
CIMS Lab, Inc.
CIMS Report Writer
User Guide

Version 2.8.0 - MVS

Title and Publication Number

CIMS Lab Publication Number: RW-UG-280-02

Printed: May, 2001

Information in this guide is subject to change without notice and does not constitute a commitment on the
part of CIMS Lab, Inc. It is supplied on an “as is” basis without any warranty of any kind, either explicit or
implied. Information may be changed or updated in this guide at any time.

Copyright Information

Copyright 1991-2000 Pacific Systems Group.

Names marked ™ or ® and other company and product names may be trademarks or registered trademarks
of their respective vendors or organizations.

Mailing Address

CIMS Lab, Inc.
3013 Douglas Blvd., Suite 120
Roseville, CA 95661-3842

Table of Contents

Preface

Philosophy . xvii

Contacting the CIMS Lab . xviii

About This Guide . xviii

What Should You Read? . xviii

How This Manual Is Organized . xviii

Conventions . xxii

Related Publications . xxii

1 • Introduction

What Is Report Writer? . 1-2

Create Brand–New Reports in Minutes . 1-2

Use Mainframe Data in Any PC Program . 1-4

Create Custom Mainframe Files in Minutes . 1-5

Ways that Report Writer Benefits You! . 1-5

Report Writer Pays for Itself Fast! . 1-7

Report Writer Features . 1-9

2 • How to Request a Report

Introduction . 2-3

Control Statements . 2-4

File Definition Statements . 2-4

Input Files (Raw Data) . 2-4

Custom Reports . 2-4

Report Writer . 2-4

How to Produce a Report in 5 Minutes . 2-7

How to Use the INPUT Statement . 2-7

How to Use the COLUMNS Statement . 2-8

Another 5–Minute Report Example . 2-10
CIMS Report Writer User Guide iii ■

■ Table of Contents
Using Your Company's Files .2-10

How to Specify Which Records to Include In Your Report . 2-13

How to Use the INCLUDEIF Statement .2-13

How to Write Conditional Expressions .2-15

How to Create Your Own Fields . 2-19

Creating Numeric Fields .2-19

Creating Character Fields .2-21

Assigning Values to Fields Based on Conditions .2-23

How to Make Your Own Report Titles . 2-26

How to Use the TITLE Statement .2-26

More Date and Time Features .2-28

How to Align the Title .2-28

Changing the Format of your Report . 2-31

Using Display Formats .2-31

Specifying Column Headings .2-31

Specifying a Column's Width .2-33

How to Specify the Report Order . 2-34

How to Use the SORT Statement .2-34

Automatic Sorting .2-34

How to Create Control Breaks . 2-37

How to Use the BREAK Statement .2-37

How to Specify Control Break Spacing .2-39

How to Print Statistics at a Control Break .2-41

How to Request Multiple Control Breaks .2-43

How to Create Summary Reports . 2-46

How to Create a Summary Report .2-46

How to Use Data from More Than One File . 2-49

How Auxiliary Input Files Are Processed .2-49

How to Use the READ Statement .2-50

How to Use Multiple READ Statements .2-54

3 • How to Request a PC File

Introduction . 3-2

Control Statements . 3-3

File Definition Statements . 3-3

Input Files (Raw Data) . 3-3

Report Writer Writer . 3-3

How to Produce a PC File in 5 Minutes . 3-6
■ iv CIMS Report Writer User Guide

Table of Contents ■
Using the OPTIONS Statement to Name the PC Program . 3-8

How to Use the INPUT and COLUMNS Statements . 3-8

Importing Your PC File into Lotus 1–2–3 . 3-9

Another 5–Minute Example . 3-10

Using Your Company's Files . 3-10

How to Include Only Certain Records In Your PC File . 3-13

How to Use the INCLUDEIF Statement . 3-13

How to Write Conditional Expressions . 3-15

How to Create Your Own Fields . 3-18

Creating Numeric Fields . 3-18

Creating Character Fields . 3-20

Assigning Values to Fields Based on Conditions . 3-22

How to Specify the PC File Order . 3-25

How to Use the SORT Statement . 3-25

Automatic Sorting . 3-25

How to Create Control Breaks . 3-28

How to Use the BREAK Statement . 3-28

Customizing the Control Break . 3-30

How to Create Summary Files . 3-33

How to Create a Summary File . 3-33

How to Use Data from More Than One File . 3-36

How Auxiliary Input Files Are Processed . 3-36

How to Use the READ Statement . 3-37

How to Use Multiple READ Statements . 3-40

4 • Beyond the Basics

Introduction . 4-3

Additional Features in the COLUMNS Statement . 4-3

Writing Print Expressions . 4-3

How to Change the Column Headings . 4-7

Special Options Related to Column Headings . 4-11

How to Change the Width of a Column . 4-12

How to Change the Way Dates, Times and Numbers Are Formatted . 4-13

Formatting Tips for International Users . 4-18

How to Format a Column in ASCII . 4-21

How to Blank Out Repeating Values . 4-22

How to Change the Justification of Data within a Column . 4-24

How to Specify Which Columns to Total . 4-26

How to Produce Multi–Line Reports . 4-29
CIMS Report Writer User Guide v ■

■ Table of Contents
How to Change the Report Margins .4-32

How to Print Bar Graphs .4-34

How to Print Vertical Lines between Report Columns .4-34

How to Print a Variable Number of Lines Per Input Record . 4-36

Variable Number of Lines — Strategy 1 .4-36

Variable Number of Lines — Strategy 2 .4-41

Putting a Variable Number of Items on a Single Line .4-45

What If You Run Out of Room? . 4-46

Why Do I See ****X**** in My Report? . 4-47

Customizing the Report Titles . 4-48

How to Include Data from a File in the Title . 4-48

How to Include the Page Number, Date and Time in a Title .4-51

How to Change the Appearance of Items in the Title .4-53

How to Split the Title into Left, Center, and Right Parts .4-57

Special Options Related to Titles .4-63

How to Print "Titles" at the Bottom of Each Page .4-64

Customizing the Control Breaks . 4-66

How to Change the Control Break Spacing .4-67

How a Default Total Line Looks .4-70

Computing True Percentages and Ratios at Control Breaks .4-71

How to Customize the Total Line at a Control Break .4-74

How to Suppress the Total Line at a Control Break .4-76

How to Customize the Statistical Lines at a Control Break .4-77

How to Print Customized Footing Lines at a Control Break .4-80

How to Print the Number of Items in a Control Group .4-91

How to Print Header Lines at the Beginning of a Control Group .4-93

Printing a "Line Number" in Your Report . 4-95

Reports with Multiple Control Breaks . 4-96

How to Customize the Grand Totals . 4-99

How to Produce Summary Reports .4-102

How to Create "Top 10" Type Reports .4-104

How to Count "Occurrences" in a File .4-106

How to Total a Field by "Category" .4-109

Working With Multiple Input Files .4-111

Using Multiple READ Statements for the Same File .4-111

How to Chain READ Statements .4-113

How to Name the Input File Records .4-115

How Missing Records Are Handled .4-116
■ vi CIMS Report Writer User Guide

Table of Contents ■
Testing for Missing Records . 4-116

Using Generic and KGE Keys . 4-117

How to Perform "One–to–Many" Reads . 4-118

Working with "Batched" Input Files .4-121

Creating PC Files from Existing Reports .4-125

Working with SMF Records .4-130

Working with Time Fields .4-137

Producing Files for Other PC Programs .4-139

Terminology . 4-140

Producing Files for Mainframe Programs .4-144

How to "Subset" Mainframe Files . 4-147

How to Sort Mainframe Files . 4-147

5 • How to Make a Web Report

Introduction . 5-2

How to Create a Web Report . 5-2

Writing your own HTML Tags . 5-4

Experimenting with HTML Tags . 5-5

Customizing the Web Report's Titles . 5-6

Customizing the Web Report's Data Columns . 5-9

Customizing Control Breaks and Grand Totals . 5-11

Putting Graphics in Your Web Report . 5-12

Putting Graphics in Your Report Title . 5-14

Putting Graphics in the Body of Your Report . 5-14

Putting Graphics at Control Breaks . 5-16

Putting Hot Links in your Web Report . 5-16

Using HTML Tables in your Web Report . 5-21

Using Dynamic HTML Tags . 5-25

Using the PRESCRIPT and POSTSCRIPT Options . 5-29

Summary of Options for Web Reports . 5-30

Common HTML Tags . 5-31

6 • How to Define Your Input Files

Introduction . 6-3
CIMS Report Writer User Guide vii ■

■ Table of Contents
How to Define a File . 6-6

How to Use the FILE Statement –– MVS . 6-6

How to Override a File Definition –– MVS . 6-8

How to Use the FILE Statement –– VSE .6-10

How to Override a File Definition –– VSE .6-11

How to Define a Field . 6-12

How to Define a Character Field .6-12

How to Define a Numeric Field .6-15

Should You Define a Field as Character or Numeric? .6-20

How to Define a Date Field .6-21

How to Define a Time Field .6-24

How to Define a Bit Field .6-26

How to Specify a Field’s Location in a Record .6-30

Field Location in Variable Length Files .6-33

Variably Located Fields .6-33

How to Specify a Field’s Column Heading .6-35

How to Define a Field Created by a Data Exit .6-35

Keeping Your File Definitions in a Copy Library . 6-39

Including the Definition Statements "In–Line" .6-39

A Better Way: Using the Copy Library .6-42

How to Use a Copy Library Alias .6-46

Defining One–Time Fields .6-47

Using Cobol and Assembler Record Layouts . 6-49

Live Runs Using Cobol Record Layouts .6-49

Live Runs Using Assembler Record Layouts .6-53

Handling Date and Time Fields .6-56

How Report Writer Handles Arrays .6-59

Converting Cobol and Assembler Layouts to FIELD Statements .6-60

How to Copy Cobol and Assembler Record Layouts from Libraries .6-64

Mixing FIELD Statements with COBOL and ASM Statements .6-66

The Starting Column of a Cobol or Assembler Layout .6-66

The "Default Location" After a Cobol or Assembler Layout .6-66

The Scope of the COBOL and ASM Statements .6-67

Other Features Available in COBOL and ASM Statements .6-67

Technical Notes on Cobol Support .6-67

Technical Notes on Assembler Support .6-70

7 • Working with Databases

Introduction . 7-2

Using Report Writer with DB2 Databases . 7-2
■ viii CIMS Report Writer User Guide

Table of Contents ■
Using DB2 Data in Reports . 7-3

Using DB2 Data in PC Programs . 7-5

What Fields Are in Your DB2 Table? . 7-7

Using the WHERE Parm . 7-7

Using the ORDERBY Parm . 7-8

Using Multiple DB2 Tables . 7-10

Using Data from Three DB2 Tables . 7-13

WHERE Parm Syntax . 7-15

Customizing Your DB2 Fields . 7-18

Saving DB2 File Definitions . 7-19

DB2 Setup . 7-20

DB2 Restrictions . 7-21

8 • Operating System Considerations

Introduction . 8-2

MVS Operating System Considerations . 8-2

Execution JCL for Reports –– MVS . 8-2

Execution JCL for PC and Mainframe Files –– MVS . 8-5

Report Writer PROC –– MVS . 8-7

Output File Options –– MVS . 8-7

Setting Up File Definitions –– MVS . 8-9

Copy Library DD –– MVS . 8-11

Input File DDs –– MVS . 8-12

Specifying Shop–Wide Options –– MVS . 8-13

Completion Codes –– MVS . 8-14

VSE Operating System Considerations . 8-15

Execution JCL for Reports –– VSE . 8-15

Execution JCL for PC and Mainframe Files –– VSE . 8-17

Output File Options –– VSE . 8-19

Downloading PC Files –– VSE . 8-20

Setting Up File Definitions –– VSE . 8-21

Input File DLBL/TLBLs –– VSE . 8-24

The Control Statement Listing –– VSE . 8-25

The EXEC Statement’s SIZE Parm –– VSE . 8-25

Specifying Sort Work Files –– VSE . 8-26

Completion Codes –– VSE . 8-26

9 • General Syntax Rules

Introduction . 9-3

Control Statements . 9-3
CIMS Report Writer User Guide ix ■

■ Table of Contents
What Is a Control Statement? . 9-3

How to Write Control Statements . 9-3

How to Continue a Control Statement On To Multiple Lines . 9-4

The Order of Control Statements . 9-5

How to Put Comments in Your Control Statements . 9-5

How to Put Page Breaks in the Control Listing . 9-6

Names of Files, Fields, and Records . 9-7

Rules for Assigning Names . 9-7

How to Make Field Names Unique . 9-7

How to Write Literals . 9-8

The Five Types of Data . 9-8

Character Literals . 9-9

Numeric Literals .9-10

Date Literals .9-10

Time Literals .9-11

Bit Literals .9-11

When Do You Need Quotes Around a Number? .9-11

PICTURE Display Formats . 9-12

Examples of PICTUREs .9-13

How PICTUREs Work .9-14

Time PICTUREs .9-17

Conditional Expressions . 9-18

How to Specify a Relation Condition .9-19

Comparing Character Operands of Different Lengths .9-22

Comparing Fields of Different Data Types .9-22

Conditions Involving Explicit Literals .9-23

How to Specify a Bit Field Condition .9-24

How to Specify Multiple Conditions .9-24

Conditional Expressions That Use AND .9-25

Conditional Expressions That Use OR .9-26

Conditional Expressions That Use Both AND and OR .9-27

How to Shorten Long Expressions .9-27

How to Negate Conditions .9-29

Examples of Conditional Expressions .9-30

Computational Expressions . 9-32

Operands in Computational Expressions .9-33

Operators in Computational Expressions .9-33

Order of Operations .9-34

Examples of Computational Expressions .9-35
■ x CIMS Report Writer User Guide

Table of Contents ■
10 • Control Statement Syntax

Introduction . 10-2

Syntax Notation . 10-2

ASM Statement . 10-3

BREAK Statement . 10-5

COBOL Statement .10-18

COLUMNS Statement .10-24

COMPUTE Statement .10-31

COPY Statement .10-42

FIELD Statement .10-47

FILE Statement .10-58

FOOTNOTE Statement .10-65

INCLUDEIF Statement .10-70

INPUT Statement .10-72

OPTIONS Statement .10-81

READ Statement . 10-102

SORT Statement . 10-117

TITLE Statement . 10-125

A • Data Types

Introduction . A-2

Character Data Types . A-3

Numeric Data Types . A-3

Date Data Types . A-5

Time Data Types . A-8

Bit Data Types . A-11

B • Display Formats

Introduction . B-2

Display Formats for Any Type of Field . B-3

Numeric Display Formats . B-3

Date Display Formats . B-5

Time Display Formats . B-8
CIMS Report Writer User Guide xi ■

■ Table of Contents
Default Display Formats . B-9

C • Built-In Fields

Introduction . C-2

Character Built–In Fields . C-3

#DAYNAME . C-3

#ITEM–ENDING . C-3

#JOBNAME . C-3

#TIME . C-3

#TIME24 . C-3

Numeric Built-In Fields . C-4

#COUNTER
#COUNT . C-4

#ITEMS
#ITEM . C-4

#ITEM/#ITEM1/#ITEM2/#ITEM3/#ITEM4/
#ITEM5/#ITEM6/#ITEM7/#ITEM8/#ITEM9 . C-4

#PAGENUM
#PAGE . C-4

Date Built-In Fields . C-4

#COMDATE . C-4

#TODAY . C-5

Time Built-In Fields . C-5

#HHMMSS . C-5

D • Built-In Functions

Introduction . D-3

Functions that Return a Character Value . D-5

#AND(char1,char2) .D-5

#ASCII(char) .D-5

#COMPRESS([n,] char [,n] ,char ...) .D-6

#DAY[(date)] .D-6

#EBCDIC(char) .D-6

#FORMAT(fieldname [,display–format] [,width] [,BIZ] [,LEFT/CENTER/RIGHT] [ASCII]) D-6

#LCASE(char) .D-7

#LEFT(char,num1) .D-7

#MONTH[(date)] .D-8

#OR(char1,char2) .D-8

#PARSE(char,num) .D-9

#RIGHT(char,num1) .D-9

#SUBSTR(char,num1,num2) . D-10
■ xii CIMS Report Writer User Guide

Table of Contents ■
#TRANSLATE(char1,char2,char3) . D-10

#UCASE(char) . D-11

#XOR(char1,char2) . D-11

#YEAR[(date)] . D-11

Functions that Return a Numeric Value .D-12

#ABS(num) . D-12

#DAYNUM[(date)] . D-12

#INDEX(char1,char2) . D-12

#INT(num) . D-12

#MAKENUM(char/date/time) . D-12

#MAX(num1,num2,num3,...) . D-14

#MIN(num1,num2,num3,...) . D-14

#MOD(num1,num2) . D-14

#MONTHNUM[(date)] . D-15

#NUMWORDS(char) . D-15

#ROUND(num1,num2) . D-15

#YEARNUM[(date)] . D-16

Functions that Return a Date Value .D-16

#MAKEDATE(char/num) . D-16

Functions that Return a Time Value .D-17

#MAKETIME(char/num) . D-17

Functions that Return a Bit Value .D-18

#OFF . D-18

#ON . D-18

E • Error Indicators

Introduction . E-2

Suppressing Error Indicators . E-3

Propagation of Error Indicators . E-4

Testing for Valid Data . E-4

F • Files Used in Examples

G • Sample Data Exit Program

H • How to Import PC Files

Introduction . H-2

Importing a PC file into Lotus 1–2–3 for Windows . H-3

Importing a PC file into Lotus 1–2–3 (DOS Versions) . H-3
CIMS Report Writer User Guide xiii ■

■ Table of Contents
Importing a PC File into Excel . H-3

Importing a PC File into Quattro Pro . H-4

Importing a PC File into Paradox for Windows . H-4

Importing a PC File into Paradox (DOS Versions) . H-5

Importing a PC File into Microsoft Works . H-5

Importing a PC File into Corel Chart . H-6

Importing a PC File into PowerPoint . H-6

Importing Files into Harvard Graphics . H-7

Importing a PC File into dBASE IV . H-7

Importing a PC File into R:BASE . H-7

Importing Files into Word Processing Programs . H-8

I • Speed-Up Tips

Introduction . I-2

INCLUDEIF Statement . I-2

Order of ANDed Tests . I-2

Order of ORed Tests . I-3

Fields from Auxiliary Input Files . I-4

Intermediate Conditional Expressions . I-5

Conditional COMPUTE Statements . I-5

Compute Statements with RETAIN . I-6

Intermediate Computational Expressions . I-7

Intermediate Conditional Expressions . I-8

Read Statements with the MULTI parm . I-8

VSAM I/O . I-8

VSAM Buffers . I-9

READ Statement Buffers . I-9

INPUT Statement Buffers . I-9

Pre–Sorting the Input File . I-10

KEYRANGE Parm . I-11

INCLUDEIF Statement Order . I-11

Replace an Auxiliary File with a “Table Lookup” . I-12

Clearing I/O Areas . I-13

Fine-Tuning the Sort . I-13

Development Cycle . I-14
■ xiv CIMS Report Writer User Guide

Table of Contents ■
Using Explicit Literals in Conditional Expressions .I-14

J • Year 2000 Information

How to Prepare for the Year 2000 and Beyond .J-2

K • I/O Exits

L • DB2 Option Installation

Introduction . L-2

Step 1. Link-Edit the Object Code .L-2

Step 2. DB2 Setup .L-3

Index
CIMS Report Writer User Guide xv ■

■ Table of Contents
■ xvi CIMS Report Writer User Guide

Preface

As companies continue to integrate computer technology into their business operations,
it becomes increasingly important to properly administer the IT function, particularly
with respect to performance and cost.

CIMS Report Writer is a comprehensive, flexible software solution that reports on a wide
variety of data from multiple operating systems. Results from the Report Writer can be
accessed from either the mainframe or a workstation.

Philosophy 0

Originally developed in 1974, the CIMS Suite of Products have focused on meeting the
financial and resource reporting requirements of Information Services Departments.
CIMS has evolved with corporate IT management requirements. Focused commitment
to client service and support sets CIMS apart from competing products. Our goal is to
provide the best software in the world at the lowest possible cost to our customers.

The CIMS Lab strongly believes in and executes the concept of continuous product
improvement. Customers have access to CIMS product development personnel to
ensure that customer feedback and other critical issues are incorporated into the next
release of the product.
CIMS Report Writer User Guide xvii ■

■ Preface

Contacting the CIMS Lab
Contacting the CIMS Lab 0

You can contact us with any questions or problems you have. Please use one of the
methods below to contact us.

For product assistance or information, contact:
USA & Canada, toll free (800) 283-4267
International (916) 783-8525
FAX (916) 783-2090
World Wide Web www.cimslab.com

Our Mailing Address is:
CIMS Lab, Inc.
3013 Douglas Blvd., Suite 120
Roseville, CA 95661-3842

About This Guide 0

What Should You Read? 0

It is not necessary to read this entire manual in order to start producing custom reports
and PC files with Report Writer. To learn how to use Report Writer, we suggest the
following steps:

1 Read Chapter 1, Introduction to learn just what Report Writer is and what it can do for
you.

2 If you will be producing custom reports, read Chapter 2, How to Request a Report. There
you will learn the basics of producing reports with Report Writer.

3 If you want to produce PC files, read Chapter 3, How to Request a PC File. That chapter
teaches you the basics of producing PC files with Report Writer.

4 Start producing your own reports and PC files! When questions come up, use the
Index at the end of this manual to locate the section that explains how to do what you
want.

Note • If you are responsible for initially installing Report Writer and defining your
input files, also read Chapter 6, How to Define Your Input Files and Chapter 8, Operating
System Considerations.

How This Manual Is Organized 0

This manual is divided into two major parts.
■ xviii CIMS Report Writer User Guide

Preface ■

About This Guide
Part 1 is the User's Guide, which explains in non–technical terms how to produce
reports and PC files with Report Writer. The User's Guide contains over 100 examples of
actual Report Writer runs. It also explains how to define files and setup the JCL needed
to execute Report Writer. Just read the parts of the User's Guide that explain what you
need to do.

Part 2 is the Reference Manual, which provides complete syntax information about each
of the Report Writer control statements. You will only need to refer to this portion of the
manual when you have specific questions about control statement syntax.

Following the Reference Manual is a section titled "Updates to This Manual". Be sure to
file any documentation updates that you receive in this section. And remember to check
this section for the latest features available in your shop's current version of Report
Writer.

The User's Guide and Reference Manual are divided into 9 chapters, plus Appendices and
Index. Following is a brief synopsis of each chapter and appendix.

Ch.
No. Chapter Name Content Description

1 Introduction This chapter explains just what Report Writer is,
and what it can do to save you time and effort.
Everyone should read this chapter.

2 How to Request a Report This chapter is a tutorial on producing custom
reports. It is divided into nine easy lessons.
These lessons show you how to write the control
statements that tell Report Writer how to
produce a report. Everyone who will be
producing reports with Report Writer should
read at least some of the lessons in this chapter.

3 How to Request a PC File This chapter is a tutorial on producing PC files
from your shop's mainframe data. It is divided
into seven easy lessons. These lessons show you
how to write the control statements that tell
Report Writer how to produce a PC file.
Everyone who will be producing PC files with
Report Writer should read at least some of the
lessons in this chapter.

4 Beyond the Basics This chapter shows how to use of some of
Report Writer's more advanced features to create
more complex reports and output files. After
you feel comfortable with the basics, scan the
headings and examples in this chapter to get an
idea of what else Report Writer is capable of
doing. You may find that you can use Report
Writer to produce reports that you thought were
too complicated for a Report Writer.
CIMS Report Writer User Guide xix ■

■ Preface

About This Guide
5 How to Make a Web Report This chapter shows how to create custom reports
that are specially formatted for viewing on the
Worldwide Web. Web reports can take
advantage of many formatting options not
available on mainframe printers. These include
such things as custom fonts, colors, bold,
underlined and italicized text, graphics,
photographs, and much more.

6 How to Define Your Input Files This chapter shows how to define your
company's files to Report Writer. This one–time
setup is necessary before your company's files
can be used in reports or PC files. The analyst or
programmer responsible for setting up Report
Writer file definitions should read this chapter.

7 Working with Databases This chapter shows how to produce reports and
PC files using data from special databases
(instead of standard files.) Read this chapter if
you will be using Report Writer with a special
database.

8 Operating System Considerations This chapter explains what "job control
language" (JCL) is necessary to run a Report
Writer job under different operating systems.
The analyst or programmer responsible for
setting up the JCL to run Report Writer should
read this chapter.

9 General Syntax Rules This chapter explains some of the general rules
to follow in writing control statements. For
example, it explains: the rules for naming fields;
how to split a long control statement into
multiple lines; the rules for writing
computational expressions; etc. It is not
necessary to read through this entire chapter.
Rather it is intended to be a reference chapter.
Refer to the appropriate section whenever you
need help writing a control statement.

10 Control Statement Syntax This chapter shows the complete syntax for each
of Report Writer's control statements. It is not
necessary to read through this entire chapter. It
is also a reference chapter. Refer to the
appropriate section whenever you need help
writing a control statement.

Ch.
No. Chapter Name Content Description
■ xx CIMS Report Writer User Guide

Preface ■

About This Guide
A Data Types This appendix lists the types of data that Report
Writer supports in input files.

B Display Formats This appendix lists the many ways that Report
Writer can format data in your reports and
output files.

C Built-In Fields This appendix lists Report Writer's built–in
fields which are available for use in your
requests.

D Built-In Functions This appendix lists Report Writer's built–in
functions which are available for use in the
COMPUTE statement.

E Error Indicators This appendix lists Report Writer's error
indicators (such as ***I***), explains their
meaning, and shows ways that they can be
handled.

F Files Used in Examples This appendix shows the Report Writer file
definitions (and the raw contents) of the sample
files used for the examples in this manual.

G Sample Data Exit Program This appendix shows a sample data exit program
and a sample run that uses it.

H How to Import PC Files This appendix shows the exact steps used to
import PC files into a number of popular PC
programs.

I Speed-Up Tips This appendix explains various techniques that
can be used to optimize Report Writer's run–
time efficiency.

J Year 2000 Information This appendix discusses issues related to the
Year 2000.

K I/O Exits This appendix explains how to use I/O Exits for
special file processing. It includes a sample I/O
Exit program.

Ch.
No. Chapter Name Content Description
CIMS Report Writer User Guide xxi ■

■ Preface

Conventions
Conventions 0

Some or all of the following conventions appear in this guide:

Related Publications 0

As you use this guide, you might find it helpful to have these additional books available
for reference:

■ CIMS Chargeback MVS User Guide

■ CIMS Chargeback VSE User Guide

■ CIMS Chargeback Report Writer Sample Reports for MVS

■ CIMS Chargeback CICS User Guide

■ CIMS Chargeback VM/CMS User Guide

■ CIMS Capacity Planner User Guide

Symbol or
Type Style Represents Example

Bold a new term ...called a source object.

Alternate
color

(online only) hotlinked cross-references
to other sections in this guide; if you are
viewing this guide online in PDF format,
you can click the cross-reference to jump
directly to its location

...see Chapter 3, Data
Migration.

Italic words that are emphasized ...the entry after the current
entry...

the titles of other documents CIMS Chargeback for MVS
Release Notes

syntax variables COPY filename

Monospace directories, file names, command names,
computer code

&HIGHLVL.SRCLIB

computer screen text, system responses,
command line commands

Copy file? Y/N

Monospace
bold

what a user types ...enter RUN APP.EXE in the
Application field

� choosing a command from a cascading
menu

File � Import � Object

Highlighted
Screen Text

used to callout screen text on character-
based screen captures. (When viewed
online, the screen text will be blue.)

Dataset....
Product....
Parmlib...
■ xxii CIMS Report Writer User Guide

Preface ■

Related Publications
■ CIMSMART User Guide
CIMS Report Writer User Guide xxiii ■

■ Preface

Related Publications
■ xxiv CIMS Report Writer User Guide

1
Introduction

What Is Report Writer? . 1-2

Create Brand–New Reports in Minutes . 1-2

Use Mainframe Data in Any PC Program . 1-4

Create Custom Mainframe Files in Minutes . 1-5

Ways that Report Writer Benefits You! . 1-5

Report Writer Pays for Itself Fast! . 1-7

Report Writer Features . 1-9
CIMS Report Writer User Guide 1-1 ■

■ Introduction

What Is Report Writer?
What Is Report Writer? 1

Report Writer is three powerful programs in one.

■ It's an easy–to–use, full function 4GL report writer.

■ It's a powerful PC–format utility. Use its 4GL language to easily turn any mainframe
data into PC files that can be used in all popular PC programs!

■ It's also a mainframe file formatting utility. It's 4GL language lets you easily create
your own custom mainframe output files.

Create Brand–New Reports in Minutes 1

Report Writer makes it easy to produce custom reports from your company's existing
files. Programmer productivity increases dramatically with Report Writer.

To produce a new report without Report Writer, a programmer has to write a new
program in a language such as COBOL. The programmer must code all of the I/O routines,
the selection logic, the computations, summarization, sorting, formatting, page breaks,

Mainframe Files

Report
Writer

Custom reports, queries, one-time analyses, etc.
■ 1-2 CIMS Report Writer User Guide

Introduction ■

Create Brand–New Reports in Minutes
titles, column headings, etc. The process of coding, testing, and debugging takes many
days, if not weeks. Then there's the whole cycle all over again when the users need "a few
minor changes."

The easy alternative is to use Report Writer. With Report Writer, you no longer need to
write detailed programming instructions. You simply describe the desired report to
Report Writer with a few simple control statements (much like SQL allows you to do with
DB2 data.) In fact, you can produce a complete report with Report Writer using only two
statements. Try that with COBOL! Add a few more statements and you can produce more
complex reports.

With Report Writer you'll have your results in minutes, instead of days or weeks. And if
you need to change something later, modifications are a snap with Report Writer.

Report Writer also lets end users get the information they need with less intervention
from programmers. Set up a model report for the users once — then let them modify and
submit it over and over. If new selection criteria are needed in a report, or a different sort
order or different title is wanted, they can make the changes themselves, without taking
up a programmer's time at all. The end users get their results faster, and the programming
staff has fewer interruptions. Everyone benefits with Report Writer.
CIMS Report Writer User Guide 1-3 ■

■ Introduction

Use Mainframe Data in Any PC Program
Use Mainframe Data in Any PC Program 1

Report Writer's PC–formatting feature makes it easier than ever to use mainframe data
in your favorite PC programs (such as Lotus 1–2–3, Excel, Paradox, Quattro Pro, Access,
FoxPro, Harvard Graphics and many others.)

Report Writer is a great help for the PC users in your shop. Are users at your company
manually keying data from mainframe reports into PC spreadsheets or databases? That's
a tedious, time–consuming process that is highly prone to errors. Report Writer lets you
give accurate mainframe data to your PC users in a format that's especially designed
for their PC program. A few keystrokes is all it takes to "import" the data into their PC
program. That means they can begin productive work right away.

Just moving data from the mainframe to a PC is easy. But being able to use that data in
your PC software, easily and efficiently, is another matter. That's where Report Writer
comes in.

Report Writer lets you use "non–PC–compatible" mainframe data in your PC. This
includes such things as bit fields, Julian dates, packed numbers, binary numbers,
hexadecimal fields, etc. PC programs can't handle such data, but Report Writer reformats
these fields into standard ASCII data that your PC program can use.

Mainframe Files

Report
Writer
■ 1-4 CIMS Report Writer User Guide

Introduction ■

Create Custom Mainframe Files in Minutes
Report Writer lets you choose the PC program you prefer. Report Writer knows the
quirks of each PC program and automatically formats the data appropriately.

Create Custom Mainframe Files in Minutes 1

Report Writer creates mainframe output files just as easily as PC–formatted files. Use its
4GL language to: select the input records you want; combine data from multiple input
files; optionally summarize data; sort data; etc. Then have Report Writer write out the
desired data in any format you choose. Use Report Writer to easily convert binary fields
to packed fields (or vice versa), to reformat date fields (perhaps changing YY dates to YYYY
dates), etc. Add new computed fields to your output; or eliminate unneeded fields. You'll
find a thousand and one uses for custom mainframe files once you see how easy it is to
create them.

Ways that Report Writer Benefits You! 1

Here are a few examples of the ways that Report Writer's custom reports, PC files and
mainframe files will:

■ make you more productive!

■ delight your end–users!

■ impress your boss!

Easily Make Quality Production Reports

The reports produced by Report Writer look every bit as professional as those produced
by individual report programs. Titles are perfectly centered, or flush with the report
margins. Column headings are neatly aligned above the data, and underlined. At control
breaks, totals are aligned under the numeric columns, with the name of the break field
clearly identified, etc. This attention to detail means you can use Report Writer to quickly
produce your regular production reports. Its usefulness is not limited to just ad hoc reports.

Fast One–Time Queries

Report Writer is also great for those frequent requests for "one–shot" runs. Now you'll
be able to satisfy requests that there just wasn't time for without Report Writer. You'll
wonder how you ever got along without it.

Make Reports for the Worldwide Web

Report Writer can automatically format your custom report for viewing on any standard
Web browser. Put such reports on your company's Intranet or Internet site for easy
company-wide (or public) viewing. Or, send a report to a colleague as an e-mail
attachment that will be automatically displayed by their e-mail reader. Report Writer is
a powerful tool in the move toward paperless "enterprise reporting."
CIMS Report Writer User Guide 1-5 ■

■ Introduction

Ways that Report Writer Benefits You!
Provide Reports for CICS Systems

Report Writer is ideal for handling the batch reporting side of online CICS applications.
Use your CICS system for online inquiries and updates. Use Report Writer to produce
production reports and custom queries from that system.

Save Money on Special Analyses

Without Report Writer, what happens when a special study is needed? Someone
probably ends up manually going through the "closest" existing report, copying the
needed data onto paper or into a spreadsheet, performing manual calculations, etc. With
Report Writer, you can quickly deliver the exact report that's needed and reduce the
amount of expensive manual effort required.

Reduce Your CPU Usage

Some programming tools are real "CPU Hogs." No wonder many systems programmers
hesitate to encourage programmers to develop new applications using them. Because
Report Writer is written entirely in efficient assembly language, your reports run
amazingly fast.

In many cases, there is no significant difference between Report Writer's run time, and
the run time of a COBOL program written to produce the same report. And when you
consider the CPU cycles saved in development (fewer compiles, test runs, debugging, etc.),
Report Writer can actually lighten the load on your CPU.

Delight Your PC End–Users

When the users would really prefer to manipulate the mainframe data themselves,
Report Writer allows you to give it to them in PC format. The users can then process the
mainframe data however they like in their spreadsheet, database or word processing
program. And the programmers can get back to programming.

Report Writer delights PC users with many exciting new possibilities. With mainframe
data in their PCs, they'll be able to:

■ perform "what if" calculations in PC spreadsheets

■ maintain their own PC database, for personal access or LAN use

■ print high quality graphics on laser printers

■ create color graphics, overhead transparencies and slides for fabulous presentations

Report Writer's PC files also make it easy for you to provide mainframe data to people
without access to your mainframe. Copy the PC file to a diskette and send it to other
departments in your company. Or, mail it to your offices around the world.

Perfect for Downsizing Applications

Use Report Writer for one–time file conversions needed when downsizing mainframe
applications to run on PC systems. Report Writer converts the packed, binary, and bit
fields to the kind of ASCII data that is needed on the PC system.
■ 1-6 CIMS Report Writer User Guide

Introduction ■

Report Writer Pays for Itself Fast!
Reduce PC Download Time and Hard Disk Usage

Report Writer reduces download time and hard disk usage by letting you download only
the data you actually need (not the entire mainframe file.) Why tie up a PC for hours
downloading records and fields that won't even be used?

Some PC–based products require you to download entire reports to the PC. Then, the
PC program must process the entire, gigantic report just to extract the few lines of data
that the PC user actually needs. Report Writer lets you do the extraction on the
mainframe, before you download the data.

Save Wasted Employee Time Caused by Slow PC Processing

Report Writer eliminates hours of needless PC processing by moving much of that
processing from the PC to the mainframe. Here's a few of the ways Report Writer lets
your PC users zip along rather than idling over slow PCs.

No more waiting on slow PC sorts. Let your mainframe perform the sort for you at
mainframe speed. Then download the sorted file.

Instead of summarizing data in your PC, let Report Writer summarize it on the
mainframe. Then just download the small summary file to your PC.

Rather than wait on your PC to compute new columns in your spreadsheet, let Report
Writer create the new columns on your mainframe. Then download them along with the
other mainframe data.

Disk I/O is slow on PCs. So why merge data from multiple files on your PC? Use Report
Writer to combine data from multiple mainframe files (or DB2 tables) into a single file
before you download it to the PC.

Report Writer Pays for Itself Fast! 1

Report Writer quickly pays its own way in a shop — maybe even the first time you use it!

Report Writer greatly increases programmers' productivity. It slashes the programming
effort required to create reports and PC files by 90% or more. That means more
completed projects, in less time, without an increase in staff. And if Report Writer
eliminates the need, even once, to bring in contract programmers to help overburdened
staff with a project— you'll recover its cost right there.

Report Writer also increases the productivity of your PC users. If they are manually
entering data now, the time savings will be enormous. But even if you have an existing
download application, Report Writer reduces the "dead–time" associated with it. You'll
eliminate the wasted time spent downloading unnecessary data. And you'll shift much
of the slow sorting and number–crunching functions from the PC back up to the
mainframe. You'll recover all the productivity your shop is losing every day to idle time
when PC users are just waiting on their PCs. And with Report Writer, there are no
expensive PC components to purchase and maintain. All you need is Report Writer and
your existing file transfer facility.
CIMS Report Writer User Guide 1-7 ■

■ Introduction

Report Writer Pays for Itself Fast!
Add together the cumulative value of the hours saved by the programming staff and your
end–users. You'll see that it won't take long to recoup your small investment in Report
Writer.

0

2

4

6

8

10

12

1 2 3 4 5

Months Until Payback
Based on Number of Users

1-2 Users 3-4 Users 7-8 Users5-6 Users 9+ Users

Conservative Assumptions Used: Group 38 MVS CPU; salary and benefits total
$50/hour; used 3 hours per w eek per employee; development time is half that of COBOL.
■ 1-8 CIMS Report Writer User Guide

Introduction ■

Report Writer Features
Report Writer Features 1

Here are some of Report Writer's major features:

■ control statements use an easy, free format, English–like syntax that's easily learned
by non–technical users

■ user–friendly field names can be up to 70 characters long (unlike some report writers
that restrict you to 8–byte names.) This allows full compatibility with COBOL, PL/1 and
Assembler data names.

■ you can easily combine data from flat files, VSAM files and DB2 tables

■ use your existing COBOL or Assembler record layouts instead of creating a data
dictionary. Or, use Report Writer's simple data dictionary for added functionality.

■ no data definition required for DB2 tables — Report Writer accesses the definition
from your DB2 system

■ automatically creates Web reports for viewing on any standard Web browser

■ produces efficient internal machine code that is easy on your CPU

■ produces output files for mainframe use, as well as PC files

■ report lines are not limited to only 132 characters. Report Writer can format a report
as wide as your laser printer will support.

■ automatically prints bar graphs

■ ability to print full–page forms

■ ability to skip to a new sheet of paper at control breaks (not just the next "page")

■ has a logical default for every aspect of the report, from the report titles, to how to
format numeric fields, to the layout of the Grand Total line

■ allows complete control over formatting of numeric fields, including handling of
special cases like telephone numbers, social security numbers, etc.

■ formats dates in over 40 ways, including MM/DD/YY, DD/MM/YY, MM/DD/YYYY, etc. Or, with
the month name spelled out, or abbreviated, and many more

■ has special numeric, date and time formatting options for international users

■ allows complete control over report titles, column headings, and footnotes

■ has a "forgiving" error philosophy which results in at least a partial report almost
every try

■ has thorough, clear documentation, including a User's Guide in non–technical
language for end–users

■ validity–checks numeric data before processing it, so that no S0C7 abends occur

■ ability to display file data in hexadecimal format, for analyzing invalid data
CIMS Report Writer User Guide 1-9 ■

■ Introduction

Report Writer Features
■ translates fields from ASCII to EBCDIC and vice verse

■ supports full "boolean logic" (the use of AND, OR and NOT) in conditional expressions

■ ability to scan free format fields, to see if a certain text appears anywhere within the
field

■ comparisons and computations are allowed between any numeric fields, (even if one
is packed and one is binary, for example.)

■ comparisons are allowed between any date fields (even if one is Julian and one is
gregorian, for example.)

■ supports dates with 2–digit or 4–digit years

■ supports your 2–digit years even after the year 2000, with its century windowing
feature

■ supports every imaginable type of mainframe data, including over 30 kinds of date
fields, and over 20 kinds of time fields.

■ you can create your own new fields, optionally using different formulas depending
on one or more conditions

■ full mathematical calculations are supported when creating new fields, including the
use of many built–in functions

■ supports a full range of functions to manipulate string data, including powerful parse
and compress features

■ "compress" formatting features lets you, for example, compress separate city, state
and ZIP fields into a normal address line format

■ lets you use data from existing mainframe reports (rather than mainframe files) in PC
programs

■ handles complicated record layouts, including variably–located fields, fields located
by pointer or pointer expressions, etc.

■ supports records that contain arrays with varying number of entries

■ lets you specify your own spreadsheet column headings, or use defaults

■ easily summarizes mainframe data

■ automatically computes statistics (such as total, average, maximum, minimum)

■ allows an unlimited number of input files for a single report or PC file

■ allows an unlimited number of control breaks per report or PC file

■ allows an unlimited number of print lines per input record

■ allows complete customization of control breaks

■ allows complete customization of Grand Totals at end of report
■ 1-10 CIMS Report Writer User Guide

Introduction ■

Report Writer Features
■ built–in fields provide the system date, time, jobname, etc.

■ special features for speedy report development, such as limiting the number of
records processed, or the number of report lines printed

■ can limit input files to a certain key range to eliminate unnecessary I/O

■ user exit interfaces for any special handling required at the field level or record level

■ prints end of job statistics, such as how many records read from each input file, and
how many records included in report
CIMS Report Writer User Guide 1-11 ■

■ Introduction

Report Writer Features
■ 1-12 CIMS Report Writer User Guide

2
How to Request a Report

Introduction . 2-3

Control Statements . 2-4

File Definition Statements . 2-4

Input Files (Raw Data) . 2-4

Custom Reports . 2-4

Report Writer . 2-4

How to Produce a Report in 5 Minutes . 2-7

How to Use the INPUT Statement . 2-7

How to Use the COLUMNS Statement . 2-8

Another 5–Minute Report Example . 2-10

Using Your Company's Files . 2-10

How to Specify Which Records to Include In Your Report .2-13

How to Use the INCLUDEIF Statement . 2-13

How to Write Conditional Expressions . 2-15

How to Create Your Own Fields .2-19

Creating Numeric Fields . 2-19

Creating Character Fields . 2-21

Assigning Values to Fields Based on Conditions . 2-23

How to Make Your Own Report Titles .2-26

How to Use the TITLE Statement . 2-26

More Date and Time Features . 2-28

How to Align the Title . 2-28

Changing the Format of your Report .2-31

Using Display Formats . 2-31

Specifying Column Headings . 2-31

Specifying a Column's Width . 2-33

How to Specify the Report Order .2-34
CIMS Report Writer User Guide 2-1 ■

■ How to Request a Report
How to Use the SORT Statement . 2-34

Automatic Sorting . 2-34

How to Create Control Breaks . 2-37

How to Use the BREAK Statement . 2-37

How to Specify Control Break Spacing . 2-39

How to Print Statistics at a Control Break . 2-41

How to Request Multiple Control Breaks . 2-43

How to Create Summary Reports . 2-46

How to Create a Summary Report . 2-46

How to Use Data from More Than One File . 2-49

How Auxiliary Input Files Are Processed . 2-49

How to Use the READ Statement . 2-50

How to Use Multiple READ Statements . 2-54
■ 2-2 CIMS Report Writer User Guide

How to Request a Report ■

Introduction
Introduction 2

This chapter teaches you how to use Report Writer control statements to request custom
reports.

Report Writer's language is non–procedural, which means you just describe the result you
want, not the programming steps needed to do it. That means you can produce new
reports in a matter of minutes, rather than days or weeks.

Describe your new report with a few simple "control statements". You can create a report
with just two control statements.

Example
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX

The above statements are all that is needed to produce a complete report with Report
Writer. (See page 2-9.)

The box on page 2-6 lists all of the Report Writer control statements, and tells you which
aspect of the report each one deals with. The lessons in this chapter illustrate how these
control statements work.

Once you've written the necessary control statements, submit a batch job to execute
Report Writer. Report Writer examines the control statements describing the report you
want. It also automatically reads the appropriate "file definition" statements stored in a
copy library. (These statements define the input files needed for your report.) Report
Writer then accesses the input file(s) and prepares the desired report. Reports can be sent
directly to a printer. Or, use your company's sysout browsing facility (such as ISPF, IOF
or POWER) to view your report online, as soon as it is finished.

The remainder of this chapter is divided into nine easy lessons that explain how to use
Report Writer's control statements to create custom reports. After reading just the first
lesson, you will be able to produce useful reports with Report Writer. The other lessons
introduce additional control statements, and explain their roles in producing
increasingly sophisticated reports. It is not necessary to read all of the other lessons
initially. Nor is it necessary to read the lessons in sequential order. Read the summaries
below and decide which lessons you need for the kind of reports you want to produce.

1 How to Produce a Report in 5 Minutes

This lesson shows how to produce reports using just two simple control statements—
the INPUT and the COLUMNS statements. You will use these two statements for almost
every report you request.

2 How to Specify Which Records to Include in Your Report

This lesson shows how to use the INCLUDEIF statement to select which records will
appear in your report.

3 How to Create Your Own Fields

This lesson shows you how to create your own fields by performing computations on
existing fields. This is done with the COMPUTE statement.
CIMS Report Writer User Guide 2-3 ■

■ How to Request a Report

Introduction
Control
Statements 2

INPUT: SALES FILE
COLUMNS: REGION EMPL-NAME

File Definition
Statements 2

FILE: SALES-FILE DDNAME(SALEFILE)
FIELD: EMPL-NAME LENGTH(10)
FIELD: EMPL-NUM LENGTH(3)
FIELD: REGION LENGTH(5)

Input Files
(Raw Data) 2

JONES.....036NORTH9770010250.37950415TOY T
JONES.....036NORTH9460121760.37950415TOY T
JOHNSON...039NORTH9260234450.36950401F7 GR

Custom
Reports 2

Report Writer 2
■ 2-4 CIMS Report Writer User Guide

How to Request a Report ■

Introduction
4 How to Make Your Own Report Titles

This lesson introduces the TITLE statement, and shows how you can specify your own
report titles.

5 Changing the Format of Your Report

This lesson shows how you can customize the appearance of your report. It
introduces some of the parms available in the COLUMNS statement. These parms let you
change: column headings; column width; and the way dates and numbers are
formatted.

6 How to Specify the Report Order

This lesson shows how to sort your reports into whatever order you want. The use of
the SORT statement is explained.

7 How to Create Control Breaks

This lesson shows how to break a report up into sections, printing subtotals for each
section. The use of the BREAK statement to request such "control breaks" is explained.

8 How to Create Summary Reports

This lesson shows you how to turn a report with subtotals into a "summary report."

9 How to Use Data from More than One File

This lesson shows how easy it is to read records from additional files when producing
a report. By adding a single READ statement, you automatically have access to all of the
fields from an additional file.

Keep in mind that these lessons show you the most common use of each control
statement. Most control statements also have additional features that are not discussed
in these lessons. Additional ways to use these control statements are discussed in
Chapter 4, Beyond the Basics. The complete syntax for each control statement is shown in
Chapter 10, Control Statement Syntax.
CIMS Report Writer User Guide 2-5 ■

■ How to Request a Report

Introduction

ds
Figure 2-1 • Report Writer Control Statements

REPORTEPORT WRITERRITER CONTROLONTROL STATEMENTSTATEMENTS

(GROUPED BYROUPED BYFUNCTIONUNCTION)

Statements that Define Data
FILE Defines a file
FIELD Defines a field within a file
ASM Lets you define a file using an Assembler record layout
COBOL Lets you define a file using a Cobol record layout

Statements that Make Data Available to a Report
INPUT Specifies the primary input file
READ Specifies an auxiliary input file
COMPUTE Creates a new field

Statements that Describe the Body of a Report
INCLUDEIF Specifies which input records to include in the report
COLUMNS Specifies the report columns and column headings
TITLE Specifies the report titles
FOOTNOTE Specifies footnotes at the bottom of each page

Statements that Define the Report Order, an d Control Breaks
SORT Specifies report order, and optionally specifies control break fiel
BREAK Specifies control break processing

Miscellaneous Statements
OPTIONS Specifies various special options, such as double spacing, or

summary reports
COPY Copies additional control statements for processing

REPORTEPORT WRITERRITER CONTROLONTROL STATEMENTSTATEMENTS

(GROUPED BYROUPED BYFUNCTIONUNCTION)
■ 2-6 CIMS Report Writer User Guide

How to Request a Report ■

How to Produce a Report in 5 Minutes
How to Produce a Report in 5 Minutes 2

This lesson teaches you how to produce a complete report using just two simple control
statements. These statements are:

■ the INPUT statement

■ the COLUMNS statement

You only need these two statements to create a report with Report Writer.

Example
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX

Figure 2-2, on page 2-9 shows a report created with just these two statements.

How to Use the INPUT Statement 2

Your company probably has many files stored on its disk drives and magnetic tapes. For
example, the personnel department of your company probably has an employee file,
containing information about each employee. The accounting department probably has
numerous files, such as an accounts receivable file, an accounts payable file, etc. A sales
department might have a sales file, with information about sales that have been made,
and so forth.

The very first step in requesting a report is to tell Report Writer which one of your
company's files has the data needed for your report. Use the INPUT statement to do this.

Example
INPUT: SALES–FILE

The above statement tells Report Writer that you want to use a file named SALES–FILE as
the input for your report.

All Report Writer control statements begin in column 1 with the name of the statement
(for example, INPUT), followed immediately by a colon. What follows next will depend
on the particular control statement involved. With an INPUT statement, you simply put
the name of the file to be used as the input for the report. In the above example we
named SALES-FILE.

Note • SALES–FILE is a sample file that we will use for many examples in this manual.
The SALES–FILE contains information about the sales made by the employees of an
imaginary company. Each record in this file contains data about one sale, including
the name of the employee who made the sale, their employee number, their sales
region, the date and time of the sale, the customer's name, the amount of the sale,
and so on. Each of these items of data is called a field. A complete description of this
sample SALES–FILE is shown in Figure F-2, on page F-2.
CIMS Report Writer User Guide 2-7 ■

■ How to Request a Report

How to Produce a Report in 5 Minutes
How to Use the COLUMNS Statement 2

After identifying the input file to use, the next step is to tell Report Writer which fields
from that file you want to see in your report. Use the COLUMNS statement to do that. Each
field named in this statement will appear as one column of data in the report.

Example
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX

The COLUMNS statement above tells Report Writer that we want columns in our report that
show the sales region, the employee name, the sales date, the sales time, the customer's
name, the amount of the sale, and the tax amount.

Note • Normally, reports are a maximum of 132 characters wide. You probably won't
be able to fit all of a file's fields into that much space. Decide, then, which fields you
need to see in your particular report, and put them in the COLUMNS statement. You may
specify as many fields as there is room for in the report.

With just the two statements shown above, we have given Report Writer everything it
needs to produce a report. The report produced is shown in Figure 2-2, on page 2-9.

You now see how easy it is to produce reports with Report Writer. With just two simple
statements we have produced an attractive report that has:

■ a default title containing the name of the input file, as well as the date, time, day of
the week, and page number

■ the columns of data that we requested, appearing in the same order as we requested

■ neat, underlined column headings identifying each column of data

■ date, time and numeric fields properly formatted

■ a Grand Totals line which shows totals for each of the numeric columns

■ an item count, showing the number of records printed in the report
■ 2-8 CIMS Report Writer User Guide

How to Request a Report ■

How to Produce a Report in 5 Minutes
Figure 2-2 • A report produced with just two control statements

INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

TUE 05/16/95 8:25 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

Produce this report:

These Control Statements:

Notes:

• this report was produced from just two statements: the INPUT and the COLUMNS statements

• the data used in this report comes from the SALES-FILE

• the seven columns of data in the report correspond to the field names in the COLUMNS statement

• the default column headings used are the field names themselves, broken apart at each dash

• the report has a default title which includes the name of the input file

• the report has a Grand Total line showing totals for the two numeric columns

• the number of items listed in the report is shown

• the JCL used to produce this report is shown in Figure 8-1, on page 8-4 (MVS) and Figure 8-3, on
page 8-16 (VSE)

Produce this report:
CIMS Report Writer User Guide 2-9 ■

■ How to Request a Report

How to Produce a Report in 5 Minutes
Another 5–Minute Report Example 2

Now let's make another report, this time using a different input file. This time we will
request a report from the EMPL–FILE. That's a sample employee file, described in Figure
F-4, on page F-3. We will print a simple employee directory from this file. We want the
report to have columns showing employee number, last name, first name, sex, social
security number, date hired, and their city and state. We only need the following two
statements:

INPUT: EMPL–FILE
COLUMNS: EMPL–NUM LAST–NAME FIRST–NAME SEX SOCIAL–SEC–NUM
 HIRE–DATE CITY STATE

The INPUT statement above specifies that the input file for our report will be the
employee file (EMPL–FILE). The COLUMNS statement specifies the columns of data we want
our report to have. Notice that we needed two lines for the COLUMNS statement in this
example. You can continue a control statement onto as many lines as you like. Just leave
at least 1 blank space at the beginning of each continuation line.

The report produced by the above statements is shown in Figure 2-3, on page 2-11.

You have now seen two examples showing just how easy it is to request a report with
Report Writer. That's all there is to it! You should now be able to request basic reports
from the files at your company. Just identify the file you wish to use in your report with
an INPUT statement. And then identify the fields that you want to see in the report with
a COLUMNS statement.

Using Your Company's Files 2

You may be wondering how Report Writer knows the names of your company's files and
fields. The answer is that your company's files are defined to Report Writer by other
control statements that are kept in a Report Writer "copy library." For example, the
statements used to define the SALES–FILE that we used earlier in this lesson are shown in
Figure F-2, on page F-2.

For a list of the file names and field names available for you to use, ask your
programmer. They can print that information from the Report Writer Copy Library, in a
format similar to that shown in Figure F-2, on page F-2.

If you already know the name of the file to use, you can also get a list of all of its fields
by adding the SHOWFLDS(YES) parm to your INPUT statement like this:

INPUT: SALES–FILE SHOWFLDS(YES)

The above statement tells Report Writer to print (in the control statement listing) a list
of all of the fields defined for the SALES–FILE.

If a file that you need has not yet been defined, see Chapter 6, How to Define Your Input
Files for information on doing that.
■ 2-10 CIMS Report Writer User Guide

How to Request a Report ■

How to Produce a Report in 5 Minutes
Figure 2-3 • An employee directory produced with only two control statements

INPUT: EMPL-FILE
COLUMNS: EMPL-NUM LAST-NAME FIRST-NAME SEX SOCIAL–SEC–NUM HIRE-DATE CITY STATE

Produce this report:

These Control Statements:

Notes:

• the INPUT statement names the EMPL–FILE as the input file for this report

• the COLUMNS statement specifies which fields to print as columns in the report

• notice that we split the COLUMNS statement onto two lines, with the "continued" line beginning with
at least one blank space

TUE 05/16/95 8:29 AM DATA FROM EMPL-FILE PAGE 1

 SOCIAL
EMPL LAST FIRST SEC HIRE
NUM NAME NAME SEX NUM DATE CITY STATE

036 JONES JERRY M 012-09-8765 01/31/80 SAN FRANCISCO CA
037 JOHNSON THOMAS M 912-04-0334 06/21/75 SCOTTSDALE AZ
039 JOHNSON LINDA F 004-77-9981 11/25/79 SANTA ROSA CA
040 MACDONALD RICHARD M 889-79-0013 07/04/82 PLEASANTON CA
041 SIMPSON TIMOTHY M 112-05-0456 12/01/82 ARCADIA CA
042 MORRISON MICHAEL M 900-12-0556 11/30/79 GLENDALE CA
043 CHRISTOPHERSON MELISSA F 415-09-0761 08/15/81 PHOENIX AZ
044 BAKER VIVIAN F 878-19-0156 06/04/82 WALNUT CREEK CA
045 THOMAS MARTIN M 776-83-8221 06/04/82 CONCORD CA

*** GRAND TOTAL(9 ITEMS)
CIMS Report Writer User Guide 2-11 ■

■ How to Request a Report

How to Produce a Report in 5 Minutes
Summary

Here is a summary of what we learned in this lesson:

■ an INPUT statement is needed to tell Report Writer which input file to use for a
particular report

■ a COLUMNS statement is needed to tell Report Writer what columns of data to print in
your report

■ by using just these two statements you can produce a complete report

The next lesson will teach you how to limit the records that are included in your report.

To Learn More

To learn more about writing control statements in general, see Chapter 9, General Syntax
Rules. In that chapter you will learn such things as:

■ how long each line can be (page 9-3)

■ how to continue control statements onto multiple lines (page 9-4)

There are some additional features associated with the INPUT and COLUMNS statements
which we have not covered in this lesson. Some of these additional features are discussed
in this chapter in Changing the Format of your Report on page 2-31. Other topics are
discussed in Chapter 4, Beyond the Basics. The additional features include:

■ how to specify your own column headings for a report (page 2-31 and page 4-7)

■ how to make a column in the report wider or narrower(page 2-33 and page 4-12)

■ how to change the way that numbers, dates and times are formatted in your report
(page 2-31and page 4-13)

■ how to make a report column that contains a literal text (page 4-4)

■ how to specify the number of spaces to leave between columns in your report
(page 4-4)

■ how to specify which numeric columns to include in the Grand Totals (page 4-26)

■ how to print multiple report lines for each input record (page 4-29)

■ how to produce reports that are wider than 132 characters (see page 8-7 or
page 8-19)

The complete syntax for the INPUT and COLUMNS statements is given in Chapter 10, Control
Statement Syntax.
■ 2-12 CIMS Report Writer User Guide

How to Request a Report ■

How to Specify Which Records to Include In Your Report
How to Specify Which Records to Include In Your Report2

This lesson teaches you how to select only certain records from the input file for inclusion
in your report. The control statement discussed is:

■ the INCLUDEIF statement

How to Use the INCLUDEIF Statement 2

The reports we produced in the previous lesson included all of the records found in the
input file. When no INCLUDEIF statement is specified, Report Writer defaults to including
every record from the input file. For example, the report on page 2-9 included all sales
from the SALES–FILE. And the report on page 2-11 listed all of the employees in the EMPL–
FILE.

Often you want a report to include only selected records from the input file. Use the
INCLUDEIF statement to tell Report Writer to "include" a record in the report only "if" one
or more conditions are met.

For example, assume that we want to print another list of sales from the SALES–FILE
similar to the one on page 2-9. But this time we only want to print sales made by the
employee named Jones. We would simply add the following INCLUDEIF statement to our
other control statements:

INCLUDEIF: EMPL–NAME = 'JONES'

The above INCLUDEIF statement tells Report Writer to "include" records from the SALES-
FILE "if" the EMPL–NAME field is equal to 'JONES'. Report Writer still reads through the
entire SALES–FILE, just like before. But now it examines each record before including it in
the report. If the record's EMPL–NAME field contains the value 'JONES', then the record is
included in the report. If the EMPL–NAME field contains any other value, then that record
is not included in the report. Figure 2-4, on page 2-14 shows a report produced using the
above statement. Only the sales made by Jones appear in that report.

The INCLUDEIF statement may appear anywhere after the INPUT statement. Only one
INCLUDEIF statement is allowed per report, but it may contain as many conditions as you
like.

By the way, the INCLUDEIF statement can refer to any of the fields in the input file. You
are not limited to just those fields that are listed in the COLUMNS statement.
CIMS Report Writer User Guide 2-13 ■

■ How to Request a Report

How to Specify Which Records to Include In Your Report
Figure 2-4 • Using an INCLUDEIF statement to specify which records to include in a report

INPUT: SALES-FILE
INCLUDEIF: EMPL–NAME = 'JONES'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this report:

These Control Statements:

Notes:

• the report now includes only those records whose EMPL–NAME field is equal to 'JONES'

TUE 05/16/95 8:26 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62

*** GRAND TOTAL (3 ITEMS) 142.26 8.55
■ 2-14 CIMS Report Writer User Guide

How to Request a Report ■

How to Specify Which Records to Include In Your Report
How to Write Conditional Expressions 2

The INCLUDEIF statement consists of a conditional expression. The complete rules for
writing conditional expressions are explained beginning on page 9-18. Briefly, a
conditional expression contains one or more "conditions", separated with words such as
AND and OR. A condition usually involves comparing the contents of one field with the
contents of another field, or with a literal value. Let's look at some more examples of
INCLUDEIF statements and their conditional expressions.

Note • If you are a programmer, you will notice that the syntax for conditional
expressions is very similar to the syntax used in "IF statements" in COBOL, PL/1, and
BASIC. If you are familiar with any of these languages, you should find it especially
easy to write INCLUDEIF statements.

You may want your report to include all records which do not contain a certain value. Do
this by specifying "not equal" in your condition.

Example
INCLUDEIF: EMPL–NAME ¬= 'JONES'

The above statement specifies that the report should include all records from the input
file whose EMPL–NAME field is not equal to 'JONES'.

Note • In addition to ¬=, you can also use <> to indicate "not equal", like this:

INCLUDEIF: EMPL–NAME <> 'JONES'

You may want to include a record in your report if either of two conditions is true. To do
this, use an INCLUDEIF statement with two conditions, separated by the word OR.
Consider the following statement:

INCLUDEIF: EMPL–NAME = 'JONES' OR AMOUNT > 100

The above statement states that a record should be included in the report "if the EMPL–
NAME field is equal to 'JONES', or if the AMOUNT field is greater than 100." The word OR
indicates that records from the input file will be included if either one (or both) of the
conditions is true. Figure 2-5, on page 2-16 shows a report that uses the above statement.
All sales listed in that report were either made by Jones or were for an amount over $100.

Notice in the above statement that we enclosed 'JONES' in single quotation marks, while
we did not use quotation marks around the 100. That is because EMPL–NAME is a character
field, while AMOUNT is a numeric field. Character literals (such as 'JONES') must be
enclosed in quotation marks. You can use either single (') or double (") quotation marks.
But numeric literals (such as 100), as well as date and time literals, are not enclosed in
quotation marks. Numeric literals also must not contain commas. (The rules for writing
literals are thoroughly explained beginning on page 9-8).
CIMS Report Writer User Guide 2-15 ■

■ How to Request a Report

How to Specify Which Records to Include In Your Report
Figure 2-5 • Including records in a report if either of two conditions is true

INPUT: SALES-FILE
INCLUDEIF: EMPL-NAME = 'JONES' OR AMOUNT > 100
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this report:

These Control Statements:

Notes:

• records are included in the report if either the EMPL–NAME field is equal to 'JONES', or the AMOUNT
field is greater than 100

TUE 05/16/95 8:26 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00

*** GRAND TOTAL (8 ITEMS) 1,250.84 75.08
■ 2-16 CIMS Report Writer User Guide

How to Request a Report ■

How to Specify Which Records to Include In Your Report
As another example, you may want to include records in your report when both of two
conditions are true. For example, let's say we want a listing only of sales that were made
by Jones and that were also for an amount over $100. For this report, two conditions
must both be true: the EMPL–NAME field must be equal to 'JONES' and the AMOUNT field must
be over 100. Use the word AND to specify that both conditions must be true, like this:

INCLUDEIF: EMPL–NAME = 'JONES' AND AMOUNT > 100

Now as Report Writer reads each record from the input file, it will include a record in the
report only "if the EMPL–NAME field is equal to 'JONES' and the AMOUNT field is greater than
100."

Here is an example of including records in a report based on the contents of a date field:

INCLUDEIF: SALES–DATE > 4/15/1995

The above statement specifies that records should be included in the report only if their
SALES–DATE field contains a date greater than (after) April 15, 1995.

Here is an example of including records in a report based on the contents of a time field:

INCLUDEIF: SALES–TIME < 17:00:00

The above statement specifies that records should be included in the report only if their
SALES–TIME field contains a time less than (before) 17:00:00 (which is 5 PM.)

If your INCLUDEIF statement contains both the words OR and AND, you should use
parentheses to indicate the order in which to perform the comparisons. Consider the
following statement:

INCLUDEIF: EMPL–NAME = 'JONES' OR
 (SALES–DATE > 4/15/1995 AND SALES–DATE < 4/30/1995)

In the above statement, records will be included if the EMPL–NAME field is equal to
'JONES', or if both of the SALES–DATE comparisons are true. The parentheses cause the
two SALES–DATE comparisons to be treated as one condition. That condition is true if the
SALES–DATE is greater than April 15, 1995 and is less than April 30, 1995.

Summary

Here is a summary of what we learned in this lesson:

■ use the INCLUDEIF statement when you want to include only certain records from the
input file in your report

■ the INCLUDEIF statement may contain one or more conditions, separated by the words
AND or OR

■ groups of conditions can be enclosed in parentheses, to indicate the order in which
the comparisons should be performed

The next lesson will show you how to compute your own new fields for use in your
report.
CIMS Report Writer User Guide 2-17 ■

■ How to Request a Report

How to Specify Which Records to Include In Your Report
To Learn More

There are some additional features associated with the INCLUDEIF statement which we
have not covered in this lesson. These additional features are discussed in Chapter 10,
Control Statement Syntax, beginning on page 10-1. The additional features include:

■ how to use symbols rather than the actual words AND and OR in your conditional
expressions

■ how to scan a character field, to see if a certain text exists anywhere within the field

■ how to specify conditions based on bit fields

■ how to specify a condition based on a field's raw hexadecimal value

■ how to specify date literals in DD/MM/YY or DD/MM/YYYY format (page 4-18), like this:

INCLUDEIF: SALES–DATE > 15/4/1995

■ you may also be able to use the KEYRANGE parm of the INPUT statement to limit the
records included in your run (page 10-72)
■ 2-18 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Your Own Fields
How to Create Your Own Fields 2

This lesson teaches you how to create your own fields to use in producing your report.
The control statement discussed is:

■ the COMPUTE statement

Sometimes the data you need for a report is not contained in the input file. Yet the
necessary data might be easily computed from one or more fields which are in the input
file. In such cases, simply create a new field by using the COMPUTE statement.

Creating Numeric Fields 2

A COMPUTE statement specifies the name of the new field to create and supplies a
computational expression to use in assigning a value to that field. The complete rules for
computational expressions are discussed beginning on page 9-32. Generally, your
expression will consist of one or more mathematical operations performed on numeric
fields or numeric literals.

For example, the sample SALES–FILE has numeric fields named AMOUNT and TAX. We can
use the COMPUTE statement to create a new field containing the total amount due just by
adding those two fields together, like this:

COMPUTE: TOTAL–AMOUNT = AMOUNT + TAX

The above statement creates a new field named TOTAL–AMOUNT. It is computed by adding
the AMOUNT field and the TAX field together. Now that the TOTAL–AMOUNT field has been
created, we can use that field in any way that other fields can be used. For example, a
computed field can be used: as a column in the body of the report; in the report titles; as
a sort field; as a control break field; as part of a conditional expression (in the INCLUDEIF
statement); even as an operand in subsequent COMPUTE statements to create other fields.
Figure 2-6, on page 2-20 shows a report that uses the above COMPUTE statement.

Note • COMPUTE statements normally appear after the INPUT statement, but must
appear before any other control statements that refer to the field being created. In the
example on page 2-20, the COMPUTE statement for TOTAL–AMOUNT had to come before the
COLUMNS statement, since the COLUMNS statement referred to that field.

You can perform addition, subtraction, multiplication, and division in the COMPUTE
statement. Use the +, –, * and / symbols, respectively. You may also use parentheses as
needed to indicate the order in which the operations should be performed.

Note • When performing subtraction, always put a blank space before and after the
minus sign. Otherwise, the minus sign may appear to be a part of a field name.
Blanks are optional around the other operator symbols.
CIMS Report Writer User Guide 2-19 ■

■ How to Request a Report

How to Create Your Own Fields
Figure 2-6 • Using the COMPUTE statement to create numeric fields

INPUT: SALES-FILE
COMPUTE: TOTAL-AMOUNT = AMOUNT + TAX
COMPUTE: SALES-COMMISSION = TOTAL-AMOUNT * .33
COLUMNS: EMPL-NAME CUSTOMER AMOUNT TAX TOTAL-AMOUNT SALES-COMMISSION

Produce this report:

These Control Statements:

Notes:

• the column heading used for computed fields is (by default) the field name itself, broken apart at each
dash

• a computed numeric fields receive Grand Totals just like other numeric fields

TUE 05/16/95 8:26 AM DATA FROM SALES-FILE PAGE 1

 EMPL TOTAL SALES
 NAME CUSTOMER AMOUNT TAX AMOUNT COMMISSION

JOHNSON ACE ELECTRICAL 101.38 6.09 107.47 35.4651
BAKER JACKS CAFE 137.00 8.22 145.22 47.9226
MORRISON STAR MARKET 44.35 2.66 47.01 15.5133
MORRISON A1 PHOTOGRAPHY 29.65 1.78 31.43 10.3719
SIMPSON EUROPEAN DELI 14.99 0.90 15.89 5.2437
JOHNSON VILLA HOTEL 234.45 14.07 248.52 82.0116
JOHNSON MARYS ANTIQUES 9.98 0.60 10.58 3.4914
BAKER JACKS CAFE 135.75 8.15 143.90 47.4870
THOMAS YOGURT CITY 9.98 0.60 10.58 3.4914
JONES EZ GROCERY 10.25 0.62 10.87 3.5871
JONES TOY TOWN 121.76 7.31 129.07 42.5931
JONES TOY TOWN 10.25 0.62 10.87 3.5871
JOHNSON ACME BUILDING 500.00 30.00 530.00 174.9000
SIMPSON J & S LUMBER 23.87 1.43 25.30 8.3490

*** GRAND TOTAL (14 ITEMS)
 1,383.66 83.05 1,466.71 484.0143
■ 2-20 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Your Own Fields
As another example of a creating a numeric field, let's say we wanted to compute a sales
commission for each sale. The commission will be 33% of the total value of the sale,
including the tax. We could compute the sales commission with the following statement:

COMPUTE: SALES–COMMISSION = TOTAL–AMOUNT * .33

This statement creates a new field called SALES–COMMISSION which is computed by
multiplying TOTAL–AMOUNT by .33. Notice that we used the result of our previous COMPUTE
statement to perform the computation in this statement.

Figure 2-6, on page 2-20 shows a report that uses the COMPUTE statement shown above.

In addition to the basic arithmetic operations, there are also a number of built–in
functions that you can use in the COMPUTE statement. These built–in functions allow you
to perform more complex mathematical operations on numeric operands. A complete
list of built–in functions is found in Appendix D, Built-In Functions.

Creating Character Fields 2

So far we have been creating numeric fields. Now let's consider how to create your own
character fields. There is only one operation used in computing character fields. It is the
concatenation operation. (Don't let that word scare you if it is new to you.
"Concatenating" simply means "stringing together" two or more character fields.) The
plus sign (+) is used as the symbol for concatenation.

Example
COMPUTE: WHOLE–NAME = LAST–NAME + FIRST–NAME

The above statement creates a new field named WHOLE–NAME. It is created by concatenating
the contents of the LAST–NAME field and the contents of the FIRST–NAME field. The result
is a single field which now contains both the first and last names of the employee. The
new field will be 30 bytes long — the combined length of the two operands.

You can also concatenate more than two fields together.

Example
COMPUTE: MAILING–CODE = STATE + '–' + EMPL–NUM

This example creates a new field called MAILING–CODE which consists of the contents of
the STATE field, followed by a dash, followed by the contents of the EMPL–NUM field.

In addition to the concatenation operation, there are also a number of built–in functions
that can be used when creating character fields. For example, the #LEFT function can be
used to extract the leftmost n bytes of a character field. Here is an example of how to use
the #LEFT built–in function:

COMPUTE: FIRST–INITIAL = #LEFT(FIRST–NAME,1)

This statement creates a new character field which consists of only the first character (that
is, the leftmost 1 byte) of the FIRST–NAME field.
CIMS Report Writer User Guide 2-21 ■

■ How to Request a Report

How to Create Your Own Fields
Figure 2-7 • Using the COMPUTE Statement to create character fields.

INPUT: EMPL-FILE
COMPUTE: WHOLE-NAME = LAST-NAME + FIRST-NAME
COMPUTE: MAILING-CODE = STATE + '-' + EMPL-NUM
COMPUTE: FIRST-INITIAL = #LEFT(FIRST-NAME,1)
COLUMNS: EMPL-NUM WHOLE-NAME MAILING-CODE FIRST-INITIAL CITY STATE

Produce this report:

These Control Statements:

Notes:

• the column heading used for computed fields is (by default) the field name itself, broken apart at each
dash

TUE 05/16/95 8:27 AM DATA FROM EMPL-FILE PAGE 1

EMPL WHOLE MAILING FIRST
NUM NAME CODE INITIAL CITY STATE

036 JONES JERRY CA-036 J SAN FRANCISCO CA
037 JOHNSON THOMAS AZ-037 T SCOTTSDALE AZ
039 JOHNSON LINDA CA-039 L SANTA ROSA CA
040 MACDONALD RICHARD CA-040 R PLEASANTON CA
041 SIMPSON TIMOTHY CA-041 T ARCADIA CA
042 MORRISON MICHAEL CA-042 M GLENDALE CA
043 CHRISTOPHERSON MELISSA AZ-043 M PHOENIX AZ
044 BAKER VIVIAN CA-044 V WALNUT CREEK CA
045 THOMAS MARTIN CA-045 M CONCORD CA

*** GRAND TOTAL (9 ITEMS)
■ 2-22 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Your Own Fields
There are a number of other built–in functions which can also be used. A complete list
of built–in functions is found in Appendix D, Built-In Functions.

Figure 2-7, on page 2-22 shows a report that uses each of the COMPUTE statements shown
in the preceding examples.

Assigning Values to Fields Based on Conditions 2

Up until now we have been using "simple" COMPUTE statements. In a simple COMPUTE
statement, the value of the new field is defined by a single computational expression.

But it is also possible to use conditional logic in a COMPUTE statement. In "conditional"
COMPUTE statements, one of several different expressions will be used to assign a value to
the new field. The expression that is used will depend on one or more conditions that
you specify. Conditional COMPUTE statements can be very powerful tools in producing
reports. Here is an example of a conditional COMPUTE statement:

COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)

The above statement creates a field named BONUS. However, in this example the BONUS
field can be computed in one of two ways: for employees hired before January 1, 1980,
the bonus is 8 percent of total sales (TOTAL–SALES * .08). But, for employees hired on or
after January 1, 1980, the bonus is only 5 percent of total sales (TOTAL–SALES * .05).

When assigning a value to the BONUS field, Report Writer evaluates the conditional
expression in each WHEN parm. As soon as a WHEN expression is found that is true, the
computational expression from the corresponding ASSIGN parm is used to assign a value
to BONUS.

You are allowed to have as many pairs of WHEN and ASSIGN parms as you like in a COMPUTE
statement. If none of the WHEN expressions are true, a value of zero will be assigned to the
field. To assign some other value when none of the WHEN parms are true, you may use the
ELSE parm.

Example
COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 ELSE ASSIGN(TOTAL–SALES * .05)

The above statement has the same effect as the previous example, but is a little simpler.
It has only one WHEN expression. For employees whose hire date is before January 1, 1980,
the bonus will be computed based on 8 percent. For all other cases, the bonus will be
computed based on 5 percent.

You may also use conditional COMPUTE statements to create character fields.

Example
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')
CIMS Report Writer User Guide 2-23 ■

■ How to Request a Report

How to Create Your Own Fields
The statement above creates a new field called TITLE. The contents of TITLE will be "MR"
if the SEX field contains an "M", and "MS" otherwise.

Figure 2-8 • Assigning values to computed fields based on conditions

INPUT: EMPL–FILE
COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')
COLUMNS: TITLE LAST–NAME FIRST–NAME SEX HIRE–DATE TOTAL–SALES BONUS

Produce this report:

These Control Statements:

Notes:

• the BONUS field is calculated differently, depending on the contents of the HIRE–DATE field

• the value assigned to the TITLE field is based on the contents of the SEX field

TUE 05/16/95 8:29 AM DATA FROM EMPL-FILE PAGE 1

 LAST FIRST HIRE TOTAL
TITLE NAME NAME SEX DATE SALES BONUS

 MR JONES JERRY M 01/31/80 42,509.89 2,125.4945
 MR JOHNSON THOMAS M 06/21/75 86,999.24 6,959.9392
 MS JOHNSON LINDA F 11/25/79 75,023.55 6,001.8840
 MR MACDONALD RICHARD M 07/04/82 2,560.98 128.0490
 MR SIMPSON TIMOTHY M 12/01/82 8,723.88 436.1940
 MR MORRISON MICHAEL M 11/30/79 98,054.99 7,844.3992
 MS CHRISTOPHERSON MELISSA F 08/15/81 47,665.31 2,383.2655
 MS BAKER VIVIAN F 06/04/82 92,125.89 4,606.2945
 MR THOMAS MARTIN M 06/04/82 60,193.49 3,009.6745

*** GRAND TOTAL (9 ITEMS) 513,857.22 33,495.1944

INPUT: EMPL–FILE
COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')
COLUMNS: TITLE LAST–NAME FIRST–NAME SEX HIRE–DATE TOTAL–SALES BONUS
■ 2-24 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Your Own Fields
Figure 2-8, on page 2-24 shows a report that uses some of the conditional COMPUTE
statements just discussed.

When defining character fields with a conditional COMPUTE statement, a value of spaces
will be assigned if none of the WHEN expressions are true and no ELSE parm is specified.

All of our examples so far have used just a single condition within the WHEN parm. You
can, however, use any valid conditional expression within the WHEN parm. The
conditional expression can contain as many different conditions as you like, separated
with the words AND and OR, and optionally grouped with parentheses. (A conditional
expression is the sort of expression that is allowed in the INCLUDEIF statement, as was
described in How to Write Conditional Expressions on page 2-15.) The complete rules for
writing conditional expressions are given beginning on page 9-18. Additional examples
of COMPUTE statements are shown beginning on page 10-31.

Summary

Here is a summary of what we learned in this lesson:

■ the COMPUTE statement is used to create new fields

■ a simple COMPUTE statement assigns the result of a single computational expression to
the new field

■ a conditional COMPUTE statement uses one of several different computational
expressions, depending on the conditions that you specify

The next lesson will show you how to specify your own report titles.

To Learn More

There are some additional features associated with the COMPUTE statement which we have
not covered in this lesson. Some of these additional features are discussed under the
COMPUTE statement in Chapter 10, Control Statement Syntax.. Other additional features are
discussed in Chapter 4, Beyond the Basics. Examples of the additional topics include:

■ how to create date type fields (page 10-39)

■ how to create time type fields (page 4-138)

■ how to create bit type fields (page 10-39)

■ how to specify how many decimal places a numeric or time field should contain
(page 10-37)

■ how to specify column headings for the fields you create (page 10-36)

■ how to specify how your field should be formatted when it is printed in a report
(page 10-34)

■ how to specify whether a numeric or time field should be totalled in the Grand Totals
line at the end of the report (page 4-26)

■ how to retain the value of a COMPUTE field in certain cases (page 4-121)
CIMS Report Writer User Guide 2-25 ■

■ How to Request a Report

How to Make Your Own Report Titles
How to Make Your Own Report Titles 2

This lesson teaches you how to specify your own report titles. The control statement
discussed is:

■ the TITLE statement

How to Use the TITLE Statement 2

As we've seen in the previous lessons, a TITLE statement is not required to produce a
report. If you do not supply a TITLE statement when requesting your report, Report
Writer provides a default title.

To specify your own report titles, simply use one or more TITLE statements. For each
TITLE statement you supply, Report Writer will print one title line at the top of each page
of the report. TITLE statements may appear anywhere after the INPUT statement.

After the word TITLE and the colon, enclosed your desired title in either single or double
quotation marks.

Example
TITLE: 'ABC COMPANY -- RECENT SALES'

Note • If your title is too big to fit on a single line, you may continue it onto
additional lines. See page 9-4 for more information on continuing control statement.

You will probably want to include the date and page number in your titles. Do this by
using the special built–in fields named #TODAY and #PAGENUM. (Don't let the pound sign
scare you. All of Report Writer's built–in field names begin with this character. That is to
distinguish them from fields in your own files that may have similar names.)

When using #TODAY and #PAGENUM in your TITLE statement, do not enclose them in
quotation marks. Anything enclosed in quotation marks is printed as is in the title. The
words #TODAY and #PAGENUM are the names of fields, whose contents we want to print in the
title. Here is an example of specifying titles that contain the date and page number:

TITLE: 'ABC COMPANY -- RECENT SALES'
TITLE: #TODAY
TITLE: 'PAGE' #PAGENUM

The three TITLE statements above result in three title lines in the report. The first title line
is the literal text "ABC COMPANY — RECENT SALES". The second title line just contains the
current date. The third title line contains the word "PAGE", followed by the page number
itself. This third title line illustrates a new point: a TITLE statement can contain more than
one item. In this case, it contains one literal text ('PAGE') and one field name (#PAGENUM).
■ 2-26 CIMS Report Writer User Guide

How to Request a Report ■

How to Make Your Own Report Titles
Figure 2-9 shows a report produced using the above TITLE statements. Notice that the
titles are automatically centered over the report.

Figure 2-9 • Using the Title statement to specify your own titles

INPUT: SALES-FILE
TITLE: 'ABC COMPANY -- RECENT SALES'
TITLE: #TODAY
TITLE: 'PAGE' #PAGENUM
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this report:

These Control Statements:

Notes:

• the report now has three title lines, corresponding to the three TITLE statements

• the second title line simply contains the current date (#TODAY)

• the third title line contains the literal word "PAGE", followed by the page number (#PAGENUM)

• all title lines are centered over the report

 ABC COMPANY -- RECENT SALES
 12/01/95
 PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
CIMS Report Writer User Guide 2-27 ■

■ How to Request a Report

How to Make Your Own Report Titles
More Date and Time Features 2

When you use #TODAY in your title, Report Writer formats it in the standard default date
format (MM/DD/YY.) If you want to spell out the month name in the date, specify the LONG1
"display format" after #TODAY, like this:

TITLE: #TODAY(LONG1)

The above statement would cause, for example, "DECEMBER 1, 1995" to appear in the title,
rather than "12/01/95". The report in Figure 2-10, on page 2-29 uses the LONG1 display
format. The use of LONG1 and other display formats is discussed in more detail beginning
on page 4-53. For a complete list of display formats to choose from when formatting
dates in your titles, see Appendix B, Display Formats.

In addition to the current date, you can also use the built–in fields #TIME and #DAYNAME
in your TITLE statement. These allow you to print the time of day and the day of the week
in your titles.

Figure 2-10, on page 2-29 also illustrates the #TIME built–in field.

How to Align the Title 2

What if we want just a single title line that contains the date, time and the page number
along with our literal text? The following example shows how to do that:

TITLE: #TODAY #TIME / 'ABC COMPANY — EMPLOYEE DIRECTORY' / 'PAGE' #PAGENUM

Notice that the above TITLE statement contains two slashes (/). These are used to
separate the title line into three parts. When slashes are not used (as in the previous
examples), the whole title is simply centered over the report. But when slashes are used,
the first part of the title (#TODAY and #TIME, in the case above) is aligned with the left edge
of the report. The middle part (the literal text) is centered over the report. The last part
("PAGE" and #PAGENUM) is aligned with the right edge of the report. The use of slashes in
the TITLE statement gives you the maximum control over how your title lines look.

Figure 2-10, on page 2-29 shows a sample report that illustrates the use of slashes to align
a title.
■ 2-28 CIMS Report Writer User Guide

How to Request a Report ■

How to Make Your Own Report Titles
Figure 2-10 • Using slashes to align the different parts of a title

INPUT: SALES-FILE
TITLE: #TODAY(LONG1) #TIME / 'RECENT SALES' / 'PAGE' #PAGENUM
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

Notes:

• the two slashes divide the TITLE statements into three parts

• the first part (the date and time) is left aligned over the report

• the second part (the name of the report) is centered over the report

• the third part (the page number) is right aligned over the report

• the LONG1 "display format" causes the month name to be spelled out in the date

DECEMBER 1, 1995 8:27 AM RECENT SALES PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
CIMS Report Writer User Guide 2-29 ■

■ How to Request a Report

How to Make Your Own Report Titles
Summary

Here is a summary of what we learned in this lesson:

■ use the TITLE statement to specify your own titles for a report

■ if more than one TITLE statement is used, the title lines print in the same order in
which the TITLE statements appear

■ use Report Writer's built–in fields to include the date, time, day of the week, and
page number in your titles

■ use slashes to separate your title into left, center, and right aligned parts

The next lesson will teach you how to customize the formatting of your report.

To Learn More

There are some additional features associated with the TITLE statement which we have
not covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional features include:

■ how to include data from the input file in your title (page 2-40 and page 4-48)

■ how to change the way the dates, times and numbers are formatted in the title
(page 4-53)

■ how to use any combination of left aligned, centered, and right aligned title parts
(page 4-57)

■ how to print "footnotes" at the bottom of each page of the report (page 4-64)

The complete syntax for the TITLE statement is given in Chapter 10, Control Statement
Syntax.
■ 2-30 CIMS Report Writer User Guide

How to Request a Report ■

Changing the Format of your Report
Changing the Format of your Report 2

This lesson teaches you how to specify your own formatting options for a report. The
formatting options discussed are:

■ display formats

■ column headings

■ column widths

Using Display Formats 2

Report Writer provides many "display formats" that you can choose from when
displaying fields in a report. A complete list of display formats is found in Chapter B,
Display Formats. When no display format is specified (as in most of the examples in the
previous lessons), Report Writer uses a default format. To specify your own display
format, just place it in parentheses after the appropriate field name. (Do not leave a space
between the field name and the open parenthesis.) Display formats are allowed in most
statements.

Example
TITLE: #TODAY(LONG1)
COLUMNS: SALES-DATE(SHORT3) SALES-TIME(HH-MM) AMOUNT(DOLLAR)

The above statements specify a display format for each field:

■ the #TODAY field (in the title) will be formatted in Report Writer's LONG1 format (that
is, as MMMMMMMMM DD, YYYY.)

■ the SALES–DATE field will be formatted in the SHORT3 format (that is, DD MMM YY.)

■ the SALES–TIME field will be formatted in the HH–MM format. That is, the time will be
rounded to the nearest minute and formatted as HH:MM.

■ the AMOUNT field will be formatted as a dollar value, with a floating dollar sign

Figure 2-11, on page 2-32 shows a report that illustrates these display formats.

Specifying Column Headings 2

Another way to customize your report is with override column headings. You remember
that Report Writer uses the field name itself as the default column heading. To specify
your own column heading, just place the desired text in parentheses after the appropriate
field name in the COLUMNS statement.

Example
COLUMNS: EMPL-NAME('SALES PERSON')

In the above statement, we specified our own column heading for the EMPL–NAME field.
As you can see in the report in Figure 2-11, the EMPL–NAME column now has "SALES
PERSON" as its column heading.
CIMS Report Writer User Guide 2-31 ■

■ How to Request a Report

Changing the Format of your Report
Note • To break your column heading text into multiple lines, use the vertical bar
(|) as a line separator.

Example

COLUMNS: EMPL–NAME('SALES PERSON')

Figure 2-11 • Using override display formats, column headings and column widths

INPUT: SALES-FILE
TITLE: #TODAY(LONG1) / 'EXAMPLES OF SPECIAL FORMATTING' / #PAGENUM
COLUMNS: REGION EMPL-NAME('SALES PERSON') SALES-DATE(SHORT3)
 SALES-TIME(HH-MM) CUSTOMER AMOUNT(DOLLAR) TAX(5)

Produce this Report:

These Control Statements:

DECEMBER 1, 1995 EXAMPLES OF SPECIAL FORMATTING 1

 SALES SALES
REGION SALES PERSON DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 12 MAR 95 10:25 ACE ELECTRICAL $101.38 6.09
WEST BAKER 26 MAR 95 12:09 JACKS CAFE $137.00 8.22
EAST MORRISON 29 MAR 95 15:30 STAR MARKET $44.35 2.66
EAST MORRISON 30 MAR 95 19:06 A1 PHOTOGRAPHY $29.65 1.78
EAST SIMPSON 01 APR 95 08:18 EUROPEAN DELI $14.99 0.90
NORTH JOHNSON 01 APR 95 17:03 VILLA HOTEL $234.45 14.07
NORTH JOHNSON 05 APR 95 14:33 MARYS ANTIQUES $9.98 0.60
WEST BAKER 12 APR 95 14:31 JACKS CAFE $135.75 8.15
WEST THOMAS 14 APR 95 15:42 YOGURT CITY $9.98 0.60
NORTH JONES 15 APR 95 07:59 EZ GROCERY $10.25 0.62
NORTH JONES 15 APR 95 08:02 TOY TOWN $121.76 7.31
NORTH JONES 15 APR 95 13:53 TOY TOWN $10.25 0.62
SOUTH JOHNSON 16 APR 95 11:49 ACME BUILDING $500.00 30.00
EAST SIMPSON 30 APR 95 15:30 J & S LUMBER $23.87 1.43

*** GRAND TOTAL (14 ITEMS) $1,383.66 83.05

Notes:

• The display formats (LONG1, SHORT3, HH–MM and DOLLAR) specify how the data is formatted in
the report

• The override column heading changes the column heading for the EMPL–NAME field

• The override width parm makes the TAX column 5 bytes wide

• Changes made to the detail line formatting are also reflected in the Grand Total line
■ 2-32 CIMS Report Writer User Guide

How to Request a Report ■

Changing the Format of your Report
Specifying a Column's Width 2

One other way to customize your report is to specify a column width for a particular
column. When no column width is specified, Report Writer chooses a default column
width. You may want a larger column width (to hold larger numeric values, for
example.) Of, you may want a smaller column width (to save space so you can squeeze
more columns into your report.) Just specify the desired column width in parentheses
after the field name.

Example
COLUMNS: TAX(5)

The above statement tells Report Writer to make the TAX column just 5 bytes wide in the
report. This is also illustrated in the report in Figure 2-11, on page 2-32.

Note • You can specify more than one override for a single field. The order is not
important. Just separate the overrides with spaces and/or a comma. For example, the
following statement specifies a override column heading and display format and
width:

COLUMNS: AMOUNT('AMOUNT OF SALES', DOLLAR, 8)

Summary

Here is a summary of what we learned in this lesson:

■ use a display format to change the way a field is formatted in a report

■ use override column headings to change the column headings in a report

■ specify a column width to change the width of a column in a report

■ each of these overrides should be put in parentheses after the appropriate field name

The next lesson will teach you how to sort your report into whatever order you want.

To Learn More

There are many additional ways to change the format of your report. Some of these
additional features are discussed as topics in Chapter 4, Beyond the Basics. Examples of
additional formatting features include:

■ how to align data within its column (page 4-24)

■ how to blank out repeating values (page 4-22)

■ how to blank out zero values (page 4-6)

■ how to change the spacing between columns in a report (page 4-4)

■ how to use a character other than the vertical bar (|) to separate column headings
into multiple lines (page 4-7)

■ how to change the default display format for all fields in a report (page 10-88)
CIMS Report Writer User Guide 2-33 ■

■ How to Request a Report

How to Specify the Report Order
■ how to format reports using international (non–USA) conventions (page 4-18)

How to Specify the Report Order 2

This lesson teaches you how to sort your report into any order you want. The control
statement discussed is:

■ the SORT statement

How to Use the SORT Statement 2

When no SORT statement is specified, Report Writer defaults to printing the report records
in their original input file order. For example, the records in the sample SALES–FILE are
stored in sales date order. Therefore, the sales reports in the previous lessons all appeared
in sales date order. (For example, see the report on page 2-9.) The EMPL–FILE sample file
is a VSAM file stored in EMPL–NUM order. Therefore, all previous reports from that file have
been in employee number order (page 2-11.)

To print a report in a different order, just add a SORT statement. The SORT statement can
appear anywhere after the INPUT statement. Only one SORT statement is allowed per
report, but it may contain as many "sort fields" as you like. Report Writer will sort your
report on all of the sort fields.

For example, let's request a report from the SALES–FILE and sort it on three fields:

SORT: REGION EMPL–NAME SALES–DATE

To begin with, the report will be sorted according to the first sort field — REGION. If there
are multiple records for the same REGION, then those records will be further sorted using
the second sort field, EMPL–NAME. Records having the same value for both the REGION and
the EMPL–NAME fields will be further sorted on the third sort field — SALES–DATE. Figure
2-12, on page 2-35 shows a report produced with the above statement.

By default, Report Writer sorts reports into ascending order on each sort field. If you want
to sort the report into descending order for a field, put the DESCENDING parm (or just
DESC) in parentheses immediately after the field name. For example, to sort a sales
report into reverse employee number order, you could use this SORT statement:

SORT: EMPL–NUM(DESC)

Automatic Sorting 2

If you prefer, you can let Report Writer automatically sort your report for you. To have
your report automatically sorted on the first 5 columns of data, simply specify the
AUTOSORT option, like this:

OPTIONS: AUTOSORT
■ 2-34 CIMS Report Writer User Guide

How to Request a Report ■

How to Specify the Report Order
Figure 2-12 • Using a SORT statement to specify the sort order of a report

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
TITLE: 'RECENT SALES'
TITLE: 'SORTED BY REGION, EMPLOYEE NAME, AND SALES DATE'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

 RECENT SALES
 SORTED BY REGION, EMPLOYEE NAME, AND SALES DATE

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

Notes:

• the SORT statement causes the report to be sorted on REGION, EMPL–NAME and SALES–DATE
CIMS Report Writer User Guide 2-35 ■

■ How to Request a Report

How to Specify the Report Order
Summary

Here is a summary of what we learned in this lesson:

■ use the SORT statement to sort your report

■ you can sort on multiple sort fields

■ you can sort in either ascending or descending order

The next lesson will show you how to create control breaks and print subtotals and other
statistics in your reports.

To Learn More

There are some additional features associated with the SORT statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional features include:

■ creating a control break from the SORT statement (page 4-66)

■ specifying control break spacing from the SORT statement (page 4-67)

■ requesting totals and statistics in the SORT statement (page 4-77)

The complete syntax for the SORT statements is given in Chapter 10, Control Statement
Syntax.
■ 2-36 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Control Breaks
How to Create Control Breaks 2

This lesson teaches you what control breaks are, and shows how to request them in your
report. This lesson also shows how to print totals and other statistics in reports. The
control statement discussed is:

■ the BREAK statement

How to Use the BREAK Statement 2

If you are not a programmer, the term "control break" may be new to you. But it is a very
simple concept. And as you will see, control breaks can make your reports much more
useful.

Consider the result of sorting a report on some field. By sorting the report on a field, we
group together all the report lines that contain a particular value for that field. For
example, in the report in Figure 2-12, on page 2-35 we sorted first of all on the REGION
field. As you can see, this caused the report lines to be grouped together by region. All of
the report lines for the East region appear together at the beginning of the report. Next
come all of the report lines for the North region, and so on. By sorting on the REGION
field, we grouped together all of the records for each region.

Often it is desirable to perform special processing whenever one such group of records
ends and another group is about to begin. For example, you might want to print a line
of totals for the group that just ended. Or, you might want to print a few blank lines
before the next group starts printing, or even skip to a new page. This processing is called
control break processing. A control break is said to occur whenever one group of
records ends and another group is about to begin. The field that is being grouped (for
example, REGION) is called the control break field (or often just the break field.) A
control break field must also be a sort field, since it is by being sorted that records are
grouped together in the first place.

You may designate any sort field as a control break field. Just name the field in a BREAK
statement:

BREAK: REGION

The above statement makes REGION a control break field. Now we will get REGION totals
in the report whenever one region finishes printing and another region is about to begin.

After these totals, two blank lines will print. Then the report lines for the next region start
to print, and so on.

Figure 2-13, on page 2-38 shows a report that uses the above BREAK statement to produce
a control break.
CIMS Report Writer User Guide 2-37 ■

■ How to Request a Report

How to Create Control Breaks
Figure 2-13 • Using the BREAK statement to create a control break

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
TITLE: 'RECENT SALES'
TITLE: 'TOTALLED BY REGION'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

 RECENT SALES
 TOTALLED BY REGION

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
*** TOTAL FOR WEST (3 ITEMS) 282.73 16.97

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

Notes:

• REGION is a sort field in this report

• the BREAK statement makes REGION a control break field

• whenever the value of the REGION column changes, a control break occurs

• at each control break a total line prints, followed by two blank lines
■ 2-38 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Control Breaks
How to Specify Control Break Spacing 2

You can use additional parms in the BREAK statement to customize your control break.
For example, you can specify a break spacing parm. This parm tells Report Writer what
kind of spacing to perform at the control break. By default, Report Writer prints two
blank lines at each control break (after the totals line). You can use a spacing parm to
request either a different number of blank lines, or to request a page break.

For example, the following statement makes REGION a break field and specifies that 3
blank lines should print at the control break:

BREAK: REGION SPACE(3)

If you want to skip to a new page whenever the contents of the REGION field changes, use
the PAGE spacing parm, like this:

BREAK: REGION SPACE(PAGE)

The SPACE(PAGE) parm specifies that, rather than printing 2 blank lines whenever the
REGION field changes, the report should skip to a new page.

The report in Figure 2-14, on page 2-40 illustrates the use of the PAGE spacing parm to
request a page break.
CIMS Report Writer User Guide 2-39 ■

■ How to Request a Report

How to Create Control Breaks
Figure 2-14 • A BREAK statement that produces a page break

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION SPACE(PAGE)
TITLE: 'SALES FOR REGION:' REGION / 'PAGE' #PAGENUM
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

SALES FOR REGION: EAST PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

Notes:

• the SPACE(PAGE) parm causes the report to skip to a new page whenever the REGION field changes
value

• since each page contains data for only a single region, we chose to include the REGION field in the title

SALES FOR REGION: SOUTH PAGE 3

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00

 (other report lines not shown)

SALES FOR REGION: NORTH PAGE 2

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22
■ 2-40 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Control Breaks
How to Print Statistics at a Control Break 2

You may want to print statistics other than totals at a control break. The total line, as we
have seen, prints automatically at control breaks. By supplying the appropriate parm in
the BREAK statement, you can also print up to five additional statistical lines at a control
break. These additional lines are:

■ an average line

■ a non–zero average line (the average of all non–zero values)

■ a maximum line

■ a minimum line

■ a non–zero minimum line (the minimum non–zero value)

The parms that correspond to these statistical lines are:

■ AVERAGE (or AVG)

■ NZAVERAGE (or NZAVG)

■ MAXIMUM (or MAX)

■ MINIMUM (or MIN)

■ NZMINIMUM (or NZMIN)

You can specify as many of these parms as you like in the BREAK statement. The parms
may be specified in any order. (The statistic lines in the report, however, will always print
in a standard fixed order.)

Example
BREAK: REGION AVERAGE MAXIMUM

The BREAK statement above requests that an average line and a maximum line (in
addition to the totals line) print whenever the contents of the REGION field changes.

Figure 2-15, on page 2-42 shows a sample report that uses the preceding BREAK statement.
CIMS Report Writer User Guide 2-41 ■

■ How to Request a Report

How to Create Control Breaks
Figure 2-15 • A report that prints statistical information at control breaks

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION AVERAGE MAXIMUM
TITLE: 'RECENT SALES'
TITLE: 'TOTALLED BY REGION'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

 RECENT SALES
 TOTALLED BY REGION

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77
*** AVERAGE VALUE 28.22 1.69
*** MAXIMUM VALUE 44.35 2.66

NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22
*** AVERAGE VALUE 77.34 4.64
*** MAXIMUM VALUE 234.45 14.07

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
****** AVERAGE VALUE 98.83 5.93
****** MAXIMUM VALUE 500.00 30.00

Notes:

• the AVERAGE and MAXIMUM parms (in the BREAK statement) cause 2 statistical lines to print
(in addition to the totals line) whenever the REGION field changes value

• at the Grand Total, the same statistical lines also print
■ 2-42 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Control Breaks
How to Request Multiple Control Breaks 2

You may designate more than one sort field as a control break field. Report Writer even
allows all of your sort fields to be control break fields. However, most reports look best
when no more than the first two or three sort fields are used as control breaks. The
following example makes the first two sort fields control break fields:

SORT: REGION EMPL–NAME SALES–DATE
BREAK: REGION SPACE(3)
BREAK: EMPL–NAME SPACE(1)

In the statements above, we made both REGION and EMPL–NAME control break fields. A
control break will occur whenever the REGION field changes values (as in the previous
examples). A total line will print for the region, and then 3 blank lines will print. But in
this example, the second sort field, EMPL–NAME, is also designated a control break field. So,
a control break will also occur whenever the EMPL–NAME field changes value. A total line
will print for the employee, followed by 1 blank line. Figure 2-16, on page 2-44 shows a
sample report that uses the above statements.

Note • When multiple BREAK statements are used, they may appear in any order.
However, all BREAK statements must appear after the SORT statement.
CIMS Report Writer User Guide 2-43 ■

■ How to Request a Report

How to Create Control Breaks
Figure 2-16 • A report with two levels of control breaks

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION SPACE(3)
BREAK: EMPL-NAME SPACE(1)
TITLE: 'SALES TOTALLED BY EMPLOYEE AND REGION'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

 SALES TOTALLED BY EMPLOYEE AND REGION

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
*** TOTAL FOR MORRISON (2 ITEMS) 74.00 4.44

EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
*** TOTAL FOR SIMPSON (2 ITEMS) 38.86 2.33

****** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
*** TOTAL FOR JOHNSON (2 ITEMS) 244.43 14.67

NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
*** TOTAL FOR JONES (3 ITEMS) 142.26 8.55

****** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

 (other report lines not shown)

********* GRAND TOTAL (14 ITEMS) 1,383.66 83.05

Notes:

• the two BREAK statements make both REGION and EMP–NAME control break fields

• when the EMPL–NAME field changes, employee totals print, followed by 1 blank line

• when the REGION field changes, region totals print, followed by 3 blank lines

• the employee total line begins with 3 asterisks, while the region total line begins with 6 asterisks, and
the Grand Total line has 9 asterisks (indicating the level of the break)

INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION SPACE(3)
BREAK: EMPL-NAME SPACE(1)
TITLE: 'SALES TOTALLED BY EMPLOYEE AND REGION'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX
■ 2-44 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Control Breaks
Summary

Here is a summary of what we learned in this lesson:

■ use the BREAK statement to specify a control break field

■ control break fields must also be sort fields

■ use the SPACE parm to specify your own spacing at the control break

■ use one or more statistical parms to request that certain statistical lines print at a
control break

■ you can specify multiple control breaks in the same report

The next lesson will show you how to turn reports with control breaks into "summary
reports."

To Learn More

There are some additional features associated with the BREAK statement which we have
not covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional topics include:

■ additional control break spacing parms, including one that skips to a new sheet of
paper (page 4-67)

■ how to print one or more customized lines at the beginning of a control break
(page 4-93)

■ how to print one or more customized lines at the end of a control break (page 4-80)

■ how to customize the total line, and the other statistical lines (page 4-74 and
page 4-77)

■ how to suppress the total line at a control break (page 4-76)

■ how to print only the total lines to produce a summary report (page 2-46 and
page 4-102)

■ how to compute percentages and ratios that apply to an entire control group
(page 4-71)

The complete syntax for the BREAK statement is given in Chapter 10, Control Statement
Syntax.
CIMS Report Writer User Guide 2-45 ■

■ How to Request a Report

How to Create Summary Reports
How to Create Summary Reports 2

This lesson teaches you how to produce summary reports. The control statement
discussed is:

■ the OPTIONS statement

How to Create a Summary Report 2

A summary report is one which does not show the detail information for every record
included in the report. Instead the detail information is summarized and only the totals
are printed in the report.

Control breaks are used to create the desired total lines. Consider the report shown
earlier on page 2-38. It is a detail report that lists each sale made in every region. The
control break on REGION causes a total line to print after the detail lines for each region
have printed. By adding the following statement, we can suppress the detail lines and
print just the region totals:

OPTIONS: SUMMARY

Figure 2-17, on page 2-47 shows a summary report that uses the above statement.
■ 2-46 CIMS Report Writer User Guide

How to Request a Report ■

How to Create Summary Reports
Figure 2-17 • Producing a summary report

OPTIONS: SUMMARY
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
TITLE: 'REGIONAL SALES SUMMARY'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

 REGIONAL SALES SUMMARY

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09
*** TOTAL FOR WEST (3 ITEMS) 282.73 16.97

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

Notes:

• this is the same report as in Figure 2-13, on page 2-38, except for the additional OPTIONS statement

• the SUMMARY parm (in the OPTIONS statement) suppresses the detail report lines, leaving just a
summary report

• in summary reports, only the numeric columns are filled in (with total values)

OPTIONS: SUMMARY
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
TITLE: 'REGIONAL SALES SUMMARY'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX
CIMS Report Writer User Guide 2-47 ■

■ How to Request a Report

How to Create Summary Reports
Summary

Here is a summary of what we learned in this lesson:

■ use the SUMMARY option (in the OPTIONS statement) to create a summary report

■ a summary report must have at least one control break field

The next lesson will show you how to use data from more than one input file in a report.

To Learn More

There are some additional features associated with summary reports which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional features include:

■ customizing the summary lines in your report (page 4-74)

■ printing statistics (such as averages, maximums and minimums) in your summary
report (page 4-77)

■ creating multiple levels of summarization (page 4-96)

■ printing a limited number of detail records in each control group, creating reports
such as "The Top 3 Sales in Each Region" (page 4-104)
■ 2-48 CIMS Report Writer User Guide

How to Request a Report ■

How to Use Data from More Than One File
How to Use Data from More Than One File 2

This lesson teaches you how to read records from additional input files for use in your
report. The control statement discussed is:

■ the READ statement

All of the sample reports produced so far have used data from only one input file. The
data has come from the file specified in the INPUT statement, called the primary input
file. There are times when all of the data needed for a particular report will not be found
in just a single file. One of Report Writer's most powerful features is its ability to use any
number of input files to produce a report.

How Auxiliary Input Files Are Processed 2

Each report is allowed to have only one primary input file, specified in the INPUT
statement. When data from additional input files is required to produce a report, a READ
statement is used. The READ statement causes a record to be read from another input file,
called an auxiliary input file. You may have as many READ statements as you like in a
single report.

Here is how Report Writer processes the primary and auxiliary input files. Report Writer
first reads a single record from the primary input file. (This file is always read sequentially,
beginning with the first record in the file.) Next, if any auxiliary input files were specified,
Report Writer also reads one record from each of those files. (These files are always read
randomly, using a key.) At this point, Report Writer will have read one record from each
of the input files. The fields from all of these records are now available for use in producing
the report. These fields can be used:

■ as columns in the body of the report

■ in titles

■ as sort fields

■ as control break fields

■ in conditional expressions

■ in calculations

■ and in any other way that other fields can be used

After processing this set of records, Report Writer then repeats the process. Another
record is read sequentially from the primary input file. Then random reads are
performed to each of the auxiliary input files. This next group of records is then used in
making the report, and so on. This process is repeated until there are no more records
left in the primary input file.

By simply adding a READ statement to your report request, you automatically make all of
the data fields from another whole file available for use in producing your report.
CIMS Report Writer User Guide 2-49 ■

■ How to Request a Report

How to Use Data from More Than One File
There is one important thing about auxiliary input files to keep in mind. Since these files
are ready randomly, they must be keyed files (or DB2 tables.) Most VSAM files are keyed files.

In a keyed file, each record has a unique "key" value associated with it. When a random
read is made to such a file, a read key must be specified to identify which record to read.
What read key should Report Writer use when reading a record from an auxiliary input
file? In order to be useful, the auxiliary input record should be somehow related to the
primary input record. Usually, the record from the primary input file will contain the key
of a corresponding record in the auxiliary input file. That key from the primary input file
will be used as the read key.

Note • If you are not familiar with such terms as "keyed files" and "read keys", ask
your programmer to help you determine whether a particular file is keyed or not, and
also to help you decide what read key to use.

How to Use the READ Statement 2

Now let's look at a concrete example of how to use the READ statement. Begin by
considering Figure 2-18, on page 2-51, which shows a simple report that uses only a
primary input file (the SALES–FILE). This report shows information about each sale made
by an employee.

This report includes columns for two fields that we haven't used in previous examples,
so we'll explain them. They are the EMPL––NUM field and the PRODUCT–CODE field. The EMPL–
NUM is the employee number of the employee who made the sale. The PRODUCT–CODE is a
code that identifies which product was sold to the customer.
■ 2-50 CIMS Report Writer User Guide

How to Request a Report ■

How to Use Data from More Than One File
Figure 2-18 • A report that uses only the primary input file

INPUT: SALES-FILE
TITLE: RECENT SALES'
COLUMNS: EMPL-NAME EMPL-NUM SALES-DATE CUSTOMER AMOUNT PRODUCT-CODE

Produce this Report:

These Control Statements:

 RECENT SALES

 EMPL EMPL SALES PRODUCT
 NAME NUM DATE CUSTOMER AMOUNT CODE

JOHNSON 037 03/12/95 ACE ELECTRICAL 101.38 952
BAKER 044 03/26/95 JACKS CAFE 137.00 978
MORRISON 042 03/29/95 STAR MARKET 44.35 907
MORRISON 042 03/30/95 A1 PHOTOGRAPHY 29.65 919
SIMPSON 041 04/01/95 EUROPEAN DELI 14.99 916
JOHNSON 039 04/01/95 VILLA HOTEL 234.45 926
JOHNSON 039 04/05/95 MARYS ANTIQUES 9.98 997
BAKER 044 04/12/95 JACKS CAFE 135.75 916
THOMAS 045 04/14/95 YOGURT CITY 9.98 997
JONES 036 04/15/95 EZ GROCERY 10.25 977
JONES 036 04/15/95 TOY TOWN 121.76 907
JONES 036 04/15/95 TOY TOWN 10.25 977
JOHNSON 037 04/16/95 ACME BUILDING 500.00 976
SIMPSON 041 04/30/95 J & S LUMBER 23.87 916

*** GRAND TOTAL (14 ITEMS) 1,383.66

Notes:

• all fields used in this report come from the SALES–FILE
CIMS Report Writer User Guide 2-51 ■

■ How to Request a Report

How to Use Data from More Than One File
Now, let's assume that we need this same report to also show each employee's social
security number. The social security number is not available in the SALES–FILE. But it is
a field in the EMPL–FILE. (See the report on page 2-11.) In order to produce such a report,
we need data from a second input file— the EMPL–FILE.

The EMPL–FILE is a keyed VSAM file. Its key is the 3–byte employee number. The records
in the SALES–FILE also contain an employee number, so we can use that field as the "read
key" to use in reading the EMPL–FILE. We can make the EMPL–FILE an auxiliary input file,
then, by simply adding this statement:

READ: EMPL–FILE READKEY(EMPL–NUM)

This READ statement tells Report Writer to use the EMPL–NUM field from each record in the
SALES–FILE as a key for reading an auxiliary record from the EMPL–FILE. All control
statements after this READ statement may now refer to the fields in the EMPL–FILE, as well
as to those in the SALES–FILE. So, we can now add the SOCIAL–SEC–NUM field from the
EMPL–FILE to our COLUMNS statement:

READ: EMPL–FILE READKEY(EMPL–NUM)
COLUMNS: EMPL–NAME SALES–FILE.EMPL–NUM SOCIAL–SEC–NUM
 SALES–DATE CUSTOMER AMOUNT PRODUCT–CODE

Notice that in the above COLUMNS statement we must now prefix the EMPL–NUM field with
a record name (like this: SALES–FILE.EMPL–NUM). This is because after the READ statement,
EMPL–NUM is no longer a unique field name. A field by that name exists in both the SALES–
FILE and the EMPL–FILE. (See Appendix F, Files Used in Examples.) Since the EMPL–NUM will
have the same value in both of the records, it doesn't really matter which one we specify
in the COLUMNS statement, but we do have to specify a unique name. In this case we
specified the EMPL–NUM field from the SALES–FILE. (For more information on using
"record names" to qualify field names, see page 4-115.)

Figure 2-19, on page 2-53 shows a sample report which uses the above statements. The
report now has the desired new column showing each employee's social security
number. Notice that we also sorted the report on SOCIAL–SEC–NUM. Remember that you
can use fields from auxiliary input files in any way that you use fields from the primary
input file.
■ 2-52 CIMS Report Writer User Guide

How to Request a Report ■

How to Use Data from More Than One File
Figure 2-19 • A report that uses a READ statement to specify an auxiliary input file

INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM)
SORT: SOCIAL–SEC–NUM
TITLE: 'SALES SORTED BY SOCIAL SECURITY NUMBER'
COLUMNS: EMPL-NAME SALES-FILE.EMPL-NUM SOCIAL-SEC-NUM
 SALES-DATE CUSTOMER AMOUNT PRODUCT-CODE

Produce this Report:

These Control Statements:

 SALES SORTED BY SOCIAL SECURITY NUMBER

 SALES
 FILE SOCIAL
 EMPL EMPL SEC SALES PRODUCT
 NAME NUM NUM DATE CUSTOMER AMOUNT CODE

JOHNSON 039 004-77-9981 04/05/95 MARYS ANTIQUES 9.98 997
JOHNSON 039 004-77-9981 04/01/95 VILLA HOTEL 234.45 926
JONES 036 012-09-8765 04/15/95 EZ GROCERY 10.25 977
JONES 036 012-09-8765 04/15/95 TOY TOWN 10.25 977
JONES 036 012-09-8765 04/15/95 TOY TOWN 121.76 907
SIMPSON 041 112-05-0456 04/30/95 J & S LUMBER 23.87 916
SIMPSON 041 112-05-0456 04/01/95 EUROPEAN DELI 14.99 916
THOMAS 045 776-83-8221 04/14/95 YOGURT CITY 9.98 997
BAKER 044 878-19-0156 04/12/95 JACKS CAFE 135.75 916
BAKER 044 878-19-0156 03/26/95 JACKS CAFE 137.00 978
MORRISON 042 900-12-0556 03/30/95 A1 PHOTOGRAPHY 29.65 919
MORRISON 042 900-12-0556 03/29/95 STAR MARKET 44.35 907
JOHNSON 037 912-04-0334 03/12/95 ACE ELECTRICAL 101.38 952
JOHNSON 037 912-04-0334 04/16/95 ACME BUILDING 500.00 976

*** GRAND TOTAL (14 ITEMS) 1,383.66

Notes:

• the READ statement makes the fields from the EMPL–FILE available for use

• the COLUMNS statement includes the SOCIAL–SEC–NUM field from the EMPL–FILE

• we also sorted the report on the SOCIAL–SEC–NUM field from the EMPL–FILE

• the EMPL–NUM field must be prefixed with a record name in the COLUMNS statement, since a field
by that name exists in both input files
CIMS Report Writer User Guide 2-53 ■

■ How to Request a Report

How to Use Data from More Than One File
How to Use Multiple READ Statements 2

You are allowed to use an unlimited number of READ statements in requesting a report.
The sample report in Figure 2-20, on page 2-55 uses two READ statements. The primary
input file is once again the SALES–FILE, which contains one record for each sale made by
an employee.

To obtain additional data about the employee who made each sale, we use a READ
statement for the EMPL–FILE (just like in the preceding example.) The EMPL–NUM field in
the SALES–FILE contains the key necessary to read the correct EMPL–FILE record.

To obtain additional information about each product sold, a second READ statement
names the PRODUCT–FILE as an another auxiliary input file. (The PRODUCT–FILE is
described in Appendix F, Files Used in Examples.)

However, there is one minor complication in reading records from this file. The key in
the PRODUCT–FILE records is 4 bytes long. It consists of the letter "P" followed by a 3–byte
product code. The SALES–FILE does not contain a field which can be used directly as the
read key to the PRODUCT–FILE. But, it does contain the 3–byte PRODUCT–CODE field, which
we can use to build the 4–byte read key. A COMPUTE statement is therefore used to create
a new field (called PRODKEY) which consists of the letter "P" followed by the product code.
This computed field is then used as the read key in the READ statement for the PRODUCT–
FILE:

COMPUTE: PRODKEY = 'P' + PRODUCT–CODE
READ: PRODUCT–FILE READKEY(PRODKEY)

By having two READ statements in addition to the INPUT statement, the report now has
three input files. Data from all of these files can be used in any of the subsequent control
statements. In the sample report in Figure 2-20, on page 2-55, the COLUMNS statement uses
two fields from the auxiliary input files. It uses the SOCIAL–SEC–NUM field from the EMPL–
FILE, and the PRODUCT–DESC field from the PRODUCT–FILE.
■ 2-54 CIMS Report Writer User Guide

How to Request a Report ■

How to Use Data from More Than One File
Figure 2-20 • A report that uses two READ statements to specify two auxiliary input files

INPUT: SALES–FILE
READ: EMPL–FILE READKEY(EMPL–NUM)
COMPUTE: PRODKEY = 'P' + PRODUCT–CODE
READ: PRODUCT–FILE READKEY(PRODKEY)
TITLE: 'SALES SORTED BY SOCIAL SECURITY NUMBER'
COLUMNS: EMPL–NAME
 SALES–FILE.EMPL–NUM
 SOCIAL–SEC–NUM
 SALES–DATE
 CUSTOMER
 PRODUCT–CODE
 PRODUCT–DESC

Produce this Report:

These Control Statements:

Notes:

• all fields from the SALES–FILE, the EMPL–FILE and the PRODUCT–FILE are available for use in the
report

• the key to the PRODUCT–FILE is a computed field

• the EMPL–NUM field must be prefixed with a record name in the COLUMNS statement, since a field
by that name exists in two input files (SALES–FILE and EMPL–FILE)

• the SOCIAL–SEC–NUM field comes from the EMPL–FILE auxiliary input file

• the PRODUCT–DESC field comes from the PRODUCT–FILE auxiliary input file

 SALES SORTED BY SOCIAL SECURITY NUMBER

 SALES
 FILE SOCIAL
 EMPL EMPL SEC SALES PRODUCT PRODUCT
 NAME NUM NUM DATE CUSTOMER AMOUNT CODE DESC

JOHNSON 039 004-77-9981 04/05/95 MARYS ANTIQUES 9.98 997 MAILING LABELS
JOHNSON 039 004-77-9981 04/01/95 VILLA HOTEL 234.45 926 DESK CALENDARS
JONES 036 012-09-8765 04/15/95 EZ GROCERY 10.25 977 PAPER CLIPS
JONES 036 012-09-8765 04/15/95 TOY TOWN 10.25 977 PAPER CLIPS
JONES 036 012-09-8765 04/15/95 TOY TOWN 121.76 907 INKPADS
SIMPSON 041 112-05-0456 04/30/95 J & S LUMBER 23.87 916 RED PENS
SIMPSON 041 112-05-0456 04/01/95 EUROPEAN DELI 14.99 916 RED PENS
THOMAS 045 776-83-8221 04/14/95 YOGURT CITY 9.98 997 MAILING LABELS
BAKER 044 878-19-0156 04/12/95 JACKS CAFE 135.75 916 RED PENS
BAKER 044 878-19-0156 03/26/95 JACKS CAFE 137.00 978 HOLE PUNCHERS
MORRISON 042 900-12-0556 03/30/95 A1 PHOTOGRAPHY 29.65 919 GREEN PENS
MORRISON 042 900-12-0556 03/29/95 STAR MARKET 44.35 907 INKPADS
JOHNSON 037 912-04-0334 03/12/95 ACE ELECTRICAL 101.38 952 PENCILS (NO. 1)
JOHNSON 037 912-04-0334 04/16/95 ACME BUILDING 500.00 976 CHAIRS

*** GRAND TOTAL (14 ITEMS) 1,383.66
CIMS Report Writer User Guide 2-55 ■

■ How to Request a Report

How to Use Data from More Than One File
Summary

Here is a summary of what we learned in this lesson:

■ the READ statement is used to read records from auxiliary input files

■ you may have as many READ statements as you like in a single report

To Learn More

There are some additional features associated with the READ statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional features include:

■ how to assign a record name to the records read from auxiliary input files
(page 4-115)

■ how to read more than one record from the same auxiliary input file (page 4-111)

■ how to use data from one auxiliary input file as the read key to another auxiliary
input file (page 4-113)

■ what happens when no record is found for a particular read key (page 4-116)

■ how to determine whether the read for a particular key was successful or not
(page 4-116)

■ how to use the READ statement to obtain data from a DB2 table or view (page 7-3)

The complete syntax for the READ statement is given inChapter 10, Control Statement
Syntax.
■ 2-56 CIMS Report Writer User Guide

3
How to Request a PC File

Introduction . 3-2

How to Produce a PC File in 5 Minutes . 3-6

Using the OPTIONS Statement to Name the PC Program . 3-8

How to Use the INPUT and COLUMNS Statements . 3-8

Importing Your PC File into Lotus 1–2–3 . 3-9

Another 5–Minute Example . 3-10

Using Your Company's Files . 3-10

How to Include Only Certain Records In Your PC File .3-13

How to Use the INCLUDEIF Statement . 3-13

How to Write Conditional Expressions . 3-15

How to Create Your Own Fields .3-18

Creating Numeric Fields . 3-18

Creating Character Fields . 3-20

Assigning Values to Fields Based on Conditions . 3-22

How to Specify the PC File Order .3-25

How to Use the SORT Statement . 3-25

Automatic Sorting . 3-25

How to Create Control Breaks .3-28

How to Use the BREAK Statement . 3-28

Customizing the Control Break . 3-30

How to Create Summary Files .3-33

How to Create a Summary File . 3-33

How to Use Data from More Than One File .3-36

How Auxiliary Input Files Are Processed . 3-36

How to Use the READ Statement . 3-37

How to Use Multiple READ Statements . 3-40
CIMS Report Writer User Guide 3-1 ■

■ How to Request a PC File

Introduction
Introduction 3

This chapter teaches you how to turn mainframe data into PC files to use in your favorite
PC program. Report Writer makes using mainframe data in PC programs as easy as 1-2-3.

1 Use Report Writer to create a custom PC file on your mainframe.

Report Writer's language is non–procedural, which means you just describe the result
you want, not the programming steps needed to do it. Describe your PC file with a
few simple "control statements". (These control statements are the same ones you
already learned about in the previous chapter.) You can create a PC file with just three
control statements. The lessons in this chapter teach you how the control statements
work.

Once you've written the necessary control statements, submit a batch job to execute
Report Writer. Report Writer examines the control statements describing the PC file
you want. It automatically locates the appropriate "file definition" statements stored
in a copy library. (These statements define your mainframe files.) Report Writer then
accesses the mainframe data and creates the desired PC file on your mainframe.

2 Download the PC file to your PC.

Just use your shop's existing download facility to transfer the PC file to your PC.

3 Use the PC file into your PC program.

Start up your PC program and "open" or "import" the PC file with a few simple
keystrokes. (Chapter H, How to Import PC Files describes the exact steps to use in many
popular PC programs.) The PC program then reads the PC file and automatically
moves the data into the correct rows and columns. Each downloaded record results
in one row in a spreadsheet. And each field becomes a column in a spreadsheet.

Using mainframe data in your PC is as easy as that with Report Writer!
■ 3-2 CIMS Report Writer User Guide

How to Request a PC File ■

Introduction

Statements 3

INPUT: SALES FILE
COLUMNS: REGION EMPL-NAME

File Definition
Statements 3

FILE: SALES-FILE DDNAME(SALEFILE)
FIELD: EMPL-NAME LENGTH(10)
FIELD: EMPL-NUM LENGTH(3)
FIELD: REGION LENGTH(5)

Input Files
(Raw Data) 3

JONES.....036NORTH9770010250.37950415TOY T
JONES.....036NORTH9460121760.37950415TOY T
JOHNSON...039NORTH9260234450.36950401F7 GR

Report Writer

Step 1: Create PC file on Mainframe

Step 2: Download PC file to PC

Step 3: Use PC file in PC program
CIMS Report Writer User Guide 3-3 ■

■ How to Request a PC File

Introduction
Figure 3-1, on page 3-5 lists all of the Report Writer control statements used in requesting
PC files and describes the function of each one.

The remainder of this chapter is divided into seven easy lessons that explain how to use
the various control statements to request PC files.

After reading just the first lesson, you will be able to produce useful PC files with Report
Writer. The other lessons introduce additional control statements, and explain their roles
in producing increasingly sophisticated PC files. It is not necessary to read all of the other
lessons initially. Nor is it necessary to read the lessons in sequential order. Read the
summaries below and decide which lessons you need for the kind of PC files you want
to produce.

1 How to Produce a PC File in 5 Minutes

This lesson shows how to produce PC files using just three simple control
statements— the INPUT, COLUMNS and OPTIONS statements. You will use these three
statements for almost every PC file you request.

2 How to Include Only Certain Records in Your PC File

This lesson shows how to use the INCLUDEIF statement to specify which mainframe
records to include in your PC file.

3 How to Create Your Own Fields

This lesson shows you how to create your own fields by performing computations on
existing fields. This is done with the COMPUTE statement.

4 How to Specify the PC File Order

This lesson shows how to sort your PC file into whatever order you want. The use of
the SORT statement is explained.

5 How to Create Control Breaks

This lesson shows how to break a PC file up into sections, with subtotals appearing
at the end of each section. The use of the BREAK statement to request such "control
breaks" is explained.

6 How to Create Summary Files

This lesson shows you how to turn a PC file with subtotals into a small summary file
that is more easily downloaded to a PC.

7 How to Use Data from More than One File

This lesson shows how easy it is to read records from additional files when producing
PC files. By adding a single READ statement, you automatically have access to all of the
fields from an additional file.
■ 3-4 CIMS Report Writer User Guide

How to Request a PC File ■

Introduction
Keep in mind that these lessons show you the most common use of each control
statement. Most control statements also have additional features that are not discussed
in these lessons. Additional ways to use these control statements are discussed in
Chapter 4, Beyond the Basics. The complete syntax for each control statement is shown in
Chapter 10, Control Statement Syntax.

Figure 3-1 • Control Statements Used to Create PC Files

CONTROLONTROL STATEMENTSTATEMENTS USED TOSED TO CREATEREATE PC FILESILES

(GROUPED BYROUPED BYFUNCTIONUNCTION)

Statements that Define Data
FILE Defines a mainframe file
FIELD Defines a field within a mainframe file
ASM Lets you define a mainframe file using an Assembler record

layout
COBOL Lets you define a mainframe file using a Cobol record layout

Statements that Make Data Available to a PC File
INPUT Specifies the primary input file
READ Specifies an auxiliary input file
COMPUTE Creates a new field

Statements that Describe the Body of a PC File
INCLUDEIF Specifies which input records to include in the PC file
COLUMNS Specifies the PC file columns and column headings

Statements that Define the PC File Order, and Control Breaks
SORT Specifies PC file order, and optionally specifies control break

fields
BREAK Specifies control break processing

Miscellaneous Statements
OPTIONS Specifies the kind of PC file needed, as well as various other

special options
COPY Copies additional control statements for processing

CONTROLONTROL STATEMENTSTATEMENTS USED TOSED TO CREATEREATE PC FILESILES

(GROUPED BYROUPED BYFUNCTIONUNCTION)
CIMS Report Writer User Guide 3-5 ■

■ How to Request a PC File

How to Produce a PC File in 5 Minutes
How to Produce a PC File in 5 Minutes 3

This lesson teaches you how to produce a PC file using just three simple control
statements. These statements are:

■ the OPTIONS statement

■ the INPUT statement

■ the COLUMNS statement

You only need three statements to create a PC file with Report Writer.

Example
OPTION: LOTUS
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX

The OPTION statement above tells Report Writer that you want to convert mainframe data
into a PC file to use in Lotus 1–2–3.

The INPUT statement identifies the mainframe file containing the data you want to use in
Lotus 1–2–3. In this case, we specified SALES–FILE. This is a sample "sales file" that is
used in many of the examples in this manual. This file contains information about each
sale made by the employees in an imaginary company.

The COLUMNS statement specifies which columns of data we want in our Lotus
spreadsheet. Each field listed in this statement becomes one column in the spreadsheet.
In this case we've requested columns for: the sales region, the employee name, the sales
date, the sales time, the customer's name, the amount of the sale, and the tax amount.

With just these three statements, we've given Report Writer everything it needs to turn
mainframe data into a PC file for Lotus 1–2–3!

Figure 3-2, on page 3-7 illustrates this. The box on top shows the three control statements
we just discussed. Based on these statements, Report Writer creates a PC file containing
the requested data in Lotus import file format.

The PC screen shows the Lotus 1–2–3 spreadsheet obtained by importing the PC file. The
spreadsheet contains the mainframe data we requested, properly laid out into rows and
columns. There are even column headings for each column.

Once the mainframe data is in your PC spreadsheet, the possibilities of how to use it are
limitless. As an example, Figure 3-2 shows a simple Lotus graph created from the AMOUNT
and TAX columns in the spreadsheet.

That's all there is to creating custom PC files with Report Writer. With just three simple
statements we did what would otherwise have taken an entire COBOL program to do!

The following pages discuss these three control statements (and the importing process)
in a little more detail.
■ 3-6 CIMS Report Writer User Guide

How to Request a PC File ■

How to Produce a PC File in 5 Minutes
Figure 3-2 • A Lotus 1-2-3 spreadsheet obtained from just three control statements

These Control Statements:

OPTIONS: LOTUS
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX

Result in this Lotus 1-2-3 spreadsheet:
CIMS Report Writer User Guide 3-7 ■

■ How to Request a PC File

How to Produce a PC File in 5 Minutes
Using the OPTIONS Statement to Name the PC Program 3

Different PC programs have slightly different formatting requirements for the "import
files" they accept. Report Writer creates PC files for all of the major PC spreadsheet,
database and graphics programs. Just use an OPTIONS statement to tell Report Writer
which PC program you want the PC file for. In Figure 3-2, on page 3-7, we created a PC
file to use in a Lotus 1–2–3 spreadsheet.

Example
OPTIONS: LOTUS

All Report Writer control statements begin in column 1 with the name of the statement
(for example, OPTIONS), followed immediately by a colon. What follows next will depend
on the particular control statement involved. With an OPTIONS statement, you simply add
a keyword that identifies the kind of PC file wanted. In the above example, we specified
LOTUS, which is the keyword for a Lotus 1–2–3 file. Here are some other keywords you
can use to request PC files for other PC programs.

KEYWORD PC PROGRAM
ACCESS Access
COREL Corel Chart
CSV "Generic" Comma–Separated–Values
DBASE3 dBASE III
DBASE4 dBASE IV
EXCEL Excel
FOXPRO FoxPro
HARVARD Harvard Graphics
LOTUS Lotus 1–2–3
MS–WORKS Microsoft Works
PARADOX Paradox
QUATTRO Quattro Pro
RBASE R:Base

Note • If the PC program you want is not listed above, see page 4-139. It explains
how to create a PC file for other PC programs.

In other lessons in this chapter we will use some of the above PC options.

How to Use the INPUT and COLUMNS Statements 3

The INPUT and COLUMNS statements perform the same functions when creating PC files as
they do when creating reports. The INPUT statement names the mainframe file to be used
as input for the run. And the COLUMNS statement names the fields from that file that
should be written to the PC file.
■ 3-8 CIMS Report Writer User Guide

How to Request a PC File ■

How to Produce a PC File in 5 Minutes
Importing Your PC File into Lotus 1–2–3 3

The three control statements discussed above result in Report Writer extracting data from
the sales file on the mainframe and turning it into a PC file in Lotus format. Here are a
few lines from the actual PC file created by Report Writer:

" ","EMPL","SALES","SALES"," "," "," "
"REGION","NAME","DATE","TIME","CUSTOMER","AMOUNT","TAX"
" "," "," "," "," "," "," "
"SOUTH","JOHNSON ","03/12/95","10:25:00","ACE ELECTRICAL ", 101.38, 6.09
"WEST ","BAKER ","03/26/95","12:09:09","JACKS CAFE ", 137.00, 8.22
...

But how did we get this PC file loaded into Lotus as a spreadsheet? After creating this PC
file, we simply performed two additional steps to get the spreadsheet shown on page 3-7:

1 We downloaded the PC file to our PC. Just use whatever file transfer program your
company normally uses. For example, if your company uses Attachmate's EXTRA! as
its terminal emulator program, use EXTRA!'s file transfer facility.

2 We ran Lotus 1–2–3 and "opened" the downloaded PC file as a comma delimited file.
For example, here's how you import a PC file into Lotus 1–2–3 for Windows (Release
5.) From an empty spreadsheet:

a From the FILE menu, choose OPEN (this brings up an Open File dialog box)

b Fill in the File Name

c Choose TEXT for the File Type

d Click the OK button

Note • A similar process is used to import PC files into other versions of Lotus 1–2–
3. The exact steps may vary a little from version to version. To be sure, just check your
PC program's manual (or the online Help) for exact instructions on "importing"
comma delimited ASCII files.

Note • The exact steps for importing PC files into various other PC programs are
shown in Appendix H, How to Import PC Files.

Note • The JCL used to create this PC file is shown on page 8-6 (MVS) and page 8-18
(VSE).
CIMS Report Writer User Guide 3-9 ■

■ How to Request a PC File

How to Produce a PC File in 5 Minutes
Another 5–Minute Example 3

Now let's make another PC file, this time using a different input file. This time we will
create a Quattro Pro spreadsheet using data from the EMPL–FILE. EMPL–FILE is a sample
employee file, described in Appendix F, Files Used in Examples. We will create a simple
employee directory from that file. We want the spreadsheet to have columns showing
employee number, last name, first name, sex, social security number, date hired, and
their city and state. We only need the following three statements:

OPTIONS: QUATTRO
INPUT: EMPL–FILE
COLUMNS: EMPL–NUM LAST–NAME FIRST–NAME SEX SOCIAL–SEC–NUM
 HIRE–DATE CITY STATE

The OPTIONS statement above specifies that we want a PC file to use in Quattro Pro. The
INPUT statement above specifies that the input file for our PC file will be the employee
file (EMPL–FILE). The COLUMNS statement specifies the columns of data we want our
spreadsheet to have. Notice that we needed two lines for the COLUMNS statement in this
example. You can continue a control statement onto as many lines as you want. Just
leave at least one blank space at the beginning of each continuation line.

The Quattro Pro spreadsheet obtained by using the above statements is shown in Figure
3-3, on page 3-11.

You have now seen two examples showing just how easy it is to create PC files with
Report Writer. That's all there is to it! You should now be able to request basic PC files
from the files at your company.

Using Your Company's Files 3

You may be wondering how Report Writer knows the names of your company's files and
fields. The answer is that your company's files are defined to Report Writer by other
control statements that are kept in a Report Writer "copy library." For example, the
statements used to define the SALES–FILE that we used earlier in this lesson are shown
on Figure F-2, on page F-2.

For a list of the file names and field names available for you to use, ask your
programmer. They can print that information from the Report Writer Copy Library, in a
format similar to that shown on page F-2.

If you already know the name of the file to use, you can also get a list of all of its fields
by adding the SHOWFLDS(YES) parm to your INPUT statement like this:

INPUT: SALES–FILE SHOWFLDS(YES)

The above statement tells Report Writer to print (in the control statement listing) a list
of all of the fields defined for SALES–FILE.

If a file that you need has not yet been defined, see Chapter 6, How to Define Your Input
Files for information on doing that.
■ 3-10 CIMS Report Writer User Guide

How to Request a PC File ■

How to Produce a PC File in 5 Minutes
Figure 3-3 • A Quattro Pro employee directory produced with just three control statements

These Control Statements:

OPTIONS: QUATTRO
INPUT: EMPL–FILE
COLUMNS: EMPL–NUM LAST–NAME FIRST–NAME SEX SOCIAL–SEC–NUM
 HIRE–DATE CITY STATE

Result in this Quattro Pro spreadsheet:

OPTIONS: QUATTRO
INPUT: EMPL–FILE
COLUMNS: EMPL–NUM LAST–NAME FIRST–NAME SEX SOCIAL–SEC–NUM
 HIRE–DATE CITY STATE
CIMS Report Writer User Guide 3-11 ■

■ How to Request a PC File

How to Produce a PC File in 5 Minutes
Summary

Here is a summary of what we learned in this lesson:

■ the OPTIONS statement tells Report Writer which PC program to format the PC file for

■ the INPUT statement tells Report Writer which input file contains the data needed in
your PC file

■ the COLUMNS statement tells Report Writer what columns of data to put in your PC file

■ by using just these three statements you can produce a PC file

The next lesson will teach you how to limit the records that are included in your PC file.

To Learn More

To learn more about writing control statements in general, see Chapter 9, General Syntax
Rules. In that chapter you will learn such things as:

■ how long each line can be (page 9-3)

■ how to continue control statements onto multiple lines (page 9-4)

There are some additional features associated with the INPUT and COLUMNS statements
which we have not covered in this lesson. Some of these additional features are discussed
in Chapter 4, Beyond the Basics. Examples of additional features are:

■ how to specify your own column headings for a PC file (page 4-7)

■ how to suppress column headings in your PC file (page 4-7)

■ how to reserve more room for numeric columns in your PC file (page 4-12)

■ how to create a column that contains a literal text (page 4-4)

■ how to produce multiple rows in the PC file for each input record (page 4-29)

■ how to turn data from DB2 tables and views into PC files (page 7-7)

■ how to turn data from existing reports into PC files (page 4-125)

The complete syntax for the OPTIONS, INPUT and COLUMNS statements is given in
Chapter 10, Control Statement Syntax.
■ 3-12 CIMS Report Writer User Guide

How to Request a PC File ■

How to Include Only Certain Records In Your PC File
How to Include Only Certain Records In Your PC File 3

This lesson teaches you how to select only certain records from the input file for
inclusion in your PC file. The control statement discussed is:

■ the INCLUDEIF statement

How to Use the INCLUDEIF Statement 3

In the previous lesson we saw how to select certain fields to be downloaded. (We used
the COLUMNS statement to identify the fields that we wanted.) Now let's look at how to
download only selected records from the mainframe file. We will use the INCLUDEIF
("include if") statement.

When no INCLUDEIF statement is specified, Report Writer includes every record from the
mainframe file. Use the INCLUDEIF statement to tell Report Writer to "include" a record
in the PC file only "if" one or more conditions are met.

This feature is very useful when you are working with large mainframe files that might
take hours to download (and which might use up half of your hard disk in the process.)
Using the INCLUDEIF statement lets you download only the records that you actually
need.

For example, assume that we want to download data from the SALES–FILE to a
spreadsheet similar to the one on page 3-7. But this time let's just download the data for
the employee named Jones. We simply add the following INCLUDEIF statement to the
other control statements:

INCLUDEIF: EMPL–NAME = 'JONES'

The above INCLUDEIF statement tells Report Writer to "include" records from the SALES–
FILE “if" the EMPL–NAME field is equal to 'JONES'. Report Writer still reads through the
entire SALES–FILE, just like before. But now it examines each record before including it in
the PC file. If the record's EMPL–NAME field contains the value 'JONES', then the record is
included in the PC file. If the EMPL–NAME field contains any other value, then that record
is not included in the PC file.

Figure 3-4, on page 3-14 shows an Excel spreadsheet produced using the above
statement. Only the sales made by Jones appear in that spreadsheet.

The INCLUDEIF statement may appear anywhere after the INPUT statement. Only one
INCLUDEIF statement is allowed per run, but it may contain as many conditions as you
like.

By the way, the INCLUDEIF statement can refer to any of the fields in the input file. You
are not limited to just those fields that are listed in the COLUMNS statement.
CIMS Report Writer User Guide 3-13 ■

■ How to Request a PC File

How to Include Only Certain Records In Your PC File
Figure 3-4 • Using an INCLUDEIF statement to specify which records to include in a PC file

These Control Statements:

OPTIONS: EXCEL
INPUT: SALES-FILE
INCLUDEIF: EMPL–NAME = 'JONES'
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Result in this Excel spreadsheet:
■ 3-14 CIMS Report Writer User Guide

How to Request a PC File ■

How to Include Only Certain Records In Your PC File
How to Write Conditional Expressions 3

The INCLUDEIF statement consists of a conditional expression. The complete rules for
writing conditional expressions are explained beginning on page 9-18. Briefly, a
conditional expression contains one or more "conditions", separated with words such as
AND and OR. A condition usually involves comparing the contents of one field with the
contents of another field, or with a literal value. Let's look at some more examples of
INCLUDEIF statements and their conditional expressions.

Note • If you are a programmer, you will notice that the syntax for conditional
expressions is very similar to the syntax used in "IF statements" in COBOL, PL/1, and
BASIC. If you are familiar with any of these languages, you should find it especially
easy to write INCLUDEIF statements.

You may want your PC file to include all records which do not contain a certain value.
Do this by specifying "not equal" in your condition.

Example
INCLUDEIF: EMPL–NAME ¬= 'JONES'

The above statement specifies that the PC file should include all records from the input
file whose EMPL–NAME field is not equal to 'JONES'.

Note • In addition to ¬=, you can also use <> to indicate "not equal", like this:

INCLUDEIF: EMPL–NAME <> 'JONES'

You may want to include a record in your PC file if either of two conditions is true. To do
this, use an INCLUDEIF statement with two conditions, separated by the word OR.
Consider the following statement:

INCLUDEIF: EMPL–NAME = 'JONES' OR AMOUNT > 100

The above statement states that a record should be included in the PC file "if the EMPL–
NAME field is equal to 'JONES', or if the AMOUNT field is greater than 100." The word OR
indicates that records from the input file will be included if either one of the conditions
is true. (Of course, records will also be included if both conditions are true.)

Notice in the above statement that we enclosed 'JONES' in single quotation marks, while
we did not use quotation marks around the 100. That is because EMPL–NAME is a character
field, while AMOUNT is a numeric field. Character literals (such as 'JONES') must be
enclosed in quotation marks. You can use either single (') or double (") quotation marks.
But numeric literal (such as 100), as well as date and time literal, are not enclosed in
quotation marks. Numeric literal also must not contain commas. (The rules for writing
literal are thoroughly explained beginning on page 9-8).
CIMS Report Writer User Guide 3-15 ■

■ How to Request a PC File

How to Include Only Certain Records In Your PC File
As another example, you may want to include records in your PC file when both of two
conditions are true. For example, let's say we want a listing only of sales that were made
by Jones and that were also for an amount over $100. For this PC file, two conditions
must both be true: the EMPL–NAME field must be equal to 'JONES' and the AMOUNT field must
be over 100. Use the word AND to specify that both conditions must be true, like this:

INCLUDEIF: EMPL–NAME = 'JONES' AND AMOUNT > 100

Now as Report Writer reads each record from the input file, it will include a record in the
PC file only "if the EMPL–NAME field is equal to 'JONES' and the AMOUNT field is greater than
100."

Here is an example of including records in a PC file based on the contents of a date field:

INCLUDEIF: SALES–DATE > 4/15/1995

The above statement specifies that records should be included in the PC file only if their
SALES–DATE field contains a date greater than (after) April 15, 1995.

Here is an example of including records in a PC file based on the contents of a time field:

INCLUDEIF: SALES–TIME < 17:00:00

The above statement specifies that records should be included in the PC file only if their
SALES–TIME field contains a time less than (before) 17:00:00 (which is 5 PM.)

If your INCLUDEIF statement contains both the words OR and AND, you should use
parentheses to indicate the order in which to perform the comparisons. Consider the
following statement:

INCLUDEIF: EMPL–NAME = 'JONES' OR
 (SALES–DATE > 4/15/1995 AND SALES–DATE < 4/30/1995)

In the above statement, records will be included if the EMPL–NAME field is equal to 'JONES',
or if both of the SALES–DATE comparisons are true. The parentheses cause the two SALES–
DATE comparisons to be treated as one condition. That condition is true if the SALES–DATE
is greater than April 15, 1995 and is less than April 30, 1995.

Summary

Here is a summary of what we learned in this lesson:

■ use the INCLUDEIF statement when you want to include only certain records from the
input file in your PC file

■ the INCLUDEIF statement contains one or more conditions, separated by the words AND
or OR

■ groups of conditions can be enclosed in parentheses, to indicate the order in which
the comparisons should be performed

The next lesson will show you how to compute your own new fields to download to your
PC.
■ 3-16 CIMS Report Writer User Guide

How to Request a PC File ■

How to Include Only Certain Records In Your PC File
To Learn More

There are some additional features associated with the INCLUDEIF statement which we
have not covered in this lesson. These additional features are discussed in Chapter 10,
Control Statement Syntax. Examples of additional features include:

■ how to use symbols rather than the actual words AND and OR in your conditional
expressions

■ how to scan a character field, to see if a certain text exists anywhere within the field

■ how to specify conditions based on bit fields

■ how to specify a condition based on a field's raw hexadecimal value

■ how to specify date literal in DD/MM/YY or DD/MM/YYYY format (page 4-18), like this:

INCLUDEIF: SALES–DATE > 15/4/1995

■ you may also be able to use the KEYRANGE parm of the INPUT statement to limit the
records included in your run (page 10-72)
CIMS Report Writer User Guide 3-17 ■

■ How to Request a PC File

How to Create Your Own Fields
How to Create Your Own Fields 3

This lesson teaches you how to create your own fields to include in your PC file. The
control statement discussed is:

■ the COMPUTE statement

Sometimes the data you need to download to your PC program is not contained in the
input file. Yet the necessary data might be easily computed from one or more fields
which are in the input file. In such cases, simply create a new field by using the COMPUTE
statement.

Creating Numeric Fields 3

A COMPUTE statement specifies the name of the new field to create and supplies a
computational expression to use in assigning a value to that field. The complete rules for
computational expressions are discussed beginning on page 9-32. Generally, your
expression will consist of one or more mathematical operations performed on numeric
fields or numeric literal.

For example, the sample SALES–FILE has numeric fields named AMOUNT and TAX. We can
use the COMPUTE statement to create a new field containing the total amount due just by
adding those two fields together, like this:

COMPUTE: TOTAL–AMOUNT = AMOUNT + TAX

The above statement creates a new field named TOTAL–AMOUNT. It is computed by adding
the AMOUNT field and the TAX field together. Now that the TOTAL–AMOUNT field has been
created, we can use that field in any way that other fields can be used. For example, a
computed field can be used: as a column of data in your PC file; as a sort field; as a
control break field; as part of a conditional expression (in the INCLUDEIF statement); even
as an operand in subsequent COMPUTE statements to create other fields. The Paradox table
in Figure 3-5, on page 3-19 was obtained by using the above COMPUTE statement.

Note • COMPUTE statements normally appear after the INPUT statement, but must
appear before any control statement that refers to the field being created. In the
example on page 3-19, the COMPUTE statement for TOTAL–AMOUNT had to come before the
COLUMNS statement, since the COLUMNS statement referred to that field.

You can perform addition, subtraction, multiplication, and division in the COMPUTE
statement. Use the +, –, * and / symbols, respectively. You may also use parentheses as
needed to indicate the order in which the operations should be performed.

Note • When performing subtraction, always put a blank space before and after the
minus sign. Otherwise, the minus sign may appear to be a part of a field name.
Blanks are optional around the other operator symbols.
■ 3-18 CIMS Report Writer User Guide

How to Request a PC File ■

How to Create Your Own Fields
Figure 3-5 • Using the COMPUTE statement to create numeric fields for a PC file

These Control Statements:

Result in this Paradox table:

OPTIONS: PARADOX
INPUT: SALES-FILE
COMPUTE: TOTAL-AMOUNT = AMOUNT + TAX
COMPUTE: SALES-COMMISSION = TOTAL-AMOUNT * .33
COLUMNS: EMPL-NAME CUSTOMER AMOUNT TAX TOTAL-AMOUNT SALES-COMMISSION
CIMS Report Writer User Guide 3-19 ■

■ How to Request a PC File

How to Create Your Own Fields
As another example of a creating a numeric field, let's say we wanted to compute a sales
commission for each sale. The commission will be 33% of the total value of the sale,
including the tax. We could compute the sales commission with the following statement:

COMPUTE: SALES–COMMISSION = TOTAL–AMOUNT * .33

This statement creates a new field called SALES–COMMISSION which is computed by
multiplying TOTAL–AMOUNT by .33. Notice that we used the result of our previous COMPUTE
statement to perform the computation in this statement.

The Paradox table in Figure 3-5, on page 3-19 also uses the above statement.

In addition to the basic arithmetic operations, there are also a number of built–in
functions that you can use in the COMPUTE statement. These built–in functions allow you
to perform more complex mathematical operations on numeric operands. A complete
list of built–in functions is found in Appendix D, Built-In Functions.

Creating Character Fields 3

So far we have been creating numeric fields. Now let's consider how to create your own
character fields. There is only one operation used in computing character fields. It is the
concatenation operation. (Don't let that word scare you if it is new to you.
"Concatenating" simply means "stringing together" two or more character fields.) The
plus sign (+) is used as the symbol for concatenation.

Example
COMPUTE: WHOLE–NAME = LAST–NAME + FIRST–NAME

The above statement creates a new field named WHOLE–NAME. It is created by concatenating
the contents of the LAST–NAME field and the contents of the FIRST–NAME field. The result is
a single field which now contains both the last and first names of the employee. The new
field will be 30 bytes long — the combined length of the two operands.

You can also concatenate more than two fields together.

Example
COMPUTE: MAILING–CODE = STATE + '—' + EMPL–NUM

This example creates a new field called MAILING–CODE which consists of the contents of
the STATE field, followed by a dash, followed by the contents of the EMPL–NUM field.

In addition to the concatenation operation, there are also a number of built–in functions
that can be used when creating character fields. For example, the #LEFT function can be
used to extract the leftmost n bytes of a character field. Here is an example of how to use
the #LEFT built–in function:

COMPUTE: FIRST–INITIAL = #LEFT(FIRST–NAME,1)

This statement creates a new character field which consists of only the first character (that
is, the leftmost 1 byte) of the FIRST–NAME field.
■ 3-20 CIMS Report Writer User Guide

How to Request a PC File ■

How to Create Your Own Fields
Figure 3-6 • Using the COMPUTE statement to create character fields for a PC file

These Control Statements:

Result in this Lotus 1-2-3 spreadsheet:

OPTIONS: LOTUS
INPUT: EMPL-FILE
COMPUTE: WHOLE-NAME = LAST-NAME + FIRST-NAME
COMPUTE: MAILING-CODE = STATE + '-' + EMPL-NUM
COMPUTE: FIRST-INITIAL = #LEFT(FIRST-NAME,1)
COLUMNS: EMPL-NUM WHOLE-NAME MAILING-CODE FIRST-INITIAL CITY STATE
CIMS Report Writer User Guide 3-21 ■

■ How to Request a PC File

How to Create Your Own Fields
There are a number of other built–in functions which can also be used. A complete list
of built–in functions is found in Appendix D, Built-In Functions.

Figure 3-6, on page 3-21 shows a spreadsheet obtained by using the COMPUTE statements
shown above.

Assigning Values to Fields Based on Conditions 3

Up until now we have been using "simple" COMPUTE statements. In a simple COMPUTE
statement, the value of the new field is defined by a single computational expression.

But it is also possible to use conditional logic in a COMPUTE statement. In "conditional"
COMPUTE statements, one of several different expressions will be used to assign a value to
the new field. The expression that is used will depend on one or more conditions that
you specify. Conditional COMPUTE statements can be very powerful tools in producing PC
files. Here is an example of a conditional COMPUTE statement:

COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)

The above statement creates a field named BONUS. However, in this example the BONUS
field can be computed in one of two ways: for employees hired before January 1, 1980,
the bonus is 8 percent of total sales (TOTAL–SALES * .08). But, for employees hired on or
after January 1, 1980, the bonus is only 5 percent of total sales (TOTAL–SALES * .05).

When assigning a value to the BONUS field, Report Writer evaluates the conditional
expression in each WHEN parm. As soon as a WHEN expression is found that is true, the
computational expression from the corresponding ASSIGN parm is used to assign a value
to BONUS.

You are allowed to have as many pairs of WHEN and ASSIGN parms as you like in a COMPUTE
statement. If none of the WHEN expressions are true, a value of zero will be assigned to the
field. To assign some other value when none of the WHEN parms are true, you may use the
ELSE parm.

Example
COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 ELSE ASSIGN(TOTAL–SALES * .05)

The above statement has the same effect as the previous example, but is a little simpler.
It has only one WHEN expression. For employees whose hire date is before January 1, 1980,
the bonus will be computed based on 8 percent. For all other cases, the bonus will be
computed based on 5 percent.

You may also use conditional COMPUTE statements to create character fields.

Example
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')
■ 3-22 CIMS Report Writer User Guide

How to Request a PC File ■

How to Create Your Own Fields
The above statement creates a new field called TITLE. The contents of TITLE will be "MR"
if the SEX field contains an "M", and "MS" otherwise.

Figure 3-7 • Assigning values to computed fields based on conditions

These Control Statements:

Result in this Lotus 1-2-3 spreadsheet:

OPTIONS: LOTUS
INPUT: EMPL–FILE
COMPUTE: BONUS = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE >= 1/1/1980) ASSIGN(TOTAL–SALES * .05)
COMPUTE: TITLE = WHEN(SEX = 'M') ASSIGN('MR')
 ELSE ASSIGN('MS')
COLUMNS: TITLE LAST–NAME FIRST–NAME SEX HIRE–DATE TOTAL–SALES BONUS
CIMS Report Writer User Guide 3-23 ■

■ How to Request a PC File

How to Create Your Own Fields
Figure 3-7, on page 3-23 shows a Lotus spreadsheet obtained by using some of the
conditional COMPUTE statements just discussed.

When defining character fields with a conditional COMPUTE statement, a value of spaces
will be assigned if none of the WHEN expressions are true and no ELSE parm is specified.

All of our examples so far have used just a single condition within the WHEN parm. You
can, however, use any valid conditional expression within the WHEN parm. The
conditional expression can contain as many different conditions as you like, separated
with the words AND and OR, and optionally grouped with parentheses. (A conditional
expression is the sort of expression that is allowed in the INCLUDEIF statement, as was
described in How to Write Conditional Expressions on page 3-15.) The complete rules for
writing conditional expressions are given beginning on page 9-18. Additional examples
of COMPUTE statements are shown beginning on page 10-38.

Summary

Here is a summary of what we learned in this lesson:

■ the COMPUTE statement is used to create new fields

■ a simple COMPUTE statement assigns the result of a single computational expression to
the new field

■ a conditional COMPUTE statement uses one of several different computational
expressions, depending on the conditions that you specify

The next lesson will teach you how to sort your PC file into whatever order you want.

To Learn More

There are some additional features associated with the COMPUTE statement which we have
not covered in this lesson. Some of these additional features are discussed under the
COMPUTE statement in Chapter 10, Control Statement Syntax. Other additional features are
discussed in Chapter 4, Beyond the Basics. Examples of the additional topics include:

■ how to create date type fields (page 10-39)

■ how to create time type fields (page 4-138)

■ how to create bit type fields (page 10-39)

■ how to specify how many decimal places a numeric or time field should contain
(page 10-37)

■ how to specify column headings for the fields you create (page 10-36)

■ how to specify how your field should be formatted when it is printed in a report
(page 10-34)

■ how to specify whether a numeric or time field should be totalled in the Grand Totals
line at the end of the report (page 4-26)

■ how to retain the value of a COMPUTE field in certain cases (page 4-121)
■ 3-24 CIMS Report Writer User Guide

How to Request a PC File ■

How to Specify the PC File Order
The complete syntax for the COMPUTE statement is given in Chapter 10, Control Statement
Syntax.

How to Specify the PC File Order 3

This lesson teaches you how to sort your PC file into any order you want. The control
statement discussed is:

■ the SORT statement

How to Use the SORT Statement 3

When no SORT statement is specified, Report Writer defaults to writing out the PC file
records in their original input file order. For example, the records in the sample SALES–
FILE are stored in sales date order. Therefore, the sales spreadsheets in the previous
lessons all appeared in sales date order. (For example, see the spreadsheet on page 3-7.)
The EMPL–FILE sample file is a VSAM file stored in EMPL–NUM order. Therefore, the earlier
spreadsheet from that file was in employee number order (page 3-11.)

To create a PC file in a different order, just add a SORT statement. The SORT statement can
appear anywhere after the INPUT statement. Only one SORT statement is allowed per run,
but it may contain as many "sort fields" as you like. Report Writer will sort your PC file
on all of the sort fields.

For example, let's request a PC file from the SALES–FILE and sort it on three fields:

SORT: REGION EMPL–NAME SALES–DATE

To begin with, the PC file will be sorted according to the first sort field — REGION. If there
are multiple records for the same REGION, then those records will be further sorted using
the second sort field, EMPL–NAME. Records having the same value for both the REGION and
the EMPL–NAME fields will be further sorted on the third sort field — SALES–DATE. Figure
3-8, on page 3-26 shows a Microsoft Works spreadsheet obtained by using the above
statement.

By default, Report Writer sorts PC files into ascending order on each sort field. If you want
to sort the PC file into descending order for a field, put the DESCENDING parm (or just DESC)
in parentheses immediately after the field name. For example, to sort a PC file into reverse
employee number order, you could use this SORT statement:

SORT: EMPL–NUM(DESC)

Automatic Sorting 3

If you prefer, you can let Report Writer automatically sort your PC file for you. To have
your PC file automatically sorted on its first 5 columns of data, simply specify the
AUTOSORT option, like this:

OPTIONS: AUTOSORT
CIMS Report Writer User Guide 3-25 ■

■ How to Request a PC File

How to Specify the PC File Order
Figure 3-8 • Using a SORT statement to specify the sort order of a PC file

These Control Statements:

Result in this Microsoft Works spreadsheet:

OPTIONS: MS–WORKS
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX
■ 3-26 CIMS Report Writer User Guide

How to Request a PC File ■

How to Specify the PC File Order
Summary

Here is a summary of what we learned in this lesson:

■ use the SORT statement to sort your PC files

■ you can sort on multiple sort fields

■ you can sort in either ascending or descending order

The next lesson will teach you how to create control breaks and include subtotals in your
PC file.

To Learn More

There are some additional features associated with the SORT statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional features include:

■ creating a control break from the SORT statement (page 4-66)

■ requesting totals and statistics in the SORT statement (page 4-77)

The complete syntax for the SORT statements is given in Chapter 10, Control Statement
Syntax.
CIMS Report Writer User Guide 3-27 ■

■ How to Request a PC File

How to Create Control Breaks
How to Create Control Breaks 3

This lesson teaches you what control breaks are, and shows how to request them for your
PC file. This lesson also shows how to include subtotals and other statistics in your PC
file. The control statement discussed is:

■ the BREAK statement

How to Use the BREAK Statement 3

If you are not a programmer the term "control break" may be new to you. But it is a very
simple concept. And as you will see, control breaks can make your PC files much more
useful.

Consider the result of sorting a PC file on some field. By sorting on a field, we group
together all the rows that contain a particular value for that field. For example, in the
spreadsheet on page 3-26 we sorted first of all on the REGION field. As you can see, this
caused the spreadsheet rows to be grouped together by region. All of the rows for the East
region appear together at the beginning of the spreadsheet. Next come all of the rows for
the North region, and so on. By sorting on the REGION field, we grouped together all of the
rows for each region.

Often it is desirable to perform special processing whenever one such group of rows ends
and another group is about to begin. For example, you might want to have a row of totals
for the group that just ended. You might also want a few blank rows after the totals to
separate the different groups. Such processing is called control break processing. A
control break is said to occur whenever one group of rows ends and another group is
about to begin. The field that is being grouped (for example, REGION) is called the control
break field (or often just the break field.) A control break field must also be a sort field,
since it is by being sorted that rows are grouped together in the first place.

You may designate any sort field as a control break field. Just name the field in a BREAK
statement:

BREAK: REGION

The above statement makes REGION a control break field. Now we will get REGION totals
in the resulting spreadsheet whenever one region ends and another region is about to
begin.

Figure 3-9, on page 3-29 shows a spreadsheet obtained by using the BREAK statement
above to produce a control break.
■ 3-28 CIMS Report Writer User Guide

How to Request a PC File ■

How to Create Control Breaks
Figure 3-9 • Using the BREAK statement to create a control break with subtotals in a PC file

These Control Statements:

Result in this Excel spreadsheet:

OPTIONS: EXCEL
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX
CIMS Report Writer User Guide 3-29 ■

■ How to Request a PC File

How to Create Control Breaks
Customizing the Control Break 3

The Excel spreadsheet in the previous example (page 3-29) shows what Report Writer's
default total row looks like. It begins with the value of the break field just ended (the
REGION field, in this example.) The next column contains the number of items in the
control group just ended. (For example, there were 4 items in the control group for the
East region.) Following this are columns containing the total values for each numeric
column in the spreadsheet (the AMOUNT and TAX fields, in this example.)

The most common use of total rows is in "summary files" where the detail rows are
suppressed, leaving just the total rows (see next lesson.) Therefore, this default total row
is designed to contain just the significant information for a control group. It does not
contain any empty columns. If you are producing a spreadsheet that contains both detail
rows and total rows, however, you may want to insert some blank columns in the total
row. That lets you put your numeric totals in the same spreadsheet column as the
corresponding detail values.

You can customize the total line at a control break by using the FOOTING parm in the
BREAK statement. Consider this BREAK statement:

BREAK: REGION NOTOTALS
 FOOTING(REGION ' ' ' ' ' ' ' ' AMOUNT(TOTAL) TAX(TOTAL))

The above statement does two new things:

■ the NOTOTALS parm suppresses Report Writer's default total row at the control break

■ the FOOTING parm describes a custom row to replace the default total row at each
control break

The FOOTING parm works very much like the COLUMNS statement. You remember that the
COLUMNS statement tells Report Writer which columns are wanted in the detail rows. The
FOOTING parm tell Report Writer what columns are wanted in the control break row. The
FOOTING parm above specifies that the contents of the REGION field should go in the first
column. Then there will be four blank columns. (Each ' ' is a blank literal which results
in a column that just contains a blank.) After the blank columns, the FOOTING parm
specifies a column containing the total value of the AMOUNT field. And the last column
contains the total value of the TAX field. By inserting four blank columns, the total AMOUNT
and total TAX values line up with the detail rows. You can have as many FOOTING parms
as you want in a BREAK statement. Each FOOTING parm describes one row to insert into the
PC file at the control break.

You can also control the number of blank rows that appear at control breaks. By default,
Report Writer puts two blank rows after the total row at a control break (see page 3-29).
Use the SPACE parm in your BREAK statement to request a different number of blank lines.
For example:

BREAK: REGION SPACE(1)

The above statement requests just one blank row at the REGION control break. You may
also specify SPACE(0) if you want no blank rows in your spreadsheet.
■ 3-30 CIMS Report Writer User Guide

How to Request a PC File ■

How to Create Control Breaks
Figure 3-10 uses the FOOTING, NOTOTALS and SPACE parms to customize the control break.

Figure 3-10 • Using FOOTING parms to customize the total row and create blank rows

These Control Statements:

Result in this Excel spreadsheet:

OPTIONS: EXCEL
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION NOTOTALS
 SPACE(1)
 FOOTING(REGION ' ' ' ' ' ' ' ' AMOUNT(TOTAL) TAX(TOTAL))
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX
CIMS Report Writer User Guide 3-31 ■

■ How to Request a PC File

How to Create Control Breaks
Summary

Here is a summary of what we learned in this lesson:

■ use the BREAK statement to specify a control break field

■ control break fields must also be sort fields

■ use the FOOTING parm to customize the total row at a control break

■ use the SPACE parm to specify the number of blank rows at a control break

The next lesson will show you how to turn PC files with control breaks into "summary
files."

To Learn More

There are some additional features associated with the BREAK statement which we have
not covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional topics include:

■ how to write one or more customized rows at the beginning of a control break
(page 4-93)

■ how to write one or more customized rows at the end of a control break (page 4-80)

■ how to customize the total row, and the other statistical rows (page 4-74 and
page 4-77)

■ how to suppress the total row at a control break (page 4-76)

■ how to show various statistics at control breaks (page 4-86)

■ how to compute percentages and ratios that apply to an entire control group
(page 4-71)

■ how to have multiple levels of control breaks (page 4-96)

The complete syntax for the BREAK statement is given in Chapter 10, Control Statement
Syntax.
■ 3-32 CIMS Report Writer User Guide

How to Request a PC File ■

How to Create Summary Files
How to Create Summary Files 3

This lesson teaches you how to produce summary files. The control statement discussed
is:

■ the OPTIONS statement

How to Create a Summary File 3

Sometimes you only need summarized data in your PC— not the detail data for each
individual record. It's a waste of time to download the entire mainframe file and then
use your PC program to summarize the data. Instead, let Report Writer perform the
summarization for you on the mainframe. Then just download the small summary file
to your PC.

Summarizing a mainframe file with Report Writer is very easy.

For example, consider the Excel spreadsheet we created back on page 3-29. It is a detail
spreadsheet that lists every sale made in every region. The control break on REGION causes
a total row to appear after the detail rows for each region.

For this example, let's say we only want to download the total sales amount and tax amount
for each region rather than the amounts for each individual sale. To do that, we need to
summarize the file by region.

By adding the following statement, we can suppress the detail rows and retain just the
region totals:

OPTIONS: SUMMARY

Figure 3-11, on page 3-34 shows a Paradox table obtained by using the above statement.
As you can see, the table has just four rows of actual data — one for each region in the
mainframe file. The first column in each row contains a region name. The second
column shows the number of records that were summarized in order to create that
region's total. The last two columns are the total sales amount and tax amount for the
sales in that region.

Using Report Writer's summarization feature can be a tremendous benefit when working
with very large mainframe files (perhaps containing millions of records.) The
summarization is done at mainframe speed, and you end up with a much smaller PC file
to download to your PC.
CIMS Report Writer User Guide 3-33 ■

■ How to Request a PC File

How to Create Summary Files
Figure 3-11 • A spreadsheet containing only summary data

These Control Statements:

Result in this Paradox spreadsheet:

OPTIONS: PARADOX SUMMARY
INPUT: SALES-FILE
SORT: REGION EMPL-NAME SALES-DATE
BREAK: REGION
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX
■ 3-34 CIMS Report Writer User Guide

How to Request a PC File ■

How to Create Summary Files
Summary

Here is a summary of what we learned in this lesson:

■ use the SUMMARY option (in the OPTIONS statement) to create a summary file

■ a summary file must have at least one control break field

The next lesson will show you how to use data from more than one input file in a PC file.

To Learn More

There are some additional features associated with summary files which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional features include:

■ customizing the summary rows in your PC file (page 4-74)

■ obtaining statistics (such as averages, maximums and minimums) in your summary
file (page 4-77)

■ creating multiple levels of summarization (page 4-96)

■ including a limited number of detail records in each control group, creating
spreadsheets such as "The Top 3 Sales in Each Region" (page 4-104)
CIMS Report Writer User Guide 3-35 ■

■ How to Request a PC File

How to Use Data from More Than One File
How to Use Data from More Than One File 3

This lesson teaches you how to read records from additional input files for use in your
PC file. The control statement discussed is:

■ the READ statement

All of the sample PC files produced so far have used data from only one input file. The
data has come from the file specified in the INPUT statement, called the primary input
file. There are times when all of the data needed for a particular PC file will not be found
in just a single file. One of Report Writer's most powerful features is its ability to use any
number of input files to produce a PC file.

How Auxiliary Input Files Are Processed 3

Each PC file is allowed to have only one primary input file, specified in the INPUT
statement. When data from additional input files is required, a READ statement is used.
The READ statement causes a record to be read from another input file, called an auxiliary
input file. You may use as many READ statements as you like in a single run.

By simply adding a READ statement to your request, you automatically make all of the
fields from another whole file available for use in producing your PC file.

Here is how Report Writer processes the primary and auxiliary input files. Report Writer
first reads a single record from the primary input file. (This file is always read sequentially,
beginning with the first record in the file.) Next, if any auxiliary input files were specified,
Report Writer also reads one record from each of those files. (These files are always read
randomly, using a key.) At this point, Report Writer will have read one record from each
of the input files. The fields from all of these records are now available for use in producing
the PC file. These fields can be used:

■ as columns of data

■ as sort fields

■ as control break fields

■ in conditional expressions

■ in calculations

■ and in any other way that other fields can be used

After processing this set of records, Report Writer then repeats the process. Another
record is read sequentially from the primary input file. Then random reads are
performed to each of the auxiliary input files. This next group of records is then used in
making the PC file, and so on. This process is repeated until there are no more records
left in the primary input file.

There is one important thing about auxiliary input files to keep in mind. Since these files
are read randomly, they must be keyed files (or DB2 tables.) Most VSAM files are keyed files.
■ 3-36 CIMS Report Writer User Guide

How to Request a PC File ■

How to Use Data from More Than One File
In a keyed file, each record has a unique "key" value associated with it. When a random
read is made to such a file, a read key must be specified to identify which record to read.
What read key should Report Writer use when reading a record from an auxiliary input
file? In order to be useful, the auxiliary input record should be somehow related to the
primary input record. Usually, the record from the primary input file will contain the key
of a corresponding record in the auxiliary input file. That key from the primary input file
will be used as the read key.

Note • If you are not familiar with such terms as "keyed files" and "read keys", ask
your programmer to help you determine whether a particular file is keyed or not, and
also to help you decide what read key to use.

How to Use the READ Statement 3

Now let's look at a concrete example of how to use the READ statement. Begin by
considering page 3-38, which shows a spreadsheet that uses only a primary input file
(the SALES–FILE). This spreadsheet shows information about each sale made by an
employee. This spreadsheet includes columns for two fields that we haven't used in
previous examples, so we'll explain them. They are the EMPL–NUM field and the PRODUCT–
CODE field. The EMPL–NUM is the employee number of the employee who made the sale.
The PRODUCT–CODE is a code that identifies which product was sold to the customer.

Now, let's assume that we want this spreadsheet to also show each employee's social
security number. The social security number is not available in the SALES–FILE. But it is
a field in the EMPL–FILE. (See page 3-11.) In order to produce such a spreadsheet, we need
data from a second input file — the EMPL–FILE.

The EMPL–FILE is a keyed VSAM file. Its key is the 3–byte employee number. The records
in the SALES–FILE also contain an employee number, so we can use that field as the "read
key" to use in reading the EMPL–FILE. We can make the EMPL–FILE an auxiliary input file,
then, by simply adding this statement:

READ: EMPL–FILE READKEY(EMPL–NUM)

This READ statement tells Report Writer to use the EMPL–NUM field from each record in the
SALES–FILE as a key for reading an auxiliary record from the EMPL–FILE. All control
statements after this READ statement may now refer to the fields in the EMPL–FILE, as well
as to those in the SALES–FILE. So, we can now add the SOCIAL–SEC–NUM field from the
EMPL–FILE to our COLUMNS statement:

COLUMNS: EMPL–NAME SALES–FILE.EMPL–NUM SOCIAL–SEC–NUM
 SALES–DATE CUSTOMER AMOUNT PRODUCT–CODE
CIMS Report Writer User Guide 3-37 ■

■ How to Request a PC File

How to Use Data from More Than One File
Figure 3-12 • A spreadsheet that uses only the primary input file

These Control Statements:

Result in this Excel spreadsheet:

OPTIONS: EXCEL
INPUT: SALES-FILE
COLUMNS: EMPL-NAME EMPL-NUM SALES-DATE CUSTOMER AMOUNT PRODUCT-CODE
■ 3-38 CIMS Report Writer User Guide

How to Request a PC File ■

How to Use Data from More Than One File
Figure 3-13 • A spreadsheet that uses a READ statement to specify an auxiliary input file

These Control Statements:

Result in this Excel spreadsheet:

OPTIONS: EXCEL
INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM)
SORT: SOCIAL-SEC-NUM
COLUMNS: EMPL-NAME SALES-FILE.EMPL-NUM SOCIAL-SEC-NUM
 SALES-DATE CUSTOMER AMOUNT PRODUCT-CODE
CIMS Report Writer User Guide 3-39 ■

■ How to Request a PC File

How to Use Data from More Than One File
Notice that in the above COLUMNS statement we must now prefix the EMPL–NUM field with
a record name (like this: SALES–FILE.EMPL–NUM). This is because after the READ statement,
EMPL–NUM is no longer a unique field name. A field by that name exists in both the SALES–
FILE and the EMPL–FILE. (See Appendix F, Files Used in Examples..) Since the EMPL–NUM will
have the same value in both of the records, it doesn't really matter which one we specify
in the COLUMNS statement, but we do have to specify a unique name. In this case we
specified the EMPL–NUM field from the SALES–FILE. (For more information on using
"record names" to qualify field names, see page 4-115.)

Figure 3-13, on page 3-39 shows an Excel spreadsheet obtained by using the above
statements. The spreadsheet now has the desired new column showing each employee's
social security number. Notice that we also sorted the PC file on SOCIAL–SEC–NUM.
Remember that you can use fields from auxiliary input files in any way that you use fields
from the primary input file.

How to Use Multiple READ Statements 3

You are allowed to use an unlimited number of READ statements in requesting a PC file.
For example, the Excel spreadsheet in Figure 3-14 uses two READ statements.

The primary input file is once again the SALES–FILE, which contains one record for each
sale made by an employee. It is specified in the INPUT statement:

INPUT: SALES–FILE

To obtain additional data about the employee who made each sale, we use a READ
statement for the EMPL–FILE (just like in the preceding example.) The EMPL–NUM field in
the SALES–FILE contains the key necessary to read the correct EMPL–FILE record.

READ: EMPL–FILE READKEY(EMPL–NUM)

To obtain additional information about each product sold, a second READ statement
names the PRODUCT–FILE as an another auxiliary input file. (The PRODUCT–FILE is
described in Appendix F, Files Used in Examples.)

However, there is one minor complication in reading records from this file. The key in
the PRODUCT–FILE records is 4 bytes long. It consists of the letter "P" followed by a 3–byte
product code. The SALES–FILE does not contain a field which can be used directly as the
read key to the PRODUCT–FILE. But, it does contain the 3–byte PRODUCT–CODE field, which
we can use to build the 4–byte read key. A COMPUTE statement is therefore used to create
a new field (called PKEY) which consists of the letter "P" followed by the product code.
This computed field is then used as the read key in the READ statement for the PRODUCT–
FILE:

COMPUTE: PKEY=’P’ + PRODUCT-CODE
READ: PRODUCT-FILE READKEY(PKEY)2
■ 3-40 CIMS Report Writer User Guide

How to Request a PC File ■

How to Use Data from More Than One File
Figure 3-14 • A spreadsheet that uses two READ statements to specify two auxiliary input files

These Control Statements:

Result in this Excel spreadsheet:

OPTIONS: EXCEL
INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM)
COMPUTE: PKEY = 'P' + PRODUCT-CODE
READ: PRODUCT-FILE READKEY(PKEY)
SORT: SOCIAL-SEC-NUM
COLUMNS: EMPL-NAME SALES-FILE.EMPL-NUM SOCIAL-SEC-NUM
 SALES-DATE CUSTOMER AMOUNT
 PRODUCT-CODE PRODUCT-DESC
CIMS Report Writer User Guide 3-41 ■

■ How to Request a PC File

How to Use Data from More Than One File
By having two READ statements in addition to the INPUT statement, the PC file now has
three input files. Data from all of these files can be used in any of the subsequent control
statements. In the Excel spreadsheet in Figure 3-14, the COLUMNS statement uses two fields
from the auxiliary input files. It uses the SOCIAL–SEC–NUM field from the EMPL–FILE, and
the PRODUCT–DESC field from the PRODUCT–FILE:

COLUMNS: EMPL–NAME
 SALES–FILE.EMPL–NUM
 SOCIAL–SEC–NUM
 SALES–DATE
 CUSTOMER
 PRODUCT–CODE
 PRODUCT–DESC

Summary

Here is a summary of what we learned in this lesson:

■ the READ statement is used to read records from auxiliary input files

■ you may have as many READ statements as you like in a single run

To Learn More

There are some additional features associated with the READ statement which we have not
covered in this lesson. Some of these additional features are discussed as topics in
Chapter 4, Beyond the Basics. Examples of additional features include:

■ how to assign a record name to the records read from auxiliary input files
(page 4-115)

■ how to read more than one record from the same auxiliary input file (page 4-111)

■ how to use data from one auxiliary input file as the read key to another auxiliary
input file (page 4-113)

■ what happens when no record is found for a particular read key (page 4-116)

■ how to determine whether the read for a particular key was successful or not
(page 4-116)

■ how to use the READ statement to obtain data from a DB2 table or view (page 7-7)

The complete syntax for the READ statement is given in Chapter 10, Control Statement
Syntax.
■ 3-42 CIMS Report Writer User Guide

4
Beyond the Basics

Introduction . 4-3

Additional Features in the COLUMNS Statement . 4-3

Writing Print Expressions . 4-3

How to Change the Column Headings . 4-7

Special Options Related to Column Headings . 4-11

How to Change the Width of a Column . 4-12

How to Change the Way Dates, Times and Numbers Are Formatted . 4-13

Formatting Tips for International Users . 4-18

How to Format a Column in ASCII . 4-21

How to Blank Out Repeating Values . 4-22

How to Change the Justification of Data within a Column . 4-24

How to Specify Which Columns to Total . 4-26

How to Produce Multi–Line Reports . 4-29

How to Change the Report Margins . 4-32

How to Print Bar Graphs . 4-34

How to Print Vertical Lines between Report Columns . 4-34

How to Print a Variable Number of Lines Per Input Record .4-36

Variable Number of Lines — Strategy 1 . 4-36

Variable Number of Lines — Strategy 2 . 4-41

Putting a Variable Number of Items on a Single Line . 4-45

What If You Run Out of Room? .4-46

Why Do I See ****X**** in My Report? .4-47

Customizing the Report Titles .4-48

How to Include Data from a File in the Title . 4-48

How to Include the Page Number, Date and Time in a Title . 4-51

How to Change the Appearance of Items in the Title . 4-53

How to Split the Title into Left, Center, and Right Parts . 4-57

Special Options Related to Titles . 4-63
CIMS Report Writer User Guide 4-1 ■

■ Beyond the Basics
How to Print "Titles" at the Bottom of Each Page . 4-64

Customizing the Control Breaks . 4-66

How to Change the Control Break Spacing . 4-67

How a Default Total Line Looks . 4-70

Computing True Percentages and Ratios at Control Breaks . 4-71

How to Customize the Total Line at a Control Break . 4-74

How to Suppress the Total Line at a Control Break . 4-76

How to Customize the Statistical Lines at a Control Break . 4-77

How to Print Customized Footing Lines at a Control Break . 4-80

How to Print the Number of Items in a Control Group . 4-91

How to Print Header Lines at the Beginning of a Control Group . 4-93

Printing a "Line Number" in Your Report . 4-95

Reports with Multiple Control Breaks . 4-96

How to Customize the Grand Totals . 4-99

How to Produce Summary Reports . 4-102

How to Create "Top 10" Type Reports . 4-104

How to Count "Occurrences" in a File . 4-106

How to Total a Field by "Category" . 4-109

Working With Multiple Input Files . 4-111

Using Multiple READ Statements for the Same File . 4-111

How to Chain READ Statements . 4-113

How to Name the Input File Records . 4-115

How Missing Records Are Handled . 4-116

Testing for Missing Records . 4-116

Using Generic and KGE Keys . 4-117

How to Perform "One–to–Many" Reads . 4-118

Working with "Batched" Input Files . 4-121

Creating PC Files from Existing Reports . 4-125

Working with SMF Records . 4-130

Working with Time Fields . 4-137

Producing Files for Other PC Programs . 4-139

Terminology . 4-140

Producing Files for Mainframe Programs . 4-144

How to "Subset" Mainframe Files . 4-147

How to Sort Mainframe Files . 4-147
■ 4-2 CIMS Report Writer User Guide

Beyond the Basics ■

Introduction
Introduction 4

This chapter is a user's guide to some of Report Writer's additional features. Many of the
control statements introduced earlier in Chapter 2, How to Request a Report and Chapter 3,
How to Request a PC File are discussed in more detail in this chapter. Many reports and
PC files won't require these more advanced features. But as your requests become more
and more sophisticated, you may want to use some of the techniques and features
illustrated in this chapter.

Additional Features in the COLUMNS Statement 4

We saw in previous chapters that the basic purpose of the COLUMNS statement is to name
the columns desired in a report or PC file. The COLUMNS statement also has many other
features that can be used to customize how a report or PC file looks. The following
sections explain:

■ how to include a column of literal text in a report or PC file (page 4-4)

■ how to change the spacing between report columns (page 4-4)

■ how to change the column headings (page 4-7 and page 4-11)

■ how to change the width of a column (page 4-11)

■ how to change the way dates, times and numbers are formatted (page 4-13)

■ how to format dates, times and numbers for international users (page 4-18)

■ how to format data as ASCII rather than EBCDIC (page 4-21)

■ how to blank out repeating values (page 4-22)

■ how to change the justification of data within a column (page 4-24)

■ how to change which columns are totalled (page 4-26)

■ how to produce multi–line reports or multi–row PC files (page 4-29)

■ how to print bar graphs in a report (page 4-34)

■ how to put a text (such as a vertical line) between report columns (page 4-34)

■ how to change the report margins (page 4-32)

Writing Print Expressions 4

This section explains:

■ how to write print expressions for the COLUMNS statement

■ which fields may appear in the COLUMNS statement

■ how to include literal texts in the report lines

■ how to specify the number of spaces that should appear between columns
CIMS Report Writer User Guide 4-3 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
■ how parms can be used to customize the way a column is processed

Some of the features discussed in this section are illustrated in the sample report shown
in Figure 4-1, on page 4-5

The contents of the COLUMNS statement is simply a print expression. Print expressions are
used in a number of different control statements. They tell Report Writer how to build
one print line that will be used in a report. In the COLUMNS statement, the print expression
tells how to build a detail report line for the main body of the report. (When creating PC
files, the print expression tells how to build the output records.)

As with other print expressions in Report Writer, just list one or more items to print.

COLUMNS: item1 item2 item3 ...

Each item can be either a literal text or a field name.

To put a literal text in a column of the report, simply enclose the text in either
apostrophes or quotation marks. For example, the following statement causes the words
NEW TEL:---------- to appear in each line of a report:

COLUMNS: 'NEW TEL:----------'

To put data from an input file in a column of the report, simply list the desired field
name. (Do not put the field name in apostrophes or quotation marks.) For example, the
following statement causes the contents of the TELEPHONE field to appear in a report
column:

COLUMNS: TELEPHONE

Each field listed must be "available" to Report Writer at the time the COLUMNS statement
is processed. That is, each field name must be one of the following:

■ a field from an input file. (An input file is a file named in the INPUT statement, or in
an optional READ statement.)

■ a computed field (defined in a preceding COMPUTE statement)

■ a built–in field (see Appendix C, Built-In Fields for a complete list of built–in fields)

As in other print expressions, you may also customize the print line by using optional
spacing factors and parms. So, the full syntax for the COLUMNS statement is this:

COLUMNS: [n] item1(parms) [n] item2(parms) [n] item3(parms) ...

The optional spacing factor [n] is the number of blank spaces to leave between two
columns in the report. If you omit the spacing factor, the default is for one blank space
to appear between columns. (A spacing factor of zero is allowed if you want no spaces
between two columns of your report.) As an example, the following statement causes 2
blanks to appear between the LAST–NAME and the FIRST–NAME columns, and causes 5
blanks to appear between the FIRST–NAME and the HIRE–DATE columns:

COLUMNS: LAST–NAME 2 FIRST–NAME 5 HIRE–DATE
■ 4-4 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-1 • Using spacing factors and literal texts in the COLUMN statement

INPUT: EMPL-FILE
TITLE: 'TELEPHONE SIGNUP LIST'
COLUMNS: EMPL–NUM 5
 LAST–NAME
 FIRST–NAME
 'OLD TEL:' 0
 TELEPHONE 2
 'NEW TEL: ----------'

Produce this Report:

These Control Statements:

Notes:

• the LAST–NAME column is 5 spaces over from the EMPL–NUM column

• the literal texts "OLD TEL:" and "NEW TEL: ----------" appear in each line of the report

• the spacing factor of zero puts zero spaces between the "OLD TEL:" column and the TELEPHONE
column

• the literal text columns do not have default column headings

 TELEPHONE SIGNUP LIST

EMPL LAST FIRST
NUM NAME NAME TELEPHONE

036 JONES JERRY OLD TEL:(415) 555-7653 NEW TEL: ----------
037 JOHNSON THOMAS OLD TEL:(602) 555-6654 NEW TEL: ----------
039 JOHNSON LINDA OLD TEL:(415) 555-6785 NEW TEL: ----------
040 MACDONALD RICHARD OLD TEL:(415) 555-9887 NEW TEL: ----------
041 SIMPSON TIMOTHY OLD TEL:(818) 555-1887 NEW TEL: ----------
042 MORRISON MICHAEL OLD TEL:(818) 555-4748 NEW TEL: ----------
043 CHRISTOPHERSON MELISSA OLD TEL:(602) 555-4556 NEW TEL: ----------
044 BAKER VIVIAN OLD TEL:(415) 555-1209 NEW TEL: ----------
045 THOMAS MARTIN OLD TEL:(415) 555-1152 NEW TEL: ----------

*** GRAND TOTAL (9 ITEMS)

 TELEPHONE SIGNUP LIST

EMPL LAST FIRST
NUM NAME NAME TELEPHONE

036 JONES JERRY OLD TEL:(415) 555-7653 NEW TEL: ----------
037 JOHNSON THOMAS OLD TEL:(602) 555-6654 NEW TEL: ----------
039 JOHNSON LINDA OLD TEL:(415) 555-6785 NEW TEL: ----------
040 MACDONALD RICHARD OLD TEL:(415) 555-9887 NEW TEL: ----------
041 SIMPSON TIMOTHY OLD TEL:(818) 555-1887 NEW TEL: ----------
042 MORRISON MICHAEL OLD TEL:(818) 555-4748 NEW TEL: ----------
043 CHRISTOPHERSON MELISSA OLD TEL:(602) 555-4556 NEW TEL: ----------
044 BAKER VIVIAN OLD TEL:(415) 555-1209 NEW TEL: ----------
045 THOMAS MARTIN OLD TEL:(415) 555-1152 NEW TEL: ----------

*** GRAND TOTAL (9 ITEMS)
CIMS Report Writer User Guide 4-5 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
Note • To change the default spacing factor, use the COLSPACE parm of the OPTIONS
statement (page 10-85.)

The optional parms are used to provide details about how to display individual columns
in the report. You may specify one or more parms, enclosed in parentheses, immediately
following an item in the print expression. (Do not leave a space between the item and
the first parenthesis.) You may use any combination of parms, in any order. Separate the
parms with a comma and/or with one or more blanks. For example, the following
statement has a width parm and a justification parm for the LAST–NAME field:

COLUMNS: LAST–NAME(50,CENTER) FIRST–NAME

The following table shows what parms are available in the COLUMNS statement.
Subsequent sections of this chapter explain in detail how to use each of these parms.

Column Statement Parms

Parm Description

ACCUM/NOACCUM Specifies whether the column should be accumulated or not.
Accumulated columns receive totals at control breaks and at the end
of the report. For more information on using these parms, see
page 4-26. The following example specifies that the TOTAL–SALES
column should not be accumulated (and therefore not totalled):

COLUMNS: TOTAL–SALES(NOACCUM)

ASCII Specifies that the final, formatted contents of the column should be
translated from EBCDIC to ASCII. To specify your own EBCDIC-to-
ASCII translation table, use the ASCIITABLE option in the OPTIONS
statement (page 10-83.) Otherwise, Report Writer uses a default
translation table.

COLUMNS: REGION(ASCII) SALES-DATE(LONG1, ASCII)

For more information on this parm, see page 4-21.

BIZ Means "blank if zero." Specifies that the column should be left blank
whenever the numeric, date or time item contains zeros. The
following example specifies that the TOTAL-SALES and SALES-TIME
columns should be left blank whenever their value is zero.

COLUMNS: TOTAL-SALES(BIZ) SALES-TIME(BIZ)

'column
heading'

Specifies the column heading to be used for an item. For more
information on using the column heading parm, see page 4-7. The
following example specifies that the column heading for the LAST–
NAME column should be "SELLERS LAST NAME":

COLUMNS: LAST–NAME('SELLERS LAST NAME')
■ 4-6 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
How to Change the Column Headings 4

This section explains:

■ how Report Writer determines default column headings

■ how to specify your own column headings

■ how to suppress column headings

Most of the features discussed in this section are illustrated in the sample report in Figure
4-2, on page 4-9.

If you do not specify a column heading for a field in the COLUMNS statement, Report Writer
uses a default column heading. The default heading will be:

■ the column heading (if any) specified when the field was first defined (in a FIELD or
COMPUTE statement), or

display–format Specifies how to format the field in the report column. A complete list
of display formats appears in Appendix B, Display Formats. For more
information on using a display format parm, see page 4-13. The
following example specifies that the HIRE–DATE column should be
displayed in the LONG1 format, with the month name spelled out:

COLUMNS: HIRE–DATE(LONG1)

LEFT/CENTER/
RIGHT

Specifies how to justify the contents of a column. For more
information on using a justification parm, see page 4-24. The
following example specifies that the contents of the LAST–NAME
column should be center justified:

COLUMNS: LAST–NAME(CENTER)

NOREPEAT/
NOREPEATPAGE

Specifies that "repeating values" in a column should not be printed.
(Blanks will appear instead.) NOREPEAT specifies that repeated values
should not be printed anywhere except in the first line of each page
and the first line of each control group. NOREPEATPAGE specifies that
repeated values should not be printed anywhere except in the first
line of each page. For example:

COLUMNS: LAST–NAME(NOREPEAT)

width This numeric parm specifies how wide the report column should be.
For more information on using a width parm, see page 4-12. The
following example specifies that the TOTAL–SALES column of the
report should be only 6 characters wide:

COLUMNS: TOTALS–SALES(6)

Column Statement Parms

Parm Description
CIMS Report Writer User Guide 4-7 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
■ the field name itself, broken apart at each dash or underscore, with each part of the
name going onto a separate heading line. (For example, the default column heading
for LAST–NAME is a two–line heading, with "LAST" on one line and "NAME" on the next
line, as illustrated in Figure 4-1, on page 4-5.)

Note • By default, column headings are not automatically generated for multi–line
reports (those using more than one COLUMNS statement.) To learn how to create
column headings for multi–line reports, see the section titled How to Produce Multi–
Line Reports on page 4-29.

To specify your own column heading for a field, put your column heading in parentheses
immediately after the field name. (Do not leave a space between the field name and the
first parenthesis.) Enclose the column heading in either apostrophes or quotation marks.

Example
COLUMNS: LAST–NAME("EMPLOYEE'S LAST NAME")

The above statement would cause the text "EMPLOYEE'S LAST NAME" to be used as the
column heading for the LAST–NAME column. Since this is a rather long heading, you may
want to split it onto two lines. Use the "vertical bar" character (|) within the column
heading text to indicate where to split the text into separate lines. You may use as many
lines for the column heading as you like, but most reports look best with no more than
three or four lines of column headings. Here is an example of the use of the vertical bar
to break the column heading into two lines:

COLUMNS: LAST–NAME("EMPLOYEE'S LAST NAME")

The example above will cause a two–line column heading to be used for the LAST–NAME
column. The first heading line will contain the word "EMPLOYEE'S", and the second line
will have the words "LAST NAME". The following example shows how to make a three–
line column heading for the SEX column:

COLUMNS: SEX('S E X')

In the above statement, each of the three column headings lines now has only one
character. Since the SEX field is also only one character long, the column will now default
to being one character wide, rather than three. Stacking column headings like this can
help you squeeze more columns into your report.

Note • The vertical bar is the "Shift 1" key on most mainframe terminals. Some PC
keyboards that emulate mainframe terminals do not have a key that shows the
straight vertical bar. (The "pipeline" character is not the same as the vertical bar.) On
many of these keyboards, the right–hand square bracket key (]) is used to send a
vertical bar to the mainframe while in emulator mode.
■ 4-8 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-2 • Specifying your own column headings

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: LAST-NAME("EMPLOYEE'S LAST NAME")
 FIRST-NAME('NAME ')
 EMPL-NUM(' ')
 HIRE-DATE('')
 SEX('S E X')
 SEX
 '----------'('DELIVERY DATE')

Produce this Report:

These Control Statements:

Notes:

• the FIRST–NAME column heading ("NAME") is left–justified

• the EMPL–NUM column has no column heading, but does have the underscores

• the HIRE–DATE column has no column heading, and no underscores

• the SEX column with the stacked heading takes up only one character

• the column of literal text now has a column heading

 EMPLOYEE LISTING
 S
 EMPLOYEE'S E DELIVERY
 LAST NAME NAME X SEX DATE

JONES JERRY 036 01/31/80 M M ----------
JOHNSON THOMAS 037 06/21/75 M M ----------
JOHNSON LINDA 039 11/25/79 F F ----------
MACDONALD RICHARD 040 07/04/82 M M ----------
SIMPSON TIMOTHY 041 12/01/82 M M ----------
MORRISON MICHAEL 042 11/30/79 M M ----------
CHRISTOPHERSON MELISSA 043 08/15/81 F F ----------
BAKER VIVIAN 044 06/04/82 F F ----------
THOMAS MARTIN 045 06/04/82 M M ----------

*** GRAND TOTAL (9 ITEMS)
CIMS Report Writer User Guide 4-9 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
You may use the HDGSEP parm of the OPTION statement to select a different character to
use as the separator character for column heading texts (page 10-89.) Here is an example
that uses a slash, rather than a vertical bar, to separate column headings lines:

OPTION: HDGSEP('/')
COLUMNS: LAST–NAME("EMPLOYEE'S/LAST NAME") SEX('S/E/X')

Note • If you find that you frequently have to override column headings in the
COLUMNS statement, consider changing the field's default column heading. Default
column headings are specified in the FIELD statement (page 6-35) or the COMPUTE
statement (page 10-31.)

Column headings are automatically centered over their columns in reports (but not in PC
files.) Therefore, you do not need to try to add extra spaces within your column headings
to force correct alignment. If for some reason you want left– or right–justified column
headings, then you could include enough leading or trailing blanks within the heading
text to take up the whole width of the column. For example, if LAST–NAME is a 15 character
column, and you want the column heading "NAME" to be appear left–justified over it, use
11 trailing blanks within the column heading text, like this:

COLUMNS: LAST–NAME('NAME ')

You can also use leading blanks to force right–justification of a column heading:

COLUMNS: AMOUNT(' AMOUNT')

If you do not want any column heading for a particular column, you can use an all blank
column heading text, like this:

COLUMNS: LAST–NAME(' ')

The above example causes blanks to be used as the column heading for the LAST–NAME
column in the report.

Following the last column heading line, Report Writer prints an additional line of
underscores to indicate the exact width of each column. (This underscore line overprints
the final column heading text line— it is not a separate print line.) These underscores
appear even for columns with blank column heading texts. To suppress even the
underscores for a column, use a null column heading text — without even blanks within
it.

Example
COLUMNS: LAST–NAME('')

The above example causes the LAST–NAME column to appear with no column headings
and with no underscores.

To suppress all column headings, use the NOCOLHDGS parm of the OPTIONS statement
(page 10-93.) This option means that no column headings (and no underscore line)
should print. This is often used when you want to specify all of the column heading lines
yourself, using TITLE statements.
■ 4-10 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Some printers do not support the overprinting of lines (as is needed to properly print the
underscore line after the column headings.) If this is the case and you want to suppress
the entire underscore line, use the NOOVERPRINT parm of the OPTION statement (as
described on page 10-94.)

Column headings are not automatically generated for columns of literal text. You may,
however, specify your own column headings for literal texts just as you would for a field.
The following example illustrates how to specify a column heading for a column of
literal text:

COLUMNS: '----------'('DELIVERY DATE')

Special Options Related to Column Headings 4

The following table summarizes the options that affect the column headings. Use an
OPTIONS statement to specify these options (page 10-81.)

Options Related to Column Headings

Option Description

COLHDGONCE Suppresses titles and prints the column headings just once at the
beginning of the report. Report will have no page breaks.

HEADINGSEP(' ') Specifies the column heading separator character to be used in
the COLUMNS statement. This character indicates where a column
heading text should be split onto a new line. The default column
heading separator character is the vertical bar.

HGCOLHDG Specifies that "Harvard Graphics style" column headings are
wanted. When specified, only a single line will be used for the
column headings. This is useful when creating PC files whose first
record should contain a "legend" for each of the data columns.

MULTICOLHDG Specifies that column headings are wanted for a report that
contains multiple COLUMNS statements. (The default is to suppress
column headings when more than one COLUMNS statement is
specified.) When MULTICOLHDG is specified, column headings will
be generated for the items in the first COLUMNS statement.

NOCOLHDGS Suppresses all column headings. Does not affect titles. Report will
have normal page break processing.

NOOVERPRINT Specifies that no "overprinting" is wanted. When specified, the
underscore line for the column headings will be single spaced
rather than overprinted.

NOTITLES Suppresses all titles and column headings. Report will have no
page breaks.
CIMS Report Writer User Guide 4-11 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
How to Change the Width of a Column 4

This section explains:

■ how Report Writer determines the default width of a column

■ how to specify your own column width

Most of the features discussed in this section are illustrated in the sample report in Figure
4-3, on page 4-15.

Report Writer considers several factors when deciding what size to make each column,
including:

■ the number of characters in a character field (or literal)

■ how many digits will likely be needed to display numeric fields, including the Grand
Total value at the end of the report

■ the width of the column heading

Based on these considerations, Report Writer chooses a default width for each column.
You may need to change this width in some cases. Do this by enclosing a numeric width
parm in parentheses immediately after the field name. (Do not leave a space between the
field name and the first parenthesis.)

For example, there may be too much data in a report to fit on the page. In this case, you
might use a width parm to shorten some of the larger character fields. The following
example shortens the LAST–NAME field to only 10 characters:

COLUMNS: LAST–NAME(10)

Of course, any last names containing more than 10 characters will be truncated in the
report column.

Note • Numeric columns are never truncated. Doing so might lead to misleading
figures appearing in the report. Instead, if a column is too small to display all
significant digits (or a minus sign) for a numeric field, the column will be filled with
a "size" error indicator (which looks like this: *****S*****). Figure 4-3, on page 4-15
shows an example of this.

NOUNDERSCORES Suppresses the underscore line that normally prints "under" the
column headings. This option is useful when creating reports that
will be viewed online.

TITLEONCE Prints titles (and any column headings) just once at the
beginning of the report. Report will have no page breaks.

Options Related to Column Headings

Option Description
■ 4-12 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
When shortening columns, it is possible to specify a column width that is shorter than
the column headings. In this case, the column headings will also be truncated. Therefore,
when specifying a shorter column width you may also need to specify new column
headings. The new column headings should be broken into parts small enough to fit
within the specified column width. Here is an example of a COLUMNS statement which
specifies a column width of only 3, and also specifies column headings that are only 3
characters long:

COLUMNS: LAST–NAME(3,'LST NAM')

As mentioned above, you may occasionally see a "size" error indicator (****S****) in a
numeric column. This means that the column wasn't wide enough to display all the
digits in the number. Sometimes, a column will be wide enough to display the numeric
value in the regular report lines, but will not be big enough to display the Grand Total
value at the end of the report. In these cases you need to widen the column to provide
enough room to display the Grand Total value. For example, the following COLUMNS
statement allows 22 characters for the TOTAL–SALES field:

COLUMNS: TOTAL–SALES(22)

Note that this does not mean that there will be room for 22 digits to print in the column.
The 22 character width of the column will also includes such things as commas, a
decimal point, and a minus sign, if necessary.

Another way to widen a numeric column is to use a large PICTURE as an override display
format. (Display formats are discussed beginning on page 4-13.) The following example
also widens the TOTAL–SALES column to 22 characters, and has the advantage of making
it easier to visualize how many digits that will accommodate:

COLUMNS: TOTAL–SALES(PIC'ZZZ,ZZZ,ZZZ,ZZZ,ZZ9.99')

How to Change the Way Dates, Times and Numbers Are Formatted 4

This section explains:

■ what a display format is

■ the default display formats used to display data

■ how to specify your own display format

PC File Note • Display formats should not normally be used when creating PC files.
Report Writer chooses the display format needed to create an import file for the PC
program specified in the OPTIONS statement. After importing your PC file into a PC
spreadsheet, you can use the PC program's features to change the way dates or
numbers are formatted.

Most of the features discussed in this section are illustrated in the sample report in Figure
4-4, on page 4-17.
CIMS Report Writer User Guide 4-13 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
When formatting data in a report (especially dates, times and numbers), there are several
decisions to make. For example, a date might be formatted in any of the following ways
(to list just a few possibilities):

12/31/90
DECEMBER 31, 1990
31 DEC 90

Similarly, a numeric value might be formatted in any of these ways (and others):

1,234
1,234.000
1234
0001234
$1,234
+1234

Time values can be formatted in the following ways, among others:

12:34:56
12:35

Report Writer supports many different display formats that indicate exactly how to
format a field in a report. A complete list of these display formats is found in Appendix B,
Display Formats.

If you do not specify a display format in the COLUMNS statement, Report Writer uses a
default display format. This will be:

■ the display format (if any) specified when the field was first defined (in a FIELD or
COMPUTE statement), or

■ the display format (if any) specified in a previous OPTIONS statement's FORMAT parm
(see page 10-88.) (Use the FORMAT option if you want to change the way all dates,
times or numbers in your report are formatted.)

■ the default display format shown in the table on page B-8.

To specify your own display format for a field, put a display format parm in parentheses
immediately after the field name. (Do not leave a space between the field name and the
first parenthesis.) Be sure to use a display format that is valid for the field's data type.
(For example, you cannot request that a numeric field be displayed with a date display
format.)

Here is an example of specifying display formats in the COLUMNS statement:

COLUMNS: LAST–NAME
 SOCIAL–SEC–NUM(PIC'999–99–9999')
 HIRE–DATE(LONG1)
 STATUS–BYTE(HEX)
 TOTAL–SALES(DOLLAR)
■ 4-14 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-3 • Specifying the width of report columns

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM(3)
 LAST-NAME
 LAST-NAME(10)
 LAST-NAME(3,'LST NAM')
 HIRE-DATE
 HIRE-DATE(5)
 TOTAL-SALES(22)
 TOTAL-SALES(8)

Produce this Report:

These Control Statements:

Notes:

• the EMPL–NUM column is 3 bytes wide, causing the default column headings to be truncated

• the second LAST–NAME column has been shortened to 10 bytes

• the third LAST–NAME column is shortened to 3 bytes, and also specifies shortened column headings

• the second HIRE–DATE column has been shortened to 5 characters so that only the month and day
appear

• the first TOTAL–SALES column has been widened to accommodate numbers into the hundreds of
trillions

• the second TOTAL–SALES column has been shortened so much that "size" errors now occur for large
values, resulting in the ****S*** size error indicator

 EMPLOYEE LISTING

EMP LAST LAST LST HIRE HIRE TOTAL TOTAL
NUM NAME NAME NAM DATE DATE SALES SALES

036 JONES JONES JON 01/31/80 01/31 42,509.89 ****S***
037 JOHNSON JOHNSON JOH 06/21/75 06/21 86,999.24 ****S***
039 JOHNSON JOHNSON JOH 11/25/79 11/25 75,023.55 ****S***
040 MACDONALD MACDONALD MAC 07/04/82 07/04 2,560.98 2,560.98
041 SIMPSON SIMPSON SIM 12/01/82 12/01 8,723.88 8,723.88
042 MORRISON MORRISON MOR 11/30/79 11/30 98,054.99 ****S***
043 CHRISTOPHERSON CHRISTOPHE CHR 08/15/81 08/15 47,665.31 ****S***
044 BAKER BAKER BAK 06/04/82 06/04 92,125.89 ****S***
045 THOMAS THOMAS THO 06/04/82 06/04 60,193.49 ****S***

*** GRAND TOTAL (9 ITEMS) 513,857.22 ****S***

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM(3)
 LAST-NAME
 LAST-NAME(10)
 LAST-NAME(3,'LST NAM')
 HIRE-DATE
 HIRE-DATE(5)
 TOTAL-SALES(22)
 TOTAL-SALES(8)
CIMS Report Writer User Guide 4-15 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
The previous statement specifies that:

■ the SOCIAL–SEC–NUM field should be formatted with leading zeros not suppressed, and
with dashes in the appropriate positions

■ the HIRE–DATE field should be formatted with the month name completely spelled out

■ the STATUS–BYTE field should be shown in it hexadecimal representation

■ the TOTAL–SALES field should be formatted with a floating dollar sign.

Note • You can change the delimiter used to format date fields by using the
DATEDELIM option. For example:

OPTIONS: DATEDELIM('—')

The above statement causes a dash (—) to be used as the delimiter, rather than a slash
(/), when formatting dates. Thus, if the above statement was used, a date formatted with
the DD–MM–YY display format might look like this:

31–12–95

Note • You can change the delimiter used to format time fields by using the
TIMEDELIM option. For example:

OPTIONS: TIMEDELIM('.')

The above statement causes a dot (.) to be used as the delimiter, rather than a colon (:),
when formatting times. Thus, if the above statement was used, a time formatted with the
HH–MM display format might look like this:

12.30

Note • The same display format used in formatting data for the regular report lines
is also used to format the data in the total line, and in any other statistical lines
requested. This means, for example, that if you want to see an extra decimal digit for
a column's average value (at a control break), you should specify a PICTURE that has
the correct number of decimal digits in the COLUMNS statement. Figure 4-8, on
page 4-27 shows an example of this.

Note • You can also specify the BIZ ("blank if zero") parm along with a display
format. That causes all non-zero data to be formatted according to the display
format. However, whenever the value to be formatted is zero, the column will be left
blank. You can use the BIZ parm with numeric, date and time fields.
■ 4-16 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-4 • Customizing the way dates and numbers are formatted in a report

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM
 LAST-NAME
 SOCIAL-SEC-NUM(PIC'999-99-9999')
 HIRE-DATE(LONG1)
 STATUS-BYTE(HEX)
 TOTAL-SALES(DOLLAR)

Produce this Report:

These Control Statements:

Notes:

• the SOCIAL–SEC–NUM column shows leading zeros, and has dashes in the appropriate places

• the HIRE–DATE columns shows the date in the LONG1 format, with the month name spelled out

• the STATUS–BYTE is shown in its hexadecimal representation

• the TOTAL–SALES column has a floating dollar sign

• the Grand Total line uses the same display format for TOTAL–SALES as the regular report lines

 EMPLOYEE LISTING

 SOCIAL
EMPL LAST SEC HIRE STATUS TOTAL
NUM NAME NUM DATE BYTE SALES

036 JONES 012-09-8765 JANUARY 31, 1980 C1 $42,509.89
037 JOHNSON 912-04-0334 JUNE 21, 1975 C1 $86,999.24
039 JOHNSON 004-77-9981 NOVEMBER 25, 1979 C1 $75,023.55
040 MACDONALD 889-79-0013 JULY 4, 1982 40 $2,560.98
041 SIMPSON 112-05-0456 DECEMBER 1, 1982 C1 $8,723.88
042 MORRISON 900-12-0556 NOVEMBER 30, 1979 C1 $98,054.99
043 CHRISTOPHERSON 415-09-0761 AUGUST 15, 1981 C1 $47,665.31
044 BAKER 878-19-0156 JUNE 4, 1982 C1 $92,125.89
045 THOMAS 776-83-8221 JUNE 4, 1982 C1 $60,193.49

*** GRAND TOTAL (9 ITEMS) $513,857.22
CIMS Report Writer User Guide 4-17 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
Formatting Tips for International Users 4

This section

■ suggests some options that international users may wish to use when creating reports

The following table contains a number of options of special interest to international
users. The report in Figure 4-5, on page 4-20 uses some of these options.

Options of Interest to International Users

OPTIONS Statement Parm Description Example

FORMAT(DD–MM–YY) Makes DD–MM–YY the default date
display format. All dates in the
report will now appear as
"DD/MM/YY" by default.

31/12/96

DATEDELIM('.')
DATEDELIM('–')

Makes a dot (or dash) the standard
delimiter used to format all dates in
the report.

31.12.96
31–12–96

TIMEDELIM('.')
TIMEDELIM('–')

Makes a dot (or dash) the standard
delimiter used to format all times in
the report.

12.34.56
12–34–56

FORMAT(DOTSEP) Makes DOTSEP the default display
format for all numeric fields in the
report. A dot is used to separate
thousands and millions, etc. A
comma indicates where the decimal
digits begin.

1.234.567,89

FORMAT(PIC'ZZZ ZZZ ZZ9.9') Makes the default numeric display
format the specified picture. Spaces
are used to separate thousands,
millions, etc.

1 234 567.8

FORMAT(PIC'ZZ ZZZ ZZ9V,9') Makes the default numeric display
format the specified picture. Spaces
are used to separate thousands,
millions, etc. A comma is used to
separate the decimal digits.

1 234 567,8
■ 4-18 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Of course, you can use any combination of the above options in a single OPTIONS
statement:

OPTIONS: FORMAT(DOTSEP,DD–MM–YY) DATEDELIM('–') TIMEDELIM('.') DDMMYYLIT

If you would like to use some of these options as the default for all reports in your
company, put the desired OPTIONS statement in a special member of your Report Writer
Copy Library. Then, under MVS, use the SWOPTION DD to point to that member. Report
Writer will process the statements in that member before it processes the other control
statements (page 8-13.) Under VSE, use a COPY statement to copy that member at the
beginning of your requests.

PIC'ZZZ.ZZ9V,99 DM' Use a PICTURE display format similar
to this to print currency symbols
(like DM) after a numeric value.

123.456,78 DM

DDMMYYLIT Tells Report Writer that all date
literals in the control statements are
in DD/MM/YY or DD/MM/YYYY format.
Note: the slash is always used as the
delimiter in date literals. The
DATEDELIM option, if any, only
changes the way dates are formatted
in the output— not the way date
literals are written in control
statements.

INCLUDEIF:
 SALES–DATE
 > 31/12/98
 AND
 < 28/2/2001

Options of Interest to International Users

OPTIONS Statement Parm Description Example
CIMS Report Writer User Guide 4-19 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
Figure 4-5 • A report with international formatting options

OPTIONS: FORMAT(DOTSEP, DD-MM-YY) DATEDELIM('.') DDMMYYLIT
INPUT: EMPL-FILE
TITLE: 'INTERNATIONAL EMPLOYEE LISTING'
TITLE: 'HIRED AFTER 31 DECEMBER 1975'
INCLUDEIF: HIRE-DATE > 31/12/1975
COLUMNS: EMPL-NUM
 LAST-NAME
 HIRE-DATE
 TOTAL-SALES
 TOTAL-SALES(PIC'ZZZ ZZ9V,99')

Produce this Report:

These Control Statements:

Notes:

• the FORMAT option makes DOTSEP and DD–MM–YY the default numeric and date display formats
for the report.

• the DATEDELIM('.') option causes all dates to be formatted using dots rather than slashes.

• the DDMMYYLIT options means that all date literals will be in DD/MM/YY (or DD/MM/YYYY) format.
Note that slashes are still required in date literals.

• the INCLUDEIF statement uses a date literal in DD/MM/YY format to select records whose HIRE–
DATE is after December 31, 1975

• the first TOTAL–SALES column uses the default display format (DOTSEP)

• the second TOTAL–SALES column uses an override PICTURE that has blanks as the separator character
and a comma as the decimal character.

 INTERNATIONAL EMPLOYEE LISTING
 HIRED AFTER 31 DECEMBER 1975

EMPL LAST HIRE TOTAL TOTAL
NUM NAME DATE SALES SALES

036 JONES 31.01.80 42.509,89 42 509,89
039 JOHNSON 25.11.79 75.023,55 75 023,55
040 MACDONALD 04.07.82 2.560,98 2 560,98
041 SIMPSON 01.12.82 8.723,88 8 723,88
042 MORRISON 30.11.79 98.054,99 98 054,99
043 CHRISTOPHERSON 15.08.81 47.665,31 47 665,31
044 BAKER 04.06.82 92.125,89 92 125,89
045 THOMAS 04.06.82 60.193,49 60 193,49

*** GRAND TOTAL (8 ITEMS) 426.857,98 426 857,98
■ 4-20 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
How to Format a Column in ASCII 4

Most PC's, network servers and mini-computers work with ASCII data, rather than the
EBCDIC data used on mainframes. An easy way to convert Report Writer's output from
EBCDIC to ASCII is to let the file transfer program do it for you as you download your
file from the mainframe.

However, this method cannot be used in cases where a record contains binary data as
well as character data. In such situations, use the ASCII parm to tell Report Writer to
format certain output columns in ASCII instead of EBCDIC.

When the ASCII parm is specified, Report Writer first formats the column (in EBCDIC) in
the normal way. That is, it uses the correct display format, it processes any BIZ parm, any
NOREPEAT parm, and so on. Then, the final, formatted column is translated from EBCDIC
to ASCII. (If desired, you can specify your own EBCDIC-to-ASCII translation table using
the ASCIITABLE option in the OPTIONS statement. Otherwise, a default translation table is
used.)

Here are a few other points related to creating ASCII output files:

■ the ASCII parm does not affect the column headings for a column. (Of course, when
creating output files, column headings are normally suppressed.)

■ the ASCII parm may only be specified for fields appearing in the COLUMNS statement
(not for literals.) To put an ASCII literal in your output, first use a COMPUTE statement
to create a character field containing your literal:

COMPUTE: ADDRESS-LIT = 'ADDRESS'
COLUMNS: ADDRESS-LIT(ASCII) ADDR-LINE1(ASCII)

Another method (especially for short literals like spaces) is to specify them in ASCII
yourself, as hex literals:

COMPUTE: ADDRESS-LIT = 'ADDRESS'
COLUMNS: ADDRESS-LIT(ASCII) 0 X'20' 0 ADDR-LINE1(ASCII)

■ use the COLSEP option if you want to separate the columns in your output file with an
ASCII character (such as a space or a comma). For example, to put an ASCII space (hex
'20') between the columns of a report, specify:

OPTIONS: COLSEP(X'20')

■ you may want to append ASCII CR/LF ("carriage return/line feed") codes (ASCII 0D0A)
to the end of each output record:

COLUMNS: NAME(ASCII) SALES-DATE(ASCII) SALES-TIME(ASCII) X'0D0A'

■ the #ASCII built-in function (described in Appendix D, Built-In Functions) is another
tool available for converting data from EBCDIC to ASCII.
CIMS Report Writer User Guide 4-21 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
How to Blank Out Repeating Values 4

This section explains:

■ how to print blanks in a column instead of a repeating value

■ how a repeating value in the first line of a control group is handled

Most of the features discussed in this section are illustrated in the sample report in
Figure 4-6.

The NOREPEAT parm in a COLUMNS statement tells Report Writer to blank out a column
whenever it would contain the same value as in the previous line. However, the column's
value is always shown (even if it is a repeated value) in two cases:

■ in the first detail line of each new page

■ in the first detail line of a new control group (that is, in the first detail line after a
control break)

Example
COLUMNS: LAST–NAME(NOREPEAT)

The above statement tell Report Writer not to print repeating values of the LAST–NAME
field.

If you prefer to also blank out repeating values in the first line of each control group, use
the NOREPEATPAGE parm instead of NOREPEAT. That parm causes repeat values to be
blanked out everywhere except in the first detail line of each new page.
■ 4-22 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-6 • A report that blanks out repeating values

INPUT: SALES-FILE
TITLE: 'LIST OF SALES BY REGION'
SORT: REGION EMPL-NAME
COLUMNS: REGION(NOREPEAT)
 EMPL-NAME(NOREPEAT)
 EMPL-NAME
 SALES-DATE
 CUSTOMER
 AMOUNT
 TAX

Produce this Report:

These Control Statements:

Notes:

• the NOREPEAT parm for REGION and EMPL–NAME causes repeated values in those columns to be
blanked out

• the second EMPL–NAME column does not use the NOREPEAT parm, for comparison

 LIST OF SALES BY REGION

 EMPL EMPL SALES
REGION NAME NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON MORRISON 03/30/95 A1 PHOTOGRAPHY 29.65 1.78
 MORRISON 03/29/95 STAR MARKET 44.35 2.66
 SIMPSON SIMPSON 04/30/95 J & S LUMBER 23.87 1.43
 SIMPSON 04/01/95 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON JOHNSON 04/05/95 MARYS ANTIQUES 9.98 0.60
 JOHNSON 04/01/95 VILLA HOTEL 234.45 14.07
 JONES JONES 04/15/95 EZ GROCERY 10.25 0.62
 JONES 04/15/95 TOY TOWN 10.25 0.62
 JONES 04/15/95 TOY TOWN 121.76 7.31
SOUTH JOHNSON JOHNSON 04/16/95 ACME BUILDING 500.00 30.00
 JOHNSON 03/12/95 ACE ELECTRICAL 101.38 6.09
WEST BAKER BAKER 03/26/95 JACKS CAFE 137.00 8.22
 BAKER 04/12/95 JACKS CAFE 135.75 8.15
 THOMAS THOMAS 04/14/95 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

INPUT: SALES-FILE
TITLE: 'LIST OF SALES BY REGION'
SORT: REGION EMPL-NAME
COLUMNS: REGION(NOREPEAT)
 EMPL-NAME(NOREPEAT)
 EMPL-NAME
 SALES-DATE
 CUSTOMER
 AMOUNT
 TAX
CIMS Report Writer User Guide 4-23 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
How to Change the Justification of Data within a Column 4

This section explains:

■ how data is normally justified within a column

■ how to specify that the data within a column should be left–, center–, or right–
justified

Most of the features discussed in this section are illustrated in the sample report in Figure
4-7, on page 4-25.

By default, Report Writer justifies fields in the following manner:

To change the way data is justified within a column, simply specify a justification parm
(LEFT, CENTER, or RIGHT) in parentheses immediately after the field name. (Do not leave
a space between the field name and the first parenthesis.)

For example, the following statement specifies that the LAST–NAME field should be right–
justified, the FIRST–NAME field should be center–justified, and the TOTAL–SALES field
should be left–justified.

COLUMNS: LAST–NAME(RIGHT) FIRST–NAME(CENTER) TOTAL–SALES(LEFT)

Note • You may also abbreviate LEFT, CENTER and RIGHT as LJ, CJ and RJ, respectively.

Note • The maximum width allowed for columns that are to be justified is 256
characters.

Note • The use of a large column heading or a large width parm can result in a report
column that is bigger than the area actually needed to display the contents of
character, date and bit fields. In such cases, the field's actual (smaller) display area
is centered within the area reserved for the entire column. Justification, if any, is
performed only within the (smaller) area actually used to display the field's contents.

Type of Data Default Justification

Character None

Numeric Right–justified

Date None

Time Right–justified

Bit None
■ 4-24 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-7 • Specifying how to justify data within the report columns

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM
 LAST-NAME(RIGHT)
 FIRST-NAME(CENTER)
 TOTAL-SALES(LEFT)

Produce this Report:

These Control Statements:

Notes:

• the EMPL–NUM column has no justification parm

• the LAST–NAME column is right–justified

• the FIRST–NAME column is center–justified

• the TOTAL–SALES column is left justified

• the Grand Total line uses the same justification for TOTAL–SALES as the regular report lines

 EMPLOYEE LISTING

EMPL LAST FIRST TOTAL
NUM NAME NAME SALES

036 JONES JERRY 42,509.89
037 JOHNSON THOMAS 86,999.24
039 JOHNSON LINDA 75,023.55
040 MACDONALD RICHARD 2,560.98
041 SIMPSON TIMOTHY 8,723.88
042 MORRISON MICHAEL 98,054.99
043 CHRISTOPHERSON MELISSA 47,665.31
044 BAKER VIVIAN 92,125.89
045 THOMAS MARTIN 60,193.49

*** GRAND TOTAL (9 ITEMS) 513,857.22
CIMS Report Writer User Guide 4-25 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
How to Specify Which Columns to Total 4

This section explains:

■ how Report Writer determines which columns to print totals (and other statistics)
for

■ how to explicitly specify that a column should or should not be included in total and
statistics lines

■ how to print totals for time fields

Most of the features discussed in this section are illustrated in the sample report in Figure
4-8, on page 4-27.

There are a number of statistical lines that can be printed at the end of a report, as well
as at control breaks. The total line is the most common statistical line. By default, a total
line automatically prints at the end of the report (the "Grand Totals") and at each control
break. The other statistical lines are:

■ the average line

■ the non–zero average line

■ the maximum line

■ the minimum line

■ the non–zero minimum line

These other statistical lines do not print unless specifically requested (in either a SORT or
a BREAK statement.)

For a column to appear in any of the statistical lines, Report Writer must accumulate
information about it as the report is being produced. For example, it must accumulate
the column's total value, its average value, etc. Each field that is accumulated
automatically appears in all statistical lines printed.

Which fields are accumulated? By default, all numeric columns are accumulated. So, by
default, all numeric columns appear in the total line, and any of the other statistical lines
that are printed.

The one exception to this rule is numeric fields that are displayed using a PICTURE which
contains special characters. (Special characters include such things as parentheses,
imbedded dashes, asterisks, etc.) By default, numeric fields displayed with such a
PICTURE are not accumulated and therefore do not appear in the total line and other
statistical lines. To illustrate this exception, consider the following COLUMNS statement:

COLUMNS: TELEPHONE(PIC'(999) 999–9999')

The telephone number column in this report would not be accumulated, even though
TELEPHONE is defined as a numeric field (see Appendix F, Files Used in Examples.) The
special characters in the PICTURE (namely the parentheses) suggest that totals, averages,
etc. would not be appropriate for this field.
■ 4-26 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-8 • Specifying which columns to total

INPUT: EMPL-FILE
TITLE: 'EMPLOYEE LISTING'
COLUMNS: EMPL-NUM
 LAST-NAME
 TELEPHONE(PIC'(999) 999-9999')
 TOTAL-SALES
 TOTAL-SALES(NOACCUM)
 NUM-ACCOUNTS(PIC'Z,ZZ9.9')
BREAK: #GRAND AVERAGE

Produce this Report:

These Control Statements:

Notes:

• the TELEPHONE field is not accumulated by default, since its PICTURE includes special characters

• the first TOTAL–SALES column is accumulated by default, and appears in the total and average lines

• the second TOTAL–SALES is not accumulated (due to the NOACCUM parm) and does not appear in
the total or average lines

• the NUM–ACCOUNTS column is displayed with a PICTURE that includes one decimal digit, so that
the average line will also contain one decimal digit for that column

• the BREAK: #GRAND statement specifies that averages should print along with the Grand Totals at the
end of the report

 EMPLOYEE LISTING

EMPL LAST TOTAL TOTAL NUM
NUM NAME TELEPHONE SALES SALES ACCOUNTS

036 JONES (415) 555-7653 42,509.89 42,509.89 78.0
037 JOHNSON (602) 555-6654 86,999.24 86,999.24 128.0
039 JOHNSON (415) 555-6785 75,023.55 75,023.55 104.0
040 MACDONALD (415) 555-9887 2,560.98 2,560.98 6.0
041 SIMPSON (818) 555-1887 8,723.88 8,723.88 16.0
042 MORRISON (818) 555-4748 98,054.99 98,054.99 154.0
043 CHRISTOPHERSON (602) 555-4556 47,665.31 47,665.31 65.0
044 BAKER (415) 555-1209 92,125.89 92,125.89 147.0
045 THOMAS (415) 555-1152 60,193.49 60,193.49 118.0

*** GRAND TOTAL (9 ITEMS) 513,857.22 816.0
*** AVERAGE VALUE 57,095.25 90.7
CIMS Report Writer User Guide 4-27 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
To state Report Writer's default more precisely: all numeric columns except those formatted
with special characters are accumulated and appear in the statistical lines of the report.

You may, however, override this default and explicitly state whether any numeric field is
to be accumulated or not. Take as an example the DEPT–NUM field, which is defined as a
numeric field (see Appendix F, Files Used in Examples.) By default, the DEPT–NUM column
would be accumulated since it is a numeric field. Yet, it makes no sense to total or to
average the department number. In the case of this field you want to specify that the
DEPT–NUM field should not be accumulated.

This is normally done when a field is first defined— in either a FIELD or a COMPUTE
statement. Specifying the NOACCUM parm in those statements indicates that the field should
not be accumulated. By specifying this parm when a field is first defined, you avoid
having to specify NOACCUM in the COLUMNS statement of every report that uses that field.
Here is how the DEPT–NUM field was defined so that it is not accumulated (and therefore
does not appear in totals lines):

FIELD: DEPT–NUM LENGTH(1) TYPE(NUM) NOACCUM

A similar parm is available in the COMPUTE statement to specify that a computed field
should not be accumulated:

COMPUTE: NEW–DEPT–NUM(NOACCUM) = 900 + DEPT–NUM

There is also a similar ACCUM parm that can be specified when a field is defined. This parm
explicitly specifies that a numeric field should be accumulated and appear in the total
(and statistical) lines. Use this parm if you do wish to total a field that is formatted with
special characters.

You may also explicitly state whether or not to accumulate a particular numeric field
directly in the COLUMNS statement. Use the ACCUM or NOACCUM parm in parenthesis
immediately after the field name. Such a parm in the COLUMNS statement overrides (for
the current report only) any other parm that may have been specified in the FIELD or
COMPUTE statement.

Example
COLUMNS: TOTAL–SALES(ACCUM) DEPT–NUM(NOACCUM)

In the above example, the total sales column would be accumulated, and the department
number field would not be accumulated, regardless of what was specified in their FIELD
statements. Therefore, the TOTAL–SALES columns would appear in the total and other
statistical lines. And the DEPT–NUM field would not appear in any of the statistical lines.

By default, Report Writer does not total any time fields. However, if you have a time field
which is a duration or interval (as opposed to a time of day), you may want to total it in
your report. You can do this by specifying the ACCUM parm for your time field.

Example
COLUMNS: TIME–ON–PHONE(ACCUM)

The above statement would cause the TIME–ON–PHONE field to be totalled at the Grand
Total line and at control breaks. It makes sense to total this time field, since it represents
a duration (time spent on the telephone) rather than a time of day.
■ 4-28 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Note • The same display format used in formatting data for the regular report lines
is also used to format the data in the total line, and in any other statistical lines
requested. This means, for example, that if you want to see two decimal digits for a
particular field in the average line, you should also specify that two decimal digits
print in the regular report column. Do this by specifying a PICTURE that has two
decimal digits in the COLUMNS statement. An example of this (but using only one
decimal digit) is shown in Figure 4-8. (For information on specifying PICTURES, see
page 9-12.)

Note • To suppress the entire total line at a control break, see page 4-76.

Note • To suppress the entire Grand Total line, use the NOGRANDTOTAL parm on the
OPTION statement. For more information on customizing the Grand Totals, see
page 4-99.

How to Produce Multi–Line Reports 4

This section explains:

■ how to print more than one report line for each input file record

■ how to write more than one output record to a PC file for each input file record

PC File Note • The following discussion of multi–line reports also applies to creating
PC files. With reports, each COLUMNS statement results in one print line being printed
in the report. With PC files, each COLUMNS statement results in one output record
being written to the PC file.

Most of the techniques discussed in this section are illustrated in Figure 4-9, on
page 4-30.

All of our report examples until now have used a single COLUMNS statement. However, you
are allowed to specify as many COLUMNS statements for a report as you like. Each COLUMNS
statement results in one print line in the body of the report. Thus, a report with a single
COLUMNS statement will produce a report having a single line for each record included in
the report. A report with three COLUMNS statements will print three lines for each input
record, and so on. The report lines will print in the same order that the COLUMNS
statements appear in.

Note • To print a variable number of lines per input record, see page 4-36.

Reports with multiple COLUMNS statements are useful when you need to display a large
amount of data from each record. They are also useful when a single record has several
related fields that you want to print stacked on top of each other, rather than listed
alongside each other.

A few tips will help your multi–line reports look better.
CIMS Report Writer User Guide 4-29 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
Figure 4-9 • Using multiple COLUMN statements to print multi-line reports

OPTIONS: DOUBLE
INPUT: EMPL-FILE

TITLE: 'EMPLOYEE ADDRESSES, WITH QUARTERLY SALES'
TITLE:
TITLE: ' ADDRESS QUARTER SALES ' /
TITLE: '____________________ ____________ _______________' /

COLUMNS: LAST-NAME 6 '1ST QUARTER:' SALES-QTR1
COLUMNS: ADDRESS 1 '2ND QUARTER:' SALES-QTR2
COLUMNS: CITY 6 '3RD QUARTER:' SALES-QTR3
COLUMNS: STATE(2) 19 '4TH QUARTER:' SALES-QTR4

Produce this Report:

These Control Statements:

Notes:

• the DOUBLE option is used to print a blank line between each input record's data

• a spacing factor is used before the second item in each COLUMNS statement, to force correct
alignment of subsequent columns

• a width parm is used to make the STATE "column" only 2 bytes wide. Otherwise, its larger default
column heading ("STATE") would have resulted in a 5–byte column.

• the use of multiple COLUMNS statements suppresses the printing of the default column headings

• the second TITLE statement puts a blank line between the real report title and the title line used to
make column headings

• the third and fourth TITLE statements have a trailing slash, to left–align the column heading text

 EMPLOYEE ADDRESSES, WITH QUARTERLY SALES

 ADDRESS QUARTER SALES

JONES 1ST QUARTER: 9,956.01
125 MAIN STREET 2ND QUARTER: 10,511.56
SAN FRANCISCO 3RD QUARTER: 8,698.07
CA 4TH QUARTER: 13,334.25

JOHNSON 1ST QUARTER: 21,560.15
4000 LINDA VISTA 2ND QUARTER: 21,350.21
SCOTTSDALE 3RD QUARTER: 19,970.10
AZ 4TH QUARTER: 24,118.78

JOHNSON 1ST QUARTER: 14,590.34
12 LINCOLN DRIVE 2ND QUARTER: 17,220.10
SANTA ROSA 3RD QUARTER: 20,100.08
CA 4TH QUARTER: 23,113.12

 (other report lines not shown)

*** GRAND TOTAL (9 ITEMS) 122,989.16
 140,583.32
 124,677.23
 125,597.60
■ 4-30 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
To align the columns from the different COLUMNS statements neatly, you may need to use
explicit spacing factors and width parms. (Spacing factors are discussed on page 4-4;
width parms are discussed on page 4-12.) Consider the sample report in Figure 4-9. The
first field listed on each COLUMNS statement is not the same size. If the spacing factors had
not been used after the LAST–NAME, ADDRESS, CITY, and STATE field names, the subsequent
columns on each line (the literal text and the quarterly sales figures) would have been
skewed. The spacing factors compensated for the first columns' different widths and
caused the subsequent columns to line up neatly.

Use the DOUBLE parm of the OPTION statement (page 10-97) to double space the report
after all the report lines for a particular input record have printed. Otherwise, it will be
hard to tell which report lines are related to each other. The DOUBLE option tells Report
Writer to double space before printing a new record's data. It does not mean to double
space within the report lines for the same input record. (To do that, use empty COLUMNS
statements wherever you want a blank line to appear.)

Another thing to remember about reports with multiple COLUMNS statements: column
headings are not automatically generated. To print column headings in a multi–line
report, you have two options:

■ use the MULTICOLHDG parm in an OPTIONS statement

■ use TITLE statements to create your own column headings

Let's examine each of these options. The MULTICOLHDG option tells Report Writer to create
column headings as it normally would for the first COLUMNS statement. If those column
headings would be appropriate for your report, this is the easiest method to use. Of
course, you can also use column heading parms in that first COLUMNS statement to
override the default column headings as desired.

If the column headings from the first COLUMNS statement would not be appropriate, you
can use the second method to create column headings in a multi–line report. Use
additional TITLE statements to supply your own headings. After the regular TITLE
statements, add a blank TITLE to cause a blank line to print. Then use one or more TITLE
statements to specify your column headings.

To prevent these titles from being centered (and therefore not lining up correctly with
the report columns) use a trailing slash. The trailing slash causes these title lines to be
left–aligned, rather than centered.

If you want to underline your columns headings, use a final TITLE statement that
contains nothing but underscores and blanks. Report Writer will "overprint" any title
line that contains only blanks and underscore characters.

You can also use literal texts within the COLUMNS statements as a sort of row heading,
which works in conjunction with the more generalized column heading. (An example of
a row heading is the literal text "1ST QUARTER" in the report in Figure 4-9.) Together, the
row and column headings make clear exactly what each item of data in the report is.

Notice that the Grand total lines do not contain these literal texts ("1ST QUARTER", etc.)
This is because only numeric columns appear in the Grand totals. To add such texts to
the Grand Total lines, you could use several BREAK statement FOOTING parms, as discussed
in the section beginning on page 4-99.
CIMS Report Writer User Guide 4-31 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
Tip • By using a large of number of COLUMNS statements, you can create "reports"
where each input record prints one entire page. Use this technique to print special
forms. Specify one COLUMNS statement per line of the form, mixing literal text and field
names as desired. Use empty COLUMNS statements where blank lines should appear.
Use enough trailing blank COLUMNS statements to fill out the page.

How to Change the Report Margins 4

This section explains:

■ how to increase the left margin in a report

■ how to increase the top margin in a report

■ how to change the bottom margin in a report

To shift the whole report (including titles, body, Grand Totals, etc.) to the right, use the
LEFTMARGIN parm of the OPTION statement (discussed on page 10-91.)

Example
OPTIONS: LEFTMARGIN(10)

The above statement would create a left margin of 10 blank spaces.

The first title in a report is always printed at the "top of form" position. (The exact
location of the "top of form" line depends on the printer you are using.) Putting the first
title on the "top of form" line at your shop may result in the titles printing too high on
the page. To solve this problem, simply use one or more blank TITLE statements before
the normal ones. This has the effect of increasing your report's top margin. The first few
titles (which will still start printing at the "top of form" line) will only be blank lines.
The following statements would cause the report title to print 3 lines down from where
it would normally print:

TITLE:
TITLE:
TITLE:
TITLE: 'EMPLOYEE DIRECTORY'

Use the PAGELEN option (in the OPTIONS statement) to adjust the report's bottom margin.
The PAGELEN value tells Report Writer how many lines of each page to use when printing
the report. The bottom margin of the report is simply the unused lines at the bottom of
each sheet of paper.

The default PAGELEN value is 60. That means that 60 lines are used on each page.
Specifying a smaller PAGELEN will increase the bottom margin in the report. Specifying a
larger value will decrease the bottom margin. For example, the following statement will
cause 5 additional blank lines to be left at the bottom of each page:

OPTIONS: PAGELEN(55)
■ 4-32 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-10 • A report with a bar graph column

INPUT: EMPL–FILE
TITLE: 'BAR GRAPH OF FIRST QUARTER SALES'
COMPUTE: SALES–IN–THOUSANDS(0) = SALES–QTR1 / 1000
SORT: SALES–QTR1(DESC)
COLUMNS: LAST–NAME FIRST–NAME SALES–QTR1
 SALES–IN–THOUSANDS SALES–IN–THOUSANDS(BAR,30)

Produce this Report:

These Control Statements:

Notes:

• the BAR display format (in the COLUMNS statement) causes the second SALES–IN–THOUSANDS
column to be displayed as a bar graph

• the override column width of 30 causes the bar graph column to be 30 characters wide

• a COMPUTE statement is used to create a field whose value is between 0 and 30, to correspond with
the width of the bar graph column

• the (0) parm in the COMPUTE statement results in SALES–IN–THOUSANDS having zero decimal
digits

 BAR GRAPH OF FIRST QUARTER SALES

 SALES SALES
 LAST FIRST SALES IN IN
 NAME NAME QTR1 THOUSANDS THOUSANDS

MORRISON MICHAEL 25,014.19 25 *************************
JOHNSON THOMAS 21,560.15 22 **********************
BAKER VIVIAN 21,336.10 21 *********************
THOMAS MARTIN 14,889.07 15 ***************
JOHNSON LINDA 14,590.34 15 ***************
CHRISTOPHERSON MELISSA 13,807.22 14 **************
JONES JERRY 9,956.01 10 **********
SIMPSON TIMOTHY 1,287.58 1 *
MACDONALD RICHARD 548.50 1 *

*** GRAND TOTAL (9 ITEMS) 122,989.16 124
CIMS Report Writer User Guide 4-33 ■

■ Beyond the Basics

Additional Features in the COLUMNS Statement
How to Print Bar Graphs 4

In the section beginning on page 4-13, we learned how to specify a display format along
with a field name in the COLUMNS statement. The display format specifies just how a field's
data should be formatted in a report. One of the display formats you can use for numeric
fields is called BARGRAPH (or just BAR.) It specifies that the field should be formatted as a
horizontal bar graph (or "histogram.")

Example
COLUMNS: EMPL–NAME CUSTOMER AMOUNT(BARGRAPH)

The above statement specifies that the AMOUNT field appear as a bar graph in the report.
By default, bar graph columns are 20 characters wide. The column will contain a number
of asterisks equal to the rounded value of the numeric field (up to a maximum of 20).
For example, when the AMOUNT field is equal to 5.25, the column will contain 5 asterisks:
when the AMOUNT field is equal to 17.89, the column will contain 18 asterisks.

Of course many fields will have values much larger than 20. The TOTAL–SALES field, for
example, contains values into the tens of thousands. Use a COMPUTE statement to reduce
large fields down to a value between 0 and 20. Then display the COMPUTE field using the
BAR display format. This is illustrated in Figure 4-10, on page 4-33

Also, you may use an override column width parm to increase (or decrease) the default
column width of 20 characters. The report on page 4-33 shows a bar graph column that
is 30 characters wide. (The use of the width parm was discussed beginning on
page 4-12.)

How to Print Vertical Lines between Report Columns 4

Report Writer normally leaves one blank space between each report column. You can use
the COLSEP parm of the OPTIONS statement to specify some other "column separator" text.

Example
OPTIONS: COLSEP('|')

The above statement specifies a 3–character text that should appear between each
column of the report. The text consists of a blank, a vertical bar character, and another
blank. Using this OPTIONS statement results in a report with a vertical bar running down
between the report columns. This gives the report a spreadsheet–like appearance.

The report in Figure 4-11, on page 4-35 shows a report that uses the above statement.

Note • The vertical bar is the Shift "1" key on most mainframe terminals. Some PC
keyboards that emulate mainframe terminals do not have a key that shows the
straight vertical bar. (The "pipeline" character is not the same as the vertical bar.) On
many of these keyboards, the right–hand square bracket key (]) is used to send a
vertical bar to the mainframe.

PC File Note • The COLSEP parm should not be used when creating PC files. Report
Writer will choose an appropriate column delimiter for your PC program.
■ 4-34 CIMS Report Writer User Guide

Beyond the Basics ■

Additional Features in the COLUMNS Statement
Figure 4-11 • A report with vertical lines separating the columns

OPTIONS: COLSEP(' | ')
INPUT: EMPL-FILE
TITLE: 'DEMONSTRATION OF VERTICAL BARS BETWEEN COLUMNS'
COLUMNS: EMPL-NUM LAST-NAME FIRST-NAME DEPT-NUM
 SEX HIRE-DATE TOTAL-SALES

Produce this Report:

These Control Statements:

Notes:

• the COLSEP option specifies a 3–character "column separator" text, consisting of a vertical bar
surrounded by blanks

 DEMONSTRATION OF VERTICAL BARS BETWEEN COLUMNS

EMPL LAST FIRST DEPT HIRE TOTAL
NUM NAME NAME NUM SEX DATE SALES

036 | JONES | JERRY | 2 | M | 01/31/80 | 42,509.89
037 | JOHNSON | THOMAS | 1 | M | 06/21/75 | 86,999.24
039 | JOHNSON | LINDA | 2 | F | 11/25/79 | 75,023.55
040 | MACDONALD | RICHARD | 2 | M | 07/04/82 | 2,560.98
041 | SIMPSON | TIMOTHY | 3 | M | 12/01/82 | 8,723.88
042 | MORRISON | MICHAEL | 3 | M | 11/30/79 | 98,054.99
043 | CHRISTOPHERSON | MELISSA | 1 | F | 08/15/81 | 47,665.31
044 | BAKER | VIVIAN | 4 | F | 06/04/82 | 92,125.89
045 | THOMAS | MARTIN | 4 | M | 06/04/82 | 60,193.49

*** GRAND TOTAL (9 ITEMS) 513,857.22
CIMS Report Writer User Guide 4-35 ■

■ Beyond the Basics

How to Print a Variable Number of Lines Per Input Record
How to Print a Variable Number of Lines Per Input
Record 4

In some input files the records may contain an unknown, variable number of
occurrences of a field. The SKIPZERODET option may be useful in such cases. It causes
Report Writer to skip (that is, to not write out) any detail lines that contain only zero
values. Let's look at how this option can be used.

Consider the sample SALES–HISTORY file shown on page 4-37. This file contains 3 fields
in fixed positions (the name, the city, and a numeric field that tells how many sales
"slots" are used in the following array.) After these 3 fields there is an array of 6 sales
slots. Each "slot" contains the date and the amount of a sale. But not all 6 slots are
actually filled in for each record. As you can see, some records have only 1 slot filled in.
Others have 2 or 3. One record has all 6 filled in. The unused slots within a record
contain zeros.

Our goal is to produce a report that shows all the sales made by each employee. But we
do not want to see all the unused (or "zero") sales slots. We'll consider two different
strategies to accomplish this objective.

Variable Number of Lines — Strategy 1 4

 Let's start by seeing what our report would look like if we did nothing to remove the
"zero" sales fields. We'll use one COLUMNS statement for the constant information in each
record (the name and city). Then we will use one additional COLUMNS statement for each
of the 6 sales slots, showing the date and amount of a sale. If we do nothing else, Report
Writer will always print 7 lines for each input record (one line per COLUMNS statement.)
The resulting report is shown on page 4-38. It isn't very attractive. It also wastes a lot of
paper showing sales data for non–existent sales.

The first strategy to remove the "zero" sales data from the report is this: simply specify the
SKIPZERODET option. This causes Report Writer to skip (suppress) all detail report lines (or
PC file records) that contains only zeros. In our sample report, this means that the lines
for unused sales slots (lines with only a zero date and a zero amount) will be suppressed.
The report now contains only the lines that actually have real sales data in them. The
report on page 4-39 illustrates this strategy. (Note that we also specified DOUBLE to
double–space the report, making it easier to read.)

Once again, the SKIPZERODET option simply means that a detail line will not be output if
it contains only "zero" items. The following are considered "zero" items for this purpose:

■ blanks (for character fields)

■ zero numeric values (0, 0.00, etc.)

■ 00/00/00 (zero dates)

■ 00:00:00 (zero times)
■ 4-36 CIMS Report Writer User Guide

Beyond the Basics ■

How to Print a Variable Number of Lines Per Input Record
Figure 4-12 • A sample file containing sales data for up to 6 sales per record

FILE: SALES-HISTORY DDNAME(SALEHIST) LRECL(100)
FIELD: NAME LEN(10)
FIELD: CITY LEN(10)
FIELD: NUM-SLOTS LEN(1) TYPE(NUM)
FIELD: SALE-DATE-1 TYPE(YYMMDD)
FIELD: SALE-AMT-1 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-2 TYPE(YYMMDD)
FIELD: SALE-AMT-2 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-3 TYPE(YYMMDD)
FIELD: SALE-AMT-3 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-4 TYPE(YYMMDD)
FIELD: SALE-AMT-4 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-5 TYPE(YYMMDD)
FIELD: SALE-AMT-5 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALE-DATE-6 TYPE(YYMMDD)
FIELD: SALE-AMT-6 LEN(7) TYPE(NUM) DEC(2)

Contents of SALES-HISTORY File:

File Definition Statements for SALES-HISTORY File:

Notes:

• this "Sales History" file contains 100–byte records

• each record contains: the salesperson's name, city, and information about up to 6 sales

• each "sales slot" in the record consists of a sales date and a sales amount

• a one–byte field after the city tells how many slots are in use

• unused slots contain all zeros

BAKER BOSTON 29212010042398930104009122500
CHAVEZ MIAMI 19301250188901000
JEFFERSON CHICAGO 29301200066755930123004423400
JOHNSON DALLAS 5921230010081093010200554759301100075065930111002998093011900301620000000000000
JONES ATLANTA 6921229007110592123000192569301080109023930110005247593011300789129301160120030
MORRISON NEW YORK 3930102005220093010400919449301060140246000000000000000000000000000000000000000
SHARP PORTLAND 19301310060019000
SMITH ST LOUIS 4930119003342393012100708109301240100056930128002007293013100941990000000000000
CIMS Report Writer User Guide 4-37 ■

■ Beyond the Basics

How to Print a Variable Number of Lines Per Input Record
Figure 4-13 • A report with “no strategy” to deal with unused array items

INPUT: SALES–HISTORY
COLUMNS: NAME CITY
COLUMNS: SALE–DATE1 SALE–AMT–1
COLUMNS: SALE–DATE2 SALE–AMT–2
COLUMNS: SALE–DATE3 SALE–AMT–3
COLUMNS: SALE–DATE4 SALE–AMT–4
COLUMNS: SALE–DATE5 SALE–AMT–5
COLUMNS: SALE–DATE6 SALE–AMT–6

Produce this Report:

These Control Statements:

 MON 01/23/95 1:53 PM DATA FROM SALES-HISTORY PAGE 1

 BAKER BOSTON
 12/01/92 423.98
 01/04/93 912.25
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 CHAVEZ MIAMI
 01/25/93 1,889.01
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 JEFFERSON CHICAGO
 01/20/93 667.55
 01/23/93 442.34
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 00/00/00 0.00
 JOHNSON DALLAS
 12/30/92 1,008.10
 01/02/93 554.75
 01/10/93 750.65
 01/11/93 299.80
 01/19/93 301.62
 00/00/00 0.00

 (other report lines not shown)
■ 4-38 CIMS Report Writer User Guide

Beyond the Basics ■

How to Print a Variable Number of Lines Per Input Record
Figure 4-14 • Strategy 1 -- just add the SKIPZERODET option

OPTIONS: SKIPZERODET DOUBLE
INPUT: SALES–HISTORY
COLUMNS: NAME CITY
COLUMNS: SALE–DATE1 SALE–AMT–1
COLUMNS: SALE–DATE2 SALE–AMT–2
COLUMNS: SALE–DATE3 SALE–AMT–3
COLUMNS: SALE–DATE4 SALE–AMT–4
COLUMNS: SALE–DATE5 SALE–AMT–5
COLUMNS: SALE–DATE6 SALE–AMT–6

Produce this Report:

These Control Statements:

 MON 01/23/95 2:31 PM DATA FROM SALES-HISTORY PAGE 1

 BAKER BOSTON
 12/01/92 423.98
 01/04/93 912.25

 CHAVEZ MIAMI
 01/25/93 1,889.01

 JEFFERSON CHICAGO
 01/20/93 667.55
 01/23/93 442.34

 JOHNSON DALLAS
 12/30/92 1,008.10
 01/02/93 554.75
 01/10/93 750.65
 01/11/93 299.80
 01/19/93 301.62

 JONES ATLANTA
 12/29/92 711.05
 12/30/92 192.56
 01/08/93 1,090.23
 01/10/93 524.75
 01/13/93 789.12
 01/16/93 1,200.30

 MORRISON NEW YORK
 01/02/93 522.00
 01/04/93 919.44
 01/06/93 1,402.46

 (other report lines not shown)
CIMS Report Writer User Guide 4-39 ■

■ Beyond the Basics

How to Print a Variable Number of Lines Per Input Record
Note • For the purposes of this option, "detail lines" means: the lines printed for
each individual input record (COLUMNS statement lines); the total lines printed at
control breaks (if any); and the Grand Totals lines (if any.) Title lines, column
heading lines and break heading lines are not affected by this option.

Note • Only the first 256 bytes of each line are examined when checking for zero
detail lines. This is generally not a problem, since detail lines are usually not this
long.

Note • A related option named SKIPBLANKDET is also available. It suppresses lines
only when they are completely blank. It is for occasions when you want to suppress
blank detail lines, but still print lines that have zeros in them.

Of course, there are many variations that you can use with this technique. For example,
you might want to include the data from the first sale in the first COLUMNS statement
(along with the constant information.) Then you would just have 5 additional COLUMNS
statements for the remaining 5 sales slots.

COLUMNS: NAME CITY SALE–DATE–1 SALE–AMT–1
COLUMNS: 22 SALE–DATE–2 SAME–AMT–2
COLUMNS: 22 SALE–DATE–3 SAME–AMT–3
COLUMNS: 22 SALE–DATE–4 SAME–AMT–4
COLUMNS: 22 SALE–DATE–5 SAME–AMT–5
COLUMNS: 22 SALE–DATE–6 SAME–AMT–6

Or, you might want to combine 2 or more sales slots on each COLUMNS statement.

Example
COLUMNS: NAME CITY
COLUMNS: SALE–DATE–1 SAME–AMT–1 SALE–DATE–2 SAME–AMT–2
COLUMNS: SALE–DATE–3 SAME–AMT–3 SALE–DATE–4 SAME–AMT–4
COLUMNS: SALE–DATE–5 SAME–AMT–5 SALE–DATE–6 SAME–AMT–6

This will take up less space in your report. And again, any line with only "zero"
information in it will be suppressed. Of course, you could still end up with a line that
has good sales information for one sale, and zero data for the other sale on that line. See
Putting a Variable Number of Items on a Single Line on page 4-45 for a solution to that
problem.

There is another option that may also be useful in reports such as these. It is the
SPLITDETAIL option. It tells Report Writer that it may split the detail lines for a single
input record across pages in the report. If you do not specify this option, Report Writer
will skip to a new page if the current page does not have enough room to show all of the
detail lines for an input record. For example, if a record from the SALES–HISTORY file had
all 6 sales slots filled in (thus requiring 7 report lines in the example on page 4-39),
Report Writer would skip to the next page if there were not 7 lines left in the current page.
■ 4-40 CIMS Report Writer User Guide

Beyond the Basics ■

How to Print a Variable Number of Lines Per Input Record
Normally you will probably not use SPLITDETAIL, since it is easier to view related data
when it is all on a single page. But that does use extra paper. And, it may be impractical
if you are listing 30 or 40 items from each input record, since virtually every record
would end up requiring a new page. In these cases, you may specify SPLITDETAIL to allow
Report Writer to fill up each page before going on to the next page of the report.

Note • Remember that any time multiple COLUMNS statements are specified, Report
Writer does not produce column headings by default. Use the MULTICOLHDG option if
you want the column headings for the first COLUMNS statement to appear in the report.

Note • This technique (unlike the next one discussed) did not require use of the NUM–
SLOTS field at all. As long as your unused data contains only zeros or blanks, you can
use Strategy 1 even when there is no field that explicitly tells you how many slots in
a record are used.

Variable Number of Lines — Strategy 2 4

The technique discussed above (Strategy 1) is the easiest way to suppress unwanted lines
from your report or PC file. But it only works as long as your unused "slots" always
contain valid zero values (for numeric, date and time fields) and blanks (for character
fields). In some cases, your unused slots may contain "low–values" or some other kind
of invalid data.

Note • If you know that the unused fields in your input record will contain invalid
data, you can just use the ZEROINVDATA option. That option causes fields with invalid
data to be treated as if they contained zeros. That will enable the SKIPZERODET option
to work for you as described under Strategy 1 above.

There may be cases when it is not safe to treat all invalid values as zeros. Or, the unused
fields in your record may contain something other than invalid values (such as all 9's,
like 99/99/99). In such cases, you can use Strategy 2.

Strategy 2 also uses the SKIPZERODET option. But in this case, we don't use the fields from
the actual input record in the COLUMNS statements (since those fields might contain
invalid data.) Instead, we create a set of corresponding COMPUTE fields, which we use in
the COLUMNS statements. Each COMPUTE field will be assigned one of two values:

1 The value from its corresponding record field (when that field contains "good data"),
or

2 A zero value (if the corresponding record field does not contain "good data.")

We use conditional COMPUTE statements to selectively move data from just the filled–in
sales "slots" to this set of corresponding COMPUTE fields. The COMPUTE statement will
contain a WHEN condition so that the record value is only assigned to the compute field
when the record value contains good data. Otherwise, no WHEN condition will be true and
the COMPUTE field will be assigned a default value of zeros.
CIMS Report Writer User Guide 4-41 ■

■ Beyond the Basics

How to Print a Variable Number of Lines Per Input Record
We create one COMPUTE statement for each field which might potentially not contain good
data. In our present example, we create a COMPUTE field for each of the 6 date and amount
fields:

COMPUTE: S–DATE–1 = WHEN(NUM–SLOTS >= 1) ASSIGN(SALE–DATE–1)
COMPUTE: S–AMT–1 = WHEN(NUM–SLOTS >= 1) ASSIGN(SALE–AMT–1)

COMPUTE: S–DATE–2 = WHEN(NUM–SLOTS >= 2) ASSIGN(SALE–DATE–2)
COMPUTE: S–AMT–2 = WHEN(NUM–SLOTS >= 2) ASSIGN(SALE–AMT–2)

...

COMPUTE: S–DATE–6 = WHEN(NUM–SLOTS >= 6) ASSIGN(SALE–DATE–6)
COMPUTE: S–AMT–6 = WHEN(NUM–SLOTS >= 6) ASSIGN(SALE–AMT–6)

In the above statements, we used the NUM–SLOTS field to determine whether a particular
sales slot has good data or not. (In the SALES–HISTORY file, NUM–SLOTS is used like an
OCCURS DEPENDING ON variable in Cobol that tells how many slots in the sales array are in
use.)

The first COMPUTE statement above will assign the SALE–DATE–1 value to the COMPUTE field
named S–DATE–1 only if the first slot is actually used. (That is, only if NUM–SLOTS is at least
1.) If NUM–SLOTS is zero, then S–DATE–1 will be assigned a zero date value. (That is the
default value assigned when no WHEN conditions are met.) The next statement does the
same thing for the amount value in the first slot. It assigns the record's value to
S–AMT–1 only if the first slot was actually used. Otherwise, S–AMT–1 will be assigned a value
of zero.

We do the same thing for the second sales slot. If NUM–SLOTS is at least 2, we assign the
sales date and amount from the second slot to S–DATE–2 and S–AMT–2. Otherwise,
S-DATE–2 and S–AMT–2 remain zero. And so on with slots 3 through 6.

In our COLUMNS statement, we now use these COMPUTE fields rather than the actual fields
from the input record. That is because we know for sure that our COMPUTE fields contain
either valid sales information or zeros. Thus, the SKIPZERODET option will work just fine.

COLUMNS: NAME CITY
COLUMNS: S–DATE–1 S–AMT–1
COLUMNS: S–DATE–2 S–AMT–2
COLUMNS: S–DATE–3 S–AMT–3
COLUMNS: S–DATE–4 S–AMT–4
COLUMNS: S–DATE–5 S–AMT–5
COLUMNS: S–DATE–6 S–AMT–6

You can also use a similar technique to assign constant "line identifier" values to each
line of your report or PC file. For example, let's assume that you want the words "SALE
1:" to appear beside the values for the first sale. You can't just put that literal on the
COLUMNS statement, because then that report line would never be all blanks and zeros, and
therefore would never be suppressed. (It would always say "SALE 1:", which is not blanks
or zeros.) Instead, conditionally assign your literal text to a COMPUTE field the same way
you do the other data. Assign the literal value to the compute field only when the related
sales data is present:
■ 4-42 CIMS Report Writer User Guide

Beyond the Basics ■

How to Print a Variable Number of Lines Per Input Record
COMPUTE: SALES–ID–1 = WHEN(NUM–SLOTS >= 1) ASSIGN('SALE 1:')
COMPUTE: SALES–ID–2 = WHEN(NUM–SLOTS >= 2) ASSIGN('SALE 2:')
COMPUTE: SALES–ID–3 = WHEN(NUM–SLOTS >= 3) ASSIGN('SALE 3:')
COMPUTE: SALES–ID–4 = WHEN(NUM–SLOTS >= 4) ASSIGN('SALE 4:')
COMPUTE: SALES–ID–5 = WHEN(NUM–SLOTS >= 5) ASSIGN('SALE 5:')
COMPUTE: SALES–ID–6 = WHEN(NUM–SLOTS >= 6) ASSIGN('SALE 6:')

COLUMNS: SALE–ID–1 SALE–DATE–1 SALE–AMT–1
COLUMNS: SALE–ID–2 SALE–DATE–2 SALE–AMT–2

...

The "SALE–ID" fields computed above will be blank when the associated sales fields are
not used. Use these COMPUTE fields in your COLUMNS statement. Your report line will still
result in only blanks and zeros for sales slots that are not used. Such lines will not print
in the report. But for slots containing a sales value, the SALE–ID field will contain the
desired literal value and will appear before the sales amount in the report. The report on
page 4-44 illustrates this.

What if your record does not contain a numeric field that tells you how many slots are
used? More than likely you can still use this technique. You will just need to find another
way of determining whether a slot is filled in or not. For example, if there is a character
field within each slot, you might be able to compare it to blanks to see if the whole slot
is in use or not. If our file had a Customer Name field within each sales slot, we could
test that field like this:

COMPUTE: S–DATE–1 = WHEN(SALE–CUSTOMER–NAME–1 ¬= ' ') ASSIGN(SALE–DATE–1)
COMPUTE: S–AMT–1 = WHEN(SALE–CUSTOMER–NAME–1 ¬= ' ') ASSIGN(SALE–AMT–1)
COMPUTE: S–DATE–2 = WHEN(SALE–CUSTOMER–NAME–2 ¬= ' ') ASSIGN(SALE–DATE–2)
COMPUTE: S–AMT–2 = WHEN(SALE–CUSTOMER–NAME–2 ¬= ' ') ASSIGN(SALE–AMT–2)

...

COLUMNS: SALE–CUSTOMER–NAME–1 S–DATE–1 S–AMT–1
COLUMNS: SALE–CUSTOMER–NAME–2 S–DATE–2 S–AMT–2

...

If there is no character field for you to test, you can even test the date or amount field
itself. Remember that Report Writer considers any conditional expression "false" if one
or more of its operands contain invalid data. So, if your slot contains hex zeros for
unused slots (which is "invalid data" for YYMMDD fields and for most numeric fields), you
could use these COMPUTE statements:

COMPUTE: S–DATE–1 = WHEN(SALE–DATE–1 = SALE–DATE–1) ASSIGN(SALE–DATE–1)
COMPUTE: S–AMT–1 = WHEN(SALE–AMT–1 = SALE–AMT–1) ASSIGN(SALE–AMT–1)

The WHEN parm in the first statement above will be true if SALE–DATE–1 contains any valid
date, and will be false if it contains invalid data. Likewise, the WHEN parm in the second
statement will be true if SALE–AMT–1 contains any valid value, and false if it contains
invalid data.
CIMS Report Writer User Guide 4-43 ■

■ Beyond the Basics

How to Print a Variable Number of Lines Per Input Record
Figure 4-15 • Adding literal identifiers to variable lines

OPTIONS: SKIPZERODET DOUBLE
INPUT: SALES–HISTORY

COMPUTE: SALES–ID–1 = WHEN(NUM–SLOTS >= 1) ASSIGN('SALE 1:')
COMPUTE: SALES–ID–2 = WHEN(NUM–SLOTS >= 2) ASSIGN('SALE 2:')
COMPUTE: SALES–ID–3 = WHEN(NUM–SLOTS >= 3) ASSIGN('SALE 3:')
COMPUTE: SALES–ID–4 = WHEN(NUM–SLOTS >= 4) ASSIGN('SALE 4:')
COMPUTE: SALES–ID–5 = WHEN(NUM–SLOTS >= 5) ASSIGN('SALE 5:')
COMPUTE: SALES–ID–6 = WHEN(NUM–SLOTS >= 6) ASSIGN('SALE 6:')

COLUMNS: NAME CITY
COLUMNS: SALE–ID–1 SALE–DATE1 SALE–AMT–1
COLUMNS: SALE–ID–2 SALE–DATE2 SALE–AMT–2
COLUMNS: SALE–ID–3 SALE–DATE3 SALE–AMT–3
COLUMNS: SALE–ID–4 SALE–DATE4 SALE–AMT–4
COLUMNS: SALE–ID–5 SALE–DATE5 SALE–AMT–5
COLUMNS: SALE–ID–6 SALE–DATE6 SALE–AMT–6

Produce this Report:

These Control Statements:

 MON 01/23/95 2:01 PM DATA FROM SALES-HISTORY PAGE 1

 BAKER BOSTON
 SALE 1: 12/01/92 423.98
 SALE 2: 01/04/93 912.25

 CHAVEZ MIAMI
 SALE 1: 01/25/93 1,889.01

 JEFFERSON CHICAGO
 SALE 1: 01/20/93 667.55
 SALE 2: 01/23/93 442.34

 JOHNSON DALLAS
 SALE 1: 12/30/92 1,008.10
 SALE 2: 01/02/93 554.75
 SALE 3: 01/10/93 750.65
 SALE 4: 01/11/93 299.80
 SALE 5: 01/19/93 301.62

 JONES ATLANTA
 SALE 1: 12/29/92 711.05
 SALE 2: 12/30/92 192.56
 SALE 3: 01/08/93 1,090.23
 SALE 4: 01/10/93 524.75
 SALE 5: 01/13/93 789.12
 SALE 6: 01/16/93 1,200.30

 (other report lines not shown)
■ 4-44 CIMS Report Writer User Guide

Beyond the Basics ■

How to Print a Variable Number of Lines Per Input Record
Putting a Variable Number of Items on a Single Line 4

The methods just discussed work by suppressing output lines that contain only zero or
blank data. To use these methods, you generally must put each element of your array on
a separate line. But what if you want to put multiple array elements on a single report
line (or PC file record) and not see a lot of zeros for the unused slots? Here is a technique
for doing that.

This technique is similar to strategy 2 above in that we use a COMPUTE statement for each
record field which may or may not be filled in.

COMPUTE: S–DATE–1 = WHEN(SALE–CUSTOMER–NAME–1 ¬= ' ') ASSIGN(SALE–DATE–1)
COMPUTE: S–AMT–1 = WHEN(SALE–CUSTOMER–NAME–1 ¬= ' ') ASSIGN(SALE–AMT–1)
COMPUTE: S–DATE–2 = WHEN(SALE–CUSTOMER–NAME–2 ¬= ' ') ASSIGN(SALE–DATE–2)
COMPUTE: S–AMT–2 = WHEN(SALE–CUSTOMER–NAME–2 ¬= ' ') ASSIGN(SALE–AMT–2)
...

You can then list as many of these COMPUTE fields as you want in a single COLUMNS
statement. By using the BIZ ("blank if zero") parm, we ensure that all unused fields
appear as blanks in the output line:

COLUMNS: NAME CITY S–DATE–1(BIZ) S–AMT–1(BIZ) S–DATE–2(BIZ) S–AMT–2(BIZ)
COLUMNS: 22 S–DATE–3(BIZ) S–AMT–3(BIZ) S–DATE–4(BIZ) S–AMT–4(BIZ)

Now your report will show the date and amount of each sales slot that was filled in in
the input record. Blanks will appear for unused slots. And, as long as you use the
SKIPZERODET (or SKIPBLANKDET) option, any line that contains only blanks will still be
suppressed altogether.
CIMS Report Writer User Guide 4-45 ■

■ Beyond the Basics

What If You Run Out of Room?
What If You Run Out of Room? 4

The standard size of a report line is 132 characters. Therefore, the print expressions you
specify (in COLUMNS statements, TITLE statements, etc.) must produce a line no longer
than 132 characters. If it exceeds 132 characters, Report Writer will truncate part of the
line. If you have trouble fitting all the information you need into a report, try some of
the following solutions:

If you are printing on a laser printer:

■ try using a condensed font (or "form") that allows more than 132 characters per line.
Also, under MVS, change the JCL to specify a larger LRECL for the SWOUTPUT DD
(page 8-7.) Report Writer will then allow your report to be as wide as the LRECL value
that you specify. It will not be limited to 132 characters in that case.

VSE Note • Increase the RECSIZE value in the OUTATTR parm and in the JCL to
achieve the same result (page 8-19.)

Note • You may need to send a "setup string" to your laser printer at the
beginning of the report in order to use the desired printer form. See the PRTSETUP
option (page 10-96) for information on doing this.

If you are printing on a regular line printer:

■ shorten long column headings, by rewording them, or by breaking the heading up
into several lines (see Figure 4-2, on page 4-9.) See the section titled How to Change
the Column Headings on page 4-7.

■ shorten the width of one or more columns. See the section titled How to Change the
Width of a Column on page 4-12.

■ use smaller spacing factors between the report columns

■ move constant information (information that does not change from page to page) out
of the individual report lines and into the title lines or break lines. For an example of
putting data in the title, see Figure 4-24, on page 4-69.

■ use multiple COLUMNS statements to create a report with more than one report line for
each input file record. See the section titled How to Produce Multi–Line Reports on
page 4-29.
■ 4-46 CIMS Report Writer User Guide

Beyond the Basics ■

Why Do I See ****X**** in My Report?
Why Do I See ****X**** in My Report? 4

This section explains:

■ why asterisks sometimes appear in your report

Sometimes an error prevents Report Writer from being able to display the desired data
in a report. Rather than abandon the whole report, Report Writer prints a number of
asterisks where that data should have appeared. A single letter will be imbedded in the
asterisks. That letter is an error code which tells you exactly what kind of error occurred.
The following table lists these error codes. Appendix E, Error Indicators discusses each of
these errors in more detail, including suggestions for correcting the error. A discussion
on propagating error conditions is also found in that Appendix.

Error Code Meaning

****A**** Ambiguous reference.

****E**** Error in definition.

****F**** Error computing a field's offset value.

****I**** Invalid data.

****S**** Size error (not enough room to print all digits).

****U**** Undefined field.

****V**** Overflow occurred.

****Z**** Divide by zero occurred.
CIMS Report Writer User Guide 4-47 ■

■ Beyond the Basics

Customizing the Report Titles
Customizing the Report Titles 4

The following sections show various ways that you can customize the titles in a report.
The following sections explain:

■ how to include file data in a title (page 4-48)

■ how to put the page number, date and time in your titles (page 4-53)

■ how to change the spacing and formatting of data in the titles (page 4-53)

■ how to split the title into left, center and right parts (page 4-57)

■ various special options related to titles and column headings (page 4-63)

How to Include Data from a File in the Title 4

 This section explains:

■ how to print literal texts in a title

■ how to print data from an input file in a title

The contents of the TITLE statement is simply a print expression. Print expressions tell
Report Writer how to build one print line that will be used in a report. The print
expression in a TITLE statement specifies how to build a title line.

The contents of the COLUMNS statement is also a print expression— one that tells how to
build the report lines for the main body of the report. Thus, the contents of a TITLE
statement is very similar to the contents of a COLUMNS statement, which you are already
familiar with.

As with other print expressions in Report Writer, just list one or more items to print.

TITLE: item1 item2 item3 ...

Each item can be either a literal text or a field name.

To put a literal text in the title, simply enclose the text in either apostrophes or quotation
marks. For example, the following statement causes the words EMPLOYEE DIRECTORY to
appear in the title:

TITLE: 'EMPLOYEE DIRECTORY'

To put data from an input file in your title, simply list the desired field name. (Do not
put the field name in apostrophes or quotation marks.) For example, the following
statement causes the contents of the LAST–NAME field to appear in the report title.

TITLE: LAST–NAME

The data that appears in the title will be the field's value from the next record that would
print in the report.
■ 4-48 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
By the way, the TITLE statement can refer to any field from the input file(s). You are not
limited to just those fields that are listed in the COLUMNS statement. Field names used in
the TITLE statement may be any of the following:

■ any field from an input file. (An input file is a file named in the INPUT statement, or
in an optional READ statement.)

■ a computed field (created in a preceding COMPUTE statement)

■ a built–in field (see Chapter C, Built-In Fields for a complete list of built–in fields)

Figure 4-16, on page 4-50 shows an example of a title which uses one literal text and one
data field from the input file. (Another example of printing data from a file in the title is
shown in Figure 4-24, on page 4-69.)
CIMS Report Writer User Guide 4-49 ■

■ Beyond the Basics

Customizing the Report Titles
Figure 4-16 • A report title that includes data from a file

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY –' LAST–NAME
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

These Control Statements:

Notes:

• the value used for LAST–NAME in the title is taken from the next report line to print

• by default, the literal text is separated from the LAST–NAME field by one blank

• by default, the title is centered over the report

 EMPLOYEE DIRECTORY - BAKER

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
■ 4-50 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
How to Include the Page Number, Date and Time in a Title 4

This section explains:

■ how to include data from built–in fields in a title

Most reports will include the page number and the current date and time somewhere in
the title. Report Writer has a number of built–in fields that can be used for this purpose.
You may use these fields in your TITLE statement just like real fields from input files. The
built–in fields available are:

The sample report in Figure 4-17, on page 4-52 shows report titles that use several of
these built–in fields. The techniques discussed in the following sections of this chapter
can be used to improve the appearance of the current date in your title. For example, you
may want to spell out the name of the month in the current date. You may also want to
line up the date and page number with the left or right report margin.

Note • These built–in fields can also be used in the FOOTNOTE statement. Use the
FOOTNOTE statement when you want to print the date, page number, etc. at the bottom
of your report pages. (See page 4-64.)

Built-In Field
Name Contains

#PAGENUM a numeric field containing the current page number. (May also be
abbreviated #PAGE)

#TODAY a date field containing the system date on which the program began
execution

#COMDATE (VSE only) a date field containing the date from the DATE JCL
statement, if any

#DAYNAME a character field containing the day of the week (Monday, etc.) on
which the program began execution

#TIME a character field containing the formatted time of day at which the
program began execution (formatted in 12–hour format including
AM or PM)

#TIME24 a character field containing the formatted time of day at which the
program began execution (formatted in 24–hour format)

#HHMMSS a time field containing the time of day on which the program began
execution

#JOBNAME an 8–byte character field containing the jobname of the job executing
Report Writer
CIMS Report Writer User Guide 4-51 ■

■ Beyond the Basics

Customizing the Report Titles
Figure 4-17 • A title that shows the current day of the week, date, time and page number

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY'
TITLE: #DAYNAME #TODAY #TIME
TITLE: 'PAGE' #PAGENUM
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

These Control Statements:

Notes:

• the #DAYNAME built–in field causes the day of the week to appear in the title

• the #TODAY built–in field causes the current date to appear in the title

• the #TIME built–in field causes the current time to appear in the title

• the #PAGENUM built–in field causes the page number to appear in the title

 EMPLOYEE DIRECTORY
 FRIDAY 04/27/92 2:35 PM
 PAGE 1

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD PHOENIX
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY'
TITLE: #DAYNAME #TODAY #TIME
TITLE: 'PAGE' #PAGENUM
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:Produce this Report:
■ 4-52 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
How to Change the Appearance of Items in the Title 4

This section explains how to:

■ specify the number of spaces that should appear between items in a title

■ specify the width of an item in the title

■ specify the display format to use when formatting dates, times and numbers in the
title

■ justify the contents of fields printed in the title

■ specify that data should be in ASCII instead of EBCDIC

As in other print expressions, you may customize the title line by using optional spacing
factors and parms. So, the full syntax for the TITLE statement is this:

TITLE: [n] item1(parms) [n] item2(parms) [n] item3(parms) ...

The optional spacing factor [n] is the number of blank spaces to leave between items in
a title. If you omit the spacing factor, the default is for one blank space to appear between
each item. (A spacing factor of zero is allowed if you want no spaces to appear between
two items in a title.) For example, the following statement causes 5 blanks to appear
between the literal text "EMPLOYEE DIRECTORY" and the contents of the LAST–NAME field in
the title:

TITLE: 'EMPLOYEE DIRECTORY' 5 LAST–NAME

The optional parms are used to provide details about how to display data fields in a title.
You may specify one or more parms, enclosed in parentheses, immediately following a
field name. (Do not leave a space between the field name and the first parenthesis.) You
may use any combination of parms, in any order. Separate the parms with a comma and/
or with one or more blanks. For example, the following statement has both a width parm
and a justification parm for the LAST–NAME field:

TITLE: LAST–NAME(50,CENTER)
CIMS Report Writer User Guide 4-53 ■

■ Beyond the Basics

Customizing the Report Titles
The following table shows what parms are available in the TITLE statement. The sample
report in Figure 4-18, on page 4-56 illustrates the use of each these parms.

 Title Statement Parms

Parm Description

ASCII Specifies that the final, formatted contents of the field should be
translated from EBCDIC to ASCII. To specify your own EBCDIC-to-
ASCII translation table, use the ASCIITABLE option in the OPTIONS
statement (page 10-84.) Otherwise, Report Writer uses a default
translation table. (See page 4-21 for more information on creating
ASCII output files.)

COMPUTE: TITLE-LIT = 'DATE: '
TITLE: TITLE-LIT(ASCII) 0 SALES-DATE(ASCII)

BIZ Means "blank if zero." Specifies that the title area should be left blank
whenever the numeric, date or time item contains zeros. The
following example specifies that the SALES-DATE field should be left
blank whenever its value is zero.

TITLE: ‘DATE:‘ SALES-DATE(BIZ)

display-format Specifies how to format a field in the title. A complete list of display
formats is found in Appendix B, Display Formats. This parm works just
like the display format parm in the COLUMNS statement, which is
explained in more detail beginning on page 4-13. The following
example specifies that the current date field (#TODAY) should be
displayed in the LONG1 format –– with the month name spelled out:

TITLE: #TODAY(LONG1)

LEFT/CENTER/
RIGHT

Specifies how to justify a field's data within the area reserved for it in
the title. These parms work just like the justification parms in the
COLUMNS statement, which are explained in more detail beginning on
page 4-24. The section titled How to Split the Title into Left, Center, and
Right Parts on page 4-57 also illustrates the use of justification parms.
The following example specifies that the contents of the current date
field (#TODAY) should be center justified (as well as being formatted
in the LONG1 display format.)

TITLE: #TODAY(CENTER,LONG1)

width This numeric parm specifies how many characters should be reserved
for an item in the title. This parm works just like the width parm in
the COLUMNS statement, which is explained in more detail beginning
on page 4-12. As an example, the following statement specifies that
only one character of the LAST–NAME field should appear in the title:

TITLE: LAST–NAME(1)
■ 4-54 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
If a field is specified in a TITLE statement without any parms, Report Writer chooses a
default width, display format and justification.

Notice in the sample report in Figure 4-18 that the #TODAY field in the second title line
does not appear to be exactly centered over the report. This is because the contents of the
#TODAY field does not fill the whole area reserved for it in the title. The default width
reserved for a date in the LONG1 format is 18 characters — big enough to handle the
largest possible value (for example "SEPTEMBER 31, 1999"). When a smaller value (for
example "MAY 1, 1999") appears in this 18–character area with no justification, it is
padded with blanks on the right. Therefore the date does not look like it is centered.

In other words, the 18–character area reserved to display the #TODAY field is centered over
the report. But, the value within the 18–character area is not centered. To correct this, a
justification parm of CENTER was specified for the #TODAY field in the third title line of that
report. The CENTER justification parm causes the contents of the 18–character #TODAY field
to be centered.

For a similar problem that can arise when dates are lined up over the right margin of a
report, see page 4-63.
CIMS Report Writer User Guide 4-55 ■

■ Beyond the Basics

Customizing the Report Titles
Figure 4-18 • Using width, display format and justification parms in the title

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY –' LAST–NAME(1)
TITLE: #TODAY(LONG1)
TITLE: #TODAY(CENTER,LONG1)
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

These Control Statements:

Notes:

• the width of the LAST–NAME field in the first title has been shortened to 1 byte

• the LONG1 display format causes the current date (#TODAY) to be spelled out in the second and third
titles

• the CENTER justification parm causes the current date to be correctly centered in the third title line

 EMPLOYEE DIRECTORY - B
 JUNE 4, 1990
 JUNE 4, 1990

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
■ 4-56 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
How to Split the Title into Left, Center, and Right Parts 4

This section explains:

■ how to split the title into left, center and right parts

Until now, all of our TITLE statements have consisted of a single print expression. The
contents of that print expression has been centered over our reports.

A TITLE statement is actually allowed to have up to three print expressions, separated
with slashes (/).

TITLE: print–expression1 [/ print–expression2] [/ print–expression3]

Note • Do not confuse multiple items within a single print expression with multiple
print expressions. A single print expression may contain as many items (literal texts
and field names) as you like. A new print expression begins only when a slash is
encountered. See the section titled How to Include Data from a File in the Title on
page 4-48 for a review of what a print expression is.

Each print expression is called a title part. Report Writer aligns each title part differently,
depending on how many parts there are. Here is how title parts are aligned:

Thus, a simple TITLE statement with no slashes (and therefore with just a single part) will
result in a title that is centered across the report. The sample reports in the preceding
pages show examples of titles with only a single part.

A TITLE statement with two parts (separated by a slash) results in a title that has a left
aligned part and a right aligned part. The report in Figure 4-19, on page 4-58 shows an
example of such a title.

A TITLE statement with three parts results in a title with: a left aligned part, a centered
part, and a right aligned part. The report in Figure 4-20, on page 4-59 shows an example
of a title that has 3 parts.

Number of
Title Parts Alignment

1 the title is centered

2 the first part is left aligned, and the second part is right aligned

3 the first part is left aligned, the second part is centered, and the third
part is right aligned
CIMS Report Writer User Guide 4-57 ■

■ Beyond the Basics

Customizing the Report Titles
Figure 4-19 • A report with left and right title parts

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE DIRECTORY –' LAST–NAME /
 'ABC COMPANY'
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

These Control Statements:

Notes:

• the slash in the TITLE statement splits the title into left and right parts

EMPLOYEE DIRECTORY - BAKER ABC COMPANY

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)

Produce this Report:
■ 4-58 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
Figure 4-20 • A report with left, center, and right title parts

INPUT: EMPL–FILE
TITLE: 'ABC COMPANY' /
 'EMPLOYEE DIRECTORY –' LAST–NAME /
 'SALES DEPARTMENT'
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

These Control Statements:

Notes:

• the two slashes in the TITLE statement split the title into three parts

• the first title part is aligned with left margin of the report

• the second title part is centered

• the third title part is aligned with the right margin of the report

ABC COMPANY EMPLOYEE DIRECTORY - BAKER SALES DEPARTMENT

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
CIMS Report Writer User Guide 4-59 ■

■ Beyond the Basics

Customizing the Report Titles
What if you want your whole title to be left aligned or right aligned, without splitting it
into multiple parts? Use a leading or a trailing slash. This has the effect of creating a TITLE
statement with two parts, but where one of the parts is an empty print expression. Since
the TITLE statement has two parts, one will be left aligned and one will be right aligned.
But the part that has no print expression will be all blank.

For example, a trailing slash causes a title to be left aligned. Figure 4-21, on page 4-61
shows an example of this.

This use of a trailing slash to prevent the centering of a single title part is also helpful
when creating column headings with the TITLE statement. An example of this appears in
Figure 4-9, on page 4-30.

You can also use a trailing slash in conjunction with a spacing factor to print a title in a
certain column. For example, to print the text "REGION" in column 62 of the title, you
would use this statement:

TITLE: 61 'REGION' /

The above statement specifies that 61 blanks should be left before the first item in the
title. Therefore, the word "REGION" would begin in column 62. The trailing slash prevents
Report Writer from trying to center the title.

On the other hand, you can use a leading slash to force the whole title to be aligned on
the right side of the report. Figure 4-22, on page 4-62 shows an example of this.

The reports on page 4-61 and page 4-62 also illustrate one other possibility. By using an
empty print expression in the appropriate place, you can also create titles that have a left
and a center aligned part, but no right aligned part. Or, you can create a title with a center
and a right aligned part, but with no left aligned part.

You may sometimes specify a right aligned title only to find that the last character in the
title does not line up with the last character of the body of the report. Two things can
cause this to occur:

■ the body of the report may be smaller than the total length of the title. By necessity
the title will extend beyond the right margin of the report.

■ the last field listed in the title may not have completely filled the area reserved for it.
Thus, there would be trailing blanks within the last field in the title, and the title
would not appear to be right aligned. In other words, while the end of the field lined
up with the right edge of the report, the data within the field did not extend to its last
character. You should right–justify the contents of the last field by specifying the RIGHT
parm for that field. This will make the last characters in the title line up with the right
edge of the report. Figure 4-22, on page 4-62 shows a sample report that uses this
technique to correctly right align the current date in a title.
■ 4-60 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
Figure 4-21 • Titles with the date, 24-hour time, and page number on the left side of the report

INPUT: EMPL–FILE
TITLE: 'DATE:' #TODAY / 'EMPLOYEE DIRECTORY' /
TITLE: 'TIME:' #TIME24 /
TITLE: 'PAGE:' #PAGENUM /
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

These Control Statements:

Notes:

• the built–in fields #TODAY, #TIME24, and #PAGENUM are utilized

• using #TIME24 results in a 24–hour time, without the AM or PM

• the use of a trailing slash in the first title produces a left aligned and a centered title part

• the use of a trailing slash in the second and third titles produces a left aligned title

DATE: 04/27/92 EMPLOYEE DIRECTORY
TIME: 14:35
PAGE: 1

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)
CIMS Report Writer User Guide 4-61 ■

■ Beyond the Basics

Customizing the Report Titles
Figure 4-22 • A title with the date (spelled out), time, and page number on the right side of the
report

INPUT: EMPL–FILE
TITLE: / 'EMPLOYEE DIRECTORY'
 / #TODAY(LONG1,RIGHT)
TITLE: / #TIME
TITLE: / 'PAGE:' #PAGENUM(2)
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY

Produce this Report:

These Control Statements:

Notes:

• the built–in fields #TODAY, #TIME, and #PAGENUM are displayed in the titles

• the system date field (#TODAY) is displayed using the LONG1 format, and is right–justified

• the page number field (#PAGENUM) is only 2 characters wide

• the use of a leading slash in the first title produces a centered and a right aligned title part

• the use of a leading slash in the second and third titles produces a right aligned title

 EMPLOYEE DIRECTORY APRIL 27, 1992
 2:35 PM
 PAGE: 1

 LAST FIRST HIRE
 NAME NAME DATE ADDRESS CITY

BAKER VIVIAN 06/04/82 667 CRESTHAVEN BLVD WALNUT CREEK
CHRISTOPHERSON MELISSA 08/15/81 61752 TIMBERIDGE RD TORRANCE
JOHNSON LINDA 11/25/79 12 LINCOLN DRIVE SANTA ROSA
JOHNSON THOMAS 06/21/75 4000 LINDA VISTA SCOTTSDALE
JONES JERRY 01/31/80 125 MAIN STREET SAN FRANCISCO
MACDONALD RICHARD 07/04/82 525 FOOTHILL DRIVE PLEASANTON
MORRISON MICHAEL 11/30/79 98 SOUTH LAKESIDE DR GLENDALE
SIMPSON TIMOTHY 12/01/82 89876 WEST 53 STREET ARCADIA
THOMAS MARTIN 06/04/82 77812 S. HUNTINGTON CONCORD

*** GRAND TOTAL (9 ITEMS)

INPUT: EMPL–FILE
TITLE: / 'EMPLOYEE DIRECTORY'
 / #TODAY(LONG1,RIGHT)
TITLE: / #TIME
TITLE: / 'PAGE:' #PAGENUM(2)
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE ADDRESS CITY
■ 4-62 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
A similar problem can occur with centered title parts. Sometimes they do not appear to
be centered correctly. Two things can cause this to occur:

■ this can happen when the contents of a centered field does not completely fill the area
reserved for it in the title. In that case, the field may be centered correctly, but the data
within the field may not be centered. Use the CENTER parm to center the contents of
the field. The second title line in the report in Figure 4-18, on page 4-56 exhibits this
problem. The third title line in that same report uses the CENTER parm to correct the
problem.

■ sometimes correctly centering a title part would cause it to overlap with title parts that
are aligned over the left or right margins. In these cases, Report Writer shifts the center
title part to prevent overlap.

Special Options Related to Titles 4

The following table summarizes the options that affect the titles. (For a similar list of
options that affect column headings, see page 4-11) Use an OPTIONS statement to specify
these options (page 10-81.)

 Options Related to Titles

Option Description

COLHDGONCE Suppresses titles. Prints the column headings just once at the
beginning of the report. Report will have no page breaks.

NOCOLHDGS Suppresses column headings, but does not affect titles. Report will
have normal page break processing.

NOTITLES Suppresses all titles and column headings. Report will have no page
breaks.

TITLEONCE Prints titles (and any column headings) just once at the beginning of
the report. Report will have no page breaks.
CIMS Report Writer User Guide 4-63 ■

■ Beyond the Basics

Customizing the Report Titles
How to Print "Titles" at the Bottom of Each Page 4

To print "titles" at the bottom of each page of the report, use the FOOTNOTE statement. The
FOOTNOTE statement works just like the TITLE statement, except that the footnote lines
print at the bottom of each page, rather than at the top.

Example
FOOTNOTE: 'THE INFORMATION IN THIS REPORT IS CONFIDENTIAL'
FOOTNOTE: 'PAGE' #PAGENUM

The two FOOTNOTE statements above cause two lines to print at the bottom of each page
of the report. The first footnote line contains the literal text ("THE INFORMATION IN THIS
REPORT IS CONFIDENTIAL") centered under the report. The second footnote line has the
word "PAGE", followed by the page number. Figure 4-23 shows a sample report which
uses these two FOOTNOTE statements. FOOTNOTE statements may appear anywhere after the
INPUT statement.

All of the features allowed in TITLE statements are also allowed in FOOTNOTE statements.
(Using the TITLE statement is discussed beginning on page 4-48) Specifically, you can:

■ include the current date, time, page number, etc. in the footnote, by using the built–
in fields #TODAY, #DAYNAME, #TIME, #TIME24, #HHMMSS and #PAGENUM. (page 4-51)

■ separate the footnote line into left, center, and right aligned parts, by using slashes
within the FOOTNOTE statement. (page 4-57)

■ include data from the input file(s) in your footnote line. Just list the desired field
name in the FOOTNOTE statement. The data that will appear in the footnote will be the
field's value from the previous report record. (page 4-48)

■ specify exactly how data should be formatted in the footnote, by using the width,
display–format, and justification parms. (page 4-53)
■ 4-64 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Report Titles
Figure 4-23 • Using the FOOTNOTE statement to add footnotes to a report

INPUT: EMPL–FILE
TITLE: 'ABC COMPANY -- EMPLOYEE DIRECTORY'
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME EMPL–NUM SEX DEPT–NUM
 HIRE–DATE CITY STATE
FOOTNOTE: 'THE INFORMATION IN THIS REPORT IS CONFIDENTIAL'
FOOTNOTE: 'PAGE' #PAGE

Produce this Report:

These Control Statements:

Notes:

• the report has two footnote lines that correspond to the two FOOTNOTE statements

• since no slashes are used, each footnote is centered under the report

 ABC COMPANY -- EMPLOYEE DIRECTORY

 LAST FIRST EMPL DEPT HIRE
 NAME NAME NUM SEX NUM DATE CITY STATE

BAKER VIVIAN 044 F 4 06/04/82 WALNUT CREEK CA
CHRISTOPHERSON MELISSA 043 F 1 08/15/81 PHOENIX AZ
JOHNSON LINDA 039 F 2 11/25/79 SANTA ROSA CA
JOHNSON THOMAS 037 M 1 06/21/75 SCOTTSDALE AZ
JONES JERRY 036 M 2 01/31/80 SAN FRANCISCO CA
MACDONALD RICHARD 040 M 2 07/04/82 PLEASANTON CA
MORRISON MICHAEL 042 M 3 11/30/79 GLENDALE CA
SIMPSON TIMOTHY 041 M 3 12/01/82 ARCADIA CA
THOMAS MARTIN 045 M 4 06/04/82 CONCORD CA

*** GRAND TOTAL (9 ITEMS)

 THE INFORMATION IN THIS REPORT IS CONFIDENTIAL
 PAGE 1
CIMS Report Writer User Guide 4-65 ■

■ Beyond the Basics

Customizing the Control Breaks
Customizing the Control Breaks 4

This section discusses:

■ using the SORT statement to request a control break

■ using the BREAK statement to request a control break

■ some of the parms available for customizing control breaks

The easiest way to request a control break is to specify a break parm after a field name
right in the SORT statement. For example, the TOTAL parm in the following SORT statement
requests that a control break occur whenever the REGION field changes value:

SORT: REGION(TOTAL)

At a control break, the following things happen by default:

■ a total line prints, showing the number of items in the control group, as well as the
totals for all numeric columns in the report

■ two blank lines print, before continuing with the report

Another way to request a control break is to use the BREAK statement. The BREAK statement
names a sort field and makes that field a control break field. Only a field named in an
earlier SORT statement can be named in a BREAK statement. For example, the following two
statements have the same effect as the above SORT statement.

SORT: REGION
BREAK: REGION

We could also have included the TOTAL parm on the BREAK statement. However, since
TOTAL is the default, it was not necessary.

There are several advantages to using a BREAK statement. The BREAK statement has parms
that gives you complete control over what prints at control breaks. These parms are
discussed in the sections that follow:

■ how to specify the report spacing at a control break with the SPACE parm (page 4-67)

■ how the default total line looks, and tips on getting the most out of it (page 4-70)

■ how to print break–wide percentages and ratios in the total line (page 4-71)

■ how to customize the total line using the TOTAL parm (page 4-74)

■ how to suppress totals at a control break (page 4-76)

■ how to print statistical lines using the AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE and
NZMINIMUM parms (page 4-77)

■ how to print customized "footing" lines at the end of a control group using the
FOOTING parm (page 4-80)

■ how to print the number of items contained in a control group (page 4-91)
■ 4-66 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
■ how to print customized "heading" lines at the beginning of a control group using
the HEADING parm (page 4-93)

How to Change the Control Break Spacing 4

This section explains:

■ the default control break spacing in a report

■ how to specify your own control break spacing in a report

■ the SPACE parm in the BREAK statement

By default, Report Writer prints two blank lines whenever a control break occurs. (These
blank lines print after any footing lines, total lines and statistical lines have printed.) For
example, the sample report in Figure 2-13, on page 2-38 uses default spacing at control
breaks.

If you want something other than two blank lines, specify a spacing option in either the
SORT or the BREAK statement. (A complete list of spacing options is shown on the next
page.) By coding the appropriate value for this parm, you can request that some other
number of blank lines print (including zero lines), or you can request one of several
types of "page breaks."

If you only want to customize the spacing of a control break, you do not need to use a
BREAK statement. All break spacing options can be specified directly in the SORT
statement. Simply put the spacing parm in parentheses immediately after the
appropriate field name. For example, the following SORT statement requests that 5 blank
lines print whenever the REGION field changes value:

SORT: REGION(5)

The mere presence of the break spacing factor in the SORT statement above implies that
REGION should be a control break field. The following SORT statement requests a page
break. That is, whenever a new region starts printing, it will begin on a new page.

SORT: REGION(PAGE)

In a BREAK statement, use the SPACE parm to specify the desired control break spacing. The
following statements specify that 5 blank lines should print whenever the REGION field
changes value:

SORT: REGION
BREAK: REGION SPACE(5)

And the following statements request a page break for the REGION field.

SORT: REGION
BREAK: REGION SPACE(PAGE)

Figure 4-24, on page 4-69 shows a sample report that uses a similar BREAK statement to
request a page break.
CIMS Report Writer User Guide 4-67 ■

■ Beyond the Basics

Customizing the Control Breaks
There are other spacing options that are especially useful for reports that are printed on
a laser printer, using both sides of the paper. You may want to distribute the individual
pages of your report to, for example, a company's various regions. To do this, the
different regions must print on separate sheets of paper, not just on a new page. (A new
page might only be the back side of the same sheet of paper where another region
printed.) The NEWSHEET spacing option does this.

There are also spacing options that will reset the page number after a control break.
When skipping to a new page after a control break, you may also want to start the page
numbering over again with page one. This is especially useful when you will be
distributing the various sections of the report to different people, and you want each
section to start with page one. The PAGE1, NEWSHEET1 and ODDPAGE1 options do this.

The following table lists the control break spacing options available:

PC File Note • Only the n spacing parm (for "n" blank lines) is allowed when creating
PC files. Since PC files do not have "pages", the other spacing parms are meaningless
for PC files.

Spacing Option Description

n Skips this number of blank lines.

PAGE Skips to the top of the next page of the report.

PAGE1 Works like PAGE, but also resets page number to "one".

NEWSHEET Skips to a new sheet of paper. In order for this feature
to work, you must also use the OPTION statement's
PRTSHEET parm to specify a character string that can be
sent to your printer to tell it to skip to a new sheet of
paper. (The PRTSHEET option is described starting on
page 10-97.)

NEWSHEET1 Works like NEWSHEET, but also resets page number to
"one".

ODDPAGE Skips to the next odd numbered page. This parm
accomplishes the same thing as the NEWSHEET parm,
but can be used even if you do not have a character
string to send to your printer to force it to skip to a
new sheet. However, for this option to work you must
ensure that the first page of your report prints on the
front side of a sheet of paper. As long as page 1 of your
report prints on the front side of a sheet of paper, all
other odd numbered pages will also be on front sides.

ODDPAGE1 Works like ODDPAGE, but also resets page number to
"one".
■ 4-68 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
Figure 4-24 • A BREAK statement that requests a page break and resets the page number

INPUT: SALES–FILE
TITLE: 'SALES FOR REGION:' REGION / 'PAGE' #PAGENUM
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION SPACE(PAGE1)

Produce this Report:

These Control Statements:

• specifying PAGE1 (in the BREAK statement) causes the report to skip to a new page whenever the
REGION field changes value, and also resets the page number to 1

• since we printed the REGION in the title of each page, we could now eliminate the REGION column
making room in the report for other data

SALES FOR REGION: EAST PAGE 1

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09

 (other report lines not shown)

SALES FOR REGION: NORTH PAGE 1

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SALES FOR REGION: NORTH PAGE 1

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22
CIMS Report Writer User Guide 4-69 ■

■ Beyond the Basics

Customizing the Control Breaks
How a Default Total Line Looks 4

This section explains:

■ how the default total line looks

■ tips on making the default total line look its best

Before we examine the various custom lines that we can print at a control break, let's look
at what happens by default at a control break.

By default, Report Writer prints one total line at every control break. The report in Figure
4-24, on page 4-69 shows an example of the default total lines. They look something like
this:

*** TOTAL FOR EAST (4 ITEMS) 112.86 6.79

Default total lines contain the following information:

■ a number of asterisks (three, in this example) which serve to set the total line off from
the regular report lines. The asterisks also serve as a visual indicator of the "level" of
the break. The higher the break level, the more asterisks that print. (Break levels are
discussed in the section titled Reports with Multiple Control Breaks on page 4-96.)

■ the words TOTAL FOR, which identifies this as the total line

■ the value of the break field in the control group that just ended (in this example
EAST.)

■ the number of items that were included in the control group (in this example 4.) The
number of items is the number of primary input file records included in the control
group. Usually, it is also the number of report lines printed for the control group.

■ the control group total for each numeric column in the report (in this example the
AMOUNT and TAX columns.) (For more information on exactly which columns are
totalled, see the section titled How to Specify Which Columns to Total on page 4-26.)

Sometimes the text at the beginning of the total line will extend into the area where the
first column total should print. This normally happens when the first numeric column
is fairly close to the left margin of the report. When the total line text would overlap with
one or more actual column totals, Report Writer skips to a new line to print the column
totals.

To prevent this splitting of the total line, design your reports so that the first numeric
column is well away from the left margin of the report. You might do this by printing
large character fields (such as names, descriptions, etc.) in the first columns of the report,
and putting the numeric columns after that. That is what we have done for most
examples in this manual. Or, you can use an initial spacing factor in the COLUMNS
statement to shift all columns to the right, like this:

COLUMNS: 40 AMOUNT TAX

The report in Figure 4-35, on page 4-103 uses a COLUMNS statement with a large initial
spacing factor.
■ 4-70 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
To prevent splitting the total line, you could also specify a shorter text to being the total
line with. Use the TOTAL parm to specify a shorter text (page 4-74).

When printing large reports you may see a number of asterisks in the total line. For
example, you might see a total line that looks like this:

*** TOTAL FOR EAST (4 ITEMS) ******S****** 6.79

The "size" error indicator (***S***) indicates that there wasn't enough room to display
all of the digits in a number. In this case, the report column is not wide enough to display
the total value. Use a width parm in the COLUMNS statement to make the column wider
(see page 4-12.) For example, the following COLUMNS statement makes the AMOUNT column
20 characters wide, so that even huge numbers will fit in the total line:

COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT(20) TAX

If there is a very large number of records in a control group, there may not be enough
room to print the number of items in the total line. In that case you might see something
like this:

*** TOTAL FOR EAST (**S** ITEMS) 112.86 6.79

To correct this problem, specify your own total line text using the TOTAL parm (see
page 4-74.) Be sure to specify a width parm (see page 4-86) that leaves plenty of room
to display the #ITEMS built–in field, like this:

BREAK: REGION
 TOTAL('*** TOTAL FOR' REGION #ITEMS(10) 'ITEMS')

The built–in field #ITEMS is discussed beginning on page 4-91.

Computing True Percentages and Ratios at Control Breaks 4

By default, Report Writer prints the total value of each numeric column at control breaks.
For some computed fields this is not what is really desired. Consider the following
COMPUTE statement:

COMPUTE: PERCENT–TAX = TAX / AMOUNT

The above statement computes a field called PERCENT–TAX, which is computed by
dividing the amount of the tax by the amount of the sale. At control breaks, it is probably
not helpful to see the sum of all of the PERCENT–TAX percentages. Instead it would be
helpful to see the PERCENT–TAX percentage for the entire control group. To get this value,
we need to divide the control group's total value for TAX by the control group's total value
for AMOUNT.

You can do this by specifying the DIVTOTS ("divide totals") parm in the COMPUTE
statement, like this:

COMPUTE: PERCENT–TAX(DIVTOTS) = TAX / AMOUNT
CIMS Report Writer User Guide 4-71 ■

■ Beyond the Basics

Customizing the Control Breaks
The above statement tells Report Writer to divide the total value of the numerator by the
total value of the denominator at control breaks. In this case the total value of TAX will
be divided by the total value of AMOUNT. This group–wide percentage is what will appear
in the total line at the control breaks and in the Grand Total line. You may also
abbreviate DIVTOTS as DT.

Figure 4-25, on page 4-73 shows a report that uses the DIVTOTS parm.

DIVTOTS may only be specified for COMPUTE statements that meet all of the following
requirements:

■ At its highest level, the expression must consist of a single division operation. The
numerator and/or denominator themselves, however, can be expressions within
parentheses. All of the following statements qualify as consisting of a "single high
level division":

COMPUTE: A = B / C
COMPUTE: A = B / (C + D + E)
COMPUTE: A = (B + C) / (D + E)
COMPUTE: A = (B/C) / (D/E)

■ Neither the numerator nor the denominator may be literal values. Each must be
either a field or an expression. That is, DIVTOTS would not be allowed for the
following:

COMPUTE: A = B / 100

Computations involving division by a literal value (like the one above) are not ratios
or percentages. A regular total for such fields is more appropriate at control breaks. If
you need a literal in a DIVTOTS COMPUTE statement for some reason, assign the literal
value to a field and then refer to that field in the COMPUTE statement:

COMPUTE: HUNDRED= 100
COMPUTE: A(DIVTOTS) = B / HUNDRED

■ Only simple COMPUTE statements may use the DIVTOTS parm. It is not allowed in
conditional COMPUTE statements. (Conditional COMPUTE statements are those that use
the WHEN and ASSIGN parms to assign different values to a field.) However, either or
both of the numerator and the denominator can be COMPUTE fields that may have been
computed with conditional COMPUTE statements.
■ 4-72 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
Figure 4-25 • Using the DIVTOTS parm to get accurate percentages at control breaks

INPUT: SALES–FILE
TITLE: 'COMPUTING BREAK–WIDE PERCENTAGES'
COMPUTE: PERC–TAX = TAX / AMOUNT
COMPUTE: PERCENT–TAX(DIVTOTS) = TAX / AMOUNT
SORT: REGION(TOTAL)
COLUMNS: EMPL–NAME REGION CUSTOMER TAX AMOUNT
 PERC–TAX PERCENT–TAX

Produce this Report:

These Control Statements:

Notes:

• The PERC–TAX field is computed by dividing TAX by AMOUNT.

• The PERCENT–TAX is computed the same way, but has the DIVTOTS parm.

• The total lines show the sum of the PERC–TAX field, which is meaningless for a percentage.

• The DIVTOTS parm means the PERCENT–TAX value in the total lines is computed by dividing the
region's total TAX by the region's total AMOUNT.

• The PERCENT–TAX field in the Grand Total line is similarly computed by dividing the Grand Total
TAX by the Grand Total AMOUNT.

 COMPUTING BREAK–WIDE PERCENTAGES

 EMPL PERC PERCENT
 NAME REGION CUSTOMER TAX AMOUNT TAX TAX

MORRISON EAST STAR MARKET 2.66 44.35 0.059977 0.059977
MORRISON EAST A1 PHOTOGRAPHY 1.76 29.65 0.060034 0.060034
SIMPSON EAST EUROPEAN DELI 0.90 14.99 0.060040 0.060040
SIMPSON EAST J & S LUMBER 1.43 23.87 0.059908 0.059908
*** TOTAL FOR EAST (4 ITEMS) 6.77 112.86 0.239959 0.059986

JOHNSON NORTH VILLA HOTEL 14.07 234.45 0.060013 0.060013
JOHNSON NORTH MARYS ANTIQUES 0.60 9.98 0.060120 0.060120
JONES NORTH EZ GROCERY 0.62 10.25 0.060488 0.060488
JONES NORTH TOY TOWN 0.62 10.25 0.060488 0.060488
JONES NORTH TOY TOWN 7.31 121.76 0.060036 0.060036
*** TOTAL FOR NORTH (5 ITEMS) 23.22 386.69 0.301145 0.060048

 (other report lines not shown)

*** GRAND TOTAL (14 ITEMS) 83.05 1,383.66 0.841332 0.060022
CIMS Report Writer User Guide 4-73 ■

■ Beyond the Basics

Customizing the Control Breaks
How to Customize the Total Line at a Control Break 4

This section explains:

■ how to customize the total line at a control break

■ how to use the TOTAL parm in the BREAK statement

Report Writer automatically prints a total line at the end of each control group. As we
saw earlier, the default total line begins with a text something like this:

*** TOTAL FOR EAST (4 ITEMS)

This text is then followed by the actual totals for each numeric column. You may prefer
to print your own text at the beginning of the total line. Use the TOTAL parm of the BREAK
statement to do that.

Here is an example of a BREAK statement with a TOTAL parm:

BREAK: REGION
 TOTAL('REGION TOTALS')

When you specify a text in a TOTAL parm, Report Writer uses your text, rather than the
default text, in its total line. The above statement specifies that the total line should begin
with the words REGION TOTALS. After that, the actual totals appear, lined up under the
appropriate report columns. Figure 4-26, on page 4-75 shows a sample report that uses
the above BREAK statement.

The contents of the TOTAL parm is actually a print expression. Print expressions tell
Report Writer how to build one print line to use in a report. In the TOTAL parm, the print
expression tells how to build the first part of the total line.

The contents of the COLUMNS statement is also a print expression— one that tells how to
build the report lines for the main body of the report. Thus, the contents of the TOTAL parm
is very similar to the contents of a COLUMNS statement, which you are already familiar with.

Briefly, the TOTAL parm print expression can contain literal text, data from input records,
data from built–in fields, and certain statistical values for numeric data fields. The
section titled How to Print Customized Footing Lines at a Control Break on page 4-80
describes in detail how to write a FOOTING parm print expression. Those same rules apply
to writing TOTAL parm print expressions.

Here is an example of a TOTAL print expression which consists of one literal item and one
field name:

BREAK: REGION
 TOTAL('TOTALS FOR REGION:' REGION)

The total line produced by the statement above would begin with:

TOTALS FOR REGION: xxxxx

where xxxxx would be the name of the region that had just finished printing.
■ 4-74 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
Figure 4-26 • A report with a customized total line at the control breaks

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION TOTAL('REGION TOTALS')

Produce this Report:

These Control Statements:

Notes:

• the total line now begins with the text "REGION TOTALS", as specified in the TOTAL parm of the
BREAK statement

 SALES BY REGION

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
REGION TOTALS 112.86 6.77

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
REGION TOTALS 386.69 23.22

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
REGION TOTALS 601.38 36.09

WEST BAKER 03/26/92 JACKS CAFE 137.00 8.22
WEST BAKER 04/12/92 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/92 YOGURT CITY 9.98 0.60
REGION TOTALS 282.73 16.97

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
CIMS Report Writer User Guide 4-75 ■

■ Beyond the Basics

Customizing the Control Breaks
You may also put a blank print expression in the TOTAL parm, like this:

BREAK: REGION TOTAL(' ')

The example above results in a total line with no beginning text— just the actual numeric
totals themselves.

Only one TOTAL parm is allowed in the BREAK statement. If you need to print more than
one line at a control break, use one or more FOOTING parms along with the TOTAL parm.
(FOOTING parms are discussed beginning on page 4-80.)

Example
BREAK: REGION
 FOOTING('END OF REGION:' REGION)
 FOOTING('VERIFY THE FOLLOWING TOTALS WITH ACCOUNTING')
 TOTAL('TOTAL SALES')

The statement above would cause three lines to print at the control break: the two
footing lines first, followed by the total line. The total line would begin with the text
TOTAL SALES, followed by the numeric totals.

The total line at a control break always prints immediately after the last footing line (if
any), regardless of where the TOTAL parm is specified in the BREAK statement.

If you want the total line to be separated from the footing lines, (or from the last detail
report line) use a blank FOOTING parm, like this:

BREAK: REGION
 FOOTING('END OF REGION' REGION')
 FOOTING('VERIFY THE FOLLOWING TOTALS WITH ACCOUNTING')
 FOOTING(' ')
 TOTAL('TOTAL SALES AS OF' #TODAY)

This will cause a blank footing line to print after the first two footings and before the
total line.

Notice in the above statement that we used the built–in field #TODAY to print the current
date in the total line.

Note • To customize the Grand Totals line, see page 4-99.

How to Suppress the Total Line at a Control Break 4

This section explains:

■ how to suppress the total line at a control break

■ the NOTOTAL parm in the BREAK and SORT statements

Even when a report has no numeric columns, a total line still prints at control breaks.
That is because the total line contains other useful information such as the value of the
break field, and the number of items in the control group.
■ 4-76 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
To suppress the total line at a control break, specify NOTOTAL in the SORT or BREAK
statement. For example, if you did not want to see region totals at the REGION control
break, you would write:

BREAK: REGION NOTOTAL

The above example would still result in a control break whenever the REGION field
changed value. But region totals would not print at the break. Two blank lines (the
default spacing option) is all that would print at the control break.

You can also use the NOTOTAL parm directly in the SORT statement, either alone or in
combination with a break spacing parm. Here are two examples:

SORT: REGION(NOTOTAL)
SORT: REGION(PAGE,NOTOTAL)

The first example causes a control break to occur whenever the REGION field changes
value, but prevents region totals from printing. (The presence of the NOTOTAL parm
implies that a control break should occur.) The default spacing of two blank lines will
be printed at the control break.

The second example above also causes a control break on the REGION field, but specifies
that each new region should start printing on a new page. Again, no region totals would
print at the control break.

Note • To just suppress totals for a particular column, see page 4-26.

Note • To suppress the Grand Total line, see the section beginning on page 4-99.

How to Customize the Statistical Lines at a Control Break 4

This sections explains:

■ how to print statistical lines at a control break

■ how these statistical lines look by default

■ how to customize the statistical lines

■ the AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE and NZMINIMUM parms in the SORT and
BREAK statements

The sample report in Figure 4-27, on page 4-79 illustrates most of the features discussed
in this section.

There are a number of statistical lines that can be printed at a control break. The total
line is the most common statistical line. By default, the total line automatically prints at
each control break, as well as at the end of the report. The other statistical lines do not
CIMS Report Writer User Guide 4-77 ■

■ Beyond the Basics

Customizing the Control Breaks
appear unless specifically requested. You may request them by specifying the appropriate
parm in either the BREAK statement or the SORT statement. The statistical parms (and their
abbreviations) are:

The following example requests that a line showing averages and a line showing
maximum values be printed at the control break. (Of course, the total line will also print,
since the NOTOTAL parm was not specified to suppress it.)

BREAK: REGION AVERAGE MAXIMUM

It is also possible to request the same thing directly in the SORT statement:

SORT: REGION(AVERAGE,MAXIMUM)

The presence of the statistical parms in the above SORT statement imply that REGION
should be a break field.

When the average line prints at a control break, it begins with the text AVERAGE VALUE,
followed by the averages themselves lined up under the numeric columns. Just as with
the total line, you can change the beginning text to be anything you like. Simply specify
a print expression in parentheses immediately after the AVERAGE parm:

BREAK: REGION AVG('AVERAGES FOR REGION:' REGION)

The other statistical lines (maximum, minimum, etc.) begin with similar texts (MAXIMUM
VALUE, MINIMUM VALUE, etc.) You can override the text for any of these lines in the same
way as for total or average lines:

BREAK: REGION MAXIMUM('BIGGEST SALE IN REGION:' REGION)
 MINIMUM('SMALLEST SALE IN REGION:' REGION)

As with the TOTAL parm discussed earlier, the contents of these additional statistical
parms is simply a print expression. Briefly, the print expression can contain literal text,
data from input records, data from built–in fields, and certain statistical values for
numeric and time fields. The section titled How to Print Customized Footing Lines at a
Control Break on page 4-80 describes in detail how to write a FOOTING parm print
expression. Those same rules apply to writing print expressions for the statistical parms.

Parm Statistic Line

AVERAGE/AVG average line

NZAVERAGE/NZAVG non–zero average line. (A non–zero average is the average obtained
when zero values are excluded from the calculation.) This value may
be useful when the data in some records is missing.

MAXIMUM/MAX maximum line

MINIMUM/MIN minimum line

NZMINIMUM/NZMIN non–zero minimum line. (A non–zero minimum is the minimum
value, not considering zero values.) This value may be useful when
the data in some records is missing.
■ 4-78 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
Figure 4-27 • A report that prints statistical lines (average, maximum, minimum) at control
breaks

INPUT: SALES–FILE
TITLE: 'SALES STATISTICS BY REGION'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION
 TOTAL('--- TOTAL SALES FOR REGION:' REGION)
 AVERAGE('--- AVERAGE SALE IN REGION')
 MAXIMUM('--- BIGGEST SALE IN REGION')
 MINIMUM('--- SMALLEST SALE IN REGION')

Produce this Report:

These Control Statements:

Notes:

• the print expression in parentheses after each statistical parm determines the initial wording of the
statistical lines

• to customize the Grand Total statistical lines, we could add another BREAK statement (see

 SALES STATISTICS BY REGION

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
--- TOTAL SALES FOR REGION: EAST 112.86 6.77
--- AVERAGE SALE IN REGION 28.22 1.69
--- BIGGEST SALE IN REGION 44.35 2.66
--- SMALLEST SALE IN REGION 14.99 0.90

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
--- TOTAL SALES FOR REGION: NORTH 386.69 23.22
--- AVERAGE SALE IN REGION 77.34 4.64
--- BIGGEST SALE IN REGION 234.45 14.07
--- SMALLEST SALE IN REGION 9.98 0.60

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
****** AVERAGE VALUE 98.83 5.93
****** MAXIMUM VALUE 500.00 30.00
****** MINIMUM VALUE 9.98 0.60

Produce this Report:

These Control Statements:
CIMS Report Writer User Guide 4-79 ■

■ Beyond the Basics

Customizing the Control Breaks
Any statistical lines requested at a control break will print after all footing lines have
printed. The statistical lines always print in the following order:

■ the total line

■ the average line

■ the non–zero average line

■ the maximum line

■ the minimum line

■ the non–zero minimum line

Note • For information on which columns receive averages and other statistics, see
page 4-26.

Note • Notice the statistical lines after the Grand Totals on page 4-79. They still begin
with the default wording (****** AVERAGE VALUE, etc.) To customize the statistical
lines at the Grand Totals, see page 4-99.

How to Print Customized Footing Lines at a Control Break 4

This section explains:

■ how to specify customized "footing" lines to print at the end of a control group

■ the detailed syntax for print expressions used within the BREAK statement's FOOTING,
TOTAL, AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE and NZMINIMUM parms

PC File Note • This section discusses the FOOTING parm as it is used when creating
reports. Some of this discussion does not apply to creating PC files. The use of the
FOOTING parm for PC files is discussed on page 3-30.

Report Writer automatically prints a total line at the end of each control group. You may
want to print certain lines of your own at a control break (either in place of, or in addition
to, the total line.) Use the FOOTING parm of the BREAK statement to do that.

The FOOTING parm of the BREAK statement lets you specify a control break "footing line."
This line prints just before the totals line (if any) at a control break. This line can contain
literal text, data from input records, data from built–in fields, and certain statistical
values for numeric and time fields.
■ 4-80 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
Figure 4-28 • Using the FOOTING parm to print a customized line at a control break

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'EXAMPLE OF A SINGLE FOOTING LINE'
SORT: REGION
BREAK: REGION FOOTING('END OF SALES IN REGION:' REGION)
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

Notes:

• the footing line (specified in the BREAK statement) prints before the total line at each control break

 SALES BY REGION
 EXAMPLE OF A SINGLE FOOTING LINE

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
END OF SALES IN REGION: EAST
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
END OF SALES IN REGION: NORTH
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
END OF SALES IN REGION: SOUTH
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
CIMS Report Writer User Guide 4-81 ■

■ Beyond the Basics

Customizing the Control Breaks
Here is an example of a BREAK statement with a simple FOOTING parm:

BREAK: REGION
 FOOTING('END OF SALES IN REGION:' REGION)

This FOOTING parm causes a line reading END OF SALES IN REGION: xxxxx to print
immediately after the last report line in each region (where xxxxx is the name of the
region.) The report in Figure 4-28, on page 4-81 uses the above BREAK statement.

Note • The following discussion of the BREAK statement's FOOTING parm syntax also
applies to the TOTAL, AVERAGE, MAXIMUM, MINIMUM, NZAVERAGE, and NZMINIMUM parms
(discussed in the sections beginning on pages page 4-74 and page 4-77.) In addition,
the syntax of the HEADING parm is almost identical–– the only differences are
explained in the section on the HEADING parm, beginning on page 4-93.

The contents of the FOOTING parm is simply a print expression. Print expressions tell
Report Writer how to build one print line to use in a report. In a FOOTING parm, the print
expression tells how to build a line to print at a control break.

The contents of the COLUMNS statement is also a print expression–– one that tells how to
build the report lines for the main body of the report. Thus, the contents of the FOOTING
parm is very similar to the contents of a COLUMNS statement, which you are already familiar
with.

As with other print expressions in Report Writer, just list one or more items to print.

FOOTING(item1 item2 item3 ...)

Each item can be either a literal text or a field name.

To include a literal text in a footing line, simply enclose the text in either apostrophes or
quotation marks. For example the following statement causes the words END OF SALES
IN REGION: to appear in the footing line:

BREAK: REGION FOOTING('END OF SALES IN REGION:')

To put data from an input file in your footing line, simply list the desired field name.
(Do not put the field name in apostrophes or quotation marks.) For example the
following statement causes the contents of the REGION field to appear in the footing line:

BREAK: REGION FOOTING(REGION)

Field names used in the FOOTING parm may be any of the following:

■ a field from an input file. (An input file is a file named in the INPUT statement, or in
an optional READ statement.)

■ a computed field (defined in a preceding COMPUTE statement)

■ a built–in field (see Appendix C, Built-In Fields for a complete list of built–in fields)
■ 4-82 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
By default, the data that appears in the footing line will be the field's value from the last
record of the preceding control group. For numeric and time fields you may use a
statistical parm to cause the field's total value, average value, etc. to print in the footing
line. Statistical parms are discussed later in this section.

Figure 4-28, on page 4-81 shows an example of a footing line that uses one literal text
and one data field from the input file.

As in other print expressions, you may customize your footing line by using optional
spacing factors and parms. So, the full syntax for the FOOTING parm is this:

FOOTING([n] item1(parms) [n] item2(parms) [n] item3(parms) ...)

The optional spacing factor (n) is the number of blank spaces to leave between items in
the footing line. If you omit the spacing factor, the default is for one blank space to
appear between each item. (A spacing factor of zero is allowed if you want no spaces to
appear between two items in a footing.) The following statement causes 5 blanks to
appear between the literal text END OF SALES IN REGION: and the contents of the REGION
field:

BREAK: REGION FOOTING('END OF SALES IN REGION:' 5 REGION)

The optional parms are used to provide details about how to display data fields in the
footing. You may specify one or more parms, enclosed in parentheses, immediately
following a field name. (Do not leave a space between the field name and the open
parenthesis.) You may use any combination of parms, in any order. Separate the parms
with a comma, and/or with one or more blanks. For example, the following FOOTING
parm uses both a statistical parm and a display format parm for the AMOUNT field:

BREAK: REGION
 FOOTING('AVERAGE SALE FOR REGION:' AMOUNT(AVG,DOLLAR))
CIMS Report Writer User Guide 4-83 ■

■ Beyond the Basics

Customizing the Control Breaks
The following table shows what parms may be used in BREAK statement print expressions:

 Break Statement Print Expression Parms

Parm Description

ASCII Specifies that the final, formatted contents of the field should be
translated from EBCDIC to ASCII. To specify your own EBCDIC-to-
ASCII translation table, use the ASCIITABLE option in the OPTIONS
statement (page 10-83.) Otherwise, Report Writer uses a default
translation table. (See page 4-21 for more information on creating
ASCII files.)

COMPUTE: BREAK-LIT = 'TOTAL AMOUNT IS '
BREAK: REGION
 FOOTING(BREAK-LIT(ASCII) 0 AMOUNT(TOTAL,ASCII))

AVERAGE/AVG Allowed only with numeric and time fields. Specifies that the field's
average value for the control group should be printed. The following
example specifies that the average value of the AMOUNT field should
print in the footing line:

BREAK: REGION
 FOOTING('AVERAGE AMOUNT IS' AMOUNT(AVG))

BIZ Means "blank if zero." Specifies that a field in the footing should be
left blank whenever the numeric, date or time item contains zeros.
The following example specifies that the HIRE-DATE field should be
left blank whenever its value is zero.

BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED'
 HIRE–DATE(BIZ))

display–format Specifies how to format a field in the footing. A complete list of
display formats appears in Appendix B, Display Formats. This parm
works just like the display format parm in the COLUMNS statement,
which is explained in more detail beginning on page 4-12. The
following example specifies that the HIRE–DATE field should be
displayed in the LONG1 format–– with the month name spelled out:

BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED'
 HIRE–DATE(LONG1))
■ 4-84 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
LEFT/CENTER/
RIGHT

Specifies how to justify a field's data within the area reserved for it in
the footing. These parms work just like the justification parms in the
COLUMNS statement, which are explained in more detail beginning on
page 4-24. The following example specifies that the contents of the
HIRE–DATE field should be center justified (as well as being formatted
in the LONG1 display format):

BREAK: HIRE–DATE
 FOOTING(HIRE–DATE(LONG1, CENTER))

MAXIMUM/MAX Allowed only with numeric and time fields. Specifies that the field's
maximum value in the control group should be printed. The
following example specifies that the maximum value of the AMOUNT
field should print in the footing line:

BREAK: REGION
 FOOTING('MAXIMUM AMOUNT IS' AMOUNT(MAX))

MINIMUM/MIN Allowed only with numeric and time fields. Specifies that the field's
minimum value in the control group should be printed. The
following example specifies that the minimum value of the AMOUNT
field should print in the footing line:

BREAK: REGION
 FOOTING('MINIMUM AMOUNT IS' AMOUNT(MIN))

NZAVERAGE/NZAVG Allowed only with numeric and time fields. Specifies that the field's non–
zero average value for the control group should be printed. (A non–
zero average is the average obtained when zero values are excluded
from the calculation.) The following example specifies that the non–
zero average value of the AMOUNT field should print in the footing line:

BREAK: REGION
 FOOTING('AVERAGE AMOUNT IS' AMOUNT(NZAVG))

NZMINIMUM/NZMIN Allowed only with numeric and time fields. Specifies that the field's non–
zero minimum value in the control group should be printed. (A non–
zero minimum is the minimum value, not considering zero values.)
The following example specifies that the non–zero minimum value
of the AMOUNT field should print in the footing line:

BREAK: REGION
 FOOTING('MINIMUM AMOUNT IS' AMOUNT(NZMIN))

 Break Statement Print Expression Parms

Parm Description
CIMS Report Writer User Guide 4-85 ■

■ Beyond the Basics

Customizing the Control Breaks
The width, BIZ, display–format and justification parms specify how a data field will
appear in the footing line. The other statistical parms determine what value will appear
in the footing line. Normally when a field is used as an item in a footing print expression,
the value for the field is taken from the last record in the control group. By using one of
the statistical parms (TOTAL, AVERAGE, etc.) for a numeric field, you can print a statistical
value for the field, instead of its value in the previous record.

Consider the following example:

BREAK: REGION
 FOOTING('AVERAGE SALE FOR' REGION 'REGION IS' AMOUNT(AVG))

This footing print expression consists of 4 items: two literals, and two field names. Here
is how each item will be processed:

■ the two literals (AVERAGE SALE FOR and REGION IS) appear in the footing line just as
they are.

TOTAL/TOT Allowed only with numeric and time fields. Specifies that the field's total
value for the control group should be printed. The following example
specifies that the total value of the AMOUNT field should print in the
footing line:

BREAK: REGION
 FOOTING('TOTAL AMOUNT IS' AMOUNT(TOTAL))

Note • When using TOTAL with computed fields defined with the
DIVTOTS parm, be aware that the "total" value is not simply the sum
of each individual value. Instead, the total value of the compute
expression's numerator is divided by the total value of its
denominator. This group–wide calculation is used whenever the
"total" value of such fields is called for.

width This numeric parm specifies how many characters should be reserved
for an item in the footing. This parm works just like the width parm
in the COLUMNS statement, which is explained in more detail beginning
on page 4-12. As an example, the following statement specifies that
only one character of the REGION field should appear in the footing:

BREAK: REGION
 FOOTING('END OF SALES IN REGION:' REGION(1))

 Break Statement Print Expression Parms

Parm Description
■ 4-86 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
■ the first field (REGION) has no parms in parentheses after it. Therefore, the value used
for REGION in the footing line will be taken from the REGION field in the last record of
the control group. Since REGION is the break field, all records in the control group have
the same value for region. So in this case, taking the value from the last record is fine.

■ the second field in the print expression (AMOUNT) has the AVG parm in parentheses after
it. This means that the average of all AMOUNT fields in the control group will appear in
the footing line. For this field, it would have been meaningless to simply print the
AMOUNT field from the last record in the control group.

Figure 4-29, on page 4-88 shows a sample report which uses the above statement.

Notice that there are two different ways to use the statistical keywords TOTAL, AVERAGE,
MAXIMUM, etc.:

■ We have just discussed their use as a parm within parentheses after a specific field
name. When used this way, they specify what value to print for a particular field in a
print line at a control break. For example:

BREAK: REGION FOOTING('REGION TOTAL IS' AMOUNT(AVERAGE))

■ The other use is as a BREAK statement parm similar to the FOOTING parm. In that use,
the single keyword causes a whole line of totals, averages, maximum values, etc. to
print at the control break. (See page 4-74 and page 4-77 for more information on
this.) For example:

BREAK: REGION AVERAGE

Let's look at some more examples of FOOTING parms. Here's an example of using three
parms with the AMOUNT field.

BREAK: REGION
 FOOTING('AVERAGE SALE FOR' REGION 'REGION IS'
 AMOUNT(AVERAGE, PIC'$$$,$$$', LEFT))

The AVERAGE parm tells Report Writer to print the average value of AMOUNT for the control
group.

The PIC'$$$,$$$' parm shows how to format the average sales amount in the footing
line. It specifies that a floating dollar sign should be used, and that only whole dollars
be displayed. The size of the PICTURE (7 characters) also determines how many characters
are reserved in the footing line for that field.

The LEFT justification parm specifies that the average AMOUNT field should be left–justified
within the 7 characters reserved for it in the footing line. This eliminates the extra blank
spaces that appeared between the literal text and the actual amount in Figure 4-29, on
page 4-88.) Figure 4-30, on page 4-90 shows an example of a footing line that uses the
LEFT parm.
CIMS Report Writer User Guide 4-87 ■

■ Beyond the Basics

Customizing the Control Breaks
Figure 4-29 • A report which prints a field’s average value in a footing line

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'EXAMPLE OF PRINTING AVERAGES IN FOOTING LINES'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION FOOTING('AVERAGE SALE FOR'
 REGION
 'REGION IS'
 AMOUNT(AVG))

Produce this Report:

These Control Statements:

Notes:

• the footing line contains the AMOUNT field's average value for each region

• the example on page 4-90 shows how to remove the excess space that appears between the text and
the average value in the footing line

 SALES BY REGION
 EXAMPLE OF PRINTING AVERAGES IN FOOTING LINES

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
AVERAGE SALE FOR EAST REGION IS 28.22
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
AVERAGE SALE FOR NORTH REGION IS 77.34
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
AVERAGE SALE FOR SOUTH REGION IS 300.69
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'EXAMPLE OF PRINTING AVERAGES IN FOOTING LINES'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION FOOTING('AVERAGE SALE FOR'
 REGION
 'REGION IS'
 AMOUNT(AVG))
■ 4-88 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
Here is another example of a FOOTING parm. In this example, we print a footing line
instead of a total line at the control break. The footing line will contain the total sales
amount, the average sales amount, and the maximum sales amount for a region.

 BREAK: REGION NOTOTAL
 FOOTING('SALES STATISTICS FOR' REGION 5
 'TOTAL:' AMOUNT(TOT,LEFT)
 'AVG:' AMOUNT(AVG,LEFT)
 'MAX:' AMOUNT(MAX,LEFT))

There are several things to notice about this example:

■ the NOTOTAL parm prevents the normal total line from printing at the control break
(see the section beginning on page 4-76.)

■ within the FOOTING print expression, the spacing factor of 5 helps separate the REGION
field from the statistics that follow.

■ the LEFT parm used along with the statistical parms (TOT, AVG, and MAX) causes the
statistical value to be left justified. This arranges each value closer to its "identifier" in
the footing line.

The sample report on page 4-90 uses a BREAK statement similar to the one above.

You may specify as many FOOTING parms as you like in a single BREAK statement. Each
FOOTING parm describes one footing line. At the control break, the footing lines will print
in the same order as they appear in the BREAK statement.

The first footing line always prints immediately after the last regular report line of the
control group. If you want the first footing line to be separated from the regular report
lines, specify a blank footing line in your first FOOTING parm, like this:

BREAK: REGION
 FOOTING(' ')
 FOOTING('END OF REGION:' REGION)
 FOOTING('AVERAGE SALE:' AMOUNT(AVG))

The example above will cause a blank footing line to print immediately after the last
regular report line, followed by the other two footing lines. See Figure 4-30, on page 4-90
for a sample report that uses a blank FOOTING parm.

Note • In the FOOTING line, you may print statistical values for any numeric or time
field in the input file(s). You are not limited to just those fields that appear in the
COLUMNS statement.
CIMS Report Writer User Guide 4-89 ■

■ Beyond the Basics

Customizing the Control Breaks
Figure 4-30 • Printing a field’s total, average, and maximum values on a single line

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'EXAMPLE OF A FOOTING LINE WITH STATISTICS'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION NOTOTAL
 FOOTING(' ')
 FOOTING('SALES STATISTICS FOR' REGION 5
 'TOTAL:' AMOUNT(TOT,LEFT)
 'AVG:' AMOUNT(AVG,LEFT)
 'MAX:' AMOUNT(MAX,LEFT))

Produce this Report:

These Control Statements:

Notes:

• the blank FOOTING parm causes a blank line to print before the real footing line

• the NOTOTAL parm in the BREAK statement suppresses the normal total line at the control break

• the footing line now displays the total, average, and maximum values for the AMOUNT field

• the LEFT justification parm causes the numeric values to be left justified, and therefore closer to their
respective identifiers

 SALES BY REGION
 EXAMPLE OF A FOOTING LINE WITH STATISTICS

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43

SALES STATISTICS FOR EAST TOTAL: 112.86 AVG: 28.22 MAX: 44.35

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31

SALES STATISTICS FOR NORTH TOTAL: 386.69 AVG: 77.34 MAX: 234.45

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00

SALES STATISTICS FOR SOUTH TOTAL: 601.38 AVG: 300.69 MAX: 500.00

 (other report lines not shown)
■ 4-90 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
How to Print the Number of Items in a Control Group 4

This section explains:

■ how to use the special built–in fields that are available for use in the BREAK statement

We saw earlier that the default total line shows the number of items that appear in a
control group. If you choose to specify a custom total line, you may also want to show
the number of items that are in a control group. The special built–in field #ITEMS allows
you to do this. There are also some other related built–in fields that you may wish to use
in BREAK statement print expressions. These are:

You can use these built–in fields just like real data fields in the print expressions for the
FOOTING parm, TOTAL parm, AVERAGE parm, etc.

Example
BREAK: REGION
 TOTAL(REGION 'REGION HAS' #ITEMS 'SALES')

As with other fields, you may also include a parm list in parentheses after the built–in
field name. The following example requests that only 2 bytes be reserved in the footing
line for displaying the number of items in the control group:

BREAK: REGION
 TOTAL(REGION 'REGION HAS' #ITEMS(2) 'SALES')

Built-In Field
Name Description

#ITEMS this numeric field contains the number of records
included in the current control group.

#COUNTER this numeric field always contains the total number of
records included in the report so far. It is similar to
#ITEMS except that it is not reset to zero after a control
break.

#ITEM–ENDING This character field contains either the letter "S", or a
blank, depending on the value of #ITEMS. When
#ITEMS equals one, #ITEM–ENDING is a blank.
Otherwise, #ITEM–ENDING is an "S". This field can be
concatenated to another word to form the proper
plural or singular ending for the word.
CIMS Report Writer User Guide 4-91 ■

■ Beyond the Basics

Customizing the Control Breaks
Figure 4-31 • A report that prints the number of items in a control group

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION
 TOTAL(REGION 'REGION HAS' #ITEMS(2)
 'SALE' 0 #ITEM–ENDING)

Produce this Report:

These Control Statements:

Notes:

• the customized total line uses the #ITEMS field to show the number of records included in the control
group

• the width parm after #ITEMS causes only two spaces to be reserved for the number of items

• the #ITEM–ENDING built–in field contains the proper ending for the word "SALE" in the total line

• the spacing factor of 0 in the TOTAL parm puts zero spaces between the word "SALE" and the contents
of the #ITEM–ENDING built–in field

 SALES BY REGION

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
EAST REGION HAS 4 SALES 112.86 6.77

NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
NORTH REGION HAS 5 SALES 386.69 23.22

SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
SOUTH REGION HAS 2 SALES 601.38 36.09

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
■ 4-92 CIMS Report Writer User Guide

Beyond the Basics ■

Customizing the Control Breaks
Note that if a control group only contains one record, the preceding total line would read
"xxxxx REGION HAS 1 SALES" (which "ain't" good English.) We can use the #ITEM–ENDING
built–in field to so that the word SALE appears in the text when the control group
contains only 1 record, and the word SALES appears when the control group contains
multiple records. Notice that we use a spacing factor of zero, to prevent a blank space
from appearing between "SALE" and the ending "S".

BREAK: REGION
 TOTAL(REGION 'REGION HAS' #ITEMS(2) 'SALE' 0 #ITEM–ENDING)

Figure 4-31, on page 4-92 shows a sample report that uses the above BREAK statement.

Note • The special built–in fields discussed in this section may not be used in HEADING
print expressions. Since the heading lines print before a control group, the number
of items that the control group will contain is not yet known.

How to Print Header Lines at the Beginning of a Control Group 4

This section explains:

■ how to print header lines at the beginning of a control group

■ how to print header lines at the top of each page

■ how to use the HEADING and REPEAT parms of the BREAK statement

In earlier sections we learned how to print lines at the end of a control group. You may
also want to print one or more lines of text at the beginning of a control group. For
example, you might want to print EAST REGION SALES FOLLOW at the beginning of the
report lines for the East region. Use the HEADING parm of the BREAK statement to
accomplish this.

Example
BREAK: REGION
 HEADING(REGION 'REGION SALES FOLLOW')

Figure 4-32, on page 4-94 shows a sample report that uses the above BREAK statement.

You may have as many HEADING parms in a BREAK statement as you like. Each HEADING
parm describes one heading line that will print at the beginning of a control group. The
heading lines will print in the same order as the HEADING parms appear in.

The contents of the HEADING parm is simply a print expression. Print expressions tell
Report Writer how to build one print line to use in a report. In the HEADING parm, the
print expression tells how to build a line that will print at the beginning of a new control
group.

The contents of the COLUMNS statement is also a print expression–– one that tells how to
build the report lines for the main body of the report. Thus, the contents of the HEADING
parm is very similar to the contents of a COLUMNS statement, which you are already familiar
with.
CIMS Report Writer User Guide 4-93 ■

■ Beyond the Basics

Customizing the Control Breaks
Figure 4-32 • A report that prints control group headings

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
COLUMNS: 5 REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION
 HEADING(REGION 'REGION SALES FOLLOW')

Produce this Report:

These Control Statements:

Notes:

• the text specified in the HEADING parm (of the BREAK statement) prints at the beginning of each
control group

• the data used for the REGION field in the heading line comes from the first record in the following
control group

• the spacing factor of 5 in the COLUMNS statements shifts the report columns to the right, so that the
heading and total lines stand out

 SALES BY REGION

 EMPL SALES
 REGION NAME DATE CUSTOMER AMOUNT TAX

EAST REGION SALES FOLLOW
 EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
 EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
 EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
 EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
*** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH REGION SALES FOLLOW
 NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
 NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
 NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
 NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
 NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
*** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

SOUTH REGION SALES FOLLOW
 SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
 SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
*** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

 (other report lines not shown)

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
■ 4-94 CIMS Report Writer User Guide

Beyond the Basics ■

Printing a "Line Number" in Your Report
Briefly, the HEADING print expression can contain literal text and data from input records.
The section titled How to Print Customized Footing Lines at a Control Break on page 4-80
describes how to write a FOOTING parm print expression in detail. Most of the same rules
apply to writing HEADING parm print expressions.

There are, however, certain restriction on the print expression allowed in a HEADING parm.
The special built–in fields #ITEMS, #COUNTER, and #ITEM–ENDING may not be used in a
HEADING parm. Similarly, the statistical parms (TOTAL, AVERAGE, MAXIMUM, etc.) may not
be used with numeric and time fields in the HEADING parm's print expression. The reason,
of course, is that Report Writer will not know what those values are until all of the
records in the control group have been processed.

The value used for all fields appearing in a heading line will be taken from the first record
of the control group that follows. If you want the heading lines for a control group to be
printed at the top of each page of the report, add the REPEAT ("repeat headings") parm
to the BREAK statement:

BREAK: REGION REPEAT
 HEADING('SALES IN REGION' REGION)

The above statement specifies a heading line to print at the beginning of each region's
control group. If any such control group is large enough to print on multiple pages, the
heading line will also be printed at the top of each subsequent page. Such heading lines
print after the report titles and column headings, and before the first detail line of the
report. The value used for all fields appearing in a repeated heading line is taken each
time from the next detail record after the heading line.

Printing a "Line Number" in Your Report 4

You have already seen how to use the #ITEM built–in field in BREAK statements. In the
BREAK statement, #ITEM represents the total number of records in a control group. This is
the same value that appears in the default total line printed at control breaks.

You can also specify #ITEM as a field in your COLUMNS statement. It's value will be an
ascending, sequential "item number" representing the number of items included in the
control group so far. That is, it will be "1" for the first item printed in a control group, "2"
for the next item and so on. #ITEM's value is reset to zero after each control break. It then
begins again numbering the items in the next control group. (Of course, if your report
has no control breaks, the value of #ITEM will not be reset.)

Using #ITEM in your COLUMNS statement allows you to print a "rank" or a "line number"
for each record printed in your report.

You might also want to print an "item number" and not have it reset at each control
break. To allow this, there are additional built–in fields named #ITEM2, #ITEM3, and so
on through #ITEM9. #ITEM2 is similar to #ITEM, but is not reset at the lowest level of control
break. However, if you have two levels of control breaks in your report, #ITEM2 will be
reset to zero whenever the higher level control break occurs. Similarly, #ITEM3 is not reset
at the two lowest level control breaks, but is reset when the third level of control break
occurs. By using the appropriate #ITEM built–in field, you can print item numbers and
have them reset whenever you like for reports with up to 9 levels of control breaks.
CIMS Report Writer User Guide 4-95 ■

■ Beyond the Basics

Reports with Multiple Control Breaks
The report in Figure 4-36, on page 4-105 uses the #ITEM built–in field.

Note • #ITEM may also be spelled #ITEM1.

Reports with Multiple Control Breaks 4

This section explains:

■ what break levels are

■ what happens when a higher level break occurs

You may have more than one control break in a report. Report Writer allows an
unlimited number of control breaks. Just remember that each of the break fields must be
a sort field.

When a report has more than one control break, each break is thought of as having a
"level." The order in which the break fields are listed in the SORT statement determines
each break's level. The break field appearing first in the SORT statement is considered the
"highest" level break field. The break field appearing next in the SORT statement is
considered the "next highest" level break field, and so on to the lowest level break field.
For example, consider the following SORT statement:

SORT: REGION(TOTAL) EMPL–NAME(TOTAL) CUSTOMER

This SORT statement contains three sort fields. The TOTAL parm after the first two fields
makes them control break fields. REGION is the higher level break field, since it appears
first in the SORT statement. EMPL–NAME is the lower level break field.

Even when BREAK statements are used to identify break fields, it is still the order of the
fields in the SORT statement that determines the level of the break fields. The order in
which the BREAK statements appear is not significant. (All BREAK statements must,
however, appear after the SORT statement.) Consider the following statements:

SORT: REGION EMPL–NAME CUSTOMER
BREAK: EMPL–NAME
BREAK: REGION

The preceding statements produce the very same result as the earlier example that used
a SORT statement alone. REGION will be the high level break field, and EMPL–NAME will be
a lower level break field.

Here is why a break's level is important: whenever a control break occurs for a particular
break field, all lower level breaks are "forced." That is, a control break is automatically
processed for all lower level control breaks, whether or not the contents of those break
fields changed value.

For example, consider the report shown in Figure 4-33, on page 4-98 which uses a SORT
statement to request two levels of control breaks. By making both REGION and EMPL–NAME
break fields, the report shows the totals sales for each employee within a region, as well
as for each region.
■ 4-96 CIMS Report Writer User Guide

Beyond the Basics ■

Reports with Multiple Control Breaks
Consider what happens as Report Writer is printing the report and the REGION field
changes value. The control break for REGION must be processed, with region totals being
printed. But, there is a lower level break than REGION, namely EMPL–NAME. So, Report
Writer will first process the EMPL–NAME control break, printing the sales totals for the last
employee within the region. Then the control break for REGION will be processed, with
the sales totals being printed for the whole region.

Now consider a place in the report, where the EMPL–NAME field changes, but the REGION
field does not change. In this case Report Writer will process only the EMPL–NAME control
break, because there are no lower level breaks to be forced.

As a means of helping you visualize the level of the control breaks, Report Writer uses a
slightly different total line for each level of control break. For the lowest level control
break, the total line begins with three asterisks. The total line for the next higher level
break begins with six asterisks. Each higher level control break gets three additional
asterisks. This helps when you are scanning a report for a particular level of break totals.
Just scan down the left side of the report looking for the total line with the appropriate
number of asterisks.

When more than one control break is used in a report, it is often desirable to use a larger
spacing factor for the higher level break(s). For example we might want to just skip 1 line
whenever the EMPL–NAME changes, but skip to a whole new page whenever the REGION
changes. This would be specified by using a break spacing parm in either the SORT
statement or the BREAK statement (see page 4-67).

Example
SORT: REGION EMPL–NAME CUSTOMER
BREAK: REGION SPACE(PAGE)
BREAK: EMPL–NAME SPACE(1)

Or, to specify the same spacing parms in the SORT statement:

SORT: REGION(PAGE) EMPL–NAME(1) CUSTOMER
CIMS Report Writer User Guide 4-97 ■

■ Beyond the Basics

Reports with Multiple Control Breaks
Figure 4-33 • A report with two levels of control breaks

INPUT: SALES–FILE
TITLE: 'SALES BY EMPLOYEE WITHIN REGION'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION(3) EMPL–NAME(1) CUSTOMER

Produce this Report:

These Control Statements:

Notes:

• the total line for EMPL–NAME, the lower level break, begins with three asterisks

• the total line for REGION begins with six asterisks, indicating its higher level

• the SORT statement specifies that 3 blank lines should print after the REGION totals, and only 1 blank
line after the EMPL–NAME totals

 SALES BY EMPLOYEE WITHIN REGION

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
*** TOTAL FOR MORRISON (2 ITEMS) 74.00 4.44

EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
*** TOTAL FOR SIMPSON (2 ITEMS) 38.86 2.33

****** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
*** TOTAL FOR JOHNSON (2 ITEMS) 244.43 14.67

NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
*** TOTAL FOR JONES (3 ITEMS) 142.26 8.55

****** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

 (other report lines not shown)

********* GRAND TOTAL (14 ITEMS) 1,383.66 83.05
■ 4-98 CIMS Report Writer User Guide

Beyond the Basics ■

How to Customize the Grand Totals
How to Customize the Grand Totals 4

This section explains:

■ how the Grand Totals are processed by default

■ how to print additional statistical lines (average, maximum and minimum) at the
Grand Total

■ how to customize the Grand Total lines

■ how to suppress the Grand Totals

Report Writer treats the end of a report like one final control break. The "control group"
for this break includes the entire report. As with any other control break, Report Writer
prints a total line at this special control break. This break total line is what appears as the
"Grand Total" line.

You may customize the Grand Total control break by using a BREAK statement, just like
you do for regular control breaks. Use the special field name #GRAND on the BREAK
statement.

Example
BREAK: #GRAND AVERAGE MAXIMUM MINIMUM

In the above statement the field name #GRAND specifies that the information on this BREAK
statement pertains to the Grand Total break at the end of the report. The AVERAGE parm
specifies that a line of averages should print at the control break (that is, at the end of
the report.) The MAXIMUM and MINIMUM parms specify that a line of maximums and a line
of minimums should also print. Figure 4-34, on page 4-100 shows a sample report that
uses this BREAK statement.

You may use any of the BREAK statement parms except for SPACE in the BREAK statement
for #GRAND. See the section titled Customizing the Control Breaks on page 4-66 to learn
what all you can do with a BREAK statement.

Here is another example of a #GRAND BREAK statement:

BREAK: #GRAND TOTAL(#ITEMS 'SALES LISTED IN REPORT')
 AVERAGE('AVERAGE SALE IN REPORT')

The above statement uses the TOTAL parm to specify a custom total line. The text "nnn,nnn
SALES LISTED IN REPORT" will now appear in the Grand Total line rather than the usual
"*** GRAND TOTAL (nnnnn ITEMS)". The AVERAGE parm causes a line of averages to print
at the end of report. It also specifies what text the average line should begin with
("AVERAGE SALE IN REPORT").

The FOOTING parm may also be specified in the #GRAND BREAK statement. Footing lines
print at the end of a control group. The entire report is the control group for the Grand
Total control break. Therefore, any footing lines specified in this statement will print
only once –– at the end of the report. (Use the FOOTNOTE statement to print lines at the
bottom of each page.)
CIMS Report Writer User Guide 4-99 ■

■ Beyond the Basics

How to Customize the Grand Totals
Figure 4-34 • A report with customized Grand Totals

INPUT: SALES–FILE
TITLE: 'SALES BY REGION'
TITLE: 'SHOWING COMPANY–WIDE STATISTICS'
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER AMOUNT TAX
SORT: REGION EMPL–NAME SALES–DATE
BREAK: #GRAND AVERAGE MAXIMUM MINIMUM

Produce this Report:

These Control Statements:

Notes:

• the BREAK statement for #GRAND specifies how to process the Grand Total "control break"

• the AVERAGE, MAXIMUM and MINIMUM parms cause those statistical lines to print along with the
Grand Total line

• the TOTAL parm was not needed, since total lines print at control breaks by default

 SALES BY REGION
 SHOWING COMPANY-WIDE STATISTICS

 EMPL SALES
REGION NAME DATE CUSTOMER AMOUNT TAX

EAST MORRISON 03/29/92 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/92 EUROPEAN DELI 14.99 0.90
EAST SIMPSON 04/30/92 J & S LUMBER 23.87 1.43
NORTH JOHNSON 04/01/92 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/92 MARYS ANTIQUES 9.98 0.60
NORTH JONES 04/15/92 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 10.25 0.62
NORTH JONES 04/15/92 TOY TOWN 121.76 7.31
SOUTH JOHNSON 03/12/92 ACE ELECTRICAL 101.38 6.09
SOUTH JOHNSON 04/16/92 ACME BUILDING 500.00 30.00
WEST BAKER 03/26/92 JACKS CAFE 137.00 8.22
WEST BAKER 04/12/92 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/92 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
*** AVERAGE VALUE 98.83 5.93
*** MAXIMUM VALUE 500.00 30.00
*** MINIMUM VALUE 9.98 0.60
■ 4-100 CIMS Report Writer User Guide

Beyond the Basics ■

How to Customize the Grand Totals
The HEADING parm may also be used in the #GRAND BREAK statement. Any HEADING lines
specified will print once at the very beginning of the report (after the title lines and
column headings). If the REPEAT parm is also specified, the HEADING lines will be repeated
at the top of each page of the report.

As mentioned earlier, a total line prints at the Grand Total control break by default. In
addition, any other statistical lines that printed at a real control break will also print by
default at the Grand Total control break. Thus, for example, if an average line and a
maximum line printed at a real control break, an average line and maximum line will
also print at the Grand Total control break. As shown in the previous example, you may
also explicitly request any of these statistical lines, even if no other control break
specified them.

The SPACE parm in a BREAK statement is used to specify the spacing to perform after a
control break. Since there is no more report following the Grand Total control break, any
SPACE parm specified for it will be ignored.

Spacing before the Grand Total break is determined as follows. If any other control breaks
specified a SPACE parm of NEWSHEET, then the Grand Totals will also be printed on a new
sheet of paper. Otherwise, if any real control breaks specified ODDPAGE, then the Grand
Total will also go on the next odd page. Otherwise, if any real control break specified
PAGE, then the Grand Totals will go on a new page.

In addition, if the NEWSHEET1, ODDPAGE1, or PAGE1 parm was used in any of these cases,
the Grand Total page will be numbered page 1 as well.

If no real control breaks used any of the page spacing options, then the Grand Totals will
be printed after skipping two blank lines.

To suppress the Grand Total line altogether, you can do one of two things.

You can use the NOGRANDTOTAL parm in an OPTIONS statement, like this:

OPTIONS: NOGRANDTOTAL

Figure 4-36, on page 4-105 uses the above statement.

Or, you can use a BREAK statement for the #GRAND break and specify the NOTOTAL parm,
like this:

BREAK: #GRAND NOTOTAL
CIMS Report Writer User Guide 4-101 ■

■ Beyond the Basics

How to Produce Summary Reports
How to Produce Summary Reports 4

This section explains:

■ what a summary report is

■ how to convert a regular report into a summary report

A summary report is one which does not show detail information about every record
included in the report. Instead, the detail information is summarized, with just the totals
actually appearing in the report. Chapter 2, How to Request a Report included a lesson on
creating summary reports (page 2-46.) And a lesson in How to Request a PC File on
page 3-1 showed how to create summary PC files (page 3-33.)

In each case, an OPTIONS statement with the SUMMARY parm was used:

OPTIONS: SUMMARY

The SUMMARY parm causes two things to happen:

■ it specifies that zero detail lines will print. This is the same as specifying:

OPTIONS: DETAIL(0)

The only lines that print in such a report are lines associated with control breaks:
heading lines, footing lines, totals line, average lines, etc.

■ it sets the break spacing value for the lowest level break to zero blank lines. This
prevents two blank lines from appearing between every line in the summary report
(the default break spacing value.)

Figure 4-35, on page 4-103 shows another example of a summary report. This report
contains two levels of breaks. It is very similar to the detail report shown earlier in Figure
4-33, on page 4-98. The main difference is that in Figure 4-35 the detail lines have been
suppressed and only the EMPL–NAME and REGION total lines are printed.

Notice that in summary reports only numeric columns are filled in. That is natural since
only numeric columns can be totalled, or "summarized." Therefore, in this report we
eliminated the non–numeric columns such as REGION, EMPL–NAME, SALES–DATE, etc. We
added a spacing of 40 to the COLUMNS statement ahead of the first field in order to push
that field 40 spaces over in the report. That was necessary to prevent overlap between the
total line text ("*** TOTAL FOR...") and the first actual total (in the AMOUNT column). If
we had not done that, the control break total lines would have split onto two lines,
making a less attractive report.

Note • If you request a SUMMARY report and do not specify any control breaks, your
report will contain only the Grand Total line. This is useful when you want to
summarize all of the detail lines in a report.
■ 4-102 CIMS Report Writer User Guide

Beyond the Basics ■

How to Produce Summary Reports
Figure 4-35 • A summary report that uses two levels of control breaks

OPTION: SUMMARY
INPUT: SALES–FILE
TITLE: 'EMPLOYEE SALES SUMMARY'
COLUMNS: 40 AMOUNT TAX
SORT: REGION(TOTAL) EMPL–NAME(TOTAL)

Produce this Report:

These Control Statements:

Notes:

• no regular report lines print–– only the total lines from the two levels of control breaks

• the total line for EMPL–NAME, the lower level break, begins with three asterisks

• the total line for REGION begins with six asterisks, indicating its higher level

• the spacing factor of 40 (in COLUMNS statement) move the AMOUNT column over 40 spaces, leaving
room for the total line text to print on the same line as the totals themselves

• note that it is okay to sort a report on fields which do not appear in the COLUMNS statement

 EMPLOYEE SALES SUMMARY

 AMOUNT TAX

*** TOTAL FOR MORRISON (2 ITEMS) 74.00 4.44
*** TOTAL FOR SIMPSON (2 ITEMS) 38.86 2.33
****** TOTAL FOR EAST (4 ITEMS) 112.86 6.77

*** TOTAL FOR JOHNSON (2 ITEMS) 244.43 14.67
*** TOTAL FOR JONES (3 ITEMS) 142.26 8.55
****** TOTAL FOR NORTH (5 ITEMS) 386.69 23.22

*** TOTAL FOR JOHNSON (2 ITEMS) 601.38 36.09
****** TOTAL FOR SOUTH (2 ITEMS) 601.38 36.09

*** TOTAL FOR BAKER (2 ITEMS) 272.75 16.37
*** TOTAL FOR THOMAS (1 ITEM) 9.98 0.60
****** TOTAL FOR WEST (3 ITEMS) 282.73 16.97

********* GRAND TOTAL (14 ITEMS) 1,383.66 83.05
CIMS Report Writer User Guide 4-103 ■

■ Beyond the Basics

How to Create "Top 10" Type Reports
How to Create "Top 10" Type Reports 4

This section explains:

■ how to create "Top 10" type reports

■ how to use the DETAIL parm in the OPTIONS statement

The Detailing) option tells Report Writer to print only a limited number of detail
records in the report for each control group. We saw in an earlier section that specifying
the SUMMARY option causes the DETAIL(0) option to be in effect. DETAIL(0) requests that
no detail records be printed for each control group in the report.

To produce a "Top 5" or "Top 10" type of report, use the DETAIL parm with whatever
value is appropriate for your report. For example:

OPTIONS: DETAIL(3)

In the above example we request that only 3 detail lines print for each control group.
That will cause just the first 3 records in each control group to print in our report.

Consider the "Top 3 Sales" report in Figure 4-36 which uses the above statement. This
report is sorted first in REGION order, and then in descending AMOUNT order. We also made
REGION a control break. The result is that within each REGION, the largest sale prints first,
the next largest sale prints next, and so on. By using the DETAIL(3) option, our report
shows only the 3 largest sales in each region.

Here are a few other things to note about this kind of report:

■ the DETAIL option specifies the maximum number of records to print per control
group. If a control group does not contain that many records, all records for that
control group are printed. (In Figure 4-36, the "SOUTH" region is an example of this.
There are only 2 sales for that region.)

■ the control group totals will still contain the total value of the entire control group –
– not just the total of the records that are printed. You can use the NOTOTALS parm in
the BREAK statement to suppress the totals if you prefer (as we did in Figure 4-36).

■ if a report with a Detail(nnn) option does not have any control breaks, the whole
report is treated as a single control group. In that case, the first nnn records of the
report will print.
■ 4-104 CIMS Report Writer User Guide

Beyond the Basics ■

How to Create "Top 10" Type Reports
Figure 4-36 • “Top 3 Sales in Region” report

OPTIONS: DETAIL(3) NOGRANDTOTAL
INPUT: SALES-FILE
TITLE: 'TOP 3 SALES IN EACH REGION'
SORT: REGION AMOUNT(DESC)
BREAK: REGION NOTOTALS
COLUMNS: #ITEM('RANK')
 REGION EMPL-NAME SALES-DATE CUSTOMER AMOUNT TAX

Produce this Report:

These Control Statements:

Notes:

• the DETAIL(3) option causes only 3 detail lines per control group to print

• the #ITEM built–in field lets us print a "rank" for each detail record

• the NOTOTALS parm (in the BREAK statement) suppresses the control break totals (which would not
be the sum of the detail records printed)

• the NOGRANDTOTAL option suppresses the Grand Totals, which would not be the sum of the detail
records printed

 TOP 3 SALES IN EACH REGION

 EMPL SALES
 RANK REGION NAME DATE CUSTOMER AMOUNT TAX

 1 EAST MORRISON 03/29/95 STAR MARKET 44.35 2.66
 2 EAST MORRISON 03/30/95 A1 PHOTOGRAPHY 29.65 1.78
 3 EAST SIMPSON 04/30/95 J & S LUMBER 23.87 1.43

 1 NORTH JOHNSON 04/01/95 VILLA HOTEL 234.45 14.07
 2 NORTH JONES 04/15/95 TOY TOWN 121.76 7.31
 3 NORTH JONES 04/15/95 TOY TOWN 10.25 0.62

 1 SOUTH JOHNSON 04/16/95 ACME BUILDING 500.00 30.00
 2 SOUTH JOHNSON 03/12/95 ACE ELECTRICAL 101.38 6.09

 1 WEST BAKER 03/26/95 JACKS CAFE 137.00 8.22
 2 WEST BAKER 04/12/95 JACKS CAFE 135.75 8.15
 3 WEST THOMAS 04/14/95 YOGURT CITY 9.98 0.60
CIMS Report Writer User Guide 4-105 ■

■ Beyond the Basics

How to Count "Occurrences" in a File
How to Count "Occurrences" in a File 4

This section explains:

■ how to count the number of times a certain value occurs in a file

Say that we wanted to know how many of the employees in the EMPL–FILE are based in
California. Or, what if we wanted to know the count of male and female employees. To
get statistics like these from a file, we use a special type of summary report. Figure 4-37,
on page 4-107 and Figure 4-38 show examples of such reports.

In these reports, we first create a number of new fields using conditional COMPUTE
statements. These fields are used as "counter" fields. They count the number of times that
a certain field contains a particular value. For example, the NUMBER–OF–MALE field counts
the number of times that the SEX field in the EMPL–FILE contains "M". Consider the
following statement:

COMPUTE: NUMBER–OF–MALE = WHEN(SEX='M') ASSIGN(1)

After each record is read from the input file, the value of the NUMBER–OF–MALE field is
computed. Its value will always be either 1 or 0. When the SEX field contains the value
"M", the NUMBER–OF–MALE field will contain a 1. Otherwise, the NUMBER–OF–MALE field will
contain a 0 (the default value when no WHEN expressions are true.) By adding up all of the
NUMBER–OF–MALE fields in the report, we can get a total count of the records whose SEX
field contained an "M".

We set up a similar counter field for each statistic that we are interested in. These counter
fields are then listed in the COLUMNS statement. The Grand Total line shows us the total
value for each of these "counters".

You would normally use the SUMMARY option to suppress all of the detail lines leaving just
the statistics. In Figure 4-37 we printed the detail lines to better illustrate how the
counter fields work.

You can break your statistics down further by simply adding one or more control breaks
to such a report. For example, by sorting and breaking on the DEPT–NUM field, we can get
the same statistics by department number. That is, we can see the number of males and
females in each department. The sample report in Figure 4-38, on page 4-108 shows an
example of printing statistics by department number. In this report we used the SUMMARY
option to suppress the individual detail lines. We also removed from the COLUMNS
statement those fields which do not print in the total lines.

Note • Another way to get "count" statistics is to simply sort the report on the item
you want to count (the STATE field, for instance), and make it a control break. Each
time the STATE field changes value, a control break will occur and the number of
"items" in that state will print. The disadvantage of this method is that only one
"thing" can be counted at a time. You would have to run a different report, for
example, to count the number of male and female employees.
■ 4-106 CIMS Report Writer User Guide

Beyond the Basics ■

How to Count "Occurrences" in a File
Figure 4-37 • Counting how many times something occurs in a file

INPUT: EMPL–FILE
TITLE: 'EMPLOYEE FILE COUNTS'

COMPUTE: NUMBER–OF–MALE = WHEN(SEX='M') ASSIGN(1)
COMPUTE: NUMBER–OF–FEMALE = WHEN(SEX='F') ASSIGN(1)
COMPUTE: NUMBER–IN–CALIFORNIA = WHEN(STATE='CA') ASSIGN(1)
COMPUTE: NUMBER–IN–ARIZONA = WHEN(STATE='AZ') ASSIGN(1)
COMPUTE: NUMBER–OF–FULLTIME = WHEN(FULL–TIME) ASSIGN(1)

COLUMNS: LAST–NAME FIRST–NAME DEPT–NUM STATE
 NUMBER–OF–MALE NUMBER–OF–FEMALE
 NUMBER–IN–CALIFORNIA NUMBER–IN–ARIZONA
 NUMBER–OF–FULLTIME

Produce this Report:

These Control Statements:

Notes:

• several "counter" fields are created using conditional COMPUTE statements

• the counter fields are totalled at the end of the report, giving us our statistics

• you would normally use an OPTIONS: SUMMARY statement to suppress the detail lines from such a
report

 EMPLOYEE FILE COUNTS

 NUMBER NUMBER NUMBER NUMBER NUMBER
 LAST FIRST DEPT OF OF IN IN OF
 NAME NAME NUM STATE MALE FEMALE CALIFORNIA ARIZONA FULLTIME

JONES JERRY 2 CA 1 0 1 0 1
JOHNSON THOMAS 1 AZ 1 0 0 1 1
JOHNSON LINDA 2 CA 0 1 1 0 1
MACDONALD RICHARD 2 CA 1 0 1 0 0
SIMPSON TIMOTHY 3 CA 1 0 1 0 1
MORRISON MICHAEL 3 CA 1 0 1 0 1
CHRISTOPHERSON MELISSA 1 AZ 0 1 0 1 1
BAKER VIVIAN 4 CA 0 1 1 0 1
THOMAS MARTIN 4 CA 1 0 1 0 1

*** GRAND TOTAL (9 ITEMS) 6 3 7 2 8
CIMS Report Writer User Guide 4-107 ■

■ Beyond the Basics

How to Count "Occurrences" in a File
Figure 4-38 • Breaking down “count” statistics further

OPTIONS: SUMMARY
INPUT: EMPL–FILE
TITLE: 'EMPLOYEE FILE COUNTS, BY DEPARTMENT'

COMPUTE: NUMBER–OF–MALE = WHEN(SEX='M') ASSIGN(1)
COMPUTE: NUMBER–OF–FEMALE = WHEN(SEX='F') ASSIGN(1)
COMPUTE: NUMBER–IN–CALIFORNIA = WHEN(STATE='CA') ASSIGN(1)
COMPUTE: NUMBER–IN–ARIZONA = WHEN(STATE='AZ') ASSIGN(1)
COMPUTE: NUMBER–OF–FULLTIME = WHEN(FULL–TIME) ASSIGN(1)

SORT: DEPT–NUM
BREAK: DEPT–NUM TOTAL('COUNTS FOR DEPARTMENT' DEPT–NUM)

COLUMNS: 40
 NUMBER–OF–MALE NUMBER–OF–FEMALE
 NUMBER–IN–CALIFORNIA NUMBER–IN–ARIZONA
 NUMBER–OF–FULLTIME

Produce this Report:

These Control Statements:

Notes:

• this report is similar to the report in the preceding figure

• in this report we added a control break for DEPT–NUM, giving us department totals as well as Grand
Totals

• the OPTIONS: SUMMARY statement suppressed all detail lines from the report

• the COLUMNS statement only lists the counter fields, since no detail records are printed

• the initial spacing factor of 40 (in the COLUMNS statement) moves the first column 40 spaces to the
right, leaving room for the total line text to print

 EMPLOYEE FILE COUNTS, BY DEPARTMENT

 NUMBER NUMBER NUMBER NUMBER NUMBER
 OF OF IN IN OF
 MALE FEMALE CALIFORNIA ARIZONA FULLTIME

COUNTS FOR DEPARTMENT 1 1 1 0 2 2
COUNTS FOR DEPARTMENT 2 2 1 3 0 2
COUNTS FOR DEPARTMENT 3 2 0 2 0 2
COUNTS FOR DEPARTMENT 4 1 1 2 0 2

****** GRAND TOTAL (9 ITEMS) 6 3 7 2 8
■ 4-108 CIMS Report Writer User Guide

Beyond the Basics ■

How to Total a Field by "Category"
How to Total a Field by "Category" 4

This section explains:

■ how to compute totals "by category" (such as "by sex")

In the preceding section, we saw how to count the number of males and females in a
control group. Now let's take that a step further. What if we wanted to calculate the total
sales made by males and females? We are no longer simply counting occurrences, but
accumulating a field's total by category.

Of course, one way to do that is to sort and break on the SEX field. That would cause all
records for each sex to be grouped and printed together, with control break totals printed
for each group. If we listed TOTAL–SALES in the report, the control break totals would
show the total sales for each sex. But assume we want such totals by sex without having
to sort on the SEX field? And assume we want to see the male and female totals together
in the same line, rather than in separate total lines.

There is another technique we can use to accomplish this. Again, we use a conditional
COMPUTE statement:

COMPUTE: MALE–SALES = WHEN(SEX='M') ASSIGN(TOTAL–SALES)

After each new record is read from the input file, the value of MALE–SALES will be
computed. Its value will always be either 0 or the employee's total sales amount (from
the TOTAL–SALES field.) When the SEX field contains an "M", the MALE–SALES field will
contain the TOTAL–SALES value. Otherwise, the MALE–SALES field will contain a 0. By
adding up all of the MALE–SALES fields in the report, we can get the total sales made by all
males.

To get the amount sold by females, we use a similar statement:

COMPUTE: FEMALE–SALES = WHEN(SEX='F') ASSIGN(TOTAL–SALES)

Figure 4-39, on page 4-110 shows a report that uses the above statements. We put the
MALE–SALES and FEMALE–SALES field in the COLUMNS statement. Those fields are then
automatically totalled and printed at each control break, as well as at the Grand Totals.

By adding the SUMMARY option, we could suppress the detail lines and see just the total
lines.

This technique can often be used total a field by category, instead of just getting a single
total for it. Use one COMPUTE statement for each possible value of the "category" field. Of
course, this technique cannot be used if all of the possible values of the category field are
not known in advance.
CIMS Report Writer User Guide 4-109 ■

■ Beyond the Basics

How to Total a Field by "Category"
Figure 4-39 • Accumulating fields by a category (such as gender)

INPUT: EMPL-FILE
TITLE: 'SALES TOTALS, BY GENDER'

COMPUTE: MALE-SALES = WHEN(SEX='M') ASSIGN(TOTAL-SALES)
COMPUTE: FEMALE-SALES = WHEN(SEX='F') ASSIGN(TOTAL-SALES)

SORT: DEPT-NUM
BREAK: DEPT-NUM TOTAL('SALES IN DEPARTMENT' DEPT-NUM)

COLUMNS: LAST-NAME , FIRST-NAME DEPT-NUM SEX
 TOTAL-SALES(12) MALE-SALES(12) FEMALE-SALES(12)

Produce this Report:

These Control Statements:

Notes:

• in the detail lines, MALE–SALES and FEMALE–SALES each contains either 0 or the value from the
TOTAL–SALES field.

• the totals for those fields show the total sales made by male and female employees

 SALES TOTALS, BY GENDER

 LAST FIRST DEPT TOTAL MALE FEMALE
 NAME NAME NUM SEX SALES SALES SALES

JOHNSON THOMAS 1 M 86,999.24 86,999.24 0.00
CHRISTOPHERSON MELISSA 1 F 47,665.31 0.00 47,665.31
SALES IN DEPARTMENT 1 134,664.55 86,999.24 47,665.31

JONES JERRY 2 M 42,509.89 42,509.89 0.00
JOHNSON LINDA 2 F 75,023.55 0.00 75,023.55
MACDONALD RICHARD 2 M 2,560.98 2,560.98 0.00
SALES IN DEPARTMENT 2 120,094.42 45,070.87 75,023.55

SIMPSON TIMOTHY 3 M 8,723.88 8,723.88 0.00
MORRISON MICHAEL 3 M 98,054.99 98,054.99 0.00
SALES IN DEPARTMENT 3 106,778.87 106,778.87 0.00

BAKER VIVIAN 4 F 92,125.89 0.00 92,125.89
THOMAS MARTIN 4 M 60,193.49 60,193.49 0.00
SALES IN DEPARTMENT 4 152,319.38 60,193.49 92,125.89

****** GRAND TOTAL (9 ITEMS) 513,857.22 299,042.47 214,814.75
■ 4-110 CIMS Report Writer User Guide

Beyond the Basics ■

Working With Multiple Input Files
Working With Multiple Input Files 4

The following sections discuss various topics involving runs that use multiple input files.
The topics discussed are:

■ reading more than one record from the same auxiliary input file (page 4-111)

■ how to use a field from one auxiliary input file as the READKEY for another auxiliary
file (page 4-113)

■ how to assign and use record names (page 4-115)

■ how "missing" records are handled (page 4-116)

■ how to test for missing records (page 4-116)

■ how to read records using generic and KGE (key greater than or equal) keys
(page 4-117)

■ how to perform "one–to–many" reads by reading more than one record for each
READKEY value (page 4-118)

Using Multiple READ Statements for the Same File 4

This section explains:

■ how to read more than one record from the same auxiliary input file

In Chapter 2, How to Request a Report we learned how to produce a report using two
auxiliary input files. (See Figure 2-20, on page 2-55.) We used two fields from the
primary input file (SALES–FILE) as keys to read records from other files. The SALES–FILE
contains yet another field that could be used as a read key for an auxiliary input file. That
is the BACKUP–EMPL–NUM field, which is the employee number of the backup salesperson
for a sale. This field can be used as a read key to the EMPL–FILE.

But our report already has one READ statement for the EMPL–FILE. That READ statement
uses the EMPL–NUM field as the read key. This is no problem. Report Writer allows you to
have an unlimited number of READ statements for the same file. The sample report in
Figure 4-40, on page 4-112 shows the addition of a second READ statement for the EMPL–
FILE.

The second READ statement uses a different read key from the earlier READ statement, in
order to read a different record from the EMPL–FILE. This means that two different EMPL–
FILE records will be available for use in subsequent control statements. The first READ
statement will read the employee file record for the main salesperson. The second READ
statement will read the employee file record for the backup salesperson.

There is one thing to be careful about when you use more than one READ statement from
the same file. All of the data fields from that auxiliary input file will now exist multiple
times –– once in each record. You can't simply specify HIRE–DATE, for example, in the
COLUMNS statement now, because there are two such fields.
CIMS Report Writer User Guide 4-111 ■

■ Beyond the Basics

Working With Multiple Input Files
Figure 4-40 • A report with multiple READ statements for the same file

INPUT: SALES-FILE
READ: EMPL-FILE READKEY(EMPL-NUM) RECNAME(SALESMAN)
READ: EMPL-FILE READKEY(BACKUP-EMPL-NUM) RECNAME(BACKUP)

COMPUTE: PRODKEY = 'P' + PRODUCT-CODE
READ: PRODUCT-FILE READKEY(PRODKEY)

TITLE: 'LISTING OF RECENT SALES, WITH BACKUP EMPLOYEE INFO'
COLUMNS: EMPL-NAME
 SALES-FILE.EMPL-NUM
 SALESMAN.HIRE-DATE
 BACKUP-EMPL-NUM
 BACKUP.LAST-NAME
 BACKUP.HIRE-DATE
 PRODUCT-CODE
 PRODUCT-DESC

Produce this Report:

These Control Statements:

Notes:

• for every SALES–FILE record read, two records are read from the EMPL–FILE

• each EMPL–FILE record has a different name, assigned by the RECNAME parm (in the READ
statement)

• the COLUMNS statement uses a record name to prefix each field name from the EMPL–FILE

 LISTING OF RECENT SALES, WITH BACKUP EMPLOYEE INFO

 SALES
 FILE SALESMAN BACKUP BACKUP BACKUP
 EMPL EMPL HIRE EMPL LAST HIRE PRODUCT PRODUCT
 NAME NUM DATE NUM NAME DATE CODE DESC
JOHNSON 037 06/21/75 041 SIMPSON 12/01/82 952 PENCILS (NO. 1)
BAKER 044 06/04/82 045 THOMAS 06/04/82 978 HOLE PUNCHERS
MORRISON 042 11/30/79 036 JONES 01/31/80 907 INKPADS
MORRISON 042 11/30/79 045 THOMAS 06/04/82 919 GREEN PENS
SIMPSON 041 12/01/82 039 JOHNSON 11/25/79 916 RED PENS
JOHNSON 039 11/25/79 036 JONES 01/31/80 926 DESK CALENDARS
JOHNSON 039 11/25/79 044 BAKER 06/04/82 997 MAILING LABELS
BAKER 044 06/04/82 037 JOHNSON 06/21/75 916 RED PENS
THOMAS 045 06/04/82 037 JOHNSON 06/21/75 997 MAILING LABELS
JONES 036 01/31/80 042 MORRISON 11/30/79 977 PAPER CLIPS
JONES 036 01/31/80 039 JOHNSON 11/25/79 907 INKPADS
JONES 036 01/31/80 039 JOHNSON 11/25/79 977 PAPER CLIPS
JOHNSON 037 06/21/75 042 MORRISON 11/30/79 976 CHAIRS
SIMPSON 041 12/01/82 042 MORRISON 11/30/79 916 RED PENS

*** GRAND TOTAL (14 ITEMS)
■ 4-112 CIMS Report Writer User Guide

Beyond the Basics ■

Working With Multiple Input Files
To solve this problem of ambiguous field names, we used the RECNAME parm in each of
the READ statements for the EMPL–FILE. This parm assigns unique names to the two
records. The record read using the EMPL–NUM field as the read key is named SALESMAN. The
record read using the BACKUP–EMPL–NUM field as the read key is named BACKUP.

In the COLUMNS statement, we qualified all references to fields from the EMPL–FILE with
one of these two record names. The use of the record name made it clear which record's
data was intended in each instance.

How to Chain READ Statements 4

This section explains:

■ how to use fields from one auxiliary input file to read a record from another auxiliary
input file

The sample report in the previous section used all of the fields in the primary input file
that could be used as read keys to other files. But we can still read another record from
an auxiliary input file. How? By using a field from an existing auxiliary input file as the
key to another auxiliary input file. This is called "file chaining."

File chaining is when one auxiliary file contains the key used to read a record from
another auxiliary input file, which may contain the key to yet another auxiliary input file,
and so on. Report Writer allows file chaining to any level.

Let's look at an example of file chaining. In the sample report in Figure 4-40, on
page 4-112, the EMPL–FILE is an auxiliary input file. The EMPL–FILE contains the address
of the employee, including his 2–byte STATE. But the STATE field can be used as a key to
read from another auxiliary input file –– the STATE–FILE (described in Appendix F, Files
Used in Examples.) By reading the STATE–FILE record we can obtain the full state name for
use in our report. Figure 4-41 shows a report that does this.

When chaining files, the order of the READ statements is important. Be sure to follow the
rule that the READKEY field specified in each READ statement must already be available to
Report Writer in an existing input file record. For that reason, the READ statement to the
EMPL–FILE must come before the READ statement to the STATE–FILE. The field used as the
READKEY to the STATE–FILE isn't available until after the read to the EMPL–FILE.
CIMS Report Writer User Guide 4-113 ■

■ Beyond the Basics

Working With Multiple Input Files
Figure 4-41 • A report with chained READ statements

INPUT: SALES–FILE
READ: EMPL–FILE READKEY(EMPL–NUM)
READ: STATE–FILE READKEY(STATE)

TITLE: 'LISTING OF RECENT SALES'
TITLE: 'WITH EMPLOYEE ADDRESS INFORMATION'
COLUMNS: EMPL–NAME
 CUSTOMER
 SALES–DATE
 SALES–FILE.EMPL–NUM('EMPL NUM')
 CITY
 STATE
 STATE–NAME

Produce this Report:

These Control Statements:

Notes:

• a record is read from the EMPL–FILE, using the employee number from the primary input file as the
key

• the STATE field from the EMPL–FILE is then used to read an additional record from the STATE–FILE

• an override column heading is specified for EMPL–NUM in the COLUMNS statement (for aesthetic
purposes only)

 LISTING OF RECENT SALES
 WITH EMPLOYEE ADDRESS INFORMATION

 EMPL SALES EMPL STATE
 NAME CUSTOMER DATE NUM CITY STATE NAME

JOHNSON ACE ELECTRICAL 03/12/92 037 SCOTTSDALE AZ ARIZONA
BAKER JACKS CAFE 03/26/92 044 WALNUT CREEK CA CALIFORNIA
MORRISON STAR MARKET 03/29/92 042 GLENDALE CA CALIFORNIA
MORRISON A1 PHOTOGRAPHY 03/30/92 042 GLENDALE CA CALIFORNIA
SIMPSON EUROPEAN DELI 04/01/92 041 ARCADIA CA CALIFORNIA
JOHNSON VILLA HOTEL 04/01/92 039 SANTA ROSA CA CALIFORNIA
JOHNSON MARYS ANTIQUES 04/05/92 039 SANTA ROSA CA CALIFORNIA
BAKER JACKS CAFE 04/12/92 044 WALNUT CREEK CA CALIFORNIA
THOMAS YOGURT CITY 04/14/92 045 CONCORD CA CALIFORNIA
JONES EZ GROCERY 04/15/92 036 SAN FRANCISCO CA CALIFORNIA
JONES TOY TOWN 04/15/92 036 SAN FRANCISCO CA CALIFORNIA
JONES TOY TOWN 04/15/92 036 SAN FRANCISCO CA CALIFORNIA
JOHNSON ACME BUILDING 04/16/92 037 SCOTTSDALE AZ ARIZONA
SIMPSON J & S LUMBER 04/30/92 041 ARCADIA CA CALIFORNIA

*** GRAND TOTAL (14 ITEMS)
■ 4-114 CIMS Report Writer User Guide

Beyond the Basics ■

Working With Multiple Input Files
How to Name the Input File Records 4

This section explains:

■ what record names are

■ the default record name assigned to each input file

■ how to assign your own record name to an input file

Report Writer assigns a name to the records that it reads from each input file. These are
called record names. By default, records from a file are given the same name as the file
itself.

Example
INPUT: SALES–FILE

Since no record name was explicitly stated in the above statement, the record name for
records from the SALES–FILE file will also be "SALES–FILE."

Record names are necessary to distinguish between fields that have the same name but
are in different input files. For example, a field named EMPL–NUM exists in both the EMPL–
FILE and in the SALES–FILE (see Appendix F, Files Used in Examples.) If a particular report
uses both of these files as inputs, simply specifying EMPL–NUM as a field name would be
ambiguous. You need to prefix EMPL–NUM with a record name to indicate which record's
EMPL–NUM field you are referring to. (Prefixing a field name with a record name and a
period is called qualifying a field name.) Consider the following statements:

INPUT: SALES–FILE
READ: EMPL–FILE READKEY(EMPL–NUM)
COLUMNS: EMPL–NUM
 SALES–FILE.EMPL–NUM
 EMPL–FILE.EMPL–NUM

The above COLUMNS statement would have the following result. The first column (EMPL–
NUM by itself) would result in an error message –– the name is ambiguous since such a
field exists in more than one of the input files. The first column in the report would
contain only the "ambiguous reference" error indicator (that is, ***A***). The second
column would contain the EMPL–NUM field from the SALES–FILE file, since the field name
was qualified with that record name. The third column, similarly, would contain the
EMPL–NUM field from the EMPL–FILE file.

If you want to specify a record name other than the file name, use the RECNAME parm of
the INPUT or READ statement.

Example
INPUT: SALES–FILE RECNAME(SALESMAN)

The above statement would make SALESMAN the record name for the SALES–FILE file. To
specify the EMPL–NUM from the SALES–FILE in this case, you would use:

COLUMNS: SALESMAN.EMPL–NUM
CIMS Report Writer User Guide 4-115 ■

■ Beyond the Basics

Working With Multiple Input Files
If you do specify a RECNAME parm, it is not required that you always use it when referring
to fields from that file. Just use it when necessary to avoid ambiguity.

The ability to specify your own record names is especially important in reports where the
same file is used in both the INPUT and a READ statement, or in multiple READ statements.
In that case, since the same file is serving as multiple inputs to the report, just using the
file name to qualify a field would still result in an ambiguous name.

You are allowed to qualify fields with record names in any control statement–– not just
the COLUMNS statement. Here are examples of qualifying field names in other control
statements:

TITLE: 'EMPLOYEE DIRECTORY –– ' SALES–FILE.EMPL–NUM
COMPUTE: MAILING–CODE = EMPL–FILE.EMPL–NUM + LAST–NAME
INCLUDEIF: EMPL–FILE.EMPL–NUM > '040'

The report in Figure 4-40, on page 4-112 illustrates the use of record names.

How Missing Records Are Handled 4

Sometimes the auxiliary input file will not contain a record with a key equal to the read
key's value. When this happens, Report Writer assigns a default value to each of the fields
in the "missing record." The default value depends on the data type of the field, as shown
in the following table:

Testing for Missing Records 4

How can you tell when no record is found for a given read key? One easy way is to
compare the contents of the key field (in the auxiliary input record) with the contents of
the read key field (specified in the READKEY parm.) If the values are not the same, it means
that the record was missing (and thus its key field was assigned a default value of blanks.)

Here is an example of testing for a successful read:

Field Type Default Value for Missing Records

Character Blanks

Numeric Zero

Date Zeros (00/00/0000)

Time Zeros (00:00:00)

Bit OFF
■ 4-116 CIMS Report Writer User Guide

Beyond the Basics ■

Working With Multiple Input Files
INPUT: SALES-FILE
READ: EMPL-FILE READKEY(SALES-FILE.EMPL-NUM)
COMPUTE: EMPL-REC-FOUND = WHEN(EMPL-FILE.EMPL-NUM = SALES-FILE.EMPL-NUM) ASSIGN(#ON)
COMPUTE: START-DATE = WHEN(EMPL-REC-FOUND) ASSIGN(EMPL-FILE.HIRE-DATE)
 ELSE ASSIGN(1/1/1990)

In the above statements, we set a bit field named EMPL-REC-FOUND to "on" (true) when
the record from the EMPL-FILE is successfully read. (That is, when it's key field equals the
read key value.) This bit field is then used to help assign a value to a field called START-
DATE. When the EMPL-FILE record is found, we assign its HIRE-DATE field to START-DATE.
When the EMPL-FILE record is missing, we assign a default date of 1/1/1990 to START-
DATE.

Using Generic and KGE Keys 4

This section explains:

■ how to use generic READKEYs

■ how to read records that are greater than or equal to the READKEY

By default, Report Writer assumes that the value in the READKEY parm specifies an entire,
exact key. When performing the READ, Report Writer looks for a record on the file that has
that exact value as its full key. If no key in the file contains the exact value of the READKEY
parm, the record is considered to be "missing."

Sometime you may know a portion, but not all, of the key in the record that you want to
read. The READ statement has two parms that can be useful in such cases.

The GENERIC parm means that your READKEY value may be shorter than the key length
defined for the VSAM file. Thus, it may not contain the complete key of the record you
want to read, but only a leading portion of the desired key. When GENERIC is specified,
Report Writer reads the first record from the file which has an exact match on that
portion of the key specified in the READKEY parm.

For example, assume a VSAM file contains records with the following 3–byte keys:

A01
A02
A16
A17
C01
C12
CIMS Report Writer User Guide 4-117 ■

■ Beyond the Basics

Working With Multiple Input Files
Given a file with the above keys, the READ statements below would give the indicated
result:

A related parm is the KGE ("key greater or equal") parm. This parm can be used with
either a complete key or a generic key. It tells Report Writer that, if no record on the file
has a key (or partial key) that is exactly equal to the READKEY value, to use the first record
whose key (or partial key) is greater than the READKEY value.

Given a file with the same keys shown above, the READ statements below would give the
indicated result:

Note • The GENERIC and KGE parms may only be used in READ statements that have a
READKEY parm. Thus, they may not be used in READ statements for DB2 tables.

How to Perform "One–to–Many" Reads 4

This section explains:

■ how to perform "one–to–many" reads by reading multiple records for a single
READKEY value (or WHERE parm condition)

By default, each time Report Writer reads a new record from the primary input file, it also
attempts to read a single record from each file named in a READ statement.

However, there are times when there may be more than one record in an auxiliary input
file for a given READKEY value. For example, this is often the case when reading from an
alternate index path (where duplicate alternate key values can occur.) Also, when using

Statement Key of Record Read

READ: FILE–X READKEY('A') GENERIC A01

READ: FILE–X READKEY('A1') GENERIC A16

READ: FILE–X READKEY('A13') GENERIC "missing"

READ: FILE–X READKEY('B') GENERIC "missing"

Statement Key of Record Read

READ: FILE–X READKEY('A') GENERIC KGE A01

READ: FILE–X READKEY('A1') GENERIC KGE A16

READ: FILE–X READKEY('A13') GENERIC KGE A16

READ: FILE–X READKEY('A13') KGE A16

READ: FILE–X READKEY('B') GENERIC KGE C01
■ 4-118 CIMS Report Writer User Guide

Beyond the Basics ■

Working With Multiple Input Files
a generic READKEY there may be more than one record in a file that matches that generic
key. And, when reading from a DB2 table, there may be more than one row that satisfies
the conditions in your WHERE parm.

Use the MULTI parm in your READ statement if you want Report Writer to read all of the
records that match your READKEY value (or WHERE parm conditions.)

Example
INPUT: EMPL–FILE
READ: SALES–AIX READKEY(EMPL–NUM) MULTI

The INPUT statement above makes EMPL–FILE the primary input to our report. That file
contains one record per employee. We then use a READ statement to read a record from
the SALES–AIX file. The SALES–AIX file is actually a path to the SALES–FILE through an
alternate index. The key for this alternate index is the EMPL–NUM field in the SALES–FILE.
But we know that some employees have more than one record in the SALES–FILE.
Without the MULTI parm, Report Writer would simply read the first record for a given
EMPL–NUM from the SALES–AIX file and use that record in the report. It would then proceed
to read the next primary input file record and continue in the normal way.

By specifying the MULTI parm in the READ statement above, Report Writer will now read
all of the SALES–AIX records that match the EMPL–NUM in the EMPL–FILE record. The report
in Figure 4-42, on page 4-120 uses the above statements.

Here's how Report Writer processed the input files in Figure 4-42. It first read a record
from the primary input file, EMPL–FILE. That record had an EMPL–NUM of 036.
CIMS Report Writer User Guide 4-119 ■

■ Beyond the Basics

Working With Multiple Input Files
Figure 4-42 • A report that uses the MULTI parm

INPUT: EMPL-FILE
READ: SALES-AIX READKEY(EMPL-NUM) MULTI
TITLE: 'EMPLOYEE LISTING, WITH RECENT SALES'
COLUMNS: LAST-NAME FIRST-NAME HIRE-DATE
 EMPL-FILE.EMPL-NUM
 SALES-AIX.EMPL-NUM
 SALES-DATE AMOUNT

Produce this Report:

These Control Statements:

Notes:

• the MULTI parm in the READ statement causes Report Writer to read multiple records from the SALES–
AIX file for each record read from the EMPL–FILE

 EMPLOYEE LISTING, WITH RECENT SALES

 EMPL SALES
 FILE AIX
 LAST FIRST HIRE EMPL EMPL SALES
 NAME NAME DATE NUM NUM DATE AMOUNT

JONES JERRY 01/31/80 036 036 04/15/95 10.25
JONES JERRY 01/31/80 036 036 04/15/95 121.76
JONES JERRY 01/31/80 036 036 04/15/95 10.25
JOHNSON THOMAS 06/21/75 037 037 03/12/95 101.38
JOHNSON THOMAS 06/21/75 037 037 04/16/95 500.00
JOHNSON LINDA 11/25/79 039 039 04/01/95 234.45
JOHNSON LINDA 11/25/79 039 039 04/05/95 9.98
MACDONALD RICHARD 07/04/82 040 00/00/00 0.00
SIMPSON TIMOTHY 12/01/82 041 041 04/01/95 14.99
SIMPSON TIMOTHY 12/01/82 041 041 04/30/95 23.87
MORRISON MICHAEL 11/30/79 042 042 03/29/95 44.35
MORRISON MICHAEL 11/30/79 042 042 03/30/95 29.65
CHRISTOPHERSON MELISSA 08/15/81 043 00/00/00 0.00
BAKER VIVIAN 06/04/82 044 044 03/26/95 137.00
BAKER VIVIAN 06/04/82 044 044 04/12/95 135.75
THOMAS MARTIN 06/04/82 045 045 04/14/95 9.98

*** GRAND TOTAL (16 ITEMS) 1,383.66
■ 4-120 CIMS Report Writer User Guide

Beyond the Basics ■

Working with "Batched" Input Files
Report Writer then read the first record from the SALES–AIX file that had a key of 036.
Using these two records as one "logical input record", Report Writer then produced one
line of the report.

Then, before reading the next record from the EMPL–FILE, Report Writer read an additional
record from the SALES–AIX file. It then used this "logical input record" (consisting of the
original EMPL–FILE record and the second matching SALES–AIX record) in the report. This
process continued until there were no more records in the SALES–AIX file with a key of
036. At that point, Report Writer proceeded to read the next record from the primary
input file. Using the EMPL–NUM from this new record (037), it then read each SALES–AIX
file record with a key of 037, and so on.

For a more complete description of how Report Writer processes MULTI–type READ
statements, see the Notes section of the READ statement in Chapter 10, Control Statement
Syntax (page 10-113.)

Speed-up Tip • READ statements with the MULTI parm are less efficient than regular
READ statements. To reduce CPU and I/O usage, do not specify MULTI if you know that
a file contains unique keys. (In other words, do not specify MULTI if you know the
READKEY will only find one matching record in the file.)

Speed-up tip • If you have some READ statements that use the MULTI parm and some
that do not, put the READ statement(s) without the MULTI parm ahead of the other READ
statements (when possible). This may reduce the amount of I/O that is performed.

Working with "Batched" Input Files 4

Some input files are organized as "batches" of data. Each batch begins with a header
record and is followed by a number of detail records. A trailer record may also appear at
the end each batch. The COMPUTE statement's RETAIN feature is useful when working with
"batches" of records.

The RETAIN parm lets you save information from the header record in such files. You can
then use this saved information along with the information in the detail lines to produce
your Report Writer report or PC file.

Here is an example of using the RETAIN parm in a COMPUTE statements:

COMPUTE: SAVE–NAME = WHEN(REC–TYPE = 'A') ASSIGN(EMP–NAME)
 ELSE RETAIN

The above statement creates a new field called SAVE–NAME. As with all computed fields,
Report Writer assigns a value to SAVE–NAME each time it reads a new record from the input
file. Assume that our input file has two types of records. The header records begin with
an "A" in column 1. These header records contain the name of the employee whose data
follows. The second type of record contains a "B" in column 1. These are the detail
records. Each detail record contains the date and the amount of a sale made by the
employee. When Report Writer processes a header record, the WHEN condition in the
above statement will be true (REC–TYPE will equal "A") and SAVE–NAME will be assigned
CIMS Report Writer User Guide 4-121 ■

■ Beyond the Basics

Working with "Batched" Input Files
the value of the EMP–NAME field. Otherwise (when the input record is a detail record),
Report Writer does not change the contents of the SAVE–NAME field. It just "retains"
whatever value it already has. (Note that if ELSE RETAIN had not been specified, Report
Writer would set the SAVE–NAME field to blanks whenever the REC–TYPE field was not equal
to "A".)

Figure 4-43, on page 4-123 shows a sample "batch" type file with header and detail
records. The lower box on that page shows the Report Writer definition statements for
the file. Figures 4-44 shows a PC file produced from this sample batch file.

Here are some general points to follow whenever using a header/detail type of input file:

■ use FIELD statements to define all the fields in both the header records and the detail
records. (Report Writer allows you to define more than one field with the same
starting column.)

■ use one COMPUTE statement for each field that you want to retain from the header
records.

• use the WHEN parm to identify the header records in the input file

• use the ASSIGN parm to name the header record field whose data you want to save

• use ELSE RETAIN so that the field's value is not changed when the subsequent detail
records are processed

■ use an INCLUDEIF statement to select only the detail records for your Report Writer
report (or PC file). This is because you don't want to write out a report line containing
just the data from the header record. You just want to save data from the header
records as they go by, and only write out report lines for each of the detail records in
the input file. (Of course you can add further conditions to your INCLUDEIF statement
if you want to include only certain detail records from the input file.)

■ in your COLUMNS statement, you can refer to the retained data from the header records
(that is, the COMPUTE fields) as well as all of the fields from the detail records

■ note that information from any "trailer" record cannot be used with this technique.
As the detail records are being processed, Report Writer has not yet seen the trailer
record. Therefore no data from that record is available. The conditions in the
INCLUDEIF statement should ensure that the trailer records are not included in the
report.
■ 4-122 CIMS Report Writer User Guide

Beyond the Basics ■

Working with "Batched" Input Files
Figure 4-43 • An input file with header and detail records, and it’s definition statements

File Definition Statements for the Above File:

Raw Input File:

Notes:

• The input file (shown in the top box) has two types of records

• Header records begin with the letter "A" and contain only an employee name

• Detail records begin with the letter "B" and contain the date and the amount of a sale

• Any number of detail records may follow a header record

• The Report Writer definition statements (lower box) define the fields in both types of records

• Comment lines indicate which fields can be found in which records

FILE: SALES–LOG DDNAME(SALELOG)

**** NOTE: THE FOLLOWING FIELD EXISTS IN ALL RECORD TYPES
FLD: REC–TYPE COL(1) LEN(1)

**** NOTE: THE FOLLOWING FIELD EXISTS ONLY IN "A" RECORDS
FLD: EMP–NAME COL(2) LEN(10)

**** NOTE: THE FOLLOWING FIELDS EXIST ONLY IN "B" RECORDS
FLD: SALE–DATE COL(2) TYPE(MMDDYY)
FLD: SALE–AMT TYPE(NUM) LEN(8) DEC(2)

AJOHNSON
B010492 1008.98
B033092 987.00
B050192 698.50
AMORRISON
B020892 345.99
B020992 900.17
ACLARK
B010192 1209.87
B022992 872.77
B060292 100.00

Notes:

• The input file (shown in the top box) has two types of records

• Header records begin with the letter "A" and contain only an employee name

• Detail records begin with the letter "B" and contain the date and the amount of a sale

• Any number of detail records may follow a header record

• The Report Writer definition statements (lower box) define the fields in both types of records

• Comment lines indicate which fields can be found in which records
CIMS Report Writer User Guide 4-123 ■

■ Beyond the Basics

Working with "Batched" Input Files
Figure 4-44 • A Lotus file produced from an input file with header and details records

OPTION: LOTUS
INPUT: SALES–LOG
COMPUTE: SAVE–NAME = WHEN(REC–TYPE = 'A')ASSIGN(EMP–NAME)
 ELSE RETAIN
INCLUDEIF: REC–TYPE = 'B'
COLUMNS: SAVE–NAME SALE–DATE SALE–AMT

Produce this Report:

These Control Statements:

Notes:

• The PC file above contains one line for each detail record in the input file

• Each line includes "retained" data from the previous header record

• The COMPUTE statement saves the EMP–NAME field from the header records in a new field called
SAVE–NAME

• The INCLUDEIF statement selects just the detail records to appear in the Lotus output file

• The COLUMNS statement creates a column in the Lotus file for the SAVE–NAME field taken from the
header record, as well as for the two fields from the detail records

 "JOHNSON ","01/04/92", 1008.98
 "JOHNSON ","03/30/92", 987.00
 "JOHNSON ","05/01/92", 698.50
 "MORRISON ","02/08/92", 345.99
 "MORRISON ","02/09/92", 900.17
 "CLARK ","01/01/92", 1209.87
 "CLARK ","02/29/92", 872.77
 "CLARK ","06/02/92", 100.00

Produce this PC File:
■ 4-124 CIMS Report Writer User Guide

Beyond the Basics ■

Creating PC Files from Existing Reports
Creating PC Files from Existing Reports 4

This section shows how to:

■ turn existing mainframe reports into PC files for your favorite PC program

■ how to use the RETAIN parm in the COMPUTE statement

Normally Report Writer creates PC files from the data in mainframe files. Sometimes,
however, the data you want to download may not be in a file, but in a report already
produced on your mainframe. Perhaps someone in your shop must manually key data
from such a report into a PC program such as Lotus 1–2–3. Report Writer can let you
automate that process, increasing accuracy and saving hours of manual work.

The technique used is to first write your existing report to a file (rather than to a printer).
Then simply define this "report file" to Report Writer as if it were any other input file.
Consider the sample mainframe report in Figure 4-45. This is an accounts payable
report. It lists each cost center's outstanding invoices, including such information as the
invoice number, the customer number, the date the invoice is due and the amount due.
When defining this report as a file to Report Writer we can say that an INVOICE–NUM field
begins in column 2 and is 6 bytes long. Then, the CUST–NUM field starts in column 11 and
is 4 bytes long. And we can define the CUSTOMER, DUE–DATE, and AMOUNT fields similarly.
Figure 4-45 shows Report Writer definition statements for this sample report. (We'll
explain shortly the other fields defined in this Figure.)

Now let's consider some unique situations that arise when we use reports as input files:

■ The first column in each report line usually contains a "carriage control" character.
This character is normally hidden from you when you view reports online or have
them printed on paper. However, this character must be taken into account when
specifying a field's beginning column. So when defining a report's fields, remember
that what you normally think of as the first column in a report is actually column 2.
In the report in Figure 4-45 we have shown the carriage control characters. They are
the characters "1", "0" and " " that you see in the first column of each report line.

■ Report files usually contain some lines which you'll want to completely ignore. These
lines do not contain any data that you want to download to the PC. For example, in
the report in Figure 4-45 we would want to completely ignore:

• the first title line on each page ("ABC COMPANY...")

• the column heading lines

• the cost center total lines (we can always use Report Writer to compute the totals
if we want them in our PC file)

• and all blank lines (such as those between the title line and the column headings)

We'll see shortly how to use the INCLUDEIF statement to have Report Writer ignore
certain lines in your report.
CIMS Report Writer User Guide 4-125 ■

■ Beyond the Basics

Creating PC Files from Existing Reports
Figure 4-45 • A typical mainframe report that has been written to a disk file

Figure 4-46 • Report Writer statements to define the “report file” shown above

1...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
1ABC COMPANY -- ACCOUNTS PAYABLE LISTING RUN DATE: 01/31/95
 ITEMS FOR COST CENTER: 501 - ACCOUNTING PAGE: 1

0INVOICE CUST.
 NUMBER NUMBER CUSTOMER DATE DUE AMOUNT DUE

 18003A 2987 PIP PRINTING 02/15/95 $245.78
 209812 1098 FEDEX 02/08/95 90.12
 N/A 1167 A1 ACCOUNTING 02/28/95 1,030.75
 COST CENTER TOTAL $1,366.65

1ABC COMPANY -- ACCOUNTS PAYABLE LISTING RUN DATE: 01/31/95
 ITEMS FOR COST CENTER: 502 - OPERATIONS PAGE: 2

0INVOICE CUST.
 NUMBER NUMBER CUSTOMER DATE DUE AMOUNT DUE

 66761 2013 ACME CATERER 03/05/95 $200.00
 AB0291 0889 AT&T 02/01/95 676.99
 COST CENTER TOTAL $876.99

1ABC COMPANY -- ACCOUNTS PAYABLE LISTING RUN DATE: 01/31/95
 ITEMS FOR COST CENTER: 504 - PERSONNEL PAGE: 3

0INVOICE CUST.
 NUMBER NUMBER CUSTOMER DATE DUE AMOUNT DUE

 787611 1292 GAS COMPANY 02/20/95 $192.10
 898-1 0987 FAST TRAVEL 02/03/95 972.00
 K00921 1200 CITIBANK 02/27/95 2987.11
 18021A 2987 PIP PRINTING 02/19/95 21.78
 COST CENTER TOTAL $4,172.99

FILE: AP-REPORT DDNAME(REPORTIN)
*
*** FOLLOWING TEST FIELDS ARE USED TO DETERMINE TYPE OF RECORD
FLD: COL40 COL(40) LEN(1)
FLD: COLS2-THRU-6 COL(2) LEN(5)
*
*** FOLLOWING FIELDS ARE ONLY IN THE 2ND TITLE LINE OF REPORT
FLD: TITLE-COST-CENTER COL(25) LEN(3)
FLD: TITLE-CC-NAME COL(31) LEN(10)
*
*** FOLLOWING FIELDS ARE ONLY IN THE DETAIL LINES OF REPORT
FLD: INVOICE-NUM COL(2) LEN(6)
FLD: CUST-NUM COL(11) LEN(4)
FLD: CUSTOMER COL(21) LEN(13)
FLD: DUE-DATE COL(38) TYPE(MM-DD-YY)
FLD: AMOUNT COL(48) LEN(10) TYPE(NUM) DEC(2)
■ 4-126 CIMS Report Writer User Guide

Beyond the Basics ■

Creating PC Files from Existing Reports
■ Other report lines may contain data which applies to all of the other report lines on
the same page. An example of such data in our sample report in Figure 4-45 is the cost
center number and the cost center name which appear in the second title line of each
page. (For example, "ITEMS FOR COST CENTER: 501 – ACCOUNTING".) This cost center
information is printed only once per page. It does not appear in each detail report
line. This kind of data from title lines must be "retained" so that it is available along
with the detail line's data when Report Writer writes each record to the PC file. We'll
see how to use COMPUTE statements to retain data from title lines.

Now let's look at how to handle each of these special situations when creating PC files
from reports.

How to Ignore Certain Report Lines

The INCLUDEIF statement tells Report Writer which records from the input file to include
in the PC file. When using report files for input, we use the INCLUDEIF statement to
identify just those report lines that actually contain the data we need in our PC file––
that is, the detail report lines. By examining the different lines in your report (the title
lines, the column heading lines, blank lines, total lines and detail lines) you should be
able to come up with a conditional expression that selects only the detail lines. For the
sample report Figure 4-45, an easy way to do that is with the following statement:

INCLUDEIF: COL40 = '/'

The above statement tells Report Writer to include report records in the PC file only if
the field named COL40 contains a slash. (Note in the file definition statements in
Figure 4-45 that we defined COL40 as a 1–byte field at column 40.) In looking at the
report, you'll notice that only the detail lines contain a slash in column 40 (as part of the
Date Due value.) The titles, column headings, blank lines, etc. will all be excluded from
the PC file since none of those lines contains a slash in column 40.

Your report may not have such a unique identifying character in its detail lines. In that
case you will need to use more than one test in your INCLUDEIF statement. For example,
if the report in Figure 4-45 had not had a date field with a slash in it, we might have used
the following statement instead:

INCLUDEIF: COL55 = '.' AND COL–2–THRU–6 ¬= ' '

The above statement selects the detail records by examining what they have in 2 places.
Report lines must have a decimal point in column 55 (where the Amount field appears.)
That test alone, however, would also include the total lines since they have a decimal
point in column 55 too. We do not want to include total lines in our PC file because they
do not contain the other fields we need (such as invoice number, customer number, etc.)
The second test requires that columns 2 through 6 not contain blanks. The detail lines
will pass this test (since they have Invoice Numbers in those columns), while the total
lines (which have blanks in those columns) will not pass the test. So, the only records
which do contain a decimal point in column 55 and do not contain blanks in columns
2 through 6 are our report detail records.
CIMS Report Writer User Guide 4-127 ■

■ Beyond the Basics

Creating PC Files from Existing Reports
How to Retain Data from Report Titles

We saw in the preceding section how to eliminate the title and other unwanted lines
from our PC file and include only the detail lines. But what if the report titles contain
some data that we want to download to the PC along with the data in the detail lines?
To do this we need for Report Writer to capture data from the title lines as they are
processed and "retain" that data until it comes to the detail lines. We use a COMPUTE
statement with the RETAIN option to accomplish this. For example, to retain the cost
center from the second title line in our report we could use this statement:

COMPUTE: COST–CNTR = WHEN(COL–2–THRU–6 = 'ITEMS') ASSIGN(TITLE–COST–CENTER)
 ELSE RETAIN

The statement above is a "conditional" COMPUTE statement. That is, the value assigned to
COST–CNTR depends on a logical condition. In this case, when columns 2 thru 6 of the
report line contain "ITEMS" (that is, when the input record being processed is the second
title line of a page), we assign the value of TITLE–COST–CENTER (in columns 25 though 27
of the report) to our new field. When processing any input record other than the second
title line, this new field will simply retain its current value. That is, it will retain the value
of the Cost Center from the most recent title line processed. We use a similar COMPUTE
statement to retain the cost center name from the same title line:

COMPUTE: COST–CNTR–NAME = WHEN(COL–2–THRU–6 = 'ITEMS') ASSIGN(TITLE–CC–NAME)
 ELSE RETAIN

Now we can use these two retained fields in our COLUMNS statement to create columns in
our PC file containing the cost center and the cost center name.

Example
COLUMNS: COST–CNTR COST–CNTR–NAME INVOICE–NUM CUST–NUM CUSTOMER ...

Why couldn't we simply put TITLE–COST–CNTR and TITLE–CC–NAME directly in our COLUMNS
statement? Remember that our INCLUDEIF statement is written to include only the detail
report records in our PC file. And the cost center is not present in the detail records. The
same columns where the cost center appears in the title lines contain other data in the
detail lines. If we specified TITLE–COST–CNTR in our COLUMNS statement, we would just get
"garbage" in our PC file.

You may wonder why we couldn't "include" both title lines and detail lines in the PC file
to solve this problem. The answer is that the title lines don't contain the other
information needed in the PC file (such as invoice number, customer number, etc.) If
we included title records, the TITLE–COST–CNTR data would look just fine in our PC file,
but the INVOICE–NUM and other fields would then contain "garbage."

The correct way to use data from both titles and detail lines is to "include" only the detail
records, and use COMPUTE statements to save data from the title lines as they are read.
Then we use that saved title data along with the data in the detail lines to write our PC
file records. By using the techniques discussed in this section, you can apply all of Report
Writer's extracting and PC–formatting power to the existing reports in your shop.
■ 4-128 CIMS Report Writer User Guide

Beyond the Basics ■

Creating PC Files from Existing Reports
Figure 4-47 • Creating a Lotus 1-2-3 spreadsheet from a mainframe report

These Control Statements:

Result in this Lotus 1-2-3 spreadsheet:

OPTION: LOTUS
INPUT: AP-REPORT
COMPUTE: COST-CNTR = WHEN(COLS2-THRU-6 = 'ITEMS') ASSIGN(TITLE-COST-CENTER)
 ELSE RETAIN
COMPUTE: COST-CNTR-NAME = WHEN(COLS2-THRU-6 = 'ITEMS') ASSIGN(TITLE-CC-NAME)
 ELSE RETAIN
INCLUDEIF: COL40 = '/'
COLUMNS: COST-CNTR COST-CNTR-NAME INVOICE-NUM CUST-NUM
 CUSTOMER DUE-DATE AMOUNT
SORT: COST-CNTR DUE-DATE
CIMS Report Writer User Guide 4-129 ■

■ Beyond the Basics

Working with SMF Records
Figure 4-47 shows an actual example of creating a Lotus 1–2–3 spreadsheet from the
report shown in Figure 4-45, on page 4-126. Notice that we had Report Writer re-sort the
PC file into cost center and due date order.

Working with SMF Records 4

You can use Report Writer to produce many useful reports from your shop's SMF files. In
addition, Report Writer can also turn your SMF data into PC files, letting you work with
extracted SMF data in your favorite PC spreadsheet program. This section provides some
tips on using Report Writer with SMF files.

The SMF files are among the most complicated files in any shop. But Report Writer makes
it easy to produce reports from them. Here are some specific points to keep in mind
when dealing with SMF files. Some of these points are illustrated in the SMF file definition
statements shown in Figure 4-48.

■ SMF records can be big. So to be safe, specify Report Writer's largest LRECL value
(32,767) when defining the file. Do this in either the FILE statement or the INPUT
statement.

Example
FILE: SMF DDNAME(SMF) LRECL(32767)

This will ensure that Report Writer allocates a big enough I/O area to handle the
largest SMF records.

■ You should not need to specify DCB information in your DD statement. Report Writer
gets this information from the file's label. If you do give explicit DCB information, be
sure your LRECL and BLKSIZE values are correct for the input file.

■ Report Writer normally ignores the 4–byte RDW (record descriptor word) at the
beginning of variable–length records (such as SMF records.) That is, Report Writer
considers "column 1" of the SMF record to be the first byte after the RDW. If you prefer
to include the RDW as part of the input record, specify the KEEPRDW option. Do this in
either the FILE statement, the INPUT statement, or an OPTIONS statement.

Example
FILE: SMF DDNAME(SMF) LRECL(32767) KEEPRDW

When KEEPRDW is specified, "column 1" of the SMF record becomes the first byte of the
RDW. One reason you may want to specify KEEPRDW is to use the field offsets listed in
the SMF manual as a guide when writing your FIELD statements. The SMF manual gives
field offsets relative to the beginning of the RDW.

■ When defining fields to Report Writer, you can use either the COLUMN parm or the DISP
(DISPLACEMENT) parm to specify where a field begins in a record. Since the SMF manual
indicates field locations as offsets (displacements), it's generally more convenient to
use the DISP parm in your FIELD statements.

FIELD: REC–TYPE DISP(5) LENGTH(1) TYPE(BIN) NOACC
■ 4-130 CIMS Report Writer User Guide

Beyond the Basics ■

Working with SMF Records
Figure 4-48 • File definition of selected fields in SMF type 30 records

FILE: SMF DDNAME(SMF) LRECL(32767) KEEPRDW
**
** SMF HEADER FIELDS FOLLOW
FLD: REC-LEN TYPE(HALFWORD)
FLD: REC-TYPE DISP(5) TYPE(BIN) LEN(1) NOACC
FLD: SMF-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: SMF-DATE TYPE(P-CYYDDD)
FLD: SUB-TYPE DISP(22) TYPE(HALFWORD)
**
** OFFSET AND LENGTH INFO FOR SELECTED SECTIONS IN TYPE 30 REC
FLD: ID–OFFSET DISP(32) TYPE(FULLWORD)
FLD: ID–LEN TYPE(HALFWORD)
FLD: ID–NUM TYPE(HALFWORD)
FLD: IO–OFFSET TYPE(FULLWORD)
FLD: IO–LEN TYPE(HALFWORD)
FLD: IO–NUM TYPE(HALFWORD)
FLD: COMP–OFFSET TYPE(FULLWORD)
FLD: COMP–LEN TYPE(HALFWORD)
FLD: COMP–NUM TYPE(HALFWORD)
FLD: PROC–OFFSET TYPE(FULLWORD)
FLD: PROC–LEN TYPE(HALFWORD)
FLD: PROC–NUM TYPE(HALFWORD)
**
** SELECTED FIELDS FROM THE ID SECTION
FLD: JOBNAME LEN(8) OFFSET(ID–OFFSET)
FLD: PGMNAME LEN(8)
FLD: STEPNAME LEN(8)
FLD: USERID LEN(8)
FLD: JES-JOBID LEN(8)
FLD: STEP-NUM TYPE(HALFWORD) NOACC
FLD: JOB-CLASS LEN(1)
FLD: DEV-ALLOC-TIME TYPE(B-SECS) DEC(2) LEN(4) DISP(*+5)
FLD: PGM-START-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: STEP-START-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: STEP-START-DATE TYPE(P-CYYDDD)
FLD: RDR-START-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: JOB-START-DATE TYPE(P-CYYDDD)
FLD: RDR-END-TIME TYPE(B-SECS) DEC(2) LEN(4)
FLD: RDR-END-DATE TYPE(P-CYYDDD)
FLD: PGMR-NAME LEN(20)
**
** SELECTED FIELDS FROM THE I/O ACTIVITY SECTION
FLD: NUM-CARDS TYPE(FULLWORD) OFFSET(IO–OFFSET)
FLD: NUM-TPUTS TYPE(FULLWORD) DISP(*+4)
FLD: NUM-TGETS TYPE(FULLWORD)
**
** SELECTED FIELDS FROM THE COMPLETION SECTION
FLD: COMP-CODE LEN(2) FORMAT(HEX) OFFSET(COMP–OFFSET)
FLD: ABEND BIT(7) ONTEXT('ABEND') OFFTEXT(' ')
FLD: FLUSH BIT(8)
**
** SELECTED FIELDS FROM THE PROCESSOR ACCOUNTING SECTION
FLD: DPRTY TYPE(HALFWORD) NOACC OFFSET(PROC–OFFSET)
FLD: STEP-TCB-SECS TYPE(FULLWORD) DEC(2) DISP(*+2)
FLD: STEP-SRB-SECS TYPE(FULLWORD) DEC(2)
FLD: INIT-TCB-SECS TYPE(FULLWORD) DEC(2)
FLD: INIT-SRB-SECS TYPE(FULLWORD) DEC(2)
CIMS Report Writer User Guide 4-131 ■

■ Beyond the Basics

Working with SMF Records
■ Report Writer has a number of date and time "data types" that are especially intended
for use with SMF data. Use these in the TYPE parm of your FIELD statements to define
SMF dates and times. Some common data types for SMF records are:

P–CYYDDD This is a packed Julian date which includes a single–digit century
indicator. Most SMF dates are stored in this format (written 0cyydddF
in the SMF manual.) Here is an example of defining a date field and
then using it to select the SMF records to include in a report:

FIELD: SMF–DATE DISP(10) TYPE(P–CYYDDD)
INCLUDEIF: REC–TYPE = 5 AND SMF–DATE = 6/15/1994

B–SECS This is a "binary seconds" time field. Most time–of–day and elapsed
time fields in SMF records are of this type. You should specify
LENGTH(4) for most SMF time fields. Also use the DEC(2) parm to
indicate that the binary seconds value contains hundredths of
seconds. Here is an example of defining a time field and using it to
select SMF records for a report:

FIELD: SMF–TIME DISP(6) TYPE(B–SECS) LENGTH(4) DEC(2)
INCLUDEIF: REC–TYPE = 5 AND
 (SMF–TIME > 12:59:00 AND < 13:02:00)

BIT Some SMF data is contained in bits. For example, there is a bit in Type
5 records that indicates whether a job has Abended or not. This bit is
in the byte at offset 66, and is bit number 6 under IBM's bit
numbering convention. Remember that Report Writer numbers bits
from 1 to 8 (rather than 0 to 7) from left to right. Thus the ABEND field
in the type 5 record can be defined like this:

FIELD: ABEND DISP(66) BIT(7)

To test a bit field, just name the field in your conditional expression.
For example, to include all type 5 records which completed with an
ABEND, use this statement:

INCLUDEIF: REC–TYPE = 5 AND ABEND

You can list bit fields in your COLUMNS statement as well.

COLUMNS: SMF–DATE SMF–TIME JOBNAME ABEND

By default the word "ABEND" will print in the report if the bit is on,
and the words "NOT ABEND" will print if the bit is off. Use the ONTEXT
and OFFTEXT parms in the FIELD statement if you want to print
different texts. (See an example of this on page 4-131.)

When defining bit fields, keep one other thing in mind. You should
explicitly specify a DISP or COLUMN parm for the first field following the
bit fields. Report Writer does not automatically increment the current
■ 4-132 CIMS Report Writer User Guide

Beyond the Basics ■

Working with SMF Records
location counter after FIELD statements for bit fields. (This is to allow
you to define additional bits within the same byte.) An easy way to
specify the DISP of the field following a bit field is to use DISP(*+1):

FIELD: BIT–FIELD–A BIT(3)
FIELD: BIT–FIELD–B BIT(7)
FIELD: NEXT–FIELD DISP(*+1) LENGTH(5) ...

■ In general you should work with only one type of SMF record at a time. Use the
INCLUDEIF statement to include only the appropriate type of records in your report.
You can use additional tests to further narrow down which records are included.

INCLUDEIF: REC–TYPE = 30 AND SMF–DATE >= 6/1/1994

■ Production SMF reports often report on "yesterday's" data. Rather than having to
change the date literal in your INCLUDEIF statement for each run, you can COMPUTE
yesterday's date, like this:

COMPUTE: YESTERDAY = #MAKEDATE(#MAKENUM(#TODAY) –1)
INCLUDEIF: REC–TYPE = 30 AND SMF–DATE = YESTERDAY

■ Some SMF records are variably formatted. That is, a field may be located at one offset
in one record, and at a different offset in another record of the same type. This usually
occurs when the record contains segments that are repeated a variable number of
times (such as one segment per DD statement in a step.) Use Report Writer's OFFSET
parm to define variably located fields. This parm is used in the FIELD statement to
specify an additional offset value to use when determining where a field is located
within a record. (This value is added to any COLUMN or DISP parm value.) The
advantage of the OFFSET parm is that, unlike the COLUMN and DISP parms, it need not
contain a constant numeric value. The OFFSET parm can be any type of numeric
expression. For example, it might be something as simple as the name of a previously
defined numeric field:

FIELD: IO–OFFSET DISP(32) TYPE(FULLWORD) /* OFFSET TO ID SECTION */
...
FIELD: JOBNAME DISP(0) OFFSET(IO–OFFSET) LEN(8) /*1ST ITEM IN ID SECTION*/

Or, the OFFSET value might be a complex calculation, such as would be needed to
compute the location of a field that follows a variable–length array (such as an OCCURS
DEPENDING ON array) in a record.

Example
FIELD: LAST–FIELD
 OFFSET(100 + (NUM–ITEMS–IN–ARRAY * ITEM–SIZE)) DISP(0) LENGTH(10)

When using the OFFSET parm, remember that the OFFSET parm remains in effect for all
subsequent FIELD statements (until a new OFFSET parm is encountered.) Thus, you
only need to specify the OFFSET parm for the first field in any variably–located
segment. Specify OFFSET(0) if you wish to resume defining FIELDs that do not require
any OFFSET value.

The following pages show some sample SMF reports produced with Report Writer.
CIMS Report Writer User Guide 4-133 ■

■ Beyond the Basics

Working with SMF Records
Figure 4-49 • Control Statements to Produce a “Daily ABEND” report (shown on page 4-135

Figure 4-50 • Control Statements to Produce a “TSO Sessions” Report shown on
page 4-136

INPUT: SMF

TITLE: 'BATCH JOB STEPS THAT ABENDED ON' STEP-START-DATE
TITLE: '(522 AND 622 ABENDS NOT INCLUDED)'

INCLUDEIF: REC-TYPE = 30 & SUB-TYPE = 3 & ABEND & NUM-TGETS = 0
 & COMP-CODE ¬= X'0522' & ¬= X'0622'

COLUMNS: JES-JOBID
 STEP-NUM(4)
 JOBNAME
 STEPNAME
 PGMNAME
 COMP-CODE
 JOB-CLASS
 DPRTY(5)
 PGMR-NAME
 STEP-START-DATE
 STEP-START-TIME
 SMF-TIME('STEP END TIME')

SORT: STEP-START-DATE STEP-START-TIME

INPUT: SMF

TITLE: 'TSO SESSIONS ON' STEP-START-DATE

INCLUDEIF: REC-TYPE = 30 & SUB-TYPE = 3 & NUM-TGETS > 0 &
 COMP-CODE ¬= X'0522' & ¬= X'0622'

COMPUTE: SESSION-MINUTES =
 (#MAKENUM(SMF-TIME) - #MAKENUM(STEP-START-TIME)) / 60
COMPUTE: SESSION-COST = SESSION-MINUTES * .0625

COLUMNS: JOBNAME
 PGMR-NAME
 STEP-START-DATE('START DATE')
 STEP-START-TIME('START TIME')
 SMF-TIME('END TIME')
 SESSION-MINUTES(PIC'ZZZ,ZZ9.9')
 SESSION-COST(PIC'$$$$9.99')
 NUM-TPUTS(7)
 NUM-TGETS(7)
 STEP-TCB-SECS(8)
 STEP-SRB-SECS(8)

SORT: PGMR-NAME(2) STEP-START-DATE STEP-START-TIME
■ 4-134 CIMS Report Writer User Guide

Beyond the Basics ■

Working with SMF Records
Figure 4-51 • SMF “Daily ABEND” report produced by the control statements on page 4-134

 BATCH JOB STEPS THAT ABENDED ON 04/15/94
 (522 AND 622 ABENDS NOT INCLUDED)
 STEP STEP STEP
 JES STEP COMP JOB PGMR START START END
 JOBID NUM JOBNAME STEPNAME PGMNAME CODE CLASS DPRTY NAME DATE TIME TIME

STC01453 1 CICS01X JILLHRS DFHSIP 0A03 245 04/15/94 06:45:03.39 19:00:36.80
STC01460 1 CICS02 CICS02 DFHSIP 0A03 255 04/15/94 06:45:14.74 19:02:01.47
JOB01596 6 US1PCTN1 UMUD50 XAMUD01 00C7 1 105 PROD.CONTROL 04/15/94 07:10:16.42 07:10:51.27
JOB01609 2 US1PCTDT USLW47 IDCAMS 0913 T 105 *O"HARRIS 04/15/94 07:18:33.11 07:18:33.76
JOB01609 10 US1PCTDT UDPX80 XADPX80L 87CF T 105 *O"HARRIS 04/15/94 07:18:34.44 07:18:57.16
JOB01611 9 US1PCTDT USLW70 XASLW70 0222 T 105 *O"HARRIS 04/15/94 07:26:57.78 07:50:06.04
JOB01703 1 DPTSSTG0 COMPRS PG01R00A 840B M 105 *2ND FLR WEST 04/15/94 07:39:10.53 07:39:31.10
JOB01937 1 DPTSSTG0 COMPRS PG01R00A 840B M 105 *2ND FLR WEST 04/15/94 08:24:59.96 08:25:22.89
JOB02028 1 DPTSSTG0 COMPRS PG01R00A 840B M 105 *2ND FLR WEST 04/15/94 08:41:21.68 08:41:44.29
STC02055 1 SUBJOB S1 ACFPRODS 0013 105 04/15/94 08:49:18.15 08:49:18.84
JOB02123 1 DPTSSTG0 COMPRS PG01R00A 83FC M 105 *2ND FLR WEST 04/15/94 09:00:39.33 09:01:08.57
STC02196 1 CICS01 CICS DFHSIP 0222 245 04/15/94 09:13:39.20 10:20:56.80
JOB02214 1 DPTSSTG0 COMPRS PG01R00A 83FC M 105 *2ND FLR WEST 04/15/94 09:17:19.92 09:17:48.64
JOB02312 1 DPTSSTG0 COMPRS PG01R00A 83FC M 105 *2ND FLR WEST 04/15/94 09:37:36.47 09:38:05.41
JOB02366 1 US1EWT7L UWCX10 X09CX10 840B T 105 IMS OPER 281 283 04/15/94 09:48:14.54 09:48:31.08
JOB02385 1 DPTSSTG0 COMPRS PG01R00A 83FC M 105 *2ND FLR WEST 04/15/94 09:52:50.16 09:53:21.03
JOB02388 1 DPTSSTG0 COMPRS PG01R00A 840B M 105 *2ND FLR WEST 04/15/94 09:53:22.38 09:53:50.41
STC02473 1 IMSMRGN1 MINIRGN1 DFSRRC00 82B0 202 04/15/94 10:07:39.69 10:07:49.04
JOB02500 1 X99M01AC UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 10:11:52.68 10:12:09.66
STC02556 1 CICS01 CICS DFHSIP 0222 245 04/15/94 10:21:24.92 10:58:19.00
JOB02583 1 X09V01AP STEP1 IEBGENER 8063 1 105 AP JONES 04/15/94 10:26:03.95 10:26:04.92
JOB02700 2 US1FMTGZ NPAW012 PNPAW01C 00C7 U 105 WASHINGTON.T 04/15/94 10:49:07.14 10:49:27.19
JOB02741 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 10:56:57.11 10:57:20.74
JOB02747 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 10:58:03.86 10:58:24.58
JOB02748 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 10:58:54.76 10:59:09.61
JOB02752 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 11:00:02.82 11:00:19.91
JOB02768 3 X07W01AX LKED IEWL 0D37 T 105 COBOL2 04/15/94 11:03:26.05 11:03:32.71
JOB02773 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 11:04:55.49 11:05:10.95
JOB02774 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 11:05:34.16 11:05:52.24
JOB02815 1 X99M01AT UPDX86 PRDAX86A 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 11:12:24.80 11:12:39.00
STC03407 1 CICS01 CICS DFHSIP 0A03 245 04/15/94 13:24:09.32 20:02:03.76
JOB03453 1 DPTSSTCS XASSR59 0222 M 105 THOMAS 04/15/94 13:30:22.83 13:30:38.52
JOB03466 6 US1PCTN1 UMUD50 XAMUD01 83EA 1 105 SOUTH PROD -MUD50 04/15/94 13:33:09.68 13:33:44.80
JOB03554 3 X06C01A0 AMILL M2XDNR 00C7 T 105 JONES.LARRY 04/15/94 13:51:48.91 13:53:06.19
JOB03629 1 DPTSSTCP S1 IEBGENER 0913 M 105 PRINT-OUTPUT 04/15/94 14:02:20.06 14:02:21.44
JOB03715 1 X99M01AT UPDX86 PRDAX86B 8BB9 T 105 ACCOUNTING- RM 201 04/15/94 14:24:28.94 14:24:41.74
JOB03778 1 US1PCTN8 SRCIN IEBGENER 8063 T 105 SMITH 04/15/94 14:37:55.27 14:37:56.88
JOB03789 1 US1PCTN8 SRCIN IEBGENER 8063 T 105 SMITH 04/15/94 14:39:11.97 14:39:13.34
JOB03808 1 US1PCTN2 STEP1 TSMUD02K 0806 1 105 KAREN SMITH 04/15/94 14:42:03.00 14:42:03.91

*** GRAND TOTAL (39 ITEMS)
CIMS Report Writer User Guide 4-135 ■

■ Beyond the Basics

Working with SMF Records
Figure 4-52 • SMF “TSO Sessions” report produced by the control statements on page 4-134

 TSO SESSIONS ON 05/04/94
 STEP STEP
 PGMR START START END SESSION SESSION NUM NUM TCB SRB
JOBNAME NAME DATE TIME TIME MINUTES COST TPUTS TGETS SECS SECS

D01CDT3 JOE CATRINA 05/04/94 07:47:09.20 11:41:05.33 233.9 $14.62 98 76 10.42 0.45
D01CDTC JOE CATRINA 05/04/94 11:38:49.99 11:55:37.85 16.8 $1.05 2 3 0.16 0.01
D01CDT3 JOE CATRINA 05/04/94 11:42:04.81 11:55:30.98 13.4 $0.84 75 67 5.71 0.44
D01CDT3 JOE CATRINA 05/04/94 14:07:52.49 16:23:51.19 136.0 $8.50 6 7 0.32 0.03
D01CDTC JOE CATRINA 05/04/94 14:07:56.93 16:23:41.04 135.7 $8.48 2 3 0.17 0.01
D01CDT3 JOE CATRINA 05/04/94 16:25:07.56 16:37:25.29 12.3 $0.77 22 14 2.62 0.14
*** TOTAL FOR JOE CATRINA (6 ITEMS) 548.2 $34.26 205 170 19.40 1.08

A20D01A JOHN A DENNEY 05/04/94 15:58:44.89 16:47:08.89 48.4 $3.03 4 4 0.44 0.02
*** TOTAL FOR JOHN A DENNEY (1 ITEM) 48.4 $3.03 4 4 0.44 0.02

B55DZT3 JOHN ALWORTH 05/04/94 07:33:55.23 09:04:23.78 90.5 $5.65 4 5 0.17 0.02
B55DZT3 JOHN ALWORTH 05/04/94 10:01:35.15 11:30:33.96 89.0 $5.56 3 4 0.21 0.02
B55DZT3 JOHN ALWORTH 05/04/94 14:07:10.55 16:00:01.04 112.8 $7.05 6 7 0.25 0.04
*** TOTAL FOR JOHN ALWORTH (3 ITEMS) 292.3 $18.27 13 16 0.63 0.08

Z99TPT6 JOHN TEMPLE 05/04/94 15:11:29.05 16:56:14.00 104.7 $6.55 1 2 0.18 0.01
*** TOTAL FOR JOHN TEMPLE (1 ITEM) 104.7 $6.55 1 2 0.18 0.01

B02C00A JOHN X CARLISLE 05/04/94 09:53:24.86 10:07:48.95 14.4 $0.90 27 6 0.50 0.03
B02C00A JOHN X CARLISLE 05/04/94 11:19:39.67 11:19:58.16 0.3 $0.02 14 1 0.31 0.01
B02C00A JOHN X CARLISLE 05/04/94 11:24:16.85 11:25:37.29 1.3 $0.08 14 1 0.31 0.01
B02C00A JOHN X CARLISLE 05/04/94 11:26:04.50 11:27:10.40 1.1 $0.07 11 4 1.23 0.05
B02C00A JOHN X CARLISLE 05/04/94 11:31:29.49 11:32:41.34 1.2 $0.07 10 7 1.11 0.04
B02C00A JOHN X CARLISLE 05/04/94 14:23:09.11 14:56:54.33 33.8 $2.11 12 11 0.31 0.02
B02C00A JOHN X CARLISLE 05/04/94 16:07:53.30 16:15:33.37 7.7 $0.48 54 50 3.02 0.25
B02C00A JOHN X CARLISLE 05/04/94 16:16:15.29 20:21:33.41 245.3 $15.33 84 84 0.87 0.17
*** TOTAL FOR JOHN X CARLISLE (8 ITEMS) 305.1 $19.07 226 164 7.66 0.58

F22PDTJ JOSEPH BROWN 05/04/94 12:11:57.53 12:23:39.63 11.7 $0.73 15 3 1.94 0.09
F22PDTJ JOSEPH BROWN 05/04/94 15:19:28.85 15:26:54.94 7.4 $0.46 29 16 2.10 0.11
F22PDTJ JOSEPH BROWN 05/04/94 16:14:43.19 16:57:04.29 42.4 $2.65 0 1 0.16 0.00
*** TOTAL FOR JOSEPH BROWN (3 ITEMS) 61.5 $3.84 44 20 4.20 0.20

A90CR09 JOY KRAMES 05/04/94 08:08:20.39 08:49:11.43 40.9 $2.55 33 18 0.76 0.07
A90CR09 JOY KRAMES 05/04/94 08:50:34.08 10:26:24.16 95.8 $5.99 15 15 1.96 0.22
A90CR09 JOY KRAMES 05/04/94 10:29:00.02 10:56:38.77 27.6 $1.73 16 17 1.51 0.12
A90CR09 JOY KRAMES 05/04/94 10:58:08.00 11:05:34.36 7.4 $0.46 40 22 2.99 0.18
A90CR09 JOY KRAMES 05/04/94 13:42:25.60 16:35:40.64 173.3 $10.83 39 26 5.42 0.19
*** TOTAL FOR JOY KRAMES (5 ITEMS) 345.0 $21.56 143 98 12.64 0.78
■ 4-136 CIMS Report Writer User Guide

Beyond the Basics ■

Working with Time Fields
Working with Time Fields 4

This section offers some tips that you may find useful when working with time fields.

Report Writer supports two dozen different types of time fields commonly found in data
files. These "time data types" are listed in Appendix A, Data Types. For information on
defining the time fields in your input files, see the section beginning on page 6-24.

Time fields, regardless of how they are stored in the input file, are normally formatted in
your reports like this:

HH:MM:SS

However, time fields defined as containing only hours and minutes (the HHMM data type,
for example) will be formatted like this:

HH:MM

A number of time display formats are available if you want to format your time fields
differently. The time display formats are listed in Appendix B, Display Formats. For
example, you can specify the HH–MM display format if you want a time field to be displayed
without showing the seconds. Report Writer will round the time to the nearest minute.

You may also specify a "time picture" to change the formatting of time fields in your
report. A time picture is similar to a regular numeric picture, except that it begins with
TPIC or TP (rather than PIC or P.) For example, to format a time field so that leading zeros
in the hours are suppressed, you could use a time picture like this:

COLUMNS: START–TIME(TPIC'Z9:99:99')

Time pictures can also specify decimal digits if needed for the time field:

COLUMNS: JOB–END(TP'Z9:99:99.99999')

By default, time fields are not totalled in reports. If you want to total a time field, you
may specify the ACCUM parm in either the FIELD, COMPUTE or COLUMNS statement (just as
with numeric fields.) If you do print totals for a time field, you may also need to specify
additional display digits for the hour portion of the total (in case the total is more than
99 hours):

COLUMNS: DURATION(ACCUM,TP'ZZ,ZZ9:99:99')

You may also choose to format time fields in your report as hours and decimal portions
of an hour. That is, the time 04:15:00 would be displayed as 4.25 (4 and one–fourth
hours). The HOURS display format does this. There are also MINS and SECS formats to
display time fields as a number of minutes or a number of seconds. The number of
decimal digits printed with such display formats is the number of decimal digits the field
is defined as having (which is usually 0.) To force a certain number of decimal digits to
print with these display formats, use a COMPUTE statement to change a field's decimal
precision. For example, to print START–TIME in hours, with 3 decimal digits, do this:

FIELD: START–TIME COL(10) TYPE(HHMMSS)
COMPUTE: X–START–TIME(3) = START–TIME
COLUMNS: X–START–TIME(HOURS)
CIMS Report Writer User Guide 4-137 ■

■ Beyond the Basics

Working with Time Fields
You may use time fields in conditional expressions. They can be compared with other
time fields or with time literals. Time literals must be expressed as HH:MM:SS with
optional decimal parts of seconds also allowed. Here are some examples of using time
fields and time literals in INCLUDEIF statements:

INCLUDEIF: START–TIME > END–TIME
INCLUDEIF: START–TIME > 12:00:00
INCLUDEIF: LOG–TIME > 13:01:00.0 AND < 13:01:00.5

You may also use time fields in computational expressions. For example:

COMPUTE: DURATION = END–TIME – START–TIME

The above statement computes a time field called DURATION, whose value is the difference
between the END–TIME and the START–TIME. For example, if END–TIME had a value of
17:30:45 and START–TIME was 17:25:35, then DURATION would have a value of 00:05:10.

If the start and end times might occur on different days, you should also convert the start
and end dates into seconds and use those in the computation as well:

COMPUTE: DURATION = ((#MAKENUM(END–DATE) * 86400) + END–TIME)
 – ((#MAKENUM(START–DATE) * 86400) + START–TIME)

Note • There are 86,400 seconds in one day.

When computing time fields, you are allowed to mix time fields and numeric fields in
the computational expression. Any numeric fields (or numeric literals) in the expression
are considered to represent a number of seconds.

Example
COMPUTE: NEXT–MINUTE = START–TIME + 60

The above statement creates a new time field call NEXT–MINUTE whose value is equal to
START–TIME plus 60 seconds.

Two built–in functions are provided to allow you to convert time fields to numeric fields
and vice verse. Use the #MAKENUM function to convert a time field into a numeric field.

Example
COMPUTE: START–SECONDS = #MAKENUM(START–TIME)

The above statement creates a new numeric field named START–SECONDS. If START–TIME
contained 02:30:05, START–SECONDS' value would be 9005. (Two hours is 7200 seconds,
30 minutes is another 1800 seconds, plus the 5 seconds.)

To convert numeric fields (which are considered as a number of seconds) into a time
field, use the #MAKETIME function:

COMPUTE: END–TIME = #MAKETIME(END–SECONDS)

If END–SECONDS contained 3600, then END–TIME would be 01:00:00 (since 3600 seconds is
one hour.)
■ 4-138 CIMS Report Writer User Guide

Beyond the Basics ■

Producing Files for Other PC Programs
You can also use the #MAKETIME function to convert a character value (in HHMMSS format)
into a time field. For example:

COMPUTE: END–TIME = #MAKETIME(CHAR–TOD)

If CHAR–TOD was a 6–byte character field containing 191059, then END–TIME would be a
time field with a value of 19:10:59.

Report Writer has a built–in field named #HHMMSS which contains the system time that
Report Writer began running. You can use this field like any other time field in creating
reports or PC files.

Note • Report Writer automatically converts STCKTIME times from GMT to local time.
The hours added or subtracted to the GMT time are determined by your installation's
system parm. To change this default, use the STCKADJ option to specify the number of
hours that should be added to the STCKTIME time. For example, to suppress
conversion and leave STCKTIME times in GMT, you could specify the following:

OPTIONS: STCKADJ(0)

Producing Files for Other PC Programs 4

Chapter 3, How to Request a PC File showed how to use Report Writer's control statements
to produce PC files for various PC programs. Appendix H, How to Import PC Files gives
specific information on how to import PC files into a number of PC programs.

The specific PC programs discussed in those areas are not the only ones that will accept
files formatted by Report Writer. Most PC programs have very similar criteria for the files
that they will import.

This section describes several methods you can use to create PC files for use in other PC
programs. These methods are:

■ use the PC option to create a standard "delimited ASCII" file for PCs

■ use your own combination of special options to specify in detail how the PC file is to
be formatted

■ create a "fixed format ASCII" file (rather than a "delimited ASCII" file), if your PC
program will import such files. Fixed format ASCII files generally are not as easy to
import, since you must describe the file's exact record layout to your PC program.

■ use a two–step process. For example, if your PC program will import Lotus
spreadsheets, do the following. First, use Report Writer to create a PC file for Lotus
and import it into Lotus. Then, have Lotus save it as a spreadsheet file, which your PC
program can then use. See page H-3 for an example of this.
CIMS Report Writer User Guide 4-139 ■

■ Beyond the Basics

Producing Files for Other PC Programs
Terminology 4

In this section, we talk about creating "delimited ASCII" and "fixed format ASCII" files.
To be precise, the files Report Writer creates on your mainframe are not yet "ASCII." They
are EBCDIC (which lets you browse them conveniently while they are still on your
mainframe.) The files are translated from EBCDIC to ASCII during the download process
to your PC. Once on your PC, you will truly have a delimited or fixed format ASCII file.

If you need Report Writer to actually write ASCII data directly, use the ASCII parm in your
print expressions. See page 4-21 for information on creating true ASCII files on the
mainframe.

Standard Delimited PC File

Most popular PC programs will import data that is formatted as a delimited ASCII file.
The first method, then, is to create an output file in this standard format and try to
import it into your PC program. Use the following statement to create a standard
delimited ASCII file:

OPTIONS: PC

Figure 4-53, on page 4-141 shows a sample PC file created using the above statement.
The output file has the following features:

■ fields are separated from each other with commas

■ character data is enclosed within quotation marks

■ numbers are formatted without imbedded commas

■ dates are formatted in MM/DD/YY format and are enclosed in quotation marks

■ times are formatted in HH:MM:SS format and are enclosed in quotation marks

■ no titles or Grand total lines are included

■ a "carriage control" character is not inserted in the first byte of each output record

For instructions on importing delimited ASCII files into your PC program, check the
program's online help (or printed manual) under "importing" or "ASCII". You might
also check under various other names that are commonly used for this kind of file, such
as: "delimited files", "comma separated values", "CSV", "DIF files", "DOS files" "ASCII
files" or "text files".
■ 4-140 CIMS Report Writer User Guide

Beyond the Basics ■

Producing Files for Other PC Programs
Figure 4-53 • SMF “TSO Sessions” report produced by the controls statements on page
page 4-134

OPTIONS: PC
INPUT: EMPL–FILE
COLUMNS: LAST–NAME HIRE–DATE SALES–QTR1 SALES–QTR2
 SALES–QTR3 SALES–QTR4

Produce this Report:

These Control Statements:

Notes:

• specifying PC causes the "report" to be formatted as a "delimited ASCII" file

• all character data is enclosed in quotation marks

• all numbers are formatted without commas

• all dates are formatted as MM/DD/YY, and enclosed in quotation marks

• each column is separated from the next column with a comma

• all titles and column headings are suppressed

• the Grand Total line is suppressed

• this file can be downloaded to a PC and imported directly into many PC programs

"JONES ","01/31/80", 9956.01, 10511.56, 8698.07, 13334.25
"JOHNSON ","06/21/75", 21560.15, 21350.21, 19970.10, 24118.78
"JOHNSON ","11/25/79", 14590.34, 17220.10, 20100.08, 23113.12
"MACDONALD ","07/04/82", 548.50, 687.13, 599.25, 726.10
"SIMPSON ","12/01/82", 1287.58, 5109.03, 998.12, 1329.15
"MORRISON ","11/30/79"' 25014.19, 26112.21, 28010.09, 18918.50
"CHRISTOPHERSON ","08/15/81", 13807.22, 16549.01, 8050.07, 9259.01
"BAKER ","06/04/82", 21336.10, 24999.02, 24001.33, 21789.44
"THOMAS ","06/04/82", 14889.07, 18045.05, 14250.12, 13009.25
CIMS Report Writer User Guide 4-141 ■

■ Beyond the Basics

Producing Files for Other PC Programs
Custom PC File

If your PC program does not import delimited ASCII files properly, it may have its own
special requirements for import files. Study the special OPTIONS statement parms below
to find the ones that will enable you to format your output file correctly. By specifying
these options in various combinations you can create an output file in just about any
format. (Each of these options is discussed in more detail in Chapter 10, Control
Statement Syntax.

Option Description

COLHDGONCE This option suppresses all title lines and causes the column headings
to print just once (at the very beginning of the PC file).

COLSEP This option lets you specify a "column separator" character. When
producing PC files, you usually want to separate ("delimit") the data
columns with commas. The following statement does that:

OPTIONS: COLSEP(',')

If your PC program requires that fields be separated with a tab
character (as Excel does), try this statement:

OPTIONS: COLSEP(X'05')

FORMAT This option allows you to specify any display format you want as the
default display format. This is useful when you want to change the way
all fields in your output are formatted. For example, when creating PC
files you might specify:

OPTIONS: FORMAT(QCHAR, NOCOMMA, Q–MM–DD–YYYY, Q–HH–MM–SS)

The above statement makes QCHAR, NOCOMMA, Q–MM–DD–YYYY and Q–HH–
MM–SS the default display formats for character, numeric, date and
time fields, respectively. Therefore, by default: all character fields will
be enclosed within quotation marks; all numeric fields will be
formatted without imbedded commas; all dates will be formatted in
MM/DD/YYYY format and be enclosed within quotation marks; and all
times will be formatted in HH:MM:SS format and be enclosed within
quotation marks.

Use this option to select the display formats that are appropriate for
your PC program. (A complete list of display formats is found in
Appendix B, Display Formats.) For example, if your PC program
requires that dates be formatted in Julian YYDDD format, you might
use this statement:

OPTIONS: FORMAT(QCHAR, NOCOMMA, YYDDD)

HGCOLHDG This option specifies that "Harvard Graphics" style column headings
are wanted. This option causes the column headings to appear in a
single line in the output file (rather than being split onto multiple
lines.) The "blank" line that normally separates the column headings
from the actual data is also suppressed. This option is useful when
the PC program which will be importing your output file expects the
first line of input to contain a legend for the data in the subsequent
lines.
■ 4-142 CIMS Report Writer User Guide

Beyond the Basics ■

Producing Files for Other PC Programs
Fixed Format ASCII Files

Some PC programs import Fixed Format (or "fixed width") ASCII files. To create a fixed
format ASCII file, use the following combination of options:

OPTIONS: OUTPUT NOCOLHDG FORMAT(CHAR, NOCOMMA, MM–DD–YY, HH–MM–SS)

The above statement results in an output file with the following features:

■ there is one blank space between each field in the output record

■ character data is written "as is"

■ numbers are formatted without imbedded commas

■ dates are formatted in MM/DD/YY format

■ times are formatted in HH:MM:SS format

■ no titles, column headings, or Grand Total lines are included

NOCC This option suppresses the "carriage control" character in the report
records. The carriage control character is needed when sending a
report to a printer, but is not normally desired when writing output
records to a dataset.

NOCOLHDGS This option suppresses all column headings from the output.

NOGRANDSPACES This option suppresses the blank spacing lines before the Grand Total
record. It is useful in those cases where you do want a Grand Total
record, but don't want extra blank records in your output file.

NOGRANDTOTAL This option suppresses the Grand Totals (including spacing lines)
from the output.

NOTITLES This option suppresses all titles, footnotes and page breaks from the
report.

OUTPUT You may specify the OUTPUT option parm, like this:

OPTIONS: OUTPUT

The OUTPUT option tells Report Writer that you are creating some form
of output file rather than a report. It produces the following results,
which are normally desired for output files:

■ it suppresses all titles

■ it suppresses the Grand Totals line

■ it suppresses the "carriage control" character

■ it suppresses the maximum pages/lines message (which is
normally printed when the MAXPAGE or MAXPRINT option is used.)

Option Description
CIMS Report Writer User Guide 4-143 ■

■ Beyond the Basics

Producing Files for Mainframe Programs
■ a "carriage control" character is not inserted in the first byte of each output record

As mentioned earlier, when importing a fixed format ASCII file into a PC program, you
must define the PC file records to that PC program. Check your PC program's on–line
Help (or its printed manual) for instructions on how to import fixed format files. Try
using such keywords as "import", "fixed", "format", "ASCII", and "record".

Producing Files for Mainframe Programs 4

Output files that will be used in mainframe programs will be considerably different from
output files intended for PC programs. The exact requirements for a mainframe output
file will depend, of course, on the particular program that will process the file. This
section discusses various options that you'll find helpful when creating mainframe
output files.

Simply specifying MAINFRAME is one way to produce a "generic" mainframe output file:

OPTIONS: MAINFRAME

Figure 4-54, on page 4-146 shows a sample output file created using the above statement.
Files in this format are compatible with COBOL, PL/1 and Assembler language programs.
The output file has the following features:

■ there are no blank spaces (nor commas) between the fields in the output record

■ character data is written "as is"

■ numbers are formatted in the DISPLAY format (no imbedded commas, no leading
zero suppression, the last digit includes the sign)

■ dates are formatted in YYMMDD format

■ times are formatted in HHMMSS format

■ no titles, column headings, or Grand Total lines are included

■ a "carriage control" character is not inserted in the first byte of each output record

If the standard "mainframe formatted" output file described above is not what you need,
you can specify various other individual options to customize your output file. The
following paragraphs discuss some of these options.

When creating mainframe output files, you probably will not want blank spaces between
fields in the output records. This will save disk space in the output file. You can
accomplish this by specifying zero in the "column spacing" option:

OPTIONS: COLSPACE(0)

In mainframe files, you may want some numeric fields to be "packed" in order to take
up less room in the file. ("Packed" is the same as COMP–3 in COBOL, and FIXED DECIMAL in
PL/1.) To do this, just use the PACKED display format for those numeric fields. You can
specify PACKED directly in the COLUMNS statement for individual fields, like this:

COLUMNS: EMPL–NAME SALES–QTR1(PACKED,6) SALES–QTR2(PACKED,6)
■ 4-144 CIMS Report Writer User Guide

Beyond the Basics ■

Producing Files for Mainframe Programs
The above statement causes SALES–QTR1 and SALES–QTR2 to be formatted as 6–byte
packed fields in the output file. You can also make PACKED the default numeric display
format by using the FORMAT option, like this:

OPTIONS: FORMAT(PACKED)
COLUMNS: EMPL–NAME SALES–QTR1(6) SALES–QTR2(6)

The above statements also cause the two sales fields to be output as 6–byte packed fields.

If you want your output file to contain binary data (COMP in COBOL, FIXED BINARY in
PL/1), use the BINARY display format in a similar way:

COLUMNS: EMPL–NAME DEPT–NUM(BINARY,1) TOTAL–SALES(PACKED,8)

The above statement formats DEPT–NUM as a 1–byte binary field, and TOTAL–SALES as an
8–byte packed field. Note that the output format you specify for a field can be different
than the way the field is formatted in the input file. For example, TOTAL–SALES is defined
as a 7–byte "display" numeric field in our sample EMPL–FILE. Yet we chose to output it
as an 8–byte packed number in the example above.

You can also use the HALFWORD and FULLWORD display formats as a shorthand way to
output 2–byte and 4–byte binary fields, respectively:

COLUMNS: EMPL–NAME DEPT–NUM(HALFWORD) TOTAL–SALES(FULLWORD)

Also use display formats to specify how you want date fields to be output. For example:

COLUMNS: EMPL–NAME HIRE–DATE(P–YYDDD)

The above statement formats HIRE–DATE as a 3–byte packed, Julian date. (This is
equivalent to PICTURE S9(5) COMP–3 in COBOL.)

Again, you can use the FORMAT option to change the default way that date fields are
formatted in your mainframe file:

OPTIONS: FORMAT(YYYYMMDD)
COLUMNS: HIRE-DATE

The above statements cause the HIRE-DATE field (and any other date fields) to be
formatted in YYYYMMDD format.

A complete list of display formats available for formatting numeric, date and time fields
in your output records is found in Appendix B, Display Formats.

When creating files for use on ASCII-based machines, you may want to format some
fields in ASCII (rather than in EBCDIC.) To do this, specify the ASCII parm after the field
name in your COLUMNS statement:

COLUMNS: EMPL–NAME(ASCII) HIRE-DTE(ASCII) DEPT–NUM(BINARY,1) TOTAL–SALES(PACKED,8)

For more information on creating ASCII output files, see page 4-21.
CIMS Report Writer User Guide 4-145 ■

■ Beyond the Basics

Producing Files for Mainframe Programs
Figure 4-54 • An output file created with the MAINFRAME option

OPTIONS: MAINFRAME
INPUT: EMPL–FILE
COLUMNS: LAST–NAME HIRE–DATE SALES–QTR1 SALES–QTR2
 SALES–QTR3 SALES–QTR4

Produce this Report:

These Control Statements:

Notes:

• specifying MAINFRAME causes the "report" to be formatted as a mainframe file

• all character data is written "as is"

• all numbers are formatted in the DISPLAY display–format

• all dates are formatted as YYMMDD

• there are no blank spaces or delimiters between fields

• all titles and column headings are suppressed

• the Grand Total line is suppressed

JONES 800131000009956.01000010511.56000008698.07000013334.25
JOHNSON 791125000014590.34000017220.10000020100.08000023113.12
JOHNSON 750621000021560.15000021350.21000019970.10000024118.78
MACDONALD 820704000000548.50000000687.13000000599.25000000726.10
SIMPSON 821201000001287.58000005109.03000000998.12000001329.15
MORRISON 791130000025014.19000026112.21000028010.09000018918.50
CHRISTOPHERSON 810815000013807.22000016549.01000008050.07000009259.01
BAKER 820604000021336.10000024999.02000024001.33000021789.44
THOMAS 820604000014889.07000018045.05000014250.12000013009.25
■ 4-146 CIMS Report Writer User Guide

Beyond the Basics ■

Producing Files for Mainframe Programs
When creating mainframe files you probably will not want titles, columns headings or
Grand Total lines. You will also not want a carriage control character in the first byte of
the output records. Use the following options to suppress any or all of these items:

OPTIONS: NOTITLES NOCOLHDGS NOGRANDTOTAL NOCC

In some cases you may want to include one or more Grand Total records in your output
file (for example, when creating output files containing summary data). In such cases,
you may need to specify the NOGRANDSPACES option to suppress the blank lines sometimes
written before the Grand Total lines.

OPTIONS: NOGRANDSPACES

When creating mainframe output files, you may want your records to be larger (or
smaller) than the standard 133–byte output record. Chapter 8, Operating System
Considerations explains how to specify any record length you want for your output file.
See page 8-7 (MVS) or page 8-19 (VSE).

How to "Subset" Mainframe Files 4

One common reason for creating mainframe files is to select certain whole records from
the input file and write them to a "subset" file. For example, we might want to create an
output file consisting of complete EMPL–FILE records, but only for those employees in
department 2. It would take a lot of effort to write a COLUMNS statement containing each
individual field name from the EMPL–FILE along with its desired output format. A much
simpler way is to define a single character field which corresponds to the entire input
record, and just write that one field to your output file:

OPTIONS: MAINFRAME
INPUT: EMPL–FILE
FIELD: RECORD COLUMN(1) LENGTH(150)
INCLUDEIF: DEPT–NUM = 2
COLUMNS: RECORD

The above statements create an output file which contains the EMPL–FILE records for
employees in department 2.

How to Sort Mainframe Files 4

Similarly, you can use Report Writer to sort mainframe files. One advantage of using
Report Writer is that you can simply name the fields that you want to sort on (rather than
having to specify the exact columns, lengths and data types of the sort fields.) Here is an
example of sorting a mainframe file.

OPTIONS: MAINFRAME
INPUT: EMPL–FILE
FIELD: RECORD COLUMN(1) LENGTH(150)
SORT: DEPT–NUM LAST–NAME FIRST–NAME
COLUMNS: RECORD

The above statements create an output file which contains all of the EMPL–FILE records,
sorted into DEPT–NUM, LAST–NAME and FIRST–NAME order.
CIMS Report Writer User Guide 4-147 ■

■ Beyond the Basics

Producing Files for Mainframe Programs
■ 4-148 CIMS Report Writer User Guide

5
How to Make a Web Report

Introduction . 5-2

How to Create a Web Report . 5-2

Writing your own HTML Tags . 5-4

Experimenting with HTML Tags . 5-5

Customizing the Web Report's Titles . 5-6

Customizing the Web Report's Data Columns . 5-9

Customizing Control Breaks and Grand Totals .5-11

Putting Graphics in Your Web Report .5-12

Putting Graphics in Your Report Title .5-14

Putting Graphics in the Body of Your Report .5-14

Putting Graphics at Control Breaks .5-16

Putting Hot Links in your Web Report .5-16

Using HTML Tables in your Web Report .5-21

Using Dynamic HTML Tags .5-25

Using the PRESCRIPT and POSTSCRIPT Options .5-29

Summary of Options for Web Reports .5-30

Common HTML Tags .5-31
CIMS Report Writer User Guide 5-1 ■

■ How to Make a Web Report

Introduction
Introduction 5

In earlier chapters we've seen how to create custom reports with Report Writer. In this
chapter you will learn how Report Writer can format your reports especially for viewing
on Web browsers (such as Microsoft's Internet Explorer and Netscape's Navigator.) You
can put such reports on your company's Intranet or Internet site for easy company-wide
(or public) viewing. Or, send the report to your colleagues as an e-mail attachment that
they can automatically view from their e-mail reader. Report Writer is a powerful tool in
the move toward paperless "enterprise reporting."

As you will see, you can simply add one statement to any existing Report Writer report
to create a Web-viewable version of that report. But that's just the starting point in
making attractive Web reports with Report Writer. Advanced users who know the HTML
language can insert their own HTML commands into a Report Writer report. These
commands can take advantage of such Web features as:

■ Custom fonts, font sizes, and colors, as well as bold, italic and underlined text.

■ Special effects like animation, blinking text or text that scrolls marquee-like across the
screen.

■ Logos, graphics, charts, and photographs. For example, you could include employee
photographs in a personnel directory. (See Figure 5-9, on page 5-23 for an example of
this.)

■ "Hot links" that help viewers navigate within your report -- or which let them jump
to external Web pages.

■ Playing audio or video clips. For example, a viewer could click on a product number
in an inventory report and automatically see a video clip demonstrating the product
in use!

Note • Before reading the rest of this chapter, you should already be familiar with
creating regular Report Writer reports. Chapter 2, How to Request a Report explains how
to create reports.

How to Create a Web Report 5

Web pages can be formatted using a language called HTML. In order to properly view your
Report Writer report on the Web, certain HTML commands (also called "tags") must be
added to the report. Without these HTML tags, the Web browser would "wrap" all of your
report lines together into one big, jumbled "paragraph."

The HTML option tells Report Writer to automatically add basic HTML information to your
report:

OPTION: HTML

The above statement tells Report Writer to add HTML tags to your report so that it will
display properly on a Web browser. After that, all you do is route Report Writer's output
to a file which you can then upload to your Web site or other destination.
■ 5-2 CIMS Report Writer User Guide

How to Make a Web Report ■

How to Create a Web Report
Figure 5-1 • A basic Web report (viewed on Microsoft’s Internet Explorer)

OPTION: HTML('ABC COMPANY SALES REPORT')
TITLE: 'SALES REPORT'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Web Report:

These Control Statements:
CIMS Report Writer User Guide 5-3 ■

■ How to Make a Web Report

Writing your own HTML Tags
Tip: name your uploaded file using an extension of ".htm" or ".html". That tells Web
browsers that your file is an HTML file.

The HTML option also lets you specify a title for your Web page, if you like:

OPTION: HTML('ABC COMPANY SALES REPORT')

The HTML title is different from the regular report titles. This special HTML title appears at
the top of the Web browser's window as the name of your Web page.

Figure 5-1, on page 5-3 shows a Web page created using the above statement.

Writing your own HTML Tags 5

For users who know the HTML language, Report Writer lets you specify your own HTML
tags directly within your Web report. By specifying your own HTML tags, you can create
very impressive Web reports like the examples shown in the remainder of this chapter.

Note • The rest of this chapter is intended for readers who are familiar with the HTML
language.

"HTML tags" are formatting instructions that tell Web browsers how to format a portion
of a Web page's text. HTML tags always begin with a "less than" sign and end with a
"greater than" sign, like this <...>.

Many HTML tags are used in pairs. Their formatting information applies to all of the text
between the opening HTML tag (for example,) and the closing HTML tag (for example,
.) Closing HTML tags consist of a slash and the first word (or abbreviation) of the
opening tag.

Example
ABC COMPANY SALES REPORT

When the above text is displayed by a Web browser, it will look like this:

ABC COMPANY SALES REPORT

The words "SALES REPORT" are in bold letters. That is because those words are within
the HTML "bold" tags. Notice that the HTML tags themselves are not displayed by Web
browsers.

Other HTML tags are used by themselves. For example,
 specifies that a line "break"
is wanted. It does not require a closing tag.

A list of common HTML tags that you might want to use begins on page 5-31.

Report Writer's HTML option causes your report to be surrounded with just enough HTML
information to make it viewable on the Web. To further customize your report for the
Web, Report Writer lets you insert your own HTML tags (as character literals) directly
within your report. Here are some of the places you might want to put your own HTML
tags:
■ 5-4 CIMS Report Writer User Guide

How to Make a Web Report ■

Experimenting with HTML Tags
■ in TITLE statements, to customize the report titles. For example:

TITLE: 'ABC COMPANY SALES REPORT'

■ in COLUMNS statements, to customize one or more columns of data. For example:

COLUMNS: REGION EMPL-NAME '' SALES-DATE '' SALES-TIME
 CUSTOMER AMOUNT TAX

■ in BREAK statements, to customize the lines printed at control breaks (or the Grand
Total lines.) For example:

BREAK: REGION NOTOTALS
 FOOTING('TOTALS FOR' REGION 36 AMOUNT(TOTAL) TAX(TOTAL) '')

■ in COMPUTE statements, to create fields that contain dynamically built HTML tags. These
fields can then be used in other control statements. For example:

COMPUTE: COLOR-TAG = WHEN(AMOUNT > 100) ASSIGN('')
 ELSE ASSIGN('')

■ in PRESCRIPT and POSTSCRIPT options, for formatting information that applies to the
entire report. For example:

OPTION: PRESCRIPT('')
OPTION: POSTSCRIPT('')

Experimenting with HTML Tags 5

Before we continue, a word of caution is in order. Formatting reports with HTML tags is
more of an art than a science. For one thing, there are a number of different versions of
HTML and it is constantly evolving as new versions of Web browsers are released. In
addition, different browsers sometimes process the same HTML tag in slightly different
ways. Furthermore, different preference settings in viewers' browsers can cause the same
Web report to look different to different viewers. Finally, remember that the actual report
that you see on the Web is the result of a two-step process. First Report Writer formats a
text-only report that contains your HTML tags mixed in with your report data. Then the
Web browser strips the HTML tags out of the formatted report (often throwing off Report
Writer's own carefully calculated alignment) and then reformats the report data that
remains. All of this is to say that sometimes you will get quite unexpected results the first
time you try out an HTML tag! But with enough experimentation, you can usually achieve
the desired result.

Tip: while refining a new Web report over and over again, it is easy for HTML syntax errors
to creep into the results. There are resources on the Web that perform free syntax-
checking of HTML files. This can be very helpful if you are not getting the results you expect
from your HTML file. At the time of this writing, one such "HTML validation" service is
available at www.w3.org.

The following sections show how to successfully use HTML tags in several specific areas
of your reports.
CIMS Report Writer User Guide 5-5 ■

■ How to Make a Web Report

Customizing the Web Report's Titles
Customizing the Web Report's Titles 5

You can customize a report title by including HTML tags within the title text in your TITLE
statement.

Example
TITLE: '<H1>ABC COMPANY</H1>'
TITLE: '<H2>RECENT SALES</H2>'

Report Writer will simply write out your HTML tags along with the rest of your title text.
The Web browser will then recognize the HTML tags and format the text within the tags
accordingly.

The <H1> and </H1> HTML tags in the first TITLE statement above tell the Web browser to
format the title text within those tags as a "level 1 header." Thus, the person viewing your
report on the Web will see "ABC COMPANY" in big, bold text at the top of each report
page. They will not see the HTML tags themselves because the Web browser strips them
away. Similarly, the second title will be formatted as a "level 2 header" (somewhat
smaller than a level 1 header).

Here is another example. In this case, we make the first title red and the second title blue:

TITLE: '<H1>ABC COMPANY</H1>'
TITLE: '<H2>RECENT SALES</H2>'

The <Hn> tags cause the titles to be left-justified in some browsers. If you want the titles
centered, just enclose them in <CENTER> tags:

TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES</H2></CENTER>'

Figure 5-2 shows a report that uses the above TITLE statements.

Notice that the <CENTER> tags cause the titles to be centered within the Web browser
window (not necessarily centered just over the report columns.) You can always force
your titles into any desired position by including padding blanks in the title text:

TITLE: '<H1> ABC COMPANY</H1>'
TITLE: '<H2> RECENT SALES BY REGION</H2>'

You can use HTML tags in the TITLE statement to change a title's font, size and color and
to specify bold, underlined and italicized text. There are also HTML tags to make titles
blink or scroll marquee-like. The appropriate HTML tags are listed in the section that
begins on page 5-31.
■ 5-6 CIMS Report Writer User Guide

How to Make a Web Report ■

Customizing the Web Report's Titles
Figure 5-2 • A Web report with customized titles

OPTION: HTML('ABC COMPANY -- RECENT SALES')
TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES</H2></CENTER>'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER AMOUNT TAX

Produce this Web Report:

These Control Statements:
CIMS Report Writer User Guide 5-7 ■

■ How to Make a Web Report

Customizing the Web Report's Titles
Following are some additional suggestions for certain situations that may come up when
customizing your Web report's titles.

To Avoid Report Titles in the Middle of Screens

Since a PC screen does not usually display as many report lines as a sheet of paper, it may
take several PC screens to show a single "page" of a Report Writer report. This means that
the report titles and column headings may seem to appear randomly as viewers "page"
through the report online.

Use the TITLEONCE option to just print the report titles and column headings once at the
beginning of your report. This solves the problem of random titles and saves valuable
screen space for actual data.

Example
OPTION: TITLEONCE

Syncing Report Titles with the Web Browser Screen

You may also be able to sync the Web browser window with the report pages by
specifying "short" report pages. That would let viewers use their PC's Page Up and Page
Down keys to page through your report, one screen per report page. Use Report Writer's
PAGELEN option to specify a page length of about 20 lines (experiment to get the exact
number for your PC.) Also add a blank FOOTNOTE statement to your report. (That forces
trailing blank lines at the end of each page to ensure that all pages are exactly the same
length.)

Example
OPTION: PAGELEN(20)
FOOTNOTE:

Then adjust the size of your Web browser window as necessary to exactly match the
length of your report pages. You can also adjust the font size in your Browser's
"preferences" to fit more or fewer lines of the report on each screen.

Note • Be aware that even when this method puts the report pages in sync with your
PC's Web browser window, it may still scroll differently on other PCs.

To Remove the Underscore Line from the Column Headings

Specify the NOUNDERSCORES option to eliminate the underscore line that appears after the
column headings. This often looks better on PC screens and also saves valuable screen
space for actual data.

Example
OPTION: NOUNDERSCORES
■ 5-8 CIMS Report Writer User Guide

How to Make a Web Report ■

Customizing the Web Report's Data Columns
To Solve Alignment Problems

Remember, you can always use explicit spacing factors to force items into the place you
desire. Also, specifying a single slash (/) at the end of the TITLE statement will prevent
Report Writer from trying to center- or right-justify your title.

Example
TITLE: '<H2>' 0 #TODAY 5 'SALES REPORT' 4 'PAGE' #PAGENUM '</H2>' /

The numbers in the above statement are spacing factors that tell Report Writer how many
spaces to put between each item in the title. The trailing slash (/) tells Report Writer to
leave the title left-justified.

Customizing the Web Report's Data Columns 5

You can put HTML tags (as literals) in the COLUMNS statement to customize individual
columns of the report. For example, to make the AMOUNT and TAX columns bold, we could
use this statement:

COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME
 CUSTOMER '' AMOUNT TAX ''

The above statement causes the literal text "" to appear in each report line before the
AMOUNT column. And the literal text "" will appear as the last item on each line. Of
course the Web browser will recognize these special HTML tags and process them as
formatting instructions, rather than including them as part of the report shown to the
viewer. The viewer won't see these literal texts in the online report, but the AMOUNT and
TAX values will now appear in bold letters on the Web page.

The Web report produced by the above COLUMNS statement would have two blank spaces
(instead of just one) between the CUSTOMER column and the AMOUNT column. That is
because Report Writer defaults to putting one blank space between all report columns.
Thus, there would be one blank space after the CUSTOMER column and one blank space
after the "" column. The Web browser removes that HTML literal, but not the blank
space after it. To solve this problem (which uses up valuable screen space), specify an
override spacing factor of 0 as needed in COLUMNS statements that contain HTML literals:

COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER '' 0 AMOUNT TAX 0 ''

Figure 5-3, on page 5-10 uses the above statement to make the AMOUNT and TAX columns
bold. Notice in that report that the column headings and total values for the AMOUNT and TAX
fields are also bold. When the HTML (or HTMLAID) option is specified, Report Writer
automatically copies your COLUMNS statement HTML tags into the column heading lines
and into the total lines for you. Thus, the formatting information that you specify for a
data column is also applied to the column headings and total value (if any) for that
column.

You can use HTML tags in the COLUMNS statement to change a column's font, size and color
and to specify bold, underlined and italicized text. There are also HTML tags to make
columns blink or scroll. The appropriate HTML tags are shown in the table that begins on
page 5-31.
CIMS Report Writer User Guide 5-9 ■

■ How to Make a Web Report

Customizing the Web Report's Data Columns
Figure 5-3 • A Web report with two bold columns

OPTION: HTML('ABC COMPANY -- RECENT SALES')
TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES</H2></CENTER>'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME
 CUSTOMER '' 0 AMOUNT TAX 0 ''

Produce this Web Report:

These Control Statements:

OPTION: HTML('ABC COMPANY -- RECENT SALES')
TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES</H2></CENTER>'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME
 CUSTOMER '' 0 AMOUNT TAX 0 ''
■ 5-10 CIMS Report Writer User Guide

How to Make a Web Report ■

Customizing Control Breaks and Grand Totals
Following are some additional suggestions for certain situations that may come up when
customizing the body of your Web report.

Using Other Fonts in Your Report

The HTML option causes Report Writer to embed your entire report within <PRE>
("preformatted") tags. This tells the Web browser to preserve the report's line breaks and
alignment. To accomplish this, the Web browser chooses a non-proportional font for
your report. (A non-proportional font is one where all letters have exactly the same
width.) If you override this by specifying the name of a proportional font (in a
tag in your COLUMNS statement), your report columns will probably not line up correctly.
Therefore, it is usually best not to change the font of the body of the report. Or, if you
do, be sure to change it to another non-proportional font. (On the other hand, it is
generally safe to specify any kind of font for the report titles, since they are not in
columnar format.)

Customizing Control Breaks and Grand Totals 5

You can also put your own HTML tags in the lines printed at control breaks (including the
Grand Total "control break".) For example, to make the whole total line at a control
break appear in bold, underlined, italicized text, you could specify:

BREAK: REGION NOTOTALS
 FOOTING('<U><I>TOTALS FOR' REGION 36 AMOUNT(TOTAL) TAX(TOTAL) '</I></U>')

The report in Figure 5-4 uses the above BREAK statement.

Notice that we did not use the TOTAL parm to customize the total line text (as you would
for a normal report.) Instead, we specified NOTOTALS (to suppress the default total line)
and then added a FOOTING parm to create our own total line. There are two reasons for
this.

First, while the TOTAL parm would allow us to specify our opening HTML tags, it offers no
way to specify the closing tags, since these must come after the totalled numeric columns.

Second, putting HTML tags in the TOTAL parm throws off the alignment of the totalled
columns. The Web browser strips the HTML tags from the first part of the total line, which
causes the totalled numeric columns to be shifted left.

By using a FOOTING parm (as in the statement above), you can specify both opening and
closing HTML tags. You can also use an explicit spacing factor (the "36") to force the
totalled columns into their proper location. Experimentation is the best way to
determine the correct spacing factor for a particular report.

Tip: when experimenting, use the MAXINCLUDE option to limit the number of records
included in your report. This can greatly speed up your trial runs, especially if you're
working with large input files.

HTML tags can also be used in the BREAK statement's HEADING parm. See Figure 5-7, on
page 5-19 for an example of doing this.
CIMS Report Writer User Guide 5-11 ■

■ How to Make a Web Report

Putting Graphics in Your Web Report
You can use HTML tags in the BREAK statement to change a total line's font, size and color
and to specify bold, underlined and italicized text. There are also HTML tags to make text
blink or scroll. The appropriate HTML tags are shown in the table that begins on
page 5-31.

Following are some additional suggestions for certain situations that may come up when
customizing your Web report's control breaks.

Putting a Divider Line at Control Breaks

You may want to use the <HR> tag to put a "horizontal rule" (line) in your report. For
example, to add lines to a report to separate the regions, you could specify:

BREAK: REGION FOOTING('<HR>')

The report in Figure 5-7, on page 5-19 uses a similar statement.

Why is the Total Line Split into Two Lines?

Including HTML tags in the COLUMNS statement sometimes causes the default total line to
be split into two lines. This is because all HTML literals from the COLUMNS statement are
also copied into the total lines. (This insures that if a report column is bold, for example,
the totals for that column will also be bold.) The problem occurs when there is not
enough room to put the entire total line text before the first HTML tag. Report Writer then
puts the total line text on a separate line so that the HTML tags can appear in the correct
location on the total line. If you want to force the totals onto a single line, specify the
NOTOTALS option on your BREAK statement. Then use a FOOTING parm to specify exactly
how your total line should look. The report in Figure 5-4, on page 5-13 demonstrates this
technique.

Putting Graphics in Your Web Report 5

Use the ("image") tag to display a graphic image in your Web report. The graphic
might be a logo, a drawing, a photograph, a chart, a graph, etc. When you include an
 tag in your report output, the Web browser will insert the image into the Web page
right at that point.

The format of the tag is:

The "url" identifies the source file that contains your graphic image. The graphic image
file will usually be in GIF or JPEG format and will be named with an extension of ".gif"
or ".jpg". The optional WIDTH parm specifies how wide (in pixels) the image should be.
The optional ALIGN parm tells the Web browser how to vertically align any text that
follows the image. The tag also has other optional parms not shown above.
■ 5-12 CIMS Report Writer User Guide

How to Make a Web Report ■

Putting Graphics in Your Web Report
Figure 5-4 • A Web report with customized total lines

OPTION: HTML('ABC COMPANY -- RECENT SALES BY REGION')
TITLE: '<CENTER><H1>ABC COMPANY</H1></CENTER>'
TITLE: '<CENTER><H2>RECENT SALES BY REGION' 0
 '</H2></CENTER>'
INPUT: SALES-FILE
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME
 CUSTOMER '' 0 AMOUNT TAX 0 ''
SORT: REGION
BREAK: REGION NOTOTALS
 FOOTING('<U><I>TOTALS FOR' REGION 36 AMOUNT(TOTAL) TAX(TOTAL)
 '</I></U>')

Produce this Web Report:

These Control Statements:
CIMS Report Writer User Guide 5-13 ■

■ How to Make a Web Report

Putting Graphics in Your Report Title
Putting Graphics in Your Report Title 5

Put an tag in your TITLE statement to include a graphic among your titles. For
example, to include a corporate logo along with a title at the top of each report page, we
could use these statements:

TITLE: '<CENTER></CENTER>'
TITLE: '<H2><CENTER>SALES REPORT</CENTER></H2>'

Of course, for this to work your Web site must have a file named LOGO.GIF that contains
your company's logo.

Figure 5-5, on page 5-15 uses TITLE statements similar to the ones shown above. (So do
the reports on page 5-23 and page 5-27.)

You can also put an tag in the same TITLE statement as your title text.

Example
TITLE: 'SALES REPORT'

Notice the ALIGN=MIDDLE parm in the above tag. It tells the Web browser to align
the subsequent text with the middle (height wise) of the graphic.

A more powerful (but more complicated) way of combining text and graphics in the title
is to use an HTML table. That technique is discussed in the section that begins on
page 5-21.

Putting Graphics in the Body of Your Report 5

You can also put tags in your COLUMNS statement to include a graphic in each detail
line of the report. In other words, your report can have one or more columns of graphics,
instead of text. In this case, of course, you do not want to show the same graphic in every
detail line. You want a graphic that is related to the data in the rest of that particular
report line. Use a COMPUTE statement to dynamically build an appropriate tag for
each report line.

For example, assume that we want to produce a personnel directory for the Web. We
want the directory to include each employee's photograph. Further assume that our Web
site has photographs of the employee's stored in JPG files. The photograph files are
named EMPnnn.JPG, where nnn is the employee's employee number. We would use the
following COMPUTE statement to build the correct tag for the report detail lines:

COMPUTE: PICTURE-TAG = ''

The COMPUTE statement above builds a unique tag for each employee, based on
their employee number. For example, the PICTURE-TAG field for employee number 044
will contain this text: .

We can then use this PICTURE-TAG field in our COLUMNS statement:

COLUMNS: PICTURE-TAG LAST-NAME FIRST-NAME EMPL-NUM HIRE-DATE
■ 5-14 CIMS Report Writer User Guide

How to Make a Web Report ■

Putting Graphics in the Body of Your Report
Figure 5-5 • A Web report containing graphics in the title and body

OPTION: HTML('ABC COMPANY PERSONNEL DIRECTORY')
OPTION: NOCOLHDGS
TITLE: '<CENTER></CENTER>'
TITLE: '<CENTER>' 0
 'ONLINE PERSONNEL DIRECTORY</CENTER>'
TITLE:
TITLE: ' EMPL HIRE' /
TITLE: 'PHOTO LAST NAME FIRST NAME NUM. DATE'
 ' CITY ST ZIP' /
INPUT: EMPL-FILE
COMPUTE: PICTURE-TAG=''
COLUMNS: PICTURE-TAG LAST-NAME FIRST-NAME EMPL-NUM HIRE-DATE
 CITY STATE ZIP
SORT: LAST-NAME

Produce this Web Report:

These Control Statements:
CIMS Report Writer User Guide 5-15 ■

■ How to Make a Web Report

Putting Graphics at Control Breaks
The first column of the resulting Web report is a column of employee pictures. Figure 5-5,
on page 5-15 uses the above statements.

Notice how we handled the column headings in Figure 5-5. We specified NOCOLHDGS to
suppress the default column headings. Then we used extra TITLE statements to build our
own column headings. (We also used an empty TITLE statement to put a blank line
between the report titles and the column headings.)

Why didn't we just use Report Writer's default column headings? Because adding a
"picture" column to a report tends to throw off the alignment of all of the following
column headings (and of the total values, as well.) Remember that when Report Writer
formats its report, the "picture" column just contains text (the tag) like any other
column. Later, the Web browser strips away these tags in the detail lines and
replaces them with actual images. Those images (photographs, in this example) take up
a different amount of space than the tag took up. Since no similar substitution
takes place in the column heading lines (or in the total lines) their spacing no longer
matches the detail line spacing.

When including graphics in the body of your report, you will probably want to use this
technique to control exactly how your column headings look. Similarly, use the BREAK
statement FOOTING parm to precisely control how your total lines look (as we did in
Figure 5-4, on page 5-13.)

Putting Graphics at Control Breaks 5

You can also use tags in the BREAK statement, to place graphics at your report's
control breaks. The report in Figure 5-7, on page 5-19 shows an example of this.

Putting Hot Links in your Web Report 5

Hot links (or "hypertext links") are areas of your Web report that viewers can click on to
obtain some action. For example, clicking on a hot link might cause the browser to jump
to a different part of the report (the Grand Totals, for example). Or it might jump to a
different Web page altogether (for example, to a Web page describing a particular
product in a sales report.)

Hot links can also invoke an audio player or even a video clip player. Viewers could click
on a product name in your report, for example, and automatically be shown a video
demonstrating that product in use.

To create a hot link in your report, surround your "hot text" (that is, the text that the
viewer should click on) with the and ("anchor") tags. The url in
the tag will determine what action is taken when the viewer clicks on the text.

If the url is the name of a Web page (for example, an HTML file), the browser will jump
to that Web page when the viewer clicks on the hot link:

TITLE: '' 0
 'CLICK HERE TO READ MORE ABOUT THE ABC COMPANY'
■ 5-16 CIMS Report Writer User Guide

How to Make a Web Report ■

Putting Hot Links in your Web Report
If the url is the name of a label within an HTML file (even within the Web report itself)
the browser will jump to that specific location within that Web page:

TITLE: 'CLICK HERE TO JUMP TO EAST REGION'

If the url is the name of an audio file (such as a .WAV, .AU or .MID file), the browser will
play that sound file when the viewer clicks the hot link:

TITLE: '' 0
 'CLICK HERE TO HEAR THE CHAIRMAN''S GREETING'

If the url is the name of a video clip (such as an .AVI file) the browser will play that video
clip when the viewer clicks the hot link.

TITLE: '' 0
 'CLICK HERE TO SEE A VIDEO ABOUT ABC COMPANY''S PRODUCTS'

As mentioned, hot links can be used to let viewers easily move around within the report
itself. The report in Figure 5-7, on page 5-19 shows an example of using hot links in this
way. Viewers can click on one of the hot texts at the beginning of the report to go directly
to the region they are interested in, or to the Grand Totals. And at the bottom of the
report, there is a another hot link to take them back to the top of the report.

Figure 5-6 shows the control statements used to create the report in Figure 5-7. As you
can see in Figure 5-6, we used PRESCRIPT options to put five hot link texts ahead of the
report. (The PRESCRIPT option puts lines of text before the beginning of the report itself.)
The urls in these links are HTML "labels" within our own report named EAST, NORTH, SOUTH,
WEST and GRAND. We used a POSTSCRIPT option to write one other hot link text at the end
of the report. It references a label called TOP.

To make these links work, the output must contain the six labels (TOP, EAST, NORTH, etc.)
at the appropriate place within the report. HTML labels are assigned with
tags. We used another PRESCRIPT option to put the TOP label at the top of the report. And
we used BREAK statement HEADING parms to put the four regional labels at the beginning
of their respective control groups. Finally we used the Grand Total control break FOOTING
parm to supply the GRAND label at the Grand Total lines.

Figure 5-8, on page 5-20 shows the actual HTML output file created by Report Writer.

Note • We were able to provide hot links to each control group in this report because
we knew ahead of time all the values that the REGION variable would have. This
particular technique can only be used when you know the values of your control
break variable in advance.
CIMS Report Writer User Guide 5-17 ■

■ How to Make a Web Report

Putting Hot Links in your Web Report
Figure 5-6 • Control statements used to create a Web report with “hot links”

OPTION: HTML('ABC COMPANY -- SALES BY REGION')
 NOUNDERSCORES
 PRESCRIPT('')
 PRESCRIPT('CLICK HERE TO JUMP TO EAST REGION')
 PRESCRIPT('CLICK HERE TO JUMP TO NORTH REGION')
 PRESCRIPT('CLICK HERE TO JUMP TO SOUTH REGION')
 PRESCRIPT('CLICK HERE TO JUMP TO WEST REGION')
 PRESCRIPT('CLICK HERE TO JUMP TO GRAND TOTALS')
 POSTSCRIPT('CLICK HERE TO RETURN TO TOP OF REPORT')
TITLE:'<H1><CENTER>ABC COMPANY SALES BY REGION</CENTER></H1>'
INPUT: SALES-FILE
COMPUTE: REGION-IMG = '<IMG SRC=REG' + #LEFT(REGION,1) +
 '.GIF ALIGN=MIDDLE>'
COLUMNS: REGION(NOREPEAT) EMPL-NAME SALES-DATE SALES-TIME
 CUSTOMER AMOUNT TAX
SORT: REGION
BREAK: REGION NOTOTALS
 HEADING('')
 HEADING(REGION-IMG)
 HEADING(' ')
 FOOTING(' ')
 FOOTING('<I>' 0
 'TOTALS FOR' REGION 'REGION' 7 AMOUNT(TOTAL) TAX(7,TOTAL)
 '</I>')
 FOOTING('<HR>')
BREAK: #GRAND
 FOOTING('')
■ 5-18 CIMS Report Writer User Guide

How to Make a Web Report ■

Putting Hot Links in your Web Report
Figure 5-7 • Two screens from a Web report with “hot links”
CIMS Report Writer User Guide 5-19 ■

■ How to Make a Web Report

Putting Hot Links in your Web Report
Figure 5-8 • HTML file for a Web report with “hot links”

<HTML>
<HEAD>
<TITLE>ABC COMPANY -- SALES BY REGION</TITLE>
</HEAD>
<BODY>
<PRE>

CLICK HERE TO JUMP TO EAST REGION
CLICK HERE TO JUMP TO NORTH REGION
CLICK HERE TO JUMP TO SOUTH REGION
CLICK HERE TO JUMP TO WEST REGION
CLICK HERE TO JUMP TO GRAND TOTALS
 <H1><CENTER>ABC COMPANY SALES BY REGION</CENTER></H1>

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43
 SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
 MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
 MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66

<I>TOTALS FOR EAST REGION 112.86 6.77 </I>
<HR>

NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
 JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
 JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
 JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
 JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07

<I>TOTALS FOR NORTH REGION 386.69 23.22 </I>
<HR>
 (additional lines not shown)

WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
 BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
 BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22

<I>TOTALS FOR WEST REGION 282.73 16.97 </I>
<HR>

****** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
CLICK HERE TO RETURN TO TOP OF REPORT
</PRE>
</BODY>
</HTML>
■ 5-20 CIMS Report Writer User Guide

How to Make a Web Report ■

Using HTML Tables in your Web Report
Using HTML Tables in your Web Report 5

If you like, you can use HTML tags to format your Web report as a table. HTML tables are
often used as a convenient formatting tool for organizing data on a Web page. One
common use of tables is to align multiple lines of text with a single image.

HTML tables consist of a number of rows. Within each row is one or more data cells
(which form the columns.) Each data cell can contain report text and/or an image.

Surround your HTML table with <TABLE> and </TABLE> tags. Use the <TR> tag to start a new
table row. Use the <TD> tag to start a new data cell within a row.

The Web report in Figure 5-8 contains two separate HTML tables.

The first table contains only the title information. We used a table as a convenient way
to align multiple lines of text with a graphic. This table has just one row. That row
contains two cells. The first cell contains the logo image. The second cell contains the two
lines of title text. Here are the statements we used to build this table:

PRESCRIPT('<TABLE><TR><TD>')
PRESCRIPT('<TD ALIGN=CENTER>')
PRESCRIPT('ABC COMPANY')
PRESCRIPT('PERSONNEL DIRECTORY')
PRESCRIPT('</TABLE>')

Notice that we used PRESCRIPT options to write out this HTML code once at the beginning
of the report. That means that our title will only appear once at the top of the whole
report. By specifying the NOTITLES option (see page 5-23), we suppressed the regular
report titles at the top of each page.

In the above statements, the <TABLE> tag defines the beginning of the table. Since we did
not specify a "BORDER=n" parm in this tag, this table has no visible border or grid lines.
The first (and only) row in this table is defined with the <TR> tag. The <TD> tag marks the
beginning of the first cell in this row. In this cell, we just specified the tag for the
company's logo graphic. We then started the second cell with another <TD> tag. Within
this cell are two lines of text. We put different tags around each line to make them
different colors, fonts and sizes. Finally, we ended the table by specifying the </TABLE>
tag.

The second table in our report contains the main body of the report. We also used
PRESCRIPT options to write the HTML code for the initial part of this table:

PRESCRIPT('<TABLE BORDER=1 CELLPADDING=2>')
PRESCRIPT('<TR><TD>PHOTO<TD>NAME & ADDRESS<TD>EMP#<TD>DEPT<TD>ACCOUNTS<
 TD>SEX<TD>HIRE DATE<TD>TELEPHONE')

For this table, we chose to show grid lines by specifying BORDER=1 in the <TABLE> tag. The
first row of our table, also defined by a PRESCRIPT option, contains our table's column
headings. (Notice that this PRESCRIPT text was too long to fit onto a single line. We
continued the literal by typing up to column 72 in the first line, and then continuing in
column 2 of the next line.)
CIMS Report Writer User Guide 5-21 ■

■ How to Make a Web Report

Using HTML Tables in your Web Report
We used a POSTSCRIPT option to specify the </TABLE> tag.

Example
POSTSCRIPT('</TABLE>')

The POSTSCRIPT text will appear after the entire report. It simply closes the main report
table.

Between the PRESCRIPT lines and the POSTSCRIPT line will come the actual report lines
specified by the COLUMNS statement:

COLUMNS: '<TR><TD>' PICTURE-TAG
 '<TD>' NAME '
' ADDRESS '
' CITY 1 STATE 1 ZIP
 '<TD>' EMPL-NUM
 '<TD>' DEPT-NUM
 '<TD>' NUM-ACCOUNTS
 '<TD>' SEX
 '<TD>' HIRE-DATE
 '<TD>' TELEPHONE

The COLUMNS statement above begins with a literal containing a <TR> tag. That means that
each detail line of our report will begin with a <TR> tag and become a new table row. We
then used <TD> tags to put each data item into its own separate cell-- with one exception.
In the "Name & Address" table column, we included multiple data items in the same cell.
We used
 (break) tags to specify where a new line should be started within the cell.
Note that we used spacing factors of "1" between the fields within the same cell. That
overrides the default spacing factor of "0" that we specified with the COLSPACE(0) option
(see page 5-23.) We specified the COLSPACE(0) option just to keep from having to type
0's around all of the HTML tag literals in the COLUMNS statement. (The PICTURE-TAG field
used in the above statement was discussed on page 5-14.)

Figure 5-10, on page 5-23 shows the control statements used to create the sample report
in Figure 5-8. In Figure 5-11 you can see the actual HTML output file created by Report
Writer.
■ 5-22 CIMS Report Writer User Guide

How to Make a Web Report ■

Using HTML Tables in your Web Report
Figure 5-9 • A Web report that uses “tables”

Figure 5-10 • Control statements used to create a Web report with “tables”

OPTION: NOTITLES NOGRANDTOTALS COLSPACE(0)
 HTML('ABC COMPANY PERSONNEL DIRECTORY')
 PRESCRIPT('<TABLE><TR><TD>')
 PRESCRIPT('<TD ALIGN=CENTER>')
 PRESCRIPT('ABC COMPANY')
 PRESCRIPT('PERSONNEL DIRECTORY')
 PRESCRIPT('</TABLE>')
 PRESCRIPT('<TABLE BORDER=1 CELLPADDING=2>')
 PRESCRIPT('<TR><TD>PHOTO<TD>NAME & ADDRESS<TD>EMP#<TD>DEPT<TD>ACCOUNTS<
 TD>SEX<TD>HIRE DATE<TD>TELEPHONE')
 POSTSCRIPT('</TABLE>')
INPUT: EMPL-FILE
COMPUTE: PICTURE-TAG = ''
COMPUTE: NAME = #COMPRESS(LAST-NAME 0 ',' 1 FIRST-NAME)
SORT: NAME
COLUMNS: '<TR><TD>' PICTURE-TAG
 '<TD>' NAME '
' ADDRESS '
' CITY 1 STATE 1 ZIP
 '<TD>' EMPL-NUM
 '<TD>' DEPT-NUM
 '<TD>' NUM-ACCOUNTS
 '<TD>' SEX
 '<TD>' HIRE-DATE
 '<TD>' TELEPHONE
CIMS Report Writer User Guide 5-23 ■

■ How to Make a Web Report

Using HTML Tables in your Web Report
Figure 5-11 • HTML file for a Web report with “tables”

<H
TM
L>

<H
EA
D>

<T
IT
LE
>A
BC
 C
OM
PA
NY
 P
ER
SO
NN
EL
 D
IR
EC
TO
RY
</
TI
TL
E>

</
HE
AD
>

<B
OD
Y>

<P
RE
>

<T
AB
LE
><
TR
><
TD
><
IM
G
SR
C=
WO
RL
D.
GI
F
WI
DT
H=
27
5
AL
IG
N=
MI
DD
LE
>

<T
D
AL
IG
N=
CE
NT
ER
><
FO
NT
 C
OL
OR
=R
ED
 S
IZ
E=
7
FA
CE
="
CU
PE
RT
IN
O"
>

AB
C
CO
MP
AN
Y<
/F
ON
T>

<F
ON
T
CO
LO
R=
BL
UE
 S
IZ
E=
6
FA
CE
=B
AS
SO
ON
>P
ER
SO
NN
EL
 D
IR
EC
TO
RY

</
FO
NT
><
/T
AB
LE
>

<T
AB
LE
 B
OR
DE
R=
1
CE
LL
PA
DD
IN
G=
2>

<T
R>
<T
D>
PH
OT
O<
TD
>N
AM
E
&
AD
DR
ES
S<
TD
>E
MP
#<
TD
>D
EP
T<
TD
>A
CC
OU
NT
S<
TD
>S
EX
<T
D>
HI
RE
 D
AT
E<
TD
>T
EL
EP
HO
NE

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
04
4.
JP
G
WI
DT
H=
60
><
TD
>B
AK
ER
,
VI
VI
AN

 <
BR
>6
67
 C
RE
ST
HA
VE
N
BL
VD
 <
BR
>W
AL
NU
T
CR
EE
K

 C
A
94
59
8<
TD
>0
44
<T
D>

4<
TD
>

 1
47
<T
D>
F<
TD
>0
6/
04
/8
2<
TD
>(
41
5)
 5
55
-1
20
9

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
04
3.
JP
G
WI
DT
H=
60
><
TD
>C
HR
IS
TO
PH
ER
SO
N,
 M
EL
IS
SA

 <
BR
>6
17
52
 T
IM
BE
RI
DG
E
RD
 <
BR
>P
HO
EN
IX

 A
Z
90
50
2<
TD
>0
43
<T
D>

1<
TD
>

65
<T
D>
F<
TD
>0
8/
15
/8
1<
TD
>(
60
2)
 5
55
-4
55
6

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
03
9.
JP
G
WI
DT
H=
60
><
TD
>J
OH
NS
ON
,
LI
ND
A

 <
BR
>1
2
LI
NC
OL
N
DR
IV
E

 <
BR
>S
AN
TA
 R
OS
A

 C
A
95
41
2<
TD
>0
39
<T
D>

2<
TD
>

 1
04
<T
D>
F<
TD
>1
1/
25
/7
9<
TD
>(
41
5)
 5
55
-6
78
5

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
03
7.
JP
G
WI
DT
H=
60
><
TD
>J
OH
NS
ON
,
TH
OM
AS

 <
BR
>4
00
0
LI
ND
A
VI
ST
A

 <
BR
>S
CO
TT
SD
AL
E

 A
Z
90
01
2<
TD
>0
37
<T
D>

1<
TD
>

 1
28
<T
D>
M<
TD
>0
6/
21
/7
5<
TD
>(
60
2)
 5
55
-6
65
4

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
03
6.
JP
G
WI
DT
H=
60
><
TD
>J
ON
ES
,
JE
RR
Y

 <
BR
>1
25
 M
AI
N
ST
RE
ET

 <
BR
>S
AN
 F
RA
NC
IS
CO

 C
A
94
01
2<
TD
>0
36
<T
D>

2<
TD
>

78
<T
D>
M<
TD
>0
1/
31
/8
0<
TD
>(
41
5)
 5
55
-7
65
3

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
04
0.
JP
G
WI
DT
H=
60
><
TD
>M
AC
DO
NA
LD
,
RI
CH
AR
D

 <
BR
>5
25
 F
OO
TH
IL
L
DR
IV
E
 <
BR
>P
LE
AS
AN
TO
N

 C
A
94
56
8<
TD
>0
40
<T
D>

2<
TD
>

 6
<T
D>
M<
TD
>0
7/
04
/8
2<
TD
>(
41
5)
 5
55
-9
88
7

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
04
2.
JP
G
WI
DT
H=
60
><
TD
>M
OR
RI
SO
N,
 M
IC
HA
EL

 <
BR
>9
8
SO
UT
H
LA
KE
SI
DE
 D
R<
BR
>G
LE
ND
AL
E

 C
A
91
20
2<
TD
>0
42
<T
D>

3<
TD
>

 1
54
<T
D>
M<
TD
>1
1/
30
/7
9<
TD
>(
81
8)
 5
55
-4
74
8

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
04
1.
JP
G
WI
DT
H=
60
><
TD
>S
IM
PS
ON
,
TI
MO
TH
Y

 <
BR
>8
98
76
 W
ES
T
53
 S
TR
EE
T<
BR
>A
RC
AD
IA

 C
A
91
00
6<
TD
>0
41
<T
D>

3<
TD
>

16
<T
D>
M<
TD
>1
2/
01
/8
2<
TD
>(
81
8)
 5
55
-1
88
7

<T
R>
<T
D>
<I
MG
 S
RC
=E
MP
04
5.
JP
G
WI
DT
H=
60
><
TD
>T
HO
MA
S,
 M
AR
TI
N

 <
BR
>7
78
12
 S
.
HU
NT
IN
GT
ON
 <
BR
>C
ON
CO
RD

 C
A
94
51
9<
TD
>0
45
<T
D>

4<
TD
>

 1
18
<T
D>
M<
TD
>0
6/
04
/8
2<
TD
>(
41
5)
 5
55
-1
15
2

</
TA
BL
E>

</
PR
E>

</
BO
DY
>

</
HT
ML
>

■ 5-24 CIMS Report Writer User Guide

How to Make a Web Report ■

Using Dynamic HTML Tags
Using Dynamic HTML Tags 5

When you put a literal containing an HTML tag in your COLUMNS statement, that tag
appears in all of the report detail lines. (It is also copied into the column heading lines
and control break total lines.) What if you want to use a different HTML tag for different
report lines? You can build dynamic HTML tags to do that.

Dynamic HTML tags are tags whose contents vary, depending on the other data in the
report line. Dynamic HTML tags are assigned to COMPUTE fields instead of being specified
as literals.

We have already seen two examples of dynamic HTML tags. The reports on page 5-15 and
page 5-23 used dynamic HTML tags to build the tag for each employee's
photograph. And on page 5-19 we used dynamic tags to build tags to display
regional logos at the beginning of each region's data.

Now let's look at another use of dynamic HTML tags. Assume that we want our Web report
to show sales amounts that are over $100 in green and all other sales amounts in red.
Instead of putting a literal tag in our COLUMNS statement, we would use these
statements to compute a dynamic tag:

COMPUTE: COLOR-TAG = WHEN(AMOUNT > 100) ASSIGN('')
 ELSE ASSIGN('')

Notice that we padded the "red" tag with enough blanks to make it the same size as the
"green" tag. This is important to keep the resulting report properly aligned. Remember
that the Web browser strips all HTML tags from the report before displaying it to the
viewer. To preserve column alignment, the same number of bytes must be stripped from
all report lines.

In our COLUMNS statement, we now use this COLOR-TAG field instead of a literal tag:

COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER
 COLOR-TAG('<!--xxxxxxxxxxx-->') 0 AMOUNT TAX 0 ''('<!---->')

In the report detail lines, either or will now
appear before the AMOUNT field. (You can see this on page 5-28.) In either case, the same
closing tag appears after the TAX column.

The report in Figure 5-12, on page 5-27 uses the above statements.

Notice the unusual column heading for the COLOR-TAG column. Tags that begin with "<!-
-" and end with "-->" are considered HTML "comment" tags. You can place any number
of other characters between these tags. Comment tags do not affect the formatting of the
Web report in any way. However, they are stripped from the Web page like all other HTML
tags.

This special column heading was needed to preserve correct alignment of the report.
Remember that when you put an HTML tag literal in the COLUMNS statement, Report Writer
automatically copies the literal tag into all of the column heading lines as well. That
ensures that the same amount of HTML text is stripped from the column headings as from
the detail lines, which allows the column headings to remain aligned over the data.
CIMS Report Writer User Guide 5-25 ■

■ How to Make a Web Report

Using Dynamic HTML Tags
However, Report Writer does not copy dynamic HTML tags (that is, tags contained within
COMPUTE fields) into the column heading. This means that in the resulting report, the
detail lines will have an HTML tag which the column heading lines will not have. When
those HTML tags are stripped from the detail lines (but not from the column heading
lines) the column headings become skewed.

Thus, for our dynamic COLOR-TAG field we specified our own column heading containing
an HTML comment tag. We made sure that the HTML comment in the column heading was
the same size as the HTML tags appearing in the detail lines. (You can see this by looking
at the output on page 5-28.) As a result, the same number of HTML bytes are removed
from the column headings lines and from the detail lines. The report remains aligned.

If you look at the actual output on page 5-28, you will notice something else. Although
we only specified one line of override column headings, Report Writer used it for all three
column heading lines. This is necessary to keep all column headings properly aligned.
Report Writer does this for you automatically (as long as either the HTML or HTMLAID
option is specified.)

We also specified an HTML comment as the column heading for the closing
literal. Without this override column heading, Report Writer would have copied the </
FONT> literal itself into the column headings. That would have caused an HTML error since
there is no corresponding opening tag in the column heading lines.

The default Grand Total line would also have been skewed for similar reasons. (It would
not contain the dynamic tag, and would contain an unmatched tag.)
Therefore, we used a BREAK statement to precisely specify how the Grand Total line
should look.

Note • There is also another technique you can use to align the column headings in
reports that have dynamic HTML tags. That is to suppress the default column headings
by specifying the NOCOLHDGS option. Then use TITLE statements to specify your own
column headings. The report in Figure 5-5, on page 5-15 illustrates this technique.
■ 5-26 CIMS Report Writer User Guide

How to Make a Web Report ■

Using Dynamic HTML Tags
Figure 5-12 • A Web report that uses dynamic HTML tags

OPTION: HTML('ABC COMPANY -- COLOR CODED SALES')
TITLE: '<CENTER></CENTER>'
TITLE: '<CENTER><H2><I>SALES OVER $100 IN GREEN</I></H2></CENTER>'
INPUT: SALES-FILE
COMPUTE: COLOR-TAG = WHEN(AMOUNT > 100) ASSIGN('')
 ELSE ASSIGN('')
COLUMNS: REGION EMPL-NAME SALES-DATE SALES-TIME CUSTOMER
 COLOR-TAG('<!--XXXXXXXXXXX-->') 0 AMOUNT TAX 0 ''('<!---->')
BREAK: #GRAND NOTOTALS
 FOOTING('GRAND TOTALS' 40 AMOUNT(TOTAL) TAX(TOTAL))

Produce this Web Report:

These Control Statements:
CIMS Report Writer User Guide 5-27 ■

■ How to Make a Web Report

Using Dynamic HTML Tags
Figure 5-13 • HTML file with dynamic HTML tags

<HTML>
<HEAD>
<TITLE>ABC COMPANY -- COLOR CODED SALES</TITLE>
</HEAD>
<BODY>
<PRE>
 <CENTER></CENTER>
 <CENTER><H2><I>SALES OVER $100 IN GREEN</I></H2></CENTER>

 EMPL SALES SALES <!--XXXXXXXXXXX--> <!---->
REGION NAME DATE TIME CUSTOMER <!--XXXXXXXXXXX--> AMOUNT TAX <!---->
______ _________ ________ _________ __________________ <!--XXXXXXXXXXX--> ____________ ___________<!---->

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

GRAND TOTALS 1,383.66 83.05
</PRE>
</BODY>
</HTML>
■ 5-28 CIMS Report Writer User Guide

How to Make a Web Report ■

Using the PRESCRIPT and POSTSCRIPT Options
Using the PRESCRIPT and POSTSCRIPT Options 5

The PRESCRIPT option is used to write one or more lines of text before the beginning of
the report. The POSTSCRIPT option is used to write lines of text after the end of the report.

In Figure 5-7, on page 5-19, we used these options to put hot link texts and HTML labels
at the beginning and end of our report.

Another use of the PRESCRIPT and POSTSCRIPT options is to provide formatting tags that
apply to your entire report.

Example
OPTION: HTML
OPTION: PRESCRIPT('')
OPTION: POSTSCRIPT('')

The first statement above tells Report Writer to begin your output file with the standard
opening HTML tags. These tags will be followed by the tag specified in
the PRESCRIPT option above. Then the actual report will follow. After the report, the
closing tag specified by the POSTSCRIPT option will appear, followed by Report
Writer's other standard closing HTML tags. When viewed on the Web, all text in the report
(titles, column headings, data, Grand Totals) will be red.

The above example uses the PRESCRIPT and POSTSCRIPT options in addition to the HTML
option. You can also use these options instead of the standard HTML option. This allows
you to specify all of the HTML tags yourself.

Example
OPTION: HTMLAID
OPTION: PRESCRIPT('<HTML>')
OPTION: PRESCRIPT('<HEAD>')
OPTION: PRESCRIPT('<TITLE>ABC COMPANY SALES REPORT</TITLE>')
OPTION: PRESCRIPT('</HEAD>')
OPTION: PRESCRIPT('<BODY BACKGROUND="BACKLOGO.JPG">')
OPTION: PRESCRIPT('<PRE>')
*
OPTION: POSTSCRIPT('</PRE>')
OPTION: POSTSCRIPT('</BODY>')
OPTION: POSTSCRIPT('</HTML>')

The statements above show an alternative to using the HTML option. These statements
result in a Web report similar to that produced by just using the HTML option. However,
we did add one special option to the BODY tag. The BACKGROUND option names an image
file on the Web site that contains a corporate logo graphic. That image will be repeated
as necessary and used as the background for the Web report. This option can point to
any image file on your site. For example, instead of a logo, you might want to use an
image file that contains a "textured" background for your report.

Another option you can specify in the BODY tag is the BGCOLOR option. Use it to specify a
solid background color for your Web report.
CIMS Report Writer User Guide 5-29 ■

■ How to Make a Web Report

Summary of Options for Web Reports
Example
OPTION: PRESCRIPT('<BODY BGCOLOR=PINK>')

Note • If you choose to write all of your own HTML tags (rather than use the HTML
option), you should also specify the HTMLAID option. That option helps solves some
potential alignment problems in reports that contain HTML tags.

Summary of Options for Web Reports 5

The following table summarizes some of the OPTION statement options that are useful for
creating Web reports.

 Options Related To Web Reports

Option Description

HTMLAID Tells Report Writer that you will be putting HTML tags within your
report and that Report Writer should recognize and support those
tags. This option itself does not cause Report Writer to add any
HTML code to your report. See the OPTIONS statement syntax for a
complete description of the HTMLAID option. Example:

OPTION: HTMLAID

HTML[('title')] Tells Report Writer to wrap standard HTML code around the report.
It also lets you specify an optional HTML title for the Web page.
This option also turns on the HTMLAID option. Example:

OPTION: HTML('ABC COMPANY SALES REPORT')

NOCC Tells Report Writer not to begin each output line with a "carriage
control" character. Such characters are only necessary when the
output is being sent to a mainframe printer. You do not need to
specify NOCC if you specify either the HTML or HTMLAID options,
since these options imply the NOCC option. Example:

OPTION: NOCC

NOCOLHDGS Tells Report Writer to not print column headings for the report.
When the default column headings have alignment problems,
specify this option and then use TITLE statements to specify your
own column headings. Example:

OPTION: NOCOLHDGS

NOUNDERSCORES Tell Report Writer not to underscore the column headings in the
report. This is often desirable for reports that will be viewed
online, since the underscore line uses up an additional line on the
screen. Example:

OPTION: NOUNDERSCORES
■ 5-30 CIMS Report Writer User Guide

How to Make a Web Report ■

Common HTML Tags
Common HTML Tags 5

The following table lists a number of common HTML tags that you may want to use in
your Web reports. Please note, however, that there are a number of different versions of
HTML and it is constantly evolving as new versions of Web browsers are released. In
addition, different browsers sometimes process the same HTML tag in slightly different
ways. At the time of publication, the HTML tags shown below work as described. Of
course, we cannot guarantee they will always work the same way in the future. Also,
future versions of HTML will undoubtedly include many new features not documented
here. You can always check a library or an online Web source to learn what features are
available in the current version of HTML. At the time of this writing, one online resource
for the current HTML specifications is at www.w3.org.

POSTSCRIPT('text') Tells Report Writer to write this text once, after the actual report.
This option allows you to specify any closing HTML tags that you
need. You can have as many POSTSCRIPT options as you want. If
the HTML option is also specified, the POSTSCRIPT text(s) will
appear immediately before the closing HTML tags created by the
HTML option. Example:

OPTION: POSTSCRIPT(<'/FONT>')

PRESCRIPT('text') Tells Report Writer to write this text once, before the actual report.
This option allows you to specify any opening HTML tags that you
need. You can have as many PRESCRIPT options as you want. If the
HTML option is also specified, the PRESCRIPT text(s) will appear
immediately after the initial HTML tags created by the HTML option.
Example:

OPTION: PRESCRIPT('')

TITLEONCE Tells Report Writer to write out the report titles (and column
headings) only once, at the beginning of the report. This prevents
titles from seeming to appear "randomly" throughout the report
when a viewer pages through it online. For example:

OPTION: TITLEONCE

 Options Related To Web Reports

Option Description
CIMS Report Writer User Guide 5-31 ■

■ How to Make a Web Report

Common HTML Tags
 Common HTML Tags

HTML Tag Description

 ... Specifies the beginning of a hypertext link. When the user
clicks on the text or graphic within these tags, the action
implied by the url will be performed.

TITLE: '' 0
 'CLICK HERE TO READ ABOUT THE ABC COMPANY'

 Specifies a label that can be referred to by a hypertext link. It
requires no closing tag.

OPTION: PRESCRIPT('')

 ... This makes the text within the tags bold.

TITLE:'SALES BY REGION'

<BLINK> ... </BLINK> This makes the text within the tag blink on and off.

Note: this option may only work with Netscape browsers.

TITLE: 'SALES BY <BLINK>REGION</BLINK>'

 This inserts a line "break" in the report. It requires no closing
tag.

COLUMNS: REGION CUSTOMER AMOUNT '
'

<CENTER>...</CENTER> This centers the text within the tag.

TITLE: '<CENTER>SALES BY REGION</CENTER>'
■ 5-32 CIMS Report Writer User Guide

How to Make a Web Report ■

Common HTML Tags
<FONT
[SIZE=n]
[FACE="fontname"]
[COLOR=color]
 ...

This specifies information about the font to be used for the
text within the tags. Font sizes between 1 (smallest) and 7
(largest) are currently supported. For example:

TITLE: 'SALES BY REGION'

The 16 colors currently supported by name in most browsers
are: black, olive, teal, red, blue, maroon, navy, gray, lime,
fuschia, white, green, purple, silver, yellow and aqua.
Example:

TITLE: 'SALES BY REGION'

The face parm specifies the name of the font to be used.
However, to preserve the column alignment of your report, in
most cases you should only use non-proportional fonts.
Another caution: the font you specify may not be available on
your viewer's PC, and a substitute font may be chosen for you
by the browser, causing unexpected results. Use this option
with caution. Example:

TITLE: 'SALES BY REGION'

<H1>...</H1>
<H2>...</H2>
...
<H6>...</H6>

This formats the text within the tags as a "level 1" (or 2, 3, etc.)
header.

TITLE: '<H1>SALES BY REGION</H1>'

<HR> This produces a "horizontal rule" (a line) in your report. It
requires no closing tag.

TITLE: 'ABC COMPANY SALES REPORT'
TITLE: '<HR>'

<I> ... </I> This makes the text within the tags italic.

TITLE: 'SALES BY <I>REGION</I>'

<IMG SRC="url"
 [ALIGN=TOP/
 MIDDLE/BOTTOM]
 [WIDTH=nnn]>

Specifies that a graphic image should be placed here. The url
must be the name of the graphic file, which will often be a
.gif or a .jpg file. The optional ALIGN parm determines how
any text that follows the image will be aligned with it. The
optional WIDTH parm specifies the size that the image should
take up in the display. This tag requires no closing tag.

TITLE: ''

 Common HTML Tags

HTML Tag Description
CIMS Report Writer User Guide 5-33 ■

■ How to Make a Web Report

Common HTML Tags
<MARQUEE>...</MARQUEE> This makes the text within the tag scroll across the screen.

Note: this option may only work with Microsoft browsers.

TITLE: 'SALES BY<MARQUEE>REGION</MARQUEE>'

<SMALL> ... </SMALL> This makes the text within the tags smaller.

TITLE: 'SALES BY <SMALL>REGION</SMALL>'

_{...} This makes the text within the tags subscripts (smaller and
lower than the regular baseline.)

TITLE: 'SALES BY _{REGION}'

^{...} This makes the text within the tags superscripts (smaller and
higher than the regular baseline.)

TITLE: 'SALES BY ^{REGION}'

<TABLE
 [BORDER=n]
[CELLPADDING=n]
[CELLSPACING=n]>
 ...
</TABLE>

Specifies that the text and images within these tags should be
formatted as a table. The optional BORDER parm determines
whether there will be a border around the cells of the table.
The optional CELLPADDING value tells how much space to leave
between the border of a cell and its contents. The optional
CELLSPACING value tells how much space to leave between the
cells of the table. For example:

OPTION: PRESCRIPT('<TABLE BORDER=1 CELLPADDING=2>')

<TD> Specifies the beginning of a new table item ("data cell")
within a table row. It requires no closing tag. For example:

COLUMNS: '<TR>' '<TD>' REGION '<TD>' EMPL-NAME

<TR> Specifies the beginning of a new table row (within a table). It
requires no closing tag. For example:

COLUMNS: '<TR>' '<TD>' REGION '<TD>' EMPL-NAME

<U> ... </U> This underlines the text within the tags.

TITLE: 'SALES BY <U>REGION</U>'

<!-- ... --> This is an HTML comment. It has no effect on what the viewer
sees on the Web browser. It can be used to document your
HTML code. It can also be used in some situations to help align
a Web report. Use it to strip excess bytes from a line of Report
Writer output. (See page 5-25 for an example of this.)

 Common HTML Tags

HTML Tag Description
■ 5-34 CIMS Report Writer User Guide

6
How to Define Your Input Files

Introduction . 6-3

How to Define a File . 6-6

How to Use the FILE Statement –– MVS . 6-6

How to Override a File Definition –– MVS . 6-8

How to Use the FILE Statement –– VSE . 6-10

How to Override a File Definition –– VSE . 6-11

How to Define a Field .6-12

How to Define a Character Field . 6-12

How to Define a Numeric Field . 6-15

Should You Define a Field as Character or Numeric? . 6-20

How to Define a Date Field . 6-21

How to Define a Time Field . 6-24

How to Define a Bit Field . 6-26

How to Specify a Field’s Location in a Record . 6-30

Field Location in Variable Length Files . 6-33

Variably Located Fields . 6-33

How to Specify a Field’s Column Heading . 6-35

How to Define a Field Created by a Data Exit . 6-35

Keeping Your File Definitions in a Copy Library .6-39

Including the Definition Statements "In–Line" . 6-39

A Better Way: Using the Copy Library . 6-42

How to Use a Copy Library Alias . 6-46

Defining One–Time Fields . 6-47

Using Cobol and Assembler Record Layouts .6-49

Live Runs Using Cobol Record Layouts . 6-49

Live Runs Using Assembler Record Layouts . 6-53

Handling Date and Time Fields . 6-56

How Report Writer Handles Arrays . 6-59
CIMS Report Writer User Guide 6-1 ■

■ How to Define Your Input Files
Converting Cobol and Assembler Layouts to FIELD Statements . 6-60

How to Copy Cobol and Assembler Record Layouts from Libraries . 6-64

Mixing FIELD Statements with COBOL and ASM Statements . 6-66

The Starting Column of a Cobol or Assembler Layout . 6-66

The "Default Location" After a Cobol or Assembler Layout . 6-66

The Scope of the COBOL and ASM Statements . 6-67

Other Features Available in COBOL and ASM Statements . 6-67

Technical Notes on Cobol Support . 6-67

Technical Notes on Assembler Support . 6-70
■ 6-2 CIMS Report Writer User Guide

How to Define Your Input Files ■

Introduction
Introduction 6

This chapter is intended primarily for programmers "setting up" new files for Report
Writer. Users who simply request reports and PC files from input files that have already
been set up do not need to read this chapter.

Report Writer needs to know a few things about your company’s files before it can use
those files to produce reports. For example, it needs to know: whether a file is a VSAM file
or not; the names of the fields present in the file; which column each field begins in, and
so on.

There are two control statements that supply this information about your files to Report
Writer:

■ the FILE statement, which gives information about the overall characteristics of a file

■ the FIELD statement, which gives information about one individual field within a file

A Report Writer file definition simply consists of a single FILE statement, followed by a
number of FIELD statements. (Appendix F, Files Used in Examples shows some sample file
definitions.)

Defining a file is a one–time thing. You will write these "definition" statements once and
then save them in Report Writer’s copy library. After that, you can produce as many
different reports and PC files from the file as you like, without having to worry about
these definition statements again.

For this reason a certain amount of care should be given to writing these definition
statements. For example, a little time spent at this point in assigning useful column
headings to each field may save you a lot of time in the future. If you specify a HEADING
parm in your FIELD statement, you will not have to specify column headings in the
COLUMNS statement of every report requested in the future. (Of course, if the field name
itself makes a suitable column heading, then there’s no need to specify a different
column heading.) Here is an example of specifying a column heading when defining a
field:

FIELD: RECA–MSTR–EMPL–FIRST–NAME LEN(20) HEADING(’FIRST NAME’)

Another example is the use of the NOACCUM parm. When defining numeric fields that
should not be totalled (such as employee numbers, cost center numbers, telephone
numbers, social security numbers, etc.) specify the NOACCUM parm in the FIELD statement
to prevent totalling. This keeps the user from having to specify it in each report requested
later on. Here is an example of specifying NOACCUM when defining a field that should not
be totalled:

FIELD: DEPT–NUM TYPE(NUM) LEN(1) NOACCUM

Also, you should specify a FORMAT parm for any field that should normally be displayed
in a special way. For example, a U.S. telephone number will normally be display with
parentheses around the first three digits (the area code) and with a dash before the last
4 digits. If you specify such a PICTURE in the FIELD statement, you won’t need to specify
it in COLUMNS statements later on. You may also want to specify the NOCOMMA format for
CIMS Report Writer User Guide 6-3 ■

■ How to Define Your Input Files

Introduction
numeric fields that should not be displayed with commas (such as cost centers,
subscription numbers, etc.) Here are some examples of specifying a display format when
defining fields:

FIELD: TELEPHONE TYPE(NUM) LEN(10) FORMAT(PIC’(999) 999–9999’)
FIELD: COST–CENTER TYPE(NUM) LEN(7) FORMAT(NOCOMMA) NOACCUM

The remainder of this chapter is divided into four sections.

■ the first section explains how to use the FILE statement to define the overall
characteristics of a file (page 6-6)

■ the second section explains how to use FIELD statements to define each individual
field within the file (page 6-12)

■ the third section describes how to store these statements in Report Writer’s copy
library, to make requesting reports easy (page 6-39)

■ the fourth section shows how to use Cobol or Assembler record layouts to define your
files to Report Writer. You can use such record layouts in place of a Report Writer file
definition. Or, you can use the record layouts to create a standard Report Writer file
definition. (page 6-49)

Sometimes a picture is worth a thousand words. So, before we get into the details of how
to define files, notice the box on the following page. It shows a typical Cobol definition
of a file, and how the same file would be defined to Report Writer.
■ 6-4 CIMS Report Writer User Guide

How to Define Your Input Files ■

Introduction
Figure 6-1 • Converting a Cobol copybook to Report Writer definition statements

Produce this Report:

These Control Statements:

Notes:

• the FILE statement for Report Writer VSE would be:
FILE: MSTR–FILE ATTR(DASD,'MSTRDD',80,160)

• the common prefix (RECA–MSTR) was dropped to make the field names more user friendly

• for numeric fields, Report Writer always requires the length (in bytes) that a field occupies in the input
record, rather than the number of digits it contains

• the DECIMAL parm specifies the number of decimal digits in a field

• the COLUMN(*–6) parm for HIRE–DATE–YY is used to "back up 6 bytes" to redefine the HIRE–DATE
field

• the OCCURS table in the Cobol layout is defined as 4 individual fields for Report Writer

FILE: MSTR–FILE DDNAME(MSTRDD) LRECL(80)

FIELD: LAST–NAME LENGTH(20)
FIELD: FIRST–NAME LENGTH(20)
FIELD: BIRTH–DATE TYPE(YYDDD)
FIELD: SALARY LENGTH(5) TYPE(COMP–3) DECIMAL(2)
FIELD: DEPARTMENT–NUM LENGTH(1) TYPE(NUM) NOACCUM
FIELD: HIRE–DATE TYPE(YYMMDD)
FIELD: HIRE–DATE–YY LENGTH(2) TYPE(NUM) COLUMN(*–6)
FIELD: HIRE–DATE–MM LENGTH(2) TYPE(NUM)
FIELD: HIRE–DATE–DD LENGTH(2) TYPE(NUM)
FIELD: SALES–QTR–1 LENGTH(4) TYPE(COMP–3) DECIMAL(2)
FIELD: SALES–QTR–2 LENGTH(4) TYPE(COMP–3) DECIMAL(2)
FIELD: SALES–QTR–3 LENGTH(4) TYPE(COMP–3) DECIMAL(2)
FIELD: SALES–QTR–4 LENGTH(4) TYPE(COMP–3) DECIMAL(2)
FIELD: NUMBER–OF–SALES LENGTH(2) TYPE(COMP)

FILE–CONTROL.
 SELECT RECA–MSTR–FILE ASSIGN TO UT–S–MSTRDD.
...
FD RECA–MSTR–FILE
 LABEL RECORDS ARE STANDARD
 RECORD CONTAINS 80 CHARACTERS
 BLOCK CONTAINS 0 RECORDS.

01 RECA–MSTR–RECORD.
 05 RECA–MSTR–LAST–NAME PIC X(20).
 05 RECA–MSTR–FIRST–NAME PIC X(20).
 05 RECA–MSTR–JULIAN–BIRTH–DATE PIC 9(5).
 05 RECA–MSTR–SALARY PIC S9(7)V99 COMP–3.
 05 RECA–MSTR–DEPARTMENT–NUM PIC 9.
 05 RECA–MSTR–HIRE–DATE.
 10 RECA–MSTR–HIRE–DATE–YY PIC 99.
 10 RECA–MSTR–HIRE–DATE–MM PIC 99.
 10 RECA–MSTR–HIRE–DATE–DD PIC 99.
 05 RECA–MSTR–QUARTERLY–SALES–TABLE OCCURS 4 TIMES.
 10 RECA–MSTR–SALES–QTR PIC S9(5)V9(2) COMP–3.
 05 RECA–MSTR–NUMBER–OF–SALES PIC S9(4) COMP.
 05 FILLER PIC X(5).
CIMS Report Writer User Guide 6-5 ■

■ How to Define Your Input Files

How to Define a File
How to Define a File 6

This section explains:

■ how to use the FILE statement to define a file to Report Writer

■ how to later override aspects of a file definition in the INPUT or READ statement

Input files are defined to Report Writer with the FILE statement. If desired, the INPUT or
READ statements can also be used to provide, or to modify, a file definition (for a single
run.) (As a reminder, an INPUT statement is required for all runs, and specifies the
primary input file for a run. READ statements are optional, and identify any additional
input files required for a particular run.)

The following sections show how to use these statements to define your input files to
Report Writer.

The parms used in the FILE statement differ between Report Writer MVS and Report Writer
VSE. Please refer to the correct section for your operating system:

■ for MVS, see below

■ for VSE, see page 6-10

How to Use the FILE Statement –– MVS 6

There are a number of parms that can be used in a FILE statement to provide information
about a file. (The complete syntax of the FILE statement is found beginning on
page 10-58.) Only a few of these parms are actually required. The others are optional, and
are only needed in unusual cases.

The four things that Report Writer must know about a file are:

■ the file name (that is, the "user friendly" name by which it will be referred to in other
Report Writer control statements)

■ the TYPE of file (that is, the access method to be used when reading the file)

■ the LRECL of the file (that is, the size of the largest record that Report Writer could
encounter when reading the file)

■ the DDNAME that identifies the file in the job control language (JCL)

The first item in a FILE statement is always the file name.

Example
FILE: SALES–FILE

The above statement defines a file named SALES–FILE. You may choose any name you
like for a file (within the rules governing file names given on page 9-7.) This is the name
that will be used in Report Writer control statements when referring to this file. It does
not have to be the actual DSNAME ("data set name") of the file.
■ 6-6 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a File
After the filename parm, the other parm(s) may appear in any order in the FILE
statement.

Use the TYPE parm to tell Report Writer what type of file is being defined. This tells
Report Writer which access method to use when performing I/O to the file. Report Writer
supports two types of files:

■ SEQUENTIAL (or just SEQ)

■ VSAM

If the TYPE parm is not specified, the default file type is SEQUENTIAL. The FILE statement
shown above did not specify a file type, so the SALES–FILE is assumed to be sequential.
Report Writer uses SAM/QSAM I/O with sequential files. The "sequential" file type covers
most non–VSAM files. Sequential files include:

■ "flat" disk files, such as those maintained with TSO editors

■ members of partitioned data sets (PDS)

■ most files stored on magnetic tapes

The second type of file supported by Report Writer is a VSAM file:

FILE: EMPL–FILE TYPE(VSAM)

The above statement defines a file named EMPL–FILE as being a VSAM file. Report Writer
supports KSDS, ESDS and RRDS VSAM files.

Note • You can also use other types of files with Report Writer. However, you will
need to write an I/O Exit program in order to do that. I/O Exits are discussed in
Appendix K, I/O Exits.

Use the DDNAME parm to supply the name of a DD statement that will be present in the
execution JCL. This DD statement will contain the actual DSNAME (data set name) of the file.
Report Writer uses the DDNAME in order to "open" an input file and read from it. For
example:

FILE: SALES–FILE DDNAME(SALESDD)

The above statement defines a file named SALES–FILE. When Report Writer needs this file
to produce a report, it will open and read the dataset named in the SALESDD DD statement
in the JCL.

Use the LRECL (logical record length) parm to specify the size of the largest record that
the file will possibly contain.

Example
FILE: SALES–FILE DDNAME(SALESDD) LRECL(5000)

The above statement specifies that a record as large as 5000 bytes may be encountered in
the SALES–FILE. This statement tells Report Writer to provide a 5000–byte I/O area to use
when reading records from this file. If no LRECL parm is present, Report Writer reserves a
1000 byte I/O area as a default.
CIMS Report Writer User Guide 6-7 ■

■ How to Define Your Input Files

How to Define a File
Note • It is not a problem to specify a larger LRECL value than is actually needed. In
fact, if you suspect that a file’s LRECL may grow in the future, you may want to specify
a larger LRECL with some "growth" room in it. On the other hand, specifying an
excessively large LRECL may result in higher CPU usage in certain circumstances.

Note • When defining variable length SEQ files, the LRECL should include the length
of the 4–byte record descriptor word (RDW) at the beginning of each record.

Records in variable length SEQ files contain a 4–byte record prefix called the record
descriptor word (RDW). This RDW appears before the actual user data in each record. By
default, Report Writer ignores this RDW. Thus, a field defined as beginning in column 1
always refers to the first byte of actual user data in a record. It does not refer to the first
byte of the RDW, if any. If for some reason you want column 1 of your record to refer to
the RDW, use the KEEPRDW parm in the FILE statement.

Example
FILE: SALES–FILE DDNAME(SALESDD) KEEPRDW

The above statement tells Report Writer to consider the RDW as part of the input record’s
user data. Thus a field defined as starting in column 1 will point to the RDW within the
record.

The only other parm available in the FILE statement is the EXITPARM parm. This parm is
not normally used. However, if any of the fields defined for this file use a data exit
program (see page 6-35), you may want to use this parm. Whenever a data exit program
is called, it is passed certain information to assist it in preparing the data to return to
Report Writer. One item of information that is passed to the data exit program is the
contents of the FILE statement’s EXITPARM parm.

Example
FILE: SALES–FILE DDNAME(SALESDD) EXITPARM(’ABCDEFG’)

The above statement specifies the 7–byte text ’ABCDEFG’ as the file’s exit parm data. If any
fields defined for the SALES–FILE are created in a data exit program, the string ’ABCDEFG’
will be passed to that exit program when it is called. The exit program could then use this
data in any way it wanted.

How to Override a File Definition –– MVS 6

Remember that the FILE statement simply defines a file to Report Writer for later use. It
does not make that file an input file to a report. The INPUT and READ statements request a
file as input for a particular report. When an INPUT or READ statement specifies a particular
file, Report Writer will know all about that file from the FILE statement processed earlier.

Sometimes you may want to change one or more aspects of the file definition for just
one particular run. You may do this by specifying one or more file definition parms
directly in the INPUT or READ statement. These parms will override any such parm that
may also have been specified in the FILE statement–– but only for the current run. The
file definition parms that can be specified in the INPUT and READ statements are:
■ 6-8 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a File
■ DDNAME

■ TYPE

■ LRECL

■ KEEPRDW

■ EXITPARM

For example, assume that the FILE statement for EMPL–FILE stated that the DDNAME to use
was "SWINPUT." But, for one particular report you want to use a DDNAME of "EMPLOYEE"
instead. There is no need to change the FILE statement just to run this particular report.
You would simply code an override DDNAME parm directly in the INPUT statement:

INPUT: EMPL–FILE DDNAME(EMPLOYEE)

The above example lets you use the EMPLOYEE DD for the current report without having to
change the FILE statement (which may be located in the copy library and difficult to
modify.)

Similarly, you can override the file’s TYPE parm in an INPUT or READ statement. For
example, assume that the FILE statement defined EMPL–FILE as being a "sequential" file.
But you may have loaded a VSAM file from the sequential file and want to use that VSAM
file as an auxiliary input for a report. You would override the file type, for that report
only, like this:

READ: EMPL–FILE READKEY(EMPL–NUM) TYPE(VSAM)

The above example causes the EMPL–FILE to be opened as a VSAM file, not as a normal
sequential file.

You can also specify a different LRECL from the one specified in the FILE statement. Here
is an example of specifying an override LRECL parm in an INPUT statement:

INPUT: EMPL–FILE LRECL(3000)

Similarly, if you need to specify a different exit parm text from the one specified in the
FILE statement, do that in the INPUT or READ statement like this:

INPUT: EMPL–FILE EXITPARM(’ABCXYZ’)
CIMS Report Writer User Guide 6-9 ■

■ How to Define Your Input Files

How to Define a File
How to Use the FILE Statement –– VSE 6

The FILE statement’s ATTR parm is used to describe the attributes of a VSE file to Report
Writer. Here is an example of an ATTR parm in a FILE statement:

FILE: SALES–FILE ATTR(DASD,’SALEFIL’,80,160)

The statement above defines a file called SALES–FILE. It has the following attributes:

■ it is a SAM file on DASD. (Other possibilities are SAM files on TAPE, and VSAM files)

■ the DLBL name used for this file in the JCL is SALEFIL

■ the records in this file are 80 bytes long

■ the blocks in this file are 160 bytes long

Note • The complete syntax of the ATTR parm is shown on page 10-58.

Here is another example of defining a VSE file with the ATTR parm. In this example, we
define a VSAM file to Report Writer:

FILE: EMPL–FILE ATTR(VSAM,’EMPFILE’,150)

The EMPL–FILE defined above is a VSAM file. The DLBL name used in the JCL is EMPFILE. The
records in the file may be up to 150 bytes long. No block size is used with VSAM files.

Note • Use VSAM only for true VSAM ESDS, KSDS or RRDS datasets. DASD should be used
for all SAM files on disk, even SAM files that are in VSAM–managed space.

Here is an example of defining a file with variable–length blocked records:

FILE: VAR–FILE ATTR(DASD,’FILEIN’,V,100,5000)

The file defined above is a SAM file on DASD. The DLBL name used in the JCL is FILEIN. The
records are variable length. The largest record that the file might contain is 100 bytes
long. The longest block that the file might contain is 5000 bytes long.

Note • When defining variable length SAM files, the record size should include the
length of the 4–byte record descriptor word (RDW) at the beginning of each record.
Likewise, the block size should include the 4–byte block prefix.

Records in variable length SAM files contain a 4–byte record prefix called the record
descriptor word (RDW). This RDW appears before the actual user data in each record. By
default, Report Writer ignores this RDW. Thus, a field defined as beginning in column 1
always refers to the first byte of actual user data in a record. It does not refer to the first
byte of the RDW, if any. If for some reason you want column 1 of your record to refer to
the RDW, use the KEEPRDW parm in the FILE statement.

Example
FILE: VAR–FILE ATTR(TAPE,’FILEIN’,V,100,5000) KEEPRDW
■ 6-10 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a File
The above statement tells Report Writer to consider the RDW as part of the input record’s
user data. Thus a field defined as starting in column 1 will point to the RDW within the
record.

The only other parm available in the FILE statement is the EXITPARM parm. This parm is
not normally used. However, if any of the fields defined for this file use a data exit
program (see page 6-35), you may want to use this parm. Whenever a data exit program
is called, it is passed certain information to assist it in preparing the data to return to
Report Writer. One item of information that is passed to the data exit program is the
contents of the FILE statement’s EXITPARM parm.

Example
FILE: SALES–FILE ATTR(DASD,’SALEFIL’,80,160) EXITPARM(’ABCDEFG’)

The above statement specifies the 7–byte text ’ABCDEFG’ as the file’s exit parm data. If any
fields defined for the SALES–FILE are created in a data exit program, the string ’ABCDEFG’
will be passed to that exit program when it is called. The exit program could then use this
data in any way it wanted.

How to Override a File Definition –– VSE 6

The ATTR parm can also be used in the INPUT and READ statements. This temporarily
changes the way a file is defined for a single Report Writer run.

If an INPUT or READ statement contains an ATTR parm, the information from that ATTR
parm overrides the information from the ATTR parm in the FILE statement. Also, you may
omit the ATTR parm in the FILE statement altogether, as long as you specify it each time
in the INPUT or READ statement.

For example, assume that for a single run we wanted to use a tape backup copy of the
SALES–FILE defined above (instead of the copy on disk.) Rather than changing the FILE
statement, we could just use an ATTR parm in our INPUT statement, like this:

INPUT: SALES–FILE ATTR(TAPE,’SALEFIL’,SYS004,80,160)

The statement above changes the attributes of the SALES–FILE (for the current run only)
to the following:

■ the file is on tape

■ the TLBL name for this file in the JCL is SALEFIL

■ the tape will be mounted on the tape drive at logical unit SYS004

■ the records in the file are 80 bytes long

■ the blocks in the file are 160 bytes long

Note that even though the record size and block size did not change from their values in
the FILE statement, we had to specify them in this ATTR parm. If you specify an ATTR parm
in an INPUT or READ statement, you must specify all of the required items in that parm.
None of the ATTR information from the FILE statement is retained.
CIMS Report Writer User Guide 6-11 ■

■ How to Define Your Input Files

How to Define a Field
How to Define a Field 6

This section explains:

■ how to use the FIELD statement to define individual fields to Report Writer

There are five general types of fields used in Report Writer:

■ character

■ numeric

■ date

■ time

■ bit

Each type of field is defined somewhat differently. For example, the following statement
defines a character field:

FIELD: LAST–NAME LENGTH(15)

The FIELD statement necessary to define a numeric field that is stored in packed format
and which includes two decimal digits is a little longer:

FIELD: TOTAL–SALES LENGTH(7) TYPE(PACKED) DECIMAL(2)

In the sections that follow we discuss how to define each type of field. The complete
syntax for the FIELD statement is given beginning on page 10-47.

Note • Report Writer MVS and Report Writer VSE both use exactly the same FIELD
statements.

How to Define a Character Field 6

This section explains:

■ what a character field is

■ which parms are required to define a character field

■ which optional parms can be used when defining character fields

Most of the examples used in this section are illustrated in the sample report in Figure
6-2, on page 6-14.

Character fields can contain any combination of letters, numerals, spaces, punctuation
marks, and other special characters. Character fields contain such things as names,
addresses, descriptions, etc.
■ 6-12 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
Note • Fields defined as character fields cannot be used in arithmetic comparisons or
calculations, even if the field contains only numeric characters. If you wish to treat
such fields as numeric data, define them as numeric rather than character fields. See
page 6-20 for more on this subject.

Character fields are the easiest kind of field to define. When no TYPE parm is supplied in
a FIELD statement, a character field is assumed. Therefore, the only parms required to
define a character field are:

■ fieldname

■ LENGTH

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 9-8.

After the fieldname, the other parm(s) may appear in any order in the FIELD statement.

The LENGTH parm is required to tell Report Writer how many bytes (or "characters") the
field occupies in the record.

Example
FIELD: LAST–NAME LENGTH(15)

The above example defines a field named LAST–NAME that occupies 15 bytes of the input
record. It is a character field by default, since no TYPE parm was specified. If you wish to
include the TYPE parm for clarity or consistency, you can do so like this:

FIELD: LAST–NAME LENGTH(15) TYPE(CHAR)

Report Writer assumes that the LAST–NAME field occupies the 15 bytes immediately after
the previously defined field. If you want to explicitly specify where the 15–byte field is
located, use the COLUMN or the DISP parm. The use of these parms is discussed beginning
on page 6-30. As an example, if the LAST–NAME field begins in the fourth byte of the
record, we could define it like this:

FIELD: LAST–NAME LENGTH(15) COLUMN(4)

By default, whenever a field appears as a column in a report, the field name itself is used
as the column heading. To specify a different column heading, use the HEADING parm in
the FIELD statement. The use of the HEADING parm is discussed beginning on page 6-35.
As an example, we could specify a column heading for the LAST–NAME field like this:

FIELD: LAST–NAME LENGTH(15) HEADING(’EMPLOYEE LAST NAME’)
CIMS Report Writer User Guide 6-13 ■

■ How to Define Your Input Files

How to Define a Field
Figure 6-2 • A report with FIELD statements that define character fields

FILE: EMPL–FILE DDNAME(EMPLFILE) TYPE(VSAM)
FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: FIRST–NAME LENGTH(15)
FIELD: STATUS–BYTE COLUMN(42) LENGTH(1)
FIELD: HEX–STATUS–BYTE COLUMN(42) LENGTH(1) FORMAT(HEX)
 HEADING('EMPLOYEE STATUS BYTE')

INPUT: EMPL–FILE
TITLE: 'EXAMPLES OF DEFINING CHARACTER FIELDS'
SORT: LAST–NAME FIRST–NAME
COLUMNS: LAST–NAME FIRST–NAME STATUS–BYTE
 HEX–STATUS–BYTE

Produce this Report:

These Control Statements:

Notes:

• a COLUMN parm was used in the first FIELD statement, since the LAST–NAME field does not begin in
the first column of the record

• no COLUMN parm was required for FIRST–NAME, since that field begins immediately after the
previously defined field

• the HEX–STATUS–BYTE field occupies the same byte in the record as the STATUS–BYTE field. It simply
has a different default display format.

• the HEADING parm specifies the column heading to use when the HEX–STATUS–BYTE field appears
as a report column –– the other columns have the field names themselves as column headings

 EXAMPLES OF DEFINING CHARACTER FIELDS

 LAST FIRST STATUS EMPLOYEE
 NAME NAME BYTE STATUS BYTE

BAKER VIVIAN A C1
CHRISTOPHERSON MELISSA A C1
JOHNSON LINDA A C1
JOHNSON THOMAS A C1
JONES JERRY A C1
MACDONALD RICHARD 40
MORRISON MICHAEL A C1
SIMPSON TIMOTHY A C1
THOMAS MARTIN A C1

*** GRAND TOTAL (9 ITEMS)
■ 6-14 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
The FORMAT parm of the FIELD statement specifies the default display format to use when
displaying a field in a report. The FORMAT parm is not normally used when defining
character fields. One instance when you might want to use it is when you have a
character field that you normally want to display in its hexadecimal representation. (A
status byte might be an example of such a field.) You can specify a display format of HEX
when defining such a field. The following statement defines a 1–byte character field
named STATUS–BYTE and specifies that, by default, it should be displayed in hexadecimal
notation when it appears in a report.

FIELD: STATUS–BYTE LENGTH(1) FORMAT(HEX)

How to Define a Numeric Field 6

This section explains:

■ what a numeric field is

■ which parms are required to define a numeric field

■ which optional parms can be used when defining numeric fields

Most of the examples used in this section are illustrated in the sample report in Figure
6-3, on page 6-19.

Numeric fields contain numeric values. Examples of numeric fields are costs, salaries,
sales volumes, interest rates, etc. There are a number of different ways that a numeric
field can be stored in a record. It can be stored as character–type digits, as packed data,
or as binary data, to name a few possibilities. The FIELD statement’s TYPE parm tells
Report Writer exactly how a field is stored in the record.

Note • Once a numeric field has been defined, you do not need to remember how it
is stored in the record. You may freely compare any kind of numeric field with any
other numeric field. Report Writer automatically takes care of any conversion that
may be necessary. You may also mix any combination of numeric fields (packed,
binary, etc.) when performing arithmetic computations.

The only parms required to define a numeric field are:

■ fieldname

■ TYPE

■ LENGTH

The following optional parms also relate specifically to numeric fields:

■ DECIMAL

■ ACCUM/NOACCUM

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 9-7.

After the fieldname, the other parm(s) may appear in any order in the FIELD statement.
CIMS Report Writer User Guide 6-15 ■

■ How to Define Your Input Files

How to Define a Field
When defining a numeric field to Report Writer the TYPE parm is required. This parm
indicates the exact way in which the numeric data is stored in the record. There are
several ways that are commonly used to store numeric values in a record. Report Writer
needs to know which method is used for a particular field in order to process it correctly.
A complete list of numeric data types appears in Appendix A, Data Types. Here is an
example of defining a numeric field:

FIELD: TOTAL–SALES TYPE(NUM) LENGTH(7)

The above statement defines a numeric field named TOTAL–SALES. Its data is stored in the
record in "display numeric" format (that is, using numeric digits in character format.)
Report Writer’s NUM data type is equivalent to Cobol’s USAGE DISPLAY. Other common
numeric data types are:

■ PACKED or COMP–3, which correspond to Cobol’s COMP–3, and

■ BINARY or COMP, which correspond to Cobol’s COMP

The LENGTH parm is required to tell Report Writer how many bytes the field occupies in
the record. (Note that for some types of numeric data the LENGTH parm is not necessarily
the same as the number of digits.)

Note • To determine how many bytes a PACKED (COMP–3) field occupies in a record, use
this formula: add 1 to the total number of digits; then divide this sum by 2, throwing
away any remainder. The result is the number of bytes the field occupies in the record.

As an example, take the RECA–MSTR–SALARY field (in Figure 6-1, on page 6-5.) It has a
total of 9 digits (seven before the decimal point and two after.) Adding 1 to this gives
us 10. Dividing 10 by 2 gives us its length–– 5 bytes.

Fields stored as BINARY data (COMP) are usually either 2 or 4 bytes long. If the BINARY
field contains no more than 4 digits, it is usually 2 bytes long. If the field has more
than 4 digits, it is generally 4 bytes long.

Report Writer assumes that the TOTAL–SALES field defined in the previous example
occupies the 7 bytes immediately after the previously defined field. If you want to
explicitly specify where the 7–byte field is located, use the COLUMN or the DISP parm. The
use of these parms is discussed beginning on page 6-30. As an example, if the TOTAL–
SALES field began in the 56th byte of a record, we could define it like this:

FIELD: TOTAL–SALES TYPE(NUM) LENGTH(7) COLUMN(56)

Since no DECIMAL parm was specified in the preceding examples, Report Writer would
assume that the TOTAL–SALES field contained no decimal digits. If a numeric field does
contain one or more decimal digits, use the DECIMAL parm to indicate that. For example,
if the data for TOTAL–SALES includes two decimal digits, we would use the following
statement to define the field:

FIELD: TOTAL–SALES TYPE(NUM) LENGTH(7) DECIMAL(2)

The DECIMAL parm above tells Report Writer that the last two digits in the field are to be
considered decimal digits. The DECIMAL parm may be used with any numeric field,
regardless of which TYPE parm is used.
■ 6-16 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
The ACCUM and NOACCUM parms can also be used when defining numeric fields. They
specify whether or not to accumulate the field when it appears as a column in a report.
Fields which are accumulated receive Grand Totals at the end of the report, as well as
control break totals at each control break. Accumulated fields also appear in any other
statistical lines that appear in a report (such as average lines, maximum lines, etc.)

By default, all numeric fields (except those displayed with certain non–numeric
PICTUREs) are accumulated. Some numeric fields, such as a telephone number, a
department number, or an employee number, should not be totalled. Use the NOACCUM
parm to prevent these kinds of numeric fields from appearing in the total lines.

Example
FIELD: DEPT–NUM LENGTH(1) TYPE(NUM) NOACCUM

The above statement specifies that the DEPT–NUM field should not be accumulated when
it appears as a column in a report. Therefore, the DEPT–NUM column will not be totalled
at control breaks and at the end of the report, even though it is defined as a numeric field.
For a more detailed discussion about which fields are accumulated and appear in the
total lines, see page 4-26.

Another parm you may want to use when defining numeric fields is the FORMAT parm. By
default, all numeric fields (regardless of their TYPE) are displayed with the NUMERIC display
format. The NUMERIC display format: suppresses leading zeros; uses commas to separate
groups of 3 digits; and adds a leading minus sign (for negative values). If you want a
numeric field to have a different default display format, use the FORMAT parm.

Example
FIELD: COST–CENTER TYPE(NUM) FORMAT(NOCOMMA) NOACCUM

The above statement specifies that whenever the COST–CENTER field is displayed in a
report, the NOCOMMA format should be used. The NOCOMMA format does not use commas to
separate groups of digits. When displaying fields like cost centers, employee numbers,
account numbers, etc., you normally do not want them formatted with commas. (You
also do not want them totalled, which is why we also specified NOACCUM in the above
statement.)

A complete list of numeric display formats is found in Appendix B, Display Formats.

The PICTURE display format gives you great flexibility in describing how a numeric field
should be formatted.

Example
FIELD: DOLLAR–SALES LENGTH(7) TYPE(PACKED) DECIMAL(2)
 FORMAT(PIC’$$$,$$$,$$$’)
CIMS Report Writer User Guide 6-17 ■

■ How to Define Your Input Files

How to Define a Field
The above statement uses a PICTURE to specify the display format of the DOLLAR–SALES
field. In this example, a total of 11 positions (the size of the PICTURE text) will be reserved
for displaying the field. A floating dollar sign will precede the first non–zero digit in the
amount. No decimal digits will be displayed. (The two decimal digits contained in the
raw data will be rounded out when the field is formatted for the report.)

Here is another example of using a PICTURE in the FORMAT parm to customize the way a
numeric field is displayed:

FIELD: TELEPHONE LENGTH(10) TYPE(NUM)
 FORMAT(PIC’(999) 999–9999’)

This example uses parentheses and a dash as part of the PICTURE in order to display the
TELEPHONE field’s 10 digits in the standard format:

(415) 555–1212

PICTURE Display Formats on page 9-12 explains the rules for writing PICTURES.

Note • The FORMAT parm specifies the default display format that will be used for a
field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.

By default, whenever a field appears as a column in a report, the field name itself is used
as the column heading. To specify a different column heading, use the HEADING parm in
the FIELD statement. The use of the HEADING parm is discussed beginning on page 6-35.
As an example, we could specify a column heading for the TOTAL–SALES field like this:

FIELD: TOTAL–SALES TYPE(NUM) LENGTH(7)
 HEADING(’YEARLY SALES TOTAL’)
■ 6-18 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
Figure 6-3 • A report with FIELD statements that define numeric fields

FILE: EMPL–FILE DDNAME(EMPLFILE) TYPE(VSAM)

FIELD: LAST–NAME COL(4) LEN(15)

FIELD: DEPT–NUM COL(40) LEN(1) TYPE(NUM) NOACCUM

FIELD: TOTAL–SALES COL(56) LEN(7) TYPE(NUM) DEC(2)
 HEADING('YEARLY SALES TOTAL')

FIELD: DOLLAR–SALES COL(56) LEN(7) TYPE(NUM) DEC(2)
 FORMAT(PIC'$$$,$$$,$$$')

FIELD: TELEPHONE COL(153) LEN(10) TYPE(NUM)
 FORMAT(PIC'(999) 999–9999')

INPUT: EMPL–FILE
TITLE: 'EXAMPLES OF DEFINING NUMERIC FIELDS'
COLUMNS: LAST–NAME TELEPHONE TOTAL–SALES
 DOLLAR–SALES DEPT–NUM

These Control Statements:

Notes:

• we used abbreviations for the COLUMNS, LENGTH and DECIMAL parms. See page 10-48 for a
list of abbreviations allowed in the FIELD statement

• the NOACCUM parm prevents the DEPT–NUM column from being totalled

• the PICTURE in the FORMAT parm causes DOLLAR–SALES to be displayed with a leading dollar sign,
and with no decimal digits

• the use of special characters (namely, the parentheses) in the PICTURE for TELEPHONE keeps that
column from being totalled

 EXAMPLES OF DEFINING NUMERIC FIELDS

 LAST DOLLAR DEPT
 NAME TELEPHONE YEARLY SALES TOTAL SALES NUM

BAKER (415) 555-1209 92,125.89 $92,126 4
CHRISTOPHERSON (602) 555-4556 47,665.31 $47,665 1
JOHNSON (415) 555-6785 75,023.55 $75,024 2
JOHNSON (602) 555-6654 86,999.24 $86,999 1
JONES (415) 555-7653 42,509.89 $42,510 2
MACDONALD (415) 555-9887 2,560.98 $2,561 2
MORRISON (818) 555-4748 98,054.99 $98,055 3
SIMPSON (818) 555-1887 8,723.88 $8,724 3
THOMAS (415) 555-1152 60,193.49 $60,193 4

*** GRAND TOTAL (9 ITEMS) 513,857.22 $513,857

Produce this Report:
CIMS Report Writer User Guide 6-19 ■

■ How to Define Your Input Files

How to Define a Field
Should You Define a Field as Character or Numeric? 6

This section explains:

■ how to decide whether a field that contains only numeric digits should be defined as
a character field or as a numeric field

Most files have some fields that contain only numeric digits, stored in "display numeric"
format. When defining these fields you must decide whether you want to define them as
character or numeric fields.

It is better to define certain types of fields as character fields, even though they contain
only numeric digits. Examples of such fields are: employee numbers, department
numbers, and product code numbers. If such fields were defined as numeric, they would
be formatted as numbers (by default), with commas inserted among the digits. They would
also be totalled (by default) at the end of the report. They would appear in any statistical
lines printed in the report. This kind of processing is not normally wanted for such things
as employee numbers and department numbers. To avoid this, define the fields as
character fields rather than as numeric fields. Character fields are always displayed just as
they are (no commas are inserted) and they are never totalled. Remember to use
character literals (in quotation marks) when working with fields defined as character:

INCLUDEIF: EMPL–NUM = ’037’

On the other hand, there is one advantage to defining certain of these fields as numeric
fields. You can use a PICTURE to specify special display formats for numeric fields. Some
examples of fields that you might want to use a PICTURE with are telephone numbers and
social security numbers. For example, you might want to use a PICTURE such as PIC’(999)
999–9999’ to format a telephone number in a report. Or, you way want to format a social
security number using PIC’999–99–9999’. If you want to use a PICTURE to specify a
customized display format, you must define the field as numeric. (PICTUREs are not
allowed for character fields.) Remember to use numeric literals (no quotation marks)
when working with fields defined as numeric:

INCLUDEIF: TELEPHONE = 4155557653

Once you have decided how to define a field, you can still "change your mind."

If you find that you need to treat a character field as a number, you can convert it to a
numeric value by using the #MAKENUM built–in function in a COMPUTE statement. (See
page D-12.) For example, if EMPL–NUM has been defined as a character field, and you want
to add 900 to it, you could do that by first converting it to a numeric value:

COMPUTE: NEW–EMPL–NUM = #MAKENUM(EMPL–NUM) + 900

The result field (NEW–EMPL–NUM) will be numeric, since the computational expression was
numeric. (It involved the addition of two numeric operands.) You would use numeric
literals (no quotes) when working with this field:

INCLUDEIF: NEW–EMPL–NUM = 937
■ 6-20 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
If you find the need to treat a numeric field as a character field, you can convert it to a
character value using the #FORMAT built–in function. (See page D-12.) Assume that
TELEPHONE has been defined as a numeric field. You can make a character field that
contains the formatted telephone number by using the following statement:

COMPUTE: CHAR–TELEPHONE = #FORMAT(TELEPHONE, PIC’(999) 999–9999’)

The result field (CHAR–TELEPHONE) will be a 14–byte character field (the size of the
PICTURE.) You would use character literals (with quotes) when working with this field:

INCLUDEIF: CHAR–TELEPHONE = ’(415) 555–7653’

You could also extract certain digits out of this telephone number now that it is character
data:

COMPUTE: AREA–CODE = #SUBSTR(CHAR–TELEPHONE,2,3)

How to Define a Date Field 6

This section explains:

■ what a date field is

■ which parms are required to define a date field

■ which optional parms can be used when defining date fields

Most of the examples used in this section are illustrated in the sample report in Figure
6-4, on page 6-23.

Date fields contain calendar dates. Examples of date fields are birth dates, hire dates,
expiration dates, sales dates, etc. There are a number of different ways that a date field
can be stored in a record. It can be stored as a 6–byte character YYMMDD date, as a packed
Julian date, or as a 3–byte hexadecimal MMDDYY field, to name just a few possibilities. The
FIELD statement’s TYPE parm tells Report Writer exactly how a field is stored in the record.

Note • Once a date field has been defined, you do not need to remember how it is
stored in the record. You may freely compare any kind of date field with any other
date field. Report Writer automatically takes care of any conversion that may be
necessary.

The only parms required to define a date field are:

■ fieldname

■ TYPE

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 9-7.

After the fieldname, the other parm(s) may be specified in any order in the FIELD
statement.
CIMS Report Writer User Guide 6-21 ■

■ How to Define Your Input Files

How to Define a Field
When defining a date field to Report Writer the TYPE parm is required. This parm
indicates the exact way in which the date is stored in the record. There are a number of
ways that are commonly used to store dates in a record. Report Writer needs to know
which method is used for a particular field in order to process it correctly. A complete list
of date data types appears in Appendix A, Date Data Types, on page A-5 Here are two
examples:

FIELD: HIRE–DATE TYPE(YYMMDD)
FIELD: BIRTH–DATE TYPE(H–MMDDYY)

The first example above defines a field named HIRE–DATE that contains a date in character
YYMMDD format (for example, "951231" for December 31, 1995). This type of date field
takes up 6 bytes in the record. The second statement specifies that the BIRTH–DATE field
is stored in hexadecimal MMDDYY format (for example, X’123195’ for the same date.) This
type of date requires only 3 bytes in the record.

The LENGTH parm is generally not required for date fields. Depending on the particular
data type, Report Writer assumes a default length for each date field. For example, the
length of a date field in YYMMDD form is 6 bytes. The length of a date field in H–MMDDYY form
is 3 bytes, and so on. The default length and the allowable lengths for each date data type
are shown in the table beginning on page A-5. If Report Writer’s default length is correct,
you do not need to specify the LENGTH parm (although you may do so.) However, if your
field size is different than the default, you must specify its actual length using the LENGTH
parm.

Report Writer assumes that the HIRE–DATE field defined in the preceding example
occupies the 6 bytes immediately after the previously defined field. If you want to
explicitly specify where the 6–byte field is located, use the COLUMN or the DISP parm. The
use of these parms is discussed beginning on page 6-30. For example, if HIRE–DATE begins
in the 34th column of a record, we could define it like this:

FIELD: HIRE–DATE TYPE(YYMMDD) COLUMN(34)

By default, all date fields are displayed in MM/DD/YY format when they appear in a report
(regardless of how they are stored in the record.) If you would like a date field to have a
different default display format, use the FORMAT parm. For example:

FIELD: HIRE–DATE TYPE(YYMMDD) FORMAT(LONG1)

The above example specifies that whenever the HIRE–DATE field is printed in a report, the
LONG1 format should be used. The LONG1 format spells out the name of the month
completely (for example, "JANUARY 31, 1999"). A complete list of date display formats
is found in Appendix B, Date Display Formats, on page B-5.

Note • The FORMAT parm specifies the default display format that will be used for a
field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.
■ 6-22 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
Figure 6-4 • A report with FIELD statements that define date fields

FILE: EMPL–FILE DDNAME(EMPLFILE) TYPE(VSAM)

FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: HIRE–DATE COLUMN(34) TYPE(YYMMDD)
FIELD: LONG–HIRE–DATE COLUMN(34) TYPE(YYMMDD)
 FORMAT(LONG1)
 HEADING('DATE HIRED')

INPUT: EMPL–FILE
TITLE: 'EXAMPLES OF DEFINING DATE FIELDS'
COLUMNS: LAST–NAME HIRE–DATE LONG–HIRE–DATE

Produce this Report:

These Control Statements:

Notes:

• the HIRE–DATE field and the LONG–HIRE–DATE field both point to the same data in the record (at
column 34)

• the HIRE–DATE field is printed in the default display format since no FORMAT parm is specified in its
FIELD statement

• the FORMAT parm causes the LONG–HIRE–DATE field to be printed in the LONG1 format, with the
month name spelled out

• the HEADING parm specifies the column heading to use for the LONG–HIRE–DATE field

 EXAMPLES OF DEFINING DATE FIELDS

 LAST HIRE
 NAME DATE DATE HIRED

BAKER 06/04/82 JUNE 4, 1982
CHRISTOPHERSON 08/15/81 AUGUST 15, 1981
JOHNSON 06/21/75 JUNE 21, 1975
JOHNSON 11/25/79 NOVEMBER 25, 1979
JONES 01/31/80 JANUARY 31, 1980
MACDONALD 07/04/82 JULY 4, 1982
MORRISON 11/30/79 NOVEMBER 30, 1979
SIMPSON 12/01/82 DECEMBER 1, 1982
THOMAS 06/04/82 JUNE 4, 1982

*** GRAND TOTAL (9 ITEMS)
CIMS Report Writer User Guide 6-23 ■

■ How to Define Your Input Files

How to Define a Field
By default, whenever a field appears as a column in a report, the field name itself is used
as the column heading. To specify a different column heading, use the HEADING parm in
the FIELD statement. The use of the HEADING parm is discussed beginning on page 6-35.
As an example, we could specify a column heading for the HIRE–DATE field like this:

FIELD: HIRE–DATE TYPE(YYMMDD) HEADING(’DATE HIRED’)

How to Define a Time Field 6

This section explains:

■ what a time field is

■ which parms are required to define a time field

■ which optional parms can be used when defining time fields

Most of the examples used in this section are illustrated in the sample report in Figure
6-5, on page 6-27

Time fields contain a time value consisting of a number of hours and minutes. Time
fields can optionally contain seconds as well, and even decimal portions of a second.

Time fields often indicate the time of day that an event occurred. They can also indicate
an elapsed time (the time interval between two events.) There are a number of different
ways that a time field can be stored in a record. Often they are stored as a 6–byte
character HHMMSS fields. CICS stores time fields as binary hundredths of seconds since
midnight. The S/370 STCK machine instruction represents times as the number of "timer
units" since the beginning of the century.

Report Writer supports all of these kinds of time fields and about two dozen others. The
FIELD statement’s TYPE parm tells Report Writer exactly how a field is stored in the record.

Note • Once a time field has been defined, you do not need to remember how it is
stored in the record. You may freely compare any kind of time field with any other
time field. Report Writer automatically takes care of any conversion that may be
necessary.

The only parms required to define a time field are:

■ fieldname

■ TYPE

The following optional parms can also be used to define a time field:

■ DECIMAL

■ ACCUM/NOACCUM

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 9-7.
■ 6-24 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
After the fieldname, the other parm(s) may be specified in any order in the FIELD
statement.

The TYPE parm indicates the exact way in which the time is stored in the record. The valid
time data types are listed in Appendix A, Time Data Types, on page A-8. Use these data
types in the FIELD statement to define time fields.

Example
FIELD: SALES–TIME TYPE(HHMMSS)

The above statement defines a field called SALES–TIME which is a 6–byte field containing
a time in HHMMSS format.

The LENGTH parm is generally not required for time fields. Depending on the particular
data type, Report Writer assumes a default length for each time field. For example, the
default length of a time field in HHMMSS format is 6 bytes. The default length of a time field
in P–HHMM format is 3 bytes, and so on. The default length of each time data type is also
shown in the table beginning on page A-8. If Report Writer’s default length is correct, you
do not need to specify the LENGTH parm (although you may do so.) However, if your field
size is different than the default, you must specify its actual length using the LENGTH
parm.

Report Writer assumes that the SALES–TIME field defined in the preceding example
occupies the 6 bytes immediately after the previously defined field. If you want to
explicitly specify where the 6–byte field is located, use the COLUMN or the DISP parm. The
use of these parms is discussed beginning on page 6-30. For example, if SALES–TIME
begins in the 38th column of a record, we could define it like this:

FIELD: SALES–TIME TYPE(HHMMSS) COLUMN(38)

You may also use the DECIMAL parm in the FIELD statement. Do this when the time field
contains decimal portions of seconds (for example, tenths of seconds, or hundredths of
seconds.)

Example
FIELD: LOG–TIME LENGTH(4) TYPE(B–SECS) DEC(2)

The above statement defines a field called LOG–TIME which is stored as a 4–byte B–SECS
("binary seconds") value. B–SECS fields store their time as the number of seconds since
midnight. The DEC(2) parm indicates that the binary value actually represents
hundredths of seconds since midnight.

The ACCUM and NOACCUM parms can also be used when defining time fields. They specify
whether or not to accumulate the field when it appears as a column in a report. Fields
which are accumulated receive Grand Totals at the end of the report, as well as control
break totals at each control break. Accumulated fields also appear in any other statistical
lines that appear in a report (such as average lines, maximum lines, etc.)

By default, time fields are not accumulated (since it makes no sense to add up various
times of day.) However, if you have a time field which represents a time interval or a
duration you may want to total that field. Use the ACCUM parm to cause a time field to be
totalled.
CIMS Report Writer User Guide 6-25 ■

■ How to Define Your Input Files

How to Define a Field
Example
FIELD: RESPONSE–TIME TYPE(HHMMSS) LENGTH(8) DEC(2) ACCUM

The above statement specifies that the RESPONSE–TIME field should be accumulated when
it appears as a column in a report. Therefore, the RESPONSE–TIME column will be totalled
at control breaks and at the end of the report. For a more detailed discussion about
which fields are accumulated and appear in the total lines, see page 4-26.

Time fields, regardless of how they are stored in the input file, are normally formatted
in your reports and PC files like this:

HH:MM:SS

However, time fields defined as containing only hours and minutes (the HHMM data type,
for example) will be formatted like this:

HH:MM

If you would like a time field to have a different default display format, use the FORMAT
parm.

Example
FIELD: SALES–TIME TYPE(HHMMSS) FORMAT(HHMMSS)

The above example specifies that whenever the SALES–TIME field is printed in a report,
the HHMMSS format should be used. The HHMMSS format does not use colons to separate the
hours, minutes and seconds (for example, "131059"). Or, you might specify the HH–MM
display format if you want a time field to be displayed without showing the seconds.
Report Writer will round the time to the nearest minute. You can also use a "time
picture" to indicate how a time is to be formatted. A complete list of time display formats
is found in Appendix B, Time Display Formats, on page B-8.

Note • The FORMAT parm specifies the default display format that will be used for a
field. Override display formats can always be used in other control statements to
change the way the field is displayed in a particular report.

By default, whenever a field appears as a column in a report, the field name itself is used
as the column heading. To specify a different column heading, use the HEADING parm in
the FIELD statement. The use of the HEADING parm is discussed beginning on page 6-35.
As an example, we could specify a column heading for the SALES–TIME field like this:

FIELD: SALES–TIME TYPE(HHMMSS) HEADING(’TIME OF SALE’)

How to Define a Bit Field 6

This section explains:

■ what a bit field is

■ which parms are required to define a bit field

■ which optional parms can be used when defining bit fields
■ 6-26 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
Figure 6-5 • A report with FIELD statements that define time fields

FILE: SALES-FILE DDNAME(SALEFILE)
*
FIELD: EMPL-NAME LENGTH(10)
FIELD: CUSTOMER COLUMN(48) LENGTH(15)
FIELD: SALES-TIME COLUMN(42) TYPE(HHMMSS)
FIELD: SALES-TIME-B COLUMN(42) TYPE(HHMMSS) FORMAT(HH-MM)
FIELD: TIME-ON-PHONE COLUMN(73) TYPE(SECS) LENGTH(4) DEC(1)
FIELD: TIME-ON-PHONE-B COLUMN(73) TYPE(SECS) LENGTH(4) DEC(1)
 FORMAT(TPIC'99:99:99') ACCUM
FIELD: TIME-ON-PHONE-C COLUMN(73) TYPE(SECS) LENGTH(4) DEC(1)
 FORMAT(SECS) ACCUM
 HEADING('SECONDS ON TELEPHONE')
*
INPUT: SALES-FILE
TITLE: 'EXAMPLES OF DEFINING TIME FIELDS'
COLUMNS: EMPL-NAME CUSTOMER
 SALES-TIME SALES-TIME-B
 TIME-ON-PHONE TIME-ON-PHONE-B TIME-ON-PHONE-C

Produce this Report:

These Control Statements:

Notes:

• the HH–MM display format causes SALES–TIME–B to be rounded to the nearest minute

• only those fields defined with the ACCUM parm are totalled

• TIME–ON–PHONE–B uses a TPICTURE that does not include any decimal digits. The value is rounded
to the nearest whole second

 EXAMPLES OF DEFINING TIME FIELDS

 TIME
 SALES TIME ON
 EMPL SALES TIME ON PHONE SECONDS ON
 NAME CUSTOMER TIME B PHONE B TELEPHONE

JOHNSON ACE ELECTRICAL 10:25:00 10:25 00:00:07.9 00:00:08 7.9
BAKER JACKS CAFE 12:09:09 12:09 00:00:10.2 00:00:10 10.2
MORRISON STAR MARKET 15:30:22 15:30 00:00:59.9 00:01:00 59.9
MORRISON A1 PHOTOGRAPHY 19:05:41 19:06 00:01:00.0 00:01:00 60.0
SIMPSON EUROPEAN DELI 08:17:57 08:18 00:00:15.0 00:00:15 15.0
JOHNSON VILLA HOTEL 17:02:47 17:03 00:01:32.9 00:01:33 92.9
JOHNSON MARYS ANTIQUES 14:33:10 14:33 00:00:00.0 00:00:00 0.0
BAKER JACKS CAFE 14:31:12 14:31 00:00:23.1 00:00:23 23.1
THOMAS YOGURT CITY 15:41:38 15:42 00:09:02.1 00:09:02 542.1
JONES EZ GROCERY 07:58:32 07:59 00:01:21.0 00:01:21 81.0
JONES TOY TOWN 08:01:59 08:02 00:02:00.0 00:02:00 120.0
JONES TOY TOWN 13:52:41 13:53 00:00:52.3 00:00:52 52.3
JOHNSON ACME BUILDING 11:48:33 11:49 00:01:42.5 00:01:43 102.5
SIMPSON J & S LUMBER 15:30:21 15:30 00:04:05.1 00:04:05 245.1

*** GRAND TOTAL (14 ITEMS) 00:23:32 1,412.0
CIMS Report Writer User Guide 6-27 ■

■ How to Define Your Input Files

How to Define a Field
Most of the examples used in this section are illustrated in the sample report in Figure
6-6, on page 6-29.

Bit fields consist of only a single bit within a byte. A single bit can only have a value of
0 (zero) or 1 (one.) We say that a bit with a value of 0 is "off", while a bit with a value
of 1 is "on." Bit fields are often used to indicate a status. For example, the FULL–TIME field
in the EMPL–FILE is a bit field. If the bit is on, it means that the employee is full–time. If
the bit is "off’, the employee is not full–time.

The only parms required to define a bit field are:

■ fieldname

■ BIT

The following optional parms also relate specifically to bit fields:

■ ONTEXT

■ OFFTEXT

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 9-7.

After the fieldname, the other parm(s) may be specified in any order in the FIELD
statement.

The BIT parm is required to tell Report Writer which specific bit (within a byte) the field
refers to. Every byte contains 8 bits, which are numbered from 1 to 8, starting with the
leftmost ("high order") bit. Here is an example of defining a bit field:

FIELD: FULL–TIME BIT(1)

The above example defines a bit field named FULL–TIME. The BIT(1) parm specifies that
the FULL–TIME field occupies the first (or "high order") bit within the byte.

Report Writer assumes that the byte containing the FULL–TIME bit field occurs in the input
record immediately after the previously defined field. If you want to explicitly specify
where the byte containing the FULL–TIME bit is located, use the COLUMN or the DISP parm.
The use of these parms is discussed beginning on page 6-30. For example, if the FULL–
TIME bit is located within the 42nd byte of the record, we could define it like this:

FIELD: FULL–TIME BIT(1) COLUMN(42)

The above statement explicitly specifies that the FULL–TIME bit is the first (high–order)
bit in the 42nd byte of the record.

Note • A single byte in a record will often contain more than one bit field. Therefore,
the "default location" is not incremented after FIELD statements that define bit fields.
This allows you to define multiple bit fields within the same byte of the record. For
more information on the default location, see How to Specify a Field’s Location in a
Record on page 6-30.
■ 6-28 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
Figure 6-6 • A report with FIELD statements that define bit fields

FILE: EMPL–FILE DDNAME(EMPLFILE) TYPE(VSAM)

FIELD: LAST–NAME LEN(15) COL(4)
FIELD: FULL–TIME BIT(1) COL(42)

FIELD: EMPL–STATUS BIT(1) ONTEXT('FULL')
 OFFTEXT('PART')
 HEADING('FULL TIME STATUS')

FIELD: PART–TIME BIT(1) ONTEXT(' ')
 OFFTEXT('PART TIME')

INPUT: EMPL–FILE
TITLE: 'EXAMPLES OF DEFINING BIT FIELDS'
COLUMNS: LAST–NAME FULL–TIME EMPL–STATUS PART–TIME

Produce this Report:

These Control Statements:

Notes:

• all three bit fields point to the same bit in the record (bit 1 of the 42nd byte) since the "default
location" is not incremented after FIELD statements that define bit fields

• the FULL–TIME field uses the default ONTEXT and OFFTEXT, which are based on the field name

• the EMPL–STATUS field specifies its own ONTEXT and OFFTEXT, as well as a column heading

• the PART–TIME field uses blanks for the ONTEXT, to make part time employees stand out better

 EXAMPLES OF DEFINING BIT FIELDS

 LAST FULL PART
 NAME TIME FULL TIME STATUS TIME

BAKER FULL-TIME FULL
CHRISTOPHERSON FULL-TIME FULL
JOHNSON FULL-TIME FULL
JOHNSON FULL-TIME FULL
JONES FULL-TIME FULL
MACDONALD NOT FULL-TIME PART PART TIME
MORRISON FULL-TIME FULL
SIMPSON FULL-TIME FULL
THOMAS FULL-TIME FULL

*** GRAND TOTAL (9 ITEMS)
CIMS Report Writer User Guide 6-29 ■

■ How to Define Your Input Files

How to Define a Field
A bit field can be printed in a report just like any other kind of field. But remember that
a bit field can have only one of two possible values: "on" or "off". Rather than just
printing the words "on" or "off" in the report, more meaningful texts are used. One text
(called the ONTEXT) will be printed if the bit is "on". Another text (the OFFTEXT) will be
printed if the bit is "off".

By default, the ONTEXT is the name of the field itself, while the OFFTEXT is the word NOT
followed by the field name itself. In the above example, the text "FULL–TIME" would print
whenever the field’s value is "on", and the text "NOT FULL–TIME" would print whenever
the field is "off".

You may specify your own ONTEXT and OFFTEXT values by using the respective parms in
the FIELD statement.

Example
FIELD: FULL–TIME BIT(1) ONTEXT(’FULL’) OFFTEXT(’PART’)

The above statement causes the word FULL to print whenever the bit field is "on", and
the word PART to print when the field is "off."

You may also use blanks as an ONTEXT or OFFTEXT.

Example
FIELD: FULL–TIME BIT(1) ONTEXT(’ ’) OFFTEXT(’PART TIME’)

The above statement will print only a blank when the field is "on", but prints the words
PART TIME when the field is "off". The use of blanks for one of the texts helps cause the
other text to stand out whenever it appears in the report.

By default, whenever a field appears as a column in a report, the field name is used as
the column heading. To specify a different column heading, use the HEADING parm in the
FIELD statement. The use of the HEADING parm is discussed beginning on page 6-35. As
an example, we could specify a column heading for the FULL–TIME field like this:

FIELD: FULL–TIME BIT(1) HEADING(’FULL TIME STATUS’)

How to Specify a Field’s Location in a Record 6

This section explains how to specify where a field begins within a record. This discussion
applies to fields of all types. Topics covered include:

■ how a field’s default location is determined

■ how the default location works when defining bit type fields

■ how to use the COLUMN or DISP parm to specify a field’s location

■ how to use the FILE parm to specify the file in which a field is located

Subsequent sections show:

■ how columns are counted in variable length (VB) input files (page 6-33)

■ how to use the OFFSET parm for variably located fields (page 6-33)
■ 6-30 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
Some of the sample FIELD statements in the preceding sections did not use the COLUMN
parm. When no parm is used to indicate where a field begins, a default location is
assumed. By default, the first field defined for a file is assumed to begin in column 1.
Subsequent fields are assumed to begin immediately after the previously defined field.
For example, assume that the following two statements appeared together:

FIELD: LAST–NAME LENGTH(15) COLUMN(4)
FIELD: FIRST–NAME LENGTH(15)

The first field defined above (LAST–NAME) has a COLUMN parm specifying that the field
begins in the 4th byte of the record. The field is 15 bytes long. The second field (FIRST–
NAME) does not have a COLUMN parm. Therefore, this field is assumed to begin immediately
after the LAST–NAME field. Since the LAST–NAME field begins in column 4 and occupies 15
bytes, the FIRST–NAME field would begin in column 19.

When defining consecutive fields in a file, you will not normally need a COLUMN parm.
You will only need this parm in a few cases:

■ after defining a bit field (the default location is not incremented after defining a bit
field)

■ when you want to redefine part of a record

■ when you want to skip over part of a record that doesn’t need to be defined (such as
filler)

Some companies prefer to think of fields in terms of displacements, rather than columns.
A field’s starting displacement is simply its starting column minus one. Report Writer also
lets you use the DISP (or DISPLACEMENT) parm to indicate a field’s location in a record. For
example, both of the following statements define the LAST–NAME field as beginning in the
4th byte of the record:

FIELD: LAST–NAME LENGTH(15) COLUMN(4)
FIELD: LAST–NAME LENGTH(15) DISP(3)

There are other methods you can use to specify a field’s starting column. You can use the
location of some other field as a reference point, like this:

FIELD: LAST–NAME LENGTH(15) COLUMN(FIRST–NAME + 25)

The above example specifies that the LAST–NAME field begins 25 bytes after the starting
column of the FIRST–NAME field. (For this statement to be acceptable, the FIRST–NAME field
must have already been defined in a preceding FIELD statement.)

The following example specifies that the LAST–NAME field begins 20 bytes before the start
of the FIRST–NAME field:

FIELD: LAST–NAME LENGTH(15) COLUMN(FIRST–NAME – 20)

Note • Be sure to put blanks around dashes that are used as minus signs (as above)
to avoid confusion with dashes that are a part of the field name. (Blanks are optional
around the plus sign.)
CIMS Report Writer User Guide 6-31 ■

■ How to Define Your Input Files

How to Define a Field
You may also use an asterisk (*) within the COLUMN or DISP parm. The asterisk represents
the current location within the record. In other words, it represents the starting column
that would be assigned if you did not specify a COLUMN parm at all.

Example
FIELD: LAST–NAME LENGTH(15) COLUMN(* + 7)

The above example specifies that the LAST–NAME field, rather than beginning immediately
after the previously defined field, should begin 7 bytes after that.

You can also use the asterisk to "back up" the current location. This is useful when you
want to define more than one field for a given part of the record. For example, assume
the following two statements appeared together:

FIELD: HIRE–DATE TYPE(MMDDYY)
FIELD: HIRE–YEAR COLUMN(* – 2) LENGTH(2)

The first statement above defines HIRE–DATE as a 6–byte date field in the format MMDDYY.
The second field backs up 2 bytes and redefines the last 2 bytes of the hire date as a
separate field named HIRE–YEAR. HIRE–YEAR is just a 2–byte character field containing the
YY portion of the HIRE–DATE field.

The "default location" is handled a little differently when working with bit fields. A
single byte in a record will often contain more than one bit field. Therefore, the default
location is not incremented after FIELD statements that define bit fields. This allows you to
define multiple bit fields within the same byte of the record. After the FIELD statement
for the last bit that you wish to define within a byte, you must use the COLUMN (or DISP)
parm to specify the location of the next field.

Example
FIELD: ACTIVE–FLAG BIT(1)
FIELD: PARTTIME–FLAG BIT(2)
FIELD: DELETE–FLAG BIT(5)
FIELD: CUSTOMER COLUMN(*+1) LENGTH(20)

The first three FIELD statements above define bit fields. All three bit fields are located in
the same byte of the record. The default location was not incremented after processing
those FIELD statements since they defined bit fields. To define the CUSTOMER field, which
begins in the next byte of the record, we used the COLUMN parm. The "*+1" within that parm
specifies that the CUSTOMER field should begin in the current location (the byte containing
the bit fields), plus one byte.

Our examples up until now have not used the FILE parm of the FIELD statement. By
default, fields are assumed to exist in the "current file" –– that is, the file defined in the
most recent FILE statement. To specify that a field belongs to some other (previously
defined) file, use the FILE parm. For example, assume that the following statements
appeared together:

FILE: EMPL–FILE
FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FILE: SALES–FILE
■ 6-32 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
FIELD: EMPL–NAME COLUMN(10)
FIELD: FIRST–NAME COLUMN(19) LENGTH(15)

The first statement above defines a file named EMPL–FILE. The next statement defines a
field named LAST–NAME. Since no FILE parm is used, that field is assumed to exist in the
EMPL–FILE –– the most recently defined file. The next statement defines a new file named
SALES–FILE. The following statement defines a field named EMPL–NAME. It also has no FILE
parm. So, it is assumed to exist in the SALES–FILE –– the most recently defined file at that
point. The last statement defines a field named FIRST–NAME. This statement does have a
FILE parm. That statement explicitly specifies that the FIRST–NAME field exists in the EMPL–
FILE –– not the most recently defined file (the SALES–FILE.)

Field Location in Variable Length Files 6

Records in non–VSAM variable length files begin with a 4–byte record prefix called the
record descriptor word (RDW). This RDW appears before the actual user data in each record.

By default, Report Writer ignores the RDW in variable length input files. It treats your
variable length input records as beginning immediately after the 4–byte RDW. That is, a
field defined as beginning in column 1 does not point to the RDW, but rather to the first
byte of data after the RDW. Consider these statements:

FILE: VAR–FILE DDNAME(FILEIN) LRECL(5000)
FIELD: NAME COLUMN(1) LENGTH(15)

Assuming that VAR–FILE is a variable–length file, Report Writer will ignore the 4–byte RDW
at the beginning of each record. Thus, the field that begins in column 1 (NAME) is the first
item we can define for this file. We cannot define a field that is within the RDW prefix of
the record.

If you do not want Report Writer to ignore the RDW, use the KEEPRDW keyword in the FILE
statement (or in the INPUT or READ statement.) For example:

FILE: VAR–FILE DDNAME(FILEIN) LRECL(5000) KEEPRDW
FIELD: RECORD–LENGTH COLUMN(1) TYPE(HALFWORD)
FIELD: NAME COLUMN(5) LENGTH(15)

The KEEPRDW parm in the FILE statement above causes Report Writer to treat the RDW as
part of each input records. Thus, we defined a halfword field starting in column 1 that
points within the RDW. That field (RECORD–LENGTH) will contain the length of the record
(which is what is the first 2 bytes of the RDW contains.) The first field after the RDW, "NAME",
now starts in column 5.

Variably Located Fields 6

Some records contain fields that do not always begin at a fixed column in the record. In
such cases there is usually another field within the record that tells the "offset" to the
variably located field. Report Writer’s OFFSET parm lets you easily define such fields.
CIMS Report Writer User Guide 6-33 ■

■ How to Define Your Input Files

How to Define a Field
The OFFSET parm can contain any numeric expression. Report Writer computes the value
of the OFFSET parm for each input record. It adds this value to the value of your COLUMN or
DISP parm and thus determines where the field is located within the input record.

Example
FIELD: ADDR–OFFSET DISP(26) TYPE(HALFWORD)
FIELD: ADDR–LINE–1 LENGTH(30) OFFSET(ADDR–OFFSET)
FIELD: ADDR–LINE–2 LENGTH(30)
...

In this example, our input record contains a halfword value at displacement 26. This
value is the offset within the record to an "address section" of the record. The address
section consists of two 30–byte address lines.

Here are some points to keep in mind about the OFFSET parm:

■ The "default location" value is reset to displacement 0 each time an OFFSET parm is
encountered. ("Default location" means the default displacement assumed when you
do not specify a DISP or COLUMN parm in the FIELD statement.) Thus ADDR–LINE–1 is
treated as if it had a DISP(0) parm. Therefore, if ADDR–OFFSET contains a value of 100
in a particular record, ADDR–LINE–1 will be located at displacement 100 in that record.
Of course, you can still specify your own explicit DISP (or COLUMN) parm if you don’t
want the default value. For example:

FIELD: ADDR–LINE–X OFFSET(ADDR–OFFSET) DISP(15) LENGTH(30)

This statement would cause ADDR–LINE–X to be located at displacement 115 in our
example.

■ An OFFSET parm remains in effect for all subsequent FIELD statements, until another
OFFSET parm is found. Thus, the location of ADDR–LINE–2 is also determined by using
the value in ADDR–OFFSET. Since there is no DISP parm present, the "default location"
value is assumed. The default location is 30 for this field (since ADDR–LINE–1 took up
30 bytes in the record.) Thus ADDR–LINE–2 would be located at displacement 130 in
the same record.

Use OFFSET(0) if you later want to define fields that do not need any OFFSET value.
Remember that specifying OFFSET(0) also resets the default record location value to
zero.

If you use an OFFSET parm in a member of the Report Writer Copy Library, it is a good
idea to have a final FIELD statement that contains an OFFSET(0) parm. That way there
will be no "surprises" if someone later adds more FIELD statements "inline" for a
report request. They might not be aware that an OFFSET value was still in effect for
their additional FIELD statements.

■ A ***F*** error indicator in your report means that an "Offset Error" occurred for a
field. Offset errors occur when the sum of the OFFSET value and the DISP value are not
within the I/O area reserved for the input record. (The size of this I/O area is
determined by the record size specified in a FILE, INPUT or READ statement.) Offset
errors also occur when a computation error arises while computing the OFFSET value.
This includes division by zero, overflow, or any reference to another field that
contains invalid data.
■ 6-34 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
The examples above used a single field as the OFFSET value. You are also allowed to use
numeric expressions in the OFFSET parm. For example, to define a field that appears after
an array of variable size, you might use this statement:

FIELD: LAST–FIELD OFFSET(75 + (NUM–SLOTS * 12)) LENGTH(10)

How to Specify a Field’s Column Heading 6

This section explains:

■ how to use the HEADING parm to specify column headings

The HEADING parm can be used when a defining any type of field. It specifies the default
column heading to be used whenever a field appears as a column in a report or PC file.

Example
FIELD: FIRST–NAME LEN(15) HEADING("EMPLOYEE’S LAST NAME")

The vertical bar (|) in the HEADING parm above indicates that the column heading should
be split onto separate lines at that point. The first part (EMPLOYEE’S) will go on one line,
and the second part (LAST NAME) will go on the next line of the column heading.

Note • The vertical bar is the Shift "1" key on most mainframe terminals. Some PC
keyboards that emulate mainframe terminals do not have a key that shows the
straight vertical bar. (The "pipeline" character is not the same as the vertical bar.) On
many of these keyboards, the right–hand square bracket key (]) is used to send a
vertical bar to the mainframe.

You can also use the HDGSEP parm of the OPTION statement to select a character other than
the vertical bar (|) to use as the separator character. Here is an example of using a slash,
rather than a vertical bar, to separate column headings lines:

OPTIONS: HDGSEP(’/’)
FIELD: LAST–NAME LEN(15) HEADING("EMPLOYEE’S/LAST NAME")

If no HEADING parm is specified when a field is defined, the field name itself will be used
as the default column heading. All dashes or underscores in the field name will be used
to separate the name into different column heading lines.

Note that the HEADING parm simply specifies the default column headings that will be
used for the field. Override column headings can be specified in the COLUMNS control
statement to change the column heading for a particular run.

For more complete information on specifying column headings, see page 4-7.

How to Define a Field Created by a Data Exit 6

This section explains:

■ what a data exit is

■ which parms are required to define a field that uses a data exit
CIMS Report Writer User Guide 6-35 ■

■ How to Define Your Input Files

How to Define a Field
■ which optional parms can be used when defining fields that use data exits

There are occasions when an external program, called a data exit program (or just "exit
program"), must manipulate data before Report Writer can use it. Examples of this
include:

■ data that is stored in encrypted format in a record

■ date fields that are stored in an unusual format that Report Writer does not directly
support

■ data that exists in files that Report Writer cannot read directly, such as certain data
base files

Even in such situations, Report Writer can still use the data to produce a report. But a
data exit program must first be called to convert the data into a standard format that
Report Writer can process. For example, in the cases listed above, a data exit program
could be used to:

■ decrypt the encrypted data

■ convert the unusual date field into a date field that Report Writer can process

■ perform its own I/O on the data base file, and pass back to Report Writer data from
that file

Note • Data exit programs are not included with Report Writer. They must be written
by a programmer at your company. Most companies will not use data exit programs
at all. The data exit interface is merely provided to give the maximum ability to use
Report Writer at any shop –– even those with very "non–standard" types of files or
data. Appendix G, Sample Data Exit Program shows a sample data exit program and a
run that uses it.

When Report Writer needs to use a data exit field in producing a report, it temporarily
passes control to the data exit program. The exit program will be passed such
information as: the name of the field that Report Writer needs a value for; some portion
of the current input record; and, a parm text.

The exit program then performs whatever processing is required, and passes back to
Report Writer one of the following:

■ a character string, of the length specified in the DXRETLEN parm (explained below)

■ a numeric value, stored as a 16–byte packed field

■ a date value, stored as a 4–byte X’YYYYMMDD’ field

■ a time value, stored as a 16–byte packed number of seconds (or decimal parts of
seconds)

■ a bit value, stored as a 1–byte character C’0’ or C’1’
■ 6-36 CIMS Report Writer User Guide

How to Define Your Input Files ■

How to Define a Field
Once an exit program has passed data back to Report Writer, that data can then be used
just like the data from any other field in producing reports and PC files. It can be printed,
sorted on, compared with other fields, used in computations, etc.

When data exit fields are defined, several special parms must be used in the FIELD
statement. These additional parms give information about: the name of the data exit
program to execute; what data should be passed to that program; and, what kind of data
Report Writer can expect to get back from that program.

The parms required to define a field created by an exit program are:

■ fieldname

■ TYPE

■ DXPROG

■ DXRETLEN (for character fields)

■ DXRETDEC (for numeric and time fields)

The following optional parm also relates specifically to fields created by data exits:

■ DXPARM

In addition, the parms that specify how to display fields in a report (such as HEADING,
FORMAT, ACCUM/NOACCUM, ONTEXT, and OFFTEXT) can also be specified for these fields.

The fieldname is always the first item in a FIELD statement. The rules for assigning field
names are given on page 9-7.

After the fieldname, the other parm(s) may be specified in any order in the FIELD
statement.

The TYPE parm is required to tell Report Writer that the field’s data is not in the input
record, but must be obtained by calling an exit program. It also tells what kind of data
(character, numeric, date, time or bit) the exit program will return.

The DXPROG parm is required to tell Report Writer the name of the program that should
be called to create the field’s data.

The DXRETLEN parm is required for character fields that are created by a data exit program.
This parm specifies the length of the character data that will be returned to Report Writer
by the exit program.

The DXRETDEC parm is required for numeric and time fields that are created by a data exit
program. This parm specifies the number of decimal digits that will exist in the packed
number returned to Report Writer by the exit program.
CIMS Report Writer User Guide 6-37 ■

■ How to Define Your Input Files

How to Define a Field
Let’s consider an example of a file that contains names stored in a special encrypted
format. Assume that the encrypted name starts in column 15 and is 20 bytes long. Also
assume that a program named DCRYPROG can be used to decrypt such names into a clear
text 18 byte name. Consider the following FIELD statement:

FIELD: CLEAR–NAME COLUMN(15) LENGTH(20) TYPE(CHAREXIT)
 DXPROG(’DCRYPROG’) DXRETLEN(18)

The above statement defines a field named CLEAR–NAME. The contents of this field will be
the name in "clear" format (that is, not encrypted). But in order to get the decrypted
name, Report Writer must call an exit program. Therefore, the field is defined with the
TYPE(CHAREXIT) parm. This specifies that a data exit program will be used, and that the
exit program will return character type data to Report Writer.

The DXPROG parm supplies the name of the exit program to call. In this example, a
program named DCRYPROG will be called. Under MVS, a load module by this name must
exist in the library named in the STEPLIB DD in the JCL. Under VSE, a phase by this name
must be in a sublibrary named in the "// LIBDEF PHASE,SEARCH=..." statement in the
JCL.

When Report Writer calls that program it will pass it the 20 byte encrypted name, which
begins in column 15 of the record. This is specified by the COLUMN and LENGTH parms.

The TYPE and DXRETLEN parms tell Report Writer to expect an 18–byte character value
back from the exit program. It is this 18 byte character field returned from the exit
program that will be used whenever the CLEAR–NAME field appears in a report.

Here is an example of using a data exit to create a date field. Assume that in column 17
of the input record there are 2 bytes that contain a date, stored in a special "in–house"
format. A program called DATECONV exists that can convert this date into the standard 4–
byte X’YYYYMMDD’ format date that Report Writer uses internally. The following statement
could be used to define the field:

FIELD: SPECIAL–DATE COLUMN(17) LENGTH(2) TYPE(DATEEXIT)
 DXPROG(’DATECONV’) FORMAT(LONG1)

The above statement defines a field named SPECIAL–DATE that can be used just as any
other date field in Report Writer. It can be compared to other dates, printed using any
date display format, etc. In this example, we have also specified the optional FORMAT
parm. It specifies that this date field should be displayed using the LONG1 format, by
default.

Following is an example of a data exit used to create a numeric field. Assume that bytes 5
through 7 of the input record contain a key that can be used to read a special "in–house"
data base file. The data base file contains the unit cost of a product. Since Report Writer
cannot read the data base file directly, an exit program named READCOST is called to read
a record from the file and return the unit cost as a 16–byte packed number. The numeric
value returned by the exit program will contain 2 decimal digits.

FIELD: UNIT–COST COLUMN(5) LENGTH(3) TYPE(NUMEXIT)
 DXPROG(’READCOST’) DXRETDEC(2)
■ 6-38 CIMS Report Writer User Guide

How to Define Your Input Files ■

Keeping Your File Definitions in a Copy Library
The last example is of a bit field that is created using a data exit program. In this example,
we want to define a bit field that tells whether a report job is running on the shop’s
production machine, or on its development machine. This information is not stored in any
record. But a program named CHEKMACH can determine which machine it is running on.
In this example, we don’t specify a COLUMN or LENGTH, because the data exit program does
not require any data from our input file in order to do its processing. This exit program
will return an "on" value ("1") if the production machine is running, and an "off" value
("0’) if the development machine is running. The optional ONTEXT and OFFTEXT parms
have been used in this example.

FIELD: MACHINE TYPE(BITEXIT) DXPROG(’CHEKMACH’)
 ONTEXT(’PROD’) OFFTEXT(’DEV’)

Keeping Your File Definitions in a Copy Library 6

This section explains:

■ how to define files without using a copy library

■ how to simplify the file definition process by using a copy library to store your FILE
and FIELD statements

The preceding sections have shown how to write FILE and FIELD statements. (These
statements are called "definition statements.") But where should you put your definition
statements? This section discusses two approaches to handling these definition
statements:

■ you can code the definition statements "in–line", including them right along with the
other control statements for each report

■ or, a better way is to save the definition statements in the Report Writer Copy
Library, where they can be automatically accessed when needed

The following sections describe these two methods.

Including the Definition Statements "In–Line" 6

If you like, you can produce Report Writer reports and PC files without using a copy
library at all. Simply include the necessary FILE and FIELD statements ahead of the other
control statements (that describe the report or PC file.) Figure 6-7, on page 6-40 shows
an MVS example of a report which has the necessary definition statements included ahead
of the other control statements. No copy library was involved in producing this report.

Figure 6-8, on page 6-41 shows the same example under VSE.

Note that if you use this method, you only need to define those fields that are actually
used in the report. It is not necessary to define every field in the file.

If a report requires more than one input file (by using one or more READ statements) be
sure to include the definition statements for each of the input files.
CIMS Report Writer User Guide 6-39 ■

■ How to Define Your Input Files

Keeping Your File Definitions in a Copy Library
Figure 6-7 • A Report Writer report that does not use a copy library -- MVS

//SPECTWTR JOB 'REQUESTER'
//*
//SPECTWTR EXEC PGM=SPECTWTR, REPORT WRITER REPORT
// REGION=2048K
//STEPLIB DD DSN=SPECTWTR.LOADLIB,DISP=SHR LOADLIB TO USE
//SWLIST DD SYSOUT=* CONTROL LISTING
//SWOUTPUT DD SYSOUT=* REPORT OUTPUT
//SYSOUT DD SYSOUT=* SORT STATISTICS
//SYSUDUMP DD SYSOUT=* DUMP OUTPUT
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SALEFILE DD DSN=PROD.SALES.DATA,DISP=SHR SALES FILE
//SYSIN DD * CONTROL STATEMENTS
**** THESE STATEMENTS DEFINE THE SALES–FILE
FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
FIELD: EMPL–NAME LENGTH(10)
FIELD: EMPL–NUM LENGTH(3)
FIELD: AMOUNT COLUMN(22) LENGTH(6) TYPE(NUM) DEC(2)
FIELD: TAX LENGTH(4) TYPE(NUM) DEC(2)
FIELD: SALES–DATE COLUMN(36) TYPE(YYMMDD)
FIELD: CUSTOMER COLUMN(48) LENGTH(15)
**** THESE STATEMENTS REQUEST A REPORT FROM THE SALES–FILE
INPUT: SALES–FILE
COLUMNS: EMPL–NAME EMPL–NUM SALES–DATE CUSTOMER AMOUNT TAX
SORT: EMPL–NAME
//*

Produce this Report:

These Control Statements:

Notes:

• the EMPL–FILE is defined with the FILE statement before the INPUT statement that refers to it

• each of the fields used in the report are defined with FIELD statements before being referred to

• no SWCOPY DD is needed in the JCL to run this report, since the copy library is not used

MON 06/12/95 9:02 AM DATA FROM SALES-FILE PAGE 1

 EMPL EMPL SALES
 NAME NUM DATE CUSTOMER AMOUNT TAX

BAKER 044 03/26/92 JACKS CAFE 137.00 8.22
BAKER 044 04/12/92 JACKS CAFE 135.75 8.15
JOHNSON 037 03/12/92 ACE ELECTRICAL 101.38 6.09
JOHNSON 037 04/01/92 VILLA HOTEL 234.45 14.07
JOHNSON 039 04/05/92 MARYS ANTIQUES 9.98 0.60
JOHNSON 039 04/16/92 ACME BUILDING 500.00 30.00
JONES 036 04/15/92 EZ GROCERY 10.25 0.62
JONES 036 04/15/92 TOY TOWN 10.25 0.62
JONES 036 04/15/92 TOY TOWN 121.76 7.31
MORRISON 042 03/29/92 STAR MARKET 44.35 2.66
MORRISON 042 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 041 04/01/92 EUROPEAN DELI 14.99 0.90
SIMPSON 041 04/30/92 J & S LUMBER 23.87 1.43
THOMAS 045 04/14/92 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
■ 6-40 CIMS Report Writer User Guide

How to Define Your Input Files ■

Keeping Your File Definitions in a Copy Library
Figure 6-8 • A Report Writer report that does not use a copy library -- VSE

// JOB SPECTWTR
// ASSGN SYS010,SYSLST CONTROL STATEMENT LISTING
// ASSGN SYS011,006 REPORT OUTPUT
// LIBDEF PHASE,SEARCH=LIB.SPECTWTR
// DLBL SALEFIL,'SALES.MASTER.FILE'
// EXTENT SYS015,,,,6764,1000
// EXEC SPECTWTR,SIZE=(SPECTWTR,300K)
**** THESE STATEMENTS DEFINE THE SALES–FILE
FILE: SALES–FILE ATTR(DASD,'SALEFIL',80,160)
FIELD: EMPL–NAME LENGTH(10)
FIELD: EMPL–NUM LENGTH(3)
FIELD: AMOUNT COLUMN(22) LENGTH(6) TYPE(NUM) DEC(2)
FIELD: TAX LENGTH(4) TYPE(NUM) DEC(2)
FIELD: SALES–DATE COLUMN(36) TYPE(YYMMDD)
FIELD: CUSTOMER COLUMN(48) LENGTH(15)
**** THESE STATEMENTS REQUEST A REPORT FROM THE SALES–FILE
INPUT: SALES–FILE
COLUMNS: EMPL–NAME EMPL–NUM SALES–DATE CUSTOMER AMOUNT TAX
SORT: EMPL–NAME
/*
/&

Produce this Report:

These Control Statements:

Notes:

• the EMPL–FILE is defined with the FILE statement before the INPUT statement that refers to it

• each of the fields used in the report are defined with FIELD statements before being referred to

• no OPTIONS: SUBLIB parm is needed to run this report, since a copy library is not used

MON 06/12/95 9:02 AM DATA FROM SALES-FILE PAGE 1

 EMPL EMPL SALES
 NAME NUM DATE CUSTOMER AMOUNT TAX

BAKER 044 03/26/92 JACKS CAFE 137.00 8.22
BAKER 044 04/12/92 JACKS CAFE 135.75 8.15
JOHNSON 037 03/12/92 ACE ELECTRICAL 101.38 6.09
JOHNSON 037 04/01/92 VILLA HOTEL 234.45 14.07
JOHNSON 039 04/05/92 MARYS ANTIQUES 9.98 0.60
JOHNSON 039 04/16/92 ACME BUILDING 500.00 30.00
JONES 036 04/15/92 EZ GROCERY 10.25 0.62
JONES 036 04/15/92 TOY TOWN 10.25 0.62
JONES 036 04/15/92 TOY TOWN 121.76 7.31
MORRISON 042 03/29/92 STAR MARKET 44.35 2.66
MORRISON 042 03/30/92 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 041 04/01/92 EUROPEAN DELI 14.99 0.90
SIMPSON 041 04/30/92 J & S LUMBER 23.87 1.43
THOMAS 045 04/14/92 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
CIMS Report Writer User Guide 6-41 ■

■ How to Define Your Input Files

Keeping Your File Definitions in a Copy Library
A Better Way: Using the Copy Library 6

There is a better way to handle the definition statements. Report Writer can automatically
access the definition statements it needs for a particular report by using a "copy library."
In MVS, this copy library is just a regular partitioned data set (PDS). In VSE, this copy library
is just a regular Librarian sublibrary. The copy library will have one member for each of
your company’s files that have been defined. The FILE and FIELD statements for each file
will be kept in these members.

Note to MVS programmers • The Report Writer Copy Library works in much the
same way as the following programming language libraries:

■ the Cobol copybook library (SYSLIB)

■ the PL/1 INCLUDE library

■ the SYSLIB macro and copy library, for assembler programs

We suggest you create a new PDS to serve exclusively as your Report Writer Copy Library.
However, you can use any 80–byte PDS. Use the SWCOPY DD (in your execution JCL) to
tell Report Writer what PDS you are using as the copy library. Chapter 8, Operating System
Considerations gives more information on the SWCOPY DD and on setting up file definitions
in your copy library (page 8-9.)

Note to VSE programmers • The Report Writer Copy Library works in much the same
way as the following programming language libraries:

■ the Cobol copybook library

■ the PL/1 INCLUDE library

■ the macro and copy library, for assembler programs

We suggest you define a separate sublibrary to serve exclusively as your Report Writer
Copy Library. However, you can use any sublibrary you choose. Use the SUBLIB parm (in
an OPTIONS statement) to tell Report Writer the name of your copy library. The member
type for all members should be SPECTWTR. (Use the OPTIONS statement MEMTYPE parm if you
need to use a different name for the member type.) Chapter 8, Operating System
Considerations gives more information on setting up file definitions in your copy library
(page 8-21.)

There are several advantages to keeping the FILE and FIELD statements in a copy library.
Among them are: easier maintenance of the definitions; standardization of file
definition among the various jobs that use the same file; and the ability for users to
request reports more easily, without concerning themselves each time with writing
definition statements.

To add a file’s definition to the copy library, simply create a new member in the copy
library. The member name can be either the file name itself (if it conforms to the naming
rules for PDS or Librarian members), or it can be some other name (in which case you’ll
create an alias entry for it, as described beginning on page 6-46.) After you have created
■ 6-42 CIMS Report Writer User Guide

How to Define Your Input Files ■

Keeping Your File Definitions in a Copy Library
a member in the copy library for a file, simply save its FILE and FIELD statements there.
You can also add any COMPUTE statements that are commonly used with the file. That’s all
there is to adding a file to the Report Writer Copy Library.

Once a file’s definition statements have been stored in the copy library, Report Writer
will automatically copy and process those statements whenever they are needed in order
to produce a report or PC file. You remember that the INPUT and the READ statement
identify files as inputs in a run. By default, whenever either of these statements names a
file that has not yet been defined, Report Writer attempts to copy control statements
from the copy library member that corresponds to that file. Those control statements
then define the file for Report Writer.

Thus, each input file to a report is automatically defined for you as it is needed. You don’t
need to concern yourself with the FILE and FIELD statements every time you request a
report or PC file.

Figure 6-9 (MVS) and Figure 6-10 (VSE) show a sample report that allows the INPUT
statement to automatically copy the FILE and FIELD control statements from the copy
library. Most of the examples in this manual also use this method –– that is why you
don’t see the FILE and FIELD statements explicitly specified in most cases. To see the
contents of the copy library members for the sample files used in this manual, see
Appendix F, Files Used in Examples.

By default, the control statements copied from the copy library are not printed in the
control listing along with the other control statements. If you would like to see all of the
control statements that are copied from the copy library, add the LIST(YES) parm to your
INPUT or READ statement, like this:

INPUT: EMPL–FILE LIST(YES)

The INPUT statement above will cause all of the statements copied from the copy library
to be printed in the control listing. If you are having errors involving "undefined files"
or "undefined fields," you should use the LIST(YES) parm to see exactly how the file and
fields are being defined.

If for any reason you do not want an automatic copy performed for an INPUT or READ
statement, you may use the COPY(NO) parm, like this:

INPUT: EMPL–FILE COPY(NO)

The above statement specifies EMPL–FILE as the input file and requests that no automatic
copy be performed from the copy library. (Also, remember that the default is not to
perform a copy if the file named in the INPUT or READ statement has already been defined
some other way.)

The copy library can also be used to store any other commonly used group of control
statements. To explicitly copy the contents of a copy library member into your control
statements, use the COPY statement (page 10-42.)
CIMS Report Writer User Guide 6-43 ■

■ How to Define Your Input Files

Keeping Your File Definitions in a Copy Library
Figure 6-9 • A report which uses Report Writer’s Copy Library -- MVS

INPUT: EMPL–FILE
TITLE: 'USING THE COPY LIBRARY TO DEFINE FIELDS'
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE

Produce this Report:

These Control Statements:

• the following statements are stored in the EMPLDEF member of the copy library:

USING THE COPY LIBRARY TO DEFINE FIELDS

 LAST FIRST HIRE
 NAME NAME DATE

BAKER VIVIAN 06/04/82
CHRISTOPHERSON MELISSA 08/15/81
JOHNSON LINDA 11/25/79
JOHNSON THOMAS 06/21/75
JONES JERRY 01/31/80
MACDONALD RICHARD 07/04/82
MORRISON MICHAEL 11/30/79
SIMPSON TIMOTHY 12/01/82
THOMAS MARTIN 06/04/82

*** GRAND TOTAL (9 ITEMS)

Notes:

• the SWCOPY DD (in the execution JCL) would identify the PDS to use as the copy library

• as the INPUT statement is processed, the EMPLDEF copy library member (which defines the EMPL–
FILE) is automatically copied into this report request

• the following line appears in the SWALIAS member of the copy library:

EMPL–FILE = EMPLDEF

FILE:EMPL–FILE DDNAME(EMPLDD) TYPE(VSAM)
FIELD:LAST–NAME COLUMN(4) LENGTH(15)
FIELD:FIRST–NAME LENGTH(15)
FIELD:HIRE–DATE TYPE(YYMMDD)
■ 6-44 CIMS Report Writer User Guide

How to Define Your Input Files ■

Keeping Your File Definitions in a Copy Library
Figure 6-10 • A report which uses Report Writer’s Copy Library -- VSE

OPTIONS: SUBLIB('LIB.SPECTWTR')
INPUT: EMPL–FILE
TITLE: 'USING THE COPY LIBRARY TO DEFINE FIELDS'
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE

Produce this Report:

These Control Statements:

• the following statements are stored in the EMPLDEF member of the copy library

USING THE COPY LIBRARY TO DEFINE FIELDS

 LAST FIRST HIRE
 NAME NAME DATE

BAKER VIVIAN 06/04/82
CHRISTOPHERSON MELISSA 08/15/81
JOHNSON LINDA 11/25/79
JOHNSON THOMAS 06/21/75
JONES JERRY 01/31/80
MACDONALD RICHARD 07/04/82
MORRISON MICHAEL 11/30/79
SIMPSON TIMOTHY 12/01/82
THOMAS MARTIN 06/04/82

*** GRAND TOTAL (9 ITEMS)

Notes:

• the OPTIONS statement names LIB.SPECTWTR as the Librarian sublibrary to use as the Report Writer
Copy Library for this run.

• as the INPUT statement is processed, the EMPLDEF.SPECTWTR copy library member (which defines
the EMPL–FILE) is automatically copied into this report request

• the following line appears in the SWALIAS.SPECTWTR member of the copy library:

EMPL–FILE = EMPLDEF

FILE: EMPL–FILE ATTR(VSAM,'EMPLDD',100)
FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: FIRST–NAME LENGTH(15)
FIELD: HIRE–DATE TYPE(YYMMDD)

OPTIONS: SUBLIB('LIB.SPECTWTR')
INPUT: EMPL–FILE
TITLE: 'USING THE COPY LIBRARY TO DEFINE FIELDS'
COLUMNS: LAST–NAME FIRST–NAME HIRE–DATE
CIMS Report Writer User Guide 6-45 ■

■ How to Define Your Input Files

Keeping Your File Definitions in a Copy Library
For example, you might store a set of complicated COMPUTE statements that are used by
many reports. Or, if you frequently run reports that use multiple input files, you could
store the INPUT statement, any COMPUTE statements needed to create the read keys, and the
READ statements all as one member of the copy library. That way the end–users would
not need to remember how to link all of the input files. They could just begin their report
request with a COPY statement that does all of that for them.

Under MVS, the COPY statement can also copy sequential datasets that are not partitioned
datasets. If your FILE and FIELD statements are stored in a dataset other than a PDS, you
may want to use the COPY statement to include them in your report request. Put the COPY
statement before the INPUT or READ statement.

How to Use a Copy Library Alias 6

This section explains:

■ which member of the copy library will be copied

■ how to create an alias entry for use with the copy library

As mentioned in the preceding section, whenever an INPUT or READ statement is
encountered for a file name which has not been defined, Report Writer attempts to copy
a member from the copy library to define the file. Which member of the copy library is
copied? The member name used will be either:

■ the member name specified by an "alias entry" for the file name, if any, or

■ the file name itself, if that name is valid for use as a member name

If there is no alias entry for a file, and the file name itself is not valid as a member name,
no copy is attempted. If a copy is attempted, but the member does not exist in the copy
library, no copy is performed. Processing continues normally in either of these cases. The
failure to find a member to copy is not considered an error.

Alias entries are kept in a special member of the copy library. That member is named
SWALIAS. The purpose of an alias entry is to relate a Report Writer file name (which can
be up to 70 characters long) to the 8–byte name of the copy library member where that
file’s definitions are stored. When the two names are the same, no alias is needed. Thus,
if you have a file named PAYROLL, and you keep its file definition statements in a member
named PAYROLL, no alias entry would be needed for that file.

But, if you’d like to use longer, more user–friendly file names in your Report Writer
statements, you can certainly do so. You’ll just need to add an alias entry to the special
member named SWALIAS in your copy library. For example, let’s say we wanted to call our
payroll file HEADQUARTERS–PAYROLL. That name is too big to use as the member name in
the copy library. So, you would pick a shorter member name to keep the file definition
statements in–– say HQPAYROL. Now just add an alias entry like this within SWALIAS:

HEADQUARTERS–PAYROLL = HQPAYROL

The above alias entry tells Report Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL. "HEADQUARTERS–
PAYROLL" is the name that users will use for the file in Report Writer control statements
■ 6-46 CIMS Report Writer User Guide

How to Define Your Input Files ■

Keeping Your File Definitions in a Copy Library
(such as the INPUT statement.) It’s also the name you will use in the FILE statement when
defining the file. "HQPAYROL" will only be used internally by Report Writer as the member
name for reading the definition statements from the copy library.

Consider the following statement:

INPUT: HEADQUARTERS–PAYROLL

When Report Writer encounters the above INPUT statement it searches the SWALIAS copy
library member for a line that begins with "HEADQUARTERS–PAYROLL." It will find the alias
entry shown earlier that names HQPAYROL as the member name. Report Writer will then
copy the control statements from the HQPAYROL member of the copy library. Those
statements define the HEADQUARTERS–PAYROLL file.

Here are some additional points to remember about the SWALIAS member:

■ The alias entries in SWALIAS do not have to be in alphabetical order

■ Each file name may appear only once in SWALIAS.

■ You may include comment lines in the SWALIAS member by putting an asterisk in the
first column of the line.

Appendix F, Files Used in Examples shows the contents of the SWALIAS member used in
producing the sample reports in this manual.

Defining One–Time Fields 6

The FIELD statements for a file are normally kept in the copy library member for that file.
You may, however, want to add one or more FIELD statements of your own to those kept
in the copy library.

This usually occurs when you want to define some part of a record differently than the
way it is defined in the copy library. For example, you may want to subdivide a date field
into its year, month, and day components. Or, you might want to define a cost center
field as numeric, whereas it is defined as character in the copy library.

It is very easy to add your own FIELD statements for use in your report. Just include them
in–line, along with your other control statements. Put them somewhere after the INPUT
or READ statement for the file, and before the first statement that refers to the field.
Remember to choose different names for your fields–– ones that are not used in the copy
library FIELD statements.

As an example, let’s say that we want to produce a report of all employees hired in the
month of January (of any year.) To do this, we need a field that contains the month that
an employee was hired. There is no such field defined in the regular FIELD statements
contained in the copy library. The closest thing is the HIRE–DATE field, which is defined
as a YYMMDD date. We could do the following:

INPUT: EMPL–FILE
FIELD: HIRE–MONTH COLUMN(HIRE–DATE+2) LENGTH(2) TYPE(NUM)
INCLUDEIF: HIRE–MONTH = 1
CIMS Report Writer User Guide 6-47 ■

■ How to Define Your Input Files

Keeping Your File Definitions in a Copy Library
TITLE: ’EMPLOYEES HIRED IN JANUARY OF SOME YEAR’
COLUMNS: HIRE–MONTH LAST–NAME FIRST–NAME HIRE–DATE

As soon as Report Writer encounters the above INPUT statement, the copy library
members for the EMPL–FILE are processed. These statements define all of the regular fields
in the EMPL–FILE. However, in this report we want the 2–byte month portion of the HIRE–
DATE field defined as a separate field. So, we add our own FIELD statement to define a new
field called HIRE–MONTH. It is located 2 bytes after the start of the HIRE–DATE field (that is,
at the MM portion of the YYMMDD date.) The HIRE–MONTH field is 2 bytes long, and is defined
as a numeric field. The INCLUDEIF statement can now refer to the HIRE–MONTH field, and
select just those records with a month value of 1. We also list the new HIRE–MONTH field
in the COLUMNS statement, along with a number of the regular fields from the EMPL–FILE.

Here is another example of defining an additional field in–line.

OPTIONS: MAINFRAME
INPUT: EMPL–FILE
FIELD: RECORD COLUMN(1) LENGTH(150)
INCLUDEIF: DEPT–NUM = 2
COLUMNS: RECORD

In this example, we want to create an output file, rather than a report. We want to select
just the EMPL–FILE records for employees in department 2, and write those records to an
output file. To do this, we defined an additional field named RECORD. This is a character
field that includes the entire EMPL–FILE record. We use the INCLUDEIF statement to select
only those records whose DEPT–NUM field is equal to 2. Our COLUMNS statement simply lists
the single RECORD field. Thus, our output file contains the complete EMPL–FILE record for
those employees in department 2.

Note • If your report uses multiple input files, you may need to use the FILE parm in
your FIELD statement to specify which file your new field exists in. If the FILE parm
is omitted, all of the your FIELD statements will be assumed to belong to the most
recently defined file. (That is the file named in the most recent FILE statement.)
■ 6-48 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
Using Cobol and Assembler Record Layouts 6

This section explains how to use Cobol or Assembler record layouts with Report Writer.

Earlier in this chapter you learned how to use FIELD statements to define an input file to
Report Writer. Report Writer can also interpret most Cobol and Assembler record
layouts. If you have such a record layout for your file, it is not necessary to write FIELD
statements to define it.

There are two ways to use Report Writer’s Cobol and Assembler interpreter.

1 In a "live" run. Provide a Cobol or Assembler record layout to Report Writer and
produce a custom report or PC file in the same run. With this method, you never
create a standard Report Writer file definition.

2 In a "conversion" run. Provide a Cobol or Assembler record layout to Report Writer
and let it write corresponding FIELD statements to an output file. Save these FIELD
statements in your Report Writer Copy Library for use in future runs. This method
gives you greater flexibility because you can modify and customize the FIELD
statements created by Report Writer. This lets you take advantage of features available
in FIELD statements that aren’t available in Cobol or Assembler layouts (such as
specifying column headings and display formats.)

Report Writer has two special control statements that are used when working with Cobol
or Assembler record layouts. The COBOL statement tells Report Writer that a Cobol record
layout is about to follow. The ASM statement tells Report Writer that an Assembler record
layout follows. The following sections describe how to use these statements in both
"live" and "conversion" runs.

Terminology: to avoid ambiguity when using the words COBOL and "COBOL
statement", we have used the following convention throughout this chapter:

• Cobol (spelled with mixed case letters) refers to the programming language. Thus
"Cobol statement" refers to a line of code in a Cobol program.

• COBOL (spelled in upper case letters) refers to the Report Writer control statement
by that name. Thus "COBOL statement" means the Report Writer control statement
that begins with the prefix "COBOL:".

Live Runs Using Cobol Record Layouts 6

This section shows how to request reports (or PC files) using a Cobol record layout to
define the input file. No additional data definition is required.

Figure 6-11, on page 6-52 shows an example of a report produced using a Cobol record
layout. Let’s examine the Report Writer control statements shown in the top box in that
figure.

A FILE statement is always required when a file is about to be defined. It tells Report
Writer the name of the file being defined. In this case, we named the file SALES–FILE.
Normally a number of FIELD statements would then follow to define the fields in the file.
But in this case a COBOL statement follows instead.
CIMS Report Writer User Guide 6-49 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
The COBOL statement tells Report Writer that subsequent control statements will be in the
Cobol language, rather than in Report Writer’s language. After the COBOL statement,
actual lines of a Cobol record layout appear. The Cobol code must be error–free and
must be formatted according to the rules of Cobol syntax. (For example, the first 6
columns are reserved for sequence numbers, column 7 is reserved for continuation
indicators or comment indicators, etc.) Report Writer processes the Cobol record layout,
noting the names of the Cobol fields and their characteristics. Internally, Report Writer
creates the equivalent of a FIELD statement for each Cobol field in the record layout.

Note • See The Scope of the COBOL and ASM Statements on page 6-67 for certain
limitations on the Cobol syntax that Report Writer accepts.

Report Writer continues treating each subsequent line as Cobol code until it reaches a
line that begins with a Report Writer control statement prefix. In this example, the line
beginning "INPUT:" is recognized as a Report Writer control statement. So, starting with
the INPUT statement the lines are no longer treated as Cobol code. (The scope of the COBOL
statement is discussed more fully under The Scope of the COBOL and ASM Statements on
page 6-67.

After the Cobol record layout, we simply resumed the report request in the normal way.
The INPUT statement specifies the input file for the report. It is the SALES–FILE that we just
defined using the Cobol record layout.

The COLUMNS statement specifies which fields are wanted in the report. In the COLUMNS
statement we can refer to any of the fields defined in the Cobol record layout. The field
names used are the same names that appeared in the Cobol layout. By default, the
column headings will also be the Cobol field names, broken apart at the dashes. Of
course, you can specify an override column heading, if you like, in the normal way.

Fields defined by a Cobol record layout can be used in all of the same ways as fields
defined with FIELD statements. For example, you can use the Cobol field names in SORT
statements, COMPUTE statements, BREAK statements, and so on.

Notice in the COLUMNS statement that we used two special parms for the SALES–DATE and
SALES–TIME fields. Those two fields were defined as numeric values in the Cobol record
layout. The PIC’999999’ parm specifies how those numeric values should be formatted
in the report. (Otherwise, they would have been formatted in the default way for
numeric fields–– that is, as ZZZ,ZZ9.) And, the NOACCUM parm indicates that those fields
should not be accumulated (totalled). (Otherwise, those columns would have been
totalled in the Grand Total line.) For more information on handling date and time fields,
see Handling Date and Time Fields on page 6-56.

Note • To see a listing of the internal FIELD statements that Report Writer creates
from a Cobol layout, add the SHOWFLDS(YES) parm to the COBOL statement. For
example, assume we had added the SHOWFLDS(YES) parm to the COBOL statement on
page 6-52:

COBOL: SHOWFLDS(YES)
■ 6-50 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
In that case, the following FIELD statements would have been printed in the control
listing:

FIELD: SALES-REC LEN(80) COL(1)
FIELD: EMPL–NAME LEN(10) COL(1)
FIELD: EMPL–NUM LEN(3)
FIELD: BACKUP–EMPL–NUM LEN(3)
FIELD: REGION LEN(5)
FIELD: AMOUNT LEN(6) TYPE(NUM) DEC(2)
FIELD: TAX LEN(4) TYPE(NUM) DEC(2)
FIELD: COMMISSION–RATE LEN(4) TYPE(NUM) DEC(3)
FIELD: SALES–DATE LEN(6) TYPE(NUM)
FIELD: SALES–TIME LEN(6) TYPE(NUM)
FIELD: CUSTOMER LEN(15)
FIELD: TELEPHONE LEN(10) TYPE(NUM)
FIELD: TIME–ON–PHONE LEN(4) TYPE(NUM) DEC(1)
FIELD: PRODUCT–CODE LEN(3)
FIELD: FILLER#001 LEN(1)
CIMS Report Writer User Guide 6-51 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
Figure 6-11 • A report produced using a Cobol record layout

FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
COBOL:
 01 SALES-REC.
 05 EMPL-NAME PIC X(10).
 05 EMPL-NUM PIC X(3).
 05 BACKUP-EMPL-NUM PIC X(3).
 05 REGION PIC X(5).
 05 AMOUNT PIC 9999V99.
 05 TAX PIC 99V99.
 05 COMMISSION-RATE PIC 9V999.
 05 SALES-DATE PIC 9(6).
 05 SALES-TIME PIC 9(6).
 05 CUSTOMER PIC X(15).
 05 TELEPHONE PIC 9(10).
 05 TIME-ON-PHONE PIC 999V9.
 05 PRODUCT-CODE PIC X(3).
 05 FILLER PIC X(1).
INPUT: SALES–FILE
COLUMNS: EMPL–NAME
 SALES–DATE(PIC'999999',NOACCUM)
 SALES–TIME(PIC'999999',NOACCUM)
 CUSTOMER
 AMOUNT
 TAX

These Control Statements:

TUE 02/14/95 8:27 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
 NAME DATE TIME CUSTOMER AMOUNT TAX

JOHNSON 950312 102500 ACE ELECTRICAL 101.38 6.09
BAKER 950326 120909 JACKS CAFE 137.00 8.22
MORRISON 950329 153022 STAR MARKET 44.35 2.66
MORRISON 950330 190541 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 950401 081757 EUROPEAN DELI 14.99 0.90
JOHNSON 950401 170247 VILLA HOTEL 234.45 14.07
JOHNSON 950405 143310 MARYS ANTIQUES 9.98 0.60
BAKER 950412 143112 JACKS CAFE 135.75 8.15
THOMAS 950414 154138 YOGURT CITY 9.98 0.60
JONES 950415 075832 EZ GROCERY 10.25 0.62
JONES 950415 080159 TOY TOWN 121.76 7.31
JONES 950415 135241 TOY TOWN 10.25 0.62
JOHNSON 950416 114833 ACME BUILDING 500.00 30.00
SIMPSON 950430 153021 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

Produce this Report:
■ 6-52 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
Live Runs Using Assembler Record Layouts 6

This section shows how to request reports (or PC files) using an Assembler record layout
to define the input file. No additional data definition is required.

Figure 6-12, on page 6-55 shows an example of a report produced using an Assembler
record layout. Let’s examine the Report Writer control statements shown in the top box
in that figure.

A FILE statement is always required when a file is about to be defined. It tells Report
Writer the name of the file being defined. In this case, we named the file SALES–FILE.
Normally a number of FIELD statements would then follow to define the fields in the file.
But in this case an ASM statement followed instead.

The ASM statement tells Report Writer that subsequent control statements will be in the
IBM S/370 Assembler language, rather than in Report Writer’s language. After the ASM
statement, actual lines of an Assembler record layout appear. The Assembler code must
be error–free and must be formatted according to the rules of Assembler syntax. (That is,
labels must begin in column 1, column 72 is the continuation column, etc.) Report
Writer processes the Assembler record layout, noting the names of the Assembler fields
and their characteristics. Internally, Report Writer creates the equivalent of a FIELD
statement for each Assembler field in the record layout.

Note • See Technical Notes on Assembler Support on page 6-70 for certain limitations on
the Assembler syntax that Report Writer accepts.

Report Writer continues treating each subsequent line as Assembler code until it reaches
a line that begins with a Report Writer control statement prefix. In this example, the line
beginning "INPUT:" is recognized as a Report Writer control statement. So, starting with
the INPUT statement the lines are no longer treated as Assembler code. (The scope of the
ASM statement is discussed more fully under The Scope of the COBOL and ASM Statements
on page 6-67

After the Assembler record layout, we simply resumed the report request in the normal
way. The INPUT statement specifies the input file for the report. It is the SALES–FILE that
we just defined using the Assembler record layout.

The COLUMNS statement specifies which fields are wanted in the report. In the COLUMNS
statement we can refer to any of the fields defined in the Assembler record layout. The
field names used are the same names that appeared in the Assembler layout. By default,
the column headings will also be the Assembler field name. Of course, you can specify
an override column heading, if you like, in the normal way.

Fields defined by an Assembler layout can be used in all of the same way as fields defined
with FIELD statements. For example, you can use the Assembler field names in SORT
statements, COMPUTE statements, BREAK statements, and so on.
CIMS Report Writer User Guide 6-53 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
Note • To see a listing of the internal FIELD statements that Report Writer creates
from an Assembler layout, add the SHOWFLDS(YES) parm to the ASM statement. For
example, assume we had added the SHOWFLDS(YES) parm to the ASM statement on
page 6-55:

ASM: SHOWFLDS(YES)

In that case, the following FIELD statements would have been printed in the control
listing:

FIELD: SALESREC LEN(80) COL(1)
FIELD: EMPLNAME LEN(10) COL(1)
FIELD: EMPLNUM LEN(3)
FIELD: BACKEMPN LEN(3)
FIELD: REGION LEN(5)
FIELD: AMOUNT LEN(6) TYPE(NUM-SLD) DEC(2)
FIELD: TAX LEN(4) TYPE(NUM-SLD) DEC(2)
FIELD: COMMRATE LEN(4) TYPE(NUM-SLD) DEC(3)
FIELD: SALEDATE LEN(6)
FIELD: SALETIME LEN(6)
FIELD: CUSTOMER LEN(15)
FIELD: TELEPHON LEN(10) TYPE(NUM-SLD)
FIELD: TIMEPHON LEN(4) TYPE(NUM-SLD) DEC(1)
FIELD: PRODCODE LEN(3)
■ 6-54 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
Figure 6-12 • A report produced using an Assembler record layout

FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
ASM:
SALESREC DS 0CL80
EMPLNAME DS CL10
EMPLNUM DS CL3
BACKEMPN DS CL3
REGION DS CL5
AMOUNT DS ZL6'9999.99'
TAX DS ZL4'99.99'
COMMRATE DS ZL4'9.999'
SALEDATE DS CL6
SALETIME DS CL6
CUSTOMER DS CL15
TELEPHON DS ZL10
TIMEPHON DS ZL4'999.9'
PRODCODE DS CL3
 DS CL1
INPUT: SALES–FILE
COLUMNS: EMPLNAME
 SALEDATE
 SALETIME
 CUSTOMER
 AMOUNT
 TAX

These Control Statements:

TUE 02/14/95 8:27 AM DATA FROM SALES-FILE PAGE 1

 EMPLNAME SALEDATE SALETIME CUSTOMER AMOUNT TAX

JOHNSON 950312 102500 ACE ELECTRICAL 101.38 6.09
BAKER 950326 120909 JACKS CAFE 137.00 8.22
MORRISON 950329 153022 STAR MARKET 44.35 2.66
MORRISON 950330 190541 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 950401 081757 EUROPEAN DELI 14.99 0.90
JOHNSON 950401 170247 VILLA HOTEL 234.45 14.07
JOHNSON 950405 143310 MARYS ANTIQUES 9.98 0.60
BAKER 950412 143112 JACKS CAFE 135.75 8.15
THOMAS 950414 154138 YOGURT CITY 9.98 0.60
JONES 950415 075832 EZ GROCERY 10.25 0.62
JONES 950415 080159 TOY TOWN 121.76 7.31
JONES 950415 135241 TOY TOWN 10.25 0.62
JOHNSON 950416 114833 ACME BUILDING 500.00 30.00
SIMPSON 950430 153021 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

Produce this Report:
CIMS Report Writer User Guide 6-55 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
Handling Date and Time Fields 6

Neither Cobol nor Assembly language have a way to explicitly define a field as a date or
a time. Date and time fields are generally defined as numeric fields (or sometimes as
character fields) in these languages. It is left up to the program code in those languages
to know that the numeric value actually represents a date or a time.

For example, consider the SALES–DATE field in the Cobol example on page 6-52. The file
actually contains a YYMMDD date for this field. But it is defined in Cobol simply as PIC
9(6). Report Writer has no way of knowing that this field is anything other than a 6–digit
numeric field. In the report, therefore, it doesn’t appear in MM/DD/YY format as a date field
would have. It is treated as a numeric field. By default it would have appeared in
"ZZZ,ZZ9" format in the report (for example: 920,415). Also, by default that column
would have been totalled at the end of the report (like all other numeric columns.) To
make the value look more like a date, we used override parms in the COLUMNS statement
to change the display format to PIC’999999’ and to suppress the totals.

The SALES–TIME field has the same problem. The file actually contains a HHMMSS time
value for this field. But since it is defined in Cobol as PIC 9(6), it’s just another numeric
field to Report Writer. Again, we used override parms in the COLUMNS statement to
improve its appearance in the report.

However, there is a simple way to use Cobol and Assembler record layouts and still be
able to define fields as true date or time fields. One extra step is all that’s needed.
Consider the example on page 6-58. In this example, we created a true date field simply
by adding this statement after the Cobol record layout:

FIELD: SALES–DT COLUMN(SALES–DATE) TYPE(YYMMDD)

This statement creates a new field named SALES–DT. The field starts in the same column
as SALES–DATE, but has a data type of YYMMDD. Therefore, SALES–DT is a true date field. That
means that it is formatted like a date in the report (MM/DD/YY.) It also means that date
literals can be used when comparing it in a conditional expression (for example, SALES–
DT >= 12/31/1996).

By referring back to SALES–DATE in the COLUMN parm, we don’t have to know what column
the field actually starts in. It starts in whatever column the SALES–DATE field starts in. And,
if the record layout is later changed and SALES–DATE moves to a different column, the
FIELD statement for SALES–DT will still be correct.

We used the same technique to define a true time field:

FIELD: START–TM COLUMN(START–TIME) TYPE(HHMMSS)

START–TM is a true time field that starts in the same column as the numeric field START–
TIME. By using START–TM in the report, the data is formatted as a time (HH:MM:SS). And
time literals can be used when comparing it in a conditional expression (for example,
START–TM < 12:00:00).

The bottom box on page 6-58 shows the report created using these true date and time
fields. As you can see, the SALES–DT and SALES–TM fields are now formatted correctly. In
this example, we no longer needed override parms in the COLUMNS statement.
■ 6-56 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
You can use this same technique for any kind of date or time field. For example, assume
that a file contains a Cobol field named JULIAN–DATE defined as PIC S9(5) COMP-3.
Report Writer would treat this field like any other 5–digit packed number. But you could
create a true Report Writer date field by adding the following statement:

FIELD: JULIAN–DT COLUMN(JULIAN–DATE) TYPE(P–YYDDD)

JULIAN–DT will be a true date field (stored in the packed Julian format). It is defined as
starting in the same column as the numeric field JULIAN–DATE.

To avoid adding the extra FIELD statements in each run, you may want to create a copy
library member that contains these extra FIELD statements along with the Cobol record
layout. Such a member would include everything you see in the top box on page 6-58
before the INPUT statement. (That is, it would contain: a FILE statement; a COBOL (or ASM)
statement; the record layout; and the additional FIELD statements for the date and time
fields.)

This copy member could then be copied automatically whenever it is needed, just like
normal Report Writer file definitions are. For example, you could then request a report
in the following manner:

INPUT: SALES–FILE
COLUMNS: CUSTOMER SALES–DT SALES–TM
INCLUDEIF: SALES–DT > 1/1/1995 AND SALES–TM > 12:00:00

In other words, you could request reports and PC files from the SALES–FILE just as easily
as you do with any other file. The only difference is that the SALES–FILE would now be
defined primarily via a Cobol record layout, rather than FIELD statements.
CIMS Report Writer User Guide 6-57 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
Figure 6-13 • Creating true data and time fields from a Cobol layout

FILE: SALES–FILE DDNAME(SALEFILE)
COBOL:
 01 SALES–REC.
 05 EMPL–NAME PIC X(10).
 05 EMPL–NUM PIC X(3).
 05 REGION PIC X(5).
 05 PRODUCT–CODE PIC X(3).
 05 AMOUNT PIC 9999V99.
 05 COMMISSION–RATE PIC 9V999.
 05 SALES–DATE PIC 9(6).
 05 SALES–TIME PIC 9(6).
 05 CUSTOMER PIC X(15).
 05 TELEPHONE PIC 9(10).
 05 BACKUP–EMPL–NUM PIC X(3).
 05 TAX PIC 99V99.
 05 FILLER PIC X(5).
FIELD: SALES–DT COLUMN(SALES–DATE) TYPE(YYMMDD)
FIELD: SALES–TM COLUMN(SALES–TIME) TYPE(HHMMSS)
INPUT: SALES–FILE
COLUMNS: EMPL–NAME
 SALES–DT
 SALES–TM
 CUSTOMER
 AMOUNT
 TAX

Produce this Report:

These Control Statements:

TUE 02/14/95 8:27 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
 NAME DT TM CUSTOMER AMOUNT TAX

JONES 04/15/92 13:15:00 TOY TOWN 10.25 0.62
JONES 04/15/92 12:43:56 TOY TOWN 121.76 7.31
JONES 04/15/92 10:30:32 EZ GROCERY 10.25 0.62
JOHNSON 04/01/92 16:48:59 VILLA HOTEL 234.45 14.07
JOHNSON 04/05/92 14:00:41 MARYS ANTIQUES 9.98 0.60
JOHNSON 03/12/92 08:05:02 ACE ELECTRICAL 101.38 6.09
JOHNSON 04/16/92 09:50:41 ACME BUILDING 500.00 30.00
SIMPSON 04/30/92 11:59:59 J & S LUMBER 23.87 1.43
MORRISON 03/29/92 12:40:11 STAR MARKET 44.35 2.66
MORRISON 03/30/92 15:00:02 A1 PHOTOGRAPHY 29.65 1.78
SIMPSON 04/01/92 17:01:38 EUROPEAN DELI 14.99 0.90
BAKER 03/26/92 17:01:29 JACKS CAFE 137.00 8.22
BAKER 04/12/92 16:00:00 JACKS CAFE 135.75 8.15
THOMAS 04/14/92 07:56:00 YOGURT CITY 9.98 0.60

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05
■ 6-58 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
How Report Writer Handles Arrays 6

Report Writer requires that each field have a unique name. You can not define a field as
being an "array" to Report Writer. Therefore, when Report Writer encounters a Cobol
field with an OCCURS clause, it creates a separate field for each occurrence of the item.
Report Writer makes these field names unique by appending a numeric suffix to the end
of the name. For example, consider the following Cobol statement with an OCCURS
clause:

05 ADDR–LINE OCCURS 3 TIMES PIC X(30).

Report Writer would create the following three internal FIELD statements as a result of
the above statement:

FIELD: ADDR–LINE–1 LEN(30)
FIELD: ADDR–LINE–2 LEN(30)
FIELD: ADDR–LINE–3 LEN(30)

You would use the above field names in your report request (rather than ADDR–LINE
alone). For example: to include the second address line in your report, you would
specify:

COLUMNS: ADDR–LINE–2

Report Writer does the same thing for Assembler fields that have a repetition factor.
Consider the following Assembler statement that includes a repetition factor:

FLAGS DS 4CL1

Report Writer would create the following four internal FIELD statements as a result of the
above statement:

FIELD: FLAGS–1 LEN(1)
FIELD: FLAGS–2 LEN(1)
FIELD: FLAGS–3 LEN(1)
FIELD: FLAGS–4 LEN(1)

Report Writer also supports nested arrays in Cobol. Report Writer assigns one numeric
suffix for each level of the array. The first suffix refers to the outer array, the second suffix
refers to the inner array. (The suffixes work in the same way as, and appear in the same
order as, Cobol subscripts.) For example, consider the following Cobol statements:

05 ADDRESS–ARRAY OCCURS 2 TIMES.
 10 ADDR–LINE OCCURS 3 TIMES PIC X(30).
CIMS Report Writer User Guide 6-59 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
Report Writer would create the following internal FIELD statements as a result:

FIELD: ADDRESS–ARRAY–1 LEN(90)
FIELD: ADDRESS–ARRAY–2 LEN(90)
FIELD: ADDR–LINE–1–1 LEN(30) COL(1)
FIELD: ADDR–LINE–1–2 LEN(30)
FIELD: ADDR–LINE–1–3 LEN(30)
FIELD: ADDR–LINE–2–1 LEN(30)
FIELD: ADDR–LINE–2–2 LEN(30)
FIELD: ADDR–LINE–2–3 LEN(30)

If you’re not sure what suffix Report Writer has assigned, use the SHOWFLDS(YES) parm on
your COBOL or ASM statement. That way you will see a complete listing of the internal
FIELD statements that Report Writer has created from your record layout.

Note • By default, Report Writer creates internal FIELD statements for up to 100
occurrences of any item that has an OCCURS clause (or a repetition factor). This is to
avoid wasting memory for items that may not actually be needed in the report run.
If you want a higher (or lower) limit on the number of occurrences that will be
individually defined, use the MAXOCCURS parm in the COBOL or ASM statement. (See
page 10-20.) Note that even when all occurrences of a field are not individually
defined, the record layout is still processed correctly. That is, items appearing after
the array will still be defined in their correct locations.

Note • For Cobol items defined with the OCCURS DEPENDING ON clause, Report Writer
creates fields for the maximum possible number of occurrences (subject to the
MAXOCCURS limit just described.)

Converting Cobol and Assembler Layouts to FIELD Statements 6

Until now we have looked at examples of "live" runs. That is, runs where you provide a
Cobol or Assembler layout to Report Writer and then request a report in the same run.
This is very convenient for occasions when you need to quickly produce a custom report
from a file that you’ve never used with Report Writer before.

However, for input files that will be used often with Report Writer, it may be better to
create a standard Report Writer file definition (consisting of a FILE statement and many
FIELD statements.) This allows you to use features available in the FIELD statement that
aren’t available in Cobol or Assembler layouts. For example, in the FIELD statement you
can specify your own default column headings. You can also specify special display
formats that should be used with certain fields (for example, telephone numbers). Using
FIELD statements also lets you define true date and time fields, which are not directly
supported in either Cobol or Assembler.

But rather than create the FIELD statements by hand, you can use Report Writer to
perform a one–time conversion of your Cobol or Assembler layout into FIELD
statements. Report Writer does all of the hard work for you–– it calculates the starting
columns for each field, it figures out the length of packed items based on their PICTURE
clause, it handles REDEFINES clauses, OCCURS clauses, etc. Use the resulting FIELD
■ 6-60 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
statements as your starting point. Then go through them and make whatever
modifications you desire. The result will be a standard Report Writer file definition, but
without all the manual work normally involved in writing FIELD statements by hand.

How do you perform such a one–time conversion? You’ve seen that by using the
SHOWFLDS(YES) parm in the COBOL (or ASM) statement, you can get a listing of FIELD
statements that correspond to the Cobol (or Assembler) record layout. This listing
appears imbedded in the normal control statement listing. By using a different parm,
you can have Report Writer write those same FIELD statements to a separate output file.
Figure 6-14, on page 6-63 shows an example of converting a Cobol record layout to FIELD
statements. (That example assumes an MVS operating system.)

Let’s examine the control statements in the top box on page 6-63. Once again, a FILE
statement is required because fields must always belong to a particular file. Report Writer
won’t process record layouts or FIELD statements unless it has a file it can associate the
fields with. In this case, the file name specified isn’t important (since no report will be
produced from the file in this run.) Use any name you like.

The COBOL statement tells Report Writer to expect a Cobol record layout to follow. In this
case, we used an additional parm in the COBOL statement. The OUTDDN parm tells Report
Writer the name of a DD statement in the JCL where the FIELD statements should be
written. In this example, we told Report Writer to write the FIELD statements to a DD
named FLDOUT. (The file named in this DD statement must have a record length of 80
bytes.)

VSE Note • Use the OUTATTR parm, rather than the OUTDDN parm, in the COBOL or ASM
statement. The complete syntax of the OUTATTR parm is shown on page 10-21. Here is
a typical example of a COBOL statement with an OUTATTR parm:

COBOL: OUTATTR(DASD,’FLDOUT’)

The above statement causes the FIELD statements to be written to a SAM output file on
disk. It is identified in the JCL by a DLBL named FLDOUT. The file will be written as
single blocked, 80–byte records.

Report Writer examines the Cobol record layout and writes one FIELD statement to the
output file for each field present in the Cobol layout.

Since we did not want to produce an actual report in this run, we did not use an INPUT
statement or any other Report Writer statements. Report Writer writes the FIELD
statements to the output file, and then ends execution. (You will see a message saying
that no report was produced because no INPUT statement was found. That is normal.) The
middle box on page 6-63 shows the FIELD statements produced by Report Writer.

Having created the FIELD statements automatically, you can now modify them as
desired. For example, you could add HEADING parms or FORMAT parms to specify column
headings and display formats for any or all of the fields. The bottom box on page 6-63
shows an example of how the FIELD statements might be modified. In this example, we
added a HEADING parm for EMPL–NAME. And, we changed the TYPE parm in the SALES–DATE
field from TYPE(NUM) to TYPE(YYMMDD). Now SALES–DATE is defined as a true date field. We
also made SALES–TIME a true time field by changing its TYPE parm to HHMMSS. We added a
CIMS Report Writer User Guide 6-61 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
FORMAT parm and the NOACCUM parm to the FIELD statement for TELEPHONE. That prevents
the telephone number from being accumulated (totalled) and causes it to be formatted
attractively.

If the Cobol field names in your record layout are long and cumbersome, you might also
want to perform some global changes on the names themselves. For example, if all fields
in your Cobol layout began with a prefix (like "SALES–REC–EMPL–NAME", "SALES–REC–EMPL–
NUM", etc.) you might want to perform a global edit to drop the common prefix ("SALES–
REC–") from the field names.

Note • When modifying the FIELD statements, be careful not to make any change that
would affect subsequent FIELD statements. For example, changing the length of a
field might cause the following field to start in the wrong column. Also be careful
about removing FIELD statements or changing their order.

You will also add an appropriate FILE statement ahead of the FIELD statements. When
you’re satisfied with your file definition, save it in your Report Writer Copy Library. You
can then produce reports and PC files using this file definition in the normal manner.
You will not need to use the Cobol record layout in subsequent runs, because you now
have a standard Report Writer file definition for your file.

Note • The example discussed above used a Cobol record layout. You can also create
FIELD statements from an Assembler layout in the same way. Just use the OUTDDN parm
(or OUTATTR parm) in your ASM statement.
■ 6-62 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
Figure 6-14 • Converting a Cobol record layout to Report Writer FIELD statements

FILE: DUMMY
COBOL: OUTDDN(FLDOUT)
 01 SALES–REC.
 05 EMPL–NAME PIC X(10).
 05 EMPL–NUM PIC X(3).
 05 REGION PIC X(5).
 05 PRODUCT–CODE PIC X(3).
 05 AMOUNT PIC 9999V99.
 05 COMMISSION–RATE PIC 9V999.
 05 SALES–DATE PIC 9(6).
 05 SALES–TIME PIC 9(6).
 05 CUSTOMER PIC X(15).
 05 TELEPHONE PIC 9(10).
 05 BACKUP–EMPL–NUM PIC X(3).
 05 TAX PIC 99V99.
 05 FILLER PIC X(5).

Write these FIELD statements to a special output file:

These Control Statements:

FIELD: SALES-REC LEN(80) COL(1)
FIELD: EMPL-NAME LEN(10) COL(1)
FIELD: EMPL-NUM LEN(3)
FIELD: REGION LEN(5)
FIELD: PRODUCT-CODE LEN(3
FIELD: AMOUNT LEN(6) TYPE(NUM) DEC(2)
FIELD: COMMISSION-RATE LEN(4) TYPE(NUM) DEC(3)
FIELD: SALES-DATE LEN(6) TYPE(NUM)
FIELD: SALES-TIME LEN(6) TYPE(NUM)
FIELD: CUSTOMER LEN(15)
FIELD: TELEPHONE LEN(10) TYPE(NUM)
FIELD: BACKUP-EMPL-NUM LEN(3)
FIELD: TAX LEN(4) TYPE(NUM) DEC(2)
FIELD: FILLER#001 LEN(5)

FILE: SALES–FILE DDNAME(SALEFILE)
FIELD: SALES-REC LEN(80) COL(1)
FIELD: EMPL-NAME LEN(10) COL(1) HEADING('EMPLOYEE NAME')
FIELD: EMPL-NUM LEN(3)
FIELD: REGION LEN(5)
FIELD: PRODUCT-CODE LEN(3)
FIELD: AMOUNT LEN(6) TYPE(NUM) DEC(2)
FIELD: COMMISSION-RATE LEN(4) TYPE(NUM) DEC(3)
FIELD: SALES-DATE LEN(6) TYPE(YYMMDD)
FIELD: SALES-TIME LEN(6) TYPE(HHMMSS)
FIELD: CUSTOMER LEN(15)
FIELD: TELEPHONE LEN(10) TYPE(NUM) FORMAT(PIC'(999) 999–9999') NOACCUM
FIELD: BACKUP-EMPL-NUM LEN(3)
FIELD: TAX LEN(4) TYPE(NUM) DEC(2)
FIELD: FILLER#001 LEN(5)

(File definition after sample customization)
CIMS Report Writer User Guide 6-63 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
How to Copy Cobol and Assembler Record Layouts from Libraries 6

Our examples until now have used Cobol and Assembler record layouts written "in
line". That is, they have been imbedded directly within the Report Writer control
statements. But normally Cobol and Assembler record layouts are stored as members in
copy libraries, to be used by their respective compilers. Report Writer also allows you to
copy such record layouts directly from those libraries. Just use Report Writer’s COPY
statement wherever you want the Cobol or Assembler lines to be included.

Example
FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
COBOL:
COPY: SALEREC
INPUT: SALES–FILE
...

In this example, a Cobol record layout still follows the COBOL statement. But this time it’s
copied from a member named SALEREC in a copy library. What library is searched for the
member named SALEREC?

Under MVS, COPY statements normally read members from the Report Writer Copy Library
–– the one pointed to by the SWCOPY DD in the JCL. However, Cobol and Assembler record
layouts are generally kept in different libraries from your Report Writer definitions (and
even in different libraries from each other.) Therefore, when processing Cobol code,
Report Writer performs copies from the PDS named by the COBLIB DD in the JCL, if one is
present. When processing Assembler record layouts, copies are performed from the
library pointed to by the ASMLIB DD, if one is present. If the appropriate DD (COBLIB or
ASMLIB) is not present, Report Writer attempts to perform the copy from the standard
copy library (SWCOPY DD.) You can also override these defaults and specify any DDNAME you
like directly in the COPY statement. Use the PDSDDN parm:

COPY: SALEREC PDSDDN(’COPYLIB’)

The above statement would cause the member named SALEREC to be copied from the PDS
identified by the COPYLIB DD in the JCL. The PDSDDN parm is useful if you need to perform
multiple copies in a run and each copy must come from a different library.

In MVS, you can also use the COPY statement to copy a "flat" sequential file. This may be
necessary if your shop stores copy members in a proprietary library, such as PANVALET or
LIBRARIAN. Add a job step ahead of the Report Writer step to write the desired member
to a sequential dataset. Then have Report Writer copy that sequential dataset by using the
DDNAME parm in the COPY statement:

COPY: DDNAME(SALEREC)

The above example causes Report Writer to read in the records from the sequential file
pointed to by the SALEREC DD in the JCL.

VSE Note • Under VSE, the COPY statement names a member to be copied from a
Librarian sublibrary. It can also optionally name the member type and/or the
sublibrary to use.
■ 6-64 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
For example, the following COPY statements are all valid:

OPTION: COBLIB(’PROD.COBCOPY’)
COBOL:
COPY: SALEREC
COPY: SALEREC.COBOL
COPY: SALEREC SUBLIB(’TEST.COBCOPY’)

The member type used will be:

■ the type specified in the COPY statement itself, if any, or

■ "C" (if within the scope of a COBOL statement), or

■ "A" (if within the scope of an ASM statement.)

The sublibrary used will be:

■ the sublibrary from the SUBLIB parm in the COPY statement itself, if any, or

■ the sublibrary named in an OPTIONS: COBLIB parm, if any (if within the scope of a
COBOL statement), or

■ the sublibrary named in an OPTIONS: ASMLIB parm, if any (if within the scope of an
ASM statement), or

■ the sublibrary named in the OPTIONS: SUBLIB parm.

Note • We mentioned in an earlier section that Cobol processing begins
immediately after the COBOL statement and ends when the next Report Writer control
statement is encountered. The COPY statement is an exception to this rule. A COPY
statement does not signal the end of the Cobol (or Assembler) code. This allows you
to embed COPY statements within sections of Cobol or Assembler code.

Note • You may use multiple copy statements. You may also intermix in–line code
and code copied via COPY statements. For example, the following is valid:

FILE: SALES–FILE DDNAME(SALEFILE) LRECL(80)
COBOL:
 01 REC–A.
COPY: SALERECA
 01 REC–B REDEFINES REC–A.
COPY: SALERECB
INPUT: SALES–FILE
...
CIMS Report Writer User Guide 6-65 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
Mixing FIELD Statements with COBOL and ASM Statements 6

You may use any combination of FIELD statements, COBOL statements and ASM statements
to define an input file. For example, the following is valid:

FILE: SALES–FILE DDNAME(SALEFILE)
COBOL:
 01 REC–A.
COPY: SALEREC1
ASM: STARTCOL(1)
RECB DS 0CL80
COPY: SALEREC2
FIELD: REC–C COLUMN(1) LENGTH(80)
INPUT: SALES–FILE
...

The above example uses a Cobol record layout to define the fields in one type of record
for the SALES–FILE. It then uses an Assembler record layout to define the fields in a
second type of record for the file. Note the STARTCOL(1) parm in the ASM statement causes
the first field from the Assembler code to begin in column 1 (rather than picking up after
the last field defined by the Cobol record layout.) Lastly, an explicit FIELD statement
defines a field called REC–C. The COLUMN parm causes it to start in column 1 also.

The Starting Column of a Cobol or Assembler Layout 6

By default, Report Writer assigns a file’s "default location" value to the first item within
a Cobol record layout. Thus, if you have no explicit FIELD statements before your Cobol
record layout, the first item in the Cobol layout will be defined as beginning in column
1. If you do have preceding FIELD statements (or preceding COBOL or ASM statements), the
first item in the Cobol record layout will begin in the column immediately following the
last field defined. Use the STARTCOL or STARTDISP parm (in the COBOL statement) if you
want the fields from the Cobol record layout to begin in some other column.

The first field in Assembler code is also handled in the way just described.

The "Default Location" After a Cobol or Assembler Layout 6

Report Writer updates a file’s "default location" pointer while processing Cobol (and
Assembler) layouts just as it does when processing FIELD statements. Thus, the "default
location" after processing a Cobol layout is immediately after the last field within the
layout. Any FIELD statements appearing after the Cobol layout which do not contain a
COLUMN or DISP parm would be defined as starting immediately after the last field from
the Cobol layout. Similarly, if you use a second COBOL statement, the first item in that
record layout would immediately follow the last field from the previous Cobol layout
(unless you override this with a STARTCOL or STARTDISP parm in the second COBOL
statement.)
■ 6-66 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
Caution • If your Cobol code contains multiple 01–level record layouts, remember
that the last field present in the record layout may not be the field that actually
occupies the last bytes within the record. This happens when a shorter record layout
redefines a larger record layout. In that case, the default location counter would be
immediately after the last field from the second, shorter record layout–– not after the
last field in the larger record layout. The same thing is possible within a single record
layout if it ends after an explicit REDEFINES of a larger object. Within Assembler code,
a similar situation arises when a smaller DSECT follows a larger DSECT.

The Scope of the COBOL and ASM Statements 6

Beginning immediately after a COBOL statement, Report Writer treats input lines as Cobol
code. (However, the COBOL statement itself may be continued onto multiple lines if
necessary.) After the complete COBOL statement, subsequent lines, including lines copied
via a COPY statement, are treated as Cobol code. The Cobol code is assumed to end when
the first Report Writer control statement prefix is encountered. There are, however, two
exceptions to this rule.

1 A COPY statement does not end the scope of the COBOL statement. This lets you use the
COPY statement to include additional lines of Cobol code from a library. (Of course,
if one of the copied lines contains a Report Writer control statement, that line will end
the scope of the COBOL statement.)

2 A Report Writer comment line does not end the scope of the COBOL statement. Thus,
a line beginning with an asterisk in column 1 would be treated as Cobol code and not
as a comment line.

The scope of the ASM statement is the same as described above for COBOL.

If you have any question whether Report Writer is treating a particular input line as
Cobol, Assembler, or native Report Writer, check the control listing. The word "COBOL"
or "ASM" will appear beside each line that Report Writer is interpreting as Cobol or
Assembler code. Use the LIST(YES) option on any COPY statements to ensure that the
copied lines are also printed in the control listing.

Other Features Available in COBOL and ASM Statements 6

There are a number of parms available in the COBOL and ASM statements that we have not
discussed. These parms let you control various options used in processing the record
layouts. The complete syntax for the COBOL statement begins on page 10-18. The
complete syntax for the ASM statement begins on page 10-3.

Technical Notes on Cobol Support 6

Report Writer will accept the vast majority of Cobol record layouts used in most shops.
Still, Report Writer is not a complete Cobol compiler and there are some valid Cobol
features that Report Writer does not support at the present.
CIMS Report Writer User Guide 6-67 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
Even when Report Writer doesn’t support a particular Cobol statement, you will still save
much time by using the FIELD statement output from Report Writer as the beginning
point of your file definition. Many FIELD statements will be correct, and you can modify
any incorrect ones as needed.

It is important that the Cobol record layout be completely error free. Report Writer does
not attempt to perform all of the functions of the Cobol compiler, and may not notify
you of syntax errors. Do not try to develop your Cobol record layouts with Report Writer.
Use the Cobol compiler for that purpose and use only clean, tested record layouts in
Report Writer.

In general, if a record layout would be accepted in the Record Description entry of an FD
(File Description), Report Writer will also accept it. In addition, Report Writer accepts
many types of edited PICTURES (like PIC $$$,$$9.99). This means that Report Writer can
support many report line structures taken from Cobol report programs. This is useful
when a report written by a Cobol program will be used as input to Report Writer.

Level Indicators

Report Writer supports level indicators between 01 and 49. Level 77 is not allowed.
Levels 66 and 88 are ignored but do not interfere with the correct interpretation of the
other statements.

REDEFINES Clauses

If an item contains a REDEFINES clause, both the item and the object of its REDEFINES
clause must be within the scope of the same COBOL control statement. That is, an item
within the scope of one COBOL statement may not redefine an item within the scope of
an earlier COBOL control statement.

01–Level Implicit Redefines

As with Cobol in a FD clause, Report Writer treats each 01 level item as an implicit
redefine of the entire record. Items beginning with the 01 level are assumed to begin in
the same column as the first field following the COBOL control statement.

Unique Field Names

In Cobol, different records may contain fields with the same name. You use the "field OF
qualifier" notation in Cobol to avoid any ambiguity. Report Writer requires unique field
names for each field within a file. Therefore, if you copy multiple record layouts and the
same field name is used more than once, Report Writer makes the second field name
unique by appending a "tiebreaker" to it. The tiebreaker has the format "#nnn". For
example, if the Cobol layout(s) you use contain two fields with the name DATE, Report
Writer would use DATE for the first item and DATE#001 for the second item. A message is
printed in the control listing whenever Report Writer modifies a name in this way to
make it unique.
■ 6-68 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
Handling FILLER

Report Writer does not support FILLER as a special field name. Therefore, Report Writer
always appends a tiebreaker to FILLER fields. No message is printed when this happens,
but you can see the actual name of all fields, including FILLER fields, by using the
SHOWFLDS(YES) parm on the COBOL statement.

Handling 88–Level Items

Report Writer does not process 88 level field definitions automatically. However, it is not
difficult to create Report Writer equivalents for 88 items yourself. Following is an
example of how several 88 level items would be defined with Report Writer.

For often–used 88 items, you may want to manually add such statements to your file
definition. Consider these Cobol statements:

05 STATUS–CODE PIC X(1).
 88 PART–TIME VALUE ’1’.
 88 FULL–TIME VALUE ’2’, ’4’.
 88 TERMINATED VALUE ’5’ THRU ’9’.

In the example above, Report Writer would create the 05 level field, STATUS–CODE, for
you. It would then ignore the 88 level statements. To define the 88 fields to Report
Writer, you could add the following statements somewhere after the Cobol record
layout.

COMPUTE: PART–TIME = WHEN(STATUS–CODE = ’1’) ASSIGN(#ON)
COMPUTE: FULL–TIME = WHEN(STATUS–CODE = ’2’ OR ’4’) ASSIGN(#ON)
COMPUTE: TERMINATED = WHEN(STATUS–CODE >= 5 AND <= ’9’) ASSIGN(#ON)

The above COMPUTE statements define bit–type fields which can be used in conditional
expressions in Report Writer statements just like they are used in Cobol.

Example
INCLUDEIF: FULL–TIME

The above statement would include all records where the FULL–TIME field was on. That
would be all records whose STATUS–CODE field contained a 2 or a 4. Unlike Cobol, you
can also print these bit fields with Report Writer.

Example
COLUMNS: FULL–TIME

The above statement causes a column to appear in the report for the FULL–TIME field. The
report column will contain (by default) the words FULL–TIME or NOT FULL–TIME for each
input record.

SIGN IS SEPARATE Clause

Report Writer supports the SIGN IS SEPARATE clause for elemental items, but not for
group items.
CIMS Report Writer User Guide 6-69 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
Technical Notes on Assembler Support 6

Report Writer will accept most of the Assembler record layouts used in most shops. Still,
Report Writer is not a complete assembler and there are some valid Assembler features
that Report Writer does not support at the present.

Even when Report Writer doesn’t support a particular Assembler statement, you will still
save much time by using the FIELD statement output from Report Writer as the beginning
point of your file definition. Many FIELD statements will be correct, and you can modify
any incorrect ones as needed.

It is important that the Assembler record layout be completely error free. Report Writer
does not attempt to perform all of the functions of the assembler, and may not notify
you of syntax errors. Do not try to develop your Assembler record layouts with Report
Writer. Use the assembler for that purpose and use only clean, tested record layouts in
Report Writer.

In general, Report Writer supports the following Assembler statements:

■ DS and DC statements

■ EQU statements

■ ORG statements

■ DSECT statements

Character–Numeric Data

One problem with many Assembler record layouts is that they often use the "C"
(Character) data type to define numeric fields. Consider the following Assembler
statement:

AMOUNT DS CL6 SALES AMOUNT IN CENTS

Report Writer can only treat this AMOUNT field as a 6–byte character field. There is nothing
to tell Report Writer that its value is actually numeric and that it contains 2 decimal
digits.

There is a different way to define such fields in Assembler which allows Report Writer to
correctly interpret them. It is to use the "Z" (Zoned) data type, and to include a sample
initial value that indicates the number of decimal digits that the data contains. Consider
the following Assembler statement:

AMOUNT DS ZL6’9999.99’ SALES AMOUNT IN CENTS

Report Writer would correctly interpret this field by creating the following FIELD
statement:

FIELD: AMOUNT LEN(6) TYPE(NUM–SLD) DEC(2)

You may want to consider this when creating future Assembler record layouts, if you
wish to use them with Report Writer.
■ 6-70 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
Another way to handle this problem (without modifying your record layout) is to use a
COMPUTE statement. For example, if AMOUNT is defined simply as CL6, you could still get a
numeric field that has 2 decimal digits by adding this COMPUTE statement somewhere after
your record layout:

COMPUTE: REAL–AMOUNT(2) = #MAKENUM(AMOUNT) / 100

The above statement uses the #MAKENUM built–in function to convert the 6–byte character
value into a numeric value. It is then divided by 100 to get the correct number of decimal
digits.

If you will be using a particular file often with Report Writer, it may be better to create a
standard Report Writer file definition for it. Use Report Writer to convert the record
layout into FIELD statements. Then modify the FIELD statements as necessary to correctly
define the numeric fields.

Decimal Digits

Report Writer creates a DEC(n) parm whenever the Assembler DS or DC statement has an
initial value that includes one or more decimal digits. Consider this DS statement for a
packed field:

SALARY DS PL4 SALARY (WITH 2 DECIMAL DIGITS)

Report Writer would have no information about decimal digits and would define it like
this:

FIELD: SALARY LEN(4) TYPE(PACKED)

But if you used this statement:

SALARY DS PL4’12345.67’ SALARY (WITH 2 DECIMAL DIGITS)

then Report Writer could correctly create the following FIELD statement:

FIELD: SALARY LEN(4) TYPE(PACKED) DEC(2)

Another way to handle decimal problems (without modifying your record layout) is to
use a COMPUTE statement. For example, if SALARY is defined simply as PL4, you could still
get a field that has 2 decimal digits by adding this COMPUTE statement somewhere after
your record layout:

COMPUTE: REAL–SALARY(2) = SALARY / 100

Support for expressions

Report Writer supports some, but not all, types of expressions allowed by the IBM
assembler. The following kinds of Assembler "terms" are supported within expressions:

■ previously defined symbols (that is, field names created as a result of earlier
Assembler statements). The value of such symbols is their displacement within the
record. The symbol must have been defined within the scope of the same ASM
statement.

■ length constants (example: L’AMOUNT)
CIMS Report Writer User Guide 6-71 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
■ numeric, character and hex literals (examples: 123, C’ABC’, X’FFFF’)

The following operations are supported as long as they are not nested and require no implicit
ranking of operation:

■ addition

■ subtraction

■ multiplication

■ division (with the remainder being dropped)

Following are some examples of statements containing expressions that Report Writer
does support:

LABEL DS XL100
LABEL1 DS XL(L’LABEL)
LABEL2 DS XL(L’LABEL–50)
LABEL3 EQU LABEL2,L’LABEL2
LABEL4 DS XL(L’LABEL1+L’LABEL2+5)
LABEL5 EQU LABEL+X’1C’+26+C’P’,5

Restrictions on expressions

Report Writer does not support complex expressions within an Assembler statement. It
interprets only non–nested operations that are performed strictly in left–to–right order.
Thus, the following expression is not supported because it involves a nested operation:

LABEL EQU A+(B*C)

Report Writer prints a warning message when an expression like the one above is
encountered.

You may however use one level of parentheses around an entire expression. Thus, the
following expression is accepted:

LABEL EQU (X+Y–Z)

The following expression is not supported because it implicitly requires that the second
operation (C*D) be performed before the first operation (B+C).

LABEL EQU B+C*D

Report Writer prints a warning message when an expression like the one above is
encountered. You can simplify such expressions, if desired, so that Report Writer can
support your record layout. For example, the above statement could be simplified by
breaking it into 2 statements:

TEMP EQU C*D
LABEL EQU B+TEMP

The above statement are acceptable to Report Writer.
■ 6-72 CIMS Report Writer User Guide

How to Define Your Input Files ■

Using Cobol and Assembler Record Layouts
Multiple Operands

Report Writer does not support DS or DC statements with multiple operands. For example,
neither of the following statements is supported:

TABLE DC AL4(1,2,3,4)
MESSAGE DC H’5’,C’HELLO’

However, DC and DS statements with repetition factors are supported. Thus, the following
statement is acceptable to Report Writer:

TABLE DS 4AL4

Handling EQUs

When Report Writer encounters an EQU statement that contains a label, it defines a field
based on the statement’s operands. (If the EQU statement has no label, the EQU statement
is ignored.) The first operand of the EQU statement must be a self–defining expression.
The value of this expression is used as the displacement for the field. If the EQU statement
has no length operand, a length of 1 is assumed. If the EQU statement has no data type
operand, character data is assumed. The "default location" is not changed as a result of an
EQU statement. Consider the following two EQU statements:

LASTNAME EQU NAME+10,15
R15 EQU 15

The above example would result in two fields being defined. The LASTNAME field would
begin 10 bytes after the start of the NAME field (which must have been previously
defined.) It is a character field that is 15 bytes long. The second field, R15, would be a 1–
byte character field beginning at displacement 15 in the record.

Handling DSECTs

When Report Writer encounters a DSECT statement, it does two things. Firstly, it resets the
default location to the value it had at the start of the Assembler code. That would be
column 1 if no other fields had been defined earlier for the file. Or, it would be the value
specified in any STARTCOL or STARTDISP parm in the ASM statement. Secondly, if the
DSECT statement has a label, Report Writer defines a 1–byte character field whose name
is the DSECT name.

Unique field names

Report Writer requires unique field names for each field within a file. Therefore, if you
copy multiple record layouts and the same field name is used more than once, Report
Writer makes the second field name unique by appending a "tiebreaker" to it. The
tiebreaker has the format "#nnn". For example, if the Assembler code you use contains
two fields with the name DATE, Report Writer would use DATE for the first item and
DATE#001 for the second item. A message is printed in the control listing whenever Report
Writer modifies a name in this way to make it unique.
CIMS Report Writer User Guide 6-73 ■

■ How to Define Your Input Files

Using Cobol and Assembler Record Layouts
■ 6-74 CIMS Report Writer User Guide

7
Working with Databases

Introduction . 7-2

Using Report Writer with DB2 Databases . 7-2

Using DB2 Data in Reports . 7-3

Using DB2 Data in PC Programs . 7-5

What Fields Are in Your DB2 Table? . 7-7

Using the WHERE Parm . 7-7

Using the ORDERBY Parm . 7-8

Using Multiple DB2 Tables . 7-10

Using Data from Three DB2 Tables . 7-13

WHERE Parm Syntax . 7-15

Customizing Your DB2 Fields . 7-18

Saving DB2 File Definitions . 7-19

DB2 Setup . 7-20

DB2 Restrictions . 7-21
CIMS Report Writer User Guide 7-1 ■

■ Working with Databases

Introduction
Introduction 7

At present, Report Writer supports the following databases:

■ DB2

Using Report Writer with DB2 Databases 7

Report Writer's DB2 Option lets you use DB2 data with Report Writer exactly like you use
other mainframe data. That means you can:

■ produce attractive custom reports from DB2 tables in just minutes.

■ turn DB2 data into PC files designed especially for PC spreadsheet, database and
graphics programs.

■ turn DB2 data into any custom file format you need for use on minis, Unix machines,
database servers, mainframes, etc.

■ use DB2 data to create Web reports.

Report Writer's DB2 Option has these features:

■ no data dictionary is required when using DB2 data. You just use the standard DB2
names for your DB2 tables, views, and columns. This means you can start using Report
Writer with all of your DB2 tables right away.

■ you can combine data from up to 15 different DB2 tables to create a single report or
PC file.

■ you can even mix DB2 data with data from non–DB2 files. For example, you might
have a tape file as the primary input to a Report Writer job. Using data from that file,
you could read additional data from VSAM files and/or DB2 tables. Or, you could use
a DB2 table as your primary input and use data from it to read from additional DB2
tables or VSAM files. The possibilities are endless.

It's easy to use DB2 data with Report Writer. You use the same control statements that
you already know, with just a few differences. In fact, the only statements affected by the
DB2 Option are these:

■ the OPTION statement

■ the INPUT statement

■ the READ statement (not required)

■ the FILE statement (not required)

For most reports and PC files, you won't even use the READ or FILE statements.

JCL Note • When using DB2 tables with Report Writer, be sure that the STEPLIB DD in
the execution JCL points to the load module where DB2's run–time modules are
located. An example of a DB2 run–time module is DSNTIAR.
■ 7-2 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
In the following sections, we assume that you are already familiar with using Report
Writer to request reports and output files. These sections explain the few differences that
you need to know in order to use DB2 data in Report Writer.

Using DB2 Data in Reports 7

Let's begin by looking at an actual Report Writer report that uses DB2 data. Notice the
sample report in Figure 7-1, on page 7-4. Two of the control statements in this example
contain DB2–related information. They are the OPTIONS statement and the INPUT
statement.

First notice the OPTIONS statement. You'll see that we used the DB2SUBSYS option. This
option tells Report Writer which DB2 subsystem to access. Many shops have multiple DB2
subsystems. For example, a shop might have a test subsystem and a production
subsystem. This option tells Report Writer which subsystem to access for a particular run.

In our example, we specified a DB2 subsystem named "DB2T." That's the test subsystem
in our "imaginary" company.

The DB2SUBSYS option is required when using DB2 data in a run. Remember to specify this
option before your INPUT statement.

Next notice the INPUT statement. There are two names used in the INPUT statement:

■ PROJECT, which is a user–assigned "Report Writer name" for this input file. You can
put any name here that you like. This name is not known to DB2 at all. In most runs,
this name will never be referred to again. (However, in runs that use multiple input
files, as you'll see later, "PROJECT" is used to refer specifically to this input file.)

■ DSN8230.PROJ, which is of course the actual name of the DB2 table. You can name a
DB2 table or a DB2 view in this parm. By the way, DSN8230.PROJ is the name of a real
"sample table" that is supplied by IBM with your DB2 system. Therefore, you can run
this same job in your own shop for practice, if you like. This table contains
information about various projects in an imaginary company.

Note • The sample IBM tables used in the following examples are named
according to the particular release level of DB2. Thus, under Release 3.1 of DB2, for
example, the Project table is named DSN8310.PROJ, rather than DSN8230.PROJ.

The INPUT statement does two things.

■ it associates an actual DB2 table with a user–friendly Report Writer "file name." (This
association is not permanent–– it lasts only during the one Report Writer run.)

■ it makes that DB2 table the primary input for your Report Writer run.

These are the only required parms for an INPUT statement for a DB2 table. Subsequent
sections of this chapter discuss other optional DB2 INPUT statement parms. (The
complete syntax for the INPUT statement appears on page 10-72.)
CIMS Report Writer User Guide 7-3 ■

■ Working with Databases

Using Report Writer with DB2 Databases
Figure 7-1 • A Report Writer DB2 report

OPTION: DB2SUBSYS('DB2T')
INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
TITLE: 'LISTING OF PROJECT DB2 TABLE'
COLUMNS: PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTDATE
 PRSTAFF

 LISTING OF PROJECT DB2 TABLE

PROJNO PROJNAME DEPTNO RESPEMP PRSTDATE PRSTAFF

AD3100 ADMIN SERVICES D01 000010 01/01/82 6.50
AD3110 GENERAL AD SYSTEMS D21 000070 01/01/82 6.00
AD3111 PAYROLL PROGRAMMING D21 000230 01/01/82 2.00
AD3112 PERSONNEL PROGRAMMG D21 000250 01/01/82 1.00
AD3113 ACCOUNT.PROGRAMMING D21 000270 01/01/82 2.00
IF1000 QUERY SERVICES C01 000030 01/01/82 2.00
IF2000 USER EDUCATION C01 000030 01/01/82 1.00
MA2100 WELD LINE AUTOMATION D01 000010 01/01/82 12.00
MA2110 W L PROGRAMMING D11 000060 01/01/82 9.00
MA2111 W L PROGRAM DESIGN D11 000220 01/01/82 2.00
MA2112 W L ROBOT DESIGN D11 000150 01/01/82 3.00
MA2113 W L PROD CONT PROGS D11 000160 02/15/82 3.00
OP1000 OPERATION SUPPORT E01 000050 01/01/82 6.00
OP1010 OPERATION E11 000090 01/01/82 5.00
OP2000 GEN SYSTEMS SERVICES E01 000050 01/01/82 5.00
OP2010 SYSTEMS SUPPORT E21 000100 01/01/82 4.00
OP2011 SCP SYSTEMS SUPPORT E21 000320 01/01/82 1.00
OP2012 APPLICATIONS SUPPORT E21 000330 01/01/82 1.00
OP2013 DB/DC SUPPORT E21 000340 01/01/82 1.00
PL2100 WELD LINE PLANNING B01 000020 01/01/82 1.00

*** GRAND TOTAL (20 ITEMS) 73.50

These Control Statements:

Produce this report:
■ 7-4 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
Terminology: for the sake of consistency, we'll refer to the DB2 table named in an
INPUT statement as an "input file," even though technically speaking it is not a "file".
Similarly, we'll refer to DB2 Columns as "DB2 fields" in this manual.

After your INPUT statement, you can use any of the other Report Writer statements in any
way you like. Refer to the DB2 fields by using their standard, unqualified DB2 names.
Report Writer will automatically recognize these DB2 names. For example, in the COLUMNS
statement in Figure 7-1, on page 7-4, we referred to the following DB2 fields from the
project table: PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE and PRSTAFF.

You can also use the DB2 fields in the SORT statement, COMPUTE statements, INCLUDEIF
statements, BREAK statements, and all the other Report Writer statements. Just use the DB2
fields in exactly the same way as you would use the fields from a non–DB2 input file.

That's all there is to using DB2 data with Report Writer! Here's a review of the differences
from non–DB2 Report Writer requests:

■ no data definition of your DB2 file is necessary (that is, no FILE or FIELD statements
are required)

■ no Report Writer Copy Library is required

■ use an OPTION statement with the DB2SUBSYS parm

■ use the DB2NAME parm in your INPUT statement

Note • Report Writer supports character, numeric, date and time fields from DB2
tables. DB2 "timestamps" are treated as 26–byte character fields by Report Writer. DB2
"graphic strings" and "floating point" numbers are not supported.

Using DB2 Data in PC Programs 7

We've just seen how easy it is to use DB2 data in custom reports with Report Writer. It's
just as easy to turn your DB2 data into PC files with Report Writer. Simply add the
appropriate PC option to the OPTION statement. An example of using DB2 data in a Lotus
1–2–3 spreadsheet is shown in Figure 7-2. This example shows the same "project table"
data being used in a Lotus 1–2–3 spreadsheet.
CIMS Report Writer User Guide 7-5 ■

■ Working with Databases

Using Report Writer with DB2 Databases
Figure 7-2 • Using DB2 data in a Lotus 1-2-3 spreadsheet

These Control Statements:

OPTION: LOTUS DB2SUBSYS('DB2T')
INPUT: PROJECT DB2NAME('DSN8230.PROJ')
COLUMNS: PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTDATE
 PRSTAFF

Result in this Lotus 1-2-3 spreadsheet:
■ 7-6 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
What Fields Are in Your DB2 Table? 7

You may not remember the names of all of the fields defined for your DB2 table. Report
Writer will list the DB2 fields available in your DB2 file for you. Just use the SHOWFLDS(YES)
parm in your INPUT statement:

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 SHOWFLDS(YES)

The above statement causes a list to be printed showing each DB2 field available from the
DSN8230.PROJ table. This list appears in the Report Writer control statement listing. The
list also indicates the data type (character, numeric, date or time) of each of the DB2
fields.

The SHOWFLDS parm can also be used in the READ statement.

Using the WHERE Parm 7

Here's how Report Writer interacted with the DB2 subsystem in order to produce the
report on page 7-4. Report Writer first opened a "cursor" with DB2 that "selected" the DB2
fields needed to produce the report. It then "fetched" from DB2 all the rows for that
cursor. Since no INCLUDEIF statement was used, Report Writer included in the report all
the rows that were returned by DB2.

Now let's consider a more advanced report. What if we want to include only the records
for department D21 in our report. Of course, the standard way to do that with Report
Writer is to use an INCLUDEIF statement, like this:

INCLUDEIF: DEPTNO = 'D21'

And that method works just fine! If you use this statement, Report Writer would again
fetch all rows from the DB2 table. Report Writer would then examine the DEPTNO field in
each row and include in the report only those rows where the DEPTNO field contained
"D21".

But when using DB2 data as your input, there is another way to accomplish the same
thing. You can let DB2 do the record selection rather than Report Writer. To do this, use
a WHERE parm in the INPUT statement:

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 WHERE(DEPTNO = 'D21')

The WHERE parm in the INPUT statement serves the same function as the WHERE clause in a
DB2 "SELECT" statement. It tells DB2 which rows we want from the DB2 table. If your INPUT
statement contains a WHERE parm, Report Writer will include it as a WHERE clause in the
SELECT statement that it builds for DB2. (If your INPUT statement does not have a WHERE
parm, the SELECT statement will not have a WHERE clause, and DB2 will return all rows
from the DB2 table.)
CIMS Report Writer User Guide 7-7 ■

■ Working with Databases

Using Report Writer with DB2 Databases
In the example above, the WHERE parm causes DB2 to return to Report Writer only those
rows from the project table whose DEPTNO field equals "D21". If you used this WHERE parm,
you would not need an INCLUDEIF statement. You would want Report Writer to include
all the rows that DB2 returned to it.

As far as the final report goes, using the WHERE parm yields identical results to using the
INCLUDEIF statement. Feel free to use whichever method you're most comfortable with.
The example on page 7-9 uses a WHERE parm in the INPUT statement.

Performance Note • Which one of these methods is more efficient? There is no
"right" answer for all cases. It depends on various factors, such as what percentage of
records will be included in the report. For long–running jobs, where performance is
an important consideration, you may want to try running the job each way and
choose the method that works best in your particular case.

You can also use a combination of the WHERE parm and the INCLUDEIF statement. If you
do, DB2 will pass to Report Writer all rows that meet the WHERE conditions. Of those rows,
Report Writer will then include in the report only the ones that meet the INCLUDEIF
statement conditions.

See Using the WHERE Parm on page 7-7 for further detail.

Using the ORDERBY Parm 7

Another optional parm in the INPUT statement is the ORDERBY parm. (Note that this parm
must be spelled with no imbedded space.)

The ORDERBY parm in Report Writer serves the same function as the ORDER BY clause in a
DB2 "SELECT" statement. It tells DB2 what order to pass us the rows in. If your INPUT
statement contains an ORDERBY parm, Report Writer will include it as an ORDER BY clause
in the SELECT statement that it builds for DB2. (If your INPUT statement does not have a
ORDERBY parm, the SELECT statement will not have an ORDER BY clause. Then DB2 will pass
Report Writer the rows in an "arbitrary" order.)

Use this parm if you want DB2 to pass its rows to Report Writer in a certain order. You
may wish to use this parm rather than using a SORT statement. When no SORT statement
is used, Report Writer outputs the data in the same order that DB2 passes it to Report
Writer in.

The example on page 7-9 uses an ORDERBY parm in the INPUT statement.
■ 7-8 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
Figure 7-3 • Using the WHERE parm to select certain rows from a DB2 table

OPTION: DB2SUBSYS('DB2T')
INPUT: PROJECT DB2NAME('DSN8230.PROJ')
 WHERE(DEPTNO = 'D21')
 ORDERBY(PROJNAME)
TITLE: 'PROJECTS FOR DEPARTMENT D21'
COLUMNS: PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 PRSTDATE
 PRSTAFF

 PROJECTS FOR DEPARTMENT D21

PROJNO PROJNAME DEPTNO RESPEMP PRSTDATE PRSTAFF

AD3113 ACCOUNT.PROGRAMMING D21 000270 01/01/82 2.00
AD3110 GENERAL AD SYSTEMS D21 000070 01/01/82 6.00
AD3111 PAYROLL PROGRAMMING D21 000230 01/01/82 2.00
AD3112 PERSONNEL PROGRAMMG D21 000250 01/01/82 1.00

*** GRAND TOTAL (4 ITEMS) 11.00

These Control Statements:

Notes:

• we could have achieved the same result by leaving out the WHERE and ORDERBY parms, and adding
these statements:

INCLUDEIF: DEPTNO = 'D21'
SORT: PROJNAME

Produce this report:
CIMS Report Writer User Guide 7-9 ■

■ Working with Databases

Using Report Writer with DB2 Databases
Within the ORDERBY parm, you may list one or more DB2 fields, along with the optional
keywords ASC and DESC (for "ascending" and "descending.") Here are two examples of
INPUT statements that use the ORDERBY parm:

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 ORDERBY(DEPTNO, PROJNAME)

The above example would cause DB2 to return the rows from the project table to Report
Writer in department number order, with "ties" being further sorted in project name
order.

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 WHERE(DEPTNO = 'D21')
 ORDERBY(PROJNAME DESC)

The above statement would cause the rows from the project table to be returned to
Report Writer in descending project name order. As you can see, you are allowed to use
both the WHERE and ORDERBY parms, if you wish. Their order in the INPUT statement is not
important.

Note • You can use both an ORDERBY parm and a SORT statement, though this would
rarely be useful. DB2 would pass the rows from the DB2 table to Report Writer in the
order specified in the ORDERBY parm. Report Writer would then sort the final report
according to the SORT statement.

Using Multiple DB2 Tables 7

Sometimes the DB2 table in your INPUT statement will not contain all the data you need
for a report or a PC file. In that case, you can use one or more READ statements to obtain
data from additional DB2 tables.

Let's begin by reviewing how the READ statement works with VSAM files. The file named in
the INPUT statement is called the "primary input file." Report Writer always reads this
primary input file sequentially. Then, each time a record is read from the primary file,
Report Writer reads one additional record from each VSAM file named in a READ statement.
The READKEY parm (in the READ statement) tells Report Writer what key to use when
performing the read. The key is usually a field from the primary input file.

You can also use READ statements with DB2 tables. Each READ statement will cause one row
of data to be read from a DB2 table. Instead of using a READKEY parm, use the WHERE parm
to identify which row you want to read. (Please refer to Using the WHERE Parm on
page 7-7. Its syntax is discussed in WHERE Parm Syntax on page 7-15.)

Let's start with the DB2 report on page 7-4 to illustrate the use of the READ statement. That
report shows data from the "project" DB2 table. One of the items in the project table is
called RESPEMP. This is the employee number of the project's "responsible employee."
■ 7-10 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
Now suppose we want to include the employee's actual name in our report. The
employee name is not kept in the project table. But it is kept in a different DB2 table ––
the employee table.

We could use the following statements to get data from both the project and the
employee tables for use in our report.

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

Notice that the READ statement, like the INPUT statement, begins with a Report Writer file
name. It also has the DB2NAME parm. And, unlike the INPUT statement, the WHERE parm is
required in a READ statement.

Here's how Report Writer will process the above statements. The primary input to the
report is the project DB2 table. So, Report Writer will retrieve all rows from the DB2
project table. For each row from the project table, Report Writer will now also fetch a
single row from the employee table. The row from the employee table will be the row
whose EMPNO field equals the RESPEMP field from the project table.

As a result of these two statements, you now have access to any DB2 field in either the
project or the employee DB2 tables. You can use those DB2 fields in your COLUMNS
statement, SORT statement, COMPUTE statements, and so on. This simple way of linking
multiple DB2 table is one of Report Writer's most powerful features. All it takes is a single
READ statement.

The report in Figure 7-5, on page 7-14 illustrates this example. Our report now includes
LASTNAME, which is a column from the employee DB2 table. This report shows the last
name of the employee responsible for each project.

You can also use the ORDERBY parm in the READ statement. As mentioned, by default
Report Writer fetches only a single row from a READ file (for each row retrieved from the
INPUT file.) It is possible that the WHERE clause will not uniquely identify a single row in
the READ file. In that case, you can use the ORDERBY parm to determine which row DB2 will
return first to Report Writer. For example, if there were more than one employee with the
same employee number in the employee table, you might specify:

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)
 ORDERBY(LASTNAME)

The above statement specifies that DB2 should return rows from the employee table in
LASTNAME order. Therefore, if multiple rows existed for a certain employee number, DB2
would return the row whose LASTNAME came first alphabetically. If no ORDERBY parm is
specified and multiple rows meet the WHERE condition, DB2 will return the rows in an
"arbitrary" order. When processing READ statements, Report Writer always uses the first
row returned by DB2.
CIMS Report Writer User Guide 7-11 ■

■ Working with Databases

Using Report Writer with DB2 Databases
Figure 7-4 • A report that uses data from 2 different DB2 tables

OPTION: DB2SUBSYS('DB2T')

INPUT: PROJECT DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

TITLE: 'LISTING OF PROJECT DB2 TABLE'
COLUMNS: PROJNO
 PROJNAME
 DEPTNO
 RESPEMP
 LASTNAME
 PRSTDATE
 PRSTAFF

 LISTING OF PROJECT DB2 TABLE

PROJNO PROJNAME DEPTNO RESPEMP LASTNAME PRSTDATE PRSTAFF

AD3100 ADMIN SERVICES D01 000010 HAAS 01/01/82 6.50
AD3110 GENERAL AD SYSTEMS D21 000070 PULASKI 01/01/82 6.00
AD3111 PAYROLL PROGRAMMING D21 000230 JEFFERSON 01/01/82 2.00
AD3112 PERSONNEL PROGRAMMG D21 000250 SMITH 01/01/82 1.00
AD3113 ACCOUNT.PROGRAMMING D21 000270 PEREZ 01/01/82 2.00
IF1000 QUERY SERVICES C01 000030 KWAN 01/01/82 2.00
IF2000 USER EDUCATION C01 000030 KWAN 01/01/82 1.00
MA2100 WELD LINE AUTOMATION D01 000010 HAAS 01/01/82 12.00
MA2110 W L PROGRAMMING D11 000060 STERN 01/01/82 9.00
MA2111 W L PROGRAM DESIGN D11 000220 LUTZ 01/01/82 2.00
MA2112 W L ROBOT DESIGN D11 000150 ADAMSON 01/01/82 3.00
MA2113 W L PROD CONT PROGS D11 000160 PIANKA 02/15/82 3.00
OP1000 OPERATION SUPPORT E01 000050 GEYER 01/01/82 6.00
OP1010 OPERATION E11 000090 HENDERSON 01/01/82 5.00
OP2000 GEN SYSTEMS SERVICES E01 000050 GEYER 01/01/82 5.00
OP2010 SYSTEMS SUPPORT E21 000100 SPENSER 01/01/82 4.00
OP2011 SCP SYSTEMS SUPPORT E21 000320 MEHTA 01/01/82 1.00
OP2012 APPLICATIONS SUPPORT E21 000330 LEE 01/01/82 1.00
OP2013 DB/DC SUPPORT E21 000340 GOUNOT 01/01/82 1.00
PL2100 WELD LINE PLANNING B01 000020 THOMPSON 01/01/82 1.00

*** GRAND TOTAL (20 ITEMS) 73.50

These Control Statements:

Produce this report:
■ 7-12 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
Note • If you want to use all of the rows that meet the WHEN parm conditions, add the
MULTI parm to your READ statement. When the READ statement has the MULTI parm,
Report Writer creates and processes "logical input records" by matching the primary
input file row with each qualifying row from the auxiliary input file. For more
information on how the MULTI parm works, see the Notes section of the READ
statement on page 10-113.

Additional information on the ORDERBY parm can be found in the section Using the
ORDERBY Parm on page 7-8.

Note • The complete READ statement syntax is shown on page 10-102.

Note • For simplicity's sake, in this discussion we implied that Report Writer always
reads a row from each READ file. In some cases, Report Writer may be able to detect
that data from an auxiliary input table will not actually be needed in the run and, to
improve performance, will not perform the read.

Using Data from Three DB2 Tables 7

In the previous example, we showed how to use a READ statement to obtain data from a
second DB2 table. But you're not limited to using only two DB2 tables at a time. Report
Writer allows you to use up to 15 different DB2 tables in a single run.

In this section, we'll show another example of using multiple DB2 tables in a single run.
This time, we'll use two READ statements. That will give us access to the data from three
DB2 tables altogether.

Let's pick up with the report we just produced on page 7-12. That report contains data
from the project DB2 table. It also shows the "responsible employee's" last name, which
comes from the employee DB2 table. Now suppose we want to show the department name
for each project (not just the department number.) Another DB2 table, called the
department table, contains the names of each department. We'll read a row from that
table in order to get the department name.

INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

READ: DEPARTMENT
 DB2NAME('DSN8230.DEPT')
 WHERE(DEPARTMENT.DEPTNO = PROJECT.DEPTNO)
CIMS Report Writer User Guide 7-13 ■

■ Working with Databases

Using Report Writer with DB2 Databases
Figure 7-5 • A report that uses data from 3 different DB2 tables

OPTION: DB2SUBSYS('DB2T')
INPUT: PROJECT DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

READ: DEPARTMENT DB2NAME('DSN8230.DEPT')
 WHERE(DEPARTMENT.DEPTNO = PROJECT.DEPTNO)

TITLE: 'LISTING OF PROJECT DB2 TABLE'
COLUMNS: PROJNO
 PROJNAME
 DEPARTMENT.DEPTNO
 DEPTNAME
 RESPEMP
 LASTNAME
 PRSTDATE
 PRSTAFF

 LISTING OF PROJECT DB2 TABLE

 DEPARTMENT
PROJNO PROJNAME DEPTNO DEPTNAME RESPEMP LASTNAME PRSTDATE PRSTAFF
AD3100 ADMIN SERVICES D01 DEVELOPMENT CENTER 000010 HAAS 01/01/82 6.50
AD3110 GENERAL AD SYSTEMS D21 ADMINISTRATION SYSTEMS 000070 PULASKI 01/01/82 6.00
AD3111 PAYROLL PROGRAMMING D21 ADMINISTRATION SYSTEMS 000230 JEFFERSON 01/01/82 2.00
AD3112 PERSONNEL PROGRAMMG D21 ADMINISTRATION SYSTEMS 000250 SMITH 01/01/82 1.00
AD3113 ACCOUNT.PROGRAMMING D21 ADMINISTRATION SYSTEMS 000270 PEREZ 01/01/82 2.00
IF1000 QUERY SERVICES C01 INFORMATION CENTER 000030 KWAN 01/01/82 2.00
IF2000 USER EDUCATION C01 INFORMATION CENTER 000030 KWAN 01/01/82 1.00
MA2100 WELD LINE AUTOMATION D01 DEVELOPMENT CENTER 000010 H AAS 01/01/82 2.00
MA2110 W L PROGRAMMING D11 MANUFACTURING SYSTEMS 000060 STERN 01/01/82 9.00
MA2111 W L PROGRAM DESIGN D11 MANUFACTURING SYSTEMS 000220 LUTZ 01/01/82 2.00
MA2112 W L ROBOT DESIGN D11 MANUFACTURING SYSTEMS 000150 ADAMSON 01/01/82 3.00
MA2113 W L PROD CONT PROGS D11 MANUFACTURING SYSTEMS 000160 PIANKA 02/15/82 3.00
OP1000 OPERATION SUPPORT E01 SUPPORT SERVICES 000050 GEYER 01/01/82 6.00
OP1010 OPERATION E11 OPERATIONS 000090 HENDERSON 01/01/82 5.00
OP2000 GEN SYSTEMS SERVICES E01 SUPPORT SERVICE 000050 GEYER 01/01/82 5.00
OP2010 SYSTEMS SUPPORT E21 SOFTWARE SUPPORT 000100 SPENSER 01/01/82 4.00
OP2011 SCP SYSTEMS SUPPORT E21 SOFTWARE SUPPORT 000320 MEHTA 01/01/82 1.00
OP2012 APPLICATIONS SUPPORT E21 SOFTWARE SUPPORT 000330 LEE 01/01/82 1.00
OP2013 DB/DC SUPPORT E21 SOFTWARE SUPPORT 000340 GOUNOT 01/01/82 1.00
PL2100 WELD LINE PLANNING B01 PLANNING 000020 THOMPSON 01/01/82 1.00

*** GRAND TOTAL (20 ITEMS) 73.50

Produce this report:

These Control Statements:
■ 7-14 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
Notice the READ statement on the previous page. In its WHERE parm we had to use record
name prefixes to uniquely identify the DEPTNO fields. If we had written DEPTNO by itself, it
would have resulted in an "ambiguous field name" error. That's because a field named
DEPTNO exists in the project table and in the department table. We prefixed each
occurrence of DEPTNO with a record name, to eliminate any ambiguity. The WHERE parm
correctly identifies the row that we want to read from the department file. It is the row
whose own DEPTNO field equals the DEPTNO field from the project table. (The use of record
names is discussed further in the section beginning on page 7-15.)

The report in Figure 7-5, on page 7-14 uses the three statements above.

WHERE Parm Syntax 7

The syntax allowed within the WHERE parm is close to, but not identical to, the DB2 syntax
for a WHERE clause (in the DB2 "SELECT" statement.) This section discusses the differences
from the DB2 syntax.

The main differences in syntax concern:

■ Record Name Prefixes: Report Writer allows you to prefix any field name in the WHERE
parm with a Report Writer record name (to eliminate possible ambiguity)

■ Date and Time Literals: you may use either Report Writer's own date and time
literals, or DB2's date and time literals

In a DB2 WHERE clause, each operand in a comparison can be any of the following:

■ the name of a DB2 column in the table

■ the name of a "host variable"

■ a literal value

Report Writer also supports all 3 kinds of operands in the WHERE parm. Here is a short
discussion of each type of operand.

DB2 columns

Your comparisons can refer to any DB2 column in the "current" DB2 table. (That is, the
DB2 table named in the DB2NAME parm of the same statement.)

Example
READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(DEPTNO = 'D21')

In the WHERE parm above, DEPTNO is the name of a DB2 column within the DSN8230.PROJ
table. This WHERE parm would select all rows from the project table where the DEPTNO field
is equal to the literal value 'D21'.
CIMS Report Writer User Guide 7-15 ■

■ Working with Databases

Using Report Writer with DB2 Databases
In this example, the Report Writer WHERE parm syntax is identical to the DB2 WHERE
clause's syntax. But a problem can arise if the DB2 column name is not unique. This
happens when an earlier input file contains a field by the same name. It can also happen
if you create a COMPUTE field with the same name as a DB2 column.

Let's assume that our primary input file also has a field named DEPTNO in it. In that case,
the WHERE parm above would result in an "ambiguous field name" error. Report Writer
wouldn't know whether you were referring to the DEPTNO field in the primary input file,
or the DEPTNO field in the current (PROJECT) DB2 table.

To avoid such ambiguity, Report Writer allows you to prefix any field name within the
WHERE parm with a record name. (For more information on record names, see How to
Name the Input File Records on page 4-115. Briefly, each input record has a record name.
This record name can be specified explicitly with the RECNAME parm of the INPUT and READ
statements. If no RECNAME is specified, the record name will be the same as the file name.)
To tell Report Writer that we mean the DEPTNO field from the "current" DB2 table, we
would write:

READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(PROJECT.DEPTNO = 'D21')

In the above statement, we used the record name of the "current" table (PROJECT) to
prefix the DB2 field name. Now Report Writer knows that the DEPTNO operand refers to
the DB2 column within the project table itself, and not to the DEPTNO field from the
primary input file.

Note • You may wonder if this Report Writer prefix will confuse DB2. The answer is
no. Because when you do use a record name prefix in the WHERE parm, Report Writer
removes it before passing the WHERE parm on to DB2.

Note • Don't confuse Report Writer's record name prefix with a DB2 qualifier. DB2
qualifiers are not necessary and are not allowed within Report Writer's WHERE parm.

Note • Some COMPUTE fields are not associated with any input record, and therefore
cannot be prefixed with a record name. If you have problems with ambiguous field
names due to such a COMPUTE field, the solution may be to choose a different name
for your COMPUTE field.
■ 7-16 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
Host Variables

When a field name in a WHERE parm refers to a field that is not in the current DB2 table,
that field must be passed to DB2 as a "host variable." Report Writer takes care of this for
you automatically. It substitutes a "host variable marker" in the WHERE clause that is
passed to DB2. Consider the following statements:

COMPUTE: TEST–DEPT = TEST–LETTER + '21'
READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(DEPTNO = TEST–DEPT)

In this example, we have created a COMPUTE field named TEST–DEPT. In the WHERE parm,
DEPTNO is compared to this COMPUTE field. In this case, Report Writer would recognize that
TEST–DEPT is not a field within the project DB2 table. So, it substitutes a host variable
marker for TEST–DEPT before passing the WHERE clause to DB2. Doing this provides DB2
access to Report Writer's internal value for the COMPUTE field (TEST–DEPT.)

Once again, if a host variable name is not unique, you may prefix it with a record name
to make it unique.

There is an example of a host variable in the report on page 7-14. Notice the READ
statement for the employee DB2 table. It looks like this:

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP)
 WHERE(EMPNO = RESPEMP)

EMPNO is a field within the current (employee) table. But Report Writer treats RESPEMP as
a host variable, since it is not a field within the employee table. (RESPEMP is a field from
an earlier DB2 table–– the project table.)

Note • Do not use a colon (:) to indicate a "host variable" within the WHERE parm (as
you would when writing SQL code.) As explained above, Report Writer examines each
field name in your WHERE parm and determines whether it is the name of a DB2
column within the current table or not. Report Writer automatically takes care of
passing host variables to DB2 for you.

Literals

Your WHERE parm expression can contain any valid DB2 literal. In addition, you are
allowed to use Report Writer's own literal formats. For example, if you wanted to, you
could use a date literal in DB2's ISO date format, like this:

READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(PRSTDATE = '1993–01–31')
CIMS Report Writer User Guide 7-17 ■

■ Working with Databases

Using Report Writer with DB2 Databases
Or, you could use a Report Writer date literal, like this:

READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(PRSTDATE = 1/31/1993)

Either format will yield the same result. When you use DB2 format literals, Report
Writer's passes them in the WHERE clause to DB2 unchanged. When you use a Report
Writer literal, Report Writer passes it as a "host variable" to DB2.

Note that for character and numeric literals, the formats are the same for DB2 and for
Report Writer. So your choice in choosing literals applies only to date and time literals.

Note • Floating point literals are not allowed.

For simplicity, the examples in this discussion have shown only a single test in the WHERE
parm. However, you are allowed to specify as many tests as you like in your WHERE parm.

Example
READ: PROJECT
 DB2NAME('DSN8230.PROJ)
 WHERE(PRSTDATE <= 1/31/1993 AND (DEPTNO = 'D21' OR DEPTNO = 'E11'))

Customizing Your DB2 Fields 7

As we have shown, no FILE or FIELD statements are needed to define the fields in a DB2
input file. Report Writer recognizes the actual DB2 column names that are defined for
your DB2 table.

Since FIELD statements are not supported for DB2 fields, how do you permanently define
such things as:

■ the column headings to use for a field

■ the display format to use for a field

■ whether or not a numeric field should be totalled in reports

You can use COMPUTE statements to perform such customization. Use a COMPUTE statement
that simply assigns the value of a DB2 field to the COMPUTE field. The COMPUTE statement
syntax supports column headings, display formats and the ACCUM/NOACCUM parms (which
determine whether a field is totalled or not.)

For example, let's pretend that our project DB2 table contains a column named PROJTEL,
which is a telephone number stored in DB2's "integer" format. By default Report Writer
would treat it as a regular numeric field, which means it would be formatted with
commas, it would be totalled, etc. Of course, for a particular run you could change these
defaults directly in your COLUMNS statement, like this:

COLUMNS: PROJTEL(PIC'(999) 999–9999', NOACCUM)
■ 7-18 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
In the above statement we specified an override display format (a "picture"), to make the
numeric value look like a telephone number. And we specified NOACCUM to prevent the
column from being totalled at the end of the report.

But if you will be using a field in many different reports, it would be easier to specify the
display format and the NOACCUM parm just once and then forget about them. Do that by
using a COMPUTE statement, like this:

COMPUTE: TELEPHONE(PIC'(999) 999–9999', NOACCUM) = PROJTEL

Now, whenever the field TELEPHONE is used in a report, it will be formatted appropriately,
and will not be totalled. You can use the same method to define column headings for a
DB2 field:

COMPUTE: TELEPHONE(PIC'(999) 999–9999', NOACCUM, 'TEL#') = PROJTEL

Now TELEPHONE will have TEL# as its default column heading in reports and PC files.

Saving DB2 File Definitions 7

The previous section explained how to use COMPUTE statements to customize your DB2
fields. A convenient way to handle these COMPUTE fields is to store them in your Report
Writer Copy Library. (See the section beginning on page 6-39 for detailed information
on using the copy library.)

Briefly, here's what to do. Create a member in the copy library for the DB2 file you want
to define. In that member, put a FILE statement that specifies the desired filename and
its DB2 name. Then add one COMPUTE statement for each DB2 field that you wish to
customize. You might also want to include COMPUTE statement for any commonly used
computations involving the DB2 fields. Do not put any FIELD statements in this member.
FIELD statements are not allowed for DB2 files.

For example, for the project DB2 table you might create a member named PROJECT in the
copy library. It might contain these statements:

FILE: PROJECT DB2NAME('DSN8230.PROJ')
COMPUTE: TELEPHONE(PIC'(999) 999–9999', NOACCUM, 'TEL#') = PROJTEL
COMPUTE: NUMBER('PROJECT NUMBER') = PROJNO
COMPUTE: NAME('PROJECT NAME') = PROJNAME
COMPUTE: SHORT–PROJ–NAME = #SUBSTR(PROJNAME,1,5)
COMPUTE: YEARLY–STAFF(PIC'ZZZ9') = PRSTAFF * 52

Now we could request reports or PC files from the project DB2 table as easily as this:

INPUT: PROJECT
COLUMNS: NUMBER SHORT–PROJ–NAME TELEPHONE PRSTAFF YEARLY–STAFF

Upon seeing the INPUT statement for PROJECT, Report Writer would process the FILE and
COMPUTE statements from the PROJECT member in the copy library. Since the FILE
statement contains the DB2NAME parm for PROJECT, the INPUT statement doesn't need it.

The COLUMNS (and any other) statements can now refer to either the actual DB2 field
name, or the COMPUTE fields that we defined. Using the COMPUTE field names results in the
column headings and display formats that were specified for those fields.
CIMS Report Writer User Guide 7-19 ■

■ Working with Databases

Using Report Writer with DB2 Databases
This method makes DB2 files look and work just the same as non–DB2 files from your
end–users point of view. A programmer can do the small amount of setup required.
Then end–users can use DB2 data in Report Writer without necessarily even knowing it
comes from a DB2 table.

DB2 Setup 7

Before you use Report Writer with DB2 data for the first time, some simple DB2 setup is
required. (You will also need to perform this setup each time you install a new release
level of Report Writer.) In most shops, this DB2 setup is performed by a Database
Administrator. The setup consists of these two steps:

■ a new DB2 "plan" must be created and "bound." This plan identifies Report Writer to
your DB2 system.

■ authority to execute this plan must then be "granted" to your users.

Note • If Report Writer will be used on multiple DB2 subsystems, these steps should
be performed on each of those subsystems.

1 Creating the DB2 Plan

The first step is to create a new DB2 plan. The plan name should be "SPECTnnn", where
nnn is the release level of Report Writer. For example, the plan name for release 2.7.2
of Report Writer is SPECT272. That is the plan name that Report Writer assumes you
will use.

Note • It is possible to use a different plan name if that is necessary for some
reason. But you will then have to tell Report Writer the name of your plan in every
job you run. That is done with the DB2PLAN option:

OPTION: DB2PLAN('OURNAME')

If you use "SPECTnnn" as your plan name, you will not need to use the above
statement.

After creating the SPECTnnn plan, you must "bind" two Report Writer "DBRM" modules
into that plan. You can perform the bind with ISPF, or any other way your shops
prefers.

Note • The DBRM modules were included with your original installation files. They
can also be downloaded from the Web at www.cimslab.com.

2 Granting DB2 Execute Authority

After you have created and bound the DB2 plan, you must grant "execute authority"
for that plan. Generally you will grant execute authority for this plan to PUBLIC. That
allows anyone in your shop to execute Report Writer. But it does not mean that every
user can now access every DB2 table in the shop! Each user's access will still be limited
■ 7-20 CIMS Report Writer User Guide

Working with Databases ■

Using Report Writer with DB2 Databases
to those DB2 tables that they have been granted access to. Granting them execute
authority on "SPECTnnn" simply allows them to execute the Report Writer program
with its DB2 Option.

Here's how a user's access is determined. Each Report Writer job has a DB2
"authorization ID" that is (or is related to) the jobname used for the run. If a Report
Writer job tries to access a DB2 table which is not permitted for that jobname, DB2 will
return an error message to Report Writer. Report Writer will not be able to access that
particular table, and will print an error message to that effect. If the jobname does
have authority to read the DB2 table, Report Writer will then access the DB2 data and
complete the run normally.

DB2 Restrictions 7

DB2 has certain restrictions which Report Writer must observe. In particular, you should
keep the following restriction in mind:

■ DB2 allows a maximum precision of 15 digits in numeric operands. Any decimal
digits also count toward this maximum of 15 digits. (Report Writer allows a precision
of 31 digits.) This means, for example, that any Report Writer COMPUTE field that you
refer to in a WHERE clause must never have a value smaller than –999999999999999
or greater than +999999999999999. And, if the field contains decimal digits, the
allowed range of values is reduced even further.
CIMS Report Writer User Guide 7-21 ■

■ Working with Databases

Using Report Writer with DB2 Databases
■ 7-22 CIMS Report Writer User Guide

8
Operating System
Considerations

Introduction . 8-2

MVS Operating System Considerations . 8-2

Execution JCL for Reports –– MVS . 8-2

Execution JCL for PC and Mainframe Files –– MVS . 8-5

Report Writer PROC –– MVS . 8-7

Output File Options –– MVS . 8-7

Setting Up File Definitions –– MVS . 8-9

Copy Library DD –– MVS . 8-11

Input File DDs –– MVS . 8-12

Specifying Shop–Wide Options –– MVS . 8-13

Completion Codes –– MVS . 8-14

VSE Operating System Considerations .8-15

Execution JCL for Reports –– VSE . 8-15

Execution JCL for PC and Mainframe Files –– VSE . 8-17

Output File Options –– VSE . 8-19

Downloading PC Files –– VSE . 8-20

Setting Up File Definitions –– VSE . 8-21

Input File DLBL/TLBLs –– VSE . 8-24

The Control Statement Listing –– VSE . 8-25

The EXEC Statement’s SIZE Parm –– VSE . 8-25

Specifying Sort Work Files –– VSE . 8-26

Completion Codes –– VSE . 8-26
CIMS Report Writer User Guide 8-1 ■

■ Operating System Considerations

Introduction
Introduction 8

This chapter discusses various topics that are related to the specific operating system
under which Report Writer is executed. It is intended primarily for programmers who are
setting up the job control language (JCL) needed to run Report Writer jobs.

The following operating systems are discussed:

■ MVS (below)

■ VSE (page 8-15)

MVS Operating System Considerations 8

The following sections discuss operating environment considerations for executing
Report Writer MVS. Report Writer MVS runs under all MVS systems, including MVS/SP, MVS/
XA, MVS/ESA and OS/390. The following topics are presented:

■ sample execution JCL for custom reports (page 8-2)

■ sample execution JCL for output files, including PC files and mainframe files
(page 8-5)

■ sample Report Writer PROC (page 8-7)

■ specifying the access method and LRECL to use for Report Writer’s output records
(page 8-7)

■ setting up file definitions in a Copy Library (page 8-9)

■ the Copy Library DD statement (page 8-11)

■ the input file DD statements (page 8-12)

■ the DD statement available for start–up options (page 8-13)

■ the jobstep completion codes (page 8-14)

Execution JCL for Reports –– MVS 8

This section explains:

■ the JCL needed to produce Report Writer reports

Chapter 2, How to Request a Report explained how to use Report Writer’s control
statements to request custom reports. The JCL needed to produce such a report is very
simple. Figure 8-1, on page 8-4 shows sample JCL for producing a Report Writer report.

The JCL to produce reports from a particular input file only needs to be set up once. Once
it’s written, you can use the same JCL to produce as many different reports from that file
as you like. Only the Report Writer control statements (SYSIN) will be different in each
run.
■ 8-2 CIMS Report Writer User Guide

Operating System Considerations ■

MVS Operating System Considerations
Here is a description of the DD statements used by Report Writer MVS.

DDNAME Required Used For

SYSIN Yes Control statements describing the desired report or
PC file

SWLIST Yes Report Writer writes the control statement listing,
error messages, and end–of–job statistics here.

SWOUTPUT Yes Report Writer writes the actual report or PC file here.

SWCOPY No Points to the Report Writer Copy Library

SWOPTION No Used for installation–wide options. Points to a
dataset containing Report Writer control
statements.

SYSOUT Yes Sort program statistics. (Not required if a sort will
not be performed during the run.)

SORTWK01
SORTWK02
SORTWK03...

Yes Sort work files. (Not required if a sort will not be
performed during the run, or if these files are
dynamically allocated at your shop.)

STEPLIB Yes The load library where the SPECTWTR load module
(and any exit program modules) are located. If DB2
tables will be used, this should also point to the
library where the DB2 run–time modules (DSNTIAR,
for example) are located. (Not required if these
modules are located in a default steplib library.)

XXXXXXXX Yes One DD for each input file that will be used during
the run. The DDNAME to use is specified in the DDNAME
parm of the FILE statement that defines the file.
CIMS Report Writer User Guide 8-3 ■

■ Operating System Considerations

MVS Operating System Considerations
Figure 8-1 • Sample Report Writer JCL for reports - MVS

Produce this Report:

This JCL:

Notes:

• the Report Writer control statements in SPECTWTR.COPYLIB(SALES) would automatically be
processed by Report Writer during this run. Appendix F, Files Used in Examples shows the statements in
that member.

• the SALEFILE DD is necessary since SALES–FILE is used as an input in the report. The FILE statement
for SALES–FILE specifies SALEFILE as the DDNAME to use.

TUE 05/16/95 8:25 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

//SPECTWTR JOB 'REQUESTER'
//*
//SPECTWTR EXEC PGM=SPECTWTR, PRODUCE REPORT WRITER REPORT
// REGION=2048K
//STEPLIB DD DSN=SPECTWTR.LOADLIB,DISP=SHR LOADLIB TO USE
//SWCOPY DD DSN=SPECTWTR.COPYLIB,DISP=SHR COPY LIBRARY
//SWOUTPUT DD SYSOUT=* REPORT OUTPUT
//SWLIST DD SYSOUT=* CONTROL LISTING
//SYSOUT DD SYSOUT=* SORT STATISTICS
//SYSUDUMP DD SYSOUT=* DUMP OUTPUT
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SALEFILE DD DSN=PROD.SALES.DATA,DISP=SHR SALES FILE
//SYSIN DD * CONTROL STATEMENTS
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX
//
■ 8-4 CIMS Report Writer User Guide

Operating System Considerations ■

MVS Operating System Considerations
Execution JCL for PC and Mainframe Files –– MVS 8

This section explains:

■ the JCL needed to produce Report Writer output files, including PC files and
mainframe files

Chapter 3, How to Request a PC File explained how to use Report Writer’s control
statements to request PC files. Chapter 4, Beyond the Basics included a section on creating
mainframe output files.

The only JCL difference when creating PC (and mainframe) files is in the SWOUTPUT DD.
Rather than routing the output to SYSOUT, you will normally want to write the output
records to a dataset. That way the dataset can be downloaded to a PC or used by a
subsequent mainframe program.

Figure 8-2, on page 8-6 shows sample JCL for writing a PC file to disk.

You may specify any LRECL (and corresponding BLKSIZE) that you want in the SWOUTPUT
DD. Pick a record length that will be big enough to hold all of the columns you will be
writing to the output file.

Since output files do not need the "carriage control character" found in report output
lines, you will specify a RECFM of F or FB (not FBA.)

For more information on available options for the output file, see Output File Options –
– MVS on page 8-7.
CIMS Report Writer User Guide 8-5 ■

■ Operating System Considerations

MVS Operating System Considerations
Figure 8-2 • Sample Report Writer JCL for PC files -- MVS

Produce this Report:

This JCL:

Notes:

• only the SWOUTPUT DD statement is different from the JCL used to produce a report (page 8-4.)

" ","EMPL","SALES","SALES"," "," "," "
"REGION","NAME","DATE","TIME","CUSTOMER","AMOUNT","TAX"
" "," "," "," "," "," "," "
"SOUTH","JOHNSON ","03/12/95","10:25:00","ACE ELECTRICAL ", 101.38, 6.09
"WEST ","BAKER ","03/26/95","12:09:09","JACKS CAFE ", 137.00, 8.22
"EAST ","MORRISON ","03/29/95","15:30:22","STAR MARKET ", 44.35, 2.66
"EAST ","MORRISON ","03/30/95","19:05:41","A1 PHOTOGRAPHY ", 29.65, 1.78
"EAST ","SIMPSON ","04/01/95","08:17:57","EUROPEAN DELI ", 14.99, 0.90
"NORTH","JOHNSON ","04/01/95","17:02:47","VILLA HOTEL ", 234.45, 14.07
"NORTH","JOHNSON ","04/05/95","14:33:10","MARYS ANTIQUES ", 9.98, 0.60
"WEST ","BAKER ","04/12/95","14:31:12","JACKS CAFE ", 135.75, 8.15
"WEST ","THOMAS ","04/14/95","15:41:38","YOGURT CITY ", 9.98, 0.60
"NORTH","JONES ","04/15/95","07:58:32","EZ GROCERY ", 10.25, 0.62
"NORTH","JONES ","04/15/95","08:01:59","TOY TOWN ", 121.76, 7.31
"NORTH","JONES ","04/15/95","13:52:41","TOY TOWN ", 10.25, 0.62
"SOUTH","JOHNSON ","04/16/95","11:48:33","ACME BUILDING ", 500.00, 30.00
"EAST ","SIMPSON ","04/30/95","15:30:21","J & S LUMBER ", 23.87, 1.43

//SPECTWTR JOB 'REQUESTER'
//*
//SPECTWTR EXEC PGM=SPECTWTR, PRODUCE REPORT WRITER PC FILE
// REGION=2048K
//STEPLIB DD DSN=SPECTWTR.LOADLIB,DISP=SHR LOADLIB TO USE
//SWCOPY DD DSN=SPECTWTR.COPYLIB,DISP=SHR COPY LIBRARY
//SWOUTPUT DD DSN=MY.LOTUS.FILE,DISP=(NEW,CATLG), PC OUTPUT FILE
// UNIT=SYSDA,SPACE=(CYL,1),
// DCB=(RECFM=FB,LRECL=250,BLKSIZE=2500)
//SWLIST DD SYSOUT=* CONTROL LISTING
//SYSOUT DD SYSOUT=* SORT STATISTICS
//SYSUDUMP DD SYSOUT=* DUMP OUTPUT
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,1)) SORT WORK FILE
//SALEFILE DD DSN=PROD.SALES.DATA,DISP=SHR SALES FILE
//SYSIN DD * CONTROL STATEMENTS
OPTIONS: LOTUS
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX
//
■ 8-6 CIMS Report Writer User Guide

Operating System Considerations ■

MVS Operating System Considerations
Report Writer PROC –– MVS 8

You may wish to create a PROC for Report Writer. That makes it much easier to set up new
Report Writer jobstreams. A PROC also makes it easier for non–technical users to run
Report Writer jobs. Here is a an example of how such a PROC might look:

//SPECTWTR PROC COPYLIB=’NULLFILE’
//SPECTWTR EXEC PGM=SPECTWTR, PRODUCE REPORT WRITER REPORT
// REGION=2048K
//STEPLIB DD DSN=SPECTWTR.LOADLIB,DISP=SHR LOADLIB TO USE
//SWCOPY DD DSN=&©LIB.,DISP=SHR COPY LIBRARY
//SWLIST DD SYSOUT=* CONTROL LISTING
//SWOUTPUT DD SYSOUT=* REPORT OUTPUT
//SYSOUT DD SYSOUT=* SORT STATISTICS
//SYSUDUMP DD SYSOUT=* DUMP OUTPUT
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,5) SORT WORK SPACE
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,5) SORT WORK SPACE
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,5) SORT WORK SPACE
// PEND

Once the above PROC is created, you could now request a report with just the following
simple JCL:

//SPECTWTR JOB ’REQUESTOR’
//STEP EXEC SPECTWTR,COPYLIB=’SPECTWTR.COPYLIB’
//SALEFILE DD DSN=PROD.SALES.DATA,DISP=SHR
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE CUSTOMER
//

Output File Options –– MVS 8

This section explains:

■ the default access method Report Writer uses to write its output records, and how to
override it

■ the output records’ default record length (LRECL), and how to override it

By default, Report Writer writes its output (whether a report or an output file) to the
SWOUTPUT DD using QSAM I/O. This is appropriate for writing to SYSOUTs (printer output)
as well as for writing output files to standard disk and tape datasets.

If you prefer, you can write your output to an existing ESDS VSAM file. One reason to do
that is to make the output file available to CICS transactions, which can only access VSAM
files. To write your report or output file to a VSAM dataset, specify the following option in
your control statements:

OPTIONS: OUTTYPE(VSAM)

Most standard line printers can print only 132 characters of data per line. However,
many laser printers support "forms" that allow you to print longer print lines. And when
creating PC or mainframe files as output, you may want records that are several hundred
bytes long in order to hold all the desired data.
CIMS Report Writer User Guide 8-7 ■

■ Operating System Considerations

MVS Operating System Considerations
Report Writer supports output records up to approximately 16,000 bytes wide. Here is
how Report Writer determines what record length (LRECL) to use in a particular run.

When writing QSAM output (Report Writer’s default) the LRECL used is:

1 the LRECL specified in the DCB parm of the SWOUTPUT DD in the JCL, if any, or

2 the LRECL specified in a file’s label, when writing to an existing dataset, or

3 the OUTLRECL value (from an OPTIONS statement), if any, or

4 133

In other words, if you are printing a report (SWOUTPUT is routed to SYSOUT) and you do
not specify a LRECL either in the JCL or the control statements, Report Writer creates 133–
byte records. This allows for a standard 132–byte print line, plus a 1–byte "carriage
control character." In such runs, if you specify more fields in the COLUMNS statement than
will fit in 132 bytes, Report Writer will print a message telling you that it is truncating
one or more fields.

If you want a report that is wider than 133 bytes, you can specify your own LRECL. Do
this in either the JCL or in the Report Writer control statements. To specify the LRECL in
the JCL, just use the DCB=LRECL=nnnnn parm, like this:

//SWOUTPUT DD SYSOUT=*,DCB=LRECL=201

The above DD statement tells Report Writer to allow up to 200 characters in the report
(again reserving 1 byte for the carriage control character.) Report Writer would only
truncate columns that extended beyond column 200. (Of course, in order to print such
a report your printer must also support 201–byte print lines.)

To specify the LRECL in the control statements, use a statement like this:

OPTIONS: OUTLRECL(201)

The above example accomplishes the same thing as specifying 201 in the LRECL parm in
the JCL. If you specify this option, you do not need to specify the DCB=LRECL parm in your
JCL.

Note • To print wide reports on your laser printer, the laser printer may require some
"setup" information. This will tell the printer, for example, to use a condensed font so
that more characters can fit on the page. You may be able to use the PRTSETUP parm
of the OPTIONS statement to send this setup string to your printer. Here is an example
of using the PRTSETUP option (the actual setup string will be different for each shop):

OPTIONS: PRTSETUP(’+$$$DJDE$ JDE=40,FORMAT=L66200,DATA=(0,200),END;’)

When creating QSAM output files, Report Writer again defaults to 133 byte records if it has
no other LRECL information. (In the case of output files, all 133 bytes are available for data,
since no carriage control character is written for output files.)

However, if you write your file to an existing dataset, Report Writer will automatically
determine the LRECL of that dataset and let you create records up to that size (before
printing truncation warning messages.)
■ 8-8 CIMS Report Writer User Guide

Operating System Considerations ■

MVS Operating System Considerations
When writing to a new dataset, you can specify the desired LRECL in either the DCB=LRECL
parm of the JCL, or with the OUTLRECL option in your control statements. For example, to
create a 300–byte PC file, you might use this JCL statement:

//SWOUTPUT DD DSN=LOTUS.FILE,DISP=(NEW,CATLG),
// DCB=(LRECL=300,BLKSIZE=3000,RECFM=FB),
// SPACE=(CYL,5),UNIT=SYSDA

In the above example, Report Writer would only truncate fields that extended beyond
column 300.

For VSAM output files, the LRECL used is:

1 the OUTLRECL value from an OPTIONS statement (if it is valid for the VSAM file’s
definition), if any, or

2 133 (if it is valid for the VSAM file’s definition), or

3 the maximum RECORDSIZE value from the VSAM file’s definition

VSAM files are assigned an average record length and a maximum record length when they
are first defined. As long as your OUTLRECL value is no longer than the maximum record
length defined for the VSAM file, Report Writer will use that LRECL as the size of its output
records. If no OUTLRECL option is specified, Report Writer again defaults to writing 133–
byte records. However, if the VSAM dataset was defined with a maximum record size less
than 133, then Report Writer defaults to writing records the size of the maximum record
size defined for the file.

Setting Up File Definitions –– MVS 8

Before running Report Writer, some one–time setup is required. This setup consists of
creating a Report Writer Copy Library PDS, and then storing descriptions of your
company’s files in it. This is necessary before Report Writer can produce reports or PC
files from your company’s data.

The following setup steps are needed:

Step 1.
Allocate a new PDS to be used as your Report Writer Copy Library. The purpose of this
PDS is to store definition statements about the files in your shop. The PDS’s LRECL should
be 80 bytes. The blocksize may be any multiple of 80. The amount of space required will
depend on how many files you expect to define to Report Writer. (A Report Writer file
definition requires approximately the same amount of space as a Cobol record layout for
the same file.) If you have no idea what size to allocate, try allocating 20 tracks, with 20
directory blocks.

If you prefer, you can use an existing 80–byte PDS (such as a Cobol copy library, etc.)
However, it is recommended that a new PDS be created to serve exclusively as the Report
Writer Copy Library.
CIMS Report Writer User Guide 8-9 ■

■ Operating System Considerations

MVS Operating System Considerations
Step 2.
Create a new member in the copy library for the first file that you want to define to
Report Writer. For example, if you want to define your company’s payroll file, you might
create a new member named PAYROLL. Within this member, type a FILE statement
defining the payroll file. For example, if the payroll file is a simple sequential file, you
might enter the following:

FILE: PAYROLL DDNAME(PAYROLL) LRECL(1500)

The above statement defines a sequential file that will be referred to as "PAYROLL" in
Report Writer control statements. The DDNAME associated with this file will also be
PAYROLL. Be sure to specify an LRECL value that’s as big as the biggest record in your file.
In our PAYROLL example, we specified 1500 as the largest record length. For more
information on the FILE statement, see How to Define a File on page 6-6.

Next, type one FIELD statement for each field in the payroll file. (For more information
on the FIELD statement, see How to Define a Field on page 6-12.) For example, if the first
two fields in the payroll file are a 10–byte last name and a 15–byte first name, you would
enter the following:

FIELD: LAST–NAME LENGTH(10)
FIELD: FIRST–NAME LENGTH(15)

It isn’t required that you define all of the fields in the file to start with. If the file contains
fields that you don’t care about using with Report Writer, you do not need to define
those fields. Just use the COLUMN parm where needed in subsequent FIELD statements to
tell Report Writer exactly which column a field begins in.

When you are finished, the copy library member should contain a single FILE statement,
followed by a number of FIELD statements. (Appendix F, Files Used in Examples shows
some examples of copy library members and their file definition statements.) Save this
copy library member when you are done.

Note • If you have a Cobol or Assembler record layout for the file you are defining,
you can use Report Writer to convert that layout into FIELD statements for you. Or,
you can even produce a report directly from the record layout, without using FIELD
statements at all. Both of these options are described in Chapter 6, How to Define Your
Input Files in the section Using Cobol and Assembler Record Layouts on page 6-49. To
begin with, though, we suggest you define one or two small files manually (as
described above) to get a clear idea of how Report Writer works. That will make it
easier for you to later see how Report Writer’s Cobol and Assembler interpreter fits
into the picture.

Step 3.
Add an alias entry for your file. This step is not required as long as you chose an 8–byte
(or smaller) file name in Step 2, and used that same name as the member name in your
PDS. That is just what we did in our PAYROLL example in Step 2 above. We used PAYROLL
both for the file name (in the FILE statement) and for the member name in the copy
library. So no alias entry would be needed in that example.
■ 8-10 CIMS Report Writer User Guide

Operating System Considerations ■

MVS Operating System Considerations
The purpose of an alias is to relate the Report Writer file name (which can be up to 70
characters long) to the 8–byte name of the copy library member where that file’s
definition is stored. When the two names are the same, no alias is needed. But you can
also use longer, more user–friendly file names if you like. You’ll just need to add an alias
entry to a special member named SWALIAS in your copy library. For example, let’s say we
wanted to call our payroll file HEADQUARTERS–PAYROLL. That name is too big to use as the
member name in the copy library. So, you would pick a shorter member name to keep
the file definition statements in (say HQPAYROL), and just add an alias entry like this
within SWALIAS:

HEADQUARTERS–PAYROLL = HQPAYROL

The above line tells Report Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL. "HEADQUARTERS–
PAYROLL" is the name that users will use for the file in Report Writer control statements
(such as the INPUT statement.) It’s also the name you will use in the FILE statement when
defining the file. "HQPAYROL" will only be used internally by Report Writer as the member
name for reading the definition statements from the copy library. Chapter F, Files Used in
Examples shows an example of the SWALIAS member in a copy library.

The alias lines may appear in any order within the SWALIAS member.

Step 4.
Repeat steps 2 and 3 for each file that you wish to define to Report Writer.

Step 5.
In your execution JCL, make sure the SWCOPY DD points to the copy library that you just
set up (containing each file’s definition statements, and containing the SWALIAS
member.)

Your Report Writer Copy Library is now ready. You can now request all the custom PC
files and reports you want from the files that you defined.

Copy Library DD –– MVS 8

We saw in the previous section how a copy library is used to store the definition
statements for your company’s files.

Use the SWCOPY DD in your execution JCL to point to the PDS that Report Writer should
use as the copy library during the run. Of course, you may want different runs to use
different copy libraries. (Perhaps different departments in your company will want to
maintain and use their own copy libraries.) Just point the SWCOPY DD to the appropriate
PDS in each run.

You can also use the copy library to store any other frequently used set of control
statements. Use the COPY statement to include statements from copy library members in
your report requests.

For example, you might store a number of commonly used COMPUTE statements in the
copy library. Or, if you frequently run reports that use multiple input files, you could
store the INPUT statement, any COMPUTE statements needed to create the read keys, and the
CIMS Report Writer User Guide 8-11 ■

■ Operating System Considerations

MVS Operating System Considerations
READ statements all as one member of the copy library. That way the end–users would
not need to remember how to link all of the input files. They could just begin their report
request with a COPY statement that does all of that for them.

Input File DDs –– MVS 8

This section explains:

■ how to write the DD statement(s) for the input file(s)

In order for Report Writer to produce a report (or PC or mainframe file), it must "open"
and "read" from the input file specified in the INPUT control statement. If the report uses
auxiliary input files (specified in READ statements), Report Writer must also open and
read from these files.

Make sure that the JCL used to run a Report Writer report contains one DD statement for
each input file used in the report.

How does Report Writer know which DD to use when reading these files? The file named
in an INPUT or READ statement must have been previously defined to Report Writer with
a FILE statement. The DDNAME parm in the FILE statement tells what DD to use when
reading the file. (The FILE statement is normally kept in the Report Writer Copy Library.)

An override DDNAME parm can also be specified directly in the INPUT or READ statement.
When this happens, Report Writer uses the override DDNAME, rather than the one from the
FILE statement.

Speed-Up Tip: Random reads to VSAM files can be relatively slow. VSAM maintains two
types of buffers (data and index) while processing Report Writer’s requests. When a
required data record or index record is already in one of VSAM’s buffers, VSAM can use the
buffer copy instead of having to perform actual disk I/O, thus improving performance.
If your report will be reading a large number of records from a VSAM auxiliary input file,
you may want to increase the number of buffers that VSAM maintains. This may increase
the likelihood that VSAM will find a needed record already in one of its buffers. You can
increase the number of data buffers (BUFND) and/or index buffers (BUFNI) in either of two
ways:

1 in the execution JCL, using the AMP=(’AMORG,BUFNI=nn,BUFND=nn’) parm in the DD
statement, or

2 in the INPUT or READ statement, using the BUFNI(nn)and BUFND(nn) parms.

For IBM’s recommended BUFNI and BUFND values, see page I-9.
■ 8-12 CIMS Report Writer User Guide

Operating System Considerations ■

MVS Operating System Considerations
CICS Users Note • One of VSAM’s weaknesses is in its ability to maintain file integrity
for a VSAM file that is being accessed from multiple regions. For example, if CICS has
a VSAM file open for update at the same time that Report Writer is reading that file,
there is a possibility that Report Writer will not see all of the records that are "in the
file". The reason for this is that when updates are made to a VSAM file under CICS, CICS
may not immediately write those updates out to the physical file; instead, it may
maintain the updated records within its buffers to be written at a later time
(sometimes days later if activity for a file is very slow.) Since Report Writer is running
in another region, it does not have access to the updates within CICS’s buffers–– only
to the records that have actually been written to the VSAM file. Thus, VSAM may not pass
to Report Writer all of the records that an online CICS user would "see" in the same
file. The safest way to avoid this problem is to issue a CEMT CLOSE to the VSAM file (from
CICS) before running any batch job (including Report Writer) that will read that file.

Specifying Shop–Wide Options –– MVS 8

There may be some options that your shop will want to use in every report. For example,
you may want to always print 80 lines per page (rather than Report Writer’s default of
60.) That is specified with an OPTIONS statement:

OPTIONS: PAGELEN(80)

Or, many international users may prefer to always see dates formatted in DD–MM–YY
format. They might want this statement in all of their runs:

OPTIONS: FORMAT(DD–MM–YY)

Or, if your shop prints to a laser printer that can skip to new sheets of paper, you may
want to specify a PRTSHEET parm. (This parm allows control breaks to skip to a new sheet
of paper, rather than merely a new side of the page.)

Example
OPTIONS: PRTSHEET(’+$$$DJDE$ SIDE=NUFRONT,END;’)

You could type these statements at the beginning of every report requested at your shop.
But there is an easier way. Store these (and any other similar statements) in a data set.
(Most shops use a member of the Report Writer Copy Library for this purpose, but you
can also use a flat file.) Then, use the SWOPTION DD to point to this data set.

Example
//SWOPTION DD DSN=SPECTWTR.COPYLIB(SWOPTION),DISP=SHR

When a SWOPTION DD statement is present in the JCL, Report Writer processes the
statements contained in that data set before processing the SYSIN statements.

The use of the SWOPTION DD is entirely optional. You are not required to have such a DD.
CIMS Report Writer User Guide 8-13 ■

■ Operating System Considerations

MVS Operating System Considerations
Completion Codes –– MVS 8

Upon completion, Report Writer exits back to the operating system with one of the
following completion codes:

Completion
Code Meaning

0 No errors or warning messages issued. Report Writer produced its
output normally. (Some informatory messages may have been
printed.)

4 Only warning messages were issued. Report Writer produced its
output as well as it could.

12 Error messages were issued. No output (or only a partial output) was
produced.

16 Security error. Report Writer has expired or some other error was
detected in the authorization codes. No output was produced.
■ 8-14 CIMS Report Writer User Guide

Operating System Considerations ■

VSE Operating System Considerations
VSE Operating System Considerations 8

The following sections discuss the JCL needed to execute Report Writer VSE. Report
Writer VSE runs under DOS/VSE, VSE/SP and VSE/ESA. The following topics are presented:

■ sample execution JCL for custom reports (page 8-15)

■ sample execution JCL for output files, including PC files and mainframe files
(page 8-17)

■ specifying the type and record size of the output file (page 8-19)

■ various methods of downloading PC files (page 8-20)

■ setting up file definitions in a Copy Library (page 8-21)

■ the DLBL/TLBL statements required for input files (page 8-24)

■ routing the control statement listing (page 8-25)

■ specifying the SIZE parm in the EXEC JCL statement (page 8-25)

■ using sort work files (page 8-26)

■ the jobstep completion codes (page 8-26)

Execution JCL for Reports –– VSE 8

This section explains:

■ the JCL needed to produce Report Writer reports

Chapter 2, How to Request a Report explained how to use Report Writer’s control
statements to request custom reports. The JCL needed to produce such a report is very
simple. Figure 8-3, on page 8-16 shows sample JCL for producing a Report Writer report.

The JCL to produce reports from a particular input file only needs to be set up once. Once
the JCL has been prepared, you can use it to produce as many different reports from that
file as you like. Only the Report Writer control statements (SYSIPT) will be different in
each run.

Here is a list of the logical unit assignments used by Report Writer:

SYSIPT the Report Writer control statements are read from SYSIPT

SYS010 a "control listing" is written to this logical unit. It includes a listing of
your Report Writer control statements, any warning or error
messages, and the end–of–run statistics.

SYS011 the report (or output file) produced by the run. This assignment can
be changed with the OUTATTR option (page 8-19.)
CIMS Report Writer User Guide 8-15 ■

■ Operating System Considerations

VSE Operating System Considerations
Figure 8-3 • Sample Report Writer JCL for reports -- VSE

Produce this Report:

This JCL:

Notes:

• the Report Writer control statements in member SALES.SPECTWTR of LIB.SPECTWTR would
automatically be processed by Report Writer during this run. Appendix F, Files Used in Examples shows
the statements in that member.

• the SALEFIL DLBL is necessary since SALES–FILE is used as an input in the report. The FILE statement
for SALES–FILE specifies SALEFIL as the DLBL to use.

TUE 05/16/95 8:25 AM DATA FROM SALES-FILE PAGE 1

 EMPL SALES SALES
REGION NAME DATE TIME CUSTOMER AMOUNT TAX

SOUTH JOHNSON 03/12/95 10:25:00 ACE ELECTRICAL 101.38 6.09
WEST BAKER 03/26/95 12:09:09 JACKS CAFE 137.00 8.22
EAST MORRISON 03/29/95 15:30:22 STAR MARKET 44.35 2.66
EAST MORRISON 03/30/95 19:05:41 A1 PHOTOGRAPHY 29.65 1.78
EAST SIMPSON 04/01/95 08:17:57 EUROPEAN DELI 14.99 0.90
NORTH JOHNSON 04/01/95 17:02:47 VILLA HOTEL 234.45 14.07
NORTH JOHNSON 04/05/95 14:33:10 MARYS ANTIQUES 9.98 0.60
WEST BAKER 04/12/95 14:31:12 JACKS CAFE 135.75 8.15
WEST THOMAS 04/14/95 15:41:38 YOGURT CITY 9.98 0.60
NORTH JONES 04/15/95 07:58:32 EZ GROCERY 10.25 0.62
NORTH JONES 04/15/95 08:01:59 TOY TOWN 121.76 7.31
NORTH JONES 04/15/95 13:52:41 TOY TOWN 10.25 0.62
SOUTH JOHNSON 04/16/95 11:48:33 ACME BUILDING 500.00 30.00
EAST SIMPSON 04/30/95 15:30:21 J & S LUMBER 23.87 1.43

*** GRAND TOTAL (14 ITEMS) 1,383.66 83.05

// JOB SPECTWTR
// ASSGN SYS010,SYSLST CONTROL STATEMENT LISTING
// ASSGN SYS011,006 REPORT OUTPUT
// LIBDEF PHASE,SEARCH=LIB.SPECTWTR
// DLBL SALEFIL,'SALES.MASTER.FILE'
// EXTENT SYS015,,,,6764,1000
// EXEC SPECTWTR,SIZE=(SPECTWTR,300K)
OPTION: SUBLIB('LIB.SPECTWTR')
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX
/*
/&
■ 8-16 CIMS Report Writer User Guide

Operating System Considerations ■

VSE Operating System Considerations
Note • To ensure that your report output is completely separate from the control
listing messages and statistics, be sure to assign SYS010 and SYS011 to different virtual
printers.

Execution JCL for PC and Mainframe Files –– VSE 8

This section explains:

■ the JCL needed to produce Report Writer output files, including PC files and
mainframe files

Chapter 3, How to Request a PC File explained how to use Report Writer’s control
statements to request PC files. Chapter 4, Beyond the Basics included a section on creating
mainframe output files.

The only JCL difference when creating PC (or mainframe) files concerns where the
output will be written. By default, Report Writer writes output file records to the "printer"
at SYS011 (just as it writes report lines.)

If you want to download PC files from the POWER queue, this default may be just fine for
you. In that case, use the same JCL for PC files as for reports (page 8-16.)

However, you may prefer to write output files to actual datasets, rather than the POWER
queue. That way the dataset can be downloaded to a PC, or used by a subsequent
mainframe job.

Figure 8-4 shows sample JCL for creating a PC file and writing it to a disk file. In this
example, we used the OUTATTR parm to tell Report Writer to write to a disk file rather than
to a printer. We also added an appropriate DLBL statement for the output file to the JCL.

The OUTATTR option can also be used to specify the desired record size of your output file.
You can also use it to write your output file to a VSAM file or a tape. The OUTATTR parm is
discussed in more detail beginning on page 8-19.
CIMS Report Writer User Guide 8-17 ■

■ Operating System Considerations

VSE Operating System Considerations
Figure 8-4 • Sample Report Writer JCL for PC files -- VSE

Produce this Report:

This JCL:

" ","EMPL","SALES","SALES"," "," "," "
"REGION","NAME","DATE","TIME","CUSTOMER","AMOUNT","TAX"
" "," "," "," "," "," "," "
"SOUTH","JOHNSON ","03/12/95","10:25:00","ACE ELECTRICAL ", 101.38, 6.09
"WEST ","BAKER ","03/26/95","12:09:09","JACKS CAFE ", 137.00, 8.22
"EAST ","MORRISON ","03/29/95","15:30:22","STAR MARKET ", 44.35, 2.66
"EAST ","MORRISON ","03/30/95","19:05:41","A1 PHOTOGRAPHY ", 29.65, 1.78
"EAST ","SIMPSON ","04/01/95","08:17:57","EUROPEAN DELI ", 14.99, 0.90
"NORTH","JOHNSON ","04/01/95","17:02:47","VILLA HOTEL ", 234.45, 14.07
"NORTH","JOHNSON ","04/05/95","14:33:10","MARYS ANTIQUES ", 9.98, 0.60
"WEST ","BAKER ","04/12/95","14:31:12","JACKS CAFE ", 135.75, 8.15
"WEST ","THOMAS ","04/14/95","15:41:38","YOGURT CITY ", 9.98, 0.60
"NORTH","JONES ","04/15/95","07:58:32","EZ GROCERY ", 10.25, 0.62
"NORTH","JONES ","04/15/95","08:01:59","TOY TOWN ", 121.76, 7.31
"NORTH","JONES ","04/15/95","13:52:41","TOY TOWN ", 10.25, 0.62
"SOUTH","JOHNSON ","04/16/95","11:48:33","ACME BUILDING ", 500.00, 30.00
"EAST ","SIMPSON ","04/30/95","15:30:21","J & S LUMBER ", 23.87, 1.43

// JOB SPECTWTR
// ASSGN SYS010,SYSLST CONTROL STATEMENT LISTING
// LIBDEF PHASE,SEARCH=LIB.SPECTWTR
// DLBL SALEFIL,'SALES.MASTER.FILE'
// EXTENT SYS015,,,,6764,1000
// DLBL SWOUT,'LOTUS.FILE'
// EXTENT SYS015,,,,5288,100
// EXEC SPECTWTR,SIZE=(SPECTWTR,300K)
OPTION: SUBLIB('LIB.SPECTWTR')
 LOTUS
 OUTATTR(DASD,'SWOUT',250,2500)
INPUT: SALES–FILE
COLUMNS: REGION EMPL–NAME SALES–DATE SALES–TIME CUSTOMER AMOUNT TAX
/*
/&
■ 8-18 CIMS Report Writer User Guide

Operating System Considerations ■

VSE Operating System Considerations
Output File Options –– VSE 8

This section explains:

■ the default access method Report Writer uses to write its output records, and how to
override it

■ the output record’s default record size, and how to override it

■ how to use the OUTATTR parm (of the OPTIONS statement)

The OUTATTR ("Output Attribute") option lets you give Report Writer explicit information
about how and where to write its output. If no OUTATTR option is specified, Report Writer
makes these default assumptions:

■ the output is going to a printer–type device. (Of course, in most cases the "printer"
will actually be a POWER spool file.)

■ the "printer" is at logical unit SYS011

■ each record will be 133 bytes long (including a 1–byte carriage control character)

If you are creating reports, this default should work just fine for you. Your JCL will simply
assign SYS011 to SYSLST or some other "printer" device.

Still, if you like you could use OUTATTR to specify a different SYSnnn or a different record
size.

Example
OPTIONS: OUTATTR(PRT,SYS007,120)

The above statement tells Report Writer to write the output file to a "printer" device at
SYS007. The records should be 120 bytes long.

Note • For report output, the first byte in each record is a "carriage control
character." So in the example above, only 119 bytes would be available for the report
data itself. For PC or mainframe file output (or when using the NOCC option) no
control character is written. In that case, the entire length of the record is available
for data.

When creating PC or mainframe files, you may prefer to write them to disk or tape, rather
than to the POWER queue. And you may want a record size bigger (or smaller) than 133
bytes. To change the defaults, just use Report Writer’s OUTATTR option. This option lets
you specify:

■ the type of device to write to (choose from a printer, a DASD file (that is, a SAM file on
disk), a VSAM file, or a tape file.)

■ the logical unit to write to. (Used with printer and tape files only.)

■ the length of each output record. You can choose any record size you like (up to
approximately 16K). For reports, you will probably use 133, since that is the
maximum size most printers support. When creating output files, you can specify any
record size that is big enough to hold all the data you plan to write.
CIMS Report Writer User Guide 8-19 ■

■ Operating System Considerations

VSE Operating System Considerations
Figure 8-4, on page 8-18 shows sample JCL for writing a PC file to a SAM file on disk. In
that example, the following OUTATTR parm is used:

OPTIONS: OUTATTR(DASD,’SWOUT’,250,2500)

The DASD parm in the above statement tells Report Writer to write its output to a SAM disk
file. The file is defined in the JCL by a DLBL statement named SWOUT. The records will be
250 bytes long, and the block size will be 2500.

Note • When writing to a disk or tape file, you can omit the ASSGN statement for
SYS011 in your JCL.

You may use any record size (and corresponding block size) in the OUTATTR parm that
you want. Pick a record size that will be big enough to hold all of the data you will be
writing to the output file. If you do not specify a record size, Report Writer assumes a
default record size of 133 bytes.

You can also use the OUTATTR option to have Report Writer write its output to a VSAM file.
One reason to do this is so that CICS can access the output. You may want to use CICS to
download the data to a PC. Here is an example of writing to a VSAM file:

OPTIONS: OUTATTR(VSAM,’OUTVSAM’,450)

The above statement tells Report Writer to write the output file to a VSAM file. (The VSAM
file must have been defined ahead of time, and it must be defined as an ESDS file.) The
DLBL for the VSAM file in the JCL will be named OUTVSAM. The records will be 450 bytes
long. Note that block sizes are not used for VSAM files.

Finally, here is an example of writing Report Writer’s output to a tape file:

OPTIONS: OUTATTR(TAPE,’OUTFILE’,SYS009,200,12000)

The above statement tells Report Writer to write the output file to a tape mounted on
logical unit SYS009. The TLBL for the output file in the JCL will be named OUTFILE. The
records will be 200 bytes long, and the block size will be 12000.

Note • The complete syntax of the OUTATTR option is shown at page 10-81.

Downloading PC Files –– VSE 8

After Report Writer creates your PC file on the mainframe, just download it to your PC
and import it into your favorite PC program. Appendix H, How to Import PC Files shows
the commands used to import PC files for many popular PC programs.

You can use whatever download method you’re most familiar with. Here are some of the
common methods of downloading datasets from VSE to a PC.

Downloading from a POWER output queue.
Use Report Writer’s default to write your PC file as if it’s going to a printer. In your JECL,
choose a POWER class that allows the output to remain in the queue (rather than being
printed right away.) Then, use VSE’s Interactive User Interface (IUI) menus to download
■ 8-20 CIMS Report Writer User Guide

Operating System Considerations ■

VSE Operating System Considerations
the POWER queue entry to your PC. By default, Report Writer limits your output records
to 133 byte. Use the OUTATTR option to specify a larger record size if 133 is not big enough
to hold all the columns you intend to download. For example, to create a 200–byte entry
in the POWER output queue, specify:

OPTIONS: OUTATTR(PRT,SYS011,200)

Downloading from a CICS VSAM file

If you prefer, you can download a CICS VSAM file. Use the following option to have
Report Writer write its PC file to a VSAM file:

OPTIONS: OUTATTR(VSAM,’SWOUT’,200)

You will need to define the dataset (as an ESDS dataset) ahead of time. That dataset will
also need to be defined to CICS (via an FCT.) Then, use IUI to copy the contents of your
VSAM dataset to the Host Transfer File. You can then download it to your PC from the
Host Transfer File.

Downloading under VM

If you are running VSE under VM, you may prefer to do the download from VM (CMS). Use
your 3270 emulator package’s file transfer command (probably RECEIVE) to do this. You
have a couple of options as far as getting the PC file from VSE to your VM session. You can
have Report Writer create a printer output file, which you would then spool to your VM
session as a reader file. You can then read your reader file into a CMS dataset and
download from there. Or, you could have Report Writer write to a SAM disk file on a VSE
pack. Then, link from VM to the VSE pack containing your PC file, and download that
dataset to your PC.

Using Third–Party Products

Your shop may also have a third–party product that makes it easy to download
mainframe files to PCs. Products that have been mentioned to us by users include: BIM–
PC/TRANSFER, pcMainframe, PC–Link, and Outbound.

Setting Up File Definitions –– VSE 8

This section explains:

■ how to set up a Librarian sublibrary to serve as the Report Writer Copy Library

■ how to use the SUBLIB option to tell Report Writer the name of the copy library

Before you run Report Writer using your own files, some one–time setup is required. This
setup consists of storing descriptions of your company’s files in the Report Writer Copy
Library. This is necessary before Report Writer can produce reports or PC files from your
company’s data.

The following setup steps are needed to define your company’s files to Report Writer:
CIMS Report Writer User Guide 8-21 ■

■ Operating System Considerations

VSE Operating System Considerations
Step 1.
Pick a Librarian sublibrary to use as your Report Writer Copy Library. We recommend
that you create a new sublibrary to be used exclusively for this purpose. However, you
can use any Librarian sublibrary as your Report Writer Copy Library.

Some shops may want to use multiple copy libraries with Report Writer. (Perhaps one for
each department in the company.) It is fine to do that. You will tell Report Writer via a
control statement the name of the copy library to use in each run.

Step 2.
Create a member in the copy library for the first file that you want to define to Report
Writer. The member name can be anything that you like. The member type should be
SPECTWTR. For example, to define your company’s payroll file, you might create a new
member named PAYROLL.SPECTWTR.

This member should contain a FILE statement defining certain attributes of the file. For
example, you might have the following:

FILE: PAYROLL ATTR(DASD,’PAY’,80,4000)

The above statement defines a DASD SAM file that will be referred to as "PAYROLL" in Report
Writer control statements. The DLBL name associated with this file will be PAY. The
records are 80 bytes long, and the blocks are 4000 bytes long. (For more information on
writing FILE statements, see page 6-10.)

Next, the member should contain one FIELD statement for each field in the payroll file.
(For more information on writing FIELD statements, see page 6-12.) For example, if the
first 2 fields in the payroll file were a 15–byte last name and a 10–byte first name, you
might enter the following:

FIELD: LAST–NAME LENGTH(15)
FIELD: FIRST–NAME LENGTH(10)

You do not need to define all of the fields in the file to start with. If the file contains fields
that you don’t care about using with Report Writer, you do not need to define those
fields. Just use the COLUMN parm where needed in subsequent FIELD statements to tell
Report Writer exactly which column a field begins in.

When you are finished, the copy library member should contain a single FILE statement,
followed by a number of FIELD statements. (Appendix F, Files Used in Examples shows
examples of copy library members and their file definition statements.)

Note • If you have a Cobol or Assembler record layout for the file you are defining,
you can use Report Writer to convert that layout into FIELD statements for you. Or,
you can even produce a report directly from the record layout, without using FIELD
statements at all. Both of these options are described in Chapter 6, How to Define Your
Input Files in the section Using Cobol and Assembler Record Layouts on page 6-49. To
begin with, though, we suggest you define one or two small files manually (as
described above) to get a clear idea of how Report Writer works. That will make it
easier for you to later see how Report Writer’s Cobol and Assembler interpreter fits
into the picture.
■ 8-22 CIMS Report Writer User Guide

Operating System Considerations ■

VSE Operating System Considerations
Step 3.
Add an alias entry for your file. This step is not required as long as you chose an 8–byte
(or smaller) file name in Step 2 and used that same name as the member name in your
copy library. That’s just what we did in our PAYROLL example in Step 2 above. We used
PAYROLL both for the file name (in the FILE statement) and as the member name in the
copy library. So no alias entry would be needed in that example.

The purpose of an alias is to relate the Report Writer file name (which can be up to 70
characters long) to the 8–byte name of the copy library member where that file’s
definition is stored. When the two names are the same, no alias is needed. But you can
also use longer, more user–friendly file names if you like. You’ll just need to add an alias
entry to a special member named SWALIAS.SPECTWTR in your copy library.

For example, let’s say we wanted to call our payroll file HEADQUARTERS–PAYROLL. That
name is too big to use as the member name in the copy library. So, you would pick a
shorter member name to keep the file definition statements in (say HQPAYROL), and just
add an alias entry like this within SWALIAS.SPECTWTR:

HEADQUARTERS–PAYROLL = HQPAYROL

The above line tells Report Writer that the file definition statements for the
HEADQUARTERS–PAYROLL file are stored in the member named HQPAYROL.SPECTWTR.
"HEADQUARTERS–PAYROLL" is the name that users will use for the file in Report Writer
control statements (such as the INPUT statement.) It’s also the name you will use in the
FILE statement when defining the file. "HQPAYROL" will only be used internally by Report
Writer as the member name for reading the definition statements from the copy library.
Appendix F, Files Used in Examples shows an example of a SWALIAS member in a copy
library.

Note that only the member name (not the member type) is specified in an alias entry.

The alias lines may appear in any order within the SWALIAS member.

Step 4.
Repeat steps 2 and 3 for each file that you wish to define to Report Writer.

Step 5.
In your Report Writer control statements, always begin with an OPTIONS: SUBLIB
statement. This will tell Report Writer the name of the copy library that you just set up.
For example, if you named your copy library LIB.SPECTWTR, you would use the following
statement:

OPTIONS: SUBLIB(’LIB.SPECTWTR’)

Your Report Writer Copy Library is now ready. You can now request all the custom
reports and output files that you want from the files that you have defined.
CIMS Report Writer User Guide 8-23 ■

■ Operating System Considerations

VSE Operating System Considerations
Input File DLBL/TLBLs –– VSE 8

This section explains:

■ how to write the DLBL or TLBL JCL statements for your job’s input files.

In order for Report Writer to produce a report (or output file), it must "open" and "read"
from the input file specified in the INPUT statement. If the run uses auxiliary input files
(specified in the READ statement), Report Writer must also open and read from those
files.

How does Report Writer know which DLBL or TLBL name to use when reading these files?
The file named in an INPUT or READ statement must have been previously defined to
Report Writer with a FILE statement. The ATTR parm in the FILE statement specifies which
DLBL (or TLBL) Report Writer should use when reading the file. The ATTR parm also tells
Report Writer other important information about the file, such as its record size and
block size.

Note • The FILE statement is normally kept in the Report Writer Copy Library.

Note • The syntax of the FILE statement is shown on page 10-58.

An override ATTR parm can also be specified directly in the INPUT or READ statement. When
this happens, Report Writer uses the override DLBL (or TLBL) name, rather than the one
from the FILE statement.

Make sure that your Report Writer JCL contains one DLBL (or TLBL) statement for each
input file needed to produce your report or output file. (An EXTENT JCL statement may
also be needed for each DLBL statement.)

Speed-Up Tip: Random reads to VSAM files can be relatively slow. VSAM maintains two
types of buffers (data and index) while processing Report Writer’s requests. When a
required data record or index record is already in one of VSAM’s buffers, VSAM can use the
buffer copy instead of having to perform actual disk I/O, thus improving performance.
If your report will be reading a large number of records from a VSAM auxiliary input file,
you may want to increase the number of buffers that VSAM maintains. This may increase
the likelihood that VSAM will find a needed record already in one of its buffers. You can
increase the number of data buffers (BUFND) and/or index buffers (BUFNI) in either of two
ways:

1 in the execution JCL, or

2 in the INPUT or READ statement, using the BUFNI(nn) and BUFND(nn) parms.

For IBM’s recommended BUFNI and BUFND values, see page I-9.
■ 8-24 CIMS Report Writer User Guide

Operating System Considerations ■

VSE Operating System Considerations
CICS Users Note • One of VSAM’s weaknesses is in its ability to maintain file integrity
for a VSAM file that is being accessed from multiple partitions. For example, if CICS has
a VSAM file open for update at the same time that Report Writer is reading that file,
there is a possibility that Report Writer will not see all of the records that are "in the
file". The reason for this is that when updates are made to a VSAM file under CICS, CICS
may not immediately write those updates out to the physical file; instead, it may
maintain the updated records within its buffers to be written at a later time
(sometimes days later if activity for a file is very slow.) Since Report Writer is running
in another partition, it does not have access to the updates within CICS’s buffers––
only to the records that have actually been written to the VSAM file. Thus, VSAM may
not pass to Report Writer all of the records that an online CICS user would "see" in
the same file. The safest way to avoid this problem is to issue a CEMT CLOSE to the VSAM
file (from CICS) before running any batch job (including Report Writer) that will read
that file.

The Control Statement Listing –– VSE 8

The control statement listing (which lists your control statements and any diagnostic
messages, as well as end–of–run statistics) is always written to the printer–type device at
SYS010. The record size is always 133 bytes, including a 1–byte carriage control character.

You should "assign" SYS010 to a different printer device than the one that SYS011 (the
actual report) is assigned to. This prevents your control listing from being intermixed
with your report output.

The EXEC Statement’s SIZE Parm –– VSE 8

Report Writer makes extensive use of the GETVIS portion of its partition. Therefore, you
should provide a larger than normal GETVIS area by using the SIZE parm in your EXEC
statement.

Report Writer uses the GETVIS portion of the partition for these things:

■ its own control blocks, used to process your request

■ VSAM’s control blocks

■ any User Exits (written by your shop to perform custom processing) are also loaded
into GETVIS storage.

The program area of the partition is used for the following:

■ the Report Writer phase itself (about 250K)

■ the Librarian program (if you will be using Report Writer’s copy library feature)

■ the Sort program (if you request that your report or output file be sorted)

The Librarian and Sort programs are used at different times, so they can use the same area
in memory. Generally, reserving 300K for the Sort and/or Librarian programs is
sufficient.
CIMS Report Writer User Guide 8-25 ■

■ Operating System Considerations

VSE Operating System Considerations
Therefore, we recommend using the following EXEC statement in your JCL:

// EXEC SPECTWTR,SIZE=(SPECTWTR,300K)

Of course, special considerations may cause you to want to experiment with the SIZE
parm in your applications.

Specifying Sort Work Files –– VSE 8

Most Report Writer jobs will involve an internal sort. This is required in order to put your
report or output file into the order specified by the SORT control statement. Report Writer
calls your shop’s standard sort program to perform the sort. By default, the sort program
is told to perform the sort entirely in memory. For large reports or output files, it may
not be possible to perform the sort in memory–– external sort work files will be needed.

In that case, you should do two things:

1 provide one or more SORTWKn DLBL/EXTENT statements in your JCL. For example, you
could add JCL statements similar to the following in order to provide the sort
program with 2 work files:

// DLBL SORTWK1
// EXTENT SYS016,,,,4124,1000
// DLBL SORTWK2
// EXTENT SYS016,,,,3098,1000

2 use the SORTWORKNUM option to tell Report Writer how many sort work files are
available for the sort program to use. For example if you added the two DLBL/EXTENT
statements above, you would specify:

OPTIONS: SORTWORKNUM(2)

Completion Codes –– VSE 8

Report Writer exits back to the operating system with one of the following completion
codes:

Completion
Code Meaning

0 No errors or warning messages issued. Report Writer produced its
output normally. (Some informatory messages may have been
printed.)

4 Only warning messages were issued. Report Writer produced its
output as well as it could.

12 Error messages were issued. No output (or only a partial output) was
produced.

16 Security error. Report Writer has expired or some other error was
detected in the authorization codes. No output was produced.
■ 8-26 CIMS Report Writer User Guide

9
General Syntax Rules

Introduction . 9-3

Control Statements . 9-3

What Is a Control Statement? . 9-3

How to Write Control Statements . 9-3

How to Continue a Control Statement On To Multiple Lines . 9-4

The Order of Control Statements . 9-5

How to Put Comments in Your Control Statements . 9-5

How to Put Page Breaks in the Control Listing . 9-6

Names of Files, Fields, and Records . 9-7

Rules for Assigning Names . 9-7

How to Make Field Names Unique . 9-7

How to Write Literals . 9-8

The Five Types of Data . 9-8

Character Literals . 9-9

Numeric Literals . 9-10

Date Literals . 9-10

Time Literals . 9-11

Bit Literals . 9-11

When Do You Need Quotes Around a Number? . 9-11

PICTURE Display Formats .9-12

Examples of PICTUREs . 9-13

How PICTUREs Work . 9-14

Time PICTUREs . 9-17

Conditional Expressions .9-18

How to Specify a Relation Condition . 9-19

Comparing Character Operands of Different Lengths . 9-22

Comparing Fields of Different Data Types . 9-22

Conditions Involving Explicit Literals . 9-23
CIMS Report Writer User Guide 9-1 ■

■ General Syntax Rules
How to Specify a Bit Field Condition . 9-24

How to Specify Multiple Conditions . 9-24

Conditional Expressions That Use AND . 9-25

Conditional Expressions That Use OR . 9-26

Conditional Expressions That Use Both AND and OR . 9-27

How to Shorten Long Expressions . 9-27

How to Negate Conditions . 9-29

Examples of Conditional Expressions . 9-30

Computational Expressions . 9-32

Operands in Computational Expressions . 9-33

Operators in Computational Expressions . 9-33

Order of Operations . 9-34

Examples of Computational Expressions . 9-35
■ 9-2 CIMS Report Writer User Guide

General Syntax Rules ■

Introduction
Introduction 9

This chapter describes the general syntax rules that apply to all control statements. The
following topics are covered:

■ the overall format of control statements

■ how to continue a long control statement onto multiple lines

■ how to include comments among the control statements

■ how to force a page break in the control statement listing

■ the rules governing names used for files, fields, and records

■ how to write literal values (for character, numeric, date and time data)

■ the rules governing the PICTURE display format

■ the rules for writing conditional expressions

■ the rules for writing computational expressions

Control Statements 9

What Is a Control Statement? 9

Control statements are the means by which you describe a desired report or PC file to
Report Writer. Each control statement describes some aspect of the desired report or PC
file. You can request a report with as few as two control statements. Or, you might use
dozens of statements to request a very complicated report. A PC file can be requested
with as few as three control statements.

How to Write Control Statements 9

You will probably type your control statements into a dataset using an editor. Each line
in your dataset will be 80 columns long. Each dataset line does not necessarily
correspond to one control statement. A single control statement may be typed onto
multiple lines.

As mentioned, the lines in your dataset will each be 80 columns long. However, Report
Writer only looks at the first 72 columns of each line. (This is because some editors store
information of their own in the last 8 columns of each line.) Be sure not to type any part
of a control statement past column 72, because Report Writer will ignore that part.

Every control statement begins with a statement name. The statement name must begin
in the very first column of a line, and must be immediately followed by a colon. Here
are examples of how several common control statements begin:

INPUT:
TITLE:
COLUMNS:
CIMS Report Writer User Guide 9-3 ■

■ General Syntax Rules

Control Statements
What follows the statement name depends on the particular statement. The complete
syntax for each control statement is given in Chapter 10, Control Statement Syntax.

After the statement name, the rest of each control statement is "free format." That means
that you are not required to put the field names or keywords in any specific column––
you can type them wherever you like in the line (up to column 72.) You may use as many
blanks around the words in your statement as you like, to make the statement easier to
read. You may also use commas to separate words if you like. In general, Report Writer
treats commas like blanks. The following four control statements are all equivalent, even
though they are spaced differently:

COLUMNS: LAST–NAME FIRST–NAME TOTAL–SALES

COLUMNS: LAST–NAME, FIRST–NAME, TOTAL–SALES

COLUMNS: LAST–NAME FIRST–NAME TOTAL–SALES

COLUMNS: LAST–NAME

 FIRST–NAME TOTAL–SALES

Notice that the last example above used two lines for the COLUMNS statement. You may use
as many lines as you want for a single control statement.

How to Continue a Control Statement On To Multiple Lines 9

Sometimes a control statement will contain so much information that it will have to be
split onto multiple lines. Other times, you may want to spread a control statement onto
multiple lines just to make it easier to read (and perhaps easier to modify later.)

The only rule about "continuation lines" is that they must begin with a blank in the first
column. That is how Report Writer can tell whether a line is a continuation of the
preceding statement, or the beginning of a new statement. Lines with a non–blank in
column 1 are new statements. Lines with a blank in column 1 are continuations of the
preceding statement.

Where should you split a statement onto a separate line? Generally, you can end a line
anywhere that a space is allowed in the statement, and then continue on the next line.
This means that you cannot split a statement in the middle of a field name or a keyword.
Split a statement between such words, where spaces would be allowed.

You may, however, split a statement in the middle of a character literal. This is necessary,
for instance, if you have a very long literal for a TITLE statement. To continue a character
literal onto a new line, simply type the literal right up through column 72 of the first line,
and then resume typing in column 2 of the next line. (Remember that column 1 of the
second line must be left blank, since it is a continuation line.) If a third line is required,
do the same thing: type through column 72 of the second line and resume in column 2
of the third line, and so on.
■ 9-4 CIMS Report Writer User Guide

General Syntax Rules ■

Control Statements
Here is an example of a TITLE statement that has a long literal text split across two lines.
(The scale shows the column numbers of the lines).

1...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
TITLE: ’LIST OF CUSTOMERS FOR THE NEW, ADVANCED, MINIATURIZED, SOLID STA
 TE, ZERO WAIT STATE PAPER CLIP’

The Order of Control Statements 9

There is no rigid order required for the control statements. The general rule is that any
file name or field name referred to in a control statement must already have been defined
(in a preceding control statement.) For example, a COLUMNS statement that names a
computed field cannot appear before the COMPUTE statement that defines that field.

Although there is no requirement as to specific control statement order, the following
suggested order is a logical way to organize most requests:

1 Start with any OPTIONS statements needed. Some options must appear before any
other control statements, so it’s a good idea to group all OPTIONS statements together
at the beginning of your request.

2 Put the INPUT statement next. Report Writer must know the input file name early, so
that it will know which field names to allow in subsequent statements.

3 If your request will use READ statements, they should appear next. Again, this lets
Report Writer know what additional field names are available for use in subsequent
statements. If your READ statement uses a computed field as it key, place the necessary
COMPUTE statement(s) just ahead of the READ statement.

4 Next comes any COMPUTE statements needed to define additional fields you will be
using in your request.

5 The TITLE, COLUMNS, SORT, and FOOTNOTE statements may now follow in any order.
BREAK statements, if used, must follow the SORT statement.

The following sample request follows the above guidelines:

OPTIONS: SUMMARY
INPUT: SALES–FILE
COMPUTE: SPECIAL–KEY = "9" +#SUBSTR(EMPL–NUM,2,2)
READ: EMPL–FILE READKEY(SPECIAL–KEY)
COMPUTE: DISCOUNT = AMOUNT * 0.05
TITLE: ’SALES REPORT’
COLUMNS: SALES–DATE CUSTOMER AMOUNT DISCOUNT LAST–NAME
SORT: CUSTOMER
BREAK: CUSTOMER TOTAL(’CUSTOMER TOTAL’) SPACE(PAGE)

How to Put Comments in Your Control Statements 9

Often it is helpful to include comments among your control statements. Comments are
ignored by Report Writer but provide good documentation to other people looking at
your control statements. There are two ways to include comments in your control
statements.
CIMS Report Writer User Guide 9-5 ■

■ General Syntax Rules

Control Statements
■ use an entire comment line, by putting an asterisk (*) in column 1 of the line

■ or, embed comments in other control statements, by surrounding your comment
with the symbols /* and */

Any line that begins with an asterisk (*) in column 1 is considered a comment line. The
entire line will be ignored by Report Writer. Comment lines may appear anywhere
among the control statements.

Here is an example of how to use comment lines:

**
* *
* THIS REPORT PRODUCES AN EMPLOYEE DIRECTORY *
* *
**
INPUT: EMPL–FILE
COLUMNS: LAST–NAME FIRST–NAME TOTAL–SALES

You may also embed comments within control statements. Use a slash and asterisk pair
(/*) to indicate the beginning of your comment, and use an asterisk and slash pair (*/)
to indicate the end of your comment. Everything between these symbols will be ignored
by Report Writer. You are allowed to begin and end your comment on different lines.

Here are some examples of imbedded comments:

INPUT: EMPL–FILE /* THIS IS THE EMPLOYEE MASTER FILE */
COLUMNS: LAST–NAME FIRST–NAME /* LAST YEARS SALES */ TOTAL–SALES
SORT: TOTAL–SALES(DESC) /* SORT LARGEST SALE FIRST */
 LAST–NAME /* THEN SORT BY LAST NAME */

WARNING • Do not begin or end an imbedded comment in a comment line (one
beginning with an asterisk in column 1.) Comment lines are completely ignored,
including any /* or */ symbols within them.

Also, do not use columns 1 and 2 of any line for the /* or the */ symbols. Column 1
is reserved for statement names and asterisks only.

How to Put Page Breaks in the Control Listing 9

There is one special comment line that you can use to control the paging of the control
listing report. A comment line beginning with the word "*PAGE" will cause the control
listing to skip to a new page. This is useful when you are listing many control statements
and would like to separate them into logical groups. Here is an example of using the
"*PAGE" comment line:

COPY: MSTRDEF LIST(YES)
*PAGE
INPUT: MASTER–FILE
COLUMNS: NAME DATE ADDRESS

In the control listing, the INPUT and COLUMNS statements would appear on a new page,
separate from the statements copied by the COPY statement.
■ 9-6 CIMS Report Writer User Guide

General Syntax Rules ■

Names of Files, Fields, and Records
Names of Files, Fields, and Records 9

Rules for Assigning Names 9

You may make up your own names for the files, fields, and records you will be working
with. (These names are assigned in the FILE, FIELD, COMPUTE, INPUT, and READ statements.)
The only requirements for the names you assign are:

■ all characters in the name must be one of the following

• an alphabetic character

• a numeric character

• a dash (–)

• an underscore character (_)

• an ampersand (@)

• a dollar sign ($)

• a pound sign (#)

■ the first character of the name may not be a numeric character or a dash (–)

■ the total length of the name must fit on a single line (about 70 characters.) Names
may not be split across lines.

Note • It is recommended that you do not name your fields beginning with the
pound sign (#). This is to avoid confusion with Report Writer’s built–in fields and
functions, which all begin with a pound sign. For example, Report Writer’s built–
in field that contains the current system date is named #TODAY.

Some examples of valid names are:

EMPL–NUM
HIRE–DATE
X
PRIMARY–SUBSCRIBERS–SOCIAL–SECURITY–NUMBER
SALARY
A12345–67890
EMPLOYEE_NAME
SUBSCRIPTION#

How to Make Field Names Unique 9

When you are producing reports that use multiple files as input, it is possible that a field
with the same name may exist in more than one input file. For example, you may be using
both the EMPL–FILE and the SALES–FILE as inputs to a report. There happens to be a field
named EMPL–NUM in both of these files.
CIMS Report Writer User Guide 9-7 ■

■ General Syntax Rules

How to Write Literals
When this situation occurs, you can indicate which of the two fields you mean by using
a record name to "qualify" the field name. (By default, a file’s record name is the same
as the file name.) A qualified name consists of a record name, followed by a period,
followed by a field name. For example, to list the EMPL–NUM field from the EMPL–FILE, you
would use this statement:

COLUMNS: EMPL–FILE.EMPL–NUM

And, to list to the EMPL–NUM field from the SALES–FILE, you would use this statement:

COLUMNS: SALES–FILE.EMPL–NUM

If you just used EMPL–NUM by itself in the COLUMNS statements above, you would get an
error message indicating that the field name was not unique.

Record names are also discussed under How to Name the Input File Records on page 4-115.

Note • We mentioned earlier that a field name may not be split across multiple
lines. If a field name is qualified, the prefix, the period, and the field name itself
must all fit on a single line. For this reason, it is better not to make your field
names too long. Thirty to forty characters long is probably a good maximum
length for field names.

How to Write Literals 9

A "literal" is a constant value. In other words, its value does not depend on the contents
of any input record. Literals are used in many of Report Writer’s control statements.

There are five types of literals, corresponding to the five types of data recognized by
Report Writer. Before going into the syntax of literals, let’s review the five types of data.

The Five Types of Data 9

All data processed by Report Writer falls into one of five general data types. This applies
to data contained in fields as well as to literal values. The five types of data are:

■ character

■ numeric

■ date

■ time

■ bit

Report Writer knows what kind of data exists in a particular field from the TYPE parm
specified in its FIELD statement. Report Writer knows what kind of data a literal value
contains from its format (discussed below). It is important to know an item’s data type
for the following reasons:

■ in a conditional expression, you may only compare two items if they are of the same
type.
■ 9-8 CIMS Report Writer User Guide

General Syntax Rules ■

How to Write Literals
■ in a computational expression, all operands must generally be of the same type. Also,
the operations allowed will depend on the data type of the operands.

■ in print expressions, the display format parms used must be appropriate for the data
type of the field involved.

Character Literals 9

Character literals are always enclosed in either single quotation marks (apostrophes) or
double quotation marks (’ or "). You can use whichever character you like. Whichever of
these characters you choose, be sure to begin and end the literal with the same character.
If you need to include that same character (the single or double quotation mark) within
the literal, you may do so by entering two of the characters together. Character literals
may be up to 256 characters long. (See page 9-4 for instructions on writing literals that
don’t fit on a single line.) Here are some examples of character literals used in TITLE
statements:

TITLE: ’END OF YEAR REPORT’
TITLE: "LAST QUARTER’S EARNINGS"
TITLE: ’MANAGER’’S STATUS REPORT’

Another way to specify character literals is to use their hexadecimal representation. This
is useful when you wish to enter a special character which has no associated key on the
keyboard, such as certain graphics characters, or the LOW–VALUE and HIGH–VALUE literals
used in Cobol. A hexadecimal literal begins with an "X", immediately followed by the
hexadecimal value enclosed in quotation marks. (Again, you can use either single or
double quotation marks.) Remember that only the digits 0 through 9, and the letters A
though F are allowed in hexadecimal literals. Here are some examples of hexadecimal
literals used in various control statements:

OPTIONS: COLSEP(X’05’)
COMPUTE: LOW–VALUES = X’00000000’
TITLE: X"4040C1"
INCLUDEIF: EMPL–NUM = X’FFFFFF’

Since each byte contains 2 hex digits, your hexadecimal literals should normally contain
an even number of hex digits. Report Writer pads hexadecimal literals that do not
contain an even number of digits by adding a trailing hex "0".
CIMS Report Writer User Guide 9-9 ■

■ General Syntax Rules

How to Write Literals
Numeric Literals 9

Numeric literals should not be enclosed in quotation marks. A numeric literal may
contain only the numeric digits 0 though 9, a decimal point, and a sign character (+ or
–). If a sign character is used, it must be the first character in the literal. Commas are not
allowed in numeric literals. A numeric literal may contain a maximum of 31 digits. Here
are some examples of numeric literals used in various control statements:

COMPUTE: INTEREST = .125
COMPUTE: FACTOR = –1
INCLUDEIF: AVERAGE > 1.5234
INCLUDEIF: TOTAL–SALES < 100000

Date Literals 9

Date literals also should not be enclosed in quotation marks. Specify date literals in
either MM/DD/YYYY or MM/DD/YY format. Leading zeros in the month and day are optional.
For the year, you may use either all four digits, or just the last two digits. By default, date
literals with 2–digit years are assumed to be in the 20th century (1900–1999). However,
you may use the CENTURY option (page 10-85) to specify a cutover year which will allow
you to use YY–type dates for both the 20th and 21st centuries. Date literals must specify
a date between January 1, 1901 and December 31, 2099 (inclusive). Here are some
examples of date literals used in various control statements:

COMPUTE: START–DATE = 12/31/1989
COMPUTE: END–DATE = 7/4/92
INCLUDEIF: HIRE–DATE < 2/01/97
INCLUDEIF: HIRE–DATE < 04/15/1999
INCLUDEIF: HIRE–DATE < 1/1/2001

Note • Date literals must always be written using slashes (/) as the delimiter. The
DATEDELIM option, if used, applies only to how dates are formatted in the output-- it
does not affect the way date literals are written.

Note • If you prefer, you can choose to write all date literals in DD/MM/YYYY (or
DD/MM/YY) format. Just place the DDMMYYLIT option (in an OPTIONS statement) at the
beginning of your control statements.

For example:

OPTIONS: DDMMYYLIT
...
INCLUDEIF: HIRE–DATE < 15/4/1999
COMPUTE: START–DATE = 31/12/89
■ 9-10 CIMS Report Writer User Guide

General Syntax Rules ■

How to Write Literals
Time Literals 9

Time literals also should not be enclosed in quotation marks. Specify time literals in
HH:MM:SS format. A leading zero in the hour portion of the time is optional. Time literals
may also contain decimal parts of seconds–– HH:MM:SS.SSS. Time literals must specify a
time between 00:00:00 and 23:59:59. Here are some examples of time literals used in
various control statements:

COMPUTE: START–TIME = 8:30:00
COMPUTE: END–DATE = 17:00:00
INCLUDEIF: SALES–TIME >= 12:00:00 AND <= 12:00:05
INCLUDEIF: TIME–ON–PHONE < 00:00:01.5

Note • Time literals must always be written using colons (:) as the delimiter. The
TIMEDELIM option, if used, applies only to how times are formatted in the output— it
does not affect the way time literals are written.

Bit Literals 9

There are no true bit literals in Report Writer. However, there are two built–in functions
which perform the same role. Literals are generally used in two ways:

■ within a comparison, in a conditional expression

■ as an operand in a computational expression

Within conditional expressions, no comparisons are allowed with bit fields. A bit field
name is a condition all by itself. Therefore, no bit literal is required for comparisons. (For
more information on this, see Conditional Expressions on page 9-18.

Within the COMPUTE statement, you may use the built–in functions #ON and #OFF as the
equivalent of bit literals. Since these are functions (which simply return the constant
values ON or OFF), they are not technically literals. Here is a sample control statement that
uses these built–in functions:

COMPUTE: NEW–EMPLOYEE = WHEN(HIRE–DATE > 1/1/1990) ASSIGN(#ON)
 ELSE ASSIGN(#OFF)

When Do You Need Quotes Around a Number? 9

In most cases, matching data types comes naturally. Most people wouldn’t try to
compare a date field (like HIRE–DATE) with a character field (like LAST–NAME).

But, there is one area where mistakes in mixing data types are commonly made. That is
when it comes to distinguishing between character fields that contain numeric characters,
and true numeric fields. For example, consider the EMPL–NUM field in the EMPL–FILE
(described in Appendix F, Files Used in Examples.) Since this field contains an employee
number, it is easy to think of it as a numeric field. But in reality it is defined as a character
CIMS Report Writer User Guide 9-11 ■

■ General Syntax Rules

PICTURE Display Formats
field. (It just happens to contain only "numeric" characters.) This means that when a
comparison is made to it, a character literal must be used–– not a numeric literal. For
example, the following statement is valid:

INCLUDEIF: EMPL–NUM = ’037’

The above statement would select all records for employee number 037. The character
literal ’037’ (in quotes) is compatible with the character field EMPL–NUM. However,
consider the following statement:

INCLUDE: EMPL–NUM = 037

The above statement is in error! It is attempting to compare a character field (EMPL–NUM)
with the numeric literal 037 (without quotes).

A similar error might be made when trying to display EMPL–NUM in the report. Consider
the following statement:

COLUMNS: EMPL–NUM(PIC’ZZ9’)

The above statement is also invalid! It attempts to use a numeric display format (a
PICTURE) to format a character field.

Of course, since the EMPL–NUM field in the records always contains a numeric character,
we could have defined EMPL–NUM as a numeric field (by using TYPE(NUM) in the FIELD
statement). Then, we could have used numeric literals and numeric display formats with
the field. Had we defined EMPL–NUM as a numeric field, we would also want to specify the
NOACCUM parm, to prevent the EMPL–NUM column from being totalled in reports.

So, when do you need quotation marks around numbers? Whenever the number is being
used as a character literal, rather than a numeric literal.

Note • To determine if a particular field has been defined as a character or a numeric
field, add the SHOWFLDS(YES) parm to your INPUT (or READ) statement. This parm
causes a listing of all of the fields defined for the file to appear in your control
statement listing. The data type of each field (character or numeric) also appears in
this listing.

Note • For more discussion on character versus numeric fields, see the section
beginning on page 6-20.

PICTURE Display Formats 9

A PICTURE is a special display format that describes how a numeric value should be
displayed in a report. The PICTURE display format consists of the word PICTURE (or an
abbreviation, such as PIC) immediately followed by text enclosed in either apostrophes
or quotation marks. (Do not put a space before the apostrophe or quotation mark.) For
example:

PICTURE’text’
PIC’text’
■ 9-12 CIMS Report Writer User Guide

General Syntax Rules ■

PICTURE Display Formats
The characters making up the text give a "picture" of how the formatted result should
look. The PICTURE specifies such thing as:

■ the size of the formatted output (that is, how many characters it will occupy in a print
line)

■ whether leading zeros should be displayed or suppressed

■ whether commas (or some other character) will be used to separate the thousands,
the millions, etc.

■ whether a floating dollar sign should appear in the result

■ where the minus sign should appear, for negative numbers

■ where (and whether) a plus sign should be displayed for positive numbers

■ how many decimal digits should print

■ any literal characters that should be included in the formatted result

Examples of PICTUREs 9

If you haven’t worked with PICTUREs before, the best way to learn about them is probably
to look at some examples. The following examples show the format produced by various
PICTUREs. Pick a result that is similar to what you want, and use that PICTURE as a guide.
Adjust the number of digit symbols in your PICTURE according to the size of the numbers
that you will be printing.

In the table below, a sample positive value (1,234.56) and a sample negative value (-
98,765.4) are used to demonstrate each PICTURE.

Picture
 Formatted Positive

Value
 Formatted Negative

Value

PIC’999999999’ 000001235 ****S****

PIC’999999.9’ 001234.6 ****S***

PIC’999999.99’ 001234.56 ****S****

PIC’999999V99’ 00123456 ****S***

PIC’ZZZZZ9.99’ 1234.56 –98765.40

PIC’ZZZZZ9V99’ 123456 –9876540

PIC’ZZZ,ZZ9.99’ 1,234.56 –98,765.40

PIC’–––,––9.99’ 1,234.56 –98,765.40

PIC’+++,++9.99’ +1,234.56 –98,765.40

PIC’ZZZ,ZZ9.99–’ 1,234.56 98,765.40–

PIC’ZZZ,ZZ9.99+’ 1,234.56+ 98,765.40–

PIC’$$,$$$,$$9.99’ $1,234.56 –$98,765.40
CIMS Report Writer User Guide 9-13 ■

■ General Syntax Rules

PICTURE Display Formats
Note • The first several examples above resulted in size error indicators (***S***) for
the negative value. That is because the PICTURE did not have a place where the minus
sign could be displayed. Since leading zero suppression was not used, there were no
leading blanks in which to place a minus sign. If your numbers will include negative
values, do not use all 9’s in your PICTURE. Add at least one leading Z or – to the
PICTURE.

Below are two additional examples that illustrate special purpose PICTUREs. Notice that
when literal text is used heavily, you should normally use "9" as your digit symbol. If
you want to display a literal character before the first numeric digit (as in the telephone
number example below), you must use "9" for all of your digit symbols.

PICTUREs can be used anywhere that a numeric display format is allowed. Following are
a few examples of how PICTUREs can be used in various control statements:

COLUMNS: EMPL–NAME TOTAL–SALES(PIC’ZZZ,ZZZ,ZZ9.99–’)
TITLE: ’TELEPHONE DIRECTORY ––’ TELEPHONE(PIC’(999) 999–9999’)
BREAK: REGION FOOTING(’TOTAL SALES FOR REGION:’
 TOTAL–SALES(TOTAL,PIC’$$$,$$$,$$9’))

How PICTUREs Work 9

This section explains in more detail exactly how PICTUREs are processed.

When a numeric value is being formatted according to a PICTURE, the following process
takes place. The PICTURE is evaluated one character at a time, from left to right. Each
character in the PICTURE is either:

■ a symbol that represents one digit of the numeric value

■ a literal character that, under certain conditions, will be moved into the result

The character 9 in a PICTURE always represents a digit from the numeric value. It will be
replaced by the appropriate digit of the number, even if that digit is a leading zero.

PIC’ZZZ.ZZ9V,99’ 1.234,56 –98.765,40

PIC’ZZZ ZZ9V,99’ 1 234,56 –98 765,40

PIC’ZZZ.ZZ9V,99 DM’ 1.234,56 DM –98.765,40 DM

PIC’ZZZZZ9.99%’ 1234.56% –98765.40%

Picture Unformatted Value Formatted Value

PIC’(999) 999–9999’ 1234567890 (123) 456–7890

PIC’999–99–9999’ 123456789 123–45–6789

Picture
 Formatted Positive

Value
 Formatted Negative

Value
■ 9-14 CIMS Report Writer User Guide

General Syntax Rules ■

PICTURE Display Formats
If you want to suppress leading zeros in your result, use one of the following characters
to represent leading digits in your PICTURE: Z, $, + or –. When one of these characters
appears in the PICTURE before the first 9, that character becomes the leading zero
suppression symbol for the PICTURE. Each occurrence of that symbol will be replaced by
the appropriate digit of the number as long as that digit is not a leading zero. If the digit is
a leading zero, then a blank will appear in that position of the result.

Use the $ character for the leading digits in your PICTURE if you want a floating dollar
sign to be placed just before the first significant digit in the result.

Use the + character for the leading digits in your PICTURE if you want a floating sign to
be placed just before the first significant digit in the result. A plus sign is used for positive
numbers; a minus sign is used for negative numbers; no sign is used if the number is
zero.

Use the – character for the leading digits in your PICTURE if you want a floating minus
sign to be placed just before the first significant digit in the result (for negative values.)
Positive and zero values will have no sign character.

When the letter Z is used for the leading digits in your PICTURE, and no trailing sign
symbol appears in the PICTURE, a floating minus sign is placed before the first significant
digit in the result (for negative values.)

Use a + character as the last byte in your PICTURE if you want a trailing sign (either plus
or minus) to be placed in that position of the result.

Use a – character as the last byte in your PICTURE if you only want a trailing minus sign
to be placed in that position of the result (for negative values.)

The letter V has a special meaning within a PICTURE. It shows where an "understood
decimal point" is located. A PICTURE may contain only one V symbol. The V symbol
does not take up a byte in the formatted output. (Thus, the result of PIC’99V9’ would be
just 3 bytes long, not 4.) If a V is present in the PICTURE, all decimal points (.) in the
PICTURE are treated as literals and are not used in determining where the decimal digits
appear in the result.

The decimal point (.) is treated specially within a PICTURE. If the PICTURE contains a V
symbol, all decimal points within the PICTURE are just treated as literals. (Thus, the two
decimal points in PIC’ZZZ.ZZZ.ZZ9V9’ are treated as regular literals.) If no V symbol
appears within the PICTURE, a single decimal point is allowed within the PICTURE. It
shows where an "explicit decimal point" is to be located in the result.

All other characters are treated as literals. Literals are moved into the result just as they
appear in the PICTURE, with one exception. Any literal that appears before the last zero
suppression symbol in a PICTURE is blanked out if zero suppression is still in effect at
that point. Such literals are only moved to the result if one or more non–zero digits have
already been moved to the result. (Thus, the comma literals in PIC’ZZZ,ZZZ,ZZ9.99’ are
blanked out until after the first digit appears in the result.)

Any literal that appears after all zero suppression symbols in a PICTURE will always be
moved to the result. This also includes all literals in PICTUREs where no zero suppression
symbols are used (such as PIC’(999) 999–9999’). This also means that all trailing literals
are always moved to the result. Trailing literals appear after all of the numeric positions
CIMS Report Writer User Guide 9-15 ■

■ General Syntax Rules

PICTURE Display Formats
in a PICTURE. They are usually currency indicators (PIC’ZZ9.99 USD’) or percentage signs
(PIC’ZZ9.9%’). (As described earlier, trailing plus or minus signs also have special
meanings.)

The following table summarizes the meaning of each character that can appear in a
PICTURE.

Note • A PICTURE may contain symbols representing no more than 31 digits.
However, the entire PICTURE text (including literal characters) can be larger than 31
characters.

 Meaning of Symbols within a PICTURE

Symbol Meaning

9 Replace this character with a digit from the numeric value, even if that
digit is a leading zero.

Z (When used as the leading zero suppression symbol.) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before
the first non–suppressed digit will contain a minus sign for negative
numbers (unless the PICTURE contains an explicit trailing plus or
minus sign.)

$ (When used as the leading zero suppression symbol.) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before
the first non–suppressed digit will contain a dollar sign. For negative
numbers, a minus sign will appear just before the floating dollar sign
(unless the PICTURE contains an explicit trailing plus or minus sign.)

- (When used as the leading zero suppression symbol.) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before
the first non–suppressed digit will contain a minus sign for negative
numbers.

+ (When used as the leading zero suppression symbol.) Replace this
character with a digit from the numeric value, with the following
exception: leading zeros will appear as blanks. The position before
the first non–suppressed digit will contain: a plus sign for positive
numbers; a minus sign for negative numbers; a blank if the number
is zero.

- (Minus sign, as the last character in a picture.) Specifies that a minus
sign should appear in that position if the number is negative.
Otherwise, a blank will appear in that position.
■ 9-16 CIMS Report Writer User Guide

General Syntax Rules ■

PICTURE Display Formats
Time PICTUREs 9

There is also a picture–type display format available for time fields. It is called a
TPICTURE ("time picture".) It can also be abbreviated as TPIC and TP. TPICTUREs work
similarly to the regular numeric PICTURE. They are a handy way to indicate the number
of digits to reserve for the hours portion of very large time values, as well as the number
of decimal digits to display. For example, consider the following statement:

COLUMNS: TIME–ON–PHONE(TPIC’ZZZ9:99:99.9’)

The above statement uses a TPIC to specify how the TIME–ON–PHONE field should be
displayed. It reserves 4 digits for the hours portion of the time value, and specifies
leading zero suppression up until the last hour digit. The TPIC also specifies that 1
decimal digit is wanted in the formatted result. (The main reason for wanting to display
more than 2 hour digits is when time intervals are being added up and the Grand Total
value may be large.)

When formatting times using TPICs, Report Writer treats the time value as a numeric
value of the form ...HHHHMMSS.SSSS... That is, the numeric value has 2 digits of
seconds, 2 digits of minutes, and an indefinite number of digits for hours. It also
contains an indefinite number of decimal digits. The number of digit symbols in the
TPIC (characters Z and 9) will determine how many hours digits and decimal digits (if
any) are to be displayed.

+ (Plus sign, as the last character in a picture.) Specifies that: a plus sign
should appear in that position if the number is positive; a minus sign
should appear in that position if the number is negative; a blank
should appear in that position if the number is zero.

V (Understood decimal point.) This character indicates where the
understood decimal point exists within a picture. However, no actual
decimal point will appear there. This PICTURE symbol does not affect
the size of the formatted result. When this symbol is used, any
decimal points (.) in the PICTURE are treated as literals.

. (When used as an explicit decimal point.) When a PICTURE does not
contain a V, this becomes the explicit decimal point. It is displayed as
is, unless "leading zero suppression" is still in effect. In that case, a
blank will appear in its place.

other Any characters other than those listed above are considered literal
characters within a picture. These characters will appear in the
formatted result just as they are, unless "leading zero suppression" is
still in effect. In that case, blanks will appear in their place. Trailing
literals are always formatted into the result.

 Meaning of Symbols within a PICTURE

Symbol Meaning
CIMS Report Writer User Guide 9-17 ■

■ General Syntax Rules

Conditional Expressions
Conditional Expressions 9

This section explains:

■ how to write conditional expressions

Conditional expressions specify one or more conditions. Upon evaluation, a conditional
expression will either be true or false. Conditional expressions are used in:

■ the INCLUDEIF statement (to specify which records to include in the report)

■ the WHEN parm of the COMPUTE statements (to specify when to assign a particular value
to a field)

Topics covered in the following sections are:

■ how to specify relation type conditions

■ how to specify bit field type conditions

■ how to specify multiple conditions, by using the keywords AND and OR

■ how to shorten long conditional expressions

■ how to negate conditions, using the NOT keyword

Note • Most of the examples used in this section involve fields from the sample EMPL-
FILE, described in Appendix F, Files Used in Examples.

In general, a conditional expressions consists of any number of conditions, separated by
the keywords AND and OR. You may also use parentheses around groups of conditions to
indicate the order in which they should be evaluated. Parentheses may be "nested" to
any level. Also, you may precede any condition, or parenthesized group of conditions,
with the word keyword NOT, to "negate" the result.

An individual condition can take one of the following two forms:

■ a relation condition

■ a bit field condition
■ 9-18 CIMS Report Writer User Guide

General Syntax Rules ■

Conditional Expressions
How to Specify a Relation Condition 9

A relation condition compares the value of two operands, to see if a certain relationship
exists between them. Here is an example of a relation condition:

TOTAL–SALES > 9000

The above condition is true if the value of the TOTAL–SALES field is greater than 9000.

A relation condition consists of two operands separated by a relation operator:

operand1 operator operand2

Each operand can be either a field or a literal value. The operands can be any of the
following types of data (but both operands must be of the same type):

■ character

■ numeric

■ date

■ time

Note • Bit operands are not allowed in relation conditions. A Bit operand is a
condition all by itself (see page 9-24.)

 Conditional Expression Syntax

condition [AND/OR condition] [AND/OR condition] ...

Notes:

• in addition, any number of paired parentheses may be used to specify the order of evaluation.

• any condition, or group of conditions in parentheses, may be preceded by the word NOT

Standard Symbol
Spelling Allowed

AND &
OR |
NOT ¬
CIMS Report Writer User Guide 9-19 ■

■ General Syntax Rules

Conditional Expressions
The relation operator may be any of the following:

A relation condition is evaluated by comparing the values of the two operands. If the
operands have the relation specified by the relation operator, then the condition is true.
If the operands do not have the relation specified by the relation operator, then the
condition is false.

Here is another example of a relation condition:

SALES–QTR1 > SALES–QTR2

This condition is evaluated by comparing the contents of the SALES–QTR1 field with the
contents of the SALES–QTR1 field. If SALES–QTR1 "is greater than" SALES–QTR2 the condition
is true. Otherwise, the condition is false. For example, if the SALES–QTR1 field contained
4000, and the SALES–QTR2 field contained 3000, then the condition above would be true,
because 4000 is greater than 3000. However, if the SALES–QTR1 field contained 4000 and
the SALES–QTR2 field contained 6000, then the condition would be false, because 4000 is
not greater than 6000.

Here is an INCLUDEIF statement that uses the condition shown above:

INCLUDEIF: SALES–QTR1 > SALES–QTR2

The above statement specifies that only records where the SALES–QTR1 field is greater than
the SALES–QTR2 field should be included in the report.

Remember that the operands being compared in a relation condition must be of the
same general type of data. That is, numeric operands may only be compared to other
numeric operands. Character operands may only be compared to other character

Relation
Operator Meaning

= "is equal to"

> "is greater than"

< "is less than"

>= "is greater than or equal to"

<= "is less than or equal to"

¬= or <> "is not equal to"

¬< "is not less than"

¬> "is not greater than"

: "contains" (for character operands only)

¬: "does not contain" (for character operands only)
■ 9-20 CIMS Report Writer User Guide

General Syntax Rules ■

Conditional Expressions
operands. Date operands may only be compared to other date operands. And time
operands may only be compared to other time operands. (For more information on this,
see Comparing Fields of Different Data Types on page 9-22.)

Here is an example of a relation condition that involves date operands:

HIRE–DATE <= 1/1/1996

The above statement contains a relation condition involving a date field (HIRE–DATE) and
a date literal (1/1/96). The condition is true if the HIRE–DATE field "is less than or equal
to" January 1, 1996. The condition is false if the HIRE–DATE field contains any date after
January 1, 1996.

Here is an example of a relation condition that involves time operands:

SALES–TIME > 17:15:48

The above statement contains a relation condition involving a time field (SALES–TIME)
and a time literal (17:15:48). The condition is true if the SALES–TIME field "is greater
than" 17:15:48 (5:15:48 PM.) The condition is false if the SALES–TIME field contains a
time less than or equal to 17:58:48.

Here is an example of a relation condition involving character data:

LAST–NAME = ’SMITH’

The above condition is true if the LAST–NAME field is equal to "SMITH".

The list of relation operators on page 9-20 includes two special operators that can only
be used with character type operands. These are the contains (:) and the does not
contain (¬:) operators. Operand1 is said to "contain" operand2 if all of the characters in
operand2 appear together somewhere within operand1. Here is an example of a
condition that uses the "contains" operator:

CUSTOMER : ’INC’

The above condition is true if, somewhere within the contents of the CUSTOMER field, the
letters "INC" appear together. For example, the condition would be true if the CUSTOMER
field in a record contained any of the following values:

• ACME INC
• ABC STORES, INCORPORATED
• BUILDERS INC. OF AMERICA

The same condition would not be true when the CUSTOMER field contained any of the
following values:

• XYZ CORPORATION
• JOHN BROWN STORES, LTD.
• JONES & ASSOCIATES
CIMS Report Writer User Guide 9-21 ■

■ General Syntax Rules

Conditional Expressions
Note • When using the "contains" and "not contains" relation operators, operand1
should be at least as large as operand2. Otherwise, operand2 could not possibly be
contained within operand1.

Comparing Character Operands of Different Lengths 9

Consider the following conditional expression:

LAST–NAME = ’SMITH’

In this example a 15–character field (LAST–NAME) is compared with a character literal that
is only 5 characters long (’SMITH’). When character operands of different lengths are
compared, Report Writer first adds enough trailing blanks to the shorter operand to
make it the same size as the larger operand. Then the two operands, now of equal length,
can be compared byte by byte. Thus, in the example above, Report Writer is actually
comparing the LAST–NAME field with a 15–character literal, as if the following had been
written:

LAST–NAME = ’SMITH ’

(This addition of trailing blanks does not actually modify the value of either of the
operands. The blanks are only added to a temporary copy of the operand.)

Comparing Fields of Different Data Types 9

As mentioned, the operands being compared in a relation condition must be of the same
general type of data. That is, numeric operands may only be compared to other numeric
operands. Character operands may only be compared to other character operands. Date
operands may only be compared with other date operands. And time operands may only
be compared with other time operands.

However, this does not mean that the fields being compared must have been defined
with the identical TYPE parm in their FIELD statement. (The TYPE parm is discussed on
page 10-57.) For example, a PACKED field may be compared to a BINARY field, since both
PACKED and BINARY are numeric data types. And a MMDDYY type date field may be compared
with a P–YYDDD (packed Julian) date field, or with any other kind of date field. Report
Writer automatically handles any data type conversion that may be necessary.

Even if you find the need to compare operands of different general data types, you may
still be able to do that. This can be accomplished by converting one of the operands to
a data type compatible with the other operand. The following built–in functions are
used to convert an operand from one data type to another. (Built–in functions are
described in Appendix D, Built-In Functions.")

Built-In
Function Purpose

#MAKENUM Converts a character, date or time operand to a numeric value.

#MAKEDATE Converts a character or numeric operand to a date value.
■ 9-22 CIMS Report Writer User Guide

General Syntax Rules ■

Conditional Expressions
For example, even though EMPL–NUM is a character field, we can compare it to a numeric
literal by first converting it to a numeric value:

INCLUDEIF: #MAKENUM(EMPL–NUM) > 100

As another example, even though TIME–ON–PHONE is a time field, we can compare it to a
numeric literal by first converting it to a numeric value (representing the number of
seconds in the time value):

INCLUDEIF: #MAKENUM(TIME–ON–PHONE) > 60

The above example converts TIME–ON–PHONE from a HH:MM:SS time value to a numeric
value equal to the number of seconds in the time value. It then compares this number
of seconds with the numeric literal 60.

Conditions Involving Explicit Literals 9

Normally, when comparing a field with a literal you do not need to know exactly how
that field is stored in the input record. Report Writer automatically performs any
conversion necessary to make both the field and the literal compatible before comparing
them.

As an example, assume that SALARY is a field stored in an input record as a 5–byte packed
number. Normally, we would just compare this field to a numeric literal, like this:

INCLUDEIF: SALARY = 2345.99

When writing the above statement we did not need to know how SALARY was stored in
the record. We use a normal numeric literal and let Report Writer take care of the details
necessary in making the comparison. The above statement would work whether SALARY
was stored in packed, binary, display numeric or any other numeric format.

However, conditions that involve an explicit hexadecimal literal (one prefixed with an X)
are handled a little differently. In these cases no conversion is performed. The field’s raw
data — just as it is found in the input record — is compared with the literal. This means
that when using explicit literals, you must know exactly how a field is stored in the
record. You must know how many bytes the field occupies, as well its exact data type.

Consider the following condition that compares SALARY to an explicit hexadecimal
literal:

INCLUDEIF: SALARY = X’000234599C’

#MAKETIME Converts a character or numeric operand to a time value.

#FORMAT Converts a date, time or numeric operand to a character value.

Built-In
Function Purpose
CIMS Report Writer User Guide 9-23 ■

■ General Syntax Rules

Conditional Expressions
This statement is equivalent to the previous statement that used a normal numeric
literal. Since SALARY is stored in the input records as a 5–byte packed number, the explicit
literal in the above condition also has to be 5 bytes long (10 hexadecimal digits). And
the literal also has to be in valid packed format, with a "sign" in the second nibble of the
last byte.

One common reason for writing conditions with explicit literals is to compare fields that
may have invalid data. For example, assume that the input file has some records in it with
hex zeros ("low values") in the SALARY field. We want to identify and list those records
so that they can be corrected. Since hex zeros is not a valid packed value, there is no way
to test for this condition using a normal numeric literal. Instead we have to compare the
SALARY field to an explicit hexadecimal literal, like this:

INCLUDEIF: SALARY = X’0000000000’

As a similar example, assume that we know that some HIRE–DATE fields (in our sample
EMPL–FILE) contain spaces rather than a valid character YYMMDD date. The only way to test
for this is to use an explicit literal:

INCLUDEIF: HIRE–DATE = X’404040404040’

The above statement compares the 6–byte HIRE–DATE field to 6 spaces (hexadecimal 40).

How to Specify a Bit Field Condition 9

The relation condition (described beginning on page 9-20) is the most common type of
condition. The other type of condition is a bit field condition. A bit field condition
consists of nothing more than the name of a bit type field:

fieldname

The condition is considered true if the bit field has a value of "on." The condition is false
if the bit field has a value of "off".

Here is an example of a bit field condition:

FULL–TIME

The above condition is true when the FULL–TIME bit field is "on" (contains a binary 1).
The condition is false when the FULL–TIME field is "off" (contains a binary 0).

Here is an INCLUDEIF statement which uses the above bit field condition:

INCLUDEIF: FULL–TIME

The above statement specifies that only records whose FULL–TIME bit field is "on" should
be included in the report.

How to Specify Multiple Conditions 9

All of the conditional expressions shown so far have contained only a single condition
(either a relation condition or a bit field condition.) Such expressions are called simple
conditional expressions.
■ 9-24 CIMS Report Writer User Guide

General Syntax Rules ■

Conditional Expressions
Report Writer, however, allows you to have an unlimited number of conditions in a
conditional expression. A conditional expression containing more than one condition is
called a complex conditional expression. Complex conditional expressions consist of two
or more conditions separated with the words AND or OR. Parentheses may also be used
around groups of conditions to specify the order in which to evaluate the individual
conditions.

The following sections explain how to write complex conditional expressions.

Conditional Expressions That Use AND 9

If all of the conditions in a complex expression are separated by the word AND, then the
expression is true only if all of the conditions are true.

For example, consider the following expression which has two conditions separated by
the word AND:

SALES–QTR1 > 3000 AND HIRE–DATE < 1/1/1997

The above conditional expression is true if both of the two conditions are true. That is,
the expression is true if the SALES–QTR1 value is greater than 3000, and the HIRE–DATE field
is less than January 1, 1997. The following table shows the result of the above
conditional expression with various values for the SALES–QTR1 and the HIRE–DATE fields:

You may mix relation conditions and bit field conditions in the same conditional
expression, as in the following example:

SALES–QTR1 > 5000 AND FULL–TIME

For the above conditional expression to be true, the SALES–QTR1 field must be greater
than 5000 (a relation condition), and the FULL–TIME bit field must be "on" (a bit field
condition).

A conditional expression can have as many conditions as you like. The following
example has 3 conditions, all separated with the word AND:

LAST–NAME = ’SMITH’ AND HIRE–DATE > 1/1/1980 AND SALES–QTR1 > 10000

The above condition would be true if the LAST–NAME field is equal to "SMITH" and the
HIRE-DATE field is greater than January 1, 1980 and the SALES–QTR1 field is greater than
10000.

Sales-Qtr1 Value Hire-Date Value Conditional Expression Is:

5000 5/1/1960 TRUE

5000 6/3/1999 FALSE

1000 5/1/1960 FALSE

1000 6/3/1999 FALSE
CIMS Report Writer User Guide 9-25 ■

■ General Syntax Rules

Conditional Expressions
Note • You may use the ampersand symbol (&) in place of the word AND in
conditional expressions. For example, the conditional expression shown above
could also be written like this:

LAST–NAME = ’SMITH’ & HIRE–DATE > 1/1/1980 & SALES–QTR1 > 10000

Conditional Expressions That Use OR 9

If all of the conditions in a complex expression are separated by the word OR, then the
expression is true as long as at least one of the conditions is true.

Consider a conditional expression using the same two conditions as shown in an earlier
example, but separated this time with the word OR, instead of AND.

SALES–QTR1 > 3000 OR HIRE–DATE < 1/1/1997

The conditional expression is now true if either the SALES–QTR1 field is greater than 3000,
or if the HIRE–DATE field is less than January 1, 1997. The following table shows the result
of the above conditional expression for various values of the SALES–QTR1 and HIRE–DATE
fields:

You may mix relation conditions and bit field conditions in the same conditional
expression, as in the following example:

SALES–QTR1 > 5000 OR FULL–TIME

For the above conditional expression to be true, either the SALES–QTR1 field must be
greater than 5000 (a relation condition), or the FULL–TIME bit field must be "on" (a bit
field condition).

A conditional expression can have as many conditions as you like. The following
example has three conditions, all separated with the word OR:

LAST–NAME = ’SMITH’ OR LAST–NAME = ’JONES’ OR SALES–QTR1 > 10000

The above condition would be true if the LAST–NAME field was equal to either "SMITH" or
"JONES", or if the SALES–QTR1 field was greater than 10000.

Sales-Qtr1 Value Hire-Date Value Conditional Expression Is:

5000 5/1/1960 TRUE

5000 6/3/1999 TRUE

1000 5/1/1960 TRUE

1000 6/3/1999 FALSE
■ 9-26 CIMS Report Writer User Guide

General Syntax Rules ■

Conditional Expressions
Note • You may use the vertical bar (|) in place of the word OR in conditional
expressions. For example, the conditional expression shown above could also be
written like this:

LAST–NAME = ’SMITH’ LAST–NAME = ’JONES’ SALES–QTR1 > 10000

Conditional Expressions That Use Both AND and OR 9

You may use both the word AND and the word OR in a single conditional expression.
When this is done, parentheses are normally used to indicate the order in which the
conditions should be evaluated. For example:

(LAST–NAME = ’JONES’ OR LAST–NAME = ’SMITH’) AND SALES–QTR1 > 5000

In the above expression, parentheses are used around the two conditions that are
separated by the word OR. That indicates that these conditions should be evaluated first.
If the LAST-NAME is equal to either "JONES" or "SMITH", then the parenthesized expression
is true. Otherwise it is false. For the entire conditional expression to be true, this
parenthesized result must be true, and the remaining condition (SALES–QTR1 > 5000)
must be true. In other words, the parentheses cause the entire expression to be true if: the
LAST–NAME is either "JONES" or "SMITH", and the SALES–QTR1 value is greater than 5000.

Now, consider what would happen if the parentheses are used around the AND
conditions, like this:

LAST–NAME = ’JONES’ OR (LAST–NAME = ’SMITH’ AND SALES–QTR1 > 5000)

Again, the conditions enclosed in parentheses are evaluated first. In this case, the
parenthesized expression is true only if LAST–NAME equals "SMITH" and SALES–QTR1 is
greater than 5000. The entire expression is then true, if either the LAST–NAME equals
"JONES", or if this parenthesized result is true. In other words, the above expressions is
true if: the LAST–NAME equals "JONES", or if both of the following are true: the LAST–NAME
equals "SMITH" and the SALES–QTR1 value is greater than 5000.

Note • If both the words AND and OR are used in an expression, and parentheses are
not used to specify evaluation order, the conditions connected by AND will be
evaluated before those connected by OR. However, it is always best to use parentheses
in such expressions, so that there is no question or confusion about the order of
evaluation.

How to Shorten Long Expressions 9

When one operand is being compared to more than one value in a conditional
expression, you may write that expression in a shorter form. For example, consider the
following:

LAST–NAME = ’JONES’ OR LAST–NAME = ’SMITH’ OR LAST–NAME = ’BROWN’
CIMS Report Writer User Guide 9-27 ■

■ General Syntax Rules

Conditional Expressions
The expression above is true if the LAST–NAME field is equal to any of the three character
literals (’JONES’, ’SMITH’, or ’BROWN’). Since all three relation conditions have the same first
operand, you are allowed to omit that operand after specifying it the first time. You could
specify the same conditional expression this way:

LAST–NAME = ’JONES’ OR = ’SMITH’ OR = ’BROWN’

Here are the rules for shortening expressions. You remember that the format of a relation
condition is:

operand1 operator operand2

Rule • When two or more consecutive conditions have the same operand1, you may
omit that operand after the first condition. Thus, whenever operand1 is not specified
in a condition, the most recently specified operand1 will be used.

The conditional expression shown earlier contains three conditions, each separated with
the word OR. Those three conditions are:

• LAST–NAME = ’JONES’
• = ’SMITH’
• = ’BROWN’

The first condition is written out fully, containing two operands and a relation operator.

The second condition contains no operand1. It just has an operator and operand2.
Therefore, the most recently specified operand1 (LAST–NAME, from the previous
condition) will be used as operand1 in the second condition.

The same thing applies to the third condition, which also lacks an operand1.

We can actually simplify the conditional expression even further. Since the second and
third conditions also use the same relation operator as the first condition (namely, "="),
we can omit that operator from those conditions as well:

LAST–NAME = ’JONES’ OR ’SMITH’ OR ’BROWN’

Rule • When two or more consecutive conditions have the same operand1 and the
same relation operator, you may omit those items after the first condition. Thus,
whenever neither operand1 nor a relation operator is specified in a condition, the
most recently specified operand1 and the most recently specified relation operator
will be used.

Here is an example that combines the two forms of simplification:

SALES–QTR1 = 1000 OR 2000 OR < 500

The above conditional expression contains three relation conditions, separated with the
word OR. The three conditions are:

• SALES–QTR1 = 1000
• 2000
• < 500
■ 9-28 CIMS Report Writer User Guide

General Syntax Rules ■

Conditional Expressions
The first condition is written out fully, containing two operands and a relation operator.
The second condition does not contain an operand1 nor a relation operator, so SALES–
QTR1 and "=" are assumed (from the previous condition.) The third condition does not
contain an operand1, but does contain a relation operator ("<"). So only operand1
(SALES–QTR1) is assumed. The above conditional expression is the same, then, as the
following one:

SALES–QTR1 = 1000 OR SALES–QTR1 = 2000 OR SALES–QTR1 < 500

Here is one more example of a shortened conditional expression:

LAST–NAME ¬= ’SMITH’ AND ’JONES’ AND ’BROWN’

The above conditional expression is true if the LAST–NAME field is not equal to "SMITH"
and is not equal to "JONES" and is not equal to "BROWN". In other words, the expression
is true if the LAST–NAME contains anything other than those three names. The above
statement is processed as if it were written like this:

LAST–NAME ¬= "SMITH" AND LAST–NAME ¬= "JONES" AND LAST–NAME ¬= "BROWN"

How to Negate Conditions 9

This section explains:

■ how to use the word NOT in conditional expressions

You may precede any condition with the word NOT to negate the result of its evaluation.

For example, consider the following relation condition:

SALES–QTR1 > 2000

The above condition would be true if SALES–QTR1 contained 8000, since 8000 is greater
than 2000. However, we could negate that condition like this:

NOT SALES–QTR1 > 2000

Now, the conditional expression would be false when SALES–QTR1 contained 8000. That
is because the condition SALES–QTR1 > 2000 which is true, is negated by the preceding NOT.

You may also negate a bit field condition.

Example
NOT FULL–TIME

The above conditional expression is true when bit field condition is false, that is, when
the FULL–TIME bit field is "off".

You may also negate a group of conditions in parentheses, as in this example:

NOT (SALES–QTR1 > 2000 AND HIRE–DATE < 1/1/1997)

The conditional expression above is now true whenever the complex condition within
parentheses is false.
CIMS Report Writer User Guide 9-29 ■

■ General Syntax Rules

Conditional Expressions
Note • You may use the not symbol (¬) in place of the word NOT in conditional
expressions. For example, the preceding conditional expression could also be written
like this:

 ¬ (SALES–QTR1 > 2000 AND HIRE–DATE < 1/1/1997)

Examples of Conditional Expressions 9

Case 1. This example compares the contents of two numeric fields.

INCLUDEIF: SALES–QTR2 > SALES–QTR1

The above statement would include all records where the SALES–QTR2
field was greater than the SALES–QTR1 field.

Case 2. This example compares the contents of a numeric field with a numeric
literal.

INCLUDEIF: TOTAL–SALES < 1000

This example would include all records where the TOTAL–SALES field was
less than 1000.

Case 3. Here is an example of comparing a date field with a date literal.

INCLUDEIF: HIRE–DATE < 6/1/1990

This example would include all records where the HIRE-DATE field was less
than (earlier than) June 1, 1990.

Case 4. Here is an example of comparing a time field with a time literal.

INCLUDEIF: SALES–TIME >= 14:00:00

This example would include all records where the SALES–TIME field was
greater than or equal to 14:00:00 (2 o'clock PM.)

Case 5. Here is an example of comparing a character field with a character
literal.

INCLUDEIF: LAST-NAME = 'JONES'

This example would include all records where the LAST-NAME field
contained the name JONES. Notice that character literals must be enclosed
in either quotes or apostrophes. Numeric, date and time literals are not
enclosed in quotes or apostrophes.

When character operands of different lengths are compared, Report
Writer temporarily pads the shorter operand with right–hand blanks
before making the comparison.
■ 9-30 CIMS Report Writer User Guide

General Syntax Rules ■

Conditional Expressions
Case 6. This example scans a character field to see if a certain text is contained
anywhere within the field.

INCLUDEIF: CUSTOMER : 'CORP'

This example would select all records where the letters "CORP" appeared
together anywhere within the CUSTOMER field. Records with customer
names such as "ABC CORP", "CORPORATION OF AMERICA", and "ACME,
INCORPORATED" would be selected using this example.

Case 7. This example bases the decision to include records on more than one
comparison.

INCLUDEIF: SEX = 'F' AND
 HIRE-DATE >= 1/1/1986 AND <= 12/31/1986

This example would select all records where the SEX field contained "F",
and the HIRE-DATE field was greater than or equal to January 1, 1986 and
was less than or equal to December 31, 1986. In other words, the records
included would be for all female employees hired sometime in 1986.

Case 8. Here is another example of multiple comparisons.

INCLUDEIF: PRODUCT–CODE = '801' OR '802' OR >= '900'

This example would select all records where the PRODUCT–CODE field
contained any of the following:

■ 801

■ 802

■ any value greater than or equal to 900

Case 9. Here is another example that uses multiple comparisons.

INCLUDEIF: REGION = 'NORTH' AND
 (LAST-NAME = 'JONES' OR 'SMITH' OR 'BROWN')

This example would select all records where the REGION field was equal to
"NORTH", and the LAST-NAME field was any one of the following:

■ JONES

■ SMITH

■ BROWN
CIMS Report Writer User Guide 9-31 ■

■ General Syntax Rules

Computational Expressions
Computational Expressions 9

This section explains:

■ how to write computational expressions

Computational expressions are used to specify a value. They are used in the COMPUTE
statement to specify the value to assign to "compute" fields. A computational expression
might be nothing more than a single field name (or literal). Or, it might be dozens of
lines long and involve many mathematical operations. The syntax for a computational
expression follows.

Case 10. This example checks whether a bit field is ON or OFF. The following
statement will include only those records where the PART-TIME bit field is
ON.

INCLUDEIF: PART-TIME

And the following statement would select all records where the PART-TIME
bit field is OFF.

INCLUDEIF: NOT PART–TIME

Case 11. Here is an example of comparing the contents of a field to a literal
hexadecimal value.

INCLUDEIF: DATE1 = X'000000' OR SALARY = X'FFFFFFFF'

When comparing a field to a hexadecimal literal, no data conversion is
performed on the field at all. The comparison will be made against the
data just as it exists in the input record. When a hexadecimal comparison
is made to a field whose value is the result of a user data exit, the
comparison will be made against the result passed to Report Writer by the
data exit. Hexadecimal comparisons are not allowed to "computed"
fields (since they do not exist in a real input record).

As with regular character literals, when a hexadecimal literal is compared
with a field of a different length, Report Writer pads the shorter operand
with right–hand blanks (not hex zeros) before making the comparison.
This blank padding is done regardless of the data type of the field.

 Computational Expression Syntax

OPERAND [OPERATOR OPERAND] [OPERATOR OPERAND] ...

Note: in addition, any number of paired parentheses may be used to specify the
order of operations.
■ 9-32 CIMS Report Writer User Guide

General Syntax Rules ■

Computational Expressions
Only the first operand is required. You may specify as many additional operator/
operand pairs as you like. In general, the data type of the first operand (character,
numeric, date, time or bit) determines the data type of the entire expression. All
subsequent operands must be of the same data type. Also, only the operators supported
for that data type may be used in the expression.

Note • There is one exception to the rule that all operands in a computational
expression must be of the same data type as the first. For time computational
expressions, the operands may be either time values or numeric values. Numeric
values are treated as being a number of seconds. Thus, the following COMPUTE
statement adds 1 minute (60 seconds) to the time value in SALES–TIME:

COMPUTE: NEW–TIME = SALES–TIME + 60

Operands in Computational Expressions 9

An operand in a computational expression specifies a data value. An operand can be any
of the following:

■ a literal value. (See How to Write Literals on page 9-8.)

■ a field from an input file. (An input file is a file named in the INPUT statement, or in
an optional READ statement.)

■ a computed field (defined in a preceding COMPUTE statement)

■ a built–in field (a complete list of built–in fields is found in Appendix C, Built-In
Fields)

■ a built–in function’s result (a complete list of built–in functions is found in
Appendix D, Built-In Functions)

Operators in Computational Expressions 9

An operator in a computational expression specifies an operation to perform on the
operands. The operators allowed in a particular expression will depend on the data type
of the expression. For character, numeric, and time expressions, the following table
shows the operators that are supported. (No operators are supported for date and bit
expressions.)

Character Operators Numeric and Time Operators

+ (concatenation) + (addition)

- (subtraction)

* (multiplication)

/ (division)
CIMS Report Writer User Guide 9-33 ■

■ General Syntax Rules

Computational Expressions
Note • Be sure to use one or more blanks both before and after the subtraction
operator (–) in computational expressions. This is required because the same symbol
is valid as a character within field names. The following:

ABC–XYZ

would be considered the name of a single field, named ABC–XYZ. However, the
following:

ABC – XYZ

would be considered a subtraction operation, where field XYZ is subtracted from field
ABC. For the other operators (+, * and /), blanks are not required around the symbol,
but are allowed.

Note • The standard numeric operations are also allowed in computational
expressions for time values. When performing these operations, Report Writer first
converts each time value into a numeric value (which corresponding to the number
of seconds in the time value.) The operations are then performed on these numeric
values. The final result is then converted back into a HH:MM:SS[.SSS...] time value.

Note • While no date operators are directly supported, it is still possible to perform
certain manipulation of date fields. Use the #MAKENUM built–in function (see
page D-12) to convert a date field to a numeric value. You can then perform addition,
subtraction, etc. with this numeric value. Then, use the #MAKEDATE built–in function
(page D-16) to convert the modified numeric value back to a date field. An example
of this is shown on page 9-36.

Order of Operations 9

Operations within parentheses are performed first. If nested parentheses are
encountered, the most deeply nested operations are performed first. When parentheses
are not used, or for operations at the same level of parentheses, the order of operations
is as follows:

■ multiplications and divisions are performed first

■ additions and subtractions are performed afterwards

Operations of equal priority are performed left to right.
■ 9-34 CIMS Report Writer User Guide

General Syntax Rules ■

Computational Expressions
Examples of Computational Expressions 9

Case 1. Here is an example of a COMPUTE statement with a character type
computational expression:

COMPUTE: X = 'AAA' + 'BBB'

In the above example, the second operand ("BBB") is concatenated to (or,
"appended to") the first operand "AAA". The new field X would contain
the value "AAABBB".

Case 2. Following is an example of a numeric computational expression:

COMPUTE: YEARLY–SALES =
 SALES–QTR1 + SALES–QTR2 + SALES–QTR3 + SALES–QTR4

The above example computes the yearly sales total by adding the four
quarterly sales fields together.

Case 3. Following is an example of using parentheses within a computational
expression to indicate the order of operation:

COMPUTE: PERCENT–CHANGE(DIVTOTS) =
 ((SALES–QTR2 – SALES–QTR1) * 100) / SALES–QTR1

The above example computes the percentage change between the second
quarter sales figure and the first quarter sales figure. The computational
expression first subtracts SALES–QTR1 from SALES–QTR2, since that is the
most deeply embedded operation. That difference is then multiplied by
100. The resulting product is then divided by SALES–QTR1, giving the
percentage change.

Note • The DIVTOTS parm tells Report Writer not to simply total the
values of this field for the Grand Totals line (or control break total
lines.) Totalling percentages often does not give a meaningful result.
Instead, the DIVTOTS parm tells Report Writer to "divide totals" –– that
is, divide the total value of the numerator by the total value of the
denominator when printing total lines. For more information on the
DIVTOTS parm, see Computing True Percentages and Ratios at Control Breaks
on page 4-71.

Case 4. Following is an example of using a numeric built–in function in a
computational expression:

COMPUTE: ABS–PERCENT–CHANGE = #ABS(PERCENT–CHANGE)

The above example uses the numeric built–in function #ABS ("absolute
value"). The percentage change computed in the preceding case might be
either a positive or a negative number. The #ABS function returns the
absolute value (that is, the positive value) of its parm (the PERCENT–
CHANGE field, in this example). The new field (ABS–PERCENT–CHANGE) now
contains the percentage change as a positive value.
CIMS Report Writer User Guide 9-35 ■

■ General Syntax Rules

Computational Expressions
Case 5. You may embed computational expressions within most built–in
functions. For example, we could have defined the ABS–PERCENT–CHANGE
field all in one computational expression by using an imbedded
expression within the #ABS function:

COMPUTE: ABS–PERCENT–CHANGE =
 #ABS(((SALES–QTR2 – SALES–QTR1) * 100) / SALES–QTR1)

Case 6. There are no operators supported for date fields. Therefore,
computational expressions for these types of fields consists only of a
single operand. For example:

COMPUTE: START–DATE = 1/1/1995

The above example simply assigns the literal date 1/1/1995 to the new
field START–DATE.

Case 7. The single operand in a date expression may also be a date type field, or a
date type built–in function. For example:

COMPUTE: DUE–DATE = #MAKEDATE(#MAKENUM(SALES–DATE) + 10)

The above example computes the DUE–DATE field by adding 10 days to the
SALES–DATE. It does this by first converting the SALES–DATE field to a
number, then adding 10 to that number, and finally converting this sum
back into a date field.

The above COMPUTE statement could also be separated into three
statements, perhaps making it easier to understand:

COMPUTE: NUM–SALES–DATE = #MAKENUM(SALES–DATE)
COMPUTE: NUM–DUE–DATE = NUM–SALES–DATE + 10
COMPUTE: DUE–DATE = #MAKEDATE(NUM–DUE–DATE)

Case 8. There are no operators supported for bit fields. Bit expressions can consist
only of a single operand. That operand may be either another bit type
field, or a bit type built–in function (such as #ON and #OFF). For example:

COMPUTE: TRUE–BIT = #ON

The above example defines a new bit type field named TRUE–BIT, whose
value is ON.
■ 9-36 CIMS Report Writer User Guide

10
Control Statement Syntax

Introduction .10-2

Syntax Notation .10-2

ASM Statement .10-3

BREAK Statement .10-5

COBOL Statement . 10-18

COLUMNS Statement . 10-24

COMPUTE Statement . 10-31

COPY Statement . 10-42

FIELD Statement . 10-47

FILE Statement . 10-58

FOOTNOTE Statement . 10-65

INCLUDEIF Statement . 10-70

INPUT Statement . 10-72

OPTIONS Statement . 10-81

READ Statement . 10-102

SORT Statement . 10-117

TITLE Statement . 10-125
CIMS Report Writer User Guide 10-1 ■

■ Control Statement Syntax

Introduction
Introduction 10

This chapter contains the complete syntax information for each Report Writer control
statement. The statements appear in alphabetical order.

Syntax Notation 10

In the syntax boxes throughout this chapter, the following conventions are used.

lowercase items in lower case letters represent values to be supplied by the user

uppercase items in UPPER CASE letters must be typed exactly as they appear.
(However, valid abbreviations are also accepted.)

brackets items within [square brackets] are optional

ellipsis an ellipsis (...) indicates that the preceding item(s) may be repeated
any number of times

underline underlined items indicate the default value that will be used if no
other value is specified

slash slashes (/) indicate mutually exclusive items. One and only one of the
items separated by slashes may be specified.
■ 10-2 CIMS Report Writer User Guide

Control Statement Syntax ■

ASM Statement
ASM Statement 10

PURPOSE 10

Specifies that an Assembler language record layout follows. Report Writer processes the
Assembler record layout and creates "internal" FIELD statements corresponding to the
Assembler fields in the record layout. This lets you define the fields in a file by using an
Assembler record layout, rather than writing FIELD statements.

Also use this statement to have Report Writer convert an Assembler record layout into
FIELD statements and write those FIELD statements to an output file.

Beginning immediately after the ASM statement (and any of its continuation lines) Report
Writer treats input lines as Assembler code. The Assembler code is assumed to end when
the next Report Writer control statement prefix is encountered. The only exception is that
Report Writer COPY statements may be imbedded in the Assembler code and do not end
the scope of the ASM statement.

FEATURES 10

Use the ASM statement to:

■ specify that an Assembler record layout follows

■ specify whether to print or write out FIELD statements that correspond to the
Assembler record layout

■ specify various options that affect the way the Assembler code is processed

LEARNING MORE 10

The complete syntax of the ASM statement is shown in the following box. A description
of the parms is found under the similar COBOL statement on page 10-18. In addition, the
following parts of the manual relate to the ASM statement:

■ the use of Assembler record layouts to define input files is discussed beginning on
page 6-49
CIMS Report Writer User Guide 10-3 ■

■ Control Statement Syntax

ASM Statement
SYNTAX 10

No parms are required. The parms may appear in any order. For a description of the
parms, see under the COBOL statement (page 10-18) which uses the same parms.

ASM Statement Syntax

ASM: [COLUMN[(ALL)]/DISP[(ALL)]
[FILE(filename/]
[MAXOCCURS(nnnnn/100)]
[NOSEQ]
[OUTATTR(type,'dlbl/tlbl'[,SYSnnn][,80][,blksize]) (VSE only)]
[OUTDDN(ddname) (MVS only)]
[RELOC]
[SHOWFLDS(YES/NO)]
[STARTCOL(nnnnn)/STARTDISP(nnnnn)]

Standard Alternate
Spelling Spellings
COLUMN COL
NO N
YES Y
■ 10-4 CIMS Report Writer User Guide

Control Statement Syntax ■

BREAK Statement
BREAK Statement 10

PURPOSE 10

Specifies that a control break should occur whenever the value of a certain field changes.
Only sort fields may be used to create control breaks–– that is, a field may be named in
a BREAK statement only if it has also appeared in a preceding SORT statement.

The BREAK statement is also used to customize the Grand Totals.

For summary reports (where no individual detail lines are printed), the BREAK statement
determines how the summary lines will look.

You may have more than one BREAK statement in a report. The use of multiple BREAK
statements is discussed on page 4-96.

Note • The SORT statement can also be used to request many control breaks. The SORT
statement can specify: which fields to break on; the control break spacing to use; and,
which, if any, of the statistical lines should print at a break. You must use the BREAK
statement, however, if you want to print footing lines, heading lines, or customized
statistical lines at a control break.

FEATURES 10

Use the BREAK statement to:

■ specify control break spacing (whether to skip to a new page or print a number of
blank lines at a control break)

■ specify one or more customized footing lines to print at the end of a control group

■ specify whether or not to print a total line at the end of a control group

■ specify whether or not to print other statistical lines (such as averages, maximums,
minimums) at the end of a control group

■ customize the text used in the total and other statistical lines

■ specify one or more customized heading lines to print at the beginning of a control
group, and optionally at the top of subsequent pages

■ specify how the Grand Total lines should look

■ suppress total lines at control breaks

LEARNING MORE 10

The complete syntax of the BREAK statement is shown on the following pages. In
addition, the following parts of the manual relate to the BREAK statement:

■ a lesson on using the BREAK statement in reports begins on page 2-37
CIMS Report Writer User Guide 10-5 ■

■ Control Statement Syntax

BREAK Statement
■ a lesson on using the BREAK statement in PC files begins on page 3-28

■ advanced uses of the BREAK statement are discussed beginning on page 4-66

■ using the BREAK statement to produce summary reports is discussed beginning on
page 2-46

■ using the BREAK statement to produce summary PC files is discussed beginning on
page 3-33

■ customizing the Grand Totals with a BREAK statement is discussed beginning on
page 4-99

SYNTAX 10

The fieldname is required in a BREAK statement, and must be the first item after the
statement prefix. All other parms are optional and can appear in any order on the BREAK
statement.

fieldname/#GRAND
Identifies the control break field. Whenever the contents of this field changes, a control
break will occur in the report or PC file. This field must have been specified as a sort field
in a preceding sort statement.

BREAK Statement Syntax

BREAK: fieldname/#GRAND
[AVERAGE[(print–expression)]]
[FOOTING(print–expression) ...]
[HEADING(print–expression) ...]
[MAXIMUM[(print–expression)]]
[MINIMUM[(print–expression)]]
[NZAVERAGE[(print–expression)]]
[NZMINIMUM[(print–expression)]]
[REPEAT]
[SPACE(n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/

ODDPAGE/ODDPAGE1)]
[TOTAL[(print–expression)]/NOTOTAL]

Note: the syntax for the print-expressions is shown on page page 10-13.

Standard Alternate
Spelling Spellings
AVERAGE AVER, AVG
BREAK BRK
FOOTING FOOT
HEADING HEAD
MAXIMUM MAX
MINIMUM MIN
NOTOTAL NOTOT, NOTOTALS, NOTOTS
NZAVERAGE NZAVER, NZAVG
NZMINIMUM NZMIN
PAGE PG, P
SPACE SPC
TOTAL TOT, TOTALS, TOTS
■ 10-6 CIMS Report Writer User Guide

Control Statement Syntax ■

BREAK Statement
You may also specify #GRAND rather than an actual field name. Using #GRAND allows you
to specify control break options for the Grand Totals control break (see page 4-99.)

Examples
BREAK: REGION

The above example specifies that a control break should occur whenever the REGION field
changes value. Since no other parms are specified, default processing will take place at
the break: a line of region totals will print, followed by 2 blank lines.

BREAK: #GRAND AVERAGE

The above statement specifies that an average line is wanted at the "Grand Totals"
control break. The average line will print after the Grand Total line at the end of the
report.

AVERAGE[(print–expression)]

Specifies that each numeric column's average value should print at the control break,
and optionally can specify how the average line should look. The default is not to print
averages at each break. If you simply specify the AVERAGE parm, a default average line will
print at the control break. It will begin with the following text:

*** AVERAGE VALUE

After the above text, the average values themselves will print, lined up under the numeric
columns of the report. If you would like the average line to begin with some other text,
specify a print expression with the AVERAGE parm. The print expression can contain any
combination of literal text, data from input files, and certain control group wide statistics
for numeric and time fields. The syntax of the print expression is shown on page 10-12.
The use of the AVERAGE parm is discussed on page 4-77.

Examples
BREAK: REGION AVERAGE

The above example causes a default average line to print whenever the REGION field
changes value.

BREAK: REGION AVERAGE('AVERAGES FOR' REGION)

The above example specifies that the average line should begin with the text "AVERAGES
FOR xxxxx" (where xxxxx is the value of the REGION field.)

FOOTING(print–expression)

Specifies a print line to print at the end of a control group. The print line may contain
any combination of literal text, data from input files, and certain break–wide statistics
for numeric and time fields. You may have as many FOOTING parms as you like. The
footing lines will print in the order in which they appear in this statement. The first
footing line will print immediately after the last regular detail line in the control group
and before the total line, if any. The syntax of the print expression for this parm is shown
on page 10-12. The use of the FOOTING parm is discussed on page 4-80.
CIMS Report Writer User Guide 10-7 ■

■ Control Statement Syntax

BREAK Statement
Examples
BREAK: REGION FOOTING('END OF REGION' REGION)

The above example causes a line that reads "END OF REGION xxxxx" to print whenever the
REGION field changes (where xxxxx is the value of the REGION field.)

BREAK: REGION
 FOOTING('TOTAL AMOUNT=' AMOUNT(TOTAL) 'AVERAGE AMOUNT=' AMOUNT(AVERAGE))

The above example prints a single line that shows the AMOUNT field's total value and
average value for the control group.

HEADING(print–expression)

Specifies a print line to print at the beginning of a control group. The print line may
contain any combination of literal text and data from input files. You may have as many
HEADING parms as you like. The heading lines will print in the order in which they appear
in this statement. The syntax of the print expression for this parm is shown on
page 10-12. The use of the HEADING parm is discussed on page 4-93. Specifying the REPEAT
parm (in the BREAK statement) causes all of the HEADING lines to also be repeated at the
top of each page of the report (following the column headings).

Example
BREAK: REGION HEADING('REGION' REGION 'FOLLOWS')

The above example causes a line that reads REGION xxxxx FOLLOWS to print whenever a
new REGION is about to start printing (where xxxxx is the value of the REGION field.)

MAXIMUM[(print–expression)]

Specifies that each numeric column's maximum value should print at the control break,
and optionally can specify how the maximum line should look. The default is not to
print maximums at each break. If you simply specify the MAXIMUM parm, a default
maximum line will print at the control break. It will begin with the following text:

*** MAXIMUM VALUE

After the above text, the maximum values themselves will print, lined up under the
numeric columns of the report. If you would like the maximum line to begin with some
other text, specify a print expression with the MAXIMUM parm. The print expression can
contain any combination of literal text, data from input files, and certain control group
wide statistics for numeric and time fields. The syntax of the print expression is shown
on page 10-12. The use of the MAXIMUM parm is discussed on page 4-77.

Examples
BREAK: REGION MAXIMUM

The above example causes a default maximum line to print whenever the REGION field
changes value.

BREAK: REGION MAXIMUM('MAXIMUMS FOR' REGION)
■ 10-8 CIMS Report Writer User Guide

Control Statement Syntax ■

BREAK Statement
The above example specifies that the maximum line should begin with the text
"MAXIMUMS FOR xxxxx" (where xxxxx is the value of the REGION field.)

MINIMUM[(print–expression)]

Specifies that each numeric column's minimum value should print at the control break,
and optionally can specify how the minimum line should look. The default is not to print
minimums at each break. If you simply specify the MINIMUM parm, a default minimum
line will print at the control break. It will begin with the following text:

*** MINIMUM VALUE

After the above text, the minimum values themselves will print, lined up under the
numeric columns of the report. If you would like the minimum line to begin with some
other text, specify a print expression with the MINIMUM parm. The print expression can
contain any combination of literal text, data from input files, and certain control group
wide statistics for numeric and time fields. The syntax of the print expression is shown
on page 10-12. The use of the MINIMUM parm is discussed on page 4-77.

Examples
BREAK: REGION MINIMUM

The above example causes a default minimum line to print whenever the REGION field
changes value.

BREAK: REGION MINIMUM('MINIMUMS FOR' REGION)

The above example specifies that the minimum line should begin with the text "MINIMUMS
FOR xxxxx" (where xxxxx is the value of the REGION field.)

NZAVERAGE[(print–expression)]

Specifies that each numeric column's average value (not considering zero values) should
print at the control break, and optionally can specify how the non–zero average line
should look. (Non–zero averages are useful if missing data (zero values) is throwing off
a column's average.) The default is not to print non–zero averages at each break. If you
simply specify the NZAVERAGE parm, a default non–zero average line will print at the
control break. It will begin with the following text:

*** AVERAGE OF NON–ZERO VALUES

After the above text, the non–zero averages themselves will print, lined up under the
numeric columns of the report. If you would like the non–zero average line to begin with
some other text, specify a print expression with the NZAVERAGE parm. The print expression
can contain any combination of literal text, data from input files, and certain control
group wide statistics for numeric and time fields. The syntax of the print expression is
shown on page 10-12. The use of the NZAVERAGE parm is discussed on page 4-77.

Examples
BREAK: REGION NZAVERAGE
CIMS Report Writer User Guide 10-9 ■

■ Control Statement Syntax

BREAK Statement
The above example causes a default non–zero average line to print whenever the REGION
field changes value.

BREAK: REGION NZAVERAGE('NON–ZERO AVERAGES FOR' REGION)

The above example specifies that the non–zero average line should begin with the text
"NON–ZERO AVERAGES FOR xxxxx" (where xxxxx is the value of the REGION field.)

NZMINIMUM[(print–expression)]

Specifies that each numeric column's minimum value (not considering zero values) should
print at the control break, and optionally can specify how the non–zero minimum line
should look. The default is not to print non–zero minimums at each break. If you simply
specify the NZMINIMUM parm, a default non–zero minimum line will print at the control
break. It will begin with the following text:

*** MINIMUM OF NON–ZERO VALUES

After the above text, the non–zero minimums themselves will print, lined up under the
numeric columns of the report. If you would like the non–zero minimum line to begin
with some other text, specify a print expression with the NZMINIMUM parm. The print
expression can contain any combination of literal text, data from input files, and certain
control group wide statistics for numeric and time fields. The syntax of the print
expression is shown on page 10-12. The use of the NZMINIMUM parm is discussed on
page 4-77.

Examples
BREAK: REGION NZMINIMUM

The above example causes a default non–zero minimum line to print whenever the
REGION field changes value.

BREAK: REGION NZMINIMUM('NON–ZERO MINIMUMS FOR' REGION)

The above example specifies that the non–zero minimum line should begin with the text
"NON–ZERO MINIMUMS FOR xxxxx" (where xxxxx is the value of the REGION field.)

REPEAT

Specifies that all heading lines (defined in the HEADING parms) should be repeated at the
top of each new page (following the titles and column headings). Otherwise, the
heading lines print only once, at the beginning of the control group.

Example
BREAK: REGION REPEAT

HEADING('REGION' REGION 'FOLLOWS')
HEADING('====================')

The above example specifies two heading lines for the REGION control break. In addition
to printing at the beginning of each new control group (which may occur in the middle
of a page), the heading lines will also be repeated at the top of each subsequent page.
■ 10-10 CIMS Report Writer User Guide

Control Statement Syntax ■

BREAK Statement
SPACE(n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/ODDPAGE/
ODDPAGE1)

Specifies the type of spacing desired at the control break, after any footing lines, total
lines, and statistics lines have printed. If no SPACE parm is specified, the default is to print
2 blank lines. A description of each SPACE option is shown in the following table.

Example
BREAK: REGION SPACE(PAGE1)

The above example requests that the report skip to a new page whenever the REGION field
changes value. Page numbering will also start over with page one for each new region.

TOTAL[(print–expression)]/NOTOTAL

Specifies whether or not to print totals at the control break, and optionally can specify
how the total line should look. The default is to print totals at each break. Specifying
NOTOTAL suppresses the total line at a control break.

By default, total lines begin with the following text:

*** TOTALS FOR xxxxxxx (n,nnn ITEMS)

Spacing
Option Description

n Skips this number of blank lines.

PAGE Skips to the top of the next page of the report.

PAGE1 Works like PAGE, but also resets page number to "one".

NEWSHEET Skips to a new sheet of paper. In order for this feature to work, you must
also use the OPTION statement's PRTSHEET parm to specify a character string
that can be sent to your printer to tell it to skip to a new sheet of paper. (The
PRTSHEET option is described starting on page 10-97.)

NEWSHEET1 Works like NEWSHEET, but also resets page number to "one".

ODDPAGE Skips to the next odd numbered page. This parm accomplishes the same
thing as the NEWSHEET parm, but can be used even if you do not have a
character string to send to the printer to force it to skip to a new sheet.
However, for this option to work you must ensure that the first page of your
report prints on the front side of a sheet of paper. As long as page 1 of your
report prints on the front side of a sheet of paper, all other odd numbered
pages will also be on front sides.

ODDPAGE1 Works like ODDPAGE, but also resets page number to "one".
CIMS Report Writer User Guide 10-11 ■

■ Control Statement Syntax

BREAK Statement
After the above information, the actual total values print, lined up under the numeric
columns of the report. If you would like the total line to begin with some other text,
specify a print expression within the TOTAL parm. The print expression can contain any
combination of literal text, data from input files, and certain break–wide statistics for
numeric and time fields. The syntax of the print expression is shown on page 10-12. The
use of the TOTAL parm is discussed on page 4-74.

Examples
BREAK: REGION TOTAL

The above example causes a default total line to print whenever the REGION field changes
value. (Since the default is to print a total line, the TOTAL parm in this example was not
necessary.)

BREAK: REGION TOTAL('TOTALS FOR' REGION)

The above example specifies that the total line should begin with the text "TOTALS FOR
xxxxx" (where xxxxx is the value of the REGION field.)

PRINT EXPRESSION SYNTAX 10

print–expression

Specifies how to build one print line that will print at the control break. The syntax for
a print expression within a BREAK statement parm is similar to print expressions used in
other statements. There are, however, some additional features that can be used in BREAK
statement print expressions. These include additional built–in fields, and certain control
group wide statistical parms to use with numeric and time fields. The complete syntax
for a print expression within a BREAK statement follows. BREAK statement print
expressions are discussed beginning on page 4-80.
■ 10-12 CIMS Report Writer User Guide

Control Statement Syntax ■

BREAK Statement
fieldname

(Within a print–expression). Specifies that the print line should contain the contents of
this field. For all print expressions that print at the end of a control group, the field's data is
taken from the last record in the control group (unless a statistical parm is specified for
it.) For heading print expressions (which print at the beginning of a control group), the
data is taken from the first record in the control group that follows.

The field must be available to Report Writer at the time the BREAK statement is processed.
That is, the field name must be one of the following:

■ a field from an input file. (An input file is a file named in the INPUT statement, or in
an optional READ statement.)

■ a computed field (defined in a preceding COMPUTE statement)

■ a built–in field (See Appendix C, Built-In Fields for a complete list of built–in fields)

Print–Expression Syntax (in BREAK Statement)

A print–expression consists of one or more items, optionally separated by numeric spacing factors:

[n] item [n] item [n] item ...

Each item can be either a fieldname or a literal text. Each item can optionally be followed by a parm list
in parentheses:

fieldname[([ASCII]
[BIZ]
[display-format]
[LEFT/CENTER/RIGHT]
[TOTAL/AVERAGE/MAXIMUM/MINIMUM/

NZAVERAGE/NZMINIMUM]
[width])]

'literal'[(width)]

Standard Alternate
Spelling Spellings
AVERAGE AVER, AVG
CENTER CJ
LEFT LJ
MAXIMUM MAX
MINIMUM MIN
NZAVERAGE NZAVER, NZAVG
NZMINIMUM NZMIN
RIGHT RJ
TOTAL TOT
CIMS Report Writer User Guide 10-13 ■

■ Control Statement Syntax

BREAK Statement
Notice that several of the built–in fields listed in Appendix C are exclusively for use in
the BREAK statement. These fields may be used in any BREAK statement print expression
except within the HEADING parm. (The use of these special fields is discussed on page 4-91.)
These special built–in fields are:

Example
BREAK: REGION
 FOOTING(#ITEMS 'ITEM' 0 #ITEM–ENDING 'IN REGION' REGION)

The print expression in the above example uses a combination of literals, fieldnames and
built–in fieldnames. It also contains one spacing factor. The resulting footing line would
print when there is only one record in the control group:

1 ITEM IN REGION xxxxx

The same statement causes a footing line like the following to print, when the control
group contains more than one record. Notice that the word "ITEMS" is now plural.

2 ITEMS IN REGION xxxxx

A spacing factor of 0 is used to prevent a blank space from appearing between the literal
text "ITEM" and the contents of the field #ITEM–ENDING. Without the spacing factor, the
footing line would say "2 ITEM S", rather than "2 ITEMS".

'literal'

(Within a print–expression). Specifies that the print line should contain this literal text.

Example
See the example above under the fieldname parm. The FOOTING parm print expression in
that example uses the literal texts "ITEM" and "IN REGION".

n

(Within a print–expression.) This is a numeric spacing factor. It specifies how many
blank spaces to leave between two items in the print line. A spacing factor of zero is
allowed. (It results in two items appearing in the print line with no blank spaces between
them.) If no spacing factor is given, the default is to leave one blank space between items.

Built-In Field Type Description

#ITEMS Numeric Contains the number of items (records) included in the
control group that has just ended.

#COUNTER Numeric Contains the cumulative number of items (records) that
have been processed up through the control group just
ended. This field is like #ITEMS, except that it is not reset
to zero at every control break.

#ITEM–ENDING Character Contains either the letter "S", or a blank, depending on
the value of #ITEMS. When #ITEMS equals one, #ITEM–
ENDING is a blank. Otherwise, #ITEM–ENDING is an "S".
■ 10-14 CIMS Report Writer User Guide

Control Statement Syntax ■

BREAK Statement
Example
See the example above under the fieldname parm. A spacing factor of 0 is used in that
example.

ASCII

(Within a print–expression.) Specifies that the final, formatted field should be converted
from EBCDIC to ASCII in the print line. To specify your own EBCDIC-to-ASCII translation
table, use the ASCIITABLE option in the OPTIONS statement (page 10-83.) Otherwise,
Report Writer uses a default translation table.

Example
COMPUTE: BREAK-LIT = 'TOTALS FOR REGION '
BREAK: REGION NOTOTALS
 FOOTING(BREAK-LIT(ASCII) 0 REGION(ASCII) 0 X'20' 0 AMOUNT(TOTAL, ASCII))

The above example shows how to print an ASCII line containing a literal text, the
contents of the REGION field, and the total value of the AMOUNT field at a control break. An
ASCII space (X'20') will appear between the REGION and AMOUNT fields. See page 4-21 for
more information on creating ASCII output files.

BIZ

(Within a print–expression.) This "blank if zero" parm specifies that blanks should
appear in the print line for the field if it has a value of zero. This parm is allowed only
for numeric, date and time fields. A date is considered to have a zero value if the month,
day and last 2 digits of the year are all zeros (regardless of the value of the century part
of the year.)

Example
BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED ON' HIRE–DATE(BIZ))

The above example causes the HIRE–DATE field in the footing line to be left blank
whenever it contains a zero date.

display–format

(Within a print–expression.) Specifies how a field should be formatted in the print line.
A complete list of display formats is found in Appendix B, Display Formats. If this parm is
not specified, Report Writer will use the display format from:

■ the FIELD or COMPUTE statement that defined the field

■ an OPTIONS statement FORMAT parm

■ the default display format shown in the table on page B-8

Example
BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED ON' HIRE–DATE(LONG1))
CIMS Report Writer User Guide 10-15 ■

■ Control Statement Syntax

BREAK Statement
The above example causes the HIRE–DATE field in the footing line to be spelled out in
LONG1 format.

Example
END OF EMPLOYEES HIRED ON MAY 1, 1995

LEFT/CENTER/RIGHT

(Within a print–expression.) Specifies how the data should be justified within the space
allocated for it in the print line.

Example
BREAK: HIRE–DATE
 FOOTING('END OF EMPLOYEES HIRED ON' HIRE–DATE(LONG1,RIGHT))

The above example also displays the HIRE–DATE field (in LONG1 format) in the footing
line. Dates displayed in LONG1 format are allocated 18 characters in a print line (in order
to print long dates like "SEPTEMBER 31, 1999".) The RIGHT parm causes the contents of
the HIRE–DATE field to be right–justified within its 18–character area in the print line.

END OF EMPLOYEES HIRED ON MAY 1, 1995

TOTAL/AVERAGE/MAXIMUM/MINIMUM/
NZAVERAGE/NZMINIMUM

(Within a print–expression.) Allowed only for numeric and time fields. Specifies that a
statistical value for a field should appear in the print line, rather than the field's contents
from an individual record. (These statistical parms may not be used in HEADING print
expressions.) When none of these parms is specified, the contents of a field will be taken
from the last record in the control group (for print lines that appear at the end of a
control group.) If one of these parms is specified, then the control group total (or average,
maximum, etc.) will appear in the print line instead. The use of these parms is illustrated
in the section beginning on page 4-80.

Example
BREAK: REGION
 FOOTING('LARGEST SALE IN REGION WAS' AMOUNT(MAXIMUM))
 FOOTING('AVERAGE SALE IN REGION WAS' AMOUNT(AVERAGE))

The above example causes two footing lines to print at the end of a control group. The
first footing line will display the control group's maximum AMOUNT value. The second
footing line will show the control group's average AMOUNT value.

width

(Within a print–expression.) This numeric parm specifies the number of characters to
reserve for an item in the print line. Use this parm if the default width is too large or too
small.
■ 10-16 CIMS Report Writer User Guide

Control Statement Syntax ■

BREAK Statement
Example
BREAK: REGION
 FOOTING(#ITEMS(11) 'ITEM' 0 #ITEM–ENDING 'IN REGION' REGION)

The above example causes 11 characters to be reserved for printing the number of items
(#ITEMS) in the footing line:

nnn,nnn,nnn ITEMS IN REGION xxxxx
CIMS Report Writer User Guide 10-17 ■

■ Control Statement Syntax

COBOL Statement
COBOL Statement 10

PURPOSE 10

Specifies that a Cobol language record layout follows. Report Writer processes the Cobol
record layout and creates "internal" FIELD statements corresponding to the Cobol fields
in the record layout. This lets you define the fields in a file by using a Cobol record
layout, rather than writing FIELD statements.

Also use this statement to have Report Writer convert a Cobol record layout into FIELD
statements and write those FIELD statements to an output file.

Beginning immediately after the COBOL statement (and any of its continuation lines)
Report Writer treats input lines as Cobol code. The Cobol code is assumed to end when
the next Report Writer control statement prefix is encountered. The only exception is that
Report Writer COPY statements may be imbedded in the Cobol code and do not end the
scope of the COBOL statement.

FEATURES 10

Use the COBOL statement to:

■ specify that a Cobol record layout follows

■ specify whether to print or write out FIELD statements that correspond to the Cobol
record layout

■ specify various options that affect the way the Cobol code is processed

LEARNING MORE 10

The complete syntax of the COBOL statement is shown on the following pages. In
addition, the following parts of the manual relate to the COBOL statement:

■ the use of Cobol record layouts to define input files is discussed beginning on
page 6-49
■ 10-18 CIMS Report Writer User Guide

Control Statement Syntax ■

COBOL Statement
SYNTAX 10

No parms are required. The parms may appear in any order. Note that the ASM statement
also uses these same parms.

COLUMN[(ALL)]/DISP[(ALL)]

Specifies whether the COLUMN parm or the DISP parm should be used in the FIELD
statements that Report Writer creates from the Cobol record layout. (This parm is only
meaningful if you also specify the SHOWFLDS(YES) parm and/or the OUTDDN/OUTATTR
parm.) If neither COLUMN nor DISP is specified, the COLUMN parm will be used whenever
necessary in the FIELD statements created. If ALL is specified with either parm, the COLUMN
or DISP parm will be present in all of the FIELD statements created. If ALL is not specified,
the COLUMN or DISP parm will appear only in those FIELD statements where it is necessary
(that is, in FIELD statements that define fields out of the normal sequence.)

The ALL parm may be useful if you're having problems using a new record layout. Specify
DISP(ALL) to see the displacement that Report Writer has assigned to each field. Then
compare these displacements with those printed in the Data Map section of an actual
Cobol compilation of the same record layout. This may help you locate the source of the
error.

Examples
COBOL: DISP

The above statement specifies that the FIELD statements printed in the control listing or
written to an output file will use DISP parms (rather than COLUMN parms.) The DISP parm
will only be present in FIELD statements that define fields out of the normal order.

COBOL: COLUMN(ALL)

The above statement specifies that the COLUMN parm (rather than the DISP parm) should
be used in FIELD statements printed or written out. All FIELD statements will have a
COLUMN parm.

COBOL Statement Syntax

COBOL: [COLUMN[(ALL)]/DISP[(ALL)]]
[FILE(filename/*)]
[MAXOCCURS(nnnnn/100)]
[NOSEQ]
[OUTATTR(type,'dlbl/tlbl' [,SYSnnn] [,80] [,blksize]) (VSE only)]
[OUTDDN(ddname) (MVS only)]
[RELOC]
[SHOWFLDS(YES/NO)]
[STARTCOL(nnnnn)/STARTDISP(nnnnn)]

Standard Alternate
Spelling Spellings
COLUMN COL
NO N
YES Y
CIMS Report Writer User Guide 10-19 ■

■ Control Statement Syntax

COBOL Statement
FILE(filename/*)

Specifies the file to which the fields defined by the record layout belong. An asterisk
indicates the current file (which is the default.) The current file is the file named in the
most recent FILE statement.

Example
COBOL: FILE(EMPL–FILE)

The above statement specifies that the fields defined by the Cobol record layout belong
to the EMPL–FILE (rather than the current file.)

MAXOCCURS(nnnnn/100)

Specifies the maximum number of occurrences for which individual field definition is
necessary. This applies only to items having an OCCURS clause (in Cobol) or a repetition
factor (in Assembler.) By default, up to 100 occurrences of each such item are defined as
individual fields. If your record layout has a field with a large number of occurrences and
you need to be able to reference all of these occurrences individually, specify a MAXOCCURS parm
with a sufficiently large value. However, if you do not need to address such fields
individually, it will save memory and processing time to leave the default in effect. In
extreme cases (with many thousands of occurrences) creating an internal field definition
for each occurrence may require more memory than is available in the region (or
partition) and an "out of memory" abnormal end could occur.

Specifying MAXOCCURS(0) means that all occurrences of each array should be defined
individually.

Note • See the section beginning on page 6-59 for a discussion on how the
individual fields in an array are named.

Example
COBOL: MAXOCCURS(2000)

The above statement will cause up to 2000 individual fields to be defined for each array
in the record layout. (With the ASM statement, it will cause up to 2000 individual fields
to be defined for each item defined with a repetition factor.)

NOSEQ

Valid only for the COBOL statement. Specifies that numeric checking of Cobol sequence
numbers should not be performed. Report Writer normally performs this checking to
help detect a Cobol record layout that is not formatted correctly and which may result
in wrong field definitions. Use this parm if the Cobol record layout you use has non–
numerics in columns 1 through 6 and you do not want warning messages to appear in
the control listing.

Note • Even when NOSEQ is not specified, Report Writer only prints warning messages
for the first 5 sequence number errors encountered.
■ 10-20 CIMS Report Writer User Guide

Control Statement Syntax ■

COBOL Statement
Example
COBOL: NOSEQ

The above statement specifies that Report Writer should not examine the contents of
columns 1 through 6 of the Cobol record layout.

OUTATTR(type, 'dlbl/tlbl' [,SYSnnn] [,80] [,blksize])

VSE only. Specifies that FIELD statements corresponding to the record layout be written
to the specified output file. The output file must be defined as a fixed length file with 80–
byte records. The blocksize may be any multiple of 80. The OUTATTR parm describes
various attributes of the desired output file. The allowed values within the OUTATTR parm
are:

Example
COBOL: OUTATTR(DASD,'FLDOUT')

The above statement specifies that FIELD statements should be written to the disk output
file identified by the FLDOUT DLBL statement in the execution JCL.

type This parm is required. It tells Report Writer what kind of device to
write the FIELD statements to. It must be one of the following values:

DASD a SAM file on a DASD device (disk.) Use DASD (rather than
VSAM) for VSAM–managed SAM files.

TAPE a SAM file on a magnetic tape

VSAM an ESDS VSAM file

'dlbl/tlbl' This parm is required. It tells Report Writer what DLBL or TLBL is used
in the JCL for the output file. The 1- to 7-byte name within
apostrophes (or quotation marks) must be the same as the filename
in a DLBL or TLBL statement in the execution JCL.

SYSnnn This parm is required for TAPE output. It is treated as a comment for
other output types. It identifies the logical unit to write the output to.
The value specified here must also be "assigned" in the JCL.

80 This parm is optional. It specifies the length of the output records to
be written. If specified, it must be 80, which is also the default.

blksize This parm is optional. It specifies the block size to use when writing
a DASD or TAPE output file. (This parm is not allowed for VSAM output
types.) This value must be a multiple of 80. If omitted, single record
blocking is used.
CIMS Report Writer User Guide 10-21 ■

■ Control Statement Syntax

COBOL Statement
OUTDDN(ddname)

MVS only. Specifies that FIELD statements corresponding to the record layout should be
written to an output file identified by this DDNAME in the execution JCL. The output file
must be defined as a fixed length file with 80–byte records. The blocksize may be any
multiple of 80.

Example
COBOL: OUTDDN(FLDOUT)

The above statement specifies that FIELD statements should be written to the output file
identified by the FLDOUT DD statement in the execution JCL.

RELOC

Specifies that any FIELD statements that are printed or written out should be
"relocatable" whenever possible. This option may make it easier for you to modify your
Report Writer file definition when a record layout changes. That is, you may be able to
insert new FIELD statements without having to change all of the FIELD statements
following the new one. When RELOC is specified, Report Writer attempts to use
fieldnames, rather than numbers, in the FIELD statements' COLUMN/DISP parm whenever
possible.

Example
COBOL: RELOC OUTDDN(FLDOUT)

The above statement specifies that the FIELD statements written to the FLDOUT DD should
be made as relocatable as possible.

SHOWFLDS(YES/NO)

Specifies that FIELD statements corresponding to the record layout should be printed in
the control listing. This is especially useful when working with a new record layout. It
allows you to see the names Report Writer has assigned to each field (including the
names of individual items within arrays, and items that were renamed to make them
unique). The listing also shows the data type of each field (character or numeric.)

Example
COBOL: SHOWFLDS(YES)

The above statement specifies that FIELD statements corresponding to the Cobol record
layout should be printed in the control listing.

STARTCOL(nnnnn)/
STARTDISP(nnnnn)

Specifies the column (or displacement) to be used for the first item in the record layout
that follows. If not specified, the first item defined will start in the "default location" for
the file it belongs to. If this is the first item defined for a file, the default location will be
column 1. In Cobol layouts, this starting column/displacement will also be used for the
first item in any subsequent 01 level implicit (or explicit) redefines. In Assembler
layouts, this starting column/displacement will also be used for the first item in any
subsequent DSECT.
■ 10-22 CIMS Report Writer User Guide

Control Statement Syntax ■

COBOL Statement
Example
COBOL: STARTCOL(251)

The above statement specifies that the first field defined by the Cobol record layout
should begin in column 251. Any subsequent record layouts starting with a 01 level item
will also begin in column 251.
CIMS Report Writer User Guide 10-23 ■

■ Control Statement Syntax

COLUMNS Statement
COLUMNS Statement 10

PURPOSE 10

This statement determines what columns of data the report or PC file will have. Each
field named in this statement will result in one column of data in the output. These
columns will appear in the same order as the field names appear in the COLUMNS
statement.

Also use the COLUMNS statement to specify column headings and other formatting details.

You may have any number of COLUMNS statements per run. Each COLUMNS statement results
in one detail line in the report or PC file. A request with no COLUMNS statement will have
no detail lines in the output.

FEATURES 10

Use the COLUMNS statement to:

■ specify the columns (of data fields or of literal texts) desired in the report or PC file

■ specify the column headings to be used in the report or PC file

■ specify how many blank spaces should appear between each column in reports

■ specify a column's width

■ specify how to format the data within a column. (For example, should a numeric
field be displayed with or without commas? Should leading zeros be printed or not?
Should a date field be printed as MM/DD/YY or should the name of the month be
spelled out completely, etc.)

■ specify how to justify the data within a column (left, center, or right)

■ specify that repeating values should be blanked out

■ specify which numeric columns should be totalled at control breaks and at the Grand
Total

LEARNING MORE 10

The complete syntax of the COLUMNS is shown on the following pages. In addition, the
following parts of the manual relate to the COLUMNS statement:

■ a lesson on using the COLUMNS statement in reports begins on page 2-7

■ a lesson on using the COLUMNS statement in PC files begins on page 3-6

■ advanced uses of the COLUMNS statement are discussed beginning on page 4-3

■ the use of multiple COLUMNS statements is discussed beginning on page 4-29
■ 10-24 CIMS Report Writer User Guide

Control Statement Syntax ■

COLUMNS Statement
SYNTAX 10

The contents of the COLUMNS statement is simply a print expression. It is also valid to have
an empty COLUMNS statement. An empty COLUMNS statement results in a blank line in the
report or PC file.

COLUMNS Statement Syntax

COLUMNS: print–expression

NOTE: the syntax for the print-expression is shown on page page 10-25.

STANDARD Alternate
SPELLING Spellings
COLUMNS COLUMN, COLS, COL

COLUMNS STATEMENT SYNTAX

COLUMNS: print–expression

Print–Expression Syntax (in COLUMNS Statement)

A print–expression consists of one or more items, optionally separated by numeric spacing factors:

COLUMNS: [n] item [n] item [n] item ...

Each item can be either a fieldname or a literal text. Each item can optionally be followed by a parm list
in parentheses:

fieldname[([ACCUM/NOACCUM]
[ASCII]
[BIZ]
[display–format]
['heading1 heading2...']
[LEFT/CENTER/RIGHT]
[NOREPEAT/NOREPEATPAGE]
[width])]

'literal'[(['heading1 heading2...']
[width])]

Standard Alternate
Spelling Spellings
ACCUM ACC
CENTER CJ
COLUMNS COLUMN, COLS, COL
LEFT LJ
NOACCUM NOACC
NOREPEAT NOREP
NOREPEATPAGE NOREPPAGE
RIGHT RJ
CIMS Report Writer User Guide 10-25 ■

■ Control Statement Syntax

COLUMNS Statement
fieldname

Names a field that should appear as a column in the report or PC file. The field must be
available to Report Writer at the time the COLUMNS statement is processed. That is, the field
must be one of the following:

■ a field from an input file. (An input file is a file named in the INPUT statement, or in
an optional READ statement.)

■ a computed field (defined in a preceding COMPUTE statement.)

■ a built–in field. (See Appendix C, Built-In Fields for a complete list of built–in fields.)

Example
COLUMNS: LAST–NAME HIRE–DATE TOTAL–SALES

The above example specifies that the report (or PC file) should contain three columns.
The fields displayed in the columns will be LAST–NAME, HIRE–DATE, and TOTAL–SALES.

'literal'

Specifies that the report should have a column displaying this literal text. (Enclose the
text in either apostrophes or quotation marks.) This feature is especially useful when
multiple COLUMNS statements are used. A literal text at the beginning of each line serves
to identify the data on that line. A column with a literal text (such as dashes) can also be
used to print a "blank" column in a report, to be filled in by hand.

Examples
COLUMNS: '1ST QUARTER' SALES–QTR1
COLUMNS: '4TH QUARTER' SALES–QTR4

The above example produces a report with two detail lines per input record. In each line,
the first column will contain literal text, and the second column will contain a sales
figure. The first column in each line identifies which quarter's data is displayed in the
second column. (See page 4-30 for a similar report example.)

COLUMNS: LAST–NAME TELEPHONE 'NEW TELEPHONE: –––––––––'

The above example produces a report with three columns. The first two contain the
contents of fields (last name, and the current telephone number.) The third contains the
literal text

NEW TELEPHONE: ––––––––

which provides an area that can be filled in by hand on the hardcopy report. (See
page 4-5 for a similar report example.)

n

This is a numeric spacing factor. It specifies how many blank spaces to leave between two
report columns. (Spacing factors are not used in PC files.) A spacing factor of zero is
allowed if you want no spaces between two columns. If no spacing factor is given, the
default is to leave one blank space between columns. The use of spacing factors is
discussed on page 4-4.
■ 10-26 CIMS Report Writer User Guide

Control Statement Syntax ■

COLUMNS Statement
Note • To change the default spacing factor, use the COLSPACE parm of the OPTION
statement (see page 10-86.)

Example
COLUMNS: LAST–NAME 7 HIRE–DATE

The above example specifies that 7 blank spaces should be left between the LAST–NAME
column and the HIRE–DATE column in the report.

ACCUM/NOACCUM

This parm is valid only for numeric and time fields. It specifies whether a column should be
accumulated or not. Columns that are accumulated will appear in the totals line, as well
as in any other statistics lines that have been requested (such as the average line, the
maximum line, etc.) Columns that are not accumulated will not appear in the totals and
statistics lines.

By default, Report Writer accumulates all numeric fields, with one exception. Numeric
fields that are displayed using a PICTURE which contains special characters are not
accumulated. (Special characters include such things as parentheses, imbedded dashes,
asterisks, etc.) By default, numeric fields displayed with such a PICTURE are not
accumulated and therefore do not appear in the total line and other statistical lines.

By default, time fields are not accumulated. Specify ACCUM if you do want to see totals for
a time field. This might be desired for time fields that contain durations, rather than times
of day.

If an ACCUM or NOACCUM parm is specified in the COLUMNS statement, it overrides any such
parm that may have been specified in the FIELD or COMPUTE statement used to define the
field.

The use of the ACCUM and NOACCUM parms is discussed on page 4-26.

Example
COLUMNS: EMPL–NAME AMOUNT(NOACCUM) TIME–ON–PHONE(ACCUM)

The above example specifies that the AMOUNT column in the report should not be
accumulated. Therefore, that column will not appear in the Grand Totals, or in control
break totals. On the other hand, the time field named TIME–ON–PHONE will be
accumulated. Therefore, it will appear in the Grand Totals and in control break totals.

ASCII

(Within a print–expression.) Specifies that the final, formatted field should be converted
from EBCDIC to ASCII in the print line. To specify your own EBCDIC-to-ASCII translation
table, use the ASCIITABLE option in the OPTIONS statement (page 10-83.) Otherwise,
Report Writer uses a default translation table.

Example
COLUMNS: REGION(ASCII) SALES-DATE(ASCII) AMOUNT(ASCII)
CIMS Report Writer User Guide 10-27 ■

■ Control Statement Syntax

COLUMNS Statement
The above example causes the REGION, SALES-DATE and AMOUNT fields to be formatted in
ASCII. See page 4-21 for more information on creating ASCII output files.

BIZ

This "blank if zero" parm specifies that a column should be left blank if the field has a
value of zero. This parm is allowed only for numeric, date and time fields. A date is
considered to have a zero value if the month, day and last 2 digits of the year are all zeros
(regardless of the value of the century part of the year.)

Example
COLUMNS: REGION SALES–DATE(BIZ) SALES-TIME(BIZ) AMOUNT(BIZ)

The above example specifies that the SALES-DATE, SALES-TIME and AMOUNT columns
should be left blank when their respective fields have zero values.

display–format

Specifies how the contents of a field should be formatted in a report. A complete list of
display formats is found in Appendix B, Display Formats. If you do not specify a display
format in the COLUMNS statement, Report Writer uses a default display format. This will
be:

■ the display format (if any) specified when the field was defined (in a FIELD or COMPUTE
statement), or

■ the display format (if any) specified in a previous OPTIONS statement's FORMAT parm
(see page 10-88.) Use the FORMAT option if you want to change the default way that all
dates, times or numbers in your report are formatted.

■ the default display format shown in the table on page B-8.

PC File Note • Display formats should not normally be used when creating PC files.
Report Writer chooses the display format needed to create an import file for the PC
program specified in the OPTIONS statement. After importing your PC file into a PC
spreadsheet, you can use the PC program's features to change the way dates or
numbers are formatted.

Example
COLUMNS: LAST–NAME HIRE–DATE(LONG1) TOTAL–SALES(PIC'$$$,$$9')

The above example uses display formats for two of the columns. The HIRE–DATE field will
be displayed in the LONG1 format (that is, with the month name spelled out.) The TOTAL–
SALES field will be formatted using a floating dollar sign, and will print whole dollars
only–– no decimal digits. The use of this parm is discussed on page 4-13.

'heading1|heading2...'

Specifies the column heading to use for an item in a report or PC file. Enclose the column
heading text in either apostrophes or quotation marks. If you need to use that same
character (an apostrophe or quotation mark) within the text, use two of those characters
for each character desired.
■ 10-28 CIMS Report Writer User Guide

Control Statement Syntax ■

COLUMNS Statement
Use a vertical bar (|) to separate the column heading text into separate lines. It is not
necessary to add your own "padding" spaces in order to make the column heading texts
stack neatly in your report. Report Writer automatically centers each part of the column
heading for you.

Example
COLUMNS: LAST–NAME('EMPLOYEE NAME') '–––––––––'('NEW TELEPHONE')

The above example specifies column headings for both columns. The column heading
for the LAST–NAME field will be "EMPLOYEE" on the first line, and "NAME" on the second line.
Even though the two texts are different lengths, they will be correctly centered over the
report column. The column that just contains literal dashes will have a column heading
that says "NEW TELEPHONE" on a single line.

Note • You may use the HDGSEP parm of the OPTION statement to select a character
other than the vertical bar (|) to use as the separator character for column heading
texts.

If you do not want any column headings for a particular column, specify a blank column
heading text. To suppress even the column heading underscores, specify a null column
heading text.

Example
COLUMNS: LAST–NAME(' ') HIRE–DATE('')

The above statement specifies that neither the LAST–NAME column nor the HIRE–DATE
column should have columns headings. The width of the LAST–NAME column will still be
indicated by a number of underscores in the column heading. The HIRE–DATE column
will not even have underscores over it.

If a column heading text is not specified in the COLUMNS statement, Report Writer uses the
column headings specified when the field was defined (in a FIELD or COMPUTE statement.)
If no columns headings were specified when the field was defined, Report Writer uses
the field name itself as the column heading. The field name will be broken apart at each
dash or underscore, with each part of the name going onto a separate heading line.

See page 4-7 for more information on column headings.

LEFT/CENTER/RIGHT

Specifies how the data should be justified within a column. The use of these parms is
discussed on page 4-24.

Example
COLUMNS: LAST–NAME(CENTER) HIRE–DATE(LONG1,RIGHT)

The above example specifies that the names printed in the LAST–NAME column should be
centered within the column. The HIRE–DATE column (in LONG1 format) will be right-
justified.
CIMS Report Writer User Guide 10-29 ■

■ Control Statement Syntax

COLUMNS Statement
NOREPEAT/NOREPEATPAGE

These parms specify that "repeated" values should not be printed in the report or PC file.
The NOREPEAT parm blanks out repeated values except at the top of each new page and at
the beginning of each new control group. The NOREPEATPAGE parm blanks out repeated
values except at the top of each new page. The use of these parms is discussed beginning
on page 4-22.

Example
COLUMNS: REGION(NOREPEAT) EMPL–NAME SALES–DATE CUSTOMER AMOUNT

The above example specifies that repeating values of the REGION field should be blanked
out.

width

This is a numeric parm that specifies the number of characters to reserve for a particular
column in a report or PC file. Use this parm if the default column width is larger or
smaller than you desire.

Example
COLUMNS: LAST–NAME TOTAL–SALES(20)

The above example specifies that 20 bytes should be reserved for printing the TOTAL-
SALES column in the report. This might be needed if the sales figures were very large and
the default column width was not big enough to display all of the digits. The use of the
width parm is discussed on page 4-12.
■ 10-30 CIMS Report Writer User Guide

Control Statement Syntax ■

COMPUTE Statement
COMPUTE Statement 10

PURPOSE 10

Defines a new field that can be computed using one or more existing fields. You may use
arithmetic operations, string operations and built–in functions to compute the value of
the new field. You may also use logical conditions to determine what value to assign to
a field.

A computed field may be used in any way that a field from an actual file may be used.
That is, you may print it in a report column or title, output it to a PC file, sort on it, break
on it, total it, compare it to other fields, and even use it to compute additional new fields.

FEATURES 10

Use the COMPUTE statement to:

■ define a new field using a name of your choice

■ specify one or more computational expressions to use in assigning a value to that
field

■ specify certain conditions that should be evaluated to determine what value to assign
to the new field.

■ specify that control break totals and Grand Totals for this field should be computed
by performing a group–wide division rather than merely summing its individual
values (DIVTOTS parm)

■ specify the column heading to use when the field appears in a report or PC file

■ specify the display format to be when displaying the field

■ specify whether or not the field should be accumulated, and thus appear in the Grand
Total line, etc.

■ specify the width of a character field

■ specify the number of decimal places to be retained in a numeric or a time field

LEARNING MORE 10

The complete syntax of the COMPUTE is shown on the following pages. In addition, the
following parts of the manual relate to the COMPUTE statement:

■ a lesson on using the COMPUTE statement in reports begins on page 2-19

■ a lesson on using the COMPUTE statement in PC files begins on page 3-18

■ use of the DIVTOTS parm in the COMPUTE statement is discussed beginning on page 4-71

■ suggestions on writing COMPUTE statements for maximum CPU efficiency are given in
Appendix I, Speed-Up Tips
CIMS Report Writer User Guide 10-31 ■

■ Control Statement Syntax

COMPUTE Statement
SYNTAX 10

Note • Values are assigned to computed fields each time a new logical input record
is assembled. For runs which do not use MULTI–type READ statements, that means each
time a new primary input file record is read. (For a discussion of logical input
records, see the READ statement Notes on page 10-113.)

There are two forms of the COMPUTE statement. A simple COMPUTE statement contains a
single computational expression. Each time a new logical input record is assembled, the
specified computation is performed and a value is assigned to the computed field.

A conditional COMPUTE statement may contain multiple computational expressions. It will
also contain one or more conditional expressions. Each time a new logical input record
is assembled, one of the following actions will be taken:

■ a computational expression from one of the ASSIGN parms will be used to assign a
value to the computed field, or

■ the current value of the computed field will be retained, or

■ a default value will be assigned to the computed field.

COMPUTE STATEMENT SYNTAX

COMPUTE:fieldname[(parms)] =computational–expression

or

COMPUTE: fieldname[(parms)] =
WHEN(conditional–expr)ASSIGN(computational–expr)

[WHEN(conditional–expr)ASSIGN(computational–expr)]
[WHEN(conditional–expr)ASSIGN(computational–expr)]
...

[ELSEASSIGN(computational–expr)/RETAIN]

THE parms available are:

ACCUM/NOACCUM
display–format
DIVTOTS
'heading1|heading2...'
nnn

STANDARD Alternate
SPELLING Spellings
ACCUM ACC
ASSIGN ASS
COMPUTE COMP
DIVTOTS DIVTOT, DT
NOACCUM NOACC
WHEN WH
■ 10-32 CIMS Report Writer User Guide

Control Statement Syntax ■

COMPUTE Statement
The action taken depends on the conditions contained in the conditional expressions in
the WHEN parms. See Note 1. Conditional COMPUTE Statements on page 10-40 for more
information on Conditional COMPUTE statements.

Note 2. Data Type of the COMPUTE Field on page 10-41 discusses the data type of
computed fields.

A description of the size of character compute fields, and of the number of decimal
digits in numeric and time compute fields appears under the "nnn" parm (page 10-37.)

fieldname[(parms)] 10

Specifies the name of the field being created, and optionally specifies certain attributes
for it. The fieldname must not have been previously used (in either a FIELD statement for
the same file, or in a previous COMPUTE statement.) You may name the new field anything
you like, within the rules governing field names given on page 9-7.

No parms are required with the fieldname. If desired, specify one or more parms by
placing them in parentheses immediately after the fieldname. (Do not leave a space
between the field name and the open parenthesis). Separate the parms with a comma
and/or one or more blanks.

Example
COMPUTE: SEMI–ANNUAL–SALES = SALES–QTR1 + SALES–QTR2

The above example creates a new field named SEMI–ANNUAL–SALES. It will be a numeric
field, since the first operand in the computational expression (SALES–QTR1) is a numeric
field.

computational–expression

Used in the simple form of the COMPUTE statement. Specifies how to compute the value to
assign to the field. The syntax for computational expressions is shown on page 9-32. A
lesson on writing computational expressions begins on page 2-19.

Example
See the examples beginning on page 10-38.

ACCUM/NOACCUM

This parm is valid only for numeric and time fields. It specifies whether the field should be
accumulated or not when it appears as a column in a report. Fields that are accumulated
will appear in the totals line, as well as in any other statistics lines that have been
requested (such as the average line, the maximum line, etc.) Fields that are not
accumulated will not appear in the totals and statistics lines.

By default, Report Writer accumulates all numeric fields listed in the COLUMNS statement,
with one exception. Numeric fields that are displayed using a PICTURE which contains
special characters are not accumulated. (Special characters include such things as
parentheses, imbedded dashes, asterisks, etc.) By default, numeric fields displayed with
such a PICTURE are not accumulated and therefore do not appear in the total line and other
statistical lines.
CIMS Report Writer User Guide 10-33 ■

■ Control Statement Syntax

COMPUTE Statement
By default, time fields are not accumulated. Specify ACCUM if you do want to see totals for
a time field. Such might be the case for time fields that contain durations, as opposed to
times of day.

Any ACCUM or NOACCUM parm specified here can be overridden directly in the COLUMNS
statement.

The use of the ACCUM and NOACCUM parms is discussed on page 4-26.

Example
COMPUTE: AVERAGE–SALES(NOACCUM) = YEARLY–SALES / 4

The above example specifies that the AVERAGE–ANNUAL–SALES field will not be
accumulated when it appears as a column in a report. Therefore, it will not receive Grand
Totals, or totals at control breaks.

COMPUTE: DURATION(ACCUM) = END–TIME – START–TIME

The above example specifies that the DURATION field should be accumulated. Therefore, a
total value for it will appear in the total lines at control breaks and in the Grand Total
line.

ASSIGN(computational–expression)

Used in the conditional form of the COMPUTE statement. Specifies how to compute a value
which may be assigned to the compute field. If more than one ASSIGN expressions are
used in the COMPUTE statement, they must all compute a result of the same data type. The
syntax for computational expressions is shown on page 9-32. A lesson on writing
computational expressions begins on page 2-19.

For more details on how conditional COMPUTE statements work, see Note 1. Conditional
COMPUTE Statements on page 10-40.

Note • No space is allowed between the word ASSIGN and the parenthesis that follows
it.

Example
See the section entitled EXAMPLES on page 10-38.

display–format

Specifies the default format to be used when displaying this field in a report. A complete
list of display formats is found in Appendix B, Display Formats.

The display–format specified in the COMPUTE statement tells Report Writer the default
format to use when displaying the field anywhere in a report –– in the titles, the main
report lines, the break headings and footings, etc. Any display format specified here can,
however, always be overridden by using a different display format parm directly in a
COLUMNS or TITLE statement, etc.

If this parm is not specified, Report Writer uses a default display format when printing
the field in a report. Default display formats are shown in the table on page B-8.
■ 10-34 CIMS Report Writer User Guide

Control Statement Syntax ■

COMPUTE Statement
Note • Specifying a PC file option (LOTUS, for example) causes any display format
specified in the COMPUTE statement to be overridden (with a display format
appropriate for the desired PC program.)

Example
COMPUTE: AVERAGE–SALES(PIC'$$$,$$9') = YEARLY–SALES / 4

The above example specifies that the AVERAGE–SALES field should be displayed using the
PICTURE "$$$,$$9" whenever it is printed in the report. This picture uses a floating dollar
sign, and does not display any decimal digits.

DIVTOTS

This parm is valid only for certain types of numeric computations. It specifies how the "total"
value for this field should be computed at control breaks and at the Grand Totals line.
By default, a field's total is merely the sum of all the individual values for the field. For
percentages and ratios, such a total is often meaningless. Instead, what is desired is that
the percentage or ratio be computed for the entire control group (or for the entire report,
at the Grand Total.) The DIVTOTS ("divide totals") parm tells Report Writer to compute
the field's total by performing just such a group–wide division. The use of the DIVTOTS
parm is discussed beginning on page 4-71.

DIVTOTS may only be specified for COMPUTE statements that meet all of the following
requirements:

■ At its highest level, the expression must consist of a single division operation. The
numerator and/or denominator themselves, however, can be expressions within
parentheses. All of the following statements qualify as consisting of a "single high
level division":

COMPUTE: A = B / C
COMPUTE: A = B / (C + D + E)
COMPUTE: A = (B + C) / (D + E)
COMPUTE: A = (B/C) / (D/E)

■ Neither the numerator nor the denominator may be literal values. Each must be
either a field or an expression. That is, DIVTOTS would not be allowed for the
following:

COMPUTE: A = B / 100

Computations involving division by a literal value (like the one above) are not ratios
or percentages. A regular total for such fields is more appropriate at control breaks. If
you need a literal in a DIVTOTS COMPUTE statement for some reason, assign the literal
value to a field and then refer to that field in the COMPUTE statement:

COMPUTE: HUNDRED= 100
COMPUTE: A(DIVTOTS) = B / HUNDRED
CIMS Report Writer User Guide 10-35 ■

■ Control Statement Syntax

COMPUTE Statement
■ Only simple COMPUTE statements may use the DIVTOTS parm. It is not allowed in
conditional COMPUTE statements. (Conditional COMPUTE statements are those that use
the WHEN and ASSIGN parms to assign different values to a field.) However, either or
both of the numerator and the denominator can be COMPUTE fields that may have been
computed with conditional COMPUTE statements.

Example
See Case 9. Using the DIVTOTS ("divide totals") parm with a percentage computation. on
page 10-40.

ELSE

Used in the conditional form of the COMPUTE statement. Indicates the action to take if none of
the preceding WHEN parms are "true." When the ELSE parm is followed by an ASSIGN parm,
the value from that ASSIGN parm is assigned to the compute field. When the ELSE parm
is followed by a RETAIN parm, the value of the compute field is not changed–– it retains
whatever value it has. If present, the ELSE parm and its associated ASSIGN/RETAIN parm
must be the last items in the COMPUTE statement.

For more details on how conditional COMPUTE statements work, see Note 1. Conditional
COMPUTE Statements on page 10-40.

Example
See the examples beginning on page 10-38.

'heading1|heading2...'

Specifies the column heading lines to use for this field when it appears as a column in a
report or PC file. Enclose the column heading in either apostrophes or quotation marks.
If you need to use that same character (an apostrophe or quotation mark) within the text,
use two of those characters for each character desired.

Use a vertical bar (|) to separate the column heading text into separate lines. It is not
necessary to add your own "padding" spaces in order to make the column heading texts
stack neatly in your report. Report Writer automatically centers each part of the column
heading for you.

Note • You may use the HDGSEP parm of the OPTION statement to select a character
other than the vertical bar (|) to use as the separator character for column heading
texts.

If no column headings are specified, Report Writer uses the field name itself as the
column heading. The name will be broken apart at each dash or underscore, with each
part of the name going onto a separate heading line.

Any column headings specified here can be overridden by using a column heading parm
directly in the COLUMNS statement.

See page 4-7 for more information on column headings.

Example
COMPUTE: AVERAGE–SALES('AVERAGE ANNUAL SALES') = YEARLY–SALES / 4
■ 10-36 CIMS Report Writer User Guide

Control Statement Syntax ■

COMPUTE Statement
The above example specifies that "AVERAGE ANNUAL SALES" should be used as the column
heading when this field appears in a report. The vertical bars specify that each word will
go on a separate column heading line.

nnn

This parm is valid only for character, numeric and time compute fields. For character fields,
this numeric parm specifies the size of the character field being created. If this parm is
omitted, the default size of the field will be the sum of the size of all operands in the
computational expression. If there are more than one computational expressions in the
statement, the size of the largest possible result is used. If an explicit size parm is specified
and it is not the same as this default size, the computed result will either be truncated or
right–padded with blanks to create a field of the desired size. The maximum size of a
character field is 32K.

Example
COMPUTE: SHORT–NAME(5) = LAST–NAME

The above example creates a character field that is only 5 bytes long. The SHORT-NAME field
will contain the first five bytes of the LAST–NAME field. If the "5" parm had been omitted,
the SHORT–NAME field would have been the same size as the only operand in the
expression–– the LAST–NAME field.

For numeric and time fields, this numeric parm specifies how many decimal digits
should be retained during the computation. The final result, as well as each intermediate
result obtained during the computation, is rounded to this precision. If this parm is
omitted, Report Writer chooses a default number of decimal places to keep, based on the
operands and operations involved in the computational expression(s). The maximum
number of digits (including decimal digits) that Report Writer maintains for numeric
fields is 31.

Examples
COMPUTE: AVERAGE–SALES(0) = YEARLY–SALES / 4

The above example specifies that the AVERAGE–SALES field should not contain any
decimal digits. If the "0" parm had not been specified, some decimal digits would have
been retained in the result.

COMPUTE: PERCENT–CHANGE(4) = (NEW – OLD) / OLD * 100
COLUMNS: PERCENT–CHANGE(P'ZZ9.9')

The above example specifies that 4 decimal digits should be maintained while
computing the value of PERCENT–CHANGE. In the COLUMNS statement, however, we specified
that only 1 decimal digit should actually be displayed for that field. If we had specified
1 decimal digit in the COMPUTE statement, the computed result would have been less
precise, since each intermediate result would have been rounded down to only 1 decimal
digit.

COMPUTE: DURATION(1) = END–TIME – START–TIME
CIMS Report Writer User Guide 10-37 ■

■ Control Statement Syntax

COMPUTE Statement
The above example specifies that the DURATION field contain 1 decimal digit. If the "1"
parm had not been specified, the result would have had the same number of decimal
digits as the operands.

Also see the examples beginning on page 10-38.

RETAIN

Used in the conditional form of the COMPUTE statement. When used, this keyword must be
the last item in the COMPUTE statement and must be preceded by the keyword ELSE. It
specifies that if none of the WHEN parm conditional expressions are true, the COMPUTE field
should retain its current value (rather than be assigned a default value.) For more details
on how conditional COMPUTE statements work, see Note 1. Conditional COMPUTE
Statements on page 10-40. For a speed–up tip relating to the RETAIN parm, see page I-6.

WHEN(conditional–expression)

Used in the conditional form of the COMPUTE statement. Specifies a conditional expression to
be evaluated before assigning a value to the field being created. The WHEN parms are
evaluated in the order in which they appear in the COMPUTE statement. Evaluation of WHEN
parms stops as soon as the first WHEN parm is found whose conditional expression is
"true". The value specified in the subsequent ASSIGN parm is assigned to the computed
field.

The syntax for conditional expressions is shown on page 9-18. A lesson on writing
conditional expressions appears on page 2-13. For more details on how conditional
COMPUTE statements work, see Note 1. Conditional COMPUTE Statements on page 10-40.

Note • No space is allowed between the word WHEN and the parenthesis that follows
it.

Note • If a field containing invalid data is encountered while evaluating the
conditional expression in a WHEN parm, the entire WHEN expression will be considered
false. The associated ASSIGN parm will not be used.

Example
See the examples beginning on page 10-38.

EXAMPLES 10

See page 9-35 for additional examples of COMPUTE statements.

Case 1. Creating a numeric field with a simple COMPUTE statement.
COMPUTE: BONUS = TOTAL–SALES * .08

The above example creates a new field named BONUS. Its value will be computed by
multiplying the TOTAL–SALES field by .08.
■ 10-38 CIMS Report Writer User Guide

Control Statement Syntax ■

COMPUTE Statement
Case 2. Creating a numeric field, based on conditions.
COMPUTE: BONUS(2) = WHEN(HIRE–DATE < 1/1/1980) ASSIGN(TOTAL–SALES * .08)
 WHEN(HIRE–DATE < 1/1/1985) ASSIGN(TOTAL–SALES * .07)
 ELSE ASSIGN(TOTAL–SALES * .05)

The above example creates a new field named BONUS, which will have two decimal digits.
The value assigned to this new field depends on conditions involving the HIRE-DATE
field. When the hire date is before January 1, 1980, the bonus is computed as 8 percent
of the total sales (TOTAL–SALES * .08). If the hire date is before January 1, 1985, then the
bonus is computed based on 7 percent. Otherwise, if neither of the two preceding
conditions is true, the bonus is computed using 5 percent of total sales.

Case 3. Creating a character field, based on conditions.
COMPUTE: STATE–NAME = WHEN(STATE = 'CA') ASSIGN('CALIFORNIA')
 WHEN(STATE = 'AZ') ASSIGN('ARIZONA')
 WHEN(STATE = 'NV') ASSIGN('NEVADA')
 ELSE ASSIGN('?????')

The above example creates a new field called STATE–NAME. It will be a 10 byte character
field, since "CALIFORNIA" is the largest possible value that may be assigned to it. The value
assigned to the STATE–NAME field depends on conditions involving the value of the STATE
field. If the STATE field contains some value other than those listed in the three WHEN
parms, the STATE–NAME field will be assigned a value of 5 question marks. Use this
technique to perform "table lookups."

Case 4. Creating a date field, based on conditions.
COMPUTE: START–DATE = WHEN(HIRE–DATE > 1/1/1990) ASSIGN(HIRE–DATE)
 ELSE ASSIGN(1/1/1990)

The above example creates a new date field called START–DATE. Its value will either be the
value of the HIRE–DATE field (if the hire date is after January 1, 1990), or else it will be the
literal date 1/1/1990.

Case 5. Creating a bit field, based on conditions.
COMPUTE: VIP = WHEN(TOTAL–SALES > 50000 OR HIRE–DATE < 1/1/1985) ASSIGN(#ON)
 ELSE ASSIGN(#OFF)

The above example creates a new bit field named VIP. The value of the field will be ON if
the TOTAL–SALES field is greater than 50000, or if the HIRE–DATE field is earlier than
1/1/1985. Otherwise, the VIP field will be OFF. (The ELSE ASSIGN pair in this example are
not actually necessary, since OFF is the default value assigned to bit fields when none of
the WHEN parms is true.)

Case 6. Creating a character field using a hexadecimal literal.
COMPUTE: MASTER–FILE–KEY = X'FF' + EMPL–NUM + X'0000'

The above example creates a new character field named MASTER–FILE–KEY. It will be a 6
byte field, consisting of 1 byte of "high–values" (X'FF'), followed by the contents of the
3–byte character field EMPL–NUM, followed by 2 bytes of "low values" (hex zeros).
CIMS Report Writer User Guide 10-39 ■

■ Control Statement Syntax

COMPUTE Statement
Case 7. Creating a field using a built–in function.
COMPUTE: BIGGEST–QTR = #MAX(SALES–QTR1,SALES–QTR2,SALES–QTR3,SALES–QTR4)

The above example creates a new numeric field named BIGGEST–QTR. Its value will be the
greater of the four quarterly sales values. A complete list of built–in functions that can
be used in the COMPUTE statement is found in Appendix D, Built-In Functions.

Case 8. Creating a field based on the contents of a bit field.
COMPUTE: BONUS = WHEN(FULL–TIME) ASSIGN(TOTAL–SALES * .10)
 ELSE ASSIGN(TOTAL–SALES * .07)

The above example creates a new numeric field named BONUS. Its value will depend on
the contents of the FULL–TIME bit field. When the FULL–TIME bit is "on", the bonus is
computed as 10 percent of TOTAL–SALES. Otherwise (when the bit field is "off"), the
bonus is computed as 7 percent of TOTAL–SALES.

Case 9. Using the DIVTOTS ("divide totals") parm with a percentage
computation.
COMPUTE: PERCENT–TAX(DIVTOTS) = TAX / AMOUNT

The above example computes the PERCENT–TAX field by dividing the TAX field by the
AMOUNT field. If the DIVTOTS parm had not been specified, the sum of all of the
PERCENT–TAX fields would have printed in all total lines. The DIVTOTS parm tells Report
Writer to use the result of a group–wide division as the total value instead of such a sum.
At control breaks and at Grand Totals time, Report Writer will now divide the total value
of TAX by the total value of AMOUNT. This group–wide division will then be used instead
of the normal total for the PERCENT–TAX field.

NOTES 10

Note 1. Conditional COMPUTE Statements

The value assigned to the result field is determined by evaluating each of the WHEN
expressions, in the same order in which they are written. As soon as a WHEN expression is
found that is "true", the corresponding ASSIGN expression is calculated and the field is
assigned this value. If none of the WHEN expressions are "true", the field is assigned the
value of the ELSE ASSIGN expression, if any. Or, if ELSE RETAIN was specified (and none
of the WHEN expressions was true) the compute field will retain the value it had for the
previous logical input record. If none of the WHEN expressions are "true", and no ELSE
ASSIGN/RETAIN parm is present, the field will be set to a default value. The default value
depends on the type of field being defined, as shown in the following table:

Field Type Default Value

Character Blanks

Numeric Zero

Date Zeros (00/00/0000)
■ 10-40 CIMS Report Writer User Guide

Control Statement Syntax ■

COMPUTE Statement
Note 2. Data Type of the COMPUTE Field

In general, the data type of the COMPUTE field will be the data type of the first operand
found in the first (or only) computational expression.

There is one exception to this rule and it involves time fields. A computational
expression for a time value may contain a mixture of time and numeric operands. A
COMPUTE field will be considered a time field if any of the computational expressions use
a time operand, regardless of the data type of the first operand in the expression. This
allows you to begin time–type computational expressions with a numeric operand.

Time Zeros (00:00:00)

Bit OFF

Field Type Default Value
CIMS Report Writer User Guide 10-41 ■

■ Control Statement Syntax

COPY Statement
COPY Statement 10

PURPOSE 10

Specifies that control statements stored in a dataset should be processed at this point.
This is useful for groups of control statements that are used in many different jobs.

Also use this statement to copy Cobol or Assembler record layouts from their respective
libraries.

You are allowed to have additional COPY statements imbedded among the statements
that are being copied. This nesting of COPY statements is allowed to any level.

FEATURES 10

Use the COPY statement to:

■ specify where the control statements to be copied are located

■ specify whether or not to list the copied control statements in the control listing

LEARNING MORE 10

The complete syntax of the COPY statement is shown on the following pages. In addition,
the following parts of the manual relate to the COPY statement:

the Report Writer Copy Library is discussed beginning on page 6-39

■ the MVS JCL aspects of the copy library are discussed beginning on page 8-11

■ the VSE JCL aspects of the copy library are discussed beginning on page 8-21

■ the use of the COPY statement in conjunction with Cobol and Assembler record
layouts is discussed on page 6-64
■ 10-42 CIMS Report Writer User Guide

Control Statement Syntax ■

COPY Statement
SYNTAX 10

Either a copyname parm or a DDNAME parm is required. All other parms are optional. If
present, the copyname parm must be the first parm in the COPY statement. Other parms
may appear in any order.

copyname

Identifies a member to be copied from a PDS (MVS) or from a Librarian sublibrary (VSE).
If present, copyname must be the first parm in the COPY statement. The copyname parm
can be any of the following:

■ a member name.
Example: COPY: SALES

■ a member name and a member type (VSE only).
Example: COPY: SALES.SW

■ an alias name (under certain circumstances).
Example: COPY: SALES–FILE

A member name is a 1– to 8–byte alphanumeric name that begins with a non–numeric
character. The special characters #, $, and @ are also allowed in member names.

For MVS, the member will be copied from a PDS identified by a DD statement in the JCL.
Report Writer will use the DD statement whose DDNAME is:

■ the one named in the PDSDDN parm of the COPY statement, if any, or

■ "COBLIB", if within the scope of a COBOL statement, or

■ "ASMLIB", if within the scope of an ASM statement, or

■ "SWCOPY" otherwise

For VSE, the member will be copied from a Librarian sublibrary. Report Writer will use
the sublibrary whose name is:

■ the one named in the SUBLIB parm of the COPY statement, if any, or

COPY Statement Syntax

COPY: copyname/DDNAME(ddname)
[LIST(YES/NO)]
[NOTALIAS]
[PDSDDN(ddname)]
[SUBLIB('libr.sublib')]

STANDARD Alternate
SPELLING Spellings
DDNAME DDN
NO N
YES Y
CIMS Report Writer User Guide 10-43 ■

■ Control Statement Syntax

COPY Statement
■ the one named in an OPTIONS statement COBLIB parm, if within the scope of a COBOL
statement and if such a COBLIB parm was found, or

■ the one named in an OPTIONS statement ASMLIB parm, if within the scope of an ASM
statement and if such an ASMLIB parm was found, or

■ the one named in an OPTIONS statement SUBLIB parm

(Under VSE, if a sublibrary has not been named in any of the preceding ways, an error
message will print and no copy will be performed.)

For VSE only, you may also append a member type after the member name, separated by
a dot. (For example: SALES.SW). If no member type is specified in this way, the member
type used for the copy will be:

■ "C", if within the scope of a COBOL statement, or

■ "A", if within the scope of an ASM statement, or

■ the member type named in an OPTIONS statement MEMTYPE parm, if any, or

■ "SPECTWTR" otherwise

Under both MVS and VSE, you may use an alias name (rather than the actual member
name) under certain circumstances. Alias names may be up to 70 characters long and
must conform to the Report Writer naming conventions for file names. Aliases for library
members are assigned in a special member in the standard Report Writer Copy Library.
Under MVS, this is the member named SWALIAS in the PDS pointed to by the SWCOPY DD.
Under VSE, this is the member named SWALIAS.SPECTWTR in the sublibrary named in the
SUBLIB parm of an OPTION statement. The use of aliases is discussed beginning on
page 6-46.

Alias checking is not performed (and therefore an alias may not be used) in each of the
following cases:

■ When the PDSDDN, SUBLIB or NOTALIAS parm is used in the COPY statement.

■ When a member type is specified in the copyname parm.

■ When the COPY statement appears within the scope of a COBOL or ASM statement.

Examples
COPY: SALES

The above example copies the member named SALES from a library. The earlier
discussion explains how the library to use is determined.

COPY: SALES–FILE

The above example also specifies that a member from a PDS or Sublibary should be
copied. Since "SALES–FILE" itself is not valid as a member name, that name must be
defined as an alias in the SWALIAS member of the copy library. As shown in Appendix F,
Files Used in Examples, "SALES–FILE" is an alias for the member name "SALES". Therefore,
the above statement would cause the control statements in the copy library member
named SALES to be copied.
■ 10-44 CIMS Report Writer User Guide

Control Statement Syntax ■

COPY Statement
DDNAME(ddname)

MVS only. Specifies the DD name of a sequential input file that is to be copied. This feature
is useful when the control statements that you want to copy are not in a PDS. This parm
and the copyname parm are mutually exclusive.

One use of the DDNAME parm is to copy datasets that are stored in proprietary libraries that
Report Writer does not access directly (such as PANVALET or MVS's LIBRARIAN.) Add a job
step ahead of Report Writer to copy the desired proprietary data to a temporary
sequential dataset. Then have Report Writer copy that sequential dataset by using the
DDNAME parm.

Example
COPY: DDNAME(TEMPDD)

The above example specifies that the control statements to be copied are located in a
sequential dataset identified by the TEMPDD DD in the JCL.

LIST(YES/NO)

The LIST parm specifies whether the copied control statements should be listed in the
control listing. If the LIST parm is not specified, the default is not to list the copied
statements.

Note • If an error is detected in any of the copied control statements, that statement
will be listed, along with the error message, regardless of the value of this parm.

Example
COPY: SALES LIST(YES)

The above example specifies that the control statements copied from the SALES member
should be listed in the control listing.

NOTALIAS

Specifies that the copyname parm is not an alias. When this parm is present, no alias
checking is performed and the copyname must be the name of the member to be copied.
Use this parm if the name of the member you want to copy also happens to be the alias
name of a different member.

Example
COPY: SALES NOTALIAS

The above example specifies that the control statements should be copied from the
member named SALES. This will be done even if SALES has been defined as an alias for
some other member.
CIMS Report Writer User Guide 10-45 ■

■ Control Statement Syntax

COPY Statement
PDSDDN(ddname)

MVS only. The PDSDDN parm specifies the DDNAME of a DD statement in the JCL that points to
the PDS containing the member to be copied. This parm is valid only in conjunction with
the copyname parm. When PDSDDN is used, the copyname must specify a member name
rather than an alias. (No alias checking is performed on the copyname.)

Example
COPY: SALES PDSDDN(MYLIB)

The above example specifies that the control statements to be copied are in the PDS
identified by the MYLIB DD in the JCL. The member copied is named SALES.

SUBLIB('lib.sublib')

VSE only. The SUBLIB parm specifies the name of the Librarian sublibrary containing the
member to be copied. This parm is valid only in conjunction with the copyname parm.
When SUBLIB is used, the copyname must specify a member name (and optionally a
member type) rather than an alias. (No alias checking is performed on the copyname.)

Note • Be sure that your JCL contains any DLBL and EXTENT statements needed to
define the sublibrary named in this parm.

Example
COPY: SALES.TEST SUBLIB('TEST.MYLIB')

The above example specifies that the control statements to be copied are in the
sublibrary named TEST.MYLIB. The member copied is named SALES, and the member
type is TEST.
■ 10-46 CIMS Report Writer User Guide

Control Statement Syntax ■

FIELD Statement
FIELD Statement 10

PURPOSE 10

Defines an input field to Report Writer. This statement provides certain essential
information about a field, such as where it is located in a record, how long it is, etc.
Before a field can be referred to in any other control statement, it must first be defined
using the FIELD statement.

You can also use the FIELD statement to specify various display options to be used when
the field appears in a report or PC file. These options include: the columns headings to
use; the display format to use; whether to include the field in Grand Totals, etc.

You may have as many FIELD statements as you like. These statements are normally kept
in the Report Writer Copy Library.

FEATURES 10

Use the FIELD statement to:

■ define where a field is located within a record

■ define the type of data contained within the field

■ define the default column headings to be used whenever the field is printed in a
report or PC file

■ define the default display format to be used whenever the field is printed in a report

■ define whether or not a numeric field should be accumulated, and therefore appear
in total lines (and other statistical lines)

■ define the texts that should be used in a report to indicate whether a bit field is ON or
OFF

■ define how to use a data exit to obtain a field's value

LEARNING MORE 10

The complete syntax of the FIELD statement is shown on the following pages. In
addition, the following parts of the manual relate to the FIELD statement:

■ how to write FIELD statements is discussed beginning on page 6-6.
CIMS Report Writer User Guide 10-47 ■

■ Control Statement Syntax

FIELD Statement
SYNTAX 10

The fieldname is required in a FIELD statement, and must be the first item after the
statement prefix. After that, one or more other parms will be required, depending on the
type of field being defined. Those parms may appear in any order.

fieldname

Specifies the name of the field being defined. All other control statements will use this
name when referring to this field. You may assign any name you like, within the rules
governing field names given on page 9-7.

Example
FIELD: LAST–NAME COLUMN(4) LENGTH(15)

The above example defines a field named LAST–NAME.

 FIELD STATEMENT SYNTAX

FIELD: fieldname
[ACCUM/NOACCUM]
[BIT(n)]
[COLUMN(nnnnn/expr/*)/DISP(nnnnn/expr/*)]
[DECIMALS(nn/0)]
[DESCRIPTION('text')]
[DXPARM('text')]
[DXPROG('program')]
[DXRETDEC(nn)]
[DXRETLEN(nnnnn)]
[FILE(filename/*)]
[FORMAT(display-format)]
[HEADING('heading1 heading2 heading3...')]
[LENGTH(nnnnn)]
[OFFSET(numeric–expression)]
[OFFTEXT('text')]
[ONTEXT('text')]
[TYPE(datatype/CHAR)]

Standard Alternate
Spelling Spellings
ACCUM ACC
COLUMN COL
DECIMALS DECIMAL, DEC
DESCRIPTION DESC
DISP DISPLACEMENT
DXRETLEN DXRETLGTH
FIELD FLD
FORMAT FMT
HEADING HEADINGS,HEAD
LENGTH LGTH, LEN
NOACCUM NOACC
OFFTEXT OFF
ONTEXT ON
TYPE TYP
■ 10-48 CIMS Report Writer User Guide

Control Statement Syntax ■

FIELD Statement
ACCUM/NOACCUM

This parm is valid only for numeric and time fields. Specifies whether a field should be
accumulated or not when it appears as a column in a report. Fields that are accumulated
will appear in the totals line, as well as in any other statistics lines that have been
requested (such as the average line, the maximum line, etc.) Fields that are not
accumulated will not appear in the totals and statistics lines.

By default, Report Writer accumulates all numeric fields listed in the COLUMNS statement,
with one exception. Numeric fields that are displayed using a PICTURE which contains
special characters are not accumulated. (Special characters include such things as
parentheses, imbedded dashes, asterisks, etc.) By default, numeric fields displayed with
such a PICTURE are not accumulated and therefore do not appear in the total line and other
statistical lines.

By default, time fields are not accumulated. Specify ACCUM if you do want to see totals for
a time field. This might be desired for time fields that contain durations, as opposed to
times of day.

Any ACCUM or NOACCUM parm specified here can be overridden directly in the COLUMNS
statement.

The use of the ACCUM and NOACCUM parms is discussed beginning on page 4-26.

Examples
FIELD: DEPT–NUM COLUMN(37) LENGTH(1) TYPE(NUM) NOACCUM

The above example defines a numeric field called DEPT–NUM. When this field appears as a
column in a report, it will not be accumulated. Therefore, the column will not appear in
the Grand Totals line, or in control break totals.

FIELD: TIME–ON–PHONE COLUMN(73) LENGTH(4) TYPE(SECS) DECIMALS(1) ACCUM

The above example defines a time field called TIME–ON–PHONE. Since this time field
represents a length of time (as opposed to a time of day), it is appropriate to total this
field. The ACCUM parm tells Report Writer to accumulate this field by default. Therefore,
it will be included in total and statistical lines.

BIT(n)

This parm is valid only for bit type fields. Identifies the specific bit (within a byte) that is
being defined. The bits are numbered from 1 to 8, starting with the leftmost (high order)
bit. If this parm is present, you do not need to specify the TYPE parm. TYPE(BIT) will be
assumed. The use of this parm is discussed beginning on page 6-26.

Example
FIELD: PART–TIME COLUMN(42) BIT(2)

The above example defines a bit field named PART–TIME. The bit is the second bit from
the left (the X'40' bit), in the 42nd byte of the record. Notice that the TYPE and LENGTH
parms are not needed when defining a bit type field. Also be aware that the current
location counter is not incremented after a bit field is defined.
CIMS Report Writer User Guide 10-49 ■

■ Control Statement Syntax

FIELD Statement
COLUMN(nnnnn/expr/*)/
DISP(nnnnn/expr/*)

Specifies where the field begins within the record. If you use the COLUMN parm, the bytes
in the record are numbered beginning with 1. If you use the DISP parm, the bytes in the
record are numbered beginning with 0. For example, both of the following statements
define the LAST–NAME field as beginning in the 4th byte of the record:

FIELD: LAST–NAME COLUMN(4) LENGTH(15)
FIELD: LAST–NAME DISP(3) LENGTH(15)

Note • When reading variable–length records, Report Writer ignores the 4-byte
record descriptor word (RDW) at the beginning of each record. Thus, column 1 always
refers to the first byte of actual user data in a record. It does not refer to the first byte
of the RDW, if present. See the KEEPRDW option (in the FILE, INPUT, READ and OPTIONS
statements) if you do want to define fields within the RDW.

Instead of using actual numbers within these parms, you may use an expression. (When
using expressions, it makes no difference whether you use the COLUMN or the DISP parm.)
An expression consists of another field name or an asterisk, optionally followed by a
plus or minus sign and a number:

COLUMN(fieldname/* [+/– nnnnn])
DISP(fieldname/* [+/– nnnnn])

If a field name is used, that field's starting byte in the record is used as the base of the
expression. If an asterisk is used, the "default location" in the record is used as the base
of the expression. (The default location is defined as the first byte after the previously
defined field.) Following the base, the expression can optionally contain a number to
add to or subtract from that base. The result is then used as the field's starting position
in the record.

Example
FIELD: HIRE–DATE COLUMN(LAST–NAME + 30)

The above example specifies that the HIRE–DATE field begins 30 bytes after the beginning
of the LAST–NAME field. If the LAST–NAME field began in column 4 (displacement 3), then
the HIRE–DATE field will begin in column 34 (displacement 33). Here is another example:

FIELD: HIRE–DATE COLUMN(34) TYPE(YYMMDD)
FIELD: HIRE–DD COLUMN(* – 2) LENGTH(2)

The first statement above defines HIRE–DATE as a 6 byte date field in the format YYMMDD.
The second statement defines a field which redefines the last two bytes of the previous
field. The second field starts two bytes before the current position in the record. This field,
named HIRE–DD, is just a two byte character field which contains the DD portion of the
HIRE–DATE field.
■ 10-50 CIMS Report Writer User Guide

Control Statement Syntax ■

FIELD Statement
Note • Blanks are required around any minus sign used in these parms (to avoid
ambiguity with dashes used within fieldnames.) Blanks are optional around the plus
sign.

If neither COLUMN nor DISP is specified for a field, the default is to use the "default
position" in the record. In other words, the default is to assume that COLUMN(*) (or
DISP(*)) was specified.

The use of the COLUMN and DISP parms is discussed beginning on page 6-30.

DECIMALS(nn/0)

This parm is valid only for numeric and time fields. Specifies how many decimal digits are
contained within the data in the record. If this parm is omitted, the data is assumed to
contain zero decimal digits.

Examples
FIELD: SALARY COLUMN(42) LENGTH(4) TYPE(PACKED) DECIMALS(2)

The above example defines a numeric field named SALARY. There are two decimal digits
in this field's data. Thus, if the value in a record is X'0123456C', the SALARY value would
be 1234.56.

FIELD: TIME–ON–PHONE COLUMN(69) LENGTH(4) TYPE(SECS) DECIMALS(1)

The above example defines a time field named TIME–ON–PHONE. It is a 4–byte field
containing a time expressed as a number of seconds. The number of seconds includes 1
decimal digit. Thus, if the value in a record is C'0123', the TIME–ON–PHONE value would be
12.3 seconds (00:00:12.3).

DESCRIPTION('text')

You may specify a short free format description of the field in this parm. This
information will be printed along with other information about the field in data
dictionary listings.

Example
FIELD: HIRE–DATE COLUMN(34) TYPE(YYMMDD)
 DESC('DATE EMPLOYEE WAS FIRST HIRED')

When the HIRE–DATE field is listed data dictionary reports, the description shown above
will be included.

DXPARM('text')

This parm is valid only for fields whose TYPE is a data exit (NUMEXIT, for example.) Anytime a
user data exit program is called by Report Writer, the text specified in this parm is passed
to the exit program. Typically this text is used to tell the exit program what function to
perform. The use of this parm is discussed in the section beginning on page 6-35.

Example
See the example below under the DXPROG parm.
CIMS Report Writer User Guide 10-51 ■

■ Control Statement Syntax

FIELD Statement
DXPROG('program')

This parm is valid only for fields whose TYPE is a data exit (NUMEXIT, for example.) Specifies
the name of the load module (MVS) or phase (VSE) that Report Writer will call in order to
obtain the field's value. The use of this parm is discussed in the section beginning on
page 6-35.

Example
FIELD: DECRYPTED–NAME TYPE(CHAREXIT) COLUMN(29) LENGTH(15)
 DXPROG('DECRYPGM')
 DXPARM('DECRYPT NAME')
 DXRETLEN(20)

The above example defines a character field named DECRYPTED–NAME. The contents of this
field do not exist within the record itself, but can be created by an exit program named
DECRYPGM. (This imaginary program takes a 15 byte encrypted value and decrypts it into
a readable 20 byte name). The DECRYPGM program will be passed the 15 bytes of data
beginning at column 29 in the record. It will also be given the contents of the parm
("DECRYPT NAME") to tell it what function it should perform. The exit program will then
perform its decryption logic and return a 20 byte value to be used as the value for the
DECRYPTED–NAME field.

DXRETDEC(nn)

This parm is required for all fields whose TYPE is NUMEXIT or TIMEEXIT, and is not allowed for
any other type of field. This parm tells Report Writer how many decimal digits there will
be in the numeric or time value returned by the data exit for this field. For any kind of
data exit field, the FIELD statement's DECIMALS parm value (if any) is simply passed to the
data exit (which may or may not choose to make any use it). The DXRETDEC parm tells
how many decimal digits to expect in the value passed back from the exit. Report Writer
needs to know how many decimal digits have been returned so that it can correctly
format the value (including the decimal point) when printing this field in a report. The
use of this parm is discussed in the section beginning on page 6-35.

Example
FIELD: LAST–YEAR–SALES TYPE(NUMEXIT)
 COLUMN(EMPL–NUM) LENGTH(3)
 DXPROG('SALELKUP')
 DXPARM('LAST YEAR')
 DXRETDEC(2)

The above example defines a numeric field named LAST–YEAR–SALES. The contents of this
field do not exist within the record itself, but can be looked up in a special table by an exit
program named SALELKUP. (This program takes a 3 byte employee number and looks up
the sales figure for the year specified in the parm.) The SALELKUP program will be passed
the 3 bytes of data beginning at the EMPL–NUM field in the record. It will also be given the
contents of the parm ("LAST YEAR") to tell it what function it should perform. The exit
program will then return the numeric value to be used for the LAST-YEAR-SALES field.
That value will contain two decimal digits.
■ 10-52 CIMS Report Writer User Guide

Control Statement Syntax ■

FIELD Statement
DXRETLEN(nnnnn)

This parm is required for all fields whose TYPE is CHAREXIT, and is not allowed for any other type
of field. This parm tells Report Writer the length of the character data that will be returned
by the data exit program for this field. For a CHAREXIT field, the FIELD statement's LENGTH
parm specifies how many bytes of raw data from the input record should be passed to the
data exit. The DXRETLEN parm tells how many bytes will be passed back from the data exit.
Report Writer needs to know how much data will be passed back from the exit so that it
can reserve the correct amount of space when printing this field in a report. The use of
this parm is discussed in the section beginning on page 6-35.

Example
See the example above under the DXPROG parm.

FILE(filename/*)

Identifies the file in which the field is found. If this parm is omitted, it is assumed that
the field being defined exists in the most recently defined file. (Files are defined using
the FILE control statement.) This parm is useful for defining fields "out of order". This
might occur if you used a COPY statement to read in the FILE and FIELD statements for
several different files, and you want to go back and define additional fields for an earlier
file.

Example
FIELD: WHOLE–NAME COLUMN(4) LENGTH(30) FILE(EMPL–FILE)

The above example defines a field named WHOLE–NAME. This field is defined as a field in
the EMPL–FILE file, even if other files have been defined more recently.

FORMAT(display–format)

Specifies the default format to be used when displaying the field in a report. This parm
is used mainly for numeric, date and time fields. Appendix B, Display Formats contains the
complete list of display formats available for each type of data.

If the FORMAT parm is omitted, a default display format will be used to format the field in
a report. The default display formats are listed on page B-8.

The FORMAT parm that you specify in the FIELD statement tells Report Writer the default
format to use when displaying the field anywhere in the report–– in the titles, the main
report lines, the break headings and footings, etc. Any display format specified here,
however, can still be overridden by using a different display format parms directly in a
COLUMNS or TITLE statement, etc.

Note • The display–format parm is not allowed for bit fields. Bit fields are always
displayed in a report with either the ONTEXT or OFFTEXT text.

Note • Specifying a PC file option (LOTUS, for example) causes any display format
specified in the FIELD statement to be overridden (with a display format appropriate
for the desired PC program.)
CIMS Report Writer User Guide 10-53 ■

■ Control Statement Syntax

FIELD Statement
Note • Fields containing invalid data are normally displayed using a special error
indicator (for example, ****I****.) This happens regardless of what display format
may have been specified for the field.

Examples
FIELD: SALARY COLUMN(56) LENGTH(4) TYPE(PACKED) FORMAT(PIC'$$,$$$,$$9.99')
FIELD: HIRE–DATE COLUMN(34) TYPE(YYMMDD) FORMAT(LONG1)
FIELD: STATUS–BYTE COLUMN(42) LENGTH(1) FORMAT(HEX)

The first example above defines a numeric field named SALARY. When SALARY is displayed
in a report, the PICTURE specified in the FORMAT parm will be used to format it. It will
occupy 13 bytes, will include a floating dollar sign, and will show two decimal digits.

The second example defines a date field named HIRE–DATE. When this field is displayed
in a report, the date will be formatted in the LONG1 format, with the month name spelled
out completely.

The third example defines a one byte character field named STATUS–BYTE. When this field
is displayed in a report, it will be shown in hexadecimal form.

HEADING('heading1|heading2|heading3 ...')

Specifies the column heading line(s) to use for this field when it appears in a report or
PC file. Enclose the column heading text in either apostrophes or quotation marks. If
you need to use that same character (an apostrophe or quotation mark) within the text,
use two of those characters for each character desired.

Use the vertical bar (|) to separate the column heading text into separate lines.

Note • You may use the HDGSEP parm of the OPTION statement to select a character
other than the vertical bar (|) to use as the separator character for column heading
texts.

If no HEADING parm is specified, Report Writer will use the field name itself as the column
heading. The name will be broken apart at each dash or underscore, with each part of the
name going onto a separate heading line.

Any column headings specified here can be overridden by using an override column
heading parm in the COLUMNS statement.

See page 4-7 for more information on column headings.

Example
FIELD: LAST–NAME HEADING('NAME OF EMPLOYEE') COLUMN(4) LENGTH(15)

The above example defines a field called LAST–NAME. When this field appears as a column
in a report, its column heading will be "NAME OF" on the first line, and "EMPLOYEE" on the
second line.
■ 10-54 CIMS Report Writer User Guide

Control Statement Syntax ■

FIELD Statement
LENGTH(nnnnn)

Specifies how many bytes the field occupies in the record. Some data types imply a
particular length (for example, FULLWORD and YYMMDD.) For such data types, the LENGTH
parm is not required. For data types that can be of various lengths, the LENGTH parm is
required. The maximum length allowed varies according to the data type of the field
being defined. The tables in Appendix A, Data Types show the maximum length allowed
for each data type. They also show which data types have a standard default length.

Note • This parm tells how many bytes a field occupies in the input record. This is
not necessarily equal to the number of digits that a numeric field contains. Refer to
page 6-13 which discusses how to compute a numeric field's length based on how
many digits it has.

Examples
FIELD: FIRST–NAME COLUMN(19) LENGTH(15)
FIELD: SALARY COLUMN(46) LENGTH(4) TYPE(PACKED)

The first example above defines a character field (FIRST–NAME) that occupies 15 bytes in
the record. The second example defines a numeric field (SALARY) which occupies 4 bytes
in the record. Since the field is defined as a PACKED type field, it will actually contain 7
digits.

OFFSET(numeric–expression)

Some records contain fields that do not always begin at a fixed column within the record.
In such cases there is usually another field in the record that tells the "offset" to the
variably located field. The OFFSET parm is used to define such fields. The OFFSET parm
can contain any numeric expression. Often it simply contains the name of another field
which contains the appropriate offset value. Report Writer computes the value of the
OFFSET parm anew for each input record. It adds that value to the contents of the COLUMN
or DISP parm. This sum is then used as the starting byte of the field. (If no COLUMN or DISP
parm is used, the "current location" value is added to the OFFSET value to determine the
field's starting byte.) For additional information about the OFFSET parm, see the section
beginning on page 6-33.

The OFFSET parm specified in one FIELD statement remains in effect for all subsequent
FIELD statements until a new OFFSET parm is encountered. Use OFFSET(0) in a FIELD
statement if you later want to define fields without any OFFSET value.

Note • The "current location" value is reset to column 1 (displacement 0) each time
a FIELD statement with an OFFSET parm is encountered.

Example
FIELD: ADDR–OFFSET DISP(26) TYPE(HALFWORD)
...
FIELD: ADDR–LINE–1 LENGTH(30) OFFSET(ADDR–OFFSET)
FIELD: ADDR–LINE–2 LENGTH(30)
...
CIMS Report Writer User Guide 10-55 ■

■ Control Statement Syntax

FIELD Statement
In this example, the input record contains a halfword value named ADDR–OFFSET at
displacement 26. This value is the offset within the record to an "address section" of the
record. The address section consists of two 30–byte address lines. ADDR–LINE–1 is defined
as a 30–byte character field. Since it is defined with an OFFSET parm, the field's location
within the record is determined by adding the value of the ADDR–OFFSET field to the value
of the COLUMN parm. Since no COLUMN (or DISP) parm was specified, the "current location"
value is assumed. However, the "current location" is zero for this field, since the FIELD
statement contains an OFFSET parm. Thus the field is simply located at the displacement
contained in the ADDR–OFFSET field.

ADDR–LINE–2 is another 30–byte field. Again, no COLUMN or DISP parm is present, so the
current location (now equal to displacement 30) is added to the contents of the ADDR-
OFFSET field to derive the starting displacement of this field.

The example above used a single field as the OFFSET value. You are also allowed to use
numeric expressions in the OFFSET parm. For example, to define a field that appears after
an array of variable size, you might use statements similar to this:

FIELD: NUM–SLOTS TYPE(COMP–3) LENGTH(2)
...
FIELD: LAST–FIELD OFFSET(75 + (NUM–SLOTS * 12)) LENGTH(10)

OFFTEXT('text')

This parm is valid only for bit type fields. Specifies a text to print in reports for a bit field
when its value is OFF. If omitted, the default is to print the word "NOT" followed by the
field name itself. The use of this parm is discussed in the section beginning on page 6-26.

Examples
FIELD: PART–TIME COLUMN(42) BIT(2)
 ONTEXT('PART TIME EMPL') OFFTEXT('FULL TIME EMPL')

The above example defines a bit field named PART–TIME. When this field is printed in a
report, the text "PART TIME EMPL" will print if the field's value is ON. The text "FULL TIME
EMPL" will print if the field's value is OFF.

FIELD: DELETE–BIT COLUMN(100) BIT(8) ONTEXT('1') OFFTEXT('0')

The above example defines a bit field named DELETE–BIT. When this field is printed in a
report, a "1" will print if the field's value is ON, and a "0" will print if the field's value is
OFF.

ONTEXT('text')

This parm is valid only for bit type fields. Specifies a text to print in reports for a bit field
when its value is ON. If omitted, the default is to print the field name itself in the report.
The use of this parm is discussed in the section beginning on page 6-26.

Example
See the example above under the OFFTEXT parm.
■ 10-56 CIMS Report Writer User Guide

Control Statement Syntax ■

FIELD Statement
TYPE(datatype/CHAR)

Specifies what type of data the field contains. There are five general categories of data that
Report Writer recognizes: character, numeric, date, time, and bit. However, within each
category there is more than one way that the data can actually be represented in a record.
The TYPE parm specifies exactly how the data is stored in a record. Appendix A, Data Types
contains the complete list of data types that Report Writer supports.

If the TYPE parm is omitted, the default data type of CHAR (character) is assumed.
However, there is one exception to this rule. If a BIT parm is present in the FIELD
statement, then the default data type will be BIT.

Examples
FIELD:SALARYTYPE(PACKED)COLUMN(46)LENGTH(4)
FIELD:HIRE–DATETYPE(YYMMDD)COLUMN(34)
FIELD:PART–TIMETYPE(BIT)COLUMN(42)BIT(2)

The first example above defines a numeric field (SALARY) which contains PACKED data.
(Packed data is called COMP–3 in COBOL, and Fixed Decimal in PL/1.)

The second example defines a date field (HIRE–DATE) which contains a date in character
YYMMDD format.

The third example defines a bit field (PART–TIME). The bit is the second bit from the left
(the X'40' bit), in the 42nd byte of the record. In this example, it was not actually
necessary to specify the TYPE parm, since the BIT parm implies a data type of BIT.
CIMS Report Writer User Guide 10-57 ■

■ Control Statement Syntax

FILE Statement
FILE Statement 10

PURPOSE 10

Defines an input file to Report Writer. Before a file can be used as input for a report or
PC file, it must first be defined using the FILE statement.

This statement by itself does not specify that a file should be used as input for a particular
run. This statement simply defines a filename to Report Writer so that subsequent
control statements can refer to it. After a file has been defined using this statement, an
INPUT or READ statement may be used to request that the file be used as input to a report
or PC file.

You may have as many FILE statements as you like. These statements are normally kept
together with FIELD statements in the Report Writer Copy Library.

FEATURES 10

Use the FILE statement to:

■ define the DDNAME or DLBL/TLBL to use when reading a file

■ define the type of file (for example, whether it's VSAM)

■ define a file's record length

LEARNING MORE 10

The complete syntax of the FILE statement is shown on the following pages. In addition,
the following parts of the manual relate to the FILE statement:

■ how to write FILE statements is discussed beginning on page 6-6

■ using a file that is processed by a user I/O Exit is discussed in Appendix K, I/O Exits.
■ 10-58 CIMS Report Writer User Guide

Control Statement Syntax ■

FILE Statement
SYNTAX 10

The filename is required in a FILE statement and must be the first item after the statement
prefix. After that, one or more other parms may be required, depending on the type of
file being defined. Those parms may appear in any order.

filename

This parm specifies the name of the file being defined. All other control statements will
use this name when referring to this file. You may assign any name you like, within the
rules governing file names given on page 9-7.

Example
FILE: SALES–FILE DDNAME(SALESDD)

The above example defines a file named SALES–FILE.

FILE Statement Syntax

FILE: filename
[ATTR(type ,'dlbl/tlbl' [,SYSnnn] [,F/V] ,recsize

 [,blksize] [,STDLABEL/NOLABEL]) (VSE only)]
[DB2NAME('[qualifier.]name') (DB2 only)]
[DDNAME(ddname) (MVS only)]
[DESCRIPTION('text')]
[EXITPARM('text')]
[IOEXIT(‘program'[,'parm'] [,TRACE])]
[KEEPRDW]
[LRECL(nnnnn/1000) (MVS only)]
[TYPE(SEQ/VSAM/DB2/EXIT) (MVS only)]

Standard Alternate
Spelling Spellings
DDNAME DDN
DESCRIPTION DESC
EXITPARM PARM
FILE FIL
CIMS Report Writer User Guide 10-59 ■

■ Control Statement Syntax

FILE Statement
ATTR(type ,'dlbl/tlbl' [,SYSnnn] [,F/V] ,recsize [,blksize]
[,STDLABEL/NOLABEL])

VSE only. This parm describes the attributes of a VSE file. This parm can also be specified
in the INPUT and READ statements.

type This parm is required. It tells Report Writer what kind of file is being defined. It
must be one of the following values:

'dlbl/tlbl' This parm is required (except for exit files.) It specifies the filename of a
DLBL or TLBL statement present in the JCL. This DLBL/TLBL statement in the JCL will
identify the actual data set to be read. Report Writer uses the DLBL/TLBL to open an input
file and read from it. This parm must be a 1– to 7–byte name within apostrophes (or
quotation marks.) This parm is not required for EXIT type files. However, if a DLBL/TLBL
is specified for an EXIT file, its value is passed to the exit program.

SYSnnn This parm is required for TAPE files. It is treated as a comment for other file types.
It identifies the logical unit on which the file will reside. The value specified here must
also be "assigned" to a tape drive in your execution JCL.

F/V This parm specifies whether your file contains fixed (F) or variable (V) length
records. If omitted, fixed (F) is assumed.

recsize This parm is required. It specifies the length of the records in your file. For
variable length files, this parm specifies the length of the largest record that may be
encountered in the file. Also, for variable length files this value should include the length
of the 4–byte RDW which each variable–length record begins with.

blksize This parm is optional. It is treated as a comment for VSAM and EXIT files. For DASD
and TAPE files, it specifies the length of each block in the file. For variable length files,
this parm specifies the length of the largest block that may be encountered in the file.
Also, for variable length files this value should include the length of the 4–byte block
prefix. If block size is not specified, single record blocking is assumed. For fixed length
files, this means a block size equal to the record size is assumed. For variable length files,
this means that a block size equal to the record size plus 4 is assumed.

STDLABEL/NOLABEL This parm is optional and is allowed only for TAPE files. It specifies
whether the tape file has standard labels (the default) or no labels.

Example
FILE: SALES–FILE ATTR(DASD,'SALEFIL',80,160)

The statement above defines a file named SALES–FILE. It is a SAM file on DASD, uses
SALEFIL as the DLBL name, has fixed length 80–byte records, and has 160–byte blocks.

DASD a SAM file residing on DASD (disk.) Use DASD (rather than VSAM) for
VSAM–managed SAM files.

TAPE a SAM file residing on a magnetic tape

VSAM a VSAM file (ESDS or KSDS)

EXIT a file accessed via an I/O Exit program
■ 10-60 CIMS Report Writer User Guide

Control Statement Syntax ■

FILE Statement
See page 6-10 for more examples and for a discussion of the ATTR parm.

DB2NAME('[qualifier.]name')

DB2 only. Specifies the name of the DB2 table or view to associate with this file. The table
name must be enclosed in quotation marks or apostrophes. Generally the table name
will be qualified. If it is not explicitly qualified, DB2 will assume an implicit qualifier,
which will be the Authorization ID of the job which is executing Report Writer. When
this parm is present, no parms other than the filename are required in the FILE
statement. The TYPE(DB2) parm is assumed.

Note • A FILE statement is not required when working with DB2 inputs. You can
specify the DB2NAME directly in your INPUT and READ statements. See page 7-3.

Example
FILE: PROJECT DB2NAME('DSN8230.PROJ')

The above example defines a file that will be referred to in Report Writer control
statements as PROJECT. It refers to the DB2 table (or view) named DSN8230.PROJ.

DDNAME(ddname)

MVS only. The DDNAME parm specifies the name of a DD statement present in the JCL. This
DD statement in the JCL will identify the actual data set to be read. Report Writer uses the
DDNAME to open an input file and read from it. The DDNAME parm can also be specified in
the INPUT or READ statements.

For a file to be used as an input file in a report, the DDNAME must be specified either in this
statement, or in the INPUT or READ statement. For EXIT type files, the DDNAME parm is not
required, but is passed to the I/O Exit program if specified.

Example
FILE: SALES–FILE DDNAME(SALESDD)

The above example defines a file named SALES–FILE. When records from this file are
needed in a report, the DD named SALESDD in the JCL will be used.

DESCRIPTION('text')

You may specify a short free-format description of the file in this parm. This information
will be printed along with other information about the file in data dictionary listings.

Example
FILE: EMPL–FILE TYPE(VSAM) DDNAME(EMPLDD)
 DESC('EMPLOYEE MASTER FILE –– NEW VERSION')

When the EMPL–FILE file is listed in data dictionary reports, the description shown above
will be included.
CIMS Report Writer User Guide 10-61 ■

■ Control Statement Syntax

FILE Statement
EXITPARM('text')

This parm specifies any information that should be passed to user data exit programs.
(Most installations will not use data exits, and will not need this parm.) Anytime a data
exit program is called by Report Writer for a field within this file, the text string specified
in this parm will be passed to it. The use of the EXITPARM parm is discussed in the section
beginning on page 6-35.

Example
FILE: SALES–FILE EXITPARM('XYZ')

The above example defines a file named SALES–FILE. If any fields within this file are
defined as exit type fields, the text "XYZ" will be passed to the data exit program each time
it is called.

IOEXIT(‘program' [,'parm'] [,TRACE])

EXIT files only. This parm provides the information necessary for Report Writer to process
an EXIT type input file. More information on I/O Exits can be found in Appendix K, I/O
Exits.

MVS Note • When this parm is present, a file type of EXIT is assumed and an explicit
TYPE parm is not required.

VSE Note • When this parm is present, an ATTR parm specifying a type of EXIT and a
RECSIZE is required.

'program' This parm is required. It specifies the name of the load module (MVS) or phase
(VSE) that Report Writer will call in order to obtain records from the file.

'parm' This parm is optional. Each time the I/O Exit program is called by Report Writer,
the text specified in this parm is passed to the exit program. Typically this text is used to
provide the exit program with any special information it may need in order to process
the file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Report Writer prints trace information in
the control listing before and after each call to the I/O Exit. This information can be
useful when developing and debugging a new I/O Exit program. The TRACE parm is
normally not used in production runs.

Example
FILE: MASTER-FILE IOEXIT('MYEXIT')

The above example specifies that a program named MYEXIT should be called whenever a
record is needed from MASTER-FILE.
■ 10-62 CIMS Report Writer User Guide

Control Statement Syntax ■

FILE Statement
KEEPRDW

Meaningful only for non–VSAM, variable length files. This parm means that the 4–byte record
descriptor word (RDW) at the beginning of each record should be considered a part of the
record. The default is to treat the record as starting after the RDW. The use of this parm is
discussed on page 6-6 (MVS) and page 6-10 (VSE.)

Example
FILE: PAYROLL–FILE KEEPRDW

The above example specifies that the RDW should be kept when reading records from the
PAYROLL–FILE. Thus, assuming that PAYROLL–FILE is a non–VSAM variable length file, a
field defined as starting in column 1 would point to the 2–byte record length within the
RDW.

LRECL(nnnnn/1000)

MVS only. Specifies the length of the largest record that might be found in the file. If this
parm is not specified, Report Writer assumes a default LRECL of 1000.

Note • It is not a problem to specify a larger LRECL value than is actually needed. In
fact, if you suspect that a file's LRECL may grow in the future, you may want to specify
a larger LRECL with some "growth" room in it. On the other hand, specifying an
excessively large LRECL may result in higher CPU usage in certain circumstances.

Note • When defining variable length SEQ files, the LRECL should include the length
of the 4–byte record descriptor word (RDW) at the beginning of each record.

Example
FILE: SALES–FILE LRECL(4000)

The above example defines a file named SALES–FILE. The LRECL parm specifies that
records as large as 4000 bytes may be encountered in the file. Report Writer will reserve
a 4000 byte I/O area for reading records from this file.
CIMS Report Writer User Guide 10-63 ■

■ Control Statement Syntax

FILE Statement
TYPE(SEQ/VSAM/DB2/EXIT)

MVS only. Specifies the type of access method to use when reading this file. If not specified,
SEQ is assumed. Valid types are:

Example
FILE: EMPL–FILE TYPE(VSAM) DDNAME(EMPLFILE) LRECL(150)

The above example defines a VSAM file named EMPL–FILE.

File Type Description

SEQ Standard sequential files, including tapes and disk datasets. The QSAM
access method will be used. Sequential files can only be used as a
primary input file (in the INPUT statement.) They may not be used as
an auxiliary input file (in a READ statement.)

VSAM Any VSAM file, whether keyed or not. The IDCAMS access method will be
used. Any kind of VSAM file can be used as a primary input file (in the
INPUT statement.) However, only keyed VSAM files may be used as
auxiliary input files (in READ statements.)

DB2 A DB2 table or view. This parm is optional, since Report Writer
assumes a TYPE of DB2 whenever the DB2NAME parm is used in the FILE
statement. You may use this parm for documentation purposes if you
wish.

EXIT A file accessed via an I/O Exit program. This parm is optional, since
Report Writer assumes a TYPE of EXIT whenever the IOEXIT parm is
used in the FILE statement. You may use this parm for
documentation purposes if you wish.
■ 10-64 CIMS Report Writer User Guide

Control Statement Syntax ■

FOOTNOTE Statement
FOOTNOTE Statement 10

PURPOSE 10

Specifies a footnote to print at the bottom of each page of the report. You may have as
many FOOTNOTE statements in your report as you like. Each FOOTNOTE statement creates
one line at the bottom of your report.

FOOTNOTE statements are ignored when producing PC files.

FEATURES 10

Use the FOOTNOTE statement to:

■ specify the contents of the footnote lines (which can include literal text, data from
input files, and special items like the current page number, date, time, etc.)

■ specify how to left align, center and right align different parts of the same footnote

■ specify the desired width, display format, and justification for data fields that appear
in a footnote

LEARNING MORE 10

The complete syntax of the FOOTNOTE statement is shown on the following pages. In
addition, the following parts of the manual relate to the FOOTNOTE statement:

■ using the FOOTNOTE statement is discussed beginning on page 4-64

SYNTAX 10

Note • The syntax of the FOOTNOTE statement is identical to that of the TITLE
statement.

The FOOTNOTE statement consists of from one to three print expressions, separated by
slashes. If a FOOTNOTE statement has no slashes, the single print expression will be
centered under the report. If there is one slash, the first print expression will be left–
aligned and the second print expression will be right–aligned under the report. If there

FOOTNOTE Statement Syntax

FOOTNOTE: print–expression [/ print–expression] [/ print–expression]

NOTE: the syntax for the print-expressions is shown on page page 10-66

STANDARD Alternate
SPELLING Spellings
FOOTNOTE FOOT
CIMS Report Writer User Guide 10-65 ■

■ Control Statement Syntax

FOOTNOTE Statement
are two slashes, the first print expression will be left–aligned, the second one will be
centered, and the third one will be right–aligned. It is okay for one or more of the print
expressions to be empty. Examples of using various combinations of print expressions
and slashes is illustrated in the section beginning on page 4-57.

You may also use empty FOOTNOTE statements. An empty FOOTNOTE statement results in
one blank footnote line.

fieldname

Specifies that the footnote line should contain the contents of this field. The field's data
will be taken from the last detail record before the footnote line.

The field must be available to Report Writer at the time the FOOTNOTE statement is
processed. That is, the field name must be one of the following:

■ a field from an input file. (An input file is a file named in the INPUT statement, or in
an optional READ statement.)

■ a computed field (defined in a preceding COMPUTE statement)

■ a built–in field (see Appendix C, Built-In Fields for a complete list of built–in fields)

Note that in addition to the standard built–in fields, there is one special built–in field
that can be used only in the TITLE and FOOTNOTE statements. That is the #PAGENUM built–
in field, which contains the current page number. By default, it is formatted with this
picture: PIC'ZZZ9' (4 digits). You can override this format by using a numeric display
format parm. This fieldname can also be abbreviated as #PAGE.

Print–Expression Syntax (in FOOTNOTE Statement)

Each print–expression consists of one or more items, optionally separated by numeric spacing factors:

FOOTNOTE: [n] item [n] item [n] item ...
 [/ [n] item [n] item [n] item ...]
 [/ [n] item [n] item [n] item ...]

Each item can be either a fieldname or a literal text. Each item can optionally be followed by a parm list
in parentheses:

fieldname[([BIZ]
[display–format]
[LEFT/CENTER/RIGHT]
[width])]

'literal'[(width)]

Standard Alternate
Spelling Spellings
CENTER CJ
FOOTNOTE FOOT
LEFT LJ
RIGHT RJ
■ 10-66 CIMS Report Writer User Guide

Control Statement Syntax ■

FOOTNOTE Statement
Example
FOOTNOTE: #TODAY / 'ABC COMPANY' / 'PAGE' #PAGENUM

The above example contains three print expressions. It will produce a footnote line
which looks like this:

12/31/99 ABC COMPANY PAGE nnnn

The literal texts ('ABC COMPANY' and 'PAGE') print as specified. The contents of the built-
in fields #TODAY and #PAGENUM also print, in default format. The first part of the footnote
is left–justified; the second part is centered; the third part is right–justified.

'literal'

Specifies that the footnote line should contain this literal text. Enclose the literal text in
either apostrophes or quotation marks.

Example
See the example above under the fieldname parm.

n

This is a numeric spacing factor. It specifies how many blank spaces should appear
between two items in a footnote line. A spacing factor of zero is allowed. (It results in
two items appearing in the footnote with no blank spaces between them.) If no spacing
factor is given, the default is to leave one blank space between items.

Example
FOOTNOTE: #TODAY / 'ABC COMPANY' / 'PAGE' 6 #PAGENUM

The above example specifies that 6 blank spaces should be left between the literal text
"PAGE" and the contents of the #PAGENUM field. The footnote would now look like this:

12/31/99 ABC COMPANY PAGE nnnn

BIZ

This "blank if zero" parm specifies that blanks should appear in the footnote for the field
if it has a value of zero. This parm is allowed only for numeric, date and time fields. A
date is considered to have a zero value if the month, day and last 2 digits of the year are
all zeros (regardless of the value of the century part of the year.)

Example
FOOTNOTE: 'EMPLOYEES HIRED ON' HIRE–DATE(BIZ)

The above example causes the HIRE–DATE field in the footnote to be left blank whenever
it contains a zero date.

display–format

Specifies how the contents of a field should be formatted in the footnote line. A
complete list of display formats is found in Appendix B, Display Formats. If this parm is
not specified, Report Writer will use the display format from:
CIMS Report Writer User Guide 10-67 ■

■ Control Statement Syntax

FOOTNOTE Statement
■ the FIELD or COMPUTE statement that defined the field

■ an OPTIONS statement FORMAT parm

■ the default display format (see page B-8)

Example
FOOTNOTE: #TODAY(LONG1) / 'ABC COMPANY' / 'PAGE' #PAGENUM(PIC'999')

The above example specifies display formats for the #TODAY and the #PAGENUM fields. The
LONG1 display format causes the month name to be spelled out in the date. The PICTURE
display format (for #PAGENUM) specifies that three digits of the page number should be
displayed, and that leading zeros should not be suppressed. The footnote line would now
look like this:

DECEMBER 31, 1999 ABC COMPANY PAGE 001

LEFT/CENTER/RIGHT

Specifies how a field's data should be justified within the space allocated for it in the
footnote line.

Example
FOOTNOTE: #TODAY(LONG1,CENTER)

The above example specifies a footnote line that simply contains the current date,
displayed in LONG1 format. The LONG1 format causes 18 bytes to be reserved for the date
in the footnote line. This is to allow enough room to print the biggest possible date (like
"SEPTEMBER 31, 1999"). The 18–byte area reserved for the date will automatically be
centered under the body of the report, since no slashes are used. But shorter dates (like
"MAY 1, 1990") would not take up the entire 18 byte area, and thus would not appear to
be centered correctly in the footnote. The CENTER parm is needed to cause these shorter
dates to be centered within the 18–byte area in the footnote line. The footnote line
produced by the above statement would now look like this:

DECEMBER 31, 1999

A similar situation arises when you want to align a date with the right margin of a report.
By using a slash you can cause the whole 18–byte area to be right–aligned. But a small
date ("MAY 1, 1990") would not use up the entire 18 bytes, and thus would not be flush
with the right edge of your report. To solve that problem, use the RIGHT justification parm
to right–justify the date within its 18–byte area, like this:

FOOTNOTE: 'ABC COMPANY' / #TODAY(LONG1,RIGHT)

The footnote line produced by the above statement would look like this:

ABC COMPANY DECEMBER 31, 1999

width

This is a numeric parm that specifies the number of characters to reserve for an item in
the footnote line. Use this parm if the default width is larger or smaller than you desire.
■ 10-68 CIMS Report Writer User Guide

Control Statement Syntax ■

FOOTNOTE Statement
Example
FOOTNOTE: 'PAGE' #PAGENUM(9)

The above example specifies that 9 characters (not digits) should be reserved to display
the #PAGENUM field in the footnote line. The resulting footnote would look like this:

PAGE n,nnn,nnn
CIMS Report Writer User Guide 10-69 ■

■ Control Statement Syntax

INCLUDEIF Statement
INCLUDEIF Statement 10

PURPOSE 10

Specifies which input records to include in the report or PC file. Each time a record is
read from the primary input file, the expression in the INCLUDEIF statement is evaluated
using the data from that record (and from any necessary auxiliary input file records.) If
the expression in the INCLUDEIF statement is true, then that record will be included in the
run. If the expression is not true, then the record will not be included in the run. This
process goes on until all records in the primary input file have been read and evaluated.
The records that were included are then sorted and formatted into the desired report or
output file.

Only one INCLUDEIF statement is allowed per report, but it may contain as many
conditions as you like.

If no INCLUDEIF statement is specified, all records from the input file will be included in
the run.

To include only a certain number of records from the input file in your report, use the
MAXINPUT or MAXINCLUDE parms in the OPTIONS statement.

Note • During the evaluation of the INCLUDEIF expression, if a test is attempted that
involves a field with an error condition, the whole INCLUDEIF expression is
automatically considered false and the input record is not included in the run. An
example of such an error condition is when a packed–type field contains hex zeros
or spaces. Other examples include computed fields where an overflow or divide–by–
zero error occurred during their computation. However, see the OPTIONS statement's
ZEROINVDATA, ZEROOVERFLOW and ZERODIVZERO parms. These options can be used to treat
fields with error conditions as though they contained a zero value.

FEATURES 10

Use the INCLUDEIF statement to:

■ select which input records will appear in a report or output file

LEARNING MORE 10

The complete syntax of the INCLUDEIF statement is shown on the following pages. In
addition, the following parts of the manual relate to the INCLUDEIF statement:

■ a lesson on using the INCLUDEIF statement with reports begins on page 2-13

■ a lesson on using the INCLUDEIF statement with PC files begins on page 3-13

■ the syntax of conditional expressions (including examples) is described beginning on
page 9-18
■ 10-70 CIMS Report Writer User Guide

Control Statement Syntax ■

INCLUDEIF Statement
■ suggestions on writing INCLUDEIF statements for maximum CPU efficiency are given
in Appendix I, Speed-Up Tips

SYNTAX 10

conditional–expression

Specifies one or more conditions to evaluate. As each record is read from the input file,
the conditions specified in this expression are evaluated. If the conditional expression is
true, the record is included in the run. Otherwise, the record is not included in the run.
The syntax for conditional expressions is shown on page 9-18.

INCLUDEIF Statement Syntax

INCLUDEIF: conditional–expression

Standard Alternate
Spelling Spellings
INCLUDEIF INCLUDE, INCL, INC
CIMS Report Writer User Guide 10-71 ■

■ Control Statement Syntax

INPUT Statement
INPUT Statement 10

PURPOSE 10

Specifies which file should be used as the primary input for a report or PC file. One (and
only one) INPUT statement is required in order to produce a Report Writer report or PC
file.

FEATURES 10

Use the INPUT statement to:

■ specify the name of the primary input file for a report or PC file

■ to automatically copy additional control statements from the Report Writer Copy
Library (typically used to copy the FILE and FIELD statements that define the input
file)

■ specify a record name to be associated with records from this input file

■ temporarily override certain aspects of the input file definition (such as the DDNAME,
the file type, etc.)

LEARNING MORE 10

The complete syntax of the INPUT statement is shown on the following pages. In
addition, the following parts of the manual relate to the INPUT statement:

■ a lesson on using the INPUT statement begins on page 2-7

■ information on using the INPUT statement with DB2 tables begins on page 7-3

■ reading a file that is processed by a user I/O Exit is discussed in Appendix K, I/O Exits
■ 10-72 CIMS Report Writer User Guide

Control Statement Syntax ■

INPUT Statement
SYNTAX 10

The filename is required in an INPUT statement, and must be the first item after the
statement prefix. All other parms are optional and can appear in any order in the INPUT
statement.

filename

Specifies the primary input file for the run. This file will be read sequentially from
beginning to end. Each record that passes the conditions in the INCLUDEIF statement (if
any) will be included in the run.

The filename specified in this parm must have been defined in an earlier FILE statement.
However, that FILE statement may be in a copy library member that is automatically
copied at the time the INPUT statement is processed. This process is explained beginning
on page 6-39.

Example
INPUT: EMPL–FILE

The above example specifies that the file named EMPL–FILE will be the primary input file
for the run.

INPUT Statement Syntax

INPUT: filename
[ATTR(type ,'dlbl/tlbl' [,SYSnnn] [,F/V] ,recsize
 [,blksize] [,STDLABEL/NOLABEL]) (VSE only)]

[BUFND(nnn) (VSAM only)]
[BUFNI(nnn) (VSAM only)]
[CLEAR(SPACES/ZEROS/NO)]
[COPY(YES/NO)]
[DB2NAME('[qualifier.]name') (DB2 only)]
[DDNAME(ddname) (MVS only)]
[EXITPARM('text')]
[IOEXIT(‘program’ [,’parm’] [TRACE})]
[KEEPRDW]
[KEYRANGE(‘begin’ [’end’])]
[LIST(YES/NO)]
[LRECL(nnnnn) (MVS only)]
[ORDERBY(fieldname [ASC/DESC] [,] ...) (DB2 only)]
[RECNAME(name/filename)]
[SHOWFLDS(YES/NO)]
[TYPE(SEQ/VSAM/DB2/EXIT) (MVS only)]
[WHERE(search–condition) (DB2 only)]

Standard Alternate
Spelling Spellings
DDNAME DDN
EXITPARM PARM
INPUT INP
NO N
TYPE TYP
YES Y
CIMS Report Writer User Guide 10-73 ■

■ Control Statement Syntax

INPUT Statement
ATTR(type, 'dlbl/tlbl' [,SYSnnn] [,F/V] ,recsize [,blksize]
[,STDLABEL/NOLABEL])

VSE only. Specifies override file attributes to use for this file (for the current run only.) For
a complete description of the ATTR parm, see under the FILE statement syntax
(page 10-58.) For examples of using this parm, see page 6-10.

Example
INPUT: SALES–FILE ATTR(DASD,'SALEFIL',80,160)

The statement above names SALES–FILE as the primary input file for the run. Regardless
of how SALES–FILE was earlier described in a FILE statement, it will be treated in the
current run as a SAM file on DASD, with SALEFIL as the DLBL name, with fixed length 80-
byte records, and with 160–byte blocks.

BUFND(nnn)

VSAM files only. Specifies the number of "data buffers" that the VSAM access method should
maintain when processing this input file. When this parm is not specified for a VSAM file,
Report Writer chooses a default number of data buffers to maintain.

Note • According to the VSAM manual, increasing the number of data buffers to 4 or
5 (from VSAM's default of 2) should improve performance for sequential processing.
At some point after that, excessive paging may cancel any benefit. You may wish to
experiment with this parm if you have long–running, VSAM-intensive jobs.

Example
INPUT: EMPL–FILE BUFND(5)

The above statement specifies that VSAM should allocate buffer space for 5 data control
intervals when processing the EMPL–FILE.

BUFNI(nnn)

VSAM files only. Specifies the number of "index buffers" that the VSAM access method
should maintain when processing this input file. When this parm is not specified for a
VSAM file, Report Writer chooses a default number of index buffers to maintain.

Note • According to the VSAM manual, VSAM's default number of index buffers (which
is 1) should be sufficient for sequential processing of VSAM files that have index
components. You may wish to experiment with this parm if you have long–running,
VSAM–intensive jobs.

Example
INPUT: EMPL–FILE BUFND(5) BUFNI(2)

The above statement specifies that VSAM should allocate buffers for 5 data control
intervals and 2 index control intervals when processing the EMPL–FILE.
■ 10-74 CIMS Report Writer User Guide

Control Statement Syntax ■

INPUT Statement
CLEAR(SPACES/ZEROS/NO)

When processing certain types of input files, Report Writer clears the entire I/O area to
blanks before each read. This is to ensure that when a short record is read, it is not
followed by leftover data from a previous longer record. For certain record layouts such
leftover data could cause misleading results. Specifying CLEAR(NO) suppresses this
clearing, which may result in improved performance. You might want to specify
CLEAR(NO) if you are certain that any leftover data in the I/O area will not affect your run.
Specifying CLEAR(ZEROS) causes Report Writer to initialize the I/O area to hex zeros
(rather than blanks) before each read.

Note • You can also specify the CLEAR parm in the FILE statement to avoid having to
put it in the INPUT statement each time. The NOCLEARIO parm in the OPTIONS statement
can be used to prevent clearing of all files in a run.

Example
INPUT: PAYROLL–FILE CLEAR(NO)

The above statement names the PAYROLL–FILE as the input file for a run. Report Writer
will not clear its I/O area each time it reads a record from that file.

COPY(YES/NO)

Specifies whether control statements should be copied from the copy library before
evaluating the file name. If the COPY parm is omitted and the file name has not been
previously defined, the default is to attempt to perform a copy. Normally, the control
statements that are copied will include the FILE and FIELD statements that describe the
input file. This process is explained beginning on page 6-39.

If an attempt to copy records is unsuccessful (due to a missing copy library or a missing
member) that is not considered an error. Normal control statement processing
continues, without any copy being performed.

Example
INPUT: EMPL–FILE COPY(NO)

The above example specifies that no attempt should be made to copy records from the
copy library.

DB2NAME('[qualifier.]name')

DB2 only. Specifies the name of the DB2 table or view that you wish to use as input for the
run. For DB2 inputs, this parm is required unless the filename was defined in an earlier
FILE statement. (In that case, the earlier FILE statement must have specified the DB2NAME
parm.) The table name must be enclosed in quotation marks or apostrophes. Generally
the table name will be qualified. If it is not explicitly qualified, DB2 will assume an
implicit qualifier, which will be the DB2 Authorization ID of the job executing Report
Writer.
CIMS Report Writer User Guide 10-75 ■

■ Control Statement Syntax

INPUT Statement
Example
INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')

The above example specifies that the DB2 table named 'DSN8230.PROJ' should be used as
the primary input "file" for the run. This input file has a Report Writer file name of
PROJECT. That is, other Report Writer control statements that refer to this input file will
refer to PROJECT (rather than to DSN8230.PROJ.)

DDNAME(ddname)

MVS only. Specifies an override DDNAME to use when reading the input file (for the current
run only.) If omitted, the DDNAME will be taken from the FILE statement that defined the
file. A DDNAME parm must be present in either the FIELD statement or the INPUT statement.

Example
INPUT: EMPL–FILE DDNAME(TEMPDD)

The above example specifies that the TEMPDD DD statement in the JCL should be used to
read the EMPL–FILE file, regardless of the DDNAME specified when the file was originally
defined.

EXITPARM('text')

Specifies an override exit parm text. If this parm is omitted, the exit parm text (if any)
will be taken from the FILE statement that defined the file. Exit parm text is passed to
user data exit programs. (Most installations will not use exits, and will not need this
parm.) Anytime a user data exit is called by Report Writer for a field within this file, the
text string specified in this parm will be passed to the exit. The use of this parm is
discussed beginning on page 6-35.

Example
INPUT: EMPL–FILE EXITPARM('12345')

The above example specifies that the text '12345' should be passed to user data exit
programs involving this file, regardless of the EXITPARM specified when the file was
originally defined.

IOEXIT(‘program' [,'parm'] [,TRACE])

EXIT files only. Specifies override I/O Exit information for the input file. May also override
the input file type (if it was something other than EXIT in the FILE statement.) This parm
provides the information necessary for Report Writer to process an EXIT type input file.
More information on I/O Exits can be found in Appendix K, I/O Exits.

MVS Note • When this parm is present, a file type of EXIT is assumed and an explicit
TYPE parm is not required.

VSE Note • When this parm is present, an ATTR parm specifying a type of EXIT and a
RECSIZE is required (in either this statement or the FILE statement.)
■ 10-76 CIMS Report Writer User Guide

Control Statement Syntax ■

INPUT Statement
'program' This parm is required. It specifies the name of the load module (MVS) or phase
(VSE) that Report Writer will call in order to obtain records from the file.

'parm' This parm is optional. Each time the I/O Exit program is called by Report Writer,
the text specified in this parm is passed to the exit program. Typically this text is used to
provide the exit program with any special information it needs in order to process the
file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Report Writer prints trace information in
the control listing before and after each call to the I/O Exit. This information can be
useful when developing and debugging a new I/O Exit program. The TRACE parm is
normally not used in production runs.

Example
INPUT: MASTER-FILE IOEXIT(‘MYEXIT')

The above example specifies that a program named MYEXIT should be called to read
records from the primary input file MASTER-FILE.

KEEPRDW

Meaningful only for non–VSAM, variable length files. This parm means that the 4–byte record
descriptor word (RDW) at the beginning of each record will be considered a part of the
record. The default is to treat the record as starting after the RDW. The use of this parm is
discussed beginning on page 6-6 (MVS) and page 6-10 (VSE.)

Example
INPUT: EMPL–FILE KEEPRDW

The above example specifies that the RDW should be kept when reading records from the
EMPL–FILE. Thus, assuming that EMPL–FILE is actually a non–VSAM variable length file, a
field defined as starting in column 1 would point to the 2–byte record length within the
RDW.

KEYRANGE(‘begin' ['end'])

KSDS VSAM files and EXIT files only. This parm specifies that only a certain range of records
from the primary input file should be processed. Only records whose keys are greater
than or equal to the ‘begin' value and less than or equal to the ‘end' value will be
processed. If no ‘end' value is specified, the ‘end' value is assumed to be the same as the
‘begin' value.

The ‘begin' and ‘end' values in the KEYRANGE parm can each be a full or a partial (generic)
key value. Partial ‘begin' values are treated as if they were right-padded with hex zeros.
Partial ‘end' values are treated as if they were right-padded with high values.

Speed-Up Tip: the use of this parm, where appropriate, can speed up your runs by
eliminating unnecessary VSAM I/O.

Examples
INPUT: EMPL–FILE KEYRANGE(‘03')
CIMS Report Writer User Guide 10-77 ■

■ Control Statement Syntax

INPUT Statement
The above example specifies that only records whose keys begin with "03" should be
read from the EMPL-FILE.

INPUT: EMPL–FILE KEYRANGE(‘032' ‘036')

The above example specifies that only records with keys between "032" and "036"
(inclusive) should be read from the EMPL-FILE.

LIST(YES/NO)

Applies only if the COPY function is performed. The LIST parm specifies whether the copied
control statements should be listed along with the other control statements in the
control listing. If no LIST parm is present, the default is to not list the copied statements.

Note • If an error is detected in any of the copied control statements, that statement
will be listed, along with the error message, regardless of the value of this parm.

Example
INPUT: EMPL–FILE LIST(YES)

The above example specifies that any records copied from the copy library should be
listed in the control listing.

LRECL(nnnnn)

MVS only. Specifies an override record length for the input file. This is the length of the
largest record that might be found in the file. If this parm is omitted, the LRECL value (if
any) from the FILE statement is used. If no LRECL parm is found in either the FILE or the
INPUT statement, a default LRECL of 1000 is assumed.

Example
INPUT: EMPL–FILE LRECL(4000)

The above example specifies that a record as large as 4000 bytes long may be
encountered in the EMPL–FILE file.

ORDERBY(fieldname [ASC/DESC] [,] ...)

DB2 only. This parm is optional and not normally used in the INPUT statement. If this
parm is omitted, DB2 passes the rows from the DB2 table to Report Writer in an "arbitrary"
order. This is not normally of any consequence, as Report Writer then sorts the selected
rows according to the SORT statement before producing your report or PC file. Use this
parm if you want to specify the order in which the rows from the DB2 table should be
passed to Report Writer. The contents of this parm is one or more column names from
the DB2 table, optionally separated with commas. You may also include the DB2 keywords
ASC or DESC after the column names. This parm is discussed in more detail beginning on
page 7-8.

Example
INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 ORDERBY(DEPTNO, PROJNAME)
■ 10-78 CIMS Report Writer User Guide

Control Statement Syntax ■

INPUT Statement
The above example would cause DB2 to pass the rows from the project table to Report
Writer in department number order, with "ties" being passed in project name order.

RECNAME(name/filename)

Specifies a record name to use when referring to fields in this input file. This is especially
useful when you will be reading multiple records from the same input file (by using a
READ statement in addition to the INPUT statement.) The RECNAME parm (in each
statement) can be used to assign unique names to each record read from the file. You
may give the record any name you like, within the rules governing names given on
page 9-7. The use of the RECNAME parm is discussed beginning on page 4-115.

If no RECNAME parm is specified, the filename is used as the record name.

Example
INPUT: EMPL–FILE RECNAME(EMP)

The above example specifies that the records read from the EMPL–FILE file will be named
EMP. Assume that a field named DATE exists in both this file and in some other input file.
You can use the record name EMP to indicate that you are referring to the DATE field from
the EMPL–FILE, like this:

COLUMNS: EMP.DATE

SHOWFLDS(YES/NO)

Specifies whether Report Writer should print a list of all fields that have been defined for
the input file. (For DB2 inputs, the DB2 columns defined for the DB2 table are listed.) This
list appears immediately after the INPUT statement in Report Writer's control statement
listing. The list will include the data type of each field (character, numeric, date, time or
bit.) Use this parm if you aren't sure of the names or spellings of the fields (or DB2
columns) in your input file.

Example
INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 SHOWFLDS(YES)

The above statement causes a list to be printed showing each DB2 field ("column")
defined for the DSN8230.PROJ table.

TYPE(SEQ/VSAM/DB2/EXIT)

MVS only. Specifies an override file type for the input file. If this parm is omitted, the file
type will be taken from the FILE statement that defined the file. A complete list of file
types is given under the FILE statement description, on page 10-64.

Example
INPUT: EMPL–FILE TYPE(VSAM)

The above example specifies that the VSAM access method should be used when reading
the EMPL–FILE file, regardless of the file type specified when the file was originally
defined.
CIMS Report Writer User Guide 10-79 ■

■ Control Statement Syntax

INPUT Statement
WHERE(search–condition)

DB2 only. This parm is optional. If this parm is omitted, DB2 will pass all rows in the DB2
table to Report Writer. (Report Writer will then decide which of those rows to use based
on the INCLUDEIF statement, if any.) Use this parm to specify a "search condition" for DB2
to use in deciding which rows from the DB2 table to pass to Report Writer. The syntax of
the search–condition is generally the same as DB2's syntax for the WHERE clause in a DB2
SELECT statement. The use of this parm is discussed in the section beginning on page 7-7.
The precise syntax rules for the WHERE parm are given beginning on page 7-15.

Example
INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')
 WHERE(DEPTNO = 'D21')

In the example above, the WHERE parm causes DB2 to return to Report Writer only those
rows from the project table whose DEPTNO field is equal to "D21." Those are the only rows
that could then appear in the Report Writer report or PC file. An INCLUDEIF statement
could be used to reduce even further the number of rows that are actually included in the
run.

NOTES 10

How the Primary Input File is Processed

The file specified in the INPUT statement is called the primary input file for a run. Each
run must have one and only one primary input file. Report Writer opens this file for
sequential input at the beginning of the report process. Each record in the file is then
read sequentially. (Or, if the KEYRANGE parm was used, then each record within the
specified range is read sequentially.) As each record is read, the conditions specified in
the INCLUDEIF statement (if any) are evaluated, using the data from that record (and any
auxiliary input file records related to it.) Based on these conditions, the record will either
be included in the run, or will not be included. If the record is to be included, a sort
record is built using data from the record. The sort record is then passed to the sort
routine, and the next sequential record is read from the primary input file. This process
is repeated until all records in the primary input file have been evaluated. The report (or
PC file) is then written from the information in these sorted records.
■ 10-80 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
OPTIONS Statement 10

PURPOSE 10

Specifies various special options. You may specify as many options as you like on a single
OPTIONS statement. In addition, you may have as many separate OPTIONS statements as
you like.

The OPTIONS statements should appear before all other control statements.

FEATURES 10

Use the OPTIONS statement to:

■ specify options that affect the overall appearance of a report

■ specify that a PC file should be created rather than a report

■ change defaults settings used in producing a report

■ limit the amount of processing performed, for test runs

■ specify printer setup texts

LEARNING MORE 10

The complete syntax of the OPTIONS statement is shown on the following pages. In
addition, certain individual options are discussed and illustrated in other parts of this
manual. To see if additional information is available about a specific option, check
under the name of the option in the Index.
CIMS Report Writer User Guide 10-81 ■

■ Control Statement Syntax

OPTIONS Statement
SYNTAX 10

OPTIONS Statement Syntax

OPTIONS:
[ASCIITABLE(‘text’)]
[ASMLIB('library.sublibrary') (VSE only]]
[AUTOSORT]
[CENTURY(nn/0)]
[COBLIB('library.sublibrary') (VSE only)]
[COLHDGONCE]
[COLSEP('text')]
[COLSPACE(nnn/1)]
[DATEDELIM('char'/'/')]
[DB2PLAN('plan'/'SPECTnnn') (DB2 only)]
[DB2SUBSYS('subsystem') (DB2 only)]
[DDMMYYLIT]
[DETAIL(nnnnn)]
[EBCDICTABLE(‘text’)]
[FORMAT(display–format [,display–format] ...)]
[HEADINGSEP('char'/' ')]
[HGCOLHDG]
[HTML[('title')]]
[HTMLAID[(YES/NO)]]
[KEEPRDW]
[LEFTMARGIN(nnn/0)]
[MAXINCLUDE(nnnnn)]
[MAXINPUT(nnnnn)]
[MAXINVSHOW(nnnnn)]
[MAXPAGES(nnnnn)]
[MAXPRINT(nnnnn)]
[MEMTYPE('type'/'SPECTWTR') (VSE only)]
[MISSOFFSET]
[MULTICOLHDG]
[NOCC]
[NOCHECK]
[NOCLEARIO]
[NOCOLHDGS]
[NOGRANDSPACES]
[NOGRANDTOTAL]
[NOMAXMSG]
[NOOVERPRINT]
[NOSYSINLIMIT]
[NOTITLES]
[NOUNDERSCORES]
[OUTATTR(type[,'dlbl/tlbl'][,SYSnnn][,recsize][,blksize])(VSE only)]
[OUTLRECL(nnnnn) (MVS only)]
[OUTTYPE(SEQ/VSAM) (MVS only)]
[PAGELENGTH(nnn/60)]
[PC/MAINFRAME/OUTPUT/ACCESS/COREL/CSV/DBASE3/DBASE4/EXCEL

/FOXPRO/HARVARD/LOTUS/MS–WORKS/PARADOX/QUATTRO/RBASE]
[POSTSCRIPT('text')]
[PRESCRIPT('text')]
[PRTSETUP('text')]
[PRTSHEET('text')]
[QCHAR('char'/'"')]
[SINGLE/DOUBLE/TRIPLE]

(Continued on next page)
■ 10-82 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
ASCIITABLE(‘text')

Use this option to specify your own translation table to be used for EBCDIC-to-ASCII
translations. (Such translations are performed when the ASCII parm is specified in a
print-expression, as well as for the #ASCII built-in function.) The text parm for this
option must be a string that is exactly 256 bytes long. For convenience, you can split this

OPTIONS Statement Syntax (continued)

[SKIPBLANKDET]
[SKIPZERODET]
[SORTNAME('program'/'SORT')]
[SORTSIZE(nnnn/256)]
[SORTWORKNUM(n/0) (VSE only)]
[SPLITDETAIL]
[STCKADJ(nn)]
[SUBLIB('library.sublibrary') (VSE only)]
[SUMMARY]
[TIMEDELIM('char'/':')]
[TITLEONCE]
[ZERODIVBYZERO]
[ZEROINVDATA]
[ZEROOVERFLOW]

Standard Alternate
Spelling Spellings
DB2SUBSYS DB2SUBSYSTEM
DDMMYYLIT DDMMYYYYLIT
DETAIL DET
DOUBLE DOUBLESPACE
FORMAT FMT
HEADINGSEP HDGSEP
LEFTMARGIN LEFTMARG
MAINFRAME MAIN
MAXINCLUDE MAXINCL, MAXINC
MAXINPUT MAXINP
MAXPAGES MAXPAGE
MAXPRINT MAXPRT
MEMTYPE MEMBERTYPE
NOCOLHDGS NOCOLHDG
NOGRANDSPACES NOGRANDSPACE
NOGRANDTOTAL NOGRANDTOTALS, NOGRANDTOT,

NOGRANDTOTS, NOGRAND
NOOVERPRINT NOOVERPRT
NOTITLES NOTITLE
NOUNDERSCORES NOUNDERSCORE, NOUNDER
OPTIONS OPTION, OPTS, OPT
PAGELENGTH PAGELGTH, PAGELEN, PAGEL
SINGLE SINGLESPACE
SKIPBLANKDET SKIPBLKDET
SPLITDETAIL SPLITDET
SUBLIB SUBLIBRARY
TITLEONCE TITLESONCE
TRIPLE TRIPLESPACE
ZERODIVBYZERO ZERODIVZERO, ZERODIVZ
ZEROINVDATA ZEROINV
ZEROOVERFLOW ZEROOVER
CIMS Report Writer User Guide 10-83 ■

■ Control Statement Syntax

OPTIONS Statement
256-byte string into as many smaller strings as you like. This string tells Report Writer
what value to return for each of the 256 possible byte values it could encounter when
translating a character string. If this option is not specified, Report Writer uses a default
ASCII translation table.

Example
OPTION: ASCIITABLE(X'000102030405060708090A0B0C0D0E0F'
 X'101112131415161718191A1B1C1D1E1F'
 X'202122232425262728292A2B2C2D2E2F'
 X'303132333435363738393A3B3C3D3E3F'
 X'404142434445464748494A4B4C4D4E4F'
 X'505152535455565758595A5B5C5D5E5F'
 X'606162636465666768696A6B6C6D6E6F'
 X'707172737475767778797A7B7C7D7E7F'
 X'808182838485868788898A8B8C8D8E8F'
 X'909192939495969798999A9B9C9D9E9F'
 X'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF'
 X'B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF'
 X'C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF'
 X'D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF'
 X'E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF'
 X'F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF')

The above example merely serves to illustrate the syntax of the ASCIITABLE option. This
example uses 16 hex strings of 16 bytes each to provide the necessary 256-byte table.
(The values shown in the example would cause the #ASCII function to simply return the
same operand without change.)

ASMLIB('library.sublibrary')

VSE only. Specifies the default sublibrary to copy members from while in the scope of an
ASM statement.

Example
OPTION: ASMLIB('TEST.COPYASM')

The above statement means that COPY statements appearing within the scope of an ASM
statement will copy members from the TEST.COPYASM sublibrary by default. This default
can be overridden, however, by specifying a sublibrary name directly in the COPY
statement.

AUTOSORT

When no SORT statement is specified, the AUTOSORT option tells Report Writer to sort the
report or output file on the first 5 fields named in the COLUMNS statement. When an
explicit SORT statement is used, the AUTOSORT option tells Report Writer to add up to 5
"tie–breaker" sort fields to the fields named in the SORT statement. The tie–breaker fields
will be the first 5 fields named in the COLUMNS statement (not considering those fields
explicitly named in the SORT statement.)
■ 10-84 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
CENTURY(nn/0)

Specifies the century cutoff year. This option tells Report Writer which century a 2–digit
year belongs to. You can use this option to process dates into the 21st century, even if
they only contain 2 digits for the year. Any year below the specified value is considered to
be in the 21st century. All years greater than or equal to the specified value are considered
to be in the 20th century. The default value of 0 causes all 2–digit years to be treated as
20th century dates (since no year is less than zero).

Note • This option does not affect the way dates with 4–digit years are processed.

Example
OPTION: CENTURY(5)

The above example states that any dates with a year less than 5 are in the 21st century.
Thus, the date 8/31/04 would mean August 31, 2004. However, 8/31/05 would mean
August 31, 1905.

COBLIB('library.sublibrary')

VSE only. Specifies the default sublibrary to copy members from while in the scope of a
COBOL statement.

Example
OPTION: COBLIB('TEST.COPYCOB')

The above statement means that COPY statements appearing within the scope of a COBOL
statement will copy members from the TEST.COPYCOB sublibrary by default. This default
can be overridden, however, by specifying a sublibrary name directly in the COPY
statement.

COLHDGONCE

Print column headings only once, at the very beginning of the report or PC file. This is
Report Writer's default when creating many type of PC files. This option also suppresses
titles, footnotes and all page break logic. (See the similar TITLEONCE option if you want
the report titles to print along with the column headings.)

COLSEP('text')

Specifies a default column separator text. This text will appear between each column in
the report. Normally, the column separator text is a single blank space.

This option is useful when creating output files (especially PC files.) In that case, use this
option to specify a "delimiter" character (such as a comma, or a "tab" character) to
separate the fields in the output record.

Example
OPTIONS: COLSEP(',')

The above statement causes the fields ("columns") in the output record to be separated
by commas.
CIMS Report Writer User Guide 10-85 ■

■ Control Statement Syntax

OPTIONS Statement
Note • Specifying this option also causes the COLSPACE option to be set to the length
of the COLSEP text.

COLSPACE(nnn/1)

Specifies the default number of spaces to leave between columns in the report. (This
default spacing factor can be overridden directly in the COLUMNS statement.) The normal
default is to leave one blank space between each report column.

This option is also useful when creating mainframe output files. You may then want to
specify COLSPACE(0) to eliminate all blanks between the fields in the output records.

Note • Specifying the COLSEP option also changes the COLSPACE value.

DATEDELIM('char'/'/')

This option lets you specify any character you choose to be used as the delimiter when
formatting dates. This delimiter will be used with all date display formats that use a
delimiter. The default date delimiter is a slash (/). For example, to format all dates using
dots rather than slashes, you would specify:

OPTIONS: DATEDELIM('.')

This would cause the MM-DD-YY display format to appear as "12.31.99" and the DD-MM-
YYYY format to appear as "31.12.1999".

Note • Use of this parm does not affect the way Report Writer recognizes date literals
in the control statements. Date literals must always be written using slashes as
delimiters.

DB2PLAN('plan'/'CIMSRnnn')

DB2 only. Specifies the DB2 plan name to use. This parm is needed only if the default plan
name was not used during installation of Report Writer's DB2 Option (see page 7-20.)
Report Writer assumes that you use a plan name of "CIMSRnnn", where nnn is the Report
Writer version number. (Thus, for release 2.8 of Report Writer, a plan name of CIMSRnnn
is assumed.) If you used a different plan name to bind Report Writer in your shop, you
must tell Report Writer your plan name via the DB2PLAN option. Enclose the plan name
in quotation marks or apostrophes. For example, if you bind Report Writer with a plan
name of XYZ12345, you would need to use a statement like the following:

OPTION: DB2PLAN('XYZ12345')

DB2SUBSYS('subsystem')

DB2 only. Specifies the name of the DB2 subsystem to use for the run. This option is
required for any run that uses DB2 data. Enclose the subsystem ID in quotation marks or
apostrophes.
■ 10-86 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
Example
OPTIONS: DB2SUBSYS('DB2T')

The above statement causes Report Writer to use the DB2 subsystem named DB2T for all
DB2 requests in the run.

DDMMYYLIT

Indicates that all date literals used in the control statements are in DD/MM/YY or
DD/MM/YYYY format.

Example
OPTIONS: DDMMYYLIT
...
INCLUDEIF: SALES–DATE < 31/12/1996

The above OPTIONS statement specifies that any date literals in the control statements are
in DD/MM/YY (or DD/MM/YYYY) format. In the INCLUDEIF, we select all records whose SALES–
DATE field is before December 31, 1996.

Note • The slash (/) is always used as the delimiter in date literals. The DATEDELIM
option, if any, only changes the way dates are formatted in the output–– not the way
date literals are written in the control statements.

DETAIL(nnnnn)

Specifies how many detail lines should be printed within each control break. (If no
control breaks are used, it specifies how many detail lines to print in the whole report.)
The default is to print all detail lines.

You may specify DETAIL(0) to suppress all detail print lines. In that case you would see
only the lines printed at control breaks and at Grand Total time.

This option is useful for printing "Top Ten Sales in each Department" type of reports. It
is also helpful when developing new reports that have lots of detail lines. Use this option
to print just a few detail records for each control group while you develop the new report.
This will keep your trial reports to a smaller, more convenient size. Remove the option
when your are ready for the final run.

Example
OPTIONS: DETAIL(10)
INPUT: EMPL–FILE
COLUMNS: LAST–NAME FIRST–NAME TOTAL–SALES
SORT: DEPT–NUM TOTAL–SALES(DESC)
BREAK: DEPT–NUM

The above example produces a report that lists the top 10 sales people in each
department, in descending sales volume order.
CIMS Report Writer User Guide 10-87 ■

■ Control Statement Syntax

OPTIONS Statement
EBCDICTABLE(‘text')

Use this option to specify your own translation table to be used by the #EBCDIC built-in
function. The text parm for this option must be a string that is exactly 256 bytes long. For
convenience, you can split this 256-byte string into as many smaller strings as you like.
This string tells Report Writer what value to return for each of the 256 possible byte
values it could encounter when performing the #EBCDIC built-in function on some
operand. If this option is not specified, Report Writer uses a default EBCDIC translation
table.

Example
See the example under the ASCIITABLE option which has the same syntax.

FORMAT(display–format [,display–format] [,display–format]
[,display–format])

Specifies one or more display formats to be used as default display formats. You may
specify one character–type display format, one numeric–type display format, one date-
type display format, and one time–type display format. You may specify any or all of
these, in any order. (A complete list of valid display formats is found in Appendix B,
Display Formats.) The display formats specified in this option become the default display
format for all fields of the associated data type. This option is especially useful when
creating output files. For example, when creating a "delimited ASCII" output file, you
might use the following statement:

OPTIONS: FORMAT(QCHAR, Q–MM–DD–YY, Q–HH–MM–SS, NOCOMMA)

The above statement would cause the QCHAR display format to be used for all character
fields (enclosing the character data in quotation marks.) All dates would be formatted as
MM/DD/YY, also enclosed in quotation marks. All times would be formatted as HH:MM:SS,
also enclosed in quotation marks. And all numeric fields would be formatted in the
NOCOMMA display format –– without using commas to separate thousands, millions, etc.

When the FORMAT option is used, you may still specify an override display format for any
particular item directly in the COLUMNS statement (or TITLE statement, etc.) The FORMAT
option just changes the default display format used when no explicit display format is
given.

Note that the output file options (LOTUS, EXCEL, MAINFRAME, etc.) also change one or more
of the default display formats.
■ 10-88 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
Note • When the CHARACTER or HEX display format is specified alone in the FORMAT
option, it applies to data of all types. For example:

OPTIONS: FORMAT(HEX)

The above statement would cause all character, numeric, date and time fields to
appear in hex format. If you want the HEX or CHARACTER display format to apply only
to character fields, specify numeric, date and time display formats after the CHARACTER
or HEX format in the FORMAT parm. For Example:

OPTIONS: FORMAT(HEX, NUMERIC, MM–DD–YY, HH–MM–SS)

The above statement would cause all character fields to be formatted in HEX format,
and all numeric, date and time fields to be formatted the way they normally would
be.

HEADINGSEP('char'/'|')

Specifies the character that will be used to separate column heading texts into different
lines. The default heading separator character is the vertical bar (|).

Tip: The vertical bar is the "Shift 1" key on most mainframe terminals. Some PC
keyboards that emulate mainframe terminals do not have a key that shows the straight
vertical bar. (The "pipeline" character is not the same as a vertical bar.) On many of these
keyboards, the right–hand square bracket key (]) is used to send a vertical bar to the
mainframe.

Example
OPTIONS: HEADINGSEP('/')
COLUMNS: LAST–NAME('EMPLOYEES/LAST/NAME')

The above example specifies that the slash character (/) should be used as the heading
separator character. The COLUMNS statement specifies an override column heading text
using slashes. The slashes would cause the three words in the column heading to appear
on three separate lines.

HGCOLHDG

Specifies that "Harvard Graphics" style column headings are wanted. (This is also the
default when the HARVARD option is specified.) This option causes the column
headings to appear in a single line in the output file (rather than being split onto
multiple lines.) The "blank" line that normally separates the column headings from the
actual data is also suppressed. This option is useful when the PC program which will be
importing your output file expects the first line of input to contain a legend for the data
in the subsequent lines.
CIMS Report Writer User Guide 10-89 ■

■ Control Statement Syntax

OPTIONS Statement
HTML[('title')]

Tells Report Writer to wrap standard HTML code around the report. This creates a Web
report that can be viewed on Web browsers, such as Internet Explorer and Netscape
Navigator. You can also specify an optional HTML title for the Web page. Specifying the
HTML option also turns on the HTMLAID option (see below). The use of these options is
discussed in Chapter 5, How to Make a Web Report.

Example
OPTIONS: HTML('SALES REPORT BY REGION')

HTMLAID[(YES/NO)]

The HTMLAID option tells Report Writer that you will be putting your own HTML tags within
the report and that Report Writer should recognize and support those tags. This option
itself does not cause Report Writer to add any HTML codes to your report. This option is
implied by the HTML option. Therefore, you do not need to specify the HTMLAID option if
you have specified the HTML option. (If you specify the HTML option and do not want the
HTMLAID option, specify HTMLAID(NO) to turn it off.) The use of this option is discussed in
Chapter 5, How to Make a Web Report.

Example
OPTIONS: HTMLAID

Following are the specific actions that Report Writer takes when the HTMLAID option is in
effect:

1 When an HTML-format literal is specified as an item in a COLUMNS statement, Report
Writer also copies that HTML literal into the same location in the default total lines
(that is, the lines that print by default at control breaks and at the Grand Total.) The
purpose of this is to keep the columns in the default total lines aligned with the body
of the report. It also causes the same HTML formatting information that is applied to a
particular report column to be applied to the total for that column (if any).

2 When an HTML-format literal is specified as an item in a COLUMNS statement and no
explicit column heading is specified for it, Report Writer uses the HTML literal itself as
its own column heading. The HTML literal will be propagated into all column headings
lines, including even the underscore line. The purpose of this is to keep the column
headings aligned with the body of the report. It also causes the same HTML formatting
information that is applied to a particular report column to be applied to the column
headings for that column.

3 When the column heading for any item (whether a field or a literal) in a COLUMNS
statement is a simple, one-line HTML literal, Report Writer propagates that literal into
any column heading lines above that line and also into the underscore line. The
purpose of this is to keep all column headings lines aligned with each other.

4 When the column heading for any item (whether a field or a literal) in a COLUMNS
statement consists solely of multiple lines of HTML literals, Report Writer propagates
the HTML literal for the bottom column heading line into the underscore line. (It does
not propagate anything upward.) The purpose of this is to keep the column heading
underscore line aligned with the other column heading lines.
■ 10-90 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
KEEPRDW

When reading non–VSAM input files with variable length records, Report Writer considers
column 1 of the input record to be the first byte after the RDW (record descriptor word.)
This option tells Report Writer that you want the RDW to be considered a part of the input
record. When KEEPRDW is specified, the RDW is considered to be in column 1 of the input
record. The first column after the RDW will be considered column 5. Specifying KEEPRDW in
the OPTIONS statement makes it apply to all input files used in the run. You may also
specify this keyword in individual FILE, INPUT or READ statements.

Note • VSAM files and DB2 tables do not have RDWs at the beginning of each record. This
option is ignored for these kinds of files.

LEFTMARGIN(nnn/0)

Specifies a number of blank spaces to use as a left margin when printing the report. By
default, there is no left margin.

MAXINCLUDE(nnnnn)

Specifies the maximum number of records from the primary input file that should be
included in the report. (That is, the maximum number of records that pass the INCLUDEIF
statement conditions.) This is helpful while developing new reports that use very large
input files. You can use this option to limit the number of records processed during test
runs. You may need to use this option rather than the MAXINPUT option, when the records
required for your report are not the first records in the input file. (See also the related
MAXINPUT option.)

MAXINPUT(nnnnn)

Specifies the maximum number of records that should be read from the primary input
file when producing the report. This option is helpful when you are developing a new
report that uses a large input file. This allows you to read in only a few hundred records
(for example) to get an idea of how your report will look. This will run much faster than
a report that processes the whole file. (Also see the related MAXINCLUDE option.)

MAXINVSHOW(nnnnn/10)

Specifies the maximum number of invalid fields that should be displayed in hex format
in the control listing. The default is to display the first 10 invalid fields that are
encountered. Specify MAXINVSHOW(0) if you don't want to see any invalid field hex
displays.

MAXPAGES(nnnnn)

Specifies the maximum number of report pages that should be printed. This is helpful
while developing new reports. It ensures that whole boxes of paper won't accidentally be
printed if there are serious errors in the control statements. (See also the related
MAXPRINT, NOCHECK and NOMAXMSG options.)
CIMS Report Writer User Guide 10-91 ■

■ Control Statement Syntax

OPTIONS Statement
MAXPRINT(nnnnn)

Specifies the maximum number of report lines that should be printed (including titles,
column headings, footnotes, etc.) This is helpful while developing new reports. It
ensures that whole boxes of paper won't accidentally be printed if there are serious errors
in the control statements. (See also the related MAXPAGES, NOCHECK and NOMAXMSG options.)

MEMTYPE('type'/'SPECTWTR')

VSE only. Specifies the default member type to use when reading members from the
Report Writer Copy Library. If this parm is not specified, the default member type is
SPECTWTR. The default member type is used for COPY statements that do not explicitly
specify a member type.

Note • This default member type applies only to copies performed outside the scope
of ASM and COBOL statements. Different default member types are used within the
scope of those statements.

Example
OPTIONS: MEMTYPE('SW')

The above statement tells Report Writer to look for members whose member type is SW,
when copying members from the copy library.

MISSOFFSET

Specifies that fields having OFFSET parm errors should be treated as if they were
"missing." (Missing fields are assigned zeros for numeric, date and time fields, blanks for
character fields, and OFF for bit fields). This suppresses the ***F*** indicator in reports.

MULTICOLHDG

By default, when more than one COLUMNS statement is used Report Writer does not
automatically produce column headings. (The TITLE statement is often used in such
situations to manually create column headings.) If you want Report Writer to
automatically provide column headings for you in a report that has multiple COLUMNS
statements, specify:

OPTIONS: MULTICOLHDG

Report Writer will use the column headings that would have been generated if the
request contained only the first COLUMNS statement. For many multi–line reports, this
provides an easier way to produce column headings. Of course, the first COLUMNS
statement may contain override column headings as usual. Those override column
headings will then be used in the report. Any default or explicit column headings in the
2nd and later COLUMNS statements are ignored.
■ 10-92 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
NOCC

Specifies that no "carriage control" characters should be written. Normal report lines are
prefixed with a carriage control character, which contains a printer spacing command.
When writing to an output file, rather than to a printer, the carriage control character is
not normally wanted.

Note • Specifying a PC file formatting option (or MAINFRAME) also suppresses the
carriage control character.

NOCHECK

Only relevant if the MAXPRINT or MAXPAGES option is used. Tells Report Writer that the NOCHECK
option is in effect for your shop's sort program. This means Report Writer can safely quit
the sort early when the MAXINPUT or MAXINCLUDE limit has been reached. Otherwise, in
order to prevent a SORT ABEND, Report Writer must continue to process the remainder of
the sort file (flushing the records), which takes a little more processing time.

NOCLEARIO

For some input files, Report Writer clears (sets to hex zeros) the I/O area where records
are read before performing each read. The NOCLEARIO option specifies that such clearing
should not be performed for any files used in the run. When such clearing is not
necessary, suppressing it may improve performance.

NOCOLHDGS

Specifies that Report Writer should not create column headings for the report or PC file.
Report Writer also defaults to the NOCOLHDG option for all reports that use more than one
COLUMNS statement.

NOGRANDSPACES

Suppresses all spacing before the Grand Totals. Normally, the Grand Totals are separated
from the body of the report by 2 blank lines, or are printed on a separate page. When
creating output files, you may want to specify this option to prevent any blank records
from being written to your output file before the Grand Total record.

NOGRANDTOTAL

Specifies that Grand Totals are not wanted for this report.

NOMAXMSG

Only relevant if the MAXPRINT or MAXPAGES option is used. Tells Report Writer not to print a
message in your report when the maximum limit has been reached.
CIMS Report Writer User Guide 10-93 ■

■ Control Statement Syntax

OPTIONS Statement
NOOVERPRINT

Specifies that no lines should be "over–printed" in the report. (They will be single-
spaced instead.) An example of an over–printed line is the line of underscores under the
column headings. Use this option when the printer being used to print the report does
not have over–print capability.

NOSYSINLIMIT

By default Report Writer suspects a loop when more than 50,000 control cards have been
processed. (Looping can be caused by copying a member that copies itself recursively.)
When this occurs, a message is printed and the run is terminated. To disable this limit
on the number of control cards accepted, specify this option.

NOTITLES

Specifies that no titles are wanted for the report. By default, if no TITLE statements are
specified for a report, Report Writer will use a default title line. This option prevents that
default title line from printing. When NOTITLES is specified, no page break processing is
performed–– the report will print over paper perforations, etc. This option is useful
when the report output will be routed to a dataset for further processing, rather than to a
printer.

Note • This option also suppresses the printing of all column headings and FOOTNOTE
lines.

NOUNDERSCORES

Specifies that the column headings in the report should not be underscored. This is often
desirable for reports that will be viewed online, since the underscore line uses up an
additional line on the screen.

OUTATTR(type [,'dlbl/tlbl'] [,SYSnnn] [,recsize] [,blksize])

VSE only. This parm describes the attributes to use for Report Writer's output. The section
beginning on page 8-19 discusses the use of this parm.

type This parm is required. It tells Report Writer what kind of device to write the output
to. It must be one of the following values:

PRT

PRINTER a printer–type device (including POWER print queues)

DASD a SAM file on a DASD device (disk). (Use this type even if your SAM files
are managed by VSAM.)

TAPE a SAM file on a magnetic tape

VSAM an ESDS VSAM file
■ 10-94 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
'dlbl/tlbl' This parm is required unless writing to a printer device. It tells Report Writer
what DLBL or TLBL is used in the JCL for the output file. The 1– to 7–byte name within
apostrophes (or quotation marks) must be the same as the filename in a DLBL or TLBL
statement in your JCL.

SYSnnn This parm is required for PRINTER and TAPE output. It is treated as a comment for
other output types. It identifies the logical unit to write the output to. The value specified
here must also be "assigned" in your JCL.

recsize This parm is optional. It specifies the length of the output records to be written.
If omitted, a record size of 133 is assumed.

Note • For report output, the first byte in each record is used as a "carriage control
character." So in the example above, only 132 bytes would be available for the report
data itself. For PC file and mainframe file output (or when using the NOCC option) no
control character is written, and the entire length of the record is available for data.

blksize This parm is optional. It specifies the block size to use when writing a DASD or
TAPE output file. (This parm is not allowed for PRINTER or VSAM output types.) This value
must be a multiple of the recsize value. If omitted, single record blocking is used. That
is, the default is to make the block size the same as the record size.

Notice that the OUTATTR parm does not have a record format parm (F/V), which the
similar ATTR parm in the FILE statement has. Report Writer output is always written as
fixed length records (and fixed length blocks, if blocked.)

OUTLRECL(nnnnn)

MVS only. Specifies the LRECL to be used for the output records written by Report Writer.
This parm is mainly intended for use when writing to a VSAM output file. The LRECL
chosen by Report Writer for its output records is determined in this way.

For VSAM output files, the LRECL used is:

1 the OUTLRECL parm value (if it is valid for the VSAM file's definition), if any, or

2 133 (if it is valid for the VSAM file's definition), or

3 the maximum LRECL value defined for the VSAM file

For QSAM output, the LRECL used is:

1 the LRECL specified in the JCL, if any, or

2 the LRECL specified in the file's label, when writing to an existing dataset, or

3 the OUTLRECL parm value, if any, or

4 133
CIMS Report Writer User Guide 10-95 ■

■ Control Statement Syntax

OPTIONS Statement
OUTTYPE(SEQ/VSAM)

MVS only. Specifies the type of I/O to be used by Report Writer when writing output
records. If OUTTYPE(VSAM) is specified, the dataset named in the SWOUTPUT DD statement
must be an existing, ESDS VSAM dataset. If Report Writer's output will be written to a
SYSOUT DD or to a non–VSAM file, OUTTYPE(SEQ) (the default) must be used.

PAGELENGTH(nnn/60)

Specifies how many lines should be printed per page. The first title line of your report is
considered line 1. The default number of lines to print per page is 60. Use this option to
change the number of blank lines that appear at the bottom of each page.

PC/MAINFRAME/OUTPUT/ACCESS/COREL/CSV/DBASE3/
DBASE4/EXCEL/FOXPRO/HARVARD/LOTUS/MS–WORKS/
PARADOX/QUATTRO/RBASE

Specifies that a particular kind of output file is wanted (rather than a report.) The use of
these options is discussed in the lesson that begins on page 3-6.

POSTSCRIPT('text')

Specifies a literal text that should be printed once at the end of the report (or output file).
You may have as many POSTSCRIPT options as you like. They will print in the order they
are specified in. The HTML option, if specified, also causes certain lines to print at the end
of a report. If the HTML option is also specified, the POSTSCRIPT lines will print just before
the lines produced by the HTML option.

PRESCRIPT('text')

Specifies a literal text that should be printed once before the beginning of the report (or
output file). You may have as many PRESCRIPT options as you like. They will print in the
order they are specified in. The HTML option, if specified, also causes certain lines to print
at the beginning of a report. If the HTML option is also specified, the PRESCRIPT lines will
print just after the lines produced by the HTML option.

PRTSETUP('text')

Specifies a string of characters to be sent to the printer once before the report is printed.
This string can contain any setup information that is valid for your printer. One use of
this parm is to request a "condensed font" with your laser printer. This may allow you to
print reports wider than the standard 132 characters.

Tip: If the text you specify doesn't seem to work, try adding an extra space at the
beginning of your text. The printer may be treating the first character as a carriage control
character and ignoring it.

Example
OPTION: PRTSETUP('+$$$DJDE$ JDE=40,FORMAT=L66200,DATA=(0,200),END;')

The above statement causes the specified setup string to be sent to the printer once before
the report starts printing. Of course, the actual contents of the setup string will be
different for each shop.
■ 10-96 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
PRTSHEET('text')

Specifies a string of characters that can be sent to a laser printer to force it to skip to a
new sheet of paper. When the NEWSHEET or NEWSHEET1 space options are used at control
breaks, this option must be specified. At the appropriate time, Report Writer will send
this string to the printer to cause it to skip to a new page.

Note • If NEWSHEET or NEWSHEET1 is specified for any control break, the PRTSHEET text
will also be sent to the printer at the very beginning of the report. This is to ensure
that the first page of the report begins on a new sheet of paper.

Tip: If the text you specify doesn't seem to work, try adding an extra space at the
beginning of your text. The printer may be treating the first character as a carriage control
character and ignoring it.

Example
OPTION: PRTSHEET('+$$$DJDE$ SIDE=NUFRONT,END;')

The above statement causes the specified string to be sent to the printer each time Report
Writer needs to skip to a new sheet of paper. Of course, the actual contents of the string
will be different for each shop.

QCHAR('char'/'"')

Specifies the "quotation character" to use in conjunction with the QCHAR, Q–MM–DD–YY and
Q–HH–MM–SS display formats. The default is to use a regular (double) quotation mark as
the enclosure character for those display formats. If you need to enclose such data in
some other character, use this option.

Example
OPTIONS: QCHAR("'")

The above statement specifies that the apostrophe character should be used to enclose
data that is formatted in the QCHAR, Q–MM–DD–YY and Q–HH–MM–SS display formats. For
example, a date formatted with the Q–MM–DD–YY display format would now look like
'12/31/96' rather than "12/31/96".

SINGLE/DOUBLE/TRIPLE

Specifies how the report should be spaced. The default is to single space the report.

Note • This option determines how many (if any) blank lines are left between the
detail report line(s) for each input record. If multiple COLUMNS statements are used,
the detail report lines for a single input record are always single spaced. Use empty
COLUMNS statements if you want to print blank lines within the detail report lines for
a single input record.
CIMS Report Writer User Guide 10-97 ■

■ Control Statement Syntax

OPTIONS Statement
SKIPBLANKDET

This option causes Report Writer to skip (suppress) any detail report line (or PC file
record) that is all blank. For the purposes of this option, "detail lines" means: the lines
printed for each individual input record; the total lines printed at control breaks (if any);
and the Grand Total lines (if any.) Titles, column headings and break headings are not
affected by this option. Use of this option is discussed on page 4-36.

Note • Only the first 256 bytes of each line are examined when checking for blank
detail lines.

SKIPZERODET

This option causes Report Writer to skip (suppress) any detail report line (or PC file
record) that contains only "zero values". The following are considered "zero" values for
this purpose:

■ blanks (for character fields)

■ 0's (including decimal points such as 0.00)

■ 00/00/0000 (zero dates)

■ 00:00:00 (zero times)

For the purposes of this option, "detail lines" means: the lines printed for each
individual input record; the total lines printed at control breaks (if any); and the Grand
Total lines (if any.) Titles, column headings and break headings are not affected by this
option. Use of this option is discussed on page 4-36.

Note • Only the first 256 bytes of each line are examined when checking for zero
detail lines.

SORTNAME('program'/'SORT')

This parm specifies the name of your shop's sort program. The default name of SORT is
used in almost all shops. However, some shops have multiple sort programs available
and you may want to use an alternate sort program.

Example
OPTIONS: SORTNAME('SORT2')

The above statement specifies that Report Writer should use the program named SORT2
to perform any necessary sorts.

SORTSIZE(nnnn/256)

This parm specifies the size parameter (in kilobytes) that should be passed to your shop's
sort program when it is called. This parm tells the sort program how much memory it
should use while performing the sort. If you omit this parm, Report Writer passes your
sort program a size parm of 256K. You may want to specify a smaller value in order to
run in a smaller region or partition. Or, in some cases you may get better performance
■ 10-98 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
by specifying a larger value than the default. The maximum value allowed by Report
Writer is 8191 (8191K, or 8M). (Your sort program may have a smaller maximum limit.
You may also be limited by the size of the region or partition you run in.) Under VSE,
you may also need to modify the SIZE parm in your EXEC JCL statement (to ensure that
your partition has this much memory available for the sort program.)

Example
OPTIONS: SORTSIZE(64)

The above statement tells Report Writer to pass the sort program a size parm of 64K (if
the sort program is used.)

SORTWORKNUM(n/0)

VSE only. This parm specifies how many, if any, external work files should be used to
perform Report Writer VSE’s internal sort. By default, zero sort work files are assumed.
That is, the sort program will attempt to perform the entire sort in memory. For larger
runs, you may need to provide DLBL (and EXTENT) statements for "sort work" files in your
JCL. The DLBLs should generally be named SORTWK1, SORTWK2, etc. (See page 8-26.) Use
this parm to tell Report Writer how many of these sort work files are available for it to
use. You may specify a number from 0 to 9.

Example
OPTIONS: SORTWORKNUM(3)

The above statement specifies that 3 sort work file DLBL statements are provided in the
JCL for the sort program to use.

SPLITDETAIL

Specifies that it is OK to split the detail lines for a single input record across pages in the
report. If you do not specify this option, Report Writer will skip to a new page whenever
the current page does not have enough room to show all of the detail lines for an input
record. (Using multiple COLUMNS statements results in multiple detail lines for a single
input record.) Normally you will probably not use SPLITDETAIL, since it is easier to view
related data when it is all on a single page. But that does use extra paper. And, it may be
impractical if you are listing 30 or 40 items from each input record, since virtually every
record would end up requiring a new page. In these cases, you may specify SPLITDETAIL
to allow Report Writer to fill up each page before going on to the next page of the report.

STCKADJ(nn)

Specifies how many hours should be added to fields stored in the STCKDATE and STCKTIME
data types. IBM's STCK machine instruction stores its date–time stamps in GMT. Report
Writer normally converts STCKDATE and STCKTIME values from GMT to local time. The
number of hours to add or subtract to the GMT time is determined by your installation's
system parms. If you do not want this automatic conversion performed, use the STCKADJ
option. This option specifies the number of hours that should be added to the STCK
value. (The number of hours may be a positive or negative value.)
CIMS Report Writer User Guide 10-99 ■

■ Control Statement Syntax

OPTIONS Statement
For example, to suppress conversion altogether and leave STCKDATE and STCKTIME values
in GMT, you would specify the following:

OPTIONS: STCKADJ(0)

SUBLIB('library.sublibrary')

VSE only. Specifies the name of the VSE sublibrary to use as the Report Writer copy library.

Example
OPTIONS: SUBLIB('LIB.SPECTWTR')

The above statement causes the Librarian dataset named LIB.SPECTWTR to be used as the
Report Writer Copy Library.

SUMMARY

Specifies that a summary report is wanted. The report will contain no detail lines. Only
lines associated with control breaks (and with the Grand Total) will print. This option
has the same effect as specifying DETAIL(0). However, this option also changes the
default break spacing for the lowest level control break from 2 blank lines to 0 blank
lines. This prevents the summary lines in the report from being triple spaced.

TIMEDELIM('char'/':')

This option lets you specify any character you choose to be used as the delimiter when
formatting times. This delimiter will be used with all time display formats that use a
delimiter. The default time delimiter is a colon (:). For example, to format all times using
dots rather than colons, you would specify:

OPTIONS: TIMEDELIM('.')

This would cause the HH–MM–SS display format to appear as "12.00.00" (for example).

Note • Use of this parm does not affect the way Report Writer recognizes time literals
in the control statements. Time literals must always be written using colons as
delimiters.

TITLEONCE

Causes the titles (and any column headings) to print only once at the beginning of the
report. Also, any footnotes will print only once at the end of the report. There will be no
page breaks within the report. In other words, the entire report is treated as one long
page. This option is sometimes useful when creating Web reports (which are viewed on
PC screens rather than on pages of paper.)

ZERODIVBYZERO

Tells Report Writer to assign a value of zero to COMPUTE fields whenever a division by zero
error occurs. This suppresses the ***Z*** error indicator in reports.
■ 10-100 CIMS Report Writer User Guide

Control Statement Syntax ■

OPTIONS Statement
ZEROINVDATA

Tells Report Writer to assign a value of zero to fields that contain invalid data in the input
record. This suppresses the ***I*** error indicator in reports.

ZEROOVERFLOW

Tells Report Writer to assign a value of zero to COMPUTE fields whenever an overflow error
occurs. This suppresses the ***V*** error indicator in reports.
CIMS Report Writer User Guide 10-101 ■

■ Control Statement Syntax

READ Statement
READ Statement 10

PURPOSE 10

Specifies an auxiliary input file to be used in producing a report or PC file. Each run
must have one (and only one) primary input file, which is specified with an INPUT
statement. If a report or PC file requires information from additional files, these files
must be specified with READ statements. You may have as many READ statements in a run
as you like. The READ statements must appear after the INPUT statement.

An auxiliary input file is useful if the primary input file does not contain all of the
information needed for a run. After a READ statement has been processed by Report
Writer, all of the fields defined for that auxiliary file become available for use in
producing the report (or PC file). These fields can be used in exactly the same way as
fields from the primary input file. They can be used: as a column of data in the report or
PC file; in report titles; as a sort field; as a control break field; as part of a conditional
expression; as operands in computational expressions; even as key fields used to read
records from other auxiliary input files.

The READ statement is one of the most powerful statements in Report Writer.

FEATURES 10

Use the READ statement to:

■ specify the name of an auxiliary input file for a report

■ specify a field containing the read key to be used when reading from VSAM files

■ specify a WHERE clause to be used when reading from a DB2 table or view

■ automatically copy additional control statements from the Report Writer Copy
Library (typically used to copy the FILE and FIELD statements that define the auxiliary
input file)

■ specify a record name to be associated with records from this auxiliary input file

■ override certain aspects of the auxiliary input file definition

LEARNING MORE 10

The complete syntax of the READ statement is shown on the following pages. In addition,
the following parts of the manual relate to the READ statement:

■ a lesson on using the READ statement in reports begins on page 2-49

■ a lesson on using the READ statement in PC files begins on page 3-36

■ advanced techniques involving the READ statement are discussed beginning on
page 4-111

■ the use of the READ statement with DB2 tables is discussed beginning on page 7-10
■ 10-102 CIMS Report Writer User Guide

Control Statement Syntax ■

READ Statement
■ suggestions on writing READ statements for maximum run–time efficiency are given in
Appendix I, Speed-Up Tips

■ reading a file that is processed by a user I/O Exit is discussed in Appendix K, I/O Exits

SYNTAX 10

The filename parm is required. In addition, either a READKEY parm (for VSAM files) or a
WHERE parm (for DB2 files) is also required. The syntax of the READ statement is otherwise
very similar to that of the INPUT statement.

filename

Identifies the auxiliary input file to use. One or more records will be read from this file
each time a new record is read from the primary input file. Files named in READ
statements must be either keyed VSAM files or DB2 tables.

The filename specified in this parm must have been defined in an earlier FILE statement.
However, that FILE statement may be in a copy library member that is automatically
copied into the report at the time the READ statement is processed. This process is
explained beginning on page 6-39.

READ Statement Syntax

READ: filename
[ATTR(VSAM/EXIT [,'dlbl'] ,recsize) (VSE only)]
[BUFND(nnn) (VSAM only)]
[BUFNI(nnn) (VSAM only)]
[CLEAR(SPACES/ZEROS/NO)]
[COPY(YES/NO)]
[DB2NAME('[qualifier.]name') (DB2 only)]
[DDNAME(ddname) (MVS only)]
[EXITPARM('text')]
[GENERIC]
[IOEXIT(‘program’ [,’parm’] [TRACE])]
[KGE]
[LIST(YES/NO)]
[LRECL(nnnnn) (MVS only)]
[MULTI]
[ORDERBY(FIELDNAME [ASC/DESC] [,] ...) (DB2 only)]
[READKEY(fieldname)]
[RECNAME(NAME/filename)]
[SHOWFLDS(YES/NO)]
[TYPE(VSAM/DB2/EXIT) (MVS only)]
[WHERE(search–condition) (DB2 only)]

STANDARD Alternate
SPELLING Spellings
DDNAME DDN
EXITPARM PARM
GENERIC GEN
NO N
READKEY KEY
RECNAME NAME
TYPE TYP
YES Y
CIMS Report Writer User Guide 10-103 ■

■ Control Statement Syntax

READ Statement
Example
READ: EMPL–FILE READKEY(EMPL–NUM)

The above statement specifies that the file named EMPL–FILE will be an auxiliary input
file for the run.

ATTR(VSAM/EXIT,'dlbl',recsize)

VSE only. Specifies override file attributes to use for this VSAM file (for the current run
only.) Files named in VSE READ statements must be keyed VSAM files or EXIT files. For
examples of using this parm, see page 6-10.

Example
READ: EMPL–FILE READKEY(EMPL–NUM)
 ATTR(VSAM,'EMPLFIL',80)

The statement above names EMPL–FILE as an auxiliary input file for the run. Regardless
of how EMPL–FILE was defined in an earlier FILE statement, for the current run it is treated
as a VSAM file, with EMPLFIL as the DLBL name, with 80–byte (or smaller) records.

BUFND(nnn)

VSAM files only. Specifies the number of "data buffers" that the VSAM access method should
maintain when processing this input file. When this parm is not specified for a VSAM file,
Report Writer chooses a default number of data buffers to maintain.

Note • According to the VSAM manual, increasing the number of data buffers by one
or two (from VSAM's default of 2) may improve performance for random reads. After
that, more benefit is obtained by increasing the number of index buffers instead (use
the BUFNI parm for that). You may wish to experiment with this parm if you have
long–running, VSAM–intensive jobs.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) BUFND(3)

The above statement specifies that VSAM should allocate buffer space for 3 data control
intervals when processing the EMPL–FILE.

BUFNI(nnn)

VSAM files only. Specifies the number of "index buffers" that the VSAM access method
should maintain when processing this input file. When this parm is not specified for a
VSAM file, Report Writer chooses a default number of index buffers to maintain.

Note • According to the VSAM manual, increasing the number of index buffers (from
VSAM's default of 1) should improve performance for random reads up to a certain
point. At some point, excessive paging may cancel any benefit. Optimal performance
is sometimes achieved by having one index buffer for each level of the file's index.
You may wish to experiment with this parm if you have long–running, VSAM–
intensive jobs.
■ 10-104 CIMS Report Writer User Guide

Control Statement Syntax ■

READ Statement
Example
READ: EMPL–FILE READKEY(EMPL–NUM) BUFND(3) BUFNI(6)

The above statement specifies that VSAM should allocate buffers for 3 data control
intervals and 6 index control intervals when processing the EMPL–FILE.

CLEAR(SPACES/ZEROS/NO)

When processing certain types of input files, Report Writer clears the entire I/O area to
blanks before each read. This is to ensure that when a short record is read, it is not
followed by leftover data from a previous longer record. For certain record layouts such
leftover data could cause misleading results. Specifying CLEAR(NO) suppresses this
clearing, which may result in improved performance. You might want to specify
CLEAR(NO) if you are certain that any leftover data in the I/O area will not affect your run.
Specifying CLEAR(ZEROS) causes Report Writer to initialize the I/O area to hex zeros
(rather than blanks) before each read.

Note • You can also specify the CLEAR parm in the FILE statement to avoid having to
put it in the READ statement each time. The NOCLEARIO parm in the OPTIONS statement
can be used to prevent clearing of all files in a run.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) CLEAR(NO)

The above statement names the PAYROLL–FILE as the input file for a run. Report Writer
will not clear its I/O area each time it reads a record from that file.

COPY(YES/NO)

Specifies whether control statements should be copied from the copy library before
evaluating the file name. If the COPY parm is omitted and the file name has not been
previously defined, the default is to attempt to perform a copy. Normally, the control
statements that are copied will include the FILE and FIELD statements that describe the
input file. This process is explained beginning on page 6-39.

If an attempt to copy records is unsuccessful (due to a missing copy library or missing
member), that is not considered an error. Normal control statement processing
continues, without any copy being performed.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) COPY(NO)

The above example specifies that no attempt should be made to copy records from the
copy library.

DB2NAME('[qualifier.]name')

DB2 only. Specifies the name of the DB2 table or view that you wish to use as an auxiliary
input for the run. For DB2 inputs, this parm is required unless the filename was defined
in an earlier FILE statement. (In that case, the earlier FILE statement must have specified
the DB2NAME parm.) The table name must be enclosed in quotation marks or apostrophes.
CIMS Report Writer User Guide 10-105 ■

■ Control Statement Syntax

READ Statement
Generally the table name will be qualified. If it is not explicitly qualified, DB2 will assume
an implicit qualifier, which will be the DB2 Authorization ID of the job executing Report
Writer.

Example
READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

The above example specifies that the DB2 table named 'DSN8230.EMP' should be used as
an auxiliary input "file" for the run. This input file has a Report Writer file name of
EMPLOYEE. That is, other Report Writer control statements that refer to this input file will
refer to EMPLOYEE (rather than to DSN8230.EMP.)

DDNAME(ddname)

MVS only. Specifies an override DDNAME to use when reading the input file (for the current
run only.) If omitted, the DDNAME will be taken from the FILE statement that defined the
file. A DDNAME parm must be present in either the FIELD statement or the READ statement.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) DDNAME(TEMPDD)

The above example specifies that the TEMPDD DD statement in the JCL will be used to read
the EMPL–FILE file, regardless of the DDNAME specified when the file was originally defined.

EXITPARM('text')

Specifies an override exit parm text. If this parm is omitted, the exit parm text (if any)
will be taken from the FILE statement that defined the file. Exit parm text is passed to
user data exit programs. (Most installations will not use exits, and will not need this
parm.) Anytime a user data exit is called by Report Writer for a field within this file, the
text string specified in this parm will be passed to the exit. The use of this parm is
discussed beginning on page 6-35.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) EXITPARM('12345')

The above example specifies that the text '12345' should be passed to user data exit
programs involving this file, regardless of the EXITPARM specified when the file was
originally defined.

GENERIC

VSAM and EXIT only. Specifies that the contents of the READKEY parm is a generic key rather
than an entire key. That is, the length of the READKEY parm may be shorter than the key
length in the VSAM file's definition. The first record in the file whose partial key matches
the READKEY value will be read. If GENERIC is not specified, the READKEY value is assumed
to be an entire key. The use of GENERIC keys is discussed in the section beginning on
page 4-117.
■ 10-106 CIMS Report Writer User Guide

Control Statement Syntax ■

READ Statement
Example
COMPUTE: SHORT–KEY = #SUBSTR(EMPL–NUM,1,2)
READ: EMPL–FILE READKEY(SHORT–KEY) GENERIC

The READ statement above uses a generic read key. The SHORT–KEY field is only 2 bytes
long, while the defined key length for the EMPL–FILE file is 3 bytes. Thus, when
performing the above read, the record read will be the first one where the first 2 bytes of
its key equals the contents of SHORT–KEY.

IOEXIT(‘program' [,'parm'] [,TRACE])

EXIT files only. Specifies override I/O Exit information for the input file. May also override
the input file type (if it was something other than EXIT in the FILE statement.) This parm
provides the information necessary for Report Writer to process an EXIT type input file.
More information on I/O Exits can be found in Appendix K, I/O Exits.

MVS Note • When this parm is present, a file type of EXIT is assumed and an explicit
TYPE parm is not required.

VSE Note • When this parm is present, an ATTR parm specifying a type of EXIT and a
RECSIZE is required (in either this statement or the FILE statement.)

'program' This parm is required. It specifies the name of the load module (MVS) or phase
(VSE) that Report Writer will call in order to obtain records from the file.

'parm' This parm is optional. Each time the I/O Exit program is called by Report Writer,
the text specified in this parm is passed to the exit program. Typically this text is used to
provide the exit program with any special information it needs in order to process the
file. This parm can be up to 255 bytes in length.

TRACE This parm is optional. When specified, Report Writer prints trace information in
the control listing before and after each call to the I/O Exit. This information can be
useful when developing and debugging a new I/O Exit program. The TRACE parm is
normally not used in production runs.

Example
READ: MASTER-FILE READKEY(EMPL-NUM) IOEXIT(‘MYEXIT')

The above example specifies that a program named MYEXIT should be called to read
records from the auxiliary input file MASTER-FILE.

KGE

VSAM and EXIT only. Specifies that when reading this file, the first record should be
returned whose key (or partial key, if GENERIC is also specified) is greater than or equal
to the key (or partial key) in the READKEY parm. If KGE is not specified, only records that
exactly equal the READKEY value (or partial value) will be read. The use of the KGE parm is
discussed in the section beginning on page 4-117.
CIMS Report Writer User Guide 10-107 ■

■ Control Statement Syntax

READ Statement
Note • The KGE parm may not be specified if the MULTI parm is also specified. Such a
combination would result in reading every record in the file whose key was greater
than or equal to the READKEY parm.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) KGE

When performing the above READ statement, a record is sought whose key exactly
matches the EMPL–NUM value. If none is found, the first record whose key is greater than
the EMPL–NUM field will be read instead.

LIST(YES/NO)

Applies only if the COPY function is performed. The LIST parm specifies whether the copied
control statements should be listed along with the other control statements in the
control listing. If no LIST parm is present, the default is to not list the copied statements.

Note • If an error is detected in any of the copied control statements, that statement
will be listed, along with the error message, regardless of the value of this parm.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) LIST(YES)

The above example specifies that any records copied from the copy library should be
listed in the control listing.

LRECL(nnnnn)

MVS only. Specifies the length of the largest record that might be found in the file. If this
parm is omitted, the LRECL value (if any) will be taken from FILE statement that defined
the file. If no LRECL parm is specified in either the FILE or the READ statement, a default
LRECL of 1000 is assumed.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) LRECL(4000)

The above example specifies that a record as large as 4000 bytes long may be
encountered in the EMPL–FILE file.

MULTI

For VSAM and EXIT files, specifies that when reading from this file, all records whose key
(or partial key, if GENERIC is specified) matches the READKEY value should be read. If MULTI
is not specified, only the first record whose key (or partial key) matches the READKEY value
will be read.

For DB2 tables, specifies that when reading from this table, all records (rows) which pass
the WHERE parm condition(s) should be read. If MULTI is not specified, only the first record
which passes the WHERE parm condition(s) will be read.

The use of the MULTI parm is discussed in the section beginning on page 4-118.
■ 10-108 CIMS Report Writer User Guide

Control Statement Syntax ■

READ Statement
Note • The MULTI parm may not be specified if the KGE parm is also specified. Such a
combination would result in reading every record in the file whose key was greater
than or equal to the READKEY parm.

Example
COMPUTE: SHORT–KEY = #SUBSTR(EMPL–NUM,1,2)
READ: EMPL–FILE READKEY(SHORT–KEY) GENERIC MULTI

The READ statement above will read multiple records using a generic read key. The
SHORT–KEY field is only 2 bytes long, while the defined key length for the EMPL–FILE file
is 3 bytes. Thus, when performing the above read, all records will be read where the first
2 bytes of their key equals the contents of SHORT–KEY.

ORDERBY(fieldname [ASC/DESC] [,] ...)

DB2 only. This parm is optional. It is possible that more than one row will pass the search
condition in your WHERE parm. If the MULTI parm is also specified, all of these rows will
be passed to Report Writer, one by one. If MULTI is not specified, Report Writer accepts
only the first row passed to it from DB2. Use this parm to specify the order in which the
selected row(s) should be passed to Report Writer. The contents of this parm is one or
more column name from the DB2 table, optionally separated with commas. You may also
include the DB2 keywords ASC or DESC after the column names.

Example
READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)
 ORDERBY(LASTNAME)

The above statement specifies that DB2 should return rows from the employee table in
LASTNAME order. Therefore, if multiple rows existed for a given RESPEMP number, DB2
would return the row whose LASTNAME came first alphabetically. If no ORDERBY parm is
specified and multiple rows meet the WHERE condition, DB2 will return the rows in an
"arbitrary" order. Since MULTI was not specified in this example, Report Writer uses only
the first row returned to it by DB2.
CIMS Report Writer User Guide 10-109 ■

■ Control Statement Syntax

READ Statement
READKEY(fieldname)

This parm is required for VSAM and EXIT files. Identifies the field that will be used as the key
when performing random reads to the file. The manner in which this key value is used
to locate an input record to read depends on two other parms which may be present in
the READ statement:

The contents of the READKEY field is always used "as is" when performing the read.
Therefore, the key field must be the same format as the file's key values. You may need
to use a COMPUTE statement to build an acceptable READKEY field. (Only character type
COMPUTE fields may be used as read keys. See page 2-54, as well as below, for an example
of computing a read key.)

This field must be available at the time the READ statement is processed. Therefore, the
READKEY field must be either:

■ a field from the primary input file

■ a field from an earlier auxiliary input file

Generic
Parm?

KGE
Parm? Description

No No The record will be read whose full key exactly matches the
READKEY value. If no such record is found, the record will be
"missing." The READKEY field should be the same length as the
defined key length for the file. If MULTI is also specified, Report
Writer will read all records whose full key matches the READKEY
value. If MULTI is not specified, only the first record with a
matching key will be read.

Yes No The record will be read whose key (or partial key) matches the
key (or partial key) in the READKEY value. The READKEY field may
be any length less than or equal to the defined key length for the
file. If MULTI is also specified, Report Writer will read all records
whose key (or partial) key matches the READKEY value. If MULTI
is not specified, only the first record with a matching key (or
partial key) will be read.

No Yes The record will be read whose full key matches the READKEY
value. If no record matches the READKEY value, then the record
with the next greater key value will be read instead. The READKEY
field should be the same length as the defined key length for the
file. The MULTI parm may not be specified when KGE is specified.

Yes Yes The record will be read whose key (or partial key) matches the
key (or partial key) in the READKEY value. If no record matches
the READKEY value, then the record with the next greater key (or
partial key) value is read instead. The READKEY field may be any
length less than or equal to the defined key length for the file.
The MULTI parm may not be specified when KGE is specified.
■ 10-110 CIMS Report Writer User Guide

Control Statement Syntax ■

READ Statement
■ a character type computed field (defined in a preceding COMPUTE statement.) Note: if
the key to an auxiliary input file contains packed or binary data, use the #FORMAT
function in a COMPUTE statement to build a character field containing the data in the
PACKED or BINARY display format.

Examples
READ: EMPL–FILE READKEY(EMPL–NUM)

The above example specifies that the EMPL–NUM field will be used as the key when reading
records from the EMPL–FILE file. The EMPL–NUM field must exist in a previously specified
input file. For the read to be successful, an exact, full–key match must be found in the
EMPL–FILE.

COMPUTE: BINARY–DEPT–NUM = #FORMAT(DEPT–NUM,BINARY,2)
READ: DEPARTMENT–FILE READKEY(BINARY–DEPT–NUM)

The above example illustrates how to create a key in binary format. Assume that the
DEPARTMENT–FILE uses the department number formatted as a 2–byte binary field for its
key. The regular DEPT–NUM field is defined as a NUMERIC type numeric field (see Appendix F,
Files Used in Examples) and would not work as the READKEY in this case, since it is not in
binary format. The COMPUTE statement above creates a new 2-byte character field to be
used when reading records from the DEPARTMENT–FILE. The contents of the 2 bytes is the
department number, formatted in binary format. That field can be used as the READKEY
to the DEPARTMENT–FILE. Since neither KGE nor GENERIC is specified, an exact full–key
match is again required for the read to be successful.

The following example is similar, but assumes that the DEPARTMENT–FILE requires a 4-byte
packed read key:

COMPUTE: PACKED–KEY = #FORMAT(DEPT–NUM,PACKED,4)
READ: DEPARTMENT–FILE READKEY(PACKED–KEY)

RECNAME(name/filename)

Specifies a record name to use when referring to fields in this input file. This is especially
useful when you will be reading multiple records from the same input file (by using
additional READ statements.) The RECNAME parm (in each statement) can be used to assign
unique names to each record read from the file. You may give the record any name you
like, within the rules governing names given on page 9-7. The use of the RECNAME parm
is discussed beginning on page 4-115.

If no RECNAME parm is specified, the filename is used as the record name.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) RECNAME(EMP)

The above example specifies that the records read from the EMPL–FILE file will be named
EMP. Assume that a field named DATE exists in both this file and in some other input file.
You can use the record name EMP to indicate that you are referring to the DATE field in the
EMPL–FILE, like this:

COLUMNS: EMP.DATE
CIMS Report Writer User Guide 10-111 ■

■ Control Statement Syntax

READ Statement
SHOWFLDS(YES/NO)

Specifies whether Report Writer should print a list of all fields that have been defined for
the file. (For DB2 inputs, the DB2 columns defined for the DB2 table are listed.) This list
appears immediately after the READ statement in Report Writer's control statement
listing. The list will include the data type of each field (character, numeric, date, time or
bit.) Use this parm if you aren't sure of the names or spellings of the fields (or DB2
columns) in your input file.

Example
READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)
 SHOWFLDS(YES)

The above statement causes a list to be printed showing each DB2 field defined for the
DSN8230.EMP table.

TYPE(VSAM/DB2/EXIT)

MVS only. Specifies an override file type for the input file (for the current run only.) If this
parm is omitted, the file type will be taken from the FILE statement that defined the file.
A complete list of file types is given under the FILE statement description, on page 10-64.

Note • Only VSAM, DB2 and EXIT type files may be specified in the READ statement.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) TYPE(VSAM)

The above example specifies that the VSAM access method should be used when reading
the EMPL–FILE file, regardless of the file type specified when the file was originally
defined.

WHERE(search–condition)

This parm is required for DB2 inputs and not allowed for other inputs. It performs the same
function that the READKEY parm performs for VSAM files. For each record read from the
primary input file, Report Writer will ask DB2 for one or more rows from this auxiliary
input file. Use this parm to specify a "search condition" to instruct DB2 which row(s)
from the DB2 table to pass to Report Writer. The syntax of the search–condition is
generally the same as DB2's syntax for the WHERE clause in a DB2 SELECT statement. The use
of this parm in a READ statement is discussed in the section beginning on page 7-10. Its
syntax is discussed in the section beginning on page 7-15.
■ 10-112 CIMS Report Writer User Guide

Control Statement Syntax ■

READ Statement
Example
INPUT: PROJECT
 DB2NAME('DSN8230.PROJ')

READ: EMPLOYEE
 DB2NAME('DSN8230.EMP')
 WHERE(EMPNO = RESPEMP)

Here's how Report Writer processes the above statements. The primary input to the
report is the project DB2 table. So, Report Writer will retrieve all rows from that DB2 table.
After it fetches each row from the project table, Report Writer will now also fetch one row
from the employee table. The row from the employee table will be the one whose EMPNO
field equals the RESPEMP field from the project table. If MULTI had also been specified in
the READ statement, Report Writer would fetch all such rows. When MULTI is not specified,
Report Writer fetches just the first such row.

NOTES 10

How Auxiliary Input Files are Processed

The primary input file for a report is always read sequentially, from beginning to end.
Auxiliary input files are handled differently. They are read randomly (or directly) using
either a "read key" or a WHERE expression to determine which record(s) to read.

This section explains in more detail how Report Writer processes multiple input files.

Program Flow With No READ Statements

To understand how auxiliary input files are processed, let's first notice how Report Writer
produces a report when no auxiliary input files are used. In such a case, Report Writer
repeats the following steps over and over.

1 Read a record from the primary input file

2 Evaluate the INCLUDEIF statement using the data from this input record

3 If the record passes the INCLUDEIF tests, pass the record to Report Writer's output
phase (where it will be sorted and formatted into the desired report or PC file)

4 If the record does not pass the INCLUDEIF tests, discard the record

The above steps are repeated until all records from the primary input file have been read.

Program Flow with READ Statements

The flow described above remains basically the same when one or more auxiliary input
files are added to the request. The only difference is in Step 1 above. Instead of simply
reading records from the primary input file, Report Writer now assembles "logical input
records." A logical input record is a group of records consisting of one record from each
input file. The manner in which these logical records are assembled is different
depending on whether any READ statement uses the MULTI parm.
CIMS Report Writer User Guide 10-113 ■

■ Control Statement Syntax

READ Statement
The records from the primary input file are still read sequentially. The records from the
auxiliary input files are read using a READKEY (or a WHERE clause.) Once assembled, this
group of records is then treated by Report Writer as one, big logical input record
containing all of the data fields from all of the input files. Steps 2 through 4 of the
program flow remain the same –– it's just that they are now performed on this logical
record rather than on the primary input record alone.

1 Assemble a "logical input record" consisting of one record from each of the input files

2 Evaluate the INCLUDEIF statement using the data from this logical input record

3 If the logical input record passes the INCLUDEIF tests, pass the logical input record to
Report Writer's output phase (where it will be sorted and formatted into the desired
report or PC file)

4 If the logical input record does not pass the INCLUDEIF tests, discard the logical input
record

As mentioned, the specific way that Report Writer assembles its logical input records (in
Step 1) is different depending on whether any READ statements use the MULTI parm. The
next two sections explain how Report Writer assembles its logical records in each case.

Program Flow Without MULTI–type READ Statements

When none of the READ statements uses the MULTI parm, Report Writer assembles one
logical record for each record it reads from the primary input file. The primary input file
is still read sequentially, from beginning to end. Each time Report Writer reads a new
record from the primary input file, it also reads a single record from each of the auxiliary
input files. This group of related records, one from each input file, is treated as a logical
input record.

Now the program flow can be described this way:

1 Read a record from the primary input file

2 Create one logical input record by also reading a single record from each auxiliary
input file

3 Evaluate the INCLUDEIF statement using the data from this logical input record

4 If the logical input record passes the INCLUDEIF tests, pass the logical input record to
Report Writer's output phase (where it will be sorted and formatted into the desired
report or PC file)

5 If the logical input record does not pass the INCLUDEIF tests, discard the logical input
record

The above steps are repeated until all records from the primary input file have been read.
Note that when no MULTI parm is used, the number of logical records processed is the
same as the number of primary input file records.
■ 10-114 CIMS Report Writer User Guide

Control Statement Syntax ■

READ Statement
Note • The steps above describe what Report Writer does logically. During actual
processing, there may be cases where it is not necessary for Report Writer to read a
particular record from an auxiliary input file. For example, if the INCLUDEIF statement
eliminates a primary input record without referring to fields from any auxiliary input
files, it is not necessary to read the records from those files. The next primary input
record can be read right away. For run–time efficiency, individual records are not
read from auxiliary files when they are not actually needed to correctly process a
request.

Program Flow With MULTI–type READ Statements

When one or more READ statements with a MULTI parm is used in a request, Report Writer
uses a different process to assemble logical records.

Let's consider a simple request that uses a single READ statement. Assume that the READ
statement contains the MULTI parm. Rather than only reading a single record from the
auxiliary input file each time, Report Writer must now read all records that match the
READKEY value (or the WHERE clause.) So now, each time a primary input file record is read,
all of the qualifying auxiliary input file records must be read and, one at a time,
combined with the primary input record to form multiple logical input records. Only
after all of the qualifying auxiliary input file records have been processed can the next
primary input file record be read.

You can see that when a MULTI–type READ statement is used, the number of logical input
records processed can be far greater than the number of primary input file records.

When two (or more) READ statements with the MULTI parm are used, the process is similar
to that just described. But now the number of record combinations that Report Writer
must assemble into logical records increases exponentially. For each primary input file
record, Report Writer must build one logical input record using every possible, unique
combination of auxiliary input file records that are related to that primary input file
record.

The program flow can now be described this way:

1 Read a record from the primary input file

2 Build as many logical input records as possible using this primary input record and
all combinations of records read from the auxiliary input file(s)

3 For each logical input record, evaluate the INCLUDEIF statement using the data from
that logical input record

4 If the logical input record passes the INCLUDEIF tests, pass the logical input record to
Report Writer's output phase (where it will be sorted and formatted into the desired
report or PC file)

5 If the logical input record does not pass the INCLUDEIF tests, discard the logical input
record

The above steps are repeated until all records from the primary input file have been read.
CIMS Report Writer User Guide 10-115 ■

■ Control Statement Syntax

READ Statement
Note • You may have a report request that uses some READ statements that have the
MULTI parm and some READ statements that do not have it. In that case, the above flow
is still used. When assembling logical records from the combinations of qualifying
records from each file, the READ statements without the MULTI parm will always
contribute only one qualifying record.

Note • Whenever an auxiliary input file does not have any qualifying records to
contribute to the logical record, a single "missing record" from that file will be used
in building the logical record combinations. This is true whether or not the MULTI
parm was used in the READ statement.

Speed–Up Tip: READ statements with the MULTI parm are less efficient than regular READ
statements. To reduce CPU and I/O usage, do not specify MULTI if you know that a file
contains unique keys. (In other words, do not specify MULTI if you know the READKEY will
only find one matching record in the file.)

Speed–Up Tip: When mixing READ statements with and without the MULTI parm, put the
READ statements without the MULTI parm ahead of the READ statements with the MULTI
parm whenever possible. This improves performance by reducing the amount of I/O
required to assemble all of the possible record combinations.

Missing Records

Sometimes there will not be any record in an auxiliary file that matches READKEY value
(or the WHERE expression.) When this happens, Report Writer assigns a default value to
each of the fields in the missing record. The default value depends on the type of the
field, as shown in the following table:

See page 4-116 for a method you can use to determine whether a particular record is
missing or not.

Field Type Default Value

Character Blanks

Numeric Zero

Date Zeros (00/00/0000)

Time Zeros (00:00:00)

Bit OFF
■ 10-116 CIMS Report Writer User Guide

Control Statement Syntax ■

SORT Statement
SORT Statement 10

PURPOSE 10

This statement specifies how Report Writer should sort the input file records before
writing the report or PC file. A SORT statement is not required. If no SORT statement is
found, no sort will be performed and the output will be in the original order of the input
file.

Only one SORT statement is allowed, but it may contain as many sort fields as you like.

The SORT statement can also be used to specify control breaks.

FEATURES 10

Use the SORT statement to:

■ specify the sort fields to be used for the report or PC file

■ specify whether to sort each field into ascending or descending order

■ specify that a control break should occur whenever the contents of a sort field
changes

■ specify the control break spacing to use at control breaks

■ specify which statistics lines, if any, to print at control breaks

LEARNING MORE 10

The complete syntax of the SORT statement is shown on the following pages. In addition,
the following parts of the manual relate to the SORT statement:

■ a lesson on using the SORT statement in reports begins on page 2-34

■ a lesson on using the SORT statement in PC files begins on page 3-25

■ the use of the SORT statement to request control breaks is discussed beginning on
page 4-66
CIMS Report Writer User Guide 10-117 ■

■ Control Statement Syntax

SORT Statement
SYNTAX 10

Only one or more fieldnames (or the #EQUALS parm) is required. All other parms are
optional.

Note • Use the AUTOSORT option (in an OPTIONS statement) if you want Report Writer
to automatically sort your report or PC file on its first five columns of data.

Specifying any parm other than ASC or DESC for a field makes that field a control break
field. Specifically, the parms that cause a control break are:

■ the TOTAL or NOTOTAL parm. (Specifying TOTAL results in a control break with totals;
NOTOTAL results in a control break without totals.)

■ a break spacing parm (such as PAGE, NEWSHEET, 3, etc.)

■ a statistical parm (such as AVERAGE, MAXIMUM, etc.)

SORT Statement Syntax

SORT: fieldname[(parms)] fieldname[(parms)] ... [#EQUALS]

where parms can be one or more of the following (separated by commas or blanks):

ASC/DESC
AVERAGE
MAXIMUM
MINIMUM
n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/ODDPAGE/ODDPAGE1
NZAVERAGE
NZMINIMUM
TOTAL/NOTOTAL

Standard Alternate
Spelling Spellings
#EQUALS #EQUAL, #EQ
ASC A
AVERAGE AVER, AVG
DESC D
MAXIMUM MAX
MINIMUM MIN
NOTOTAL NOTOTALS, NOTOT, NOTOTS
NZAVERAGE NZAVER, NZAVG
NZMINIMUM NZMIN
PAGE PG, P
SORT SRT
TOTAL TOTALS, TOT, TOTS
■ 10-118 CIMS Report Writer User Guide

Control Statement Syntax ■

SORT Statement
fieldname[(parms)]

Specifies a field on which the output is to be sorted, and optionally specifies additional
processing information about the field. You are not restricted to sorting on fields that
appear in the report. You may sort on a field which does not appear anywhere else in the
report. Of course, the field must be available to Report Writer at the time the SORT
statement is processed. That is, the field must be one of the following:

■ a field from an input file. (An input file is a file named in the INPUT statement, or in
an optional READ statement.)

■ a computed field (defined in a preceding COMPUTE statement)

No parms are required with the fieldname. If desired, specify one or more parms by
placing them in parentheses immediately after the fieldname. (Do not leave a space
before the parenthesis.) Separate the parms with spaces and/or a comma.

Example
SORT: REGION EMPL–NAME

The above example will cause the report to be sorted in REGION order and, within each
region, in EMPL–NAME order.

#EQUALS

This parm can be used only as the last item (or only item) in a SORT statement. It specifies
that, if after sorting on all of the preceding sort fields there are still some ties, the tie
records should be left in the same relative order that they had in the input file. This is
useful if the records in your input file are already in some special order, and you want to
preserve that relative order.

Example
SORT: REGION #EQUALS

The above SORT statement causes the records to be sorted by REGION. However, within
REGION, the records will not be sorted on any additional field. Instead, the #EQUALS parm
specifies that the records within a region will be printed in the same relative order in
which they appeared in the input file.

ASC/DESC

Specifies ascending or descending sort order. The default sort order is ascending.

Example
SORT: REGION(DESC) EMPL–NAME

The above example will cause the report to be sorted in descending REGION order. The last
region (alphabetically) will print first, and the first region will print last. Within a region,
the records will be further sorted on (ascending) employee name.
CIMS Report Writer User Guide 10-119 ■

■ Control Statement Syntax

SORT Statement
AVERAGE

Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that average values should be displayed at the break. At the control break,
a line will print showing each numeric column's average value in the control group just
ended.

Example
SORT: REGION(AVERAGE) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a average line will print at the break.

MAXIMUM

Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that maximum values should be displayed at the break. At the control
break, a line will print showing each accumulated column's maximum value in the
control group just ended.

Example
SORT: REGION(MAXIMUM) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a maximum line will print at the break.

MINIMUM

Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that minimum values should be displayed at the break. At the control
break, a line will print showing each accumulated column's minimum value in the
control group just ended.

Example
SORT: REGION(MINIMUM) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a minimum line will print at the break.

n/PAGE/PAGE1/NEWSHEET/NEWSHEET1/ODDPAGE/ODDPAGE1

Specifies that a control break should occur whenever the value of the sort field changes,
and specifies the spacing to use at the control break. Unless overridden with the NOTOTAL
parm, a line of totals will also print at the control break. After the totals line, the spacing
specified with this parm will be performed.

A numeric value (n) specifies a number of blank lines to print at the break. Any of the
other parms cause the report to skip to a new page after the control break. For a
description of each of these break spacing parms, see How to Change the Control Break
Spacing on page 4-67.
■ 10-120 CIMS Report Writer User Guide

Control Statement Syntax ■

SORT Statement
Example
SORT: REGION(PAGE) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. After
printing regions totals at the break, the report will skip to a new page.

NZAVERAGE

Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that non–zero average values should be displayed at the break. At the
control break, a line will print showing each accumulated column's average value
(computed without considering any zero values) in the control group just ended.

Example
SORT: REGION(NZAVERAGE) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a non–zero average line will print at the break.

NZMINIMUM

Specifies that a control break should occur whenever the value of the sort field changes,
and specifies that non–zero minimum values should be displayed at the break. At the
control break, a line will print showing each accumulated column's minimum value
(not considering zero values) in the control group just ended.

Example
SORT: REGION(NZMINIMUM) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. In
addition to the totals line, a non–zero minimum line will print at the break.

TOTAL/NOTOTAL

Specifies that a control break should occur whenever the value of the sort field changes,
and specifies whether or not to print totals at the control break.

The TOTAL parm specifies that totals are wanted at the control break. After the total line
prints, the break spacing will be performed.

Note • If a break spacing parm or any other statistical parm has been specified
(indicating that a control break is desired), it is not necessary to also specify the TOTAL
parm. The total line prints by default at all control breaks.
CIMS Report Writer User Guide 10-121 ■

■ Control Statement Syntax

SORT Statement
The NOTOTAL parm specifies that totals are not wanted at the break–– only the break
spacing is wanted. Unless overridden with a break spacing parm, two blank lines will
print at the control break.

Examples
SORT: REGION(TOTAL) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print. Totals
for the preceding region will print, followed by two blank lines.

SORT: REGION(NOTOTAL) EMPL–NAME

The above example will cause the report to be sorted in region order, and then employee
name order. A control break will occur every time a new region is about to print.
However, a totals line will not print at the break. Only two blank lines will print.
■ 10-122 CIMS Report Writer User Guide

Control Statement Syntax ■

SORT Statement
NOTES 10

How Report Writer Determines Sort Order

All data processed by Report Writer falls into one of five general categories of data. The
following table shows how each type of data is sorted:

Data Type Description

Character Character fields are sorted into alphabetical order (based on their
EBCDIC values). The letter "A" sorts before the letter "B", etc. Numerals
("1", "2", etc.) sort after the letter "Z". Special symbols such as
parentheses, commas, dashes, etc. sort before the letter "A."

Also, all lower case letters ("a" through "z") sort before the first upper
case letter ("A"). If you want to sort on a field which contains mixed
case letters, you may wish to first convert the field to all upper–case.
That way, fields containing the same words will sort together, even if
the words are capitalized differently. Use the #UCASE built–in function
to create an all upper–case version of the desired field.

Note: The full contents of character fields are sorted, not just the
portion that may appear in a report column. In other words, even if
you truncate a character field to make it fit into a report column, the
field's full value will still be used for sorting purposes. The field's full
value is also used to determine when a control break occurs.

Numeric The signed algebraic value of numeric fields are sorted. Thus, all
minus numbers will sort before the first positive number.

Note: The true internal value of a field is what is sorted, not the
formatted value that may appear in the report. In other words,
commas, dollar signs, etc. are not considered when sorting numeric
fields. Also, if you rounded out some of the decimal digits when
displaying the field, those decimal digits are still considered when
performing the sort (and when determining breaks, if the field is a
control break field.)

Date Dates are sorted in year, month, and day order, regardless of how the
raw data may have been stored in the input file, and regardless of how
the date may be formatted in the report.

Time Times are sorted in hours, minutes and seconds order, regardless of
how the raw data may have been stored in the input file, and
regardless of how the time may be formatted in the report.
CIMS Report Writer User Guide 10-123 ■

■ Control Statement Syntax

SORT Statement
Bit Bit fields are sorted as either an OFF or ON. They are not sorted according
to the text used to display them in the report (that is, the ONTEXT and
OFFTEXT values.) Bit fields which are OFF ("0") will sort before bit
fields which are ON ("1").

Note: Depending on what ONTEXT and OFFTEXT values are used, a
sorted bit field column may or may not appear in alphabetical order.
You can always reverse the order, if desired, by specifying the DESC
parm when sorting a bit field.

Note: A field which is in error is treated as a very low value when sorting. Thus, fields
containing invalid packed data, for example, and displayed with the ****I**** error
indicator, will sort ahead of fields containing valid numeric values.

Data Type Description
■ 10-124 CIMS Report Writer User Guide

Control Statement Syntax ■

TITLE Statement
TITLE Statement 10

PURPOSE 10

This statement specifies a title that should print at the top of each page of the report. You
may have as many TITLE statements as you like. Each TITLE statement results in one title
line at the top of your report.

Another use of TITLE statements is to create your own column headings, when you do
not want the ones automatically created.

TITLE statements are ignored when producing PC files.

FEATURES 10

Use the TITLE statement to:

■ specify the contents of the report titles (which can include literal text, data from input
files, and special items like the current page number, date, time, etc.)

■ specify how to left align, center and right align different parts of the same title

■ specify the desired width, display format, and justification for data fields that appear
in a title

LEARNING MORE 10

The complete syntax of the TITLE statement is shown on the following pages. In
addition, the following parts of the manual relate to the TITLE statement:

■ a lesson on using the TITLE statement begins on page 2-26

■ advanced examples of using the TITLE statement are shown beginning on page 4-48

■ using TITLE statements to create column headings is discussed in How to Produce
Multi–Line Reports on page 4-29
CIMS Report Writer User Guide 10-125 ■

■ Control Statement Syntax

TITLE Statement
SYNTAX 10

The TITLE statement consists of from one to three print expressions, separated with
slashes. If a TITLE statement has no slashes, the single print expression will be centered
over the report. If there is one slash, the first print expression will be left–aligned and the
second print expression will be right–aligned over the report. If there are two slashes, the
first print expression will be left–aligned, the second one will be centered, and the third
one will be right–aligned. It is okay for one or more of the print expressions to be empty.
Examples of using various combinations of print expressions and slashes is illustrated in
the section beginning on page 4-57.

You may also use empty TITLE statements. An empty TITLE statement results in one
blank title line.

Note • Any title line that contains only spaces and underscore characters will be
overprinted (that is, printed without advancing to the next line.) Use this feature to
underline column headings that you create with TITLE statements.

Note • Use the similar FOOTNOTE statement to print title lines at the bottom of each
page of the report.

TITLE Statement Syntax

TITLE: print–expression [/ print–expression] [/ print–expression]

Note: the syntax for the print-expressions is shown on page 10-127.

Standard Alternate
Spelling Spellings
TITLE TITL, TIT
■ 10-126 CIMS Report Writer User Guide

Control Statement Syntax ■

TITLE Statement
fieldname

Specifies that the title line should contain the contents of this field. The field's data will
be taken from the first detail record on the new page.

The field must be available to Report Writer at the time the TITLE statement is processed.
That is, the field name must be one of the following:

■ a field from an input file. (An input file is a file named in the INPUT statement, or in
an optional READ statement.)

■ a computed field (defined in a preceding COMPUTE statement)

■ a built–in field (see Appendix C, Built-In Fields for a complete list of built–in fields.)

Note that in addition to the standard built–in fields, there is one special built–in field
that can be used only in the TITLE and FOOTNOTE statements. That is the #PAGENUM built–
in field, which contains the current page number. By default, it formatted with this
picture: PIC'ZZZ9' (4 digits). You can override this format by using a numeric display
format parm. This fieldname can also be abbreviated as #PAGE.

Example
TITLE: #TODAY / 'ABC COMPANY' / 'PAGE' #PAGENUM

Print–Expression Syntax (in TITLE Statement)

A print–expression consists of one or more items, optionally separated by numeric spacing factors:

TITLE: [n] item [n] item [n] item ...
[/ [n] item [n] item [n] item ...]
[/ [n] item [n] item [n] item ...]

Each item can be either a fieldname or a literal text. Each item can optionally be followed by a parm list
in parentheses:

FIELDNAME[([ASCII]
[BIZ]
[DISPLAY–FORMAT]
[LEFT/CENTER/RIGHT]
[WIDTH])]

'LITERAL'[(WIDTH)]

Standard Alternate
Spelling Spellings
CENTER CJ
LEFT LJ
RIGHT RJ
TITLE TITL, TIT
CIMS Report Writer User Guide 10-127 ■

■ Control Statement Syntax

TITLE Statement
The above example contains three print expressions. It will produce a title line which
looks like this:

12/31/99 ABC COMPANY PAGE nnnn

The literal texts ("ABC COMPANY", and "PAGE") print as specified. The contents of the built–
in fields #TODAY and #PAGENUM also print, in default format. The first part of the title is
left–justified; the second part is centered; the third part is right–justified.

'literal'

Specifies that the title line should contain this literal text. Enclose the literal text in either
apostrophes or quotation marks.

Example
See the example above under the fieldname parm.

n

This is a numeric spacing factor. It specifies how many blank spaces to leave between two
items in a title line. A spacing factor of zero is allowed. (It results in two items appearing
in the title with no blank spaces between them.) If no spacing factor is given, the default
is to leave one blank space between items.

Example
TITLE: #TODAY / 'ABC COMPANY' / 'PAGE' 6 #PAGENUM

The above example specifies that 6 blank spaces should be left between the literal text
"PAGE" and the contents of the #PAGENUM field. The title would now look like this:

12/31/99 ABC COMPANY PAGE nnnn

ASCII

(Within a print–expression.) Specifies that the final, formatted field should be translated
from EBCDIC to ASCII in the print line. To specify your own EBCDIC-to-ASCII translation
table, use the ASCIITABLE option in the OPTIONS statement (page 10-83.) Otherwise,
Report Writer uses a default translation table.

Example
TITLE: REGION(ASCII)

The above example causes the REGION field to be printed in ASCII. See page 4-21 for more
information on creating ASCII output files.

BIZ

This “blank if zero” parm specifies that blanks should appear in the title for the field if
it has a value of zero. This parm is allowed only for numeric, date and time fields. A date
is considered to have a zero value if the month, day and last 2 digits of the year are all
zeros (regardless of the value of the century part of the year.)

Example
TITLE: 'EMPLOYEES HIRED ON' HIRE–DATE(BIZ)
■ 10-128 CIMS Report Writer User Guide

Control Statement Syntax ■

TITLE Statement
The above example causes the HIRE–DATE field in the title to be left blank whenever it
contains a zero date.

display–format

Specifies how the contents of a field should be formatted in the title line. A complete list
of display formats is found in Appendix B, Display Formats. If this parm is not specified,
Report Writer uses the display format from:

■ the FIELD or COMPUTE statement that defined the field

■ an OPTIONS statement FORMAT parm

■ the default display format (see page B-8)

Example
TITLE: #TODAY(LONG1) / 'ABC COMPANY' / 'PAGE #PAGENUM(PIC'999')

The above example specifies display formats for the #TODAY and the #PAGENUM fields. The
LONG1 display format causes the month name to be spelled out. The PICTURE display
format (for #PAGENUM) specifies that three digits of the page number should be displayed,
and that leading zeros should not be suppressed. The title line would now look like this:

DECEMBER 31, 1999 ABC COMPANY PAGE 001

LEFT/CENTER/RIGHT

Specifies how a field's data should be justified within the space allocated for it in the title
line.

Example
TITLE: #TODAY(LONG1,CENTER)

The above example specifies a title line that simply contains the current date, displayed
in LONG1 format. The LONG1 format causes 18 bytes to be reserved for the date in the title
line. This is to allow enough room to print the biggest possible date (like "SEPTEMBER 31,
1999"). The 18–byte area reserved for the date will automatically be centered over the
body of the report, since no slashes are used. But shorter dates (like "MAY 1, 1990")
would not take up the entire 18–byte area, and thus would not appear to be centered
correctly in the title. The CENTER parm is needed to cause these shorter dates to be centered
within the 18–byte area in the title line. The title line produced by the above statement
would look like this:

DECEMBER 31, 1999

A similar situation arises when you want to align a date with the right margin of a report.
By using a slash you can cause the whole 18–byte area to be right–aligned. But a small
date ("MAY 1, 1990") would not use up the entire 18 bytes, and thus would not be flush
with the right edge of your report. To solve that problem, use the RIGHT justification parm
to right–justify the date within its 18–byte area, like this:

TITLE: 'ABC COMPANY' / #TODAY(LONG1,RIGHT)
CIMS Report Writer User Guide 10-129 ■

■ Control Statement Syntax

TITLE Statement
The title line produced by the above statement would look like this:

ABC COMPANY DECEMBER 31, 1999

width

This is a numeric parm that specifies the number of characters to reserve for an item in
the title line. Use this parm if the default width is too large or too small.

Example
TITLE: 'PAGE' #PAGENUM(9)

The above example specifies that 9 characters (not digits) should be reserved to display
the #PAGENUM field in the title line. The resulting title would look like this:

PAGE n,nnn,nnn
■ 10-130 CIMS Report Writer User Guide

A
Data Types

Introduction . 1-2

Character Data Types . 1-3

Numeric Data Types . 1-3

Date Data Types . 1-5

Time Data Types . 1-8

Bit Data Types .1-11
CIMS Report Writer User Guide A-1 ■

■ Data Types

Introduction
Introduction 1

There are five general categories of data that Report Writer recognizes. They are:

■ character

■ numeric

■ date

■ time

■ bit

For each of these categories, there is more than one way that the data can actually be
represented in an input record. A data type describes how a particular field's data is
stored within an input record. A field's data type is defined to Report Writer with the TYPE
parm in its FIELD statement.

The following charts show the data types that Report Writer supports for each category
of data. These charts also show the acceptable abbreviations and alternate spellings for
the data types.
■ A-2 CIMS Report Writer User Guide

Data Types ■

Character Data Types
Character Data Types 1

Numeric Data Types 1

Data Types for Character Fields

Data Type Description Length Allowed

CHARACTER
CHAR
CH
C

Character data 1 to 32,767

CHAREXIT Report Writer will call a user–written exit program to obtain a
character string.

1 to 32,767

Data Types for Numeric Fields

Data Type Description

Programming
Language
Equivalents

Length
Allowed
(See Note 1)

NUMERIC
NUM
DISPLAY
DISP

Display numeric.
Example:C'1234', C'1234.0', C'+1234',
C' 1234 ', C' $1,234', are all 1,234.
Example:C'–1234' is –1,234.

COBOL: USAGE DISPLAY
 PIC 9999
 PIC S9999 SIGN
 IS SEPARATE
PL/1: PIC '9999'
ASM: DS C

1–256

NUMERIC–SLD
NUM–SLD

Numeric with Signed Last Digit.
Example:C'1234' and C'123D' are 1,234.
Example:C'123M' is –1,234.

COBOL: PIC S9999
PL/1: PIC '999T'
ASM: DS Z

1–256

NUMERIC–CD
NUM–CD

Numeric with Comma for Decimal symbol.
Example:C'1.234.567,89' and
C'1 234 567,8' are valid values.

(None) 1–256

PACKED
PACK
P
COMP–3

Packed decimal (signed).
Example: X'01234F', X'01234C' are 1,234.
Example: X'01234D' is –1,234.

COBOL: PIC S9999
 USAGE COMP–3
PL/1: FIXED DECIMAL
ASM: DS P

1–16

PACKEDUN
PACKUN
PU

Packed decimal unsigned (BCD).
Example:X'1234' is 1,234.

(None) 1–16

BINARY
BIN
COMP

Binary (signed).
Example:X'04D2' is 1,234.

Example:X'FB2E' is –1,234.

Example:X'FF' is –1.

COBOL: PIC S9999
 USAGE COMP
PL/1: FIXED BINARY
ASM: DS H
 DS F

1–8
CIMS Report Writer User Guide A-3 ■

■ Data Types

Numeric Data Types
BINARYUN
BINUN
BU

Binary unsigned.
Example: X'04D2' is 1,234.
Example: X'FB2E' is 64,302.
Example: X'FF' is 255.

COBOL: PIC 9999 COMP
ASM: DS A

1–8

HALFWORD
HALF

Same asBINARY but defaults to a lengthof 2
when no length is specified.
Example:X'04D2' is 1,234.

Example: X'FB2E' is –1,234.

COBOL: PIC S9(4) COMP
PL/1: FIXED BIN(15)
ASM: DS H

1–8

FULLWORD
FULL

Same asBINARY but defaults to a lengthof 4
when no length is specified.
Example:X'000004D2' is 1,234.

Example:X'FFFFFB2E' is –1,234.

COBOL: PIC S9(8) COMP
PL/1: FIXED BIN(31)
ASM: DS F

1–8

NUMEXIT Report Writer will call a user–written exit
program to obtain a numeric value. The exit
program must return a 16–byte packed
number (optionally containing decimal
digits).

COBOL: CALL
PL/1: CALL
ASM: GOTO

N/A

Notes:
(1) Lengths indicate the number of bytes occupied in the input record, not the number of digits.

The maximum number of digits (including any decimal digits) allowed in any numeric field is 31.

Data Types for Numeric Fields

Data Type Description

Programming
Language
Equivalents

Length
Allowed
(See Note 1)
■ A-4 CIMS Report Writer User Guide

Data Types ■

Date Data Types
Date Data Types 1

Data Types for Date Fields

Data Type Description (See Note 1) Length

MM–DD–YY MM/DD/YY date in character format (including slashes or other
delimiters.) (2) Leading zeros are optional in day and month.
Example: C'12/31/96' and C'12.31.96' are Dec. 31, 1996.
Example: C'1/2/96 ' and C' ½/96' are Jan. 2, 1996.

8

MM–DD–YYYY MM/DD/YYYY date in character format (including slashes or other
delimiters.)(2) Leading zeros are optional in day and month.
Example:C'12/31/1996' and C'12.31.1996' are Dec. 31, 1996.

Example:C'1/2/1996 ' and C' ½/1996' are Jan. 2, 1996.

10

MMDDYY MMDDYY date in character format.
Example:C'123196' is Dec. 31, 1996.

6

MMDDYYYY MMDDYYYY date in character format.
Example:C'12311996' is Dec. 31, 1996.

8

DD–MM–YY DD/MM/YYdate in character format (with slashes or other delimiters.)(2)

Leading zeros are optional in day and month.
Example:C'31/12/96' and C'31.12.96' are Dec. 31, 1996.

Example:C'2/1/96 ' and C' 2/1/96' are Jan. 2, 1996.

8

DD–MM–YYYY DD/MM/YYYY date in character format (with slashes or other
delimiters.) (2) Leading zeros are optional in day and month.
Example:C'31/12/1996' and C'31.12.1996' are Dec. 31, 1996.
Example:C'2/1/1996 ' and C' 2/1/1996' are Jan. 2, 1996.

10

DDMMYY DDMMYY date in character format.
Example: C'311296' is Dec. 31, 1996.

6

DDMMYYYY DDMMYYYY date in character format.
Example: C'31121996' is Dec. 31, 1996.

8

YYYY–MM–DD YYYY/MM/DD date in character format (including slashes or other
delimiters.) (2)
Example: C'12/31/1996' and C'12.31.1996' are Dec. 31, 1996.
Example: C'1/2/1996 ' and C' ½/1996' are Jan. 2, 1996.

10

YYMMDD YYMMDD date in character format.
Example: C'961231' is Dec. 31, 1996.

6

YYYYMMDD YYYYMMDD date in character format.
Example: C'19961231' is Dec. 31, 1996.

8

CIMS Report Writer User Guide A-5 ■

■ Data Types

Date Data Types
YYYY/DD/MM YYYY/DD/MM date in character format (including slashes or other
delimiters.) (2)
Example: C'31/12/1996' and C'31.12.1996' are Dec. 31, 1996.
Example: C'2/1/1996 ' and C' 2/1/1996' are Jan. 2, 1996.

10

YYDDD YYDDD Julian date in character format.
Example: C'96366' is Dec. 31, 1996.

5

YYYYDDD YYYYDDD Julian date in character format.
Example: C'1996366' is Dec. 31, 1996.

7

H–MMDDYY MMDDYY date in hexadecimal (BCD) format.
Example: X'123196' is Dec. 31, 1996.

3

H–MMDDYYYY MMDDYYYY date in hexadecimal (BCD) format.
Example: X'12311996' is Dec. 31, 1996.

4

H–DDMMYY DDMMYY date in hexadecimal (BCD) format.
Example: X'311296' is Dec. 31, 1996.

3

H–DDMMYYYY DDMMYYYY date in hexadecimal (BCD) format.
Example: X'31121996' is Dec. 31, 1996.

4

H–YYMMDD YYMMDD date in hexadecimal (BCD) format.
Example: X'961231' is Dec. 31, 1996.

3

H–YYYYMMDD YYYYMMDD date in hexadecimal (BCD) format.
Example: X'19961231' is Dec. 31, 1996.

4

H–YYDDD YYDDD Julian date in hexadecimal (BCD) format.
Example: X'096366' is Dec. 31, 1996.

3

H–YYYYDDD YYYYDDD Julian date in hexadecimal (BCD) format.
Example: X'01996366' is Dec. 31, 1996.

4

P–MMDDYY MMDDYY date in packed format.
Example: X'0123196C' is Dec. 31, 1996.

4

P–MMDDYYYY MMDDYYYY date in packed format.
Example: X'012311996C' is Dec. 31, 1996.

5

P–DDMMYY DDMMYY date in packed format.
Example: X'0311296C' is Dec. 31, 1996.

4

P–DDMMYYYY DDMMYYYY date in packed format.
Example: X'031121996C' is Dec. 31, 1996.

5

P–YYMMDD YYMMDD date in packed format.
Example: X'0961231C' is Dec. 31, 1996.

4

Data Types for Date Fields

Data Type Description (See Note 1) Length
■ A-6 CIMS Report Writer User Guide

Data Types ■

Date Data Types
P–YYYYMMDD YYYYMMDD date in packed format.
Example: X'019961231C' is Dec. 31, 1996.

5

P–YYDDD YYDDD Julian date in packed format.
Example: X'96366C' is Dec. 31, 1996.

3

P–YYYYDDD YYYYDDD Julian date in packed format.
Example: X'1996366C' is Dec. 31, 1996.

4

P–CYYDDD Packed Julian date with century digit (as used in SMF records.)
Example: X'0096366C' is Dec. 31, 1996.
Example: X'0196366C' is Dec. 31, 2096.

4

STCKDATE Report Writer extracts the date portion of the date–time value
stored by the IBM STCK machine instruction (CPU timer units since
00:00:00 1/1/1900 GMT.) Report Writer automatically converts the
STCK value from GMT to local time. For more details, see the
STCKADJ parm in the OPTIONS statement.

8

ABSDATE Report Writer extracts the date portion of a CICS ABSTIME date–
time value (8-byte packed number of milliseconds since 00:00:00
1/1/1900.)

8

DATEEXIT Report Writer will call a user–written exit program to obtain a
date value. The exit program must return a 4–byte date in
X'YYYYMMDD' format.

N/A

Notes:
(1) The CENTURY parm (in an OPTIONS statement) determines whether YY–type dates are 19YY or 20YY.
(2) Any non–numeric character is accepted as the delimiter character.

Data Types for Date Fields

Data Type Description (See Note 1) Length
CIMS Report Writer User Guide A-7 ■

■ Data Types

Time Data Types
Time Data Types 1

Data Types for Time Fields

Data Type Description
Default
Length

Length
Allowed
(See Note 1)

HH–MM–SS HH:MM:SS time in character format (with colons or other
delimiters). (4) Decimal digits are allowed.
Example: C'12:34:56' and C'12.34.56' are 12:34:56
Example: C'12:34:56.7' is 12:34:56.7 (6)

8 8–256 (2)

HHMMSS HHMMSS time in character format (no delimiters).
Decimal digits are allowed.
Example: C'123456' is 12:34:56
Example: C'1234567' is 12:34:56.7 (6)

6 6–256 (2)

HH–MM HH:MM time in character format (including a colon or other
delimiter.) (4) Decimal digits are not allowed.
Example: C'12:34' and C'12.34' are 12:34

5 5

HHMM HHMM time in character format.
Decimal digits are not allowed.
Example: C'1234' is 12:34

4 4

H–HHMMSS HHMMSS time in hexadecimal (BCD) format.
Decimal digits are allowed.
Example: X'123456' is 12:34:56
Example: X'01234567' is 12:34:56.7 (6)

3 3–15 (2)

H–HHMM HHMM in hexadecimal (BCD) format.
Decimal digits are not allowed.
Example: X'1234' is 12:34

2 2

P–HHMM HHMM time in packed format.
Decimal digits are not allowed.
Example: X'01234C' is 12:34

3 3

P–HHMMSS HHMMSS time in packed format.
Decimal digits are allowed.
Example: X'0123456C' is 12:34:56
Example: X'1234567C' is 12:34:56.7 (6)

4 4–16 (2)

SECS
SEC

Seconds since midnight in character format.
Decimal digits are allowed.
Example: C'45296' is 12:34:56
(12*3600 + 34*60 + 56 = 45296.)
Example: C'452967' is 12:34:56.7 (6)

N/A (5) 1–256 (3)
■ A-8 CIMS Report Writer User Guide

Data Types ■

Time Data Types
P–SECS Seconds since midnight in packed format.
Decimal digits are allowed.
Example: X'45296C' is 12:34:56
Example: X'0452967C' is 12:34:56.7 (6)

N/A (5) 1–16 (3)

PU–SECS Seconds since midnight in packed unsigned (BCD) format.
Decimal digits are allowed.
Example: X'045296' is 12:34:56
Example: X'452967' is 12:34:56.7 (6)

N/A (5) 1–16 (3)

B–SECS Seconds since midnight in binary format.
Decimal digits are allowed.
Example: X'0000B0F0' is 12:34:56
(X'0000B0F0' = 45296.)
Example: X'0006E967' is 12:34:56.7 (6)

N/A (5) 1–8 (3)

BU–SECS Seconds since midnight in unsigned binary format.
Decimal digits are allowed.
Example: X'B0F0' is 12:34:56
Example: X'0006E967' is 12:34:56.7 (6)

N/A (5) 1–8 (3)

MINS Minutes since midnight in character format.
Decimal digits are allowed.
Example: C'120' is 02:00:00 (2*60 =120)
Example: C'1205' is 02:00:30.0 (6)

N/A (5) 1–256 (3)

P–MINS Minutes since midnight in packed format.
Decimal digits are allowed.
Example: X'120C' is 02:00:00
Example: X'01205C' is 02:00:30.0 (6)

N/A (5) 1–16 (3)

PU–MINS Minutes since midnight in packed unsigned (BCD) format.
Decimal digits are allowed.
Example: X'0120' is 02:00:00
Example: X'1205' is 02:00:30.0 (6)

N/A (5) 1–16 (3)

B–MINS Minutes since midnight in binary format.
Example: X'0078' is 02:00:00 (X'0078' = 120)
Example: X'04B5' is 02:00:30.0 (6)

N/A (5) 1–8 (3)

BU–MINS Minutes since midnight in binary unsigned format.
Decimal digits are allowed.
Example: X'0078' is 02:00:00
Example: X'04B5' is 02:00:30.0 (6)

N/A (5) 1–8 (3)

Data Types for Time Fields

Data Type Description
Default
Length

Length
Allowed
(See Note 1)
CIMS Report Writer User Guide A-9 ■

■ Data Types

Time Data Types
HOURS
HOUR
HRS

Hours since midnight in character format.
Decimal digits are allowed.
Example: C'11' is 11:00:00
Example: C'1175' is 11:45:00.00 (7)

N/A (5) 1–256 (3)

P–HOURS Hours since midnight in packed format.
Decimal digits are allowed.
Example: X'011C' is 11:00:00
Example: X'01175C' is 11:45:00.00 (7)

N/A (5) 1–16 (3)

PU–HOURS Hours since midnight in packed unsigned (BCD) format.
Decimal digits are allowed.
Example: X'11' is 11:00:00
Example: X'1175' is 11:45:00.00 (7)

N/A (5) 1–16 (3)

B–HOURS Hours since midnight in binary format.
Decimal digits are allowed.
Example: X'000B' is 11:00:00
Example: X'0497' is 11:45:00.00 (7)

N/A (5) 1–8 (3)

BU–HOURS Hours since midnight in binary unsigned format.
Decimal digits are allowed.
Example: X'000B' is 11:00:00
Example: X'0497' is 11:45:00.00 (7)

N/A (5) 1–8 (3)

STCKTIME Report Writer extracts the time portion of the date–time
value stored by the IBM STCK machine instruction (CPU
timer units since 00:00:00 1/1/1900 GMT.) Report Writer
automatically converts the STCK value from GMT to local
time. For more details, see the STCKADJ parm in the
OPTIONS statement. STCKTIME fields always have 6 decimal
digits.

8 8

ABSTIME Report Writer extracts the time portion of a CICS ABSTIME
date–time value (8-byte packed number of milliseconds
since 00:00:00 1/1/1900.)

8 8

Data Types for Time Fields

Data Type Description
Default
Length

Length
Allowed
(See Note 1)
■ A-10 CIMS Report Writer User Guide

Data Types ■

Bit Data Types
Bit Data Types 1

TIMEEXIT Report Writer will call a user–written exit program to
obtain a time value. The exit program must return a 16-
byte packed number of seconds since midnight
(optionally including decimal digits).

N/A N/A

Notes:
(1) Lengths refer to the number of bytes occupied in the input record.
(2) Field may contain no more than 15 numeric digits.
(3) Field may contain no more than 27 numeric digits.
(4) Any non–numeric character is accepted as the delimiter character.
(5) This data type has no default length. A LENGTH parm is always required in the FIELD statement.
(6) The FIELD statement would also need a DECIMAL(1) parm.
(7) The FIELD statement would also need a DECIMAL(2) parm.

Data Types for Bit Fields

Data Type Description Length

BIT A single bit within a byte. N/A

BITEXIT Report Writer will call a user–written exit program to obtain a bit
value. The exit program must return either C'0' or C'1'.

N/A

Data Types for Time Fields

Data Type Description
Default
Length

Length
Allowed
(See Note 1)
CIMS Report Writer User Guide A-11 ■

■ Data Types

Bit Data Types
■ A-12 CIMS Report Writer User Guide

B
Display Formats

Introduction . 2-2

Display Formats for Any Type of Field . 2-3

Numeric Display Formats . 2-3

Date Display Formats . 2-5

Time Display Formats . 2-8

Default Display Formats . 2-9
CIMS Report Writer User Guide B-1 ■

■ Display Formats

Introduction
Introduction 2

Display formats can be used in various control statement to indicate how data should be
formatted in a report or output file. When no display format is specified, Report Writer
formats data using a default display format. To override Report Writer's default, specify
one of the display formats found in the following pages.

Example
FIELD: SOCIAL–SEC–NUM TYPE(PACKED) LENGTH(5) FORMAT(PIC'999–99–9999')

The FIELD statement above includes a picture type of numeric display format. Specifying
a display format in the FIELD statement defines a default format to use for that field
whenever it appears in a report or output file.

Here is another way display formats can be used:

COLUMNS: HIRE–DATE(DD–MM–YYYY)

The above COLUMNS statement tells Report Writer to format the HIRE–DATE field in "DD/MM/
YYYY" format, for the current run only.

Display formats can be specified in the following statements:

■ the FIELD statement

■ theCOMPUTE statement

■ theCOLUMNS statement

■ theBREAK statement

■ theTITLE statement

■ theFOOTNOTE statement

■ theOPTIONS statement (FORMAT option)

For more information on these uses, see under the appropriate statement's description
in Chapter 10, Control Statement Syntax.

The display formats that can be used for a particular field depend on the field's data type.
For example, only numeric display formats may be used with numeric fields. You can not
use a date or time display format with a numeric field.

The boxes on the following pages show the display formats available for each type of
data.

Note • There are no display formats for bit fields. A similar function is provided by the
ONTEXT and OFFTEXT parms in the FIELD statement.

A table showing the default display formats for each type of data appears on page B-8.
■ B-2 CIMS Report Writer User Guide

Display Formats ■

Display Formats for Any Type of Field
Display Formats for Any Type of Field 2

Numeric Display Formats 2

Display Formats Allowed for Any Field

Display Format Description Example

CHARACTER
CHAR

No formatting is done–– data is printed "as is". This is normally
used only for character fields, but is allowed for any type of field.
This is the default display format for character fields.

ABC

QCHAR The data is enclosed within quotation marks. Other than that, the
data is not reformatted at all. This format is useful for formatting
character fields for use in PC files. (Use the QCHAR parm of the
OPTIONS statement to specify a character other than the quotation
mark to use as the delimiter with this display format.)

"ABC"

HEX Each byte of data is expanded into two bytes to show the
hexadecimal representation of the data. This format is useful
when investigating fields that contain invalid data, such as hex
zeros.

C1C2C3

BITS Each byte of data is expanded into 8 character 0s and/or 1s to
show the individual bits within the data.

11000001

Display Formats for Numeric Fields

Display Format Description Example

(the following formats are suggested for use in reports)

NUMERIC
NUM

This is the default display format for all numeric fields,
regardless of their data type. Formatting includes suppression of
leading zeros and the use of commas as separators. A floating
negative sign precedes negative numbers.

 1,234.56
–1,234.56

BARGRAPH
BAR

A bar graph is printed. A number of asterisks equal to the rounded
value of the numeric field will print (up to the total width of the
column). Bar graphs are discussed on page 4-34.

DISPLAY
DISP

Numbers are displayed without any punctuation (other than a
decimal point, if necessary.) Leading zeros are not suppressed.
The "zone" portion of the last digit contains the sign.

0001234.567
0001234.56P

DOLLAR Same as NUMERIC, but a floating dollar sign will precede the first
significant digit.

$1,234.56
–$1,234.56

DOTSEP Same as NUMERIC, but uses dots rather than commas as separators.
Also uses a comma as the decimal indicator, rather than a dot.
This format is widely used outside the USA.

 1.234,56
 –1.234,56
12.345.678,9
CIMS Report Writer User Guide B-3 ■

■ Display Formats

Numeric Display Formats
(the following formats are suggested for use in reports)

NOCOMMAS
NOCOMMA

Same as NUMERIC, except that commas are not inserted among the
digits. This format is useful for formatting numeric fields for use
in PC files.

1234.56
–1234.56

PICTURE'...'
PICT'...'
PIC'...'
P'...

A "picture" is used to describe how the numeric value should be
formatted. This is useful for formatting special purpose numbers,
such as telephone numbers and social security numbers. The
rules governing PICTUREs are given on page 9-12.

(800) 555–1212
123–45–6789

(the following formats are intended mainly for use in building output records)

PACKED
PACK
COMP–3

Numbers are converted into packed decimal format (called COMP–
3 in COBOL, and FIXED DECIMAL in PL/I.) The default width for data
in PACKED format is 8 bytes.

X'000000000123456
C'
X'000000000123456
D'

PACKEDUN
PACKUN
PU

Numbers are converted into an unsigned packed decimal format,
sometimes called BCD. (There is no equivalent in COBOL or in
PL/I.) It is similar to PACKED, except that the last byte contains two
numeric digits (like the other bytes), rather than a single digit and
a sign. The default width for data in the PACKEDUN format is 8
bytes. Negative numbers can not be formatted with this display
format.

X'000000000012345
6'

BINARY
BIN
COMP

Numbers are converted into binary representation (called COMP in
COBOL, and FIXED BINARY in PL/I.) The default width for data in
BINARY format is 4 bytes.

X'0001E240'
X'FFFF1DC0'

BINARYUN
BINUN
BU

Numbers are converted into an unsigned binary format (which
has no equivalent in COBOL or in PL/I.) It is similar to BINARY,
except that the high order bit is not used as a sign, but as another
binary digit. The default width for data in the BINARYUN format is
4 bytes. Negative numbers can not be formatted with this display
format.

X'0001E240'

HALFWORD
HALF

Same as BINARY, but with an implied width of 2 bytes. X'04D2'

FULLWORD
FULL

Same as BINARY, but with an implied width of 4 bytes. X'0001E240'

Display Formats for Numeric Fields

Display Format Description Example
■ B-4 CIMS Report Writer User Guide

Display Formats ■

Date Display Formats
Date Display Formats 2

Display Formats for Date Fields

Display Format Description Example

(the following formats are suggested for use in reports)

MM–DD–YY MM/DD/YY This is the default display format for all date fields,
regardless of their data type. (1)

12/31/96
12–31–96
12.31.96

MM–DD–YYYY MM/DD/YYYY (1) 12/31/1996
12–31–1996
12.31.1996

MMDDYY MMDDYY 123196

MMDDYYYY MMDDYYYY 12311996

DD–MM–YY DD/MM/YY (1) 31/12/96
31–12–96
31.12.96

DD–MM–YYYY DD–MM–YYYY (1)) 31/12/1996
31–12–1996
31.12.1996

DDMMYY DDMMYY 311296

DDMMYYYY DDMMYYYY 31121996

YYYY–MM–DD YYYY-MM-DD (1) 1996/12/31
1996–12–31
1996.12.31

YYMMDD YYMMDD 961231

YYYYMMDD YYYYMMDD 19961231

YYDDD YYDDD (Julian date) 96366

YYYYDDD YYYYDDD (Julian date) 996366

SHORT1 MMM DD, YYYY DEC 31, 1996

SHORT2 DD MMM YYYY 31 DEC 1996

SHORT3 DD MMM YY 31 DEC 96

LONG1 MMMMMMMMMMM DD, YYYY DECEMBER 31, 1996

LONG2 DD MMMMMMMMMMM YYYY 31 DECEMBER 1996

LONG3 DD MMMMMMMMMMM YY 31 DECEMBER 96
CIMS Report Writer User Guide B-5 ■

■ Display Formats

Date Display Formats
(the following formats are intended mainly for use in building output records)

Q–MM–DD–YY "MM/DD/YY" date in quotation marks. (1) (2) "12/31/96"

Q–MM–DD–YYYY "MM/DD/YYYY" date in quotation marks. (1) (2) "12/31/1996"

Q–MMDDYYYY "MMDDYYYY" date in quotation marks. (2) "12311996"

Q–DD–MM–YYYY "DD/MM/YYYY" date in quotation marks. (1) (2) "31/12/1996"

Q–DDMMYYYY "DDMMYYYY" date in quotation marks. (2) "31121996"

Q–YYMMDD "YYMMDD" date in quotation marks. (2) "961231"

Q–YYYY–MM–DD "YYYY/MM/DD" date in quotation marks. (1) (2) "1996/12/31"

Q–YYYYMMDD "YYYYMMDD" date in quotation marks. (2) "19961231"

H–MMDDYY MMDDYY (hex) X'123196'

H–MMDDYYYY MMDDYYYY (hex) X'12311996'

H–DDMMYY DDMMYY (hex) X'311296'

H–DDMMYYYY DDMMYYYY (hex) '31121996'

H–YYMMDD YYMMDD (hex) '961231'

H–YYYYMMDD YYYYMMDD (hex) X'19961231'

H–YYDDD YYDDD (hex, Julian date) '096366'

H–YYYYDDD YYYYDDD (hex, Julian date) '01996366'

P–MMDDYY MMDDYY (packed) X'0123196C'

P–MMDDYYYY MMDDYYYY (packed) X'012311996C'

P–DDMMYY DDMMYY (packed) X'0311296C'

P–DDMMYYYY DDMMYYYY (packed) X'031121996C'

P–YYMMDD YYMMDD (packed) X'0961231C'

P–YYYYMMDD YYYYMMDD (packed) X'019961231C'

P–YYDDD YYDDD (packed, Julian date) X'96366C'

P–YYYYDDD YYYYDDD (packed, Julian date) X'1996366C'

Display Formats for Date Fields

Display Format Description Example
■ B-6 CIMS Report Writer User Guide

Display Formats ■

Date Display Formats
(the following formats are intended mainly for use in building output records)

P–CYYDDD Packed CYYDDD date (Julian date with century indicator, as used in
SMF records)

X'096366C'
X'196366C'

Notes:
(1) Use the DATEDELIM parm in the OPTIONS statement to specify a delimiter other than the slash (/).
(2) Use the QCHAR parm in the OPTIONS statement to specify a delimiter other than the quotation mark.

Display Formats for Date Fields

Display Format Description Example
CIMS Report Writer User Guide B-7 ■

■ Display Formats

Time Display Formats
Time Display Formats 2

Display Formats for Time Fields

Display Format Description Example

(the following formats are suggested for use in reports)

HH–MM–SS HH:MM:SS[.NNN...] This is the default display format for all time
fields that include seconds. (1)

13:30:45
13:30:45.5
13.30.45

HH–MM–SS–AMPM HH:MM:SS[.NNN...] AM/PM (1) 1:30:45 AM
1:30:45.5 AM
1.30.45 PM

HHMMSS HHMMSS 133045

HH–MM HH:MM This is the default display format for all time fields that do
not include seconds. (1)

13:31
13.31

HH–MM–AMPM HH:MM AM/PM (1) 1:31 AM
1.31 PM

HHMM HHMM 1331

TPICTURE'...'
TPICT'...'
TPIC'...'
TP'...'

User defined "time picture." (Time pictures are discussed on
page 9-17.) Example: TPIC'Z9–99–99' might result in " 8–25–59".

8–25–59

SECS
SEC

Number of seconds since midnight. (13 hours, 30 minutes and
45 seconds is 48,645 seconds.)

48,645

MINS Number of minutes since midnight. (13 hours, 30 minutes and
45 seconds is 810.75 minutes.)

810.75

HOURS
HOUR
HRS

Number of hours since midnight. (13 hours, 30 minutes and 45
seconds is 13.513 hours.)

13.513

(the following formats are intended mainly for use in building output records)

Q–HH–MM–SS "HH:MM:SS" time in quotation marks. This format is useful for
formatting time fields for use in PC files. Use the QCHAR parm in
the OPTIONS statement to specify a delimiter other than the
quotation mark. (1)

"13:30:45"

Q–HH–MM "HH:MM" time in quotation marks. Use the QCHAR parm in the
OPTIONS statement to specify a delimiter other than the quotation
mark. (1)

"13:31"

H–HHMMSS HHMMSS (hex) X'133045'

H–HHMM HHMM (hex) X'1331'

P–HHMMSS HHMMSS (packed) X'0133045C'
■ B-8 CIMS Report Writer User Guide

Display Formats ■

Default Display Formats
Default Display Formats 2

The following table shows Report Writer's standard default display format for each type
of data.

Note • The default display formats are changed by certain options, including the
FORMAT option, the PC file options and the MAINFRAME option.

(the following formats are intended mainly for use in building output records)

P–HHMM HHMM (packed) X'01331C'

SECS–NC
SEC–NC

Number of seconds since midnight, formatted with "no commas"
(for use in PC files).

48645

MINS–NC Number of minutes since midnight, formatted with "no
commas" (for use in PC files).

810.75

HOURS–NC
HOUR–NC
HRS–NC

Number of hours since midnight, formatted with "no commas"
(for use in PC files).

13.513

Notes:
(1) Use the TIMEDELIM parm in the OPTIONS statement to specify a delimiter other than the colon

(:).

Display Formats for Time Fields

Display Format Description Example

Default Display Formats

Kind of Data
Default Display
Format Description Example

Character CHARACTER Data is displayed "as is", without any formatting ABC

Numeric NUMERIC Leading zeros are suppressed; commas are used as
separators; a floating negative sign precedes
negative numbers.

–1,234.56

Date MM–DD–YY MM/DD/YY 12/31/96

Time HH–MM–SS HH:MM:SS (Decimal portions of seconds, if any, are
also shown.)

13:45:59
17:30:00.12

Bit none There are no display formats for bit fields. Bit
fields are always displayed using their ONTEXT or
OFFTEXT value. See page 6-26.

FIELDNAME
NOT FIELDNAME
CIMS Report Writer User Guide B-9 ■

■ Display Formats

Default Display Formats
■ B-10 CIMS Report Writer User Guide

C
Built-In Fields

Introduction . 3-2

Character Built–In Fields . 3-3

#DAYNAME . 3-3

#ITEM–ENDING . 3-3

#JOBNAME . 3-3

#TIME . 3-3

#TIME24 . 3-3

Numeric Built-In Fields . 3-4

#COUNTER
#COUNT . 3-4

#ITEMS
#ITEM . 3-4

#ITEM/#ITEM1/#ITEM2/#ITEM3/#ITEM4/
#ITEM5/#ITEM6/#ITEM7/#ITEM8/#ITEM9 . 3-4

#PAGENUM
#PAGE . 3-4

Date Built-In Fields . 3-4

#COMDATE . 3-4

#TODAY . 3-5

Time Built-In Fields . 3-5

#HHMMSS . 3-5
CIMS Report Writer User Guide C-1 ■

■ Built-In Fields

Introduction

ese
ost
Introduction 3

Report Writer has a number of "built–in" fields that are available for use. You may refer to th
fields regardless of what input file(s) you use. Built–in fields are easily distinguished from m
other fields because all built–in field names begin with the pound character (#).

The following table lists the Report Writer built–in fields. Following the table, each field
is discussed in more detail.

Report Writer Built-In Fields

Field Name Description

(Character Built-In Fields)

#DAYNAME Name of the current day of the week ("MONDAY")

#ITEM–ENDING The correct plural or singular ending for the word "item(s)" at a
control break. (Allowed only in the BREAK statement.)

#JOBNAME Jobname under which Report Writer is currently executing.

#TIME Time of day, including AM or PM ("12:45 PM")

#TIME24 Time of day in 24–hour format ("13:45")

(Numeric Built-In Fields)

#COUNTER
#COUNT

The cumulative number of items in the report.
(Allowed only in the BREAK statement.)

#ITEMS
#ITEM

The number of items in the current control group. (Allowed only
in the BREAK statement.)

#ITEM1
through
#ITEM9

The item number currently being printed. The 9 different built–in
fields are reset at 9 different levels of control breaks.
(Allowed only in the COLUMNS statement.)

#PAGENUM
#PAGE

The current page number of the report. (Allowed only in the
TITLE and FOOTNOTE statements.)

(Date Built-In Fields)

#COMDATE (VSE only) The date set by the // DATE JCL statement.

#TODAY The system date.

(Time Built-In Fields)

#HHMMSS The system time.
■ C-2 CIMS Report Writer User Guide

Built-In Fields ■

Character Built–In Fields
Character Built–In Fields 3

#DAYNAME 3

Allowed in any control statement. A 9–byte field containing the name of the day of the week
on which the job began. The value of this built–in field does not change during
execution. The use of this field is discussed on page 4-51.

Example
WEDNESDAY

#ITEM–ENDING 3

Allowed only in the BREAK statement. A 1–byte character field that contains either the letter
"S", or a blank, depending on the value of the built–in field #ITEMS.

When #ITEMS is equal to 1 (that is, when the current control group contains only a single
record), #ITEM–ENDING will contain a blank space. Otherwise (when the control group
contains more than one record), #ITEM–ENDING will contain an "S". Append this field to
words like "ITEM" to form the proper plural or singular ending. The use of this field is
discussed on page 4-91.

#JOBNAME 3

Allowed in any control statement. An 8–byte character field containing the name of the job
that is executing Report Writer.

#TIME 3

Allowed in any control statement. An 8–byte character field containing the system time at
which the job began. The value of this built–in field does not change during execution.
The time is in 12–hour format, including either AM or PM. The use of this field is discussed
on page 4-51.

Example
12:31 PM

#TIME24 3

Allowed in any control statement. A 5–byte character field containing the system time at
which the job began. The value of this built–in field does not change during execution.
The time is in 24 hour format. The use of this field is discussed on page 4-91.

Example
14:55
CIMS Report Writer User Guide C-3 ■

■ Built-In Fields

Numeric Built-In Fields
Numeric Built-In Fields 3

#COUNTER
#COUNT 3

Allowed only in the BREAK statement. A numeric field that contains the number of items
processed in the report through the current break. Similar to #ITEMS but is not reset to
zero at each control break. By default it displays with a ZZZ,ZZ9 picture format. The use
of this field is discussed on page 4-91.

#ITEMS
#ITEM 3

Allowed only in the BREAK statement. A numeric field that contains the number of items in
the control group being processed. By default it displays with a ZZZ,ZZ9 picture format.
The use of this field is discussed on page 4-91.

#ITEM/#ITEM1/#ITEM2/#ITEM3/#ITEM4/
#ITEM5/#ITEM6/#ITEM7/#ITEM8/#ITEM9 3

Allowed only in the COLUMNS statement. These nine built–in fields all show the item number
(within a given level of control group) of the line currently being printed. #ITEM1
contains the item number within the lowest level control group. #ITEM1 is reset to zero
at every control break. (#ITEM1 can also be abbreviated #ITEM.) #ITEM2 contains the item
number within the second lowest level control group. #ITEM2 is not reset to zero at the
lowest level control break, but is reset at the second lowest level control break. #ITEM3
through #ITEM9 work similarly for the third through ninth lowest level control breaks.
All are numeric fields which display by default with a ZZ,ZZ9 picture format. The use of
these fields is discussed on page 4-95. For a discussion of "control group levels", see
page 4-96.

#PAGENUM
#PAGE 3

Allowed only in TITLE and FOOTNOTE statements. A numeric field containing the current
page number. By default, it displays with a ZZZ9 picture format. The use of this field is
discussed on page 4-51.

Date Built-In Fields 3

#COMDATE 3

Allowed in any control statement–– VSE only. Contains the "comm area" date. This is the
date set by the // DATE JCL statement. If not set in the JCL, or if used under MVS, #COMDATE
will be the same as #TODAY. By default, it is formatted using the default date display
format that is in effect (normally MM–DD–YY.)
■ C-4 CIMS Report Writer User Guide

Built-In Fields ■

Time Built-In Fields
Example
12/01/99

#TODAY 3

Allowed in any control statement. Contains the system date on which the job began. The
value of this built–in field does not change during execution. By default, it is formatted
using the default date display format that is in effect (usually MM–DD–YY.) The use of this
field is discussed on page 4-51.

Example
12/01/99

Time Built-In Fields 3

#HHMMSS 3

Allowed in any control statement. Contains the system time at which the job began. The
value of this built–in field does not change during execution. By default, it is formatted
using the default time display format that is in effect (normally HH-MM-SS.)

Example
12:34:56
CIMS Report Writer User Guide C-5 ■

■ Built-In Fields

Time Built-In Fields
■ C-6 CIMS Report Writer User Guide

D
Built-In Functions

Introduction . 4-3

Functions that Return a Character Value . 4-5

#AND(char1,char2) . 4-5

#ASCII(char) . 4-5

#COMPRESS([n,] char [,n] ,char ...) . 4-6

#DAY[(date)] . 4-6

#EBCDIC(char) . 4-6

#FORMAT(fieldname [,display–format] [,width] [,BIZ] [,LEFT/CENTER/RIGHT] [ASCII]) 4-6

#LCASE(char) . 4-7

#LEFT(char,num1) . 4-7

#MONTH[(date)] . 4-8

#OR(char1,char2) . 4-8

#PARSE(char,num) . 4-9

#RIGHT(char,num1) . 4-9

#SUBSTR(char,num1,num2) . 4-10

#TRANSLATE(char1,char2,char3) . 4-10

#UCASE(char) . 4-11

#XOR(char1,char2) . 4-11

#YEAR[(date)] . 4-11

Functions that Return a Numeric Value .4-12

#ABS(num) . 4-12

#DAYNUM[(date)] . 4-12

#INDEX(char1,char2) . 4-12

#INT(num) . 4-12

#MAKENUM(char/date/time) . 4-12

#MAX(num1,num2,num3,...) . 4-14

#MIN(num1,num2,num3,...) . 4-14

#MOD(num1,num2) . 4-14

#MONTHNUM[(date)] . 4-15
CIMS Report Writer User Guide D-1 ■

■ Built-In Functions
#NUMWORDS(char) . 4-15

#ROUND(num1,num2) . 4-15

#YEARNUM[(date)] . 4-16

Functions that Return a Date Value . 4-16

#MAKEDATE(char/num) . 4-16

Functions that Return a Time Value . 4-17

#MAKETIME(char/num) . 4-17

Functions that Return a Bit Value . 4-18

#OFF . 4-18

#ON . 4-18
■ D-2 CIMS Report Writer User Guide

Built-In Functions ■

Introduction
Introduction 4

A number of built–in functions are available for use within computational expressions.
Computational expressions are used in COMPUTE statements. These built–in functions are
listed on the following pages, according to the type of data returned by the function
(character, numeric, date, time or bit.)

The arguments to a function will not necessarily be of the same data type as the result.
The data type expected for each argument is indicated in the syntax for each function. For
example, "char" means that a character argument is expected. Except where otherwise
indicated, an argument may be any of the following:

■ a literal value

■ a field name

■ a computational expression (which may itself involve other built–in functions)

Separate the arguments with blanks and/or a comma.

The following table lists the Report Writer built–in functions. Following the table, each
function is discussed in more detail.

Report Writer Built-In Functions

Function Description Page

(Functions that Return a Character Value)

#AND returns the result of ANDing two character strings page D-5

#ASCII returns the ASCII equivalent of an EBCDIC string page D-5

#COMPRESS concatenates multiple fields and compresses out
extra blanks

page D-6

#DAY returns the day of the week for a given date page D-6

#EBCDIC returns the EBCDIC equivalent of an ASCII string page D-6

#FORMAT converts a numeric, date or time value to a character
value

page D-6

#LCASE returns the lower–case value of a character string page D-7

#LEFT returns the leftmost n characters of a character string page D-7

#MONTH returns the month name pertaining to a given date page D-8

#OR returns the result of ORing two character strings page D-8

#PARSE returns one individual word parsed out of a
character string

page D-9
CIMS Report Writer User Guide D-3 ■

■ Built-In Functions

Introduction
(Functions that Return a Character Value)

#RIGHT returns the rightmost n characters of a character
string

page D-9

#SUBSTR returns a substring from a character string page D-10

#TRANSLATE translates one set of characters within a character
string to another set of characters

page D-10

#UCASE returns the upper–case value of a character string page D-11

#XOR returns the result of XORing two character strings page D-11

#YEAR returns the 4–byte year pertaining to a given date page D-11

(Functions that Return a Numeric Value)

#ABS returns the absolute value of a number page D-12

#DAYNUM returns the day of the month (1–31) for a given date page D-12

#INDEX returns the starting column of a substring page D-12

#INT returns the integer portion of a number page D-12

#MAKENUM converts a character, date or time value to a numeric
value

page D-12

#MAX returns the greater of two or more values page D-14

#MIN returns the smaller of two or more values page D-14

#MOD returns the remainder left after division
("modulus")

page D-14

#MONTHNUM returns the month number (1–12) for a given date page D-15

#NUMWORDS returns the number of words within a character
string

page D-15

#ROUND returns the rounded value of a number page D-15

#YEARNUM returns the 4–digit year for a given date page D-16

(Functions that Return a Date Value)

#MAKEDATE converts a character or numeric value to a date page D-16

(Functions that Return a Time Value)

#MAKETIME converts a character or numeric value to a time page D-17

Report Writer Built-In Functions

Function Description Page
■ D-4 CIMS Report Writer User Guide

Built-In Functions ■

Functions that Return a Character Value
Functions that Return a Character Value 4

#AND(char1,char2) 4

Performs the logical AND operation on the two character arguments and returns the result.
If the two operands are not the same size, the shorter operand will be right-padded with
hex zeros before performing the AND operation. The size of the result is the size of the
larger operand.

Examples
COMPUTE: A = #AND(X'01FF',X'035E')

would result in A=X'015E'

Here is an example of using the #AND built–in function to test individual bits within a
status flag. We want to include records in our report if the X'80' and the X'20' bits of the
STATUS field are both on, regardless of the value of the other bits in that byte.

COMPUTE: TEMP = #AND(STATUS, X'A0')
COMPUTE: BOTH–BITS–ARE–ON = WHEN(TEMP = X'A0') ASSIGN(#ON)
INCLUDEIF: BOTH–BITS–ARE–ON

#ASCII(char) 4

Returns the ASCII equivalent of the EBCDIC character argument. The size of the value
returned by this function is the size of the character argument.

Example
COMPUTE: A = #ASCII(X’F1F2F3')

would result in A=X’313233'

Note • To specify your own EBCDIC-to-ASCII translation table, use the ASCIITABLE
option in the OPTIONS statement (page 10-83.) Otherwise, Report Writer uses a
default translation table.

(Functions that Return a Bit Value)

#OFF returns the "off" bit value (0) page D-18

#ON returns the "on" bit value (1) page D-18

Report Writer Built-In Functions

Function Description Page
CIMS Report Writer User Guide D-5 ■

■ Built-In Functions

Functions that Return a Character Value
#COMPRESS([n,] char [,n] ,char ...) 4

Concatenates the char arguments (any number), but compresses out all but 1 of the
blanks between each argument The optional override number "n" specifies how many
blanks to leave between the two char arguments (if a number other than 1 desired.) You
may specify 0 if no blanks are wanted between two arguments. The size of the returned
string is the sum of the sizes of all arguments, plus spacing bytes.

Examples
COMPUTE: NAME=#COMPRESS(LAST–NAME, 0, "," , FIRST–NAME)

might result in NAME="BAKER, VIVIAN "

COMPUTE: ADDR=#COMPRESS(CITY, 0, ",", STATE ZIP–CODE)
might result inADDR="DALLAS, TX 75230 "

#DAY[(date)] 4

Returns the day of the week pertaining to the date argument, as a 9–byte character field.
If specified, the date argument must be a valid date in either the twentieth or twenty-first
century. If no date argument is present, the system date is used.

Example
COMPUTE: A = #DAY(HIRE–DATE)

might result inA="TUESDAY "

#EBCDIC(char) 4

Returns the EBCDIC equivalent of the ASCII character argument. The size of the value
returned by this function is the size of the character argument.

Example
COMPUTE: A = #EBCDIC(X’313233')

would result in A=X’F1F2F3'

Note • To specify your ownASCII-to-EBCDIC translation table, use theEBCDICTABLE
option in the OPTIONS statement (page 10-88) Otherwise, Report Writer uses a default
translation table.

#FORMAT(fieldname [,display–format] [,width] [,BIZ] [,LEFT/CENTER/
RIGHT] [ASCII]) 4

Returns a character string containing the contents of the field (any data type) after
formatting it as specified by the other parms. Only fieldname is required. Other parms
may appear in any combination and in any order. The display format, if specified, must
be valid for the specified field's data type. For an explanation of each of the parms, see
the syntax of the COLUMNS statement, which uses the same parms (page 10-24.)
■ D-6 CIMS Report Writer User Guide

Built-In Functions ■

Functions that Return a Character Value
Examples
COMPUTE: A = #FORMAT(#TODAY)

might result in A='03/31/95'

COMPUTE: A = #FORMAT(#TODAY, LONG1, CENTER)
might result in A=' MARCH 31, 1995 '

COMPUTE: A = #FORMAT(SALES–DATE, BIZ)
might result in A='03/31/95' (when SALES–DATE is not all zeros), or
A=' ' (when SALES–DATE is all zeros)

COMPUTE: A = #FORMAT(TOTAL–SALES)
might result in A=' 92,125.89'

COMPUTE: A = #FORMAT(TOTAL–SALES,10)
might result in A=' 92,125.89'

COMPUTE: A = #FORMAT(TELEPHONE, PIC'(999) 999–9999'))
might result in A='(415) 555–1209'

COMPUTE: A = #FORMAT(TOTAL–SALES, BIZ)
might result in A=' 92,125.89' (when TOTAL–SALES is not zero), or
A=' ' (when TOTAL–SALES is zero)

#LCASE(char) 4

Returns the character argument's value after translating any of its upper–case alphabetic
characters to the corresponding lower–case character. All other characters remain
unchanged. The size of the value returned by this function is the size of the character
argument.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE: A = #LCASE(DESC)

would result in A="this is a description".

#LEFT(char,num1) 4

Returns a substring of the char argument, starting with the first column, for a length of
"num1" bytes. Num1 may be either a literal value or a numeric expression. When num1
is a literal value, the size of the value returned by this function is num1. When num1 is
an expression, the size returned by this function is the size of the character argument.

Example
COMPUTE: A = #LEFT('ABCDEFG',4)

results in A='ABCD'
CIMS Report Writer User Guide D-7 ■

■ Built-In Functions

Functions that Return a Character Value
#MONTH[(date)] 4

Returns the name of the month pertaining to the date argument, as a 9–byte character
field. If no date argument is present, the system date is used.

Example
COMPUTE: A = #MONTH(HIRE–DATE)

might result in A="MARCH "

#OR(char1,char2) 4

Performs the logical OR operation on the two character arguments and returns the result.
If the two operands are not the same size, the shorter operand will be right–padded with
hex zeros before performing the OR operation. The size of the result is the size of the
larger operand.

Example
COMPUTE: A = #OR(X'8024',X'0756')

would result in A=X'8776'

Note • You can use the #OR function to create packed numeric fields that have a sign
of F (rather than the standard sign of C). For example, assume that:

AMOUNT = 123:

COMPUTE: PACKED = #FORMAT(AMOUNT,PACKED,2)
COMPUTE: PACKED–F = #OR(PACKED,X'000F')

would result in PACKED = X'123C' and
PACKED–F = X'123F'
■ D-8 CIMS Report Writer User Guide

Built-In Functions ■

Functions that Return a Character Value
#PARSE(char,num) 4

Returns a single word parsed from the character argument. Internally, the character
argument is first parsed into individual words. Individual words are delimited by one or
more spaces. The numeric argument specifies which of the parsed words should be
returned by the function. A numeric argument of 1 indicates that the first word should
be returned; an argument of 2 means return the second word, etc. Negative numbers may
also be used. A negative number indicates the word to return counting backwards from
the last word parsed. A numeric argument of –1 means return the last word parsed; an
argument of –2 means return the second to last word, etc. If the word indicated by the
numeric argument doesn't exist, blanks are returned by this function. The size of the
value returned by this function is the size of the character argument.

Examples: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE: A = #PARSE(DESC,1)

would result in A="THIS ".

COMPUTE: A = #PARSE(DESC,2)
would result in A="IS ".

COMPUTE: A = #PARSE(DESC,–1)
would result in A="DESCRIPTION ".

COMPUTE: A = #PARSE(DESC,5)
would result in A=" ".

Note • To parse a text using a delimiter other than blanks, use the #TRANSLATE built-in
function to first translate the desired delimiter character into a blank. For example,
to parse a text using a dot as the delimiter, use:

COMPUTE: A = #PARSE(#TRANSLATE(DESC,"."," "),1)

Note • Use the NUMWORDS built–in function to count the number of words in a
character string.

#RIGHT(char,num1) 4

Returns a substring of the char argument consisting of the last "num1" bytes. Num1 may
be either a literal value or a numeric expression. When num1 is a literal value, the size
of the value returned by this function is num1. When num1 is an expression, the size
returned by this function is the size of the character argument.

Example
COMPUTE: A = #RIGHT('ABCDEFG',4)

results in A='DEFG'
CIMS Report Writer User Guide D-9 ■

■ Built-In Functions

Functions that Return a Character Value
#SUBSTR(char,num1,num2) 4

Returns a substring of the char argument, starting at column "num1" for a length of
"num2" bytes. Num1 and num2 may be literal values or numeric expressions. When
num2 is a literal value, the size of the value returned by this function is num2. When
num2 is an expression, the size returned by this function is the size of the character
argument.

Example
COMPUTE: A = #SUBSTR('ABCDEFG',2,3)

results in A='BCD'

#TRANSLATE(char1,char2,char3) 4

Returns the char1 string after translating any of its characters found in the char2
argument into the corresponding character of the char3 argument. Translated characters
in the char1 argument are not re–evaluated for additional translation. The size of the
value returned by this function is the size of the char1 argument.

Note • Normally the char2 and char3 arguments are character or hex literals.
However, character fields may also be used for those arguments. If character fields
are used, their contents will be examined only once by Report Writer. This occurs the
first time the results of the #TRANSLATE function are actually required during the run.
(This may or may not correspond to the first input record.) After that, subsequent
executions of the #TRANSLATE function do not re–examine the contents of the char2
and char3 fields. The contents of those arguments from their first examination is
used for the entire run.

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE: A = #TRANSLATE(DESC,"TA","XY")

would result in A="XHIS IS Y DESCRIPXION".
■ D-10 CIMS Report Writer User Guide

Built-In Functions ■

Functions that Return a Character Value
#UCASE(char) 4

Returns the character argument's value after translating any of its lower–case alphabetic
characters to the corresponding upper–case character. All other characters remain
unchanged. The size of the value returned by this function is the size of the character
argument.

Note • This function may be useful when sorting a report on a field that contains
mixed–case text. For example, in order to ensure that the names "SMITH", "Smith",
and "smith" all sort together, you could compute a new field that contains the upper–
case value of the mixed–case name field. By sorting on this new upper–case field,
rather than the original mixed–case field, the three names above would sort together.
Of course, you can still choose to print the original, mixed–case names in your
report, even though sorting on the upper–case names.

Example: (Assume that NAME = "Smith ")
COMPUTE: SORT–NAME = #UCASE(NAME)

would result in SORT–NAME = "SMITH "

#XOR(char1,char2) 4

Performs the logical XOR operation on the two character arguments and returns the result.
If the two operands are not the same size, the shorter operand will be right-padded with
hex zeros before performing the XOR operation. The size of the result is the size of the
larger operand.

Example
COMPUTE: A = #XOR(X'5766',X'5744')

would result in A=X'0022'

#YEAR[(date)] 4

Returns the year portion of the date argument as a 4–byte character field. If no date
argument is present, the system date is used.

Example
COMPUTE: A = #YEAR(HIRE–DATE)

might result in A="1995"
CIMS Report Writer User Guide D-11 ■

■ Built-In Functions

Functions that Return a Numeric Value
Functions that Return a Numeric Value 4

#ABS(num) 4

Returns the absolute value of the numeric argument.

Example
COMPUTE: A = #ABS(–4)

results in A= 4

#DAYNUM[(date)] 4

Returns the numeric value of the day portion of the date argument. If no date argument
is present, the system date is used.

Example

COMPUTE: A = #DAYNUM(3/31/1995)
results in A=31

#INDEX(char1,char2) 4

If the second argument appears somewhere within the first argument, #INDEX returns the
byte number in char1 where the char2 text begins. If char1 does not contain char2,
#INDEX returns zero.

Example
COMPUTE: A = #INDEX('ABCDEF', 'CDE')

results in A=3

#INT(num) 4

Returns the integer portion of the numeric argument. The decimal digits, if any, are
simply truncated, regardless of the sign of the argument.

Examples
COMPUTE: A = #INT(12.345)

results in A= 12

COMPUTE: A = #INT(–12.345)
results in A= –12

#MAKENUM(char/date/time) 4

For character arguments, converts the string of numeric characters into a numeric value.
No decimal point, commas, or any other non–numeric character is allowed in the string.
The only exception is that leading blanks are allowed. An all–blank string returns the
value zero.
■ D-12 CIMS Report Writer User Guide

Built-In Functions ■

Functions that Return a Numeric Value
Example
COMPUTE: A = #MAKENUM(' 125')

results in A=125

For date arguments, #MAKENUM converts the date into a numeric “day in century” value.
January 1, 1900 corresponds to day 1, and December 31, 2099 is day 73,049. The date
argument must be a valid date in either the twentieth or twenty-first century. (You can
use the #MAKEDATE function to convert a numeric day in century back into a date.)

Examples
COMPUTE: A = #MAKENUM(12/31/2000)

results in A=36890

COMPUTE: A = #MAKENUM(1/1/2001)
results in A=36891

Example of computing the number of days between two dates:

COMPUTE: NUM–DAYS = #MAKENUM(END–DATE) – #MAKENUM(START–DATE)

If END–DATE = 4/2/1997 and START–DATE = 3/28/1997, then the above example would
result in NUM–DAYS = 5.

For time arguments, #MAKENUM converts the time value into its equivalent number of
seconds since midnight.

Example
COMPUTE: A = #MAKENUM(01:29:59)

results in A=5399

(One hour = 3600 seconds; 29 minutes is another 1740 seconds, plus 59 seconds equals
5399.)

Example of computing the number of seconds between two times:

COMPUTE: NUM–SECS = #MAKENUM(END–TIME) – #MAKENUM(START–TIME)

If END–TIME = 13:05:07 and START–TIME = 13:04:56, then the above example would
result in NUM–SECS = 11.

If the start and end times might occur on different days, you can convert the starting and
ending dates into seconds as well, and use those in the computation. (There are 86400
seconds in a 24–hour day).

COMPUTE: NUM–SECS = ((#MAKENUM(END–DATE) * 86400) + #MAKENUM(END–TIME))
 – ((#MAKENUM(START–DATE) * 86400) + #MAKENUM(START-TIME))

To convert the resulting interval (in seconds) back into a time field, just add this
statement:

COMPUTE: DURATION = #MAKETIME(NUM–SECS)

If NUM–SECS = 11 then the above example would result in DURATION = 00:00:11.
CIMS Report Writer User Guide D-13 ■

■ Built-In Functions

Functions that Return a Numeric Value
#MAX(num1,num2,num3,...) 4

Returns the largest of the numeric arguments. Any number of arguments is allowed.

Example
COMPUTE: A = #MAX(12, 25, –3)

results in A=25

You can also use this function to determine the largest of several time fields. First convert
the times to numeric values for use with #MAX. Then convert the result back to a time:

COMPUTE: LAST–TIME = #MAKETIME(#MAX(#MAKENUM(TIME1), #MAKENUM(TIME2)))

You can also use this function to determine the largest (latest) of several date fields. First
convert the dates to numeric values for use with #MAX. Then convert the result back to a
date:

COMPUTE: LAST–DATE = #MAKEDATE(#MAX(#MAKENUM(DATE1), #MAKENUM(DATE2)))

#MIN(num1,num2,num3,...) 4

Returns the smallest of the numeric arguments. Any number of arguments is allowed.

Example
COMPUTE: A = #MIN(12, 25, –3)

results in A=–3

You can also use this function to determine the smallest of several time fields. First
convert the times to numeric values for use with #MIN. Then convert the result back to a
time:

COMPUTE: FIRST–TIME = #MAKETIME(#MIN(#MAKENUM(TIME1), #MAKENUM(TIME2)))

You can also use this function to determine the smallest (earliest) of several date fields.
First convert the dates to numeric values for use with #MIN. Then convert the result back
to a date:

COMPUTE: FIRST–DATE = #MAKEDATE(#MIN(#MAKENUM(DATE1), #MAKENUM(DATE2)))

#MOD(num1,num2) 4

Returns the remainder left when the first argument is divided by the second argument.

Examples
COMPUTE: A = #MOD(45, 4)

results in A= 1

COMPUTE: A = #MOD(–45, 4)
results in A= –1

COMPUTE: A = #MOD(1.5, .2)
results in A= .1
■ D-14 CIMS Report Writer User Guide

Built-In Functions ■

Functions that Return a Numeric Value
#MONTHNUM[(date)] 4

Returns the numeric value of the month portion of the date argument. If no date
argument is present, the system date is used.

Example
COMPUTE: A = #MONTHNUM(3/31/1995)

results in A=3

#NUMWORDS(char) 4

Returns the number of words found within the character argument. The words are parsed
in the manner described under the #PARSE built–in function (page D-9.)

Example: (Assume that DESC = "THIS IS A DESCRIPTION")
COMPUTE: A = #NUMWORDS(DESC)

would result in A = 4.

Note • This function may be useful when you want to assign a value to a computed
field differently depending on how many, if any, words are in some other field. For
example, the following example assigns the second word from the DESC field to the
result. However, if the DESC field contains only 1 (or no) words, the text "*NONE*" is
assigned instead:

COMPUTE: A = WHEN(#NUMWORDS(DESC) >= 2) ASSIGN(#PARSE(DESC,2))
 ELSE ASSIGN("*NONE*")

#ROUND(num1,num2) 4

Returns the first numeric argument, rounded to the precision specified by the second
numeric argument. Num2 is the number of decimal places that num1 should be
rounded to. Rounding of negative numbers is performed as if they were positive. Note:
num2 must be a literal integer. The number of decimal digits returned by this function
is the same as the number of decimal digits in the num1 argument.

Examples
COMPUTE: A = #ROUND(12345.678, 2)

results in A= 12345.680

COMPUTE: A = #ROUND(12345.678, 0)
results in A= 12346.000

COMPUTE: A = #ROUND(12345.678, –2)
results in A= 12300.000

COMPUTE: A = #ROUND(–12345.678, 2)
results in A=–12345.680
CIMS Report Writer User Guide D-15 ■

■ Built-In Functions

Functions that Return a Date Value
#YEARNUM[(date)] 4

Returns the numeric value of the year portion of the date (including the century). If no
date argument is present, the system date is used.

Example
COMPUTE: A = #YEARNUM(3/31/95)

results in A=1995

Functions that Return a Date Value 4

#MAKEDATE(char/num) 4

For character arguments, converts the YYMMDD or YYYYMMDD character string into the
corresponding date. The character argument must be either 6 or 8 bytes in length. When
a YYMMDD argument is used, Report Writer assigns the century based on the CENTURY
Option in effect, if any.

Example
COMPUTE: A = #MAKEDATE('19950331')

results in A=3/31/1995

For numeric arguments, the argument is treated as a "day in century" value. The numeric
argument must between be 1 (corresponding to January 1, 1900) and 73,049
(corresponding to December 31, 2099), inclusive. The function returns the date
corresponding to the numeric day in century. (Use this function to change the results of
the #MAKENUM(date) function back into a date.)

Example

COMPUTE: A = #MAKEDATE(36890)
results in A=12/31/2000

Example of adding 7 days to a date:

COMPUTE: NUM–DATE = #MAKENUM(SALES–DATE)
COMPUTE: NUM–DATE–PLUS–7 = NUM–DATE + 7
COMPUTE: DATE–PLUS–7 = #MAKEDATE(NUM–DATE–PLUS–7)
■ D-16 CIMS Report Writer User Guide

Built-In Functions ■

Functions that Return a Time Value
Functions that Return a Time Value 4

#MAKETIME(char/num) 4

For character arguments, converts the HHMMSS character string into the corresponding
time. The character argument must be exactly 6 bytes long.

Example
COMPUTE: A = #MAKETIME('135959')

results in A containing the time 13:59:59.

For numeric arguments, the argument is treated as being a number of seconds. The
number of seconds is converted into the corresponding number of hours, minutes and
seconds. (Use this function to change the results of the #MAKENUM function back into a
time.)

Example
COMPUTE: A = #MAKETIME(3600)

results in A containing the time 01:00:00.

Example of adding 5 minutes to a time:
COMPUTE: NUM–TIME = #MAKENUM(SALES–TIME)
COMPUTE: NUM–TIME–PLUS–5 = NUM–TIME + (5 * 60)
COMPUTE: TIME–PLUS–5 = #MAKETIME(NUM–TIME–PLUS–5)
CIMS Report Writer User Guide D-17 ■

■ Built-In Functions

Functions that Return a Bit Value
Functions that Return a Bit Value 4

#OFF 4

Always returns an "off" value.

Examples
COMPUTE: A = #OFF

results in A="off"

COMPUTE: SALES–AWARD = WHEN(TOTAL–SALES > 50000) ASSIGN(#ON)
 ELSE ASSIGN(#OFF)

results in SALES–AWARD being "on" (or true) if sales are greater than 50,000; otherwise
results in SALES–AWARD being "off" (or false.)

#ON 4

Always returns an "on" value.

Examples
COMPUTE: A = #ON

results in A="on"

COMPUTE: SALES–AWARD = WHEN(TOTAL–SALES > 50000) ASSIGN(#ON)
 ELSE ASSIGN(#OFF)

results in SALES–AWARD being "on" (or true) if sales are greater than 50,000; otherwise
results in SALES–AWARD being "off" (or false.)
■ D-18 CIMS Report Writer User Guide

E
Error Indicators

Introduction . 5-2

Suppressing Error Indicators . 5-3

Propagation of Error Indicators . 5-4

Testing for Valid Data . 5-4
CIMS Report Writer User Guide E-1 ■

■ Error Indicators

Introduction
Introduction 5

Sometimes an error prevents Report Writer from displaying the desired data in a report
or PC file. When that happens a number of asterisks are printed where that data should
have appeared. A single letter is imbedded within the asterisks. That letter is an error
code which tells you exactly what kind of error has occurred. The following table lists the
possible error codes:

Error Code Meaning

****A**** Ambiguous reference. You asked to print a certain field here, but
there is more than one field by that name in the input file(s). Use a
record name to indicate exactly which field you mean. (See
page 4-115.)

****E**** Error in definition. You asked to print a certain field here, but that
field was defined in error. Look for error messages concerning the
FIELD or COMPUTE statement used to define the field. Correct those
errors.

****F**** Offset error occurred. You asked to print a field here, but an error
occurred while trying to compute the field's location within the input
record. Offset errors occur when the sum of the OFFSET value and the
COLUMN/DISP value (or the default value used) are not within the I/O
area reserved for the input record. (The size of this I/O area is
determined by the record size specified in the FILE, INPUT or READ
statement.) Offset errors also occur when a computation error arises
while computing the OFFSET value. This includes division by zero,
overflow, or any reference to another field that is in error.

Use the MISSOFFSET option to ignore this error condition.

****I**** Invalid data. You asked to print a certain field here, but that field
contained invalid data. For example, the field was supposed to
contain packed data and instead it contained spaces. Or, a field that
was supposed to contain a date actually contained alphabetic
characters. Correct the data in the input file.

Use the ZEROINVDATA (or just ZEROINV) option to ignore this error
condition.

****S**** Size error. You asked to print a numeric field here, but there was not
enough room to show all of its significant digits (and a minus sign, if
the number was negative.) Use a width parm to increase the number
of characters reserved to print this field. (See the section beginning on
page 4-12.) As an example, the following statement reserves 20
characters to print the TOTAL–SALES field:

COLUMNS: EMPL–NAME TOTAL–SALES(20)
■ E-2 CIMS Report Writer User Guide

Error Indicators ■

Suppressing Error Indicators
Suppressing Error Indicators 5

In some cases you may not be concerned with certain error conditions. In that case, you
can suppress the asterisk error indicators by using one or more of the following options.

****U**** Undefined field. You asked to print a certain field here, but that field
is not defined in any input file for the current run. You may have just
misspelled the field name. Or, the field may belong to a file that is not
an input file to the current report.

Tip: To see a list of all field names available for a file, add the
SHOWFLDS(YES) parm to your INPUT and READ statements.

****V**** Overflow occurred. You asked to print a computed numeric field
here, but an overflow error occurred while trying to compute its
value. This may happen when two very large numbers are multiplied
together. It can also happen when a very large number is divided by
a very small number (like .000000001). Try requesting that fewer
decimal places be kept in the computed result. Also try splitting
complex COMPUTE statements into several simpler COMPUTE statements.
Report Writer can maintain a maximum of 31 digits (including
decimal digits) in computed fields. (This also applies to any
intermediate results used to compute the final result.)

Use the ZEROOVERFLOW (or just ZEROOVER) option to ignore this error
condition.

****Z**** Divide by zero occurred. You asked to print a computed numeric field
here, but a division by zero was attempted while trying to compute
its value. You may be able to use a conditional COMPUTE statement to
prevent division by zero, like this:

COMPUTE: RATIO = WHEN(B ¬= 0) ASSIGN(A/B)
 ELSE ASSIGN(0)

Use the ZERODIVZERO (or just ZERODIVZ) option to ignore this error
condition.

Error Code Meaning

OPTION: ZEROINVDATA –– treat fields containing invalid data as if they contained
zeros instead. This suppresses the ***I*** indicator. May
also be abbreviated ZEROINV.

OPTION: ZEROOVERFLOW –– assign a value of zero to COMPUTE fields that have overflow
errors. This suppresses the ***V*** indicator. May also be
abbreviated ZEROOVER.
CIMS Report Writer User Guide E-3 ■

■ Error Indicators

Propagation of Error Indicators
The above options tell Report Writer to treat fields that have the specified error as if they
contained a zero (or missing) value. This means you'll see zeros in your output, rather
than the asterisk error indicators. (For character fields with the offset error, you'll see
blanks instead of the error indicator.) It also prevents fields from propagating their error
conditions to other fields that reference them. (See discussion below.)

If you want invalid numeric items to appear as blanks (rather than zeros) in your output,
use a PICTURE that specifies suppression of all leading zeros, like this:

OPTIONS: ZEROINVDATA
...
COLUMNS: SALES–AMOUNT(PIC'ZZZ,ZZZ')

Propagation of Error Indicators 5

When a field which has an error is used as an operand in a COMPUTE statement, its error
code is normally passed on to the result field. Consider the following statement:

COMPUTE: B = A + 1

Assume that A is defined as a packed field. If a certain record contains invalid packed data
for field A, then **I** will appear in the report where the contents of A should have
appeared. In addition, you will also see **I** anywhere that field B should have printed.
That is because field A, which is needed to compute field B, passes its error condition on
to field B.

Testing for Valid Data 5

You may want to detect when certain fields contain invalid data and use different
processing for such fields. Here are two methods you might use to detect invalid data in
a field.

To detect a specific invalid value in a field, just compare the field to the appropriate
hexadecimal value (such as hex zeros or hex F's, perhaps.) Here is an example of
detecting and excluding records that have hex F's in the AMOUNT field:

INCLUDEIF: AMOUNT ¬= X'FFFFFFFFFFFF'

OPTION: ZERODIVBYZERO –– assign a value of zero to COMPUTE fields when a division by
zero is attempted. This suppresses the ***Z*** indicator.
May also be abbreviated ZERODIVZERO and ZERODIVZ.

OPTION: MISSOFFSET –– treat fields that have OFFSET parm errors as if the field was
"missing." (Missing fields are assigned zeros for numeric,
date and time fields, blanks for character fields, and OFF
for bit fields.) This suppresses the ***F*** indicator.
■ E-4 CIMS Report Writer User Guide

Error Indicators ■

Testing for Valid Data
Note that when using hexadecimal literals (as above) you need to know the exact length
of the field in the input file (6 bytes in this example.) For comparisons involving explicit
literals, Report Writer compares the raw input file data –– no data conversion is
attempted. The hexadecimal literal should be the same length as the field. Otherwise,
Report Writer pads the shorter operand with blanks, which is not usually what you want.

You can use a second method to detect any kind of invalid data in a field. This method
is useful if you do not know in advance what invalid value a field may have. This method
utilizes the fact that Report Writer always evaluates as false any conditional expression
that attempts to process an invalid operand. In the following statement, we set a bit field
name GOOD–AMOUNT to be true only if the AMOUNT field contains a valid numeric value:

COMPUTE: GOOD–AMOUNT = WHEN(AMOUNT = AMOUNT) ASSIGN(#ON)

As long as AMOUNT contains any valid value, the test AMOUNT = AMOUNT will always be true
and GOOD–AMOUNT will be assigned a bit value of ON (or true). If AMOUNT contains any
invalid value, Report Writer will evaluate the WHEN parm expressions as false and
GOOD-AMOUNT will be assigned the OFF value (false.) You could then use this bit field in
other statements as desired. Here are two statements that use the GOOD–AMOUNT bit field:

INCLUDEIF: GOOD–AMOUNT

COMPUTE: TAX–PERCENT = WHEN(GOOD–AMOUNT) ASSIGN(TAX / AMOUNT)
 ELSE ASSIGN(0.08)
CIMS Report Writer User Guide E-5 ■

■ Error Indicators

Testing for Valid Data
■ E-6 CIMS Report Writer User Guide

F
Files Used in Examples

The sample reports used in this manual were created using actual files. The boxes on the
following pages show the definition statements (that is the FILE and FIELD statements)
that were used to define these files. The unformatted contents of each file is also shown.

The SWALIAS member of the copy library contained the alias entries shown in the box
below.

Figure F-1 • Statements Stored in SWALIAS Member of Copy Library

Statements Stored in SWALIAS Member of Copy Library

SALES–FILE = SALES
EMPL–FILE = EMPLFILE
PRODUCT–FILE = PRODFILE
STATE–FILE = STATE
CIMS Report Writer User Guide F-1 ■

■ Files Used in Examples
Figure F-2 • Definition Statements for SALES-FILE

Figure F-3 • Contents of SALES-FILE (Unformatted)

Definition Statements for SALES–FILE

** *
* *
* REPORT WRITER FILE DEFINITION FOR SALES-FILE *
* *

FILE: SALES-FILE DDNAME(SALEFILE) LRECL(80)
*
FIELD: EMPL-NAME LENGTH(10)
FIELD: EMPL-NUM LENGTH(3)
FIELD: BACKUP-EMPL-NUM LENGTH(3)
FIELD: REGION LENGTH(5)
FIELD: AMOUNT LENGTH(6) TYPE(NUM) DECIMAL(2)
FIELD: TAX LENGTH(4) TYPE(NUM) DECIMAL(2)
FIELD: COMMISSION-RATE LENGTH(4) TYPE(NUM) DECIMAL(3)
FIELD: SALES-DATE TYPE(YYMMDD)
FIELD: SALES-TIME TYPE(HHMMSS)
FIELD: CUSTOMER LENGTH(15)
FIELD: TELEPHONE LENGTH(10) TYPE(NUM)
FIELD: TIME-ON-PHONE LENGTH(4) TYPE(SECS) DECIMAL(1)
FIELD: PRODUCT-CODE LENGTH(3)

Notes:

• these statements are stored in the SALES member of the copy library

• for VSE, the following FILE statement is used instead:
 FILE: SALES–FILE ATTR(DASD,'SALEFIL',80,160)

Contents of SALES–FILE (Unformatted)

JOHNSON 037041SOUTH01013806090350950312102500ACE ELECTRICAL 21355598710079952
BAKER 044045WEST 01370008220360950326120909JACKS CAFE 21455511240102978
MORRISON 042036EAST 00443502660360950329153022STAR MARKET 40855576540599907
MORRISON 042045EAST 00296501780360950330190541A1 PHOTOGRAPHY 40855577860600919
SIMPSON 041039EAST 00149900900360950401081757EUROPEAN DELI 40855565430150916
JOHNSON 039036NORTH02344514070370950401170247VILLA HOTEL 41555576300929926
JOHNSON 039044NORTH00099800600370950405143310MARYS ANTIQUES 41555512560000997
BAKER 044037WEST 01357508150360950412143112JACKS CAFE 21455511240231916
THOMAS 045037WEST 00099800600360950414154138YOGURT CITY 21455517895421997
JONES 036042NORTH00102500620370950415075832EZ GROCERY 41555548720810977
JONES 036039NORTH01217607310370950415080159TOY TOWN 41555515001200907
JONES 036039NORTH00102500620370950415135241TOY TOWN 41555515000523977
JOHNSON 037042SOUTH05000030000350950416114833ACME BUILDING 21355521211025976
SIMPSON 041042EAST 00238701430360950430153021J & S LUMBER 40855523212451916
■ F-2 CIMS Report Writer User Guide

Files Used in Examples ■
Figure F-4 • Definition Statements for EMPL–FILE

Definition Statements for EMPL–FILE

**
* *
* REPORT WRITER FILE DEFINITION FOR EMPL-FILE *
* *
**
FILE: EMPL-FILE TYPE(VSAM) DDNAME(EMPLFILE) LRECL(150)
*
FIELD: EMPL-NUM LEN(3)
FIELD: LAST-NAME LEN(15)
FIELD: FIRST-NAME LEN(15)
FIELD: HIRE-DATE TYPE(YYMMDD)
FIELD: DEPT-NUM LEN(1) TYPE(NUM) NOACCUM
FIELD: SEX LEN(1)
FIELD: STATUS-BYTE LEN(1)
FIELD: FULL-TIME COL(STATUS-BYTE) BIT(1)
FIELD: SOCIAL-SEC-NUM COL(*+1) LEN(9) TYPE(NUM)
 FORMAT(PIC'999-99-9999')
FIELD: NUM-ACCOUNTS LEN(4) TYPE(NUM)
FIELD: TOTAL-SALES LEN(7) TYPE(NUM) DEC(2)
FIELD: SALES-QTR1 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALES-QTR2 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALES-QTR3 LEN(7) TYPE(NUM) DEC(2)
FIELD: SALES-QTR4 LEN(7) TYPE(NUM) DEC(2)
FIELD: ADDRESS LEN(20)
FIELD: CITY LEN(15)
FIELD: STATE LEN(2)
FIELD: ZIP LEN(5)
FIELD: TELEPHONE LEN(10) TYPE(NUM)
 FORMAT(PIC'(999) 999-9999')

Note:

• these statements are stored in the EMPLFILE member of the copy library

• for VSE, the following FILE statement is used instead:
 FILE: EMPL–FILE ATTR(VSAM,'EMPLFIL',150)
CIMS Report Writer User Guide F-3 ■

■ Files Used in Examples
Figure F-5 • Contents of EMPL–FILE (Unformatted)

Contents of EMPL–FILE (Unformatted)

036JONES JERRY 8001312MA012098765007842509890995601105115608698071333425125 MAIN S
TREET SAN FRANCISCO CA940124155557653
037JOHNSON THOMAS 7506211MA9120403340128869992421560152135021199701024118784000 LINDA
 VISTA SCOTTSDALE AZ900126025556654
039JOHNSON LINDA 7911252FA00477998101047502355145903417220102010008231131212 LINCOLN
 DRIVE SANTA ROSA CA954124155556785
040MACDONALD RICHARD 8207042M 889790013000602560980054850006871300599250072610525 FOOTHI
LL DRIVE PLEASANTON CA945684155559887
041SIMPSON TIMOTHY 8212013MA11205045600160872388012875805109030099812013291589876 WEST
 53 STREETARCADIA CA910068185551887
042MORRISON MICHAEL 7911303MA90012055601549805499250141926112212801009189185098 SOUTH L
AKESIDE DRGLENDALE CA912028185554748
043CHRISTOPHERSON MELISSA 8108151FA41509076100654766531138072216549010805007092590161752 TIMB
ERIDGE RD PHOENIX AZ905026025554556
044BAKER VIVIAN 8206044FA878190156014792125892133610249990224001332178944667 CRESTH
AVEN BLVD WALNUT CREEK CA945984155551209
045THOMAS MARTIN 8206044MA77683822101186019349148890718045051425012130092577812 S. H
UNTINGTON CONCORD CA945194155551152
■ F-4 CIMS Report Writer User Guide

Files Used in Examples ■
Figure F-6 • Definition Statements for PRODUCT–FILE

Figure F-7 • Contents of PRODUCT–FILE (Unformatted)

Definition Statements for PRODUCT–FILE

**
* *
* REPORT WRITER FILE DEFINITION FOR PRODUCT-FILE *
* *
**
FILE: PRODUCT-FILE DDNAME(PRODFILE) TYPE(VSAM) LRECL(22)
*
FIELD: PRODUCT-STATUS LEN(3)
FIELD: PRODUCT-KEY LEN(4)
FIELD: PRODUCT-DESC LEN(15)

Note:

• these statements are stored in the PRODFILE member of the copy library

• For VSE, the following FILE statement is used instead:
 FILE: PROD–FILE ATTR(VSAM,'PRODFIL',22)

Contents of PRODUCT–FILE (Unformatted)
NEWP907INKPADS
NEWP916RED PENS
NEWP919GREEN PENS
OLDP926DESK CALENDARS
NEWP952PENCILS (NO. 1)
OLDP976CHAIRS
OLDP977PAPER CLIPS
NEWP978HOLE PUNCHERS
OLDP997MAILING LABELS
CIMS Report Writer User Guide F-5 ■

■ Files Used in Examples
Figure F-8 • Definition Statements for STATE–FILE

Figure F-9 • Contents of STATE–FILE (Unformatted)

Definition Statements for STATE–FILE

**
* *
* REPORT WRITER FILE DEFINITION FOR STATE-FILE *
* *
**
FILE: STATE–FILE TYPE(VSAM) DDNAME(STATFILE) LRECL(20)
*
FIELD: STATE–CODE LEN(2)
FIELD: STATE–NAME LEN(10)

Note:

• these statements are stored in the STATE member of the copy library

• for VSE, the following FILE statement is used instead:
 FILE: STATE–FILE ATTR(VSAM,'STATFIL',20)

Contents of STATE–FILE (Unformatted)

AZARIZONA
CACALIFORNIA
OROREGON
WAWASHINGTON
■ F-6 CIMS Report Writer User Guide

G
Sample Data Exit Program

Report Writer has an exit "hook" available for calling user–written routines for fields that
require specialized processing. Using these routines, called "data exit programs" is
discussed in How to Define a Field Created by a Data Exit on page 6-35.

Data exit programs can written in Cobol, PL/1 or Assembler. A sample data exit program
written in Assembly language appears on the following pages. This sample program
performs 5 simple functions in order to illustrate data exit calls for each of the five types
of data. A parm is passed to the exit program each time it is called. That parm tells the
exit program which function is desired. The functions performed by this sample program
are:

Use this sample program as a model for writing your own data exit programs. This
program, as well as a sample exit program written in Cobol, can be downloaded from
the Web at www.cimslab.com.

Note the $DX DSECT located near the end of the program. That DSECT shows the parm list
that Report Writer passes to all data exit programs. Specifically, when a data exit program
is called by Report Writer, register 1 will point to a fullword. That fullword will contain
the address of the $DX DSECT parm list.

Calling Parm Function Performed

T Returns a time value. This sample program simply returns the
constant time 12:34:56.

N Returns a numeric value. This program simply increments a counter
and returns its value.

B Returns a bit value. This program returns the value of the low-order
bit of the record field passed to it.

D Returns a date value. This program returns the constant date 12/31/
1996.

R Returns a character value. This program "reverses" the characters in
the record field passed to it and returns that reversed value.
CIMS Report Writer User Guide G-1 ■

■ Sample Data Exit Program
Figure G-1, on page G-6 shows an actual run that uses this sample data exit program. In
that run, five fields are defined as data exit fields. Notice the FIELD statements used to
define those fields. Each statement has a TYPE parm that defines the field as a data exit
type field (NUMEXIT, for example.) In each case, the name of the data exit program (the
DXPROG parm) is the same. It is SWDEXIT, the name of our sample exit program.

When processing a report request, Report Writer will call SWDEXIT each time that it needs
to process any of the 5 fields defined as data exit fields. Notice that each field has a
different DXPARM value. The appropriate DXPARM value is passed to the exit program as part
of the parm list whenever it is called (see $DXFLDPA.) That parm value tells SWDEXIT what
function to perform, and thus, what value to return to Report Writer.

Note • In this example, we chose to write a single data exit program to support five
different functions (and thus five different fields.) We could also have written five
separate data exit programs–– one for each field. Then, each FIELD statement would
name a different exit program in the DXPROG parm. In that case, the DXPARM parm in
the FIELD statement would not be needed. Each program would always perform its
one single function. You can choose whichever of these approaches you prefer.
■ G-2 CIMS Report Writer User Guide

Sample Data Exit Program ■
Sample Data Exit Program Written in Assembly Language -- 1 of 3

SWDEXIT TITLE '- SAMPLE REPORT WRITER DATA EXIT'

* SAMPLE DATAEXIT PROGRAM *
* *
* ENTRY: R1 -- POINTS TO A FULLWORD WHICH CONTAINS THE ADDRESS *
* OF THE $DX DSECT *
* ENTRY: R13 -- POINTS TO A 18-FULLWORD SAVEAREA IN CALLERS PROGRAM *
* ENTRY: R14 -- RETURN ADDRESS WITHIN CALLER'S PROGRAM *
* ENTRY: R15 -- CONTAINS THE STARTING ADDRESS OF THIS EXIT PROGRAM *
* *
* THE VALUE OF THE FIELD STATEMENT'S DXPARM() PARM DETERMINES WHAT *
* VALUE THIS PROGRAM RETURNS WHEN IT IS CALLED. *
* *
* DXPARM: N = RETURN A NUMERIC COUNTER VALUE *
* B = RETURN BIT VALUE OF THE LOW-ORDER BIT IN RECORD FIELD*
* D = RETURN A CONSTANT DATE (12/31/1996) *
* R = RETURN THE "REVERSED" CONTENTS OF A CHARACTER FIELD *
* T = RETURN A CONSTANT TIME (12:34:56) *
* *

SWDEXIT START 0
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
 STM R14,R12,12(R13) SAVE CALLERS REGS
 LR R10,R15 USE R10 AS BASE REGISTER FOR EXIT
 USING SWDEXIT,R10 SET ADDRESSIBILITY FOR THIS EXIT
*
 ST R13,OURSAVE+4 POINT OUR SAVE AREA TO CALLER'S SA
 LA R15,OURSAVE POINT TO OUR SAVEAREA
 ST R15,8(R13) POINT CALLER'S SAVEAREA TO OURS
 LR R13,R15 LEAVE R13 POINTING TO OUR SAVEAREA
*
 L R1,0(R1) L R1 WITH ADDR OF PARM DSECT
 USING $DX,R1 ADDRESS CALLER'S PARM DSECT
*
 L R2,$DXFLDPA R2 -> DXPARM VALUE FROM FIELD STMT
*

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('N'), SUCH AS:
*
* FIELD: TESTNUM TYPE(NUMEXIT) DXPROG('SWDEXIT') DXPARM('N')
* DXRETDEC(0)
*
* THIS SAMPLE EXIT PROGRAM SIMPLY RETURNS AN ASCENDING COUNTER VALUE.

*
 CLI 0(R2),C'N' IS DXPARM 'N'? (NUMERIC EXAMPLE)
 BNE NOTNUM B IF NOT 'N'
 L R2,$DXRESAD POINT R2 TO AREA TO PLACE RESULT
 ZAP 0(16,R2),COUNTER RETURN THIS 16-BYTE PACKED NUMBER
 AP COUNTER,=P'1' INCREMENT COUNTER FOR NEXT CALL
 B RETURN FUNCTION 'N' HAS BEEN PERFORMED
CIMS Report Writer User Guide G-3 ■

■ Sample Data Exit Program
Sample Data Exit Program Written in Assembly Language -- 2 of 3

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('D'), SUCH AS:
*
* FIELD: TESTDATE TYPE(DATEEXIT) DXPROG('SWDEXIT') DXPARM('D')
*
* THIS SAMPLE EXIT PROGRAM SIMPLY RETURNS THE CONSTANT DATE 12/31/1996

NOTNUM EQU *
 CLI 0(R2),C'D' IS DXPARM 'D'? (DATE EXAMPLE)
 BNE NOTDATE B IF NOT DXPARM('D')
 L R2,$DXRESAD POINT R2 TO AREA TO PLACE RESULT
 MVC 0(4,R2),=X'19961231' RETURN THIS 4-BYTE X'YYYYMMDD' DATE
 B RETURN
*

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('B'), SUCH AS:
*
* FIELD: TESTBIT TYPE(BITEXIT) DXPROG('SWDEXIT') DXPARM('B')
* COLUMN(14)
*
* THIS SAMPLE EXIT PROGRAM SIMPLY RETURNS THE VALUE OF THE LAST BIT
* IN THE BYTE IDENTIFIED BY THE FIELD STATEMENT'S COLUMN() PARM.
* (IN THIS EXAMPLE, THAT'S THE LAST BIT OF THE BYTE IN COLUMN 14.)

NOTDATE EQU *
 CLI 0(R2),C'B' IS DXPARM 'B'? (BIT EXAMPLE)
 BNE NOTBIT
 L R2,$DXRESAD POINT R2 TO AREA TO PLACE RESULT
 L R3,$DXFLDAD POINT R3 TO RAW DATA IN INPUT RECORD
 TM 0(R3),X'01' IS THE LOWORDER BIT ON?
 BZ BITOFF NO - RETURN AN "OFF" VALUE
 MVI 0(R2),C'1' YES - RETURN AN "ON" VALUE
 B RETURN
BITOFF EQU *
 MVI 0(R2),C'0' RETURN AN "OFF" VALUE TO REPORT WRITER
 B RETURN
*

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('R'), SUCH AS:
*
* FIELD: TESTCHAR TYPE(CHAREXIT) DXPROG('SWDEXIT') DXPARM('R')
* COLUMN(1) LENGTH(10) DXRETLEN(10)
*
* THIS SAMPLE EXIT PROGRAM REVERSES THE CHARACTERS IN A CHARACTER FIELD
* IN THE RECORD. IT USES THE FIELD STATEMENT'S LENGTH(NNN) PARM
* TO KNOW HOW MANY BYTES TO REVERSE.

NOTBIT EQU *
 CLI 0(R2),C'R' IS DXPARM 'R' (REVERSE CHAR EXAMPLE)
 BNE NOTREVER
 L R2,$DXRESAD POINT R2 TO AREA TO PLACE RESULT
 L R3,$DXFLDAD POINT R3 TO RAW DATA IN INPUT RECORD
 LH R4,$DXFLDLN LENGTH OF FIELD TO REVERSE.
 AR R3,R4 POINT R3 PAST CHAR FIELD IN RECORD
*
REVLOOP EQU * LOOP THRU FIELD BACKWARDS
 BCTR R3,0 BACKUP 1 BYTE (POINTER TO REC FIELD)
 MVC 0(1,R2),0(R3) MOVE 1 REVERSED BYTE TO RESULT AREA
 LA R2,1(R2) INCREMENT POINTER IN RESULT AREA
 BCT R4,REVLOOP CONTINUE THROUGH ALL BYTES
*
 B RETURN
NOTREVER EQU *
■ G-4 CIMS Report Writer User Guide

Sample Data Exit Program ■
Sample Data Exit Program Written in Assembly Language -- 3 of 3

* FOLLOWING LOGIC IS EXECUTED FOR FIELDS WITH DXPARM('T'), SUCH AS:
*
* FIELD: TESTTIME TYPE(TIMEEXIT) DXPROG('SWDEXIT') DXPARM('T')
* DXRETDEC(0)
*
* THIS SAMPLE EXIT PROGRAM SIMPLY RETURNS THE CONSTANT TIME 12:34:56
* (12*3600 PLUS 34*60 PLUS 56 = 45296 SECONDS)

 CLI 0(R2),C'T' IS DXPARM 'T'? (TIME EXAMPLE)
 BNE NOTTIME
 L R2,$DXRESAD -> RESULT AREA
 ZAP 0(16,R2),=P'45296' RETURN 12:34:56 AS PL16'SECONDS'
 B RETURN
*
NOTTIME EQU *
*

* NOW RETURN TO REPORT WRITER *

RETURN EQU *
 L R13,OURSAVE+4 RESTORE CALLER'S R13 (SAVE AREA PTR)
 LM R14,R12,12(R13) RESTORE CALLER'S REGS FROM HIS SA
 BR R14 RETURN TO REPORT WRITER
*
*
OURSAVE DC 18F'0' OUR SAVE AREA
COUNTER DC PL4'0' COUNTER IS 0 ON FIRST CALL.
*

* *
* $DX -- PARM DSECT FOR CALLING USER DATA EXITS. *
* *

$DX DSECT , DATA EXIT PARM DSECT
*
$DXNAME DC CL4'DATA' NAME OF EXIT
$DXLEVEL DC CL4'0001' LEVEL NUMBER
$DXFUNC DC CL4'CONV' FUNCTION
$DXFLDNM DS CL50 FIELDNAME BEING PROCESSED
$DXFILNM DS CL50 FILENAME OF FIELD BEING PROC'ED
$DXFLDAD DS A ADDR OF FIELD'S DATA IN INPUT RECRD
$DXRECAD DS A ADDR OF BEGINNING OF INPUT RECORD
$DXFLDPA DS A ADDR OF FIELD'S DXPARM() TEXT
$DXFILPA DS A ADDR OF FILE'S EXITPARM() TEXT
$DXRESAD DS A ADDR WHERE EXIT SHOULD PUT RESULT
$DXFLDLN DS AL2 VALUE OF FIELD'S LENGTH(NNN) PARM
$DXFLDDP DS AL2 VALUE OF FIELD'S DEC(NNN) PARM
$DXFLDPL DS AL2 LENGTH OF $DXFLDPA PARM'S TEXT
$DXFILPL DS AL2 LENGTH OF $DXFILPA PARM'S TEXT
$DXRESLN DS AL2 VALUE OF FIELD'S DXRETLEN(NNN) PARM
$DXRESDP DS AL2 VALUE OF FIELD'S DXRETDEC(NN) PARM
*
*
*
 END SWDEXIT
CIMS Report Writer User Guide G-5 ■

■ Sample Data Exit Program
Figure G-1 • A report that uses a data exit program

INPUT: EMPL-FILE

* FOLLOWING STMTS DEFINE ADDITIONAL "EXIT" TYPE FIELDS FOR EMPL-FILE

FIELD: TESTNUM TYPE(NUMEXIT) DXPROG('SWDEXIT') DXPARM('N') DXRETDEC(0)
FIELD: TESTDATE TYPE(DATEEXIT) DXPROG('SWDEXIT') DXPARM('D')
FIELD: TESTTIME TYPE(TIMEEXIT) DXPROG('SWDEXIT') DXPARM('T') DXRETDEC(0)
FIELD: TESTCHAR TYPE(CHAREXIT) DXPROG('SWDEXIT') DXPARM('R')
 COLUMN(LAST-NAME) LENGTH(15) DXRETLEN(15)
FIELD: TESTBIT TYPE(BITEXIT) DXPROG('SWDEXIT') DXPARM('B')
 COLUMN(DEPT-NUM)

COLUMNS: EMPL-NUM LAST-NAME TESTCHAR
 TESTNUM(7) TESTDATE TESTTIME DEPT-NUM(4) TESTBIT

Produce this Report:

These Control Statements:

Notes:

• This report uses 5 fields that are created by the data exit program named SWDEXIT.

THU 09/21/95 8:21 AM DATA FROM EMPL-FILE PAGE 1

EMPL LAST DEPT
NUM NAME TESTCHAR TESTNUM TESTDATE TESTTIME NUM TESTBIT

036 JONES SENOJ 0 12/31/96 12:34:56 2 NOT TESTBIT
037 JOHNSON NOSNHOJ 1 12/31/96 12:34:56 1 TESTBIT
039 JOHNSON NOSNHOJ 2 12/31/96 12:34:56 2 NOT TESTBIT
040 MACDONALD DLANODCAM 3 12/31/96 12:34:56 2 NOT TESTBIT
041 SIMPSON NOSPMIS 4 12/31/96 12:34:56 3 TESTBIT
042 MORRISON NOSIRROM 5 12/31/96 12:34:56 3 TESTBIT
043 CHRISTOPHERSON NOSREHPOTSIRHC 6 12/31/96 12:34:56 1 TESTBIT
044 BAKER REKAB 7 12/31/96 12:34:56 4 NOT TESTBIT
045 THOMAS SAMOHT 8 12/31/96 12:34:56 4 NOT TESTBIT

*** GRAND TOTAL (9 ITEMS) 36
■ G-6 CIMS Report Writer User Guide

H
How to Import PC Files

Introduction . 8-2

Importing a PC file into Lotus 1–2–3 for Windows . 8-3

Importing a PC file into Lotus 1–2–3 (DOS Versions) . 8-3

Importing a PC File into Excel . 8-3

Importing a PC File into Quattro Pro . 8-4

Importing a PC File into Paradox for Windows . 8-4

Importing a PC File into Paradox (DOS Versions) . 8-5

Importing a PC File into Microsoft Works . 8-5

Importing a PC File into Corel Chart . 8-6

Importing a PC File into PowerPoint . 8-6

Importing Files into Harvard Graphics . 8-7

Importing a PC File into dBASE IV . 8-7

Importing a PC File into R:BASE . 8-7

Importing Files into Word Processing Programs . 8-8
CIMS Report Writer User Guide H-1 ■

■ How to Import PC Files

Introduction
Introduction 8

This Appendix shows the steps used to import Report Writer's PC files into the following
PC programs:

■ Lotus 1–2–3 for Windows (page H-3)

■ Lotus 1–2–3 DOS versions (page H-3)

■ Excel (page H-3)

■ Quattro Pro (page H-4)

■ Paradox for Windows (page H-4)

■ Paradox DOS versions (page H-5)

■ Microsoft Works (page H-5)

■ Corel Chart (page H-6)

■ PowerPoint (page H-6)

■ Harvard Graphics (page H-7)

■ dBASE IV (page H-7)

■ R:BASE (page H-7)

■ word processing programs (page H-8)

While we aren't able to include every version of every PC program in this Appendix, we
have included a representative sample. If the PC program you want to use is not listed in
one of the following sections, we suggest:

■ see if the steps described for Lotus or Excel also work with your PC program. Most
newer PC software has similar Menu structures and functions related to the opening
of input files.

■ check your PC program's online Help (or printed documentation.) Search for such
keywords as: IMPORT, TEXT FILE, ASCII, DELIMITED FILE, FILE FORMATS.

■ consider a two–step approach. If your PC program cannot import comma delimited
files, it may still be able to import other types of files (such as Lotus or Excel
spreadsheets). For example, Microsoft's PowerPoint does not import comma
delimited files. However, it will import Excel spreadsheet files and Excel charts. In
such a case, use Report Writer to create a PC file for Excel and first import it into Excel.
Then save the Excel spreadsheet. You can then import the Excel spreadsheet file into
your desired program. An example of this appears on page H-3.

Tip: When downloading your PC files, it is often helpful to give them a name ending
with .CSV or .TXT on the PC. That helps some PC programs recognize your PC file as a
comma delimited import file.
■ H-2 CIMS Report Writer User Guide

How to Import PC Files ■

Importing a PC file into Lotus 1–2–3 for Windows
Importing a PC file into Lotus 1–2–3 for Windows 8

Use the following statement to create a PC file for Lotus 1–2–3:

OPTIONS: LOTUS

Once you have created your PC file and downloaded it to your PC, here is how to import
it into Lotus 1–2–3 Release 5 for Windows. From an empty spreadsheet do the
following:

choose FILE
choose OPEN
for File Type, select "TEXT (txt;prn;csv;dat;out)"
for File Name, enter the name of your PC file (for example, C:SALES.CSV)
click on OK

Importing a PC file into Lotus 1–2–3 (DOS Versions) 8

Use the following statement to create a PC file for Lotus 1–2–3:

OPTIONS: LOTUS

Once you have created your PC file and downloaded it to your PC, here is how to import
it into Lotus 1–2–3 (DOS version 3.0.) From an empty spreadsheet do the following:

press the / key (to bring up the menu)
choose FILE
choose IMPORT
choose NUMBERS
enter the filename (for example, C:SALES.CSV)

Importing a PC File into Excel 8

Use the following statement to create a PC file for Excel:

OPTIONS: EXCEL

PC files for Excel differ from most other PC files in that "tab" character is used as the
column delimiter (rather than a comma.) This also means that quotation marks are not
required for character fields.

Once you have created your PC file and downloaded it to your PC, here is how to import
it into Excel Version 5.0. From an empty spreadsheet, do the following:

choose FILE
choose OPEN
under "List Files of Type", select Text Files (*.prn;*.txt;*.csv)
under "File Name", enter the name of your PC File (for example, C:SALES.TXT)
click on OK
(at this point, the Text Import Wizard screen appears)
under "Original Data Type", select Delimited
under "Start Input at Row", select 1
under "File Origin", select Windows (ANSI)
click on FINISH
CIMS Report Writer User Guide H-3 ■

■ How to Import PC Files

Importing a PC File into Quattro Pro
Alternative Method: The method described above creates what Excel calls a "text" or "tab
delimited" file. Excel will also import files formatted as "Comma Separated Values"
(CSV). To produce a CSV file, use the following statement:

OPTIONS: CSV

When downloading this file to your PC, you may want to name it with a .CSV extension.
(That tells Excel that the file is formatted as a CSV file.) Then to import the PC file, follow
these steps:

choose FILE
choose OPEN
under List Files of Type, select Text Files (*.prn;*.txt;*.csv)
under File Name, enter the name of your PC File (for example, C:SALES.CSV)
click on OK

Importing a PC File into Quattro Pro 8

Use the following statement to create a PC file for Quattro Pro:

OPTIONS: QUATTRO

Once you have created your PC file and downloaded it to your PC, here is how to import
it into Quattro Pro Version 5.0 for DOS. From within Quattro Pro do the following:

press / key (to bring up the menu)
choose Tools
choose Import
choose Comma and "" Delimited Files
enter the filename (for example, C:SALES.CSV)
press ENTER

Importing a PC File into Paradox for Windows 8

Use the following statement to create a PC file for Paradox:

OPTIONS: PARADOX

Once you have created your PC file and downloaded it to your PC, you will use Paradox
to convert the PC file into a Paradox table. Then you can open the Paradox table in the
normal way. Here is how to convert the PC file to a table under Paradox for Windows
Version 1.0. From within Paradox, do the following:

choose FILE
choose UTILITIES
choose IMPORT
under Type, select <Delimited Text>
under File Name, enter the name of your PC file (for example, C:SALES.CSV)
click on OK
(a "Delimited ASCII Import" dialog box will appear at this point)
leave the File Name entry alone
enter a New Table Name
click on OK
■ H-4 CIMS Report Writer User Guide

How to Import PC Files ■

Importing a PC File into Paradox (DOS Versions)
After creating the new table, open it in the normal manner:

choose FILE
choose OPEN
choose TABLE
under File Name, enter the path and name of the new table you just created
click on OK

Importing a PC File into Paradox (DOS Versions) 8

Use the following statement to create a PC file for Paradox:

OPTIONS: PARADOX

Once you have created your PC file and downloaded it to your PC, here is how to import
it into Paradox DOS Version 3.5. From within Paradox, do the following:

choose Tools
choose ExportImport
choose ASCII
choose Delimited
enter the filename (for example, C:SALES.CSV)
enter a new table name

Importing a PC File into Microsoft Works 8

Use the following statement to create a PC file for Microsoft Works:

OPTIONS: MS–WORKS

Once you have created your PC file and downloaded it to your PC, here is how to import
it into Microsoft Works Version 2.0a. From within Microsoft Works do the following:

click on SPREADSHEET (at the Startup dialogue box)
choose FILE
choose OPEN EXISTING FILE
under List Files of Type, select "TEXT (*.TXT)"
under File Name, enter the name of the PC file (for example, C:SALES.CSV)
click on OK
click on SPREADSHEET (at the Open File As dialogue box)
CIMS Report Writer User Guide H-5 ■

■ How to Import PC Files

Importing a PC File into Corel Chart
Importing a PC File into Corel Chart 8

Use the following statement to create a PC file for Corel Chart:

OPTIONS: COREL

Once you have created your PC file and downloaded it to your PC, here is how to import
it into Corel Chart Version 3.0. From within Corel Chart, do the following:

choose FILE
choose NEW
choose a chart type, for example BAR
(an empty spreadsheet grid will appear)
choose FILE
choose IMPORT DATA
under List Files of Type, select "CSV Data (*.CSV)"
under File Name enter the name of your PC file (for example, C:SALES.CSV)
click on OK

Importing a PC File into PowerPoint 8

PowerPoint does not import comma delimited values directly. However it does import
Excel spreadsheets.

Use the following statement to create a PC file for Excel:

OPTIONS: EXCEL

Once you have created your PC file and downloaded it to your PC, import it into Excel
(as described on page page H-3.) Then save the Excel spreadsheet and exit Excel.

Here is how to import the data from your new Excel spreadsheet into a slide in
PowerPoint Version 4.0. From within a PowerPoint presentation, do the following:

choose INSERT NEW SLIDE
choose GRAPH as the autolayout type for your slide
double click where it says "Double Click to Add Graph"
(a Presentation Database grid will appear)
select the upper left grid box with the cursor (to import data starting there)
choose EDIT (from the main menu)
choose IMPORT DATA
under List Files of Type, select "Microsoft Excel Files (*.xl*)"
under File Name enter the name of your saved Excel file (for example, C:SALES.XLS)
click on OK
(at this point you can edit the imported data in the database grid, perhaps deleting any
unneeded columns or rows)
choose CLOSE (from the Presentation Database dialogue box's pulldown menu)
(PowerPoint will format the data into a chart, which you can then massage as desired.)

Alternative Method: You can also create and save your desired chart while you are still
within Excel. Then import that Excel Chart into your PowerPoint slide. Follow the same
steps as above, except that you will now choose IMPORT CHART (rather than IMPORT DATA)
and will then list and name a Microsoft Excel Chart (*.xlc) file.
■ H-6 CIMS Report Writer User Guide

How to Import PC Files ■

Importing Files into Harvard Graphics
Importing Files into Harvard Graphics 8

Use the following statement to create a PC file for Harvard Graphics:

OPTIONS: HARVARD

Once you have created your PC file and downloaded it to your PC, there are a number
of ways that it can be imported into Harvard Graphics (depending on the kind of chart
you want). As an example, to import it as a bar chart into Harvard Graphics DOS Version
2.12, do the following:

choose Create new chart
choose Bar/line
press <ESC> (from the "X Data Type" menu, to use the defaults)
press <ESC> (to return to the menu screen)
choose Import/Export
choose Import delimited ASCII
(select the correct Directory and Filename)
(on the "ASCII Delimiters" menu, select the following:)
Quote character: "
End of field delimiter: ,
end of record delimiter: #13#10
choose YES (to the prompt "Import first record as series legends:")

Note • The column headings for Harvard Graphics files are a little different than for
other PC files. For Harvard Graphics, Report Writer always creates a single line of
column headings. (This is because Harvard Graphics only accepts a single line of
column headings when importing files.) This means that column headings which
normally are split onto multiple lines will be run together into a single column
heading line. A single space will appear where the line breaks would otherwise have
occurred. If this results in column headings that are too long or that look odd, you
may wish to specify override column headings (in your COLUMNS statement) when
creating files for Harvard Graphics.

Importing a PC File into dBASE IV 8

Use the following statement to create a PC file for dBASE IV:

OPTIONS: DBASE4

Once you have created your PC file and downloaded it to your PC, here is how to import
it into a dBASE IV structure. First create a structure that corresponds field–for–field to the
Report Writer output file. Then enter the following "dot" commands:

USE structure
APPEND FROM filename TYPE DELIMITED

Importing a PC File into R:BASE 8

Use the following statement to create a PC file for R:BASE:

OPTIONS: RBASE
CIMS Report Writer User Guide H-7 ■

■ How to Import PC Files

Importing Files into Word Processing Programs
Once you have created your PC file and downloaded it to your PC, here is how to import
it into R:BASE. From within a fresh R:BASE session, do the following:

choose Tools
choose Import/export
choose ASCII delimited...
enter the filename (for example, C:SALES.CSV)
choose YES (to the question "Importing Date Values?")
check MM/DD/(YY)YY (by hitting <ENTER>)
press <F2>)
choose NEW (to the question "Choose database:")
enter a new database name
choose NEW (to the question "Choose table:")
enter new table name
choose (,) (to the prompt "Enter the column separator character:")
press <F2> (to the prompt "Press F2 to continue")
fill in the correct column names on the screen, if desired
press <ESC> (to return to the menu)
choose Data
choose Load

Importing Files into Word Processing Programs 8

Use the following statement to create a PC file for most word processing programs:

OPTIONS: NOCC

Notice that for word processor programs we do not use any PC program option. Word
processors can normally import a report "just as it is." That is, columns need not be
"delimited". And the data need not be specially formatted or enclosed in quotes. And
you normally do want to include report titles, column headings, and Grand Totals.

The NOCC option simply tells Report Writer to omit the "carriage control" character from
the beginning of each output record. The carriage control characters are not needed since
the output records will be going to a file, rather than to a printer.

After you have downloaded the PC file to your PC, import it into your word processing
program as an "ASCII file." The exact way to do this varies between different word
processing programs. Check the program's online Help (or printed documentation).
Search for such words as "Importing", "ASCII files", "text files" or "DOS files."

For example, to import such a PC file into WordPerfect 5.1, you would do the following:

press TEXT IN/OUT (CTL–F5)
choose DOS text (1)
choose Retrieve (CR/LF to [HRt]) (2)
enter the filename (for example, C:SALES.TXT)

When importing reports into word processing programs, there are several things to keep
in mind:

■ The report should not be too wide. If the report is wider than the width of a page, the
word processing program will probably break each line into multiple lines, ruining
the appearance of the report. Using a width parm (in the COLUMNS statement) to create
smaller columns may help reduce the width of your report (see page 4-12.)
■ H-8 CIMS Report Writer User Guide

How to Import PC Files ■

Importing Files into Word Processing Programs
■ Use a font with a small point size (in the word processing program) to allow wider
reports to fit on a page

■ If your report is still too wide, try using a "landscape" page layout

■ Use a non–proportional (monospaced) font to display the report. Otherwise the
report may be skewed as the word processing program uses a slightly different width
for each character. Some fonts that are usually non–proportional are: COURIER, LINE
PRINTER, and MONOSPACED.

■ Disable justification. If the word processor program attempts to justify the report
lines, they will probably become skewed.
CIMS Report Writer User Guide H-9 ■

■ How to Import PC Files

Importing Files into Word Processing Programs
■ H-10 CIMS Report Writer User Guide

I
Speed-Up Tips

Introduction . 9-2

INCLUDEIF Statement . 9-2

Order of ANDed Tests . 9-2

Order of ORed Tests . 9-3

Fields from Auxiliary Input Files . 9-4

Intermediate Conditional Expressions . 9-5

Conditional COMPUTE Statements . 9-5

Compute Statements with RETAIN . 9-6

Intermediate Computational Expressions . 9-7

Intermediate Conditional Expressions . 9-8

Read Statements with the MULTI parm . 9-8

VSAM I/O . 9-8

VSAM Buffers . 9-9

READ Statement Buffers . 9-9

INPUT Statement Buffers . 9-9

Pre–Sorting the Input File . 9-10

KEYRANGE Parm . 9-11

INCLUDEIF Statement Order . 9-11

Replace an Auxiliary File with a “Table Lookup” .9-12

Clearing I/O Areas .9-13

Fine-Tuning the Sort .9-13

Development Cycle .9-14

Using Explicit Literals in Conditional Expressions .9-14
CIMS Report Writer User Guide I-1 ■

■ Speed-Up Tips

Introduction
Introduction 9

Because Report Writer is written entirely in fast, efficient Assembly language, it runs
faster than any other 4GL report writer we know of. This Appendix lists some techniques
you can use when writing your queries to allow Report Writer to run at its fastest. You
may want to review these items if you have large, long–running jobs where minimizing
CPU use is especially important.

INCLUDEIF Statement 9

The INCLUDEIF statement is perhaps the single most important factor that affects how
long your job will run. By considering the following suggestions when writing your
INCLUDEIF statements, you can help Report Writer run at its fastest.

The INCLUDEIF statement simply consists of a conditional expression. Report Writer
always stops processing a conditional expression as soon as it knows that the entire
expression is either definitely true or definitely false. That means that Report Writer may
not always need to perform every test in a conditional expression. By writing your
conditional expressions so that Report Writer can make a definite determination as soon
as possible, you can help eliminate unnecessary processing. That reduces CPU usage.

Speed–Up Tip: Put tests that definitely include or definitely exclude the majority of
input file records early in your INCLUDEIF statement.

We will now illustrate this tip in detail, both for conditional expressions that use AND and
for conditional expressions that use OR.

Order of ANDed Tests 9

As an example, assume that we are processing a large database of people. We want to
include all records where both of the following conditions are true:

■ SEX = 'F'

■ NAME = 'JOSEPHSON'

Note that one of these conditions (SEX = 'F') should be true in about half of the input
records. (We are assuming that the database is representative of the population at large.)
The other condition (NAME = 'JOSEPHSON') will probably be true for only a tiny fraction
of the database–– far less than 1%.

We could write the necessary INCLUDEIF statement either of two ways. We could write it
as:

INCLUDEIF: SEX = 'F' AND NAME = 'JOSEPHSON'

If we write the statement as above, Report Writer will have to perform both tests on
approximately 50% of the input records. That is because the first test (SEX = 'F') will be
true for about half of the input file. For that half of the file, the second test will then have
to be performed as well (NAME = 'JOSEPHSON'). (When this second test is performed,
most of the records will fail it and will thus fail the entire INCLUDEIF statement.)
■ I-2 CIMS Report Writer User Guide

Speed-Up Tips ■

INCLUDEIF Statement
Now consider the second (and much better) way that we would write our INCLUDEIF
statement:

INCLUDEIF: NAME = 'JOSEPHSON' AND SEX = 'F' <--best choice

The above statement results in exactly the same records being included in the report, but
it is much more efficient in terms of CPU use. In this case, 99% of the input file records
will fail the first test. For those records, the second test will not need to be performed at
all. Report Writer can definitely exclude the input record with just a single test 99% of
the time. It will only need to perform the second test (SEX = 'F') on less than 1% of the
input records.

To compare the two methods, let's assume that our database contains one million
people. Using the first INCLUDEIF statement discussed above, Report Writer would have
to perform about 1,500,000 tests to evaluate the INCLUDEIF statement for the entire file.
(1,000,000 SEX tests, plus 500,000 NAME tests.) Using the second INCLUDEIF statement
discussed above, Report Writer would have to perform less than 1,010,000 tests.
(1,000,000 NAME tests, plus less than 10,000 SEX tests.) You can see that the second
INCLUDEIF statement would use almost 33% less CPU than the first one.

Speed–Up Rule: when using multiple tests separated with AND, put the most difficult
test to pass first. Put the next–most–difficult test second, and so on. By "most difficult
test", we mean the test that the most input file records will fail. By "next–most–difficult"
test, we mean the test that will be failed most often by those records that have passed the
first test.

Order of ORed Tests 9

Now let's consider conditional expressions that use OR. Assume now that we want to
include all the people in our database where either of the following conditions are true:

■ SEX = 'F'

■ NAME = 'JOSEPHSON'

Again, we can assume that about 50% of the records will pass the first test shown above,
and less than 1% will pass the second test.

Here is the best way to write the INCLUDEIF statement:

INCLUDEIF: SEX = 'F' OR NAME = 'JOSEPHSON' <--best choice

By using the above statement, Report Writer will definitely include about 50% of the file
after evaluating only the first test. It will only have to perform the second test on the
other 50% of the file.

On the other hand, consider if we had written the statement this way:

INCLUDEIF: NAME='JOSEPHSON' OR SEX='F'
CIMS Report Writer User Guide I-3 ■

■ Speed-Up Tips

INCLUDEIF Statement
If we used the above statement, the first test would not be true over 99% of the time. That
means that Report Writer would have to go on to perform the second test on 99% of the
input file. While both statements would include the same records in your report, the
above statement would require almost twice as much CPU time to process as the earlier
statement.

As you can see, the rule is reversed when using multiple conditions that are separated
with OR.

Speed–Up Rule: when using multiple tests separated with OR, put the easiest test to pass
first. Put the next–easiest test second, and so on. By "easiest test", we mean the test that
the most input file records will pass. By "next–easiest test", we mean the test that will be
passed most often by those records which did not pass the first test.

One common way that this rule comes up is when you are including records where a
certain field is equal to any one of a number of values.

Example
INCLUDEIF: DEPT–NUM = 2 OR 3 OR 4

You will improve performance in such a case if you put the most common value first.
For example, if more people in the input file are in department 4 than are in department
2 or 3, you should put 4 first:

INCLUDEIF: DEPT–NUM = 4 OR 2 OR 3

Fields from Auxiliary Input Files 9

So far, we have assumed that all fields referred to in an INCLUDEIF statement come from
one file. When the INCLUDEIF statement refers to fields from two or more files, there is
another factor to consider. As we mentioned earlier, Report Writer stops processing a
conditional expression as soon as it knows that the entire expression is either definitely
true or definitely false. That means that if Report Writer can definitely exclude a record
based only on tests from the primary input file, it will not have to perform any
subsequent tests that involve the auxiliary input file(s). In most cases, Report Writer does
not read an auxiliary input record until data from that record is actually needed for
processing. Thus, if you can exclude a large percentage of records based solely on primary
input file tests, Report Writer will not have to read the auxiliary record at all and you will
save a large amount of I/O. Since I/O is relatively slow, it is always desirable to avoid
unnecessary I/O whenever possible.

Let's consider an example using our large database of people. Assume that it contains an
ID number for each person that can be used as the key to another file that contains birth
date information. Assume that we want to include people in our report if both of the
following conditions are true:

■ NAME = 'JOSEPHSON'

■ BIRTHDATE = 1/1/1965

The best way to write the INCLUDEIF statement is:

INCLUDEIF: NAME='JOSEPHSON' AND BIRTHDATE = 1/1/1965
■ I-4 CIMS Report Writer User Guide

Speed-Up Tips ■

Conditional COMPUTE Statements
In the above statement, 99% of the input file will be definitely excluded based on the
first test alone. That means that 99% of the time the "read" to the auxiliary input file
containing the BIRTHDATE field will not be necessary. This method reduces the amount
of I/O performed by almost half (compared with writing the statement with the
BIRTHDATE test first.) When the BIRTHDATE test is written first, the auxiliary record has to
be read 100% of the time.

If we had an OR–type INCLUDEIF statement, we would probably still want to put the
primary input file test first:

INCLUDEIF: NAME='JOSEPHSON' OR BIRTHDATE = 1/1/1965

In the above case, only a small percentage of the input records would pass the first test,
meaning that the auxiliary record would then have to be read in order to perform the
second test. Still, reading the second file 99% of the time is slightly better than reading
it 100% of the time, as would be the case if the BIRTHDATE test were the first test.

Speed–Up Tip: When the INCLUDEIF statement involves tests using fields from auxiliary
input files, try to make the auxiliary file tests the last ones.

Of course, there will be times when your inclusion requirements prevent you from doing
this. Or, you may have a conflict between the rules specified earlier (involving easy–to–
pass and difficult–to–pass tests) and the rule regarding tests from auxiliary input files. In
such cases, you may want to experiment with the INCLUDEIF statement on test runs until
you find the most efficient way to write it for your situation. For regularly scheduled,
long running jobs, it may be worth the effort to do that.

Intermediate Conditional Expressions 9

If your INCLUDEIF statement uses the same tests in multiple places, you may be able to
improve performance by assigning the result of those tests to an intermediate bit field.
This technique is discussed on page I-5.

Conditional COMPUTE Statements 9

When writing conditional COMPUTE statements, there are two considerations that affect
performance:

■ the order of the tests within each WHEN parm

■ the order of the WHEN parms themselves

The contents of a WHEN parm is simply a conditional expression. The INCLUDEIF statement
also consists of a conditional expression. Therefore, carefully read the above tips
regarding the INCLUDEIF statement. Follow those same suggestions when writing the
conditional expressions within your WHEN parms.

For example, consider the following WHEN parm:

COMPUTE: A = WHEN(SEX='F' OR NAME='JOSEPHSON') ASSIGN(...) <--best choice
CIMS Report Writer User Guide I-5 ■

■ Speed-Up Tips

Compute Statements with RETAIN
The above WHEN parm is more efficient than writing it the following way (even though
both ways yield the same final result):

COMPUTE: A = WHEN(NAME='JOSEPHSON' OR SEX='F') ASSIGN(...)

If you don't know why the first statement above is better, read the section in this
Appendix on speed–up tips for the INCLUDEIF statement (page I-2.)

The second consideration when writing conditional COMPUTE statements is the order of
the WHEN parms themselves. Remember that when evaluating a conditional COMPUTE
statement, Report Writer stops evaluating the WHEN parms as soon as it finds a WHEN
expression that is true. Thus, you will want to put the WHEN parms that are most likely to
be true as early as possible. That lets Report Writer stop its WHEN parm processing as early
as possible in the maximum number of cases.

Speed–Up Tip: put the WHEN parm that is most likely to be true first. Next, put the WHEN
parm that is most likely to be true considering only those records that failed the first WHEN
parm, and so on.

Consider the following statement:

COMPUTE: STATE=NAME = WHEN(STATE = 'CA') ASSIGN('CALIFORNIA')
 WHEN(STATE = 'NY') ASSIGN('NEW YORK')
 ...
 WHEN(STATE = 'WY') ASSIGN('WYOMING')

Notice that the WHEN parms are not in alphabetical state order like you might expect.
Instead, they appear in order of decreasing state population. Thus (again assuming that our
database is representative of the US population as a whole) the WHEN parm most likely to
be true for the entire file (STATE = 'CA') comes first. For about 12% of the input records,
Report Writer will only have to evaluate this one WHEN parm (since about 12% of the
population live in California.)

Next, considering only those records that are not in California, the most records will be
in New York. Therefore, we checked for STATE='NY' second. This allows another 7% of
the input file to have only two WHEN parms evaluated. And so on through the rest of the
states. Report Writer would only have to evaluate all 50 WHEN parms for 0.2% of the input
records (for Wyoming).

Putting the WHEN parms in the above order ensures that Report Writer performs the fewest
total number of WHEN parm evaluations, thus ensuring the best performance.

Of course, your COMPUTE statements will involve different conditions. It may be hard for
you to guess which of your WHEN parms are the most likely to be true. But, even if you can
only identify the one or two most common WHEN parms, just putting those first can result
in a significant benefit.

Compute Statements with RETAIN 9

COMPUTE statements that use the RETAIN keyword can be much slower than COMPUTE
statements that do not use it. The reason is this: if an input record will not be included
in the run (because it fails the INCLUDEIF tests), Report Writer does not normally have to
■ I-6 CIMS Report Writer User Guide

Speed-Up Tips ■

Intermediate Computational Expressions
compute the value of all the COMPUTE statements for that record. However, it does have to
compute the value of all RETAIN–type COMPUTE statements for every record in the entire
input file. This is because, even though a specific record may not be included in the
report, the value assigned to the COMPUTE field for that record might need to be retained
and then used in conjunction with later input records.

RETAIN–type COMPUTEs are especially slow when they refer to fields from auxiliary input
records. The reason: since RETAIN–type COMPUTEs must be computed for every input file
record, that means that the auxiliary input file record needed for the COMPUTE must also
be read for every input file record–– even those records that won't be included in the
report. That can add a lot of I/O time to a run, since direct reads to auxiliary input files
are very slow.

Tip: if you have a RETAIN–type COMPUTE statement that refers to a field from an auxiliary
input file, see if you can replace it with a non–RETAIN–type COMPUTE statement.
Sometimes you can accomplish this by using a RETAIN–type COMPUTE statement to retain
just the key needed to read the auxiliary input file record. Then the COMPUTE statement that
actually refers to fields in the auxiliary input file should not need to use RETAIN. When
the COMPUTE field is actually needed, the retained key will be enough to cause the correct
record to be read for the COMPUTE statement.

Intermediate Computational Expressions 9

If your request uses a common computational expression in multiple statements, you
may be able to improve performance by using an intermediate computation. Assign the
value of the common part of the expression to an intermediate field. Then refer to that
intermediate field name in each place where the common expression is needed. That way
Report Writer only has to compute the value of that expression once. It can then use that
one result as many times as needed.

For example, assume that your request contains these three COMPUTE statements:

COMPUTE: X = ((B – C) * 100) / C + 0.02
COMPUTE: Y = ((B – C) * 100) / C + 0.09
COMPUTE: Z = ((B – C) * 100) / C + 1.57

You may be able to improve performance by computing the common part of the
expressions just once and saving the result in an intermediate field, like this:

COMPUTE: TEMP = ((B – C) * 100) / C
COMPUTE: X = TEMP + 0.02
COMPUTE: Y = TEMP + 0.09
COMPUTE: Z = TEMP + 1.57
CIMS Report Writer User Guide I-7 ■

■ Speed-Up Tips

Intermediate Conditional Expressions
Intermediate Conditional Expressions 9

If your request uses a common conditional expression in multiple places, you may be
able to improve performance by using an intermediate expression. Assign the value of
the common part of the expression to an intermediate bit field. Then use that
intermediate field name in each place where the expression is needed. That way Report
Writer only has to compute the value of that expression once. It can then use that one
result as many times as needed.

For example, assume that your request contains this conditional COMPUTE statement:

COMPUTE: X = WHEN((A = B OR C > D) AND E = 1) ASSIGN(1.23)
 WHEN((A = B OR C > D) AND E = 2) ASSIGN(8.45)
 WHEN((A = B OR C > D) AND E = 3) ASSIGN(0.29)

You may be able to improve performance by evaluating the common part of the
conditional expressions (in the WHEN parms) just once and saving the result in an
intermediate bit field, like this:

COMPUTE: TEMP = WHEN(A = B OR C > D) ASSIGN(#ON)
COMPUTE: X = WHEN(TEMP AND E = 1) ASSIGN(1.23)
 WHEN(TEMP AND E = 2) ASSIGN(8.45)
 WHEN(TEMP AND E = 3) ASSIGN(0.29)

Read Statements with the MULTI parm 9

In other parts of this manual, we discussed two speed–up tips involving READ statements
that use the MULTI parm. We repeat them here:

Speed–Up Tip: If you know that there will only be one qualifying record in an auxiliary
input file for each READKEY value, do not specify the MULTI parm in your READ statement.
Runs that use the MULTI parm are slower than runs that do not use it.

Speed-Up Tip: If you have some READ statements that use the MULTI parm and some that
do not, put the READ statement(s) without the MULTI parm ahead of the other READ
statements (when possible). This may reduce the amount of I/O that Report Writer has
to perform.

For a detailed description of the program flow when MULTI-type READ statements are used,
see page 10-115.

VSAM I/O 9

Direct (random) reads to VSAM files are inherently slow. A single random read may
involve multiple EXCPs (to read different levels of index blocks and then data blocks.)
Since many 4GL report writers do not support direct reads to VSAM files at all, many users
do not have a good standard to compare Report Writer's VSAM I/O performance with.
■ I-8 CIMS Report Writer User Guide

Speed-Up Tips ■

VSAM I/O
When you write Report Writer a job that does perform extensive random reads, it will
run slower than a similar job that does not perform direct VSAM I/O. The inherent
slowness of direct VSAM I/O is the cause, however, and not any additional overhead
added by Report Writer.

Here are some tips to make your VSAM jobs run as quickly as possible.

VSAM Buffers 9

When reading from VSAM files, you may be able to improve performance by increasing
the number of VSAM buffers. This can increase the chances that VSAM will find a needed
record already in one of its buffers, thus eliminating the need for a disk access.

Report Writer provides parms that let you specify VSAM buffers right in your control
statements (thus saving you from having to modify the execution JCL.) Use the BUFND
and BUFNI parms in your INPUT and READ statements to specify the number of buffers that
VSAM should use.

The BUFND parm specifies the number of "data buffers" that the VSAM access method
should maintain when processing the file. The BUFNI parm specifies the number of
"index buffers" that the VSAM access method should maintain when processing the file.
When these parms are not specified for a VSAM file, Report Writer chooses a default
number of data and index buffers to maintain.

Different values for these parms are recommended for use in the INPUT statement and the
READ statement. You may wish to experiment with these parms if you have long–running,
VSAM–intensive jobs.

READ Statement Buffers 9

According to IBM's VSAM manual:

■ Increasing the number of data buffers by 1 or 2 (from VSAM's default of 2) may
improve performance for random reads. After that, more benefit is obtained by
increasing the number of index buffers.

■ Increasing the number of index buffers (from VSAM's default of 1) should improve
performance for random reads up to a certain point. At some point, excessive paging
may cancel any benefit. Optimal performance is sometimes achieved by having one
index buffer for each level of the file's index.

Example
READ: EMPL–FILE READKEY(EMPL–NUM) BUFND(3) BUFNI(6)

The above statement specifies that VSAM should allocate buffers for 3 data control
intervals and 6 index control intervals when processing the EMPL–FILE.

INPUT Statement Buffers 9

According to IBM's VSAM manual:
CIMS Report Writer User Guide I-9 ■

■ Speed-Up Tips

VSAM I/O
■ Increasing the number of data buffers to 4 or 5 (from VSAM's default of 2) may
improve performance for sequential reads. At some point after that, excessive paging
may cancel any benefit.

■ Increasing the number of index buffers (from VSAM's default of 1) does not normally
improve performance for sequential reads.

Example
INPUT: EMPL–FILE BUFND(5)

The above statement specifies that VSAM should allocate buffer space for 5 data control
intervals when processing the EMPL–FILE.

Pre–Sorting the Input File 9

Sometimes a vast improvement in performance can be achieved by pre–sorting the
primary input file to Report Writer. For example, assume we have a job that uses the
SALES–FILE as the primary input file. Its records are in chronological order. Assume that
we also use a READ statement to read an auxiliary input record from the EMPL–FILE. The
READKEY is the EMPL–NUM from the SALES–FILE:

INPUT: SALES–FILE
READ: EMPL–FILE READKEY(EMPL–NUM)

Since the SALES–FILE is in chronological order, the EMPL–NUMs within it are presumably
distributed randomly. Thus, Report Writer may first have to read the EMPL–FILE record
for key 036, then read a record for key 044, then read another record for key 036, etc.
Since the reads are in random order, the odds are not good that VSAM will have the desired
record already sitting in one of its buffers. Thus, it will have to perform real EXCP I/O to
the VSAM file to get the desired record each time.

Now consider what would happen if we pre–sorted the SALES–FILE into EMPL–NUM order
before having Report Writer process it. The first SALES–FILE record might be for EMPL-NUM
036, for example. Report Writer would then perform a read for key 036 to the EMPL–FILE.
Then, the next SALES–FILE record would also be for key 036. That means VSAM would find
that record already in its buffer and would not have to perform any EXCPs to obtain it.
All of the SALES–FILE records for EMPL–NUM 036 could be processed without any
additional I/O to the EMPL–FILE. Then, when the SALES–FILE record for the next EMPL–NUM
is read, the same thing would happen for it. VSAM might have to perform one I/O to get
the correct EMPL–FILE record the first time, but then would not need to perform any more
I/O for all the other SALES–FILE records with that same EMPL–NUM. The total number of
slow, direct VSAM reads would be dramatically decreased.

Of course, pre–sorting the input file does add overhead to the overall job. Various
factors, including the sizes of the primary input file and the auxiliary input file will
determine whether the pre–sort saves you net execution time in the end. In many cases,
it is worth the pre–sort. By the way, you can use a separate Report Writer step to perform
the pre–sort, if you like. This is explained on page 4-147.
■ I-10 CIMS Report Writer User Guide

Speed-Up Tips ■

VSAM I/O
KEYRANGE Parm 9

If the primary input file is a KSDS (keyed) VSAM file, you may be able to use the KEYRANGE
parm in your INPUT statement to reduce the I/O required for the run. The KEYRANGE parm
tells Report Writer to read only those records within a certain range of keys, rather than
reading through the entire VSAM file.

For example, assume that the input file for a run is a large KSDS customer file. The key for
this file is a 2-byte state code followed by a 10-byte customer number. Assume we want
a report that lists all of the male customers in New York. Normally, we might write:

INPUT: CUSTOMER
INCLUDEIF: STATE = ‘NY’ AND SEX = ‘M’

In the above example, Report Writer must read through the entire CUSTOMER file, testing
the STATE field and the SEX field in each record to determine which records to include in
the report.

However, since the key to this file begins with the state code, we could write the
following instead:

INPUT: CUSTOMER KEYRANGE(‘NY’)
INCLUDEIF: SEX=’M’

The above statements result in the very same report, but run much faster. Instead of
having to read every record in the CUSTOMER file, Report Writer can now jump in right at
the first record whose key begins with NY. It then starts reading records sequentially from
that point. And, after reading the last record whose key begins with NY, it stops reading
the file altogether. This run is much faster because Report Writer does not have to read
the CUSTOMER records for all of the other states and perform the INCLUDEIF tests on them.

Notice that in the second run we also dropped the STATE=’NY’test from the INCLUDEIF
statement. Since the KEYRANGE parm guarantees that only records with NY in the STATE
field are read, there is no need to test for that in the INCLUDEIF statement. Dropping this
test provides an additional improvement in performance.

The syntax of the KEYRANGE parm is shown on page 10-77.

INCLUDEIF Statement Order 9

If you have not done so, please read the speed–up tips for the INCLUDEIF statement
(page I-2.) Pay particular attention to the subsection titled Fields from Auxiliary Input Files
on page I-4. Writing your INCLUDEIF statement so as to eliminate unnecessary reads to
auxiliary input files can greatly reduce the amount of slow VSAM I/O that must be
performed.
CIMS Report Writer User Guide I-11 ■

■ Speed-Up Tips

Replace an Auxiliary File with a “Table Lookup”
Replace an Auxiliary File with a “Table Lookup” 9

Since random I/O to auxiliary input files is slow, consider whether you can use a "table
lookup" instead of reading a file. For example, assume that your primary input file
contains 2–byte state codes. You want to print the entire state name in your report. One
approach may be to write a READ statement that uses the state code as the read key for a
STATE–FILE:

INPUT: EMPL–FILE
READ: STATE–FILE READKEY(STATE)
COLUMNS: LAST–NAME ADDR CITY STATE–FILE.STATE–NAME ZIP

However, it will often be much faster to use a conditional COMPUTE statement to "look
up" the state name (instead of reading a VSAM file):

INPUT: EMPL–FILE
COMPUTE: NAME–OF–STATE =WHEN(STATE = 'CA') ASSIGN('CALIFORNIA')
 WHEN(STATE = 'NY') ASSIGN('NEW YORK')
 ...
 WHEN(STATE = 'WY') ASSIGN('WYOMING')
 ELSE ASSIGN(STATE + '??')
COLUMNS: LAST–NAME ADDR CITY NAME–OF–STATE ZIP

The conditional COMPUTE statement above functions as a table lookup routine and
eliminates the need for a READ statement.

In some cases, there will be too many potential lookup values for such a COMPUTE
statement to be practical. Or, the number of entries may be constantly changing. In that
case, you might still consider a combination of 1) a COMPUTE statement (to efficiently
satisfy the most common cases), and 2) a READ statement to cover any cases missed by
the COMPUTE statement:

INPUT: EMPL–FILE
READ: STATE–FILE READKEY(STATE)
COMPUTE: NAME–OF–STATE = WHEN(STATE = 'CA') ASSIGN('CALIFORNIA')
 WHEN(STATE = 'NY') ASSIGN('NEW YORK')
 ...
 WHEN(STATE = 'WY') ASSIGN('WYOMING')
 ELSE ASSIGN(STATE–FILE.STATE–NAME)
COLUMNS: LAST–NAME ADDR CITY NAME–OF–STATE ZIP

In the above example, whenever the STATE value is one that is covered by a WHEN
condition, no read will be performed on the STATE–FILE. (That is because, even though
a READ statement exists, no data from that file would actually be needed, and Report
Writer would not perform the read.) However, if a STATE is encountered which is not
covered by any of the WHEN parms, the ELSE clause would assign the STATE–NAME field from
the STATE–FILE. In that case (and only in that case) Report Writer would need to perform
the read to the VSAM file.
■ I-12 CIMS Report Writer User Guide

Speed-Up Tips ■

Clearing I/O Areas
Clearing I/O Areas 9

When processing certain types of files, Report Writer normally clears the entire I/O area
to blanks before each read. This is to ensure that when a short record is read, it is not
followed by leftover data from a previous longer record. For certain record layouts, such
leftover data could cause misleading results. Specifying CLEAR(NO) (in the INPUT or READ
statement) suppresses this clearing, which may result in somewhat improved
performance. You might want to specify CLEAR(NO) if you are certain that any leftover
data in the I/O area will not affect your run.

Example
INPUT: PAYROLL–FILE CLEAR(NO)

The above statement names the PAYROLL–FILE as the primary input file for the run.
Report Writer will not clear its I/O area each time it reads a record from that file.

Note • You can also specify the CLEAR parm in the FILE statement to avoid having to
put it in the INPUT and READ statements each time. The NOCLEARIO parm in the OPTIONS
statement can be used to prevent clearing of all files in a run.

Fine-Tuning the Sort 9

For runs that involve sorting a large number of records, the sort process itself may
account for a significant portion of the CPU usage. In such cases, you may be able to speed
up your run by "fine-tuning" the sort process.

Report Writer does not perform the sort logic itself. It simply calls your shop's standard
Sort program (or the program named with the optional SORTNAME option.) Check the
manual for your Sort program to see if there are optional parms that you can specify to
speed up the sort.

Here is a specific example. Large sorts run faster when the sort program knows ahead of
time the approximate number of records it will be sorting. If you know the approximate
number of records normally sorted in a particular run, try passing that information to
the sort program. Under MVS, you can pass this information to programs like Syncsort by
providing a special $ORTPARM DD in your JCL, like this:

//$ORTPARM DD *
FILSZ=E100000

The above parm tells Syncsort that it will be sorting approximately 100,000 records. (The
"E" stands for estimated, and should be used unless you happen to know the exact
number of records that will be sorted.)

Verify that your parm is being successfully processed by the Sort program by scanning
the SYSOUT output.

Another factor that can affect sort time involves the temporary work datasets used by the
Sort program. You may be able to speed up large sorts by specifying more and/or larger
work datasets in your JCL. In MVS, this is usually done via SORTWKnn DD statements. Again,
check the manual for your Sort program for the specifics on how to do this.
CIMS Report Writer User Guide I-13 ■

■ Speed-Up Tips

Development Cycle
Development Cycle 9

The process of developing new requests often entails making minor changes and re–
running the request many times. If the input file you are using contains a million
records, this can obviously take some time. The following options are available to help
speed up your development runs. Once you are satisfied with your request, just remove
the option to obtain your full production results.

Using Explicit Literals in Conditional Expressions 9

Caution: We do not recommend routine use of this technique. It sacrifices ease–of–use
for improved performance. Therefore it makes it easier to introduce errors into your
queries. It also makes them more difficult to maintain. Use this technique only if
runtime speed is of paramount importance for a particular job.

Option Description

MAXINPUT(nnnnn) Tells Report Writer to read only the specified number of records
from the input file. After reading that many records, Report Writer
acts as if it has hit EOF (end of file) on the input file and produces
the final report or PC file.

Example: OPTIONS: MAXINPUT(500)

MAXINCLUDE(nnnnn) Tells Report Writer to include only the specified number of records
in the run. This option is different from the MAXINPUT option just
described. You might specify MAXINPUT(500) and find that your
report has no records in it at all. That may be because the records
that pass your INCLUDEIF statement are not among the first 500
records in the file –– they occur further along in the file. The
MAXINCLUDE option tells Report Writer to read as many records as
necessary until it finds the specified number of records that can be
included in the report.

Example: OPTIONS: MAXINCLUDE(500)

MAXPAGES(nnnnn)
MAXPRINT(nnnnn)

Tells Report Writer to print only the specified number of pages or
lines in the report and then stop. This option prevents you from
getting a million page report by accident as you develop your
report.

Example: OPTIONS: MAXPAGES(500)

If you use either of these options, also see the NOCHECK option
(page 10-93).

DETAIL(nnnnn) Tells Report Writer to print only the specified number of detail
records per control break. Use this option to limit the size of your
output, while still letting you verify the control break processing.

Example: OPTIONS: DETAIL(10)
■ I-14 CIMS Report Writer User Guide

Speed-Up Tips ■

Using Explicit Literals in Conditional Expressions
Using explicit literals in your INCLUDEIF statement (or in your WHEN parm expressions)
when testing non–character type fields may improve performance. That is because it
saves Report Writer from having to perform any data conversion. Here are some
drawbacks to this technique:

■ You must know both the length and the exact format in which a field is stored in your
input record in order to correctly write the explicit literal.

■ If a later record layout modification affects the field's length or type and you fail to
correctly update the INCLUDEIF statement, you might unknowingly obtain wrong
results.

■ You may not be able to use the "greater than" and "less than" comparisons (as
opposed to "equal" and "not equal" comparisons.) That is because Report Writer
performs a byte–by–byte comparison of the EBCDIC contents of a field whenever it is
compared to an explicit literal. Thus, a negative packed number (X'123D') would be
considered greater than the hex literal X'123C', which is a positive packed number.
Had the two fields been compared as packed fields, the opposite would be true
(X'123C' would be greater than X'123D'.)

Consider the following INCLUDEIF statement:

INCLUDEIF: SALARY = 2000 AND BIRTHDATE = 12/31/1975 AND BEGIN–TIME = 14:00:00

If you use the above statement, you do not need to know how long each field is or how
it is stored in the input record. Report Writer automatically performs the conversion
needed to make the literals compatible with the data field in each case.

If you want to write the same INCLUDEIF statement using explicit literals, you would need
to know that information. Let's assume the following:

■ SALARY is a 4–byte packed field

■ BIRTHDATE is a 3–byte packed Julian date

■ BEGIN–TIME is stored as a fullword containing hundredths of seconds since midnight
in binary format

Given the above, you could write the same INCLUDEIF statement using explicit literals as
follows:

INCLUDEIF: SALARY = X'0002000C' AND BIRTHDATE = X'75365C' AND BEGIN–TIME = X'004CE780'

The above statement would execute more efficiently than the earlier INCLUDEIF statement
that did not use explicit literals.

Again, using explicit literals like these defeats a prime feature of Report Writer–– it's ease
of use. Thus, we don't recommend using this technique in routine cases.
CIMS Report Writer User Guide I-15 ■

■ Speed-Up Tips

Using Explicit Literals in Conditional Expressions
■ I-16 CIMS Report Writer User Guide

J
Year 2000 Information

Report Writer version 2.7.1 (and later versions) are Year 2000 Ready. We use the
following definition of "Year 2000 Ready" provided by IBM:

“A product is ‘Year 2000 Ready’ if, when used in accordance with its associated
documentation, it is capable of correctly processing, providing and/or receiving date
data within and between the twentieth and twenty-first centuries, provided that all
products (for example, hardware, software and firmware) used with the product
properly exchange accurate date data with it.”

Here are some specific points regarding Report Writer's handling of dates:

■ Report Writer's internal system run date includes the correct century as provided to it
by the operating system (MVS or VSE). Of course, for this century to be correct after
1999, Report Writer must be running on a version of the operating system that is itself
Year 2000 Ready.

■ All date fields read from input files are stored internally with 4-digit years. For input
date fields that do not contain an explicit century (for example, YYMMDD or YYDDD
dates), Report Writer assigns a century for you. If you have not specified a century
cutoff year (with the CENTURY Option) all YY input file dates are stored internally as
19YY. If you have specified a century cutoff year, Report Writer stores all dates before
your cutoff year as 20YY and all other dates as 19YY.

■ All date literals used in Report Writer control statements may be written in either MM/
DD/YYYY or MM/DD/YY format. All date literals are stored internally with 4-digit years.
When the MM/DD/YY format is used for a date literal, Report Writer assigns a century
for you in the same manner as described above (for input file dates.)

Note • Date literals may also be written in DD/MM/YYYY and DD/MM/YY formats if the
DDMMYYLIT Option is specified.

■ Date comparisons and date computations performed by Report Writer yield the
correct result whether the dates are from the 20th century, the 21st century, or any
combination of the two.
CIMS Report Writer User Guide J-1 ■

■ Year 2000 Information

How to Prepare for the Year 2000 and Beyond
■ By default, all dates that appear in Report Writer reports are formatted in MM/DD/YY
format, regardless of their century and regardless of how the date was stored in the
input file. However, you can easily change this default and display your dates in any
of over 40 different date formats. Any of the date display formats in Appendix B can
be used to display any date field, regardless of how that date field was stored in the
input file. You can also change the default date display format by using the FORMAT
Option.

■ By default, dates in most Report Writer PC Files appear in MM/DD/YY format. If you
want MM/DD/YYYY dates in a PC File, use the FORMAT Option (after your PC File Option)
to specify a different default display format.

Example
OPTIONS: LOTUS FORMAT(MM-DD-YYYY)

How to Prepare for the Year 2000 and Beyond 10

Like most shops, in the years leading up to 2000 your shop was probably engaged in a
systematic effort to ensure that all existing jobs continued to work in the year 2000 and
beyond. Here are some points that may help you in evaluating your Report Writer jobs.

Q. We are converting some files in our shop by expanding the old 6-byte YYMMDD date
fields to 8-byte YYYYMMDD fields. How does this affect our Report Writer jobs?

A. As with any other record layout change, you need to change the Report Writer file
definition for the file in question. Change the FIELD statements for the affected date
fields to specify the correct new data type. In this example, change the TYPE(YYMMDD)
parm to TYPE(YYYYMMDD).

Q. To avoid expanding the size of our records, we are changing our date fields over
to a special in-house "compressed" date format that includes century information.
Can we use these special date fields with Report Writer?

A. Yes. However, if your date format is not one of those listed in Appendix A, Data Types,
you will need to convert your in-house date field into a standard date value that Report
Writer recognizes. How you do this will depend on your particular in-house date format.

For example, some shops have chosen to use the 2-byte character YY portion of their old
date fields to hold a 2-byte binary YYYY value (while leaving the MMDD portions of the field
in character format.) One way to convert this kind of date is as follows:

FIELD: YYYY COLUMN(1) LENGTH(2) TYPE(BINARY)
FIELD: MMDD TYPE(CHAR)
COMPUTE: MY-DATE = #MAKEDATE(#FORMAT(YYYY,PIC'9999') + MMDD)

The #MAKEDATE built-in function in the COMPUTE statement above takes a character string
in YYYYMMDD format and converts it into a true date value. The #FORMAT built-in function
was used to convert the 2-byte binary YYYY value into a 4-byte character string.
■ J-2 CIMS Report Writer User Guide

Year 2000 Information ■

How to Prepare for the Year 2000 and Beyond
Other shops are storing dates as a binary or packed number of "days since xx/xx/xx"
(where xx/xx/xx is some fixed date.) For example, if your dates are stored as a 2-byte
binary "days since 1/1/1950", you could use these statements to convert that field into a
standard Report Writer date field:

FIELD: NEW-DATE COLUMN(1) LENGTH(2) TYPE(BINARY)
COMPUTE: MY-DATE = #MAKEDATE(NEW-DATE + 18262)

In the above example, 18,262 is added to the "days since 1/1/1950" value to get the
number of days since 1/1/1900, which is what Report Writer's #MAKEDATE built-in
function requires for numeric parms.

Note • The #FORMAT and #MAKEDATE built-in functions used in the above examples are
explained in Appendix D, Built-In Functions.

Another way to convert your special date fields into standard date fields is to write a data
exit program that Report Writer can call to perform the data conversion. Data exits are
discussed in Chapter 6, How to Define Your Input Files.

Q. Rather than make any changes to our files, we are using a "sliding century" (or
"windowing") concept to allow our YY date fields to work past the Year 2000. All
dates with years less than 80 will be considered to be 20YY dates. Dates with years
equal to or greater than 80 will be considered to be 19YY dates. Can Report Writer
accommodate such a scheme?

A. Yes. Just use Report Writer's CENTURY Option. For example, in the particular case you
described, you would add this statement near the beginning of your other Report Writer
control statements:

OPTION: CENTURY(80)

That option tells Report Writer that YY dates less than 80 are 20YY and all other dates are
19YY. Note that when the CENTURY Option is used, it is applied to all YY dates
encountered in the run. That includes YY dates from all of your input files, as well as any
MM/DD/YY date literals found in your control statements.

Q. Some of the YYMMDD dates in my file use a "sliding century" and others do not. What
can I do?

A. Since the CENTURY Option applies to all YY dates in a run, you would not use it in this
case. However, you can apply your own sliding century logic to individual fields by using
COMPUTE statements. For example, assume that you have a YYMMDD field whose cutoff year
is 50. You could handle it this way:

FIELD: YYMMDD-DATE COLUMN(1) LEN(6) TYPE(CHAR)
FIELD: YY-PART COLUMN(1) LEN(2) TYPE(CHAR)

COMPUTE: MY-DATE = WHEN(YY-PART < '50') ASSIGN(#MAKEDATE('20' + YYMMDD))
 ELSE ASSIGN(#MAKEDATE('19' + YYMMDD))
CIMS Report Writer User Guide J-3 ■

■ Year 2000 Information

How to Prepare for the Year 2000 and Beyond
Q. We use Report Writer to create a PC File that we download to use in a Lotus
spreadsheet. The dates in that PC File only have 2-digit years. How we can get 4-digit
years in our PC File?

A. Use the FORMAT option to specify a different default date display. For example:

OPTIONS: LOTUS FORMAT(MM-DD-YYYY)

The FORMAT option changes the default display format for date fields. In the above
example, dates will now be formatted as MM/DD/YYYY. This unquoted format works in
most recent versions of the popular spreadsheet programs. If your PC program still
requires quotation marks around dates, use this statement instead:

OPTIONS: LOTUS FORMAT(Q-MM-DD-YYYY)

Note • Be sure that the FORMAT option follows the PC format option (LOTUS in the
above examples). Otherwise, the PC format option will reset the default date display
format.

When using the Q-MM-DD-YYYY format, it is possible that the records in your PC File may
now need to be longer than before (since each date field is now 2 bytes longer.) Verify
that the record length specified in your execution JCL is still large enough to contain all
of your output fields. You can quickly determine this by running a test job and looking
for "truncation" warning messages in the control listing. If you get truncation warning
messages, increase the record length in your execution JCL (see page 8-7 and page 8-19.)
■ J-4 CIMS Report Writer User Guide

K
I/O Exits

Report Writer has an exit “hook” available for calling user-written I/O routines. Such “I/
O Exits” are useful for input files that require specialized processing. Examples of such
files are:

■ files that use a proprietary access method

■ files whose records are encrypted

■ files containing a number of “segments” (or array elements) that you wish to
“normalize”. That is, your exit can return more than one logical record to Report
Writer for each physical record present in the file.

Report Writer passes your I/O Exit program all of the information it needs to be able to
handle:

■ sequential or keyed reads

■ “multiple” (one-to-many) reads

■ KGE and/or GENERIC keys

■ KEYRANGE values

■ DDNAME/DLBL value to use

Thus, if you code your exit program to handle all of these possibilities, your users will be
able to use the exit-type file just like any other file with Report Writer. That is, they can
successfully use the KEYRANGE, MULTI, KGE, GENERIC and DDNAME/DLBL parms in the normal
way within their INPUT or READ statements. To the end-users, your exit-type files will look
just like any other file.

Report Writer also passes your exit program an optional, user-defined parm text
containing up to 255 bytes of whatever information you choose. You can use this parm
information to tell your exit program, for example, the kind of special processing it
should perform.
CIMS Report Writer User Guide K-1 ■

■ I/O Exits
How to Define an I/O Exit File

Use the IOEXIT parm in the FILE statement to define a file that will be handled in an
I/O Exit.

FILE: MY-FILE IOEXIT(‘program’ [,’parm’] [,TRACE]) LRECL(750)

Only a program name is required in the IOEXIT parm. The “parm” text is optional. Use
it to pass constant parm information to your I/O Exit. Use the TRACE parm when
developing new I/O Exits to see useful debug information in the control listing.

Besides the IOEXIT parm, the only other item required to define an I/O Exit file is a
maximum record length. In MVS, you can specify this with a LRECL parm (as shown
above) or omit it and use Report Writer’s default length. In VSE, you must use the ATTR
parm, like this:

FILE: MY-FILE IOEXIT(‘program’ [,’parm’] [,TRACE]) ATTR(EXIT,750)

When Is the I/O Exit Loaded?

The I/O Exit for an input is loaded the first time that Report Writer needs a record from
that input. That same copy of the program is then called for all subsequent requests for
that input record. If Report Writer never needs a record from a given input, the I/O Exit
for that input will not be loaded at all.

A separate copy of the exit program is loaded for each input record. That means that if
you use the same exit program for more than one input in a run (for example, in the
INPUT statement and in a READ statement), Report Writer loads two copies of the exit
program -- one for each input record.

When Is the I/O Exit Called?

The I/O Exit for an input is called each time Report Writer needs to obtain a record from
that input. In other words, the exit is called at the same times that Report Writer would,
for a nonexit-type input, issue its own I/O request. In addition, Report Writer calls the I/
O Exit once at end-of-job time to allow the exit to perform any close processing it desires.
Note that there is no separate call to the exit to perform “open file” processing. The exit
should perform any required open logic the first time that Report Writer calls it to obtain
a record.

Following is a more detailed explanation of when Report Writer reads records from
different kinds of inputs.

For the primary input (named in the INPUT statement), Report Writer simply calls the I/
O Exit repeatedly until the I/O Exit indicates that there are no more records in the file. The
I/O Exit indicates this by setting the $IXRETCD field to H'4' when it has no more records
to return to Report Writer. For primary input files, Report Writer always calls the I/O
Exit with the SEQ function (in $IXFUNC.)

Auxiliary input files (those named in READ statements) are handled differently depending
on whether or not the MULTI parm was also specified in the READ statement.
■ K-2 CIMS Report Writer User Guide

I/O Exits ■
For non-MULTI auxiliary inputs, Report Writer calls the I/O Exit the first time it needs a
field from a new auxiliary input record. When subsequent fields from the same input
record are needed, Report Writer will not call the I/O Exit again, since the record is
already available for it to use. For non-MULTI inputs, Report Writer calls the I/O Exit a
maximum of one time per primary input file record. (Report Writer may call the I/O Exit
zero times if it does not need any fields from that auxiliary input for a particular primary
input file record.) For non-MULTI auxiliary inputs, Report Writer always calls the I/O Exit
with the KEY function (in $IXFUNC.)

Processing is different for MULTI-type auxiliary inputs. In this case, each time Report
Writer reads a primary input file record, it calls the I/O Exit repeatedly (with the same
read key) until the exit indicates that there are no more records for that read key. The first
call (for a given primary input record) will have a function of FRST. Subsequent calls (for
the same primary input record) will have a function of NEXT. The I/O Exit should indicate
that there are no matching records (for FRST), or no more matching records (for NEXT), by
setting $IXRETCD to H'4'. Once Report Writer sees the return code of 4, it moves on to the
next primary input file record.

Note • For simplicity, we have described the case of a request with a primary input
file and a single MULTI-type auxiliary file. In cases where multiple MULTI-type auxiliary
files are used, the exit is actually called repeatedly for each logical combination of
primary input record and lower ranked auxiliary record(s).

Error Return Codes from the I/O Exit

For any type of input, the I/O Exit can indicate to Report Writer that an error condition
exists which prevents the exit from "reading" records from the input file. The exit
indicates this by setting $IXRETCD to H'12'. When Report Writer sees a return code of 12
from an exit, it prints a file error message in the control listing (along with any message
the I/O Exit may have placed in the $IXERR field.) Once a return code of 12 has been
received from an I/O Exit for an input, Report Writer stops processing that input and
does not call that I/O Exit any more.

What Does Report Writer Pass to the I/O Exit?

When the I/O Exit is called, register 1 will point to a fullword containing the address of
the $IX DSECT parm list. (The $IX DSECT is shown near the end of the sample program
that begins on page K-9.) The contents of the $IX DSECT will have been set correctly by
Report Writer, as described below. Register 13 points to an 18-fullword save area within
Report Writer which the I/O Exit should use to save Report Writer's registers. Register 14
contains the return address within Report Writer. Register 15 contains the entry point
address of the I/O Exit.

Report Writer always runs in 24-bit addressing mode. Therefore, the I/O Exit program
will be called in 24-bit address mode and must return to Report Writer in the same
mode.
CIMS Report Writer User Guide K-3 ■

■ I/O Exits
Note the $IX DSECT located near the end of the sample program. That DSECT shows the
complete parm list that Report Writer passes to all I/O Exit programs. Following is a
description of each item in the $IX DSECT.

Item Description

$IXNAME This 4-byte character field always contains the constant value "READ"
to identify the type of exit program being called.

$IXLEVEL This 4-byte character field contains the constant value "0001" to
identify the version level of this exit interface.

$IXFUNC This 4-byte character field tells the exit program what function Report
Writer is requesting of it. The values for this field are:

SEQ read the next (or first) sequential record from the file. This
function is used for any exit-type file used in an INPUT
statement.

KEY read the record, if any, that corresponds to the key value
(identified by the $IXKEYAD and $IXKEYLN fields.) This
function is used for any exit-type file used in a non-MULTI READ
statement.

FRST read the first record, if any, that corresponds to the key value
(identified by the $IXKEYAD and $IXKEYLN fields.) This
function is used for any exit-type file used in a MULTI-type READ
statement.

NEXT read the next record, if any, that corresponds to the key value
(identified by the $IXKEYAD and $IXKEYLN fields.) This
function is used for any exit-type file used in a MULTI-type READ
statement.

CLOS perform any close-type processing that may be required.
Report Writer itself does not require any particular action for
this call. This wrap-up call is provided in case your access
method does require some type of close processing. Note that
no CLOS call is made to files when either of these conditions
exists:

no read requests were made to the file

the exit returned an error return code (12) to Report Writer.

$IXRECNM This 70-byte character fields contains the record name of the input
being processed. The record name is taken from the RECNAME parm of
the INPUT or READ statement. If no RECNAME parm is specified, the
record name defaults to the filename.

$IXFILNM This 70-byte character fields contains the filename of the file being
processed.
■ K-4 CIMS Report Writer User Guide

I/O Exits ■
$IXKEYAD For requests that involve a read key (functions KEY, FRST and NEXT),
this fullword contains the address of the key value to be used. The
length of the key value is contained in the halfword field $IXKEYLN.

$IXPRMAD This fullword contains the address of the parm text specified in the
IOEXIT parm. If no parm text was specified, this field contains hex
zeros. The length of the parm text is contained in the halfword field
$IXPRMLN.

$IXRECAD This fullword contains the address of the I/O area that Report Writer
has reserved for the exit program to place the records that it reads for
this file. The exit program should place its records here. The length of
the area reserved for these records is contained in the halfword value
$IXRECLN. You can use the CLEARIO parm in the INPUT or READ
statement to specify that this I/O area always be cleared (to hex zeros
or to spaces) before each call, or that it not be cleared at all.

$IXKRBAD For primary input file requests (SEQ function) where a KEYRANGE parm
was specified, this fullword contains the address of the beginning
keyrange value to be used. The length of this value is contained in the
halfword field $IXKRBLN.

$IXKREAD For primary input file requests (SEQ function) where a KEYRANGE parm
was specified, this fullword contains the address of the ending
keyrange value to be used. The length of this value is contained in the
halfword field $IXKRELN.

If the user specified only a single value in the KEYRANGE parm, that
value is used as both the beginning and the ending keyrange value.
That is, $IXKRBAD and $IXKREAD will both contain the same address,
and $IXKRBLN and $IXKRELN will both contain the same length.

$IXKEYLN For requests that involve a read key (functions KEY, FRST and NEXT),
this halfword contains the length of the read key value that is present
at the address contained in $IXKEYAD.

Note that Report Writer does not perform any validity-checking on
the readkey's length (since Report Writer knows nothing about your
file's structure.) This length is simply the length of whatever read key
field the user specified in the READ statement. Your exit program
should determine whether the key length is a full key, a partial
(generic) key, or an invalid key (too long) and should execute
accordingly. If the key length is something that your exit program
cannot handle, you should place an error message to that effect in
$IXERR, set the return code ($IXRETCD) to 12 and return to Report
Writer. Report Writer will print your error message for the user and
stop processing the file.

$IXPRMLN This halfword contains the length of the parm text (from the IOEXIT
parm) that appears at the address contained in $IXPRMAD, if any.

$IXRECLN This halfword contains the length of the I/O area reserved for the exit
program at the address contained in $IXRECAD.

Item Description
CIMS Report Writer User Guide K-5 ■

■ I/O Exits
$IXKRBLN For primary input file requests (SEQ function) where a KEYRANGE parm
was specified, this halfword contains the length of the beginning
keyrange value that is present at the address contained in $IXKRBAD.

Note that Report Writer does not perform any sort of validity-
checking on the length of the beginning keyrange value (since Report
Writer knows nothing about your file's structure.)

$IXKRELN For primary input file requests (SEQ function) where a KEYRANGE parm
was specified, this halfword contains the length of the ending
keyrange value that is present at the address contained in $IXKREAD.

Note that Report Writer does not perform any sort of validity-
checking on the length of the ending keyrange value (since Report
Writer knows nothing about your file's structure.)

$IXRETCD This halfword must be set by the I/O Exit program before it returns to
Report Writer after each call. The following list shows the valid values
for $IXRETCD. If $IXRETCD contains any other value upon return to
Report Writer, an error message will print and no further access to the
file will be attempted.

0 record read. A record has been placed in the I/O area. (Or, for
CLOS requests, the close processing, if any, has been
performed.)

4 no record is being returned. Use return code 4 to indicate end-
of-file (for SEQ requests) or record-not-found (for KEY, FRST
and NEXT requests.)

12 error. Use this return code if you cannot process the file for
any reason. Examples of this are: file is not available, key is
wrong length, an I/O error occurred trying to process the file,
parm information is invalid, etc. You should also place an
error message indicating the exact error in $IXERR. That
message will be printed in the control listing for the user to
see. Once Report Writer sees a return code of 12 for an input
file, it does not attempt any further processing of that input.

$IXDDN For MVS, this 8-byte character fields contains the value of the DDNAME
parm, if any, being used for the input file. For VSE, this field contains
the DLBL/TLBL value (from the ATTR parm), if any, being used for the
input file.

$IXMULTI This 1-byte character field contains a Y if the user specified the MULTI
("multiple records per key") parm in the READ statement for this input
record.

$IXGEN This 1-byte character field contains a Y if the user specified the
GENERIC parm in the READ statement for this input record.

Item Description
■ K-6 CIMS Report Writer User Guide

I/O Exits ■
Most of the $IX fields are guaranteed to contain the same information on each call to the
exit program. (A list of exceptions is shown below.) Knowing this can simplify the code
you write. For example, the $IXRECAD value (that is, the address where your exit should
put its record) will be the same for all calls to a particular input's I/O Exit program. Thus,
in the sample exit program, we used the $IXRECAD value on the first call to modify our
RPL (to tell the RPL where to put the VSAM record during later GETs.) We did not need to
check on subsequent calls to see if the $IXRECAD value had changed.

For a given input's I/O Exit, the only items in the $IX DSECT that might change from call
to call are:

■ the function code in $IXFUNC

■ the return code, which is initialized to -1 by Report Writer before each call.

■ the error message area ($IXERR) is reset to blanks each time it is used.

What Does the I/O Exit Pass Back to Report Writer?

Before returning to Report Writer, the I/O Exit program should do the following:

■ set a valid return code in $IXRETCD. (The valid return codes are listed under the
description of $IXRETCD in the section above.)

■ when a return code of 0 is set (for any request other than CLOS), the exit must also
place a record in the I/O Area (pointed to by $IXRECAD, and for a length of $IXRECLN).
Be careful not to move more than $IXRECLN number of bytes to this location. Doing
so may cause unpredictable results or an ABEND. If you need a larger I/O area, re-run
the job using a larger LRECL parm (MVS) or ATTR parm record size (VSE.)

$IXKGE This 1-byte character field contains a Y if the user specified the KGE
("key greater or equal") parm in the READ statement for this input
record.

$IXUSER This 50-byte, doubleword aligned area is available for the exit
program to use any way it wishes. The area is initialized by Report
Writer to hex zeros before the first call. Thereafter, Report Writer does
not alter the contents of this field.

$IXERR The I/O Exit program should use this 60-byte character field for any
messages it wishes to print in the control listing. Use this field to print
error messages, warning messages, debug messages, etc. for the user.
Report Writer initializes this field to all spaces. Upon return to Report
Writer, if the first byte of this field is non-blank, Report Writer prints
the contents of this field as a Warning-level message in the control
listing and blanks the field out again.

$IXUNUSD This 50-byte area is reserved for future use and must not be used by
the I/O Exit program.

Item Description
CIMS Report Writer User Guide K-7 ■

■ I/O Exits
■ optionally, any message can be placed in $IXERR. This message will be printed in the
control listing with a severity level of WARNING. The message must begin with a non-
blank in the first byte.

■ optionally, any information can be placed in $IXUSER and will be preserved between
calls.

The I/O Exit must not alter any other part of the $IX DSECT or memory areas pointed to
by items in the $IX DSECT. The I/O Exit must especially be careful not to write beyond
the I/O area reserved for it (at $IXRECAD).

CAUTION • If your exit program fails to ever indicate EOF (via return code 4), Report
Writer will continue calling your exit program endlessly until the CPU time is exceeded or
the run ABENDs. To avoid this while developing new I/O Exit programs, you may want to
use the following option as a safeguard:

OPTION: MAXINPUT(1000)

The above statement tells Report Writer to stop the run after 1000 primary records have
been read (even if EOF has not yet been reached.)

Sample I/O Exit Program

A sample I/O Exit program written in Assembly language appears on the following pages.
This sample program simply reads records from a normal KSDS VSAM file (our sample
EMPL-FILE, as a matter of fact.) Its purpose is to help illustrate how the exit program
linkage and logical flow work. You can use this sample program as a model for writing
your own I/O Exit programs. A copy of this program can be downloaded from the Web
at www.cimslab.com.

Here are some ideas that may help you when developing your own I/O Exit.

■ to prevent run-away jobs (caused by forgetting to return an EOF return code), start off
using a MAXINPUT option, like this:

OPTION: MAXINPUT(1000)

■ specify TRACE in the IOEXIT parm, like this:

FILE: MY-FILE IOEXIT(‘myprogram',TRACE) LRECL(500)

The TRACE information in the control listing will help you see what is being passed to
and from the IOEXIT, as well as the return code for each call. Once you have the basic
flow working correctly, you can remove the TRACE parm since it produces a lot of
output.

■ you can have your exit put debug messages in the $IXERR field and they will appear in
the control listing. Doing this instead of using TRACE reduces the amount of output
you have to wade through.

■ by moving important "working storage" variables to the $IXUSER area at critical times,
you can see (in the TRACE output) what values they had. If you need more room than
this for debug information, request a larger I/O area and use the excess portion of the
I/O area (beyond your record) to hold debug values. The entire I/O area is printed in
the TRACE output.
■ K-8 CIMS Report Writer User Guide

I/O Exits ■
Sample I/O Exit Program Written in Assembly Language - 1 of 9

IOEXITA TITLE '- SAMPLE REPORT WRITER I/O EXIT'

* *
* SAMPLE I/O EXIT PROGRAM -- ASSEMBLY LANGUAGE *
* *
* THIS SAMPLE ASSEMBLER I/O EXIT READS RECORDS FROM A VSAM EMPLOYEE *
* FILE AND PASSES THE RECORDS BACK TO REPORT WRITER. IT CAN READ *
* THE FILE EITHER SEQUENTIALLY OR RANDOMLY (USING KEYS). *
* *
* THIS SAMPLE EXIT PROGRAM IGNORES THE "GENERIC" AND "KGE" PARMS *
* IN THE CALLING PARM INFO. *
* *
* ON ENTRY TO THIS EXIT: *
* R1 -- POINTS TO A FULLWORD WHICH CONTAINS THE ADDRESS *
* OF THE $IX DSECT *
* R13 -- POINTS TO A 18-FULLWORD SAVEAREA IN CALLERS PROGRAM *
* R14 -- RETURN ADDRESS WITHIN CALLER'S PROGRAM *
* R15 -- CONTAINS THE STARTING ADDRESS OF THIS EXIT PROGRAM *
* *
* ON EXIT, THIS ROUTINE WILL HAVE SET: *
* -THE RECORD TO BE PROCESSED (IF ANY) AT THE LOCATION SPECIFIED *
* BY $IXRECAD (FOR A MAXIMUM LENGTH OF $IXRECLN). *
* -A RETURN CODE (IN $IXRETCD) AS FOLLOWS: *
* 0 -- NORMAL (WE RETURNED A RECORD TO BE PROCESSED) *
* 4 -- EOF OR "KEY NOT FOUND" *
* 12 -- ERROR CONDITION (FILE I/O ERROR, LOGICAL ERROR, *
* INVALID PARM, ETC.) *
* -OPTIONALLY (ON ERRORS) A MESSAGE IN $IXERR TO BE PRINTED IN *
* THE REPORT WRITER CONTROL LISTING. *
* *
**
IOEXITA START 0
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
 STM R14,R12,12(R13) SAVE CALLERS REGS
 LR R10,R15 USE R10 AS BASE REGISTER FOR EXIT
 USING IOEXITA,R10 SET ADDRESSIBILITY FOR THIS EXIT
*
 ST R13,OURSAVE+4 POINT OUR SAVE AREA TO CALLER'S SA
 LA R15,OURSAVE POINT TO OUR SAVEAREA
 ST R15,8(R13) POINT CALLER'S SAVEAREA TO OURS
 LR R13,R15 LEAVE R13 POINTING TO OUR SAVEAREA
*

CIMS Report Writer User Guide K-9 ■

■ I/O Exits
Sample I/O Exit Program Written in Assembly Language - 2 of 9

 L R7,0(R1) LOAD R7 WITH ADDR OF PARM DSECT
 USING $IX,R7 ADDRESS CALLER'S PARM DSECT
*
 CLC $IXFUNC,=CL4'SEQ ' DOES CALLER WANT A SEQUENTIAL READ?
 BE DOSEQ YES - DO SEQUENTIAL IO LOGIC
*
 CLC $IXFUNC,=CL4'KEY ' DOES CALLER WANT A KEYED READ?
 BE DOKEY YES - DO KEYED IO LOGIC
*
 CLC $IXFUNC,=CL4'FRST' DOES CALLER WANT 1ST MATCHING KEY?
 BE DOFIRST YES - DO "FIRST" IO LOGIC
*
 CLC $IXFUNC,=CL4'NEXT' DOES CALLER WANT NEXT MACTHING KEY?
 BE DONEXT YES - DO "NEXT" IO LOGIC
*
 CLC $IXFUNC,=CL4'CLOS' DOES CALLER WANT TO CLOSE A FILE?
 BE DOCLOSE YES - DO CLOSE LOGIC
*
 MVC $IXERR(22),=CL22'UNSUPPORTED FUNCTION: '
 MVC $IXERR+22(4),$IXFUNC SHOW THE FUNCTION
 B RETERROR RETURN WITH ERROR RETCODE
*
*
**
* DO SEQUENTIAL READ OF EMPLOYEE FILE *
**
DOSEQ EQU *
 CLI SEQOPEN,C'Y' HAVE WE OPENED THE SEQ ACB YET?
 BE SEQISOPN B IF YES - DON'T OPEN IT AGAIN
*
**
* DO ONE-TIME STUFF ON FIRST CALL. OPEN ACB AND MODIFY THE RPL. *
**
 MVI SEQOPEN,C'Y' REMEMBER FILE HAS BEEN OPENED
 MVC SEQNAME,$IXRECNM SAVE NAME OF SEQ INPUT (FOR CLOSE)
*
 OPEN SEQACB OPEN THE ACB FOR SEQ I/O
 CH R15,=H'4' WAS OPEN SUCCESSFUL?
 BNH SEQDORPL YES - NOW PREPARE THE RPL
*
 MVC $IXERR(25),=CL25'VSAM ERROR OPENING ACBSEQ'
 B RETERROR RETURN WITH ERROR RETCODE
*
SEQDORPL EQU * SEQSCB IS OPENED. MODIFY RPL ONCE
 L R2,$IXRECAD RECORD SHOULD GO HERE
 LH R3,$IXRECLN THIS MUCH ROOM AVAILABLE FOR RECORD
 MODCB RPL=SEQRPL,AREA=(R2),AREALEN=(R3)
*
 LTR R15,R15 MODCB OK?
 BZ SEQISOPN YES - ONE-TIME STUFF DONE
*
 MVC $IXERR(32),=CL32'VSAM ERROR DOING MODCB OF SEQRPL'
 B RETERROR RETURN WITH ERROR RETCODE
*
**
* ONE-TIME STUFF HAS BEEN DONE. GET NEXT SEQUENTIAL RECORD. *
**
■ K-10 CIMS Report Writer User Guide

I/O Exits ■
Sample I/O Exit Program Written in Assembly Language - 3 of 9

SEQISOPN EQU * ONETIME STUFF DONE - DO GET
 GET RPL=SEQRPL READ RECORD INTO REC AREA
*
 LTR R15,R15
 BZ RETGOOD IF WE GOT A RECORD, RETURN NOW
*
* GET FEEDBACK TO SEE WHAT'S WRONG
 SHOWCB RPL=SEQRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*
 CLC FEEDBACK,=F'4' END-OF-FILE CODE ?
 BE RETEOF YES - RETURN INDICATING EOF
*
 MVC $IXERR(26),=CL26'VSAM ERROR GETTING SEQRPL '
 MVC $IXERR+26(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
*
**
* DO KEYED READ OF EMPLOYEE FILE *
**
DOKEY EQU *
 CLI KEYOPEN,C'Y' HAVE WE OPENED THE KEYED ACB YET?
 BE KEYISOPN B IF YES - DON'T OPEN IT AGAIN
*
**
* DO ONE-TIME STUFF ON FIRST CALL. OPEN ACB AND MODIFY THE RPL. *
**
 MVI KEYOPEN,C'Y' REMEMBER FILE HAS BEEN OPENED
 MVC KEYNAME,$IXRECNM SAVE NAME OF KEY INPUT (FOR CLOSE)
*
 OPEN KEYACB OPEN THE ACB FOR KEYED (DIRECT) I/O
 CH R15,=H'4' WAS OPEN SUCCESSFUL?
 BNH KEYDORPL YES - NOW PREPARE THE RPL
*
 MVC $IXERR(25),=CL25'VSAM ERROR OPENING KEYACB'
 B RETERROR RETURN WITH ERROR RETCODE
*
KEYDORPL EQU * KEYACB IS OPENED -- PREPARE THE RPL
 L R2,$IXRECAD RECORD SHOULD GO HERE
 LH R3,$IXRECLN THIS MUCH ROOM AVAILABLE FOR RECORD
 L R4,$IXKEYAD THE KEY TO BE READ IS HERE
 LH R5,$IXKEYLN THIS IS THE LENGTH OF THE KEY
*
 MODCB RPL=KEYRPL,AREA=(R2),AREALEN=(R3), X
 ARG=(R4),KEYLEN=(R5)
*
**
* ONE-TIME STUFF HAS BEEN DONE. GET A KEYED RECORD. *
**
KEYISOPN EQU * ONE-TIME STUFF DONE - DO GET
 GET RPL=KEYRPL READ RECORD FOR KEY INTO REC AREA
*
 LTR R15,R15
 BZ RETGOOD IF WE GOT A RECORD, RETURN NOW
*
* GET FEEDBACK TO SEE WHAT'S WRONG
 SHOWCB RPL=KEYRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*

CIMS Report Writer User Guide K-11 ■

■ I/O Exits
Sample I/O Exit Program Written in Assembly Language - 4 of 9

 CLC FEEDBACK,=F'16' RECORD NOT FOUND?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 MVC $IXERR(26),=CL26'VSAM ERROR GETTING KEYRPL '
 MVC $IXERR+26(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
*
**
* DO READ-FIRST OF EMPLOYEE FILE *
**
DOFIRST EQU *
 CLI MULOPEN,C'Y' HAVE WE OPENED THE MULTIACB YET?
 BE MULISOPN B IF YES - DON'T OPEN IT AGAIN
*
**
* DO ONE-TIME STUFF ON FIRST CALL. OPEN ACB AND MODIFY THE RPL. *
**
 MVI MULOPEN,C'Y' REMEMBER FILE HAS BEEN OPENED
 MVC MULNAME,$IXRECNM SAVE NAME OF KEY INPUT (FOR CLOSE)
*
 OPEN MULTIACB OPEN THE ACB FOR MULTI READ I/O
 CH R15,=H'4' WAS OPEN SUCCESSFUL?
 BNH MULDORPL YES - NOW PREPARE THE RPL
*
 MVC $IXERR(27),=CL27'VSAM ERROR OPENING MULTIACB'
 B RETERROR RETURN WITH ERROR RETCODE
*
MULDORPL EQU * MULTIACB IS OPEN -- PREPARE THE RPL
 L R2,$IXRECAD RECORD SHOULD GO HERE
 LH R3,$IXRECLN THIS MUCH ROOM AVAILABLE FOR RECORD
 L R4,$IXKEYAD THE KEY TO BE READ IS HERE
 LH R5,$IXKEYLN THIS IS THE LENGTH OF THE KEY
*
 MODCB RPL=MULTIRPL,AREA=(R2),AREALEN=(R3), X
 ARG=(R4),KEYLEN=(R5)
*
 LTR R15,R15 MODCB OK?
 BZ MULISOPN YES - ONE-TIME STUFF DONE
*
 MVC $IXERR(34),=CL34'VSAM ERROR DOING MODCB OF MULTIRPL'
 B RETERROR RETURN WITH ERROR RETCODE
*
**
* ONE-TIME STUFF HAS BEEN DONE. POINT AND GET 1ST RECORD. *
**
MULISOPN EQU * ONE-TIME STUFF DONE - DO POINT/GET
*
 POINT RPL=MULTIRPL SET POINTER FOR DESIRED KEY
 LTR R15,R15 OKAY?
 BZ MULPNTOK B IF POINT WAS OK
*

* I/O ERROR DOING POINT. CHECK IT OUT. (MAY JUST BE NOT FOUND) *

 SHOWCB RPL=MULTIRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*

■ K-12 CIMS Report Writer User Guide

I/O Exits ■
Sample I/O Exit Program Written in Assembly Language - 5 of 9

 CLC FEEDBACK,=F'16' RECORD NOT FOUND?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 CLC FEEDBACK,=F'4' EOF?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 MVC $IXERR(29),=CL29'VSAM ERROR POINTING MULTIRPL '
 MVC $IXERR+29(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
*
 LTR R15,R15 MODCB OK?
 BZ KEYISOPN YES - ONE-TIME STUFF DONE
*
 MVC $IXERR(32),=CL32'VSAM ERROR DOING MODCB OF KEYRPL'
 B RETERROR RETURN WITH ERROR RETCODE
*
*
MULPNTOK EQU * POINT WAS OK - NOW GET FIRST REC
 GET RPL=MULTIRPL GET FIRST REC FOR CURRENT KEY
*
 LTR R15,R15 GET THE RECORD?
 BZ RETGOOD IF WE GOT A RECORD, RETURN NOW
*
* GET FEEDBACK TO SEE WHAT'S WRONG
 SHOWCB RPL=MULTIRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*
 CLC FEEDBACK,=F'16' RECORD NOT FOUND?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
 CLC FEEDBACK,=F'4' EOF?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*
 MVC $IXERR(28),=CL28'VSAM ERROR GETTING MULTIRPL '
 MVC $IXERR+28(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
*
**
* WE GOT ANOTHER RECORD. WE COMPARE IT'S KEY TO SEE IF IT IS A *
* MATCH FOR THE DESIRED READKEY. *
**
DONEXT EQU *
*
**
* ONE-TIME STUFF WAS DONE IN A PRIOR "READ FIRST" CALL. *
**
 GET RPL=MULTIRPL GET NEXT SEQUENTIAL RECORD
*
 LTR R15,R15 GET THE RECORD?
 BZ NEXTOK IF WE GOT A RECORD, CHECK IT'S KEY
*
* GET FEEDBACK TO SEE WHAT'S WRONG
 SHOWCB RPL=MULTIRPL,AREA=(S,FEEDBACK),FIELDS=FDBK,LENGTH=4
*
 CLC FEEDBACK,=F'4' EOF?
 BE RETNTFND YES - RETURN INDICATING NOT FOUND
*

CIMS Report Writer User Guide K-13 ■

■ I/O Exits
Sample I/O Exit Program Written in Assembly Language - 6 of 9

 MVC $IXERR(35),=CL35'VSAM ERROR GETTING (NEXT) MULTIRPL '
 MVC $IXERR+35(4),FEEDBACK USER MUST VIEW THIS IN HEX
 B RETERROR RETURN WITH ERROR RETCODE
*
NEXTOK EQU *
 L R2,$IXRECAD RECORD SHOULD GO HERE
 LH R3,$IXRECLN THIS MUCH ROOM AVAILABLE FOR RECORD
 L R4,$IXKEYAD THE KEY TO BE READ IS HERE
 LH R5,$IXKEYLN THIS IS THE LENGTH OF THE KEY
*
 BCTR R5,0 LENGTH MINUS 1 OF READKEY
 EX R5,COMPKEY SEE IF READKEY MATCHES RECORD KEY
 BE RETGOOD IF RECORD KEY MATCHES - RETURN REC
 B RETNTFND DOESN'T MATCH - RETURN "NOT FOUND"
*
COMPKEY CLC 0(0,R2),0(R4) COMPARE READKEY WITH RECORD KEY
*
*

* CLOSE ONE OF REPORT WRITER'S INPUTS *

DOCLOSE EQU *
 CLC $IXRECNM,SEQNAME IS THIS FOR THE SEQ ACB?
 BE CLOSESEQ B IF YES
*
 CLC $IXRECNM,KEYNAME IS THIS FOR THE KEYED ACB?
 BE CLOSEKEY B IF YES
*
 CLC $IXRECNM,MULNAME IS THIS FOR THE MULTI ACB?
 BE CLOSEMUL B IF YES
*
 MVC $IXERR(31),=CL31'CLOSE REQUEST FOR UNKNOWN INPUT'
 B RETERROR RETURN WITH ERROR RETCODE
*
CLOSESEQ EQU *
 CLOSE SEQACB
 B RETGOOD
*
CLOSEKEY EQU *
 CLOSE KEYACB
 B RETGOOD
*
CLOSEMUL EQU *
 CLOSE MULTIACB
 B RETGOOD
*
*
*
*

* RETURN TO REPORT WRITER, AFTER SETTING CORRECT RETURN CODE. *

RETGOOD EQU *
 MVC $IXRETCD,=H'0' INDICATE THE RECORD IS READY
 B RETURN
*

■ K-14 CIMS Report Writer User Guide

I/O Exits ■
Sample I/O Exit Program Written in Assembly Language - 7 of 9

RETNTFND EQU *
RETEOF EQU *
 MVC $IXRETCD,=H'4' INDICATE EOF / KEY-NOT-FOUND
 B RETURN
*
RETERROR EQU *
 MVC $IXRETCD,=H'12' INDICATE LOGICAL/PHYSICAL ERROR
 B RETURN
*
RETURN EQU *
 L R13,OURSAVE+4 RESTORE CALLER'S R13 (SAVE AREA PTR)
 LM R14,R12,12(R13) RESTORE CALLER'S REGS FROM HIS SA
 BR R14 RETURN TO REPORT WRITER
*
*
OURSAVE DC 18F'0' OUR SAVE AREA
*
FEEDBACK DS F HOLDS FEEDBACK INFO FROM RPL
*
*

* DATA READ FOR SEQUENTIAL FILE I/O *

SEQOPEN DC C'N' FLAG - WHETHER SEQ ACB IS OPEN YET
SEQNAME DC CL70' ' REPORT WRITER NAME OF SEQ INPUT
SEQACB ACB DDNAME=EMPLDD, ACB FOR SEQUENTIAL IO TO EMPL FILE X
 MACRF=(SEQ,KEY)
*
SEQRPL RPL ACB=SEQACB, RPL FOR SEQUENTIAL IO TO EMPL FILE X
 OPTCD=(KEY,SEQ)
*
*

* DATA AREA FOR KEYED FILE I/O *

KEYOPEN DC C'N' FLAG - WHETHER KEY ACB IS OPEN YET
KEYNAME DC CL70' ' REPORT WRITER NAME OF KEYED INPUT
KEYACB ACB DDNAME=EMPLDD, ACB FOR KEYED IO TO EMPL FILE X
 MACRF=(KEY,DIR)
*
KEYRPL RPL ACB=KEYACB, RPL FOR KEYED IO TO EMPL FILE X
 OPTCD=(KEY,DIR)
*
*

* DATA AREA FOR MULTIPLE KEYS FILE I/O *

MULOPEN DC C'N' FLAG - WHETHER MULTIACB IS OPEN YET
MULNAME DC CL70' ' REPORT WRITER NAME OF MULTI INPUT
MULTIACB ACB DDNAME=EMPLDD, ACB FOR MULTI IO TO EMPL FILE X
 MACRF=(KEY,SEQ)
*
MULTIRPL RPL ACB=MULTIACB, RPL FOR MULTI IO TO EMPL FILE X
 OPTCD=(KEY,SEQ,GEN)
*
 EJECT
CIMS Report Writer User Guide K-15 ■

■ I/O Exits
Sample I/O Exit Program Written in Assembly Language - 8 of 9

* *
* $IX -- PARM DSECT FOR CALLING USER I/O EXIT (FOR INPUT) *
* *

$IXDSECT DSECT , IO EXIT (INPUT) PARM DSECT
$IX DS 0D
*
$IXNAME DC CL4'READ' NAME OF EXIT
$IXLEVEL DC CL4'0001' LEVEL NUMBER
$IXFUNC DC CL4' ' FUNCTION (SEQ,KEY,FRST,NEXT,CLOS)
**
* $IXFUNC CAN HAVE THESE VALUES ON ENTRY TO THE USER EXIT: *
* "SEQ " -- RETURN THE NEXT (POSSIBLY FIRST) RECORD SEQUENTIALLY *
* USED WITH EXIT-TYPE FILES NAMED IN THE INPUT: STMT. *
* "KEY " -- RETURN THE RECORD (IF ANY) CORRESPONDING TO THE KEY *
* VALUE DESCRIBED BY $IXKEYAD AND $IXKEYLN *
* USED WITH EXIT-TYPE FILES NAMED IN A READ: STMT *
* WHICH DOES NOT CONTAIN THE "MULTI" PARM. *
* "FRST" -- RETURN THE FIRST RECORD (IF ANY) CORRESPONDING TO *
* THE KEY VALUE DESCRIBED BY $IXKEYAD AND $IXKEYLN *
* USED WITH EXIT-TYPE FILES NAMED IN A READ: STMT *
* WHICH DOES CONTAIN THE "MULTI" PARM. *
* "NEXT" -- RETURN THE NEXT RECORD (IF ANY) CORRESPONDING TO *
* THE KEY VALUE DESCRIBED BY $IXKEYAD AND $IXKEYLN *
* USED WITH EXIT-TYPE FILES NAMED IN A READ: STMT *
* WHICH DOES CONTAIN THE "MULTI" PARM. *
* "CLOS" -- REPORT WRITER HAS FINISHED USING THIS FILE. EXIT *
* CAN PERFORM ANY CLOSE-UP LOGIC IT DESIRES, BUT NONE *
* IS REQUIRED BY SPECTURM WRITER. *
* USED WITH ALL EXIT-TYPE FILES USED IN A RUN. *
**
$IXRECNM DS CL70 RECNAME OF INPUT BEING PROCESSED
$IXFILNM DS CL70 FILENAME OF FIELD BEING PROC'ED
 DS 0F ALIGN FOLLOWING TO FULLWORD
$IXKEYAD DS A ADDR OF KEY VALUE (OR ZERO FOR SEQ)
$IXPRMAD DS A ADDR OF PARM TEXT
$IXRECAD DS A ADDR WHERE EXIT SHOULD PUT RECORD
$IXKRBAD DS A ADDR OF KEYRANGE BEGIN KEY TEXT
$IXKREAD DS A ADDR OF KEYRANGE END KEY TEXT
$IXKEYLN DS AL2 LENGTH OF KEY VALUE
$IXPRMLN DS AL2 LENGTH OF PARM TEXT
$IXRECLN DS AL2 LENGTH OF AREA RESERVED FOR RECORD
$IXKRBLN DS AL2 LGTH OF KEYRANGE BEGIN KEY TEXT
$IXKRELN DS AL2 LGTH OF KEYRANGE END KEY TEXT
$IXRETCD DS AL2 RETURN CODE FROM EXIT (TO S/W)

* $IXRETCD SHOULD BE SET TO ONE OF THE FOLLOWING VALUES BY THE EXIT: *
* 0 -- RECORD READ SUCCESSFULLY (FOR SEQ,KEY,FRST AND NEXT). *
* OR ,CLOSE LOGIC PERFORMED (FOR "CLOS" CALLS). *
* 4 -- MEANS "FILE IS OK, BUT NO RECORD IS BEING RETURNED". *
* FOR SEQ CALLS, IT MEANS END-OF-FILE. *
* FOR KEY AND FRST CALLS, MEANS NO RECORD EXISTS FOR THE KEY. *
* FOR NEXT CALLS, MEANS NO MORE RECORDS EXIST FOR THE KEY. *
* 12 -- MEANS THE FILE HAS A PHYSICAL OR LOGICAL ERROR AND IS NOT *
* USABLE. REPORT WRITER SHOULD NOT ATTEMPT TO PROCESS THE *
* FILE FURTHER. *

■ K-16 CIMS Report Writer User Guide

I/O Exits ■
Sample I/O Exit Program Written in Assembly Language - 9 of 9

$IXDDN DS CL8 DDNAME/DLBL NAME
$IXMULTI DS CL1 Y/N "MULTI" PARM
$IXGEN DS CL1 Y/N "GENERIC" PARM
$IXKGE DS CL1 Y/N "KGE" PARM
 DS 0D ALIGN FOLLOWING TO DOUBLEWORD
$IXUSER DS CL50 USER AREA - INIT'ED TO X'00' ONCE
$IXERR DS CL60 ERROR MSG (SET BY USER EXIT)
$IXUNUSD DS XL50 RESERVED
*
*
 END IOEXITA
CIMS Report Writer User Guide K-17 ■

■ I/O Exits
■ K-18 CIMS Report Writer User Guide

L
DB2 Option Installation

Introduction . L-2

Step 1. Link-Edit the Object Code . L-2

Step 2. DB2 Setup . L-3
CIMS Report Writer User Guide L-1 ■

■ DB2 Option Installation

Introduction
Introduction L

This document explains how to install CIMS Report Writer MVS (including the DB2
Option) using the object code provided in the CIMS Report Library (CIMS.REPTLIB).

Step 1. Link-Edit the Object Code L

Run a job on your OS/390 machine to link-edit the object code file and produce an
executable load module. Use the sample JCL below as a guide and modify it for your
shop.

The OBJLIB DD should point to the CIMS Report Library PDS that contains the CIMS
Report Writer object code files (SWDB2280, SWMVS280).

 The SYSLMOD DD should point to an existing load library where you want the SPECTWTR
load module to be placed. Note that the "(R)" parm in the SYSLIN control cards means
that any existing module named SPECTWTR in that library will be overwritten.

The SYSLIB DD should point to your shop's DB2 load library (which contains members
such as DSNALI.)
■ L-2 CIMS Report Writer User Guide

DB2 Option Installation ■

Introduction
Link Edit JCL (with DB2 Option)

(CIMS.REPTLIB member LINKRWDB)

//** JOBCARD <-- MODIFY THIS LINE
//*
//*===
//* LINK EDIT CIMS REPORT WRITTER OBJECT CODE WITH DB2 OPTION =
//*===
//LKEDSW EXEC PGM=IEWL,REGION=1024K,
// PARM=(LIST,LET)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(30))
//SYSPRINT DD SYSOUT=*
//OBJLIB DD DSN=CIMS.REPTLIB,DISP=SHR <-- MODIFY THIS LINE
//SYSLMOD DD DSN=CIMS.LOAD.MODULES,DISP=SHR <-- MODIFY THIS LINE
//SYSLIB DD DSN=XXXXXX.DB2.DSNLOAD,DISP=SHR <-- MODIFY THIS LINE
//SYSLIN DD *
 ENTRY SWINIT
 ORDER SWINIT
 INCLUDE SYSLIB(DSNALI)
 INCLUDE OBJLIB(SWDB2280)
 INCLUDE OBJLIB(SWMVS280)
 NAME SPECTWTR(R)
/*
//*
//ZAPACCT EXEC PGM=AMASPZAP
//SYSLIB DD DSN=CIMS.LOAD.MODULES,DISP=SHR <-- MODIFY THIS LINE
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
NAME SPECTWTR SWLICENS
REP 0014 C3C9D4E27A40C3C9D4E240D3C1C26B40C9D5C34B4040404040404040
REP 0030 404040404040404040404040
REP 003C 0215D37B2B4772173EA33CD3BE14E5B6
REP 004C 00000000000000000000000000000000
REP 00DC C6969940E2A497979699A340C381939340C3C9D4E240D381826B40C9
REP 00F8 95834B4081A3404DF8F0F05D40F2F8F360F4F2F6F740969940859481
REP 0114 89934081A340A2A497979699A37C838994A29381824B839694404040

If you get a return code of 0 from this step, you have successfully link-edited CIMS Report
Writer.

If you get a non-zero return code, it probably means that there is some mistake in the
link-edit JCL. (For example, the SYSLIB DD may be pointing to the wrong library.) Repeat
link-edit step carefully.

Step 2. DB2 Setup L

In order to use CIMS Report Writer's DB2 Option, you will need to perform the following
DB2 setup steps:

1 a DB2 "plan" must be "bound". This plan identifies CIMS Report Writer to your DB2
system.

2 authority to execute this plan must be "granted" to your users.
CIMS Report Writer User Guide L-3 ■

■ DB2 Option Installation

Introduction
Note • If CIMS Report Writer will be used on multiple DB2 subsystems, these two
steps must be performed for each subsystem.

Step A. Creating the DB2 Plan

The first step is to create a new DB2 plan. (In most shops, this is done by the Database
Administrator.) The plan name should be "CIMSRnnn" (where nnn is the version number.)
For this release is it CIMSR280. This is the plan name that CIMS Report Writer assumes you
will use.

Note • You can use a different plan name if necessary. But you will have to tell CIMS
Report Writer that plan name in every job you run. That is done with the DB2PLAN
option:

OPTION: DB2PLAN('OURNAME')

If you use CIMSR280 as your plan name, you will not need to use the above statement.

After creating the CIMSR280 plan, you must "bind" the two Spectrum Writer "DBRM"
modules (DBRM280A.BIN and DBRM280B.BIN) into that plan. You can perform the bind
with ISPF, or any other way that your shop prefers. The modules reside in the CIMS
Report Library (CIMS.REPTLIB).

Step B. Granting DB2 Execute Authority

After you have created and bound the DB2 plan, you must grant "execute authority" for
that plan. Generally you will grant execute authority for this plan to PUBLIC. That allows
anyone in your shop to execute CIMS Report Writer. This does not mean that every user
can now access every DB2 table in the shop! Each user's access will still be limited to
those DB2 tables that they have been granted access to. Granting them execute authority
on CIMSRnnn simply allows them to execute the CIMS Report Writer program with its DB2
Option.

Here's how a user's access is determined. Each CIMS Report Writer job has a DB2
"authorization ID" that is (or that is related to) the jobname used for the run. If a CIMS
Report Writer job tries to access a DB2 table which is not permitted for that jobname,
DB2 will return an error message to CIMS Report Writer. CIMS Report Writer will not be
able to access that particular table, and will print an error message to that effect. If the
jobname does have authority to read the DB2 table, CIMS Report Writer will then access
the DB2 data and complete the run normally.

You have now successfully installed CIMS Report Writer MVS on your mainframe. It
exists as a load module named SPECTWTR in the load library that you specified in your
link-edit JCL.
■ L-4 CIMS Report Writer User Guide

Index

Symbols

#ABS built-in function D-12
example 9-35

#AND built-in function D-5
#ASCII built-in function 10-83, D-5
#COMDATE built-in field C-4
#COMPRESS built-in function D-6
#COUNTER built-in field

use in BREAK statement 4-91, 4-95, 10-14
#DAY built-in function D-6
#DAYNAME built-in field C-3

use in FOOTNOTE statement 4-64
use in TITLE statement 2-28, 4-51

#DAYNUM built-in function D-12
#EBCDIC built-in function 10-88, D-6
#EQUALS parm, in SORT statement 10-119
#FORMAT built-in function D-6

example 6-21, 10-111, J-2
list of display formats B-2
use of 9-22

#GRAND, use in BREAK statement 4-99
#HHMMSS built-in field 4-139, C-5
#INDEX built-in function D-12
#INT built-in function D-12
#ITEM built-in field

in COLUMNS statement 4-95
#ITEM1 through #ITEM9 built-in fields C-4

in COLUMNS statement 4-95
#ITEM-ENDING built-in field C-3

use in BREAK statement 4-91, 4-95, 10-14
#ITEMS built-in field C-4

use in BREAK statement 4-71, 4-91, 4-95, 10-14
#JOBNAME built-in field C-3

#LCASE built-in function D-7
#LEFT built-in function D-7

example 2-21, 3-20
#MAKEDATE built-in function D-16

example 4-133, 9-36, J-2
use of 9-22, 9-34

#MAKENUM built-in function D-12
example 4-138, 9-36, D-16 to D-17
use of 6-20, 9-22, 9-34

#MAKETIME built-in function D-17
example 4-138 to 4-139, D-13
use of 9-22

#MAX built-in function D-14
example 10-40

#MIN built-in function D-14
#MOD built-in function D-14
#MONTH built-in function D-8
#MONTHNUM built-in function D-15
#NUMWORDS built-in function D-15
#OFF built-in function D-18

example 9-11
#ON built-in function D-18

example 9-11
#OR built-in function D-8
#PAGENUM built-in field C-4

changing number of digits in page number 4-62
use in FOOTNOTE statement 4-64, 10-66 to

10-69
use in TITLE statement 2-26, 2-28 to 2-29, 4-51,

10-127 to 10-130
#PARSE built-in function D-9
#RIGHT built-in function D-9
#ROUND built-in function D-15
#SUBSTR built-in function D-10
CIMS Report Writer User Guide Index-1 ■

■ Index

example 6-21
#TIME built-in field C-3

use in FOOTNOTE statement 4-64
use in TITLE statement 2-28 to 2-29, 4-51

#TIME24 built-in field C-3
use in FOOTNOTE statement 4-64
use in TITLE statement 4-51

#TODAY built-in field C-5
use in FOOTNOTE statement 4-64, 10-66 to

10-69
use in TITLE statement 2-26, 2-28 to 2-31, 4-51,

10-127 to 10-129
#TRANSLATE built-in function D-10
#UCASE built-in function D-11
#XOR built-in function D-11
#YEAR built-in function D-11
#YEARNUM built-in function D-16
$DX DSECT G-1
A, meaning of 4-115, E-2
E, meaning of E-2
F

meaning of 6-34, E-2
suppressing 10-92, E-4

I
meaning of E-2
suppressing 10-101, E-3

S
in total line at control break 4-71
meaning of 4-12 to 4-13, 4-15, 9-14, E-2

U, meaning of E-3
V

meaning of E-3
suppressing 10-101, E-3

Z
meaning of E-3
suppressing 10-100, E-4

*PAGE, meaning of 9-6

A
ABS built-in function (see #ABS built-in function)

D-12
ABSDATE

data type A-7
from CICS A-7, A-10

absolute value, #ABS built-in function D-12
ABSTIME, data type A-10
access method

used for input files (MVS) 6-7

used for input files (VSE) 6-10
used for output file (MVS) 8-7
used for output file (VSE) 8-19

ACCESS parm, in OPTIONS statement 10-96
access, producing output file for 10-96
ACCUM parm

in COLUMNS statement 4-6, 4-28, 4-137,
10-27

in COMPUTE statement 4-28, 4-137, 10-33
in FIELD statement 4-28, 4-137, 6-17, 6-25,

10-49
accumulating

data for statistics, which columns 4-26, 10-27,
10-33, 10-49

addition
adding days to a given date D-16
how to perform 2-19, 3-18, 9-33, 10-31
to a time value D-17

address, formatting addresses D-6
alias

member name in copy library 6-42, 6-46, 8-10,
8-23, F-1

use in COPY statement 10-44
alignment

of column headings in Web reports 5-16, 5-25
of columns in multi-line reports 4-31
of data in report columns 4-24, 10-29
of text and graphics in Web reports 5-14, 5-21,

5-33
of titles (left, center and right) 2-28, 4-31, 4-57,

10-126, 10-129
of titles in Web reports 5-8 to 5-9
of totals in Web reports 5-11 to 5-12, 5-16, 5-26
title doesn’t look centered 4-55, 4-63, 10-129
title doesn’t look right aligned 4-60, 10-129
(see also Justification)

alphabetizing the report 2-34, 10-117
alternate index 4-118
AM, showing AM and PM B-8
ambiguous field name

among DB2 column names 7-15
error indicator (***A***) E-2
using record name to resolve 2-52, 3-40, 4-113,

4-115, 10-79, 10-111
ampersand (&)

meaning in conditional expressions 9-26
AND built-in function (see #AND built-in

function) D-5
■ Index-2 CIMS Report Writer User Guide

Index ■

AND keyword
use in conditional expressions 2-17, 3-16, 9-25,

9-31
animation, in Web reports 5-2
apostrophes (’) 9-9

(see also quotation marks)
arithmetic operations

between different types of numeric fields 6-15
how to perform 2-19, 3-18, 9-32, 10-31, 10-38

arrays
field names used 6-59
how to print 4-36, 4-42, 4-45
in COBOL record layouts 6-59, 10-20
in records 4-133, 6-5, 6-14, K-1

ASC parm
in DB2 ORDERBY parm 10-78, 10-109
in SORT statement 10-119

ascending
order, data fetched from DB2 7-10
order, in SORT statement 2-34, 3-25, 10-119

ASCII
converting to EBCDIC D-6
files, fixed format 4-143
files, how to create 4-21, 4-140, 4-145, 10-88
instead of EBCDIC D-5 to D-6
parm, in #FORMAT function D-6
parm, in BREAK statement 4-84, 10-15
parm, in COLUMNS statement 4-6, 4-21,

4-140, 4-145, 10-27
parm, in TITLE statement 4-54, 10-128
spaces between fields 10-15
(see also #ASCII built-in function)

ASCIITABLE parm, in OPTIONS statement 10-83
ASM statement 10-3

how to use 6-49
scope of 6-67
syntax 10-4

ASMLIB DD 6-64, 10-43
ASMLIB parm

in OPTIONS statement 6-65, 10-44, 10-84
assembly language

character versus numeric fields 6-70
converting to FIELD statements 6-60
copying from Panvalet or Librarian 6-64
copying record layouts 6-64, 10-43
date and time fields 6-56, 6-60
decimal digits 6-71
default copy library (MVS) 6-64

default copy library (VSE) 6-65, 10-84
DSECT statement 6-67, 6-73, 10-22
EQU statement 6-73
expressions supported 6-71 to 6-72
fields, changing the column heading 6-61
record layout, starting column 6-66
record layouts, names assigned 6-59, 6-73
record layouts, using 6-49, 8-10, 8-22, 10-3
repetition factors 6-59, 10-20
sublibrary and member type copied (VSE)

10-44
SYSLIB library 6-42, 10-42

ASSIGN parm
in COMPUTE statement 2-23, 3-22, 10-34

asterisks (*)
S appears in total line 4-71
S, meaning of 4-12, 9-14
in column one for comment lines 9-6
in total line at control break 2-44, 4-70, 4-97
meaning in COLUMN and DISP parm 6-32,

10-50
meaning of ⁄* and */ 9-6
meaning of all error indicators (eg. ***S***)

4-47
meaning of all error indicators (eg. ***s***)

E-2
multiplication symbol 2-19, 3-18, 9-33
printing bar graphs 4-34
suppressing error indicators E-3
(see also under ***A***, ***I***, etc.)

ATTR parm
in FILE statement 6-10 to 6-11, 8-24, 10-60
in INPUT statement 6-11, 8-24, 10-60, 10-74
in READ statement 6-11, 8-24, 10-60, 10-104

AU files 5-17
audio clips, putting in report 5-2, 5-16
AUTOSORT parm

in OPTIONS statement 2-34, 3-25, 10-84
auxiliary input files

(see Files, READ statement)
AVERAGE (AVG) parm

in BREAK statement 2-41, 4-77, 4-89, 4-99,
10-7

in BREAK statement print expressions 4-84,
4-87, 4-95

in BREAK statement, two different uses 4-87
in SORT statement 4-77, 10-120

averages
CIMS Report Writer User Guide Index-3 ■

■ Index

average line (see also Statistical lines) 2-41,
4-77, 10-7, 10-120

display format used for 4-16
excluding zero values 4-78, 10-9, 10-16, 10-121
how many decimal digits 4-16, 4-29
how to compute 10-37
how to print 2-41, 4-77, 4-83 to 4-84, 10-7,

10-120
printing at Grand Totals time 4-99, 10-7
printing at grand totals time 4-27
printing in total line 4-84, 4-90, 10-16
which columns receive 4-26, 6-20, 10-27,

10-33, 10-49
(see also AVERAGE parm, and NZAVERAGE

parm)
AVI files 5-17

B
backing up

current location, when defining fields 6-32,
10-50

bar
character (|), (see Vertical bar)

BARGRAPH display format
display format B-3
how to print bar graphs 4-34

BASIC language
"IF" statement 2-15, 3-15, 10-70
PRINT USING equivalent 9-12

batch type files 4-121
BCD data

date fields A-6
numeric fields A-3
time fields A-8 to A-10

before
report, putting lines 5-17, 5-29, 10-96

beginning
of control group, printing lines at 4-93, 10-8,

10-10
of report, printing headings once 4-101
of report, putting lines before 5-17, 5-29, 10-96

big
biggest of several numbers, dates or times D-14
literals, how to write 9-4
making a column bigger 2-33, 4-12, 10-30
records in input file 6-7, 10-63, 10-78, 10-108
report lines, how to produce 8-8, 8-20
(see also Width)

binary data
comparing to packed data 6-15
writing to output file 4-145, B-4

BINARY data type
needed in read key 10-111
numeric field A-3
times stored as A-9 to A-10

BINARY display format B-4
BINARYUN

data type, for time fields A-9 to A-10
display format B-4
numeric data type A-3 to A-4
writing binary unsigned data to output file B-4

bind, DB2 plan name 10-86
bit fields

bit field conditions 9-24, 9-32
bit literals 9-11
creating your own 9-11, 10-31, 10-39, D-18,

E-5
data type A-11
effect on default location in record 6-32
how bits are numbered 6-28, 10-49
how formatted in reports 6-30, 10-56, B-3
how sorted 10-124
how to define 6-26, 10-47
logical operations D-5, D-8, D-11
testing multiple bits D-5
testing value of 9-24, 9-32, 10-40, D-5

BIT parm
in FIELD statement 6-28, 10-49

BIT, data type A-11
BITEXIT, data type A-11
BITS display format B-3
BIZ parm

for fields printed at control breaks 4-84, 10-15
in COLUMNS statement 4-6, 4-16, 4-45, 10-28
in FOOTNOTE statement 10-67
in TITLE statement 4-54, 10-128

blank
ASCII spaces between fields 10-15
in first column of control statement 9-4
inserting blank columns in PC files 3-30
padding 9-22, 9-30, 10-37
removing blanks between last and first name

D-6
spaces between report columns 4-4, 10-26
spaces between report columns in Web reports

5-9
■ Index-4 CIMS Report Writer User Guide

Index ■

spaces, required around minus sign 9-34
spaces, where allowed in control statement 9-4
suppressing blanks between fields in output

files 10-86
blank lines

between report lines 4-31 to 4-32, 10-97
in PC files 3-30
in report titles 4-31
printing after the total line 2-39, 2-43, 4-67,

10-11, 10-120
printing at control breaks 4-89, 10-11, 10-120
printing before control break lines 4-90
printing before the total line 4-76
printing in report body 10-25
suppressing 4-40, 4-45, 10-98
suppressing, before Grand Totals 4-143, 4-147,

10-93
blanking out

all column headings 4-10 to 4-11, 4-63, 10-93
individual column headings 4-10, 10-29
leading zeros 9-15
numbers and dates that are zero 4-45, D-7
numbers, date and times that are zero 4-6, 4-54,

4-84, 10-15, 10-28, 10-67, 10-128
repeating values 4-7, 4-22, 10-30
the final "S" to form the singular 4-91, 10-14,

C-3
blinking font, specifying 5-2, 5-32
BLKSIZE 6-10 to 6-11, 10-60, 10-94
bold

font, specifying 5-2, 5-4, 5-6, 5-9, 5-11, 5-32
both

of two conditions are true 2-17, 3-16, 9-25,
9-31

bottom of report
margin 4-32, 10-96
printing footnote lines 4-64, 10-65
putting lines after 5-17, 5-29, 10-96

BREAK statement 10-5
break occurs at wrong place 10-123
built-in fields available 4-91
control break spacing 2-39, 2-43, 4-67, 10-11
control break spacing, summary reports 10-100
customizing the total line at control breaks

4-71, 4-74, 4-91, 10-11
formatting dates, times and numbers 4-84,

10-15, B-2
how to use 2-37, 4-66

how to use with PC files 3-28
in Web reports 5-11, 5-16 to 5-17
justification parm in print expressions 4-85,

10-16
order of BREAK statements 4-96
parms (see under name of parm)
print expressions 4-82, 10-12
printing a certain number of detail lines per

break 10-87
printing a field's total or average value 4-86,

10-16
printing a total line at control breaks 10-11
printing averages at control breaks 2-41
printing custom lines at control breaks 4-80,

10-7
printing lines at beginning of a control group

4-93, 10-8
printing statistical lines at control breaks 2-41,

4-77, 10-7
printing the number of items in control group

4-71, 4-91, 10-14
printing the number of items included in the

report so far 4-91, 10-14
requesting multiple control breaks 2-43, 4-96,

4-103
resetting page number 4-68
skipping to new page 2-39, 4-67, 10-11
spacing factor in print expressions 4-83, 10-14
suppressing the total line at control breaks

4-76, 10-11
syntax 10-6
using a PICTURE to format numeric data 4-87,

9-12
using to customize the Grand Totals 4-99, 10-7
where to put 4-96, 9-5
width of items in lines printed at control breaks

4-71, 4-86, 10-16
(see also Control breaks)

breakdown, totalling a field by category 4-109
buffer

for input files, specifying in JCL 8-12, 8-24
for reading input files 6-7, 6-10, 6-34, 10-60,

10-63, 10-75, 10-78, 10-93, 10-105,
10-108

with VSAM I/O 10-74, 10-104, I-9
BUFND parm

in INPUT statement 10-74, I-9
in READ statement 10-104, I-9
CIMS Report Writer User Guide Index-5 ■

■ Index

BUFNI parm
in INPUT statement 10-74, I-9
in READ statement 10-104, I-9

built-in fields C-2
available in BREAK statement 4-91, 10-14
available in TITLE and FOOTNOTE statements

2-26, 4-51, 10-66, 10-127
(see also under name of built-in field)

built-in functions
list of D-3
use in COMPUTE statement 2-21, 3-20, 9-35,

10-40
(see also under name of built-in function)

byte
ASCII versus EBCDIC 10-83, 10-88, D-5 to D-6
bits in 6-28, 10-49

C
calculations

how to perform 2-19, 3-18, 9-32, 10-31
using different types of numeric fields 6-15

capital letters (see Case)
carriage control character

allowing for in LRECL parm 8-8, 8-19
suppressing 4-143, 8-5, 10-93

case
lower case D-7
upper case D-11

category, totalling a field by 4-109
CENTER parm

in #FORMAT built-in function D-6
in BREAK statement 4-85
in COLUMNS statement 4-7, 4-24
in FOOTNOTE statement 10-68
in TITLE statement 4-54, 4-63, 10-129

centering
CENTER parm needed in centered titles 10-129
column headings 4-10
data in report columns 4-24, 10-29
data in titles, looks wrong 4-55, 4-63, 10-129
items in control break lines 4-85, 10-16
titles 2-26 to 2-28, 4-57, 10-126
titles, in Web reports 5-6, 5-32
(see also Alignment, and Justification)

cents
rounding to whole dollars 6-18, 10-37, D-15

century
day in century D-16

sliding J-3
which century for YY dates 10-85
year 2000 J-1

CENTURY parm
in OPTIONS statement 10-85, J-3

chaining input files 4-113
changing, translating characters D-10
CHARACTER

data type A-3
display format B-3
display format, use in FORMAT option 10-89

character fields
ASCII versus EBCDIC D-6
changing case D-7, D-11
comparing 2-13, 3-13, 9-9, 9-21, 9-30, 10-39
comparing to numeric fields 9-22
confusing with numeric fields 6-20, 9-11
converting to date D-16
converting to numeric 6-20, 9-22, D-12
converting to time 4-139, D-17
counting words in D-15
creating your own 2-21, 3-20, 9-9, 10-31, 10-39
how sorted 10-123
how to define 6-12, 10-47
list of data types A-3
parsing words from D-9
scanning for a text 9-21, 9-31, D-12
substrings D-10
translating characters D-10
which contain numeric data 6-20, 9-11
writing character literals 2-15, 3-15, 9-9, 9-30,

9-32
character operations

how to perform 2-21, 3-20, 9-33, 10-31
characters

ASCII versus EBCDIC 10-83, 10-88, D-5 to D-6
which ones allowed in file and field names 9-7

CHAREXIT, data type A-3
charts, in Web reports 5-2, 5-12
CICS

ABSDATE value A-7, A-10
downloading from (VSE) 8-20 to 8-21

CIMS Lab, contacting xviii
CLEAR parm

in INPUT statement 10-75, I-12 to I-13
in READ statement 10-105, I-13

clicking mouse, in Web reports 5-16
COBLIB DD 6-64, 10-43
■ Index-6 CIMS Report Writer User Guide

Index ■

COBLIB parm
in OPTIONS statement 6-65, 10-44, 10-85

COBOL
"IF" statement 2-15, 3-15, 9-18, 10-70
ASSIGN clause, FD, and record structure 6-5
converting to FIELD statements 6-60
copybook library 6-42, 10-42
copying from Panvalet or Librarian 6-64
copying record layouts 6-64, 10-43
date and time fields 6-56, 6-60
default copy library (MVS) 6-64
default copy library (VSE) 6-65, 10-85
EXAMINE (see #TRANSLATE)
fields, changing the column heading 6-61
FILLER 6-69
level 01 REDEFINES 6-67 to 6-68, 10-22
level indicators 6-68 to 6-69
OCCURS clause 4-36, 4-42, 6-5, 6-59, 10-20
record layout, starting column 6-66
record layouts, names assigned 6-59, 6-68
record layouts, using 6-49, 8-10, 8-22, 10-18
REDEFINES clause 6-32, 6-47, 6-68, 10-50
sequence numbers 10-20
SIGN IS SEPARATE clause 6-69
sublibrary and member type copied 10-44
UNSTRING (see #PARSE)

COBOL statement 10-18
how to use 6-49
scope of 6-67
syntax 10-19

codes, completion 8-14, 8-26
COLHDGONCE parm

in OPTIONS statement 4-11, 4-63, 4-142,
10-85

collating order 10-123
colon (:)

after statement name 2-7, 3-8, 9-3
changing delimiter for formatting times 10-100
use as a relation operator 9-20

colors
different colors in one column 5-25
list of HTML colors 5-33
specifying 5-2, 5-6, 5-29, 5-33

COLSEP parm
in OPTIONS statement 4-34, 4-142, 10-85

COLSPACE parm
in OPTIONS statement 4-6, 4-144, 5-22, 10-86

column

field’s starting column in record 6-30, 6-33,
10-50

in control statement, when first one blank 9-4
in control statement, when first one contains

asterisk 9-6
in control statement, which ones to use 9-3
printing titles in a specific column 4-60
starting, in COBOL and Assembly record

layouts 10-22
COLUMN (COL) parm

in ASM & COBOL statements 10-19
in FIELD statement 6-30, 6-33, 10-50

column (in report)
changing width of 10-30
which ones are totalled 10-27, 10-33, 10-49
(see also COLUMNS statement)

column headings
aligning in Web reports 5-16, 5-25
blanking out individual ones 4-10, 10-29
effect of dash and underscore in name 2-9,

6-35, 10-29
for computed fields 2-20, 10-36
for literal columns 4-11, 10-26, 10-29
how to change 2-31, 4-6 to 4-7
how to justify (left, center and right) 4-10
in FIELD statement 6-3
in multi-line reports 4-8, 4-11, 4-31, 4-41,

10-92
in Web reports 5-9, 5-16, 5-25, 10-90
making shorter 4-8, 4-13
one-line headings 4-11, 4-142, 10-89
options, summary 4-11
parm in COLUMNS statement 10-28
printing just once 4-12, 4-63, 4-142, 10-85
specifying when defining a field 6-3, 6-35,

10-54
specifying with TITLE statements 4-60
splitting onto multiple lines 4-8, 4-11, 6-35,

10-29, 10-54
suppressing all 4-10 to 4-11, 4-63, 4-143, 10-93
suppressing the underscore line 4-10 to 4-12,

10-29, 10-94
truncation of 4-13
use of vertical bar (|) 4-8, 4-10, 4-11, 10-89
using field name as 4-8
when suppressed 10-92
(see also Titles)

COLUMNS statement 10-24
CIMS Report Writer User Guide Index-7 ■

■ Index

#ITEM built-in field 4-95
advanced features 4-3
all blank 4-31 to 4-32, 10-25
columns look skewed 4-31
formatting dates, times and numbers 2-31, 4-7,

4-13, 10-28, B-2
how to use 2-8
in Web reports 5-14
justification within columns 4-7, 4-24, 10-29
literal columns 4-4, 4-11, 4-31, 9-8, 10-26
multiple statements 4-29, 4-41, 10-24, 10-92,

10-99
parms allowed in 4-6, 10-25
printing certain characters between report

columns 10-85
printing full-page forms 4-32
printing line numbers 4-95
printing variable number of lines per input

record 4-36
shifting report right 4-32, 4-70
spacing between columns 4-31, 10-26
spacing between report lines 10-97
specifying column headings 2-31, 4-6 to 4-7,

4-11, 4-31, 10-28
specifying width of column 2-33, 4-7, 4-12,

4-71, 10-30
suppressing all column headings 10-93
suppressing repeating values 4-7, 4-22
syntax 10-25
truncating a column 4-12
use of parentheses 4-6
use of quotation marks, apostrophes 4-4, 10-26
using a PICTURE to format numeric data 4-13

to 4-14, 9-12
using record name to resolve ambiguous field

name 2-52, 3-40, 4-113, 4-115, 10-79,
10-111

where to put 9-5
which columns are totalled 4-6, 4-26, 6-20,

10-27
combining character fields 2-21, 3-20
COMDATE built-in field (see #COMDATE built-

in field) C-4
comma (,)

as delimiter in output files 4-142, 10-85
in control statements 9-4
in number, using a different character 9-13

in numbers, whether to print 4-14, 4-142, 6-20,
9-13, 10-54, B-3, B-9

not allowed in numeric literals 2-15, 3-15, 9-10
unwanted commas in numbers 6-20
used to separate parms 4-6, 4-53, 4-83
using dot instead of comma for numbers 4-18,

B-3
comma separated values 10-96
comments

how to write 9-5
HTML comments 5-34
in SWALIAS member 6-47
within scope of ASM & COBOL statements 6-67

COMP (see BINARY)
COMP-1 (see BINARY)
COMP-3 (see PACKED)
comparing

a field to hexadecimal value 9-23, 9-32
character fields 2-13, 3-13, 6-20, 9-9, 9-11,

9-21, 9-30
date fields 2-17, 3-16, 6-21, 9-10, 9-21, 9-30
how to write conditional expressions 9-18
numeric fields 2-15, 3-15, 6-15, 6-20, 9-10 to

9-11, 9-20, 9-30
operands of different length 9-22
operands of different types 6-20, 9-11, 9-22
time fields 2-17, 3-16, 6-24, 9-11, 9-21, 9-30
when to use quotation marks 2-15, 3-15, 6-20,

9-11, 9-30
completion codes 8-14, 8-26
complex, conditional expressions 9-24
COMPRESS built-in function (see #COMPRESS

built-in function) D-6
computational expressions 9-32

(see also COMPUTE statement)
bit, how to write 9-36
character, how to write 2-21, 3-20, 9-9, 9-32
date, how to write 9-10, 9-36
examples 9-35, 10-38
list of built-in functions D-3
numeric, how to write 2-19, 3-18, 9-10, 9-32
order of evaluation 9-34
speed-up tips I-7
syntax 9-32
time, how to write 4-138
use of parentheses in 9-34

COMPUTE statement 10-31
■ Index-8 CIMS Report Writer User Guide

Index ■

assigning different values based on conditions
2-23, 3-22, 10-32

character operations 2-21, 3-20, 9-33, 10-39
column headings for computed fields 2-20,

2-31, 4-7, 10-36
computing an average 10-37
computing true ratios, percentages 4-71, 9-35,

10-35, 10-40
concatenation operation 2-21, 3-20, 9-33,

10-39
conditional 2-23, 3-22, 10-32
conditional, example 4-106, 4-109, 4-121
converting character to numeric data 6-20
converting data to different type D-6, D-12,

D-16 to D-17
converting numeric to character data 6-20
creating a read key for READ statement 2-54,

3-40, 10-111
creating bit fields 9-11, 9-36, 10-39
creating character fields 2-21, 3-20, 9-9, 9-35,

10-39
creating date fields 9-10, 9-36, 10-39
creating numeric fields 2-19, 3-18, 9-10, 9-35,

10-38
creating time fields 9-11
data type of result 10-41
default value assigned 2-23, 2-25, 3-22, 3-24,

10-40
division by zero 10-100
examples 9-9 to 9-11, 9-35, 10-38, D-5
hexadecimal values 10-39
how dates, times and numbers are formatted

10-34, B-2
how many decimal digits 10-37
how to use 2-19, 3-18
in Web reports 5-14
justifying the result (left, right, center) D-6
keeping in copy library 6-43
list of built-in functions D-3
math operations 2-19, 3-18, 9-33, 10-38
order of evaluation 10-40
overflow error 10-101
parms (see under name of parm)
propagating errors E-4
RETAIN parm 4-121, 4-125, 10-38, I-6
size of result field 10-37
speed-up tips I-5 to I-6
syntax 10-32

totalling a field by category 4-109
use of built-in functions 2-21, 3-20, 9-35, 10-40
using to detect invalid data 4-43
when an operand is in error E-4
where to put 2-19, 3-18, 6-43, 9-5
which computed fields are totalled 4-28, 10-33
writing conditional expressions (WHEN parm)

9-18
(see also Computational expressions)

concatenation
example 9-35, 10-39
how to perform 2-21, 3-20
operator 9-33
removing excess blank spaces D-6

condition codes 8-14, 8-26
conditional COMPUTE statement 2-23, 3-22,

10-32, 10-39, 10-40
conditional expressions 2-15, 3-15, 9-18

bit field conditions 9-24, 9-32
comparing character operands 2-13, 3-13, 6-20,

9-9, 9-21, 9-30
comparing date operands 2-17, 3-16, 6-21,

9-10, 9-21, 9-30
comparing hexadecimal values 9-9, 9-23, 9-32
comparing numeric operands 2-15, 3-15, 6-15,

6-20, 9-10, 9-20, 9-30
comparing operands of different lengths 9-22
comparing operands of different types 6-20,

9-12, 9-22
comparing time operands 2-17, 3-16, 4-138,

6-24, 9-11, 9-21, 9-30
comparing to multiple values 9-27, 9-31
how to simplify long expressions 9-27
how to write 2-15, 3-15, 9-18
in COMPUTE statement 2-23, 3-22, 10-38
in INCLUDEIF statement 2-15, 3-15, 10-71
mixing relation and bit field conditions 9-25
order of evaluation 9-27
relation operators allowed 9-20
searching for a text in a character field 9-21,

9-31
selecting fields with invalid data 9-24
speed-up tips I-2, I-5, I-8
use of ampersand (&) in 9-26
use of not sign (¬) 9-30
use of quotation marks, apostrophes 2-15,

3-15, 9-12, 9-30
CIMS Report Writer User Guide Index-9 ■

■ Index

use of the keyword "AND" 2-17, 3-16, 9-25,
9-31

use of the keyword "NOT" 9-29, 9-32
use of the keyword "OR" 2-15, 3-15, 9-26, 9-31
use of vertical bar (|) in 9-27
using both "AND" and "OR" in 9-27, 9-31
using parentheses in 2-17, 3-16, 9-27, 9-29,

9-31
with multiple conditions 2-15, 2-25, 3-15,

3-24, 9-24, 9-31
conditions

assigning value to field based on 2-23, 3-22,
10-32

which records to include in PC file 3-13
which records to include in report 2-13, 10-70
(see also Conditional expressions)

contacting, CIMS Lab xviii
contains operator (:) 9-20, 9-21, 9-31
continuing

control statements on multiple lines 9-4
literals across lines 9-4

control breaks 2-37, 3-28, 4-66
S appears in lines printed at 4-71
blanking out repeating values at start of 10-30
break field must be a sort field 2-37, 3-28, 4-66
breaks at wrong place 10-123
computing true ratios, percentages 4-71, 9-35
counting occurences of a value 4-106
definition of 2-37, 3-28
determining level of 4-70, 4-96
how to format dates, times and numbers 10-15
in PC files 3-28
in Web reports 5-11, 5-16
multiple 4-103
number of items in control group 4-70, 10-14
printing a certain number of detail lines per

break 10-87
printing a line at control breaks in Web reports

5-12, 5-33
printing averages at 4-77, 4-83, 10-7, 10-16,

10-120
printing blank lines at 2-39, 2-43, 4-67, 4-76,

4-89, 4-90, 10-11, 10-120
printing data from files at 4-82, 10-13
printing footing lines at 10-7
printing item number in detail lines 4-95
printing lines at beginning of control group

10-8, 10-10

printing multiple lines at 4-89
printing statistics at 3-30, 4-77, 4-83, 10-8 to

10-10, 10-16, 10-120 to 10-121
printing the current date at 4-76
printing the number of items included in report

so far 10-14
resetting page number 4-68
skipping to new page 4-67, 10-11, 10-120
spacing at 4-67, 10-11, 10-120
spacing at, for summary reports 10-100
statistical lines, customizing 4-77, 4-99, 10-7 to

10-10
statistical lines, order in which printed 4-80,

4-89
the Grand Total control break 10-7
total line split onto two lines 4-70
total line, customizing 4-89, 4-99, 10-11
total line, default 4-70
total line, multiple 4-76
total line, suppressing 10-11, 10-121
using to produce summary reports 2-46, 4-102,

4-108
where total line prints 4-76
(see also BREAK statement and SORT

statement)
total line (see also Totals and Total line)

control listing
DD used in JCL 8-3
logical unit written to (VSE) 8-15, 8-25
printing records copied from copy library 6-43,

10-45, 10-78, 10-108
skipping to new page 9-6

control statements
how to write 9-3
introduction 2-3, 3-2
keeping in a copy library 6-39
list of 2-6, 3-5
maximum number allowed 10-94
order 9-5
putting comments in 9-5
syntax (see under name of statement)
that apply to all reports in shop 8-13
that define files and fields 6-3
that require more than one line 9-4
what DD used to read 8-3, 8-13
what logical unit read from (VSE) 8-15
which columns to use 9-3

convention, use in control statement syntax 10-2
■ Index-10 CIMS Report Writer User Guide

Index ■

conversion
different types of date fields 6-21
different types of numeric fields 6-15
different types of time fields 6-24
GMT time to local 10-99
of character to numeric data 6-20
of character to time data 4-139
of COBOL and Assembler layouts to FIELD

statements 6-60
of numeric to character data 6-21
of numeric to time data 4-138
of one data type to another 9-22, D-6, D-12,

D-16 to D-17
of time to numeric data 4-138

copy library
accessed for READ and INPUT statements 6-43
assigning (VSE) 8-23, 10-100
copying records from non-PDS files 6-46,

10-45
DB2 file definitions 7-19
how to use 6-39, 8-9, 8-22, 10-42
making reports without using 6-39
preventing automatic copying 6-43, 10-75,

10-105
printing copied records in control listing 6-43,

10-45, 10-78, 10-108
saving COBOL and ASM record layouts in 6-57
saving shop-wide options 8-13
setup (MVS) 8-9
setup (VSE) 8-21
used within ASM statement 6-65, 10-84
used within COBOL statement 6-65, 10-85
using an alias 6-42, 6-46, 8-10, 8-23, F-1
which DD in JCL used for 8-3, 8-11
which member copied 6-46, 8-10, 8-23, 10-43

COPY parm
in INPUT statement 6-43, 10-75
in READ statement 6-43, 10-105

COPY statement 10-42
copying COBOL and Assembler record layouts

6-64
default copy library 10-84, 10-85
how to use 6-46, 8-11
listing copied statements 9-6
parms (see under name of parm)
syntax 10-43
within scope of ASM & COBOL statements 6-67

COPYLIB parm, of OPTIONS statement 10-44

Corel chart
importing PC files into H-6
producing output file for 10-96, H-6

COREL parm, in OPTIONS statement 10-96
count

descrepency in VSAM record count 8-13
discrepancy in VSAM record count 8-25

COUNTER built-in field (see #COUNTER built-in
field) C-4

counter, line numbers in report 4-95
counting, how many times something occurs

4-106
CPU, utilization, speed-up tips I-2
creating your own fields 2-19, 3-18, 9-32, 10-31

(see also COMPUTE statement)
CSV parm, in OPTIONS statement 10-96
cumulative

number of items printed in report 4-91, 10-14,
C-4

currency
showing currency in PICTURE 4-18, 9-16

current
date, built-in field C-5
location, in COBOL and Assembler layouts

6-66
location, when defining fields 6-32, 6-34,

10-50
time, built-in field C-3, C-5

cursor
in DB2 7-7

customizing
body of the report 4-3
column headings 2-31, 4-6, 4-7, 10-28
control breaks 2-37, 4-66, 10-5
creating your own fields 2-19, 3-18, 9-32, 10-31
PC file order 3-25
PC files 4-3
PC files total line 3-30
report order 2-34, 10-117
the Grand Totals 4-99
the statistical lines at control breaks 4-77, 4-99,

10-7 to 10-10
the total line at control breaks 4-71, 4-74, 4-91,

10-11
the way numeric data prints 2-31, 4-13, 9-12,

10-28
titles 2-26, 4-48, 10-125
CIMS Report Writer User Guide Index-11 ■

■ Index

which records to include in report 2-13, 3-13,
9-18, 10-70

D
DASD files, used as input (VSE) 10-60
dash (-)

blanks required around 9-33
formatting negative numbers, where to put

9-13
in numeric literals 9-10
meaning in COLUMN or DISP parm 6-31,

10-50
name broken at, for column headings 4-8, 6-35,

10-29
subtraction symbol 2-19, 3-18, 9-33
use in field names 9-7, 9-33

data
character versus numeric data 6-20, 9-11
how to format in report 2-31, 4-13, 10-28
including only certain values in report 2-13,

3-13, 10-70
invalid, testing for 9-24, 9-32, E-4
representation, date fields 6-21, A-5
representation, numeric fields 6-15, A-3
representation, time fields A-8
specifying the input file 2-7, 10-72
the five types 6-12, 9-8

data exit programs A-3 to A-4, A-7, A-11
DD used in JCL 8-3
decimal digits returned by 10-52
how to use 6-35
passing parms to 6-8, 6-11, 6-36, 10-51, 10-62,

10-76, 10-106, G-1
sample program G-1
size of character result 10-53

data set name (see DSNAME)
data types

in FIELD statement 10-57
list of A-2 to A-3
listing of, for each input field 10-79
of COMPUTE fields 10-41
of DB2 items 7-5

databases 7-1
processing 6-36, K-1

date fields
creating your own 9-10, 10-31
default lengths A-5

defining so that month name is always spelled
out 6-22, 10-34, 10-53, B-5

SMF dates A-7, B-7
stored in hexadecimal format 6-21, 9-24, 9-32
testing for valid data 9-24, 9-32, E-4
(see also Dates)

DATEDELIM parm
in OPTIONS statement 4-16, 4-18, 10-86

DATEEXIT, data type A-7
dates

adding days to a date 9-36, D-16
comm area date (VSE) C-4
comparing 2-17, 3-16, 6-21, 9-10, 9-21, 9-30,

10-39
converting to character value D-6
converting to numeric value 9-36, D-12
current date, built-in field C-5
day of week for a given date D-6
DD/MM/YY date literals 10-87
default display format 4-14, B-9
default display format, changing 10-88
defining date fields 6-21, 10-47
delimiter used 4-16, 4-18, 10-86, A-5 to A-6,

B-5 to B-7
extracting the day, month and year portions

6-47, D-11 to D-12, D-15 to D-16
formatting in a report 6-22
formatting in report 2-31, 4-13, 4-54, 4-84,

6-22, 10-28, 10-54, B-5
from character or numeric data D-16
handling invalid dates 4-41, 4-43, E-2
how date fields stored in input file 6-21, 10-57,

A-5
how sorted 10-123
in COBOL and Assembler record layouts 6-56,

6-60
including date in footnotes 4-64, 10-66 to

10-69
including date in titles 4-51, 10-127 to 10-129
including in total line 4-76
including only certain dates in PC file 3-16
including only certain dates in report 2-17,

9-30
month name for a given date D-8
number of days between two dates D-13
printing blanks instead of zero dates 4-6, 4-36,

4-54, 4-84, 10-15, 10-28, 10-67, 10-128,
D-7
■ Index-12 CIMS Report Writer User Guide

Index ■

processing non-standard dates 6-36
range allowed in date literals 9-10
selecting the earliest of several dates D-14
selecting the latest of several dates D-14
spelling month name out 2-28, 2-31, 4-14,

4-84, 6-22, 10-28, B-5, D-7
spelling month name out, in titles 4-54, 10-129
taking into account when computing time

intervals 4-138
which century for 2-digit years 10-85
writing date literals 9-10, 10-86 to 10-87,

10-100
writing julian date to output file 4-145
year 2000 J-1
zero assigned for missing fields 4-116, 10-116
(see also date fields)

DAY built-in function (see #DAY built-in
function) D-6

day of week
built-in field C-3
computing for a given date D-6
including in footnotes 4-64
including in titles 4-51

DAYNAME built-in field (see #DAYNAME built-
in field) C-3

DAYNUM built-in function (see #DAYNUM
built-in function) D-12

days
adding to a date field 9-36, D-16
day in century D-16
day of month, for a given date D-12
number of days between two dates D-13

DB2 7-2
ambiguous field names 7-15, 7-16
ASC and DESC parms 7-10, 10-109
column headings 7-18
cursor 7-7
defining input table name 10-61, 10-75,

10-105
digits allowed in numeric fields 7-21
display formats 7-18
floating point numbers 7-5
getting list of columns' data type 7-7
graphic strings 7-5
host variables 7-15, 7-17
how to create a PC file 7-5
how to create a report 7-3
JCL required 7-2, 8-3

list of DB2 columns in a table 10-112
list of DB2 columns in table 7-7, 10-79
literals, format of 7-15, 7-17
missing rows 4-116, 10-116
mixing DB2 and non-DB2 data 7-2
ORDERBY parm 7-8, 10-78, 10-109
plan name 7-20, 10-86
qualifiers 7-5, 7-16
reading multiple rows 7-13, 10-108
READKEY equivalent 7-10
saving definitions in copy library 7-19
SELECT clause 10-112
setup 7-20
subsystem 7-20, 10-86
table names 7-3
tables as auxiliary input file 7-10
tables as auxiliary input files 10-112
testing for missing row 4-116
timestamps 7-5
using multiple DB2 tables 7-10, 7-13
using record names with 7-15, 7-16
views 7-3
what types of data supported 7-5
WHERE parm 7-7, 7-15, 10-80, 10-112
which fields are totalled 7-18
which rows to read 10-80, 10-112
which subsystem 7-3

DB2NAME parm
in FILE statement 10-61
in INPUT statement 7-5, 10-75
in READ statement 10-105

DB2PLAN parm, in OPTIONS statement 10-86
DB2SUBSYS parm

in OPTIONS statement 7-3, 10-86
dBASE IV

importing PC files into H-7
producing output file for H-7

DBASE3 parm, in OPTIONS statement 10-96
DBASE4 parm, in OPTIONS statement 10-96
DC and DS statements in Assembler 6-70
DCB parm in JCL

for output files 8-5
for report output 8-8

DD statement in JCL
which one used to read input files 6-7, 8-12,

10-61, 10-76, 10-106
which ones needed 8-3
writing FIELD statements to 6-61, 10-22
CIMS Report Writer User Guide Index-13 ■

■ Index

DDMMYY
date fields A-5 to A-6, B-5 to B-6
DD/MM/YY date literals 4-19, 10-87

DDMMYYLIT parm
in OPTIONS statement 4-19, 10-87

DDMMYYYY
date fields A-5, A-6, B-5, B-6

DDNAME parm
in COPY statement 10-45
in FILE statement 6-7, 8-3, 8-12, 10-61
in INPUT statement 6-8, 8-12, 10-76
in READ statement 6-8, 8-12, 10-106

decimal digits
extracting integer value D-12
how many in averages 4-29
how many stored in record 6-16, 10-51
how many to print 4-14, 9-13, 10-28
in Assembler layouts 6-71
in computed fields 10-37
in time fields 4-137, 6-25, 10-38, A-8
returned by data exit programs 6-37, 10-52
rounding 10-37, D-15

DECIMALS parm
in FIELD statement 6-16, 6-25, 10-51

decrypting data 6-36
default

alignment of titles 10-126
column headings for computed fields 10-36
display format, how to change 10-88
display formats B-9
field location in record 6-31, 6-34, 10-51
justification of data 4-24
location, effect of defining bit fields 6-32
record name 10-111
sort order 10-84
spacing at control breaks 10-11
total line at control break 10-11
total line layout 10-11
value assigned for missing records 4-116,

10-116
value assigned in COMPUTE statement 2-23,

2-25, 3-22, 3-24, 10-40
defining

bit fields 6-26
character fields 6-12, 6-20
date fields 6-21
fields created in exit programs 6-35, G-1
fields in an earlier file 6-32

files and fields, how to 6-3, 8-9, 8-21, 10-47,
10-58

files automatically 6-42
files without using a copy library 6-39
how fields will be formatted in reports 6-15,

6-17, 6-22, 6-26, 6-30, 10-53
how to create your own fields 2-19, 3-18, 9-32,

10-31
numeric fields 6-15, 6-20
same part of record multiple times 6-5, 6-14,

6-32, 6-47, 10-50
the column heading to use for a field 6-35,

10-36
time fields 6-24
where fields are located in record 6-30, 6-33,

10-50
which fields should be totalled 4-26, 6-17,

6-20, 10-49
definition statements 6-3
delimited files, how to create 4-140
delimiters

in date fields A-5 to A-6, B-5 to B-7
in output files for PC programs 10-85
in time fields A-8, B-8
used in PC files 4-142
used to format dates 4-16, 4-18, 10-86
used to format times 4-16, 4-18, 10-100, B-8
used to parse character strings D-9

DEPENDING ON clause in COBOL 4-42, 4-133,
6-60

DESC parm
in DB2 ORDERBY parm 10-78, 10-109
in ORDERBY parm 7-10
in SORT statement 2-34, 3-25, 4-105, 10-119

DESCRIPTION parm
in FIELD statement 10-51
in FILE statement 10-61

DETAIL parm
in OPTIONS statement 4-102, 4-104, 10-87

detail records, in batch type files 4-121
detail report lines

suppressing 2-46, 4-102, 4-108
different

assigning different values to created field 3-22,
10-32

lengths, comparing operands of 9-22, 9-30,
9-32

digits
■ Index-14 CIMS Report Writer User Guide

Index ■

calculating how many digits in packed fields
6-16

decimal, dropping D-12
decimal, how many print in averages 4-29
decimal, how many stored in record 6-16,

10-51
decimal, rounding 10-37, D-15
extracting certain digits from a number 6-21
how many stored in record 6-16
how many to print 4-14, 9-13, 10-28
in page number, how many 4-62, 10-68 to

10-69, 10-129 to 10-130, C-4
maximum number allowed in literals 9-10
not enough room to display E-2
number allowed in DB2 data 7-21
(see also Decimal digits)

dimension, arrays in records 6-5
direct reads

auxiliary files read randomly 2-49, 3-36,
10-113

DISP parm
in ASM & COBOL statements 10-19
in FIELD statement 10-50

displacement
fields’ starting displacement in records 6-30,

6-33, 10-50
DISPLACEMENT (DISP) parm

in FIELD statement 4-130, 6-30, 6-33
DISPLAY

data type A-3
display format B-3

display formats
changing the default 4-142, 10-88
default 4-14, B-9
for PC files 10-28
formatting numbers with dots instead of

commas 4-18, B-3
how to write PICTUREs 9-12
how to write TPICTUREs 9-17
in COLUMNS statement 2-31, 4-7, 4-13, 10-28
in COMPUTE statement 10-34
in FIELD statement 6-3, 10-53
list of B-1, B-2
of fields in footnotes 10-67
of fields in the title 4-54, 10-129
of fields printed at control breaks 4-84, 10-15
removing excess blank spaces D-6
specifying delimiter for dates 10-86

specifying delimiter for times 10-100
specifying for output files 4-142
used in total (and average) line 4-16, 4-29
using to create a character field D-6
which quotation mark used 10-97

division
division by zero indicator (***Z***) E-3
division by zero, suppressing 10-100, E-4
how to perform 2-19, 3-18, 9-33, 10-31
performing division at control breaks 4-71
remainder (#MOD built-in function) D-14
results in overflow (**V**) E-3

DIVTOTS parm
in COMPUTE statement 4-71, 10-35, 10-40

DLBL statement
used for writing output 8-20, 10-94
which one used for input files 6-10, 8-24, 10-60
writing FIELD statements to 6-61

dollar sign ($)
how to print 4-14, 6-18, 9-13, 10-28, 10-54, B-3
meaning in PICTUREs 9-15

dollars
DOLLAR display format B-3
printing whole dollars 6-18, 10-37, D-15

DOTSEP, display format 4-18, B-3
DOUBLE parm

in OPTIONS statement 4-31, 4-36, 10-97
downloading

files from POWER queue 8-17, 8-20
from CICS (VSE) 8-20, 8-21
only selected records 3-13
small summary files 3-33
ways to download 8-20
your own new fields 3-18

drawings, in Web reports 5-12
DSECT statement in Assembler 6-67, 6-70, 6-73
DSNAME

relation to file name 6-7, 6-10, 10-61, 10-76,
10-106

when relation to file name 6-6
duplicate, records in file for a key 4-118
DXPARM parm

in FIELD statement 10-51, G-2
DXPROG parm

in FIELD statement 6-37, 10-52, G-2
DXRETDEC parm

in FIELD statement 6-37, 10-52, G-6
DXRETLEN parm
CIMS Report Writer User Guide Index-15 ■

■ Index

in FIELD statement 6-37, 10-53, G-6
dynamic, HTML 5-5, 5-14, 5-22, 5-25

E
EBCDIC

converting to ASCII D-5 to D-6
instead of ASCII D-6

EBCDIC built-in function (see #EBCDIC built-in
function) D-6

EBCDICTABLE parm
in OPTIONS statement 10-88

either
of two conditions 2-15, 3-15, 9-26, 9-31

ELSE parm
in COMPUTE statement 2-23, 3-22, 10-36

encrypted data, how to process 6-36
end of report

printing lines after 5-17, 5-29, 10-96
printing lines at 4-99

ending
of words (singular or plural) 4-91, 10-14, C-3

EQU statement in Assembler 6-70, 6-73
EQUAL parm (see #EQUAL parm)
equal to

comparing contents of fields 2-13, 3-13, 9-20,
9-30

error indicators
ambiguous reference (***A***) E-2
divide by zero (***Z***) E-3
error (***E***) E-2
invalid data (***I***) E-2
list of 4-47, E-2
offset error (***F***) 6-34, E-2
overflow (***V***) E-3
propagation of E-4
size (***S***) 4-12, 4-13, 4-15, 4-71, 9-14, E-2
suppressing E-3
undefined field (***U***) E-3
(see also under ***A***, ***I***, etc.)

error messages
DD used in JCL 8-3
logical unit written to (VSE) 8-15, 8-25

ESDS VSAM files 6-7, 6-10
writing to 8-7, 8-20
writing to (VSE) 8-20

EXAMINE (see under #TRANSLATE)
examples, files used in F-1
Excel

example 3-13, 3-14, 3-29, 3-31, 3-38, 3-39,
3-41

importing PC files into H-3
producing output file for 10-96, H-3

EXCEL parm
in OPTIONS statement 10-96

exit programs
(see Data exit programs and I/O Exit)

EXITPARM parm
in FILE statement 6-8, 6-11, 10-62
in INPUT statement 6-9, 10-76
in READ statement 6-9, 10-106

expressions
computational (see Computational

expressions)
conditional (see Conditional expressions)

EXTENT statement in JCL 8-24, 8-26

F
false, bit value D-18
features, list of 1-9
FIELD statement 10-47

creating from Assembler record layout 6-60,
10-3

creating from Cobol record layouts 6-60, 10-18
data types, list of A-1, A-2
defining a field's column (or displacement)

6-30, 6-33, 10-50
defining column headings 6-35
how dates, times and numbers are formatted

B-2
how many decimal digits 6-16, 10-51
how to define bit fields 6-26
how to define character fields 6-12, 6-20
how to define date fields 6-21
how to define fields created in exits 6-35, G-1
how to define numeric fields 6-15, 6-20
how to define time fields 6-24
how to use 6-12
keeping in a copy library 6-42
location determined by another field 4-133,

6-33, 10-55
making starting column relocatable 10-50
multiple fields for same column in record

4-122
parms (see under name of parm)
purpose 6-3
■ Index-16 CIMS Report Writer User Guide

Index ■

redefining part of a record 6-5, 6-14, 6-32, 6-47,
10-50

rules for field names 9-7
syntax 10-48
where to put 6-39, 8-10, 8-22
with DB2 data 7-18, 7-19
(see also Fields)

fields
built-in (see Built-in fields)
built-in, list of C-2
comparing contents of 2-15, 3-15, 9-19, 9-30
control break (see Control breaks)
converting character to numeric, and v.v. 6-20
creating your own 2-19, 3-18, 9-32, 10-31
defining as character versus numeric 6-20
defining for an earlier file 6-32
defining one-time fields 6-47
how date fields stored in files 6-21, A-5
how many decimal digits in 6-16, 10-37, 10-51
how many digits in 6-16
how numeric fields stored in files 6-15, A-3
how time fields stored in files A-8
how to define 6-3, 6-12
including only certain values in report 2-13,

3-13, 9-19, 10-70
listing of fields in input file 3-10, 6-50, 10-79,

10-112
name cannot be split across lines 9-4
name used as column heading 4-8
processing non-standard date fields 6-36
qualifying field name with record name 2-52,

3-40, 4-113, 4-115, 10-79, 10-111
resolving ambiguous field names 2-52, 3-40,

4-113, 4-115, 9-7, 10-79, 10-111
sort fields 2-34, 3-25
specifying which to print 2-8, 10-24
testing for missing fields 4-116
used in examples F-1
where located in records 6-30, 6-33
(see also FIELD statement)

file names
for naming Web reports 5-4
used as record names 4-115, 10-79, 10-111

FILE parm
in ASM & COBOL statements 10-20
in FIELD statement 6-32, 6-48, 10-53

FILE statement 10-58
how to use 6-6

keeping in a copy library 6-42
maximum record length 10-60, 10-63
overriding parms temporarily 6-8
parms (see under name of parm)
purpose 6-3
rules for file names 9-7
syntax 10-59
use with ASM & COBOL statements 6-49, 6-53,

6-61
variable length files 10-63
VSE file attributes 10-60
where to put 6-39, 8-10, 8-22
which DD used for file 8-12, 10-61
which DLBL/TLBL used for file 8-24
with DB2 data 7-18, 7-19
(see also Files)

files
assigning file names 6-6, 10-59
auxiliary input file 2-49, 3-36
auxiliary input files 10-102
auxiliary input files are keyed 2-50, 3-36,

10-110, 10-112, 10-113
chaining (nesting) input files 4-113
copying statements from 6-42, 10-42, 10-75,

10-105
DDNAME and DSNAME used 6-7, 8-12, 10-43,

10-45
defining automatically 6-42
defining without using a copy library 6-39
how primary and auxiliary input files are

processed 2-49, 3-36, 10-80, 10-113
how to define 6-3, 10-58
how to define (MVS) 6-6
how to define (VSE) 6-10
including a certain number of records in report

10-91
input file attributes (VSE) 10-60, 10-74, 10-104
maximum record length 6-7, 6-10, 6-11, 10-78,

10-108
multiple input files 2-49, 3-36, 4-111, 10-102
overriding file definition 6-8, 6-11, 10-72,

10-102
primary file read sequentially 2-49, 3-36, 10-80
primary input file 2-49, 3-36, 10-72
processing non-standard files 6-36, K-1
reading a certain number of records 10-91
reading if key greater than or equal 4-117
reading multiple records for the same key 4-118
CIMS Report Writer User Guide Index-17 ■

■ Index

reading multiple records from same file 4-111,
10-111

reading with generic key 4-117
resolving ambiguous file names 4-113
sample files used in examples F-1
sorting mainframe files 4-147
specifying the input file 2-7, 10-72, 10-102
subsetting mainframe files 4-147
types of files supported 6-7, 6-10, 10-64
types of files supported (VSE) 10-60
using PDS files as input 6-7
using tape files as input 6-7, 6-10, 6-11
using VSAM files as input 6-7, 6-10, 10-79,

10-112
variable length 6-33
which DD statement used to read 6-7, 8-12,

10-61, 10-76, 10-106
which DLBL statement used to read 6-10, 8-24
which records to include in report 2-13, 3-13,

10-70
(see also FILE statement)

FILLER 6-69
first

line of report, putting lines before 5-17, 5-29,
10-96

FIXED BINARY (see BINARY)
FIXED DECIMAL (see PACKED)
fixed format ASCII 4-143
fonts

blinking 5-2, 5-32
bold font 5-2, 5-4, 5-6, 5-9, 5-11, 5-32
colored font 5-6, 5-25, 5-29
fontname 5-33
italics 5-2, 5-11, 5-33
mainframe printers 8-8, 10-96
non-proportional 5-11
size 5-33 to 5-34, H-9
specifying 5-2, 5-11, 5-29, 5-33
subscripts 5-34
superscripts 5-34
underlining 5-2, 5-11, 5-34

FOOTING parm
in BREAK statement 3-30, 4-76, 4-80, 4-99,

10-7
in BREAK statement, how to use 4-80
in BREAK statement, multiple 4-89
in BREAK statement, printing blank lines 4-76,

4-90

in BREAK statement, using instead of total line
4-89

where footing line prints 4-89
footings

at bottom of each page (see FOOTNOTE
statement)

at end of control breaks (see FOOTING parm)
lines printed at end of report 4-99

FOOTNOTE statement 10-65
alignment (left, center and right) 10-65, 10-68
centered data looks wrong 10-68
how dates, times and numbers are formatted

10-67, B-2
how to use 4-64
including date, time and page number 4-64,

10-66
justifying contents of fields 10-68
print expressions 4-64
right aligned part looks wrong 10-68
spacing between items 10-67
specifying display format for fields 10-67
specifying width of fields 10-68
spelling month name out 10-67
suppressing footnote lines 10-94
syntax 10-65
to force full page length 5-8
use of quotation marks, apostrophes 10-67
where to put 9-5

forcing lower level control breaks 4-96
format

(see display formats)
FORMAT built-in function (see #FORMAT built-

in function) D-6
FORMAT parm

in FIELD statement 6-3, 6-15, 6-17, 6-22, 6-26,
10-53

in OPTIONS statement 4-18, 4-142, 10-88
list of display formats B-2

forms, how to print 4-32
FOXPRO parm, in OPTIONS statement 10-96
Foxpro, producing output file for 10-96
free format

control statements 9-4
fields, scanning for text in 9-21, 9-31

FULLWORD
data type A-4
writing fullwords to output file B-4

functions
■ Index-18 CIMS Report Writer User Guide

Index ■

(see Built-in functions)

G
GENERIC parm

in READ statement 4-117, 4-119, 10-106 to
10-110

GETVIS 8-25
GIF files 5-12, 5-14
GMT, times 10-99
GRAND parm (see #GRAND)
grand totals

aligning in Web reports 5-11, 5-12, 5-16, 5-26
customizing 4-99, 10-7
display format used in 4-16
how many decimals in 4-16
in Web reports 5-11, 5-17
justification used in 4-25
PICTURE can prevent totalling 4-26
printing averages at 4-27, 4-99, 10-7
printing statistical lines at 4-99, 4-101, 10-7
prints by default 2-8
size error in (***S***) 4-13, 4-15
spacing at 4-101, 4-143, 10-93
suppressing 4-101, 4-143, 10-93
totalling time fields 4-28
treated as a control break 10-7
when put on new page 4-101
which columns receive 4-26, 6-20, 10-27,

10-33, 10-49
(see also Totals and Total line)

graphics
aligning in Web reports 5-14, 5-33
aligning text and graphics 5-21
at control breaks 5-16
characters, in literals 9-9
in report titles 5-14, 5-21
in Web reports 5-2, 5-12, 5-14, 5-33
width of 5-33

graphs, bar, how to print 4-34
greater than

comparing contents of fields 2-15, 3-15, 9-20,
9-30

largest of several fields D-14
read if key greater than or equal 4-117

grouping
computations 2-19, 3-18, 9-34
report lines 2-37
rows in PC file 3-28

H
HALFWORD

data type A-4
writing halfwords to output file B-4

Harvard Graphics
column headings for 4-142
importing PC file into H-7
producing output file for 10-89, 10-96, H-7

HARVARD parm
in OPTIONS statement 10-96

HDGSEP parm
in OPTIONS statement 4-10, 4-11, 6-35, 10-89

header records, in batch type files 4-121
HEADING parm

in BREAK statement 4-93, 4-101, 10-8
in FIELD statement 6-3, 6-35, 10-54

headings
at beginning of a control group 4-93, 10-8,

10-10
column headings (see Column headings)
printing at top of each page 4-101
printing control break headings on each page

4-95, 10-10
printing once at beginning of report 4-101
row 4-31, 10-26
(see also titles)

help, contacting the CIMS Lab xviii
HEX display format B-3

use in COLUMNS statement 4-14
use in FORMAT option 10-89

Hexadecimal representation
dates stored in B-6

hexadecimal representation
dates stored in 6-21, A-6, B-6
how to print 4-14, 6-15, 10-54, B-3
in computational expressions 9-9, 10-39
in conditional expressions 9-9, 9-23, 9-32
times stored in A-8 to A-10, B-8
writing literals in 9-9, 9-32, E-4

HGCOLHDG parm
in OPTIONS statement 4-11, 4-142, 10-89

HHMM
time fields A-8, B-8

HHMM, time fields A-8, B-8, B-9
HHMMSS

built-in field (see #HHMMSS built-in field) C-5
time fields A-8, B-8

higher, level of control break 4-96
CIMS Report Writer User Guide Index-19 ■

■ Index

high-values 9-32
histograms (see bar graphs)
holes, leaving room to punch 4-32
host variable, in DB2 expressions 7-15, 7-17
hot links, in Web reports 5-2, 5-16, 5-32
HOURS

HOURS data type A-10
hours

added to STCK fields 10-99
data type A-10
displaying times as B-8, B-9
HOURS data type A-10
since midnight A-10

HOURS, data type A-10
how to format 6-20
HTML

<BODY> tag 5-29
<HEAD> tag 5-29
 tag 5-33
<PRE> tag 5-29
adding hot links 5-16, 5-32
audio and video clips 5-16
centering text 5-6, 5-32
closing tags 5-29
dynamic HTML 5-5, 5-14, 5-22, 5-25
file name extensions 5-4
for body of report 5-9
for column headings 5-9, 5-25, 10-90
for control breaks 5-11, 5-16, 5-17
for total lines 5-9, 5-11, 5-17, 10-90
how to syntax-check it 5-5
HTML comments 5-25, 5-34
HTML headers 5-33
HTML label 5-32
HTML labels 5-17
HTML tables 5-21, 5-34
in report titles 5-6, 5-14, 5-16, 5-21
list of HTML colors 5-33
list of HTML tags 5-31
opening tags 5-29
parm, in OPTIONS statement 5-2, 5-9, 5-26,

5-29, 10-90
printing a line at control breaks 5-12, 5-33
putting graphics in report 5-12, 5-14, 5-33
putting in report automatically 5-2
where to find online specifications 5-31
writing your own 5-4

HTML parm, in options statement 5-30

HTMLAID parm
in OPTIONS statement 5-9, 5-26, 5-30, 10-90
in options statement 5-30

hypertext links
(see Hot links)

I
I/O Exit K-1

(see also IOEXIT)
if logic 9-18

in COMPUTE statement 2-23, 3-22, 10-38
selecting records to include in PC file 3-13
selecting records to include in report 2-13,

10-70
(see also INCLUDEIF statement, WHEN parm)

IF statement
in COBOL, PL/I or BASIC 2-15, 3-15

import
importing PC file into Corel Chart H-6
importing PC file into dBASE IV H-7
importing PC file into Excel H-3
importing PC file into Harvard Graphics H-7
importing PC file into Lotus 1-2-3 3-9, H-3
importing PC file into Microsoft Works H-5
importing PC file into Paradox H-4, H-5
importing PC file into PowerPoint H-6
importing PC file into Quattro Pro H-4
importing PC file into R:BASE H-7
importing PC file into word processors H-8
importing PC files into PC programs H-2

INCLUDEIF statement 10-70
comparing date fields 6-21
comparing time fields 6-24
equivalent to DB2 WHERE clause 7-7
examples 9-9, 9-10, 9-11, 9-12, 9-30
how to use 2-13, 3-13
include if both conditions are true 2-17, 3-16,

9-25, 9-31
include if either condition is true 2-15, 3-15,

9-26, 9-31
including a certain number of records in report

10-91
including only certain dates in report 2-17,

3-16, 9-10, 9-11, 9-30
including only certain times 2-17, 3-16
multiple statements 2-13, 3-13
omitting 2-13, 10-70
reading a certain number of records 10-91
■ Index-20 CIMS Report Writer User Guide

Index ■

selecting certain whole records to output 4-147
selecting records with invalid data 9-24, 9-32,

E-4
specifying multiple conditions 2-15, 3-15,

9-24, 9-31
speed-up tips I-2
syntax 10-71
use of the keyword "AND" 2-17, 3-16, 9-25,

9-31
use of the keyword "NOT" 9-32
use of the keyword "OR" 2-15, 3-15, 9-26, 9-31
where to put 2-13, 3-13
which fields allowed in 2-13, 3-13
writing conditional expressions 2-15, 3-15,

9-18
(see also Conditional expressions)

including
a certain number of records in report 10-91
selected records in report 10-70
(see also INCLUDEIF statement)

INDEX built-in function (see #INDEX built-in
function) D-12

initial, setup required for files 6-3, 10-58
in-line

putting definition statements in-line 6-39
INPUT statement 10-72, 10-102

copies records from copy library 6-43, 10-75
how to use 2-7
listing records copied from copy library 6-43,

10-78
naming the record 4-115, 10-79
overriding file definition parms 6-8, 6-11,

10-72
parms (see under name of parm)
reading a certain number of records 10-91
reading DB2 tables 10-75
specifying more than one input file 2-49, 3-36,

10-102
syntax 10-73
using DB2 data 7-3
variable length files 10-77
where to put 9-5
which DD used for file 8-12, 10-76
which DLBL/TLBL used for file 8-24

INT built-in function (see #INT built-in function)
D-12

international, formatting options 4-18
Internet Explorer 5-2

interval, computing time interval 4-138
invalid data

how sorted 10-124
identifying records that contain 9-24, 9-32, E-4
indicator (***I***) E-2
suppressing error 10-101, E-3
suppressing from report 4-41, 4-43

IOEXIT
file type 10-60, 10-79
parm, in FILE statement 10-62, K-2
parm, in INPUT statement 10-76
parm, in READ statement 10-107
sample program K-1

italic
specifying font 5-2, 5-11, 5-33

ITEM1-ITEM9 built-in fields (see #ITEM1-ITEM9
built-in fields) C-4

ITEM-ENDING built-in field (see #ITEM-
ENDING built-in field) C-3

items
number of, in control group 4-70, 4-91, 10-14,

C-4
number of, in report so far 4-91, 10-14, C-4
number of, in whole report 2-8

ITEMS built-in field (see #ITEMS built-in field)
C-4

IUI 8-20

J
JCL 8-1

completion codes 8-14, 8-26
copy library DD 8-11
copy library used 10-43
copying statements not in the copy library

10-45
DATE statement (VSE) C-4
DD used for report 8-7
EXEC statement SIZE parm (VSE) 8-25
for DB2 7-2, 8-3
for MVS systems 8-2
for PC files (MVS) 8-5, 8-6
for PC files (VSE) 8-17, 8-18
for reports (MVS) 8-2, 8-5
for reports (VSE) 8-15
for VSE systems 8-15
including jobname in report C-3
logical unit used for report (VSE) 8-19
MVS, list of DDs used 8-3
CIMS Report Writer User Guide Index-21 ■

■ Index

no copy library used 6-39
sample PROC (MVS) 8-7
specifying buffer size in JCL 8-12, 8-24
specifying LRECL for report 8-8
VSE, logical unit assignments 8-15
what DD statement used for input files 6-7,

8-12, 10-61, 10-76, 10-106
which DLBL/TLBL used for input files 6-10,

8-24, 10-60
writing FIELD statements 6-61

JOBNAME built-in field (see #JOBNAME built-in
field) C-3

JPG files 5-12
julian dates 6-21, A-6, A-7, B-5, B-6, B-7
justification

doesn’t look correct 4-55, 4-60, 10-68, 10-129
maximum size allowed 4-24
of column headings 4-10
of data in report columns 4-7, 4-24, 10-29
of data printed at control breaks 4-85, 10-16
of data within titles 4-53, 4-54, 10-129
of data, default 4-24
of titles (left, center and right) 2-28, 4-31, 4-57,

10-126
used in totals line 4-25
(see also Alignment)

K
KEEPRDW parm

in FILE statement 4-130, 6-8, 6-10, 6-33, 10-63
in INPUT statement 6-33, 10-77
in OPTIONS statement 10-91
in READ statement 6-33

KEY parm (see READKEY parm)
KEYRANGE parm, in INPUT statement 10-77
keys

auxiliary input files are keyed 2-50, 3-36,
10-110, 10-112, 10-113

building a packed or binary read key 10-111
creating read key with COMPUTE statement

2-54, 3-40, 10-111
generic 4-117, 4-119
generic (see also GENERIC)
greater than or equal to 4-117, 10-107
key to one file is contained in another file 4-113
picking key for READ statement 2-50, 2-52,

3-37, 4-111, 4-113, 10-110
reading a keyrange 10-77

KGE parm
in READ statement 4-117, 10-107, 10-109,

10-110
KSDS VSAM files 6-7, 6-10, 10-77

L
label

HTML labels 5-17
tape labels (VSE) 10-60

labels, HTML labels 5-32
large

largest of several numbers, dates or times D-14
records in input file 6-7, 10-63, 10-78
records in input files 10-108
report width 8-8, 8-20

laser printers 4-68
fonts 10-96
setup string 10-96
skipping to new sheet 10-97

last
line of report, putting lines after 5-17, 5-29,

10-96
sign in last digit of number A-3

LCASE built-in function (see #LCASE built-in
function) D-7

leading
slash, in TITLE statement 4-60
zero, in time literals 9-11
zero, not required in date literals 9-10
zero, suppression 4-14, 9-15, 10-54, B-3
zeros, printing 9-15, B-3

left alignment
of titles 2-28, 4-31, 4-57, 10-126
(see also Alignment and Left justification)

LEFT built-in function (see #LEFT built-in
function) D-7

left justification
of column headings 4-10
of data in report columns 4-24, 10-29
of items in control break lines 4-85, 10-16
(see also justification)

left margin
aligning titles with 4-57, 10-126
how to specify 4-32, 10-91
moving first report column over 4-70, 4-103
(see also Margins)

LEFT parm
in #FORMAT built-in function D-6
■ Index-22 CIMS Report Writer User Guide

Index ■

in BREAK statement 4-85
in COLUMNS statement 4-7, 4-24
in FOOTNOTE statement 10-68
in TITLE statement 4-54, 10-129

LEFTMARGIN parm
in OPTIONS statement 4-32, 10-91

legend, for PC files 4-11
length

allowed for file and field names 9-4, 9-7
comparing operands of different length 9-22,

9-30, 9-32
of date fields A-5
of PC file records (MVS) 8-5
of PC file records (VSE) 8-19
of time fields A-8
of variable length records 6-33

LENGTH (LEN) parm
in FIELD statement 6-13, 6-16, 6-22, 6-25,

10-55
less than

#MIN built-in function D-14
Comparing contents of fields 9-20
comparing contents of fields 2-17, 3-16, 9-30

lessons
requesting PC files 3-2
requesting reports 2-3

letters
ASCII versus EBCDIC 10-83, 10-88, D-5 to D-6
lower case D-7
upper case D-11

level, of control breaks 4-70, 4-96
librarian (MVS)

copying records from 6-64, 10-45
librarian (VSE)

assembler copy library 10-84
COBOL copy library 10-85
copying records from 10-42
specifing the copy library 10-100
using as copy library 6-42, 8-22
where loaded 8-25
which member type read 10-44, 10-92

lines
how many per page 10-96
line number in report 4-95
printing a vertical line between columns 4-34
putting a line at control breaks in Web reports

5-12, 5-33
links,(see Hot links)

LIST parm
in COPY statement 9-6, 10-45
in INPUT statement 6-43, 10-78
in READ statement 6-43, 10-108

listing
of fields in a DB2 table 7-7
of fields in a file 3-10, 6-50, 6-54, 10-79,

10-112
records copied from copy library 6-43, 10-45,

10-78, 10-108
literals 9-8

definition of 9-8
headings for columns of literal text 4-11, 10-26,

10-29
how to write 2-15, 3-15, 9-8
HTML tags 5-4
in body of report 4-4, 4-31, 10-26
in DB2 expressions 7-15, 7-17
in hexadecimal format 9-9, 9-23, 9-32, 10-39,

E-4
in PC files 10-26
in titles 2-26, 4-48, 9-5, 9-9, 10-128
plus/minus sign 9-10
that don’t fit on single line 9-4
using DD/MM/YY date literals 10-87
when to use quotation marks 6-20, 9-11
writing time literals 9-11

location
of field in record, after defining a bit field 6-32
of field in record, default 6-31, 10-51

logical operations
#OFF built-in function D-18
#ON built-in function D-18
AND operation D-5
OR operation D-8
XOR operation D-11

logical units
assignments 8-15
for tapes (VSE) 6-11

logo
in Web reports 5-2, 5-12, 5-14, 5-21, 5-29, 5-33

LONG1-LONG3, date display format B-5
Lotus 1-2-3

example 3-6 to 3-7, 3-23
importing PC files into 3-9, H-3
producing output file for 10-96, H-3

LOTUS parm, in OPTIONS statement 10-96
lower
CIMS Report Writer User Guide Index-23 ■

■ Index

#MIN built-in function D-14
level of control break 4-96

lower case D-7
low-values 9-32
LRECL parm

in FILE statement 6-7, 10-63
in INPUT statement 6-9, 10-78
in JCL, for output files 8-5
in JCL, for report output 8-8
in READ statement 6-9, 10-108
LRECL of output file 10-95

M
MAINFRAME parm

in OPTIONS statement 10-96
mainframes

producing output files for 4-144, 10-96
sorting mainframe files 4-147
subsetting mainframe files 4-147

MAKEDATE built-in function (see #MAKEDATE
built-in function) D-16

MAKENUM built-in function (see #MAKENUM
built-in function) D-12

MAKETIME built-in function (see #MAKETIME
built-in function) D-17

margins
aligning titles with 4-57, 10-126
how to specify 4-32, 10-91, 10-96
moving first report column over 4-70, 4-103

mathematical operations
between different types of numeric fields 6-15
how to perform 2-19, 3-18, 9-32, 10-31, 10-38
(see also COMPUTE statement, statistical lines)

MAX built-in function (see #MAX built-in
function) D-14

maximum
#MAX built-in function D-14
length of file and field names 9-4, 9-7
line (see also Statistical lines) 2-41, 4-77,

10-120
line (see also statistical lines) 10-8
line, printing at Grand Total time 4-99
line, printing at grand total time 10-7
number of control statements 10-94
number of digits allowed in literals 9-10
number of lines to print 10-92
number of pages to print 10-91
number of records to include in report 10-91

number of records to read 10-91
selecting the largest of several values D-14
size allowed with justification 4-24
value in control group, printing 2-41, 4-77,

4-85, 4-95, 10-16
value, which columns receive 4-26, 6-20,

10-27, 10-33, 10-49
year allowed in date literals 9-10
(see also MAXIMUM parm)

MAXIMUM (MAX) parm
in BREAK statement 2-41, 4-77, 10-8
in BREAK statement print expressions 4-85,

4-89, 4-95
in BREAK statement, two different uses 4-87
in SORT statement 4-77, 10-120

MAXINCLUDE parm
in OPTIONS statement 10-91, I-14

MAXINPUT parm
in OPTIONS statement 10-91, I-14

MAXINVSHOW parm
in OPTIONS statement 10-91

MAXOCCURS parm
in ASM & COBOL statements 6-60, 10-20

MAXPAGES parm
in OPTIONS statement 10-91, 10-93, I-14
suppressing message 4-143, 10-93

MAXPRINT parm
in OPTIONS statement 10-92, 10-93, I-14
suppressing message 4-143, 10-93

member
of copy library, which one copied 6-46, 10-43
type, of VSE library 10-92

MEMTYPE parm
in OPTIONS statement 10-92

messages
suppressing maximum printed message 4-143,

10-93
Microsoft Works

example 3-26
importing PC files into H-5
producing output file for 10-96, H-5

MID files 5-17
MIN built-in function (see #MIN built-in

function) D-14
minimum

#MIN built-in function D-14
excluding zero values 4-78, 10-10, 10-16,

10-121
■ Index-24 CIMS Report Writer User Guide

Index ■

line (see also Statistical lines) 2-41, 4-77, 10-9,
10-120

line, printing at Grand Total time 4-99, 10-7
value in control group, printing 2-41, 4-77,

4-85, 4-95, 10-16
value, which columns receive 4-26, 6-20,

10-27, 10-33, 10-49
(see also MINIMUM parm, NZMINIMUM

parm)
MINIMUM (MIN) parm

in BREAK statement 2-41, 4-77, 10-9
in BREAK statement print expressions 4-85,

4-95
in BREAK statement, two different uses 4-87
in SORT statement 4-77, 10-120

minus sign (-)
blanks required around 9-34
formatting negative numbers, where to put

9-13
in numeric literals 9-10
meaning in COLUMN or DISP parm 6-31,

10-50
name broken at, for column headings 4-8
subtraction symbol 2-19, 3-18, 9-33
use in field names 9-7, 9-33

minutes
adding to a time field D-17
displaying times as B-8, B-9
MINS data type A-9
rounding to minutes 2-31
since midnight A-9

missing
records 4-117, 8-13, 8-25
records, default value used 4-116, 10-116
records, how to detect 4-116

MISSOFFSET parm
in OPTIONS statement 10-92, E-4

MMDDYY
date fields A-5, A-6, B-5, B-6

MMDDYYYY
date fields A-5, A-6, B-5, B-6

MOD built-in function (see #MOD built-in
function) D-14

month
extracting for a given date 6-47, D-15
name, for a given date D-8
spelling out 4-14, 4-84, 6-22, 10-28, 10-54, B-5,

D-7

spelling out name, in titles 2-28, 2-31, 4-54,
10-129

MONTH built-in function (see #MONTH built-in
function) D-8

MONTHNUM built-in function (see
#MONTHNUM built-in function) D-15

MS-WORKS parm
in OPTIONS statement 10-96

MULTI parm
in READ statement 4-118, 7-13, 10-108 to

10-110, 10-113, I-8
with DB2 tables 10-113

MULTICOLHDG parm
in OPTIONS statement 4-11, 4-31, 4-41, 10-92

multi-line reports 4-29, 10-24, 10-92
multiple

BREAK statements 2-43
COLUMNS statements 4-29, 4-41, 10-24,

10-92
conditions 2-15, 2-25, 3-15, 3-24, 9-24, 9-31
control breaks 2-43, 4-96, 4-103
DB2 tables 7-10, 7-13
fields defined at same location in record 6-5,

6-14, 6-32, 6-47
footing lines at control breaks 4-89
INCLUDEIF statements 2-13, 3-13, 10-70
input files 2-49, 3-36, 4-111, 10-102
levels of totals 2-44, 4-96, 4-103
lines required for control statement 9-4
lines, splitting column headings 4-8, 6-35,

10-29, 10-54
PC file records per input record 10-24
READ statements 2-54, 3-40, 4-111
records for a READ statement 10-108
records from same input file 4-111
records in file for a key 4-118
report lines per record 4-29, 4-36, 10-24
sort fields 10-117
total lines at control breaks 4-76
values in a relation condition 9-27, 9-31
ways of computing a field 2-23, 10-32

multiplication
how to perform 2-19, 3-18, 9-33, 10-31
results in overflow (**V**) E-3

MVS operating system 8-2

N
NAME parm (see RECNAME parm)
CIMS Report Writer User Guide Index-25 ■

■ Index

names
assigning field names 6-13
assigning file names 6-6, 6-46
current day of week C-3
field names from COBOL and Assembler record

layouts 6-59, 6-68, 6-73
getting list of DB2 column names 7-7
getting list of field names 3-10, 6-50, 6-60,

10-79, 10-112
month, spelling out 2-28, 2-31, 4-14, 4-54,

4-84, 6-22, 10-28, 10-54, 10-129, B-5,
D-8

of day for a given date D-6
removing blanks between last and first name

D-6
rules for file, field, and record names 9-4, 9-7
sorting mixed case names D-11
spelling out state name 4-113, 10-39

narrower
making a column narrower 2-33, 4-12, 10-30
(see also Width)

negate
how to negate a condition 9-29, 9-32

negative sign (-)
(see Minus sign)

nesting
control breaks 4-96, 4-103
input files 4-113
parentheses 9-27, 9-34

new fields
how to create 2-19, 3-18, 9-32, 10-31

new page
skipping to in control listing 9-6
skipping to, in report 2-39, 4-40, 4-67, 10-11,

10-120
NEWSHEET (NEWSHEET1) parm

in BREAK statement 4-68, 4-101, 10-11, 10-97
in SORT statement 4-68, 4-101, 10-97, 10-120

next page
skipping to new page 2-39

NOACCUM parm
how to use 4-28
in COLUMNS statement 4-6, 4-28, 10-27
in COMPUTE statement 4-28, 10-33
in FIELD statement 4-28, 6-3, 6-17, 6-25, 9-12,

10-49
NOCC parm

in OPTIONS statement 4-143, 5-30, 10-93, H-8

NOCHECK parm
in OPTIONS statement 10-93

NOCLEARIO parm
in OPTIONS statement 10-93

NOCOLHDGS parm
in OPTIONS statement 4-10, 4-11, 4-63, 4-143,

5-30, 10-93
NOCOMMAS

display format B-4
NOGRANDSPACES parm

in OPTIONS statement 4-143, 4-147, 10-93
NOGRANDTOTAL parm

in OPTIONS statement 4-101, 4-143, 10-93
NOLABEL 10-60
NOMAXMSG parm

in OPTIONS statement 10-93
non-proportional font 5-11
non-zero average

line (see also Statistical lines) 2-41, 4-77, 10-9,
10-121

value in control group, printing 2-41, 4-77,
4-85, 4-95, 10-16

which columns receive 4-26, 6-20, 10-27,
10-33, 10-49

non-zero minimum
line (see also Statistical lines) 2-41, 4-77, 10-10,

10-121
value in control group, printing 2-41, 4-77,

4-85, 4-95, 10-16
value, which columns receive 4-26, 6-20,

10-27, 10-33, 10-49
NOOVERPRINT parm

in OPTIONS statement 4-11, 10-94
NOREPEAT/NOREPEATPAGE parm

in COLUMNS statement 4-7, 4-22, 10-30
NOSEQ parm

in ASM & COBOL statements 10-20
NOSYSINLIMIT parm

in OPTIONS statement 10-94
not character (¬)

use in conditional expressions 9-30
NOT keyword

use in conditional expressions 9-29, 9-32
NOTALIAS parm

in COPY statement 10-45
NOTITLES parm

in OPTIONS statement 4-11, 4-63, 4-143, 5-21,
10-94
■ Index-26 CIMS Report Writer User Guide

Index ■

NOTOTAL parm
in BREAK statement 4-77, 4-89, 4-101, 4-104,

10-11
in SORT statement 4-77, 10-121

NOUNDERSCORES parm
in OPTIONS statement 4-11, 4-12, 5-8, 10-94
in options statement 5-30

number
in COLUMNS statement, meaning of 10-26,

10-30
including a certain number of records in report

10-91
of characters in report line 4-46, 8-7
of lines to print 10-92
of occurrences, counting 4-106
of pages to print 10-91
reading a certain number of records 10-91

number of items
as column in report 4-95
in control group 4-70, 4-91, 10-14, C-4
included in report 2-8
printed in report so far 4-91, 10-14, C-4

number sign (#)
meaning of 2-26

NUMERIC
data type A-3
display format B-3

numeric fields
comparing 2-15, 3-15, 6-15, 9-10, 9-20, 9-30,

10-39
comparing to character fields 9-22
confusing with character fields containing

numbers 6-20, 9-11
converting to a time value 4-138, D-13, D-17
converting to character 6-21, D-6
converting to date value 9-36, D-16
creating your own 2-19, 3-18, 9-10, 9-32, 10-31
default display format 10-88, B-9
formatting in report 2-31, 4-13, 4-54, 4-84,

6-17, 9-12, 10-28, 10-54, B-3, D-7
formatting with dots instead of commas 4-18,

B-3
how sorted 10-123
how stored in input file 6-15, 10-57, A-3
how to define 6-15, 10-47
integer portion D-12
performing calculations 2-19, 3-18, 9-10, 9-32,

10-31, 10-38

printing as a bar graph 4-34
printing blanks instead of zero 4-6, 4-54, 4-84,

10-15, 10-28, 10-67, 10-128, D-7
sign in last digit A-3
specifying where to put plus, minus sign 9-13
stored in character format 6-20
testing for valid number 9-24, 9-32, E-4
writing numeric literals 2-15, 3-15, 9-10, 9-30
zero assigned if record missing 4-116, 10-116

NUMERIC-SLD, data type A-3
NUMEXIT, data type A-4
NUMWORDS built-in function (see

#NUMWORDS built-in function) D-15
NZAVERAGE (NZAVG) parm

in BREAK statement 2-41, 4-77, 10-9
in BREAK statement print expressions 4-85,

4-95
in BREAK statement, two different uses 4-87
in SORT statement 4-77, 10-121

NZMINIMUM (NZMIN) parm
in BREAK statement 2-41, 4-77, 10-10
in BREAK statement print expressions 4-85,

4-95
in BREAK statement, two different uses 4-87
in SORT statement 4-77, 10-121

O
occurrences, counting in a file 4-106
OCCURS clause in COBOL 4-36, 4-42, 4-133,

6-5, 6-14, 6-59, 10-20
odd page numbers

skipping to 4-68, 10-11
ODDPAGE (ODDPAGE1) parm

in BREAK statement 4-68, 4-101, 10-11
in SORT statement 4-68, 4-101, 10-120

OFF built-in function (see #OFF built-in
function) D-18

OFFSET parm
error in calculating E-2
in FIELD statement 4-133, 6-33, 10-55
suppressing errors in 10-92, E-4

OFFTEXT parm
in FIELD statement 6-30, 10-56, 10-124

omitting
INCLUDEIF statement 2-13, 10-70
TITLE statement 2-9, 2-26

ON built-in function (see #ON built-in function)
D-18
CIMS Report Writer User Guide Index-27 ■

■ Index

one-time
lines at beginning or end of report 5-17, 5-29,

10-96
one-to-many I/O 4-118, 10-108
ONTEXT parm

in FIELD statement 6-30, 10-56, 10-124
operating systems 8-1
operations

character, how to perform 2-21, 3-20, 9-33,
10-31

mathematical, how to perform 2-19, 3-18,
9-33, 10-31

(see also COMPUTE statement, computational
expressions)

operators
allowed in relation conditions 9-20

OPTIONS statement 10-81
column heading options 4-11, 4-63
parms (see under name of parm)
parms for custom PC files 4-143
specifying shop-wide options 8-3, 8-13
syntax 10-82 to 10-83
title options 4-11, 4-63
use with PC files 3-8
Web report options 5-30
where to put 9-5, 10-81

OR built-in function (see #OR built-in function)
D-8

OR keyword
use in conditional expressions 2-15, 3-15, 9-26,

9-31
order

in which BREAK statements appear 4-96
in which conditions are evaluated 9-27
of control statements 9-5
of input file processing 10-80
of operations in computational expressions

9-34
of PC file, how to specify 3-25
of report, how to specify 2-34, 10-117
(see also SORT statement)

ORDERBY parm
in INPUT statement 7-8, 10-78
in READ statement 7-11, 10-109
similar to DB2 ORDER BY clause 7-8

ORG statement in Assembler 6-70
OUTATTR parm

in ASM & COBOL statements 6-61, 10-21

in OPTIONS statement 8-17, 8-19, 10-94
OUTDDN parm

in ASM & COBOL statements 6-61, 10-22
OUTLRECL parm

in OPTIONS statement 8-8, 10-95
output

separating report output from control listing
8-17

output files
access method used 8-7, 8-19
attributes (VSE) 10-94
for mainframe programs 4-144
for non-standard PC programs 4-139
how to create 10-96
HTML 5-2
JCL (MVS) 8-5
JCL (VSE) 8-17
logical unit written to (VSE) 8-15
making binary data fields 4-145
making packed data fields 4-144, 4-145
printing one-line column headings 4-142
producing delimited ASCII file 4-140
producing fixed format ASCII file 4-143
spacing between fields 4-144, 10-86
specifying display format 4-142, 4-144, 4-145,

10-88
specifying field width 4-144, 4-145
specifying record length (MVS) 8-5, 8-8
specifying record length (VSE) 8-20
specifying the delimiter 4-142, 10-85
suppressing blank lines 4-143, 4-147, 10-93
suppressing column headings 4-143, 4-147,

10-93
suppressing report titles 4-11, 4-63, 4-143,

4-147, 10-94
suppressing the carriage control character

4-143, 4-147, 10-93
suppressing the Grand totals 4-143, 4-147,

10-93
suppressing underscores 10-94
using as an input file 4-121, 4-125
writing entire records from input file 4-147
writing FIELD statements to (MVS) 10-22
writing FIELD statements to (VSE) 10-21
writing julian dates 4-145
writing selected records to output file 4-147
writing to VSAM (MVS) 8-7, 10-96
writing to VSAM (VSE) 8-20
■ Index-28 CIMS Report Writer User Guide

Index ■

(see also PC files)
OUTPUT parm

in OPTIONS statement 4-143
OUTTYPE parm

in OPTIONS statement 8-7, 10-96
overflow

error indicator (***V***) E-3
suppressing error 10-101, E-3

overlap
title parts 4-63
total line text overlapping a column total 4-70

overprinting, suppressing 4-11, 10-94
overriding

column headings 2-31, 4-6, 4-7, 10-28
file definition parms 6-8, 6-11, 10-72, 10-102

P
packed data

calculating the number of digits 6-16
comparing with binary data 6-15
dates stored as B-6, B-7
invalid 4-43, 10-101, E-2
testing for valid data 9-24, 9-32, E-4
with F as sign D-8
writing to output file 4-144, B-4, B-6 to B-9

PACKED data type
dates stored as 6-21, A-6, A-7
needed in read key 10-111
numeric field 6-12, 6-15, A-3
times stored as A-8, A-9, A-10

PACKUN
data type, for time fields A-8, A-9, A-10
numeric data type A-3
writing packed unsigned data to output file B-4

padding
blank, computed fields 10-37
blank, operands of different lengths 9-22, 9-30
hex literals 9-9
zero, operands of different lengths 9-32

page
control group headings at top of 4-95, 4-101,

10-10
fixing page length 5-8
how many lines per page 10-96
maximum number to print 10-91
maximum width of 4-46, 8-7
printing footnotes at bottom 4-64
skipping to new in control listing 9-6

skipping to new page 2-39, 4-40, 4-67, 10-11,
10-120

skipping to new sheet of paper 4-68, 10-11,
10-97, 10-120

skipping to odd page 4-68, 10-11, 10-120
splitting related report lines across pages 4-40,

10-99
when Grand Totals put on new page 4-101

PAGE (PAGE1) parm
in BREAK statement 2-39, 4-67, 4-68, 4-101,

10-11
in SORT statement 4-67, 4-68, 4-77, 4-101,

10-120
page breaks

suppressing 4-11, 4-63, 10-94, 10-100
Web reports 5-8
(see also Control breaks and BREAK statement)

page number
built-in field C-4
changing number of digits in 4-62, 10-68 to

10-69, 10-129, 10-130
including in footnotes 4-64, 10-66
including in titles 4-51, 10-127
resetting to page one 4-68, 10-11, 10-120
skipping to odd page 4-68, 10-11, 10-120

PAGELEN parm
in OPTIONS statement 4-32, 5-8, 8-13, 10-96

PAGENUM built-in field (see #PAGENUM built-
in field) C-4

panvalet
copying records from 6-64, 10-45

paper
skipping to new sheet 4-68, 10-11, 10-97

Paradox
example 3-18, 3-19, 3-34
importing PC files into H-4, H-5
producing output file for 10-96, H-4, H-5

PARADOX parm
in OPTIONS statement 10-96

parentheses
nesting 9-27, 9-34
use in COLUMNS statement 4-6
use in computational expressions 2-19, 3-18,

9-34
use in conditional expressions 2-17, 3-16, 9-27,

9-29
use in SORT statement 3-28, 4-67
use in TITLE statement 4-53
CIMS Report Writer User Guide Index-29 ■

■ Index

used to group conditions 9-31
PARM parm (see EXITPARM parm)
parms

available in BREAK statement print expressions
10-13

available in COLUMNS statement 10-25
passing parms to exit programs 6-8, 6-11, 6-36,

10-51, 10-62, 10-76, 10-106, G-1
PARSE built-in function (see #PARSE built-in

function) D-9
partial keys

(see GENERIC parm)
partitioned data set (see PDS)
path to VSAM file 4-118
payback chart 1-8
PC files

blank lines in 3-30
control breaks in 3-28
creating from an existing report 4-125
default total line format 3-30
delimiter used 4-142
display formats 4-142, 10-28
enclosing data in quotes 4-142
for mainframe use 4-144
how to import into PC programs H-2
how to request 3-2, 10-96
inserting blank columns 3-30
JCL (MVS) 8-5
JCL (VSE) 8-17
list of PC programs 3-8
logical unit written to (VSE) 8-15
printing one-line column headings 4-142,

10-89
producing delimited ASCII files 4-140
producing fixed format ASCII files 4-143
producing irregular PC files 4-139
related parms in OPTIONS statement 4-143
specifying record length (MVS) 8-5, 8-8
specifying record length (VSE) 8-20
summary files 3-30, 3-33
suppressing column headings 4-143
suppressing the carriage control character 4-143
suppressing the Grand totals 4-143
using DB2 data 7-5
writing multiple records per input record 10-24
writing to VSAM (MVS) 8-7
writing to VSAM (VSE) 8-20
YYYY dates 4-142

PC parm, in OPTIONS statement 10-96
PDS files

copying statements from non-PDS files 10-45
rules for naming members 6-46
used as input to report 6-7, 10-64
using as copy library 6-42, 8-9, 8-11, 10-42,

10-43
PDSDDN parm

in COPY statement 10-43, 10-46
percent

computing for control group 4-71, 10-35,
10-40

percentage change, how to compute 9-35
showing percent sign in PICTUREs 9-16

period (.)
using instead of commas in numbers 4-18, B-3

photographs
in Web reports 5-2, 5-12, 5-14

PICTURE format
can prevent totalling 4-26, 10-27, 10-33, 10-49
compared to COBOL 6-5, 6-14
currency indicator 4-18, 9-16
display format B-4
for international users 4-18
for time fields B-8
how to write 9-12
in BREAK statement, examples 4-87
in COLUMNS statement, examples 4-27
using to change column width 4-13
using to round out decimal digits 6-18
when allowed 6-20, 9-14
(see also TPICTURE format)

PICTURES format
in COLUMNS statement, examples 4-17

PL/1
"IF" statement 2-15, 3-15, 10-70
INCLUDE library 6-42, 10-42
INDEX built-in function 9-21, D-12

plan, DB2 plan name 7-20, 10-86
plural

ending of word 4-91, 10-14, C-3
plus sign (+)

addition symbol 2-19, 3-18, 9-33
concatenation symbol 2-21, 3-20, 9-33
formatting positive numbers, where to put 9-13
meaning in COLUMN or DISP parm 6-31,

10-50
meaning in PICTUREs 9-15
■ Index-30 CIMS Report Writer User Guide

Index ■

PM, showing AM and PM B-8
pointers

to field within a record 4-133, 6-33, 10-55
POSTSCRIPT parm 5-29

in OPTIONS statement 5-5, 5-17, 5-22, 10-96
in options statement 5-31

pound sign (#)
meaning of 2-26, 9-7
use in field names 9-7

POWER
downloading files from 8-17, 8-20
writing output to (VSE) 8-19

PowerPoint
importing PC files into H-6
producing output file for H-6

prefix
in variable length records 6-8, 6-10, 6-33, 10-50
using to resolve ambiguous field names 2-52,

3-40, 4-113, 4-115, 10-79, 10-111
PRESCRIPT parm 5-29

in OPTIONS statement 5-5, 5-17, 5-21, 5-22,
10-96

in options statement 5-31
previous

record, saving data from 4-121, 4-125
primary input file

(see Files, INPUT statement)
print expression

in FOOTNOTE statement 10-66
print expressions

in BREAK statement 4-82, 10-12
in COLUMNS statement 4-3, 10-25
in FOOTNOTE statement 4-64, 10-65
in TITLE statement 4-48, 4-57, 10-126

PRINT USING in BASIC 9-12
printing

a certain number of lines 10-92
a certain number of pages 10-91
DD used for report 8-3, 8-7
logical unit used for report (VSE) 8-15, 8-19
on laser printer 4-68, 10-96 to 10-97
printer can’t overprint 10-94
records copied from copy library 6-43, 10-45,

10-78, 10-108
specifying the fields to print 2-8, 10-24

printing headings
printing just once 4-11

priority

in evaluating conditions 9-27
of operations in computational expressions

2-19, 3-18, 9-34
PROC, sample PROC (MVS) 8-7
propagation

of error conditions (***I***) E-4
proportional font 5-11
PRTSETUP parm

in OPTIONS statement 8-8, 10-96
PRTSHEET parm

in OPTIONS statement 8-13, 10-97
punching holes, leaving room for 4-32

Q
QCHAR parm

display format B-3
in OPTIONS statement 10-97, B-3

QSAM 8-7
qualified field names 2-52, 3-40, 4-113, 4-115,

9-7, 10-79, 10-111
QUATTRO parm

in OPTIONS statement 10-96
Quattro Pro

example 3-10, 3-11
importing PC files into H-4
producing output file for 10-96, H-4

quotation marks (" and ’)
enclosing data in, for PC files B-3, B-6, B-8
imbedded within a literal 9-9
needed with character literals 2-15, 3-15, 9-9,

9-30
use in BREAK statement 4-82
use in COLUMNS statement 4-4, 10-26
use in FOOTNOTE statement 10-67
use in INCLUDEIF statement 2-15, 3-15, 9-30
use in TITLE statement 2-26, 4-48, 9-5, 9-9,

10-128
when needed around numbers 6-20, 9-11
which character to use 2-15, 3-15, 9-9
which used for QCHAR display format 10-97

R
R:BASE

importing PC files into H-7
producing output file for 10-96, H-7

random reads
auxiliary files read randomly 2-49, 3-36,

10-113
CIMS Report Writer User Guide Index-31 ■

■ Index

rank
printing ranks in a report 4-95

ratios
computing for control group 10-35

RBASE parm
in OPTIONS statement 10-96

RDW 4-130, 6-8, 6-10, 6-33, 10-50, 10-63, 10-77,
10-91

READ statement 10-102
building a packed or binary read key 10-111
chaining 4-113
copies records from copy library 6-43, 10-105
default record name 4-115
generic keys 4-117, 4-119, 10-106
how to use 2-49, 3-36, 4-111
key greater than or equal to 4-117, 10-107
listing records copied from copy library 6-43,

10-108
multiple READ statements for same file 4-111
multiple statements 2-54, 3-40, 4-111, 10-102
naming the record 4-115, 10-111
overriding file definition parms 6-8, 6-11,

10-102
parms (see under name of parm)
picking the read key for 2-50, 2-52, 3-37, 4-111,

4-113, 10-110
reading DB2 tables 7-10, 10-105
reading multiple DB2 rows 7-13
reading multiple records 10-108, I-8
reading multiple records with the same key

value 4-118
record not found 4-116, 10-116
sorting on field from auxiliary input file 2-52,

3-40
syntax 10-103
using COMPUTE field as read key 2-54, 3-40,

10-111
VSAM versus sequential files 2-50, 3-36, 10-112
where to put 9-5
which DD used for file 8-12, 10-106
which DLBL/TLBL used for file 8-24

reading, a certain number of records 10-91
READKEY parm

building a packed or binary key 10-111
equivalent for DB2 tables 7-10, 10-112
in READ statement 4-117, 4-118, 10-110
in READ statement, key to file contained in

another file 4-113

in READ statement, using a COMPUTE field
2-54, 3-40

key greater than or equal to 4-117, 10-107
reading multiple records 10-108
reading multiple records with the same key

value 4-118
using generic keys 4-117, 10-106

RECNAME parm
in INPUT statement 10-79
in READ statement 4-113, 10-111
in READ statement, how to use 4-115
rules for record names 9-7

record descriptor word
(see RDW)

record layouts
Assembler 8-10, 8-22, 10-3
assembler 6-49
COBOL 6-49, 8-10, 8-22, 10-18

record names
default value 4-115, 10-79
default values 10-111
how to assign 4-115, 10-79, 10-111
resolving ambiguous field names 2-52, 3-40,

4-113, 4-115, 10-79, 10-111
rules for record names 9-7
use in COLUMNS statement 2-52, 3-40, 4-113,

4-115, 10-79, 10-111
with DB2 data 7-15

records
defining the fields within 6-3, 10-47
discrepancy in record count 8-13, 8-25
length of variable length records 6-33
maximum size 6-7, 6-10, 6-11, 10-60, 10-63,

10-78, 10-108
not found for READ statement 4-116, 10-116
number of, included in report 2-8
pointer to fields location 6-33
reading more than one for the same key value

4-118
reading more than one from the same file 4-111
size of output records (MVS) 10-95
size of output records (VSE) 10-94
specifying which to include in PC file 3-13
specifying which to include in report 2-13, 9-9,

10-70
testing for missing records 4-116
variably located fields 4-133, 6-33, 10-55
writing selected records to output file 4-147
■ Index-32 CIMS Report Writer User Guide

Index ■

RECSIZE 6-10, 6-11, 10-60, 10-94
REDEFINES clause in COBOL 6-5, 6-14, 6-68
redefining

part of a record 6-32, 6-47, 10-50
relation

conditions, how to write 9-19
operators, list of 9-20

RELOC parm
in ASM & COBOL statements 10-22

relocatable
COLUMNS and DISP parms 10-50

remainder
after a division D-14

REPEAT parm
in BREAK statement 4-93, 4-95, 4-101, 10-10

repeating
control group headings 4-95, 4-101, 10-10
values, blanking out 4-7, 4-22, 10-30

reports
for the Web 5-2
logical unit written to (VSE) 8-15, 8-19
requesting 2-3
separating report output from control listing

8-17
splitting related lines across pages 10-99
using report output as input 4-121, 4-125
which DD used for 8-3, 8-7
wider than 132 characters 8-8, 8-20

RETAIN parm
in COMPUTE statement 4-121, 4-125, 10-38,

I-6
retaining

data from previous record 4-121, 4-125
reverse

logic, in conditional expressions 9-29, 9-32
sort order 3-25

right alignment
of titles 2-28, 4-57, 10-126
of titles, looks wrong 4-60, 10-129

RIGHT built-in function (see #RIGHT built-in
function) D-9

right justification
needed in right aligned titles 4-60, 10-129
of column headings 4-10
of data in report columns 4-24, 10-29
of items in control break lines 4-85, 10-16
(see also Justification)

right margin

aligning titles with 4-57
(see also Margins)

RIGHT parm
in #FORMAT built-in function D-6
in BREAK statement 4-85
in COLUMNS statement 4-7, 4-24
in FOOTNOTE statement 10-68
in TITLE statement 4-54, 4-60, 10-129

room
running out of 4-8, 4-29, 4-46
running out of room 4-12

ROUND built-in function (see #ROUND built-in
function) D-15

rounding
decimal digits in computed fields 10-37
times 2-31
using PICTURE to round 6-18

row headings 4-31, 10-26
RRDS VSAM files 6-7, 6-10
running count

of number of items printed in report 4-91,
10-14, C-4

S
SAM files, used as input (VSE) 10-60
saving

data from previous record 4-121, 4-125
scanning

a field for a given text 9-21, D-12
scope, of ASM & COBOL statements 6-67
searching

a character field for a text 9-21, 9-31, D-12
seconds

converting hours, minutes and seconds into
D-13

decimal digits 6-25
displaying times as B-8 to B-9
how many seconds between two times D-13
rounding to minutes 2-31
rounding to whole seconds 10-38
SECS data type A-8 to A-9
since midnight A-8 to A-9

security, DB2 7-20
SELECT clause (DB2) 10-112
selecting

a certain number of records 10-91
which records to include in PC file 3-13
CIMS Report Writer User Guide Index-33 ■

■ Index

which records to include in report 2-13, 9-9,
10-70

sequence numbers
in COBOL record layouts 10-20

sequential
files, defining 6-7, 6-10, 10-64
files, not allowed in READ statement 2-50,

3-36, 10-112
files, used as input (MVS) 10-64, 10-79
files, used as input (VSE) 10-60
primary input file read sequentially 2-49, 3-36,

10-80
setup

copy library (MVS) 8-9
copy library (VSE) 8-21
DB2 7-20
defining files and fields 6-3, 10-47, 10-58
JCL (MVS) 8-2, 8-5
JCL (VSE) 8-15, 8-17
printer setup text 8-8, 10-96
PROC (MVS) 8-7

sheet
skipping to new sheet of paper 4-68, 10-11,

10-97, 10-120
shifting report 4-32, 4-70
SHORT1-SHORT3

date display format B-5
SHORT1-SHORT3, date display format B-5
shorten

(see Width)
SHOWFLDS parm

in ASM & COBOL statements 6-50, 6-60, 10-22
in INPUT statement 3-10, 7-7, 10-79
in READ statement 7-7, 10-112

sign
plus or minus, computing absolute value D-12
plus or minus, in numeric literals 9-10
plus or minus, where to print 9-13
sign in last digit of number A-3
unsigned numeric data A-3 to A-4

SIGN clause in COBOL 6-69
simple

COMPUTE statement 2-23, 3-22, 10-32
conditional expressions 9-24

SINGLESPACE (SINGLE) parm
in OPTIONS statement 10-97

singular
ending of word 4-91, 10-14, C-3

size
block size (VSE) 10-60
block size of output (VSE) 10-94
error indicator (**S**) 4-13, 9-14, E-2
error indicator (**S**), in total line 4-71
maximum size allowed when justifying 4-24
of column, changing 2-33, 4-12, 10-30
of computed fields 10-37
of fields in input records 10-55
of fields in output files 4-144, 4-145
of items in control break lines 4-86, 10-16
of items in the title 4-53, 4-54, 10-130
of output records (MVS) 10-95
of output records (VSE) 10-94
of report, maximum 4-46, 8-8, 8-20
record size (VSE) 10-60
(see also Width)

SIZE parm in JCL 8-25
skewed

report columns 4-31
titles 4-55, 4-63, 10-129
(see also Alignment)

SKIPBLANKDET parm
in OPTIONS statement 4-40, 4-45, 10-98

skipping
to new page in control listing 9-6
to new page in report 2-39, 4-67, 10-11, 10-120

SKIPZERODET parm
in OPTIONS statement 4-36, 4-41, 4-45, 10-98

slash (/)
changing delimiter for formatting dates 10-86
division symbol 2-19, 3-18, 9-33
leading, in TITLE statement 4-60
meaning of ⁄* and */ 9-6
trailing, in TITLE statement 4-60
used to align titles 2-28, 4-57

smaller
making a column smaller 2-33, 4-12, 10-30
smallest of several values D-14
(see also Width)

SMF files
date format A-7, B-7
tips for using 4-130

social security number 6-20
sort order

bit fields 10-124
character fields 10-123
dates 10-123
■ Index-34 CIMS Report Writer User Guide

Index ■

how to specify 2-34, 3-25
mixed case fields D-11
numeric fields 10-123
tie-breakers 10-84
times 10-123
(see also SORT statement)

SORT statement 10-117
ascending/descending order 2-34, 3-25, 10-119
automatic sorting 2-34, 3-25, 10-84
collating sequence used 10-123
computed field as sort field 10-31
control break occurs at wrong place 10-123
control break spacing 2-39, 4-67, 10-120
control break spacing, summary reports 10-100
how invalid data is sorted 10-124
how to use 2-34, 3-25
JCL required 8-3
multiple sort fields 2-34, 3-25, 10-117
multiple statements 2-34, 3-25, 10-117
name of sort program to use 10-98
parms 2-34, 3-25, 3-28
preserving input file order 10-119
pre-sorting the input file I-10
printing averages at control breaks 4-77, 10-120
printing statistical lines at control breaks 4-77,

10-120 to 10-121
quitting the sort early 10-93
requesting control breaks 4-66, 10-118
requesting multiple control breaks 4-96, 4-103
requesting subtotals 4-66, 10-121
size parm passed to sort program 10-98
skipping to new page 4-67, 10-120
sort field from auxiliary input file 2-52, 3-40
sort program parms I-13
sort work files (MVS) 8-3
sort work files (VSE) 8-26, 10-99
sorting mainframe files 4-147
speed-up tips I-13
syntax 10-118
tie-breakers 10-119
using ORDERBY to sort DB2 data 7-8
where sort program loaded (VSE) 8-25
where to put 2-34, 3-25, 9-5
which fields allowed 10-119

SORTNAME parm
in OPTIONS statement 10-98

SORTSIZE parm
in OPTIONS statement 10-98

SORTWK01 DD 8-3
SORTWORKNUM parm

in OPTIONS statement 8-26, 10-99
SPACE parm

for PC files 3-30
in BREAK statement 4-67, 4-101, 10-11

spaces
ASCII spaces between fields 10-15
where allowed in control statement 9-4

spacing
at control breaks 2-39, 2-43, 4-67, 10-11,

10-120
between report columns 4-4, 4-31, 10-26
between report columns in Web reports 5-9
between report lines 4-31, 10-97
of Grand Totals 4-101
report margins 4-32
(see also Spacing factor)

spacing factor
default 4-6, 10-86
in COLUMNS statement 4-4, 4-31, 10-26
in footnotes 10-67
in lines printed at control breaks 4-83, 10-14
in titles 4-53, 10-128
of zero 4-5, 4-93
used to shift report columns over 4-70, 4-103

special characters
in literals 9-9, 9-32

special forms
how to print 4-32

specifying more than one input file 10-102
speed-up tips I-2

BUFND parm in INPUT statement 8-12, 8-24,
10-74

BUFND parm in READ statement 8-12, 8-24,
10-104

BUFNI parm in INPUT statement 8-12, 8-24,
10-74

BUFNI parm in READ statement 8-12, 8-24,
10-104

DB2 inputs 7-8
limiting number of records processed 10-91
MULTI parm in READ statement 4-121, 10-116
sorts I-13

SPLITDETAIL parm
in OPTIONS statement 4-40, 10-99

splitting
CIMS Report Writer User Guide Index-35 ■

■ Index

column headings into multiple lines 4-8, 6-35,
10-29, 10-54

control statement into multiple lines 9-4
report into multiple lines 4-29
titles into parts 2-28, 4-57, 10-126
why total line split into two lines 4-70

spreadsheets
producing output file for H-2

stacking
column headings 4-8, 6-35, 10-29, 10-54
report lines 4-29

standards
shop standards 8-13

stars (*)
(see Asterisks)

STARTCOL parm
in ASM & COBOL statements 6-66, 10-22

STARTDISP parm
in ASM & COBOL statements 6-66, 10-22

state
spelling out name 4-113, 10-39

statistical lines
at control breaks, customizing 4-77, 10-7 to

10-10
at end of report, customizing 4-99
how to print 2-41, 4-77, 10-7 to 10-10, 10-120

to 10-121
order in which they print 4-80
printing at Grand Totals time 4-99, 10-7
printing the number of items in a control group

4-91, 10-14
which columns included in 4-26, 6-20, 10-27,

10-33, 10-49
which ones print at end of report 4-101

statistics
counting occurrences 4-106
for individual fields, how to print 4-83, 4-90,

10-16
totalling a field by category 4-109
(see also Statistical lines)

STCKADJ parm
in OPTIONS statement 4-139, 10-99, A-7, A-10

STCKDATE
data type 10-99, A-7

STCKTIME
data type 4-139, 10-99, A-10

STDLABEL 10-60
STEPLIB DD 8-3

stringing fields together 2-21, 3-20, 9-35
subheadings (see Headings)
SUBLIB parm

in COPY statement 10-43, 10-46
in OPTIONS statement 6-65, 8-23, 10-100

sublibrary (VSE) (see Librarian (VSE) and Copy
library)

subroutines
(see Data exit programs and I/O Exit)

subscripts, in Web reports 5-34
subset, subsetting a mainframe file 4-147
SUBSTR built-in function (see #SUBSTR built-in

function) D-10
subsystem, which DB2 subsystem 10-86
subtraction

blanks required around minus sign 9-34
how to perform 2-19, 3-18, 9-33, 10-31

SUMMARY parm
in OPTIONS statement 2-46, 3-33, 4-106,

10-100
summary reports

counting the number of occurrences 4-106
definition of 4-102
how to produce 2-46, 4-102, 10-100
summary PC files 3-30, 3-33

superscripts, in Web reports 5-34
suppressing

all column headings 4-10, 4-11, 4-63, 4-143,
4-147, 10-93

automatic copying from copy library 6-43,
10-75, 10-105

blank lines 4-40, 4-45, 10-98
blank lines at grand totals 4-143, 4-147, 10-93
blanks between fields 10-86
carriage control character 4-143, 4-147, 8-5,

10-93
decimal digits in numbers 6-18, 9-13
detail report lines 2-46, 4-102, 4-108, 10-87,

10-100
error indicators E-3
excess blanks D-6
individual column headings 4-10, 10-29
leading zeros 4-14, 9-15, 10-54, B-3
lines with only zero values 4-36, 10-98
message when maximum lines/pages printed

10-93
overprinting 10-94
page breaks 4-11, 4-63, 10-94, 10-100
■ Index-36 CIMS Report Writer User Guide

Index ■

repeating values 4-7, 4-22
the Grand Totals 4-101, 4-143, 4-147
the grand totals 10-93
the letter "S" when only one item 4-91, 10-14,

C-3
the total line at control breaks 4-76, 4-89,

10-11, 10-121
titles 4-11, 4-63, 4-143, 4-147, 10-94
totals for certain columns 4-26, 6-3, 6-17, 6-20,

10-27, 10-33, 10-49
underscore lines 4-11, 4-12, 10-29, 10-94
zeros 4-6, 4-54, 4-84, 10-15, 10-28, 10-67,

10-128
SWALIAS

member in copy library 6-46, 8-11, 8-23, 10-44,
F-1

SWCOPY DD 6-64, 8-3, 8-11, 10-43
SWLIST DD 8-3, 9-6
SWOPTION DD 8-3, 8-13
SWOUTPUT DD 8-3, 8-5, 8-7
syntax

convention used 10-2
general rules 9-3
of computational expressions 9-32
of conditional expressions 9-18
of control statements 10-2
syntax-checking HTML 5-5

SYS010 8-15, 8-25
SYS011 8-15, 8-17, 8-19
SYSIN DD 8-3
SYSIPT 8-15
SYSLST 8-19
SYSnnn, associated with input files 10-60
SYSOUT DD 8-3

T
tab character

as delimiter in output files 4-142, 10-85
tables

HTML tables 5-21, 5-34
in COMPUTE statement 10-39, I-6

tapes
standard/nolabel (VSE) 10-60
tape files, used as input 6-7, 6-10, 6-11, 10-60,

10-64, 10-79
which tape drive 6-11
writing output to tapes (VSE) 8-20, 10-94

technical support, contacting the CIMS Lab xviii

telephone numbers
how to define 6-4
how to format 6-3, 6-20, D-7

testing
a bit field 9-24, 9-32, 10-40
for missing records 4-116
for valid data 4-43
one or more conditions 9-18, 9-30
records for inclusion in report 2-13, 3-13, 9-9,

10-70
tie-breakers, used in sort 10-84, 10-119
TIME built-in field (see #TIME built-in field) C-3
time fields

creating your own 9-11, 10-31
decimal digits 6-25, 10-38, 10-51, A-8
default lengths A-8
how to define 6-24
testing for valid data 9-24, 9-32, E-4
(see also Times)

time of day
built-in field C-3, C-5
comparing 9-21
conversion from GMT to local time 10-99

TIME24 built-in field (see #TIME24 built-in field)
C-3

TIMEDELIM parm
in OPTIONS statement 4-16, 4-18, 10-100

TIMEEXIT
data type A-11

times
adding minutes to D-17
comparing 2-17, 3-16, 4-138, 6-24, 9-11, 9-30
converting character data to time value 4-139,

D-17
converting numeric values to times 4-138,

D-13, D-17
converting to character value D-6
converting to numeric value 4-138, 9-22, D-12
decimal digits 4-137
default display format 4-14, 10-88, B-9
defining time fields 10-47
delimiter used 4-16, 10-100, A-8, B-8
difference between two times D-13
formatting in report 2-31, 4-13, 4-54, 4-84,

4-137, 9-17, 10-28, B-8
handling invalid times E-2
how many seconds in D-13
how sorted 10-123
CIMS Report Writer User Guide Index-37 ■

■ Index

how time fields stored in input file 10-57, A-8
in COBOL and Assembler record layouts 6-56,

6-60
including only certain times in a report 2-17,

9-30
including only certain times in PC file 3-16
including time of day in footnotes 4-64, 10-66
including time of day in titles 4-51, 10-127
on different days, computing interval between

4-138
performing calculations 9-32
rounding to minutes 2-31
selecting the largest of several times D-14
selecting the smallest of several times D-14
showing AM and PM B-8
tips for using time fields 4-137
totalling 4-28, 4-137, 6-25, 10-27, 10-34, 10-49
writing time literals 9-11
zero times, printing blanks 4-6, 4-54, 4-84,

10-15, 10-28, 10-67, 10-128
zeros assigned for missing fields 4-116

TITLE statement 10-125
Alignment (left, center and right) 4-57
alignment (left, center and right) 2-28, 10-126,

10-129
blank titles 4-31, 4-32
built-in fields available for 10-127
centered by default 2-27
centered data looks wrong 4-54, 4-55, 4-63,

10-129
centering, in Web reports 5-6
how dates, times and numbers are formatted

4-54, 10-129, B-2
how to use 2-26, 4-48
in Web reports 5-6, 5-14, 5-16
including data from files 4-48, 10-127
including date, time, page number in title 2-26,

2-28, 4-51, 10-127
including quote or apostrophe within 9-9
justifying contents of fields 4-53, 4-54, 10-129
leading, trailing slashes 4-31, 4-60
multiple 2-26
omitting 2-9, 2-26
overlap 4-63
parms allowed in 4-53
print expressions 4-57
printing in a certain column 4-60
right aligned part looks wrong 4-60, 10-129

spacing between items 4-53, 10-128
specifying column headings with 4-31, 4-60
specifying width of fields 4-53, 4-54, 10-130
spelling out month name 2-28, 2-31, 4-54,

10-129
suppressing titles 10-94
syntax 10-126
that won't fit on a single line 9-5
underlining 4-31
use of quotation marks, apostrophes 2-26,

4-48, 9-5, 9-9, 10-128
use of slash for alignment 2-28, 4-57, 10-126
where to put 2-26, 9-5
(see also Titles)

TITLEONCE parm
in OPTIONS statement 4-12, 4-63, 5-8, 5-31,

10-100
titles

how to specify 2-26, 4-48
in Web reports 5-6, 5-14, 5-16, 5-21, 10-90
not at top of PC screen 5-8
options, summary 4-63
printing at bottom of page 4-64, 10-65
printing just once 4-12, 4-63, 10-100
printing lower on page 4-32
putting graphics in title 5-14, 5-21
saving data from titles in input files 4-128
suppressing 4-11, 4-63, 4-143
(see also TITLE statement, FOOTNOTE

statement, Column headings)
TLBL statement 6-11, 8-20

(see also DLBL statement)
TODAY built-in field (see #TODAY built-in field)

C-5
top margin, how to specify 4-32
top of page

printing heading lines 4-95, 4-101, 10-10
top of report

putting lines before 5-17, 5-29
top ten type reports 4-104, 10-87
TOTAL (TOT) parm

in BREAK statement 4-71, 4-74, 4-91, 4-99,
10-11

in BREAK statement print expression 3-30,
4-86, 4-89, 4-95

in BREAK statement, two different uses 4-87
in SORT statement 4-66, 4-96, 4-103, 10-121

total line
■ Index-38 CIMS Report Writer User Guide

Index ■

S appears in 4-71
aligning in Web reports 5-11, 5-12, 5-16, 5-26
customizing 4-71, 4-74, 4-89, 4-91, 10-11
display format used for 4-16, 10-15
how default total line looks 4-70, 10-11
how default total line looks in PC file 3-30
how to print 2-37, 4-66, 10-11, 10-121
how to suppress 4-76, 10-11, 10-121
in PC file 3-28
in Web reports 5-9, 5-11, 5-17, 10-90
justification used in 4-25, 10-16
level indicated by asterisks 4-97
multiple levels 2-43, 4-96, 4-103
multiple total lines at control breaks 4-76
percentages for control group 4-71, 10-35,

10-40
PICTURE can prevent totalling 4-26
printing blank lines after 2-39, 4-67, 10-11,

10-120
printing blank lines before 4-76
printing only the total lines in a report 2-46,

4-102, 4-108
printing the current date in 4-76
printing the number of items in a control group

4-71, 4-91, 10-14
suppressing, for a particular column 4-26, 6-3,

10-27, 10-33, 10-49
totalling time fields 4-28, 4-137, 6-25, 10-27,

10-34, 10-49
using footing instead of total line 4-89
where it prints at control break 4-76
which columns are totalled 4-6, 4-26, 6-3, 6-17,

6-20, 10-27, 10-33, 10-49
why split into two lines 4-70, 5-12
(see also Totals and Grand totals)

totals
customizing the total line at control breaks

10-11
how to print an individual field’s total 4-86,

4-90, 10-16
how to request 10-11, 10-121
totalling a field by category 4-109
(see also Total line and Grand totals)

TPICTURE
display format B-8
how to write 4-137, 9-17

trailer records, in batch type files 4-122
trailing

plus or minus sign 9-13
slash, in TITLE statement 4-31, 4-60

TRANSLATE built-in function (see #TRANSLATE
built-in function) D-10

translation
between ASCII and EBCDIC D-5, D-6

TRIPLESPACE parm
in OPTIONS statement 10-97

true, bit value D-18
truncation

how to perform 10-37
of column headings 4-13
of columns 4-12, 4-46
of decimal digits (#INT built-in function) D-12
what to do 4-46, 8-8, 8-20

TYPE parm
choosing character versus numeric 6-20
comparing fields of different types 6-20, 9-11,

9-22
converting field to different type 9-22, D-6,

D-12, D-16 to D-17
in FIELD statement 6-13, 6-15, 6-22, 6-25,

6-37, 10-57
in FILE statement 6-7, 10-64
in INPUT statement 6-9, 10-79
in READ statement 6-9, 10-112
list of data types A-1, A-2

type, member type of VSE library 10-92
types of data 6-12, 9-8, 10-57

(see also TYPE parm)

U
UCASE built-in function (see #UCASE built-in

function) D-11
undefined

field indicator (***U***) E-3
underscore (_)

font, specifying 5-2, 5-11, 5-34
name broken at, for column headings 4-8, 6-35,

10-29
printing in titles 4-31
suppressing in column headings 4-10, 5-8,

10-29, 10-94
suppressing overprinting 4-11, 4-12, 10-94
use in field names 9-7

unique
field names, how to make 2-52, 3-40, 4-113,

4-115, 10-79, 10-111
CIMS Report Writer User Guide Index-39 ■

■ Index

file key not unique 4-118
unsigned, numeric data A-3 to A-4
UNSTRING (see under #PARSE)
upper case D-11
user-defined fields 2-19, 3-18, 10-31

V
valid

data, testing for 9-24, 9-32, E-4
validating HTML 5-5

values
comparing contents of fields 2-15, 3-15, 9-19,

9-30
including only certain values in PC file 3-13
including only certain values in report 2-13,

3-13, 9-19, 10-70
variable

location in record 4-133, 6-33, 10-55
number of report lines per input record 4-36

variable length files
clearing the I/O area 10-75, 10-93, 10-105
defining 10-60
record descriptor word (RDW) 6-8, 6-10, 6-33,

10-50, 10-63, 10-77, 10-91
vertical bar

printing a vertical line between columns 4-34
use in column headings 4-8, 6-35, 10-29, 10-54
use in conditional expressions 9-27
using a different character 4-10, 4-11, 10-89
where on keyboard 4-8

video clips, putting in report 5-2, 5-16
VSAM files

alternate indexes, paths 4-118
defining 6-7, 6-10, 10-64
key greater than or equal to 10-107
keyed reads to 2-50, 3-36
missing records 4-116, 8-13, 8-25, 10-116
must be KSDS for READ statement 10-112
okay in READ statements 2-50, 3-36, 10-112
reading limited keyrange 10-77
reading multiple records 10-108
specifying BUFND 8-12, 8-24, 10-74, 10-104
specifying BUFNI 8-12, 8-24, 10-74, 10-104
speed-up tip 8-12, 8-24, 10-77, I-8
testing for missing records 4-116
used as input (MVS) 6-7, 10-79
used as input (VSE) 6-10, 10-60
using generic keys 10-106

VSAM-managed SAM files 6-10, 10-60
writing output to (MVS) 8-7, 10-96
writing output to (VSE) 8-20, 10-94

VSE operating system 8-15

W
WAV files 5-17
Web reports

adding hot links 5-16, 5-32
aligning column headings 5-16, 5-25
aligning Grand totals 5-11, 5-12, 5-16, 5-26
aligning text and graphics 5-14, 5-21, 5-33
aligning titles 5-9
audio and video clips 5-16
background 5-29
bold font 5-4, 5-6, 5-9, 5-32
centering text 5-6, 5-32
colored font 5-6, 5-29, 5-33
column headings 5-9, 5-16, 5-25, 10-90
different colors in one column 5-25
dynamic HTML 5-22, 5-25
file name extension 5-4
font, specifying 5-11, 5-29, 5-33
HTML tables 5-21
including graphics 5-12, 5-14, 5-33
including graphics at control breaks 5-16
including graphics in titles 5-14, 5-21
summary of options for 5-30
titles 5-4, 5-16, 10-90
titles not at top of PC screen 5-8
total lines 5-9

week
computing same day next week D-16
day of (see Day of week)
day of week for a given date D-6

WHEN parm
in COMPUTE statement 2-23, 3-22, 9-18,

10-38
order of evaluation 10-40

WHERE parm
in INPUT statement 7-7, 7-15, 10-80
in READ statement 7-10, 10-108, 10-109,

10-112
reading multiple rows 10-108
similar to DB2 WHERE clause 7-7
syntax 7-15

whole
■ Index-40 CIMS Report Writer User Guide

Index ■

numbers, how to round out decimal digits
6-18, 9-13, 10-37, D-15

width
maximum width allowed with justification

4-24
of column, changing 2-33, 4-7, 4-12, 10-30
of computed fields 10-37
of fields in output files 4-144, 4-145
of graphics in Web reports 5-33
of items in footnotes 10-68
of items in lines printed at control breaks 4-71,

4-86, 10-16
of items in the title 4-53, 4-54, 10-130
of numeric data in report, specifying with a

PICTURE 9-13
of report, bigger than 132 characters 8-8, 8-20
of report, maximum 4-46

word processors
importing PC files into H-8
producing output file for H-8

WordPerfect, producing output file for H-8
words

counting words in a string D-15
parsing a character string D-9

work files
Sort (MVS) 8-3
Sort (VSE) 8-26, 10-99

Worldwide Web (see Web reports)

X
X, meaning of X’1234’ type literals 9-9, 9-23
XOR built-in function (see #XOR built-in

function) D-11

Y
year

2-digit or 4-digit 4-142, 4-145, 9-10, 10-85,
A-7, B-5, J-1

extracting for a given date D-11, D-16
maximum year allowed in literals 9-10
which century 10-85
year 2000 J-1

YEAR built-in function (see #YEAR built-in
function) D-11

YEARNUM built-in function (see #YEARNUM
built-in function) D-16

yesterday, computing yesterday’s date 4-133
YY, year in dates, which century 10-85

YYDDD, date fields A-6 to A-7, B-5 to B-6
YYMMDD, date fields A-5 to A-6, B-5 to B-6
YYYYDDD, date fields A-6 to A-7, B-5 to B-6
YYYYDDMM, date fields A-6
YYYYMMDD, date fields A-5, A-7, B-5 to B-6

Z
zero

assigned to missing date, time and numeric
fields 4-116, 10-116

division by zero E-3
division by zero, suppressing 10-100, E-4
excluding zero values from averages and

minimums 4-78, 10-9 to 10-10, 10-16,
10-121

leading zero in date literals 9-10
leading zero suppression 4-14, 9-15
leading zeros, printing 9-15
padding 9-32
printing blanks instead of zeros 4-45, D-7
spaces between items in title 10-128
spaces between items in total line 4-93, 10-14
spaces between report columns 4-4, 4-5, 10-26
suppressing lines with only zeros 4-36, 10-98
treating invalid data as zeros 10-101

ZERODIVBYZERO parm
in OPTIONS statement 10-100, E-4

ZEROINVDATA parm
in OPTIONS statement 4-41, 10-101, E-3

ZEROOVERFLOW parm
in OPTIONS statement 10-101, E-3

zoned data 6-70
CIMS Report Writer User Guide Index-41 ■

■ Index

■ Index-42 CIMS Report Writer User Guide

	Table of Contents
	1 • Introduction
	2 • How to Request a Report
	3 • How to Request a PC File
	4 • Beyond the Basics
	5 • How to Make a Web Report
	6 • How to Define Your Input Files
	7 • Working with Databases
	8 • Operating System Considerations
	9 • General Syntax Rules
	10 • Control Statement Syntax
	A • Data Types
	B • Display Formats
	C • Built-In Fields
	D • Built-In Functions
	E • Error Indicators
	F • Files Used in Examples
	G • Sample Data Exit Program
	H • How to Import PC Files
	I • Speed-Up Tips
	J • Year 2000 Information
	K • I/O Exits
	L • DB2 Option Installation

	Preface
	Philosophy
	Contacting the CIMS Lab
	About This Guide
	What Should You Read?
	How This Manual Is Organized

	Conventions
	Related Publications

	Introduction
	What Is Report Writer?
	Create Brand–New Reports in Minutes
	Use Mainframe Data in Any PC Program
	Create Custom Mainframe Files in Minutes
	Ways that Report Writer Benefits You!
	Report Writer Pays for Itself Fast!
	Report Writer Features

	How to Request a Report
	Introduction
	Control Statements

	How to Produce a Report in 5 Minutes
	How to Use the INPUT Statement
	How to Use the COLUMNS Statement
	Another 5–Minute Report Example
	Using Your Company's Files

	How to Specify Which Records to Include In Your Report
	How to Use the INCLUDEIF Statement
	How to Write Conditional Expressions

	How to Create Your Own Fields
	Creating Numeric Fields
	Creating Character Fields
	Assigning Values to Fields Based on Conditions

	How to Make Your Own Report Titles
	How to Use the TITLE Statement
	More Date and Time Features
	How to Align the Title

	Changing the Format of your Report
	Using Display Formats
	Specifying Column Headings
	Specifying a Column's Width

	How to Specify the Report Order
	How to Use the SORT Statement
	Automatic Sorting

	How to Create Control Breaks
	How to Use the BREAK Statement
	How to Specify Control Break Spacing
	How to Print Statistics at a Control Break
	How to Request Multiple Control Breaks

	How to Create Summary Reports
	How to Create a Summary Report

	How to Use Data from More Than One File
	How Auxiliary Input Files Are Processed
	How to Use the READ Statement
	How to Use Multiple READ Statements

	How to Request a PC File
	Introduction
	Control Statements

	How to Produce a PC File in 5 Minutes
	Using the OPTIONS Statement to Name the PC Program
	How to Use the INPUT and COLUMNS Statements
	Importing Your PC File into Lotus 1–2–3
	Another 5–Minute Example
	Using Your Company's Files

	How to Include Only Certain Records In Your PC File
	How to Use the INCLUDEIF Statement
	How to Write Conditional Expressions

	How to Create Your Own Fields
	Creating Numeric Fields
	Creating Character Fields
	Assigning Values to Fields Based on Conditions

	How to Specify the PC File Order
	How to Use the SORT Statement
	Automatic Sorting

	How to Create Control Breaks
	How to Use the BREAK Statement
	Customizing the Control Break

	How to Create Summary Files
	How to Create a Summary File

	How to Use Data from More Than One File
	How Auxiliary Input Files Are Processed
	How to Use the READ Statement
	How to Use Multiple READ Statements

	Beyond the Basics
	Introduction
	Additional Features in the COLUMNS Statement
	Writing Print Expressions
	How to Change the Column Headings
	Special Options Related to Column Headings
	How to Change the Width of a Column
	How to Change the Way Dates, Times and Numbers Are Formatted
	Formatting Tips for International Users
	How to Format a Column in ASCII
	How to Blank Out Repeating Values
	How to Change the Justification of Data within a Column
	How to Specify Which Columns to Total
	How to Produce Multi–Line Reports
	How to Change the Report Margins
	How to Print Bar Graphs
	How to Print Vertical Lines between Report Columns

	How to Print a Variable Number of Lines Per Input Record
	Variable Number of Lines — Strategy 1
	Variable Number of Lines — Strategy 2
	Putting a Variable Number of Items on a Single Line

	What If You Run Out of Room?
	Why Do I See ****X**** in My Report?
	Customizing the Report Titles
	How to Include Data from a File in the Title
	How to Include the Page Number, Date and Time in a Title
	How to Change the Appearance of Items in the Title
	How to Split the Title into Left, Center, and Right Parts
	Special Options Related to Titles
	How to Print "Titles" at the Bottom of Each Page

	Customizing the Control Breaks
	How to Change the Control Break Spacing
	How a Default Total Line Looks
	Computing True Percentages and Ratios at Control Breaks
	How to Customize the Total Line at a Control Break
	How to Suppress the Total Line at a Control Break
	How to Customize the Statistical Lines at a Control Break
	How to Print Customized Footing Lines at a Control Break
	How to Print the Number of Items in a Control Group
	How to Print Header Lines at the Beginning of a Control Group

	Printing a "Line Number" in Your Report
	Reports with Multiple Control Breaks
	How to Customize the Grand Totals
	How to Produce Summary Reports
	How to Create "Top 10" Type Reports
	How to Count "Occurrences" in a File
	How to Total a Field by "Category"
	Working With Multiple Input Files
	Using Multiple READ Statements for the Same File
	How to Chain READ Statements
	How to Name the Input File Records
	How Missing Records Are Handled
	Testing for Missing Records
	Using Generic and KGE Keys
	How to Perform "One–to–Many" Reads

	Working with "Batched" Input Files
	Creating PC Files from Existing Reports
	Working with SMF Records
	Working with Time Fields
	Producing Files for Other PC Programs
	Terminology

	Producing Files for Mainframe Programs
	How to "Subset" Mainframe Files
	How to Sort Mainframe Files

	How to Make a Web Report
	Introduction
	How to Create a Web Report
	Writing your own HTML Tags
	Experimenting with HTML Tags
	Customizing the Web Report's Titles
	Customizing the Web Report's Data Columns
	Customizing Control Breaks and Grand Totals
	Putting Graphics in Your Web Report
	Putting Graphics in Your Report Title
	Putting Graphics in the Body of Your Report
	Putting Graphics at Control Breaks
	Putting Hot Links in your Web Report
	Using HTML Tables in your Web Report
	Using Dynamic HTML Tags
	Using the PRESCRIPT and POSTSCRIPT Options
	Summary of Options for Web Reports
	Common HTML Tags

	How to Define Your Input Files
	Introduction
	How to Define a File
	How to Use the FILE Statement –– MVS
	How to Override a File Definition –– MVS
	How to Use the FILE Statement –– VSE
	How to Override a File Definition –– VSE

	How to Define a Field
	How to Define a Character Field
	How to Define a Numeric Field
	Should You Define a Field as Character or Numeric?
	How to Define a Date Field
	How to Define a Time Field
	How to Define a Bit Field
	How to Specify a Field’s Location in a Record
	Field Location in Variable Length Files
	Variably Located Fields
	How to Specify a Field’s Column Heading
	How to Define a Field Created by a Data Exit

	Keeping Your File Definitions in a Copy Library
	Including the Definition Statements "In–Line"
	A Better Way: Using the Copy Library
	How to Use a Copy Library Alias
	Defining One–Time Fields

	Using Cobol and Assembler Record Layouts
	Live Runs Using Cobol Record Layouts
	Live Runs Using Assembler Record Layouts
	Handling Date and Time Fields
	How Report Writer Handles Arrays
	Converting Cobol and Assembler Layouts to FIELD Statements
	How to Copy Cobol and Assembler Record Layouts from Libraries
	Mixing FIELD Statements with COBOL and ASM Statements
	The Starting Column of a Cobol or Assembler Layout
	The "Default Location" After a Cobol or Assembler Layout
	The Scope of the COBOL and ASM Statements
	Other Features Available in COBOL and ASM Statements
	Technical Notes on Cobol Support
	Technical Notes on Assembler Support

	Working with Databases
	Introduction
	Using Report Writer with DB2 Databases
	Using DB2 Data in Reports
	Using DB2 Data in PC Programs
	What Fields Are in Your DB2 Table?
	Using the WHERE Parm
	Using the ORDERBY Parm
	Using Multiple DB2 Tables
	Using Data from Three DB2 Tables
	WHERE Parm Syntax
	Customizing Your DB2 Fields
	Saving DB2 File Definitions
	DB2 Setup
	DB2 Restrictions

	Operating System Considerations
	Introduction
	MVS Operating System Considerations
	Execution JCL for Reports –– MVS
	Execution JCL for PC and Mainframe Files –– MVS
	Report Writer PROC –– MVS
	Output File Options –– MVS
	Setting Up File Definitions –– MVS
	Copy Library DD –– MVS
	Input File DDs –– MVS
	Specifying Shop–Wide Options –– MVS
	Completion Codes –– MVS

	VSE Operating System Considerations
	Execution JCL for Reports –– VSE
	Execution JCL for PC and Mainframe Files –– VSE
	Output File Options –– VSE
	Downloading PC Files –– VSE
	Setting Up File Definitions –– VSE
	Input File DLBL/TLBLs –– VSE
	The Control Statement Listing –– VSE
	The EXEC Statement’s SIZE Parm –– VSE
	Specifying Sort Work Files –– VSE
	Completion Codes –– VSE

	General Syntax Rules
	Introduction
	Control Statements
	What Is a Control Statement?
	How to Write Control Statements
	How to Continue a Control Statement On To Multiple Lines
	The Order of Control Statements
	How to Put Comments in Your Control Statements
	How to Put Page Breaks in the Control Listing

	Names of Files, Fields, and Records
	Rules for Assigning Names
	How to Make Field Names Unique

	How to Write Literals
	The Five Types of Data
	Character Literals
	Numeric Literals
	Date Literals
	Time Literals
	Bit Literals
	When Do You Need Quotes Around a Number?

	PICTURE Display Formats
	Examples of PICTUREs
	How PICTUREs Work
	Time PICTUREs

	Conditional Expressions
	How to Specify a Relation Condition
	Comparing Character Operands of Different Lengths
	Comparing Fields of Different Data Types
	Conditions Involving Explicit Literals
	How to Specify a Bit Field Condition
	How to Specify Multiple Conditions
	Conditional Expressions That Use AND
	Conditional Expressions That Use OR
	Conditional Expressions That Use Both AND and OR
	How to Shorten Long Expressions
	How to Negate Conditions
	Examples of Conditional Expressions

	Computational Expressions
	Operands in Computational Expressions
	Operators in Computational Expressions
	Order of Operations
	Examples of Computational Expressions

	Control Statement Syntax
	Introduction
	Syntax Notation
	ASM Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	BREAK Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX
	PRINT EXPRESSION SYNTAX

	COBOL Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	COLUMNS Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	COMPUTE Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX
	fieldname[(parms)]
	EXAMPLES
	NOTES

	COPY Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	FIELD Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	FILE Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	FOOTNOTE Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	INCLUDEIF Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	INPUT Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX
	NOTES

	OPTIONS Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	READ Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX
	NOTES

	SORT Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX
	NOTES

	TITLE Statement
	PURPOSE
	FEATURES
	LEARNING MORE
	SYNTAX

	Data Types
	Introduction
	Character Data Types
	Numeric Data Types
	Date Data Types
	Time Data Types
	Bit Data Types

	Display Formats
	Introduction
	Display Formats for Any Type of Field
	Numeric Display Formats
	Date Display Formats
	Time Display Formats
	Default Display Formats

	Built-In Fields
	Introduction
	Character Built–In Fields
	#DAYNAME
	#ITEM–ENDING
	#JOBNAME
	#TIME
	#TIME24

	Numeric Built-In Fields
	#COUNTER #COUNT
	#ITEMS #ITEM
	#ITEM/#ITEM1/#ITEM2/#ITEM3/#ITEM4/ #ITEM5/#ITEM6/#ITEM7/#ITEM8/#ITEM9
	#PAGENUM #PAGE

	Date Built-In Fields
	#COMDATE
	#TODAY

	Time Built-In Fields
	#HHMMSS

	Built-In Functions
	Introduction
	Functions that Return a Character Value
	#AND(char1,char2)
	#ASCII(char)
	#COMPRESS([n,] char [,n] ,char ...)
	#DAY[(date)]
	#EBCDIC(char)
	#FORMAT(fieldname [,display–format] [,width] [,BIZ] [,LEFT/CENTER/ RIGHT] [ASCII])
	#LCASE(char)
	#LEFT(char,num1)
	#MONTH[(date)]
	#OR(char1,char2)
	#PARSE(char,num)
	#RIGHT(char,num1)
	#SUBSTR(char,num1,num2)
	#TRANSLATE(char1,char2,char3)
	#UCASE(char)
	#XOR(char1,char2)
	#YEAR[(date)]

	Functions that Return a Numeric Value
	#ABS(num)
	#DAYNUM[(date)]
	#INDEX(char1,char2)
	#INT(num)
	#MAKENUM(char/date/time)
	#MAX(num1,num2,num3,...)
	#MIN(num1,num2,num3,...)
	#MOD(num1,num2)
	#MONTHNUM[(date)]
	#NUMWORDS(char)
	#ROUND(num1,num2)
	#YEARNUM[(date)]

	Functions that Return a Date Value
	#MAKEDATE(char/num)

	Functions that Return a Time Value
	#MAKETIME(char/num)

	Functions that Return a Bit Value
	#OFF
	#ON

	Error Indicators
	Introduction
	Suppressing Error Indicators
	Propagation of Error Indicators
	Testing for Valid Data

	Files Used in Examples
	Sample Data Exit Program
	How to Import PC Files
	Introduction
	Importing a PC file into Lotus 1–2–3 for Windows
	Importing a PC file into Lotus 1–2–3 (DOS Versions)
	Importing a PC File into Excel
	Importing a PC File into Quattro Pro
	Importing a PC File into Paradox for Windows
	Importing a PC File into Paradox (DOS Versions)
	Importing a PC File into Microsoft Works
	Importing a PC File into Corel Chart
	Importing a PC File into PowerPoint
	Importing Files into Harvard Graphics
	Importing a PC File into dBASE IV
	Importing a PC File into R:BASE
	Importing Files into Word Processing Programs

	Speed-Up Tips
	Introduction
	INCLUDEIF Statement
	Order of ANDed Tests
	Order of ORed Tests
	Fields from Auxiliary Input Files
	Intermediate Conditional Expressions

	Conditional COMPUTE Statements
	Compute Statements with RETAIN
	Intermediate Computational Expressions
	Intermediate Conditional Expressions
	Read Statements with the MULTI parm
	VSAM I/O
	VSAM Buffers
	READ Statement Buffers
	INPUT Statement Buffers
	Pre–Sorting the Input File
	KEYRANGE Parm
	INCLUDEIF Statement Order

	Replace an Auxiliary File with a “Table Lookup”
	Clearing I/O Areas
	Fine-Tuning the Sort
	Development Cycle
	Using Explicit Literals in Conditional Expressions

	Year 2000 Information
	How to Prepare for the Year 2000 and Beyond

	I/O Exits
	DB2 Option Installation
	Introduction
	Step 1. Link-Edit the Object Code
	Step 2. DB2 Setup

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

