� a built–in field. (See Appendix C, "Built-In Fields" for a complete list of
built–in fields.)

EXAMPLE :

&2/8016��/$67²1$0(��+,5(²'$7(��727$/²6$/(6

COLUMNS

440 Report Writer Reference Manual

The above example specifies that the report (or PC file) should contain three columns.
The fields displayed in the columns will be LAST–NAME, HIRE–DATE, and TOTAL–SALES.

'literal'
Specifies that the report should have a column displaying this literal text. (Enclose the
text in either apostrophes or quotation marks.) This feature is especially useful when
multiple COLUMNS statements are used. A literal text at the beginning of each line serves
to identify the data on that line. A column with a literal text (such as dashes) can also be
used to print a "blank" column in a report, to be filled in by hand.

EXAMPLES :

&2/8016��
�67�48$57(5
��6$/(6²475�
&2/8016��
�7+�48$57(5
��6$/(6²475�

The above example produces a report with two detail lines per input record. In each line,
the first column will contain literal text, and the second column will contain a sales
figure. The first column in each line identifies which quarter's data is displayed in the
second column. (See page 148 for a similar report example.)

&2/8016��/$67²1$0(��7(/(3+21(�
1(:�7(/(3+21(��²²²²²²²²²

The above example produces a report with three columns. The first two contain the
contents of fields (last name, and the current telephone number.) The third contains the
literal text

1(:�7(/(3+21(��²²²²²²²²

which provides an area that can be filled in by hand on the hardcopy report. (See
page 125 for a similar report example.)

n
This is a numeric spacing factor. It specifies how many blank spaces to leave between
two report columns. (Spacing factors are not used in PC files.) A spacing factor of zero
is allowed if you want no spaces between two columns. If no spacing factor is given, the
default is to leave one blank space between columns. The use of spacing factors is
discussed on page 124.

Note: to change the default spacing factor, use the COLSPACE parm of the
OPTION statement (see page 498.)

EXAMPLE :

&2/8016��/$67²1$0(�����+,5(²'$7(

The above example specifies that 7 blank spaces should be left between the LAST–NAME

column and the HIRE–DATE column in the report.

ACCUM/NOACCUM
This parm is valid only for numeric and time fields. It specifies whether a column
should be accumulated or not. Columns that are accumulated will appear in the totals
line, as well as in any other statistics lines that have been requested (such as the average
line, the maximum line, etc.) Columns that are not accumulated will not appear in the
totals and statistics lines.

COLUMNS

Chapter 9. Control Statement Syntax 441

By default, Report Writer accumulates all numeric fields, with one exception. Numeric
fields that are displayed using a PICTURE which contains special characters are not
accumulated. (Special characters include such things as parentheses, imbedded dashes,
asterisks, etc.) By default, numeric fields displayed with such a PICTURE are not
accumulated and therefore do not appear in the total line and other statistical lines.

By default, time fields are not accumulated. Specify ACCUM if you do want to see totals
for a time field. This might be desired for time fields that contain durations, rather than
times of day.

If an ACCUM or NOACCUM parm is specified in the COLUMNS statement, it overrides any
such parm that may have been specified in the FIELD or COMPUTE statement used to
define the field.

The use of the ACCUM and NOACCUM parms is discussed on page 144.

EXAMPLE :

&2/8016��(03/²1$0(��$02817�12$&&80���7,0(²21²3+21(�$&&80�

The above example specifies that the AMOUNT column in the report should not be
accumulated. Therefore, that column will not appear in the Grand Totals, or in control
break totals. On the other hand, the time field named TIME–ON–PHONE will be
accumulated. Therefore, it will appear in the Grand Totals and in control break totals.

BIZ
This “blank if zero” parm specifies that a column should be left blank if the field has a
value of zero. This parm is allowed only for numeric, date and time fields. A date is
considered to have a zero value if the month, day and last 2 digits of the year are all zeros
(regardless of the value of the century part of the year.)

EXAMPLE :

&2/8016���5(*,21��6$/(6²'$7(�%,=���6$/(6�7,0(�%,=���$02817�%,=�

The above example specifies that the SALES-DATE, SALES-TIME and AMOUNT columns
should be left blank when their respective fields have zero values.

displa y–format
Specifies how the contents of a field should be formatted in a report. A complete list of
display formats is found in Appendix B, "Display Formats" on page 550. If you do not
specify a display format in the COLUMNS statement, Report Writer uses a default display
format. This will be:

� the display format (if any) specified when the field was defined (in a FIELD

or COMPUTE statement), or

� the display format (if any) specified in a previous OPTIONS statement's
FORMAT parm (see page 500.) Use the FORMAT option if you want to
change the default way that all dates, times or numbers in your report are
formatted.

� the default display format shown in the table on page 559.

PC file note: display formats should not normally be used when creating PC
files. Report Writer chooses the display format needed to create an import file

COLUMNS

442 Report Writer Reference Manual

for the PC program specified in the OPTIONS statement. After importing your
PC file into a PC spreadsheet, you can use the PC program's features to change
the way dates or numbers are formatted.

EXAMPLE :

&2/8016��/$67²1$0(��+,5(²'$7(�/21*����727$/²6$/(6�3,&
�������
�

The above example uses display formats for two of the columns. The HIRE–DATE field
will be displayed in the LONG1 format (that is, with the month name spelled out.) The
TOTAL–SALES field will be formatted using a floating dollar sign, and will print whole
dollars only–– no decimal digits. The use of this parm is discussed on page 132.

'headin g1headin g2...'
Specifies the column heading to use for an item in a report or PC file. Enclose the
column heading text in either apostrophes or quotation marks. If you need to use that
same character (an apostrophe or quotation mark) within the text, use two of those
characters for each character desired.

Use a vertical bar () to separate the column heading text into separate lines. It is not
necessary to add your own "padding" spaces in order to make the column heading texts
stack neatly in your report. Report Writer automatically centers each part of the column
heading for you.

For example:

&2/8016��/$67²1$0(�
(03/2<((1$0(
���
²²²²²²²²²
�
1(:�7(/(3+21(
�

The above example specifies column headings for both columns. The column heading
for the LAST–NAME field will be "(03/2<((" on the first line, and "1$0(" on the second line.
Even though the two texts are different lengths, they will be correctly centered over the
report column. The column that just contains literal dashes will have a column heading
that says "1(:�7(/(3+21(" on a single line.

Note: you may use the HDGSEP parm of the OPTION statement to select a
character other than the vertical bar () to use as the separator character for
column heading texts.

If you do not want any column headings for a particular column, specify a blank column
heading text. To suppress even the column heading underscores, specify a null column
heading text. For example:

&2/8016���/$67²1$0(�
�
���+,5(²'$7(�

�

The above statement specifies that neither the LAST–NAME column nor the HIRE–DATE

column should have columns headings. The width of the LAST–NAME column will still
be indicated by a number of underscores in the column heading. The HIRE–DATE column
will not even have underscores over it.

If a column heading text is not specified in the COLUMNS statement, Report Writer uses
the column headings specified when the field was defined (in a FIELD or COMPUTE

statement.) If no columns headings were specified when the field was defined, Report
Writer uses the field name itself as the column heading. The field name will be broken

COLUMNS

Chapter 9. Control Statement Syntax 443

apart at each dash or underscore, with each part of the name going onto a separate
heading line.

See page 127 for more information on column headings.

LEFT/CENTER/RIGHT
Specifies how the data should be justified within a column. The use of these parms is
discussed on page 142.

EXAMPLE :

&2/8016��/$67²1$0(�&(17(5���+,5(²'$7(�/21*��5,*+7�

The above example specifies that the names printed in the LAST–NAME column should be
centered within the column. The HIRE–DATE column (in LONG1 format) will be
right-justified.

NOREPEAT/NOREPEATPAGE
These parms specify that "repeated" values should not be printed in the report or PC file.
The NOREPEAT parm blanks out repeated values except at the top of each new page and
at the beginning of each new control group. The NOREPEATPAGE parm blanks out
repeated values except at the top of each new page. The use of these parms is discussed
beginning on page 140.

EXAMPLE :

&2/8016��5(*,21�125(3($7���(03/²1$0(��6$/(6²'$7(��&86720(5��$02817

The above example specifies that repeating values of the REGION field should be blanked
out.

width
This is a numeric parm that specifies the number of characters to reserve for a particular
column in a report or PC file. Use this parm if the default column width is larger or
smaller than you desire.

EXAMPLE :

&2/8016��/$67²1$0(���727$/²6$/(6����

The above example specifies that 20 bytes should be reserved for printing the
TOTAL-SALES column in the report. This might be needed if the sales figures were very
large and the default column width was not big enough to display all of the digits. The
use of the width parm is discussed on page 131.

COMPUTE

444 Report Writer Reference Manual

COMPUTE Statement

PURPOSE
Defines a new field that can be computed using one or more existing fields. You may use
arithmetic operations, string operations and built–in functions to compute the value of the
new field. You may also use logical conditions to determine what value to assign to a field.

A computed field may be used in any way that a field from an actual file may be used. That
is, you may print it in a report column or title, output it to a PC file, sort on it, break on it,
total it, compare it to other fields, and even use it to compute additional new fields.

FEATURES
Use the COMPUTE statement to:

� define a new field using a name of your choice

� specify one or more computational expressions to use in assigning a value to
that field

� specify certain conditions that should be evaluated to determine what value to
assign to the new field.

� specify that control break totals and Grand Totals for this field should be
computed by performing a group–wide division rather than merely summing
its individual values (DIVTOTS parm)

� specify the column heading to use when the field appears in a report or PC file

� specify the display format to be when displaying the field

� specify whether or not the field should be accumulated, and thus appear in the
Grand Total line, etc.

� specify the width of a character field

� specify the number of decimal places to be retained in a numeric or a time field

LEARNING MORE

The complete syntax of the COMPUTE is shown on the following pages. In addition, the
following parts of the manual relate to the COMPUTE statement:

� a lesson on using the COMPUTE statement in reports begins on page 30

� a lesson on using the COMPUTE statement in PC files begins on page 92

� use of the DIVTOTS parm in the COMPUTE statement is discussed beginning on
page 187

� suggestions on writing COMPUTE statements for maximum CPU efficiency are
given in Appendix I, "Speed-Up Tips" (page 603)

COMPUTE

Chapter 9. Control Statement Syntax 445

SYNTAX

COMPUTE STATEMENT SYNTAX

&20387(� ILHOGQDPH>��SDUPV��@�� ��FRPSXWDWLRQDO²H[SUHVVLRQ
�

RU
�
&20387(� ILHOGQDPH>��SDUPV��@�

:+(1�FRQGLWLRQDO²H[SU� $66,*1�FRPSXWDWLRQDO²H[SU�
> :+(1�FRQGLWLRQDO²H[SU� $66,*1�FRPSXWDWLRQDO²H[SU� @
> :+(1�FRQGLWLRQDO²H[SU� $66,*1�FRPSXWDWLRQDO²H[SU� @

����
> (/6($66,*1�FRPSXWDWLRQDO²H[SU��5(7$,1 @

The parms available are:

$&&80�12$&&80
GLVSOD\²IRUPDW
',97276

KHDGLQJ� KHDGLQJ����

QQQ

Standard Alternate
Spelling Spellings
$&&80 $&&
$66,*1 $66
&20387(&203
',97276 ',9727��'7
12$&&80 12$&&
:+(1 :+

Note: values are assigned to computed fields each time a new logical input record
is assembled. For runs which do not use MULTI–type READ statements, that means
each time a new primary input file record is read. (For a discussion of logical input
records, see the READ statement Notes on page 520.)

There are two forms of the COMPUTE statement. A simple COMPUTE statement contains a
single computational expression. Each time a new logical input record is assembled, the
specified computation is performed and a value is assigned to the computed field.

A conditional COMPUTE statement may contain multiple computational expressions. It will
also contain one or more conditional expressions. Each time a new logical input record is
assembled, one of the following actions will be taken:

� a computational expression from one of the ASSIGN parms will be used to assign
a value to the computed field, or

� the current value of the computed field will be retained, or

� a default value will be assigned to the computed field.

COMPUTE

446 Report Writer Reference Manual

The action taken depends on the conditions contained in the conditional expressions in the
WHEN parms. See Note 1 on page 453 for more information on Conditional COMPUTE

statements.

Note 2 on page 454 discusses the data type of computed fields.

A description of the size of character compute fields, and of the number of decimal digits
in numeric and time compute fields appears under the "nnn" parm (page 450.)

fieldname[(parms)]
Specifies the name of the field being created, and optionally specifies certain attributes
for it. The fieldname must not have been previously used (in either a FIELD statement for
the same file, or in a previous COMPUTE statement.) You may name the new field
anything you like, within the rules governing field names given on page 388.

No parms are required with the fieldname. If desired, specify one or more parms by
placing them in parentheses immediately after the fieldname. (Do not leave a space
between the field name and the open parenthesis). Separate the parms with a comma
and/or one or more blanks.

EXAMPLE :

&20387(��6(0,²$118$/²6$/(6�� ��6$/(6²475����6$/(6²475�

The above example creates a new field named SEMI–ANNUAL–SALES. It will be a numeric
field, since the first operand in the computational expression (SALES–QTR1) is a numeric
field.

computational–expression
Used in the simple form of the COMPUTE statement. Specifies how to compute the value
to assign to the field. The syntax for computational expressions is shown on page 410.
A lesson on writing computational expressions begins on page 30.

EXAMPLE :

See the examples beginning on page 451.

ACCUM/NOACCUM
This parm is valid only for numeric and time fields. It specifies whether the field should
be accumulated or not when it appears as a column in a report. Fields that are
accumulated will appear in the totals line, as well as in any other statistics lines that have
been requested (such as the average line, the maximum line, etc.) Fields that are not
accumulated will not appear in the totals and statistics lines.

By default, Report Writer accumulates all numeric fields listed in the COLUMNS

statement, with one exception. Numeric fields that are displayed using a PICTURE which
contains special characters are not accumulated. (Special characters include such things
as parentheses, imbedded dashes, asterisks, etc.) By default, numeric fields displayed
with such a PICTURE are not accumulated and therefore do not appear in the total line
and other statistical lines.

COMPUTE

Chapter 9. Control Statement Syntax 447

By default, time fields are not accumulated. Specify ACCUM if you do want to see totals
for a time field. Such might be the case for time fields that contain durations, as
opposed to times of day.

Any ACCUM or NOACCUM parm specified here can be overridden directly in the COLUMNS

statement.

The use of the ACCUM and NOACCUM parms is discussed on page 144.

EXAMPLE :

&20387(��$9(5$*(²6$/(6�12$&&80�� �<($5/<²6$/(6����

The above example specifies that the AVERAGE–ANNUAL–SALES field will not be
accumulated when it appears as a column in a report. Therefore, it will not receive Grand
Totals, or totals at control breaks.

&20387(��'85$7,21�$&&80�� �(1'²7,0(�²�67$57²7,0(

The above example specifies that the DURATION field should be accumulated. Therefore,
a total value for it will appear in the total lines at control breaks and in the Grand Total
line.

ASSIGN(computational–expression)
Used in the conditional form of the COMPUTE statement. Specifies how to compute a
value which may be assigned to the compute field. If more than one ASSIGN expressions
are used in the COMPUTE statement, they must all compute a result of the same data type.
The syntax for computational expressions is shown on page 410. A lesson on writing
computational expressions begins on page 30.

For more details on how conditional COMPUTE statements work, see Note 1 on page 453.

Note: no space is allowed between the word ASSIGN and the parenthesis that
follows it.

EXAMPLE :

See the examples beginning on page 451.

displa y–format
Specifies the default format to be used when displaying this field in a report. A complete
list of display formats is found in Appendix B, "Display Formats" beginning on page
550.

The display–format specified in the COMPUTE statement tells Report Writer the default
format to use when displaying the field anywhere in a report –– in the titles, the main
report lines, the break headings and footings, etc. Any display format specified here can,
however, always be overridden by using a different display format parm directly in a
COLUMNS or TITLE statement, etc.

If this parm is not specified, Report Writer uses a default display format when printing
the field in a report. Default display formats are shown in the table on page 559.

COMPUTE

448 Report Writer Reference Manual

Note: specifying a PC file option (LOTUS, for example) causes any display
format specified in the COMPUTE statement to be overridden (with a display
format appropriate for the desired PC program.)

EXAMPLE :

&20387(��$9(5$*(²6$/(6�3,&
�������
�� �<($5/<²6$/(6����

The above example specifies that the AVERAGE–SALES field should be displayed using
the PICTURE "$$$,$$9" whenever it is printed in the report. This picture uses a floating
dollar sign, and does not display any decimal digits.

DIVTOTS
This parm is valid only for certain types of numeric computations. It specifies how the
"total" value for this field should be computed at control breaks and at the Grand Totals
line. By default, a field's total is merely the sum of all the individual values for the field.
For percentages and ratios, such a total is often meaningless. Instead, what is desired is
that the percentage or ratio be computed for the entire control group (or for the entire
report, at the Grand Total.) The DIVTOTS ("divide totals") parm tells Report Writer to
compute the field's total by performing just such a group–wide division. The use of the
DIVTOTS parm is discussed beginning on page 187.

DIVTOTS may only be specified for COMPUTE statements that meet all of the following
requirements:

� At its highest level, the expression must consist of a single division
operation. The numerator and/or denominator themselves, however, can be
expressions within parentheses. All of the following statements qualify as
consisting of a "single high level division":

&20387(��$� �%���&
&20387(��$� �%����&���'���(�
&20387(��$� ��%���&�����'���(�
&20387(��$� ��%�&�����'�(�

� Neither the numerator nor the denominator may be literal values. Each must
be either a field or an expression. That is, DIVTOTS would not be allowed
for the following:

&20387(��$� �%������

Computations involving division by a literal value (like the one above) are
not ratios or percentages. A regular total for such fields is more appropriate
at control breaks. If you need a literal in a DIVTOTS COMPUTE statement for
some reason, assign the literal value to a field and then refer to that field in
the COMPUTE statement:

&20387(��+81'5(' ����
&20387(��$�',97276�� �%���+81'5('

� Only simple COMPUTE statements may use the DIVTOTS parm. It is not
allowed in conditional COMPUTE statements. (Conditional COMPUTE

statements are those that use the WHEN and ASSIGN parms to assign
different values to a field.) However, either or both of the numerator and
the denominator can be COMPUTE fields that may have been computed with
conditional COMPUTE statements.

COMPUTE

Chapter 9. Control Statement Syntax 449

EXAMPLE :

See the example on page 453.

ELSE
Used in the conditional form of the COMPUTE statement. Indicates the action to take if
none of the preceding WHEN parms are "true." When the ELSE parm is followed by an
ASSIGN parm, the value from that ASSIGN parm is assigned to the compute field. When
the ELSE parm is followed by a RETAIN parm, the value of the compute field is not
changed–– it retains whatever value it has. If present, the ELSE parm and its associated
ASSIGN/RETAIN parm must be the last items in the COMPUTE statement.

For more details on how conditional COMPUTE statements work, see Note 1 on page 453.

EXAMPLE :

See the examples beginning on page 451.

'headin g1headin g2...'
Specifies the column heading lines to use for this field when it appears as a column in a
report or PC file. Enclose the column heading in either apostrophes or quotation marks.
If you need to use that same character (an apostrophe or quotation mark) within the text,
use two of those characters for each character desired.

Use a vertical bar () to separate the column heading text into separate lines. It is not
necessary to add your own "padding" spaces in order to make the column heading texts
stack neatly in your report. Report Writer automatically centers each part of the column
heading for you.

Note: you may use the HDGSEP parm of the OPTION statement to select a
character other than the vertical bar () to use as the separator character for
column heading texts.

If no column headings are specified, Report Writer uses the field name itself as the
column heading. The name will be broken apart at each dash or underscore, with each
part of the name going onto a separate heading line.

Any column headings specified here can be overridden by using a column heading parm
directly in the COLUMNS statement.

See page 127 for more information on column headings.

EXAMPLE :

&20387(��$9(5$*(²6$/(6�
$9(5$*(118/6$/(6
�� �<($5/<²6$/(6����

The above example specifies that "$9(5$*(�118/�6$/(6" should be used as the column
heading when this field appears in a report. The vertical bars specify that each word will
go on a separate column heading line.

COMPUTE

450 Report Writer Reference Manual

nnn
This parm is valid only for character, numeric and time compute fields.Forcharacter
fields, this numeric parm specifies thesizeof the character field being created. If this
parm is omitted, the default size of the field will be the sum of the size of all operands
in the computational expression. If there are more than one computational expressions
in the statement, the size of thelargestpossible result is used. If an explicit size parm
is specified and it is not the same as this default size, the computed result will either be
truncated or right–padded with blanks to create a field of the desired size. The
maximum size of a character field is 32K.

EXAMPLE :

COMPUTE: SHORT–NAME(5) = LAST–NAME

The above example creates a character field that is only 5 bytes long. TheSHORT-NAME

field will contain the first five bytes of theLAST–NAME field. If the "5" parm had been
omitted, theSHORT–NAME field would have been the same size as the only operand in
the expression–– theLAST–NAME field.

For numeric and time fields, this numeric parm specifies how manydecimal digits
should be retained during the computation. The final result, as well as each
intermediate result obtained during the computation, is rounded to this precision. If this
parm is omitted, Report Writer chooses a default number of decimal places to keep,
based on the operands and operations involved in the computational expression(s). The
maximum number of digits (including decimal digits) that Report Writer maintains for
numeric fields is 31.

EXAMPLES :

COMPUTE: AVERAGE–SALES(0) = YEARLY–SALES / 4

The above example specifies that theAVERAGE–SALES field should not contain any
decimal digits. If the "0" parm had not been specified, some decimal digits would have
been retained in the result.

COMPUTE: PERCENT–CHANGE(4) = (NEW – OLD) / OLD * 100
COLUMNS: PERCENT–CHANGE(P'ZZ9.9')

The above example specifies that 4 decimal digits should be maintained while
computing the value ofPERCENT–CHANGE. In theCOLUMNS statement, however, we
specified that only 1 decimal digit should actually be displayed for that field. If we had
specified 1 decimal digit in theCOMPUTE statement, the computed result would have
been less precise, since each intermediate result would have been rounded down to only
1 decimal digit.

COMPUTE: DURATION(1) = END–TIME – START–TIME

The above example specifies that theDURATION field contain 1 decimal digit. If the "1"
parm had not been specified, the result would have had the same number of decimal
digits as the operands.

Also see the examples beginning on page 451.

COMPUTE

Chapter 9. Control Statement Syntax 451

RETAIN
Used in the conditional form of the COMPUTE statement. When used, this keyword must
be the last item in the COMPUTE statement and must be preceded by the keyword ELSE.
It specifies that if none of the WHEN parm conditional expressions are true, the COMPUTE

field should retain its current value (rather than be assigned a default value.) For more
details on how conditional COMPUTE statements work, see Note 1 on page 453. For a
speed–up tip relating to the RETAIN parm, see page 607.

WHEN(conditional–expression)
Used in the conditional form of the COMPUTE statement. Specifies a conditional
expression to be evaluated before assigning a value to the field being created. The WHEN

parms are evaluated in the order in which they appear in the COMPUTE statement.
Evaluation of WHEN parms stops as soon as the first WHEN parm is found whose
conditional expression is "true". The value specified in the subsequent ASSIGN parm is
assigned to the computed field.

The syntax for conditional expressions is shown on page 399. A lesson on writing
conditional expressions appears on page 24. For more details on how conditional
COMPUTE statements work, see Note 1 on page 453.

Note: no space is allowed between the word WHEN and the parenthesis that
follows it.

Note: if a field containing invalid data is encountered while evaluating the
conditional expression in a WHEN parm, the entire WHEN expression will be
considered false. The associated ASSIGN parm will not be used.

EXAMPLE :

See the examples beginning on page 451.

EXAMPLES
See page 413 for additional examples of COMPUTE statements.

Case 1. Creating a numeric field with a simple COMPUTE statement.

&20387(���%2186� �727$/²6$/(6�����

The above example creates a new field named BONUS. Its value will be computed by
multiplying the TOTAL–SALES field by .08.

Case 2. Creating a numeric field, based on conditions.

&20387(��%2186���� �:+(1�+,5(²'$7(��������������$66,*1�727$/²6$/(6������
��������������������:+(1�+,5(²'$7(��������������$66,*1�727$/²6$/(6������
��������������������(/6(������������������������$66,*1�727$/²6$/(6������

The above example creates a new field named BONUS, which will have two decimal
digits. The value assigned to this new field depends on conditions involving the

COMPUTE

452 Report Writer Reference Manual

HIRE-DATE field. When the hire date is before January 1, 1980, the bonus is computed
as 8 percent of the total sales (TOTAL–SALES * .08). If the hire date is before
January 1, 1985, then the bonus is computed based on 7 percent. Otherwise, if neither
of the two preceding conditions is true, the bonus is computed using 5 percent of
total sales.

Case 3. Creating a character field, based on conditions.

&20387(��67$7(²1$0(� �:+(1�67$7(� �
&$
���$66,*1�
&$/,)251,$
�
����������������������:+(1�67$7(� �
$=
���$66,*1�
$5,=21$
�
����������������������:+(1�67$7(� �
19
���$66,*1�
1(9$'$
�
����������������������(/6(����������������$66,*1�
"""""
�

The above example creates a new field called STATE–NAME. It will be a 10 byte character
field, since "&$/,)251,$" is the largest possible value that may be assigned to it. The
value assigned to the STATE–NAME field depends on conditions involving the value of the
STATE field. If the STATE field contains some value other than those listed in the three
WHEN parms, the STATE–NAME field will be assigned a value of 5 question marks. Use
this technique to perform "table lookups."

Case 4. Creating a date field, based on conditions.

&20387(��67$57²'$7(� �:+(1�+,5(²'$7(�!������������$66,*1�+,5(²'$7(�
����������������������(/6(������������������������$66,*1����������

The above example creates a new date field called START–DATE. Its value will either be
the value of the HIRE–DATE field (if the hire date is after January 1, 1990), or else it will
be the literal date 1/1/1990.

Case 5. Creating a bit field, based on conditions.

&20387(��9,3� �:+(1�727$/²6$/(6�!�������25�+,5(²'$7(�������������$66,*1��21�
���������������(/6(��$66,*1��2))�

The above example creates a new bit field named VIP. The value of the field will be 21
if the TOTAL–SALES field is greater than 50000, or if the HIRE–DATE field is earlier than
1/1/1985. Otherwise, the VIP field will be 2)). (The ELSE ASSIGN pair in this example
are not actually necessary, since 2)) is the default value assigned to bit fields when none
of the WHEN parms is true.)

Case 6. Creating a character field using a hexadecimal literal

&20387(��0$67(5²),/(².(<� �;
))
���(03/²180���;
����

The above example creates a new character field named MASTER–FILE–KEY. It will be a
6 byte field, consisting of 1 byte of "high–values" (;
))
), followed by the contents of the
3–byte character field EMPL–NUM, followed by 2 bytes of "low values" (hex zeros).

Case 7. Creating a field using a built–in function.

&20387(��%,**(67²475� ��0$;�6$/(6²475��6$/(6²475��6$/(6²475��6$/(6²475��

COMPUTE

Chapter 9. Control Statement Syntax 453

The above example creates a new numeric field named BIGGEST–QTR. Its value will be
the greater of the four quarterly sales values. A complete list of built–in functions that
can be used in the COMPUTE statement is found in Appendix D, "Built-In Functions."

Case 8. Creating a field based on the contents of a bit field.

&20387(��%2186� �:+(1�)8//²7,0(���$66,*1�727$/²6$/(6������
�����������������(/6(�������������$66,*1�727$/²6$/(6������

The above example creates a new numeric field named BONUS. Its value will depend on
the contents of the FULL–TIME bit field. When the FULL–TIME bit is "on", the bonus is
computed as 10 percent of TOTAL–SALES. Otherwise (when the bit field is "off"), the
bonus is computed as 7 percent of TOTAL–SALES.

Case 9. Using the DIVTOTS("divide totals") parm with a percentage computation.

&20387(��3(5&(17²7$;�',97276�� �7$;���$02817

The above example computes the PERCENT–TAX field by dividing the TAX field by the
AMOUNT field. If the DIVTOTS parm had not been specified, the sum of all of the
PERCENT–TAX fields would have printed in all total lines. The DIVTOTS parm tells Report
Writer to use the result of a group–wide division as the total value instead of such a sum.
At control breaks and at Grand Totals time, Report Writer will now divide the total value
of TAX by the total value of AMOUNT. This group–wide division will then be used instead
of the normal total for the PERCENT–TAX field.

NOTES

Note 1. Conditional COMPUTE Statements

The value assigned to the result field is determined by evaluating each of the WHEN

expressions, in the same order in which they are written. As soon as a WHEN expression is
found that is "true", the corresponding ASSIGN expression is calculated and the field is
assigned this value. If none of the WHEN expressions are "true", the field is assigned the
value of the ELSE ASSIGN expression, if any. Or, if ELSE RETAIN was specified (and none of
the WHEN expressions was true) the compute field will retain the value it had for the previous
logical input record. If none of the WHEN expressions are "true", and no ELSE ASSIGN/RETAIN

parm is present, the field will be set to a default value. The default value depends on the type
of field being defined, as shown in the following table:

FIELD TYPE DEFAULT VALUE

Character Blanks
Numeric Zero
Date Zeros (00/00/0000)
Time Zeros (00:00:00)
Bit OFF

COMPUTE

454 Report Writer Reference Manual

Note 2. Data T ype of the COMPUTE Field

In general, the data type of the COMPUTE field will be the data type of the first operand found
in the first (or only) computational expression.

There is one exception to this rule and it involves time fields. A computational expression
for a time value may contain a mixture of time and numeric operands. A COMPUTE field will
be considered a time field if any of the computational expressions use a time operand,
regardless of the data type of the first operand in the expression. This allows you to begin
time–type computational expressions with a numeric operand.

COPY

Chapter 9. Control Statement Syntax 455

COPY Statement

PURPOSE

Specifies that control statements stored in a dataset should be processed at this point. This
is useful for groups of control statements that are used in many different jobs.

Also use this statement to copy Cobol or Assembler record layouts from their respective
libraries.

You are allowed to have additional COPY statements imbedded among the statements that are
being copied. This nesting of COPY statements is allowed to any level.

FEATURES
Use the COPY statement to:

� specify where the control statements to be copied are located

� specify whether or not to list the copied control statements in the control listing

LEARNING MORE

The complete syntax of the COPY statement is shown on the following pages. In addition, the
following parts of the manual relate to the COPY statement:

� the Report Writer Copy Library is discussed beginning on page 301

� the MVS JCL aspects of the copy library are discussed beginning on page 366

� the VSE JCL aspects of the copy library are discussed beginning on page 376

� the use of the COPY statement in conjunction with Cobol and Assembler record
layouts is discussed on page 325

COPY

456 Report Writer Reference Manual

SYNTAX

COPY STATEMENT SYNTAX

&23<� FRS\QDPH�''1$0(�GGQDPH��
> /,67�<(6�12� @�
> 127$/,$6 @�
> 3'6''1�GGQDPH� @�
> 68%/,%�
OLEU�VXEOLE
� @�

Standard Alternate
Spelling Spellings
''1$0(''1
12 1
<(6 <

Either a copyname parm or a DDNAME parm is required. All other parms are optional. If
present, the copyname parm must be the first parm in the COPY statement. Other parms may
appear in any order.

cop yname
Identifies a member to be copied from a PDS (MVS) or from a Librarian sublibrary (VSE).
If present, copyname must be the first parm in the COPY statement. The copyname parm
can be any of the following:

� a member name.
Example: &23<��6$/(6

� a member name and a member type (VSE only).
Example: &23<��6$/(6�6:

� an alias name (under certain circumstances).
Example: &23<��6$/(6²),/(

A member name is a 1– to 8–byte alphanumeric name that begins with a non–numeric
character. The special characters #, $, and @ are also allowed in member names.

For MVS, the member will be copied from a PDS identified by a DD statement in the JCL.

Report Writer will use the DD statement whose DDNAME is:

� the one named in the PDSDDN parm of the COPY statement, if any, or

� "COBLIB", if within the scope of a COBOL statement, or

� "ASMLIB", if within the scope of an ASM statement, or

� "SWCOPY" otherwise

For VSE, the member will be copied from a Librarian sublibrary. Report Writer will use
the sublibrary whose name is:

� the one named in the SUBLIB parm of the COPY statement, if any, or

COPY

Chapter 9. Control Statement Syntax 457

� the one named in an OPTIONS statement COBLIB parm, if within the scope of
a COBOL statement and if such a COBLIB parm was found, or

� the one named in an OPTIONS statement ASMLIB parm, if within the scope of
an ASM statement and if such an ASMLIB parm was found, or

� the one named in an OPTIONS statement SUBLIB parm

(Under VSE, if a sublibrary has not been named in any of the preceding ways, an error
message will print and no copy will be performed.)

For VSE only, you may also append a member type after the member name, separated
by a dot. (For example: SALES.SW). If no member type is specified in this way, the
member type used for the copy will be:

� "C", if within the scope of a COBOL statement, or

� "A", if within the scope of an ASM statement, or

� the member type named in an OPTIONS statement MEMTYPE parm, if any, or

� "SPECTWTR" otherwise

Under both MVS and VSE, you may use an alias name (rather than the actual member
name) under certain circumstances. Alias names may be up to 70 characters long and
must conform to the Report Writer naming conventions for file names. Aliases for
library members are assigned in a special member in the standard Report Writer Copy
Library. Under MVS, this is the member named SWALIAS in the PDS pointed to by the
SWCOPY DD. Under VSE, this is the member named SWALIAS.SPECTWTR in the
sublibrary named in the SUBLIB parm of an OPTION statement. The use of aliases is
discussed beginning on page 308.

Alias checking is not performed (and therefore an alias may not be used) in each of the
following cases:

� When the PDSDDN, SUBLIB or NOTALIAS parm is used in the COPY statement.

� When a member type is specified in the copyname parm.

� When the COPY statement appears within the scope of a COBOL or
ASM statement.

EXAMPLES :

&23<���6$/(6

The above example copies the member named SALES from a library. The earlier
discussion explains how the library to use is determined.

&23<���6$/(6²),/(

The above example also specifies that a member from a PDS or Sublibary should be
copied. Since "SALES–FILE" itself is not valid as a member name, that name must be
defined as an alias in the SWALIAS member of the copy library. As shown in Appendix
F, "Sample File Definitions," "SALES–FILE" is an alias for the member name "SALES".
Therefore, the above statement would cause the control statements in the copy library
member named SALES to be copied.

COPY

458 Report Writer Reference Manual

DDNAME(ddname)
MVS only. Specifies the DD name of a sequential input file that is to be copied. This
feature is useful when the control statements that you want to copy are not in a PDS. This
parm and the copyname parm are mutually exclusive.

One use of the DDNAME parm is to copy datasets that are stored in proprietary libraries
that Report Writer does not access directly (such as PANVALET or MVS's LIBRARIAN.) Add
a job step ahead of Report Writer to copy the desired proprietary data to a temporary
sequential dataset. Then have Report Writer copy that sequential dataset by using the
DDNAME parm.

EXAMPLE :

&23<���''1$0(�7(03''�

The above example specifies that the control statements to be copied are located in a
sequential dataset identified by the TEMPDD DD in the JCL.

LIST(YES/NO)
The LIST parm specifies whether the copied control statements should be listed in the
control listing. If the LIST parm is not specified, the default is not to list the copied
statements.

Note: if an error is detected in any of the copied control statements, that
statement will be listed, along with the error message, regardless of the value of
this parm.

EXAMPLE :

&23<���6$/(6��/,67�<(6�

The above example specifies that the control statements copied from the SALES member
should be listed in the control listing.

NOTALIAS
Specifies that the copyname parm is not an alias. When this parm is present, no alias
checking is performed and the copyname must be the name of the member to be copied.
Use this parm if the name of the member you want to copy also happens to be the alias
name of a different member.

EXAMPLE :

&23<���6$/(6��127$/,$6

The above example specifies that the control statements should be copied from the
member named SALES. This will be done even if SALES has been defined as an alias for
some other member.

PDSDDN(ddname)
MVS only. The PDSDDN parm specifies the DDNAME of a DD statement in the JCL that
points to the PDS containing the member to be copied. This parm is valid only in
conjunction with the copyname parm. When PDSDDN is used, the copyname must specify
a member name rather than an alias. (No alias checking is performed on the copyname.)

COPY

Chapter 9. Control Statement Syntax 459

EXAMPLE :

&23<���6$/(6��3'6''1�0</,%�

The above example specifies that the control statements to be copied are in the PDS

identified by the MYLIB DD in the JCL. The member copied is named SALES.

SUBLIB('lib.sublib')
VSE only. The SUBLIB parm specifies the name of the Librarian sublibrary containing
the member to be copied. This parm is valid only in conjunction with the copyname
parm. When SUBLIB is used, the copyname must specify a member name (and optionally
a member type) rather than an alias. (No alias checking is performed on the copyname.)

Note: be sure that your JCL contains any DLBL and EXTENT statements needed
to define the sublibrary named in this parm.

EXAMPLE :

&23<���6$/(6�7(67��68%/,%�
7(67�0</,%
�

The above example specifies that the control statements to be copied are in the sublibrary
named TEST.MYLIB. The member copied is named SALES, and the member type is TEST.

FIELD

460 Report Writer Reference Manual

FIELD Statement

PURPOSE
Defines an input field to Report Writer. This statement provides certain essential information
about a field, such as where it is located in a record, how long it is, etc. Before a field can be
referred to in any other control statement, it must first be defined using the FIELD statement.

You can also use the FIELD statement to specify various display options to be used when the
field appears in a report or PC file. These options include: the columns headings to use; the
display format to use; whether to include the field in Grand Totals, etc.

You may have as many FIELD statements as you like. These statements are normally kept in
the Report Writer Copy Library.

FEATURES
Use the FIELD statement to:

� define where a field is located within a record

� define the type of data contained within the field

� define the default column headings to be used whenever the field is printed in
a report or PC file

� define the default display format to be used whenever the field is printed in a
report

� define whether or not a numeric field should be accumulated, and therefore
appear in total lines (and other statistical lines)

� define the texts that should be used in a report to indicate whether a bit field is
ON or OFF

� define how to use a data exit to obtain a field's value

LEARNING MORE

The complete syntax of the FIELD statement is shown on the following pages. In addition, the
following parts of the manual relate to the FIELD statement:

� how to write FIELD statements is discussed beginning on page 275.

FIELD

Chapter 9. Control Statement Syntax 461

SYNTAX

FIELD STATEMENT SYNTAX

),(/'�� ILHOGQDPH
> $&&80�12$&&80 @
> %,7�Q� @
> &2/801�QQQQQ�H[SU���',63�QQQQQ�H[SU�� @
> '(&,0$/6�QQ��� @
> '(6&5,37,21�
WH[W
� @
> ';3$50�
WH[W
� @
> ';352*�
SURJUDP
� @
> ';5(7'(&�QQ� @
> ';5(7/(1�QQQQQ� @
>),/(�ILOHQDPH�� @
>)250$7�GLVSOD\�IRUPDW� @
> +($',1*�
KHDGLQJ� KHDGLQJ� KHDGLQJ����
� @
> /(1*7+�QQQQQ� @
> 2))6(7�QXPHULF²H[SUHVVLRQ� @
> 2))7(;7�
WH[W
� @
> 217(;7�
WH[W
� @
> 7<3(�GDWDW\SH�&+$5� @

Standard Alternate
Spelling Spellings
$&&80 $&&
&2/801 &2/�
'(&,0$/6 '(&,0$/��'(&
'(6&5,37,21 '(6&
',63 ',63/$&(0(17
';5(7/(1 ';5(7/*7+
),(/')/'
)250$7)07
+($',1* +($',1*6�+($'
/(1*7+ /*7+��/(1
12$&&80 12$&&
2))7(;7 2))
217(;7 21
7<3(7<3

The fieldname is required in a FIELD statement, and must be the first item after the statement
prefix. After that, one or more other parms will be required, depending on the type of field
being defined. Those parms may appear in any order.

fieldname
Specifies the name of the field being defined. All other control statements will use this
name when referring to this field. You may assign any name you like, within the rules
governing field names given on page 388.

EXAMPLE :

),(/'���/$67²1$0(��&2/801�����/(1*7+����

The above example defines a field named LAST–NAME.

FIELD

462 Report Writer Reference Manual

ACCUM/NOACCUM
This parm is valid only for numeric and time fields. Specifies whether a field should
be accumulated or not when it appears as a column in a report. Fields that are
accumulated will appear in the totals line, as well as in any other statistics lines that have
been requested (such as the average line, the maximum line, etc.) Fields that are not
accumulated will not appear in the totals and statistics lines.

By default, Report Writer accumulates all numeric fields listed in the COLUMNS

statement, with one exception. Numeric fields that are displayed using a PICTURE which
contains special characters are not accumulated. (Special characters include such things
as parentheses, imbedded dashes, asterisks, etc.) By default, numeric fields displayed
with such a PICTURE are not accumulated and therefore do not appear in the total line
and other statistical lines.

By default, time fields are not accumulated. Specify ACCUM if you do want to see totals
for a time field. This might be desired for time fields that contain durations, as opposed
to times of day.

Any ACCUM or NOACCUM parm specified here can be overridden directly in the COLUMNS

statement.

The use of the ACCUM and NOACCUM parms is discussed beginning on page 144.

EXAMPLES :

),(/'��'(37²180�&2/801�����/(1*7+����7<3(�180��12$&&80

The above example defines a numeric field called DEPT–NUM. When this field appears
as a column in a report, it will not be accumulated. Therefore, the column will not appear
in the Grand Totals line, or in control break totals.

),(/'��7,0(²21²3+21(�&2/801�����/(1*7+����7<3(�6(&6��'(&,0$/6����$&&80

The above example defines a time field called TIME–ON–PHONE. Since this time field
represents a length of time (as opposed to a time of day), it is appropriate to total this
field. The ACCUM parm tells Report Writer to accumulate this field by default. Therefore,
it will be included in total and statistical lines.

BIT(n)
This parm is valid only for bit type fields. Identifies the specific bit (within a byte) that
is being defined. The bits are numbered from 1 to 8, starting with the leftmost (high
order) bit. If this parm is present, you do not need to specify the TYPE parm. TYPE(BIT)

will be assumed. The use of this parm is discussed beginning on page 289.

EXAMPLE :

),(/'��3$57²7,0(��&2/801������%,7���

The above example defines a bit field named PART–TIME. The bit is the second bit from
the left (the ;
��
 bit), in the 42nd byte of the record. Notice that the TYPE and LENGTH

parms are not needed when defining a bit type field. Also be aware that the current
location counter is not incremented after a bit field is defined.

FIELD

Chapter 9. Control Statement Syntax 463

COLUMN(nnnnn/expr/*)/
DISP(nnnnn/expr/*)

Specifies where the field begins within the record. If you use the COLUMN parm, the
bytes in the record are numbered beginning with 1. If you use the DISP parm, the bytes
in the record are numbered beginning with 0. For example, both of the following
statements define the LAST–NAME field as beginning in the 4th byte of the record:

),(/'���/$67²1$0(��&2/801�����/(1*7+����
),(/'���/$67²1$0(��',63�������/(1*7+����

Note: when reading variable–length records, Report Writer ignores the 4-byte
record descriptor word (RDW) at the beginning of each record. Thus, column 1
always refers to the first byte of actual user data in a record. It does not refer to
the first byte of the RDW, if present. See the KEEPRDW option (in the FILE,

INPUT, READ and OPTIONS statements) if you do want to define fields within the
RDW.

Instead of using actual numbers within these parms, you may use an expression. (When
using expressions, it makes no difference whether you use the COLUMN or the DISP parm,)
An expression consists of another field name or an asterisk, optionally followed by a
plus or minus sign and a number:

&2/801��ILHOGQDPH����>���²��QQQQQ�@����
',63����ILHOGQDPH����>���²��QQQQQ�@����

If a field name is used, that field's starting byte in the record is used as the base of the
expression. If an asterisk is used, the "default location" in the record is used as the base
of the expression. (The default location is defined as the first byte after the previously
defined field.) Following the base, the expression can optionally contain a number to add
to or subtract from that base. The result is then used as the field's starting position in the
record. For example:

),(/'���+,5(²'$7(��&2/801�/$67²1$0(������

The above example specifies that the HIRE–DATE field begins 30 bytes after the beginning
of the LAST–NAME field. If the LAST–NAME field began in column 4 (displacement 3), then
the HIRE–DATE field will begin in column 34 (displacement 33). Here is another example:

),(/'���+,5(²'$7(��&2/801���������7<3(�<<00''�
),(/'���+,5(²''����&2/801��²�����/(1*7+���

The first statement above defines HIRE–DATE as a 6 byte date field in the format YYMMDD.

The second statement defines a field which redefines the last two bytes of the previous
field. The second field starts two bytes before the current position in the record. This
field, named HIRE–DD, is just a two byte character field which contains the DD portion of
the HIRE–DATE field.

Note: blanks are required around any minus sign used in these parms (to avoid
ambiguity with dashes used within fieldnames.) Blanks are optional around the
plus sign.

If neither COLUMN nor DISP is specified for a field, the default is to use the "default
position" in the record. In other words, the default is to assume that COLUMN(*) (or
DISP(*)) was specified.

The use of the COLUMN and DISP parms is discussed beginning on page 292.

FIELD

464 Report Writer Reference Manual

DECIMALS(nn/0)
This parm is valid only for numeric and time fields. Specifies how many decimal digits
are contained within the data in the record. If this parm is omitted, the data is assumed
to contain zero decimal digits.

EXAMPLES :

),(/'��6$/$5<�&2/801�����/(1*7+����7<3(�3$&.('��'(&,0$/6���

The above example defines a numeric field named SALARY. There are two decimal digits
in this field's data. Thus, if the value in a record is ;
�������&
, the SALARY value would
be 1234.56.

),(/'��7,0(²21²3+21(�&2/801�����/(1*7+����7<3(�6(&6��'(&,0$/6���

The above example defines a time field named TIME–ON–PHONE. It is a 4–byte field
containing a time expressed as a number of seconds. The number of seconds includes 1
decimal digit. Thus, if the value in a record is &
����
, the TIME–ON–PHONE value would
be 12.3 seconds (����������) .

DESCRIPTION('text')
You may specify a short free format description of the field in this parm. This
information will be printed along with other information about the field in data dictionary
listings.

EXAMPLE :

),(/'� +,5(²'$7(��&2/801�����7<3(�<<00''�
'(6&�
'$7(�(03/2<((�:$6�),567�+,5('
�

When the HIRE–DATE field is listed data dictionary reports, the description shown above
will be included.

DXPARM('text')
This parm is valid only for fields whose TYPE is a data exit (NUMEXIT, for example.)
Anytime a user data exit program is called by Report Writer, the text specified in this
parm is passed to the exit program. Typically this text is used to tell the exit program
what function to perform. The use of this parm is discussed in the section beginning on
page 297.

EXAMPLE :

See the example below under the DXPROG parm.

DXPROG('pro gram')
This parm is valid only for fields whose TYPE is a data exit (NUMEXIT, for example.)
Specifies the name of the load module (MVS) or phase (VSE) that Report Writer will call
in order to obtain the field's value. The use of this parm is discussed in the section
beginning on page 297.

EXAMPLE :

),(/'� '(&5<37('²1$0(��7<3(�&+$5(;,7���&2/801������/(1*7+����
';352*�
'(&5<3*0
�
';3$50�
'(&5<37�1$0(
�
';5(7/(1����

FIELD

Chapter 9. Control Statement Syntax 465

The above example defines a character field named DECRYPTED–NAME. The contents of
this field do not exist within the record itself, but can be created by an exit program
named DECRYPGM. (This imaginary program takes a 15 byte encrypted value and
decrypts it into a readable 20 byte name). The DECRYPGM program will be passed the
15 bytes of data beginning at column 29 in the record. It will also be given the contents
of the parm ("'(&5<37�1$0(") to tell it what function it should perform. The exit program
will then perform its decryption logic and return a 20 byte value to be used as the value
for the DECRYPTED–NAME field.

DXRETDEC(nn)
This parm is required for all fields whose TYPE is NUMEXIT or TIMEEXIT, and is not
allowed for any other type of field. This parm tells Report Writer how many decimal
digits there will be in the numeric or time value returned by the data exit for this field.
For any kind of data exit field, the FIELD statement's DECIMALS parm value (if any) is
simply passed to the data exit (which may or may not choose to make any use it). The
DXRETDEC parm tells how many decimal digits to expect in the value passed back from
the exit. Report Writer needs to know how many decimal digits have been returned so
that it can correctly format the value (including the decimal point) when printing this
field in a report. The use of this parm is discussed in the section beginning on page 297.

EXAMPLE :

),(/'��/$67²<($5²6$/(6��7<3(�180(;,7�
�������&2/801�(03/²180��/(1*7+���
�������';352*�
6$/(/.83
�
�������';3$50�
/$67�<($5
�
�������';5(7'(&���

The above example defines a numeric field named LAST–YEAR–SALES. The contents of
this field do not exist within the record itself, but can be looked up in a special table by
an exit program named SALELKUP. (This program takes a 3 byte employee number and
looks up the sales figure for the year specified in the parm.) The SALELKUP program will
be passed the 3 bytes of data beginning at the EMPL–NUM field in the record. It will also
be given the contents of the parm ("/$67�<($5") to tell it what function it should perform.
The exit program will then return the numeric value to be used for the LAST-YEAR-SALES

field. That value will contain two decimal digits.

DXRETLEN(nnnnn)
This parm is required for all fields whose TYPE is CHAREXIT, and is not allowed for any
other type of field. This parm tells Report Writer the length of the character data that
will be returned by the data exit program for this field. For a CHAREXIT field, the FIELD

statement's LENGTH parm specifies how many bytes of raw data from the input record
should be passed to the data exit. The DXRETLEN parm tells how many bytes will be
passed back from the data exit. Report Writer needs to know how much data will be
passed back from the exit so that it can reserve the correct amount of space when printing
this field in a report. The use of this parm is discussed in the section beginning on page
297.

EXAMPLE :

See the example above under the DXPROG parm.

FIELD

466 Report Writer Reference Manual

FILE(filename/*)
Identifies the file in which the field is found. If this parm is omitted, it is assumed that
the field being defined exists in the most recently defined file. (Files are defined using
the FILE control statement.) This parm is useful for defining fields "out of order". This
might occur if you used a COPY statement to read in the FILE and FIELD statements for
several different files, and you want to go back and define additional fields for an earlier
file.

EXAMPLE :

),(/'��:+2/(²1$0(��&2/801�����/(1*7+������),/(�(03/²),/(�

The above example defines a field named WHOLE–NAME. This field is defined as a field
in the EMPL–FILE file, even if other files have been defined more recently.

FORMAT(display–format)
Specifies the default format to be used when displaying the field in a report. This parm
is used mainly for numeric, date and time fields. Appendix B, "Display Formats" (page
550) contains the complete list of display formats available for each type of data.

If the FORMAT parm is omitted, a default display format will be used to format the field
in a report. The default display formats are listed on page 559.

The FORMAT parm that you specify in the FIELD statement tells Report Writer the default
format to use when displaying the field anywhere in the report–– in the titles, the main
report lines, the break headings and footings, etc. Any display format specified here,
however, can still be overridden by using a different display format parms directly in a
COLUMNS or TITLE statement, etc.

Note: the display–format parm is not allowed for bit fields. Bit fields are
always displayed in a report with either the ONTEXT or OFFTEXT text.

Note: specifying a PC file option (LOTUS, for example) causes any display
format specified in the FIELD statement to be overridden (with a display format
appropriate for the desired PC program.)

Note: fields containing invalid data are normally displayed using a special error
indicator (for example, ,.) This happens regardless of what display
format may have been specified for the field.

EXAMPLES :

),(/'��6$/$5<������&2/801�����/(1*7+����7<3(�3$&.('��)250$7�3,&
�������������
�
),(/'��+,5(²'$7(���&2/801���������������7<3(�<<00''��)250$7�/21*��
),(/'��67$786²%<7(�&2/801�����/(1*7+�����������������)250$7�+(;�

The first example above defines a numeric field named SALARY. When SALARY is
displayed in a report, the PICTURE specified in the FORMAT parm will be used to format
it. It will occupy 13 bytes, will include a floating dollar sign, and will show two decimal
digits.

The second example defines a date field named HIRE–DATE. When this field is displayed
in a report, the date will be formatted in the LONG1 format, with the month name spelled
out completely.

FIELD

Chapter 9. Control Statement Syntax 467

The third example defines a one byte character field named STATUS–BYTE. When this
field is displayed in a report, it will be shown in hexadecimal form.

HEADING('headin g1headin g2headin g3 ...')
Specifies the column heading line(s) to use for this field when it appears in a report or
PC file. Enclose the column heading text in either apostrophes or quotation marks. If
you need to use that same character (an apostrophe or quotation mark) within the text,
use two of those characters for each character desired.

Use the vertical bar () to separate the column heading text into separate lines.

Note: you may use the HDGSEP parm of the OPTION statement to select a
character other than the vertical bar () to use as the separator character for
column heading texts.

If no HEADING parm is specified, Report Writer will use the field name itself as the
column heading. The name will be broken apart at each dash or underscore, with each
part of the name going onto a separate heading line.

Any column headings specified here can be overridden by using an override column
heading parm in the COLUMNS statement.

See page 127 for more information on column headings.

EXAMPLE :

),(/'��/$67²1$0(��+($',1*�
1$0(�2)(03/2<((
���&2/801�����/(1*7+����

The above example defines a field called LAST–NAME. When this field appears as a
column in a report, its column heading will be "1$0(�2)" on the first line, and "(03/2<(("
on the second line.

LENGTH(nnnnn)
Specifies how many bytes the field occupies in the record. Some data types imply a
particular length (for example, FULLWORD and YYMMDD.) For such data types, the
LENGTH parm is not required. For data types that can be of various lengths, the LENGTH

parm is required. The maximum length allowed varies according to the data type of the
field being defined. The tables in Appendix A, "Data Types" (page 539) show the
maximum length allowed for each data type. They also show which data types have a
standard default length.

Note: this parm tells how many bytes a field occupies in the input record. This
is not necessarily equal to the number of digits that a numeric field contains.
Page 279 discusses how to compute a numeric field's length based on how many
digits it has.

EXAMPLES :

),(/'���),567²1$0(�&2/801������/(1*7+����
),(/'���6$/$5<�����&2/801������/(1*7+�����7<3(�3$&.('�

The first example above defines a character field (FIRST–NAME) that occupies 15 bytes
in the record. The second example defines a numeric field (SALARY) which occupies 4
bytes in the record. Since the field is defined as a PACKED type field, it will actually
contain 7 digits.

FIELD

468 Report Writer Reference Manual

OFFSET(numeric–expression)
Some records contain fields that do not always begin at a fixed column within the record.
In such cases there is usually another field in the record that tells the "offset" to the
variably located field. The OFFSET parm is used to define such fields. The OFFSET parm
can contain any numeric expression. Often it simply contains the name of another field
which contains the appropriate offset value. Report Writer computes the value of the
OFFSET parm anew for each input record. It adds that value to the contents of the
COLUMN or DISP parm. This sum is then used as the starting byte of the field. (If no
COLUMN or DISP parm is used, the "current location" value is added to the OFFSET value
to determine the field's starting byte.) For additional information about the OFFSET

parm, see the section beginning on page 295.

The OFFSET parm specified in one FIELD statement remains in effect for all subsequent
FIELD statements until a new OFFSET parm is encountered. Use OFFSET(0) in a FIELD

statement if you later want to define fields without any OFFSET value.

Note: the "current location" value is reset to column 1 (displacement 0) each
time a FIELD statement with an OFFSET parm is encountered.

EXAMPLE :

),(/'��$''5²2))6(7��',63��������7<3(�+$/):25'�
���
),(/'��$''5²/,1(²���/(1*7+������2))6(7�$''5²2))6(7�
),(/'��$''5²/,1(²���/(1*7+����
���

In this example, the input record contains a halfword value named ADDR–OFFSET at
displacement 26. This value is the offset within the record to an "address section" of the
record. The address section consists of two 30–byte address lines. ADDR–LINE–1 is
defined as a 30–byte character field. Since it is defined with an OFFSET parm, the field's
location within the record is determined by adding the value of the ADDR–OFFSET field
to the value of the COLUMN parm. Since no COLUMN (or DISP) parm was specified, the
"current location" value is assumed. However, the "current location" is zero for this field,
since the FIELD statement contains an OFFSET parm. Thus the field is simply located at
the displacement contained in the ADDR–OFFSET field.

ADDR–LINE–2 is another 30–byte field. Again, no COLUMN or DISP parm is present, so the
current location (now equal to displacement 30) is added to the contents of the
ADDR-OFFSET field to derive the starting displacement of this field.

The example above used a single field as the OFFSET value. You are also allowed to use
numeric expressions in the OFFSET parm. For example, to define a field that appears
after an array of variable size, you might use statements similar to this:

),(/'��180²6/276���7<3(�&203²����/(1*7+���
���
),(/'��/$67²),(/'��2))6(7�������180²6/276��������/(1*7+����

OFFTEXT('text')
This parm is valid only for bit type fields. Specifies a text to print in reports for a bit
field when its value is OFF. If omitted, the default is to print the word "127" followed by
the field name itself. The use of this parm is discussed in the section beginning on page
289.

FIELD

Chapter 9. Control Statement Syntax 469

EXAMPLES :

),(/'� 3$57²7,0(��&2/801������%,7���
217(;7�
3$57�7,0(�(03/
���2))7(;7�
)8//�7,0(�(03/
�

The above example defines a bit field named PART–TIME. When this field is printed in
a report, the text "3$57� 7,0(� (03/" will print if the field's value is ON. The text
")8//�7,0(�(03/" will print if the field's value is OFF.

),(/'���'(/(7(²%,7��&2/801�������%,7�����217(;7�
�
���2))7(;7�
�
�

The above example defines a bit field named DELETE–BIT. When this field is printed in
a report, a "�" will print if the field's value is ON, and a "�" will print if the field's value
is OFF.

ONTEXT('text')
This parm is valid only for bit type fields. Specifies a text to print in reports for a bit
field when its value is ON. If omitted, the default is to print the field name itself in the
report. The use of this parm is discussed in the section beginning on page 289.

EXAMPLE :

See the example above under the OFFTEXT parm.

TYPE(datatype/CHAR)
Specifies what type of data the field contains. There are five general categories of data
that Report Writer recognizes: character, numeric, date, time, and bit. However, within
each category there is more than one way that the data can actually be represented in a
record. The TYPE parm specifies exactly how the data is stored in a record. Appendix
A, "Data Types" (page 539) contains the complete list of data types that Report Writer
supports.

If the TYPE parm is omitted, the default data type of CHAR (character) is assumed.
However, there is one exception to this rule. If a BIT parm is present in the FIELD

statement, then the default data type will be BIT.

EXAMPLES :

),(/'� 6$/$5< 7<3(�3$&.('� &2/801���� /(1*7+���
),(/'� +,5(²'$7(7<3(�<<00''� &2/801����
),(/'� 3$57²7,0(7<3(�%,7� &2/801���� %,7���

The first example above defines a numeric field (SALARY) which contains PACKED data.
(Packed data is called COMP–3 in COBOL, and Fixed Decimal in PL/1.)

The second example defines a date field (HIRE–DATE) which contains a date in character
YYMMDD format.

The third example defines a bit field (PART–TIME). The bit is the second bit from the left
(the X'40' bit), in the 42nd byte of the record. In this example, it was not actually
necessary to specify the TYPE parm, since the BIT parm implies a data type of BIT.

FILE

470 Report Writer Reference Manual

FILE Statement

PURPOSE
Defines an input file to Report Writer. Before a file can be used as input for a report or PC
file, it must first be defined using the FILE statement.

This statement by itself does not specify that a file should be used as input for a particular
run. This statement simply defines a filename to Report Writer so that subsequent control
statements can refer to it. After a file has been defined using this statement, an INPUT or
READ statement may be used to request that the file be used as input to a report or PC file.

You may have as many FILE statements as you like. These statements are normally kept
together with FIELD statements in the Report Writer Copy Library.

FEATURES
Use the FILE statement to:

� define the DDNAME or DLBL/TLBL to use when reading a file

� define the type of file (for example, whether it's VSAM)

� define a file's record length

LEARNING MORE

The complete syntax of the FILE statement is shown on the following pages. In addition, the
following parts of the manual relate to the FILE statement:

� how to write FILE statements is discussed beginning on page 269

� using a file that is processed by a user I/O Exit is discussed in Appendix K, “I/O
Exits“ (page 620)

FILE

Chapter 9. Control Statement Syntax 471

SYNTAX

FILE STATEMENT SYNTAX

),/(� ILOHQDPH
>� $775�W\SH��
GOEO�WOEO
�>�6<6QQQ@�>�)�9@��UHFVL]H

����>�EONVL]H@�>�67'/$%(/�12/$%(/@� �96(�RQO\� @
> '%�1$0(�
>TXDOLILHU�@QDPH
� �'%��RQO\� @
> ''1$0(�GGQDPH� �096�RQO\� @
> '(6&5,37,21�
WH[W
� � @
> (;,73$50�
WH[W
�� @
> ,2(;,7�¶SURJUDP·>�·SDUP·@�>�75$&(@� @
> .((35': @
> /5(&/�QQQQQ������ �096�RQO\� @
> 7<3(�6(4�96$0�'%��(;,7�� �096�RQO\� @

Standard Alternate
Spelling Spellings
''1$0(''1
'(6&5,37,21 '(6&
(;,73$50 3$50
),/(),/

The filename is required in a FILE statement and must be the first item after the statement
prefix. After that, one or more other parms may be required, depending on the type of file
being defined. Those parms may appear in any order.

filename
This parm specifies the name of the file being defined. All other control statements will
use this name when referring to this file. You may assign any name you like, within the
rules governing file names given on page 388.

EXAMPLE :

),/(���6$/(6²),/(��''1$0(�6$/(6''�

The above example defines a file named SALES–FILE.

ATTR(type ,'dlbl/tlbl' [,SYSnnn] [,F /V] ,recsize [,blksize] [,STDLABEL /NOLABEL])
VSE only. This parm describes the attributes of a VSE file. This parm can also be
specified in the INPUT and READ statements.

type This parm is required. It tells Report Writer what kind of file is being defined. It
must be one of the following values:

'$6' a SAM file residing on DASD (disk.) Use DASD (rather than VSAM)
for VSAM–managed SAM files.

7$3(a SAM file residing on a magnetic tape

96$0 a VSAM file (ESDS or KSDS)

(;,7 a file accessed via an I/O Exit program

FILE

472 Report Writer Reference Manual

'dlbl/tlbl' This parm is required (except for exit files.) It specifies the filename of a DLBL

or TLBL statement present in the JCL. This DLBL/TLBL statement in the JCL will identify
the actual data set to be read. Report Writer uses the DLBL/TLBL to open an input file and
read from it. This parm must be a 1– to 7–byte name within apostrophes (or quotation
marks.) This parm is not required for EXIT type files. However, if a DLBL/TLBL is
specified for an EXIT file, its value is passed to the exit program.

SYSnnn This parm is required for TAPE files. It is treated as a comment for other file
types. It identifies the logical unit on which the file will reside. The value specified here
must also be "assigned" to a tape drive in your execution JCL.

F/V This parm specifies whether your file contains fixed (F) or variable (V) length
records. If omitted, fixed (F) is assumed.

recsize This parm is required. It specifies the length of the records in your file. For
variable length files, this parm specifies the length of the largest record that may be
encountered in the file. Also, for variable length files this value should include the
length of the 4–byte RDW which each variable–length record begins with.

blksize This parm is optional. It is treated as a comment for VSAM and EXIT files. For
DASD and TAPE files, it specifies the length of each block in the file. For variable length
files, this parm specifies the length of the largest block that may be encountered in the
file. Also, for variable length files this value should include the length of the 4–byte
block prefix. If block size is not specified, single record blocking is assumed. For fixed
length files, this means a block size equal to the record size is assumed. For variable
length files, this means that a block size equal to the record size plus 4 is assumed.

STDLABEL /NOLABEL This parm is optional and is allowed only for TAPE files. It specifies
whether the tape file has standard labels (the default) or no labels.

EXAMPLE :

),/(��6$/(6²),/(��$775�'$6'�
6$/(),/
��������

The statement above defines a file named SALES–FILE. It is a SAM file on DASD, uses
SALEFIL as the DLBL name, has fixed length 80–byte records, and has 160–byte blocks.

See page 273 for more examples and for a discussion of the ATTR parm.

DB2NAME('[qualifier.]name')
DB2 only. Specifies the name of the DB2 table or view to associate with this file. The
table name must be enclosed in quotation marks or apostrophes. Generally the table
name will be qualified. If it is not explicitly qualified, DB2 will assume an implicit
qualifier, which will be the Authorization ID of the job which is executing Report Writer.
When this parm is present, no parms other than the filename are required in the FILE

statement. The TYPE(DB2) parm is assumed.

Note: a FILE statement is not required when working with DB2 inputs. You can
specify the DB2NAME directly in your INPUT and READ statements. See page 338.

EXAMPLE :

),/(��352-(&7��'%�1$0(�
'61�����352-
�

FILE

Chapter 9. Control Statement Syntax 473

The above example defines a file that will be referred to in Report Writer control
statements as PROJECT. It refers to the DB2 table (or view) named DSN8230.PROJ.

DDNAME(ddname)
MVS only. The DDNAME parm specifies the name of a DD statement present in the JCL.

This DD statement in the JCL will identify the actual data set to be read. Report Writer
uses the DDNAME to open an input file and read from it. The DDNAME parm can also be
specified in the INPUT or READ statements.

For a file to be used as an input file in a report, the DDNAME must be specified either in
this statement, or in the INPUT or READ statement. For EXIT type files, the DDNAME parm
is not required, but is passed to the I/O Exit program if specified.

EXAMPLE :

),/(��6$/(6²),/(��''1$0(�6$/(6''�

The above example defines a file named SALES–FILE. When records from this file are
needed in a report, the DD named SALESDD in the JCL will be used.

DESCRIPTION('text')
You may specify a short free-format description of the file in this parm. This
information will be printed along with other information about the file in data dictionary
listings.

EXAMPLE :

),/(��(03/²),/(�7<3(�96$0��''1$0(�(03/''�
������'(6&�
(03/2<((�0$67(5�),/(�²²�1(:�9(56,21
�

When the EMPL–FILE file is listed in data dictionary reports, the description shown above
will be included.

EXITPARM('text')
This parm specifies any information that should be passed to user data exit programs.
(Most installations will not use data exits, and will not need this parm.) Anytime a data
exit program is called by Report Writer for a field within this file, the text string
specified in this parm will be passed to it. The use of the EXITPARM parm is discussed
in the section beginning on page 297.

EXAMPLE :

),/(��6$/(6²),/(��(;,73$50�
;<=
�

The above example defines a file named SALES–FILE. If any fields within this file are
defined as exit type fields, the text ";<=" will be passed to the data exit program each time
it is called.

IOEXIT(‘pro gram’ [,’parm’] [,TRACE])
EXIT files only. This parm provides the information necessary for Report Writer to process
an EXIT type input file. More information on I/O Exits can be found in Appendix K, “I/O
Exits“ (page 620.)

MVS note: when this parm is present, a file type of EXIT is assumed and an
explicit TYPE parm is not required.

FILE

474 Report Writer Reference Manual

VSE note: when this parm is present, an ATTR parm specifying a type of EXIT

and a RECSIZE is required.

‘pro gram’ This parm is required. It specifies the name of the load module (MVS) or
phase (VSE) that Report Writer will call in order to obtain records from the file.

‘parm’ This parm is optional. Each time the I/O Exit program is called by Report
Writer, the text specified in this parm is passed to the exit program. Typically this text
is used to provide the exit program with any special information it may need in order to
process the file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Report Writer prints trace information
in the control listing before and after each call to the I/O Exit. This information can be
useful when developing and debugging a new I/O Exit program. The TRACE parm is
normally not used in production runs.

EXAMPLE :

),/(��0$67(5�),/(��,2(;,7�¶0<(;,7·�

The above example specifies that a program named MYEXIT should be called whenever
a record is needed from MASTER-FILE.

KEEPRDW
Meaningful only for non–VSAM, variable length files. This parm means that the 4–byte
record descriptor word (RDW) at the beginning of each record should be considered a part
of the record. The default is to treat the record as starting after the RDW. The use of this
parm is discussed on page 269 (MVS) and page 273 (VSE.)

EXAMPLE :

),/(��3$<52//²),/(��.((35':

The above example specifies that the RDW should be kept when reading records from the
PAYROLL–FILE. Thus, assuming that PAYROLL–FILE is a non–VSAM variable length file,
a field defined as starting in column 1 would point to the 2–byte record length within the
RDW.

LRECL(nnnnn/1000)
MVS only. Specifies the length of the largest record that might be found in the file. If this
parm is not specified, Report Writer assumes a default LRECL of 1000.

Note: it is not a problem to specify a larger LRECL value than is actually needed.
In fact, if you suspect that a file's LRECL may grow in the future, you may want
to specify a larger LRECL with some "growth" room in it. On the other hand,
specifying an excessively large LRECL may result in higher CPU usage in certain
circumstances.

Note: when defining variable length SEQ files, the LRECL should include the
length of the 4–byte record descriptor word (RDW) at the beginning of each
record.

EXAMPLE :

),/(��6$/(6²),/(��/5(&/������

FILE

Chapter 9. Control Statement Syntax 475

The above example defines a file named SALES–FILE. The LRECL parm specifies that
records as large as 4000 bytes may be encountered in the file. Report Writer will reserve
a 4000 byte I/O area for reading records from this file.

TYPE(SEQ/VSAM/DB2/EXIT)
MVS only. Specifies the type of access method to use when reading this file. If not
specified, SEQ is assumed. Valid types are:

FILE
TYPE DESCRIPTION

SEQ standard sequential files, including tapes and disk datasets. The QSAM

access method will be used. Sequential files can only be used as a
primary input file (in the INPUT statement.) They may not be used as
an auxiliary input file (in a READ statement.)

VSAM any VSAM file, whether keyed or not. The IDCAMS access method will
be used. Any kind of VSAM file can be used as a primary input file (in
the INPUT statement.) However, only keyed VSAM files may be used as
auxiliary input files (in READ statements.)

DB2 a DB2 table or view. This parm is optional, since Report Writer
assumes a TYPE of DB2 whenever the DB2NAME parm is used in the FILE

statement. You may use this parm for documentation purposes if you
wish.

EXIT a file accessed via an I/O Exit program. This parm is optional, since
Report Writer assumes a TYPE of EXIT whenever the IOEXIT parm is
used in the FILE statement. You may use this parm for documentation
purposes if you wish.

EXAMPLE :

),/(��(03/²),/(��7<3(�96$0���''1$0(�(03/),/(���/5(&/�����

The above example defines a VSAM file named EMPL–FILE.

FOOTNOTE

476 Report Writer Reference Manual

FOOTNOTE Statement

PURPOSE
Specifies a footnote to print at the bottom of each page of the report. You may have as many
FOOTNOTE statements in your report as you like. Each FOOTNOTE statement creates one line
at the bottom of your report.

FOOTNOTE statements are ignored when producing PC files.

FEATURES
Use the FOOTNOTE statement to:

� specify the contents of the footnote lines (which can include literal text, data
from input files, and special items like the current page number, date, time, etc.)

� specify how to left align, center and right align different parts of the same
footnote

� specify the desired width, display format, and justification for data fields that
appear in a footnote

LEARNING MORE

The complete syntax of the FOOTNOTE statement is shown on the following pages. In
addition, the following parts of the manual relate to the FOOTNOTE statement:

� using the FOOTNOTE statement is discussed beginning on page 180

SYNTAX

FOOTNOTE STATEMENT SYNTAX

)227127(��SULQW²H[SUHVVLRQ�>��SULQW²H[SUHVVLRQ@�>��SULQW²H[SUHVVLRQ@

Note: the syntax for the print-expressions is shown on page 477.

Standard Alternate
Spelling Spellings
)227127()227

Note: the syntax of the FOOTNOTE statement is identical to that of the TITLE

statement.

FOOTNOTE

Chapter 9. Control Statement Syntax 477

The FOOTNOTE statement consists of from one to three print expressions, separated by
slashes. If a FOOTNOTE statement has no slashes, the single print expression will be centered
under the report. If there is one slash, the first print expression will be left–aligned and the
second print expression will be right–aligned under the report. If there are two slashes, the
first print expression will be left–aligned, the second one will be centered, and the third one
will be right–aligned. It is okay for one or more of the print expressions to be empty.
Examples of using various combinations of print expressions and slashes is illustrated in the
section beginning on page 174.

You may also use empty FOOTNOTE statements. An empty FOOTNOTE statement results in
one blank footnote line.

PRINT –EXPRESSION SYNTAX (IN FOOTNOTE STATEMENT)

Each print–expression consists of one or more items, optionally separated by
numeric spacing factors:

)227127(�������>Q@�LWHP�>Q@�LWHP�>Q@�LWHP����
�����������>���>Q@�LWHP�>Q@�LWHP�>Q@�LWHP�����@
�����������>���>Q@�LWHP�>Q@�LWHP�>Q@�LWHP�����@

Each item can be either a fieldname or a literal text . Each item can optionally be
followed by a parm list in parentheses:

ILHOGQDPH>� > %,= @
> GLVSOD\²IRUPDW @
> /()7�&(17(5�5,*+7 @
> ZLGWK @ �@

OLWHUDO
>� ZLGWK �@

Standard Alternate
Spelling Spellings
&(17(5 &-
)227127()227
/()7 /-
5,*+7 5-

fieldname
Specifies that the footnote line should contain the contents of this field. The field's data
will be taken from the last detail record before the footnote line.

The field must be available to Report Writer at the time the FOOTNOTE statement is
processed. That is, the field name must be one of the following:

� a field from an input file. (An input file is a file named in the INPUT

statement, or in an optional READ statement.)

� a computed field (defined in a preceding COMPUTE statement)

� a built–in field (see Appendix C, "Built-In Fields" for a complete list of
built–in fields)

FOOTNOTE

478 Report Writer Reference Manual

Note that in addition to the standard built–in fields, there is one special built–in field that
can be used only in the TITLE and FOOTNOTE statements. That is the #PAGENUM built–in
field, which contains the current page number. By default, it is formatted with this
picture: PIC'ZZZ9' (4 digits). You can override this format by using a numeric display
format parm. This fieldname can also be abbreviated as #PAGE.

EXAMPLE :

)227127(���72'$<�����
$%&�&203$1<
����
3$*(
���3$*(180

The above example contains three print expressions. It will produce a footnote line
which looks like this:

�������� $%&�&203$1< 3$*(�QQQQ

The literal texts ('$%&�&203$1<' and '3$*(') print as specified. The contents of the built-in
fields #TODAY and #PAGENUM also print, in default format. The first part of the footnote
is left–justified; the second part is centered; the third part is right–justified.

'literal'
Specifies that the footnote line should contain this literal text. Enclose the literal text in
either apostrophes or quotation marks.

EXAMPLE :

See the example above under the fieldname parm.

n
This is a numeric spacing factor. It specifies how many blank spaces should appear
between two items in a footnote line. A spacing factor of zero is allowed. (It results in
two items appearing in the footnote with no blank spaces between them.) If no spacing
factor is given, the default is to leave one blank space between items.

EXAMPLE :

)227127(���72'$<�����
$%&�&203$1<
�����
3$*(
����3$*(180

The above example specifies that 6 blank spaces should be left between the literal text
"3$*(" and the contents of the #PAGENUM field. The footnote would now look like this:

�������� $%&�&203$1< 3$*(������QQQQ

BIZ
This “blank if zero” parm specifies that blanks should appear in the footnote for the field
if it has a value of zero. This parm is allowed only for numeric, date and time fields. A
date is considered to have a zero value if the month, day and last 2 digits of the year are
all zeros (regardless of the value of the century part of the year.)

EXAMPLE :

)227127(��
(03/2<((6�+,5('�21
�+,5(²'$7(�%,=�

The above example causes the HIRE–DATE field in the footnote to be left blank whenever
it contains a zero date.

FOOTNOTE

Chapter 9. Control Statement Syntax 479

displa y–format
Specifies how the contents of a field should be formatted in the footnote line. A
complete list of display formats is found in Appendix B, "Display Formats" (page 550.)
If this parm is not specified, Report Writer will use the display format from:

� the FIELD or COMPUTE statement that defined the field

� an OPTIONS statement FORMAT parm

� the default display format (see page 559)

EXAMPLE :

)227127(���72'$<�/21*�������
$%&�&203$1<
����
3$*(
���3$*(180�3,&
���
�

The above example specifies display formats for the #TODAY and the #PAGENUM fields.
The LONG1 display format causes the month name to be spelled out in the date. The
PICTURE display format (for #PAGENUM) specifies that three digits of the page number
should be displayed, and that leading zeros should not be suppressed. The footnote line
would now look like this:

'(&(0%(5��������� $%&�&203$1< 3$*(����

LEFT/CENTER/RIGHT
Specifies how a field's data should be justified within the space allocated for it in the
footnote line.

EXAMPLE :

)227127(���72'$<�/21*��&(17(5�

The above example specifies a footnote line that simply contains the current date,
displayed in LONG1 format. The LONG1 format causes 18 bytes to be reserved for the
date in the footnote line. This is to allow enough room to print the biggest possible date
(like "6(37(0%(5���������"). The 18–byte area reserved for the date will automatically be
centered under the body of the report, since no slashes are used. But shorter dates (like
"0$<��������") would not take up the entire 18 byte area, and thus would not appear to
be centered correctly in the footnote. The CENTER parm is needed to cause these shorter
dates to be centered within the 18–byte area in the footnote line. The footnote line
produced by the above statement would now look like this:

'(&(0%(5���������

A similar situation arises when you want to align a date with the right margin of a report.
By using a slash you can cause the whole 18–byte area to be right–aligned. But a small
date ("0$<��������") would not use up the entire 18 bytes, and thus would not be flush
with the right edge of your report. To solve that problem, use the RIGHT justification
parm to right–justify the date within its 18–byte area, like this:

)227127(��
$%&�&203$1<
������72'$<�/21*��5,*+7�

The footnote line produced by the above statement would look like this:

$%&�&203$1< '(&(0%(5���������

FOOTNOTE

480 Report Writer Reference Manual

width
This is a numeric parm that specifies the number of characters to reserve for an item in
the footnote line. Use this parm if the default width is larger or smaller than you desire.

EXAMPLE :

)227127(��
3$*(
��3$*(180���

The above example specifies that 9 characters (not digits) should be reserved to display
the #PAGENUM field in the footnote line. The resulting footnote would look like this:

3$*(�Q�QQQ�QQQ

INCLUDEIF

Chapter 9. Control Statement Syntax 481

INCLUDEIF Statement

PURPOSE
Specifies which input records to include in the report or PC file. Each time a record is read
from the primary input file, the expression in the INCLUDEIF statement is evaluated using the
data from that record (and from any necessary auxiliary input file records.) If the expression
in the INCLUDEIF statement is true, then that record will be included in the run. If the
expression is not true, then the record will not be included in the run. This process goes on
until all records in the primary input file have been read and evaluated. The records that were
included are then sorted and formatted into the desired report or output file.

Only one INCLUDEIF statement is allowed per report, but it may contain as many conditions
as you like.

If no INCLUDEIF statement is specified, all records from the input file will be included in the
run.

To include only a certain number of records from the input file in your report, use the
MAXINPUT or MAXINCLUDE parms in the OPTIONS statement.

Note: during the evaluation of the INCLUDEIF expression, if a test is attempted that
involves a field with an error condition, the whole INCLUDEIF expression is
automatically considered false and the input record is not included in the run. An
example of such an error condition is when a packed–type field contains hex zeros
or spaces. Other examples include computed fields where an overflow or
divide–by–zero error occurred during their computation. However, see the OPTIONS

statement's ZEROINVDATA, ZEROOVERFLOW and ZERODIVZERO parms. These options
can be used to treat fields with error conditions as though they contained a zero
value.

FEATURES
Use the INCLUDEIF statement to:

� select which input records will appear in a report or PC file

LEARNING MORE

The complete syntax of the INCLUDEIF statement is shown on the following pages. In
addition, the following parts of the manual relate to the INCLUDEIF statement:

� a lesson on using the INCLUDEIF statement with reports begins on page 24

� a lesson on using the INCLUDEIF statement with PC files begins on page 86

� the syntax of conditional expressions is covered beginning on page 399

� suggestions on writing INCLUDEIF statements for maximum CPU efficiency are
given in Appendix I, "Speed-Up Tips" (page 603)

INCLUDEIF

482 Report Writer Reference Manual

SYNTAX

INCLUDEIF STATEMENT SYNTAX

,1&/8'(,)���FRQGLWLRQDO²H[SUHVVLRQ

Standard Alternate
Spelling Spellings
,1&/8'(,) ,1&/8'(��,1&/��,1&

conditional–expression
Specifies one or more conditions to evaluate. As each record is read from the input file,
the conditions specified in this expression are evaluated. If the conditional expression
is true, the record is included in the run. Otherwise, the record is not included in the run.
The syntax for conditional expressions is shown on page 399.

EXAMPLES

Case 1. This example compares the contents of two numeric fields.

,1&/8'(,)��6$/(6²475��!�6$/(6²475�

The above statement would include all records where the SALES–QTR2 field was
greater than the SALES–QTR1 field.

Case 2. This example compares the contents of a numeric field with a numeric literal .

,1&/8'(,)��727$/²6$/(6��������

This example would include all records where the TOTAL–SALES field was less
than 1000.

Case 3. Here is an example of comparing a date field with a date literal.

,1&/8'(,)��+,5(²'$7(������������

This example would include all records where the HIRE-DATE field was less than
(earlier than) June 1, 1990.

Case 4. Here is an example of comparing a time field with a time literal .

,1&/8'(,)��6$/(6²7,0(�! ����������

INCLUDEIF

Chapter 9. Control Statement Syntax 483

This example would include all records where the SALES–TIME field was greater
than or equal to 14:00:00 (2 o'clock PM.)

Case 5. Here is an example of comparing a character field with a character literal.

,1&/8'(,)��/$67�1$0(� �
-21(6

This example would include all records where the LAST-NAME field contained the
name -21(6. Notice that character literals must be enclosed in either quotes or
apostrophes. Numeric, date and time literals are not enclosed in quotes or
apostrophes.

When character operands of different lengths are compared, Report Writer
temporarily pads the shorter operand with right–hand blanks before making the
comparison.

Case 6. This example scans a character field to see if a certain text is contained

anywhere within the field.

,1&/8'(,)��&86720(5���
&253

This example would select all records where the letters "&253" appeared together
anywhere within the CUSTOMER field. Records with customer names such as
"$%&�&253", "&25325$7,21�2)�$0(5,&$", and "$&0(��,1&25325$7('" would be selected
using this example.

Case 7. This example bases the decision to include records on more than one

comparison.

,1&/8'(,)��6(;� �
)
��$1'
�����������+,5(�'$7(�! �����������$1'��� �����������

This example would select all records where the SEX field contained ")", and the
HIRE-DATE field was greater than or equal to January 1, 1986 and was less than
or equal to December 31, 1986. In other words, the records included would be
for all female employees hired sometime in 1986.

Case 8. Here is another example of multiple comparisons.

,1&/8'(,)���352'8&7²&2'(� �
���
��25��
���
��25��! �
���

This example would select all records where the PRODUCT–CODE field contained
any of the following:

� 801
� 802
� any value greater than or equal to 900

INCLUDEIF

484 Report Writer Reference Manual

Case 9. Here is another example that uses multiple comparisons.

,1&/8'(,)��5(*,21� �
1257+
�$1'�
������������/$67�1$0(� �
-21(6
�25�
60,7+
�25�
%52:1
��

This example would select all records where the REGION field was equal to
"1257+", and the LAST-NAME field was any one of the following:

� -21(6

� 60,7+

� %52:1

Case 10. This example checks whether a bit field is ON or OFF. The following statement

will include only those records where the PART-TIME bit field is ON.

,1&/8'(,)��3$57�7,0(

And the following statement would select all records where the PART-TIME bit
field is OFF.

,1&/8'(,)��127�3$57²7,0(

Case 11. Here is an example of comparing the contents of a field to a literal hexadecimal
value.

,1&/8'(,)��'$7(�� �;
������
��25��6$/$5<� �;
))))))))

When comparing a field to a hexadecimal literal, no data conversion is
performed on the field at all. The comparison will be made against the data just
as it exists in the input record. When a hexadecimal comparison is made to a
field whose value is the result of a user data exit, the comparison will be made
against the result passed to Report Writer by the data exit. Hexadecimal
comparisons are not allowed to "computed" fields (since they do not exist in a
real input record).

As with regular character literals, when a hexadecimal literal is compared with
a field of a different length, Report Writer pads the shorter operand with
right–hand blanks (not hex zeros) before making the comparison. This blank
padding is done regardless of the data type of the field.

INPUT

Chapter 9. Control Statement Syntax 485

INPUT Statement

PURPOSE
Specifies which file should be used as the primary input for a report or PC file. One (and
only one) INPUT statement is required in order to produce a Report Writer report or PC file.

FEATURES
Use the INPUT statement to:

� specify the name of the primary input file for a report or PC file

� to automatically copy additional control statements from the Report Writer
Copy Library (typically used to copy the FILE and FIELD statements that define
the input file)

� specify a record name to be associated with records from this input file

� temporarily override certain aspects of the input file definition (such as the
DDNAME, the file type, etc.)

LEARNING MORE

The complete syntax of the INPUT statement is shown on the following pages. In addition,
the following parts of the manual relate to the INPUT statement:

� a lesson on using the INPUT statement begins on page 17

� information on using the INPUT statement with DB2 tables begins on page 338

� reading a file that is processed by a user I/O Exit is discussed in Appendix K,
“I/O Exits“ (page 620)

INPUT

486 Report Writer Reference Manual

SYNTAX

INPUT STATEMENT SYNTAX

,1387� ILOHQDPH�
> $775�W\SH��
GOEO�WOEO
�>�6<6QQQ@�>�)�9@��UHFVL]H

���� ����>�EONVL]H@�>�67'/$%(/�12/$%(/@� �96(�RQO\� @
> %8)1'�QQQ� �96$0�RQO\� @
> %8)1,�QQQ� �96$0�RQO\� @
> &/($5�63$&(6�=(526�12� @
> &23<�<(6�12� @
> '%�1$0(�
>TXDOLILHU�@QDPH
� �'%��RQO\� @
> ''1$0(�GGQDPH� �096�RQO\� @
> (;,73$50�
WH[W
� @
> ,2(;,7�¶SURJUDP·�>�·SDUP·@�>75$&(`� @
> .((35': @
> .(<5$1*(�¶EHJLQ·�>·HQG·@� @
> /,67�<(6�12� @
> /5(&/�QQQQQ� �096�RQO\� @
> 25'(5%<�ILHOGQDPH�>$6&�'(6&@�>�@������ �'%��RQO\� @
> 5(&1$0(�QDPH�ILOHQDPH� @
> 6+2:)/'6�<(6�12� @
> 7<3(�6(4�96$0�'%��(;,7� �096�RQO\� @
> :+(5(�VHDUFK²FRQGLWLRQ� �'%��RQO\� @

Standard Alternate
Spelling Spellings
''1$0(''1
(;,73$50 3$50
,1387 ,13�
12 1
7<3(7<3
<(6 <

The filename is required in an INPUT statement, and must be the first item after the statement
prefix. All other parms are optional and can appear in any order in the INPUT statement.

filename
Specifies the primary input file for the run. This file will be read sequentially from
beginning to end. Each record that passes the conditions in the INCLUDEIF statement (if
any) will be included in the run.

The filename specified in this parm must have been defined in an earlier FILE statement.
However, that FILE statement may be in a copy library member that is automatically
copied at the time the INPUT statement is processed. This process is explained beginning
on page 301.

EXAMPLE :

,1387���(03/²),/(

The above example specifies that the file named EMPL–FILE will be the primary input file
for the run.

INPUT

Chapter 9. Control Statement Syntax 487

ATTR(type, 'dlbl/tlbl' [,SYSnnn] [,F /V] ,recsize [,blksize] [,STDLABEL /NOLABEL])
VSE only. Specifies override file attributes to use for this file (for the current run only.)
For a complete description of the ATTR parm, see under the FILE statement syntax
(page 470.) For examples of using this parm, see page 273.

EXAMPLE :

,1387��6$/(6²),/(��$775�'$6'�
6$/(),/
��������

The statement above names SALES–FILE as the primary input file for the run. Regardless
of how SALES–FILE was earlier described in a FILE statement, it will be treated in the
current run as a SAM file on DASD, with SALEFIL as the DLBL name, with fixed length
80-byte records, and with 160–byte blocks.

BUFND(nnn)
VSAM files only. Specifies the number of "data buffers" that the VSAM access method
should maintain when processing this input file. When this parm is not specified for a
VSAM file, Report Writer chooses a default number of data buffers to maintain.

Note: according to the VSAM manual, increasing the number of data buffers to
4 or 5 (from VSAM's default of 2) should improve performance for sequential
processing. At some point after that, excessive paging may cancel any benefit.
You may wish to experiment with this parm if you have long–running,
VSAM-intensive jobs.

EXAMPLE :

,1387��(03/²),/(��%8)1'���

The above statement specifies that VSAM should allocate buffer space for 5 data control
intervals when processing the EMPL–FILE.

BUFNI(nnn)
VSAM files only. Specifies the number of "index buffers" that the VSAM access method
should maintain when processing this input file. When this parm is not specified for a
VSAM file, Report Writer chooses a default number of index buffers to maintain.

Note: according to the VSAM manual, VSAM's default number of index buffers
(which is 1) should be sufficient for sequential processing of VSAM files that
have index components. You may wish to experiment with this parm if you
have long–running, VSAM–intensive jobs.

EXAMPLE :

,1387��(03/²),/(��%8)1'�����%8)1,���

The above statement specifies that VSAM should allocate buffers for 5 data control
intervals and 2 index control intervals when processing the EMPL–FILE.

CLEAR(SPACES /ZEROS/NO)
When processing certain types of input files, Report Writer clears the entire I/O area to
blanks before each read. This is to ensure that when a short record is read, it is not
followed by leftover data from a previous longer record. For certain record layouts such
leftover data could cause misleading results. Specifying CLEAR(NO) suppresses this
clearing, which may result in improved performance. You might want to specify
CLEAR(NO) if you are certain that any leftover data in the I/O area will not affect your run.

INPUT

488 Report Writer Reference Manual

Specifying CLEAR(ZEROS) causes Report Writer to initialize the I/O area to hex zeros
(rather than blanks) before each read.

Note: you can also specify the CLEAR parm in the FILE statement to avoid
having to put it in the INPUT statement each time. The NOCLEARIO parm in the
OPTIONS statement can be used to prevent clearing of all files in a run.

EXAMPLE :

,1387��3$<52//²),/(��&/($5�12�

The above statement names the PAYROLL–FILE as the input file for a run. Report Writer
will not clear its I/O area each time it reads a record from that file.

COPY(YES/NO)
Specifies whether control statements should be copied from the copy library before
evaluating the file name. If the COPY parm is omitted and the file name has not been
previously defined, the default is to attempt to perform a copy. Normally, the control
statements that are copied will include the FILE and FIELD statements that describe the
input file. This process is explained beginning on page 301.

If an attempt to copy records is unsuccessful (due to a missing copy library or a missing
member) that is not considered an error. Normal control statement processing continues,
without any copy being performed.

EXAMPLE :

,1387���(03/²),/(��&23<�12�

The above example specifies that no attempt should be made to copy records from the
copy library.

DB2NAME('[qualifier.]name')
DB2 only. Specifies the name of the DB2 table or view that you wish to use as input for
the run. For DB2 inputs, this parm is required unless the filename was defined in an
earlier FILE statement. (In that case, the earlier FILE statement must have specified the
DB2NAME parm.) The table name must be enclosed in quotation marks or apostrophes.
Generally the table name will be qualified. If it is not explicitly qualified, DB2 will
assume an implicit qualifier, which will be the DB2 Authorization ID of the job executing
Report Writer.

EXAMPLE :

,1387� 352-(&7
'%�1$0(�
'61�����352-
�

The above example specifies that the DB2 table named 'DSN8230.PROJ' should be used as
the primary input "file" for the run. This input file has a Report Writer file name of
PROJECT. That is, other Report Writer control statements that refer to this input file will
refer to PROJECT (rather than to DSN8230.PROJ.)

INPUT

Chapter 9. Control Statement Syntax 489

DDNAME(ddname)
MVS only. Specifies an override DDNAME to use when reading the input file (for the
current run only.) If omitted, the DDNAME will be taken from the FILE statement that
defined the file. A DDNAME parm must be present in either the FIELD statement or the
INPUT statement.

EXAMPLE :

,1387���(03/²),/(��''1$0(�7(03''�

The above example specifies that the TEMPDD DD statement in the JCL should be used to
read the EMPL–FILE file, regardless of the DDNAME specified when the file was originally
defined.

EXITPARM('text')
Specifies an override exit parm text. If this parm is omitted, the exit parm text (if any)
will be taken from the FILE statement that defined the file. Exit parm text is passed to
user data exit programs. (Most installations will not use exits, and will not need this
parm.) Anytime a user data exit is called by Report Writer for a field within this file, the
text string specified in this parm will be passed to the exit. The use of this parm is
discussed beginning on page 297.

EXAMPLE :

,1387���(03/²),/(��(;,73$50�
�����
�

The above example specifies that the text '�����' should be passed to user data exit
programs involving this file, regardless of the EXITPARM specified when the file was
originally defined.

IOEXIT(‘pro gram’ [,’parm’] [,TRACE])
EXIT files only. Specifies override I/O Exit information for the input file. May also
override the input file type (if it was something other than EXIT in the FILE statement.)
This parm provides the information necessary for Report Writer to process an EXIT type
input file. More information on I/O Exits can be found in Appendix K, “I/O Exits“
(page 620.)

MVS note: when this parm is present, a file type of EXIT is assumed and an
explicit TYPE parm is not required.

VSE note: when this parm is present, an ATTR parm specifying a type of EXIT

and a RECSIZE is required (in either this statement or the FILE statement.)

‘pro gram’ This parm is required. It specifies the name of the load module (MVS) or
phase (VSE) that Report Writer will call in order to obtain records from the file.

‘parm’ This parm is optional. Each time the I/O Exit program is called by Report
Writer, the text specified in this parm is passed to the exit program. Typically this text
is used to provide the exit program with any special information it needs in order to
process the file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Report Writer prints trace information
in the control listing before and after each call to the I/O Exit. This information can be

INPUT

490 Report Writer Reference Manual

useful when developing and debugging a new I/O Exit program. The TRACE parm is
normally not used in production runs.

EXAMPLE :

,1387��0$67(5�),/(�,2(;,7�¶0<(;,7·�

The above example specifies that a program named MYEXIT should be called to read
records from the primary input file MASTER-FILE.

KEEPRDW
Meaningful only for non–VSAM, variable length files. This parm means that the 4–byte
record descriptor word (RDW) at the beginning of each record will be considered a part
of the record. The default is to treat the record as starting after the RDW. The use of this
parm is discussed beginning on page 269 (MVS) and page 273 (VSE.)

EXAMPLE :

,1387���(03/²),/(��.((35':

The above example specifies that the RDW should be kept when reading records from the
EMPL–FILE. Thus, assuming that EMPL–FILE is actually a non–VSAM variable length file,
a field defined as starting in column 1 would point to the 2–byte record length within the
RDW.

KEYRANGE(‘be gin’ [’end’])
KSDS VSAM files and EXIT files only. This parm specifies that only a certain range of
records from the primary input file should be processed. Only records whose keys are
greater than or equal to the ‘begin’ value and less than or equal to the ‘end’ value will be
processed. If no ‘end’ value is specified, the ‘end’ value is assumed to be the same as
the ‘begin’ value.

The ‘begin’ and ‘end’ values in the KEYRANGE parm can each be a full or a partial
(generic) key value. Partial ‘begin’ values are treated as if they were right-padded with
hex zeros. Partial ‘end’ values are treated as if they were right-padded with high values.

Speed-Up Tip: the use of this parm, where appropriate, can speed up your runs
by eliminating unnecessary VSAM I/O.

EXAMPLES :

,1387���(03/²),/(��.(<5$1*(�¶��
�

The above example specifies that only records whose keys begin with “03" should be
read from the EMPL-FILE.

,1387���(03/²),/(��.(<5$1*(�¶���
�¶���
�

The above example specifies that only records with keys between “032" and “036"
(inclusive) should be read from the EMPL-FILE.

LIST(YES/NO)
Applies only if the COPY function is performed. The LIST parm specifies whether the
copied control statements should be listed along with the other control statements in the
control listing. If no LIST parm is present, the default is to not list the copied statements.

INPUT

Chapter 9. Control Statement Syntax 491

Note: if an error is detected in any of the copied control statements, that
statement will be listed, along with the error message, regardless of the value of
this parm.

EXAMPLE :

,1387���(03/²),/(��/,67�<(6�

The above example specifies that any records copied from the copy library should be
listed in the control listing.

LRECL(nnnnn)
MVS only. Specifies an override record length for the input file. This is the length of the
largest record that might be found in the file. If this parm is omitted, the LRECL value (if
any) from the FILE statement is used. If no LRECL parm is found in either the FILE or the
INPUT statement, a default LRECL of 1000 is assumed.

EXAMPLE :

,1387���(03/²),/(��/5(&/������

The above example specifies that a record as large as 4000 bytes long may be
encountered in the EMPL–FILE file.

ORDERBY(fieldname [ASC /DESC] [,] ...)
DB2 only. This parm is optional and not normally used in the INPUT statement. If this
parm is omitted, DB2 passes the rows from the DB2 table to Report Writer in an
"arbitrary" order. This is not normally of any consequence, as Report Writer then sorts
the selected rows according to the SORT statement before producing your report or PC
file. Use this parm if you want to specify the order in which the rows from the DB2 table
should be passed to Report Writer. The contents of this parm is one or more column
names from the DB2 table, optionally separated with commas. You may also include the
DB2 keywords ASC or DESC after the column names. This parm is discussed in more
detail beginning on page 344.

EXAMPLE :

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�
�������25'(5%<�'(3712��352-1$0(�

The above example would cause DB2 to pass the rows from the project table to Report
Writer in department number order, with "ties" being passed in project name order.

RECNAME(name/filename)
Specifies a record name to use when referring to fields in this input file. This is
especially useful when you will be reading multiple records from the same input file (by
using a READ statement in addition to the INPUT statement.) The RECNAME parm (in each
statement) can be used to assign unique names to each record read from the file. You
may give the record any name you like, within the rules governing names given on page
388. The use of the RECNAME parm is discussed beginning on page 232.

If no RECNAME parm is specified, the filename is used as the record name.

INPUT

492 Report Writer Reference Manual

EXAMPLE :

,1387���(03/²),/(��5(&1$0(�(03�

The above example specifies that the records read from the EMPL–FILE file will be named
EMP. Assume that a field named DATE exists in both this file and in some other input file.
You can use the record name EMP to indicate that you are referring to the DATE field from
the EMPL–FILE, like this:

&2/8016���(03�'$7(

SHOWFLDS(YES/NO)
Specifies whether Report Writer should print a list of all fields that have been defined for
the input file. (For DB2 inputs, the DB2 columns defined for the DB2 table are listed.)
This list appears immediately after the INPUT statement in Report Writer's control
statement listing. The list will include the data type of each field (character, numeric,
date, time or bit.) Use this parm if you aren't sure of the names or spellings of the fields
(or DB2 columns) in your input file.

EXAMPLE :

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�
�������6+2:)/'6�<(6�

The above statement causes a list to be printed showing each DB2 field ("column")
defined for the DSN8230.PROJ table.

TYPE(SEQ/VSAM/DB2/EXIT)
MVS only. Specifies an override file type for the input file. If this parm is omitted, the
file type will be taken from the FILE statement that defined the file. A complete list of file
types is given under the FILE statement description, on page 475.

EXAMPLE :

,1387���(03/²),/(��7<3(�96$0�

The above example specifies that the VSAM access method should be used when reading
the EMPL–FILE file, regardless of the file type specified when the file was originally
defined.

WHERE(search–condition)
DB2 only. This parm is optional. If this parm is omitted, DB2 will pass all rows in the
DB2 table to Report Writer. (Report Writer will then decide which of those rows to use
based on the INCLUDEIF statement, if any.) Use this parm to specify a "search condition"
for DB2 to use in deciding which rows from the DB2 table to pass to Report Writer. The
syntax of the search–condition is generally the same as DB2's syntax for the WHERE

clause in a DB2 SELECT statement. The use of this parm is discussed in the section
beginning on page 342. The precise syntax rules for the WHERE parm are given
beginning on page 350.

EXAMPLE :

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�
�������:+(5(�'(3712� �
'��
�

INPUT

Chapter 9. Control Statement Syntax 493

In the example above, the WHERE parm causes DB2 to return to Report Writer only those
rows from the project table whose DEPTNO field is equal to "'��." Those are the only
rows that could then appear in the Report Writer report or PC file. An INCLUDEIF

statement could be used to reduce even further the number of rows that are actually
included in the run.

NOTES

How the Primar y Input File is Processed

The file specified in the INPUT statement is called the primary input file for a run. Each run
must have one and only one primary input file. Report Writer opens this file for sequential
input at the beginning of the report process. Each record in the file is then read sequentially.
(Or, if the KEYRANGE parm was used, then each record within the specified range is read
sequentially.) As each record is read, the conditions specified in the INCLUDEIF statement (if
any) are evaluated, using the data from that record (and any auxiliary input file records related
to it.) Based on these conditions, the record will either be included in the run, or will not be
included. If the record is to be included, a sort record is built using data from the record. The
sort record is then passed to the sort routine, and the next sequential record is read from the
primary input file. This process is repeated until all records in the primary input file have
been evaluated. The report (or PC file) is then written from the information in these sorted
records.

OPTIONS

494 Report Writer Reference Manual

OPTIONS Statement

PURPOSE
Specifies various special options. You may specify as many options as you like on a single
OPTIONS statement. In addition, you may have as many separate OPTIONS statements as you
like.

The OPTIONS statements should appear before all other control statements.

FEATURES
Use the OPTIONS statement to:

� specify options that affect the overall appearance of a report

� specify that a PC file should be created rather than a report

� change defaults settings used in producing a report

� limit the amount of processing performed, for test runs

� specify printer setup texts

LEARNING MORE

The complete syntax of the OPTIONS statement is shown on the following pages. In addition,
certain individual options are discussed and illustrated in other parts of this manual. To see
if additional information is available about a specific option, check under the name of the
option in the Index.

OPTIONS

Chapter 9. Control Statement Syntax 495

SYNTAX

OPTIONS STATEMENT SYNTAX

237,216�
> $6&,,7$%/(�¶WH[W·� @
> $60/,%�
OLEUDU\�VXEOLEUDU\
� �96(�RQO\@�@
> $8726257@ @
> &(1785<�QQ��� @
> &2%/,%�
OLEUDU\�VXEOLEUDU\
� �96(�RQO\��@
> &2/+'*21&(@
> &2/6(3�
WH[W
� @
> &2/63$&(�QQQ��� @
> '$7('(/,0�
FKDU
�
�
� @
> '%�3/$1�
SODQ
�
63(&7QQQ
� �'%��RQO\��@
> '%�68%6<6�
VXEV\VWHP
� �'%��RQO\��@
> ''00<</,7 @
> '(7$,/�QQQQQ� @
> (%&',&7$%/(�¶WH[W·� @
>)250$7�GLVSOD\²IRUPDW�>�GLVSOD\²IRUPDW@������ @
> +($',1*6(3�
FKDU
�

� @
> +*&2/+'* @
> .((35': @
> /()70$5*,1�QQQ��� @
> 0$;,1&/8'(�QQQQQ� @
> 0$;,1387�QQQQQ� @
> 0$;,196+2:�QQQQQ� @
> 0$;3$*(6�QQQQQ� @
> 0$;35,17�QQQQQ� @
> 0(07<3(�
W\SH
�
63(&7:75
� �96(�RQO\��@
> 0,662))6(7 @
> 08/7,&2/+'* @
> 12&& @
> 12&+(&. @
> 12&/($5,2 @
> 12&2/+'*6 @
> 12*5$1'727$/ @
> 120$;06* @
> 1229(535,17 @
> 126<6,1/,0,7 @
> 127,7/(6 @
> 287$775�W\SH>�
GOEO�WOEO
@>�6<6QQQ@>�UHFVL]H@>�EONVL]H@� �96(�RQO\��@
> 287/5(&/�QQQQQ� �096�RQO\��@
> 2877<3(�6(4�96$0� �096�RQO\��@
> 3$*(/(1*7+�QQQ���� @
> 3&�0$,1)5$0(�287387�$&&(66�&25(/�&69�'%$6(��'%$6(��(;&(/

�)2;352�+$59$5'�/2786�06²:25.6�3$5$'2;�48$7752�5%$6(@
> 3576(783�
WH[W
� @
> 3576+((7�
WH[W
� @
> 4&+$5�
FKDU
�
�
� @
> 6,1*/(�'28%/(�75,3/(@
> 6.,3%/$1.'(7 @
> 6.,3=(52'(7 @
> 62571$0(�
SURJUDP
�
6257
� @
> 62576,=(�QQQQ����� @
> 6257:25.180�Q��� �96(�RQO\��@
> 63/,7'(7$,/ @

(Continued on next page)

OPTIONS

496 Report Writer Reference Manual

OPTIONS STATEMENT SYNTAX (CONTINUED)

> 67&.$'-�QQ��� @
> 68%/,%�
OLEUDU\�VXEOLEUDU\
� �96(�RQO\� @
> 6800$5<�� @
> 7,0('(/,0�
FKDU
�
�
��� @
> =(52',9%<=(52�� @
> =(52,19'7�� @
> =(5229(5)/2:��� @

Standard Alternate
Spelling Spellings
'%�68%6<6 '%�68%6<67(0
''00<</,7 ''00<<<</,7
'(7$,/ '(7
'28%/('28%/(63$&(
)250$7)07
+($',1*6(3 +'*6(3
/()70$5*,1 /()70$5*
0$,1)5$0(0$,1
0$;,1&/8'(0$;,1&/��0$;,1&
0$;,1387 0$;,13
0$;3$*(6 0$;3$*(
0$;35,17 0$;357
0(07<3(0(0%(57<3(
12&2/+'*6 12&2/+'*
12*5$1'727$/ 12*5$1'727$/6��12*5$1'727��

12*5$1'7276��12*5$1'
1229(535,17 1229(5357
127,7/(6 127,7/(
237,216� 237,21��2376��237
3$*(/(1*7+ 3$*(/*7+��3$*(/(1��3$*(/
6,1*/(6,1*/(63$&(
6.,3%/$1.'(7 6.,3%/.'(7
63/,7'(7$,/ 63/,7'(7
68%/,% 68%/,%5$5<
75,3/(75,3/(63$&(
=(52',9%<=(52 =(52',9=(52��=(52',9=
=(52,19'7 =(52,19
=(5229(5)/2: =(5229(5

ASCIITABLE(‘text’)
Use this option to specify your own translation table to be used by the #ASCII built-in
function. The text parm for this option must be a string that is exactly 256 bytes long.
For convenience, you can split this 256-byte string into as many smaller strings as you
like. This string tells Report Writer what value to return for each of the 256 possible
byte values it could encounter when performing the #ASCII built-in function on some
operand. If this option is not specified, Report Writer uses a default ASCII translation
table.

EXAMPLE :

237,21��$6&,,7$%/(�;·���������������������$�%�&�'�(�)·
�������������������;·���������������������$�%�&�'�(�)·
�������������������;·���������������������$�%�&�'�(�)·
�������������������;·���������������������$�%�&�'�(�)·
�������������������;·���������������������$�%�&�'�(�)·
�������������������;·���������������������$�%�&�'�(�)·
�������������������;·���������������������$�%�&�'�(�)·
�������������������;·���������������������$�%�&�'�(�)·

OPTIONS

Chapter 9. Control Statement Syntax 497

�������������������;·���������������������$�%�&�'�(�)·
�������������������;·���������������������$�%�&�'�(�)·
�������������������;·$�$�$�$�$�$�$�$�$�$�$$$%$&$'$($)·
�������������������;·%�%�%�%�%�%�%�%�%�%�%$%%%&%'%(%)·
�������������������;·&�&�&�&�&�&�&�&�&�&�&$&%&&&'&(&)·
�������������������;·'�'�'�'�'�'�'�'�'�'�'$'%'&'''(')·
�������������������;·(�(�(�(�(�(�(�(�(�(�($(%(&('((()·
�������������������;·)�)�)�)�)�)�)�)�)�)�)$)%)&)')())·�

The above example merely serves to illustrate the syntax of the ASCIITABLE option. This
example uses 16 hex strings of 16 bytes each to provide the necessary 256-byte table.
(The values shown in the example would cause the #ASCII function to simply return the
same operand without change.)

ASMLIB('library.sublibrary')
VSE only. Specifies the default sublibrary to copy members from while in the scope of
an ASM statement.

EXAMPLE :

237,21��$60/,%�
7(67�&23<$60
�

The above statement means that COPY statements appearing within the scope of an ASM

statement will copy members from the TEST.COPYASM sublibrary by default. This
default can be overridden, however, by specifying a sublibrary name directly in the COPY

statement.

AUTOSORT
When no SORT statement is specified, the AUTOSORT option tells Report Writer to sort
the report or output file on the first 5 fields named in the COLUMNS statement. When an
explicit SORT statement is used, the AUTOSORT option tells Report Writer to add up to
5 "tie–breaker" sort fields to the fields named in the SORT statement. The tie–breaker
fields will be the first 5 fields named in the COLUMNS statement (not considering those
fields explicitly named in the SORT statement.)

CENTURY(nn/0)
Specifies the century cutoff year. This option tells Report Writer which century a 2–digit
year belongs to. You can use this option to process dates into the 21st century, even if
they only contain 2 digits for the year. Any year below the specified value is considered
to be in the 21st century. All years greater than or equal to the specified value are
considered to be in the 20th century. The default value of 0 causes all 2–digit years to
be treated as 20th century dates (since no year is less than zero).

Note: this option does not affect the way dates with 4–digit years are processed.

EXAMPLE :

237,21��&(1785<���

The above example states that any dates with a year less than 5 are in the 21st century.
Thus, the date 8/31/04 would mean August 31, 2004. However, 8/31/05 would mean
August 31, 1905.

OPTIONS

498 Report Writer Reference Manual

COBLIB('library.sublibrary')
VSE only. Specifies the default sublibrary to copy members from while in the scope of
a COBOL statement.

EXAMPLE :

237,21��&2%/,%�
7(67�&23<&2%
�

The above statement means that COPY statements appearing within the scope of a COBOL

statement will copy members from the TEST.COPYCOB sublibrary by default. This
default can be overridden, however, by specifying a sublibrary name directly in the COPY

statement.

COLHDGONCE
Print column headings only once, at the very beginning of the report or PC file. This is
Report Writer's default when creating many type of PC files. This option also suppresses
titles, footnotes and all page break logic.

COLSEP('text')
Specifies a default column separator text. This text will appear between each column in
the report. Normally, the column separator text is a single blank space.

This option is useful when creating output files (especially PC files.) In that case, use
this option to specify a "delimiter" character (such as a comma, or a "tab" character) to
separate the fields in the output record.

EXAMPLE :

237,216���&2/6(3�
�
�

The above statement causes the fields ("columns") in the output record to be separated
by commas.

Note: specifying this option also causes the COLSPACE option to be set to the
length of the COLSEP text.

COLSPACE(nnn/1)
Specifies the default number of spaces to leave between columns in the report. (This
default spacing factor can be overridden directly in the COLUMNS statement.) The normal
default is to leave one blank space between each report column.

This option is also useful when creating mainframe output files. You may then want to
specify COLSPACE(0) to eliminate all blanks between the fields in the output records.

Note: specifying the COLSEP option also changes the COLSPACE value.

DATEDELIM('char'/'/')
This option lets you specify any character you choose to be used as the delimiter when
formatting dates. This delimiter will be used with all date display formats that use a
delimiter. The default date delimiter is a slash (/). For example, to format all dates using
dots rather than slashes, you would specify:

237,216��'$7('(/,0�
�
�

This would cause the MM-DD-YY display format to appear as "��������" and the
DD-MM-YYYY format to appear as "����������".

OPTIONS

Chapter 9. Control Statement Syntax 499

Note: use of this parm does not affect the way Report Writer recognizes date
literals in the control statements. Date literals must always be written using
slashes as delimiters.

DB2PLAN('plan'/'SPECTnnn ')
DB2 only. Specifies the DB2 plan name to use. This parm is needed only if the default
plan name was not used during installation of Report Writer's DB2 Option. (Plan names
are assigned when a DB2 "bind" is performed. A DB2 bind is required as a part of the
procedure for installing Report Writer with the DB2 Option.) Report Writer assumes that
you use a plan name of "63(&7QQQ", where QQQ is the Report Writer version number.
(Thus, for release 2.7.1 of Report Writer, a plan name of 63(&7��� is assumed.) If you
used a different plan name to bind Report Writer in your shop, you must tell Report
Writer your plan name via the DB2PLAN option. Enclose the plan name in quotation
marks or apostrophes. For example, if you bind Report Writer with a plan name of
XYZ12345, you would need to use a statement like the following:

237,21��'%�3/$1�
;<=�����
�

DB2SUBSYS('subsystem')
DB2 only. Specifies the name of the DB2 subsystem to use for the run. This option is
required for any run that uses DB2 data. Enclose the subsystem ID in quotation marks
or apostrophes.

EXAMPLE :

237,216��'%�68%6<6�
'%�7
�

The above statement causes Report Writer to use the DB2 subsystem named DB2T for all
DB2 requests in the run.

DDMMYYLIT
Indicates that all date literals used in the control statements are in DD/MM/YY or
DD/MM/YYYY format.

EXAMPLE :

237,216����''00<</,7
���
,1&/8'(,)��6$/(6²'$7(�������������

The above OPTIONS statement specifies that any date literals in the control statements are
in DD/MM/YY (or DD/MM/YYYY) format. In the INCLUDEIF, we select all records whose
SALES–DATE field is before December 31, 1996.

Note: the slash (/) is always used as the delimiter in date literals. The
DATEDELIM option, if any, only changes the way dates are formatted in the
output–– not the way date literals are written in the control statements.

DETAIL(nnnnn)
Specifies how many detail lines should be printed within each control break. (If no
control breaks are used, it specifies how many detail lines to print in the whole report.)
The default is to print all detail lines.

You may specify DETAIL(0) to suppress all detail print lines. In that case you would see
only the lines printed at control breaks and at Grand Total time.

OPTIONS

500 Report Writer Reference Manual

This option is useful for printing "Top Ten Sales in each Department" type of reports.
It is also helpful when developing new reports that have lots of detail lines. Use this
option to print just a few detail records for each control group while you develop the new
report. This will keep your trial reports to a smaller, more convenient size. Remove the
option when your are ready for the final run.

EXAMPLE :

237,216��'(7$,/����
,1387����(03/²),/(
&2/8016��/$67²1$0(�),567²1$0(�727$/²6$/(6
6257�����'(37²180�727$/²6$/(6�'(6&�
%5($.����'(37²180

The above example produces a report that lists the top 10 sales people in each
department, in descending sales volume order.

EBCDICTABLE(‘text’)
Use this option to specify your own translation table to be used by the #EBCDIC built-
in function. The text parm for this option must be a string that is exactly 256 bytes
long. For convenience, you can split this 256-byte string into as many smaller
strings as you like. This string tells Report Writer what value to return for each of
the 256 possible byte values it could encounter when performing the #EBCDIC built-
in function on some operand. If this option is not specified, Report Writer uses a
default EBCDIC translation table.

EXAMPLE :

See the example under the ASCIITABLE option which has the same syntax.

FORMAT(display–format [,display–format] [,display–format] [,display–format])
Specifies one or more display formats to be used as default display formats. You may
specify one character–type display format, one numeric–type display format, one
date-type display format, and one time–type display format. You may specify any or all
of these, in any order. (A complete list of valid display formats is found in Appendix B,
"Display Formats" on page 550.) The display formats specified in this option become
the default display format for all fields of the associated data type. This option is
especially useful when creating output files. For example, when creating a "delimited
ASCII" output file, you might use the following statement:

237,216��)250$7�4&+$5��4²00²''²<<��4²++²00²66��12&200$�

The above statement would cause the QCHAR display format to be used for all character
fields (enclosing the character data in quotation marks.) All dates would be formatted
as 00�''�<<, also enclosed in quotation marks. All times would be formatted as ++�00�66,
also enclosed in quotation marks. And all numeric fields would be formatted in the
NOCOMMA display format –– without using commas to separate thousands, millions, etc.

When the FORMAT option is used, you may still specify an override display format for
any particular item directly in the COLUMNS statement (or TITLE statement, etc.) The
FORMAT option just changes the default display format used when no explicit display
format is given.

Note that the output file options (LOTUS, EXCEL, MAINFRAME, etc.) also change one or
more of the default display formats.

OPTIONS

Chapter 9. Control Statement Syntax 501

Note: when the CHARACTER or HEX display format is specified alone in the
FORMAT option, it applies to data of all types. For example:

237,216��)250$7�+(;�

The above statement would cause all character, numeric, date and time fields to
appear in hex format. If you want the HEX or CHARACTER display format to apply
only to character fields, specify numeric, date and time display formats after the
CHARACTER or HEX format in the FORMAT parm. For example:

237,216��)250$7�+(;��180(5,&��00²''²<<��++²00²66�

The above statement would cause all character fields to be formatted in HEX format,
and all numeric, date and time fields to be formatted the way they normally would
be.

HEADINGSEP('char'/' ')
Specifies the character that will be used to separate column heading texts into different
lines. The default heading separator character is the vertical bar ().

Tip: The vertical bar is the "Shift 1" key on most mainframe terminals. Some
PC keyboards that emulate mainframe terminals do not have a key that shows
the straight vertical bar. (The "pipeline" character is not the same as a vertical
bar.) On many of these keyboards, the right–hand square bracket key (]) is used
to send a vertical bar to the mainframe.

EXAMPLE :

237,216��+($',1*6(3�
�
�
&2/8016��/$67²1$0(�
(03/2<((6�/$67�1$0(
�

The above example specifies that the slash character (/) should be used as the heading
separator character. The COLUMNS statement specifies an override column heading text
using slashes. The slashes would cause the three words in the column heading to appear
on three separate lines.

HGCOLHDG
Specifies that "Harvard Graphics" style column headings are wanted. (This is also the
default when the HARVARD option is specified.) This option causes the column headings
to appear in a single line in the output file (rather than being split onto multiple lines.)
The "blank" line that normally separates the column headings from the actual data is also
suppressed. This option is useful when the PC program which will be importing your
output file expects the first line of input to contain a legend for the data in the subsequent
lines.

KEEPRDW
When reading non–VSAM input files with variable length records, Report Writer
considers column 1 of the input record to be the first byte after the RDW (record
descriptor word.) This option tells Report Writer that you want the RDW to be
considered a part of the input record. When KEEPRDW is specified, the RDW is
considered to be in column 1 of the input record. The first column after the RDW will be
considered column 5. Specifying KEEPRDW in the OPTIONS statement makes it apply to
all input files used in the run. You may also specify this keyword in individual FILE,

INPUT or READ statements.

OPTIONS

502 Report Writer Reference Manual

Note: VSAM files and DB2 tables do not have RDWs at the beginning of each
record. This option is ignored for these kinds of files.

LEFTMARGIN(nnn/0)
Specifies a number of blank spaces to use as a left margin when printing the report. By
default, there is no left margin.

MAXINCLUDE(nnnnn)
Specifies the maximum number of records from the primary input file that should be
included in the report. (That is, the maximum number of records that pass the INCLUDEIF

statement conditions.) This is helpful while developing new reports that use very large
input files. You can use this option to limit the number of records processed during test
runs. You may need to use this option rather than the MAXINPUT option, when the records
required for your report are not the first records in the input file. (See also the related
MAXINPUT option.)

MAXINPUT(nnnnn)
Specifies the maximum number of records that should be read from the primary input
file when producing the report. This option is helpful when you are developing a new
report that uses a large input file. This allows you to read in only a few hundred records
(for example) to get an idea of how your report will look. This will run much faster than
a report that processes the whole file. (Also see the related MAXINCLUDE option.)

MAXINVSHOW(nnnnn/10)
Specifies the maximum number of invalid fields that should be displayed in hex format
in the control listing. The default is to display the first 10 invalid fields that are
encountered. Specify MAXINVSHOW(0) if you don’t want to see any invalid field hex
displays.

MAXPAGES(nnnnn)
Specifies the maximum number of report pages that should be printed. This is helpful
while developing new reports. It ensures that whole boxes of paper won't accidentally be
printed if there are serious errors in the control statements. (See also the related
MAXPRINT, NOCHECK and NOMAXMSG options.)

MAXPRINT(nnnnn)
Specifies the maximum number of report lines that should be printed (including titles,
column headings, footnotes, etc.) This is helpful while developing new reports. It
ensures that whole boxes of paper won't accidentally be printed if there are serious errors
in the control statements. (See also the related MAXPAGES, NOCHECK and NOMAXMSG

options.)

MEMTYPE('type'/'SPECTWTR ')
VSE only. Specifies the default member type to use when reading members from the
Report Writer Copy Library. If this parm is not specified, the default member type is
SPECTWTR. The default member type is used for COPY statements that do not explicitly
specify a member type.

Note: this default member type applies only to copies performed outside the
scope of ASM and COBOL statements. Different default member types are used
within the scope of those statements.

EXAMPLE :

237,216��0(07<3(�
6:
�

OPTIONS

Chapter 9. Control Statement Syntax 503

The above statement tells Report Writer to look for members whose member type is SW,
when copying members from the copy library.

MISSOFFSET
Specifies that fields having OFFSET parm errors should be treated as if they were
"missing." (Missing fields are assigned zeros for numeric, date and time fields, blanks
for character fields, and 2)) for bit fields). This suppresses the) indicator in
reports.

MULTICOLHDG
By default, when more than one COLUMNS statement is used Report Writer does not
automatically produce column headings. (The TITLE statement is often used in such
situations to manually create column headings.) If you want Report Writer to
automatically provide column headings for you in a report that has multiple COLUMNS

statements, specify:

237,216��08/7,&2/+'*

Report Writer will use the column headings that would have been generated if the request
contained only the first COLUMNS statement. For many multi–line reports, this provides
an easier way to produce column headings. Of course, the first COLUMNS statement may
contain override column headings as usual. Those override column headings will then
be used in the report. Any default or explicit column headings in the 2nd and later
COLUMNS statements are ignored.

NOCC
Specifies that no "carriage control" characters should be written. Normal report lines are
prefixed with a carriage control character, which contains a printer spacing command.
When writing to an output file, rather than to a printer, the carriage control character is
not normally wanted.

Note: specifying a PC file formatting option (or MAINFRAME) also suppresses
the carriage control character.

NOCHECK
Only relevant if the MAXPRINT or MAXPAGES option is used. Tells Report Writer that
the NOCHECK option is in effect for your shop's sort program. This means Report Writer
can safely quit the sort early when the MAXINPUT or MAXINCLUDE limit has been reached.
Otherwise, in order to prevent a SORT ABEND, Report Writer must continue to process
the remainder of the sort file (flushing the records), which takes a little more processing
time.

NOCLEARIO
For some input files, Report Writer clears (sets to hex zeros) the I/O area where records
are read before performing each read. (See under the FILE statement's CLEAR parm on
page 477.) The NOCLEARIO option specifies that such clearing should not be performed
for any files used in the run. When such clearing is not necessary, suppressing it may
improve performance.

NOCOLHDGS
Specifies that Report Writer should not create column headings for the report or PC file.
Report Writer also defaults to the NOCOLHDG option for all reports that use more than
one COLUMNS statement.

OPTIONS

504 Report Writer Reference Manual

NOGRANDTOTAL
Specifies that Grand Totals are not wanted for this report.

NOMAXMSG
Only relevant if the MAXPRINT or MAXPAGES option is used. Tells Report Writer not to
print a message in your report when the maximum limit has been reached.

NOOVERPRINT
Specifies that no lines should be "over–printed" in the report. An example of an
over–printed line is the line of underscores under the column headings. Use this option
when the printer being used to print the report does not have over–print capability.

NOSYSINLIMIT
By default Report Writer suspects a loop when more than 50,000 control cards have been
processed. (Looping can be caused by copying a member that copies itself recursively.)
When this occurs, a message is printed and the run is terminated. To disable this limit
on the number of control cards accepted, specify this option.

NOTITLES
Specifies that no titles are wanted for the report. By default, if no TITLE statements are
specified for a report, Report Writer will use a default title line. This option prevents
that default title line from printing. When NOTITLES is specified, no page break
processing is performed–– the report will print over paper perforations, etc. This option
is useful when the report output will be routed to a dataset for further processing, rather
than to a printer.

Note: this option also suppresses the printing of all column headings and
FOOTNOTE lines.

OUTATTR(type [,'dlbl/tlbl'] [,SYSnnn] [,recsize] [,blksize])
VSE only. This parm describes the attributes to use for Report Writer's output. The
section beginning on page 374 discusses the use of this parm.

type This parm is required. It tells Report Writer what kind of device to write the output
to. It must be one of the following values:

357

35,17(5 a printer–type device (including POWER print queues)

'$6' a SAM file on a DASD device (disk). (Use this type even if your SAM

files are managed by VSAM.)

7$3(a SAM file on a magnetic tape

96$0 an ESDS VSAM file

'dlbl/tlbl' This parm is required unless writing to a printer device. It tells Report Writer
what DLBL or TLBL is used in the JCL for the output file. The 1– to 7–byte name within
apostrophes (or quotation marks) must be the same as the filename in a DLBL or TLBL

statement in your JCL.

SYSnnn This parm is required for PRINTER and TAPE output. It is treated as a comment
for other output types. It identifies the logical unit to write the output to. The value
specified here must also be "assigned" in your JCL.

OPTIONS

Chapter 9. Control Statement Syntax 505

recsize This parm is optional. It specifies the length of the output records to be written.
If omitted, a record size of 133 is assumed.

Note: for report output, the first byte in each record is used as a "carriage
control character." So in the example above, only 132 bytes would be available
for the report data itself. For PC file and mainframe file output (or when using
the NOCC option) no control character is written, and the entire length of the
record is available for data.

blksize This parm is optional. It specifies the block size to use when writing a DASD or
TAPE output file. (This parm is not allowed for PRINTER or VSAM output types.) This
value must be a multiple of the recsize value. If omitted, single record blocking is used.
That is, the default is to make the block size the same as the record size.

Notice that the OUTATTR parm does not have a record format parm (F/V), which the
similar ATTR parm in the FILE statement has. Report Writer output is always written as
fixed length records (and fixed length blocks, if blocked.)

OUTLRECL(nnnnn)
MVS only. Specifies the LRECL to be used for the output records written by
Report Writer. This parm is mainly intended for use when writing to a VSAM output file.
The LRECL chosen by Report Writer for its output records is determined in this way.

For VSAM output files, the LRECL used is:
1) the OUTLRECL parm value (if it is valid for the VSAM file's definition), if any, or
2) 133 (if it is valid for the VSAM file's definition), or
3) the maximum LRECL value defined for the VSAM file

For QSAM output, the LRECL used is:
1) the LRECL specified in the JCL, if any, or
2) the LRECL specified in the file's label, when writing to an existing dataset, or
3) the OUTLRECL parm value, if any, or
4) 133

OUTTYPE(SEQ/VSAM)
MVS only. Specifies the type of I/O to be used by Report Writer when writing output
records. If OUTTYPE(VSAM) is specified, the dataset named in the SWOUTPUT DD

statement must be an existing, ESDS VSAM dataset. If Report Writer's output will be
written to a SYSOUT DD or to a non–VSAM file, OUTTYPE(SEQ) (the default) must be used.

PAGELENGTH(nnn/60)
Specifies how many lines should be printed per page. The first title line of your report
is considered line 1. The default number of lines to print per page is 60. Use this option
to change the number of blank lines that appear at the bottom of each page.

PC/MAINFRAME/OUTPUT/ACCESS/COREL/CSV/DBASE3/DBASE4/EXCEL/FOXPRO
/HARVARD/LOTUS/MS–WORKS/PARADOX/QUATTRO/RBASE

Specifies that a particular kind of output file is wanted (rather than a report.) The use of
these options is discussed in the lesson that begins on page 78.

OPTIONS

506 Report Writer Reference Manual

PRTSETUP('text')
Specifies a string of characters to be sent to the printer once before the report is printed.
This string can contain any setup information that is valid for your printer. One use of
this parm is to request a "condensed font" with your laser printer. This may allow you
to print reports wider than the standard 132 characters.

Tip: if the text you specify doesn't seem to work, try adding an extra space at
the beginning of your text. The printer may be treating the first character as a
carriage control character and ignoring it.

EXAMPLE :

237,21��3576(783�
����'-'(��-'(���)250$7 /������'$7$ ��������(1'�
�

The above statement causes the specified setup string to be sent to the printer once before
the report starts printing. Of course, the actual contents of the setup string will be
different for each shop.

PRTSHEET('text')
Specifies a string of characters that can be sent to a laser printer to force it to skip to a
new sheet of paper. When the NEWSHEET or NEWSHEET1 space options are used at
control breaks, this option must be specified. At the appropriate time, Report Writer will
send this string to the printer to cause it to skip to a new page.

Note: if NEWSHEET or NEWSHEET1 is specified for any control break, the
PRTSHEET text will also be sent to the printer at the very beginning of the report.
This is to ensure that the first page of the report begins on a new sheet of paper.

Tip: if the text you specify doesn't seem to work, try adding an extra space at
the beginning of your text. The printer may be treating the first character as a
carriage control character and ignoring it.

EXAMPLE :

237,21��3576+((7�
����'-'(��6,'(18)5217�(1'�
�

The above statement causes the specified string to be sent to the printer each time Report
Writer needs to skip to a new sheet of paper. Of course, the actual contents of the string
will be different for each shop.

QCHAR('char'/'"')
Specifies the "quotation character" to use in conjunction with the QCHAR, Q–MM–DD–YY

and Q–HH–MM–SS display formats. The default is to use a regular (double) quotation
mark as the enclosure character for those display formats. If you need to enclose such
data in some other character, use this option..

EXAMPLE :

237,216��4&+$5��
��

The above statement specifies that the apostrophe character should be used to enclose
data that is formatted in the QCHAR, Q–MM–DD–YY and Q–HH–MM–SS display formats.
For example, a date formatted with the Q–MM–DD–YY display format would now look like

��������
 rather than ����������.

OPTIONS

Chapter 9. Control Statement Syntax 507

SINGLE/DOUBLE/TRIPLE
Specifies how the report should be spaced. The default is to single space the report.

Note: this option determines how many (if any) blank lines are left between the
detail report line(s) for each input record. If multiple COLUMNS statements are
used, the detail report lines for a single input record are always single spaced.
Use empty COLUMNS statements if you want to print blank lines within the detail
report lines for a single input record.

SKIPBLANKDET
This option causes Report Writer to skip (suppress) any detail report line (or PC file
record) that is all blank. For the purposes of this option, "detail lines" means: the lines
printed for each individual input record; the total lines printed at control breaks (if any);
and the Grand Total lines (if any.) Titles, column headings and break headings are not
affected by this option. Use of this option is discussed on page 154.

Note: only the first 256 bytes of each line are examined when checking for
blank detail lines.

SKIPZERODET
This option causes Report Writer to skip (suppress) any detail report line (or PC file
record) that contains only "zero values". The following are considered "zero" values for
this purpose:

� blanks (for character fields)

� 0's (including decimal points such as 0.00)

� 00/00/0000 (zero dates)

� 00:00:00 (zero times)

For the purposes of this option, "detail lines" means: the lines printed for each individual
input record; the total lines printed at control breaks (if any); and the Grand Total lines
(if any.) Titles, column headings and break headings are not affected by this option. Use
of this option is discussed on page 154.

Note: only the first 256 bytes of each line are examined when checking for zero
detail lines.

SORTNAME('pro gram'/'SORT')
This parm specifies the name of your shop's sort program. The default name of SORT is
used in almost all shops. However, some shops have multiple sort programs available
and you may want to use an alternate sort program.

EXAMPLE :

237,216��62571$0(�
6257�
�

The above statement specifies that Report Writer should use the program named SORT2

to perform any necessary sorts.

SORTSIZE(nnnn/256)
This parm specifies the size parameter (in kilobytes) that should be passed to your shop's
sort program when it is called. This parm tells the sort program how much memory it
should use while performing the sort. If you omit this parm, Report Writer passes your
sort program a size parm of 256K. You may want to specify a smaller value in order to

OPTIONS

508 Report Writer Reference Manual

run in a smaller region or partition. Or, in some cases you may get better performance
by specifying a larger value than the default. The maximum value allowed by Report
Writer is 8191 (8191K, or 8M). (Your sort program may have a smaller maximum limit.
You may also be limited by the size of the region or partition you run in.) Under VSE,

you may also need to modify the SIZE parm in your EXEC JCL statement (to ensure that
your partition has this much memory available for the sort program.)

EXAMPLE :

237,216��62576,=(����

The above statement tells Report Writer to pass the sort program a size parm of 64K (if
the sort program is used.)

SORTWORKNUM(n/0)
VSE only. This parm specifies how many, if any, external work files should be used to
perform Report Writer VSE's internal sort. By default, zero sort work files are assumed.
That is, the sort program will attempt to perform the entire sort in memory. For larger
runs, you may need to provide DLBL (and EXTENT) statements for "sort work" files in your
JCL. The DLBLs should generally be named SORTWK1, SORTWK2, etc. (See page 381.)
Use this parm to tell Report Writer how many of these sort work files are available for
it to use. You may specify a number from 0 to 9.

EXAMPLE :

237,216��6257:25.180���

The above statement specifies that 3 sort work file DLBL statements are provided in the
JCL for the sort program to use.

SPLITDETAIL
Specifies that it is OK to split the detail lines for a single input record across pages in the
report. If you do not specify this option, Report Writer will skip to a new page whenever
the current page does not have enough room to show all of the detail lines for an input
record. (Using multiple COLUMNS statements results in multiple detail lines for a single
input record.) Normally you will probably not use SPLITDETAIL, since it is easier to view
related data when it is all on a single page. But that does use extra paper. And, it may
be impractical if you are listing 30 or 40 items from each input record, since virtually
every record would end up requiring a new page. In these cases, you may specify
SPLITDETAIL to allow Report Writer to fill up each page before going on to the next page
of the report.

STCKADJ(nn)
Specifies how many hours should be added to fields stored in the STCKDATE and
STCKTIME data types. IBM's STCK machine instruction stores its date–time stamps in GMT.
Report Writer normally converts STCKDATE and STCKTIME values from GMT to local time.
The number of hours to add or subtract to the GMT time is determined by your
installation's system parms. If you do not want this automatic conversion performed, use
the STCKADJ option. This option specifies the number of hours that should be added to
the STCK value. (The number of hours may be a positive or negative value.)

For example, to suppress conversion altogether and leave STCKDATE and STCKTIME

values in GMT, you would specify the following:

237,216��67&.$'-���

OPTIONS

Chapter 9. Control Statement Syntax 509

SUBLIB('library.sublibrary')
VSE only. Specifies the name of the VSE sublibrary to use as the Report Writer
copy library.

EXAMPLE :

237,216��68%/,%�
/,%�63(&7:75
�

The above statement causes the Librarian dataset named LIB.SPECTWTR to be used as the
Report Writer Copy Library.

SUMMARY
Specifies that a summary report is wanted. The report will contain no detail lines. Only
lines associated with control breaks (and with the Grand Total) will print. This option
has the same effect as specifying DETAIL(0). However, this option also changes the
default break spacing for the lowest level control break from 2 blank lines to 0 blank
lines. This prevents the summary lines in the report from being triple spaced.

TIMEDELIM('char'/':')
This option lets you specify any character you choose to be used as the delimiter when
formatting times. This delimiter will be used with all time display formats that use a
delimiter. The default time delimiter is a colon (:). For example, to format all times
using dots rather than colons, you would specify:

237,216��7,0('(/,0�
�
�

This would cause the HH–MM–SS display format to appear as "��������" (for example).

Note: use of this parm does not affect the way Report Writer recognizes time
literals in the control statements. Time literals must always be written using
colons as delimiters.

ZERODIVBYZERO
Tells Report Writer to assign a value of zero to COMPUTE fields whenever a division by
zero error occurs. This suppresses the = error indicator in reports.

ZEROINVDATA
Tells Report Writer to assign a value of zero to fields that contain invalid data in the
input record. This suppresses the , error indicator in reports.

ZEROOVERFLOW
Tells Report Writer to assign a value of zero to COMPUTE fields whenever an overflow
error occurs. This suppresses the 9 error indicator in reports.

READ

510 Report Writer Reference Manual

READ Statement

PURPOSE
Specifies an auxiliary input file to be used in producing a report or PC file. Each run must
have one (and only one) primary input file, which is specified with an INPUT statement. If
a report or PC file requires information from additional files, these files must be specified
with READ statements. You may have as many READ statements in a run as you like. The
READ statements must appear after the INPUT statement.

An auxiliary input file is useful if the primary input file does not contain all of the
information needed for a run. After a READ statement has been processed by Report Writer,
all of the fields defined for that auxiliary file become available for use in producing the report
(or PC file). These fields can be used in exactly the same way as fields from the primary
input file. They can be used: as a column of data in the report or PC file; in report titles; as
a sort field; as a control break field; as part of a conditional expression; as operands in
computational expressions; even as key fields used to read records from other auxiliary input
files.

The READ statement is one of the most powerful statements in Report Writer.

FEATURES
Use the READ statement to:

� specify the name of an auxiliary input file for a report

� specify a field containing the read key to be used when reading from VSAM files

� specify a WHERE clause to be used when reading from a DB2 table or view

� automatically copy additional control statements from the Report Writer Copy
Library (typically used to copy the FILE and FIELD statements that define the
auxiliary input file)

� specify a record name to be associated with records from this auxiliary input
file

� override certain aspects of the auxiliary input file definition

LEARNING MORE

The complete syntax of the READ statement is shown on the following pages. In addition, the
following parts of the manual relate to the READ statement:

� a lesson on using the READ statement in reports begins on page 65

� a lesson on using the READ statement in PC files begins on page 113

� advanced techniques involving the READ statement are discussed beginning on
page 228

� the use of the READ statement with DB2 tables is discussed beginning on page
345

READ

Chapter 9. Control Statement Syntax 511

� suggestions on writing READ statements for maximum run–time efficiency are
given in Appendix I, "Speed-Up Tips" (page 603)

� reading a file that is processed by a user I/O Exit is discussed in Appendix K,
“I/O Exits“ (page 620)

SYNTAX

READ STATEMENT SYNTAX

5($'� ILOHQDPH
> $775�96$0�(;,7�>�
GOEO
@��UHFVL]H� �96(�RQO\� @
> %8)1'�QQQ� �96$0�RQO\� @
> %8)1,�QQQ� �96$0�RQO\� @
> &/($5�63$&(6�=(526�12� @
> &23<�<(6�12� @
> '%�1$0(�
>TXDOLILHU�@QDPH
� �'%��RQO\� @
> ''1$0(�GGQDPH� �096�RQO\� @
> (;,73$50�
WH[W
� @
> *(1(5,& @
> ,2(;,7�¶SURJUDP·�>�·SDUP·@�>75$&(@� @
> .*(@
> /,67�<(6�12� @
> /5(&/�QQQQQ� �096�RQO\� @
> 08/7, @
> 25'(5%<�ILHOGQDPH�>$6&�'(6&@�>�@������ �'%��RQO\� @
> 5($'.(<�ILHOGQDPH� @
> 5(&1$0(�QDPH�ILOHQDPH� @
> 6+2:)/'6�<(6�12� @
> 7<3(�96$0�'%��(;,7� �096�RQO\� @
> :+(5(�VHDUFK²FRQGLWLRQ� �'%��RQO\� @

Standard Alternate
Spelling Spellings
''1$0(''1
(;,73$50 3$50
*(1(5,& *(1
12 1
5($'.(< .(<
5(&1$0(1$0(
7<3(7<3
<(6 <

The filename parm is required. In addition, either a READKEY parm (for VSAM files) or a
WHERE parm (for DB2 files) is also required. The syntax of the READ statement is otherwise
very similar to that of the INPUT statement.

filename
Identifies the auxiliary input file to use. One or more records will be read from this file
each time a new record is read from the primary input file. Files named in READ

statements must be either keyed VSAM files or DB2 tables.

The filename specified in this parm must have been defined in an earlier FILE statement.
However, that FILE statement may be in a copy library member that is automatically

READ

512 Report Writer Reference Manual

copied into the report at the time the READ statement is processed. This process is
explained beginning on page 301.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180�

The above statement specifies that the file named EMPL–FILE will be an auxiliary input
file for the run.

ATTR(VSAM/EXIT,'dlbl',recsize)
VSE only. Specifies override file attributes to use for this VSAM file (for the current run
only.) Files named in VSE READ statements must be keyed VSAM files or EXIT files. For
examples of using this parm, see page 273.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180�
������$775�96$0�
(03/),/
����

The statement above names EMPL–FILE as an auxiliary input file for the run. Regardless
of how EMPL–FILE was defined in an earlier FILE statement, for the current run it is treated
as a VSAM file, with EMPLFIL as the DLBL name, with 80–byte (or smaller) records.

BUFND(nnn)
VSAM files only. Specifies the number of "data buffers" that the VSAM access method
should maintain when processing this input file. When this parm is not specified for a
VSAM file, Report Writer chooses a default number of data buffers to maintain.

Note: according to the VSAM manual, increasing the number of data buffers by
one or two (from VSAM's default of 2) may improve performance for random
reads. After that, more benefit is obtained by increasing the number of index
buffers instead (use the BUFNI parm for that). You may wish to experiment with
this parm if you have long–running, VSAM–intensive jobs.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���%8)1'���

The above statement specifies that VSAM should allocate buffer space for 3 data control
intervals when processing the EMPL–FILE.

BUFNI(nnn)
VSAM files only. Specifies the number of "index buffers" that the VSAM access method
should maintain when processing this input file. When this parm is not specified for a
VSAM file, Report Writer chooses a default number of index buffers to maintain.

Note: according to the VSAM manual, increasing the number of index buffers
(from VSAM's default of 1) should improve performance for random reads up to
a certain point. At some point, excessive paging may cancel any benefit.
Optimal performance is sometimes achieved by having one index buffer for each
level of the file's index. You may wish to experiment with this parm if you have
long–running, VSAM–intensive jobs.

READ

Chapter 9. Control Statement Syntax 513

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���%8)1'�����%8)1,���

The above statement specifies that VSAM should allocate buffers for 3 data control
intervals and 6 index control intervals when processing the EMPL–FILE.

CLEAR(SPACES /ZEROS/NO)
When processing certain types of input files, Report Writer clears the entire I/O area to
blanks before each read. This is to ensure that when a short record is read, it is not
followed by leftover data from a previous longer record. For certain record layouts such
leftover data could cause misleading results. Specifying CLEAR(NO) suppresses this
clearing, which may result in improved performance. You might want to specify
CLEAR(NO) if you are certain that any leftover data in the I/O area will not affect your run.
Specifying CLEAR(ZEROS) causes Report Writer to initialize the I/O area to hex zeros
(rather than blanks) before each read.

Note: you can also specify the CLEAR parm in the FILE statement to avoid
having to put it in the READ statement each time. The NOCLEARIO parm in the
OPTIONS statement can be used to prevent clearing of all files in a run.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���&/($5�12�

The above statement names the PAYROLL–FILE as the input file for a run. Report Writer
will not clear its I/O area each time it reads a record from that file.

COPY(YES/NO)
Specifies whether control statements should be copied from the copy library before
evaluating the file name. If the COPY parm is omitted and the file name has not been
previously defined, the default is to attempt to perform a copy. Normally, the control
statements that are copied will include the FILE and FIELD statements that describe the
input file. This process is explained beginning on page 301.

If an attempt to copy records is unsuccessful (due to a missing copy library or missing
member), that is not considered an error. Normal control statement processing continues,
without any copy being performed.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���&23<�12�

The above example specifies that no attempt should be made to copy records from the
copy library.

DB2NAME('[qualifier.]name')
DB2 only. Specifies the name of the DB2 table or view that you wish to use as an
auxiliary input for the run. For DB2 inputs, this parm is required unless the filename was
defined in an earlier FILE statement. (In that case, the earlier FILE statement must have
specified the DB2NAME parm.) The table name must be enclosed in quotation marks or
apostrophes. Generally the table name will be qualified. If it is not explicitly qualified,
DB2 will assume an implicit qualifier, which will be the DB2 Authorization ID of the job
executing Report Writer.

READ

514 Report Writer Reference Manual

EXAMPLE :

5($'��(03/2<((
������'%�1$0(�
'61�����(03
�
������:+(5(�(0312� �5(63(03�

The above example specifies that the DB2 table named 'DSN8230.EMP' should be used as
an auxiliary input "file" for the run. This input file has a Report Writer file name of
EMPLOYEE. That is, other Report Writer control statements that refer to this input file
will refer to EMPLOYEE (rather than to DSN8230.EMP.)

DDNAME(ddname)
MVS only. Specifies an override DDNAME to use when reading the input file (for the
current run only.) If omitted, the DDNAME will be taken from the FILE statement that
defined the file. A DDNAME parm must be present in either the FIELD statement or the
READ statement.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���''1$0(�7(03''�

The above example specifies that the TEMPDD DD statement in the JCL will be used to
read the EMPL–FILE file, regardless of the DDNAME specified when the file was originally
defined.

EXITPARM('text')
Specifies an override exit parm text. If this parm is omitted, the exit parm text (if any)
will be taken from the FILE statement that defined the file. Exit parm text is passed to
user data exit programs. (Most installations will not use exits, and will not need this
parm.) Anytime a user data exit is called by Report Writer for a field within this file, the
text string specified in this parm will be passed to the exit. The use of this parm is
discussed beginning on page 297.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���(;,73$50�
�����
�

The above example specifies that the text '�����' should be passed to user data exit
programs involving this file, regardless of the EXITPARM specified when the file was
originally defined.

GENERIC
VSAM and EXIT only. Specifies that the contents of the READKEY parm is a generic key
rather than an entire key. That is, the length of the READKEY parm may be shorter than
the key length in the VSAM file's definition. The first record in the file whose partial key
matches the READKEY value will be read. If GENERIC is not specified, the READKEY value
is assumed to be an entire key. The use of GENERIC keys is discussed in the section
beginning on page 234.

EXAMPLE :

&20387(��6+257².(<� ��68%675�(03/²180�����
5($'�����(03/²),/(��5($'.(<�6+257².(<���*(1(5,&

The READ statement above uses a generic read key. The SHORT–KEY field is only 2 bytes
long, while the defined key length for the EMPL–FILE file is 3 bytes. Thus, when

READ

Chapter 9. Control Statement Syntax 515

performing the above read, the record read will be the first one where the first 2 bytes of
its key equals the contents of SHORT–KEY.

IOEXIT(‘pro gram’ [,’parm’] [,TRACE])
EXIT files only. Specifies override I/O Exit information for the input file. May also
override the input file type (if it was something other than EXIT in the FILE statement.)
This parm provides the information necessary for Report Writer to process an EXIT type
input file. More information on I/O Exits can be found in Appendix K, “I/O Exits“ (
page 620.)

MVS note: when this parm is present, a file type of EXIT is assumed and an
explicit TYPE parm is not required.

VSE note: when this parm is present, an ATTR parm specifying a type of EXIT

and a RECSIZE is required (in either this statement or the FILE statement.)

‘pro gram’ This parm is required. It specifies the name of the load module (MVS) or
phase (VSE) that Report Writer will call in order to obtain records from the file.

‘parm’ This parm is optional. Each time the I/O Exit program is called by Report
Writer, the text specified in this parm is passed to the exit program. Typically this text
is used to provide the exit program with any special information it needs in order to
process the file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Report Writer prints trace information
in the control listing before and after each call to the I/O Exit. This information can be
useful when developing and debugging a new I/O Exit program. The TRACE parm is
normally not used in production runs.

EXAMPLE :

5($'��0$67(5�),/(��5($'.(<�(03/�180���,2(;,7�¶0<(;,7·�

The above example specifies that a program named MYEXIT should be called to read
records from the auxiliary input file MASTER-FILE.

KGE
VSAM and EXIT only. Specifies that when reading this file, the first record should be
returned whose key (or partial key, if GENERIC is also specified) is greater than or equal
to the key (or partial key) in the READKEY parm. If KGE is not specified, only records that
exactly equal the READKEY value (or partial value) will be read. The use of the KGE parm
is discussed in the section beginning on page 234.

Note: the KGE parm may not be specified if the MULTI parm is also specified.
Such a combination would result in reading every record in the file whose key
was greater than or equal to the READKEY parm.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���.*(

When performing the above READ statement, a record is sought whose key exactly
matches the EMPL–NUM value. If none is found, the first record whose key is greater than
the EMPL–NUM field will be read instead.

READ

516 Report Writer Reference Manual

LIST(YES/NO)
Applies only if the COPY function is performed. The LIST parm specifies whether the
copied control statements should be listed along with the other control statements in the
control listing. If no LIST parm is present, the default is to not list the copied statements.

Note: if an error is detected in any of the copied control statements, that
statement will be listed, along with the error message, regardless of the value of
this parm.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���/,67�<(6�

The above example specifies that any records copied from the copy library should be
listed in the control listing.

LRECL(nnnnn)
MVS only. Specifies the length of the largest record that might be found in the file. If this
parm is omitted, the LRECL value (if any) will be taken from FILE statement that defined
the file. If no LRECL parm is specified in either the FILE or the READ statement, a default
LRECL of 1000 is assumed.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���/5(&/������

The above example specifies that a record as large as 4000 bytes long may be
encountered in the EMPL–FILE file.

MULTI
For VSAM and EXIT files, specifies that when reading from this file, all records whose
key (or partial key, if GENERIC is specified) matches the READKEY value should be read.
If MULTI is not specified, only the first record whose key (or partial key) matches the
READKEY value will be read.

For DB2 tables, specifies that when reading from this table, all records (rows) which
pass the WHERE parm condition(s) should be read. If MULTI is not specified, only the first
record which passes the WHERE parm condition(s) will be read.

The use of the MULTI parm is discussed in the section beginning on page 235.

Note: the MULTI parm may not be specified if the KGE parm is also specified.
Such a combination would result in reading every record in the file whose key
was greater than or equal to the READKEY parm.

EXAMPLE :

&20387(��6+257².(<� ��68%675�(03/²180�����
5($'�����(03/²),/(��5($'.(<�6+257².(<���*(1(5,&��08/7,

The READ statement above will read multiple records using a generic read key. The
SHORT–KEY field is only 2 bytes long, while the defined key length for the EMPL–FILE file
is 3 bytes. Thus, when performing the above read, all records will be read where the first
2 bytes of their key equals the contents of SHORT–KEY.

READ

Chapter 9. Control Statement Syntax 517

ORDERBY(fieldname [ASC /DESC] [,] ...)
DB2 only. This parm is optional. It is possible that more than one row will pass
the search condition in your WHERE parm. If the MULTI parm is also specified, all of
these rows will be passed to Report Writer, one by one. If MULTI is not specified, Report
Writer accepts only the first row passed to it from DB2. Use this parm to specify the
order in which the selected row(s) should be passed to Report Writer. The contents of
this parm is one or more column name from the DB2 table, optionally separated with
commas. You may also include the DB2 keywords ASC or DESC after the column names.

EXAMPLE :

5($'��(03/2<((
������'%�1$0(�
'61�����(03
�
������:+(5(�(0312� �5(63(03�
������25'(5%<�/$671$0(�

The above statement specifies that DB2 should return rows from the employee table in
LASTNAME order. Therefore, if multiple rows existed for a given RESPEMP number, DB2

would return the row whose LASTNAME came first alphabetically. If no ORDERBY parm
is specified and multiple rows meet the WHERE condition, DB2 will return the rows in an
"arbitrary" order. Since MULTI was not specified in this example, Report Writer uses only
the first row returned to it by DB2.

READKEY(fieldname)
This parm is required for VSAM and EXIT files. Identifies the field that will be used as
the key when performing random reads to the file. The manner in which this key value
is used to locate an input record to read depends on two other parms which may be
present in the READ statement:

GENERIC KGE
PARM? PARM? DESCRIPTION

No No The record will be read whose full key exactly matches the
READKEY value. If no such record is found, the record will
be "missing." The READKEY field should be the same
length as the defined key length for the file. If MULTI is
also specified, Report Writer will read all records whose
full key matches the READKEY value. If MULTI is not
specified, only the first record with a matching key will be
read.

Yes No The record will be read whose key (or partial key) matches
the key (or partial key) in the READKEY value. The
READKEY field may be any length less than or equal to the
defined key length for the file. If MULTI is also specified,
Report Writer will read all records whose key (or partial)
key matches the READKEY value. If MULTI is not specified,
only the first record with a matching key (or partial key)
will be read.

No Yes The record will be read whose full key matches the
READKEY value. If no record matches the READKEY value,
then the record with the next greater key value will be read
instead. The READKEY field should be the same length as

READ

518 Report Writer Reference Manual

the defined key length for the file. The MULTI parm may
not be specified when KGE is specified.

Yes Yes The record will be read whose key (or partial key) matches
the key (or partial key) in the READKEY value. If no record
matches the READKEY value, then the record with the next
greater key (or partial key) value is read instead. The
READKEY field may be any length less than or equal to the
defined key length for the file. The MULTI parm may not
be specified when KGE is specified.

The contents of the READKEY field is always used ”as is" when performing the read.
Therefore, the key field must be the same format as the file's key values. You may need
to use a COMPUTE statement to build an acceptable READKEY field. (Only character type
COMPUTE fields may be used as read keys. See page 70, as well as below, for an example
of computing a read key.)

This field must be available at the time the READ statement is processed. Therefore, the
READKEY field must be either:

� a field from the primary input file

� a field from an earlier auxiliary input file .

� a character type computed field (defined in a preceding COMPUTE

statement.) Note: if the key to an auxiliary input file contains packed or
binary data, use the #FORMAT function in a COMPUTE statement to build a
character field containing the data in the PACKED or BINARY display format.

EXAMPLES :

5($'��(03/²),/(��5($'.(<�(03/²180�

The above example specifies that the EMPL–NUM field will be used as the key when
reading records from the EMPL–FILE file. The EMPL–NUM field must exist in a previously
specified input file. For the read to be successful, an exact, full–key match must be
found in the EMPL–FILE.

&20387(��%,1$5<²'(37²180� ��)250$7�'(37²180�%,1$5<���
5($'�����'(3$570(17²),/(��5($'.(<�%,1$5<²'(37²180�

The above example illustrates how to create a key in binary format. Assume that the
DEPARTMENT–FILE uses the department number formatted as a 2–byte binary field for its
key. The regular DEPT–NUM field is defined as a NUMERIC type numeric field (see
Appendix F, "Sample File Definitions") and would not work as the READKEY in this case,
since it is not in binary format. The COMPUTE statement above creates a new 2-byte
character field to be used when reading records from the DEPARTMENT–FILE. The
contents of the 2 bytes is the department number, formatted in binary format. That field
can be used as the READKEY to the DEPARTMENT–FILE. Since neither KGE nor GENERIC

is specified, an exact full–key match is again required for the read to be successful.

The following example is similar, but assumes that the DEPARTMENT–FILE requires a
4-byte packed read key:

&20387(��3$&.('².(<� ��)250$7�'(37²180�3$&.('���
5($'�����'(3$570(17²),/(��5($'.(<�3$&.('².(<�

READ

Chapter 9. Control Statement Syntax 519

RECNAME(name/filename)
Specifies a record name to use when referring to fields in this input file. This is
especially useful when you will be reading multiple records from the same input file (by
using additional READ statements.) The RECNAME parm (in each statement) can be used
to assign unique names to each record read from the file. You may give the record any
name you like, within the rules governing names given on page 388. The use of the
RECNAME parm is discussed beginning on page 232.

If no RECNAME parm is specified, the filename is used as the record name.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���5(&1$0(�(03�

The above example specifies that the records read from the EMPL–FILE file will be named
EMP. Assume that a field named DATE exists in both this file and in some other input file.
You can use the record name EMP to indicate that you are referring to the DATE field in
the EMPL–FILE, like this:

&2/8016��(03�'$7(

SHOWFLDS(YES/NO)
Specifies whether Report Writer should print a list of all fields that have been defined for
the file. (For DB2 inputs, the DB2 columns defined for the DB2 table are listed.) This list
appears immediately after the READ statement in Report Writer's control statement
listing. The list will include the data type of each field (character, numeric, date, time or
bit.) Use this parm if you aren't sure of the names or spellings of the fields (or DB2

columns) in your input file.

EXAMPLE :

5($'��(03/2<((
������'%�1$0(�
'61�����(03
�
������:+(5(�(0312� �5(63(03�
������6+2:)/'6�<(6�

The above statement causes a list to be printed showing each DB2 field defined for
the DSN8230.EMP table.

TYPE(VSAM/DB2/EXIT)
MVS only. Specifies an override file type for the input file (for the current run only.) If
this parm is omitted, the file type will be taken from the FILE statement that defined the
file. A complete list of file types is given under the FILE statement description, on page
475.

Note: only VSAM, DB2 and EXIT type files may be specified in the READ

statement.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���7<3(�96$0�

The above example specifies that the VSAM access method should be used when reading
the EMPL–FILE file, regardless of the file type specified when the file was originally
defined.

READ

520 Report Writer Reference Manual

WHERE(search–condition)
This parm is required for DB2 inputs and not allowed for other inputs. It performs the
same function that the READKEY parm performs for VSAM files. For each record read
from the primary input file, Report Writer will ask DB2 for one or more rows from this
auxiliary input file. Use this parm to specify a "search condition" to instruct DB2 which
row(s) from the DB2 table to pass to Report Writer. The syntax of the search–condition
is generally the same as DB2's syntax for the WHERE clause in a DB2 SELECT statement.
The use of this parm in a READ statement is discussed in the section beginning on page
345. Its syntax is discussed in the section beginning on page 350.

EXAMPLE :

,1387��352-(&7
�������'%�1$0(�
'61�����352-
�

5($'���(03/2<((
�������'%�1$0(�
'61�����(03
�
�������:+(5(�(0312� �5(63(03�

Here's how Report Writer processes the above statements. The primary input to the
report is the project DB2 table. So, Report Writer will retrieve all rows from that DB2

table. After it fetches each row from the project table, Report Writer will now also fetch
one row from the employee table. The row from the employee table will be the one
whose EMPNO field equals the RESPEMP field from the project table. If MULTI had also
been specified in the READ statement, Report Writer would fetch all such rows. When
MULTI is not specified, Report Writer fetches just the first such row.

NOTES

How Auxiliar y Input Files are Processed

The primary input file for a report is always read sequentially, from beginning to end.
Auxiliary input files are handled differently. They are read randomly (or directly) using
either a "read key" or a WHERE expression to determine which record(s) to read.

This section explains in more detail how Report Writer processes multiple input files.

Program Flow With No READ Statements

To understand how auxiliary input files are processed, let's first notice how Report Writer
produces a report when no auxiliary input files are used. In such a case, Report Writer
repeats the following steps over and over.

Step 1) read a record from the primary input file
Step 2) evaluate the INCLUDEIF statement using the data from this input record
Step 3) if the record passes the INCLUDEIF tests, pass the record to Report Writer's

output phase (where it will be sorted and formatted into the desired report
or PC file)

Step 4) if the record does not pass the INCLUDEIF tests, discard the record

The above steps are repeated until all records from the primary input file have been read.

READ

Chapter 9. Control Statement Syntax 521

Program Flow with READ Statements

The flow described above remains basically the same when one or more auxiliary input files
are added to the request. The only difference is in Step 1 above. Instead of simply reading
records from the primary input file, Report Writer now assembles "logical input records."
A logical input record is a group of records consisting of one record from each input file. The
manner in which these logical records are assembled is different depending on whether any
READ statement uses the MULTI parm.

The records from the primary input file are still read sequentially. The records from the
auxiliary input files are read using a READKEY (or a WHERE clause.) Once assembled, this
group of records is then treated by Report Writer as one, big logical input record containing
all of the data fields from all of the input files. Steps 2 through 4 of the program flow remain
the same –– it's just that they are now performed on this logical record rather than on the
primary input record alone.

Step 1) assemble a "logical input record" consisting of one record from each of the
input files

Step 2) evaluate the INCLUDEIF statement using the data from this logical input
record

Step 3) if the logical input record passes the INCLUDEIF tests, pass the logical input
record to Report Writer's output phase (where it will be sorted and
formatted into the desired report or PC file)

Step 4) if the logical input record does not pass the INCLUDEIF tests, discard the
logical input record

As mentioned, the specific way that Report Writer assembles its logical input records (in Step
1) is different depending on whether any READ statements use the MULTI parm. The next two
sections explain how Report Writer assembles its logical records in each case.

Program Flow Without MULTI–t ype READ
Statements

When none of the READ statements uses the MULTI parm, Report Writer assembles one logical
record for each record it reads from the primary input file. The primary input file is still read
sequentially, from beginning to end. Each time Report Writer reads a new record from the
primary input file, it also reads a single record from each of the auxiliary input files. This
group of related records, one from each input file, is treated as a logical input record.

Now the program flow can be described this way:

Step 1a) read a record from the primary input file
Step 1b) create one logical input record by also reading a single record from each

auxiliary input file
Step 2) evaluate the INCLUDEIF statement using the data from this logical input

record
Step 3) if the logical input record passes the INCLUDEIF tests, pass the logical input

record to Report Writer's output phase (where it will be sorted and
formatted into the desired report or PC file)

Step 4) if the logical input record does not pass the INCLUDEIF tests, discard the
logical input record

READ

522 Report Writer Reference Manual

The above steps are repeated until all records from the primary input file have been read.
Note that when no MULTI parm is used, the number of logical records processed is the same
as the number of primary input file records.

Note: the steps above describe what Report Writer does logically. During actual
processing, there may be cases where it is not necessary for Report Writer to read a
particular record from an auxiliary input file. For example, if the INCLUDEIF

statement eliminates a primary input record without referring to fields from any
auxiliary input files, it is not necessary to read the records from those files. The next
primary input record can be read right away. For run–time efficiency, individual
records are not read from auxiliary files when they are not actually needed to
correctly process a request.

Program Flow With MULTI–t ype READ
Statements

When one or more READ statements with a MULTI parm is used in a request, Report Writer
uses a different process to assemble logical records.

Let's consider a simple request that uses a single READ statement. Assume that the READ

statement contains the MULTI parm. Rather than only reading a single record from the
auxiliary input file each time, Report Writer must now read all records that match the
READKEY value (or the WHERE clause.) So now, each time a primary input file record is read,
all of the qualifying auxiliary input file records must be read and, one at a time, combined
with the primary input record to form multiple logical input records. Only after all of the
qualifying auxiliary input file records have been processed can the next primary input file
record be read.

You can see that when a MULTI–type READ statement is used, the number of logical input
records processed can be far greater than the number of primary input file records.

When two (or more) READ statements with the MULTI parm are used, the process is similar to
that just described. But now the number of record combinations that Report Writer must
assemble into logical records increases exponentially. For each primary input file record,
Report Writer must build one logical input record using every possible, unique combination
of auxiliary input file records that are related to that primary input file record.

The program flow can now be described this way:

Step 1a) read a record from the primary input file
Step 1b) build as many logical input records as possible using this primary input

record and all combinations of records read from the auxiliary input file(s)
Step 2) for each logical input record, evaluate the INCLUDEIF statement using the

data from that logical input record
Step 3) if the logical input record passes the INCLUDEIF tests, pass the logical input

record to Report Writer's output phase (where it will be sorted and
formatted into the desired report or PC file)

Step 4) if the logical input record does not pass the INCLUDEIF tests, discard the
logical input record

The above steps are repeated until all records from the primary input file have been read.

READ

Chapter 9. Control Statement Syntax 523

Note: you may have a report request that uses some READ statements that have the
MULTI parm and some READ statements that do not have it. In that case, the above
flow is still used. When assembling logical records from the combinations of
qualifying records from each file, the READ statements without the MULTI parm will
always contribute only one qualifying record.

Note: whenever an auxiliary input file does not have any qualifying records to
contribute to the logical record, a single "missing record" from that file will be used
in building the logical record combinations. This is true whether or not the MULTI

parm was used in the READ statement.

Speed–Up Tip: READ statements with the MULTI parm are less efficient than regular
READ statements. To reduce CPU and I/O usage, do not specify MULTI if you know
that a file contains unique keys. (In other words, do not specify MULTI if you know
the READKEY will only find one matching record in the file.)

Speed–Up Tip: when mixing READ statements with and without the MULTI parm,
put the READ statements without the MULTI parm ahead of the READ statements with
the MULTI parm whenever possible. This improves performance by reducing the
amount of I/O required to assemble all of the possible record combinations.

Missin g Records

Sometimes there will not be any record in an auxiliary file that matches READKEY value
(or the WHERE expression.) When this happens, Report Writer assigns a default value to
each of the fields in the missing record. The default value depends on the type of the field, as
shown in the following table:

FIELD TYPE DEFAULT VALUE

Character Blanks
Numeric Zero
Date Zeros (00/00/0000)
Time Zeros (00:00:00)
Bit OFF

SORT

524 Report Writer Reference Manual

SORT Statement

PURPOSE
This statement specifies how Report Writer should sort the input file records before writing
the report or PC file. A SORT statement is not required. If no SORT statement is found, no
sort will be performed and the output will be in the original order of the input file.

Only one SORT statement is allowed, but it may contain as many sort fields as you like.

The SORT statement can also be used to specify control breaks.

FEATURES
Use the SORT statement to:

� specify the sort fields to be used for the report or PC file

� specify whether to sort each field into ascending or descending order

� specify that a control break should occur whenever the contents of a sort field
changes

� specify the control break spacing to use at control breaks

� specify which statistics lines, if any, to print at control breaks

LEARNING MORE

The complete syntax of the SORT statement is shown on the following pages. In addition, the
following parts of the manual relate to the SORT statement:

� a lesson on using the SORT statement in reports begins on page 48

� a lesson on using the SORT statement in PC files begins on page 100

� the use of the SORT statement to request control breaks is discussed beginning
on page 182

SORT

Chapter 9. Control Statement Syntax 525

SYNTAX

SORT STATEMENT SYNTAX

6257����ILHOGQDPH>�SDUPV�@��ILHOGQDPH>�SDUPV�@������>��(48$/6�@

where parms can be one or more of the following (separated by commas or blanks):

$6&�'(6&
$9(5$*(
0$;,080
0,1,080
Q�3$*(�3$*(��1(:6+((7�1(:6+((7��2''3$*(�2''3$*(�
1=$9(5$*(
1=0,1,080
727$/�12727$/

Standard Alternate
Spelling Spellings
�(48$/6 �(48$/���(4
$6& $
$9(5$*($9(5��$9*
'(6& '
0$;,080 0$;
0,1,080 0,1
12727$/ 12727$/6��12727��127276
1=$9(5$*(1=$9(5��1=$9*
1=0,1,080 1=0,1
3$*(3*��3
6257 657
727$/ 727$/6��727��7276

Only one or more fieldnames (or the #EQUALS parm) is required. All other parms are
optional.

Note: Use the AUTOSORT option (in an OPTIONS statement) if you want Report
Writer to automatically sort your report or PC file on its first five columns of data.

Specifying any parm other than ASC or DESC for a field makes that field a control break field.
Specifically, the parms that cause a control break are:

� the TOTAL or NOTOTAL parm. (Specifying TOTAL results in a control break with
totals; NOTOTAL results in a control break without totals.)

� a break spacing parm (such as PAGE, NEWSHEET, 3, etc.)

� a statistical parm (such as AVERAGE, MAXIMUM, etc.)

fieldname[(parms)]
Specifies a field on which the output is to be sorted, and optionally specifies additional
processing information about the field. You are not restricted to sorting on fields that
appear in the report. You may sort on a field which does not appear anywhere else in the

SORT

526 Report Writer Reference Manual

report. Of course, the field must be available to Report Writer at the time the SORT

statement is processed. That is, the field must be one of the following:

� a field from an input file. (An input file is a file named in the INPUT

statement, or in an optional READ statement.)

� a computed field (defined in a preceding COMPUTE statement)

No parms are required with the fieldname. If desired, specify one or more parms by
placing them in parentheses immediately after the fieldname. (Do not leave a space
before the parenthesis.) Separate the parms with spaces and/or a comma.

EXAMPLE :

6257��5(*,21�(03/²1$0(

The above example will cause the report to be sorted in REGION order and, within each
region, in EMPL–NAME order.

#EQUALS
This parm can be used only as the last item (or only item) in a SORT statement. It
specifies that, if after sorting on all of the preceding sort fields there are still some ties,
the tie records should be left in the same relative order that they had in the input file.
This is useful if the records in your input file are already in some special order, and you
want to preserve that relative order.

EXAMPLE :

6257��5(*,21��(48$/6

The above SORT statement causes the records to be sorted by REGION. However, within
REGION, the records will not be sorted on any additional field. Instead, the #EQUALS parm
specifies that the records within a region will be printed in the same relative order in
which they appeared in the input file.

ASC/DESC
Specifies ascending or descending sort order. The default sort order is ascending.

EXAMPLE :

6257��5(*,21�'(6&��(03/²1$0(

The above example will cause the report to be sorted in descending REGION order. The
last region (alphabetically) will print first, and the first region will print last. Within a
region, the records will be further sorted on (ascending) employee name.

AVERAGE
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that average values should be displayed at the break. At the control break,
a line will print showing each numeric column's average value in the control group just
ended.

EXAMPLE :

6257��5(*,21�$9(5$*(��(03/²1$0(

SORT

Chapter 9. Control Statement Syntax 527

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a average line will print at the break.

MAXIMUM
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that maximum values should be displayed at the break. At the control
break, a line will print showing each accumulated column's maximum value in the control
group just ended.

EXAMPLE :

6257��5(*,21�0$;,080��(03/²1$0(

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a maximum line will print at the break.

MINIMUM
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that minimum values should be displayed at the break. At the control
break, a line will print showing each accumulated column's minimum value in the control
group just ended.

EXAMPLE

6257��5(*,21�0,1,080��(03/²1$0(

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a minimum line will print at the break.

n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/
ODDPAGE/ODDPAGE1

Specifies that a control break should occur whenever the value of the sort field changes,
and specifies the spacing to use at the control break. Unless overridden with the
NOTOTAL parm, a line of totals will also print at the control break. After the totals line,
the spacing specified with this parm will be performed.

A numeric value (n) specifies a number of blank lines to print at the break. Any of the
other parms cause the report to skip to a new page after the control break. For a
description of each of these break spacing parms, see "How to Change the Control Break
Spacing" on page 183.

EXAMPLE :

6257��5(*,21�3$*(��(03/²1$0(

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. After
printing regions totals at the break, the report will skip to a new page.

SORT

528 Report Writer Reference Manual

NZAVERAGE
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that non–zero average values should be displayed at the break. At the
control break, a line will print showing each accumulated column's average value
(computed without considering any zero values) in the control group just ended.

EXAMPLE :

6257��5(*,21�1=$9(5$*(��(03/²1$0(

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a non–zero average line will print at the break.

NZMINIMUM
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that non–zero minimum values should be displayed at the break. At the
control break, a line will print showing each accumulated column's minimum value
(not considering zero values) in the control group just ended.

EXAMPLE :

6257��5(*,21�1=0,1,080��(03/²1$0(

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a non–zero minimum line will print at the break.

TOTAL/NOTOTAL
Specifies that a control break should occur whenever the value of the sort field changes,
and specifies whether or not to print totals at the control break.

The TOTAL parm specifies that totals are wanted at the control break. After the total line
prints, the break spacing will be performed.

Note: if a break spacing parm or any other statistical parm has been specified
(indicating that a control break is desired), it is not necessary to also specify the
TOTAL parm. The total line prints by default at all control breaks.

The NOTOTAL parm specifies that totals are not wanted at the break–– only the break
spacing is wanted. Unless overridden with a break spacing parm, two blank lines will
print at the control break.

EXAMPLES :

6257��5(*,21�727$/��(03/²1$0(

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. Totals
for the preceding region will print, followed by two blank lines.

6257��5(*,21�12727$/��(03/²1$0(

SORT

Chapter 9. Control Statement Syntax 529

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print.
However, a totals line will not print at the break. Only two blank lines will print.

NOTES

How Report Writer Determines Sort Order

All data processed by Report Writer falls into one of five general categories of data. The
following table shows how each type of data is sorted:

DATA TYPE DESCRIPTION

Character Character fields are sorted into alphabetical order (based on their
EBCDIC values). The letter "A" sorts before the letter "B", etc.
Numerals ("1", "2", etc.) sort after the letter "Z". Special symbols such
as parentheses, commas, dashes, etc. sort before the letter "A."

Also, all lower case letters ("a" through "z") sort before the first upper
case letter ("A"). If you want to sort on a field which contains mixed
case letters, you may wish to first convert the field to all upper–case.
That way, fields containing the same words will sort together, even if
the words are capitalized differently. Use the #UCASE built–in function
to create an all upper–case version of the desired field.

Note: the full contents of character fields are sorted, not just
the portion that may appear in a report column. In other
words, even if you truncate a character field to make it fit into
a report column, the field's full value will still be used for
sorting purposes. The field's full value is also used to
determine when a control break occurs.

Numeric The signed algebraic value of numeric fields are sorted. Thus, all minus
numbers will sort before the first positive number.

Note: the true internal value of a field is what is sorted, not
the formatted value that may appear in the report. In other
words, commas, dollar signs, etc. are not considered when
sorting numeric fields. Also, if you rounded out some of the
decimal digits when displaying the field, those decimal digits
are still considered when performing the sort (and when
determining breaks, if the field is a control break field.)

Date Dates are sorted in year, month, and day order, regardless of how the
raw data may have been stored in the input file, and regardless of how
the date may be formatted in the report.

SORT

530 Report Writer Reference Manual

Time Times are sorted in hours, minutes and seconds order, regardless of
how the raw data may have been stored in the input file, and regardless
of how the time may be formatted in the report.

Bit Bit fields are sorted as either an OFF or ON. They are not sorted
according to the text used to display them in the report (that is, the
ONTEXT and OFFTEXT values.) Bit fields which are OFF ("0") will sort
before bit fields which are ON ("1").

Note: Depending on what ONTEXT and OFFTEXT values are
used, a sorted bit field column may or may not appear in
alphabetical order. You can always reverse the order, if
desired, by specifying the DESC parm when sorting a bit field.

Note: A field which is in error is treated as a very low value when sorting. Thus,
fields containing invalid packed data, for example, and displayed with the ,
error indicator, will sort ahead of fields containing valid numeric values.

TITLE

Chapter 9. Control Statement Syntax 531

TITLE Statement

PURPOSE
This statement specifies a title that should print at the top of each page of the report. You
may have as many TITLE statements as you like. Each TITLE statement results in one title line
at the top of your report.

Another use of TITLE statements is to create your own column headings, when you do not
want the ones automatically created.

TITLE statements are ignored when producing PC files.

FEATURES
Use the TITLE statement to:

� specify the contents of the report titles (which can include literal text, data from
input files, and special items like the current page number, date, time, etc.)

� specify how to left align, center and right align different parts of the same title

� specify the desired width , display format, and justification for data fields
that appear in a title

LEARNING MORE

The complete syntax of the TITLE statement is shown on the following pages. In addition, the
following parts of the manual relate to the TITLE statement:

� a lesson on using the TITLE statement begins on page 38

� advanced examples of using the TITLE statement are shown beginning on page
165

� using TITLE statements to create column headings is discussed in "How to
Produce Multi–Line Reports" on page 147

TITLE

532 Report Writer Reference Manual

SYNTAX

TITLE STATEMENT SYNTAX

7,7/(���SULQW²H[SUHVVLRQ�>��SULQW²H[SUHVVLRQ@�>��SULQW²H[SUHVVLRQ@

Note: the syntax for the print-expressions is shown on page 533.

Standard Alternate
Spelling Spellings
7,7/(� 7,7/��7,7

The TITLE statement consists of from one to three print expressions, separated with slashes.
If a TITLE statement has no slashes, the single print expression will be centered over the
report. If there is one slash, the first print expression will be left–aligned and the second print
expression will be right–aligned over the report. If there are two slashes, the first print
expression will be left–aligned, the second one will be centered, and the third one will be
right–aligned. It is okay for one or more of the print expressions to be empty. Examples of
using various combinations of print expressions and slashes is illustrated in the section
beginning on page 174.

You may also use empty TITLE statements. An empty TITLE statement results in one blank
title line.

Note: any title line that contains only spaces and underscore characters will be
overprinted (that is, printed without advancing to the next line.) Use this feature to
underline column headings that you create with TITLE statements.

Note: use the similar FOOTNOTE statement to print title lines at the bottom of each
page of the report.

TITLE

Chapter 9. Control Statement Syntax 533

PRINT –EXPRESSION SYNTAX (IN TITLE STATEMENT)

A print–expression consists of one or more items, optionally separated by numeric
spacing factors:

7,7/(����� >Q@�LWHP�>Q@�LWHP�>Q@�LWHP����
>�� >Q@�LWHP�>Q@�LWHP�>Q@�LWHP�����@
>�� >Q@�LWHP�>Q@�LWHP�>Q@�LWHP�����@

Each item can be either a fieldname or a literal text . Each item can optionally be
followed by a parm list in parentheses:

ILHOGQDPH>�� > %,= @
> GLVSOD\²IRUPDW @
> /()7�&(17(5�5,*+7 @
> ZLGWK @ �@

OLWHUDO
>� ZLGWK �@

Standard Alternate
Spelling Spellings
&(17(5 &-
/()7 /-
5,*+7 5-
7,7/(� 7,7/��7,7

fieldname
Specifies that the title line should contain the contents of this field. The field's data will
be taken from the first detail record on the new page.

The field must be available to Report Writer at the time the TITLE statement is processed.
That is, the field name must be one of the following:

� a field from an input file. (An input file is a file named in the INPUT

statement, or in an optional READ statement.)

� a computed field (defined in a preceding COMPUTE statement)

� a built–in field (see Appendix C, "Built-In Fields" for a complete list of
built–in fields.)

Note that in addition to the standard built–in fields, there is one special built–in field that
can be used only in the TITLE and FOOTNOTE statements. That is the #PAGENUM built–in
field, which contains the current page number. By default, it formatted with this picture:
PIC'ZZZ9' (4 digits). You can override this format by using a numeric display format
parm. This fieldname can also be abbreviated as #PAGE.

EXAMPLE :

7,7/(���72'$<�����
$%&�&203$1<
����
3$*(
���3$*(180

TITLE

534 Report Writer Reference Manual

The above example contains three print expressions. It will produce a title line which
looks like this:

�������� $%&�&203$1< 3$*(�QQQQ

The literal texts ("$%&� &203$1<", and "3$*(") print as specified. The contents of the
built–in fields #TODAY and #PAGENUM also print, in default format. The first part of the
title is left–justified; the second part is centered; the third part is right–justified.

'literal'
Specifies that the title line should contain this literal text. Enclose the literal text in either
apostrophes or quotation marks.

EXAMPLE :

See the example above under the fieldname parm.

n
This is a numeric spacing factor. It specifies how many blank spaces to leave between
two items in a title line. A spacing factor of zero is allowed. (It results in two items
appearing in the title with no blank spaces between them.) If no spacing factor is given,
the default is to leave one blank space between items.

EXAMPLE :

7,7/(���72'$<�����
$%&�&203$1<
�����
3$*(
����3$*(180

The above example specifies that 6 blank spaces should be left between the literal text
"3$*(" and the contents of the #PAGENUM field. The title would now look like this:

�������� $%&�&203$1< 3$*(������QQQQ

BIZ
This “blank if zero” parm specifies that blanks should appear in the title for the field if
it has a value of zero. This parm is allowed only for numeric, date and time fields. A
date is considered to have a zero value if the month, day and last 2 digits of the year are
all zeros (regardless of the value of the century part of the year.)

EXAMPLE :

7,7/(��
(03/2<((6�+,5('�21
�+,5(²'$7(�%,=�

The above example causes the HIRE–DATE field in the title to be left blank whenever it
contains a zero date.

displa y–format
Specifies how the contents of a field should be formatted in the title line. A complete list
of display formats is found in Appendix B, "Display Formats" (page 550.) If this parm
is not specified, Report Writer uses the display format from:

� the FIELD or COMPUTE statement that defined the field

� an OPTIONS statement FORMAT parm

� the default display format (see page 559)

TITLE

Chapter 9. Control Statement Syntax 535

EXAMPLE :

7,7/(���72'$<�/21*�������
$%&�&203$1<
�����
3$*(���3$*(180�3,&
���
�

The above example specifies display formats for the #TODAY and the #PAGENUM fields.
The LONG1 display format causes the month name to be spelled out. The PICTURE

display format (for #PAGENUM) specifies that three digits of the page number should be
displayed, and that leading zeros should not be suppressed. The title line would now
look like this:

'(&(0%(5��������� $%&�&203$1< 3$*(����

LEFT/CENTER/RIGHT
Specifies how a field's data should be justified within the space allocated for it in the title
line.

EXAMPLE :

7,7/(���72'$<�/21*��&(17(5�

The above example specifies a title line that simply contains the current date, displayed
in LONG1 format. The LONG1 format causes 18 bytes to be reserved for the date in the
title line. This is to allow enough room to print the biggest possible date (like "6(37(0%(5

��������"). The 18–byte area reserved for the date will automatically be centered over
the body of the report, since no slashes are used. But shorter dates (like "0$<��������")
would not take up the entire 18–byte area, and thus would not appear to be centered
correctly in the title. The CENTER parm is needed to cause these shorter dates to be
centered within the 18–byte area in the title line. The title line produced by the above
statement would look like this:

'(&(0%(5���������

A similar situation arises when you want to align a date with the right margin of a report.
By using a slash you can cause the whole 18–byte area to be right–aligned. But a small
date ("0$<��������") would not use up the entire 18 bytes, and thus would not be flush
with the right edge of your report. To solve that problem, use the RIGHT justification
parm to right–justify the date within its 18–byte area, like this:

7,7/(��
$%&�&203$1<
������72'$<�/21*��5,*+7�

The title line produced by the above statement would look like this:

$%&�&203$1< '(&(0%(5���������

width
This is a numeric parm that specifies the number of characters to reserve for an item in
the title line. Use this parm if the default width is too large or too small.

EXAMPLE :

7,7/(��
3$*(
��3$*(180���

The above example specifies that 9 characters (not digits) should be reserved to display
the #PAGENUM field in the title line. The resulting title would look like this:

3$*(�Q�QQQ�QQQ

536 Report Writer Reference Manual

(This page left blank intentionally.)

Appendices 537

Appendices

Appendices Table of Contents

Appendix A. Data T ypes . 539
Character Data Types . 539
Numeric Data Types . 540
Date Data Types . 542
Time Data Types . 545
Bit Data Types . 549

Appendix B. Displa y Formats . 550
Display Formats for Any Type of Field . 551
Numeric Display Formats. 552
Date Display Formats . 554
Time Display Formats. 557
Default Display Formats. 559

Appendix C. Built–In Fields . 560
Character Built–In Fields. 562
Numeric Built–In Fields. 563
Date Built–In Fields . 564
Time Built–In Fields. 565

Appendix D. Built–In Functions . 566
Functions that Return a Character Value. 569
Functions that Return a Numeric Value. 575
Functions that Return a Date Value. 579
Functions that Return a Time Value. 580
Functions that Return a Bit Value. 581

Appendix E. Error Indicators . 582
Suppressing Error Indicators. 583
Propagation of Error Indicators. 584
Testing for Invalid Data . 584

Appendix F. Files Used in Examples . 586

Appendix G. Sample Data Exit Pro gram . 591

538 Report Writer Reference Manual

Appendices Table of Contents (Continued)

Appendix H. How to Import PC Files . 596
Importing a PC file into Lotus 1–2–3 for Windows. 597
Importing a PC file into Lotus 1–2–3 (DOS Versions). 597
Importing a PC File into Excel. 597
Importing a PC File into Quattro Pro. 598
Importing a PC File into Paradox for Windows. 598
Importing a PC File into Paradox (DOS Versions). 599
Importing a PC File into Microsoft Works. 599
Importing a PC File into Corel Chart. 599
Importing a PC File into PowerPoint. 600
Importing Files into Harvard Graphics. 600
Importing a PC File into dBASE IV. 601
Importing a PC File into R:BASE. 601
Importing Files into Word Processing Programs . 602

Appendix I. Speed–Up Tips . 603
INCLUDEIF Statement. 603
Conditional COMPUTE Statements. 606
COMPUTE Statements with RETAIN . 607
Intermediate Computational Expressions. 608
Intermediate Conditional Expressions. 608
READ Statements with the MULTI parm . 609
VSAM I/O . 609
Replace an Auxiliary Fileb with a "Table Lookup". 612
Clearing I/O Areas . 613
Development Cycle . 613
Using Explicit Literals in Conditional Expressions. 614

Appendix J. Year 2000 Information . 616
How to Prepare for the Year 2000 and Beyond . 617

Appendix K. I/O Exits . 620

Appendix A. Data Types 539

Appendix A. Data T ypes

There are five general categories of data that Report Writer recognizes. They are:

� character
� numeric
� date
� time
� bit

For each of these categories, there is more than one way that the data can actually be
represented in an input record. A data type describes how a particular field's data is stored
within an input record. A field's data type is defined to Report Writer with the TYPE parm in
its FIELD statement.

The following charts show the data types that Report Writer supports for each category of
data. These charts also show the acceptable abbreviations and alternate spellings for the data
types.

Character Data T ypes

DATA TYPES FOR CHARACTER FIELDS

DATA TYPE DESCRIPTION LENGTH ALLOWED

CHARACTER
CHAR
CH
C

Character data 1 to 32,767

CHAREXIT Report Writer will call a user–written exit program to 1 to 32,767
obtain a character string.

Data Types –– Numeric

540 Report Writer Reference Manual

Numeric Data T ypes

DATA TYPES FOR NUMERIC FIELDS

DATA TYPE DESCRIPTION

PROGRAMMING LENGTH

LANGUAGE ALLOWED

EQUIVALENTS (See Note 1)

NUMERIC
NUM
DISPLAY
DISP

Display numeric. 1–256
Example: &
����
��&
������
��&
�����
�
&
������
��&
�������
��DUH�DOO�������

Example: &
²����
�LV�²������

&2%2/��86$*(�',63/$<
�������3,&�����
�������3,&�6�����6,*1
���������,6�6(3$5$7(
3/�����3,&�
����

$60����'6��&

NUMERIC–SLD
NUM–SLD

Numeric with Signed Last Digit. 1–256
Example: &
����
�DQG�&
���'
�DUH�������
Example: &
���0
�LV�²������

&2%2/��3,&�6����
3/�����3,&�
���7

$60����'6��=

NUMERIC–CD
NUM–CD

Numeric with Comma for Decimal symbol. 1–256
Example: &
������������
 and
&
�����������
 are valid values.

�1RQH�

PACKED
PACK
P
COMP–3

Packed decimal (signed). 1–16
Example: ;
�����)
��;
�����&
�DUH�������
Example: ;
�����'
�LV�²������

&2%2/��3,&�6����
���������86$*(�&203²�
3/�����),;('�'(&,0$/
$60����'6��3

PACKEDUN
PACKUN
PU

Packed decimal unsigned (BCD). 1–16
Example: ;
����
�LV�������

�QRQH�

BINARY
BIN
COMP

Binary (signed). 1–8
Example: ;
��'�
�LV�������
Example: ;
)%�(
�LV�²������
Example: ;
))
�LV�²��

&2%2/��3,&�6����
���������86$*(�&203
3/�����),;('�%,1$5<
$60����'6��+
�������'6��)

BINARYUN
BINUN
BU

Binary unsigned. 1–8
Example: ;
��'�
�LV�������
Example: ;
)%�(
�LV��������
Example: ;
))
�LV�����

&2%2/��3,&������&203
$60����'6��$

HALFWORD
HALF

Same as %,1$5< but defaults to a length 1–8
of 2 when no length is specified.
Example: ;
��'�
�LV�������
Example: ;
)%�(
�LV�²������

&2%2/��3,&�6�����&203
3/�����),;('�%,1����
$60����'6��+

Data Types –– Numeric

DATA TYPES FOR NUMERIC FIELDS

DATA TYPE DESCRIPTION

PROGRAMMING LENGTH

LANGUAGE ALLOWED

EQUIVALENTS (See Note 1)

Appendix A. Data Types 541

FULLWORD
FULL

Same as %,1$5< but defaults to a length 1–8
of 4 when no length is specified.
Example: ;
������'�
�LV�������
Example: ;
)))))%�(
�LV�²������

&2%2/��3,&�6�����&203
3/�����),;('�%,1����
$60����'6��)

NUMEXIT Report Writer will call a user–written exit N/A
program to obtain a numeric value. The exit
program must return a 16–byte packed
number (optionally containing decimal
digits).

&2%2/��&$//
3/�����&$//
$60����*272

Notes:
Lengths indicate the number of bytes occupied in the input record, not the number of digits. The(1)

maximum number of digits (including any decimal digits) allowed in any numeric field is 31.

Data Types –– Date

542 Report Writer Reference Manual

Date Data Types

DATA TYPES FOR DATE FIELDS

DATA TYPE LENGTHDESCRIPTION (See Note 1)

MM–DD–YY 00�''�<< date in character format (including slashes or other 8
delimiters.) Leading zeros are optional in day and month.(2)

Example: &
��������
�DQG�&
��������
�DUH�'HF�����������
Example: &
��������
�DQG�&
��õ���
�DUH�-DQ����������

MM–DD–YYYY 00�''�<<<< date in character format (including slashes or other 10
delimiters.) Leading zeros are optional in day and month.(2)

Example: &
����������
�DQG�&
����������
�DUH�'HF�����������
Example: &
����������
�DQG�&
��õ�����
�DUH�-DQ����������

MMDDYY 00''<< date in character format. 6
Example: &
������
�LV�'HF�����������

MMDDYYYY 00''<<<< date in character format. 8
Example: &
��������
�LV�'HF�����������

DD–MM–YY ''�00�<< date in character format (with slashes or other 8
delimiters.) Leading zeros are optional in day and month.(2)

Example: &
��������
�DQG�&
��������
�DUH�'HF�����������
Example: &
��������
�DQG�&
��������
�DUH�-DQ����������

DD–MM–YYYY ''�00�<<<< date in character format (with slashes or other 10
delimiters.) Leading zeros are optional in day and month.(2)

Example: &
����������
�DQG�&
����������
�DUH�'HF�����������
Example: &
����������
�DQG�&
����������
�DUH�-DQ����������

DDMMYY ''00<< date in character format. 6
Example: &
������
�LV�'HF�����������

DDMMYYYY ''00<<<< date in character format. 8
Example: &
��������
�LV�'HF�����������

YYYY–MM–DD <<<<�00�'' date in character format (including slashes or other 10
delimiters.) (2)

Example: &
����������
�DQG�&
����������
�DUH�'HF�����������
Example: &
����������
�DQG�&
��õ�����
�DUH�-DQ����������

YYMMDD <<00'' date in character format. 6
Example: &
������
�LV�'HF�����������

YYYYMMDD <<<<00'' date in character format. 8
Example: &
��������
�LV�'HF�����������

Data Types –– Date

DATA TYPES FOR DATE FIELDS

DATA TYPE LENGTHDESCRIPTION (See Note 1)

Appendix A. Data Types 543

YYYY–DD–MM <<<<�''�00 date in character format (including slashes or other 10
delimiters.) (2)

Example: &
����������
�DQG�&
����������
�DUH�'HF�����������
Example: &
����������
�DQG�&
���������
�DUH�-DQ����������

YYDDD <<''' Julian date in character format. 5
Example: &
�����
�LV�'HF�����������

YYYYDDD <<<<''' Julian date in character format. 7
Example: &
�������
�LV�'HF�����������

H–MMDDYY 00''<< date in hexadecimal (BCD) format. 3
Example: ;
������
�LV�'HF�����������

H–MMDDYYYY 00''<<<< date in hexadecimal (BCD) format. 4
Example: ;
��������
�LV�'HF�����������

H–DDMMYY ''00<< date in hexadecimal (BCD) format. 3
Example: ;
������
�LV�'HF�����������

H–DDMMYYYY ''00<<<< date in hexadecimal (BCD) format. 4
Example: ;
��������
�LV�'HF�����������

H–YYMMDD <<00'' date in hexadecimal (BCD) format. 3
Example: ;
������
�LV�'HF�����������

H–YYYYMMDD <<<<00'' date in hexadecimal (BCD) format. 4
Example: ;
��������
�LV�'HF�����������

H–YYDDD <<''' Julian date in hexadecimal (BCD) format. 3
Example: ;
������
�LV�'HF�����������

H–YYYYDDD <<<<''' Julian date in hexadecimal (BCD) format. 4
Example: ;
��������
�LV�'HF�����������

P–MMDDYY 00''<< date in packed format. 4
Example: ;
�������&
�LV�'HF����������

P–MMDDYYYY 00''<<<< date in packed format. 5
Example: ;
���������&
�LV�'HF����������

P–DDMMYY ''00<< date in packed format. 4
Example: ;
�������&
�LV�'HF�����������

P–DDMMYYYY ''00<<<< date in packed format. 5
Example: ;
���������&
�LV�'HF�����������

Data Types –– Date

DATA TYPES FOR DATE FIELDS

DATA TYPE LENGTHDESCRIPTION (See Note 1)

544 Report Writer Reference Manual

P–YYMMDD <<00'' date in packed format. 4
Example: ;
�������&
�LV�'HF����������

P–YYYYMMDD <<<<00'' date in packed format. 5
Example: ;
���������&
�LV�'HF�����������

P–YYDDD <<''' Julian date in packed format. 3
Example: ;
�����&
�LV�'HF�����������

P–YYYYDDD <<<<''' Julian date in packed format. 4
Example: ;
�������&
�LV�'HF�����������

P–CYYDDD Packed Julian date with century digit (as used in SMF records.) 4
Example: ;
�������&
�LV�'HF�����������
Example: ;
�������&
�LV�'HF�����������

STCKDATE Report Writer extracts the date portion of the date–time value stored 8
by the IBM STCK machine instruction (CPU timer units since 00:00:00
1/1/1900 GMT.) Report Writer automatically converts the STCK value
from GMT to local time. For more details, see the 67&.$'- parm in the
237,216 statement.

ABSDATE Report Writer extracts the date portion of a CICS ABSTIME date–time 8
value (8-byte packed number of milliseconds since 00:00:00
1/1/1900.)

DATEEXIT Report Writer will call a user–written exit program to obtain a date N/A
value. The exit program must return a 4–byte date in ;
<<<<00''

format.

Notes:
The &(1785< parm (in an 237,216 statement) determines whether <<–type dates are ��<< or ��<<.(1)

Any non–numeric character is accepted as the delimiter character.(2)

Data Types –– Time

Appendix A. Data Types 545

Time Data T ypes

DATA TYPES FOR TIME FIELDS

DATA TYPE DESCRIPTION

DEFAULT

LENGTH

LENGTH

ALLOWED
(See Note 1)

HH–MM–SS ++�00�66 time in character format (with colons or other 8 8–256
delimiters). Decimal digits are allowed.(4)

Example: &
��������
�DQG�&
��������
�DUH���������
Example: &
����������
�LV����������� (6)

(2)

HHMMSS ++0066 time in character format (no delimiters). 6 6–256
Decimal digits are allowed.
Example: &
������
�LV���������
Example: &
�������
�LV����������� (6)

(2)

HH–MM ++�00 time in character format (including a colon or other 5 5
delimiter.) Decimal digits are not allowed.(4)

Example: &
�����
�DQG�&
�����
�DUH������

HHMM ++00 time in character format. 4 4
Decimal digits are not allowed.
Example: &
����
�LV������

H–HHMMSS ++0066 time in hexadecimal (BCD) format. 3 3–15
Decimal digits are allowed.
Example: ;
������
�LV���������
Example: ;
��������
�LV����������� (6)

(2)

H–HHMM ++00 in hexadecimal (BCD) format. 2 2
Decimal digits are not allowed.
Example: ;
����
�LV������

P–HHMM ++00 time in packed format. 3 3
Decimal digits are not allowed.
Example: ;
�����&
�LV������

P–HHMMSS ++0066 time in packed format. 4 4–16
Decimal digits are allowed.
Example: ;
�������&
�LV���������
Example: ;
�������&
�LV����������� (6)

(2)

Data Types –– Time

DATA TYPES FOR TIME FIELDS

DATA TYPE DESCRIPTION

DEFAULT

LENGTH

LENGTH

ALLOWED
(See Note 1)

546 Report Writer Reference Manual

SECS
SEC

Seconds since midnight in character format. N/A 1–256
Decimal digits are allowed.
Example: &
�����
�LV���������
�������������������� ��������

Example: &
������
�LV����������� (6)

(5) (3)

P–SECS Seconds since midnight in packed format. N/A 1–16
Decimal digits are allowed.
Example: ;
�����&
�LV���������
Example: ;
�������&
�LV����������� (6)

(5) (3)

PU–SECS Seconds since midnight in packed unsigned (BCD) format. N/A 1–16
Decimal digits are allowed.
Example: ;
������
�LV���������
Example: ;
������
�LV����������� (6)

(5) (3)

B–SECS Seconds since midnight in binary format. N/A 1–8
Decimal digits are allowed.
Example: ;
����%�)�
�LV���������
�;
����%�)�
� ��������

Example: ;
����(���
�LV����������� (6)

(5) (3)

BU–SECS Seconds since midnight in unsigned binary format. N/A 1–8
Decimal digits are allowed.
Example: ;
%�)�
�LV���������
Example: ;
����(���
�LV����������� (6)

(5) (3)

MINS Minutes since midnight in character format. N/A 1–256
Decimal digits are allowed.
Example: &
���
�LV���������������� ����
Example: &
����
�LV����������� (6)

(5) (3)

P–MINS Minutes since midnight in packed format. N/A 1–16
Decimal digits are allowed.
Example: ;
���&
�LV���������
Example: ;
�����&
�LV����������� (6)

(5) (3)

PU–MINS Minutes since midnight in packed unsigned (BCD) format. N/A 1–16
Decimal digits are allowed.
Example: ;
����
�LV���������
Example: ;
����
�LV����������� (6)

(5) (3)

B–MINS Minutes since midnight in binary format. N/A 1–8
Example: ;
����
�LV�������������;
����
� �����
Example: ;
��%�
�LV����������� (6)

(5) (3)

Data Types –– Time

DATA TYPES FOR TIME FIELDS

DATA TYPE DESCRIPTION

DEFAULT

LENGTH

LENGTH

ALLOWED
(See Note 1)

Appendix A. Data Types 547

BU–MINS Minutes since midnight in binary unsigned format. N/A 1–8
Decimal digits are allowed.
Example: ;
����
�LV���������
Example: ;
��%�
�LV����������� (6)

(5) (3)

HOURS
HOUR
HRS

Hours since midnight in character format. N/A 1–256
Decimal digits are allowed.
Example: &
��
�LV���������
Example:�&
����
�LV������������ (7)

(5) (3)

P–HOURS Hours since midnight in packed format. N/A 1–16
Decimal digits are allowed.
Example: ;
���&
�LV���������
Example: ;
�����&
�LV������������ (7)

(5) (3)

PU–HOURS Hours since midnight in packed unsigned (BCD) format. N/A 1–16
Decimal digits are allowed.
Example: ;
��
�LV���������
Example: ;
����
�LV������������ (7)

(5) (3)

B–HOURS Hours since midnight in binary format. N/A 1–8
Decimal digits are allowed.
Example: ;
���%
�LV���������
Example: ;
����
�LV������������ (7)

(5) (3)

BU–HOURS Hours since midnight in binary unsigned format. N/A 1–8
Decimal digits are allowed.
Example: ;
���%
�LV���������
Example: ;
����
�LV������������ (7)

(5) (3)

STCKTIME Report Writer extracts the time portion of the date–time 8 8
value stored by the IBM STCK machine instruction (CPU

timer units since 00:00:00 1/1/1900 GMT.) Report Writer
automatically converts the STCK value from GMT to local
time. For more details, see the STCKADJ parm in the
OPTIONS statement. STCKTIME fields always have
 6 decimal digits.

ABSTIME Report Writer extracts the time portion of a CICS ABSTIME 8 8
date–time value (8-byte packed number of milliseconds
since 00:00:00 1/1/1900.)

Data Types –– Time

DATA TYPES FOR TIME FIELDS

DATA TYPE DESCRIPTION

DEFAULT

LENGTH

LENGTH

ALLOWED
(See Note 1)

548 Report Writer Reference Manual

TIMEEXIT Report Writer will call a user–written exit program to N/A N/A
obtain a time value. The exit program must return a
16-byte packed number of seconds since midnight
(optionally including decimal digits).

Notes:
Lengths refer to the number of bytes occupied in the input record.(1)

Field may contain no more than 15 numeric digits.(2)

Field may contain no more than 27 numeric digits.(3)

Any non–numeric character is accepted as the delimiter character.(4)

This data type has no default length. A /(1*7+ parm is always required in the),(/' statement.(5)

The),(/' statement would also need a '(&,0$/��� parm.(6)

The),(/' statement would also need a '(&,0$/��� parm.(7)

Data Types –– Bit

Appendix A. Data Types 549

Bit Data T ypes

DATA TYPES FOR BIT FIELDS

DATA TYPE DESCRIPTION LENGTH

BIT A single bit within a byte. N/A

BITEXIT Report Writer will call a user–written exit program to obtain a bit value. N/A
The exit program must return either &
�
 or &
�
.

550 Report Writer Reference Manual

Appendix B. Displa y Formats

Display formats can be used in various control statement to indicate how data should be
formatted in a report or output file. When no display format is specified, Report Writer
formats data using a default display format. To override Report Writer's default, specify one
of the display formats found in the following pages. For example:

),(/'��62&,$/²6(&²180��7<3(�3$&.('��/(1*7+����)250$7�3,&
���²��²����
�

The FIELD statement above includes a picture type of numeric display format. Specifying a
display format in the FIELD statement defines a default format to use for that field whenever
it appears in a report or output file.

Here is another way display formats can be used:

&2/8016���+,5(²'$7(�''²00²<<<<�

The above COLUMNS statement tells Report Writer to format the HIRE–DATE field in
"''�00�<<<<" format, for the current run only.

Display formats can be specified in the following statements:

� the FIELD statement

� the COMPUTE statement

� the COLUMNS statement

� the BREAK statement

� the TITLE statement

� the FOOTNOTE statement

� the OPTIONS statement (FORMAT option)

For more information on these uses, see under the appropriate statement's description
in Chapter 9, "Control Statement Syntax."

The display formats that can be used for a particular field depend on the field's data type. For
example, only numeric display formats may be used with numeric fields. You can not use
a date or time display format with a numeric field.

The boxes on the following pages show the display formats available for each type of data.

Note: there are no display formats for bit fields. A similar function is provided by
the ONTEXT and OFFTEXT parms in the FIELD statement.

A table showing the default display formats for each type of data appears on page 559.

Displa y Formats

Appendix B. Display Formats 551

Displa y Formats for An y Type of Field

DISPLAY FORMATS ALLOWED FOR ANY FIELD

DISPLAY FORMAT DESCRIPTION EXAMPLE

CHARACTER
CHAR

No formatting is done–– data is printed "as is". This is normally
used only for character fields, but is allowed for any type of
field. This is the default display format for character fields.

$%&

QCHAR The data is enclosed within quotation marks. Other than that, the
data is not reformatted at all. This format is useful for formatting
character fields for use in PC files. (Use the QCHAR parm of the
OPTIONS statement to specify a character other than the quotation
mark to use as the delimiter with this display format.)

�$%&�

HEX Each byte of data is expanded into two bytes to show the
hexadecimal representation of the data. This format is useful
when investigating fields that contain invalid data, such as hex
zeros.

&�&�&�

BITS Each byte of data is expanded into 8 character 0s and/or 1s to
show the individual bits within the data.

��������

Displa y Formats –– Numeric

552 Report Writer Reference Manual

Numeric Displa y Formats

DISPLAY FORMATS FOR NUMERIC FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

(the following formats are suggested for use in reports)

NUMERIC
NUM

This is the default display format for all numeric
fields, regardless of their data type. Formatting
includes suppression of leading zeros and the use of
commas as separators. A floating negative sign
precedes negative numbers.

���������
²��������

BARGRAPH
BAR

A bar graph is printed. A number of asterisks equal to
the rounded value of the numeric field will print (up to
the total width of the column). Bar graphs are
discussed on page 150.

DISPLAY
DISP

Numbers are displayed without any punctuation (other
than a decimal point, if necessary.) Leading zeros are
not suppressed. The "zone" portion of the last digit
contains the sign.

�����������
����������3

DOLLAR Same as NUMERIC, but a floating dollar sign will
precede the first significant digit.

����������
²���������

DOTSEP Same as NUMERIC, but uses dots rather than commas
as separators. Also uses a comma as the decimal
indicator, rather than a dot. This format is widely used
outside the USA.

�������������
����²��������
������������

NOCOMMAS
NOCOMMA

Same as NUMERIC, except that commas are not inserted
among the digits. This format is useful for formatting
numeric fields for use in PC files.

�������
²�������

PICTURE'...'
PICT'...'
PIC'...'
P'...'

A "picture" is used to describe how the numeric value
should be formatted. This is useful for formatting
special purpose numbers, such as telephone numbers
and social security numbers. The rules governing
PICTUREs are given on page 393.

���������²����
���²��²����

Displa y Formats –– Numeric

DISPLAY FORMATS FOR NUMERIC FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

Appendix B. Display Formats 553

(the following formats are intended mainly for use in building output records)

PACKED
PACK
COMP–3

Numbers are converted into packed decimal format
(called COMP–3 in COBOL, and FIXED DECIMAL in PL/I.)
The default width for data in PACKED format is 8
bytes.

;
���������������&

;
���������������'

PACKEDUN
PACKUN
PU

Numbers are converted into an unsigned packed
decimal format, sometimes called BCD. (There is no
equivalent in COBOL or in PL/I.) It is similar to
PACKED, except that the last byte contains two numeric
digits (like the other bytes), rather than a single digit
and a sign. The default width for data in the
PACKEDUN format is 8 bytes. Negative numbers can
not be formatted with this display format.

;
����������������

BINARY
BIN
COMP

Numbers are converted into binary representation
(called COMP in COBOL, and FIXED BINARY in PL/I.)
The default width for data in BINARY format is 4 bytes.

;
����(���

;
))))�'&�

BINARYUN
BINUN
BU

Numbers are converted into an unsigned binary format
(which has no equivalent in COBOL or in PL/I.) It is
similar to BINARY, except that the high order bit is not
used as a sign, but as another binary digit. The default
width for data in the BINARYUN format is
4 bytes. Negative numbers can not be formatted with
this display format.

;
����(���

HALFWORD
HALF

Same as BINARY, but with an implied width of 2 bytes. ;
��'�

FULLWORD
FULL

Same as BINARY, but with an implied width of 4 bytes. ;
����(���

Displa y Formats –– Date

554 Report Writer Reference Manual

Date Displa y Formats

DISPLAY FORMATS FOR DATE FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

(the following are suggested for use in reports)

MM–DD–YY 00�''�<< This is the default display format for all
date fields, regardless of their data type. (1)

��������
��²��²��
��������

MM–DD–YYYY 00�''�<<<< (1) ����������
��²��²����
����������

MMDDYY 00''<< ������

MMDDYYYY 00''<<<< ��������

DD–MM–YY ''�00�<< (1) ��������
��²��²��
��������

DD–MM–YYYY ''²00²<<<< (1) ����������
��²��²����
����������

DDMMYY ''00<< ������

DDMMYYYY ''00<<<< ��������

YYYY–MM–DD <<<<�00�'' (1) ����������
����²��²��
����������

YYMMDD <<00'' ������

YYYYMMDD <<<<00'' ��������

YYDDD <<''' (Julian date) �����

YYYYDDD <<<<''' (Julian date) �������

SHORT1 000�''��<<<< '(&���������

SHORT2 ''�000�<<<< ���'(&�����

SHORT3 ''�000�<< ���'(&���

LONG1 00000000000�''��<<<< '(&(0%(5���������

LONG2 ''�00000000000�<<<< ���'(&(0%(5�����

Displa y Formats –– Date

DISPLAY FORMATS FOR DATE FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

Appendix B. Display Formats 555

LONG3 ''�00000000000�<< ���'(&(0%(5���

(the following are intended mainly for use in building output records)

Q–MM–DD–YY �00�''�<<� date in quotation marks. (1) (2) ����������

Q–MM–DD–YYYY �00�''�<<<<� date in quotation marks. (1) (2) ������������

Q–MMDDYYYY �00''<<<<� date in quotation marks. (2) ����������

Q–DD–MM–YYYY �''�00�<<<<� date in quotation marks. (1) (2) ������������

Q–DDMMYYYY �''00<<<<� date in quotation marks. (2) ����������

Q–YYMMDD ´<<00''µ�date in quotation marks. (2) ��������

Q–YYYY–MM–DD �<<<<�00�''� date in quotation marks. (1) (2) ������������

Q–YYYYMMDD �<<<<00''� date in quotation marks. (2) ����������

H–MMDDYY 00''<< (hex) ;
������

H–MMDDYYYY 00''<<<< (hex) ;
��������

H–DDMMYY ''00<< (hex) ;
������

H–DDMMYYYY ''00<<<< (hex) ;
��������

H–YYMMDD <<00'' (hex) ;
������

H–YYYYMMDD <<<<00'' (hex) ;
��������

H–YYDDD <<''' (hex, Julian date) ;
������

H–YYYYDDD <<<<''' (hex, Julian date) ;
��������

P–MMDDYY 00''<< (packed) ;
�������&

P–MMDDYYYY 00''<<<< (packed) ;
���������&

P–DDMMYY ''00<< (packed) ;
�������&

P–DDMMYYYY ''00<<<< (packed) ;
���������&

P–YYMMDD <<00'' (packed) ;
�������&

Displa y Formats –– Date

DISPLAY FORMATS FOR DATE FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

556 Report Writer Reference Manual

P–YYYYMMDD <<<<00'' (packed) ;
���������&

P–YYDDD <<''' (packed, Julian date) ;
�����&

P–YYYYDDD <<<<''' (packed, Julian date) ;
�������&

P–CYYDDD packed &<<''' date (Julian date with century
indicator, as used in SMF records)

;
������&

;
������&

Notes
Use the '$7('(/,0 parm in the 237,216 statement to specify a delimiter other than the slash (/).(1)

Use the 4&+$5 parm in the 237,216 statement to specify a delimiter other than the quotation mark.(2)

Displa y Formats – Time

Appendix B. Display Formats 557

Time Displa y Formats

DISPLAY FORMATS FOR TIME FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

(the following are suggested for use in reports)

HH–MM–SS ++�00�66>�111���@ This is the default display format for all
time fields that include seconds. (1)

��������
����������
��������

HH–MM–SS–AMPM ++�00�66>�111���@�$0�30 (1) ��������$0
����������$0
��������30

HHMMSS ++0066 ������

HH–MM ++�00 This is the default display format for all time fields
that do not include seconds. (1)

�����
�����

HH–MM–AMPM ++�00�$0�30 (1) �����$0
�����30

HHMM ++00 ����

TPICTURE'...'
TPICT'...'
TPIC'...'
TP'...'

User defined "time picture." (Time pictures are discussed
on page 398.) Example: 73,&
=�²��²��
 might result in �
�²��²���

��²��²��

SECS
SEC

Number of seconds since midnight. (13 hours, 30 minutes
and 45 seconds is 48,645 seconds.)

������

MINS Number of minutes since midnight. (13 hours, 30 minutes
and 45 seconds is 810.75 minutes.)

������

HOURS
HOUR
HRS

Number of hours since midnight. (13 hours, 30 minutes and
45 seconds is 13.513 hours.)

������

(the following are intended mainly for use in building output records)

Q–HH–MM–SS �++�00�66� time in quotation marks. This format is useful
for formatting time fields for use in PC files. Use the
QCHAR parm in the OPTIONS statement to specify a delimiter
other than the quotation mark. (1)

����������

Displa y Formats –– Time

DISPLAY FORMATS FOR TIME FIELDS

DISPLAY FORMAT DESCRIPTION EXAMPLE

558 Report Writer Reference Manual

Q–HH–MM �++�00� time in quotation marks. Use the 4&+$5 parm in the
237,216 statement to specify a delimiter other than the
quotation mark. (1)

�������

H–HHMMSS ++0066 (hex) ;
������

H–HHMM ++00 (hex) ;
����

P–HHMMSS ++0066 (packed) ;
�������&

P–HHMM ++00 (packed) ;
�����&

SECS–NC
SEC–NC

Number of seconds since midnight, formatted with "no
commas" (for use in PC files)

�����

MINS–NC Number of minutes since midnight, formatted with "no
commas" (for use in PC files)

������

HOURS–NC
HOUR–NC
HRS–NC

Number of hours since midnight, formatted with "no
commas" (for use in PC files)

������

Notes:
Use the TIMEDELIM parm in the OPTIONS statement to specify a delimiter other than the(1)

 colon (:).

Default Displa y Formats

Appendix B. Display Formats 559

Default Displa y Formats

The following table shows Report Writer's standard default display format for each type of
data.

Note: the default display formats are changed by certain options, including the
FORMAT option, the PC file options and the MAINFRAME option.

DEFAULT DISPLAY FORMATS

KIND OF DATA DESCRIPTION EXAMPLE

DEFAULT DISPLAY

FORMAT

Character Data is displayed "as is", without anyCHARACTER
formatting

$%&

Numeric Leading zeros are suppressed; commasNUMERIC
are used as separators; a floating negative
sign precedes negative numbers.

²��������

Date 00�''�<< MM–DD–YY ��������

Time ++�00�66 (Decimal portions of seconds, ifHH–MM–SS
any, are also shown.)

��������
�����������

Bit none There are no display formats for bit fields.
Bit fields are always displayed using their
ONTEXT or OFFTEXT value. See page 290.

),(/'1$0(
127�),(/'1$0(

560 Report Writer Reference Manual

Appendix C. Built–In Fields

Report Writer has a number of "built–in" fields that are available for use. You may refer to
these fields regardless of what input file(s) you use. Built–in fields are easily distinguished
from most other fields because all built–in field names begin with the pound character (#).

The following table lists the Report Writer built–in fields. Following the table, each field is
discussed in more detail.

REPORT WRITER BUILT –IN FIELDS

FIELD NAME DESCRIPTION

Character Built–In Fields

#DAYNAME Name of the current day of the week (�021'$<�)

#ITEM–ENDING The correct plural or singular ending for the word "item(s)" at a control break.
(Allowed only in the %5($. statement.)

#JOBNAME Jobname under which Report Writer is currently executing.

#TIME Time of day, including AM or PM (�������30�)

#TIME24 Time of day in 24–hour format ("�����")

Numeric Built–In Fields

#COUNTER
#COUNT

The cumulative number of items in the report.
(Allowed only in the BREAK statement.)

#ITEMS
#ITEM

The number of items in the current control group. (Allowed only in the
BREAK statement.)

#ITEM1
throu gh
#ITEM9

The item number currently being printed. The 9 different built–in fields are reset
at 9 different levels of control breaks.
(Allowed only in the COLUMNS statement.)

#PAGENUM
#PAGE

The current page number of the report. (Allowed only in the TITLE and
FOOTNOTE statements.)

Date Built–In Fields

#COMDATE (VSE only) The date set by the // DATE JCL statement.

#TODAY The system date.

Built-in Fields

REPORT WRITER BUILT –IN FIELDS

FIELD NAME DESCRIPTION

Appendix C. Built-In Fields 561

Time Built–In Fields

#HHMMSS The system time.

Built–in Fields –– Character

562 Report Writer Reference Manual

Character Built–In Fields

#DAYNAME
Allowed in any control statement. A 9–byte field containing the name of the day of the
week on which the job began. The value of this built–in field does not change during
execution. The use of this field is discussed on page 172.

Example: :('1(6'$<

#ITEM–ENDING
Allowed only in the BREAK statement. A 1–byte character field that contains either the
letter "S", or a blank, depending on the value of the built–in field #ITEMS.

When #ITEMS is equal to 1 (that is, when the current control group contains only a single
record), #ITEM–ENDING will contain a blank space. Otherwise (when the control group
contains more than one record), #ITEM–ENDING will contain an "S". Append this field to
words like ",7(0" to form the proper plural or singular ending. The use of this field is
discussed on page 206.

#JOBNAME
Allowed in any control statement. An 8–byte character field containing the name of the
job that is executing Report Writer.

#TIME
Allowed in any control statement. An 8–byte character field containing the system time
at which the job began. The value of this built–in field does not change during execution.
The time is in 12–hour format, including either AM or PM. The use of this field is
discussed on page 172.

Example: ������30

#TIME24
Allowed in any control statement. A 5–byte character field containing the system time
at which the job began. The value of this built–in field does not change during execution.
The time is in 24 hour format. The use of this field is discussed on page 172.

Example: �����

Built–in Fields –– Numeric

Appendix C. Built-In Fields 563

Numeric Built–In Fields

#COUNTER
#COUNT

Allowed only in the BREAK statement. A numeric field that contains the number of items
processed in the report through the current break. Similar to #ITEMS but is not reset to
zero at each control break. By default it displays with a ZZZ,ZZ9 picture format. The use
of this field is discussed on page 206.

#ITEMS
#ITEM

Allowed only in the BREAK statement. A numeric field that contains the number of items
in the control group being processed. By default it displays with a ZZZ,ZZ9 picture
format. The use of this field is discussed on page 206.

#ITEM/#ITEM1/#ITEM2/#ITEM3/#ITEM4/
#ITEM5/#ITEM6/#ITEM7/#ITEM8/#ITEM9

Allowed only in the COLUMNS statement. These nine built–in fields all show the item
number (within a given level of control group) of the line currently being printed. #ITEM1

contains the item number within the lowest level control group. #ITEM1 is reset to zero
at every control break. (#ITEM1 can also be abbreviated #ITEM.) #ITEM2 contains the item
number within the second lowest level control group. #ITEM2 is not reset to zero at the
lowest level control break, but is reset at the second lowest level control break. #ITEM3

through #ITEM9 work similarly for the third through ninth lowest level control breaks. All
are numeric fields which display by default with a ZZ,ZZ9 picture format. The use of
these fields is discussed on page 210. For a discussion of "control group levels", see
page 211.

#PAGENUM
#PAGE

Allowed only in TITLE and FOOTNOTE statements. A numeric field containing the current
page number. By default, it displays with a ZZZ9 picture format. The use of this field is
discussed on page 172.

Built–in Fields –– Date

564 Report Writer Reference Manual

Date Built–In Fields

#COMDATE
Allowed in any control statement–– VSE only. Contains the "comm area" date. This is
the date set by the // DATE JCL statement. If not set in the JCL, or if used under MVS,
#COMDATE will be the same as #TODAY. By default, it is formatted using the default date
display format that is in effect (normally MM–DD–YY.)

Example: ��������

#TODAY
Allowed in any control statement. Contains the system date on which the job began.
The value of this built–in field does not change during execution. By default, it is
formatted using the default date display format that is in effect (usually MM–DD–YY.) The
use of this field is discussed on page 172.

Example: ��������

Built–in Fields –– Time

Appendix C. Built-In Fields 565

Time Built–In Fields

#HHMMSS
Allowed in any control statement. Contains the system time at which the job began.
The value of this built–in field does not change during execution. By default, it is
formatted using the default time display format that is in effect (normally HH-MM-SS.)

Example: ��������

566 Report Writer Reference Manual

Appendix D. Built–In Functions

A number of built–in functions are available for use within computational expressions.
Computational expressions are used in COMPUTE statements. These built–in functions are
listed on the following pages, according to the type of data returned by the function
(character, numeric, date, time or bit.)

The arguments to a function will not necessarily be of the same data type as the result. The
data type expected for each argument is indicated in the syntax for each function. For
example, "char" means that a character argument is expected. Except where otherwise
indicated, an argument may be any of the following:

� a literal value

� a field name

� a computational expression (which may itself involve other built–in functions)

Separate the arguments with blanks and/or a comma.

The following table lists the Report Writer built–in functions. Following the table, each
function is discussed in more detail.

REPORT WRITER BUILT –IN FUNCTIONS

FUNCTION DESCRIPTION PAGE

Functions that Return a Character Value

#AND returns the result of ANDing two character strings page 569

#ASCII returns the ASCII equivalent of an EBCDIC string page 569

#COMPRESS concatenates multiple fields and compresses out extra blanks page 569

#DAY returns the day of the week for a given date page 570

#EBCDIC returns the EBCDIC equivalent of an ASCII string page 570

#FORMAT converts a numeric, date or time value to a character value page 570

#LCASE returns the lower–case value of a character string page 571

#LEFT returns the leftmost n characters of a character string page 571

#MONTH returns the month name pertaining to a given date page 571

#OR returns the result of ORing two character strings page 571

#PARSE returns one individual word parsed out of a character string page 572

Built-In Functions

REPORT WRITER BUILT –IN FUNCTIONS

FUNCTION DESCRIPTION PAGE

Appendix D. Built-In Functions 567

#RIGHT returns the rightmost n characters of a character string page 572

#SUBSTR returns a substring from a character string page 572

#TRANSLATE translates one set of characters within a character string to page 573
another set of characters

#UCASE returns the upper–case value of a character string page 573

#XOR returns the result of XORing two character strings page 574

#YEAR returns the 4–byte year pertaining to a given date page 573

Functions that Return a Numeric Value

#ABS returns the absolute value of a number page 575

#DAYNUM returns the day of the month (1–31) for a given date page 575

#INDEX returns the starting column of a substring page 575

#INT returns the integer portion of a number page 575

#MAKENUM converts a character, date or time value to a numeric value page 575

#MAX returns the greater of two or more values page 576

#MIN returns the smaller of two or more values page 577

#MOD returns the remainder left after division ("modulus") page 577

#MONTHNUM returns the month number (1–12) for a given date page 577

#NUMWORDS returns the number of words within a character string page 578

#ROUND returns the rounded value of a number page 578

#YEARNUM returns the 4–digit year for a given date page 578

Functions that Return a Date Value

#MAKEDATE converts a character or numeric value to a date page 579

Functions that Return a Time Value

Built-In Functions

REPORT WRITER BUILT –IN FUNCTIONS

FUNCTION DESCRIPTION PAGE

568 Report Writer Reference Manual

#MAKETIME converts a character or numeric value to a time page 580

Functions that Return a Bit Value

#OFF returns the "off" bit value (0) page 581

#ON returns the "on" bit value (1) page 581

Built–In Functions –– Character

Appendix D. Built-In Functions 569

Functions that Return a Character Value

#AND(char1,char2)
Performs the logical AND operation on the two character arguments and returns the result.
If the two operands are not the same size, the shorter operand will be right-padded with
hex zeros before performing the AND operation. The size of the result is the size of the
larger operand.

Examples:

&20387(��$� ��$1'�;
��))
�;
���(
�

would result in $;
���(

Here is an example of using the #AND built–in function to test individual bits within a
status flag. We want to include records in our report if the ;
��
 and the ;
��
 bits of the
STATUS field are both on, regardless of the value of the other bits in that byte.

&20387(��7(03� ��$1'�67$786��;
$�
�
&20387(��%27+²%,76²$5(²21� �:+(1�7(03� �;
$�
��$66,*1��21�
,1&/8'(,)��%27+²%,76²$5(²21

#ASCII(char)
Returns the ASCII equivalent of the EBCDIC character argument. The size of the value
returned by this function is the size of the character argument.

Example:

&20387(��$� ��$6&,,�;·)�)�)�
� would result in $;·������

Note: to specify your own EBCDIC-to-ASCII translation table, use the ASCIITABLE

option in the OPTIONS statement (page 496.) Otherwise, Report Writer uses a
default translation table.

#COMPRESS([n,] char [,n] ,char ...)
Concatenates the char arguments (any number), but compresses out all but 1 of the
blanks between each argument The optional override number "n" specifies how many
blanks to leave between the two char arguments (if a number other than 1 desired.) You
may specify 0 if no blanks are wanted between two arguments. The size of the returned
string is the sum of the sizes of all arguments, plus spacing bytes.

Examples:

&20387(��1$0(�&2035(66�/$67²1$0(�����������),567²1$0(�

might result in 1$0(�%$.(5��9,9,$1������������������

&20387(��$''5 �&2035(66�&,7<����������67$7(�=,3²&2'(�

might result in $''5 �'$//$6��7;���������������������

Built–In Functions –– Character

570 Report Writer Reference Manual

#DAY[(date)]
Returns the day of the week pertaining to the date argument, as a 9–byte character field.
If specified, the date argument must be a valid date in either the twentieth or twenty-first
century. If no date argument is present, the system date is used.

Example:

&20387(��$� ��'$<�+,5(²'$7(� might result in $ �78(6'$<���

#EBCDIC(char)
Returns the EBCDIC equivalent of the ASCII character argument. The size of the value
returned by this function is the size of the character argument.

Example:

&20387(��$� ��(%&',&�;·������
� would result in $;·)�)�)�

Note: to specify your own ASCII-to-EBCDIC translation table, use the
EBCDICTABLE option in the OPTIONS statement (page 500.) Otherwise, Report
Writer uses a default translation table.

#FORMAT(fieldname [,display–format] [,width] [,BIZ] [,LEFT/CENTER/RIGHT])
Returns a character string containing the contents of the field (any data type) after
formatting it as specified by the other parms. Only fieldname is required. Other parms
may appear in any combination and in any order. The display format, if specified, must
be valid for the specified field's data type. For an explanation of each of the parms, see
the COLUMNS statement syntax on page 437.

Examples:

&20387(��$� ��)250$7��72'$<�

might result in $
��������

&20387(��$� ��)250$7��72'$<��/21*���&(17(5�

might result in $
��0$5&+�����������

&20387(��$� ��)250$7�6$/(6²'$7(��%,=�

might result in $
��������
 (when SALES–DATE is not all zeros), or
 ������$
��������
 (when SALES–DATE is all zeros)

&20387(��$� ��)250$7�727$/²6$/(6�

might result in $
���������������

&20387(��$� ��)250$7�727$/²6$/(6����

might result in $
����������

&20387(��$� ��)250$7�7(/(3+21(��3,&
���������²����
��

might result in $
���������²����

&20387(��$� ��)250$7�727$/²6$/(6��%,=�

might result in $
���������������
 (when TOTAL–SALES is not zero)
$
���������������
 (when TOTAL–SALES is zero)

Built–In Functions –– Character

Appendix D. Built-In Functions 571

#LCASE(char)
Returns the character argument's value after translating any of its upper–case alphabetic
characters to the corresponding lower–case character. All other characters remain
unchanged. The size of the value returned by this function is the size of the character
argument.

Example: (Assume that '(6&� ��7+,6�,6�$�'(6&5,37,21�)

&20387(��$� ��/&$6(�'(6&� would result in $ �WKLV�LV�D�GHVFULSWLRQ�.

#LEFT(char,num1)
Returns a substring of the char argument, starting with the first column, for a length of
"num1" bytes. Num1 may be either a literal value or a numeric expression. When num1
is a literal value, the size of the value returned by this function is num1. When num1 is
an expression, the size returned by this function is the size of the character argument.

Example:

&20387(��$� ��/()7�
$%&'()*
��� results in $
$%&'

#MONTH[(date)]
Returns the name of the month pertaining to the date argument, as a 9–byte character
field. If no date argument is present, the system date is used.

Example:

&20387(��$� ��0217+�+,5(²'$7(� might result in $ �0$5&+�����

#OR(char1,char2)
Performs the logical OR operation on the two character arguments and returns the result.
If the two operands are not the same size, the shorter operand will be right–padded with
hex zeros before performing the OR operation. The size of the result is the size of the
larger operand.

Example:

&20387(��$� ��25�;
����
�;
����
�

would result in $;
����

Note: you can use the #OR function to create packed numeric fields that have
a sign of F (rather than the standard sign of C). For example, assume that
$02817� ����:

&20387(��3$&.('��� ��)250$7�$02817�3$&.('���
&20387(��3$&.('²)� ��25�3$&.('�;
���)
�

would result in 3$&.('� �;
���&
 and
3$&.('²)� �;
���)

Built–In Functions –– Character

572 Report Writer Reference Manual

#PARSE(char,num)
Returns a single word parsed from the character argument. Internally, the character
argument is first parsed into individual words. Individual words are delimited by one or
more spaces. The numeric argument specifies which of the parsed words should be
returned by the function. A numeric argument of 1 indicates that the first word should
be returned; an argument of 2 means return the second word, etc. Negative numbers may
also be used. A negative number indicates the word to return counting backwards from
the last word parsed. A numeric argument of –1 means return the last word parsed; an
argument of –2 means return the second to last word, etc. If the word indicated by the
numeric argument doesn't exist, blanks are returned by this function. The size of the
value returned by this function is the size of the character argument.

Examples: (Assume that '(6&� ��7+,6�,6�$�'(6&5,37,21�)

&20387(��$� ��3$56(�'(6&������ZRXOG�UHVXOW�LQ���$ �7+,6���������������

&20387(��$� ��3$56(�'(6&������ZRXOG�UHVXOW�LQ���$ �,6�����������������

&20387(��$� ��3$56(�'(6&�²����ZRXOG�UHVXOW�LQ���$ �'(6&5,37,21��������

&20387(��$� ��3$56(�'(6&������ZRXOG�UHVXOW�LQ���$ ��������������������

Note: to parse a text using a delimiter other than blanks, use the #TRANSLATE

built-in function to first translate the desired delimiter character into a blank.
For example, to parse a text using a dot as the delimiter, use:

&20387(��$� ��3$56(��75$16/$7(�'(6&������������

Note: use the NUMWORDS built–in function to count the number of words in a
character string.

#RIGHT(char,num1)
Returns a substring of the char argument consisting of the last "num1" bytes. Num1 may
be either a literal value or a numeric expression. When num1 is a literal value, the size
of the value returned by this function is num1. When num1 is an expression, the size
returned by this function is the size of the character argument.

Example:

&20387(��$� ��5,*+7�
$%&'()*
��� results in $
'()*

#SUBSTR(char,num1,num2)
Returns a substring of the char argument, starting at column "num1" for a length of
"num2" bytes. Num1 and num2 may be literal values or numeric expressions. When
num2 is a literal value, the size of the value returned by this function is num2. When
num2 is an expression, the size returned by this function is the size of the character
argument.

Example:

&20387(��$� ��68%675�
$%&'()*
����� results in $
%&'

Built–In Functions –– Character

Appendix D. Built-In Functions 573

#TRANSLATE(char1,char2,char3)
Returns the char1 string after translating any of its characters found in the char2
argument into the corresponding character of the char3 argument. Translated characters
in the char1 argument are not re–evaluated for additional translation. The size of the
value returned by this function is the size of the char1 argument.

Note: Normally the char2 and char3 arguments are character or hex literals.
However, character fields may also be used for those arguments. If character
fields are used, their contents will be examined only once by Report Writer.
This occurs the first time the results of the #TRANSLATE function are actually
required during the run. (This may or may not correspond to the first input
record.) After that, subsequent executions of the #TRANSLATE function do not
re–examine the contents of the char2 and char3 fields. The contents of those
arguments from their first examination is used for the entire run.

Example: (Assume that '(6&� ��7+,6�,6�$�'(6&5,37,21�)

&20387(��$� ��75$16/$7(�'(6&��7$���;<��

would result in $ �;+,6�,6�<�'(6&5,3;,21�.

#UCASE(char)
Returns the character argument's value after translating any of its lower–case alphabetic
characters to the corresponding upper–case character. All other characters remain
unchanged. The size of the value returned by this function is the size of the character
argument.

Note: this function may be useful when sorting a report on a field that contains
mixed–case text. For example, in order to ensure that the names "60,7+",
"6PLWK", and "VPLWK" all sort together, you could compute a new field that
contains the upper–case value of the mixed–case name field. By sorting on this
new upper–case field, rather than the original mixed–case field, the three names
above would sort together. Of course, you can still choose to print the original,
mixed–case names in your report, even though sorting on the upper–case names.

Example: (Assume that 1$0(� ��6PLWK������)

&20387(��6257²1$0(� ��8&$6(�1$0(�

would result in 6257²1$0(� ��60,7+������

#YEAR[(date)]
Returns the year portion of the date argument as a 4–byte character field. If no date
argument is present, the system date is used.

Example:

&20387(��$� ��<($5�+,5(²'$7(� might result in $ ������

Built–In Functions –– Character

574 Report Writer Reference Manual

#XOR(char1,char2)
Performs the logical XOR operation on the two character arguments and returns the
result. If the two operands are not the same size, the shorter operand will be
right-padded with hex zeros before performing the XOR operation. The size of the
result is the size of the larger operand.

Example:

&20387(��$� ��;25�;
����
�;
����
�

would result in $;
����

Built–In Functions –– Numeric

Appendix D. Built-In Functions 575

Functions that Return a Numeric Value

#ABS(num)
Returns the absolute value of the numeric argument.

Example:

&20387(��$� ��$%6�²�� results in A= 4

#DAYNUM[(date)]
Returns the numeric value of the day portion of the date argument. If no date argument
is present, the system date is used.

Example:

&20387(��$� ��'$<180����������� results in A=31

#INDEX(char1,char2)
If the second argument appears somewhere within the first argument, #INDEX returns the
byte number in char1 where the char2 text begins. If char1 does not contain char2,
#INDEX returns zero.

Example:

&20387(��$� ��,1'(;�
$%&'()
��
&'(
� results in A=3

#INT(num)
Returns the integer portion of the numeric argument. The decimal digits, if any, are
simply truncated, regardless of the sign of the argument.

Examples:

&20387(��$� ��,17�������� results in A= 12
&20387(��$� ��,17�²������� results in A= –12

#MAKENUM(char/date/time)
For character arguments, converts the string of numeric characters into a numeric
value. No decimal point, commas, or any other non–numeric character is allowed in the
string. The only exception is that leading blanks are allowed. An all–blank string returns
the value zero.

Example:

&20387(��$� ��0$.(180�
�����
� results in A=125

For date arguments, #MAKENUM converts the date into a numeric “day in century” value.
January 1, 1900 corresponds to day 1, and December 31, 2099 is day 73,049. The date

Built–In Functions –– Numeric

576 Report Writer Reference Manual

argument must be a valid date in either the twentieth or twenty-first century. (You can
use the #MAKEDATE function to convert a numeric day in century back into a date.)

Examples:

&20387(��$� ��0$.(180������������ results in A=36890
&20387(��$� ��0$.(180���������� results in A=36891

Example of computing the number of days between two dates:

&20387(��180²'$<6� ��0$.(180�(1'²'$7(��²��0$.(180�67$57²'$7(�

If �(1'²'$7(� ��������� and 67$57²'$7(� ����������, then the above example would result
in 180²'$<6� ��.

For time arguments, #MAKENUM converts the time value into its equivalent number of
seconds since midnight.

Example:

&20387(��$� ��0$.(180���������� results in A=5399

(One hour = 3600 seconds; 29 minutes is another 1740 seconds, plus 59 seconds equals
5399.)

Example of computing the number of seconds between two times:

&20387(��180²6(&6� ��0$.(180�(1'²7,0(��²��0$.(180�67$57²7,0(�

If �(1'²7,0(� ����������and 67$57²7,0(� ���������, then the above example would result
in 180²6(&6� ���.

If the start and end times might occur on different days, you can convert the starting and
ending dates into seconds as well, and use those in the computation. (There are 86400
seconds in a 24–hour day).

&20387(��180²6(&6� ����0$.(180�(1'²'$7(�������������0$.(180�(1'²7,0(��
������������������²����0$.(180�67$57²'$7(�������������0$.(180�67$57�7,0(��

To convert the resulting interval (in seconds) back into a time field, just add this
statement:

&20387(��'85$7,21� ��0$.(7,0(�180²6(&6�

If �180²6(&6� ��� then the above example would result in '85$7,21� ���������.

#MAX(num1,num2,num3,...)
Returns the largest of the numeric arguments. Any number of arguments is allowed.

Example:

&20387(��$� ��0$;���������²�� results in A=25

Built–In Functions –– Numeric

Appendix D. Built-In Functions 577

You can also use this function to determine the largest of several time fields. First
convert the times to numeric values for use with #MAX. Then convert the result back to
a time:

&20387(��/$67²7,0(� ��0$.(7,0(��0$;��0$.(180�7,0(�����0$.(180�7,0(����

You can also use this function to determine the largest (latest) of several date fields.
First convert the dates to numeric values for use with #MAX. Then convert the result back
to a date:

&20387(��/$67²'$7(� ��0$.('$7(��0$;��0$.(180�'$7(�����0$.(180�'$7(����

#MIN(num1,num2,num3,...)
Returns the smallest of the numeric arguments. Any number of arguments is allowed.

Example:

&20387(��$� ��0,1���������²�� results in A=–3

You can also use this function to determine the smallest of several time fields. First
convert the times to numeric values for use with #MIN. Then convert the result back to
a time:

&20387(��),567²7,0(� ��0$.(7,0(��0,1��0$.(180�7,0(�����0$.(180�7,0(����

You can also use this function to determine the smallest (earliest) of several date fields.
First convert the dates to numeric values for use with #MIN. Then convert the result back
to a date:

&20387(��),567²'$7(� ��0$.('$7(��0,1��0$.(180�'$7(�����0$.(180�'$7(����

#MOD(num1,num2)
Returns the remainder left when the first argument is divided by the second argument.

Examples:

&20387(��$� ��02'������� results in A= 1
&20387(��$� ��02'�²������ results in A= –1
&20387(��$� ��02'��������� results in A= .1

#MONTHNUM[(date)]
Returns the numeric value of the month portion of the date argument. If no date
argument is present, the system date is used.

Example:

&20387(��$� ��0217+180����������� results in A=3

Built–In Functions –– Numeric

578 Report Writer Reference Manual

#NUMWORDS(char)
Returns the number of words found within the character argument. The words are parsed
in the manner described under the #PARSE built–in function (page 572).

Example: (Assume that '(6&� ��7+,6�,6�$�'(6&5,37,21�)

&20387(��$� ��180:25'6�'(6&���ZRXOG�UHVXOW�LQ���$� ���

Note: this function may be useful when you want to assign a value to a
computed field differently depending on how many, if any, words are in some
other field. For example, the following example assigns the second word from
the DESC field to the result. However, if the DESC field contains only 1 (or no)
words, the text "121(" is assigned instead:

&20387(��$� �:+(1��180:25'6�'(6&��! ����$66,*1��3$56(�'(6&����
�������������(/6(�����������������������$66,*1��121(��

#ROUND(num1,num2)
Returns the first numeric argument, rounded to the precision specified by the second
numeric argument. Num2 is the number of decimal places that num1 should be rounded
to. Rounding of negative numbers is performed as if they were positive. Note: num2
must be a literal integer. The number of decimal digits returned by this function is the
same as the number of decimal digits in the num1 argument.

Examples:

&20387(��$� ��5281'�������������� results in A= 12345.680
&20387(��$� ��5281'�������������� results in A= 12346.000
&20387(��$� ��5281'������������²�� results in A= 12300.000
&20387(��$� ��5281'�²������������� results in A=–12345.680

#YEARNUM[(date)]
Returns the numeric value of the year portion of the date (including the century). If no
date argument is present, the system date is used.

Example:

&20387(��$� ��<($5180��������� results in A=1995

Built–In Functions –– Date

Appendix D. Built-In Functions 579

Functions that Return a Date Value

#MAKEDATE(char/num)
For character arguments, converts the YYMMDD or YYYYMMDD character string into the
corresponding date. The character argument must be either 6 or 8 bytes in length. When
a YYMMDD argument is used, Report Writer assigns the century based on the CENTURY

Option in effect, if any.

Example:

&20387(��$� ��0$.('$7(�
��������
� results in A=3/31/1995

For numeric arguments, the argument is treated as a "day in century" value. The
numeric argument must between be 1 (corresponding to January 1, 1900) and 73,049
(corresponding to December 31, 2099), inclusive. The function returns the date
corresponding to the numeric day in century. (Use this function to change the results of
the #MAKENUM(date) function back into a date.)

Example:

&20387(��$� ��0$.('$7(������� results in A=12/31/2000

Example of adding 7 days to a date:

&20387(��180²'$7(� ���������0$.(180�6$/(6²'$7(�
&20387(��180²'$7(²3/86²�� �180²'$7(����
&20387(��'$7(²3/86²�� ������0$.('$7(�180²'$7(²3/86²��

Built–In Functions –– Time

580 Report Writer Reference Manual

Functions that Return a Time Value

#MAKETIME(char/num)
For character arguments, converts the HHMMSS character string into the corresponding
time. The character argument must be exactly 6 bytes long.

Example:

&20387(��$� ��0$.(7,0(�
������
� results in A containing the time 13:59:59.

For numeric arguments, the argument is treated as being a number of seconds. The
number of seconds is converted into the corresponding number of hours, minutes and
seconds. (Use this function to change the results of the #MAKENUM function back into a
time.)

Example:

&20387(��$� ��0$.(7,0(������ results in A containing the time 01:00:00.

Example of adding 5 minutes to a time:

&20387(��180²7,0(� ���������0$.(180�6$/(6²7,0(�
&20387(��180²7,0(²3/86²�� �180²7,0(����������
&20387(��7,0(²3/86²�� ������0$.(7,0(�180²7,0(²3/86²��

Built–In Functions –– Bit

Appendix D. Built-In Functions 581

Functions that Return a Bit Value

#OFF
Always returns an "off" value.

Examples:

&20387(��$� ��2))� results in A="off"

&20387(��6$/(6²$:$5'� �:+(1�727$/²6$/(6�!��������$66,*1��21�
�����������������������(/6(����������������������$66,*1��2))�

results in SALES–AWARD being "on" (or true) if sales are greater than 50,000; otherwise
results in SALES–AWARD being "off" (or false.)

#ON
Always returns an "on" value.

Examples:

&20387(��$� ��21� results in A="on"

&20387(��6$/(6²$:$5'� �:+(1�727$/²6$/(6�!��������$66,*1��21�
�����������������������(/6(����������������������$66,*1��2))�

results in SALES–AWARD being "on" (or true) if sales are greater than 50,000; otherwise
results in SALES–AWARD being "off" (or false.)

582 Report Writer Reference Manual

Appendix E. Error Indicators

Sometimes an error prevents Report Writer from displaying the desired data in a report or PC
file. When that happens a number of asterisks are printed where that data should have
appeared. A single letter is imbedded within the asterisks. That letter is an error code which
tells you exactly what kind of error has occurred. The following table lists the possible error
codes:

ERROR
CODE MEANING

****A**** Ambiguous reference. You asked to print a certain field here, but there is more
than one field by that name in the input file(s). Use a record name to indicate
exactly which field you mean. (See page 232.)

****E**** Error in definition. You asked to print a certain field here, but that field was
defined in error. Look for error messages concerning the FIELD or COMPUTE

statement used to define the field. Correct those errors.

****F**** Offset error occurred. You asked to print a field here, but an error occurred
while trying to compute the field's location within the input record. Offset errors
occur when the sum of the OFFSET value and the COLUMN/DISP value (or the
default value used) are not within the I/O area reserved for the input record. (The
size of this I/O area is determined by the record size specified in the FILE, INPUT

or READ statement.) Offset errors also occur when a computation error arises
while computing the OFFSET value. This includes division by zero, overflow,
or any reference to another field that is in error.

Use the MISSOFFSET option to ignore this error condition.

****I**** Invalid data. You asked to print a certain field here, but that field contained
invalid data. For example, the field was supposed to contain packed data and
instead it contained spaces. Or, a field that was supposed to contain a date
actually contained alphabetic characters. Correct the data in the input file.

Use the ZEROINVDATA (or just ZEROINV) option to ignore this error condition.

****S**** Size error. You asked to print a numeric field here, but there was not enough
room to show all of its significant digits (and a minus sign, if the number was
negative.) Use a width parm to increase the number of characters reserved to
print this field. (See the section beginning on page 131.) As an example, the
following statement reserves 20 characters to print the TOTAL–SALES field:

&2/8016��(03/²1$0(��727$/²6$/(6����

Error Indicators

Appendix E. Error Indicators 583

****U**** Undefined field. You asked to print a certain field here, but that field is not
defined in any input file for the current run. You may have just misspelled the
field name. Or, the field may belong to a file that is not an input file to the
current report.

Tip: to see a list of all field names available for a file, add the
SHOWFLDS(YES) parm to your INPUT and READ statements.

****V**** Overflow occurred. You asked to print a computed numeric field here, but an
overflow error occurred while trying to compute its value. This may happen
when two very large numbers are multiplied together. It can also happen when
a very large number is divided by a very small number (like .000000001). Try
requesting that fewer decimal places be kept in the computed result. Also try
splitting complex COMPUTE statements into several simpler COMPUTE

statements. Report Writer can maintain a maximum of 31 digits (including
decimal digits) in computed fields. (This also applies to any intermediate results
used to compute the final result.)

Use the ZEROOVERFLOW (or just ZEROOVER) option to ignore this error
condition.

****Z**** Divide by zero occurred. You asked to print a computed numeric field here,
but a division by zero was attempted while trying to compute its value. You
may be able to use a conditional COMPUTE statement to prevent division by zero,
like this:

&20387(��5$7,2� �:+(1�%�¤ ������$66,*1�$�%�
�����������������(/6(�����������$66,*1���

Use the ZERODIVZERO (or just ZERODIVZ) option to ignore this error condition.

Suppressin g Error Indicators

In some cases you may not be concerned with certain error conditions. In that case, you can
suppress the asterisk error indicators by using one or more of the following options.

237,21��=(52,19'7 –– treat fields containing invalid data as if they contained
zeros instead. This suppresses the , indicator. May
also be abbreviated ZEROINV.

237,21��=(5229(5)/2: –– assign a value of zero to COMPUTE fields that have
overflow errors. This suppresses the 9 indicator.
May also be abbreviated ZEROOVER.

237,21��=(52',9%<=(52 –– assign a value of zero to COMPUTE fields when a division
by zero is attempted. This suppresses the =

indicator. May also be abbreviated ZERODIVZERO and
ZERODIVZ.

Error Indicators

584 Report Writer Reference Manual

237,21��0,662))6(7 –– treat fields that have OFFSET parm errors as if the field
was "missing." (Missing fields are assigned zeros for
numeric, date and time fields, blanks for character fields,
and 2)) for bit fields.) This suppresses the)

indicator.

The above options tell Report Writer to treat fields that have the specified error as if they
contained a zero (or missing) value. This means you'll see zeros in your output, rather than
the asterisk error indicators. (For character fields with the offset error, you'll see blanks
instead of the error indicator.) It also prevents fields from propagating their error conditions
to other fields that reference them. (See discussion below.)

If you want invalid numeric items to appear as blanks (rather than zeros) in your output, use
a PICTURE that specifies suppression of all leading zeros, like this:

237,216���=(52,19'7
���
&2/8016���6$/(6²$02817�3,&
===�===
�

Propa gation of Error Indicators

When a field which has an error is used as an operand in a COMPUTE statement, its error code
is normally passed on to the result field. Consider the following statement:

&20387(��%� �$����

Assume that A is defined as a packed field. If a certain record contains invalid packed data
for field A, then , will appear in the report where the contents of A should have appeared.
In addition, you will also see , anywhere that field B should have printed. That is
because field A, which is needed to compute field B, passes its error condition on to field B.

Testin g for Invalid Data

You may want to detect when certain fields contain invalid data and use different processing
for such fields. Here are two methods you might use to detect invalid data in a field.

To detect a specific invalid value in a field, just compare the field to the appropriate
hexadecimal value (such as hex zeros or hex F's, perhaps.) Here is an example of detecting
and excluding records that have hex F's in the AMOUNT field:

,1&/8'(,)���$02817�¤ �;
))))))))))))

Note that when using hexadecimal literals (as above) you need to know the exact length of
the field in the input file (6 bytes in this example.) For comparisons involving explicit
literals, Report Writer compares the raw input file data –– no data conversion is attempted.
The hexadecimal literal should be the same length as the field. Otherwise, Report Writer
pads the shorter operand with blanks, which is not usually what you want.

You can use a second method to detect any kind of invalid data in a field. This method is
useful if you do not know in advance what invalid value a field may have. This method

Error Indicators

Appendix E. Error Indicators 585

utilizes the fact that Report Writer always evaluates as false any conditional expression that
attempts to process an invalid operand. In the following statement, we set a bit field name
GOOD–AMOUNT to be true only if the AMOUNT field contains a valid numeric value:

&20387(��*22'²$02817� �:+(1�$02817� �$02817��$66,*1��21�

As long as AMOUNT contains any valid value, the test $02817� �$02817 will always be true and
GOOD–AMOUNT will be assigned a bit value of ON (or true). If AMOUNT contains any invalid
value, Report Writer will evaluate the WHEN parm expressions as false and GOOD-AMOUNT

will be assigned the OFF value (false.) You could then use this bit field in other statements
as desired. Here are two statements that use the GOOD–AMOUNT bit field:

,1&/8'(,)��*22'²$02817

&20387(��7$;²3(5&(17� �:+(1�*22'²$02817���$66,*1�7$;����$02817�
�����������������������(/6(���������������$66,*1������

586 Report Writer Reference Manual

Appendix F. Files Used in Examples

The sample reports used in this manual were created using actual files. The boxes on the
following pages show the definition statements (that is the FILE and FIELD statements) that
were used to define these files. The unformatted contents of each file is also shown.

The SWALIAS member of the copy library contained the alias entries shown in the box below.

STATEMENTS STORED IN SWALIAS MEMBER OF COPY L IBRARY

6$/(6²),/(���� ��6$/(6
(03/²),/(����� ��(03/),/(
352'8&7²),/(�� ��352'),/(
67$7(²),/(���� ��67$7(

Files Used in Examples

Appendix F. Files Used in Examples 587

DEFINITION STATEMENTS FOR SALES–FILE

������������
���
��5(3257�:5,7(5�),/(�'(),1,7,21�)25�6$/(6�),/(���������������
���

),/(���6$/(6�),/(������''1$0(�6$/(),/(����/5(&/����

),(/'��(03/�1$0(�������/(1*7+����
),(/'��(03/�180��������/(1*7+���
),(/'��%$&.83�(03/�180�/(1*7+���
),(/'��5(*,21����������/(1*7+���
),(/'��$02817����������/(1*7+�����7<3(�180�����'(&,0$/���
),(/'��7$;�������������/(1*7+�����7<3(�180�����'(&,0$/���
),(/'��&200,66,21�5$7(�/(1*7+�����7<3(�180�����'(&,0$/���
),(/'��6$/(6�'$7(�����������������7<3(�<<00''�
),(/'��6$/(6�7,0(�����������������7<3(�++0066�
),(/'��&86720(5��������/(1*7+����
),(/'��7(/(3+21(�������/(1*7+�����7<3(�180�
),(/'��7,0(�21�3+21(���/(1*7+�����7<3(�6(&6����'(&,0$/���
),(/'��352'8&7�&2'(����/(1*7+���

Notes:
• these statements are stored in the SALES member of the copy library
• for VSE, the following FILE statement is used instead:

),/(��6$/(6²),/(��$775�'$6'�
6$/(),/
��������

CONTENTS OF SALES–FILE (UNFORMATTED)

-2+1621���������6287+��������������������������$&(�(/(&75,&$/������������������
%$.(5�����������:(67���������������������������-$&.6�&$)(����������������������
0255,621��������($67���������������������������67$5�0$5.(7���������������������
0255,621��������($67���������������������������$��3+272*5$3+<������������������
6,03621���������($67���������������������������(8523($1�'(/,�������������������
-2+1621���������1257+��������������������������9,//$�+27(/���������������������
-2+1621���������1257+��������������������������0$5<6�$17,48(6������������������
%$.(5�����������:(67���������������������������-$&.6�&$)(����������������������
7+20$6����������:(67���������������������������<2*857�&,7<���������������������
-21(6�����������1257+��������������������������(=�*52&(5<����������������������
-21(6�����������1257+��������������������������72<�72:1������������������������
-21(6�����������1257+��������������������������72<�72:1������������������������
-2+1621���������6287+��������������������������$&0(�%8,/',1*�������������������
6,03621���������($67���������������������������-�	�6�/80%(5��������������������

Files Used in Examples

588 Report Writer Reference Manual

DEFINITION STATEMENTS FOR EMPL–FILE

��
��5(3257�:5,7(5�),/(�'(),1,7,21�)25�(03/�),/(�����������
��

),/(���(03/�),/(�7<3(�96$0��''1$0(�(03/),/(���/5(&/�����

),(/'��(03/�180�������/(1���
),(/'��/$67�1$0(������/(1����
),(/'��),567�1$0(�����/(1����
),(/'��+,5(�'$7(��������������7<3(�<<00''�
),(/'��'(37�180�������/(1�����7<3(�180��12$&&80
),(/'��6(;������������/(1���
),(/'��67$786�%<7(����/(1���
),(/'��)8//�7,0(������&2/�67$786�%<7(��%,7���
),(/'��62&,$/�6(&�180�&2/�����/(1�����7<3(�180�
�������������������������������)250$7�3,&
�����������
�
),(/'��180�$&&28176���/(1�����7<3(�180�
),(/'��727$/�6$/(6����/(1�����7<3(�180��'(&���
),(/'��6$/(6�475������/(1�����7<3(�180��'(&���
),(/'��6$/(6�475������/(1�����7<3(�180��'(&���
),(/'��6$/(6�475������/(1�����7<3(�180��'(&���
),(/'��6$/(6�475������/(1�����7<3(�180��'(&���
),(/'��$''5(66��������/(1����
),(/'��&,7<�����������/(1����
),(/'��67$7(����������/(1���
),(/'��=,3������������/(1���
),(/'��7(/(3+21(������/(1�����7<3(�180�
������������������������������)250$7�3,&
��������������
�
Note:

• these statements are stored in the EMPLFILE member of the copy library
• for VSE, the following FILE statement is used instead:

),/(��(03/²),/(�$775�96$0�
(03/),/
�����

CONTENTS OF EMPL–FILE (UNFORMATTED)

���-21(6����������-(55<�����������������0$��0$,1�6
75((7�����6$1�)5$1&,6&2��&$���������������
���-2+1621��������7+20$6����������������0$���/,1'$
�9,67$����6&2776'$/(�����$=���������������
���-2+1621��������/,1'$�����������������)$���/,1&2/1
�'5,9(����6$17$�526$�����&$���������������
���0$&'21$/'������5,&+$5'���������������0���)227+,
//�'5,9(��3/($6$1721�����&$���������������
���6,03621��������7,027+<���������������0$��:(67
����675((7$5&$',$��������&$���������������
���0255,621�������0,&+$(/���������������0$���6287+�/
$.(6,'(�'5*/(1'$/(�������&$���������������
���&+5,6723+(5621�0(/,66$���������������)$��7,0%
(5,'*(�5'�3+2(1,;��������$=���������������
���%$.(5����������9,9,$1����������������)$��&5(67+
$9(1�%/9'�:$/187�&5((.���&$���������������
���7+20$6���������0$57,1����������������0$��6��+
817,1*721�&21&25'��������&$���������������

Files Used in Examples

Appendix F. Files Used in Examples 589

DEFINITION STATEMENTS FOR PRODUCT–FILE

��
��5(3257�:5,7(5�),/(�'(),1,7,21�)25�352'8&7�),/(������������
��

),/(��352'8&7�),/(��''1$0(�352'),/(���7<3(�96$0���/5(&/����

),(/'��352'8&7�67$786��/(1���
),(/'��352'8&7�.(<�����/(1���
),(/'��352'8&7�'(6&����/(1����

Note:
• these statements are stored in the PRODFILE member of the copy library
• for VSE, the following FILE statement is used instead:

),/(��352'²),/(�$775�96$0�
352'),/
����

CONTENTS OF PRODUCT–FILE (UNFORMATTED)

1(:3���,1.3$'6
1(:3���5('�3(16
1(:3���*5((1�3(16
2/'3���'(6.�&$/(1'$56
1(:3���3(1&,/6��12����
2/'3���&+$,56
2/'3���3$3(5�&/,36
1(:3���+2/(�381&+(56
2/'3���0$,/,1*�/$%(/6

Files Used in Examples

590 Report Writer Reference Manual

DEFINITION STATEMENTS FOR STATE–FILE

��
��5(3257�:5,7(5�),/(�'(),1,7,21�)25�67$7(�),/(����������
��

),/(����67$7(²),/(�7<3(�96$0���''1$0(�67$7),/(���/5(&/����

),(/'���67$7(²&2'(��/(1���
),(/'���67$7(²1$0(��/(1����

Note:
• these statements are stored in the STATE member of the copy library
• for VSE, the following FILE statement is used instead:

),/(��67$7(²),/(�$775�96$0�
67$7),/
����

CONTENTS OF STATE–FILE (UNFORMATTED)

$=$5,=21$�
&$&$/,)251,$�
2525(*21�
:$:$6+,1*721�

Appendix G. Sample Data Exit Program 591

Appendix G. Sample Data Exit Pro gram

Report Writer has an exit "hook" available for calling user–written routines for fields that
require specialized processing. Using these routines, called "data exit programs" is discussed
in Chapter 5, "How to Define Your Input Files" (page 297.)

Data exit programs can written in Cobol, PL/1 or Assembler. A sample data exit program
written in Assembly language appears on the following pages. This sample program
performs 5 simple functions in order to illustrate data exit calls for each of the five types of
data. A parm is passed to the exit program each time it is called. That parm tells the exit
program which function is desired. The functions performed by this sample program are:

CALLING FUNCTION
 PARM PERFORMED

T Returns a time value. This sample program simply returns the constant
time 12:34:56.

N Returns a numeric value. This program simply increments a counter and
returns its value.

B Returns a bit value. This program returns the value of the low-order bit of
the record field passed to it.

D Returns a date value. This program returns the constant date 12/31/1996.

R Returns a character value. This program "reverses" the characters in the
record field passed to it and returns that reversed value.

Use this sample program as a model for writing your own data exit programs. (A copy of this
program is contained in the sample Copy Library found in your installation tape.)

Note the $DX DSECT located near the end of the program. That DSECT shows the parm list
that Report Writer passes to all data exit programs. Specifically, when a data exit program
is called by Report Writer, register 1 will point to a fullword. That fullword will contain the
address of the $DX DSECT parm list.

Figure 108 (page 595) shows an actual run that uses this sample data exit program. In that
run, five fields are defined as data exit fields. Notice the FIELD statements used to define
those fields. Each statement has a TYPE parm that defines the field as a data exit type field
(NUMEXIT, for example.) In each case, the name of the data exit program (the DXPROG parm)
is the same. It is SWDEXIT, the name of our sample exit program.

When processing a report request, Report Writer will call SWDEXIT each time that it needs
to process any of the 5 fields defined as data exit fields. Notice that each field has a different
DXPARM value. The appropriate DXPARM value is passed to the exit program as part of the
parm list whenever it is called (see $DXFLDPA.) That parm value tells SWDEXIT what function
to perform, and thus, what value to return to Report Writer.

Note: in this example, we chose to write a single data exit program to support five
different functions (and thus five different fields.) We could also have written five
separate data exit programs–– one for each field. Then, each FIELD statement would
name a different exit program in the DXPROG parm. In that case, the DXPARM parm
in the FIELD statement would not be needed. Each program would always perform its
one single function. You can choose whichever of these approaches you prefer.

Sample Data Exit Pro gram

592 Report Writer Reference Manual

6:'(;,7��7,7/(�
��6$03/(�5(3257�:5,7(5�'$7$�(;,7

����������������������6$03/(�'$7$(;,7�352*5$0�����������������������
��
��(175<��5������32,176�72�$�)8//:25'�:+,&+�&217$,16�7+(�$''5(66�����
����������������2)�7+(��';�'6(&7������������������������������������
��(175<��5������32,176�72�$����)8//:25'�6$9($5($�,1�&$//(56�352*5$0�
��(175<��5������5(7851�$''5(66�:,7+,1�&$//(5
6�352*5$0��������������
��(175<��5������&217$,16�7+(�67$57,1*�$''5(66�2)�7+,6�(;,7�352*5$0��
��
��7+(�9$/8(�2)�7+(�),(/'�67$7(0(17
6�';3$50���3$50�'(7(50,1(6�:+$7��
��9$/8(�7+,6�352*5$0�5(78516�:+(1�,7�,6�&$//('����������������������
��
��';3$50��1� ��5(7851�$�180(5,&�&2817(5�9$/8(�����������������������
����������%� ��5(7851�%,7�9$/8(�2)�7+(�/2:�25'(5�%,7�,1�5(&25'�),(/'
����������'� ��5(7851�$�&2167$17�'$7(�������������������������������
����������5� ��5(7851�7+(��5(9(56('��&217(176�2)�$�&+$5$&7(5�),(/'��
����������7� ��5(7851�$�&2167$17�7,0(�������������������������������
��

6:'(;,7��67$57��

5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48�����
5��������(48�����
5��������(48�����
5��������(48�����
5��������(48�����
5��������(48�����

���������670���5���5������5��������6$9(�&$//(56�5(*6
���������/5����5���5���������������86(�5���$6�%$6(�5(*,67(5�)25�(;,7
���������86,1*�6:'(;,7�5�����������6(7�$''5(66,%,/,7<�)25�7+,6�(;,7

���������67����5���2856$9(���������32,17�285�6$9(�$5($�72�&$//(5
6�6$
���������/$����5���2856$9(���������32,17�72�285�6$9($5($
���������67����5�����5�������������32,17�&$//(5
6�6$9($5($�72�2856
���������/5����5���5���������������/($9(�5���32,17,1*�72�285�6$9($5($

���������/�����5����5��������������/�5��:,7+�$''5�2)�3$50�'6(&7
���������86,1*��';�5���������������$''5(66�&$//(5
6�3$50�'6(&7

���������/�����5���';)/'3$���������5���!�';3$50�9$/8(�)520�),(/'�6707

�)2//2:,1*�/2*,&�,6�(;(&87('�)25�),(/'6�:,7+�';3$50�
1
���68&+�$6�

���),(/'��7(67180��7<3(�180(;,7��';352*�
6:'(;,7
��';3$50�
1
�
����������';5(7'(&���

�7+,6�6$03/(�(;,7�352*5$0�6,03/<�5(78516�$1�$6&(1',1*�&2817(5�9$/8(�

���������&/,�����5���&
1
����������,6�';3$50�
1
"���180(5,&�(;$03/(�
���������%1(���127180��������������%�,)�127�
1

���������/�����5���';5(6$'���������32,17�5��72�$5($�72�3/$&(�5(68/7
���������=$3��������5���&2817(5����5(7851�7+,6����%<7(�3$&.('�180%(5
���������$3����&2817(5� 3
�
�������,1&5(0(17�&2817(5�)25�1(;7�&$//
���������%�����5(7851��������������)81&7,21�
1
�+$6�%((1�3(5)250('

Sample Data Exit Program Written in Assembly Language –– 1 of 3

Sample Data Exit Pro gram

Appendix G. Sample Data Exit Program 593

�)2//2:,1*�/2*,&�,6�(;(&87('�)25�),(/'6�:,7+�';3$50�
'
���68&+�$6�

���),(/'��7(67'$7(�7<3(�'$7((;,7��';352*�
6:'(;,7
��';3$50�
'
�

�7+,6�6$03/(�(;,7�352*5$0�6,03/<�5(78516�7+(�&2167$17�'$7(�����������

127180���(48���
���������&/,�����5���&
'
����������,6�';3$50�
'
"��'$7(�(;$03/(�
���������%1(���127'$7(�������������%�,)�127�';3$50�
'
�
���������/�����5���';5(6$'���������32,17�5��72�$5($�72�3/$&(�5(68/7
���������09&�������5��� ;
��������
�5(7851�7+,6���%<7(�;
<<<<00''
�'$7(
���������%�����5(7851

�)2//2:,1*�/2*,&�,6�(;(&87('�)25�),(/'6�:,7+�';3$50�
%
���68&+�$6�

���),(/'��7(67%,7�7<3(�%,7(;,7��';352*�
6:'(;,7
��';3$50�
%
�
����������&2/801����

�7+,6�6$03/(�(;,7�352*5$0�6,03/<�5(78516�7+(�9$/8(�2)�7+(�/$67�%,7
���,1�7+(�%<7(�,'(17,),('�%<�7+(�),(/'�67$7(0(17
6�&2/801���3$50�
����,1�7+,6�(;$03/(��7+$7
6�7+(�/$67�%,7�2)�7+(�%<7(�,1�&2/801�����

127'$7(��(48���
���������&/,�����5���&
%
����������,6�';3$50�
%
"���%,7�(;$03/(�
���������%1(���127%,7
���������/�����5���';5(6$'���������32,17�5��72�$5($�72�3/$&(�5(68/7
���������/�����5���';)/'$'���������32,17�5��72�5$:�'7�,1�,1387�5(&25'
���������70������5���;
��
���������,6�7+(�/2:25'(5�%,7�21"
���������%=����%,72))��������������12���5(7851�$1��2))��9$/8(
���������09,�����5���&
�
����������<(6���5(7851�$1��21��9$/8(
���������%�����5(7851
%,72))���(48���
���������09,�����5���&
�
����������5(7851�$1��2))��9$/8(�72�63(&7580
���������%�����5(7851

�)2//2:,1*�/2*,&�,6�(;(&87('�)25�),(/'6�:,7+�';3$50�
5
���68&+�$6�

���),(/'��7(67&+$5�7<3(�&+$5(;,7��';352*�
6:'(;,7
��';3$50�
5
�
����������&2/801����/(1*7+�����';5(7/(1����

�7+,6�6$03/(�(;,7�352*5$0�5(9(56(6�7+(�&+5&7(56�,1�$�&+$5$&7(5�),(/'
���,1�7+(�5(&25'���,7�86(6�7+(�),(/'�67$7(0(17
6�/(1*7+�111��3$50
���72�.12:�+2:�0$1<�%<7(6�72�5(9(56(�

127%,7���(48���
���������&/,�����5���&
5
����������,6�';3$50�
5
��5(9(56(�&+$5�(;$03/(�
���������%1(���1275(9(5
���������/�����5���';5(6$'���������32,17�5��72�$5($�72�3/$&(�5(68/7
���������/�����5���';)/'$'���������32,17�5��72�5$:�'7�,1�,1387�5(&25'
���������/+����5���';)/'/1���������/(1*7+�2)�),(/'�72�5(9(56(�
���������$5����5��5����������������32,17�5��3$67�&+$5�),(/'�,1�5(&25'

5(9/223��(48����������������������/223�7+58�),(/'�%$&.:$5'6
���������%&75��5�������������������%$&.83���%<7(��32,17(5�72�5(&�),(/'�
���������09&�������5�����5���������029(���5(9(56('�%<7(�72�5(68/7�$5($
���������/$����5����5��������������,1&5(0(17�32,17(5�,1�5(68/7�$5($
���������%&7���5��5(9/223����������&217,18(�7+528*+�$//�%<7(6

���������%�����5(7851
1275(9(5�(48���

Sample Data Exit Program Written in Assembly Language –– 2 of 3

Sample Data Exit Pro gram

594 Report Writer Reference Manual

�)2//2:,1*�/2*,&�,6�(;(&87('�)25�),(/'6�:,7+�';3$50�
7
���68&+�$6�

���),(/'��7(677,0(�7<3(�7,0((;,7��';352*�
6:'(;,7
��';3$50�
7
�
����������';5(7'(&���

�7+,6�6$03/(�(;,7�352*5$0�6,03/<�5(78516�7+(�&2167$17�7,0(���������
���������3/86������3/86���� �������6(&21'6�

���������&/,�����5���&
7
����������,6�';3$50�
7
"��7,0(�(;$03/(�
���������%1(���1277,0(
���������/�����5���';5(6$'����������!�5(68/7�$5($
���������=$3��������5��� 3
�����
��5(7851����������$6�3/��
6(&21'6

���������%�����5(7851

1277,0(��(48���

���12:�5(7851�72�5(3257�:5,7(5�������������������������������������

5(7851���(48���
���������/�����5���2856$9(���������5(6725(�&$//(5
6�5����6$9(�$5($�375�
���������/0����5���5������5��������5(6725(�&$//(5
6�5(*6�)520�+,6�6$
���������%5����5�������������������5(7851�72�5(3257�:5,7(5

2856$9(��'&������)
�
��������������285�6$9(�$5($
&2817(5��'&����3/�
�
��������������&2817(5�,6���21�),567�&$//�

���
���������';�����3$50�'6(&7�)25�&$//,1*�86(5�'7�(;,76���������������
���

�';������'6(&7���������������������'7�(;,7�3$50�'6(&7

�';1$0(��'&����&/�
'7
�����������1$0(�2)�(;,7
�';/(9(/�'&����&/�
����
�����������/(9(/�180%(5
�';)81&��'&����&/�
&219
�����������)81&7,21
�';)/'10�'6����&/������������������),(/'1$0(�%(,1*�352&(66('
�';),/10�'6����&/������������������),/(1$0(�2)�),(/'�%(,1*�352&
('
�';)/'$'�'6����$�������������������$''5�2)�),(/'
6�'7�,1�,1387�5(&5'
�';5(&$'�'6����$�������������������$''5�2)�%(*,11,1*�2)�,1387�5(&25'
�';)/'3$�'6����$�������������������$''5�2)�),(/'
6�';3$50���7(;7
�';),/3$�'6����$�������������������$''5�2)�),/(
6�(;,73$50���7(;7
�';5(6$'�'6����$�������������������$''5�:+(5(�(;,7�6+28/'�387�5(68/7
�';)/'/1�'6����$/������������������9$/8(�2)�),(/'
6�/(1*7+�111��3$50
�';)/''3�'6����$/������������������9$/8(�2)�),(/'
6�'(&�111��3$50
�';)/'3/�'6����$/������������������/(1*7+�2)��';)/'3$�3$50
6�7(;7
�';),/3/�'6����$/������������������/(1*7+�2)��';),/3$�3$50
6�7(;7
�';5(6/1�'6����$/������������������9$/8(�2)�),(/'
6�';5(7/(1�111��3$50
�';5(6'3�'6����$/������������������9$/8(�2)�),(/'
6�';5(7'(&�11��3$50

���������(1'���6:'(;,7

Sample Data Exit Program Written in Assembly Language –– 3 of 3

Sample Data Exit Pro gram

Appendix G. Sample Data Exit Program 595

,1387��(03/�),/(

�)2//2:,1*�67076�'(),1(�$'',7,21$/��(;,7��7<3(�),(/'6�)25�(03/�),/(

),(/'��7(67180�7<3(�180(;,7����';352*�
6:'(;,7
��';3$50�
1
��';5(7'(&���
),(/'��7(67'$7(�7<3(�'$7((;,7��';352*�
6:'(;,7
��';3$50�
'
�
),(/'��7(677,0(�7<3(�7,0((;,7��';352*�
6:'(;,7
��';3$50�
7
��';5(7'(&���
),(/'��7(67&+$5�7<3(�&+$5(;,7��';352*�
6:'(;,7
��';3$50�
5
�
�������&2/801�/$67�1$0(��/(1*7+�����';5(7/(1����
),(/'��7(67%,7��7<3(�%,7(;,7���';352*�
6:'(;,7
��';3$50�
%
�
�������&2/801�'(37�180�

&2/8016��(03/�180�/$67�1$0(�7(67&+$5
���������7(67180����7(67'$7(�7(677,0(�'(37�180����7(67%,7

These control statements:

7+8������������������$0������'$7$�)520�(03/�),/(��������������������3$*(������

(03/������/$67��'(37
180�������1$0(���������7(67&+$5�����7(67180�7(67'$7(�7(677,0(�180����7(67%,7��

�����-21(6��������������������6(12-��������������������������������127�7(67%,7
�����-2+1621����������������1261+2-��������������������������������7(67%,7
�����-2+1621����������������1261+2-��������������������������������127�7(67%,7
�����0$&'21$/'������������'/$12'&$0��������������������������������127�7(67%,7
�����6,03621����������������12630,6��������������������������������7(67%,7
�����0255,621��������������126,5520��������������������������������7(67%,7
�����&+5,6723+(5621��1265(+3276,5+&��������������������������������7(67%,7
�����%$.(5��������������������5(.$%��������������������������������127�7(67%,7
�����7+20$6������������������6$02+7��������������������������������127�7(67%,7

�*5$1'�727$/���������,7(06��������������

Produce this report:

Notes:
• This report uses 5 fields that are created by the data exit program named SWDEXIT

Figure 108 A report that uses a data exit program

596 Report Writer Reference Manual

Appendix H. How to Import PC Files

This Appendix shows the steps used to import Report Writer's PC files into the following PC
programs:

� Lotus 1–2–3 for Windows (page 597)

� Lotus 1–2–3 DOS versions (page 597)

� Excel (page 597)

� Quattro Pro (page 598)

� Paradox for Windows (page 598)

� Paradox DOS versions (page 599)

� Microsoft Works (page 599)

� Corel Chart (page 599)

� PowerPoint (page 600)

� Harvard Graphics (page 600)

� dBASE III and IV (page 601)

� R:BASE (page 601)

� word processing programs (page 602)

While we aren't able to include every version of every PC program in this Appendix, we have
included a representative sample. If the PC program you want to use is not listed in one of
the following sections, we suggest:

� see if the steps described for Lotus or Excel also work with your PC program.
Most newer PC software has similar Menu structures and functions related to
the opening of input files.

� check your PC program's online Help (or printed documentation.) Search for
such keywords as: IMPORT, TEXT FILE, ASCII, DELIMITED FILE, FILE FORMATS.

� consider a two–step approach. If your PC program cannot import comma
delimited files, it may still be able to import other types of files (such as Lotus
or Excel spreadsheets). For example, Microsoft's PowerPoint does not import
comma delimited files. However, it will import Excel spreadsheet files and
Excel charts. In such a case, use Report Writer to create a PC file for Excel and
first import it into Excel. Then save the Excel spreadsheet. You can then
import the Excel spreadsheet file into your desired program. An example of this
appears on page 600.

Tip : when downloading your PC files, it is often helpful to give them a name ending with
�&69 or �7;7 on the PC. That helps some PC programs recognize your PC file as a comma
delimited import file.

How to Import PC Files

Appendix H. How to Import PC Files 597

Importin g a PC file into Lotus 1–2–3
for Windows

Use the following statement to create a PC file for Lotus 1–2–3:

237,216��/2786

Once you have created your PC file and downloaded it to your PC, here is how to import it
into Lotus 1–2–3 Release 5 for Windows. From an empty spreadsheet do the following:

FKRRVH�),/(
FKRRVH�23(1
IRU�)LOH�7\SH��VHOHFW��7(;7��W[W�SUQ�FVY�GDW�RXW��
IRU�)LOH�1DPH��HQWHU�WKH�QDPH�RI�\RXU�3&�ILOH��IRU�H[DPSOH��&�6$/(6�&69�
FOLFN�RQ�2.

Importin g a PC file into Lotus 1–2–3
(DOS Versions)

Use the following statement to create a PC file for Lotus 1–2–3:

237,216��/2786

Once you have created your PC file and downloaded it to your PC, here is how to import it
into Lotus 1–2–3 (DOS version 3.0) From an empty spreadsheet do the following:

SUHVV�WKH���NH\��WR�EULQJ�XS�WKH�PHQX�
FKRRVH�),/(
FKRRVH�,03257
FKRRVH�180%(56
HQWHU�WKH�ILOHQDPH��IRU�H[DPSOH��&�6$/(6�&69�

Importin g a PC File into Excel

Use the following statement to create a PC file for Excel:

237,216��(;&(/

PC files for Excel differ from most other PC files in that "tab" character is used as the column
delimiter (rather than a comma.) This also means that quotation marks are not required for
character fields.

Once you have created your PC file and downloaded it to your PC, here is how to import it
into Excel Version 5.0. From an empty spreadsheet, do the following:

FKRRVH�),/(
FKRRVH�23(1
XQGHU��/LVW�)LOHV�RI�7\SH���VHOHFW�7H[W�)LOHV���SUQ��W[W��FVY�
XQGHU��)LOH�1DPH���HQWHU�WKH�QDPH�RI�\RXU�3&�)LOH��IRU�H[DPSOH��&�6$/(6�7;7�
FOLFN�RQ�2.
�DW�WKLV�SRLQW��WKH�7H[W�,PSRUW�:L]DUG�VFUHHQ�DSSHDUV�
XQGHU��2ULJLQDO�'DWD�7\SH���VHOHFW�'HOLPLWHG
XQGHU��6WDUW�,QSXW�DW�5RZ���VHOHFW��
XQGHU��)LOH�2ULJLQ���VHOHFW�:LQGRZV��$16,�
FOLFN�RQ�),1,6+

How to Import PC Files

598 Report Writer Reference Manual

Alternative Method: the method described above creates what Excel calls a "text" or "tab
delimited" file. Excel will also import files formatted as "Comma Separated Values" (CSV).
To produce a CSV file, use the following statement:

237,216��&69

When downloading this file to your PC, you may want to name it with a .CSV extension.
(That tells Excel that the file is formatted as a CSV file.) Then to import the PC file, follow
these steps:

FKRRVH�),/(
FKRRVH�23(1
XQGHU�/LVW�)LOHV�RI�7\SH��VHOHFW�7H[W�)LOHV���SUQ��W[W��FVY�
XQGHU�)LOH�1DPH��HQWHU�WKH�QDPH�RI�\RXU�3&�)LOH��IRU�H[DPSOH��&�6$/(6�&69�
FOLFN�RQ�2.

Importin g a PC File into Quattro Pro

Use the following statement to create a PC file for Quattro Pro:

237,216��48$7752

Once you have created your PC file and downloaded it to your PC, here is how to import it
into Quattro Pro Version 5.0 for DOS. From within Quattro Pro do the following:

SUHVV���NH\��WR�EULQJ�XS�WKH�PHQX�
FKRRVH�7RROV
FKRRVH�,PSRUW
FKRRVH�&RPPD�DQG����'HOLPLWHG�)LOHV
HQWHU�WKH�ILOHQDPH��IRU�H[DPSOH��&�6$/(6�&69�
SUHVV�(17(5

Importin g a PC File into Paradox for
Windows

Use the following statement to create a PC file for Paradox:

237,216��3$5$'2;

Once you have created your PC file and downloaded it to your PC, you will use Paradox to
convert the PC file into a Paradox table. Then you can open the Paradox table in the normal
way. Here is how to convert the PC file to a table under Paradox for Windows Version 1.0.
From within Paradox, do the following:

FKRRVH�),/(
FKRRVH�87,/,7,(6
FKRRVH�,03257
XQGHU�7\SH��VHOHFW��'HOLPLWHG�7H[W!
XQGHU�)LOH�1DPH��HQWHU�WKH�QDPH�RI�\RXU�3&�ILOH��IRU�H[DPSOH��C:SALES.CSV�
FOLFN�RQ�2.
�D��'HOLPLWHG�$6&,,�,PSRUW��GLDORJ�ER[�ZLOO�DSSHDU�DW�WKLV�SRLQW�
OHDYH�WKH�)LOH�1DPH�HQWU\�DORQH
HQWHU�D�1HZ�7DEOH�1DPH
FOLFN�RQ�2.

After creating the new table, open it in the normal manner:

How to Import PC Files

Appendix H. How to Import PC Files 599

FKRRVH�),/(
FKRRVH�23(1
FKRRVH�7$%/(
XQGHU�)LOH�1DPH��HQWHU�WKH�SDWK�DQG�QDPH�RI�WKH�QHZ�WDEOH�\RX�MXVW�FUHDWHG
FOLFN�RQ�2.

Importin g a PC File into Paradox
(DOS Versions)

Use the following statement to create a PC file for Paradox:

237,216��3$5$'2;

Once you have created your PC file and downloaded it to your PC, here is how to import it
into Paradox DOS Version 3.5. From within Paradox, do the following:

FKRRVH�7RROV
FKRRVH�([SRUW,PSRUW
FKRRVH�$6&,,
FKRRVH�'HOLPLWHG
HQWHU�WKH�ILOHQDPH��IRU�H[DPSOH��&�6$/(6�&69�
HQWHU�D�QHZ�WDEOH�QDPH

Importin g a PC File into Microsoft Works

Use the following statement to create a PC file for Microsoft Works:

237,216��06²:25.6

Once you have created your PC file and downloaded it to your PC, here is how to import it
into Microsoft Works Version 2.0a. From within Microsoft Works do the following:

FOLFN�RQ�635($'6+((7��DW�WKH�6WDUWXS�GLDORJXH�ER[�
FKRRVH�),/(
FKRRVH�23(1�(;,67,1*�),/(
XQGHU�/LVW�)LOHV�RI�7\SH��VHOHFW��7(;7���7;7��
XQGHU�)LOH�1DPH��HQWHU�WKH�QDPH�RI�WKH�3&�ILOH��IRU�H[DPSOH��&�6$/(6�&69�
FOLFN�RQ�2.
FOLFN�RQ�635($'6+((7��DW�WKH�2SHQ�)LOH�$V�GLDORJXH�ER[�

Importin g a PC File into Corel Chart

Use the following statement to create a PC file for Corel Chart:

237,216��&25(/

Once you have created your PC file and downloaded it to your PC, here is how to import it
into Corel Chart Version 3.0. From within Corel Chart, do the following:

FKRRVH�),/(
FKRRVH�1(:
FKRRVH�D�FKDUW�W\SH��IRU�H[DPSOH�%$5
�DQ�HPSW\�VSUHDGVKHHW�JULG�ZLOO�DSSHDU�

How to Import PC Files

600 Report Writer Reference Manual

FKRRVH�),/(
FKRRVH�,03257�'7
XQGHU�/LVW�)LOHV�RI�7\SH��VHOHFW��&69�'DWD���&69��
XQGHU�)LOH�1DPH�HQWHU�WKH�QDPH�RI�\RXU�3&�ILOH��IRU�H[DPSOH��&�6$/(6�&69�
FOLFN�RQ�2.

Importin g a PC File into PowerPoint

PowerPoint does not import comma delimited values directly. However it does import Excel
spreadsheets.

Use the following statement to create a PC file for Excel:

237,216��(;&(/

Once you have created your PC file and downloaded it to your PC, import it into Excel (as
described on page 597.) Then save the Excel spreadsheet and exit Excel.

Here is how to import the data from your new Excel spreadsheet into a slide in PowerPoint
Version 4.0. From within a PowerPoint presentation, do the following:

FKRRVH�,16(57�1(:�6/,'(
FKRRVH�*5$3+�DV�WKH�DXWROD\RXW�W\SH�IRU�\RXU�VOLGH
GRXEOH�FOLFN�ZKHUH�LW�VD\V��'RXEOH�&OLFN�WR�$GG�*UDSK�
�D�3UHVHQWDWLRQ�'DWDEDVH�JULG�ZLOO�DSSHDU�
VHOHFW�WKH�XSSHU�OHIW�JULG�ER[�ZLWK�WKH�FXUVRU��WR�LPSRUW�GDWD�VWDUWLQJ�WKHUH�
FKRRVH�(',7��IURP�WKH�PDLQ�PHQX�
FKRRVH�,03257�'7
XQGHU�/LVW�)LOHV�RI�7\SH��VHOHFW��0LFURVRIW�([FHO�)LOHV���[O��
XQGHU�)LOH�1DPH�HQWHU�WKH�QDPH�RI�\RXU�VDYHG�([FHO�ILOH��IRU�H[DPSOH��&�6$/(6�;/6�
FOLFN�RQ�2.
�DW�WKLV�SRLQW�\RX�FDQ�HGLW�WKH�LPSRUWHG�GDWD�LQ�WKH�GDWDEDVH�JULG��SHUKDSV�GHOHWLQJ�DQ\
XQQHHGHG�FROXPQV�RU�URZV�
FKRRVH�&/26(��IURP�WKH�3UHVHQWDWLRQ�'DWDEDVH�GLDORJXH�ER[
V�SXOOGRZQ�PHQX�
�3RZHU3RLQW�ZLOO�IRUPDW�WKH�GDWD�LQWR�D�FKDUW��ZKLFK�\RX�FDQ�WKHQ�PDVVDJH�DV�GHVLUHG��

Alternative Method:
You can also create and save your desired chart while you are still within Excel. Then import
that Excel Chart into your PowerPoint slide. Follow the same steps as above, except that you
will now choose ,03257�&+$57 (rather than ,03257�'$7$) and will then list and name a Microsoft
Excel Chart (*.xlc) file.

Importin g Files into Harvard Graphics

Use the following statement to create a PC file for Harvard Graphics:

237,216��+$59$5'

Once you have created your PC file and downloaded it to your PC, there are a number of ways
that it can be imported into Harvard Graphics (depending on the kind of chart you want). As
an example, to import it as a bar chart into Harvard Graphics DOS Version 2.12, do the
following:

FKRRVH�&UHDWH�QHZ�FKDUW
FKRRVH�%DU�OLQH
SUHVV��(6&!��IURP�WKH��;�'DWD�7\SH��PHQX��WR�XVH�WKH�GHIDXOWV�

How to Import PC Files

Appendix H. How to Import PC Files 601

SUHVV��(6&!��WR�UHWXUQ�WR�WKH�PHQX�VFUHHQ�
FKRRVH�,PSRUW�([SRUW
FKRRVH�,PSRUW�GHOLPLWHG�$6&,,
�VHOHFW�WKH�FRUUHFW�'LUHFWRU\�DQG�)LOHQDPH�
�RQ�WKH��$6&,,�'HOLPLWHUV��PHQX��VHOHFW�WKH�IROORZLQJ��

4XRWH�FKDUDFWHU���
(QG�RI�ILHOG�GHOLPLWHU���
HQG�RI�UHFRUG�GHOLPLWHU��������

FKRRVH�<(6��WR�WKH�SURPSW��,PSRUW�ILUVW�UHFRUG�DV�VHULHV�OHJHQGV���

Note: the column headings for Harvard Graphics files are a little different than for
other PC files. For Harvard Graphics, Report Writer always creates a single line of
column headings. (This is because Harvard Graphics only accepts a single line of
column headings when importing files.) This means that column headings which
normally are split onto multiple lines will be run together into a single column
heading line. A single space will appear where the line breaks would otherwise have
occurred. If this results in column headings that are too long or that look odd, you
may wish to specify override column headings (in your COLUMNS statement) when
creating files for Harvard Graphics.

Importin g a PC File into dBASE IV

Use the following statement to create a PC file for dBASE IV:

237,216��'%$6(�

Once you have created your PC file and downloaded it to your PC, here is how to import it
into a dBASE IV structure. First create a structure that corresponds field–for–field to the
Report Writer output file. Then enter the following "dot" commands:

86(�VWUXFWXUH
$33(1'�)520�ILOHQDPH�7<3(�'(/,0,7('

Importin g a PC File into R:BASE

Use the following statement to create a PC file for R:BASE:

237,216��5%$6(

Once you have created your PC file and downloaded it to your PC, here is how to import it
into R:BASE. From within a fresh R:BASE session, do the following:

FKRRVH�7RROV
FKRRVH�,PSRUW�H[SRUW
FKRRVH�$6&,,�GHOLPLWHG���
HQWHU�WKH�ILOHQDPH��IRU�H[DPSOH��&�6$/(6�&69�
FKRRVH�<(6��WR�WKH�TXHVWLRQ��,PSRUWLQJ�'DWH�9DOXHV"��
FKHFN�00�''��<<�<<��E\�KLWWLQJ��(17(5!�
SUHVV��)�!�
FKRRVH�1(:��WR�WKH�TXHVWLRQ��&KRRVH�GDWDEDVH���
HQWHU�D�QHZ�GDWDEDVH�QDPH
FKRRVH�1(:��WR�WKH�TXHVWLRQ��&KRRVH�WDEOH���
HQWHU�QHZ�WDEOH�QDPH
FKRRVH������WR�WKH�SURPSW��(QWHU�WKH�FROXPQ�VHSDUDWRU�FKDUDFWHU���
SUHVV��)�!��WR�WKH�SURPSW��3UHVV�)��WR�FRQWLQXH��
ILOO�LQ�WKH�FRUUHFW�FROXPQ�QDPHV�RQ�WKH�VFUHHQ��LI�GHVLUHG

How to Import PC Files

602 Report Writer Reference Manual

SUHVV��(6&!��WR�UHWXUQ�WR�WKH�PHQX�
FKRRVH�'DWD
FKRRVH�/RDG

Importin g Files into Word Processin g
Programs

Use the following statement to create a PC file for most word processing programs:

237,216��12&&

Notice that for word processor programs we do not use any PC program option. Word
processors can normally import a report "just as it is." That is, columns need not be
"delimited". And the data need not be specially formatted or enclosed in quotes. And you
normally do want to include report titles, column headings, and Grand Totals.

The NOCC option simply tells Report Writer to omit the "carriage control" character from the
beginning of each output record. The carriage control characters are not needed since the
output records will be going to a file, rather than to a printer.

After you have downloaded the PC file to your PC, import it into your word processing
program as an "ASCII file." The exact way to do this varies between different word
processing programs. Check the program's online Help (or printed documentation). Search
for such words as "Importing", "ASCII files", "text files" or "DOS files."

For example, to import such a PC file into WordPerfect 5.1, you would do the following:

SUHVV�7(;7�,1�287��&7/²)��
FKRRVH�'26�WH[W����
FKRRVH�5HWULHYH��&5�/)�WR�>+5W@�����
HQWHU�WKH�ILOHQDPH��IRU�H[DPSOH��&�6$/(6�7;7�

When importing reports into word processing programs, there are several things to keep in
mind:

� The report should not be too wide. If the report is wider than the width of a
page, the word processing program will probably break each line into multiple
lines, ruining the appearance of the report. Using a width parm (in the COLUMNS

statement) to create smaller columns may help reduce the width of your report
(see page 131.)

� Use a font with a small point size (in the word processing program) to allow
wider reports to fit on a page

� If your report is still too wide, try using a "landscape" page layout

� Use a non–proportional (monospaced) font to display the report. Otherwise
the report may be skewed as the word processing program uses a slightly
different width for each character. Some fonts that are usually non–proportional
are: COURIER, LINE PRINTER, and MONOSPACED.

� Disable justification. If the word processor program attempts to justify the
report lines, they will probably become skewed.

Appendix I. Speed–Up Tips 603

Appendix I. Speed–Up Tips

Because Report Writer is written entirely in fast, efficient Assembly language, it runs faster
than any other 4GL report writer we know of. This Appendix lists some techniques you can
use when writing your queries to allow Report Writer to run at its fastest. You may want to
review these items if you have large, long–running jobs where minimizing CPU use is
especially important.

INCLUDEIF Statement

The INCLUDEIF statement is perhaps the single most important factor that affects how long
your job will run. By considering the following suggestions when writing your INCLUDEIF

statements, you can help Report Writer run at its fastest.

The INCLUDEIF statement simply consists of a conditional expression. Report Writer always
stops processing a conditional expression as soon as it knows that the entire expression is
either definitely true or definitely false. That means that Report Writer may not always need
to perform every test in a conditional expression. By writing your conditional expressions
so that Report Writer can make a definite determination as soon as possible, you can help
eliminate unnecessary processing. That reduces CPU usage.

Speed–Up Tip: put tests that definitely include or definitely exclude the majority
of input file records early in your INCLUDEIF statement.

We will now illustrate this tip in detail, both for conditional expressions that use AND and for
conditional expressions that use OR.

Order of ANDed Tests
As an example, assume that we are processing a large database of people. We want to
include all records where both of the following conditions are true:

� 6(;� �
)

� 1$0(� �
-26(3+621

Note that one of these conditions (6(;� �
)
) should be true in about half of the input records.
(We are assuming that the database is representative of the population at large.) The other
condition (1$0(� �
-26(3+621
) will probably be true for only a tiny fraction of the database ––
far less than 1%.

We could write the necessary INCLUDEIF statement either of two ways. We could write it as:

,1&/8'(,)��6(;� �
)
��$1'��1$0(� �
-26(3+621

If we write the statement as above, Report Writer will have to perform both tests on
approximately 50% of the input records. That is because the first test (6(;� �
)
) will be true
for about half of the input file. For that half of the file, the second test will then have to be
performed as well (1$0(� �
-26(3+621
). (When this second test is performed, most of the
records will fail it and will thus fail the entire INCLUDEIF statement.)

Now consider the second (and much better) way that we would write our INCLUDEIF

statement:

,1&/8'(,)��1$0(� �
-26(3+621
��$1'��6(;� �
)
 � best choice

Speed-Up Tips

604 Report Writer Reference Manual

The above statement results in exactly the same records being included in the report, but it
is much more efficient in terms of CPU use. In this case, 99% of the input file records will
fail the first test. For those records, the second test will not need to be performed at all.
Report Writer can definitely exclude the input record with just a single test 99% of the time.
It will only need to perform the second test (6(;� �
)
) on less than 1% of the input records.

To compare the two methods, let's assume that our database contains one million people.
Using the first INCLUDEIF statement discussed above, Report Writer would have to perform
about 1,500,000 tests to evaluate the INCLUDEIF statement for the entire file. (1,000,000 SEX

tests, plus 500,000 NAME tests.) Using the second INCLUDEIF statement discussed above,
Report Writer would have to perform less than 1,010,000 tests. (1,000,000 NAME tests, plus
less than 10,000 SEX tests.) You can see that the second INCLUDEIF statement would use
almost 33% less CPU than the first one.

Speed–Up Rule: when using multiple tests separated with AND, put the most
difficult test to pass first. Put the next–most–difficult test second, and so on. By
"most difficult test", we mean the test that the most input file records will fail. By
"next–most–difficult" test, we mean the test that will be failed most often by those
records that have passed the first test.

Order of ORed Tests
Now let's consider conditional expressions that use OR. Assume now that we want to include
all the people in our database where either of the following conditions are true:

� 6(;� �
)

� 1$0(� �
-26(3+621

Again, we can assume that about 50% of the records will pass the first test shown above, and
less than 1% will pass the second test.

Here is the best way to write the INCLUDEIF statement:

,1&/8'(,)��6(;� �
)
��25��1$0(� �
-26(3+621
 � best choice

By using the above statement, Report Writer will definitely include about 50% of the file
after evaluating only the first test. It will only have to perform the second test on the other
50% of the file.

On the other hand, consider if we had written the statement this way:

,1&/8'(,)��1$0(
-26(3+621
��25��6(;
)

If we used the above statement, the first test would not be true over 99% of the time. That
means that Report Writer would have to go to perform the second test on 99% of the input
file. While both statements would include the same records in your report, the above
statement would require almost twice as much CPU time to process as the earlier statement.

As you can see, the rule is reversed when using multiple conditions that are separated with
OR.

Speed-Up Tips

Appendix I. Speed–Up Tips 605

Speed–Up Rule: when using multiple tests separated with OR, put the easiest test
to pass first. Put the next–easiest test second, and so on. By "easiest test", we mean
the test that the most input file records will pass. By "next–easiest test", we mean
the test that will be passed most often by those records which did not pass the first
test.

One common way that this rule comes up is when you are including records where a certain
field is equal to any one of a number of values. For example:

,1&/8'(,)���'(37²180� ���25���25��

You will improve performance in such a case if you put the most common value first. For
example, if more people in the input file were in department 4 than were in department 2 or
3, you should put 4 first:

,1&/8'(,)���'(37²180� ���25���25��

Fields from Auxiliar y Input Files
So far, we have assumed that all fields referred to in an INCLUDEIF statement come from one
file. When the INCLUDEIF statement refers to fields from two or more files, there is another
factor to consider. As we mentioned earlier, Report Writer stops processing a conditional
expression as soon as it knows that the entire expression is either definitely true or definitely
false. That means that if Report Writer can definitely exclude a record based only on tests
from the primary input file, it will not have to perform any subsequent tests that involve the
auxiliary input file(s). In most cases, Report Writer does not read an auxiliary input record
until data from that record is actually needed for processing. Thus, if you can exclude a large
percentage of records based solely on primary input file tests, Report Writer will not have to
read the auxiliary record at all and you will save a large amount of I/O. Since I/O is relatively
slow, it is always desirable to avoid unnecessary I/O whenever possible.

Let's consider an example using our large database of people. Assume that it contains an ID
number for each person that can be used as the key to another file that contains birth date
information. Assume that we want to include people in our report if both of the following
conditions are true:

� 1$0(� �
-26(3+621

� %,57+'$7(� ���������

The best way to write the INCLUDEIF statement is:

,1&/8'(,)��1$0(
-26(3+621
�$1'�%,57+'$7(� ���������

In the above statement, 99% of the input file will be definitely excluded based on the first test
alone. That means that 99% of the time the "read" to the auxiliary input file containing the
BIRTHDATE field will not be necessary. This method reduces the amount of I/O performed by
almost half (compared with writing the statement with the BIRTHDATE test first.) When the
BIRTHDATE test is written first, the auxiliary record has to be read 100% of the time.

If we had an OR–type INCLUDEIF statement, we would probably still want to put the primary
input file test first:

,1&/8'(,)��1$0(
-26(3+621
�25��%,57+'$7(� ���������

Speed-Up Tips

606 Report Writer Reference Manual

In the above case, only a small percentage of the input records would pass the first test,
meaning that the auxiliary record would then have to be read in order to perform the second
test. Still, reading the second file 99% of the time is slightly better than reading it 100% of
the time, as would be the case if the BIRTHDATE test were the first test.

Speed–Up Tip: when the INCLUDEIF statement involves tests using fields from
auxiliary input files, try to make the auxiliary file tests the last ones.

Of course, there will be times when your inclusion requirements prevent you from doing this.
Or, you may have a conflict between the rules specified earlier (involving easy–to–pass and
difficult–to–pass tests) and the rule regarding tests from auxiliary input files. In such cases,
you may want to experiment with the INCLUDEIF statement on test runs until you find the most
efficient way to write it for your situation. For regularly scheduled, long running jobs, it may
be worth the effort to do that.

Intermediate Conditional Expressions
If your INCLUDEIF statement uses the same tests in multiple places, you may be able to
improve performance by assigning the result of those tests to an intermediate bit field. This
technique is discussed on page 608.

Conditional COMPUTE Statements

When writing conditional COMPUTE statements, there are two considerations that affect
performance:

� the order of the tests within each WHEN parm

� the order of the WHEN parms themselves

The contents of a WHEN parm is simply a conditional expression. The INCLUDEIF statement
also consists of a conditional expression. Therefore, carefully read the above tips regarding
the INCLUDEIF statement. Follow those same suggestions when writing the conditional
expressions within your WHEN parms.

For example, consider the following WHEN parm:

&20387(��$� �:+(1�6(;
)
�25�1$0(
-26(3+621
��$66,*1����� � best choice

The above WHEN parm is more efficient than writing it the following way (even though both
ways yield the same final result):

&20387(��$� �:+(1�1$0(
-26(3+621
��25��6(;
)
���$66,*1�����

If you don't know why the first statement above is better, read the section in this Appendix
on speed–up tips for the INCLUDEIF statement (page 603.)

The second consideration when writing conditional COMPUTE statements is the order of the
WHEN parms themselves. Remember that when evaluating a conditional COMPUTE statement,
Report Writer stops evaluating the WHEN parms as soon as it finds a WHEN expression that
is true. Thus, you will want to put the WHEN parms that are most likely to be true as early as

Speed-Up Tips

Appendix I. Speed–Up Tips 607

possible. That lets Report Writer stop its WHEN parm processing as early as possible in the
maximum number of cases.

Speed–Up Tip: put the WHEN parm that is most likely to be true first. Next, put the
WHEN parm that is most likely to be true considering only those records that failed
the first WHEN parm, and so on.

Consider the following statement:

����&20387(��67$7(1$0(� �:+(1�67$7(� �
&$
����$66,*1�
&$/,)251,$
�
��������������������������:+(1�67$7(� �
1<
����$66,*1�
1(:�<25.
�
�����������������������������
��������������������������:+(1�67$7(� �
:<
����$66,*1�
:<20,1*
�

Notice that the WHEN parms are not in alphabetical state order like you might expect.
Instead, they appear in order of decreasing state population. Thus (again assuming that our
database is representative of the US population as a whole) the WHEN parm most likely to be
true for the entire file (67$7(� �
&$
) comes first. For about 12% of the input records, Report
Writer will only have to evaluate this one WHEN parm (since about 12% of the population live
in California.)

Next, considering only those records that are not in California, the most records will be in
New York. Therefore, we checked for 67$7(
1<
 second. This allows another 7% of the
input file to have only two WHEN parms evaluated. And so on through the rest of the states.
Report Writer would only have to evaluate all 50 WHEN parms for 0.2% of the input records
(for Wyoming).

Putting the WHEN parms in the above order ensures that Report Writer performs the fewest
total number of WHEN parm evaluations, thus ensuring the best performance.

Of course, your COMPUTE statements will involve different conditions. It may be hard for you
to guess which of your WHEN parms are the most likely to be true. But, even if you can only
identify the one or two most common WHEN parms, just putting those first can result in a
significant benefit.

COMPUTE Statements with RETAIN

COMPUTE statements that use the RETAIN keyword can be much slower than COMPUTE

statements that do not use it. The reason is this: if an input record will not be included in the
run (because it fails the INCLUDEIF tests), Report Writer does not normally have to compute
the value of all the COMPUTE statements for that record. However, it does have to compute
the value of all RETAIN–type COMPUTE statements for every record in the entire input file.
This is because, even though a specific record may not be included in the report, the value
assigned to the COMPUTE field for that record might need to be retained and then used in
conjunction with later input records.

RETAIN–type COMPUTEs are especially slow when they refer to fields from auxiliary input
records. The reason: since RETAIN–type COMPUTEs must be computed for every input file
record, that means that the auxiliary input file record needed for the COMPUTE must also be
read for every input file record–– even those records that won't be included in the report.

Speed-Up Tips

608 Report Writer Reference Manual

That can add a lot of I/O time to a run, since direct reads to auxiliary input files are very
slow.

Tip: if you have a RETAIN–type COMPUTE statement that refers to a field from an
auxiliary input file, see if you can replace it with a non–RETAIN–type COMPUTE

statement. Sometimes you can accomplish this by using a RETAIN–type COMPUTE

statement to retain just the key needed to read the auxiliary input file record. Then
the COMPUTE statement that actually refers to fields in the auxiliary input file should
not need to use RETAIN. When the COMPUTE field is actually needed, the retained key
will be enough to cause the correct record to be read for the COMPUTE statement.

Intermediate Computational Expressions

If your request uses a common computational expression in multiple statements, you may be
able to improve performance by using an intermediate computation. Assign the value of the
common part of the expression to an intermediate field. Then refer to that intermediate field
name in each place where the common expression is needed. That way Report Writer only
has to compute the value of that expression once. It can then use that one result as many
times as needed.

For example, assume that your request contains these three COMPUTE statements:

&20387(���;� ���%�²�&����������&�������
&20387(���<� ���%�²�&����������&�������
&20387(���=� ���%�²�&����������&�������

You may be able to improve performance by computing the common part of the expressions
just once and saving the result in an intermediate field, like this:

&20387(���7(03� ���%�²�&����������&
&20387(���;� �7(03�������
&20387(���<� �7(03�������
&20387(���=� �7(03�������

Intermediate Conditional Expressions

If your request uses a common conditional expression in multiple places, you may be able to
improve performance by using an intermediate expression. Assign the value of the common
part of the expression to an intermediate bit field. Then use that intermediate field name in
each place where the expression is needed. That way Report Writer only has to compute the
value of that expression once. It can then use that one result as many times as needed.

For example, assume that your request contains this conditional COMPUTE statement:

&20387(���;� �:+(1��$� �%�25�&�!�'��$1'�(� ������$66,*1������
��������������:+(1��$� �%�25�&�!�'��$1'�(� ������$66,*1������
��������������:+(1��$� �%�25�&�!�'��$1'�(� ������$66,*1������

You may be able to improve performance by evaluating the common part of the conditional
expressions (in the WHEN parms) just once and saving the result in an intermediate bit field,
like this:

&20387(���7(03� �:+(1�$� �%�25�&�!�'���$66,*1��21�
&20387(���;� �:+(1�7(03�$1'�(� �����$66,*1������

Speed-Up Tips

Appendix I. Speed–Up Tips 609

��������������:+(1�7(03�$1'�(� �����$66,*1������
��������������:+(1�7(03�$1'�(� �����$66,*1������

READ Statements with the MULTI parm

In other parts of this manual, we discussed two speed–up tips involving READ statements that
use the MULTI parm. We repeat them here:

Speed–Up Tip: if you know that there will only be one qualifying record in an
auxiliary input file for each READKEY value, do not specify the MULTI parm in your
READ statement. Runs that use the MULTI parm are slower than runs that do not use
it.

Speed-up Tip: if you have some READ statements that use the MULTI parm and
some that do not, put the READ statement(s) without the MULTI parm ahead of the
other READ statements (when possible). This may reduce the amount of I/O that
Report Writer has to perform.

VSAM I/O

Direct (random) reads to VSAM files are inherently slow. A single random read may involve
multiple EXCPs (to read different levels of index blocks and then data blocks.) Since many
4GL report writers do not support direct reads to VSAM files at all, many users do not have
a good standard to compare Report Writer's VSAM I/O performance with.

When you write Report Writer a job that does perform extensive random reads, it will run
slower than a similar job that does not perform direct VSAM I/O. The inherent slowness of
direct VSAM I/O is the cause, however, and not any additional overhead added by Report
Writer.

Here are some tips to make your VSAM jobs run as quickly as possible.

VSAM Buffers

When reading from VSAM files, you may be able to improve performance by increasing the
number of VSAM buffers. This can increase the chances that VSAM will find a needed record
already in one of its buffers, thus eliminating the need for a disk access.

Report Writer provides parms that let you specify VSAM buffers right in your control
statements (thus saving you from having to modify the execution JCL.) Use the BUFND and
BUFNI parms in your INPUT and READ statements to specify the number of buffers that VSAM

should use.

The BUFND parm specifies the number of "data buffers" that the VSAM access method should
maintain when processing the file. The BUFNI parm specifies the number of "index buffers"
that the VSAM access method should maintain when processing the file. When these parms
are not specified for a VSAM file, Report Writer chooses a default number of data and index
buffers to maintain.

Speed-Up Tips

610 Report Writer Reference Manual

Different values for these parms are recommended for use in the INPUT statement and the
READ statement. You may wish to experiment with these parms if you have long–running,
VSAM–intensive jobs.

READ Statement Buffers
According to IBM's VSAM manual:

� Increasing the number of data buffers by 1 or 2 (from VSAM's default of 2) may
improve performance for random reads. After that, more benefit is obtained by
increasing the number of index buffers.

� Increasing the number of index buffers (from VSAM's default of 1) should
improve performance for random reads up to a certain point. At some point,
excessive paging may cancel any benefit. Optimal performance is sometimes
achieved by having one index buffer for each level of the file's index.

EXAMPLE :

5($'��(03/²),/(��5($'.(<�(03/²180���%8)1'�����%8)1,���

The above statement specifies that VSAM should allocate buffers for 3 data control intervals
and 6 index control intervals when processing the EMPL–FILE.

INPUT Statement Buffers
According to IBM's VSAM manual:

� Increasing the number of data buffers to 4 or 5 (from VSAM's default of 2) may
improve performance for sequential reads. At some point after that, excessive
paging may cancel any benefit.

� Increasing the number of index buffers (from VSAM's default of 1) does not
normally improve performance for sequential reads.

EXAMPLE :

,1387��(03/²),/(��%8)1'���

The above statement specifies that VSAM should allocate buffer space for 5 data control
intervals when processing the EMPL–FILE.

Pre–Sortin g the Input File
Sometimes a vast improvement in performance can be achieved by pre–sorting the primary
input file to Report Writer. For example, assume we have a job that uses the SALES–FILE as
the primary input file. Its records are in chronological order. Assume that we also use a
READ statement to read an auxiliary input record from the EMPL–FILE. The READKEY is the
EMPL–NUM from the SALES–FILE:

,1387��6$/(6²),/(
5($'���(03/²),/(��5($'.(<�(03/²180�

Since the SALES–FILE is in chronological order, the EMPL–NUMs within it are presumably
distributed randomly. Thus, Report Writer may first have to read the EMPL–FILE record for
key 036, then read a record for key 044, then read another record for key 036, etc. Since the
reads are in random order, the odds are not good that VSAM will have the desired record

Speed-Up Tips

Appendix I. Speed–Up Tips 611

already sitting in one of its buffers. Thus, it will have to perform real EXCP I/O to the VSAM

file to get the desired record each time.

Now consider what would happen if we pre–sorted the SALES–FILE into EMPL–NUM order
before having Report Writer process it. The first SALES–FILE record might be for EMPL-NUM

036, for example. Report Writer would then perform a read for key 036 to the EMPL–FILE.

Then, the next SALES–FILE record would also be for key 036. That means VSAM would find
that record already in its buffer and would not have to perform any EXCPs to obtain it. All
of the SALES–FILE records for EMPL–NUM 036 could be processed without any additional I/O
to the EMPL–FILE. Then, when the SALES–FILE record for the next EMPL–NUM is read, the same
thing would happen for it. VSAM might have to perform one I/O to get the correct EMPL–FILE

record the first time, but then would not need to perform any more I/O for all the other
SALES–FILE records with that same EMPL–NUM. The total number of slow, direct VSAM reads
would be dramatically decreased.

Of course, pre–sorting the input file does add overhead to the overall job. Various factors,
including the sizes of the primary input file and the auxiliary input file will determine whether
the pre–sort saves you net execution time in the end. In many cases, it is worth the pre–sort.
By the way, you can use a separate Report Writer step to perform the pre–sort, if you like.
This is explained on page 263.

KEYRANGE Parm
If the primary input file is a KSDS (keyed) VSAM file, you may be able to use the KEYRANGE

parm in your INPUT statement to reduce the I/O required for the run. The KEYRANGE parm
tells Report Writer to read only those records within a certain range of keys, rather than
reading through the entire VSAM file.

For example, assume that the input file for a run is a large KSDS customer file. The key for
this file is a 2-byte state code followed by a 10-byte customer number. Assume we want a
report that lists all of the male customers in New York. Normally, we might write:

,1387������&86720(5
,1&/8'(,)��67$7(� �¶1<·���$1'���6(;� �¶0·

In the above example, Report Writer must read through the entire CUSTOMER file, testing the
STATE field and the SEX field in each record to determine which records to include in the
report.

However, since the key to this file begins with the state code, we could write the following
instead:

,1387������&86720(5���.(<5$1*(�¶1<·�
,1&/8'(,)��6(; ·0·

The above statements result in the very same report, but run much faster. Instead of having
to read every record in the CUSTOMER file, Report Writer can now jump in right at the first
record whose key begins with NY. It then starts reading records sequentially from that point.
And, after reading the last record whose key begins with NY, it stops reading the file
altogether. This run is much faster because Report Writer does not have to read the
CUSTOMER records for all of the other states and perform the INCLUDEIF tests on them.

Notice that in the second run we also dropped the 67$7(·1<·test from the INCLUDEIF

statement. Since the KEYRANGE parm guarantees that only records with NY in the STATE

Speed-Up Tips

612 Report Writer Reference Manual

field are read, there is no need to test for that in the INCLUDEIF statement. Dropping this test
provides an additional improvement in performance.

The syntax of the KEYRANGE parm is shown on page 490.

INCLUDEIF Statement Order
If you have not done so, please read the speed–up tips for the INCLUDEIF statement (page
603.) Pay particular attention to the subsection titled Fields from Auxiliary Input Files (page
605.) Writing your INCLUDEIF statement so as to eliminate unnecessary reads to auxiliary
input files can greatly reduce the amount of slow VSAM I/O that must be performed.

Replace an Auxiliar y File
with a "Table Lookup"

Since random I/O to auxiliary input files is slow, consider whether you can use a "table
lookup" instead of reading a file. For example, assume that your primary input file contains
2–byte state codes. You want to print the entire state name in your report. One approach
may be to write a READ statement that uses the state code as the read key for a STATE–FILE:

,1387����(03/²),/(
5($'�����67$7(²),/(��5($'.(<�67$7(�
&2/8016��/$67²1$0(��$''5��&,7<��67$7(²),/(�67$7(²1$0(��=,3

However, it will often be much faster to use a conditional COMPUTE statement to "look up"
the state name (instead of reading a VSAM file):

,1387����(03/²),/(
&20387(��1$0(²2)²67$7(� :+(1�67$7(� �
&$
���$66,*1�
&$/,)251,$
�
�������������������������:+(1�67$7(� �
1<
���$66,*1�
1(:�<25.
�

���
�������������������������:+(1�67$7(� �
:<
���$66,*1�
:<20,1*
�
�������������������������(/6(����������������$66,*1�67$7(���
""
�
&2/8016��/$67²1$0(��$''5��&,7<��1$0(²2)²67$7(��=,3

The conditional COMPUTE statement above functions as a table lookup routine and eliminates
the need for a READ statement.

In some cases, there will be too many potential lookup values for such a COMPUTE statement
to be practical. Or, the number of entries may be constantly changing. In that case, you
might still consider a combination of 1) a COMPUTE statement (to efficiently satisfy the most
common cases), and 2) a READ statement to cover any cases missed by the COMPUTE

statement:

,1387����(03/²),/(
5($'�����67$7(²),/(��5($'.(<�67$7(�
&20387(��1$0(²2)²67$7(� ��:+(1�67$7(� �
&$
���$66,*1�
&$/,)251,$
�
��������������������������:+(1�67$7(� �
1<
���$66,*1�
1(:�<25.
�

�� ������������������������������
�� ��������������������������:+(1�67$7(� �
:<
���$66,*1�
:<20,1*
�
�� ��������������������������(/6(����������������$66,*1�67$7(²),/(�67$7(²1$0(�

&2/8016��/$67²1$0(��$''5��&,7<��1$0(²2)²67$7(�=,3

In the above example, whenever the STATE value is one that is covered by a WHEN condition,
no read will be performed on the STATE–FILE. (That is because, even though a READ

statement exists, no data from that file would actually be needed, and Report Writer would
not perform the read.) However, if a STATE is encountered which is not covered by any of the

Speed-Up Tips

Appendix I. Speed–Up Tips 613

WHEN parms, the ELSE clause would assign the STATE–NAME field from the STATE–FILE. In
that case (and only in that case) Report Writer would need to perform the read to the VSAM

file.

Clearin g I/O Areas

When processing certain types of files, Report Writer normally clears the entire I/O area to
blanks before each read. This is to ensure that when a short record is read, it is not followed
by leftover data from a previous longer record. For certain record layouts, such leftover data
could cause misleading results. Specifying CLEAR(NO) (in the INPUT or READ statement)
suppresses this clearing, which may result in somewhat improved performance. You might
want to specify CLEAR(NO) if you are certain that any leftover data in the I/O area will not
affect your run.

EXAMPLE :

,1387��3$<52//²),/(��&/($5�12�

The above statement names the PAYROLL–FILE as the primary input file for the run. Report
Writer will not clear its I/O area each time it reads a record from that file.

Note: you can also specify the CLEAR parm in the FILE statement to avoid
having to put it in the INPUT and READ statements each time. The NOCLEARIO

parm in the OPTIONS statement can be used to prevent clearing of all files in a
run.

Development C ycle

The process of developing new requests often entails making minor changes and re–running
the request many times. If the input file you are using contains a million records, this can
obviously take some time. The following options are available to help speed up your
development runs. Once you are satisfied with your request, just remove the option to obtain
your full production results.

OPTION DESCRIPTION

MAXINPUT(nnnnn) Tells Report Writer to read only the specified number of
records from the input file. After reading that many records,
Report Writer acts as if it has hit EOF (end of file) on the input
file and produces the final report or PC file.

Example: 237,216��0$;,1387�����

MAXINCLUDE(nnnnn) Tells Report Writer to include only the specified number of
records in the run. This option is different from the MAXINPUT

option just described. You might specify MAXINPUT(500) and
find that your report has no records in it at all. That may be
because the records that pass your INCLUDEIF statement are not

Speed-Up Tips

614 Report Writer Reference Manual

among the first 500 records in the file –– they occur further
along in the file. The MAXINCLUDE option tells Report Writer
to read as many records as necessary until it finds the specified
number of records that can be included in the report.

Example: 237,216��0$;,1&/8'(�����

MAXPAGES(nnnnn)
MAXPRINT(nnnnn) Tells Report Writer to print only the specified number of pages

or lines in the report and then stop. This option prevents you
from getting a million page report by accident as you develop
your report.

Example: 237,216��0$;3$*(6�����

If you use either of these options, also see the NOCHECK option
(page 503).

DETAIL(nnnnn) Tells Report Writer to print only the specified number of detail
records per control break. Use this option to limit the size of
your output, while still letting you verify the control break
processing.

Example: 237,216��'(7$,/����

Usin g Explicit Literals in Conditional
Expressions

Caution: We do not recommend routine use of this technique. It sacrifices
ease–of–use for improved performance. Therefore it makes it easier to introduce
errors into your queries. It also makes them more difficult to maintain. Use this
technique only if runtime speed is of paramount importance for a particular job.

Using explicit literals in your INCLUDEIF statement (or in your WHEN parm expressions) when
testing non–character type fields may improve performance. That is because it saves Report
Writer from having to perform any data conversion. Here are some drawbacks to this
technique:

� you must know both the length and the exact format in which a field is stored in
your input record in order to correctly write the explicit literal.

� if a later record layout modification affects the field's length or type and you fail
to correctly update the INCLUDEIF statement, you might unknowingly obtain
wrong results.

� you may not be able to use the "greater than" and "less than" comparisons (as
opposed to "equal" and "not equal" comparisons.) That is because Report
Writer performs a byte–by–byte comparison of the EBCDIC contents of a field
whenever it is compared to an explicit literal. Thus, a negative packed number
(;
���'
) would be considered greater than the hex literal ;
���&
, which is a

Speed-Up Tips

Appendix I. Speed–Up Tips 615

positive packed number. Had the two fields been compared as packed fields, the
opposite would be true (;
���&
 would be greater than ;
���'
.)

Consider the following INCLUDEIF statement:

,1&/8'(,)��6$/$5<� ������$1'�%,57+'$7(� ������������$1'�%(*,1²7,0(� ���������

If you use the above statement, you do not need to know how long each field is or how it is
stored in the input record. Report Writer automatically performs the conversion needed to
make the literals compatible with the data field in each case.

If you want to write the same INCLUDEIF statement using explicit literals, you would need to
know that information. Let's assume the following:

� SALARY is a 4–byte packed field
� BIRTHDATE is a 3–byte packed Julian date
� BEGIN–TIME is stored as a fullword containing hundredths of seconds since

midnight in binary format

Given the above, you could write the same INCLUDEIF statement using explicit literals as
follows:

,1&/8'(,)��6$/$5<� �;
�������&
�$1'�%,57+'$7(� �;
�����&
��$1'�%(*,1²7,0(� �;
���&(���

The above statement would execute more efficiently than the earlier INCLUDEIF statement that
did not use explicit literals.

Again, using explicit literals like these defeats a prime feature of Report Writer–– it's ease
of use. Thus, we don't recommend using this technique in routine cases.

616 Report Writer Reference Manual

Appendix J. Year 2000 Information

Report Writer version 2.7.1 (and later versions) are Year 2000 Ready. We use the following
definition of "Year 2000 Ready" provided by IBM:

“A product is ‘Year 2000 Ready’ if, when used in accordance with its associated
documentation, it is capable of correctly processing, providing and/or receiving date
data within and between the twentieth and twenty-first centuries, provided that all
products (for example, hardware, software and firmware) used with the product
properly exchange accurate date data with it.”

Here are some specific points regarding Report Writer's handling of dates:

� Report Writer's internal system run date includes the correct century as provided to
it by the operating system (MVS or VSE). Of course, for this century to be correct
after 1999, Report Writer must be running on a version of the operating system that
is itself Year 2000 Ready.

� All date fields read from input files are stored internally with 4-digit years. For input
date fields that do not contain an explicit century (for example, YYMMDD or YYDDD

dates), Report Writer assigns a century for you. If you have not specified a century
cutoff year (with the CENTURY Option) all YY input file dates are stored internally as
19YY. If you have specified a century cutoff year, Report Writer stores all dates
before your cutoff year as 20YY and all other dates as 19YY.

� All date literals used in Report Writer control statements may be written in either
MM/DD/YYYY or MM/DD/YY format. All date literals are stored internally with 4-digit
years. When the MM/DD/YY format is used for a date literal, Report Writer assigns
a century for you in the same manner as described above (for input file dates.)

Note: date literals may also be written in DD/MM/YYYY and DD/MM/YY

formats if the DDMMYYLIT Option is specified.

� Date comparisons and date computations performed by Report Writer yield the
correct result whether the dates are from the 20th century, the 21st century, or any
combination of the two.

� By default, all dates that appear in Report Writer reports are formatted in MM/DD/YY

format, regardless of their century and regardless of how the date was stored in the
input file. However, you can easily change this default and display your dates in any
of over 40 different date formats. Any of the date display formats in Appendix B
can be used to display any date field, regardless of how that date field was stored in
the input file. You can also change the default date display format by using the
FORMAT Option.

� By default, dates in most Report Writer PC Files appear in MM/DD/YY format. If you
want MM/DD/YYYY dates in a PC File, use the FORMAT Option (after your PC File
Option) to specify a different default display format. For example:

237,216��/2786�)250$7�00�''�<<<<�

Year 2000 Information

Appendix J. Year 2000 Information 617

How to Prepare for the Year 2000 and
Beyond

Like most shops, in the years leading up to 2000 your shop probably is/was engaged in a
systematic effort to ensure that all existing jobs continue to work in the year 2000 and
beyond. Here are some points that may help you in evaluating your Report Writer jobs.

Q. We are converting some files in our shop by expanding the old 6-byte YYMMDD date
fields to 8-byte YYYYMMDD fields. How does this affect our Report Writer jobs?

A. As with any other record layout change, you need to change the Report Writer file
definition for the file in question. Change the FIELD statements for the affected date fields to
specify the correct new data type. In this example, change the TYPE(YYMMDD) parm to
TYPE(YYYYMMDD).

Q. To avoid expanding the size of our records, we are changing our date fields over
to a special in-house "compressed" date format that includes century information. Can
we use these special date fields with Report Writer?

A. Yes. However, if your date format is not one of those listed in Appendix A, "Data
Types", you will need to convert your in-house date field into a standard date value that
Report Writer recognizes. How you do this will depend on your particular in-house date
format.

For example, some shops have chosen to use the 2-byte character YY portion of their old date
fields to hold a 2-byte binary YYYY value (while leaving the MMDD portions of the field in
character format.) One way to convert this kind of date is as follows:

),(/'���<<<<��&2/801����/(1*7+����7<3(�%,1$5<�
),(/'���00''����������������������7<3(�&+$5�
&20387(��0<�'$7(� ��0$.('$7(��)250$7�<<<<�3,&
����
����00''�

The #MAKEDATE built-in function in the COMPUTE statement above takes a character string
in YYYYMMDD format and converts it into a true date value. The #FORMAT built-in function
was used to convert the 2-byte binary YYYY value into a 4-byte character string.

Other shops are storing dates as a binary or packed number of "days since xx/xx/xx" (where
xx/xx/xx is some fixed date.) For example, if your dates are stored as a 2-byte binary "days
since 1/1/1950", you could use these statements to convert that field into a standard Report
Writer date field:

),(/'����1(:�'$7(��&2/801����/(1*7+����7<3(�%,1$5<�
&20387(��0<�'$7(� ��0$.('$7(�1(:�'$7(���������

In the above example, 18,262 is added to the "days since 1/1/1950" value to get the number
of days since 1/1/1900, which is what Report Writer's #MAKEDATE built-in function requires
for numeric parms.

Note: the #FORMAT and #MAKEDATE built-in functions used in the above examples
are explained in Appendix D, "Built-In Functions".

Year 2000 Information

618 Report Writer Reference Manual

Another way to convert your special date fields into standard date fields is to write a data exit
program that Report Writer can call to perform the data conversion. Data exits are discussed
in Chapter 5, "How to Define Your Input Files".

Q. Rather than make any changes to our files, we are using a "sliding century" (or
"windowing") concept to allow our YY date fields to work past the Year 2000. All
dates with years less than 80 will be considered to be 20YY dates. Dates with years
equal to or greater than 80 will be considered to be 19YY dates. Can Report Writer
accommodate such a scheme?

A. Yes. Just use Report Writer's CENTURY Option. For example, in the particular case you
described, you would add this statement near the beginning of your other Report Writer
control statements:

237,21��&(1785<����

That option tells Report Writer that YY dates less than 80 are 20YY and all other dates are
19YY. Note that when the CENTURY Option is used, it is applied to all YY dates encountered
in the run. That includes YY dates from all of your input files, as well as any MM/DD/YY date
literals found in your control statements.

Q. Some of the YYMMDD dates in my file use a "sliding century" and others do not.
What can I do?

A. Since the CENTURY Option applies to all YY dates in a run, you would not use it in this
case. However, you can apply your own sliding century logic to individual fields by using
COMPUTE statements. For example, assume that you have a YYMMDD field whose cutoff year
is 50. You could handle it this way:

),(/'��<<00''�'$7(��&2/801�����/(1����7<3(�&+$5�
),(/'��<<�3$57������&2/801�����/(1����7<3(�&+$5�

&20387(��0<�'$7(� ��:+(1�<<�3$57���
��
��$66,*1��0$.('$7(�
��
���<<00''��
��������������������(/6(�����������������$66,*1��0$.('$7(�
��
���<<00''��

Q. We use Report Writer to create a PC File that we download to use in a Lotus
spreadsheet. The dates in that PC File only have 2-digit years. How we can get 4-digit
years in our PC File?

A. Use the FORMAT option to specify a different default date display. For example:

237,216��/2786�)250$7�00�''�<<<<�

The FORMAT option changes the default display format for date fields. In the above example,
dates will now be formatted as MM/DD/YYYY. This unquoted format works in most recent
versions of the popular spreadsheet programs. If your PC program still requires quotation
marks around dates, use this statement instead:

237,216��/2786�)250$7�4�00�''�<<<<�

Note: be sure that the FORMAT option follows the PC format option (LOTUS in the
above examples). Otherwise, the PC format option will reset the default date display
format.

Year 2000 Information

Appendix J. Year 2000 Information 619

When using the Q-MM-DD-YYYY format, it is possible that the records in your PC File may now
need to be longer than before (since each date field is now 2 bytes longer.) Verify that the
record length specified in your execution JCL is still large enough to contain all of your
output fields. You can quickly determine this by running a test job and looking for
"truncation" warning messages in the control listing. If you get truncation warning messages,
increase the record length in your execution JCL (see pages 362 and 374.)

620 Report Writer Reference Manual

Appendix K. I/O Exits

Report Writer has an exit “hook” available for calling user-written I/O routines. Such “I/O
Exits” are useful for input files that require specialized processing. Examples of such files
are:

� files that use a proprietary access method

� files whose records are encrypted

� files containing a number of “segments” (or array elements) that you wish to
“normalize”. That is, your exit can return more than one logical record to
Report Writer for each physical record present in the file.

Report Writer passes your I/O Exit program all of the information it needs to be able to
handle:

� sequential or keyed reads

� “multiple” (one-to-many) reads

� KGE and/or GENERIC keys

� KEYRANGE values

� DDNAME/DLBL value to use

Thus, if you code your exit program to handle all of these possibilities, your users will be able
to use the exit-type file just like any other file with Report Writer. That is, they can
successfully use the KEYRANGE, MULTI, KGE, GENERIC and DDNAME/DLBL parms in the normal
way within their INPUT or READ statements. To the end-users, your exit-type files will look
just like any other file.

Report Writer also passes your exit program an optional, user-defined parm text containing
up to 255 bytes of whatever information you choose. You can use this parm information to
tell your exit program, for example, the kind of special processing it should perform.

How to Define an I/O Exit File
Use the IOEXIT parm in the FILE statement to define a file that will be handled in an I/O Exit.

),/(��0<�),/(��,2(;,7�¶SURJUDP·�>�·SDUP·@�>�75$&(@���/5(&/�����

Only a program name is required in the IOEXIT parm. The “parm” text is optional. Use it to
pass constant parm information to your I/O Exit. Use the TRACE parm when developing new
I/O Exits to see useful debug information in the control listing.

Besides the IOEXIT parm, the only other item required to define an I/O Exit file is a maximum
record length. In MVS, you can specify this with a LRECL parm (as shown above) or omit it
and use Report Writer’s default length. In VSE, you must use the ATTR parm, like this:

),/(��0<�),/(�,2(;,7�¶SURJUDP·�>�·SDUP·@�>�75$&(@��$775�(;,7�����

When Is the I/O Exit Loaded?
The I/O Exit for an input is loaded the first time that Report Writer needs a record from that
input. That same copy of the program is then called for all subsequent requests for that input
record. If Report Writer never needs a record from a given input, the I/O Exit for that input
will not be loaded at all

I/O Exits

Appendix K. I/O Exits 621

A separate copy of the exit program is loaded for each input record. That means that if you
use the same exit program for more than one input in a run (for example, in the INPUT

statement and in a READ statement), Report Writer loads two copies of the exit program --
one for each input record.

When Is the I/O Exit Called?
The I/O Exit for an input is called each time Report Writer needs to obtain a record from that
input. In other words, the exit is called at the same times that Report Writer would, for a
nonexit-type input, issue its own I/O request. In addition, Report Writer calls the I/O Exit
once at end-of-job time to allow the exit to perform any close processing it desires. Note that
there is no separate call to the exit to perform “open file” processing. The exit should
perform any required open logic the first time that Report Writer calls it to obtain a record.

Following is a more detailed explanation of when Report Writer reads records from different
kinds of inputs.

For the primary input (named in the INPUT statement), Report Writer simply calls the I/O
Exit repeatedly until the I/O Exit indicates that there are no more records in the file. The I/O
Exit indicates this by setting the $IXRETCD field to H’4' when it has no more records to return
to Report Writer. For primary input files, Report Writer always calls the I/O Exit with the
SEQ function (in $IXFUNC.)

Auxiliary input files (those named in READ statements) are handled differently depending on
whether or not the MULTI parm was also specified in the READ statement.

For non-MULTI auxiliary inputs, Report Writer calls the I/O Exit the first time it needs a field
from a new auxiliary input record. When subsequent fields from the same input record are
needed, Report Writer will not call the I/O Exit again, since the record is already available
for it to use. For non-MULTI inputs, Report Writer calls the I/O Exit a maximum of one time
per primary input file record. (Report Writer may call the I/O Exit zero times if it does not
need any fields from that auxiliary input for a particular primary input file record.) For non-
MULTI auxiliary inputs, Report Writer always calls the I/O Exit with the KEY function (in
$IXFUNC.)

Processing is different for MULTI-type auxiliary inputs. In this case, each time Report Writer
reads a primary input file record, it calls the I/O Exit repeatedly (with the same read key) until
the exit indicates that there are no more records for that read key. The first call (for a given
primary input record) will have a function of FRST. Subsequent calls (for the same primary
input record) will have a function of NEXT. The I/O Exit should indicate that there are no
matching records (for FRST), or no more matching records (for NEXT), by setting $IXRETCD

to H’4'. Once Report Writer sees the return code of 4, it moves on to the next primary input
file record.

Note: for simplicity, we have described the case of a request with a primary input
file and a single MULTI-type auxiliary file. In cases where multiple MULTI-type
auxiliary files are used, the exit is actually called repeatedly for each logical
combination of primary input record and lower ranked auxiliary record(s).

I/O Exits

622 Report Writer Reference Manual

Error Return Codes from the I/O Exit
For any type of input, the I/O Exit can indicate to Report Writer that an error condition exists
which prevents the exit from”reading” records from the input file. The exit indicates this by
setting $IXRETCD to H’12'. When Report Writer sees a return code of 12 from an exit, it
prints a file error message in the control listing (along with any message the I/O Exit may
have placed in the $IXERR field.) Once a return code of 12 has been received from an I/O Exit
for an input, Report Writer stops processing that input and does not call that I/O Exit any
more.

What Does Report Writer Pass to the I/O Exit?
When the I/O Exit is called, register 1 will point to a fullword containing the address of the
$IX DSECT parm list. (The $IX DSECT is shown near the end of the sample program that begins
on page 628.) The contents of the $IX DSECT will have been set correctly by Report Writer,
as described below. Register 13 points to an 18-fullword save area within Report Writer
which the I/O Exit should use to save Report Writer’s registers. Register 14 contains the
return address within Report Writer. Register 15 contains the entry point address of the I/O
Exit.

Report Writer always runs in 24-bit addressing mode. Therefore, the I/O Exit program will
be called in 24-bit address mode and must return to Report Writer in the same mode.

Note the $IX DSECT located near the end of the sample program. That DSECT shows the
complete parm list that Report Writer passes to all I/O Exit programs. Following is a
description of each item in the $IX DSECT.

ITEM DESCRIPTION

$IXNAME This 4-byte character field always contains the constant value “READ” to
identify the type of exit program being called.

$IXLEVEL This 4-byte character field contains the constant value “0001" to identify the
version level of this exit interface.

$IXFUNC This 4-byte character field tells the exit program what function Report
Writer is requesting of it. The values for this field are:

SEQ read the next (or first) sequential record from the file. This
function is used for any exit-type file used in an INPUT statement.

KEY read the record, if any, that corresponds to the key value (identified
by the $IXKEYAD and $IXKEYLN fields.) This function is used for
any exit-type file used in a non-MULTI READ statement.

FRST read the first record, if any, that corresponds to the key value
(identified by the $IXKEYAD and $IXKEYLN fields.) This function is
used for any exit-type file used in a MULTI-type READ statement.

NEXT read the next record, if any, that corresponds to the key value
(identified by the $IXKEYAD and $IXKEYLN fields.) This function is
used for any exit-type file used in a MULTI-type READ statement.

I/O Exits

Appendix K. I/O Exits 623

CLOS perform any close-type processing that may be required. Report
Writer itself does not require any particular action for this call.
This wrap-up call is provided in case your access method does
require some type of close processing. Note that no CLOS call is
made to files when either of these conditions exists:

� no read requests were made to the file

� the exit returned an error return code (12) to Report
Writer.

$IXRECNM This 70-byte character fields contains the record name of the input being
processed. The record name is taken from the RECNAME parm of the INPUT

or READ statement. If no RECNAME parm is specified, the record name
defaults to the filename.

$IXFILNM This 70-byte character fields contains the filename of the file being
processed.

$IXKEYAD For requests that involve a read key (functions KEY, FRST and NEXT) , this
fullword contains the address of the key value to be used. The length of the
key value is contained in the halfword field $IXKEYLN.

$IXPRMAD This fullword contains the address of the parm text specified in the IOEXIT

parm. If no parm text was specified, this field contains hex zeros. The
length of the parm text is contained in the halfword field $IXPRMLN.

$IXRECAD This fullword contains the address of the I/O area that Report Writer has
reserved for the exit program to place the records that it reads for this file.
The exit program should place its records here. The length of the area
reserved for these records is contained in the halfword value $IXRECLN.

You can use the CLEARIO parm in the INPUT or READ statement to specify
that this I/O area always be cleared (to hex zeros or to spaces) before each
call, or that it not be cleared at all..

$IXKRBAD For primary input file requests (SEQ function) where a KEYRANGE parm was
specified, this fullword contains the address of the beginning keyrange value
to be used. The length of this value is contained in the halfword field
$IXKRBLN.

$IXKREAD For primary input file requests (SEQ function) where a KEYRANGE parm was
specified, this fullword contains the address of the ending keyrange value
to be used. The length of this value is contained in the halfword field
$IXKRELN.

Note: if the user specified only a single value in the KEYRANGE

parm, that value is used as both the beginning and the ending
keyrange value. That is, $IXKRBAD and $IXKREAD will both contain
the same address, and $IXKRBLN and $IXKRELN will both contain the
same length.

$IXKEYLN For requests that involve a read key (functions KEY, FRST and NEXT) , this
halfword contains the length of the read key value that is present at the
address contained in $IXKEYAD.

I/O Exits

624 Report Writer Reference Manual

Note that Report Writer does not perform any validity-checking on the
readkey’s length (since Report Writer knows nothing about your file’s
structure.) This length is simply the length of whatever read key field the
user specified in the READ statement. Your exit program should determine
whether the key length is a full key, a partial (generic) key, or an invalid key
(too long) and should execute accordingly. If the key length is something
that your exit program cannot handle, you should place an error message to
that effect in $IXERR, set the return code ($IXRETCD) to 12 and return to
Report Writer. Report Writer will print your error message for the user and
stop processing the file.

$IXPRMLN This halfword contains the length of the parm text (from the IOEXIT parm)
that appears at the address contained in $IXPRMAD, if any.

$IXRECLN This halfword contains the length of the I/O area reserved for the exit
program at the address contained in $IXRECAD.

$IXKRBLN For primary input file requests (SEQ function) where a KEYRANGE parm was
specified, this halfword contains the length of the beginning keyrange value
that is present at the address contained in $IXKRBAD.

Note that Report Writer does not perform any sort of validity-checking on
the length of the beginning keyrange value (since Report Writer knows
nothing about your file’s structure.)

$IXKRELN For primary input file requests (SEQ function) where a KEYRANGE parm was
specified, this halfword contains the length of the ending keyrange value
that is present at the address contained in $IXKREAD.

Note that Report Writer does not perform any sort of validity-checking on
the length of the ending keyrange value (since Report Writer knows nothing
about your file’s structure.)

$IXRETCD This halfword must be set by the I/O Exit program before it returns to
Report Writer after each call. The following list shows the valid values for
$IXRETCD. If $IXRETCD contains any other value upon return to Report
Writer, an error message will print and no further access to the file will be
attempted.

0 record read. A record has been placed in the I/O area. (Or, for CLOS

requests, the close processing, if any, has been performed.)

4 no record is being returned. Use return code 4 to indicate end-of-file
(for SEQ requests) or record-not-found (for KEY, FRST and NEXT

requests.)

12 error. Use this return code if you cannot process the file for any reason.
Examples of this are: file is not available, key is wrong length, an I/O
error occurred trying to process the file, parm information is invalid,
etc. You should also place an error message indicating the exact error
in $IXERR. That message will be printed in the control listing for the
user to see. Once Report Writer sees a return code of 12 for an input
file, it does not attempt any further processing of that input.

I/O Exits

Appendix K. I/O Exits 625

$IXDDN For MVS, this 8-byte character fields contains the value of the DDNAME

parm, if any, being used for the input file. For VSE, this field contains the
DLBL/TLBL value (from the ATTR parm), if any, being used for the input file.

$IXMULTI This 1-byte character field contains a Y if the user specified the MULTI

(“multiple records per key”) parm in the READ statement for this input
record.

$IXGEN This 1-byte character field contains a Y if the user specified the GENERIC

parm in the READ statement for this input record.

$IXKGE This 1-byte character field contains a Y if the user specified the KGE (“key
greater or equal”) parm in the READ statement for this input record.

$IXUSER This 50-byte, doubleword aligned area is available for the exit program to
use any way it wishes. The area is initialized by Report Writer to hex zeros
before the first call. Thereafter, Report Writer does not alter the contents
of this field.

$IXERR The I/O Exit program should use this 60-byte character field for any
messages it wishes to print in the control listing. Use this field to print error
messages, warning messages, debug messages, etc. for the user. Report
Writer initializes this field to all spaces. Upon return to Report Writer, if
the first byte of this field is non-blank, Report Writer prints the contents of
this field as a Warning-level message in the control listing and blanks the
field out again.

$IXUNUSD This 50-byte area is reserved for future use and must not be used by the I/O
Exit program.

Most of the $IX fields are guaranteed to contain the same information on each call to the exit
program. (A list of exceptions is shown below.) Knowing this can simplify the code you
write. For example, the $IXRECAD value (that is, the address where your exit should put its
record) will be the same for all calls to a particular input’s I/O Exit program. Thus, in the
sample exit program, we used the $IXRECAD value on the first call to modify our RPL (to tell
the RPL where to put the VSAM record during later GETs.) We did not need to check on
subsequent calls to see if the $IXRECAD value had changed.

For a given input’s I/O Exit, the only items in the $IX DSECT that might change from call to
call are:

� the function code in $IXFUNC

� the return code, which is initialized to -1 by Report Writer before each call.

� the error message area ($IXERR) is reset to blanks each time it is used.

What Does the I/O Exit Pass Back to Report Writer?
Before returning to Report Writer, the I/O Exit program should do the following:

� set a valid return code in $IXRETCD. (The valid return codes are listed under the
description of $IXRETCD in the section above.)

I/O Exits

626 Report Writer Reference Manual

� when a return code of 0 is set (for any request other than CLOS), the exit must
also place a record in the I/O Area (pointed to by $IXRECAD, and for a length of
$IXRECLN). Be careful not to move more than $IXRECLN number of bytes to this
location. Doing so may cause unpredictable results or an ABEND. If you need
a larger I/O area, re-run the job using a larger LRECL parm (MVS) or ATTR parm
record size (VSE.)

� optionally, any message can be placed in $IXERR. This message will be printed
in the control listing with a severity level of WARNING. The message must begin
with a non-blank in the first byte.

� optionally, any information can be placed in $IXUSER and will be preserved
between calls.

The I/O Exit must not alter any other part of the $IX DSECT or memory areas pointed to by
items in the $IX DSECT. The I/O Exit must especially be careful not to write beyond the I/O
area reserved for it (at $IXRECAD).

Caution: if your exit program fails to ever indicate EOF (via return code 4), Report
Writer will continue calling your exit program endlessly until the CPU time is
exceeded or the run ABENDs. To avoid this while developing new I/O Exit programs,
you may want to use the following option as a safeguard:

237,21��0$;,1387������

The above statement tells Report Writer to stop the run after 1000 primary records
have been read (even if EOF has not yet been reached.)

Sample I/O Exit Pro gram
A sample I/O Exit program written in Assembly language appears on the following pages.
This sample program simply reads records from a normal KSDS VSAM file (our sample EMPL-

FILE, as a matter of fact.) Its purpose is to help illustrate how the exit program linkage and
logical flow work. You can use this sample program as a model for writing your own I/O Exit
programs. A copy of this program is contained in the sample Copy Library found in your
installation tape.

Here are some ideas that may help you when developing your own I/O Exit.

� to prevent run-away jobs (caused by forgetting to return an EOF return code),
start off using a MAXINPUT option, like this:

237,21��0$;,1387������

� specify TRACE in the IOEXIT parm, like this:
),/(��0<�),/(�,2(;,7�¶P\SURJUDP·�75$&(��/5(&/�����

The TRACE information in the control listing will help you see what is being
passed to and from the IOEXIT, as well as the return code for each call. Once you
have the basic flow working correctly, you can remove the TRACE parm since it
produces a lot of output.

� you can have your exit put debug messages in the $IXERR field and they will
appear in the control listing. Doing this instead of using TRACE reduces the
amount of output you have to wade through.

I/O Exits

Appendix K. I/O Exits 627

� by moving important “working storage” variables to the $IXUSER area at critical
times, you can see (in the TRACE output) what values they had. If you need more
room than this for debug information, request a larger I/O area and use the
excess portion of the I/O area (beyond your record) to hold debug values. The
entire I/O area is printed in the TRACE output.

I/O Exits

628 Report Writer Reference Manual

,2(;,7$��7,7/(�
��6$03/(�5(3257�:5,7(5�,�2�(;,7

��
���������������6$03/(�,�2�(;,7�352*5$0����$66(0%/<�/$1*8$*(���������
��
�7+,6�6$03/(�$66(0%/(5�,�2�(;,7�5($'6�5(&25'6�)520�$�96$0�(03/2<((��
�),/(�$1'�3$66(6�7+(�5(&25'6�%$&.�72�5(3257�:5,7(5��,7�&$1�5($'���
�7+(�),/(�(,7+(5�6(48(17,$//<�25�5$1'20/<��86,1*�.(<6���������������
��
�7+,6�6$03/(�(;,7�352*5$0�,*125(6�7+(��*(1(5,&��$1'��.*(��3$506�����
�,1�7+(�&$//,1*�3$50�,1)2��
��
��21�(175<�72�7+,6�(;,7���
�����5������32,176�72�$�)8//:25'�:+,&+�&217$,16�7+(�$''5(66���������
����������������2)�7+(��,;�'6(&7������������������������������������
�����5������32,176�72�$����)8//:25'�6$9($5($�,1�&$//(56�352*5$0�����
�����5������5(7851�$''5(66�:,7+,1�&$//(5
6�352*5$0������������������
�����5������&217$,16�7+(�67$57,1*�$''5(66�2)�7+,6�(;,7�352*5$0������
��
��21�(;,7��7+,6�5287,1(�:,//�+$9(�6(7�������������������������������
�����7+(�5(&25'�72�%(�352&(66('��,)�$1<��$7�7+(�/2&$7,21�63(&,),('��
�����%<��,;5(&$'��)25�$�0$;,080�/(1*7+�2)��,;5(&/1������������������
�����$�5(7851�&2'(��,1��,;5(7&'��$6�)2//2:6�������������������������
������������1250$/��:(�5(7851('�$�5(&25'�72�%(�352&(66('������������
������������(2)�25��.(<�127�)281'�����������������������������������
������������(5525�&21',7,21��),/(�,�2�(5525��/2*,&$/�(5525����������
������������,19$/,'�3$50��(7&���������������������������������������
�����237,21$//<��21�(55256��$�0(66$*(�,1��,;(55�72�%(�35,17('�,1����
�����7+(�5(3257�:5,7(5�&21752/�/,67,1*����������������������������
��

,2(;,7$��67$57��

5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48����
5��������(48�����
5��������(48�����
5��������(48�����
5��������(48�����
5��������(48�����
5��������(48�����

���������670���5���5������5��������6$9(�&$//(56�5(*6
���������/5����5���5���������������86(�5���$6�%$6(�5(*,67(5�)25�(;,7
���������86,1*�,2(;,7$�5�����������6(7�$''5(66,%,/,7<�)25�7+,6�(;,7

���������67����5���2856$9(���������32,17�285�6$9(�$5($�72�&$//(5
6�6$
���������/$����5���2856$9(���������32,17�72�285�6$9($5($
���������67����5�����5�������������32,17�&$//(5
6�6$9($5($�72�2856
���������/5����5���5���������������/($9(�5���32,17,1*�72�285�6$9($5($

���������/�����5����5��������������/2$'�5��:,7+�$''5�2)�3$50�'6(&7
���������86,1*��,;�5���������������$''5(66�&$//(5
6�3$50�'6(&7

���������&/&����,;)81&� &/�
6(4�
��'2(6�&$//(5�:$17�$�6(48(17,$/�5($'"
���������%(����'26(4���������������<(6���'2�6(48(17,$/�,2�/2*,&

���������&/&����,;)81&� &/�
.(<�
��'2(6�&$//(5�:$17�$�.(<('�5($'"
���������%(����'2.(<���������������<(6���'2�.(<('�,2�/2*,&

Sample I/O Exit Program Written in Assembly Language –– 1 of 7

I/O Exits

Appendix K. I/O Exits 629

���������&/&����,;)81&� &/�
)567
��'2(6�&$//(5�:$17��67�0$7&+,1*�.(<"
���������%(����'2),567�������������<(6���'2��),567��,2�/2*,&

���������&/&����,;)81&� &/�
1(;7
��'2(6�&$//(5�:$17�1(;7�0$&7+,1*�.(<"
���������%(����'21(;7��������������<(6���'2��1(;7��,2�/2*,&

���������&/&����,;)81&� &/�
&/26
��'2(6�&$//(5�:$17�72�&/26(�$�),/("
���������%(����'2&/26(�������������<(6���'2�&/26(�/2*,&

���������09&����,;(55����� &/��
816833257('�)81&7,21��

���������09&����,;(55��������,;)81&��6+2:�7+(�)81&7,21
���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

��'2�6(48(17,$/�5($'�2)�(03/2<((�),/(�������������������������������

'26(4����(48���
���������&/,���6(423(1�&
<
��������+$9(�:(�23(1('�7+(�6(4�$&%�<(7"
���������%(����6(4,6231������������%�,)�<(6���'21
7�23(1�,7�$*$,1

��'2�21(�7,0(�678))�21�),567�&$//���23(1�$&%�$1'�02',)<�7+(�53/�����

���������09,���6(423(1�&
<
��������5(0(0%(5�),/(�+$6�%((1�23(1('
���������09&���6(41$0(��,;5(&10����6$9(�1$0(�2)�6(4�,1387��)25�&/26(�

���������23(1��6(4$&%��������������23(1�7+(�$&%�)25�6(4�,�2
���������&+����5��� +
�
�����������:$6�23(1�68&&(66)8/"
���������%1+���6(4'253/������������<(6���12:�35(3$5(�7+(�53/

���������09&����,;(55����� &/��
96$0�(5525�23(1,1*�$&%6(4

���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

6(4'253/�(48����������������������6(46&%�,6�23(1('��02',)<�53/�21&(
���������/�����5���,;5(&$'���������5(&25'�6+28/'�*2�+(5(
���������/+����5���,;5(&/1���������7+,6�08&+�5220�9,/$%/(�)25�5(&25'
���������02'&%�53/ 6(453/�$5($ �5���$5($/(1 �5��

���������/75���5���5���������������02'&%�2."
���������%=����6(4,6231������������<(6���21(�7,0(�678))�'21(

���������09&����,;(55����� &/��
96$0�(5525�'2,1*�02'&%�2)�6(453/

���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

��21(�7,0(�678))�+$6�%((1�'21(���*(7�1(;7�6(48(17,$/�5(&25'���������

6(4,6231�(48����������������������21(7,0(�678))�'21(���'2�*(7
���������*(7���53/ 6(453/����������5($'�5(&25'�,172�5(&�$5($

���������/75���5���5��
���������%=����5(7*22'�������������,)�:(�*27�$�5(&25'��5(7851�12:

����������������������������������*(7�)(('%$&.�72�6((�:+$7
6�:521*
���������6+2:&%�53/ 6(453/�$5($ �6�)(('%$&.��),(/'6)'%.�/(1*7+ �

���������&/&���)(('%$&.�)
�
������(1'�2)�),/(�&2'(�"
���������%(����5(7(2)��������������<(6���5(7851�,1',&$7,1*�(2)

���������09&����,;(55����� &/��
96$0�(5525�*(77,1*�6(453/�

���������09&����,;(55�������)(('%$&.�86(5�0867�9,(:�7+,6�,1�+(;
���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

Sample I/O Exit Program Written in Assembly Language –– 2 of 7

I/O Exits

630 Report Writer Reference Manual

��'2�.(<('�5($'�2)�(03/2<((�),/(������������������������������������

'2.(<����(48���
���������&/,���.(<23(1�&
<
��������+$9(�:(�23(1('�7+(�.(<('�$&%�<(7"
���������%(����.(<,6231������������%�,)�<(6���'21
7�23(1�,7�$*$,1

��'2�21(�7,0(�678))�21�),567�&$//���23(1�$&%�$1'�02',)<�7+(�53/�����

���������09,���.(<23(1�&
<
��������5(0(0%(5�),/(�+$6�%((1�23(1('
���������09&���.(<1$0(��,;5(&10����6$9(�1$0(�2)�.(<�,1387��)25�&/26(�

���������23(1��.(<$&%��������������23(1�7+(�$&%�)25�.(<('��',5(&7��,�2
���������&+����5��� +
�
�����������:$6�23(1�68&&(66)8/"
���������%1+���.(<'253/������������<(6���12:�35(3$5(�7+(�53/

���������09&����,;(55����� &/��
96$0�(5525�23(1,1*�.(<$&%

���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

.(<'253/�(48����������������������.(<$&%�,6�23(1('����35(3$5(�7+(�53/
���������/�����5���,;5(&$'���������5(&25'�6+28/'�*2�+(5(
���������/+����5���,;5(&/1���������7+,6�08&+�5220�9,/$%/(�)25�5(&25'
���������/�����5���,;.(<$'���������7+(�.(<�72�%(�5($'�,6�+(5(
���������/+����5���,;.(</1���������7+,6�,6�7+(�/(1*7+�2)�7+(�.(<

���������02'&%�53/ .(<53/�$5($ �5���$5($/(1 �5�������������������������;
���������������$5* �5���.(</(1 �5��

��21(�7,0(�678))�+$6�%((1�'21(���*(7�$�.(<('�5(&25'�����������������

.(<,6231�(48����������������������21(�7,0(�678))�'21(���'2�*(7
���������*(7���53/ .(<53/����������5($'�5(&25'�)25�.(<�,172�5(&�$5($

���������/75���5���5��
���������%=����5(7*22'�������������,)�:(�*27�$�5(&25'��5(7851�12:

����������������������������������*(7�)(('%$&.�72�6((�:+$7
6�:521*
���������6+2:&%�53/ .(<53/�$5($ �6�)(('%$&.��),(/'6)'%.�/(1*7+ �

���������&/&���)(('%$&.�)
��
�����5(&25'�127�)281'"
���������%(����5(717)1'������������<(6���5(7851�,1',&$7,1*�127�)281'

���������09&����,;(55����� &/��
96$0�(5525�*(77,1*�.(<53/�

���������09&����,;(55�������)(('%$&.�86(5�0867�9,(:�7+,6�,1�+(;
���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

��'2�5($'�),567�2)�(03/2<((�),/(������������������������������������

'2),567��(48���
���������&/,���08/23(1�&
<
��������+$9(�:(�23(1('�7+(�08/7,$&%�<(7"
���������%(����08/,6231������������%�,)�<(6���'21
7�23(1�,7�$*$,1

��'2�21(�7,0(�678))�21�),567�&$//���23(1�$&%�$1'�02',)<�7+(�53/�����

���������09,���08/23(1�&
<
��������5(0(0%(5�),/(�+$6�%((1�23(1('
���������09&���08/1$0(��,;5(&10����6$9(�1$0(�2)�.(<�,1387��)25�&/26(�

���������23(1��08/7,$&%������������23(1�7+(�$&%�)25�08/7,�5($'�,�2
���������&+����5��� +
�
�����������:$6�23(1�68&&(66)8/"
���������%1+���08/'253/������������<(6���12:�35(3$5(�7+(�53/

���������09&����,;(55����� &/��
96$0�(5525�23(1,1*�08/7,$&%

���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

Sample I/O Exit Program Written in Assembly Language –– 3 of 7

I/O Exits

Appendix K. I/O Exits 631

08/'253/�(48����������������������08/7,$&%�,6�23(1����35(3$5(�7+(�53/
���������/�����5���,;5(&$'���������5(&25'�6+28/'�*2�+(5(
���������/+����5���,;5(&/1���������7+,6�08&+�5220�9,/$%/(�)25�5(&25'
���������/�����5���,;.(<$'���������7+(�.(<�72�%(�5($'�,6�+(5(
���������/+����5���,;.(</1���������7+,6�,6�7+(�/(1*7+�2)�7+(�.(<

���������02'&%�53/ 08/7,53/�$5($ �5���$5($/(1 �5�����������������������;
���������������$5* �5���.(</(1 �5��

���������/75���5���5���������������02'&%�2."
���������%=����08/,6231������������<(6���21(�7,0(�678))�'21(

���������09&����,;(55����� &/��
96$0�(5525�'2,1*�02'&%�2)�08/7,53/

���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

��21(�7,0(�678))�+$6�%((1�'21(���32,17�$1'�*(7��67�5(&25'�����������

08/,6231�(48����������������������21(�7,0(�678))�'21(���'2�32,17�*(7

���������32,17�53/ 08/7,53/��������6(7�32,17(5�)25�'(6,5('�.(<
���������/75���5���5���������������2.$<"
���������%=����08/3172.������������%�,)�32,17�:$6�2.

�,�2�(5525�'2,1*�32,17���&+(&.�,7�287����0$<�-867�%(�127�)281'�������

���������6+2:&%�53/ 08/7,53/�$5($ �6�)(('%$&.��),(/'6)'%.�/(1*7+ �

���������&/&���)(('%$&.�)
��
�����5(&25'�127�)281'"
���������%(����5(717)1'������������<(6���5(7851�,1',&$7,1*�127�)281'

���������&/&���)(('%$&.�)
�
������(2)"
���������%(����5(717)1'������������<(6���5(7851�,1',&$7,1*�127�)281'

���������09&����,;(55����� &/��
96$0�(5525�32,17,1*�08/7,53/�

���������09&����,;(55�������)(('%$&.�86(5�0867�9,(:�7+,6�,1�+(;
���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

���������/75���5���5���������������02'&%�2."
���������%=����.(<,6231������������<(6���21(�7,0(�678))�'21(

���������09&����,;(55����� &/��
96$0�(5525�'2,1*�02'&%�2)�.(<53/

���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

08/3172.�(48����������������������32,17�:$6�2.���12:�*(7�),567�5(&
���������*(7���53/ 08/7,53/��������*(7�),567�5(&�)25�&855(17�.(<

���������/75���5���5���������������*(7�7+(�5(&25'"
���������%=����5(7*22'�������������,)�:(�*27�$�5(&25'��5(7851�12:

����������������������������������*(7�)(('%$&.�72�6((�:+$7
6�:521*
���������6+2:&%�53/ 08/7,53/�$5($ �6�)(('%$&.��),(/'6)'%.�/(1*7+ �

���������&/&���)(('%$&.�)
��
�����5(&25'�127�)281'"
���������%(����5(717)1'������������<(6���5(7851�,1',&$7,1*�127�)281'
���������&/&���)(('%$&.�)
�
������(2)"
���������%(����5(717)1'������������<(6���5(7851�,1',&$7,1*�127�)281'

���������09&����,;(55����� &/��
96$0�(5525�*(77,1*�08/7,53/�

���������09&����,;(55�������)(('%$&.�86(5�0867�9,(:�7+,6�,1�+(;
���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

Sample I/O Exit Program Written in Assembly Language –– 4 of 7

I/O Exits

632 Report Writer Reference Manual

��:(�*27�$127+(5�5(&25'���:(�&203$5(�,7
6�.(<�72�6((�,)�,7�,6�$�����
��0$7&+�)25�7+(�'(6,5('�5($'.(<�������������������������������������

'21(;7���(48���

��21(�7,0(�678))�:$6�'21(�,1�$�35,25��5($'�),567��&$//��������������

���������*(7���53/ 08/7,53/��������*(7�1(;7�6(48(17,$/�5(&25'

���������/75���5���5���������������*(7�7+(�5(&25'"
���������%=����1(;72.��������������,)�:(�*27�$�5(&25'��&+(&.�,7
6�.(<

����������������������������������*(7�)(('%$&.�72�6((�:+$7
6�:521*
���������6+2:&%�53/ 08/7,53/�$5($ �6�)(('%$&.��),(/'6)'%.�/(1*7+ �

���������&/&���)(('%$&.�)
�
������(2)"
���������%(����5(717)1'������������<(6���5(7851�,1',&$7,1*�127�)281'

���������09&����,;(55����� &/��
96$0�(5525�*(77,1*��1(;7��08/7,53/�

���������09&����,;(55�������)(('%$&.�86(5�0867�9,(:�7+,6�,1�+(;
���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

1(;72.���(48���
���������/�����5���,;5(&$'���������5(&25'�6+28/'�*2�+(5(
���������/+����5���,;5(&/1���������7+,6�08&+�5220�9,/$%/(�)25�5(&25'
���������/�����5���,;.(<$'���������7+(�.(<�72�%(�5($'�,6�+(5(
���������/+����5���,;.(</1���������7+,6�,6�7+(�/(1*7+�2)�7+(�.(<

���������%&75��5�������������������/(1*7+�0,186���2)�5($'.(<
���������(;����5��&203.(<����������6((�,)�5($'.(<�0$7&+(6�5(&25'�.(<
���������%(����5(7*22'�������������,)�5(&25'�.(<�0$7&+(6���5(7851�5(&
���������%�����5(717)1'������������'2(61
7�0$7&+���5(7851��127�)281'�

&203.(<��&/&�������5�����5���������&203$5(�5($'.(<�:,7+�5(&25'�.(<

���&/26(�21(�2)�5(3257�:5,7(5
6�,13876�����������������������������

'2&/26(��(48���
���������&/&����,;5(&10�6(41$0(����,6�7+,6�)25�7+(�6(4�$&%"
���������%(����&/26(6(4������������%�,)�<(6

���������&/&����,;5(&10�.(<1$0(����,6�7+,6�)25�7+(�.(<('�$&%"
���������%(����&/26(.(<������������%�,)�<(6

���������&/&����,;5(&10�08/1$0(����,6�7+,6�)25�7+(�08/7,�$&%"
���������%(����&/26(08/������������%�,)�<(6

���������09&����,;(55����� &/��
&/26(�5(48(67�)25�81.12:1�,1387

���������%�����5(7(5525������������5(7851�:,7+�(5525�5(7&2'(

&/26(6(4�(48���
���������&/26(�6(4$&%
���������%�����5(7*22'

&/26(.(<�(48���
���������&/26(�.(<$&%
���������%�����5(7*22'

&/26(08/�(48���
���������&/26(�08/7,$&%
���������%�����5(7*22'

Sample I/O Exit Program Written in Assembly Language –– 5 of 7

I/O Exits

Appendix K. I/O Exits 633

���5(7851�72�5(3257�:5,7(5��$)7(5�6(77,1*�&255(&7�5(7851�&2'(������

5(7*22'��(48���
���������09&����,;5(7&'� +
�
������,1',&$7(�7+(�5(&25'�,6�5($'<
���������%�����5(7851

5(717)1'�(48���
5(7(2)���(48���
���������09&����,;5(7&'� +
�
������,1',&$7(�(2)���.(<�127�)281'
���������%�����5(7851

5(7(5525�(48���
���������09&����,;5(7&'� +
��
�����,1',&$7(�/2*,&$/�3+<6,&$/�(5525
���������%�����5(7851

5(7851���(48���
���������/�����5���2856$9(���������5(6725(�&$//(5
6�5����6$9(�$5($�375�
���������/0����5���5������5��������5(6725(�&$//(5
6�5(*6�)520�+,6�6$
���������%5����5�������������������5(7851�72�5(3257�:5,7(5

2856$9(��'&������)
�
��������������285�6$9(�$5($

)(('%$&.�'6����)�������������������+2/'6�)(('%$&.�,1)2�)520�53/

���'7�5($'�)25�6(48(17,$/�),/(�,�2���������������������������������

6(423(1��'&����&
1
����������������)/$*���:+(7+(5�6(4�$&%�,6�23(1�<(7
6(41$0(��'&����&/��
�
�������������5(3257�:5,7(5�1$0(�2)�6(4�,1387
6(4$&%���$&%���''1$0((03/''�������$&%�)25�6(48(17,$/�,2�72�(03/�),/(��;
���������������0$&5) �6(4�.(<�

6(453/���53/���$&% 6(4$&%����������53/�)25�6(48(17,$/�,2�72�(03/�),/(��;
���������������237&' �.(<�6(4�

���'7�$5($�)25�.(<('�),/(�,�2��������������������������������������

.(<23(1��'&����&
1
����������������)/$*���:+(7+(5�.(<�$&%�,6�23(1�<(7
.(<1$0(��'&����&/��
�
�������������5(3257�:5,7(5�1$0(�2)�.(<('�,1387
.(<$&%���$&%���''1$0((03/''�������$&%�)25�.(<('�,2�72�(03/�),/(�������;
���������������0$&5) �.(<�',5�

.(<53/���53/���$&% .(<$&%����������53/�)25�.(<('�,2�72�(03/�),/(�������;
���������������237&' �.(<�',5�

���'7�$5($�)25�08/7,3/(�.(<6�),/(�,�2������������������������������

08/23(1��'&����&
1
����������������)/$*���:+(7+(5�08/7,$&%�,6�23(1�<(7
08/1$0(��'&����&/��
�
�������������5(3257�:5,7(5�1$0(�2)�08/7,�,1387
08/7,$&%�$&%���''1$0((03/''�������$&%�)25�08/7,�,2�72�(03/�),/(�������;
���������������0$&5) �.(<�6(4�

08/7,53/�53/���$&% 08/7,$&%��������53/�)25�08/7,�,2�72�(03/�),/(�������;
���������������237&' �.(<�6(4�*(1�

���������(-(&7

Sample I/O Exit Program Written in Assembly Language –– 6 of 7

I/O Exits

634 Report Writer Reference Manual

���
���������,;�����3$50�'6(&7�)25�&$//,1*�86(5�,�2�(;,7��)25�,1387�������
���

�,;'6(&7�'6(&7���������������������,2�(;,7��,1387��3$50�'6(&7
�,;������'6�����'

�,;1$0(��'&����&/�
5($'
�����������1$0(�2)�(;,7
�,;/(9(/�'&����&/�
����
�����������/(9(/�180%(5
�,;)81&��'&����&/�
����
�����������)81&7,21��6(4�.(<�)567�1(;7�&/26�

���,;)81&�&$1�+$9(�7+(6(�9$/8(6�21�(175<�72�7+(�86(5�(;,7�����������
�����6(4�������5(7851�7+(�1(;7��3266,%/<�),567��5(&25'�6(48(17,$//<�
���������������86('�:,7+�(;,7�7<3(�),/(6�1$0('�,1�7+(�,1387��6707���
�����.(<�������5(7851�7+(�5(&25'��,)�$1<��&255(6321',1*�72�7+(�.(<��
���������������9$/8(�'(6&5,%('�%<��,;.(<$'�$1'��,;.(</1�������������
���������������86('�:,7+�(;,7�7<3(�),/(6�1$0('�,1�$�5($'��6707������
���������������:+,&+�'2(6�127�&217$,1�7+(��08/7,��3$50���������������
�����)567������5(7851�7+(�),567�5(&25'��,)�$1<��&255(6321',1*�72����
���������������7+(�.(<�9$/8(�'(6&5,%('�%<��,;.(<$'�$1'��,;.(</1�����
���������������86('�:,7+�(;,7�7<3(�),/(6�1$0('�,1�$�5($'��6707������
���������������:+,&+�'2(6�&217$,1�7+(��08/7,��3$50������������������
�����1(;7������5(7851�7+(�1(;7�5(&25'��,)�$1<��&255(6321',1*�72�����
���������������7+(�.(<�9$/8(�'(6&5,%('�%<��,;.(<$'�$1'��,;.(</1�����
���������������86('�:,7+�(;,7�7<3(�),/(6�1$0('�,1�$�5($'��6707������
���������������:+,&+�'2(6�&217$,1�7+(��08/7,��3$50������������������
�����&/26������5(3257�:5,7(5�+$6�),1,6+('�86,1*�7+,6�),/(��(;,7���
���������������&$1�3(5)250�$1<�&/26(�83�/2*,&�,7�'(6,5(6��%87�121(��
���������������,6�5(48,5('�%<�63(&7850�:5,7(5�����������������������
���������������86('�:,7+�$//�(;,7�7<3(�),/(6�86('�,1�$�581����������

�,;5(&10�'6����&/������������������5(&1$0(�2)�,1387�%(,1*�352&(66('
�,;),/10�'6����&/������������������),/(1$0(�2)�),(/'�%(,1*�352&
('
���������'6�����)������������������$/,*1�)2//2:,1*�72�)8//:25'
�,;.(<$'�'6����$�������������������$''5�2)�.(<�9$/8(��25�=(52�)25�6(4�
�,;350$'�'6����$�������������������$''5�2)�3$50�7(;7
�,;5(&$'�'6����$�������������������$''5�:+(5(�(;,7�6+28/'�387�5(&25'
�,;.5%$'�'6����$�������������������$''5�2)�.(<5$1*(�%(*,1�.(<�7(;7
�,;.5($'�'6����$�������������������$''5�2)�.(<5$1*(�(1'�.(<�7(;7
�,;.(</1�'6����$/������������������/(1*7+�2)�.(<�9$/8(
�,;350/1�'6����$/������������������/(1*7+�2)�3$50�7(;7
�,;5(&/1�'6����$/������������������/(1*7+�2)�$5($�5(6(59('�)25�5(&25'
�,;.5%/1�'6����$/������������������/*7+�2)�.(<5$1*(�%(*,1�.(<�7(;7
�,;.5(/1�'6����$/������������������/*7+�2)�.(<5$1*(�(1'�.(<�7(;7
�,;5(7&'�'6����$/������������������5(7851�&2'(�)520�(;,7��72�6�:�

���,;5(7&'�6+28/'�%(�6(7�72�21(�2)�7+(�)2//2:,1*�9$/8(6�%<�7+(�(;,7��
���������5(&25'�5($'�68&&(66)8//<��)25�6(4�.(<�)567�$1'�1(;7���������
���������25��&/26(�/2*,&�3(5)250('��)25��&/26��&$//6�����������������
���������0($16��),/(�,6�2.��%87�12�5(&25'�,6�%(,1*�5(7851('����������
���������)25�6(4�&$//6��,7�0($16�(1'�2)�),/(�������������������������
���������)25�.(<�$1'�)567�&$//6��0($16�12�5(&25'�(;,676�)25�7+(�.(<��
���������)25�1(;7�&$//6��0($16�12�025(�5(&25'6�(;,67�)25�7+(�.(<�����
���������0($16�7+(�),/(�+$6�$�3+<6,&$/�25�/2*,&$/�(5525�$1'�,6�127���
���������86$%/(��5(3257�:5,7(5�6+28/'�127�$77(037�72�352&(66�7+(���
���������),/(�)857+(5��

�,;''1���'6����&/������������������''1$0(�'/%/�1$0(
�,;08/7,�'6����&/������������������<�1��08/7,��3$50
�,;*(1���'6����&/������������������<�1��*(1(5,&��3$50
�,;.*(���'6����&/������������������<�1��.*(��3$50
���������'6�����'������������������$/,*1�)2//2:,1*�72�'28%/(:25'
�,;86(5��'6����&/������������������86(5�$5($���,1,7
('�72�;
��
�21&(
�,;(55���'6����&/������������������(5525�06*��6(7�%<�86(5�(;,7�
�,;8186'�'6����;/������������������5(6(59('

���������(1'���,2(;,7$

Sample I/O Exit Program Written in Assembly Language –– 7 of 7

Updates to This Manual 635

Updates to This Manual

To Keep Your Manual

Current, Please File All

Updates Behind This Pa ge.

636 Report Writer Reference Manual

(This page left blank intentionally.)

Index 637

Index

$
$DX DSECT 591

*
A

meaning of 232, 582
E

meaning of 582
F

meaning of 296, 582
suppressing 503, 584

I
meaning of 582
suppressing 509, 583

S
in total line at control break 187
meaning of 131, 133, 394, 582

U
meaning of 583

V
meaning of 583
suppressing 509, 583

Z
meaning of 583
suppressing 509, 583

*PAGE
meaning of 387

#
#ABS built-in function 575

example 414
#AND built-in function 569
#ASCII built-in function 496, 569
#COMDATE built-in field 564
#COMPRESS built-in function 569
#COUNTER built-in field 563

use in BREAK statement 206, 208, 429
#DAY built-in function 570
#DAYNAME built-in field 562

use in FOOTNOTE statement 180
use in TITLE statement 40, 168

#DAYNUM built-in function 575
#EBCDIC built-in function 500, 570
#EQUALS parm

in SORT statement 526
#FORMAT built-in function 570

example 283, 518, 617
list of display formats 550
use of 403

#GRAND
use in BREAK statement 214

#HHMMSS built-in field 255, 565
#INDEX built-in function 575
#INT built-in function 575
#ITEM built-in field

in COLUMNS statement 210
#ITEM-ENDING built-in field 562

use in BREAK statement 206, 208, 429
#ITEM1 through #ITEM9 built-in fields 563

in COLUMNS statement 210
#ITEMS built-in field 563

use in BREAK statement 187, 206, 208, 429
#JOBNAME built-in field 562
#LCASE built-in function 571
#LEFT built-in function 571

example 32, 94
#MAKEDATE built-in function 579

example 249, 414, 617
use of 403, 412

#MAKENUM built-in function 575
example 254, 414, 579, 580
use of 282, 403, 412

#MAKETIME built-in function 580
example 254, 576
use of 403

#MAX built-in function 576
example 452

#MIN built-in function 577
#MOD built-in function 577
#MONTH built-in function 571
#MONTHNUM built-in function 577
#NUMWORDS built-in function 578
#OFF built-in function 581

example 392
#ON built-in function 581

example 392
#OR built-in function 571
#PAGENUM built-in field 563

changing number of digits in page number 179
use in FOOTNOTE statement 180, 478-480
use in TITLE statement 38, 40, 41, 168,

533-535
#PARSE built-in function 572
#RIGHT built-in function 572
#ROUND built-in function 578
#SUBSTR built-in function 572

example 283
#TIME built-in field 562

use in FOOTNOTE statement 180
use in TITLE statement 40, 41, 168

INDEX

638 Report Writer Reference Manual

#TIME24 built-in field 562 of titles (left, center and right) 40, 149, 174,
use in FOOTNOTE statement 180 532, 535
use in TITLE statement 168 of titles, default 38

#TODAY built-in field 564 title doesn't look centered 172, 177, 535
use in FOOTNOTE statement 180, 478-480 title doesn't look right aligned 177, 535
use in TITLE statement 38, 40, 41, 44, 168, (see also Justification)

533-535 Alphabetizing the report 48, 524
#TRANSLATE built-in function 573 Alternate index 235
#UCASE built-in function 573 AM
#XOR built-in function 574 showing AM and PM 557
#YEAR built-in function 573 Ambiguous field name
#YEARNUM built-in function 578 among DB2 column names 348, 350

error indicator (***A***) 582

A
ABS built-in function (see #ABS built-in function)
575
ABSDATE

data type 544
from CICS 544, 547

Absolute value
#ABS built-in function 575

ABSTIME
data type 547

Access
producing output file for 505

Access method
used for input files (MVS) 270
used for input files (VSE) 273
used for output file (MVS) 362
used for output file (VSE) 374

ACCESS parm
in OPTIONS statement 505

ACCUM parm
in COLUMNS statement 126, 146, 253, 440
in COMPUTE statement 146, 253, 446
in FIELD statement 146, 253, 279, 287, 462

Accumulating
data for statistics, which columns 144, 440,

446, 462
Addition

adding days to a given date 579
how to perform 30, 92, 412, 444
to a time value 580

Address
formatting addresses 569

Alias
member name in copy library 304, 308, 365,

377, 586
use in COPY statement 457

Ali gnment
of columns in multi-line reports 147
of data in report columns 142, 443

using record name to resolve 68, 116, 228, 232,
491, 519

Ampersand (&)
meaning in conditional expressions 406

AND built-in function (see #AND built-in function)
569

AND keyword
use in conditional expressions 28, 88, 405, 483

Apostrophes (') 390
(see also Quotation marks)

Arithmetic operations
between different types of numeric fields 278
how to perform 30, 92, 410, 444, 451

Arrays
field names used 321
how to print 154, 159, 162
in COBOL record layouts 321, 434
in records 249, 268, 620

ASC parm
in DB2 ORDERBY parm 491, 517
in SORT statement 526

Ascending
order, data fetched from DB2 344
order, in SORT statement 48, 100, 526

ASCII built-in function (see #ASCII built-in
function) 569

ASCII files
fixed format 259
how to create 256, 500

ASCIITABLE parm
in OPTIONS statement 496

ASM statement 419
how to use 311
scope of 328
syntax 420

ASMLIB DD 325, 456
ASMLIB parm

in OPTIONS statement 326, 457, 497
Assembly language

character versus numeric fields 331

INDEX

Index 639

converting to FIELD statements 322 how to compute 450
copying from Panvalet or Librarian 325 how to print 56, 194, 199, 423, 526
copying record layouts 325, 456 printing at Grand Totals time 145, 214, 423
date and time fields 318, 322 printing in total line 199, 205, 431
decimal digits 331 which columns receive 144, 282, 440, 446, 462
default copy library (MVS) 325 (see also AVERAGE parm, and NZAVERAGE
default copy library (VSE) 326, 497 parm)
DSECT statement 327, 334, 436
EQU statement 333
expressions supported 332
fields, changing the column heading 323
record layout, starting column 327
record layouts, names assigned 321, 334
record layouts, using 311, 365, 377, 419
repetition factors 321, 434
sublibrary and member type copied (VSE) 457
SYSLIB library 304, 455

ASSIGN parm
in COMPUTE statement 34, 96, 447

Asterisks (*)
S appears in total line 187
S, meaning of 131, 394
in column one for comment lines 387
in total line at control break 59, 186, 212
meaning in COLUMN and DISP parm 293
meaning in COLUMN and DISP parm 463
meaning of /* and */ 387
meaning of all error indicators (eg. ***s***)

164, 582
multiplication symbol 30, 92, 412
printing bar graphs 150
suppressing error indicators 583
(see also under ***A***, ***I***, etc.)

ATTR parm
in FILE statement 273, 274, 379, 471
in INPUT statement 274, 379, 471, 487
in READ statement 274, 379, 471, 512

AUTOSORT parm
in OPTIONS statement 48, 100, 497

Auxiliary input files
(see Files, READ statement)

AVERAGE (AVG) parm
in BREAK statement 56, 194, 204, 214, 423
in BREAK statement print expressions 199,

202, 208
in BREAK statement, two different uses 202
in SORT statement 194, 526

Averages
average line (see also Statistical lines) 56, 194,

423, 526
display format used for 136
excluding zero values 194, 425, 431, 528
how many decimal digits 136, 146

B
Backing up

current location, when defining fields 293, 463
Bar

character (), (see Vertical bar)
BARGRAPH display format

display format 552
how to print bar graphs 150

BASIC language
"IF" statement 26, 88, 481
PRINT USING equivalent 393

Batch type files 238
BCD data

date fields 543
numeric fields 540
time fields 545-547

Beginning
of control group, printing lines at 208, 424, 426
of report, printing headings once 214

Big
biggest of several numbers, dates or times 576
literals, how to write 385
making a column bigger 46, 131, 443
records in input file 270, 474, 491, 516
report lines, how to produce 362, 375
(see also Width)

Binary data
comparing to packed data 278
writing to output file 262, 553

BINARY data type
needed in read key 518
numeric field 540
times stored as 546, 547

BINARY display format 553
BINARYUN

data type, for time fields 546, 547
display format 553
numeric data type 540
writing binary unsigned data to output file 553

Bind
DB2 plan name 499

BIT
data type 549

Bit fields

INDEX

640 Report Writer Reference Manual

bit field conditions 405, 484 BLKSIZE 273, 274, 472, 504
bit literals 392 Both
creating your own 392, 444, 452, 581, 585 of two conditions are true 28, 88, 405, 483
data type 549 Bottom of report
effect on default location in record 293 margin 150, 505
how bits are numbered 290, 462 printing footnote lines 180, 476
how formatted in reports 290, 468, 469, 551 BREAK statement 421
how sorted 530 (see also Control breaks)
how to define 289, 460 break occurs at wrong place 529
logical operations 569, 571, 574 built-in fields available 206
testing multiple bits 569 control break spacing 54, 58, 183, 426
testing value of 405, 453, 484, 569 control break spacing, summary reports 509

BIT parm customizing the total line at control breaks 187,
in FIELD statement 290, 462 190, 206, 427

BITEXIT formatting dates, times and numbers 200, 430,
data type 549 550

BITS display format 551 how to use 52, 182
BIZ parm how to use with PC files 104

for fields printed at control breaks 200, 430 justification parm in print expressions 200, 431
in COLUMNS statement 126, 136, 162, 441 order of BREAK statements 211
in FOOTNOTE statement 478 parms (see under name of parm)
in TITLE statement 171, 534 print expressions 198, 428

Blank printing a certain number of detail lines per
in first column of control statement 385 break 499
inserting blank columns in PC files 106 printing a field's total or average value 201, 431
padding 402, 450, 483 printing a total line at control breaks 427
removing blanks between last and first name printing averages at control breaks 56

569 printing custom lines at control breaks 196, 423
spaces between report columns 124, 440 printing lines at beginning of a control group
spaces, required around minus sign 412 208, 424
spaces, where allowed in control statement 385 printing statistical lines at control breaks 56,
suppressing blanks between fields in output 194, 423

files 498 printing the number of items in control group
Blank lines 187, 206, 429

between report lines 149, 507 printing the number of items included in the
in PC files 106 report so far 206, 429
in report titles 149 requesting multiple control breaks 58, 211, 219
printing after the total line 54, 58, 183, 426, resetting page number 184

527 skipping to new page 54, 183, 426
printing at control breaks 204, 426, 527 spacing factor in print expressions 199, 430
printing before control break lines 205 suppressing the total line at control breaks 193,
printing before the total line 192 427
printing in report body 438 syntax 422
suppressing 158, 162, 507 using a PICTURE to format numeric data 204,

Blanking out 393
all column headings 130, 503 using to customize the Grand Totals 214, 422
individual column headings 130, 442 where to put 211, 386
leading zeros 395 width of items in lines printed at control breaks
numbers and dates that are zero 162, 570 187, 201, 431
numbers, date and times that are zero 126, 171, (see also Control breaks)

200, 430, 441, 478, 534 Breakdown
repeating values 127, 140, 443 totalling a field by category 226
the final "S" to form the singular 206, 429, 562 Buffer

INDEX

Index 641

for input files, specifying in JCL 367, 379 Century
for reading input files 270, 273, 296, 472, 474, day in century 579

487, 491, 503, 513, 516 sliding 618
with VSAM I/O 487, 512, 609 which century for YY dates 497

BUFND parm Year 2000 616
in INPUT statement 487, 610 CENTURY parm
in READ statement 512, 610 in OPTIONS statement 497, 618

BUFNI parm Chaining input files 230
in INPUT statement 487, 610 Changing
in READ statement 512, 610 translating characters 573

Built-in fields 560 CHARACTER
available in BREAK statement 206, 429 data type 539
available in TITLE and FOOTNOTE display format 551

statements 38, 168, 477, 533 display format, use in FORMAT option 501
(see also under name of built-in field) Character fields

Built-in functions ASCII versus EBCDIC 496, 500, 569, 570
list of 566 changing case 571, 573
use in COMPUTE statement 32, 94, 414, 452 comparing 24, 86, 390, 402, 452, 483
(see also under name of built-in function) comparing to numeric fields 403

Byte confusing with numeric fields 282, 392
ASCII versus EBCDIC 496, 500, 569, 570 converting to date 579
bits in 290, 462 converting to numeric 282, 403, 575

C
Calculations

how to perform 30, 92, 410, 444
using different types of numeric fields 278

Capital letters (see Case)
Carriage control character

allowing for in LRECL parm 362, 374
suppressing 259, 360, 503

Case
lower case 571
upper case 573

Category
totalling a field by 226

CENTER parm
in #FORMAT built-in function 570
in BREAK statement 200
in COLUMNS statement 127, 142
in FOOTNOTE statement 479
in TITLE statement 171, 177, 180, 535

Centering
CENTER parm needed in centered titles 535
column headings 130
data in report columns 142, 443
data in titles, looks wrong 172, 177, 535
items in control break lines 200, 431
titles 38, 40, 174, 532
(see also Alignment, and Justification)

Cents
rounding to whole dollars 280, 450, 578

converting to time 254, 580
counting words in 578
creating your own 32, 94, 390, 444, 452
how sorted 529
how to define 275, 460
list of data types 539
parsing words from 572
scanning for a text 402, 483, 575
substrings 572
translating characters 573
which contain numeric data 282, 392
writing character literals 26, 88, 390, 483, 484

Character operations
how to perform 32, 94, 412, 444

Characters
which ones allowed in file and field names 388

CHAREXIT
data type 539

CICS
ABSDATE value 544, 547
downloading from (VSE) 375, 376

CLEAR parm
in INPUT statement 487, 612, 613
in READ statement 513, 613

COBLIB DD 325, 456
COBLIB parm

in OPTIONS statement 457, 498
in OPTIONS statement 326

COBOL
"IF" statement 26, 88, 399, 481
ASSIGN clause, FD, and record structure 268

INDEX

642 Report Writer Reference Manual

converting to FIELD statements 322 changing width of 443
copybook library 304, 455 which ones are totalled 440, 446, 462
copying from Panvalet or Librarian 325 (see also COLUMNS statement)
copying record layouts 325, 456 Column headings
date and time fields 318, 322 blanking out individual ones 130, 442
default copy library (MVS) 325 effect of dash and underscore in name 19, 297,
default copy library (VSE) 326, 498 442
EXAMINE (see #TRANSLATE) for computed fields 31, 449
fields, changing the column heading 323 for literal columns 130, 440, 442
FILLER 329 how to change 44, 126, 127
level 01 REDEFINES 327, 329, 436 how to justify (left, center and right) 130
level indicators 329 in FIELD statement 266
OCCURS clause 154, 159, 268, 321, 434 in multi-line reports 128, 149, 158, 503
record layout, starting column 327 making shorter 128, 131
record layouts, names assigned 321, 329 one-line headings 258, 501
record layouts, using 311, 365, 377, 432 parm in COLUMNS statement 442
REDEFINES clause 293, 309, 329, 463 printing just once 258
sequence numbers 434 printing just once per run 498
SIGN IS SEPARATE clause 330 specifying when defining a field 266, 296, 467
sublibrary and member type copied 457 specifying with TITLE statements 177
UNSTRING (see #PARSE) splitting onto multiple lines 128, 296, 442, 467

COBOL statement 432 suppressing all 130, 259, 503
how to use 311 suppressing the underscore line 130, 442, 504
scope of 328 truncation of 131
syntax 433 use of vertical bar () 128

Codes use of vertical bar () in 501
completion 369, 381 using field name as 127

COLHDGONCE parm when suppressed 503
in OPTIONS parm 258 (see also Titles)
in OPTIONS statement 498 COLUMNS statement 437

Collating order 529 #ITEM built-in field 210
Colon (:) advanced features 123

after statement name 17, 80, 384 all blank 149, 438
changing delimiter for formatting times 509 columns look skewed 147
use as a relation operator 400 formatting dates, times and numbers 44, 126,

COLSEP parm 132, 441, 550
in OPTIONS statement 152, 258, 498 how to use 18

COLSPACE parm justification within columns 127, 142, 443
in OPTIONS statement 124, 260, 498 literal columns 124, 130, 149, 389, 440

Column multiple statements 147, 158, 437, 503, 508
field's starting column in record 292, 294, 295, parms allowed in 124, 438

463 printing certain characters between report
in control statement, when first one blank 385 columns 498
in control statement, when first one contains printing full-page forms 149

asterisk 387 printing line numbers 210
in control statement, which ones to use 384 printing variable number of lines per input
printing titles in a specific column 177 record 154
starting, in COBOL and Assembly record shifting report right 150, 186

layouts 436 spacing between columns 124, 147, 440
COLUMN (COL) parm spacing between report lines 507

in ASM & COBOL statements 433 specifying column headings 44, 126, 127, 149,
in FIELD statement 292, 294, 295, 463 442

Column (in report)

INDEX

Index 643

specifying width of column 46, 127, 131, 187, COMPRESS built-in function (see #COMPRESS
443 built-in function) 569

suppressing all column headings 503 Computational expressions 410
suppressing repeating values 127, 140 bit, how to write 415
syntax 438 character, how to write 32, 94, 390, 410
truncating a column 131 date, how to write 391, 414
use of parentheses 124 examples 413, 451
use of quotation marks, apostrophes 124, 440 list of built-in functions 566
using a PICTURE to format numeric data 132, numeric, how to write 30, 92, 391, 410

134, 393 order of evaluation 413
using record name to resolve ambiguous field speed-up tips 608

name 68, 116, 228, 232, 491, 519 syntax 410
where to put 386 time, how to write 254
which columns are totalled 126, 144, 282, 440 use of parentheses in 413

Combining character fields 32, 94 (see also COMPUTE statement)
COMDATE built-in field (see #COMDATE built- COMPUTE statement 444

in field) 564 assigning different values based on conditions
Comma (,) 34, 96, 445

as delimiter in output files 258, 498 character operations 32, 94, 412, 452
in control statements 385 column headings for computed fields 31, 44,
in number, using a different character 394 127, 449
in numbers, whether to print 134, 258, 282, computing an average 450

394, 466, 552, 558 computing true ratios, percentages 187, 413,
not allowed in numeric literals 26, 88, 391 448, 453
unwanted commas in numbers 282 concatenation operation 32, 94, 412, 452
used to separate parms 126, 170, 199 conditional 34, 96, 445
using dot instead of comma for numbers 137, conditional, example 222, 226, 238

552 converting character to numeric data 282
Comma separated values 505 converting data to different type 570, 575, 579,
Comments 580

how to write 387 converting numeric to character data 283
in SWALIAS member 309 creating a read key for READ statement 70,
within scope of ASM & COBOL statements 118, 518

328 creating bit fields 392, 415, 452
COMP (see BINARY) xiv creating character fields 32, 94, 390, 413, 452
COMP-1 (see BINARY) xiv creating date fields 391, 414, 451
COMP-3 (see PACKED) xiv creating numeric fields 30, 92, 391, 413, 451
Comparing creating time fields 392

a field to hexadecimal value 404, 484 data type of result 454
character fields 24, 86, 282, 390, 392, 402, 483 default value assigned 34, 36, 96, 98, 453
date fields 28, 89, 283, 391, 401, 482 division by zero 509
how to write conditional expressions 399 examples 390-392, 413, 451, 569
numeric fields 26, 88, 278, 282, 391, 392, 401, hexadecimal values 452

482 how dates, times and numbers are formatted
operands of different length 402 447, 550
operands of different types 282, 392, 403 how many decimal digits 450
time fields 28, 89, 286, 392, 401, 482 how to use 30, 92
when to use quotation marks 26, 88, 282, 392, justifying the result (left, right, center) 570

483 keeping in copy library 304
Completion codes 369, 381 list of built-in functions 566
Complex math operations 30, 92, 412, 451

conditional expressions 405 order of evaluation 453
overflow error 509

INDEX

644 Report Writer Reference Manual

parms (see under name of parm) use of the keyword "NOT" 409, 484
propagating errors 584 use of the keyword "OR" 26, 88, 406, 483
RETAIN parm 238, 241, 451, 607 use of vertical bar () in 407
size of result field 450 using both "AND" and "OR" in 407, 484
speed-up tips 606, 607 using parentheses in 28, 89, 407, 410, 484
syntax 445 with multiple conditions 26, 36, 88, 98, 405,
totalling a field by category 226 483
use of built-in functions 32, 94, 414, 452 (see also INCLUDEIF statement, COMPUTE
using to detect invalid data 162 statement) xiv
when an operand is in error 584 Conditions
where to put 30, 92, 304, 386 assigning value to field based on 34, 96, 445
which computed fields are totalled 146, 446 which records to include in PC file 86
writing conditional expressions (WHEN parm) which records to include in report 24, 481

399 (see also Conditional expressions)
(see also Computational expressions) Contains operator (:) 400, 402, 483

Concatenation Continuing
example 413, 452 control statements on multiple lines 385
how to perform 32, 94 literals across lines 385
operator 412 Control breaks 52, 104, 182
removing excess blank spaces 569 (see also BREAK statement and SORT

Condition codes 369, 381 statement)
Conditional COMPUTE statement 34, 96, 445, ***S*** appears in lines printed at 187

451, 453 blanking out repeating values at start of 443
Conditional expressions 26, 88, 399 break field must be a sort field 52, 104, 182

bit field conditions 405, 484 breaks at wrong place 529
comparing character operands 24, 86, 282, 390, computing true ratios, percentages 187, 413

402, 483 counting occurences of a value 222
comparing date operands 28, 89, 283, 391, definition of 52, 104

401, 482 determining level of 186, 211
comparing hexadecimal values 390, 404, 484 how to format dates, times and numbers 430
comparing numeric operands 26, 88, 278, 282, in PC files 104

391, 401, 482 multiple 219
comparing operands of different lengths 402 number of items in control group 186, 429
comparing operands of different types 282, printing a certain number of detail lines per

393, 403 break 499
comparing time operands 28, 89, 254, 286, printing averages at 194, 199, 423, 431, 526

392, 401, 482 printing blank lines at 54, 58, 183, 192, 204,
comparing to multiple values 408, 483 205, 426, 527
how to simplify long expressions 408 printing data from files at 198, 428
how to write 26, 88, 399 printing footing lines at 423
in COMPUTE statement 34, 96, 451 printing item number in detail lines 210
in INCLUDEIF statement 26, 88, 482 printing lines at beginning of control group
mixing relation and bit field conditions 406 424, 426
order of evaluation 408 printing multiple lines at 204
relation operators allowed 400 printing statistics at 106, 194, 199, 424-426,
searching for a text in a character field 402, 483 431, 527, 528
selecting fields with invalid data 404 printing the current date at 192
speed-up tips 603, 606, 608 printing the number of items included in report
use of ampersand (&) in 406 so far 429
use of not sign (¬) in 410 resetting page number 184
use of quotation marks, apostrophes 26, 88, skipping to new page 183, 426, 527

393, 483 spacing at 183, 426, 527
use of the keyword "AND" 28, 88, 405, 483 spacing at, for summary reports 509

INDEX

Index 645

statistical lines, customizing 194, 214, 423-426 how to use 301, 364, 376, 455
statistical lines, order in which printed 196, 204 making reports without using 301
the Grand Total control break 422 preventing automatic copying 305, 488, 513
total line (see also Totals and Total line) printing copied records in control listing 305,
total line split onto two lines 186 458, 490, 516
total line, customizing 204, 214, 427 saving COBOL and ASM record layouts in 319
total line, default 186 saving shop-wide options 368
total line, multiple 192 used within ASM statement 326, 497
total line, suppressing 427, 528 used within COBOL statement 326, 498
using to produce summary reports 62, 218, 224 using an alias 304, 308, 365, 377, 586
where total line prints 192 which DD in JCL used for 358, 366

Control listing which member copied 308, 365, 377, 456
DD used in JCL 358 COPY parm
logical unit written to (VSE) 370, 380 in INPUT statement 305, 488
printing records copied from copy library 305, in READ statement 305, 513

458, 490, 516 COPY statement 455
skipping to new page 387 copying COBOL and Assembler record layouts

Control statements 325
how to write 384 default copy library 497, 498
introduction 12, 74 how to use 305, 366
keeping in a copy library 301 listing copied statements 387
list of 15, 77 parms (see under name of parm)
maximum number allowed 504 syntax 456
order 386 within scope of ASM & COBOL statements
putting comments in 387 328
syntax (see under name of statement) xiv COPYLIB parm
that apply to all reports in shop 368 of OPTIONS statement 457
that define files and fields 266 Corel Chart
that require more than one line 385 importing PC files into 599
what DD used to read 358, 368 producing output file for 505, 599
what logical unit read from (VSE) 370 COREL parm
which columns to use 384 in OPTIONS statement 505

Convention Count
use in control statement syntax 418 descrepency in VSAM record count 367

Conversion discrepancy in VSAM record count 379
different types of date fields 283 Counter
different types of numeric fields 278 line numbers in report 210
different types of time fields 286 COUNTER built-in field (see #COUNTER built-in
GMT time to local 508 field) 563
of character to numeric data 282 Counting
of character to time data 254 how many times something occurs 222
of COBOL and Assembler layouts to FIELD CPU

statements 322 utilization, speed-up tips 603
of numeric to character data 283 Creating your own fields 30, 92, 410, 444
of numeric to time data 254 (see also COMPUTE statement) xiv
of one data type to another 403, 570, 575, 579, CSV parm

580 in OPTIONS statement 505
of time to numeric data 254 Cumulative

Copy library number of items printed in report 206, 429, 563
accessed for READ and INPUT statements 304 Currency
assigning (VSE) 378, 509 showing currency in PICTURE 137, 396
copying records from non-PDS files 305, 458 Current
DB2 file definitions 353 date, built-in field 564

INDEX

646 Report Writer Reference Manual

location, in COBOL and Assembler layouts passing parms to 271, 274, 298, 464, 473, 489,
327 514, 591

location, when defining fields 293, 295, 463 sample program 591
time, built-in field 562, 565 size of character result 465

Cursor Data set name (see DSNAME) xiv
in DB2 342 Data types

Customizing in FIELD statement 469
body of the report 123 list of 539
column headings 44, 126, 127, 442 listing of, for each input field 492
control breaks 52, 182, 421 of COMPUTE fields 454
creating your own fields 30, 92, 410, 444 of DB2 items 340
PC file order 100 Databases 335
PC files 123 processing 297, 620
PC files total line 106 Date fields
report order 48, 524 creating your own 391, 444
the Grand Totals 214 default lengths 542
the statistical lines at control breaks 194, 214, defining so that month name is always spelled

423-426 out 284, 447, 466, 554, 555
the total line at control breaks 187, 190, 206, SMF dates 544, 556

427 stored in hexadecimal format 283, 404, 484
the way numeric data prints 44, 132, 393, 441 (see also Dates) xiv
titles 38, 165, 531 DATEDELIM parm
which records to include in report 24, 86, 399, in OPTIONS statement 134, 137, 498

481 DATEEXIT

D
DASD files

used as input (VSE) 471
Dash (-)

blanks required around 412
formatting negative numbers, where to put 394
in numeric literals 391
meaning in COLUMN or DISP parm 293, 463
name broken at, for column headings 127, 297,

442
subtraction symbol 30, 92, 412
use in field names 388, 412

Data
character versus numeric data 282, 392
how to format in report 44, 132, 441
including only certain values in report 24, 86,

481
invalid, testing for 404, 484
representation, date fields 283, 542
representation, numeric fields 278, 540
representation, time fields 545
specifying the input file 17, 485
the five types 275, 389

Data exit programs 539, 541, 544, 548, 549
DD used in JCL 358
decimal digits returned by 465
how to use 297

data type 544
Dates

adding days to a date 414, 579
comm area date (VSE) 564
comparing 28, 89, 283, 391, 401, 451, 482
converting to character value 570
converting to numeric value 414, 575
current date, built-in field 564
day of week for a given date 570
DD/MM/YY date literals 499
default display format 134, 559
default display format, changing 500
defining date fields 283, 460
delimiter used 134, 137, 498, 542, 543,

554-556
extracting the day, month and year portions

309, 573, 575, 577, 578
formatting in report 44, 132, 171, 200, 284,

441, 466, 554
from character or numeric data 579
handling invalid dates 159, 162, 582, 584
how date fields stored in input file 283, 469,

542
how sorted 529
in COBOL and Assembler record layouts 318,

322
including date in footnotes 180, 478-480
including date in titles 168, 533-535
including in total line 192

INDEX

Index 647

including only certain dates in PC file 89 literals, format of 350, 352
including only certain dates in report 28, 482 missing rows 523
month name for a given date 571 mixing DB2 and non-DB2 data 336
number of days between two dates 576 ORDERBY parm 344, 491, 517
printing blanks instead of zero dates 126, 154, plan name 499

171, 200, 430, 441, 478, 534, 570 qualifiers 338, 351
processing non-standard dates 297 reading multiple rows 346, 516
range allowed in date literals 391 READKEY equivalent 345
selecting the earliest of several dates 577 saving definitions in copy library 353
selecting the latest of several dates 577 SELECT clause 520
spelling month name out 40, 44, 134, 200, 284, subsystem 499

441, 554, 555, 570 table names 338
spelling month name out, in titles 171, 535 tables as auxiliary input file 345, 519
taking into account when computing time timestamps 340

intervals 254 using DB2 data with Report Writer 336
which century for 2-digit years 497 using multiple DB2 tables 345, 348
writing date literals 391, 499, 509 using record names with 348, 350
writing julian date to output file 262 views 338
Year 2000 616 what types of data supported 340
zero assigned for missing fields 233, 523 WHERE parm 342, 350, 492, 520
(see also Date fields) xiv which fields are totalled 352

DAY built-in function (see #DAY built-in function) which rows to read 492, 520
570 which subsystem 338

Day of week DB2NAME parm
built-in field 562 in FILE statement 472
computing for a given date 570 in INPUT statement 340, 488
including in footnotes 180 in READ statement 513
including in titles 168 DB2PLAN parm

DAYNAME built-in field (see #DAYNAME built- in OPTIONS statement 499
in field) 562 DB2SUBSYS parm

DAYNUM built-in function (see #DAYNUM built- in OPTIONS statement 338, 499
in function) 575 dBASE IV

Days importing PC files into 601
adding to a date field 414, 579 producing output file for 601
day in century 579 DBASE3 parm
day of month, for a given date 575 in OPTIONS statement 505
number of days between two dates 576 DBASE4 parm

DB2 in OPTIONS statement 505
ambiguous field names 348, 350 DC and DS statements in Assembler 331
ASC and DESC parms 344, 517 DCB parm in JCL
column headings 352 for output files 360
cursor 342 for report output 362
defining input table name 472, 488, 513 DD statement in JCL
digits allowed in numeric fields 354 which one used to read input files 270, 367,
display formats 352 473, 489, 514
floating point numbers 340 which ones needed 358
getting list of columns' data type 340 writing FIELD statements to 323, 435
graphic strings 340 DDMMYY
host variables 350, 351 date fields 542, 543, 554, 555
how to create a PC file 340 DD/MM/YY date literals 138, 499
how to create a report 338 DDMMYYLIT parm
JCL required 336, 358 in OPTIONS statement 138, 499
list of DB2 columns in table 340, 492, 519 DDMMYYYY

INDEX

648 Report Writer Reference Manual

date fields 542, 543, 554, 555 where fields are located in record 292, 294,
DDNAME parm 295, 463

in COPY statement 458 which fields should be totalled 144, 279, 282,
in FILE statement 270, 358, 367, 473 462
in INPUT statement 271, 367, 489 Definition statements 266
in READ statement 271, 367, 514 Delimited

Decimal digits files, how to create 256
extracting integer value 575 Delimiters
how many in averages 146 in date fields 542, 543, 554-556
how many stored in record 279, 464 in output files for PC programs 498
how many to print 134, 394, 441 in time fields 545, 557, 558
in Assembler layouts 331 used in PC files 258
in computed fields 450 used to format dates 134, 137, 498
in time fields 253, 287, 450, 545 used to format times 136, 137, 509, 557, 558
returned by data exit programs 299, 465 used to parse character strings 572
rounding 450, 578 DEPENDING ON clause in COBOL 159, 249, 322

DECIMALS parm DESC parm
in FIELD statement 279, 287, 464 in DB2 ORDERBY parm 491, 517

Decrypting data 297 in ORDERBY parm 344
Default in SORT statement 48, 100, 221, 526

alignment of titles 532 DESCRIPTION parm
column headings for computed fields 449 in FIELD statement 464
display format, how to change 500 in FILE statement 473
display formats 559 DETAIL parm
field location in record 292, 295, 463 in OPTIONS statement 218, 220, 499
justification of data 142 Detail records
location, effect of defining bit fields 293 in batch type files 238
record name 519 Detail report lines
sort order 497 suppressing 62, 218, 224
spacing at control breaks 426 Different
total line at control break 427 assigning different values to created field 96,
total line layout 427 445
value assigned for missing records 233, 523 lengths, comparing operands of 402, 483, 484
value assigned in COMPUTE statement 34, 36, Digits

96, 98, 453 calculating how many digits in packed fields
Defining 279

bit fields 289 decimal, dropping 575
character fields 275, 282 decimal, how many print in averages 146
date fields 283 decimal, how many stored in record 279, 464
fields created in exit programs 297, 591 decimal, rounding 450, 578
fields in an earlier file 294 extracting certain digits from a number 283
files and fields, how to 266, 364, 376, 460, 470 how many stored in record 279
files automatically 304 how many to print 134, 394, 441
files without using a copy library 301 in page number, how many 179, 479, 480, 535,
how fields will be formatted in reports 276, 563

280, 284, 289, 290, 466 maximum number allowed in literals 391
how to create your own fields 30, 92, 410, 444 not enough room to display 582
numeric fields 278, 282 number allowed in DB2 data 354
same part of record multiple times 268, 293, (see also Decimal digits)

309, 463 Dimension
the column heading to use for a field 296, 449 arrays in records 268
time fields 286 Direct reads

auxiliary files read randomly 65, 113, 520

INDEX

Index 649

DISP parm DOTSEP
in ASM & COBOL statements 433 display format 137, 552
in FIELD statement 463 DOUBLE parm

Displacement in OPTIONS statement 149, 154, 507
fields' starting displacement in records 292, Downloading

294, 295, 463 files from POWER queue 372, 375
DISPLACEMENT (DISP) parm from CICS (VSE) 375, 376

in FIELD statement 248, 292, 295 only selected records 86
DISPLAY small summary files 110

data type 540 ways to download 375
display format 552 your own new fields 92

Display formats DSECT statement in Assembler 327, 331, 334
changing the default 258, 500 DSNAME
default 134, 559 relation to file name 269, 270, 273, 473, 489,
for PC files 441 514
formatting numbers with dots instead of Duplicate

commas 137, 552 records in file for a key 235
how to write PICTUREs 393 DXPARM parm
how to write TPICTUREs 398 in FIELD statement 464, 591
in COLUMNS statement 44, 126, 132, 441 DXPROG parm
in COMPUTE statement 447 in FIELD statement 299, 464, 591
in FIELD statement 266, 466 DXRETDEC parm
list of 550 in FIELD statement 299, 465, 595
of fields in footnotes 479 DXRETLEN parm
of fields in the title 534 in FIELD statement 299, 465, 595
of fields in the title 171
of fields printed at control breaks 200, 430
removing excess blank spaces 569
specifying delimiter for dates 498
specifying delimiter for times 509
specifying for output files 258
used in total (and average) line 136, 146
using to create a character field 570
which quotation mark used 506

Division
division by zero indicator (***Z***) 583
division by zero, suppressing 509, 583
how to perform 30, 92, 412, 444
performing division at control breaks 187
remainder (#MOD built-in function) 577
results in overflow (**V**) 583

DIVTOTS parm
in COMPUTE statement 187, 448, 453

DLBL statement
used for writing output 375, 504
which one used for input files 273, 379, 472
writing FIELD statements to 323

Dollar sign ($)
how to print 134, 280, 394, 441, 466, 552
meaning in PICTUREs 395

Dollars
DOLLAR display format 552
printing whole dollars 280, 450, 578

E
EBCDIC built-in function (see #EBCDIC built-in

function) 570
EBCDICTABLE parm

in OPTIONS statement 500
Either

of two conditions 26, 88, 406, 483
ELSE parm

in COMPUTE statement 34, 96, 449
Encrypted data

how to process 297
End of report

printing lines at 214
Ending

of words (singular or plural) 206, 429, 562
EQU statement in Assembler 331, 333
EQUAL parm (see #EQUAL parm)
Equal to

comparing contents of fields 24, 86, 400, 482
Error Indicators

ambiguous reference (***A***) 582
divide by zero (***Z***) 583
error (***E***) 582
invalid data (***I***) 582
list of 164, 582
offset error (***F***) 296, 582

INDEX

650 Report Writer Reference Manual

overflow (***V***) 583 how to define fields created in exits 297, 591
propagation of 584 how to define numeric fields 278, 282
size (***S***) 131, 133, 187, 394, 582 how to define time fields 286
suppressing 583 how to use 275
undefined field (***U***) 583 keeping in a copy library 304
(see also under ***A***, ***I***, etc.) location determined by another field 249, 295,

Error messages 468
DD used in JCL 358 making starting column relocatable 463
logical unit written to (VSE) 370, 380 multiple fields for same column in record 238

ESDS VSAM files 270, 273 parms (see under name of parm)
writing to 362, 375 purpose 266
writing to (VSE) 375 redefining part of a record 268, 293, 309, 463

EXAMINE (see under #TRANSLATE) rules for field names 388
Examples syntax 461

files used in 586 where to put 301, 365, 377
Excel with DB2 data 352, 353

example 86, 87, 105, 107, 115, 117, 119 (see also Fields)
importing PC files into 597 Fields
producing output file for 505, 597 built-in (see Built-in fields)

EXCEL parm built-in, list of 560
in OPTIONS statement 505 comparing contents of 26, 88, 400, 482

Exit programs control break (see Control breaks)
(see Data exit programs) xiv converting character to numeric, and v.v. 282
(see I/O Exit) creating your own 30, 92, 410, 444

EXITPARM parm defining as character versus numeric 282
in FILE statement 271, 274, 473 defining for an earlier file 294
in INPUT statement 272, 489 defining one-time fields 309
in READ statement 272, 514 how date fields stored in files 283, 542

Expressions how many decimal digits in 279, 450, 464
computational (see Computational expressions) how many digits in 279
conditional (see Conditional expressions) how numeric fields stored in files 278, 540

EXTENT statement in JCL 379, 381 how time fields stored in files 545

F
False

bit value 581
Features

list of 8
FIELD statement 460

creating from Assembler record layout 322,
419

creating from Cobol record layouts 322, 432
data types, list of 539
defining a field's column (or displacement) 292,

295, 463
defining column headings 296
how dates, times and numbers are formatted

550
how many decimal digits 279, 464
how to define bit fields 289
how to define character fields 275, 282
how to define date fields 283

how to define 266, 275
including only certain values in report 24, 86,

400, 481
listing of fields in input file 82, 312, 492, 519
name cannot be split across lines 385
name used as column heading 127
processing non-standard date fields 297
qualifying field name with record name 68,

116, 228, 232, 491, 519
resolving ambiguous field names 68, 116, 228,

232, 389, 491, 519
sort fields 48, 100
specifying which to print 18, 437
used in examples 586
where located in records 292, 294, 295
(see also FIELD statement)

File names
used as record names 232, 491, 519

FILE parm
in ASM & COBOL statements 434
in FIELD statement 294, 310, 466

INDEX

Index 651

FILE statement 470 specifying the input file 17, 485, 510
how to use 269 subsetting mainframe files 263
keeping in a copy library 304 types of files supported 270, 273, 475
maximum record length 472, 474 types of files supported (VSE) 471
overriding parms temporarily 271 using PDS files as input 270
parms (see under name of parm) using tape files as input 270, 273, 274
purpose 266 using VSAM files as input 270, 273, 492, 519
rules for file names 388 variable length 294
syntax 471 which DD statement used to read 270, 367,
use with ASM & COBOL statements 311, 315, 473, 489, 514

322 which DLBL statement used to read 273, 379
variable length files 474 which records to include in report 24, 86, 481
VSE file attributes 471 (see also FILE statement) xiv
where to put 301, 365, 377 FILLER 329
which DD used for file 367, 473 FIXED BINARY (see BINARY)
which DLBL/TLBL used for file 379 FIXED DECIMAL (see PACKED)
with DB2 data 352, 353 Fixed format ASCII 259
(see also Files) Fonts 363, 506, 602

Files FOOTING parm
assigning file names 269, 471 in BREAK statement 106, 192, 196, 214, 423
auxiliary input file 65, 113, 510 in BREAK statement, how to use 196
auxiliary input files are keyed 65, 113, 517, in BREAK statement, multiple 204

519, 520 in BREAK statement, printing blank lines 192,
chaining (nesting) input files 230 205
copying statements from 304, 455, 488, 513 in BREAK statement, using instead of total line
DDNAME and DSNAME used 270, 367, 456, 204

458 where footing line prints 204
defining automatically 304 Footings
defining without using a copy library 301 at bottom of each page (see FOOTNOTE
how primary and auxiliary input files are statement)

processed 65, 113, 493, 520 at end of control breaks (see FOOTING parm)
how to define 266, 470 lines printed at end of report 214
how to define (MVS) 269 FOOTNOTE statement 476
how to define (VSE) 273 alignment (left, center and right) 477, 479
including a certain number of records in report centered data looks wrong 479

502 how dates, times and numbers are formatted
input file attributes (VSE) 471, 487, 512 479, 550
maximum record length 270, 273, 274, 491, how to use 180

516 including date, time and page number 180, 477
multiple input files 65, 113, 228, 510 justifying contents of fields 479
overriding file definition 271, 274, 485, 510 print expressions 180
primary file read sequentially 65, 113, 493 right aligned part looks wrong 479
primary input file 65, 113, 485 spacing between items 478
processing non-standard files 297, 620 specifying display format for fields 479
reading a certain number of records 502 specifying width of fields 480
reading if key greater than or equal 234 spelling month name out 479
reading multiple records for the same key 235 suppressing footnote lines 504
reading multiple records from same file 228, syntax 476

519 use of quotation marks, apostrophes 478
reading with generic key 234 where to put 386
resolving ambiguous file names 228 Forcing lower level control breaks 211
sample files used in examples 586 Format
sorting mainframe files 263 (see also Display Formats)

INDEX

652 Report Writer Reference Manual

FORMAT built-in function (see #FORMAT built- comparing contents of fields 26, 88, 400, 482
in function) 570 largest of several fields 576

FORMAT parm read if key greater than or equal 234
in FIELD statement 266, 276, 280, 284, 289, Grouping

466 computations 30, 92, 413
in OPTIONS statement 137, 258, 500 report lines 52
list of display formats 550 rows in PC file 104

Forms
how to print 149

Foxpro
producing output file for 505

FOXPRO parm
in OPTIONS statement 505

Free format
control statements 385
fields, scanning for text in 402, 483

From 255
FULLWORD

data type 540
writing fullwords to output file 553

Functions
(see Built-in functions)

G
GENERIC parm in FIELD statement 266, 296, 467

in READ statement 234, 235, 514-517 Headings
GETVIS 380 at beginning of a control group 208, 424, 426
GMT column headings (see Column headings)

times 508 printing at top of each page 214
GRAND parm (see #GRAND) printing control break headings on each page
Grand totals 210, 426

customizing 214, 422 printing once at beginning of report 214
display format used in 136 row 149, 440
how many decimals in 136 (see also Titles) xiv
justification used in 143 HEX display format 551
PICTURE can prevent totalling 144 use in COLUMNS statement 134
printing averages at 145, 214, 423 use in FORMAT option 501
printing statistical lines at 214, 216, 422 Hexadecimal representation
prints by default 18 dates stored in 283, 543, 555
size error in (***S***) 131, 133 how to print 134, 276, 466, 551
spacing at 216 in computational expressions 390, 452
suppressing 216, 259, 504 in conditional expressions 390, 404, 484
totalling time fields 146 times stored in 545-547, 558
treated as a control break 422 writing literals in 484, 584
when put on new page 216 writing literals in 390
which columns receive 144, 282, 440, 446, 462 HGCOLHDG parm
(see also Totals and Total line) in OPTIONS statement 258, 501

Graphics HHMM
characters, in literals 390 time fields 545, 557, 558

Graphs HHMMSS
bar, how to print 150 built-in field (see #HHMMSS built-in field)

Greater than 565

H
HALFWORD

data type 540
writing halfwords to output file 553

Harvard Graphics
column headings for 258
importing PC file into 600
producing output file for 501, 505, 600

HARVARD parm
in OPTIONS statement 505

HDGSEP parm
in OPTIONS statement 128, 297, 501

Header records
in batch type files 238

HEADING parm
in BREAK statement 208, 214, 424

INDEX

Index 653

time fields 545, 557, 558 including only certain dates in report 28, 89,
High-values 484 391, 392, 482
Higher including only certain times 28, 89

level of control break 211 multiple statements 24, 86
Histograms (see Bar graphs) xiv omitting 24, 481
Holes reading a certain number of records 502

leaving room to punch 150 selecting certain whole records to output 263
Host variable selecting records with invalid data 404, 484,

in DB2 expressions 350, 351 584
Hours specifying multiple conditions 26, 88, 405, 483

added to STCK fields 508 speed-up tips 603
displaying times as 557, 558 syntax 482
HOURS data type 547 use of the keyword "AND" 28, 88, 405, 483
since midnight 547 use of the keyword "NOT" 484

I
I/O Exit 620
If logic 399

in COMPUTE statement 34, 96, 451
selecting records to include in PC file 86
selecting records to include in report 24, 481
(see also INCLUDEIF statement, WHEN parm)

IF statement
in COBOL, PL/I or BASIC 26, 88

Import
importing PC file into Corel Chart 599
importing PC file into dBASE IV 601
importing PC file into Excel 597
importing PC file into Harvard Graphics 600
importing PC file into Lotus 1-2-3 81, 597
importing PC file into Microsoft Works 599
importing PC file into Paradox 598, 599
importing PC file into PowerPoint 600
importing PC file into Quattro Pro 598
importing PC file into R:BASE 601
importing PC file into word processors 602
importing PC files into PC programs 596

In-line
putting definition statements in-line 301

INCLUDEIF statement 481
comparing date fields 283
comparing time fields 286
equivalent to DB2 WHERE clause 342
examples 390-393, 482
how to use 24, 86
include if both conditions are true 28, 88, 405,

483
include if either condition is true 26, 88, 406,

483
including a certain number of records in report

502

use of the keyword "OR" 26, 88, 406, 483
where to put 24, 86
which fields allowed in 24, 86
writing conditional expressions 26, 88, 399
(see also Conditional expressions)

Including
a certain number of records in report 502
selected records in report 481
(see also INCLUDEIF statement) xiv

INDEX built-in function (see #INDEX built-in
function) 575

Initial
setup required for files 266, 470

INPUT statement 485
copies records from copy library 304, 488
how to use 17
listing records copied from copy library 305,

490
naming the record 232, 491
overriding file definition parms 271, 274, 485
parms (see under name of parm)
reading a certain number of records 502
reading DB2 tables 488
specifying more than one input file 65, 113,

510
syntax 486
using DB2 data 338
variable length files 490
where to put 386
which DD used for file 367, 489
which DLBL/TLBL used for file 379

INT built-in function (see #INT built-in function)
575

International
formatting options 137

Interval
computing time interval 254

Invalid data
how sorted 530

INDEX

654 Report Writer Reference Manual

identifying records that contain 404, 484, 584 JOBNAME built-in field (see #JOBNAME built-in
indicator (***I***) 582 field) 562
suppressing error 509, 583 Julian dates 283, 543, 544, 554-556
suppressing from report 159, 162 Justification

IOEXIT doesn't look correct 172, 177, 479, 535
file type 471, 492 maximum size allowed 142
parm, in FILE statement 473 of column headings 130
parm, in INPUT statement 489 of data in report columns 127, 142, 443

IOEXIT parm of data printed at control breaks 200, 431
in FILE statement 620 of data within titles 170, 171, 535
in READ statement 515 of data, default 142

ITEM-ENDING built-in field (see #ITEM- of titles (left, center and right) 40, 149, 174,
ENDING built-in field) 562 532

ITEM1-ITEM9 built-in fields (see #ITEM1-ITEM9 used in totals line 143
built-in fields) 563 (see also Alignment)

Items
number of, in control group 186, 206, 429, 563
number of, in report so far 206, 429, 563
number of, in whole report 18

ITEMS built-in field (see #ITEMS built-in field)
563

IUI 375

J
JCL 355 in INPUT statement 490

completion codes 369, 381 Keys
copy library DD 366 auxiliary input files are keyed 65, 113, 517,
copy library used 456 519, 520
copying statements not in the copy library 458 building a packed or binary read key 518
DATE statement (VSE) 564 creating read key with COMPUTE statement
DD used for report 362 70, 118, 518
EXEC statement SIZE parm (VSE) 380 generic 234, 235
for DB2 336, 358 generic (see also GENERIC)
for MVS systems 357 greater than or equal to 234, 515
for PC files (MVS) 360, 361 key to one file is contained in another file 230
for PC files (VSE) 372, 373 picking key for READ statement 66, 68, 113,
for reports (MVS) 358, 360 116, 228, 230, 517
for reports (VSE) 370 reading a keyrange 490
for VSE systems 370 KGE parm
including jobname in report 562 in READ statement 234, 515-517
logical unit used for report (VSE) 374 KSDS VSAM files 270, 273, 490
MVS, list of DDs used 358
no copy library used 301
sample PROC (MVS) 362
specifying buffer size in JCL 367, 379
specifying LRECL for report 362
VSE, logical unit assignments 370
what DD statement used for input files 270,

367, 473, 489, 514
which DLBL/TLBL used for input files 273,

379, 472
writing FIELD statements 323

K
KEEPRDW parm

in FILE statement 246, 271, 273, 295, 474
in INPUT statement 295, 490
in OPTIONS statement 501
in READ statement 295

KEY parm (see READKEY parm)
KEYRANGE parm

L
Label

tape labels (VSE) 472
Large

largest of several numbers, dates or times 576
records in input file 270, 474, 491, 516
report width 362, 375

Laser printers 184
fonts 506
setup string 506

INDEX

Index 655

skipping to new sheet 506 Level
LCASE built-in function (see #LCASE built-in of control breaks 186, 211

function) 571 Librarian (MVS)
Leading copying records from 325, 458

slash, in TITLE statement 177 Librarian (VSE)
zero, in time literals 392 Assembler copy library 497
zero, not required in date literals 391 COBOL copy library 498
zero, suppression 134, 395, 466, 552 copying records from 455
zeros, printing 395, 552 specifing the copy library 509

Left alignment using as copy library 304, 376
of titles 40, 149, 174, 532 where loaded 380
(see also Alignment and Left justification) which member type read 457, 502

LEFT built-in function (see #LEFT built-in Lines
function) 571 how many per page 505

Left justification line number in report 210
of column headings 130 printing a vertical line between columns 152
of data in report columns 142, 443 LIST parm
of items in control break lines 200, 431 in COPY statement 387, 458
(see also Justification) in INPUT statement 305, 490

Left margin in READ statement 305, 516
aligning titles with 174, 532 Listing
how to specify 150, 502 of fields in a DB2 table 340
moving first report column over 186, 219 of fields in a file 82, 312, 315, 492, 519
(see also Margins) records copied from copy library 305, 458, 490,

LEFT parm 516
in #FORMAT built-in function 570 Literals 389
in BREAK statement 200 definition of 389
in COLUMNS statement 127, 142 headings for columns of literal text 130, 440,
in FOOTNOTE statement 479 442
in TITLE statement 171, 535 how to write 26, 88, 389

LEFTMARGIN parm in body of report 124, 149, 440
in OPTIONS statement 150, 502 in DB2 expressions 350, 352

Length in hexadecimal format 390, 404, 452, 484, 584
allowed for file and field names 385, 388 in PC files 440
comparing operands of different length 402, in titles 38, 165, 386, 390, 534

483, 484 plus/minus sign 391
of date fields 542 that don't fit on single line 385
of PC file records (MVS) 360 using DD/MM/YY date literals 499
of PC file records (VSE) 374 when to use quotation marks 282, 392
of time fields 545 writing time literals 392
of variable length records 295 Location

LENGTH (LEN) parm of field in record, after defining a bit field 293
in FIELD statement 276, 279, 284, 287, 467 of field in record, default 292, 463

Less than Logical operations
#MIN built-in function 577 #OFF built-in function 581
comparing contents of fields 28, 89, 400, 482 #ON built-in function 581

Lessons AND operation 569
requesting PC files 74 OR operation 571
requesting reports 12 XOR operation 574

Letters Logical units
ASCII versus EBCDIC 496, 500, 569, 570 assignments 370
lower case 571 for tapes (VSE) 274
upper case 573 LONG1-LONG3

INDEX

656 Report Writer Reference Manual

date display format 554, 555 number of lines to print 502
Lotus 1-2-3 number of pages to print 502

example 78, 79, 97 number of records to include in report 502
importing PC files into 81, 597 number of records to read 502
producing output file for 505, 597 selecting the largest of several values 576

LOTUS parm size allowed with justification 142
in OPTIONS statement 505 value in control group, printing 56, 194, 200,

Low-values 484 208, 431
Lower value, which columns receive 144, 282, 440,

#MIN built-in function 577 446, 462
level of control break 211 year allowed in date literals 391

Lower case 571 (see also MAXIMUM parm)
LRECL parm MAXIMUM (MAX) parm

in FILE statement 270, 474 in BREAK statement 56, 194, 424
in INPUT statement 272, 491 in BREAK statement print expressions 200,
in JCL, for output files 360 204, 208
in JCL, for report output 362 in BREAK statement, two different uses 202
in READ statement 272, 516 in SORT statement 194, 527
LRECL of output file 505 MAXINCLUDE parm

M
MAINFRAME parm

in OPTIONS statement 505
Mainframes

producing output files for 260, 505
sorting mainframe files 263
subsetting mainframe files 263

MAKEDATE built-in function (see #MAKEDATE
built-in function) 579

MAKENUM built-in function (see #MAKENUM
built-in function) 575

MAKETIME built-in function (see #MAKETIME
built-in function) 580

Margins
aligning titles with 174, 532
how to specify 150, 502, 505
moving first report column over 186, 219

Mathematical operations
between different types of numeric fields 278
how to perform 30, 92, 410, 444, 451
(see also COMPUTE statement, Statistical

lines) xiv
MAX built-in function (see #MAX built-in

function) 576
Maximum

#MAX built-in function 576
length of file and field names 385, 388
line (see also Statistical lines) 56, 194, 424,

527
line, printing at Grand Total time 214, 422
number of control statements 504
number of digits allowed in literals 391

in OPTIONS statement 502, 613
MAXINPUT parm

in OPTIONS statement 502, 613
MAXINVSHOW parm

in OPTIONS statement 502
MAXOCCURS parm

in ASM & COBOL statements 322, 434
MAXPAGES parm

in OPTIONS statement 502, 503, 614
suppressing message 259, 504

MAXPRINT parm
in OPTIONS statement 502, 503, 614
suppressing message 259, 504

Member
of copy library, which one copied 308, 456
type, of VSE library 502

MEMTYPE parm
in OPTIONS statement 502

Messages
suppressing maximum printed message 259,

504
Microsoft Works

example 101
importing PC files into 599
producing output file for 505, 599

MIN built-in function (see #MIN built-in function)
577

Minimum
#MIN built-in function 577
excluding zero values 194, 426, 431, 528
line (see also Statistical lines) 56, 194, 424,

527
line, printing at Grand Total time 214, 422

INDEX

Index 657

value in control group, printing 56, 194, 200, with DB2 tables 520
208, 431 Multi-line reports 147, 437, 503

value, which columns receive 144, 282, 440, MULTICOLHDG parm
446, 462 in OPTIONS statement 149, 158, 503

(see also MINIMUM parm, NZMINIMUM Multiple
parm) BREAK statements 58

MINIMUM (MIN) parm COLUMNS statements 147, 154, 437, 503
in BREAK statement 56, 194, 424 conditions 26, 36, 88, 98, 405, 483
in BREAK statement print expressions 200, control breaks 58, 211, 219

208 DB2 tables 345, 348
in BREAK statement, two different uses 202 fields defined at same location in record 268,
in SORT statement 194, 527 293, 309

Minus sign (-) footing lines at control breaks 204
blanks required around 412 INCLUDEIF statements 24, 86, 481
formatting negative numbers, where to put 394 input files 65, 113, 228, 510
in numeric literals 391 levels of totals 59, 211, 219
meaning in COLUMN or DISP parm 293, 463 lines required for control statement 385
name broken at, for column headings 127 lines, splitting column headings 128, 296, 442,
subtraction symbol 30, 92, 412 467
use in field names 388, 412 PC file records per input record 437

Minutes READ statements 70, 118, 228
adding to a time field 580 records for a READ statement 516
displaying times as 557, 558 records from same input file 228
MINS data type 546, 547 records in file for a key 235
rounding to minutes 44 report lines per record 147, 154, 437
since midnight 546, 547 sort fields 524

Missing TITLE statements 38
records 234, 367, 379 total lines at control breaks 192
records, default value used 233, 523 values in a relation condition 408, 483
records, how to detect 233 ways of computing a field 34, 445

MISSOFFSET parm Multiplication
in OPTIONS statement 503, 584 how to perform 30, 92, 412, 444

MMDDYY results in overflow (**V**) 583
date fields 542, 543, 554, 555 MVS operating system 357

MMDDYYYY
date fields 542, 543, 554, 555

MOD built-in function (see #MOD built-in
function) 577

Month
extracting for a given date 309, 577
name, for a given date 571
spelling out 134, 200, 284, 441, 466, 554, 555,

570
spelling out name, in titles 40, 44, 171, 535

MONTH built-in function (see #MONTH built-in
function) 571

MONTHNUM built-in function (see
#MONTHNUM built-in function) 577

MS-WORKS parm
in OPTIONS statement 505

MULTI parm
in READ statement 235, 346, 515-517, 520,

609

N
NAME parm (see RECNAME parm)
Names

assigning field names 276
assigning file names 269, 308
current day of week 562
field names from COBOL and Assembler

record layouts 321, 329, 334
getting list of DB2 column names 340
getting list of field names 82, 312, 321, 492,

519
month, spelling out 40, 44, 134, 171, 200, 284,

441, 466, 535, 554, 555, 571
of day for a given date 570
removing blanks between last and first name

569
rules for file, field, and record names 385, 388

INDEX

658 Report Writer Reference Manual

sorting mixed case names 573 line (see also Statistical lines) 56, 194, 426,
spelling out state name 230, 452 528
(see also File names, Record names) xiv value in control group, printing 56, 194, 201,

Narrower 208, 431
making a column narrower 46, 131, 443 value, which columns receive 144, 282, 440,
(see also Width) 446, 462

Negate NOOVERPRINT parm
how to negate a condition 409, 484 in OPTIONS statement 130, 504

Negative sign (-) NOREPEAT/NOREPEATPAGE parm
(see Minus sign) in COLUMNS statement 127, 140, 443

Nesting NOSEQ parm
control breaks 211, 219 in ASM & COBOL statements 434
input files 230 NOSYSINLIMIT parm
parentheses 407, 413 in OPTIONS statement 504

New fields Not character (¬)
how to create 30, 92, 410, 444 use in conditional expressions 410

New page NOT keyword
skipping to in control listing 387 use in conditional expressions 409, 484
skipping to, in report 54, 158, 183, 426, 527 NOTALIAS parm

NEWSHEET (NEWSHEET1) parm in COPY statement 458
in BREAK statement 184, 216, 427, 506 NOTITLES parm
in SORT statement 184, 216, 506, 527 in OPTIONS statement 259, 504

Next page NOTOTAL parm
skipping to new page 54 in BREAK statement 193, 204, 216, 220, 427

NOACCUM parm in SORT statement 193, 528
how to use 146 Number
in COLUMNS statement 126, 146, 440 in COLUMNS statement, meaning of 440, 443
in COMPUTE statement 146, 446 including a certain number of records in report
in FIELD statement 146, 266, 279, 287, 393, 502

462 of characters in report line 163, 362
NOCC parm of lines to print 502

in OPTIONS statement 259, 503, 602 of occurrences, counting 222
NOCHECK parm of pages to print 502

in OPTIONS statement 503 reading a certain number of records 502
NOCLEARIO parm Number of items

in OPTIONS statement 503 as column in report 210
NOCOLHDGS parm in control group 186, 206, 429, 563

in OPTIONS statement 130, 259, 503 included in report 18
NOCOMMAS printed in report so far 206, 429, 563

display format 552 Number sign (#)
NOGRANDTOTAL parm meaning of 38

in OPTIONS statement 216, 259, 504 NUMERIC
NOLABEL 472 data type 540
NOMAXMSG parm NUMERIC

in OPTIONS statement 504 display format 552
Non-zero average Numeric fields

line (see also Statistical lines) 56, 194, 425, comparing 26, 88, 278, 391, 401, 452, 482
528 comparing to character fields 403

value in control group, printing 56, 194, 201, confusing with character fields containing
208, 431 numbers 282, 392

which columns receive 144, 282, 440, 446, 462 converting to a time value 254, 576, 580
Non-zero minimum converting to character 283, 570

converting to date value 414, 579

INDEX

Index 659

creating your own 30, 92, 391, 410, 444 in FIELD statement 249, 295, 468
default display format 500, 559 suppressing errors in 503, 584
formatting in report 44, 132, 171, 200, 280, OFFTEXT parm

393, 441, 466, 552, 570 in FIELD statement 290, 468, 530
formatting with dots instead of commas 137, Omitting

552 INCLUDEIF statement 24, 481
how sorted 529 TITLE statement 19, 38
how stored in input file 278, 469, 540 ON built-in function (see #ON built-in function)
how to define 278, 460 581
integer portion 575 One-to-many I/O 235, 516
performing calculations 30, 92, 391, 410, 444, ONTEXT parm

451 in FIELD statement 290, 469, 530
printing as a bar graph 150 Operating systems 355
printing blanks instead of zero 126, 171, 200, Operations

430, 441, 478, 534, 570 character, how to perform 32, 94, 412, 444
specifying where to put plus, minus sign 394 mathematical, how to perform 30, 92, 412, 444
stored in character format 282 (see also COMPUTE statement, computational
writing numeric literals 26, 88, 391, 482 expressions)
zero assigned if record missing 233, 523 Operators

NUMERIC-SLD allowed in relation conditions 400
data type 540 OPTIONS statement 494

NUMEXIT parms (see under name of parm)
data type 541 parms for custom PC files 259

NUMWORDS built-in function (see specifying shop-wide options 358, 368
#NUMWORDS built-in function) 578 syntax 495, 496

NZAVERAGE (NZAVG) parm use with PC files 80
in BREAK statement 56, 194, 425 where to put 386, 494
in BREAK statement print expressions 201, OR built-in function (see #OR built-in function)

208 571
in BREAK statement, two different uses 202 OR keyword
in SORT statement 194, 528 use in conditional expressions 26, 88, 406, 483

NZMINIMUM (NZMIN) parm Order
in BREAK statement 56, 194, 426 in which BREAK statements appear 211
in BREAK statement print expressions 201, in which conditions are evaluated 408

208 of control statements 386
in BREAK statement, two different uses 202 of input file processing 493
in SORT statement 194, 528 of operations in computational expressions 413

O
Occurrences

counting in a file 222
OCCURS clause in COBOL 154, 159, 249, 268,

321, 434
Odd page numbers

skipping to 184, 427
ODDPAGE (ODDPAGE1) parm

in BREAK statement 184, 216, 427
in SORT statement 184, 216, 527

OFF built-in function (see #OFF built-in function)
581

OFFSET parm
error in calculating 582

of PC file, how to specify 100
of report, how to specify 48, 524
(see also SORT statement)

ORDERBY parm
in INPUT statement 344, 491
in READ statement 346, 517
similar to DB2 ORDER BY clause 344

ORG statement in Assembler 331
OUTATTR parm

in ASM & COBOL statements 323, 435
in OPTIONS statement 372, 374, 504

OUTDDN parm
in ASM & COBOL statements 323, 435

OUTLRECL parm
in OPTIONS statement 363, 505

Output

INDEX

660 Report Writer Reference Manual

separating report output from control listing
370

Output files
access method used 362, 374
attributes (VSE) 504
for mainframe programs 260
for non-standard PC programs 256
how to create 505
JCL (MVS) 360
JCL (VSE) 372
logical unit written to (VSE) 370
making binary data fields 262
making packed data fields 260, 262
printing one-line column headings 258
producing delimited ASCII file 256
producing fixed format ASCII file 259
spacing between fields 260, 498
specifying display format 258, 260, 262, 500
specifying field width 260, 262
specifying record length (MVS) 360, 362
specifying record length (VSE) 375
specifying the delimiter 258, 498
suppressing column headings 259, 262, 503
suppressing report titles 259, 262, 504
suppressing the carriage control character 259,

262, 503
suppressing the Grand totals 259, 262, 504
using as an input file 238, 241
writing entire records from input file 263
writing FIELD statements to (MVS) 435
writing FIELD statements to (VSE) 435
writing julian dates 262
writing selected records to output file 263
writing to VSAM (MVS) 362, 505
writing to VSAM (VSE) 375
(see also PC files)

OUTPUT parm
in OPTIONS statement 259

OUTTYPE parm
in OPTIONS statement 362, 505

Overflow
error indicator (***V***) 583
suppressing error 509, 583

Overlap
title parts 180
total line text overlapping a column total 186

Overprinting
suppressing 130, 504

Overriding
column headings 44, 126, 127, 442
file definition parms 271, 274, 485, 510

P
Packed data

calculating the number of digits 279
comparing with binary data 278
dates stored as 555, 556
invalid 162, 509, 582, 584
with F as sign 571
writing to output file 260, 553, 555, 556, 558

PACKED data type
dates stored as 283, 543, 544
needed in read key 518
numeric field 275, 278, 540
times stored as 545-547

PACKUN
data type, for time fields 545-547
numeric data type 540
writing packed unsigned data to output file 553

Padding
blank, computed fields 450
blank, operands of different lengths 402, 483
hex literals 390
zero, operands of different lengths 484

Page
control group headings at top of 210, 214, 426
how many lines per page 505
maximum number to print 502
maximum width of 163, 362
printing footnotes at bottom 180
skipping to new in control listing 387
skipping to new page 54, 158, 183, 426, 527
skipping to new sheet of paper 184, 427, 506,

527
skipping to odd page 184, 427, 527
splitting related report lines across pages 158,

508
when Grand Totals put on new page 216

PAGE (PAGE1) parm
in BREAK statement 54, 183, 184, 216, 427
in SORT statement 183, 184, 193, 216, 527

Page breaks
(see Control breaks and BREAK statement)

Page number
built-in field 563
changing number of digits in 179, 479, 480,

535
including in footnotes 180, 478
including in titles 168, 533
resetting to page one 184, 427, 527
skipping to odd page 184, 427, 527

PAGELEN parm
in OPTIONS statement 150, 368, 505

INDEX

Index 661

PAGENUM built-in field (see #PAGENUM built- producing irregular PC files 256
in field) 563 related parms in OPTIONS statement 259

Panvalet specifying record length (MVS) 360, 362
copying records from 325, 458 specifying record length (VSE) 375

Paper summary files 106, 110
skipping to new sheet 184, 427, 506 suppressing column headings 259

Paradox suppressing the carriage control character 259
example 92, 93, 111 suppressing the Grand totals 259
importing PC files into 598, 599 using DB2 data 340
producing output file for 505, 598, 599 writing multiple records per input record 437

PARADOX parm writing to VSAM (MVS) 362
in OPTIONS statement 505 writing to VSAM (VSE) 375

Parentheses YYYY dates 258
nesting 407, 413 PC parm
use in COLUMNS statement 124 in OPTIONS statement 505
use in computational expressions 30, 92, 413 PDS files
use in conditional expressions 28, 89, 407, 410 copying statements from non-PDS files 458
use in SORT statement 104, 183 rules for naming members 308
use in TITLE statement 170 used as input to report 270, 475
used to group conditions 484 using as copy library 304, 364, 366, 455, 456

PARM parm (see EXITPARM parm) PDSDDN parm
Parms in COPY statement 456, 458

available in BREAK statement print Percent
expressions 428 computing for control group 187, 448, 453

available in COLUMNS statement 438 percentage change, how to compute 413
passing parms to exit programs 271, 274, 298, showing percent sign in PICTUREs 396

464, 473, 489, 514, 591 Period (.)
PARSE built-in function (see #PARSE built-in using instead of commas in numbers 137, 552

function) 572 PICTURE format
Partial keys (see also TPICTURE format)

(see GENERIC parm) can prevent totalling 144, 440, 446, 462
Partitioned data set (see PDS) xiv compared to COBOL 268
Path to VSAM file 235 currency indicator 137, 396
Payback chart 7 display format 552
PC files for international users 137

blank lines in 106 for time fields 557
control breaks in 104 how to write 393
creating from an existing report 241 in BREAK statement, examples 204
default total line format 106 in COLUMNS statement, examples 135, 145
delimiter used 258 using to change column width 132
display formats 258, 441 using to round out decimal digits 280
enclosing data in quotes 258 when allowed 282, 395
for mainframe use 260 PL/1
how to import into PC programs 596 "IF" statement 26, 88, 481
how to request 74, 505 INCLUDE library 304, 455
inserting blank columns 106 INDEX built-in function 402, 575
JCL (MVS) 360 Plan
JCL (VSE) 372 DB2 plan name 499
list of PC programs 80 Plural
logical unit written to (VSE) 370 ending of word 206, 429, 562
printing one-line column headings 258, 501 Plus sign (+)
producing delimited ASCII files 256 addition symbol 30, 92, 412
producing fixed format ASCII files 259 concatenation symbol 32, 94, 412

INDEX

662 Report Writer Reference Manual

formatting positive numbers, where to put 394 leaving room for 150
meaning in COLUMN or DISP parm 293, 463
meaning in PICTUREs 395

PM
showing AM and PM 557

Pointers
to field within a record 249, 295, 468

Pound sign (#)
meaning of 38, 388
use in field names 388

POWER
downloading files from 372, 375
writing output to (VSE) 374

PowerPoint
importing PC files into 600
producing output file for 600

Prefix
in variable length records 271, 273, 294, 463
using to resolve ambiguous field names 68,

116, 228, 232, 491, 519
Previous

record, saving data from 238, 241
Primary input file

(see Files, INPUT statement)
Print expressions

in BREAK statement 198, 428
in COLUMNS statement 123, 438
in FOOTNOTE statement 180, 476, 477
in TITLE statement 165, 174, 532

PRINT USING in BASIC 393
Printing

a certain number of lines 502
a certain number of pages 502
DD used for report 358, 362
logical unit used for report (VSE) 370, 374
on laser printer 184, 506
printer can't overprint 504
records copied from copy library 305, 458, 490,

516
specifying the fields to print 18, 437

Priority
in evaluating conditions 408
of operations in computational expressions 30,

92, 413
PROC

sample PROC (MVS) 362
Propagation

of error conditions (***I***) 584
PRTSETUP parm

in OPTIONS statement 363, 506
PRTSHEET parm

in OPTIONS statement 368, 506
Punching holes

Q
QCHAR parm

display format 551
in OPTIONS statement 506, 551

QSAM 362
Qualified field names 68, 116, 228, 232, 389, 491,

519
QUATTRO parm

in OPTIONS statement 505
Quattro Pro

example 82, 83
importing PC files into 598
producing output file for 505, 598

Quotation marks (" and ')
enclosing data in, for PC files 258, 551, 555,

557, 558
imbedded within a literal 390
needed with character literals 26, 88, 390, 483
use in BREAK statement 198
use in COLUMNS statement 124, 440
use in FOOTNOTE statement 478
use in INCLUDEIF statement 26, 88, 483
use in TITLE statement 38, 165, 386, 390, 534
when needed around numbers 282, 392
which character to use 26, 88, 390
which used for QCHAR display format 506

R
R:BASE

importing PC files into 601
producing output file for 505, 601

Random reads
auxiliary files read randomly 65, 113, 520

Rank
printing ranks in a report 210

Ratios
computing for control group 448

RBASE parm
in OPTIONS statement 505

RDW 246, 271, 273, 294, 463, 474, 490, 501
READ statement 510

building a packed or binary read key 518
chaining 230
copies records from copy library 304, 513
default record name 232
generic keys 234, 235, 514
how to use 65, 113, 228
key greater than or equal to 234, 515
listing records copied from copy library 305,

516

INDEX

Index 663

multiple READ statements for same file 228 use in COLUMNS statement 68, 116, 228,
multiple statements 70, 118, 228, 510 232, 491, 519
naming the record 232, 519 with DB2 data 348, 350
overriding file definition parms 271, 274, 510 Records
parms (see under name of parm) defining the fields within 266, 460
picking the read key for 66, 68, 113, 116, 228, descrepency in record count 367

230, 517 discrepancy in record count 379
reading DB2 tables 345, 513 length of variable length records 295
reading multiple DB2 rows 346 maximum size 270, 273, 274, 472, 474, 491,
reading multiple records 516, 609 516
reading multiple records with the same key not found for READ statement 233, 523

value 235 number of, included in report 18
record not found 233, 523 pointer to fields location 295
sorting on field from auxiliary input file 68, reading more than one for the same key value

116 235
syntax 511 reading more than one from the same file 228
using COMPUTE field as read key 70, 118, size of output records (MVS) 505

518 size of output records (VSE) 504
VSAM versus sequential files 65, 113, 519 specifying which to include in PC file 86
where to put 386 specifying which to include in report 24, 390,
which DD used for file 367, 514 481
which DLBL/TLBL used for file 379 variably located fields 249, 295, 468

Reading writing selected records to output file 263
a certain number of records 502 RECSIZE 273, 274, 472, 504

READKEY parm REDEFINES clause in COBOL 268, 329
building a packed or binary key 518 Redefining
equivalent for DB2 tables 345, 520 part of a record 293, 309, 463
in READ statement 234, 235, 517 Relation
in READ statement, key to file contained in conditions, how to write 400

another file 230 operators, list of 400
in READ statement, using a COMPUTE field RELOC parm

70, 118 in ASM & COBOL statements 436
key greater than or equal to 234, 515 Relocatable
reading multiple records 516 COLUMNS and DISP parms 463
reading multiple records with the same key Remainder

value 235 after a division 577
using generic keys 234, 514 REPEAT parm

RECNAME parm in BREAK statement 208, 210, 214, 426
in INPUT statement 491 Repeating
in READ statement 228, 519 control group headings 210, 214, 426
in READ statement, how to use 232 values, blanking out 127, 140, 443
rules for record names 388 Reports

Record descriptor word logical unit written to (VSE) 370, 374
(see RDW) requesting 12

Record layouts separating report output from control listing
Assembler 311, 365, 377, 419 370
COBOL 311, 365, 377, 432 splitting related lines across pages 508

Record names using report output as input 238, 241
default value 232, 491, 519 which DD used for 358, 362
how to assign 232, 491, 519 wider than 132 characters 362, 375
resolving ambiguous field names 68, 116, 228, RETAIN parm

232, 491, 519 in COMPUTE statement 238, 241, 451, 607
rules for record names 388 Retaining

INDEX

664 Report Writer Reference Manual

data from previous record 238, 241 displaying times as 557, 558
Reverse how many seconds between two times 576

logic, in conditional expressions 409, 484 rounding to minutes 44
sort order 100 rounding to whole seconds 450

Right alignment SECS data type 545, 546
of titles 40, 174, 532 since midnight 545, 546
of titles, looks wrong 177, 535 SELECT clause (DB2) 520

RIGHT built-in function (see #RIGHT built-in Selecting
function) 572 a certain number of records 502

Right justification which records to include in PC file 86
needed in right aligned titles 177, 535 which records to include in report 24, 390, 481
of column headings 130 Sequence numbers
of data in report columns 142, 443 in COBOL record layouts 434
of items in control break lines 200, 431 Sequential
(see also Justification) files, defining 270, 273, 475

Right margin files, not allowed in READ statement 65, 113,
aligning titles with 174 519
(see also Margins) files, used as input (MVS) 475, 492

RIGHT parm files, used as input (VSE) 471
in #FORMAT built-in function 570 primary input file read sequentially 65, 113,
in BREAK statement 200 493
in COLUMNS statement 127, 142 Setup
in FOOTNOTE statement 479 defining files and fields 266, 364, 376, 460,
in TITLE statement 171, 177, 535 470

Room JCL 356
running out of 128, 131, 147, 163 printer setup text 363, 506

ROUND built-in function (see #ROUND built-in Sheet
function) 578 skipping to new sheet of paper 184, 427, 506,

Rounding 527
decimal digits in computed fields 450 Shifting report 150, 186
times 44 SHORT1-SHORT3
using PICTURE to round 280 date display format 554

Row headings 149, 440 Shorten
RRDS VSAM files 270, 273 (see Width)
Running count SHOWFLDS parm

of number of items printed in report 206, 429, in ASM & COBOL statements 312, 321, 436
563 in INPUT statement 82, 340, 492

S
SAM files

used as input (VSE) 471
Saving

data from previous record 238, 241
Scanning

a field for a given text 402, 575
Scope

of ASM & COBOL statements 328
Searching

a character field for a text 402, 483, 575
Seconds

converting hours, minutes and seconds into 576
decimal digits 287

in READ statement 340, 519
Sign

plus or minus, computing absolute value 575
plus or minus, in numeric literals 391
plus or minus, where to print 394
unsigned numeric data 540

SIGN clause in COBOL 330
Simple

COMPUTE statement 34, 96, 445
conditional expressions 405

SINGLESPACE (SINGLE) parm
in OPTIONS statement 507

Singular
ending of word 206, 429, 562

Size
block size (VSE) 472

INDEX

Index 665

block size of output (VSE) 504 ascending/descending order 48, 100, 526
error indicator (**S**) 131, 394, 582 automatic sorting 48, 100, 497
error indicator (**S**), in total line 187 collating sequence used 529
maximum size allowed when justifying 142 computed field as sort field 444
of column, changing 46, 131, 443 control break occurs at wrong place 529
of computed fields 450 control break spacing 54, 183, 527
of fields in input records 467 control break spacing, summary reports 509
of fields in output files 260, 262 how invalid data is sorted 530
of items in control break lines 201, 431 how to use 48, 100
of items in the title 170, 171, 535 JCL required 358
of output records (MVS) 505 multiple sort fields 48, 100, 524
of output records (VSE) 504 multiple statements 48, 100, 524
of report, maximum 163, 362, 375 name of sort program to use 507
record size (VSE) 472 parms 48, 100, 104
(see also Width) pre-sorting the input file 610

SIZE parm in JCL 380 preserving input file order 526
Skewed printing averages at control breaks 194, 526

report columns 147 printing statistical lines at control breaks 194,
titles 172, 177, 535 527, 528

SKIPBLANKDET parm quitting the sort early 503
in OPTIONS statement 158, 162, 507 requesting control breaks 182, 525

Skipping requesting multiple control breaks 211, 219
to new page in control listing 387 requesting subtotals 182, 528
to new page in report 54, 183, 426, 527 size parm passed to sort program 507

SKIPZERODET parm skipping to new page 183, 527
in OPTIONS statement 154, 159, 162, 507 sort field from auxiliary input file 68, 116

Slash (/) sort work files (MVS) 358
changing delimiter for formatting dates 498 sort work files (VSE) 381, 508
division symbol 30, 92, 412 sorting mainframe files 263
leading, in TITLE statement 177 syntax 525
meaning of /* and */ 387 tie-breakers 526
trailing, in TITLE statement 177 using ORDERBY to sort DB2 data 344
used to align titles 40, 174 where sort program loaded (VSE) 380

Smaller where to put 48, 100, 386
making a column smaller 46, 131, 443 which fields allowed 525
smallest of several values 577 SORTNAME parm
(see also Width) in OPTIONS statement 507

SMF files SORTSIZE parm
date format 544, 556 in OPTIONS statement 507
tips for using 246 SORTWK01 DD 358

Social security numbers SORTWORKNUM parm
how to format 282 in OPTIONS statement 381, 508

Sort order SPACE parm
bit fields 530 for PC files 106
character fields 529 in BREAK statement 183, 216, 426
dates 529 Spaces
how to specify 48, 100 where allowed in control statement 385
mixed case fields 573 Spacing
numeric fields 529 at control breaks 54, 58, 183, 426, 527
tie-breakers 497 between report columns 124, 147, 440
times 530 between report lines 149, 507
(see also SORT statement) of Grand Totals 216

SORT statement 524 report margins 150

INDEX

666 Report Writer Reference Manual

(see also Spacing factor) order in which they print 196
Spacing factor printing at Grand Totals time 214, 422

default 124, 498 printing the number of items in a control group
in COLUMNS statement 124, 147, 440 206, 429
in footnotes 478 which columns included in 144, 282, 440, 446,
in lines printed at control breaks 199, 430 462
in titles 170, 534 which ones print at end of report 216
of zero 125, 206 Statistics
used to shift report columns over 186, 219 counting occurrences 222

Special characters for individual fields, how to print 199, 205, 431
in literals 390, 484 totalling a field by category 226

Special forms (see also Statistical lines)
how to print 149 STCKADJ parm

Speed-Up tips 603 in OPTIONS statement 255, 508, 544, 547
BUFND parm in INPUT statement 367, 379, STCKDATE

487 data type 508, 544
BUFND parm in READ statement 367, 379, STCKTIME

512 data type 255, 508, 547
BUFNI parm in INPUT statement 367, 379, STDLABEL 472

487 STEPLIB DD 358
BUFNI parm in READ statement 367, 379, Stringing fields together 32, 94, 413

512 Subheadings (see Headings) xiv
DB2 inputs 342 SUBLIB parm
limiting number of records processed 502 in COPY statement 456, 459
MULTI parm in READ statement 237, 523 in OPTIONS statement 326, 378, 509

SPLITDETAIL parm Sublibrary (VSE) (see Librarian (VSE) and Copy
in OPTIONS statement 158, 508 library)

Splitting Subroutines
column headings into multiple lines 128, 296, calling (see Data exit programs) xiv

442, 467 Subset
control statement into multiple lines 385 subsetting a mainframe file 263
report into multiple lines 147 SUBSTR built-in function (see #SUBSTR built-in
titles into parts 40, 174, 532 function) 572
why total line split into two lines 186 Subsystem

Spreadsheets which DB2 subsystem 499
producing output file for 596 Subtraction

Stacking blanks required around minus sign 412
column headings 128, 296, 442, 467 how to perform 30, 92, 412, 444
report lines 147 SUMMARY parm

Standards in OPTIONS statement 62, 110, 222, 509
shop standards 368 Summary reports

Stars (*) counting the number of occurrences 222
(see Asterisks) definition of 218

STARTCOL parm how to produce 62, 218, 509
in ASM & COBOL statements 327, 436 summary PC files 106, 110

STARTDISP parm Suppressing
in ASM & COBOL statements 327, 436 all column headings 130, 259, 262, 503

State automatic copying from copy library 305, 488,
spelling out name 230, 452 513

Statistical lines blank lines 158, 162, 507
at control breaks, customizing 194, 423-426 blanks between fields 498
at end of report, customizing 214 carriage control character 259, 262, 360, 503
how to print 56, 194, 423-426, 526-528 decimal digits in numbers 280, 394

INDEX

Index 667

detail report lines 62, 218, 224, 499, 509 Telephone numbers
error indicators 583 how to define 267
excess blanks 569 how to format 266, 282, 570
individual column headings 130, 442 Testing
leading zeros 134, 395, 466, 552 a bit field 405, 453, 484
lines with only zero values 154, 507 for valid data 162
message when maximum lines/pages printed one or more conditions 399, 482

504 records for inclusion in report 24, 86, 390, 481
overprinting 504 Tie-breakers
repeating values 127, 140 used in sort 497, 526
the Grand Totals 216, 259, 262, 504 TIME built-in field (see #TIME built-in field) 562
the letter "S" when only one item 206, 429, 562 Time fields
the total line at control breaks 193, 204, 427, creating your own 392, 444

528 decimal digits 287, 450, 464, 545
titles 259, 262, 504 default lengths 545
totals for certain columns 144, 266, 279, 282, how to define 286

440, 446, 462 (see also Times)
underscore lines 130, 442, 504 Time of day
zeros 126, 171, 200, 430, 441, 478, 534 built-in field 562, 565

SWALIAS comparing 401
member in copy library 308, 365, 378, 457, conversion from GMT to local time 508

586 TIME24 built-in field (see #TIME24 built-in field)
SWCOPY DD 325, 358, 366, 456 562
SWLIST DD 358, 387 TIMEDELIM parm
SWOPTION DD 358, 368 in OPTIONS statement 136, 137, 509
SWOUTPUT DD 358, 360, 362 TIMEEXIT
Syntax data type 548

convention used 418 Times
general rules 384 adding minutes to 580
of computational expressions 410 comparing 28, 89, 254, 286, 392, 482
of conditional expressions 399 converting character data to time value 254,
of control statements 418 580

SYS010 370, 380 converting numeric values to times 254, 576,
SYS011 370, 372, 374 580
SYSIN DD 358 converting to character value 570
SYSIPT 370 converting to numeric value 254, 403, 575
SYSLST 374 decimal digits 253
SYSnnn default display format 134, 500, 559

associated with input files 472 defining time fields 460
SYSOUT DD 358 delimiter used 136, 509, 545, 557, 558

T
Tab character

as delimiter in output files 258, 498
Tables

in COMPUTE statement 452, 607
Tapes

standard/nolabel (VSE) 472
tape files, used as input 270, 273, 274, 471,

475, 492
which tape drive 274
writing output to tapes (VSE) 375, 504

difference between two times 576
formatting in report 44, 132, 171, 200, 253,

398, 441, 557
handling invalid times 582, 584
how many seconds in 576
how sorted 530
how time fields stored in input file 469, 545
in COBOL and Assembler record layouts 318,

322
including only certain times in a report 28, 482
including only certain times in PC file 89
including time of day in footnotes 180, 477
including time of day in titles 168, 533

INDEX

668 Report Writer Reference Manual

on different days, computing interval between saving data from titles in input files 244
254 suppressing 259

performing calculations 410 (see also TITLE statement, FOOTNOTE
rounding to minutes 44 statement, Column headings)
selecting the largest of several times 577 TLBL statement 274, 375
selecting the smallest of several times 577 (see also DLBL statement)
showing AM and PM 557 TODAY built-in field (see #TODAY built-in field)
tips for using time fields 253 564
totalling 146, 253, 287, 441, 447, 462 Top margin
writing time literals 392 how to specify 150
zero times, printing blanks 126, 171, 200, 430, Top of page

441, 478, 534 printing heading lines 210, 214, 426
zeros assigned for missing fields 233 Top ten type reports 220, 499

TITLE statement 531 TOTAL (TOT) parm
Ali gnment (left, center and right) 40, 174, 532, in BREAK statement 187, 190, 206, 214, 427

535 in BREAK statement print expression 106,
blank titles 149, 150 201, 204, 208
built-in fields available for 533 in BREAK statement, two different uses 202
centered by default 38 in SORT statement 182, 211, 219, 528
centered data looks wrong 172, 177, 180, 535 Total line
how dates, times and numbers are formatted **S** appears in 187

171, 534, 550 customizing 187, 190, 204, 206, 427
how to use 38, 165 display format used for 136, 430
including data from files 165, 533 how default total line looks 186, 427
including date, time, page number in title 38, how default total line looks in PC file 106

40, 168, 533 how to print 52, 182, 427, 528
including quote or apostrophe within 390 how to suppress 193, 427, 528
justifying contents of fields 170, 171, 535 in PC file 104
leading, trailing slashes 149, 177 justification used in 143, 431
multiple 38 level indicated by asterisks 212
omitting 19, 38 multiple levels 58, 211, 219
overlap 180 multiple total lines at control breaks 192
parms allowed in 170 percentages for control group 187, 448, 453
print expressions 174 PICTURE can prevent totalling 144
printing in a certain column 177 printing blank lines after 54, 183, 426, 527
right aligned part looks wrong 177, 535 printing blank lines before 192
spacing between items 170, 534 printing only the total lines in a report 62, 218,
specifying column headings with 149, 177 224
specifying width of fields 170, 171, 535 printing the current date in 192
spelling out month name 40, 44, 171, 535 printing the number of items in a control group
suppressing titles 504 187, 206, 429
syntax 532 suppressing, for a particular column 144, 266,
that won't fit on a single line 386 440, 446, 462
underlining 149 totalling time fields 146, 253, 287, 441, 447,
use of quotation marks, apostrophes 38, 165, 462

386, 390, 534 using footing instead of total line 204
use of slash for alignment 40, 174, 532 where it prints at control break 192
where to put 38, 386 which columns are totalled 126, 144, 266, 279,
(see also Titles) 282, 440, 446, 462

Titles why split into two lines 186
how to specify 38, 165 (see also Totals and Grand totals)
printing at bottom of page 180, 476 Totals
printing lower on page 150 customizing the total line at control breaks 427

INDEX

Index 669

how to print an individual field's total 201, 205, suppressing overprinting 130, 504
431 use in field names 388

how to request 427, 528 Unique
totalling a field by category 226 field names, how to make 68, 116, 228, 232,
(see also Total line and Grand totals) 491, 519

TPICTURE file key not unique 235
display format 557 Unsigned
how to write 253, 398 numeric data 540

Trailer records UNSTRING (see under #PARSE)
in batch type files 241 Upper case 573

Trailing USA
plus or minus sign 394 non-USA formatting options 137
slash, in TITLE statement 149, 177 User-defined fields 30, 92, 444

TRANSLATE built-in function (see
#TRANSLATE built-in function) 573

TRIPLESPACE parm
in OPTIONS statement 507

True
bit value 581

Truncation
how to perform 450
of column headings 131
of columns 131, 163
of decimal digits (#INT built-in function) 575
what to do 163, 362, 375

Type
member type of VSE library 502

TYPE parm
choosing character versus numeric 282
comparing fields of different types 282, 392,

403
converting field to different type 403, 570, 575,

579, 580
in FIELD statement 276, 278, 284, 286, 298,

469
in FILE statement 270, 475
in INPUT statement 272, 492
in READ statement 272, 519
list of data types 539

Types of data 275, 389, 469
(see also TYPE parm)

U
UCASE built-in function (see #UCASE built-in defining 270, 273, 475

function) 573 key greater than or equal to 515
Undefined keyed reads to 65, 113

field indicator (***U***) 583 missing records 367, 379, 523
Underscore (_) must be KSDS for READ statement 519

name broken at, for column headings 127, 297, okay in READ statements 65, 113, 519
442 reading limited keyrange 490

printing in titles 149 reading multiple records 516
suppressing in column headings 130, 442 specifying BUFND 367, 379, 487, 512

V
Values

comparing contents of fields 26, 88, 400, 482
including only certain values in PC file 86
including only certain values in report 24, 86,

400, 481
Variable

location in record 249, 295, 468
number of report lines per input record 154

Variable length files
clearing the I/O area 487, 503, 513
defining 472
record descriptor word (RDW) 271, 273, 294,

463, 474, 490, 501
Vertical bar ()

printing a vertical line between columns 152
Vertical bar ()

use in column headings 128
Vertical bar ()

use in column headings 296, 442, 467
use in conditional expressions 407

Vertical bar ()
using a different character 128

Vertical bar ()
using a different character 501

Vertical bar ()
where on keyboard 128

VSAM files
alternate indexes, paths 235

INDEX

670 Report Writer Reference Manual

specifying BUFNI 367, 379, 487, 512
speed-up tip 367, 379, 490, 609
used as input (MVS) 270, 492
used as input (VSE) 273, 471
using generic keys 514
VSAM-managed SAM files 273, 471
writing output to (MVS) 362, 505
writing output to (VSE) 375, 504

VSE operating system 370

W
Week

computing same day next week 579
day of (see Day of week)
day of week for a given date 570

WHEN parm
in COMPUTE statement 34, 96, 399, 451
order of evaluation 453

WHERE parm
in INPUT statement 342, 350, 492
in READ statement 345, 516, 517, 520
reading multiple rows 516
similar to DB2 WHERE clause 342
syntax 350

Whole
numbers, how to round out decimal digits 280,

394, 450, 578
Width

maximum width allowed with justification 142
of column, changing 46, 127, 131, 443
of computed fields 450
of fields in output files 260, 262
of items in footnotes 480
of items in lines printed at control breaks 187,

201, 431
of items in the title 170, 171, 535
of numeric data in report, specifying with a

PICTURE 394
of report, bigger than 132 characters 362, 375
of report, maximum 163

Word processors
importing PC files into 602
producing output file for 602

WordPerfect
producing output file for 602

Words
counting words in a string 578
parsing a character string 572

Work files
Sort (MVS) 358
Sort (VSE) 381, 508

X
X

meaning of X'1234' type literals 390, 404
XOR built-in function (see #XOR built-in function)

574

Y
Year

2-digit or 4-digit 258, 262, 391, 497, 544, 554,
616

extracting for a given date 573, 578
maximum year allowed in literals 391
which century 497
Year 2000 616

YEAR built-in function (see #YEAR built-in
function) 573

YEARNUM built-in function (see #YEARNUM
built-in function) 578

Yesterday
computing yesterday's date 249

YY
year in dates, which century 497

YYDDD
date fields 543, 544, 554-556

YYMMDD
date fields 542-544, 554, 555

YYYYDDD
date fields 543, 544, 554-556

YYYYDDMM
date fields 543

YYYYMMDD
date fields 542-544, 554-556

Z
Zero

assigned to missing date, time and numeric
fields 233, 523

division by zero 583
division by zero, suppressing 509, 583
excluding zero values from averages and

minimums 194, 425, 426, 431, 528
leading zero in date literals 391
leading zero suppression 134, 395
leading zeros, printing 395
padding 484
printing blanks instead of zeros 162, 570
spaces between items in title 534
spaces between items in total line 206, 430
spaces between report columns 124, 125, 440
suppressing lines with only zeros 154, 507
treating invalid data as zeros 509

INDEX

Index 671

ZERODIVBYZERO parm
in OPTIONS statement 509, 583

ZEROINVDATA parm
in OPTIONS statement 159, 509, 583

ZEROOVERFLOW parm
in OPTIONS statement 509, 583

Zoned data 331

	Table of Contents
	List of Figures
	How to Use This Manual
	Chapter 1. Introduction
	Chapter 2. How to Request a Report
	Chapter 3. How to Request a PC File
	Chapter 4. Beyond the Basics
	Chapter 5. How To Define Your Input Files
	Chapter 6. Working with Databases
	Chapter 7. Operating System Considerations
	Chapter 8. General Syntax Rules
	Chapter 9. Control Statement Syntax
	Appendices Table of Contents
	Appendix A. Data Types
	Appendix B. Display Formats
	Appendix C. Built–In Fields
	Appendix D. Built–In Functions
	Appendix E. Error Indicators
	Appendix F. Files Used in Examples
	Appendix G. Sample Data Exit Program
	Appendix H. How to Import PC Files
	Appendix I. Speed–Up Tips
	Appendix J. Year 2000 Information
	Appendix K. I/O Exits
	Updates to This Manual
	Index

