<|lI!

TPF Database Facility

Database Administration

Release 1

SH31-0175-09

<|lI!

TPF Database Facility

Database Administration

Release 1

SH31-0175-09

Note!
FBefore using this information and the product it supports, be sure to read the general information under “Notices”.

Tenth Edition (October 2002)
This is a major revision of, and obsoletes, SH31-0175-08.

This edition applies to Version 1 Release 1 Modification Level 3 of IBM Transaction Processing Facility Database
Facility, program number 5706-196, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures. iX
Tables . . Xi
About This Book . Xiii
Before You Begin . . Xiil
Who Should Read This Book . Xiii
How This Book Is Organized. . Xiil
Conventions Used in the TPFDF L|brary . Xiii
How to Read the Syntax Diagrams . Xiv
Related Information .) . XVii
IBM TPF Database FaC|I|ty (TPFDF) Books) . XVii
IBM Transaction Processing Facility (TPF) Books . . XVii
Online Information S G . XVii
How to Send Your Comments . . XVii
Part 1. Tutorial for Planning and Designing a Database . .1
Organizing a Database . .3
Normalization . .3
Primary Key .4
Dependency .4
Business Application .4
First Normal Form . .5
Second Normal Form . .5
Removing Independent Attrlbutes .5
Third Normal Form . . 6
Resulting Tables . . 8
Duplicating Data across Tables .9
Optimizing the Database Design. 11
Duplicating Data to Improve Performance . .11
Assessing the Normalized Tables . .11
Checking Seat Availability . .12
Booking a Passenger on a Flight . . .14
Displaying Passengers Booked on a Flight. .14
Displaying All Flights Booked for a Passenger . 15
Displaying an Aircraft Configuration . . 16
Canceling Passenger Bookings . .17
Improving Access to the Data . . 18
Displaying Passenger Information by Name or Number . . 18
Accessing Flight Information . .19
Accessing Passengers from the Seat Table . . 20
Accessing Aircraft Configurations from the Flight Table . .21
Final Database Design Structure . 22
Mapping Tables to TPFDF Files . . 25
Before You Begin . .o . 25
Data Requirements . 25
Data Field Lengths . 25
Passenger LRECs .27
Calculating the Number of Subflles Needed . 27
Block Size . . 28

© Copyright IBM Corp. 1997, 2001

iV TPFDF R1 Database Administration

Chaining . . 28
Overflow Blocks . 29
Mapping the Passenger Name F|Ie . . 29
Distributing the Passenger Name LRECs . . 30
File Structure .31
Mapping the Passenger Number F|Ie .31
Distributing the Passenger Number LRECs . 32
Ensuring a Good Distribution. . 32
File Structure . 32
Mapping the Aircraft File . . 33
Distributing the Aircraft LRECs . . 33
Allowing for Expansion . . 33
File Structure . 33
Mapping the Flight File . . 34
Distributing the Flight LRECs. . 34
Allowing for Expansion . . 35
File Structure . 35
Mapping the Seat File . . 35
Distributing the Seat File LRECs . 36
Mapping the Passenger File . . 36
Spreading Data over Several LRECs . 37
Coding the DSECT and DBDEF Macros . . 39
DSECT and DBDEF for the Passenger Name F|Ie . 40
DSECT. . 40
DBDEF. . . 42
DSECT and DBDEF for the Passenger Number Frle . . 44
DSECT. C e e e . 44
DBDEF. . 46
DSECT and DBDEF for the Flrght FrIe . 48
DSECT. e . 48
DBDEF. . 51
DSECT and DBDEF for the Seat F|Ie . 52
DSECT. . 52
DBDEF. . 55
DSECT and DBDEF for the Passenger F|Ie . 56
DSECT. e . 56
DBDEF. . 59
DSECT and DBDEF for the Arrcraft Frle . 62
DSECT. . 62
DBDEF. . 64
Part 2. Creating the DSECT and DBDEF Macros . . 67
Creating a DSECT Macro Definition . 69
Sample DSECT Macros Supplied with the TPFDF Product . 69
File Names . Coe e . 69
Modifying the Sample DSECT Macros . . 70
Modifying the Beginning DSECT Macro Statements .71
Assigning Values to Global Set Symbols .71
File Description. . 82
Block Header . 83
Defining the LREC Srze and LREC ID Frelds . 83
Defining Different LREC IDs in the Same File . . 84
DSECT Instructions for Defining User Fields in LRECs . . 85
Algorithm DSECT Statements . . 85

Ending DSECT Statements86

Creating C Structures for Files with Exrstrng DSECT Defrnrtrons86
Creating a DBDEF Macro Definition89
DBDEF Macro Parameter Syntax89
Global DSECT Override Parameters90
Default Key Parameters .9
Basic Index Parameters .98
Data Extraction Parameters. . . P i 2
Parameters for TPFDF Recoup and TPFDF CRUISE Processrng for
Customer-Format Files.12
TPFDF Recoup User Exits15
B*Tree File Parameters .120
Miscellaneous Parameters121
Part 3. Examplesand Concepts129
Database Optimization Examples.131
Reducing I/O Processing. .13
Reducing File Accesses .. 132
Combining Files 1 ¥4
Using Algorithms instead of Indexmg RS
Indexing .. .13
BasicIndexing .135
Simple Indexing . . . e e136
Multiple Indexing to a Srngle Detarl Subfrle e e e38
Multiple-Level Indexing . . . A |
Single Indexing to Multiple Detail Frles e ¥
Block Indexing . . C e e e46
Implementing Block Index Support e 4
Block Index File Characteristics 148
B*Tree Indexing . . . P ¢
B*Tree Index File Node Blocks P
B*™Tree Data File Data Blocks149
B*Tree Data File Characteristics150
Additional Considerations When Using B* Tree Indexrng150
Structure of a Data File That Uses B*Tree Indexing 152
Defining the DSECT and DBDEF for a Data File That Uses B Tree Indexmg 152
Defining the DSECT and DBDEF for a B*Tree Index File. 153
Multiple ECB Chain Chasing154
Partitioning and Interleaving.157
Partitions . . . T Y 4
Advantages of Partrtroned Flles e Y 4
Example of Partitioning . . . e158
Coding the DSECT for Partrtroned Frles . e158
Adding a New Partiton .1589
Interleaves . . . Y £ 51°)
Advantages of Interleaved Frles S e59
Coding the DSECT Macro for Interleaved Flles59
Adding Blocks to an Interleave160
Database Design Hintsand Tips16l
File Integrity .162
Problem. .. .162

Contents V

Solution
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Selecting an Optimum Block Slze
Problem .
Solution . .
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Reducing the Number of Overflow Blocks
Problem .
Solution
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Setting Different Sizes for Overﬂow Blocks :

Problem .

Solution . .

DSECT Set Symbols .

DBDEF Statements.

Application Coding .
Packing Files Regularly .

Problem . .

Solution . .

DSECT Set Symbols .

DBDEF Statements.

Application Coding . .
Reducing Overflow by Frequent Packlng

Problem .

Solution

DSECT Set Symbols .

DBDEF Statements.

Application Coding .

Packing Subfiles after Replacmg an LREC .

Problem .

Solution . .
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Using New Pool Blocks for Overflow Blocks.

Problem .

Solution

DSECT Set Symbols .

DBDEF Statements.

Application Coding . .
Specifying a Lower Packlng L|m|t

Problem . e

Solution . .

DSECT Set Symbols .

DBDEF Statements.

Application Coding . .
Logging Data at Optimum Intervals .

Problem .

Solution . .

DSECT Set Symbols .

Vi TPFDF R1 Database Administration

. 162
. 162
. 162
. 162
. 163
. 163
. 163
. 163
. 164
. 164
. 165
. 165
. 165
. 165
. 165
. 165
. 166
. 166
. 166
. 166
. 166
. 166
. 167
. 167
. 167
. 167
. 167
. 167
. 168
. 168
. 168
. 168
. 168
. 168
. 169
. 169
. 169
. 169
. 169
. 169
. 170
. 170
. 170
. 170
. 170
. 170
. 171
. 171
. 171
. 171
. 171
. 171
. 172
. 172
. 172
. 172

DBDEF Statements.
Application Coding .
Maintaining a Log File.
Problem .
Solution . .
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Balancing Updating Speed agalnst Accessmg Speed

Problem .

Solution . .

DSECT Set Symbols .

DBDEF Statements.

Application Coding . .

Getting the Right Amount of Worklng Storage .
Problem .
Solution . .

DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Specifying a Display Order for LRECs
Problem . e e
Solution . .

DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Linking Logically Related Data
Problem . S
Solution . .

DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Managing a First-In-First-Out (FIFO) F|Ie
Problem . e .
Solution

DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Using Customer-Format Files

NAB-Type Files with Fixed-Length Items :
NAB-Type Files with Variable-Length Items .
ADD/DEL-Type Files with Fixed-Length Items .

ADD/DEL-Type Files with Variable-Length Items .

CNT Files Using the CNT Parameter
CNT Files Using the CPT Parameter
Files Containing Fixed-Position References .

Index .

. 172
. 172
. 173
. 173
. 173
. 173
. 173
. 173
. 174
. 174
. 174
. 174
. 174
. 174
. 175
. 175
. 175
. 175
. 176
. 176
. 177
.77
.77
. 177
. 177
. 177
. 178
. 178
. 178
. 178
. 178
. 178
. 179
. 179
. 179
. 179
. 179
. 179

. 181
. 182
. 183
. 184
. 185
. 186
. 187
. 188

. 191

Contents Vii

Viii TPFDF R1 Database Administration

Figures

©CoNoO WD

Four Normalized Tables .
Read Process for Checking Seat Avarlabrlrty Before Optlmrzatron .
Altering the Tables to Improve Availability Checking .

Read Process for Displaying Passengers Booked on a Fllght
Duplicating Names to Display Passengers Booked on a Flight .
Duplicating Flights and Dates to Improve Flight Display

Read Process for Canceling Passenger Bookings.

Four Revised Tables

Adding Pointer Tables to Improve Access to the Passenger Table
Adding a Pointer to Improve Access between the Flight and Seat Tables .
Adding a Pointer to Improve Access between the Seat and Passenger Tables
Adding a Pointer to Improve Access between the Flight and Aircraft Tables
Final Tables Showing the Database Structure

Number of LRECs Required for Each File

Spreading Data over Several LRECs

TPFDF Files: DSECT Names, Algorithms, and Paths

DSECT to Define the Passenger Name File .

Position of IR20DF in the File Structure

DSECT to Define the Passenger Number File .

Position of IR21DF in the File Structure

DSECT to Define the Flight File

Position of IR22DF in the File Structure

DSECT to Define the Seat File.

Position of IR23DF in the File Structure

DSECT to Define the Passenger File .

Index Key Definitions for Path 0, IR20DF to IR24DF

Index Key Definitions for Path 1, IR21DF to IR24DF .

Index Key Definitions for Path 2, IR23DF to IR24DF .

Position of IR24DF in the File Structure

DSECT to Define the Aircraft File.

Position of IR25DF in the File Structure

Syntax of a DSECT Macro File Name .

Instructions Always Required at the Start of a DSECT Macro Deflnmon
Instructions to Assign Values to Global Set Symbols .

Instructions Always Required after Setting the Global Symbols in a DSECT Macro.

Instructions to Define the File Header in a DSECT Macro .
Instructions to Define the LREC Size and LREC ID Fields.
Defining Two Different LREC Types in a DSECT .

Defining User Fields in a DSECT .

DSECT Code to Define the Algorithm String Srze .
Instructions Always Required at the End of a DSECT Macro
C Structure for a File with Existing DSECT Definitions .
Read-Only Default Keys in the DBDEF.

QUE=NO Parameter .

Using the CDR Parameter to Overnde PIT Parameter Value
Index File Pointing to Detail Subfiles .

Subfile Data Moved to Index File

Index File Pointing to Different Subfiles .

Index File Pointing to Combined Subfiles

Subfiles Accessed from an Index File .

Subfiles Accessed Using Algorithm #TPFDBO05

File Description for Simple Indexing .

File Description for Multiple Indexing to a Slngle Detall Subflle

© Copyright IBM Corp. 1997, 2001

.11
. 13
. 13
.14
. 15
. 16
.17
. 18
.19
. 20
.21
.22
. 23
.27
. 37
. 39
. 40
. 43
. 44
.47
. 48
. 51
. 52
. 55
. 56
. 60
. 60
. 60
. 60
. 62
. 65
. 69
.71
.71
. 83
. 83
. 84
. 84
. 85
. 85
. 86
. 87
.97
. 105
. 118
. 131
. 132
. 132
. 133
. 133
. 134
. 136
. 138

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

Algorithm String for the Update Path . .

Reading the Detail File through Index File GRYlDF

Reading the Detail File through Index File GRY2DF

File Description for Multiple-Level Indexing .

Addressing Argument and Index Key for the Top- Level Index F|Ie

Addressing Argument and Index Key for the Intermediate-Level Index File .

Separate Entries for One Passenger Name

One Index File Pointing to Two Detall Files.

Index TLREC.

Block Indexing .

Sample B Tree File

B*Tree Data File DSECT and DBDEF

B*Tree Index File DSECT and DBDEF

DBDEF for Multiple ECB Chain Chasing.

Partitioning: &SWO00xxx: PTN, BOR, EOR, and EO#
Interleaving: &SWO0O0xxx: ILV, BOR, EOR, and EO#.
NAB-Type File with Fixed-Length Iltems (CBV=1)
NAB-Type File with Variable-Length Items (CBV=4).
ADD/DEL-Type File with Fixed-Length Items (CBV=1).
ADD/DEL-Type File with Variable-Length Items (CBV=4).
CNT-Type File (CBV=2): Using the CNT Parameter.
CNT-Type File (CBV=2): Using the CPT Parameter.

File Containing Only Fixed-Position References (CBV=3)

X TPFDF R1 Database Administration

. 139
. 139
. 139
. 141
. 142
. 142
. 144
. 144
. 146
. 147
. 152
. 153
. 154
. 155
. 157
. 159
. 182
. 183
. 184
. 185
. 186
. 187
. 188

Tables

©CoNO WD

Flight Table (Nonnormalized Form).
Flight Table (Nonnormalized Form).
Passenger Table .

Flight Table (Second Normal Form)
Aircraft Table. .

Flight Table (Second Normal Form)
Seat Table. .
Flight Table (Third Normal Form)

Flight Table (Third Normal Form)
Passenger Table .o
Aircraft Table.

Seat Table. .

Seat Table (Revised)

Seat Table (Updated) .

Passenger Table (Revised) .

Aircraft Table (Revised)

Passenger Name Table

Passenger Number Table.

Comparative Terms for Tables and Frles
Data Requirements .

Data Field Lengths .

TPF Block Sizes .

ALCS Block Sizes

LREC Fields for the Passenger Name Flle
Algorithms Using Alphabetic Characters

LREC Fields for the Passenger Number File.

Manipulating the Algorithm String .
LREC Fields for the Aircraft File
LREC Fields for the Flight File .
LREC Fields for the Seat File .
LREC Fields for the Passenger File .
Passenger File Coe
Sample DSECT Macros .
Algorithms .

Using CDR to Overrlde the CNT PNB NAB PIT Values at Run Tlme

Algorithm Groups for Overriding .
Allocation in Partitioned File

© Copyright IBM Corp. 1997, 2001

OO0 NN~NOO 01D

Xi

Xil TPFDF R1 Database Administration

About This Book

This book will help you:

* Plan and design a database

* Define DSECT macros

* Define DBDEF macros

* Know how DSECT and DBDEF macro statements affect the way TPFDF macros,
functions, and utilities work.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, structured programming macro (SPM). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in

Before You Begin

Before using this book, see [TPFDF General Information| for an overall
understanding of the TPFDF product.

Who Should Read This Book

This book is intended for database administrators, application programmers, and
system programmers who are currently working with Transaction Processing Facility
(TPF) Version 4 Release 1 (or a subsequent release), or Airline Control System
Version 2 (ALCS V2) systems.

How This Book Is Organized

The body of this book is divided into three parts. The first part is a tutorial for
planning and designing a database. The second part gives the parameter
descriptions to code the DSECT and DBDEF macros. The third part gives examples
and more detailed information about the use of the DSECT and DBDEF macros.

Conventions Used in the TPFDF Library

The TPFDF library uses the following conventions:

Typography Examples of Usage

italic Used for important words and phrases. For example:
A database is a collection of data.

Used to represent variable information. For example:

Enter ZUDFC DISPLAY ID-fileid, where fileid is the file identifier (ID) of the file for which
you want statistics.

bold Used to represent keywords. For example:
Enter ZUDFC HELP to obtain help information for the ZUDFC command.

© Copyright IBM Corp. 1997, 2001 Xiil

Typography Examples of Usage

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

dfcls

Used for examples. For example:

ZUDFC DISPLAY ID-J5

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

How to Read the Syntax Diagrams

This section describes how to read the syntax diagrams (informally called railroad
tracks) used in this book.

Read the diagrams from left-to-right, top-to-bottom, following the main path line.
Each diagram begins on the left with double arrowheads and ends on the right

with 2 arrowheads facing each other.

>>—] Syntax Diagram i >

If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

»—| The first 1ine is long and extends the width of the diagram |—>

>—| Second Line i >«

* Aword in all uppercase is a parameter that you must spell exactly as shown.

»>—PARAMETER ><

If you can abbreviate a parameter, the optional part of the parameter is shown in
lowercase. (You must type the text that is shown in uppercase. You can type
none, one, or more of the letters that are shown in lowercase.)

Note: Some TPF commands are case-sensitive and contain parameters that
must be entered exactly as shown. This information is noted in the
description of the appropriate commands.

XV TPFDF R1 Database Administration

»>—PARAMeter

A\
A

A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

»»—variable > <

Required parameters and variables are shown on the main path line. You must
code required parameters and variables.

»>—REQUIRED_PARAMETER—required_variable

\4
A

If there is more than one mutually exclusive required parameter or variable to
choose from, they are stacked vertically.

v
A

REQUIRED_PARAMETER_1
REQUIRED_PARAMETER_2
required_variable a
required_variable_b

Optional parameters and variables are shown below the main path line. You can
choose not to code optional parameters and variables.

[N
»p

|—OPTIONAL_PARAMETER—opt ional variabl e—|

If there is more than one mutually exclusive optional parameter or variable to
choose from, they are stacked vertically below the main path line.

OPTIONAL_PARAMETER 1
OPTIONAL_PARAMETER 2
ptional_variable a
ptional_variable_b

An arrow returning to the left above a parameter or variable on the main path line
means that the parameter or variable can be repeated. The comma (,) means
that each parameter or variable must be separated from the next parameter or
variable by a comma.

About This Book XV

XVi

B B

»»—Y REPEATABLE_PARAMETER———repeatable variable >

* An arrow returning to the left above a group of parameters or variables means
that more than one can be selected, or a single one can be repeated.

Y —REPEATABLE_PARAMETER 1 ><
EREPEATABLE_PARAMETER_Z—

repeatable_variable

» If a diagram shows a blank space, you must code the blank space as part of the
syntax. In the following example, you must code PARAMETER variable.

»»>—PARAMETER— —variable >«

» If a diagram shows a character that is not alphanumeric (such as commas,
parentheses, periods, and equal signs), you must code the character as part of
the syntax. In the following example, you must code PARAMETER=(begin.end).

»»—PARAMETER= (begin.end) ><

» Default parameters and values are shown above the main path line. The TPF
system uses the default if you omit the parameter or value entirely.

DEFAULT 0
- I I o

|—PARAMETER—| variable—

* References to syntax notes are shown as numbers enclosed in parentheses
above the line. Do not code the parentheses or the number.

TPFDF R1 Database Administration

(1)
»»—PARAMETER >

Notes:

1 An example of a syntax note.

* Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

A\
A

»—-I Reference to Syntax Fragment i

Syntax Fragment:

|—IST_PARAMETER ,2ND_PARAMETER, 3RD_PARAMETER I

Related Information

A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM TPF Database Facility (TPFDF) Books

TPFDF General Information, GH31-0177

« [TPFDF Installation and Customization] GH31-0178

« [TPFDF Programming Concepts and Reference] SH31-0179

IBM Transaction Processing Facility (TPF) Books
+ [TPF System Generation|, SH31-0171.

Online Information
+ [TPFDF Commands|
+ [TPFDF Glossary|
+ [TPFDF Messages (System Error, Online, Offline)|

» |TPEDF Utilities

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

About This Book XVili

» If you prefer to send your comments electronically, do either of the following:
— Go to |http://www.ibm.com/tpf/pubs/tpfpubs.htm|

There you will find a link to a feedback page where you can enter and submit
comments.

— Send your comments by e-mail to tpfqa@us.ibm.com
» If you prefer to send your comments by mail, address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

* If you prefer to send your comments by FAX, use this number;
— United States and Canada: 1 + 845 + 432 + 9788
— Other countries: (international code) + 845 + 432 +9788

XViil TPFDF R1 Database Administration

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Part 1. Tutorial for Planning and Designing a Database

© Copyright IBM Corp. 1997, 2001

2 TPFDF R1 Database Administration

Organizing a Database

The following describes the process of data normalization. Normalization is a
method of logical data organization that minimizes data redundancy and maximizes
data independence.

Data normalization is commonly used in the design of relational databases.
Although a TPFDF database is hierarchical, it can still benefit from data
normalization in the first stage of its design. In later stages, you will need to move
away from rigid normalization to achieve the performance standards necessary for a
high-volume transaction processing system. These stages are described in
[Optimizing the Database Design| and [Mapping Tables to TPFDF Files]

Normalization reduces the data to a minimal form, providing a clearer path for
subsequent stages in the design process. The normalization process is always
preceded by an analysis of the data to be stored. For now, it is assumed that you
have already determined the following:

* The entities for which data will be stored
* The attributes (data fields) that will be stored for each entity.

Note: The mapping of tables to physical files is discussed in [‘Mapping Tables to|
[TPFDF Files” on page 25|

In the following, you can assume that each table will map to a physical TPFDF file,
and each row in a table to a TPFDF logical record (LREC).

TPFDF databases have the following characteristics:
e Many users

* Alarge number of files

» Different means of accessing files

* A high transaction rate.

Consider these characteristics as you work through the design of your TPFDF
database.

Normalization

The purpose of normalization is to create tables (also known as relations) for all the
entities on which the system holds data. Through the process of normalization, the
structure of a table is progressively refined through first, second, and finally third
normal form. The following guidelines may be of some help as you develop your
tables:

First normal form
Every attribute in the table must have only one value for each row. Each
row must be independent of all the others.

Second normal form
Every attribute in the table must be either directly or indirectly dependent on
the primary key.

Third normal form
Every attribute in the table must be directly dependent on the primary key.
There must be no unnecessary duplication of data in the table.

Note: The terms primary key and dependency are important in data normalization.

© Copyright IBM Corp. 1997, 2001 3

Primary Key

Dependency

In the context of data normalization, the purpose of the primary key is to identify a
unique row in a table. The value of the primary key is always unique.

Each table can have only one primary key, though the primary key itself may be
made from more than one attribute.

Unless otherwise stated, the attributes making up the primary key are shown in bold
type in the tables.

Note: The primary key that identifies a table in a database is not the same as the
TPFDF LREC ID (also known as a primary key).

The concept of the primary key is explained in more detail with the example tables
provided later in this information.

Dependency refers to the relationship of an attribute with the primary key of a table.

To say that an attribute is dependent on the primary key means that, given a
particular value for the primary key, there is only one corresponding value for that
attribute.

An attribute may be either directly or indirectly dependent on the primary key.

A directly dependent attribute depends on the value of the primary key itself. An
indirectly dependent attribute depends on the value of another attribute, which is
itself dependent on the primary key. This indirect dependency is sometimes called
transitive dependency.

The concept of dependency is further explained with the example tables provided
later in this information. See especially ['Second Normal Form” on page

Business Application

Assume that you want to keep passenger and flight information on the database.

To do this, you could have a single table containing rows holding all the necessary
information resulting from your data analysis. A table of this kind is shown in

Table 1. Flight Table (Nonnormalized Form)

Date |Flight Start Destination | Aircraft Seat Seat Passenger |Passenger |Passenger |Passenger
number type number |class number name address facts
Dal Fl1 Stl Del Atl Sel Cl2 Pnl Nal Ad1l Ft1
Se2 Cl2 Pn2 Na2 Ad2 Ft2
Se3 Cl2 Pn3 Na3 Ad3
Se4 CI3 Pn4 Nad Ad4
Dal Fl2 St2 De2 Atl Se5 Cl2 Pn3 Na3 Ad3

This table is not in normalized form and has several undesirable features. For
example:

4 TPFDF R1 Database Administration

* The size of each row is not fixed. As the number of booked seats increases, the
number of attribute values in the row increases. The indeterminate size of this
row would create difficulties if the table were mapped to a physical file.

* Some of the data (for instance, the name and address of customer Na3) is
repeated unnecessarily. The same data is likely to be repeated in other tables as
well. In practice, duplicated data is often inconsistent. For example, a customer’s
name and address could be recorded slightly differently at different times.

Restructuring the table into first normal form eliminates the first of these
problems. You will need to progress to a higher level of normalization to eliminate
the second.

First Normal Form

To get a table into first normal form, remove multiple occurrences of attribute values
from the same row by creating a new row for each value. This ensures that every
attribute in the table has only one value for each row.

is in first normal form and contains the same data as the nonnormalized
table.

Table 2. Flight Table (Nonnormalized Form)

Date |Flight Start Destination | Aircraft Seat Seat Passenger | Passenger |Passenger |Passenger
number type number |class number name address facts
Dal Fl1 Stl Del Atl Sel Cl2 Pnl Nal Adl Ftl
Se2 Cl2 Pn2 Na2 Ad2 Ft2
Se3 Cl2 Pn3 Na3 Ad3
Se4 CI3 Pn4 Na4d Ad4
Dal FI2 St2 De2 Atl Seb Cl2 Pn3 Na3 Ad3

Second Normal Form

To get a table into second normal form, remove all attributes that are not
dependent, either directly or indirectly, on the value of the primary key and put them
into other tables.

In the attribute destination directly depends on the primary key. Given the
value of the primary key, especially the date and flight number, you can see that the
aircraft will be flying to a particular destination. Without the primary key value, it
would not make sense to speak of a flight destination at all.

In contrast, the seat class attribute is only indirectly dependent on the primary key.
It really depends on the aircraft type and seat number attributes. Aircraft type is not
part of the primary key, though it is itself dependent on the primary key. Because
seat class is dependent on aircraft type, it is said to be indirectly dependent on the
primary key.

Removing Independent Attributes

Looking back to the flight table in first normal form (Table 2), you can see that it
contains some attributes that are not dependent, either directly or indirectly, on the
primary key. The primary key in this table is the combination of the date, flight
number, and seat number attributes.

Even if the flight table’s primary key had no value at all, the following attributes
would still be meaningful:

* Passenger name

» Passenger address

Organizing a Database 5

» Passenger facts.

Because they are not dependent on the primary key, you can remove these
attributes from the flight table and put them into a separate table of their own.

shows an example of such a table. Note that the primary key for this table
is passenger number. This has been included in the new table because its value is
always unique. For example, there may be more than one passenger named Smith,
or more than one vegetarian passenger, but there can never be more than one
passenger number Pnl.

Because it is unique, passenger number becomes the primary key of the new table.
It also remains in the flight table because it is dependent on the primary key.

is already in second normal form because every attribute in the table is
either directly or indirectly dependent on the primary key.

Table 3. Passenger Table

Passenger number |Passenger name Passenger address Passenger facts
Pnl Nal Adl Ft1

Pn2 Na2 Ad2 Ft2

Pn3 Na3 Ad3

Pn4 Na4 Ad4

Now that you have removed the attributes that are independent on the primary key
and have put them in the passenger table dTabIe 3|D, the flight table is in second
normal form, as you can see in|TabIe Z_l] The primary key is still the combination of
the date, flight number, and seat number attributes that are shown in bold type.

Table 4. Flight Table (Second Normal Form)

Date Flight Start Destination Aircraft Seat Seat Passenger
number type number |class |number

Dal Fl1 Stl Del Atl Sel Cl2 Pnl

Dal Fl1 Stl Del Atl Se2 CI2 Pn2

Dal Fl1 Stl Del Atl Se3 Cl2 Pn3

Dal Fl1 Stl Del Atl Se4 CI3 Pn4

Dal Fl2 St2 De2 Atl Se5 CI2 Pn3

Third Normal Form

The flight table (Table 4) has been improved by being put into second normal form,
but it still contains some indirect dependencies, and also some duplicate data.

For example, the seat class attribute depends on aircraft type and seat number. It
does not depend directly on the other two attributes of the primary key. Because of
this, you can remove seat class and record it in a separate table.

The new table will also include the aircraft type and seat number attributes.
Toiether, they form the primary key of the new table, which is shown in

6 TPFDF R1 Database Administration

Table 5. Aircraft Table

Aircraft type Seat number Seat class
Atl Sel ClI2
Atl Se2 Cl2
Atl Se3 ClI2
Atl Se4 CI3
Atl Seb5 ClI2

The primary key here is the combination of aircraft type and seat number.

The indirect dependency has now been removed from the flight table, but with the
table in second normal form, there is still some duplication, as you can see in

Table 6. Flight Table (Second Normal Form)

Date Flight Start Destination | Aircraft Seat Passenger
number type number number

Dal Fl1 Stl Del Atl Sel Pnl

Dal Fl1 Stl Del Atl Se2 Pn2

Dal Fl1 Stl Del Atl Se3 Pn3

Dal Fl1 Stl Del Atl Se4 Pn4

Dal Fl2 St2 De2 Atl Seb5 Pn3

Because the values for seat number and passenger number must be unique for
each row, the table must contain a separate row for each of these values. To
accommodate this, the other values in the table must be duplicated. For example,
flight number FI1 is repeated four times when only once would be enough.

Because seat number is already held in the aircraft table dTabIe §|) and passenger
number is held in the passenger table (Table 3 on page 6), and there is no indirect
dependency through either of these attributes, you can remove them both from the
flight table.

Because you need a table to record the passengers who are on any particular
flight, you could place these removed attributes in a seat table. This table would
show the seats booked on the flight and the passenger number for the person
booked on each seat. is an example of this kind of table:

Table 7. Seat Table

Date Flight number Seat number Passenger number
Dal Fl1 Sel Pnl
Dal Fl1 Se2 Pn2
Dal Fl1 Se3 Pn3
Dal Fl1 Se4 Pn4
Dal FI2 Se5 Pn3

The primary key in this table is the combination of date, flight number, and seat
number.

Organizing a Database 7

The flight table is now in third normal form. Each of its attributes is directly
dependent on the primary key and there is no unnecessary duplication of data in

the table.

As you can see in[Table 8} the value for date is the same in both rows of the table.
This duplication is necessary because there will certainly be more than one flight

each day.

Table 8. Flight Table (Third Normal Form)

Date Flight number | Start Destination Aircraft type
Dal Fl1 Stl Del Atl

Dal Fl2 St2 De2 Atl

The passenger number attribute has been removed from the flight table along with
seat number and seat class because passenger number was dependent on seat
number and, without the seat number, no passenger number can be assigned.

The primary key in the flight table is now the combination of the date and flight
number attributes.

Resulting Tables

You now have four complete and related tables (Table 9HTable 12) in third normal
form:

* Flight table

* Passenger table

» Aircraft table

e Seat table.

Table 9. Flight Table (Third Normal Form)

Date Flight number | Start Destination Aircraft type
Dal Fl1 Stl Del Atl
Dal FI2 St2 De2 Atl

Table 10. Passenger Table

Passenger number |Passenger name Passenger address Passenger facts
Pnl Nal Adl Ftl
Pn2 Na2 Ad2 Ft2
Pn3 Na3 Ad3

Pn4 Na4 Ad4

Table 11. Aircraft Table

Aircraft type Seat number Seat class
Atl Sel ClI2

Atl Se2 CI2

Atl Se3 ClI2

Atl Se4 CI3

Atl Se5 Cl2

8 TPFDF R1 Database Administration

Table 12. Seat Table

Date Flight number Seat number Passenger number
Dal Fl1 Sel Pnl
Dal Fl1 Se2 Pn2
Dal Fl1 Se3 Pn3
Dal Fl1 Se4 Pn4
Dal FI2 Seb5 Pn3

Duplicating Data across Tables

Looking back at the four normalized tables (Table 9HTable 12), you may notice that
there is some duplication of data across them. For example, the passenger number
attribute is held in both the passenger table and the seat table. Seat number is held
in the seat table and the aircraft table, and there are further duplications as well.

This duplication occurs in normalized tables because they are generally being
developed to be used in a relational database. Relational systems use these
common attributes as links between one table and the next. The links provide paths
around the database so that every table can access the data held in every other
table. This means that, apart from the linking attributes, no data needs to be
duplicated in the database.

In the example hierarchical database discussed in this publication, links of this kind
are not needed because the tables are joined by pointers. Pointers provide a
means of linking one table or file with another. Use the [DBIDX| and [DBDIX| TPFDF
macros to maintain pointers.

Organizing a Database 9

10 TPFDF R1 Database Administration

Optimizing the Database Design

As you have seen in ['Normalization” on page 3} the process of normalization has
imposed a preliminary order on your data. Unnecessary duplications have been
removed and the data is clearly set out in a readily comprehensible form.

However, tables that are rigidly normalized do not always produce the best results
from a performance point of view. Retrieval speeds can often be improved when the
same data is held in different tables.

shows the current structure of the database.

Flight Table Aircraft Table Seat Table Passenger Table

Da| FI | St | De | At At | Se | ClI Da| FI | Se| Pn Pn | Na| Ad | Ft

Figure 1. Four Normalized Tables

Duplicating Data to Improve Performance

Because duplicating data can improve retrieval speeds, you may choose to
reintroduce some data duplication in the tables you have been working on.

Note: Data should be duplicated for performance reasons only. Data duplication
can result in extra updating, which in turn requires more 1/O processing. You
must ensure that the extra 1/0 processing for updating does not outweigh the
1/0 processing saved through the duplication itself. Because I/O processing
can represent a major part of the lifetime of a transaction lifetime, it is
important to minimize /O processing.

Data duplication can also lead to inconsistent data being held. However,
some data fields are more suitable for duplication than others. There is less
risk of data inconsistency if you duplicate fields whose values do not change
often. For example, a passenger’s name is unlikely to change whereas seat
availability changes with every seat sold.

You must balance these factors against the potential improvement in retrieval
speeds.

In the examples that follow, you can see how selected duplication of data can
improve the performance of your database.

Assessing the Normalized Tables

In this section, whether the existing design performs adequately in a realistic setting
is assessed. The design is changed wherever necessary to ensure a good real-time
performance level.

Note: When developing your design, you must also consider frequency of

operation. A 10% performance gain in an operation performed several times
per second is better overall than a 50% gain in a daily operation.

© Copyright IBM Corp. 1997, 2001 11

The following list shows six common requirements for an airline reservation system:
» Checking seat availability

* Booking a passenger on a flight

» Displaying all passengers booked on a flight

» Displaying all flights booked for a passenger

» Canceling a passenger’s booking on one flight or more

» Displaying the configuration of an aircratft.

The four tables in [Figure 1 on page 11| show that all this information can be
extracted from them. However, if you consider the tables carefully, you can see that
some of these operations would involve substantial 1/0O processing. For example, to
display all flights booked for a passenger, you would need to read through the
entire seat table for each flight. Because of this, it is more sensible to reintroduce
some duplication of data in the tables. This data must be carefully selected. There
should be no arbitrary data duplication.

In the following pages, each of the common requirements for an airline reservation
system is analyzed.

Checking Seat Availability

12

Before booking a seat, check whether there is a seat of the required class available
on the flight specified. To check seat availability using these tables:

1. Read the flight table to find the aircraft type (At).
2. Read the aircraft table to find a seat number (Se) in the required class.

3. Read the passenger number field (Pn) in the seat table to find whether that seat
has already been booked.

4. If that seat number is already booked, read the aircraft table again to find the
next seat in the required class.

5. Repeat steps 3 and 4 until an available seat is found, or until all seats in the
required class are found to be booked.

This read process is shown in [Figure 2 on page 13| You can see the seat table and
the aircraft table will probably have to be read many times, which would involve a
significant amount of 1/0 processing. Performance would be much improved if some
changes were made to these two tables.

TPFDF R1 Database Administration

!

Flight Table
Da| FI | St | De | At
<
Aircraft Table
At | Se | ClI
Seat Table
Da| FI | Se | Pn

Passenger Table

Pn

Na | Ad

Ft

Seat already booked

—

Figure 2. Read Process for Checking Seat Availability Before Optimization

Figure 3[shows how the tables have been changed.

In the aircraft table, the seat number (Se) attribute has been changed to seat range
(Sr). The table is now more compact because you do not have to store every seat
on a separate row.

The class (CI) attribute has been duplicated in the seat table. Availability (Av), in the
flight table, is a new attribute.

Flight Table Aircraft Table Seat Table Passenger Table

Da | FI | St | De | At At | Se | Cl Da| Fl | Se | Pn Pn| Na| Ad | Ft
New

Flight Table Aircraft Table Seat Table Passenger Table

Da| FI | St | De | At | Av At | Sr Cl Da| FI | Se| CI | Pn Pn| Na| Ad | Ft

Figure 3. Altering the Tables to Improve Availability Checking

After improving these tables, the revised seat table (shown in[Table 13 on page 14)
contains all the data needed to check seat availability. Every flight is recorded there,
and you can see at once whether a seat has been booked or not.

Optimizing the Database Design

13

Table 13. Seat Table (Revised)

Date Flight number | Seat number Class Passenger
number

Dal Fl1 Sel Cl2 Pn1

Dal Fl1 Se2 CI2 Pn2

Dal Fl1 Se3 Cl2 Pn3

Dal Fl1 Se4d CI3 Pn4

Booking a Passenger on a Flight

Note: When working through the following example, refer to [Figure 3 on page 13}

Now that you have checked seat availability on a particular flight, you can make a
booking for the passenger as follows:

1. Add the new details to the passenger table.
2. Add the new details to the seat table.
3. Update availability information in the flight table.

Displaying Passengers Booked on a Flight
To display all the passengers booked on a particular flight:
1. Read the seat table to find every passenger number for a particular flight.

2. Read the passenger table to find the corresponding passenger name for each
passenger number.

shows this read process.

|

Seat Table Flight Table Aircraft Table

Da| FI | Se| Pn Da| FI | St | De | At At | Se | ClI

Passenger Table

Pn| Na| Ad | Ft

Figure 4. Read Process for Displaying Passengers Booked on a Flight

You can eliminate reading the passenger table if the passenger name attribute is
duplicated in the seat table. [Figure 5 on page 15| shows this duplication.

14 TPFDF R1 Database Administration

Flight Table Aircraft Table Seat Table Passenger Table
Da| FI | St | De | At | Av At | Sr Cl Da| FI | Se| ClI | Pn Pn | Na| Ad | Ft
Flight Table Aircraft Table Seat Table Passenger Table
Da| FI | St | De | At | Av At | Sr Cl Da| FI | Se| Cl | Pn| Na Pn | Na| Ad | Ft

Figure 5. Duplicating Names to Display Passengers Booked on a Flight

After this duplication, the new seat table (Table 14) contains all the data needed to
display passengers booked on a flight. You do not need to refer to any other table.

Table 14. Seat Table (Updated)

Date Flight Seat number | Class Passenger Passenger
number number name

Dal Fl1 Sel Cl2 Pn1 Nal

Dal Fl1 Se2 Cl2 Pn2 Na2

Dal Fl1 Se3 Cl2 Pn3 Na3

Dal Fl1 Se4d CI3 Pn4 Pn4

Displaying All Flights Booked for a Passenger

To display all the flights booked for a particular passenger, read the seat table

able 14) for each flight, checking for a match between each flight and your

passenger.

You can avoid this 1/O intensive search of the seat table if you add flight and date
attributes to the passenger table.

[Figure 6 on page 16| shows how date (Da) and flight (FI) have been duplicated in

the passenger table.

Optimizing the Database Design 15

Flight Table Aircraft Table Seat Table Passenger Table

Da| FI | St | De| At | Av At | Sr Cl Da| FI | Se| Cl | Pn| Na Pn | Na| Ad | Ft

Flight Table Aircraft Table Seat Table Passenger Table

Da| FI | St | De| At | Av At | Sr Cl Da| FI | Se| CI | Pn| Na Pn| Na| Ad| FI | Da| Ft

Figure 6. Duplicating Flights and Dates to Improve Flight Display

The revised passenger table (Table 15) shows all the flights booked for each
passenger. You do not need to refer to any other table.

Table 15. Passenger Table (Revised)

Passenger Passenger Passenger Flight Date Passenger
number name address facts
Pnl Nal Adl Fl1 Dal Ftl
FI2
FI3
Pn2 Na2 Ad2 Fl1 Dal Ft2
Pn3 Na3 Ad3 FI2 Dal
Pn4 Na4 Ad4 Fl1 Dal

Displaying an Aircraft Configuration

The revised aircraft configuration shows how many seats each aircraft holds in each
class. In the original aircraft table (see |Figure 1 on page 11), every seat in every
aircraft is listed in a separate row.

Now that the seat number attribute has been changed to seat range, configurations
for different aircraft in the same table are shown in the revised aircraft table

(Table 16). You can now quickly display the number of seats in each class for each
aircraft.

Table 16. Aircraft Table (Revised)

Aircraft type Seat range Seat class
Al Sel-Sel2 Cl2
Al Sel3-Sel20 CI3
A2 Sel-Se4 Cl1
A2 Sel3-Se23 Cl2
A2 Se28-Se70 Cl2
A3 Sel-Se23 Cl2
A3 Se26-Se40 Cl2

16 TPFDF R1 Database Administration

Canceling Passenger Bookings
To cancel a passenger’s booking:

1.

4.

Read the seat table to search for the passenger number and name. Delete

these if found.

After deleting the number and name, continue reading the seat table to find any
more occurrences of that number and name. If found, delete these as well.

When no more occurrences are found, delete the appropriate details from the

passenger table.

Finally, delete the appropriate details from the flight table.

Figure 7| shows the process for canceling passenger bookings.

|

Seat Table

Da

FI | Se| Cl | Pn| Na

Figure 7. Read Process for Canceling Passenger Bookings

Aircraft Table

At | Sr Cl

Passenger Table
Pn| Na| Ad| FI | Da| Ft
Flight Table
Da| FI | St | De | At | Av

Looking at the process outlined in you can see that it would require

substantial I/O processing to read through these three tables to check every flight

for every day against a particular passenger number. The date and flight data

duplicated in the revised passenger table (see [Figure 6 on page 16)) has, in fact,
increased updating times because you must now update the passenger table as

well as the flight and seat tables.

However, the performance benefits gained for the previous five queries outweigh

the losses incurred in this query. Overall, the optimization has improved the
performance of the database.

Optimizing the Database Design

17

Improving Access to the Data

The duplication of some data in the tables has considerably improved the
performance of the database. However, there are still some areas where poor
access is slowing down the retrieval of data. You will need to improve these access
paths before the database can achieve the performance level required of a
real-time system.

The following list shows four common requirements that the database must be able
to meet quickly:

» Display passenger information by passenger name or number
» Access flight information

* Access passengers from the seat table

» Access aircraft configurations from the flight table.

The revised tables, as shown in do not yet provide easy access paths for
these requirements.

Flight Table

Aircraft Table Seat Table Passenger Table

Da

FI | St

De

At

Av At | Sr Cl Da| FI | Se| Cl | Pn| Na Pn| Na| Ad| FI | Da| Ft

Figure 8. Four Revised Tables

method of improving access times. See [Figure 8 when working through these
requirements.

The following pages explain each of the previously outlined requirements and a

Displaying Passenger Information by Name or Number

18

Once you have input a passenger name or number, you need to be able to access
the passenger table directly. At present, there is no direct access from either of
these inputs to the passenger table.

However, the addition of pointers would improve access times significantly. Because
pointers provide a means of linking one table or file with another, you can use them
to achieve direct access to tables. In the TPFDF product, you can use the [DBIDX]
and macros to maintain pointers between files. Files containing pointers are
index files.

[Table 17| and [Table 18| directly access the passenger table.

Table 17. Passenger Name Table

Passenger name Pointer to passenger table
Nal Pointerl
Na2 Pointer2
Na3 Pointer3
Na4 Pointer4

TPFDF R1 Database Administration

Table 18. Passenger Number Table

Passenger number Pointer to passenger table
Pnl Pointerl
Pn2 Pointer2
Pn3 Pointer3
Pn4 Pointer4

shows the two pointer tables (passenger number and passenger name)
pointing to the passenger table.

Number Table Name Table Flight Table Aircraft Table
Pn Pt Na Pt Da| FI | St | De | At | Av At | Sr Cl

Passenger Table

Seat Table

Pn | Na| Ad | FI

Da

Ft

Da| FI | Se| CI | Pn | Na

Figure 9. Adding Pointer Tables to Improve Access to the Passenger Table

Accessing Flight Information

Flight information is held in the flight table and the seat table (see
page 18). Between them, these two tables contain all the information you need to

know about a flight.

However, at present there is no direct way of accessing the seat table from the
flight table. You can overcome this difficulty if you include a pointer in the flight

table.

Figure 10| shows how the pointer has created a direct access path from the flight

table to the seat table.

Optimizing the Database Design

19

Name Table

Number Table

Flight Table

Table

Aircraft Table

Na

Pt

Pn

Pt

Da

FI

St

De

At

Av

Pt

At

Sr

Cl

¢—I

Passenger Table

Pn

Na

Ad

Fl

Da

Ft

Seat Table

Da

Fl

Se

Cl

Pn

Na

Figure 10. Adding a Pointer to Improve Access between the Flight and Seat Tables

Now that the flight table and the seat table are linked by the pointer, you can

remove the resulting data duplication (date and flight). Because the TPFDF product
reads the flight table before reading the seat table, you should remove the

duplicated data from the seat table.

Accessing Passengers from the Seat Table

There is still no direct access from the seat table to the passenger table (see

Figure 10).

An added pointer in the seat table provides the access path you need.

shows how the added pointer in the seat table creates a direct access
path to the passenger table. (Note that the duplicated attributes, date and flight,

have been removed from the seat table, as discussed in [‘Accessing Flight]

[Information” on page 19})

20 TPFDF R1 Database Administration

v

Name Table Number Table Flight Table Aircraft Table
Na Pt Pn Pt Da| FI | St | De | At | Av | Pt At | Sr Cl
Seat Table

Se | Cl | Pn| Na| Pt

Passenger Table

Pn

Na

Ad

Fl

Da

Ft

Figure 11. Adding a Pointer to Improve Access between the Seat and Passenger Tables

Accessing Aircraft Configurations from the Flight Table

There is still no direct access from the flight table to the aircraft table (see
Figure 11). You can overcome this difficulty by including an additional pointer in the

flight table.

Figure 12| shows how the second pointer in the flight table creates a direct access

path to the aircraft table.

Optimizing the Database Design 21

Name Table Number Table Flight Table
Na Pt Pn Pt Da| FI | St | De | At | Av| Pt Pt
v o v
Seat Table Aircraft Table
Se | Cl | Pn| Na| Pt At | Sr Cl

v v l

Passenger Table

Pn| Na|Ad| Fl | Da| Ft

Figure 12. Adding a Pointer to Improve Access between the Flight and Aircraft Tables

Final Database Design Structure

22

The four original tables (see [Figure 1 on page 11) have now been optimized to be
used in a real-time database. Two new tables have been added to improve data
access by using pointers. These six logical tables are now ready to be mapped to
physical TPFDF files.

Figure 13| shows the database tables arranged hierarchically. The tables are shown
in their relative sizes. Some attributes (for example, passenger name) are longer
than others (for example, date).

The two pointer tables (passenger name and passenger number) that are at the top
left of the diagram contain no detail data. [Mapping Tables to TPFDF Files| shows
how the tables are mapped to TPFDF index files.

TPFDF R1 Database Administration

Passenger Name

Passenger Number

Flight

L l

Seat Table

Aircraft

Passenger Table

Figure 13. Final Tables Showing the Database Structure

Optimizing the Database Design

23

24 TPFDF R1 Database Administration

Mapping Tables to TPFDF Files

The following describes how to map the logical tables developed in the previous

chapter to physical TPFDF files.

Before working through the following, make sure you are familiar with the concepts
and terminology of TPFDF files. For more information about concepts and

terminology of TPFDF files, see [TPFDF General Information|

In the transfer from logical to physical data, some of the terms used will change.
able 19| shows the changes to be aware of.

Table 19. Comparative Terms for Tables and Files

Logical term (tables)

Physical term (files)

attribute

data field

attribute value

data field value

row

LREC

table

file

Before You Begin

The tables used for mapping are those developed in [‘Organizing a Database” on|

[page 3| and [‘Optimizing the Database Design” on page 11} They are as follows:

Passenger name table (index file)
» Passenger number table (index file)
» Aircraft table (detail file)
* Flight table (index file)
» Seat table (intermediate-level index)
» Passenger table (detall file).

Data Requirements

able 20| shows the data requirements for the tables that are to be stored on the
database. The requirements shown here are examples only. They are the result of
the initial data analysis carried out before the start of the design process.

Table 20. Data Requirements

Data Amount
Flights each day 100
Days stored 366

Passengers on each flight (min=50, max=300)

150 (average)

Flights for each passenger (max=20)

3 (average)

Flight classes

3

Aircraft types

50

Note: Because leap years must be accommodated, 366 days can be stored.

Data Field Lengths

Before mapping the tables to TPFDF files, you must estimate the amount of data
for each file. To do this, assign a length to each data field (attribute).

© Copyright IBM Corp. 1997, 2001

25

Many data fields (for example, the flight number or the destination code) have a
fixed length. However, you cannot always be precise when assigning a length to a
data field. For example, you cannot be sure how long a passenger’s name will be.

Because of this, always allow for future expansion when you are assigning data
field lengths. Where possible, use variable length LRECs, and set the variable
length portion of the LREC in the DSECT to zero. This makes it easier to expand
the field length later.

able 21| shows the length of each data field from the tables developed in the
previous chapters.

Table 21. Data Field Lengths

Table Data field Length in bytes

Aircraft aircraft type 4
seat range
seat class

(e¢]

Passenger name passenger name 2
pointer

Passenger number passenger number
pointer

Flight date

time

flight number
start
destination
aircraft type
availability
pointerl
pointer2

(airline=3, flight=4)

GO~ WWNNN|OIO |00

Seat seat number 4
seat class 1
passenger number 8
passenger name 25
pointer 5

Passenger passenger number 8
passenger name 25
passenger address 50
flight information (flight, date, 17
time, start, destination)
passenger facts 4

Note: In the flight file, the date field has now been divided into two fields, date and
time. This is done to provide a clearer display for the reservation agent.

[Figure 14 on page 27| shows the number of LRECs required for each of these six
files.

26 TPFDF R1 Database Administration

1 825 000 LRECs

1 825 000 LRECs 36 600 LRECs

Passenger Name Passenger Number Flight
|
5 490 000 LRECs 50 LRECsl
Seat Table Aircraft
1 825 000 LRECs w v l

Passenger Table

Figure 14. Number of LRECs Required for Each File

Passenger LRECs

Before mapping the tables to TPFDF files, you must calculate the number of

passenger LRECs required overall. From the Data Requirements table (Table 20 on
H

ge 25)), you can see that the following amounts are held:
* Flights each day = 100
» Days stored = 366
» Passengers on each flight (average) = 150
* Flights for each passenger (average) = 3

Calculate the number of required passenger LRECs as follows: (flights each day x
days stored x passengers on each flight) + flights for each passenger

The calculation is:
(100 x 366 x 150) + 3 = 1.825 million

The calculation shows that the database must be able to accommodate 1.825
million passenger LRECs.

Calculating the Number of Subfiles Needed

The following points will help you determine how many subfiles you need to
accommodate the data in your file:

» Calculate the number of bytes needed for each data field (for example,
passenger name). Each character requires 1 byte.

» Calculate the total number of bytes needed for all the data fields in the file.

Mapping Tables to TPFDF Files 27

Block Size

Chaining

» Divide this by the number of bytes in your chosen block size.
e The resulting number is the number of subfiles you need.

The TPF system offers four different block sizes. [Table 22| shows the amount of
user data allowed for each block (assuming you are using optional trailers):

Table 22. TPF Block Sizes

Block type Bytes of user data
LO 127

L1 319

L2 993

L4 4033

The Airlife Control System (ALCS) offers eight different block sizes as detailed in
|iable 23

Table 23. ALCS Block Sizes

Block type Bytes of user data
LO 127 (max.)

L1 319 (max.)

L2 993 (max.)

L3 4000 (min.)

L4 4033 (max.)

L5 32K (max.)

L6 32K (max.)

L7 32K (max.)

L8 32K (max.)

Though TPF block sizes are fixed, ALCS block sizes show the maximum number of
bytes for each size. In practice, ALCS blocks can be any size you choose. For
easier data transfer between TPF and ALCS, blocks L1, L2, and L4 are the same
size in both systems.

Note: Block size affects performance. A large block size can reduce the amount of
overflow blocks required but may waste DASD space.

When deciding on the number of subfiles you need, you must also consider the
number of overflow blocks (chains). A large number of blocks slows down data
retrieval, hindering the performance of the database.

In general, you should have no more than 3 blocks in a subfile. However, if the file
is not likely to be accessed frequently, you may be able to use more blocks.

Note: For files with a large number of data blocks, B*Tree indexing will speed data
retrieval and the performance of the database.

28 TPFDF R1 Database Administration

Overflow Blocks

Overflow blocks do not need be the same size as the prime block. Because of this,
you can save DASD space by having small overflow blocks when the data overflow
is slight.

[‘Database Design Hints and Tips” on page 161] discusses how to define the size of
overflow blocks.

Mapping the Passenger Name File

Note: The example in this section is theoretical. It shows an even distribution of
LRECSs. In practice, an even distribution is unlikely to occur.

Each LREC in the passenger name file contains the fields shown in|Table 24}
able 24| also shows the number of bytes in each field.

Table 24. LREC Fields for the Passenger Name File

Field No. of bytes
size 2

key 1

passenger name 25

pointer to passenger file 5

Total 33

From this example, you can see that each LREC in the passenger name file
contains 33 bytes.

Each LREC must be stored in a block. In this example, a block size of 4-K is used.
A 4-K block can hold 4033 bytes of user data, assuming you use optional block
trailers.

The following calculation shows how many LRECs from the passenger name file
can be held in a 4-K block:

4033 + 33 = 122 LRECs in
each block

The calculations made in [‘Passenger LRECs” on page 27| showed that the database
must be able to accommodate 1.825 million passenger LRECs. Because of this,
allow for 1.825 million LRECs in the passenger name file. Each 4-K block can hold
122 LRECs.

The calculation that follows shows how many blocks are needed to accommodate
the 1.825 million LRECs. (The calculation assumes an even distribution of LRECS):

1.825 million + 122 = 14959 blocks

Each TPFDF subfile contains one prime block and, if necessary, a number of
overflow blocks. You can see that it would not be feasible to allocate all the
passenger name LRECs to a single subfile because there would be 14 959 overflow
blocks.

Mapping Tables to TPFDF Files 29

For performance reasons, distribute the 1.825 million LRECs over a number of
subfiles. Because you are dealing with a passenger name file, distribute the LRECs
by passenger name.

Distributing the Passenger Name LRECs

The TPFDF product provides predefined algorithms for distributing LRECs evenly
across a range of ordinals. Some of these methods are designed for alphabetic
data or alphanumeric data mapping. Others calculate an ordinal number using a
hashing technique to distribute the LRECs. The method of distributing the LRECs is
specified by an algorithm number in the &SWOORBV symbol of the file DSECT.

In TPFDF macros, you can use the ALG parameter to specify the location of an
input string for an algorithm.

The TPFDF product provides the following three algorithms for distributing data by
alphabetic characters:

* #TPFDBO1
* #TPFDBO02
* #TPFDBO3.

#TPFDBO1 distributes data by the first character of the algorithm string. #TPFDB02
uses the first 2 characters, and #TPFDBO03 uses the first 3 characters.

uses SMITH as the example passenger name. It shows the characters
used by each algorithm. The table also shows the number of subfiles created by
each algorithm and the number of blocks required in each subfile to hold the
passenger name LRECSs.

Table 25. Algorithms Using Alphabetic Characters

Algorithm Characters used No. of subfiles No. of blocks

resulting required
#TPFDBO1 S 26 576
#TPFDB02 SM 676 23
#TPFDBO03 SMI 17576 1

Note: assumes a perfect distribution of LRECs over the subfiles. In
practice, this is unlikely to occur. For example, names beginning with S are
more common than names beginning with X. However, you could improve
the distribution by basing the algorithm on a character that is not the first in
the name; for example, the second consonant.

If you cannot get a good distribution using any of the predefined TPFDF algorithms,
ﬁu can create a unique user-defined algorithm in the user exit UWBD. See page

for more information about creating user-defined algorithms.

In you can see that algorithm #TPFDBO01 would require chaining for 676
blocks. In a real-time system, this would create a substantial I/O overhead.
Algorithm #TPFDBO02 requires 23 blocks. It would clearly take less time to read only
23 blocks but the response would still be too slow.

30 TPFDF R1 Database Administration

However, with a perfect distribution of LRECs, algorithm #TPFDB03 would require
no overflow blocks at all. All the LRECs could be contained in a single block. Even
with an actual (real world) distribution, #TPFDBO03 would probably produce no more
than 5 blocks.

File Structure

The passenger name file has a classic index structure which the TPFDF product
can maintain easily. The passenger name is the index key. Each LREC contains a
pointer to the passenger detall file. The TPFDF product maintains these indexes for
you.

In TPFDF macros, you can use the ALG parameter to specify the location of an
input string for an algorithm. In this example, the string passed with the ALG
parameter is the passenger name. Algorithm #TPFDBO03 uses this to access the
subfiles.

The LREC structure for the passenger name file is as follows:

size | key | pointer | passenger name

The size and key fields shown in this LREC are for the TPFDF product use.

Mapping the Passenger Number File

Each LREC in the passenger number file contains the fields shown in|Table 26|
able 26| also shows the number of bytes in each field.

Table 26. LREC Fields for the Passenger Number File

Field No. of bytes
size 2

key 1

passenger number 8

pointer to passenger file 5

Total 16

From this, you can see that each LREC in the passenger number file contains 16
bytes.

The following calculation shows how many LRECs from the passenger number file
can be held in a 4-K block:

4033 + 16 = 252 LRECs in
each block

The database must be able to hold 1.825 million passenger LRECs.

The calculation that follows shows how many blocks you would need to
accommodate the 1.825 million passenger number LRECs. (The calculation
assumes an even distribution of LRECSs):

1.825 million + 252 = 7243 blocks

Again, the number of overflow blocks required is too many for a real-time system.
Choose an algorithm to distribute the LRECs over subfiles.

Mapping Tables to TPFDF Files 31

Distributing the Passenger Number LRECs

The algorithms used with the passenger name file cannot be used here because
passenger numbers are not alphabetic. However, the TPFDF product provides a
hashing algorithm that distributes LRECs numerically.

The hashing algorithm (#TPFDBO09) distributes the LRECs evenly. They do not need
to be stored in any particular order, because you will never need to access more
than one at a time. For instance, you will not need to access a range of passenger
numbers all at once.

Algorithm #TPFDBO09 uses the algorithm string as a seed. It divides the result of the
calculation by the number of subfiles in the file. The remainder is the ordinal
number of the destination subfile.

Note: Because you need a remainder in every division process, choose an odd
number (ideally a prime number) for the number of subfiles.

To ensure the least number of overflow blocks possible, choose the prime number
nearest to 7243 (the number of blocks required for the passenger number file).

Ensuring a Good Distribution

File Structure

Because the LRECs in this file are distributed by passenger number, you need to
ensure that this field gives a good distribution over the subfiles.

The passenger number is the algorithm seed from which the pseudo-random
number is calculated. Because many passenger numbers begin with zeros, the
resulting distribution is not likely to be even. You can improve the distribution by
manipulating the algorithm string before it is used.

For example, if the first 4 bytes of the passenger number are swapped with the
second 4 bytes, the difficulty is overcome as you can see in[Table 27|

Table 27. Manipulating the Algorithm String

Passenger number Algorithm string
00087628 76280008
00987653 76530098

Manipulating the algorithm string has given a good distribution of LRECSs. If there is
any overflow, it is likely to be small. Because of this, 1-K overflow blocks will
probably be adequate. (You can change the size of overflow blocks by changing the
value of the DBDEF ARS parameter and entering the command.)

The passenger number file has a classic index structure that the TPFDF product
can maintain easily. Here the ALG string is the passenger number, which algorithm
#TPFDBO09 uses to access the subfiles.

The LREC structure for the passenger number file is as follows:

size | key | pointer | passenger number

32 TPFDF R1 Database Administration

Mapping the Aircraft File

Each LREC in the aircraft file contains the fields shown in [Table 28| [Table 28| also
shows the number of bytes in each field.

Table 28. LREC Fields for the Aircraft File

Field No. of bytes

size

key

aircraft type

seat range

RO,]|DN

seat class
Total 16

Each LREC in the aircraft file therefore contains 16 bytes.

Because the database must be able to accommodate 50 aircraft types and three
classes, you can calculate the required amounts of data as follows:

no. of aircraft types x no. of classes x LREC size = amount of data

The calculation is:
50 x 3 x 16 = 2400 bytes

This comparatively small number of bytes fits comfortably into a fixed block of size
L4 (4095 bytes, including header and trailer). Because only one block is required,
you can use a miscellaneous file.

Distributing the Aircraft LRECs

The aircraft file contains only one block of data. Because of this, all the data can be
held in a single subfile, and you do not need to distribute the aircraft LRECs over
many subfiles. Because you are using a single subfile, use the single-subfile
algorithm (#TPFDBO04) to distribute the LRECs in the file.

Note: The flight file (see [Figure 14 on page 27) contains a pointer to the aircraft
file. However, because the aircraft file contains only 1 block, the aircraft file
address always locates the correct block. Because of this, you can remove
the pointer from the flight file.

Allowing for Expansion

File Structure

Although the aircraft file is small at the moment, it may well need to expand in the
future. Therefore, consider now how a data overflow might be accommodated.

Because the aircraft LRECs are only 16 bytes long, there is already some room for
expansion in the existing L4 (4095 bytes) block. Overflow blocks of L2 size (1055
bytes) should be adequate for future needs.

When deciding the structure of the LRECSs, consider how the TPFDF product will
interrogate the file. The aircraft file is not an index file, so the LRECs do not need to
contain pointers. The TPFDF product needs only the aircraft type, so the aircraft

Mapping Tables to TPFDF Files 33

LREC structure can be as follows:

size | key aircraft type

seat range

class

Mapping the Flight File

Each LREC in the flight file contains the fields shown in[Table 29| [Table 29| also
shows the number of bytes in each field.

Table 29. LREC Fields for the Flight File

Field No. of bytes

size

key

date

flight number

time

start

destination

aircraft type

availability

OO || W|IW[IN|N[IN[FLDN

pointer to seat file

Total

w
)]

The pointer to the aircraft table has been removed from this file (see [‘Distributing
[the Aircraft LRECS” on page 33). Each LREC in the flight file now contains 35 bytes.

As shown previously in the Data Requirements table (Table 20 on page 25), the
database must be able to accommodate 100 flights each day. You can calculate the
amount of data as follows:

no. of
flights each day x LREC size = amount of data

The calculation is:
100 x 35 = 3500 bytes

Therefore, use 4-K blocks to store the LRECs. Because the database must hold
records for 366 days, you need 366 blocks to store the flight information.

Distributing the Flight LRECs

The structure of the flight file is simple; there is one subfile for each day’s flights.
One fast method of accessing the subfiles is to assign a relative number to each
day of the year.

The application translates the day directly into an ordinal matching a subfile. For
example, 1 Jan=1st, 2 Jan=2nd 31 Dec=366th. The ordinal serves as a value
for the string passed with the ALG parameter. You can use algorithm #TPFDBO05 to
retrieve the ordinal directly.

For a more detailed explanation, see [Figure 51 on page 134}

34 TPFDF R1 Database Administration

Note: Because leap years must be accommodated, you must define 366 blocks,
although one of them will be redundant most of the time.

Allowing for Expansion

File Structure

Although the size of the flight file is fixed at the moment, you may need to expand it
in the future. Because of this, consider how a data overflow might be
accommodated.

There is room for some expansion in the blocks already assigned, and 4-K blocks
are likely to be large enough to accommodate an increased number of flights. If the
number of flights increase greatly, increase the size of the overflow blocks b
changing the value of the DBDEF ARS parameter and then using the
command. An increase in block size would mean a reduction in I/O processing,
therefore maintaining good performance levels despite the increase in data.

Because the flight file is an index file, its LRECs must contain pointers. The
structure of the flight file LRECs is as follows:

size | key | date | time flt no start dest airc type avail pntr to seat file

Mapping the Seat File

Each LREC in the seat file contains the fields shown in[Table 30} [Table 30| also
shows the number of bytes in each field.

Table 30. LREC Fields for the Seat File

Field No. of bytes
size 2

key 1

seat number 4

seat class 1

passenger name 25
passenger number

pointer to passenger file

Total 46

From this table, you can see that each LREC in the seat file contains 46 bytes.

Because the average number of passengers on each flight is 150, you can
calculate the amount of data as follows:

no. of passengers on each
flight x LREC size = amount of data

The calculation is:
150 x 46 = 6900 bytes

Some aircraft can carry as many as 300 passengers while others can carry only 50.

Because data must be kept for all the different aircraft types, you must also
calculate the maximum and minimum data requirements.

Mapping Tables to TPFDF Files 35

The calculations are as follows:

300 x 46 = 13800 bytes (maximum)
50 x 46 = 2300 bytes (minimum)

Because the seat file is referenced from the flight file (Table 29 on page 34), you

should create it as a pool file. As a pool file, it is allocated only as needed. If you
create the seat file as a fixed file, it is permanently allocated and must be defined
for every file. Therefore, you must consider the size of the file as well.

Distributing the Seat File LRECs

Because 4-K blocks hold only 4033 bytes of user data, some chaining is needed in
this file. The chain lengths vary from 1 to 4. You need 4 blocks to accommodate the
number of seats in the largest aircraft.

When you distribute the seat file LRECs, use algorithm #TPFDBFF to indicate that
the seat file is an index file.

Mapping the Passenger File

Each LREC in the passenger file contains the fields shown in[Table 31} This table
also shows the number of bytes in each field.

Table 31. LREC Fields for the Passenger File

Field No. of bytes
size 2

key 1

passenger number 8

passenger name 25
passenger address n (10-50)
flight information 17
passenger facts 4

Total 107

From this table, you can see that each LREC in the passenger file contains from
57-97 bytes. (The passenger address field has a minimum of 10 bytes and a
maximum of 50 bytes.)

Data requirements for the passenger file must be calculated twice. You need to
know the requirements for the average number of flights (3) and for the maximum
number of flights (20).

You can calculate the data requirements for the average number of flights as
follows:

number + name + address + facts + (average no. of flights
x flight information) = amount of data

The calculation is:
8+25+n+ 4+ (3 x17) = 88 + n bytes

The calculation for the maximum number of flights is as follows:
8+ 25+ n+ 4+ (20 x 17) = 377 + n bytes

36 TPFDF R1 Database Administration

From these calculations, you can see that most passenger LRECs fit into a single
block of L1 size (320 bytes). However, you need 1 overflow block for each LREC
where passengers are taking 14 flights or more.

Spreading Data over Several LRECs

Some of the passenger LRECs contain too much data to fit into a single 381-byte
block. Moreover, the data held in variable length LRECs is likely to vary in size.

Because the TPFDF product does not allow you to spread a single LREC over
more than 1 block, you must spread the data over several LRECs. The alternative
of using larger blocks for the passenger LRECs is wasteful because only a few of
the LRECs need the larger size block.

Looking at the passenger file again (Table 32), you can see that the data can be
split into five separate LRECs.

Table 32. Passenger File

Passenger Passenger Passenger Flight Date Passenger
number name address facts
Pnl Nal Ad1l Fl1 Dal Ftl
FI2 Dal
FI3 Da2
Pn2 Na2 Ad2 Fl1 Dal Ftl
Pn3 Na3 Ad3 Fl1 Dal
Pn4 Na4 Ad4 Fl1 Dal

shows the five new LRECs and the number of bytes held in each LREC.

size | keyl | name
size | key2 | number
size | key3 | address
size | key4 | flight info.
size | key5 | fact

2+ 1+ 25 =28 bytes
2+1+8=11Dbytes

2+1+n=3+nbytes
2+1+17 =20 bytes

(can be repeated up to 20 times)

2+1+4=7bytes

Figure 15. Spreading Data over Several LRECs

Because the data is now spread over several LRECs, the database must hold
slightly more data. (Each LREC holds 3 bytes of identifying data.) However, the
data is easier to manipulate in this form so that performance is improved overall.

Note: Name and number are kept as two separate LRECs in case the name field

needs to be expanded in the future.

Mapping Tables to TPFDF Files 37

38 TPFDF R1 Database Administration

Coding the DSECT and DBDEF Macros

Each of the files mapped in the previous chapter requires a DSECT macro and a
DBDEF macro. The following describes how to set the global symbols for each
DSECT and gives examples of possible DBDEF statements for each file.

It is assumed that you already know how to create DSECT and DBDEF macros. If
you are not sure how to do this, see the following:

» [‘Creating a DSECT Macro Definition” on page 69
» [‘Creating a DBDEF Macro Definition” on page 89

Only the backward path is shown in the sample DBDEFs. The forward path (recoup
information) is not shown.

Figure 16| shows the DSECT names, algorithms, and paths for each of the six

mapped files.
IR20DF | #TPFDB03 IR21DF | #TPFDBO09 | IR22DF | #TPFDB05 IR25DF | #TPFDB04
Passenger Name Passenger Number Flight Aircraft
Path 2: Date and flight
IR23DF | #TPFDBFF Path 3: All LRECs
Seat Table
Path 0: Name Path 1: Number Path 2: Name
Path 3: FULLFILE
IR24DF | #TPFDBFF w v
Passenger Table
Name
Number
——————— 1
Address |

Flight information

Facts

Figure 16. TPFDF Files: DSECT Names, Algorithms, and Paths

© Copyright IBM Corp. 1997, 2001 39

IR20DF

DSECT and DBDEF for the Passenger Name File

Macro IR20DF is the DSECT for the passenger name file. The following example
shows the DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the passenger name file.

MACRO
&LABEL IR20DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

LR Rk

* *
% IR20DF PASSENGER NAME FILE (INDEX) *
* DATE: 11 APRIL 1991 *
* *
KRR R AR A AR A IRk hhhhhhhhhhkhkhkhdxk
GBLB &IR20DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR20DF ' DOC NAME
&DATE SETC 'O6FEB91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
.**
o DEFINITIONS FOR TPFDF *
CEEKKRR KRR KR KRR KRR KRR KRR AR AR AR AR A hhhhhhhhhhhhhhhhhhhhhhhhhhhrhhrrhhrrhrrrdsx
&SWOOWID SETC '20" FILE ID
&SWOOWRS SETC 'L1' BLOCK SIZE
&SWOORCT SETC '#IR20DF' FACE FILE TYPE
&SWOORBV SETC '#TPFDBO3' FILE ALGORITHM
&SWOOBOR SETC '0" BASE ORDINAL NUMBER
&SWOOEOR SETC '-1' END ORDINAL NBR
&SWOOILV SETC 'O MAXIMUM INTERLEAVING FACTOR IF APPLIC
&SWOOPTN SETC 'O NUMBER OF PARTITIONS
&SWO1EO# SETC '&SWOOEOR' RECOUP END ORDINAL
&SWO2FIL SETC 'IR20DF' FILE DSECT NAME

&SWOO0P1 SETC '00000000' OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOOOP3 SETC '00000000' OPT BYTE3
&SWOOTQK SETC '15' HIGHEST TLREC

B o o o o o o e e e R R R R R R R R R R R ok ok ok ok ok ok ok R ok ok R ok ok R kR R
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS
AIF ('&IR20DF1' EQ '1').NOT1ST

Kok ko k k Kk ok ok k k ok k Kk K k Kk K k Kk ok k Kk Kk k k Kk k k Kk k * % k *x
DESCRIPTION OF IR20DF
1. DATA AREA NAME
PASSENGER NAME FILE
. MEMBER NAME
IR20DF
3. INVOCATION
IR20DF REG=RGD,

(SUFFIX=X),
(ORG=IR20HDR)

L I I I N G I
nN
£ %k X X ok ok 3k X X X X X X X X %

Figure 17. DSECT to Define the Passenger Name File (Part 1 of 3)

40 TPFDF R1 Database Administration

9

ECEE I R R R R I I R R R R N N I I R N G R R T N S S N N I N R R

8.

. GE

1.

3.

3.1,

.3.2.

. ST

1.

.3.

NERAL CONTENTS AND USAGE
ROLE IN SYSTEM
THE PASSENGER NAME FILE CONTAINS INDEX POINTERS TO THE

PASSENGER FILE. THIS ALLOWS FAST ACCESS TO A PASSENGER
BY THE NAME.

. DATA LAYOUT

STANDARD TPFDF FILE HEADER

ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 PASSENGER NAME LOGICAL RECORD

PROGRAMMING ASPECTS

PROGRAMMING RESTRICTIONS

NONE.

PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

ORAGE FACTORS
BLOCK SIZE

DEFINED IN DBDEF.

. FILE REQUIREMENTS

THE #TPFDBO3 ALGORITHM REQUIRES 17576 FIXED FILES
ACCESSING SCHEME

(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)

THE FILE IS UP ORGANIZED. IT IS ACCESSED BY THE PATH=0

DEFINITION OF THE PASSENGER FILE.

. DATA CONTROL

1.

2.

CHAINING AND OVERFLOW

STANDARD TPFDF CHAINING.

DATA FIELD ADDRESSING

OFFSET WITHIN STANDARD TPFDF LREC.

. IMPLEMENTATION REQUIREMENTS

RE

FERENCES

. COMMENTS

* k k k¥ k¥ k¥ k¥ k¥ k¥ k k¥ k¥ k¥ k¥ k¥ k Kk *k k¥ Kk Kk *k k& *k *k *k *k * *x *x *x *x *x

Figure 17. DSECT to Define the Passenger Name File (Part 2 of 3)

EE T T R R R R N I I N R G R R R I R R S N N I N R N N N S S

IR20DF

Coding the DSECT and DBDEF Macros 41

IR20DF

DBDEF

EJECT

AIF
#IR20DFS EQU
.CHECKID AIF
#IR20DFI EQU

('&SWOOWRS' EQ '').CHECKID

&SWOOWRS

BLOCK SIZE

('&SWOOWID' EQ '').NOT1ST

C'&SWOOWID'

.NOTIST ANOP

R o o o T R T T T R R S R T S R T Rt L Lt E E E E L L

* STANDARD TPFDF HEADER *

B o o T T T R T S R R S S R L Rt L e e L L L

IR20HDR&CG1

IR20VAR&CG1
IR20HDL&CG1

IR20REC&CG1
IR20SIZ&CG1
IR20KEY&CG1

DS CL16
DS CL1O
EQU ~

FILE ID

STANDARD FILE HEADER
STANDARD TPFDF HEADER
START OF VARIABLE USER-AREA

EQU IR20VAR&CG1-IR20HDR&CG1 HEADER-LENGTH UP TO IR20VAR

ORG IRZ0HDR&CG1

DS 0CL1
DS H
DS X

1ST RECORD START (1=VARIABLE,ELSE SIZE)
SIZE OF LOGICAL RECORD
LOGICAL RECORD IDENTIFIER

AIF ('&IR20DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE

EE R R R R R R R R e R R R T T R T R R e S Tt S Lt L T

* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
dhkkhkhkhkhkhkhkhhkhkhhkhhhhhhhhhhhdhhddhhdhhhhhhhhhhhhhhhhkhhhhhhhdrhhhhhhhhhhdxkx
o USE KEY #IR20K80 IF ONLY ONE KEY

o #IR20K00-#IR20KOF ARE RESERVED FOR TPFDF

o #IR20KFO-#IR20KFF ARE RESERVED FOR TPFDF
#IR20K80 EQU X'80" LOGICAL RECORD KEY X'80'

#IR20L80 EQU IR20E8ORCG1-IR2OREC&CG1 LENGTH OF LOGICAL RECORD X'80'
&IR20DF1 SETB (1) INDICATE 1ST TIME THROUGH

.KEYEQ ANOP
IR200RG&CG1 EQU *

K

START VARIABLE DATA PER LREC

B R R R R R R R R R R R R R R R R T R R T R R S S S R S Tt

* DESCRIPTION OF F I RS T LOGICAL RECORD TYPE *
dhkkhkhkhkhkhkhkhkhkhhhkhkhhhhhhhhhhdhhdhdhhdhdhdhhdhdhdhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkkdxkx
IR20FAD&CGL DS OAL4 F.A. OF POINTER USED BY DBDEF
IR20FA1&CGL DS AL4 F.A. OF POINTER TO DETAIL/LOWER LEVEL IN
IR20RCC&CGL DS OAL1 CHECK BYTE USED BY DBDEF
IR20RC1&CG1 DS AL1 CHECK BYTE
IR20A80&CG1 DS 0CL25 KEYAREA
IR20PNM&CGL DS CL25 PASSENGER NAME
IR20E80&CG1 EQU * END OF LOGICAL RECORD WITH KEY = X'80'
*
ORG IR200RG&CG1
K
B o o o o o o R e R R R R R R Rk Rk kR Rk ok ok ok ok ok ok ok ok ok ok ok ok ko ok
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 17. DSECT to Define the Passenger Name File (Part 3 of 3)

Figure 18| shows the position of IR20DF in the file structure.

42 TPFDF R1 Database Administration

IR20DF

i | i | i |
IR20DF | IR21DF | | IR22DF | | IR25DF |
—— e —] —— e —] —— e —]
1I- -1
| IR23DF |
—— e —]
IR24DF

Figure 18. Position of IR20DF in the File Structure

DBDEF FILE=IR20DF, -
(ITK=#IR20K80, ID2=, -
INDEX= (IR24DF,0))

Note: IR20DF and IR21DF both contain references to IR24DF. Specify RCI
processing for these files. (See [Figure 53 on page 138 for more details of
RCI processing.)

Coding the DSECT and DBDEF Macros 43

IR21DF

DSECT and DBDEF for the Passenger Number File

Macro IR21DF is the DSECT for the passenger number file. The following example
shows the DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the passenger number file.

MACRO
&LABEL IR21DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

EE R R R R R R R R R R R R R R R R R R e R R R R R R R R R R R R R R R R R R Rk

* *
« IR21DF PASSENGER NUMBER FILE (INDEX) *
* DATE:11APR91 *
* *
AR R AR AR AR AR A KKKk hkhhhhhhhkkk
GBLB &IR21DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR21DF ' DOC NAME
&DATE SETC 'O8FEB91' UPDATE DATE
&VERS SETC '00' VERSION NUMBER
B o o o o e o o o R R R R R R R Rk R ok ok R ok ok ok ok ok ok ok ok ok ok R R R R R R R R R R
DEFINITIONS FOR TPFDF *
B o o o o o o o e R R R R R Rk Rk R ok R R ok ok ok ok ok ok ok ok R R R R R R R R R R
&SWOOWID SETC '21° FILE ID
&SWOOWRS SETC 'L4' BLOCK SIZE
&SWOOARS SETC 'L2' ALTERNATE BLOCK SIZE
&SWOORCT SETC '#IR21DF' FACE FILE TYPE
&SWOORBV SETC '#TPFDBO9' FILE ALGORITHM
&SWOOBOR SETC '0° BASE ORDINAL NUMBER
&SWOOEOR SETC '-1' END ORDINAL NBR
&SWOOILV SETC 'O MAXIMUM INTERLEAVING FACTOR IF APPLIC
&SWOOPTN SETC '0° NUMBER OF PARTITIONS
&SWO1EO# SETC '&SWOOEOR' RECOUP END ORDINAL
&SWO2FIL SETC 'IR21DF' FILE DSECT NAME

&SWOOOP1 SETC '00000000" OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOO0P3 SETC '00000000' OPT BYTE3

&SWOOTQK SETC '15' HIGHEST TLREC
R e R T R e R T T T
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS

AIF ('&IR21DF1' EQ '1').NOTIST

* k% k% k k k¥ k¥ k¥ *¥ k¥ ¥ k¥ * k* k * k Kk *k Kk *k Kk Kk *k *k *k *k * * *x *x * *x

DESCRIPTION OF IRZ21DF

—_

. DATA AREA NAME

PASSENGER NUMBER INDEX FILE

N

. MEMBER NAME

IR21DF

EEE R R R
* Ok 3k X X ok ok X X X X

Figure 19. DSECT to Define the Passenger Number File (Part 1 of 3)

44 TPFDF R1 Database Administration

9

LR I R R S R R T R R R R N N N N N S R R R T T R T N R . R T I I N R N R S S N

7.

8.

. INVOCATION
IR21DF REG=RGD,
(SUFFIX=X),
(ORG=IR21HDR)
. GENERAL CONTENTS AND USAGE
.1. ROLE IN SYSTEM

THE IR21DF CONTAINS INDEX POINTERS TO THE PASSENGER FILE
BASED ON THE UNIQUE PASSENGER NUMBER.

.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 PASSENGER NUMBER LOGICAL RECORD

.3. PROGRAMMING ASPECTS
.3.1. PROGRAMMING RESTRICTIONS
NONE.
.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

. STORAGE FACTORS
.1. BLOCK SIZE
DEFINED IN DBDEF.
.2. FILE REQUIREMENTS
THE NUMBER OF FILES ALLOCATED IS 7999.
.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
THE IR21DF IS ACCESSED BY PATH=1 OF THE PASSENGER FILE.
. DATA CONTROL
.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.
.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.
IMPLEMENTATION REQUIREMENTS
REFERENCES

. COMMENTS

* k k k k k k k ¥ k ¥ k¥ k¥ k¥ k k* k k k k k k %k *k Kk *k *k * *x *x % *x *x

Figure 19. DSECT to Define the Passenger Number File (Part 2 of 3)
Coding the DSECT and DBDEF Macros 45

LR R R R S R I I S R R R T G R I R N N N R R G G I I N

IR21DF

IR21DF

DBDEF

EJECT
AIF ('&SWOOWRS' EQ '').CHECKID
#IR21DFS EQU &SWOOWRS BLOCK SIZE

.CHECKID AIF ('&SWOOWID' EQ '').NOTIST
#IR21DFI EQU C'&SWOOWID' FILE ID
.NOTIST ANOP

R o e e o T T R R R R S R T R R T R R L Rt R E L L

* STANDARD TPFDF HEADER *
KKIKKKRKRKRKRKRKRRRKRRRKRRRRRRXhhkhkhkhkhhkkhkhkhkhkhkhkkhkhkkhkhkkkhkkkhkhkkhkhkkhkhkkkhkkkhkkkk%x
IR21HDR&CG1 DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
IR21VAR&CG1 EQU * START OF VARIABLE USER-AREA
IR21HDL&CG1 EQU IR21VAR&CG1-IR21HDR&CG1 HEADER-LENGTH UP TO IR21VAR

ORG IRZ1HDR&CG1
IR21REC&CG1 DS 0OCL1 1ST RECORD START (1=VARIABLE,ELSE SIZE)
IR21S17&CG1 DS H SIZE OF LOGICAL RECORD
IR21KEY&CG1 DS X LOGICAL RECORD IDENTIFIER

AIF ('&IR21DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE

B R R R R R R R R e R R R R S R R R R e S S T S L Lt Lt L

* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
hhkkhkhkkhhkhkhhhhhhhhhhhhhhhhhhhdhdhhhhhhhhhhhhhkhhhkhhhhhhhhhhhhhhhhhkhhkhhhhkdixdx
o USE KEY #IR21K80 IF ONLY ONE KEY

o #IR21K00-#IR21KOF ARE RESERVED FOR TPFDF

* #IR21KFO-#IR21KFF ARE RESERVED FOR TPFDF

#IR21K80 EQU X'80° LOGICAL RECORD KEY X'80'

#IR21L80 EQU IR21E80&CG1-IR2IREC&CG1 LENGTH OF LOGICAL RECORD X'80'
&IR21DF1 SETB (1) INDICATE 1ST TIME THROUGH

.KEYEQ ANOP

IR210RG&CGL EQU * START VARIABLE DATA PER LREC

R e e e e R T e T T S R S S e S S e S L L e L e L s L L

* DESCRIPTION OF FIRST LOGICAL RECORD TYPE *
""""""" R R a3
IR21FAD&CG1 DS OAL4 F.A. OF POINTER USED BY DBDEF

IR21FA1&CG1 DS AL4 F.A. OF POINTER TO DETAIL/LOWER LEVEL INDX
IR21RCC&CG1 DS OAL1 CHECK BYTE USED BY DBDEF

IR21RC1&CG1 DS ALl CHECK BYTE

IR21A80&CG1 DS 0OCL8 KEYAREA

IR2INBR&CG1 DS CL8 UNIQUE PASSENGER NUMBER

IR21E80&CG1 EQU = END OF LOGICAL RECORD WITH KEY = X'80'

K

ORG IR210RG&CG1
J*
LRk ook ko ek ok ek ko ek ok ek ok ek ok ok ke ke ko ko
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 19. DSECT to Define the Passenger Number File (Part 3 of 3)

Figure 20| shows the position of IR21DF in the file structure.

46 TPFDF R1 Database Administration

IR21DF

i | i | i |
| IR20DF | IR21DF | IR22DF | | IR25DF |
[—— [—— [——
1I- -1
| IR23DF |
[——
IR24DF

Figure 20. Position of IR21DF in the File Structure

DBDEF FILE=IR21DF, -
(ITK=#IR21K80,1D2=, -
INDEX=(IR24DF,0))

Note: IR20DF and IR21DF both contain references to IR24DF. Specify RCI
processing for these files. (See [Figure 53 on page 138 for more details of
RCI processing.)

Coding the DSECT and DBDEF Macros

47

IR22DF

DSECT and DBDEF for the Flight File

Macro IR22DF is the DSECT for the flight file. The following example shows the
DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the flight file.

MACRO
&LABEL IR22DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

EE R R R R R R R R R R R R R R R R R R e R R R R R R R R R R R R R R R R R R Rk

* *
« IR22DF FLIGHT FILE (INDEX) *
* DATE: 11APRI1 *
* *
AR R AR AR AR AR A KKKk hkhhhhhhhkkk
GBLB &IR22DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR22DF ' DOC NAME
&DATE SETC 'O8FEB91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
_**
o DEFINITIONS FOR TPFDF *
CEE KRR KRR R KRR KRR AR AR AR AR AR A A A hhhhhhhhhhhhhhhhhhhhhhhhhdhdhhrdhddhdxxxx%x%
&SWOOWID SETC '22" FILE ID
&SWOOWRS SETC 'L4' BLOCK SIZE
&SWOORCT SETC '#IR22DF' FACE FILE TYPE
&SWOORBV SETC '#TPFDBO5' FILE ALGORITHM
&SWOOBOR SETC '0° BASE ORDINAL NUMBER
&SWOOEOR SETC '-1' END ORDINAL NBR
&SWOOILV SETC 'O MAXIMUM INTERLEAVING FACTOR IF APPLIC
&SWOOPTN SETC 'O NUMBER OF PARTITIONS
&SWO1EO# SETC '&SWOOEOR' RECOUP END ORDINAL
&SWO2FIL SETC 'IR22DF' FILE DSECT NAME

&SWOO0P1 SETC '00000000' OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOOOP3 SETC '00000000" OPT BYTE3
&SWOOTQK SETC '15' HIGHEST TLREC

B o o o o R R R R R R Rk Rk R ok ok R ok ok ok ok ok ok ok ok ok R R R R R R R R R
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS
AIF ('&IR22DF1' EQ '1').NOTIST

Kok ko k ok Kk ok ok Kk k ok k Kk K k % K k Kk Kk k Kk Kk k k Kk k k K k * * k *x
DESCRIPTION OF IR22DF
1. DATA AREA NAME
FLIGHT FILE

2. MEMBER NAME
IR22DF

3. INVOCATION
IR22DF REG=RGD,

(SUFFIX=X),
(ORG=IR22HDR)

EE I I SR R I R I I
* Ok Sk X Xk ok 3k X X X X X X X X %

Figure 21. DSECT to Define the Flight File (Part 1 of 3)

48 TPFDF R1 Database Administration

E R R N S N T R R R T N N N T N S N S R G R R R . N N N R N N N N N S N T G
[S]

* k Kk k k k k k k k k ¥ k¥ ¥ *¥ k¥ ¥ ¥ ¥ ¥ ¥ k¥ k¥ ¥ ¥ Kk ¥ & % % %k % * *

8.

9.

. GENERAL CONTENTS AND USAGE
.1. ROLE IN SYSTEM

THIS FILE CONTAINS ALL THE FLIGHTS FOR A PARTICULAR DAY
WITH POINTERS TO THE SEAT FILE.

.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 FLIGHT INFORMATION LOGICAL RECORD

.3. PROGRAMMING ASPECTS
.3.1. PROGRAMMING RESTRICTIONS
NONE.
.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

. STORAGE FACTORS

.1. BLOCK SIZE
DEFINED IN DBDEF.

.2. FILE REQUIREMENTS

REQUIRES 366 FIXED FILES, 1 PER DAY

.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
IS ACCESSED BY PATH=3 AND PATH=4 OF THE PASSENGER FILE.
. DATA CONTROL
.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.
.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.
. IMPLEMENTATION REQUIREMENTS
REFERENCES

COMMENTS

Figure 21. DSECT to Define the Flight File (Part 2 of 3)

L I T R N S N N N . B I R T G R R R R N T I S I G T R N

IR22DF

Coding the DSECT and DBDEF Macros 49

IR22DF

EJECT
AIF ('&SWOOWRS' EQ '').CHECKID
#IR22DFS EQU &SWOOWRS BLOCK SIZE

.CHECKID AIF ('&SWOOWID' EQ '').NOTIST
#IR22DFI EQU C'&SWOOWID' FILE ID
.NOTIST ANOP

B o o T e T T R e S e e S L e e L e s L e L

* STANDARD TPFDF HEADER *
KRR AR KA T A AT FRA AT A AR K AT H A AT H R A KA AR H AR FAK AT KA KA R AT F R AT AT A XK
IR22HDR&CGL DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
IR22VAR&CGL EQU = START OF VARIABLE USER-AREA

IR22HDL&CG1 EQU IR22VAR&CG1-IR22HDR&CG1 HEADER-LENGTH UP TO IR22VAR
ORG IRZ22HDR&CG1

IR22REC&CGL DS OCL1 1ST RECORD START (1=VARIABLE,ELSE SIZE)
IR22SI1Z&CG1 DS H SIZE OF LOGICAL RECORD
IR22KEY&CGL DS X LOGICAL RECORD IDENTIFIER

AIF ('&IR22DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE
hhkhkhkhkhkhkhkhhhkhhhkhhhhhhhhhhhdhhdhddhhdhdhhhhhhhhhkhhhkhhhhhhhhhhhdhhhhdhhhhkkkkkkkx
* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
ER R
o USE KEY #IR22K80 IF ONLY ONE KEY
o #IR22K00-#IR22KOF ARE RESERVED FOR TPFDF
o #IR22KFO-#IR22KFF ARE RESERVED FOR TPFDF
#IR22K80 EQU X'80" LOGICAL RECORD KEY X'80'
#IR22L80 EQU IR22E80&CG1-IR22REC&CG1 LENGTH OF LOGICAL RECORD X'80"
&IR22DF1 SETB (1) INDICATE 1ST TIME THROUGH
.KEYEQ ANOP
IR220RG&CG1 EQU * START VARIABLE DATA PER LREC
*
khkkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhdhhhdhdhhdhdhdhhdhhhhhhhhhhhhhhhhhkhhhhhhhkhhhhkhkhkkkkdkkx
* DESCRIPTION OF F I RS T LOGICAL RECORD TYPE *
hhkkhkhkkhhkhhhkhhhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhkhhhhkhhhkhdhhhdhhhhdhhhhhkkkkhkkx
IR22FAD&CGL DS OAL4 F.A. OF POINTER USED BY DBDEF
IR22FA1&CGL DS AL4 F.A. OF POINTER TO DETAIL/LOWER LEVEL INDX
IR22RCC&CG1 DS OALL CHECK BYTE USED BY DBDEF
IR22RC1&CG1 DS AL1 CHECK BYTE
IR22A80&CG1 DS 0CL27 KEYAREA
IR22FLN&CGL DS CL7 FLIGHT NUMBER
IR22DAT&CGL DS XL2 DATE OF FLIGHT
IR22TIM&CGL DS XL2 TIME OF FLIGHT
IR22BRD&CGL DS CL3 BOARDING POINT
IR22DES&CGL DS CL3 DESTINATION
IR22ACT&CGL DS CL4 AIRCRAFT TYPE
IR22AVL&CGL DS XL6 AVAILABILITY COUNTS FOR THE 3 CLASSES
IR22E80&CGL EQU * END OF LOGICAL RECORD WITH KEY = X'80°

J*
ORG IR220RG&CG1
J*
Lk o ek ek ko ek ek ek ke ko
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 21. DSECT to Define the Flight File (Part 3 of 3)

50 TPFDF R1 Database Administration

IR22DF

DBDEF

Figure 22| shows the position of IR22DF in the file structure.
171 171 171
1 IR20DF 1| 1 IR21DF | IR22DF 1 IR25DF 1|
—— e —] —— e —] l —— e —]

IR23DF
|-~ T T |
| IR24DF |

e oo o o e e e e e e e

Figure 22. Position of IR22DF in the File Structure
DBDEF FILE=IR22DF, -

(ITK=#IR22K80,ID2=, -
INDEX=(IR23DF,0))

Coding the DSECT and DBDEF Macros 51

IR23DF

DSECT and DBDEF for the Seat File

Macro IR23DF is the DSECT for the seat file. The following example shows the
DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the seat file.

MACRO
&LABEL IR23DF ®=,&SUFFIX=,&0RG=,&ACPDB=
s
oS oK R R KR K R ek ek

* *
« IR23DF SEAT FILE (INDEX) *
* DATE: 11APR91 *
* *
hhkhkhkhkkhhkhhhhhhhhhhhhhhhhhdhhddhhhhhhhhhhhhhkhhhkhhhhkhhhhdhdhhhhhkhhkkhkdkkx
GBLB &IR23DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR23DF ' DOC NAME
&DATE SETC 'O8FEB91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
B o o o o o o e R R R R R R R Rk R R R R ok ok ok ok ok ok ok ok ok ok R R R R R R R R
o DEFINITIONS FOR TPFDF *
B o o o o o o o o e e R R R R R R R R Rk kR ok R ok ok ok ok ok ok ok ok R R R R R R R R R R
&SWOOWID SETC '23" FILE ID
&SWOOWRS SETC 'L4' BLOCK SIZE
&SWOORBV SETC '#TPFDBFF' FILE ALGORITHM
&SWO2FIL SETC 'IR23DF' FILE DSECT NAME

&SWOOOP1 SETC '00000000' OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOO0P3 SETC '00000000' OPT BYTE3

&SWOOTQK SETC '15' HIGHEST TLREC
""""""" R R R R R S P e
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS

AIF ('&IR23DF1' EQ '1').NOT1ST

Kok ok ok k Kk ok ok k Kk K k Kk Kk k Kk Kk k Kk k X k Kk K k % K * * K x * *

DESCRIPTION OF IR23DF

1. DATA AREA NAME
SEAT FILE

2. MEMBER NAME
IR23DF

3. INVOCATION
IR23DF REG=RGD,

(SUFFIX=X),
(ORG=IR23HDR)

E o R I R
F ook 3k X X ok o 3k X X X X X X X X X 3k

Figure 23. DSECT to Define the Seat File (Part 1 of 3)

52 TPFDF R1 Database Administration

IR23DF
4. GENERAL CONTENTS AND USAGE

4.1. ROLE IN SYSTEM

CONTAINS THE PASSENGER NAMES, NUMBERS, CLASSES AND SEAT
NUMBERS FOR A PARTICULAR FLIGHT.

4.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 SEAT ALLOCATION LOGICAL RECORD

4.3. PROGRAMMING ASPECTS
4.3.1. PROGRAMMING RESTRICTIONS
NONE.
4.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

5. STORAGE FACTORS
5.1. BLOCK SIZE
DEFINED IN DBDEF.
5.2. FILE REQUIREMENTS
POOL FILES (VARIES WITH NUMBER OF FLIGHTS AND AIRCRAFT TYPE)
5.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
THIS FILE IS ACCESSED BY PATH=3 AND PATH=4 METHODS OF FILE
IR24DF (PASSENGER FILE).
6. DATA CONTROL
6.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.
6.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.
7. IMPLEMENTATION REQUIREMENTS
8. REFERENCES

9. COMMENTS

L I T R T R I N N S . N N N S O SR R R I R R S T I I S S T N I R G T
L I I S R T B S N N N I N N I R G I I N T R R I I

* k% k% k k k k¥ k *¥ k¥ ¥ k¥ k¥ k¥ k* k¥ k Kk *k *k %k *k Kk %k *k %k *k %k * *x *x *x *x

Figure 23. DSECT to Define the Seat File (Part 2 of 3)

Coding the DSECT and DBDEF Macros 53

IR23DF

EJECT
AIF ('&SWOOWRS' EQ '').CHECKID
#IR23DFS EQU &SWOOWRS BLOCK SIZE

.CHECKID AIF ('&SWOOWID' EQ '').NOTIST
#IR23DFI EQU C'&SWOOWID' FILE ID
.NOTIST ANOP

B o o e e T T T S S T S R S S R L R L L R e E L L

* STANDARD TPFDF HEADER *
Kok AR KRR A AR AR KA TR A KA A AT F R A AT H A AR KA F R A AR F R KA T AT TR R AT A KRR
IR23HDR&CGL1 DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
IR23VAR&CGL EQU = START OF VARIABLE USER-AREA

IR23HDL&CG1 EQU IR23VAR&CG1-IR23HDR&CG1 HEADER-LENGTH UP TO IR23VAR
ORG IRZ23HDR&CG1

IR23REC&CGL DS 0OCLI 1ST RECORD START (1=VARIABLE,ELSE SIZE)
IR23S1Z&CG1 DS H SIZE OF LOGICAL RECORD
IR23KEY&CGL DS X LOGICAL RECORD IDENTIFIER

AIF ('&IR23DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE
hhkhkhkhkhkhhkhhhkhhhhhhhhhhhhhhdhhddhhhhhhhhhkhhhhhhhhhhhkhhhhdhhhhhhhhhkhhkkkkx
* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
R R
o USE KEY #IR23K80 IF ONLY ONE KEY
o #IR23K00-#IR23KOF ARE RESERVED FOR TPFDF
o #IR23KFO-#IR23KFF ARE RESERVED FOR TPFDF
#IR23K80 EQU X'80" LOGICAL RECORD KEY X'80'
#IR23L80 EQU IR23E80&CG1-IR23REC&CG1 LENGTH OF LOGICAL RECORD X'80°
&IR23DFL SETB (1) INDICATE 1ST TIME THROUGH
.KEYEQ ANOP
IR230RG&CG1 EQU * START VARIABLE DATA PER LREC
*
khkkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhdhdhdhdhhdhhdhhhhhhhhhhhhhhhhhkhhhhhhhkhhkkkhkhkkkkxkx
* DESCRIPTION OF FIRST LOGICAL RECORD TYPE *
hhkkhkhkhkhhkhhhhhhhhhhhhhhhhhdhhddhhhhhhhhhkhkhhkhkhhhkhdhhhkdhhhhdhhhhhhhhhkhkkdkkx
IR23FAD&CGL DS OAL4 INDEX FILE ADDRESS
IR23FA1&CG1 DS AL4
IR23RCC&CG1 DS OALL INDEX RECORD CODE CHECK
IR23RC1&CG1 DS ALl
IR23A80&CG1 DS 0CL38 USER DEFINED AREA
IR23PNA&CGL DS CL25 PASSENGER NAME
IR23PNN&CGL DS CL8 PASSENGER NUMBER
IR23SNB&CGL DS XL2 SEAT NUMBER
IR23SCL&CG1 DS CL1 SEAT CLASS
IR23E80&CG1 EQU * END OF LOGICAL RECORD WITH KEY = X'80'

oK
ORG IR230RG&CG1

B R R R R Rk R R R R R kR R R R R R R R R R R R R R R R R R Rk ko

* ALGORITHM DESCRIPTION *
khkkhkkhkhkhkhkhkkkhhhhkhhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhkhhhkhkhhkkhhhhkikx
ORG IR23REC&CG1
IR23@2BEGACG] EQU * PATH 2 DESCRIPTION
IR23@2FLN&CG1 DS CL7
IR23@2END&CG1 EQU *
ORG IR23REC&CG1

IR23@3BEG&CG1 EQU =* PATH 3 DESCRIPTION

IR23@3END&CGL EQU =*

LR Rk R R Rk Kok Rk R KRRk KRR KRR Rk
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE

&SYSECT CSECT

AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING

USING &DSN,®
.MACEXIT ANOP

SPACE 1

MEND

Figure 23. DSECT to Define the Seat File (Part 3 of 3)

54 TPFDF R1 Database Administration

IR23DF

DBDEF
Figure 24| shows the position of IR23DF in the file structure.
171 1T 71 171
1 IR20DF 1| 1 IR21DF | IR22DF 1 IR25DF 1|
—— e —] —— e —] l —— e —]
IR23DF

v

IR24DF

Figure 24. Position of IR23DF in the File Structure

DBDEF FILE=IR23DF, -
(ITK=#IR22K80, ID2=, -
INDEX=(IR24DF,0)), -
(11D=IR22DF,PTH=2,1KY=80,1PA=7,ILA=2, IPK=0,ILK=9,-
KEY1=(PKY=#IR22K80,UP), -
KEY2=(R=IR22FL,S$=0,UP)), -
(11D=IR22DF,PTH=3,1KY=80, -
KEY1=(PKY=#IR22K80,UP), -
KEY2=(R=IR22FLN, $=0,UP))

Coding the DSECT and DBDEF Macros 55

IR24DF

DSECT and DBDEF for the Passenger File

Macro IR24DF is the DSECT for the passenger file. The following example shows
the DSECT and the DBDEF for this detail file.

DSECT
shows the DSECT used to define the passenger file.

MACRO
&LABEL IR24DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

EE R R R R R R R R R R R R R R R R R R e R R R R R R R R R R R R R R R R R R Rk

* *
« IR24DF PASSENGER FILE *
* DATE: 11APRI1 *
* *
AR R AR AR AR AR A KKKk hkhhhhhhhkkk
GBLB &IR24DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR24DF ' DOC NAME
&DATE SETC '11APR91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
.***
o DEFINITIONS FOR TPFDF *
I KRRR KRR KRR R KRR KRR RRKAAA AR AR A A A A hhhhhhhhhhhhhhhhhhhhhhhrhhrhhrrhrrrdsx
&SWOOWID SETC '24" FILE ID
&SWOOWRS SETC 'L1' BLOCK SIZE
&SWOOARS SETC 'L1' ALTERNATE BLOCK SIZE
&SWOORBV SETC '#TPFDBFF' FILE ALGORITHM
&SWO2FIL SETC 'IR24DF' FILE DSECT NAME

&SWOOOP1 SETC '00000000' OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOO00P3 SETC '00000000' OPT BYTE3

&SWOOTQK SETC '15' HIGHEST TLREC
""""""" R R R R R E LT S T
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS

AIF ('&IR24DF1' EQ '1').NOTIST

Mok ok ok k k k ok ok ok Kk ok ok ok kK Kk ok k ok Kk Kk ok kK kK Ak kK
DESCRIPTION OF IR24DF
1. DATA AREA NAME
PASSENGER FILE
2. MEMBER NAME
IR24DF
3. INVOCATION
IR24DF REG=RGD,
(SUFFIX=X),
(ORG=IR24HDR)
4. GENERAL CONTENTS AND USAGE

4.1. ROLE IN SYSTEM

EE I I R R R R T I N R R
* ook Sk 3k X X o S X X X ok %k Sk X X X ok 3k X X X X

THIS FILE CONTAINS ALL PASSENGER RELATED INFORMATION.

Figure 25. DSECT to Define the Passenger File (Part 1 of 4)

56 TPFDF R1 Database Administration

IR24DF

4.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE

70 NAME LOGICAL RECORD
80 PASSENGER NUMBER

90 ADDRESS

A0 FLIGHT INFORMATION
BO FACTS

4.3. PROGRAMMING ASPECTS
4.3.1. PROGRAMMING RESTRICTIONS
NONE.
4.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

5. STORAGE FACTORS

5.1. BLOCK SIZE
DEFINED IN DBDEF.

5.2. FILE REQUIREMENTS
POOL FILE (NUMBER OF FILES VARIES)

5.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
THE ACCESS PATHS 2,3 ARE USED TO RETRIEVE THE PASSENGER
FILE BY FLIGHT NUMBER AND DATE, PATH=0 BY PASSENGER NAME
AND PATH=1 BY PASSENGER NUMBER.

6. DATA CONTROL

6.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.

6.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.

7. IMPLEMENTATION REQUIREMENTS

8. REFERENCES

9. COMMENTS

L R R GRS N N I N G N S I N N T N I A S N T N N N N N N S S
L R R I N I N N R R N N S I N I I R ST G R I R

* k k k k k k k ¥ k ¥ k¥ k¥ k¥ k k* k k k k k k %k *k Kk *k *k * *x * % * *x

Figure 25. DSECT to Define the Passenger File (Part 2 of 4)

Coding the DSECT and DBDEF Macros 57

IR24DF

58

#IR24DFS

EJECT

ATF
EQU

.CHECKID AIF

#IR24DFI
NOTIST

EQU
ANOP

("&SWOOWRS' EQ '').CHECKID
&SWOOWRS BLOCK SIZE
('&SWOOWID' EQ '').NOT1ST
C'&SWOOWID' FILE ID

B o o e e T T T S S T S R S S R L R L L R e E L L

STANDARD TPFDF HEADER

B e e T T T e S e e E S R R L R e L R e L e e L 2 L

*

IR24HDR&CG1 DS CL16 STANDARD FILE HEADER
DS CL10 STANDARD TPFDF HEADER
IR24VAR&CG1 EQU * START OF VARIABLE USER-AREA
IR24HDL&CG1 EQU IR24VAR&CG1-IR24HDR&CG1 HEADER-LENGTH UP
ORG IRZ24HDR&CG1
IR24REC&CG1 DS 0OCL1 1ST RECORD START (1=VARIABLE,
IR24S1Z&CG1 DS H SIZE OF LOGICAL RECORD
IR24KEY&CG1 DS X LOGICAL RECORD IDENTIFIER
AIF ('&IR24DF1' EQ '1').KEYEQ GO IF NOT FIRST

*

TO IR24VAR

ELSE SIZE)

ISSUE

E R o e e T R T T R T R R S S S R L R R L L

EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH)

B o o e T T T T R T e R T S R L R e L R e L e L L L

*

oK
K
*

#IR24K70

USE KEY #IR24K80 IF ONLY ONE KEY

*

#I1R24K00-#IR24KOF ARE RESERVED FOR TPFDF
#IR24KFO-#IR24KFF ARE RESERVED FOR TPFDF

EQU X'70' LOGICAL RECORD KEY X'70'
#IR24K80 EQU X'80' LOGICAL RECORD KEY X'80'
#IR24K90 EQU X'90' LOGICAL RECORD KEY X'90'
#IR24KAO EQU X'A0' LOGICAL RECORD KEY X'AO'
#IR24KBO EQU X'BO' LOGICAL RECORD KEY X'BO'
#IR24L70 EQU IR24E70&CG1-IR24REC&CG1 LENGTH OF LOGICAL
#IR24L80 EQU IR24E80&CG1-IR24REC&CG1 LENGTH OF LOGICAL
#IR24L90 EQU IR24E90&CG1-IR24REC&CG1 LENGTH OF LOGICAL
#IR24LA0 EQU IR24EAO&CG1-IR24REC&CG1 LENGTH OF LOGICAL
#IR24LBO EQU IR24EBO&CG1-IR24REC&CG1 LENGTH OF LOGICAL
&IR24DF1 SETB (1) INDICATE 1ST TIME THROUGH
.KEYEQ ANOP
IR240RG&CG1 EQU = START VARIABLE DATA PER LREC

K

RECORD X'70'
RECORD X'80'
RECORD X'90'
RECORD X'AO'
RECORD X'BO'

B R R R Rk R Rk R R Rk o R o R R R R R R R R R R R R R Rk kR ko

PASSENGER NAME LOGICAL RECORD

B Rk Rk

IR24NAM&CG1 DS CL25 PASSENGER NAME

*

IR24E70&CG1 EQU *

X

*

IR24E80&CG1 EQU *

X

*

IR24E90&CG1 EQU *

WX

ORG IR240RG&CG1

B R R R R Rk R R R R R kR R R R R R R R R R R R R R R R R R Rk ko

PASSENGER NUMBER LOGICAL RECORD

B R S R R R R R R R R R R Rk Rk

IR24NUM&CG1 DS CL8 PASSENGER NUMBER

ORG IR240RG&CG1

B R R R Rt Rk

ADDRESS LOGICAL RECORD

B R

IR24ADR&CG1 DS CL50 PASSENGER ADDRESS

ORG IR240RG&CG1

Figure 25. DSECT to Define the Passenger File (Part 3 of 4)

TPFDF R1 Database Administration

*

END OF LOGICAL RECORD WITH KEY = X'70'

*

END OF LOGICAL RECORD WITH KEY = X'80'

*

END OF LOGICAL RECORD WITH KEY = X'90'

DBDEF

EE R

* FLIGHT INFORMATION LOGICAL RECORD *
khkkhkhkhkhkhkkhhkhhhhhhhkhhkhdhhhdhdhhhdhdhhdhhhhhhhhhhhhhhhhhkhkhhhkhhkhkhhkkhkkkkhkhkhdkxkx
IR24FLI&CGL DS OCL17 FLIGHT INFORMATION

IR24FLT&CGL DS CL7 FLIGHT NUMBER

IR24DAT&CGL DS XL2 DATE

IR24TIM&CGL DS XL2 TIME

IR240RI&CGL DS CL3 ORIGIN (START)

IR24DES&CGL DS CL3 DESTINATION

IR24EA0&CGL EQU *