
TPF Database Facility

General Information
Release 1

GH31-0177-02

���

TPF Database Facility

General Information
Release 1

GH31-0177-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices”.

Third Edition (May 1999)

This is a major revision of, and obsoletes, GH31-0177-01.

This edition applies to Version 1 Release 1 Modification Level 3 of IBM Transaction Processing Facility Database
Facility, program number 5706-196, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . v

About This Book . vii
Who Should Read This Book . vii
Conventions Used in the TPFDF Library. vii
Related Information . viii

IBM TPF Database Facility (TPFDF) Books viii
Online Information . viii

How to Send Your Comments viii

TPFDF Product Introduction . 1
TPFDF Product Highlights . 1

TPFDF Features. 1
TPFDF User-Specific Processing. 2

Overview of TPFDF Benefits . 2
Application Programmer Productivity Benefits 2
System Management Benefits 2

TPFDF Product Overview . 5
TPFDF Components . 5

DBDEF Tables, DBDEF Macros, and DSECT Macros 6
Database Interface Block (DBIFB) 7
TPFDF Macros and Functions. 8
TPFDF Maintenance and Test Utility (ZUDFM). 9
TPFDF Data Collection Utility (ZUDFC) 9
TPFDF Capture/Restore Utility, Information and Statistics Environment

(ZFCRU) . 9
TPFDF Recoup Utility (ZRECP) 9

TPFDF Files and Subfiles . 11
Subfile Components . 11

Blocks . 11
LRECs . 13

Distributing LRECs between Subfiles 14
Algorithms . 14
Basic Index Support . 14
Block Index Support . 15
B+Tree Index Support . 16

TPFDF File Types. 17
Fixed Files . 17
Miscellaneous Files . 18
Pool Files . 18

The TPFDF/Distributed Data Access (DDA) Feature 19

TPFDF Implementation Considerations 21

System Requirements . 23
Hardware Requirements . 23
Software Requirements . 23
Migration and Coexistence . 23

Index . 25

© Copyright IBM Corp. 1997, 1999 iii

iv TPFDF R1 General Information

Figures

1. TPFDF Application Programs in TPF or ALCS Operating Environments 5
2. Relationship between the DBDEF Table and Other TPFDF Components 6
3. Logical Structure of a TPFDF File. 11
4. Prime Blocks and Overflow Blocks . 12
5. LRECs in a Block . 13
6. TPFDF Basic Index Support. 15
7. TPFDF Block Index Facility . 16
8. Sample B+Tree File . 17
9. Data Extraction: From Index Files and Multiple Files 19

10. Data Extraction: One-to-One Relationship between the Data Fields and Rows 20

© Copyright IBM Corp. 1997, 1999 v

vi TPFDF R1 General Information

About This Book

This book introduces the TPF Database Facility (TPFDF) product, an IBM licensed
program. The TPFDF product is a database manager for application programs that
run in a Transaction Processing Facility (TPF) or Airline Control System (ALCS)
operating environment.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, structured programming macro (SPM). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in TPFDF
Glossary.

Who Should Read This Book
This book is intended for all data processing professionals who work with TPF or
ALCS systems and do not have a detailed knowledge of the TPFDF product.
Anyone who is new to the TPFDF product should read this book before reading any
of the other books in the TPFDF product library.

After reading this book, you should be able to:

v Understand the benefits obtained by using the TPFDF product

v Understand the components and features of the TPFDF product

v Evaluate the TPFDF product to determine if it is suitable for your installation

v Prepare for the installation of the TPFDF product.

Conventions Used in the TPFDF Library
The TPFDF library uses the following conventions:

Typography Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZUDFC DISPLAY ID-fileid, where fileid is the file identifier (ID) of the file for which
you want statistics.

bold Used to represent keywords. For example:

Enter ZUDFC HELP to obtain help information for the ZUDFC command.

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

dfcls

Used for examples. For example:

ZUDFC DISPLAY ID-J5

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

© Copyright IBM Corp. 1997, 1999 vii

|
|
|
|
|
|

Typography Examples of Usage

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM TPF Database Facility (TPFDF) Books
v TPFDF Database Administration, SH31-0175

v TPFDF Installation and Customization, GH31-0178

v TPFDF Programming Concepts and Reference, SH31-0179

v TPFDF and TPF Structured Programming Macros, SH31-0183

v TPFDF Program Directory

v Memo to Current Licensees of IBM TPF Database Facility, TPF 4.1 and ALCS.

Online Information
v TPFDF Commands

v TPFDF Glossary

v TPFDF Messages (System Error, Online, Offline)

v TPFDF Utilities.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfqa@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788

viii TPFDF R1 General Information

|

|

|

|

http://www.ibm.com/tpf/pubs/tpfpubs.htm

– Other countries: (international code) + 845 + 432 +9788

About This Book ix

x TPFDF R1 General Information

TPFDF Product Introduction

The TPF Database Facility (TPFDF) licensed program is a database manager for
application programs that run in a Transaction Processing Facility (TPF) or Airline
Control System (ALCS) operating environment.

Note: ALCS is also referred to as TPF/MVS.

Traditional database management functions for these systems were the
responsibility of application programmers. Throughout this publication, traditional
means TPF or ALCS databases that are non-TPFDF. To increase the productivity of
application programmers, the TPFDF product provides:

v A logical method of database organization

v A set of standardized assembler macros or C functions that form the application
program interface (API)

v Central routines for database access and manipulation

v Utilities for database maintenance and testing.

After the TPFDF product is installed, application programs are no longer sensitive to
the physical implementation of the database.

TPFDF Product Highlights
v The TPFDF product is a database manager that is designed to provide:

– Significant increases in the productivity of an application programmer

– Improved application program performance

– Improved database integrity.

v The TPFDF product is easy to install and:

– Allows gradual migration from a traditional database

– Provides user exits for easy installation and migration.

v The TPFDF product is easy to use and includes:

– High-level assembler application macros

– C language functions

– Comprehensive hardcopy and softcopy documentation

– Education (as a separately priced option).

v The TPFDF product is easy to maintain and provides:

– Centralized database handling routines

– Utilities to maintain the database

– Performance measurement tools.

TPFDF Features
The TPFDF Distributed Data Access (TPFDF/DDA) optional feature lets you
propagate data from a TPFDF database to a DATABASE 2 database using
structured query language (SQL) statements. You can collect the SQL data from
one or more TPFDF files and from one or more fields in each file.

The database administrator must define (in the DBDEF macro) a file to use the
DDA feature. The data propagation is transparent to the TPFDF application
program.

© Copyright IBM Corp. 1997, 1999 1

See “The TPFDF/Distributed Data Access (DDA) Feature” on page 19 for more
information about the the TPFDF/DDA feature.

TPFDF User-Specific Processing
The TPFDF product provides the following user exits that allow the described
functions:

DFGDS To share TPFDF data with an MVS system.

DFTDC To implement the dialogue control facility.

You can write the code to provide these functions or obtain the necessary code
from a third party.

Overview of TPFDF Benefits
TPFDF provides benefits to application programmer productivity and system
management.

Application Programmer Productivity Benefits
Typically, in traditional database handling, there is no standard database
organization. Therefore, there are no common routines for data retrieval, searches,
sorts, or updates. Application programmers need to be aware of the size and
location of data.

The TPFDF product enforces a standard for database organization. For example, it
provides common routines to:

v Find and modify data

v Search, sort, and merge data

v Display data

v Read data from tape.

The TPFDF product provides high-level macros that act as an interface to these
common routines. Application programmers only need to know the logical
relationships of data, not the physical characteristics, to code these macros.

The TPFDF product also provides functions to allow C language programs to
access TPFDF file structures.

System Management Benefits
The TPFDF product enforces a centralized database structure that provides many
system management benefits. Because the definition of the database is centrally
maintained, the database administrator can modify database characteristics without
affecting application programs. This central maintenance, together with the utilities
that the TPFDF product provides, means that the database administrator can:

v Check the integrity of the database

v Optimize application program performance

v Minimize the application program migration effort

v Minimize the application program enhancement effort

v Ease the migration process from a traditional database to a TPFDF database

v Easily define different file characteristics for different subsystems when using the
multiple database function (MDBF) of the TPF High Performance Option (HPO)
feature

2 TPFDF R1 General Information

v Easily install the TPFDF Distributed Data Access (TPFDF/DDA) feature.

TPFDF installations need a database administrator to install and manage the
physical database. The database administrator communicates with both application
and system programmers.

TPFDF Performance
The TPFDF product makes it possible to optimize application program performance.
For example, it allows physical data to be organized to reduce direct access
storage device (DASD) I/Os by:

v Selecting optimum physical record sizes

v Allocating spare space in physical records for adding data.

The TPFDF product provides data collection tools for monitoring application
program performance. These tools can highlight database designs that can cause
performance problems (for example, excessive DASD I/Os). The database
administrator can modify the central database definitions to optimize performance.
One central change can improve the performance of many application programs
without modifying them.

Application Program Portability
The TPFDF product makes it easier to integrate new and existing application
programs. Typically, when adding an application program, there is some data that
both the existing and new application program needs to access.

Often in a traditional database, the way the data is stored is not compatible
between the two application programs (for example, the data is held in different
block sizes). This requires the modification of each new program that accesses the
data.

With the TPFDF product, programs do not need to be modified because of the way
data is stored. Block size changes and any other physical database changes are
transparent to the application.

Because TPFDF application programs are independent of the physical database,
they are easier to enhance.

TPFDF Migration
The TPFDF product allows gradual migration from a traditional database:

v Traditional files and TPFDF files can coexist in the same database.

v An application program can work with both traditional and TPFDF files.

v TPFDF macros and functions can retrieve and write traditional files.

This allows application programs that use the TPFDF product to coexist with
application programs that use traditional database handling methods.

TPFDF Product Introduction 3

4 TPFDF R1 General Information

TPFDF Product Overview

The TPFDF product is an interface between application programs that use TPFDF
macros and functions to request information from a database and the system
software that physically accesses the data. It provides a uniform method for
designing data layouts and writing application programs to access and read
information maintained in the TPF or ALCS database.

Figure 1 shows the relative position of the TPFDF product in a TPF or ALCS
operating environment.

TPFDF Components
The TPFDF product provides the following software functions:

v Macros and functions for processing data on the database

v Utilities for testing and maintenance (ZUDFM commands)

v A data collection utility (ZUDFC commands)

v A database validation, capture and restore utility (ZFCRU commands)

v A recoup utility for maintaining pool space and validating references (ZRECP
commands).

Database definition (DBDEF) tables contain detailed information about each file in
the database. Application programs directly or indirectly use DBDEF tables.

When opening a file, the TPFDF product allocates a SW00SR slot in a work area
called the database interface block (DBIFB). The next TPFDF macro or function in
the application program copies relevant information from the DBDEF table into the
SW00SR slot. This SW00SR slot, therefore, contains a working copy of the file

Applications

TPFDF

TPFDF Macros
and Functions

Traditional File
Access Macros

Input/Output

TPF or ALCS

Database

Figure 1. TPFDF Application Programs in TPF or ALCS Operating Environments

© Copyright IBM Corp. 1997, 1999 5

definitions while a file remains open. The SW00SR slot is closed when the file is
closed. Figure 2 shows how the DBDEF table relates to the other components of
the TPFDF product.

DBDEF Tables, DBDEF Macros, and DSECT Macros
Each DBDEF table is generated using:

v A DBDEF macro instruction with parameters that describe the file to the TPFDF
product

v A DSECT macro definition that describes files and logical record layouts.

DBDEF tables provide central definitions for the database. The DBDEF tables hold
information about the location, organization, and processing attributes of the
database. Information about the characteristics of a file are also held in the DBDEF
tables.

TPF
ALCS

DSECT
Macro

DBDEF
Macro

TPF
ALCS

TPF
ALCS

TPF
ALCS

TPF
ALCS

TPF

Application A
TPFDF Macros.

Application B
TPFDF Macros.

Application C
TPFDF Functions.

DBDEF
Table

DASD

DASD

DASD

DASD

DASD

DASD

ZUDFM

Maintenance and
Test Utility.
TPFDF Macros.

Database Utilities.
TPFDF Macros
and Functions.

ZFCRU

ZRECP

TPFDF Recoup
Utility.
TPFDF Macros.

Figure 2. Relationship between the DBDEF Table and Other TPFDF Components

6 TPFDF R1 General Information

There is one DBDEF table for each file ID defined to the TPFDF product. For each
file ID, there is also an assembler DSECT macro. This DSECT is designed by using
samples provided with the TPFDF product.

The database administrator codes processing information about a file in a DBDEF
macro. This information includes the file ID and the name of the DSECT. Application
programmers use this name to reference the file.

A DBDEF table is the assembled output of the DBDEF macro. Load the DBDEF
table to the online system. Once loaded, the table is available as read-only
information to the TPFDF product. It is available both to the programs that interpret
the TPFDF macros, functions, and utilities.

Database Interface Block (DBIFB)
When an application opens a file using the DBOPN macro or dfopn function, the
TPFDF product creates a work area called the database interface block (DBIFB).
The DBIFB contains several slots known as SW00SR slots, each of which contains
information about an individual subfile. When a subfile or file is opened, the
TPFDF product allocates a SW00SR slot in the DBIFB. The next macro or function
moves the relevant information from the DBDEF table into the SW00SR slot. As
processing continues, the TPFDF product returns information to the application
program using various fields in the SW00SR slot. Each SW00SR slot contains the
following fields that must not be changed:

Field Description

SW00CCA Core address of the current block.

SW00CFA File address of the current block.

SW00FAD File address of the prime block.

SW00ITM Base address of the current LREC.

SW00PCA Core address of the prime block.

SW00REC This field also provides the base address of the current LREC.

SW00RTN Return code from the last TPFDF macro call.

SW00RT1 Error information from the last TPFDF macro call.

SW00RT2 Additional error information from the last TPFDF macro call.

SW00SEQ File update sequence code that can be moved into a work area for
a later integrity check with DBRST macro or dfrst function.

SW00UKY Last unique key supplied by the TPFDF product.

SW00WCC Area used to hold a record code check (a value can be supplied
with the DBADD or DBCRE macro).

SW00WKA Start address of free space provided by the TPFDF product when
the SPACE or SPACEB parameter is entered with the DBOPN or
DBSPA macro or the dfopn or dfspa function.

There are also two fields that an application program can use. They are:

SW00USI A 1-byte user indicator

SW00USA A 4-byte user address field.

TPFDF Product Overview 7

TPFDF Macros and Functions
Application programmers do not directly access the information in DBDEF tables.
They can code high-level TPFDF assembler macros or C language functions in the
application program to retrieve or manipulate data. These macro instructions call
online TPFDF programs. The TPFDF programs use the information in the DBDEF
tables to generate traditional TPF or ALCS file handling requests.

Table 1 summarizes the assembler macros and C language functions that are
available with the TPFDF product. For more information about TPFDF macros and
C language functions, see TPFDF Programming Concepts and Reference.

Table 1. Summary of TPFDF Macros and Functions

Macro C Function Description

DBADD dfadd Add a logical record to a file. DBADD and dfadd use designated keys to identify the
location where a logical record will be inserted.

DBADR dfadr Designate a begin and end ordinal for sequential processing of the entire file.

DBCKP dfckp Write an open file in main storage to DASD.

DBCLR dfclr Allow an ECB to exit with open files.

DBCLS dfcls Complete processing and ensure that modified blocks are written to DASD.

DBCPY dfcpy Create a copy of an open file in pool files.

DBCRE dfcre Create an empty file.

DBIFB dfifb Locate the TPFDF control information for a file.

DBDIX dfdix Remove a logical record from a high-level index file for a detail file.

DBDEL dfdel Delete a logical record.

DBDSP dfdsp Produce an output message using FMSG or WTOPC.

DBFRL dffrl Verify that an entry control block (ECB) data level is not occupied by a TPFDF file.

DBIDX dfidx Create a high-level index reference for a detail file.

DBKEY dfkey Define keys.

DBMRG dfmrg Merge two input files into one output file.

DBMOD dfmod Indicate an LREC has been modified or modify LRECs that match previously established
keys.

DBOPN dfopn Open a file. Initialize the file for application program use.

N/A dfopt Set options in an open subfile.

DBRED dfred Locate a logical record in a file.

DBREP dfrep Replace a logical record with a new logical record.

DBRET dfret Save a reference to the current logical record.

DBRST dfrst Restore a file from a copy to another file address.

DBSRT dfsrt Create an output file with sorted logical records.

DBSPA dfspa Allocate space for an opened file.

DBTLD dftld Write a file to a DASD location.

DBTLG dftlg Write a file to a real-time or general tape.

DBTRD dftrd Read a file from an input tape.

DBUKY dfuky Request a unique key.

8 TPFDF R1 General Information

TPFDF Maintenance and Test Utility (ZUDFM)
ZUDFM commands provide maintenance and test capabilities that include:

v Initializing files

v Displaying and modifying files.

See TPFDF Commands and TPFDF Utilities for more information about the ZUDFM
utility.

TPFDF Data Collection Utility (ZUDFC)
ZUDFC commands allow the database administrator or system programmer who
maintains the TPFDF product to gather and display statistics relating to system
usage. See TPFDF Commands and TPFDF Utilities for more information about the
ZUDFC utility.

TPFDF Capture/Restore Utility, Information and Statistics Environment
(ZFCRU)

ZFCRU commands provide capture and restore capabilities that include:

v Capturing files

v Copying files

v Logging files

v Printing files

v Restoring files

v Validating files.

Note: The ZFCRU command is not supported in an ALCS environment. See
TPFDF Commands and TPFDF Utilities for more information about the
Capture/Restore Utility, Information and Statistics Environment (CRUISE).

TPFDF Recoup Utility (ZRECP)
The TPFDF product includes a recoup utility that does recoup functions for both
TPFDF and traditional databases.

Note: TPFDF recoup runs as an extension to TPF recoup.

In the ALCS environment, you can chain chase TPFDF databases using the
information contained in the DBDEF tables. To use the DBDEF table information
during ALCS recoup, you must install the TPFDF sample user exit code. For more
information about installing user exit code, see TPFDF Installation and
Customization. See TPFDF Commands and TPFDF Utilities for more information
about the ZRECP utility.

TPFDF Product Overview 9

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

10 TPFDF R1 General Information

TPFDF Files and Subfiles

A TPFDF database consists of files. Each file contains one or more subfiles. The
following describes the types of TPFDF files, the components of subfiles, and the
methods of distributing records between subfiles.

Subfile Components
Each subfile contains a prime block and possibly one or more overflow blocks. The
prime and overflow blocks contain logical records (LRECs). LRECs contain the
actual data stored in the database.

Figure 3 shows a file that contains two subfiles. Each subfile shown in the figure
has a prime block and three overflow blocks, but subfiles can have any number of
overflow blocks, or none.

Blocks
If the volume of data in a subfile is more than will fit into the prime block, TPFDF
automatically allocates one or more overflow blocks to hold the extra data. It chains
any overflow blocks to the prime block that requires them. See Figure 4 on page 12.

PrimeFile Header

File ID

Logical
Records
(LRECs)
Within a
Block

File

Key Key

User Fields and Keys

LREC ID

LREC

Forward chain

Trailer

Prime

Overflow
Overflow

Trailer

Trailer

Subfile Subfile

Figure 3. Logical Structure of a TPFDF File

© Copyright IBM Corp. 1997, 1999 11

|
|
|

All physical blocks in a file, whether they are prime or overflow blocks, have the
same file ID. This is a 2-byte identifier that is held in the block header. (It is known
in TPF systems and ALCS environments as the record ID.)

Block Sizes
TPFDF supports three block sizes when running with TPF. These block sizes are:

L1 381 bytes

L2 1055 bytes

L4 4095 bytes.

When running with ALCS, TPFDF supports eight block sizes, L1 to L8. ALCS block
sizes are defined during ALCS installation. The L1, L2, and L4 block sizes are
usually defined to be the same as the L1, L2, and L4 TPF block sizes.

The database administrator defines the block sizes for any TPFDF file. Prime and
overflow blocks can be different sizes.

Block Headers and Trailers
Each block contains a header and an optional trailer. The block header consists of
the following:

v A standard 16-byte TPF or ALCS portion

v A TPFDF extension to the header (10 bytes)

v An optional additional extension (of any length) that the application program can
use for any purpose.

The optional block trailer is 36 bytes long and contains control information such as
the last command issued and the date and time the block was last updated.

The trailer can provide useful information for debugging programs. When using
trailers, at least 62 bytes of each block are reserved for TPFDF use. The trailer can
also include an optional extension (of any length) that the application program can
use for any purpose.

Trailer Trailer Trailer

Prime Block Prime Block

File

Prime Block

Prime Block
and Chains to
Overflow Blocks

Header

Subfile 1

Header

Subfile 2

Header

Subfile 3

Figure 4. Prime Blocks and Overflow Blocks

12 TPFDF R1 General Information

Each overflow block has the same amount of space reserved for the header and
optional trailer as the prime block. (The header and trailer information can be
different in prime and overflow blocks.)

Ordinal Numbers
The number of prime blocks in a fixed file is also called the number of ordinals in
the file. The file has absolute start and end ordinal numbers that are used by
TPFDF macros.

LRECs
The internal format of individual TPFDF files does not correspond to the internal
formats of records in a traditional TPF or ALCS database. In every TPFDF file, the
data is organized into logical groups called logical records (LRECs). Each logical
record has mandatory items that allow TPFDF to recognize and work with it. These
items include a logical record identifier (LREC ID) and, for variable-length and
extended LRECs, the size of the LREC.

An LREC is the smallest unit of data that an application program can read, add, or
delete. LRECs have LREC IDs that are used as primary keys when reading LRECs
from, or adding LRECs to, a subfile.

LRECs cannot span blocks. Their size is limited to the physical block size, minus
the length of the following components (the block header, optional block header
extension, optional trailer, and optional trailer extension).

Figure 5 shows how LRECs are held in blocks.

LREC Types
LRECs can be:

v Fixed-length

v Variable-length

v Extended.

Block Trailer
(optional)

LRECs

File ID

Primary
Key or
LREC ID

Block Header

Data Fields

Data Fields

Data Fields

Data Fields

Data Fields

Figure 5. LRECs in a Block

TPFDF Files and Subfiles 13

LREC Fields
A field is a subdivision of an LREC that contains an item of data. Fields hold one of
the following:

v LREC ID

v User data; for example, a customer name, an address, or a balance amount

v Control information; for example, the length of the LREC (if it is variable-length or
extended).

In variable-length (and extended) LRECs, user fields can vary in length.

Distributing LRECs between Subfiles
TPFDF lets you read LRECs from, and add LRECs to, a subfile in any file in the
database, without having to worry about the physical structure of the file. You do
need to know, however, how the file is split into subfiles, and what type of index
support (if any) is being used with the file.

In a file, LRECs are distributed and accessed as follows:

v Algorithms

v Basic index support

v Block index support

v B+Tree index support.

Algorithms
If a file contains more than one subfile, TPFDF must be able to calculate into which
subfile any particular LREC belongs. The database administrator supplies this
information as an algorithm. TPFDF uses this algorithm and the algorithm
argument, passed as a parameter with a TPFDF macro or function, to determine
where an LREC belongs.

For example, use an algorithm to divide a small customer file into 26 subfiles where
each subfile contains the LRECs for a group of customers who all share the same
initial surname letter: A, B, C, ..., Z.

The database administrator gives TPFDF this information by specifying a particular
algorithm in the DSECT macro for the file. In the example, the required algorithm is
#TPFDB01.

Provide an algorithm argument as a macro or function parameter to add LRECs to
the file. In the example, the argument is the first letter of the customer name.
TPFDF uses the algorithm argument, together with the algorithm specified for the
file (#TPFDB01), to calculate the appropriate subfile for the LREC that contains
details about this customer.

There are many different algorithms from which to choose. They are explained in
TPFDF Database Administration.

Basic Index Support
Algorithms provide one method of distributing LRECs between subfiles; basic index
support provides another. With the simplest type of basic index support, TPFDF
uses an LREC in one file, the index file, to point to (reference) a subfile in another
file, called the detail file.

14 TPFDF R1 General Information

Figure 6 shows a basic index support structure for an application program that
processes customer data. For example, the application program is processing
information for a customer named JONES. TPFDF searches the high-level index to
find the reference to the detail file for JONES.

Basic index support is transparent to the application program. The application
program does not depend on the storage structure or the access path to the data.
The actual steps involved in retrieving or building an indexed file are done
automatically by TPFDF.

Indexed file structures are an effective way to store large, variable quantities of
data. TPFDF supports:

v Multiple high-level index files (for example, a high-level index file points to
another high-level index file that points to a detail file)

v Multiple high-level index files pointing to the same detail file

v A single high-level index file pointing to multiple detail files.

Block Index Support
Block index support optimizes retrieval of data in a TPFDF file that has many
chains. Figure 7 on page 16 shows a block index structure for an application
program that processes customer data. For example, the application program is
processing information for a customer named FOX.

Without the block index facility, TPFDF searches the prime block and five chained
blocks to find the data. With the block index facility, TPFDF searches the prime
block to find the direct reference to the block that contains the data.

JONES

File address

File address

File address

File address

File address

High Level Index File

Detail Subfile Detail Subfile Detail Subfile

BAKER

SMITH

ROUX

KELLER

BAKER

57 OAK STREET

LONDON

KELLER

21 ELM STREET

NEW YORK

15 ASH STREET

DUBLIN

JONES

Figure 6. TPFDF Basic Index Support

TPFDF Files and Subfiles 15

B+Tree Index Support
B+Tree index support is similar to block index support. Like block indexing, B+Tree
index support uses index LRECs (also known as technical LRECs or TLRECs) to
identify the first data LREC contained in each block of a subfile. Unlike block
indexing, these TLRECs are not maintained in the prime block of the subfile.
Instead, these TLRECs are maintained in a separate B+Tree structure.

Instead of reading all the LRECs in a subfile until it locates the desired LREC,
TPFDF can go directly from the B+Tree structure to the block containing the
requested LREC. LRECs are then searched sequentially in that block.

The B+Tree structure, maintained by TPFDF, is transparent to the application
program. The database administrator must specify that a file is using B+Tree
indexing in the DSECT and DBDEF statements. TPFDF then maintains technical

FOX

Prime Block

Overflow blocks

b BAKER

b CAMPBELL

b COHEN

b EDWARDS

b FOX

d AARON

d ABEL

d ACKROYD

d ANDERSON

TPFDF File Header

CAMPBELL

COHEN

EDWARDS

b Signifies a Block-Index Entry
d Signifies a Data LREC

Notes:

BAKERd

d

d

d

d

d

d

BERRISFORD

BYNG-HALL

TPFDF File Header

TPFDF File Header

TPFDF File Header

TPFDF File Header

TPFDF File Header

Figure 7. TPFDF Block Index Facility

16 TPFDF R1 General Information

logical records (TLRECs) in the B+Tree structure associated with the subfile. Every
TLREC in the lowest level of the B+Tree structure points to a data block of the
subfile.

For more information about B+Tree indexing, see TPFDF Database Administration.

Structure of a File That Uses B+Tree Indexing
A data file that uses B+Tree indexing has a B+Tree index file associated with it. The
data file consists of data blocks that contain LRECs. The B+Tree index file consists
of node blocks that contain TLRECs.

Figure 8 shows data file GR91SR, which uses B+Tree index file IR73SR. Data file
GR91SR shows nine data blocks. B+Tree index file IR73SR shows a root node and
three leaf nodes.

TPFDF File Types
There are three types of physical files in TPFDF:

v Fixed files

v Miscellaneous files

v Pool files.

Fixed Files
The database administrator defines each fixed file as consisting of a fixed number
of blocks on a specific part of DASD. When a fixed file has been allocated, it
contains only prime blocks, so it contains exactly as many blocks as there are
subfiles in the file.

Node Blocks

Adams

Anton

Atkins

Adams

Baker

Collins

Davis

Franklin

Jones

Kelly

Roberts

Young

Adams

Davis

Kelly

Prime Block

Overflow Blocks

Baker

Bently

Brady

Collins

Cramer

Crane

Davis

Edwards

Fleetwood

Franklin

Jefferson

Johnson

Data Blocks

GR91SR (Data File)

IR73SR (B+ Tree Index File)

Jones

Judd

Judson

Kelly

Kennedy

Lovell

Roberts

Roosevelt

Washington

Young

Youngman

Zabik

Figure 8. Sample B+Tree File

TPFDF Files and Subfiles 17

When an application program adds LRECs to a subfile in a fixed file, the prime
block may become full. When this happens, TPFDF obtains a free pool block and
creates a chain from this to the fixed prime block that overflowed.

Fixed files are suitable when the number of subfiles is known in advance and it is
unlikely that many LRECs will overflow into pool blocks.

Miscellaneous Files
A miscellaneous file is a type of fixed file. The database administrator normally
defines some miscellaneous fixed files on DASD with record types #MISCS,
#MISCL, and #MISC4. The last character in the name identifies the size used for
prime blocks in the subfile.

Use miscellaneous files for small amounts of data that require a fixed file.

Pool Files
Pool files consist of pool blocks that are used as prime blocks and overflow blocks
in a file. Pool blocks can be short-term or long-term. Short-term pool blocks are
likely to be reused by a TPF system or ALCS environment in seconds or minutes.
Long-term pool blocks have an indefinite lifetime.

Many TPFDF macros, functions, commands, and indexing support use long-term
pool files. To use long-term pool files for permanent storage, save the file address
of each prime block in a fixed file. You cannot use short-term pool files for
permanent storage.

18 TPFDF R1 General Information

The TPFDF/Distributed Data Access (DDA) Feature

The TPFDF/DDA feature propagates data from a TPFDF database (hierarchical) to
a DATABASE 2 (DB2) database (relational).

The database administrator defines the correlation between fields in the hierarchical
database (index keys, index levels, and so on) and fields in the relational database
(data row, column, and so on). Extracting fields from the TPFDF file (or files) to
build the SQL data row is defined centrally for any TPFDF file that contains data to
be propagated.

When any file-modification command is detected, the central definition is checked to
determine what action to take. This action can be as simple as ignoring LRECs with
a particular ID (by not defining any actions for that ID) or can be as complicated as
extracting index keys at each indexing level together with multiple fields in other
files.

Figure 9 shows an SQL row built from fields in an index file (1) , a field in its detail
file (2) , and a field in a different detail file (3). The extracted data can be a
complete field or part of a field.
Figure 10 on page 20 shows a simple one-to-one relationship between the TPFDF

LREC data and the DATABASE 2 SQL data row.

Detail File Detail File

Index File

(2) (3)

(1)

TPFDF Database

SQL Input Data Row

Figure 9. Data Extraction: From Index Files and Multiple Files

© Copyright IBM Corp. 1997, 1999 19

TPFDF Database

SQL Input Data Row

Subfile Subfile

Figure 10. Data Extraction: One-to-One Relationship between the Data Fields and Rows

20 TPFDF R1 General Information

TPFDF Implementation Considerations

Implementing TPFDF is essentially the same process as implementing any new
application program for the TPF system or ALCS environment. It consists of:

v Installing TPFDF programs

v Installing TPFDF macro definitions

v Adding records to the database for TPFDF use.

See TPFDF Installation and Customization for more information.

There are also some implementation considerations that are specific to TPFDF.
These include:

v Appointing a TPFDF database administrator with experience in designing and
implementing databases. The role of the database administrator includes:

– Assisting the application programmer in designing a database to meet the
requirements of the application program

– Advising the application programmer about how to code TPFDF macros for
maximum performance

– Acting as a coordinator for system and application programmers in
implementing the database.

v Defining procedures to design, implement, and manage TPFDF files. These
procedures include:

– Defining the administrative process for developing the TPFDF database

– Clarifying application programmer, system programmer, and database
administrator responsibilities for this process.

v Assessing database migration options. These include:

– Migrating the entire database to a TPFDF database

– Retaining a traditional database for existing application programs while
implementing a TPFDF database for new application programs

– Writing new application programs and modifying existing application programs
to use both traditional and TPFDF databases.

TPFDF can operate in a multiprocessor environment. TPFDF supports:

v The loosely coupled facility of the TPF High Performance Option (HPO) feature

v The multiple database function (MDBF) of the TPF HPO feature.

© Copyright IBM Corp. 1997, 1999 21

22 TPFDF R1 General Information

System Requirements

The following describes the system requirements for the TPFDF product.

Hardware Requirements
The TPFDF product requires the same hardware configuration as the operating
system. It requires additional storage for the TPFDF application programs and
tables.

Software Requirements
TPF Version 4 Release 1 (TPF 4.1) users of the TPFDF product must apply all
APARs that support your level of the TPFDF product.

ALCS Version 2 Release 1 users of the TPFDF product must apply all APARs that
support your version of the TPFDF product. To use C functions, B+Tree, and global
modification support, ALCS users must also install the associated programming
requirements for C language support

Note: For more information about the TPFDF APARs that you need to apply to
your system, see the TPFDF Program Directory and the Memo to Current
Licensees of IBM TPF Database Facility, TPF 4.1 and ALCS.

Migration and Coexistence
Application programs that use traditional databases can coexist with TPFDF
application programs without modification.

The TPFDF product includes structured programming macros (SPMs). These
macros can coexist with TPF SPMs. For more information about SPMs, see TPFDF
and TPF Structured Programming Macros.

If you are upgrading from earlier releases of the TPFDF product, you only need to
reassemble the segments that contain DBDEF macro statements. You do not need
to reassemble application programs.

To use the optional Distributed Data Access (DDA) feature you must:

v Reassemble the DBDEFs

v Reassemble application programs that use the DBMOD macro.

© Copyright IBM Corp. 1997, 1999 23

|

24 TPFDF R1 General Information

Index

A
ALCS

block sizes 12
algorithm argument 14
algorithms 14

B
B+Tree index support 16
basic index support 14
block headers and trailers 12
block index support 15
block sizes 12

C
capture and restore utility 9
chaining blocks 11
commands

ZRECP 9
ZUDFC 9
ZUDFM 9
ZUREC 9

components of TPFDF 5

D
data collection utility 9
database interface block (DBIFB) 7
DBDEF macro 6
DBDEF table 6
DBOPN

obtaining work space 7
DBRED 7
detail file 14
DSECT macro 6

F
file ID 12
files

detail 14
fixed 13, 17
index 14
miscellaneous 18
pool 18

fixed files 13, 17
functions 8

I
index file 14
index support

B+Tree 16
basic 14
block 15

L
LREC

control information 14
extended 13
fields in 14
fixed-length 13
identity of (LREC ID) 14
stored physical blocks 13
types of 13
user data 14
variable-length 13
variable-length and fixed-length fields 14

LREC ID 14

M
macros 8
maintenance and test utility 9
miscellaneous files 18

O
ordinal number 13
overflow blocks 11

P
pool blocks

used for overflow 18
pool files 18
prime block 11

R
recoup utility 9

S
SPACE parameter 7
SPACEB parameter 7
subfile 11, 14
SW00SR fields

SW00CCA 7
SW00CFA 7
SW00FAD 7
SW00ITM 7
SW00PCA 7
SW00REC 7
SW00RT1 7
SW00RT2 7
SW00RTN 7
SW00SEQ 7
SW00UKY 7
SW00USA 7
SW00USI 7
SW00WCC 7

© Copyright IBM Corp. 1997, 1999 25

SW00SR fields (continued)
SW00WKA 7

T
TPF

block sizes 12

U
utilities

capture and restore 9
data collection 9
maintenance and test 9
recoup 9

Z
ZRECP command 9
ZUDFC command 9
ZUDFM command 9
ZUREC command 9

26 TPFDF R1 General Information

����

File Number: S370/30XX-20
Program Number: 5706-196

Printed in U.S.A.

GH31-0177-02

	Contents
	Figures
	About This Book
	Who Should Read This Book
	Conventions Used in the TPFDF Library
	Related Information
	IBM TPF Database Facility (TPFDF) Books
	Online Information

	How to Send Your Comments

	TPFDF Product Introduction
	TPFDF Product Highlights
	TPFDF Features
	TPFDF User-Specific Processing

	Overview of TPFDF Benefits
	Application Programmer Productivity Benefits
	System Management Benefits
	TPFDF Performance
	Application Program Portability
	TPFDF Migration

	TPFDF Product Overview
	TPFDF Components
	DBDEF Tables, DBDEF Macros, and DSECT Macros
	Database Interface Block (DBIFB)
	TPFDF Macros and Functions
	TPFDF Maintenance and Test Utility (ZUDFM)
	TPFDF Data Collection Utility (ZUDFC)
	TPFDF Capture/Restore Utility, Information and Statistics Environment (ZFCRU)
	TPFDF Recoup Utility (ZRECP)

	TPFDF Files and Subfiles
	Subfile Components
	Blocks
	Block Sizes
	Block Headers and Trailers
	Ordinal Numbers

	LRECs
	LREC Types
	LREC Fields

	Distributing LRECs between Subfiles
	Algorithms
	Basic Index Support
	Block Index Support
	B+Tree Index Support
	Structure of a File That Uses B+Tree Indexing

	TPFDF File Types
	Fixed Files
	Miscellaneous Files
	Pool Files

	The TPFDF/Distributed Data Access (DDA) Feature
	TPFDF Implementation Considerations
	System Requirements
	Hardware Requirements
	Software Requirements
	Migration and Coexistence

	Index

