
TPF Database Facility Release 1
Transaction Processing Facility Version 4.1

Structured Programming Macros

SH31-0183-04

���

TPF Database Facility Release 1
Transaction Processing Facility Version 4.1

Structured Programming Macros

SH31-0183-04

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices”.

Fifth Edition (October 2001)

This is a major revision of, and obsoletes, SH31-0183-03.

This edition applies to Version 1 Release 1 Modification Level 3 of IBM Transaction Processing Facility Database
Facility, program number 5706-196, and Version 4 Release 1 Modification Level 0 of IBM Transaction Processing
Facility, program number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order books through your IBM representative or the IBM branch office serving your locality. Books are not stocked at
the address given below.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . v

Tables . vii

About This Book . ix
Before You Begin . ix
Who Should Read This Book . ix
How This Book Is Organized . ix
Conventions Used in This Book ix
How to Read the Syntax Diagrams x
Related Information . xiii

IBM TPF Database Facility (TPFDF) Books xiii
IBM Transaction Processing Facility (TPF) 4.1 Books. xiii
IBM Airline Control System (ALCS) Books xiii
Miscellaneous IBM Books . xiii
Online Information . xiv

How to Send Your Comments xiv

Part 1. Structured Programming Macros Overview 1

Structured Programming Macros Introduction 3
Advantages of Structured Programming Macros 3
An Overview of Structured Forms 4
General Rules for Structured Programming Macros 6

Part 2. TPFDF Structured Programming Macros 7

TPFDF Structured Programming Macros General Information. 9
Additional Functions . 9

Conversion Macros . 10
Nesting Levels and Indenting. 10

Structured Programming Macros Conditional Expressions 13
Forms of Conditional Expressions 13

Conditional Expression Format 14
Examples of Conditional Expressions 19

Condensed Forms of Conditional Expressions 21
Condensed Forms of Compare 22
Condensed Forms of TM . 22
Condensed Forms of LTR and OC. 22
Condensed Forms of Boolean Expressions 23

Processing Rules for Boolean Connectors 23
Evaluating Concatenated Expressions 24
Boolean Expression Examples 25

TPFDF Structured Programming Macros: Reference 27
#–Line Continuation . 28
#CASE Macro Group . 29
#CONB–Convert Character Decimal to Binary 33
#COND–Convert Binary to Character Decimal 35
#CONH–Convert Character Hexadecimal to Binary 37
#CONP–Convert Binary to Character Hexadecimal with EBCDIC Interpretation 39

© Copyright IBM Corp. 1996, 2001 iii

#CONS–Convert Binary to Character Decimal with Zero Suppression 42
#CONT–Convert Binary to Character Binary 44
#CONX–Convert Binary to Character Hexadecimal 46
#DO Macro Group . 48
#EXEC–Execute Macro. 58
#GOTO Macro Group . 61
#IF Macro Group . 63
#SPM–Assembly Output Processing 66
#STPC–Step a Byte or Character 69
#STPF–Step a Fullword . 70
#STPH–Step a Halfword . 72
#STPR–Step Registers . 73
#SUBR Macro Group . 75

TPFDF Structured Programming Macro Group Processing Diagrams . . . 79
Selection and Iteration Macro Groups 79

#CASE Macro Group Processing 79
#DO Macro Group Processing 80
#IF Macro Group Processing. 84

Branch and Subroutine Macro Groups 85
#GOTO Macro Group Processing 85
#SUBR Macro Group Processing 86

Part 3. TPF Structured Programming Macros 87

TPF Structured Programming Macros: Reference 89
CASE Macro Group . 90
DCL–Declare . 93
DCLREG–Declare General Registers. 96
DO Macro Group . 97
GOTO–Branch Macro . 103
IF Macro Group . 104
LEAVE–Exit from a DO Loop 111
LET–Assignment . 112
SELECT Macro Group. 117
SET–Flag or Switch Assignment 120

Index . 123

iv TPFDF R1 and TPF V4R1 Structured Programming Macros

Figures

1. Sequence: Processing Code Sequentially . 4
2. Selection: Using a Condition . 5
3. Selection: Using a Case Number . 5
4. Simple Iteration: The Difference between DO WHILE and DO UNTIL 5
5. Selection: #CASE Macro Group . 80
6. Iteration: #DO Macro Group with the WHILE Parameter 81
7. Iteration: #DO Macro Group with the UNTIL Parameter 82
8. Iteration: #DO Macro Group with the FROM or TIMES Parameter 83
9. Iteration: #DO Macro Group with the INF Parameter 84

10. Selection: #IF Macro Group . 85
11. Branch: #GOTO Macro Group . 86
12. Subroutine: #SUBR Macro Group. 86

© Copyright IBM Corp. 1996, 2001 v

vi TPFDF R1 and TPF V4R1 Structured Programming Macros

Tables

1. Conversion Macro Summary . 10
2. Mnemonics Allowed in SPM Expressions . 15
3. Instructions Generated for Condensed Forms of Compare 22
4. Instructions Generated for Condensed Forms of TM 22
5. Instructions Generated for Condensed Forms of LTR and OC 23
6. Decision Table: Boolean Expression Evaluation for AND or ANDIF 24
7. Decision Table: Boolean Expression Evaluation for OR or ORIF 25

© Copyright IBM Corp. 1996, 2001 vii

viii TPFDF R1 and TPF V4R1 Structured Programming Macros

About This Book

This book describes two sets of structured programming macros (SPMs). One set
of SPMs is provided with the TPF Database Facility (TPFDF) product and the
Transaction Processing Facility (TPF) system and is referred to as the TPFDF
SPMs. The other set of SPMs is provided with the TPF system only and is referred
to as the TPF SPMs.

In this information, abbreviations are often used instead of spelled-out terms. Every
term is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, structured programming macro (SPM). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in TPFDF
Glossary and TPF Glossary.

Before You Begin
Before using this book:

1. Read “Structured Programming Macros Introduction” on page 3 and determine
the set of SPMs that you want to use.

2. If you are going to use the TPFDF SPMs, see Part 2, “TPFDF Structured
Programming Macros” on page 7.

3. If you are going to use the TPF SPMs, see Part 3, “TPF Structured
Programming Macros” on page 87.

Who Should Read This Book
This book is intended for application programmers who are currently working with
one of the following:

v Transaction Processing Facility (TPF) system and IBM High Level
Assembler/MVS & VM & VSE (HLASM)

v Airline Control System (ALCS), also referred to as TPF/MVS, and IBM Assembler
H or IBM High Level Assembler/MVS & VM & VSE (HLASM).

How This Book Is Organized
This book has 3 parts as follows:

Part 1, “Structured Programming Macros Overview”
Provides an overview of structured programming and contains some
general rules for using the structured programming macros (SPMs).

Part 2, “TPFDF Structured Programming Macros”
Provides detailed information about the TPFDF SPMs.

Part 3, “TPF Structured Programming Macros”
Provides detailed information about the TPF SPMs.

For your convenience, a set of tabs (GH31-0184) is available for this book. These
tabs help you to quickly access the major sections of this book.

Conventions Used in This Book
This book uses the following conventions:

© Copyright IBM Corp. 1996, 2001 ix

|
|
|
|
|
|

Typography Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZUDFC DISPLAY ID-fileid, where fileid is the file identifier (ID) of the file for which
you want statistics.

bold Used to represent keywords. For example:

Enter ZUDFC HELP to obtain help information for the ZUDFC command.

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

dfcls

Used for examples. For example:

ZUDFC DISPLAY ID-J5

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

How to Read the Syntax Diagrams
This section describes how to read the syntax diagrams (informally called railroad
tracks) used in this book.

v Read the diagrams from left-to-right, top-to-bottom, following the main path line.
Each diagram begins on the left with double arrowheads and ends on the right
with 2 arrowheads facing each other.

�� Syntax Diagram ��

v If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

�� The first line is long and extends the width of the diagram �

� Second Line ��

v A word in all uppercase is a parameter that you must spell exactly as shown.

x TPFDF R1 and TPF V4R1 Structured Programming Macros

�� PARAMETER ��

v If you can abbreviate a parameter, the optional part of the parameter is shown in
lowercase. (You must type the text that is shown in uppercase. You can type
none, one, or more of the letters that are shown in lowercase.)

Note: Some TPF commands are case-sensitive and contain parameters that
must be entered exactly as shown. This information is noted in the
description of the appropriate commands.

�� PARAMeter ��

v A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

�� variable ��

v Required parameters and variables are shown on the main path line. You must
code required parameters and variables.

�� REQUIRED_PARAMETER required_variable ��

v If there is more than one mutually exclusive required parameter or variable to
choose from, they are stacked vertically.

�� REQUIRED_PARAMETER_1
REQUIRED_PARAMETER_2
required_variable_a
required_variable_b

��

v Optional parameters and variables are shown below the main path line. You can
choose not to code optional parameters and variables.

��
OPTIONAL_PARAMETER optional_variable

��

v If there is more than one mutually exclusive optional parameter or variable to
choose from, they are stacked vertically below the main path line.

About This Book xi

��
OPTIONAL_PARAMETER_1
OPTIONAL_PARAMETER_2
optional_variable_a
optional_variable_b

��

v An arrow returning to the left above a parameter or variable on the main path line
means that the parameter or variable can be repeated. The comma (,) means
that each parameter or variable must be separated from the next parameter or
variable by a comma.

�� �

,

REPEATABLE_PARAMETER �

,

repeatable_variable ��

v An arrow returning to the left above a group of parameters or variables means
that more than one can be selected, or a single one can be repeated.

�� �

,

REPEATABLE_PARAMETER_1
REPEATABLE_PARAMETER_2
repeatable_variable

��

v If a diagram shows a blank space, you must code the blank space as part of the
syntax. In the following example, you must code PARAMETER variable.

�� PARAMETER variable ��

v If a diagram shows a character that is not alphanumeric (such as commas,
parentheses, periods, and equal signs), you must code the character as part of
the syntax. In the following example, you must code PARAMETER=(begin.end).

�� PARAMETER=(begin.end) ��

v Default parameters and values are shown above the main path line. The TPF
system uses the default if you omit the parameter or value entirely.

xii TPFDF R1 and TPF V4R1 Structured Programming Macros

��
DEFAULT

PARAMETER

0

variable
��

v References to syntax notes are shown as numbers enclosed in parentheses
above the line. Do not code the parentheses or the number.

��
(1)

PARAMETER ��

Notes:

1 An example of a syntax note.

v Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

�� Reference to Syntax Fragment ��

Syntax Fragment:

1ST_PARAMETER,2ND_PARAMETER,3RD_PARAMETER

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM TPF Database Facility (TPFDF) Books
v TPFDF Database Administration, SH31-0175

v TPFDF Programming Concepts and Reference, SH31-0179.

IBM Transaction Processing Facility (TPF) 4.1 Books
v TPF General Macros, SH31-0152.

IBM Airline Control System (ALCS) Books
v ALCS Application Programming Reference — Assembler Language, SH19-6949.

Miscellaneous IBM Books
v ESA/370 Principles of Operation, SA22-7200

v ESA/390 Principles of Operation, SA22-7201

v High Level Assembler for MVS & VM & VSE Language Reference, SC26-4940.

About This Book xiii

Online Information
v TPFDF Commands

v TPFDF Glossary

v TPFDF Messages (System Error, Online, Offline)

v TPFDF Utilities.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfqa@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788
– Other countries: (international code) + 845 + 432 +9788

xiv TPFDF R1 and TPF V4R1 Structured Programming Macros

|

|

|

|

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Part 1. Structured Programming Macros Overview

Structured Programming Macros Introduction 3
Advantages of Structured Programming Macros 3
An Overview of Structured Forms 4
General Rules for Structured Programming Macros 6

© Copyright IBM Corp. 1996, 2001 1

2 TPFDF R1 and TPF V4R1 Structured Programming Macros

Structured Programming Macros Introduction

The TPF Database Facility structured programming macros (SPMs) and Transaction
Processing Facility (TPF) SPMs are used to add structured programming verbs to
existing assembler language. Both sets of SPMs provide the basic structured
programming constructions, such as:

v Selection, for example:
IF condition then process A ELSE process B

v Iteration, for example:
DO WHILE condition
DO UNTIL condition

In addition, the TPFDF SPMs include some additional functions, such as macros
that allow you to convert between data types. See “TPFDF Structured Programming
Macros General Information” on page 9 for more information about the additional
functions that are included with the TPFDF SPMs.

v If you are writing application programs that will run in a TPF environment, you
can use the TPFDF SPMs or the TPF SPMs.

v If you are writing application programs that will run in an Airline Control System
(ALCS) environment, you can only use the TPFDF SPMs.

Recommendations for TPF Application Programmers

v The TPFDF SPMs offer more functions and, in many cases, are easier to
use. If you do not already have application programs that are written using
the TPF SPMs, consider using only the TPFDF SPMs.

v If you do use both sets, avoid mixing the TPFDF SPMs and the TPF SPMs
in one application program.

Advantages of Structured Programming Macros
Structured application programs require more discipline at the design and logical
structuring stage but they can be coded more quickly. The time required to reach
the testing stage is roughly the same, but the benefits of SPMs are significant from
this point and onward.

Using the SPMs requires a more disciplined approach to programming and,
therefore, provides the following advantages:
v Application programs are easier to read and understand.
v Application programs are less likely to contain logic errors.
v Errors are more easily found.
v Higher productivity during application program development.
v Improved application program design.
v Application programs are more easily maintained.

Using structured programming emphasizes:
v The total logic of an application program.
v What the application program does.
v What the logical flow through the application program should be.

© Copyright IBM Corp. 1996, 2001 3

You must consider these aspects before writing detailed instructions. This leads to a
clearer application program structure, improved understanding, and a better chance
of identifying possible abnormal or error conditions that should be corrected.

Using structured programming techniques also makes it easier for a new application
programmer to:
v Read and understand an existing application program.
v Identify modifications for additional functions or correcting errors.

An Overview of Structured Forms
In structured programming theory, only three basic control logic structures are
required to program any function:
v Sequences
v Selection
v Iteration.

A sequence is the processing of one function after the other, as shown in Figure 1.
No special logic is required because processing is always sequential.

A selection is the choice between two or more functions to be processed based on
a condition.

For example, the IF macro group, shown in Figure 2 on page 5, is used for
selection.

Execute
Process A

Execute
Process B

Execute
Process C

Figure 1. Sequence: Processing Code Sequentially

4 TPFDF R1 and TPF V4R1 Structured Programming Macros

The CASE macro group, shown in Figure 3, is another example of a macro group
used for selection.

An iteration is the repeated processing of the same code while, or until, a condition
is true, as shown in Figure 4.

Notes:

1. The code can be bypassed (never processed) if condition is false on entry to
the DO WHILE loop.

2. The code is processed at least once before the DO UNTIL condition is tested.

Select
process A

FalseTrue

IF condition

Select
process B

Figure 2. Selection: Using a Condition

Case number

Process 1 Process 2 Process 3

Select one of ‘n’ processes

1 2 3 n

Process n

Figure 3. Selection: Using a Case Number

True False

DO WHILE
condition is

Execute the
process

Note {WHILE}

DO WHILE condition

Execute the
process

DO UNTIL condition

True False

DO UNTIL
condition is

Note {UNTIL}

Figure 4. Simple Iteration: The Difference between DO WHILE and DO UNTIL

Structured Programming Macros Introduction 5

General Rules for Structured Programming Macros
Use the following guidelines when using SPMs.

v Where possible, code only one entry and one exit point.

The following methods of changing program flow are exceptions to the one entry
point and one exit point rule:
– Multiple ENTNC macro calls
– Multiple ENTDC macro calls
– Error exit routines
– Transfer vector entry points.

v If you use SPMs in your application program, use the SPMs exclusively; that is,
do not mix the SPMs with basic assembler test-and-branch coding.

v To improve readability and debugging, ensure that complete logic structures
(IF—END-IF, DO—END-DO, and so on) are, where possible:
– Confined to 1 page
– No longer than 2 pages.

Use subroutines as appropriate to do this.

v Include comments.

6 TPFDF R1 and TPF V4R1 Structured Programming Macros

Part 2. TPFDF Structured Programming Macros

TPFDF Structured Programming Macros General Information. 9
Additional Functions . 9

Conversion Macros . 10
Nesting Levels and Indenting. 10

Structured Programming Macros Conditional Expressions 13
Forms of Conditional Expressions 13

Conditional Expression Format 14
Examples of Conditional Expressions 19

Branch on Condition Code Conditional Expression 19
Compare Conditional Expressions 19
Noncompare Conditional Expressions 20
TPF and ALCS Macros as Conditional Expressions 20
Checking the CPU ID Example 21
Testing SW00RTN Bits Examples 21
Testing SW00RT2 Bits Example 21

Condensed Forms of Conditional Expressions 21
Condensed Forms of Compare 22
Condensed Forms of TM . 22
Condensed Forms of LTR and OC. 22
Condensed Forms of Boolean Expressions 23

Processing Rules for Boolean Connectors 23
Evaluating Concatenated Expressions 24
Boolean Expression Examples 25

TPFDF Structured Programming Macros: Reference 27
#–Line Continuation . 28
#CASE Macro Group . 29
#CONB–Convert Character Decimal to Binary 33
#COND–Convert Binary to Character Decimal 35
#CONH–Convert Character Hexadecimal to Binary 37
#CONP–Convert Binary to Character Hexadecimal with EBCDIC Interpretation 39
#CONS–Convert Binary to Character Decimal with Zero Suppression 42
#CONT–Convert Binary to Character Binary 44
#CONX–Convert Binary to Character Hexadecimal 46
#DO Macro Group . 48
#EXEC–Execute Macro. 58
#GOTO Macro Group . 61
#IF Macro Group . 63
#SPM–Assembly Output Processing 66
#STPC–Step a Byte or Character 69
#STPF–Step a Fullword . 70
#STPH–Step a Halfword . 72
#STPR–Step Registers . 73
#SUBR Macro Group . 75

TPFDF Structured Programming Macro Group Processing Diagrams . . . 79
Selection and Iteration Macro Groups 79

#CASE Macro Group Processing 79
#DO Macro Group Processing 80
#IF Macro Group Processing. 84

Branch and Subroutine Macro Groups 85
#GOTO Macro Group Processing 85

© Copyright IBM Corp. 1996, 2001 7

#SUBR Macro Group Processing 86

8 TPFDF R1 and TPF V4R1 Structured Programming Macros

TPFDF Structured Programming Macros General Information

The following provides the following general information about the TPFDF
structured programming macros (SPMs):
v Additional functions available with TPFDF SPMs
v Nesting levels and indenting in the TPFDF SPMs.

Additional Functions
As mentioned previously, the TPFDF SPMs provide additional functions in addition
to the standard structured programming constructions. Some of these additional
functions are provided through macros; others are provided through special
parameters that you can use in a conditional expression for the basic SPMs (#IF,
#DO, and so on).

See “Structured Programming Macros Conditional Expressions” on page 13 for
details about conditional expressions, including information about these special
parameters. See “TPFDF Structured Programming Macros: Reference” on page 27
for details about all the TPFDF SPMs.

The following briefly describes some of the additional functions available with the
TPFDF SPMs.

Function Description

Converting data The conversion macros allow you to convert data
between data types. See Table 1 on page 10 for a
summary of these macros.

Stepping functions The step macros (#STPC, #STPH, and so on) allow
you to increment or decrement the contents of a
specified location.

Line continuation The line continuation macro (#) allows you to
concatenate complex conditional expressions.

Testing TPFDF return codes For application programs that are written for
TPFDF, there are special parameters that provide a
short form method for testing the return conditions
in the SW00RTN bits. These parameters allow you
to generate consistent code to test return
conditions.

See TPFDF Programming Concepts and Reference
for more information about testing return conditions
and SW00RTN.

Using TPF and ALCS macros There are parameters that allow you to use certain
TPF and ALCS macros in a conditional expression.

Changing link-label prefixes Some SPMs generate a link-label, which is an
internal label to indicate branches in a sequential
flow. These macros also have a PREFIX parameter
that allows you to change the standard label prefix
to improve readability.

© Copyright IBM Corp. 1996, 2001 9

|
|
|
|

Conversion Macros
Table 1 summarizes the conversion macros and provides an example of a string
before and after the conversion.

Note: The results shown in this table are also based on other parameters being
specified a certain way. See the information for each macro in “TPFDF
Structured Programming Macros: Reference” on page 27 for details about all
the parameters associated with each macro.

Table 1. Conversion Macro Summary

Macro Description Before
Conversion

After Conversion

#CONB Character decimal to binary C"12713971" X'C1FFF3'

#COND Binary to character decimal X'0000F394' C"00062356"

#CONH Character hexadecimal to binary C"12713971" X'12713971'

#CONP Binary to character hexadecimal with
EBCDIC interpretation

X'C1FFF3' C" AFF 3"

#CONS Binary to character decimal with zero
suppression

X'0000F394' C"62356"

#CONT Binary to character binary F"43" C"00101011"

#CONX Binary to character hexadecimal X'C1FFF3' C"C1FFF3"

Nesting Levels and Indenting
The TPFDF SPMs indicate the nesting level by using assembler messages.

The following is an example of how these messages indicate the nesting level:
+*,1 cccccccccccccccccccc code

.
+*,2 cccccccccccccccccccc code

.
+*,3 cccccccccccccccccccc code

.
+*,2 cccccccccccccccccccc code

.
+*,1 cccccccccccccccccccc code

Note: You can suppress the generation of these nesting level assembler messages
with the #SPM macro. See “#SPM–Assembly Output Processing” on page 66
for more information.

The nesting level begins at 0 and is incremented by 1 after any of the following
macros:
v #IF
v #DO
v #CAST
v #SUBR.

The nesting level is decremented by 1 after any of the following ending macros:
v #EIF
v #EDO
v #ECAS
v #ESUB.

10 TPFDF R1 and TPF V4R1 Structured Programming Macros

Consider indenting the assembler messages or the code itself to reflect the nesting
levels of the program logic.

You can represent the nesting level by indenting the number produced in the
assembler message, but not the code itself, as follows:
1 cccccccccccccccccccc code

.
2 cccccccccccccccccccc code

.
3 cccccccccccccccccccc code

.
2 cccccccccccccccccccc code

.
1 cccccccccccccccccccc code

Using this method requires you to postprocess the assembler messages that are
generated.

Note: The postprocessing is installation-dependent and is not supplied with the
TPFDF product or the TPF system.

You can also represent the nesting level by indenting the code itself. If you do this,
use the following guidelines:

v Indent the whole program consistently.

v Because explicitly-coded labels are not required in programs using SPMs, start
the nesting level 0 code in column 2.

v Do not exceed nesting level 5.

v Indent three columns for each nesting level.

v Begin all SPMs in a particular structure (at a particular nesting level) in the same
column.

v Indent the code three columns to the right after any of the following:
– #IF
– #DO
– #CAST
– #ELIF
– #DOEX
– #CASE
– #ELSE
– #EXIF
– #OREL
– #ELOP

Code each of the following, and any subsequent code, three columns to the left:
– #ELIF
– #DOEX
– #CASE
– #ELSE
– #EXIF
– #ECAS
– #EIF
– #OREL
– #ELOP
– #EDO

For example, in a #DO structure, begin any of the #DO macros in the same
column as the #DO macro statement.

TPFDF Structured Programming Macros General Information 11

#DO WHILE=(...
LA R1,...
LA R5,...
#IF CR,R5,...

MVC...
#EIF

#EXIF
#OREL...
#EDO

Indent any other code enclosed by that #DO structure to the right.

v When using the #EIFM macro to end multiple #IF structures, code the #EIFM n
macro at (3 × n) columns to the left, where n is the number of the #IF structures
you are ending. See “#IF Macro Group” on page 63 for more information about
the #EIFM macro.

12 TPFDF R1 and TPF V4R1 Structured Programming Macros

Structured Programming Macros Conditional Expressions

One of the key elements of the selection and iteration structured programming
structures is the conditional expression.

A conditional expression defines the selection criteria for the different functions to
be carried out in a macro group. A conditional expression is an expression that
evaluates to a true or false value, and the appropriate function is processed based
on that value.

Conditional expressions are required parameters for the following macros:
v #IF
v #ELIF
v #DOEX
v #EXIF.

You can also use conditional expressions with the following macros:
v #DO
v #GOTO.

See “TPFDF Structured Programming Macros: Reference” on page 27 for details
about these structured programming macros (SPMs).

Forms of Conditional Expressions
The TPFDF SPMs allow a number of different types of conditional expressions:

v A symbolic representation of a standard assembler language instruction that
results in a condition code setting or branch. This form consists of the following
types:
– Branch on condition code instructions
– Compare instructions
– Noncompare instructions.

See ESA/370 Principles of Operation or ESA/390 Principles of Operation for
more information about specific assembler instructions.

v A symbolic representation of certain TPF or ALCS macro calls.

v Special operands to check a CPU ID.

v Special operands to test the return conditions in the TPFDF SW00RTN bits. This
form is available only for application programs written for a TPFDF environment.

See TPFDF Programming Concepts and Reference for more information about
testing return conditions and SW00RTN.

You can also use Boolean connectors to connect individual tests to form complex
conditional expressions, as follows:

v Connect individual tests with an AND or OR connector to form groups

testA AND testB testC AND testD OR testE

Group 1 Group 2

© Copyright IBM Corp. 1996, 2001 13

v Connect groups of tests with an ANDIF or ORIF connector to form complex
expressions

Conditional Expression Format

Conditional Expression:

�Simple Conditional Expression
,booleanop, Simple Conditional Expression

Simple Conditional Expression:

Branch On Condition Code Instructions
Compare Instructions
Noncompare Instructions
TPF or ALCS Macros
Checking the CPU ID
Testing SW00RTN Bits (TPFDF Only)
Testing SW00RT2 Bits (TPFDF Only)

Branch On Condition Code Instructions:

CC=n
n

(mnemonic)

Compare Instructions:

copcode,operand ,mnemonic,operand
#EXEC,reg, (,msk)

Noncompare Instructions:

opcode,operand ,operand,mnemonic
#EXEC,reg, (,msk)

TPF or ALCS Macros:

FILNC , D num , OK
(FINWC NOK)

FIWHC
WAITC, OK

(NOK)
LEVTA, num , INUSE

(Dnum NOTUSED)

testA AND testB testC AND testD OR testE

Group 1 Group 2

ANDIF

14 TPFDF R1 and TPF V4R1 Structured Programming Macros

Checking the CPU ID:

CPU,operator,cpuid
()

Testing SW00RTN Bits (TPFDF Only):

DBFOUND, YES
(NO)

DBERROR, YES
NO

DBEOF, YES
NO

DBIDX, YES
NO

Testing SW00RT2 Bits (TPFDF Only):

DBEMPTY, YES
(NO)

booleanop
is one of the following Boolean connectors:
v AND
v OR
v ANDIF
v ORIF.

n is the condition code mask, in the range 0–15. For example:
#IF (7)

Note: If you specify a conditional code mask of 0, a warning MNOTE is issued
when the application is assembled.

mnemonic
is one of the condition-code mnemonics shown in Table 2.

Table 2. Mnemonics Allowed in SPM Expressions

Instruction Type

Condition Complement Condition

Mnemonic Meaning Mnemonic Meaning

Compare H high NH not high

GT greater than LE less or equal

L low NL not low

LT less than GE greater or equal

EQ equal NE not equal

Arithmetic P
POSITIVE

positive NP
NOTPOSITIVE

not positive

M
NEGATIVE

minus (negative) NM
NOTNEGATIVE

not minus (not
negative)

Z zero NZ not zero

O overflow NO not overflow

Structured Programming Macros Conditional Expressions 15

|

||

Table 2. Mnemonics Allowed in SPM Expressions (continued)

Instruction Type

Condition Complement Condition

Mnemonic Meaning Mnemonic Meaning

Test under Mask O, ON ones NO not ones

M
MIXED

mixed NM
NOTMIXED

not mixed

Z
ZERO, OFF

zeros NZ
NONZERO

not zeros

#EXEC
generates an EX instruction. See ESA/370 Principles of Operation or ESA/390
Principles of Operation for more information about the EX instruction.

Note: You can also use the #EXEC macro alone; see “#EXEC–Execute Macro”
on page 58 for more information.

reg
is the register to use as the first operand in the EX instruction.

copcode
is an operation code starting with C; for example, CLC, CR, and so on.

opcode
is an operation code that sets a condition code but does not start with C; for
example, TM, OC, and so on.

operand
is an operand for the instruction, which can be anything that the assembler
language allows for an assembler instruction operand. See ESA/370 Principles
of Operation or ESA/390 Principles of Operation for more information about
assembler instructions and valid operands. Some of the types of operands
include:

v A register, in the form Rn, where n is the register number; for example, R1.

v A label refers to a defined area of storage (DS), a defined constant (DC), or
an equated value. Generally, the size and type of label is implied from the
type of instruction. However, you can force the size and type by prefixing the
label as follows:

A/label
specifies a 4-byte address contained at location label.

F/label
specifies a fullword starting at location label.

H/label
specifies a halfword starting at location label.

X/label
specifies a byte starting at location label.

I/label
specifies a 1-byte equated value.

P/label
specifies packed data at location label.

v A numeric value, which must be an integer.

v A literal, for example:
– A fullword (=F"1000")

16 TPFDF R1 and TPF V4R1 Structured Programming Macros

|

||

– A halfword (=H"10")
– Characters (=C"HELLO").

See ESA/370 Principles of Operation or ESA/390 Principles of Operation for
more information about literals.

v An equate.

v An immediate value, which is a string that represents 1 byte and can be one
of the following:
– Character (C"A")
– Hexadecimal (X'40')
– Binary (B'10101010')
– Length (L'EBW000).

v An arithmetic expression, which is an expression that resolves into an
arithmetic value. For example:
– 10 + 3
– FLD + 10

msk
is the M3 or R3 operand of an RS instruction. See ESA/370 Principles of
Operation or ESA/390 Principles of Operation for more information about the
RS instruction.

FILNC
processes the TPF or ALCS FILNC macro. See TPF General Macros or ALCS
Application Programming Reference — Assembler Language for more
information about the FILNC macro.

Note: The FILNC structure generates a WAITC internally to perform the test.
Consider the effect of this test on performance when you use this form.

FINWC
processes the TPF or ALCS FINWC macro. See TPF General Macros or ALCS
Application Programming Reference — Assembler Language for more
information about the FINWC macro.

FIWHC
processes the TPF or ALCS FIWHC macro. See TPF General Macros or ALCS
Application Programming Reference — Assembler Language for more
information about the FIWHC macro.

WAITC
processes the TPF or ALCS WAITC macro. See TPF General Macros or ALCS
Application Programming Reference — Assembler Language for more
information about the WAITC macro.

Dnum
specifies a data level, where num is a data level in the range 0–F.

num
specifies a data level, where num is a data level in the range 0–F.

OK
evaluates the conditional expression as true if the specified TPF or ALCS macro
ends successfully.

NOK
evaluates the conditional expression as true if the specified TPF or ALCS macro
does not end successfully.

Structured Programming Macros Conditional Expressions 17

LEVTA
processes the TPF or ALCS LEVTA macro. See TPF General Macros or ALCS
Application Programming Reference — Assembler Language for more
information about the LEVTA macro.

INUSE
evaluates the conditional expression as true if the specified data level is being
used.

NOTUSED
evaluates the conditional expression as true if the specified data level is
available.

CPU
checks the symbolic processor ID of the ECB (field CE1CPD in the ECB).

operator
is one of the following operators:

Operator Description
EQ Equal
NE Not equal
LT Less than
LE Less than or equal
GT Greater than
GE Greater than or equal.

cpuid
is the symbolic processor ID that you are checking.

DBFOUND
checks for the presence of a logical record (LREC), where:

YES
checks that the requested LREC exists.

NO
checks that the requested LREC does not exist.

See TPFDF Programming Concepts and Reference for more information about
finding LRECs.

DBERROR
checks for serious errors, where:

YES
checks if a serious error occurred.

NO
checks if a serious error did not occur.

A serious error is an error that does not occur for obvious reasons and often
results in a system error dump, such as an I/O error or corrupted data block.

Using this form is the same as specifying the ERROR parameter on a TPFDF
assembler macro and can be used to process errors inline rather than at the
end of the application program. See TPFDF Programming Concepts and
Reference for more information about detecting errors and the SW00RTN
settings for serious errors.

DBEOF
checks for an end-of-file (EOF), where:

18 TPFDF R1 and TPF V4R1 Structured Programming Macros

YES
checks if an EOF condition was detected.

NO
checks if an EOF condition was not detected.

Use this form with the FULLFILE parameter on a TPFDF macro. See TPFDF
Programming Concepts and Reference for more information about the TPFDF
macros.

DBIDX
checks that an indexed detail file actually exists, where:

YES
checks if an indexed detail file exists.

NO
checks if an indexed detail file does not exist.

See TPFDF Programming Concepts and Reference for more information about
creating indexed detail files. See TPFDF Database Administration for more
information about indexed detail files in general.

DBEMPTY
checks for an empty subfile, where:

YES
checks if the subfile is empty.

NO
checks if the subfile is not empty.

Note: This parameter is valid only after a delete operation that does not use
fullfile processing and before the next TPFDF call.

Examples of Conditional Expressions
The following sections contain examples of the different forms of conditional
expressions.

Branch on Condition Code Conditional Expression
In the following example, the branch on condition code form is used for the #ELIF
macro.

#IF (LTR,R0,R0,P)
:

* Code to process if R0 is positive
:

#ELIF (Z)
:

* Code to process if register R0 is zero
:

#ELSE
:

* Code to process if register R0 is negative
:

#EIF

Compare Conditional Expressions
The following are examples of compare conditional expressions.

v The following example shows how to compare two fields.

Structured Programming Macros Conditional Expressions 19

#IF (CLC,FLDA,NE,FLDB)
:

* Code to process
:

#EIF

v The following example shows how to compare two registers.
#IF (CR,R2,EQ,R3)

:
* Code to process

:
#EIF

v The following example shows how to compare a register to a literal.
#IF (C,R2,EQ,=F’25’)

:
* Code to process

:
#EIF

Noncompare Conditional Expressions
The following are examples of noncompare conditional expressions.

v The following example shows how the result of an Insert Character under Mask
(ICM) instruction can be used in a conditional expression.

#IF (ICM,R2,7,FLD,NZ)
:

* Code to process
:

#EIF

v The following example shows how to test 4 bits of a field in a conditional
expression.

#IF (TM,FLD,X’F0’,NO)
:

* Code to process
:

#EIF

TPF and ALCS Macros as Conditional Expressions
The following are examples of using the TPF and ALCS macros as conditional
expressions.

v In the following example, the code is processed if the FINWC macro is
processed successfully.

#IF (FINWC,D3,OK)
:

* Code to process
:

#EIF

v In the following example, the code is processed if the WAITC macro is not
processed successfully.

#IF (WAITC,NOK)
:

* Code to process
:

#EIF

v In the following example, the code is processed if data level 2 (D2) is not being
used.

#IF (LEVTA,D2,NOTUSED)
:

* Code to process
:

#EIF

20 TPFDF R1 and TPF V4R1 Structured Programming Macros

Checking the CPU ID Example
The following is an example of using the CPU operand to check for the processor
ID.

#IF (CPU,EQ,C'A')
:

* Code to process
:

#EIF

Testing SW00RTN Bits Examples
The following are examples of testing the SW00RTN bits.

v The following is an example of the DBFOUND operand.
DBOPN REF=GR00SR,...
DBRED REF=GR00SR,...
#IF DBFOUND,YES

:
* Code to process if an LREC is successfully read

:
#EIF

v The following is an example of the DBERROR operand.
DBOPN REF=GR00SR,...
DBRED REF=GR00SR,...
#IF DBERROR,YES

:
* Code to process if a serious error is found

:
#EIF

v The following is an example of the DBEOF operand.
DBOPN REF=GR01SR,...
#DO INF

DBRED REF=GR01SR,FULLFILE,...
#DOEX DBEOF,YES

:
* Code to process if EOF condition is not detected

:
#EDO

v The following is an example of the DBIDX operand.
DBOPN REF=GR01SR,...
DBRED REF=GR01SR,...
#IF DBIDX,NO

:
* Code to process if the requested detail file does not exist

:
#EIF

Testing SW00RT2 Bits Example
The following example checks if a subfile is empty.

DBOPN REF=GR00SR,...
DBRED REF=GR00SR,...
#IF DBEMPTY,YES

:
* Code to process if a subfile is not empty

:
#EIF

Condensed Forms of Conditional Expressions
Programming conventions in the TPF and ALCS environments allow the following
assumptions when operands in an expression are evaluated:

Structured Programming Macros Conditional Expressions 21

|
|
|
|
|
|
|
|

v Any 2-character or 3-character operand starting with an R is a general-purpose
register; for example, R3 or RGB.

v Any operand starting with the number sign (#) character is an equate value.

v Any operand starting with the characters BIT refers to a specified bit pattern for a
TM type operation.

These assumptions allow you to use condensed forms of certain conditional
expressions.

Condensed Forms of Compare
You can omit the operation code when the context of a test is not ambiguous.

Table 3 shows examples of condensed conditional expressions and the Cxx
instruction that is generated for each one.

Table 3. Instructions Generated for Condensed Forms of Compare

Conditional Expression Generates Remarks

#IF R14,EQ,R15 CR

#IF R14,GE,EBW000 C No slash (/) defaults to a 4-byte
comparison.

#IF R14,LT,10(R15) C

#IF R14,LE,=H’123’ CH

#IF R14,GT,H/24(R15) CH The H/ forces a CH.

#IF EBW000,NE,FLD CLC

#IF EBW000,LT,5 CLI

#IF EBW000,GT,C"D" CLI

#IF EBW000,NL,#CAR CLI

#IF EBW000,L,I/FLAG CLI The I/ forces a CLI.

Condensed Forms of TM
For a TM instruction, you can omit the operation code (TM) if the second operand
begins with the characters BIT. The second operand provides a symbolic name for
the bits to be tested, as shown in the examples in Table 4.

Table 4. Instructions Generated for Condensed Forms of TM

Conditional Expression TM Mask Remarks

#IF EBW000,BIT3,OFF X'10' Operand BITn tests bit n.

#IF EBW000,BITS4-6,MIXED X'0E' Operand BITSn-m tests bits n
through m.

#IF EBW000,BITS1/3/5/7,ON X'55' Operand BITSp/q/r/s tests bits p, q,
r, and s.

Condensed Forms of LTR and OC
You can omit the operation code and the second operand if the first and second
operands of an LTR or OC instruction are the same.

22 TPFDF R1 and TPF V4R1 Structured Programming Macros

Table 5. Instructions Generated for Condensed Forms of LTR and OC

Conditional Expression Generates

#IF R14,NONZERO LTR R14,R14

#IF FLD(4),ZERO OC FLD(4),FLD

Condensed Forms of Boolean Expressions
If the operand or condition code mnemonic (or both) are repeated in a test, you can
omit the second operand or condition code mnemonic (or both).

v In the following example, the operands are the same but the condition code
mnemonics are different. The statement

#IF EBW000,GT,1,AND,EBW000,LT,5

can be coded as:
#IF EBW000,GT,1,AND,LT,5

EBW000 is implied as the operand for the AND test.

v In the following example, both the operands and the condition code mnemonics
are the same. The statement

#IF EBW000,EQ,5,OR,EBW000,EQ,6

can be coded as:
#IF EBW000,EQ,5,OR,6

EBW000 and EQ are implied for the OR test.

v The tests and operands are determined as shown in the following example. In
this example, the tests are emphasized to show each set of tests. The statement

#IF R14,GE,R15,AND,LE,EBW000,AND,NE,=H’123’

generates the following tests:
#IF R14,GE,R15,AND,LE,EBW000,AND,NE,=H’123’

#IF R14,GE,R15,AND,LE,EBW000,AND,NE,=H’123’

#IF R14,GE,R15,AND,LE,EBW000,AND,NE,=H’123’

Processing Rules for Boolean Connectors
The overall processing sequence is as follows:

1. Processing in a group is from left to right and top to bottom.

2. Conditional expression groups are processed from left to right.

The sequence of evaluation in a group is as follows:

3. If a test in a group is true and it is followed by an OR connector, the whole
group is true.

4. If a test in a group is false and it is followed by an AND connector, the whole
group is false.

Note: This is not strict Boolean logic, so it is necessary to force the sequence of
evaluation.

Structured Programming Macros Conditional Expressions 23

For example, the expression A AND B OR C is evaluated in Boolean logic as
(A AND B) OR C.

To ensure that the expression is evaluated unambiguously, one of the
following solutions is required:

a. Force two groups.
A AND B ORIF C

b. Ensure that the C is not ignored.
C OR A AND B

The sequence of evaluation between groups is as follows:

5. If a group followed by an ORIF connector is true, the group following the next
ANDIF connector (if present) is checked.

Note: This is not strict Boolean logic.

6. If a group followed by the ANDIF connector is false, the group following the next
ORIF connector (if present) is checked.

7. Each ORIF connector must be preceded by either an AND connector or an
ANDIF connector; otherwise, it has no grouping effect and functions as a normal
OR connector.

8. Each ANDIF connector must be preceded by either an OR connector or an
ORIF connector; otherwise, it has no grouping effect and functions as a normal
AND.

For example, the test:
A and (B or C)

is coded as:
B OR C ANDIF A

to force two groups.

Evaluating Concatenated Expressions
As a summary of the processing rules described previously, Table 6 and Table 7 on
page 25 show the steps that are used to evaluate an expression based on whether
the connector is AND, ANDIF, OR, or ORIF.

Table 6. Decision Table: Boolean Expression Evaluation for AND or ANDIF

Connected by
AND or ANDIF?

Left Expression
True?

Expression
Followed by

ORIF?

Result

Yes Yes Yes or No Test the next conditional
expression.

Yes No Yes Test the expression after the next
ORIF.

Yes No No The whole conditional expression
is FALSE.

24 TPFDF R1 and TPF V4R1 Structured Programming Macros

Table 7. Decision Table: Boolean Expression Evaluation for OR or ORIF

Connected by
OR or ORIF?

Left Expression
True?

Expression
Followed by

ANDIF?

Result

Yes Yes Yes Test the expression after the next
ANDIF.

Yes Yes No The whole conditional expression
is TRUE.

Yes No Yes or No Test the next conditional
expression.

Boolean Expression Examples
The code that is required to check the format of an input field is a good example of
where problems can occur in concatenating tests.

v The following is an example of how to check a 2-character field.

The field called FLD contains 2 characters that can be either of the following:
– The characters KL
– Two numeric characters.

This implies the following:

(FLD=’K’ AND FLD+1=’L’) OR (FLD>=’0’ AND FLD<=’9’ AND FLD+1>=’0’ AND FLD+1<=’9’)

There are two groups, separated by the OR connector. The ORIF connector is
used to separate groups, so the expression can be written as follows:

#IF FLD,EQ,C’K’,AND,FLD+1,EQ,C’L’,
ORIF,FLD,GE,C’0’,AND,LE,C’9’,
AND,FLD+1,GE,C’0’,AND,LE,C’9’ Format of field correct

:
* Code to process the field.

:
#ELSE Format error

:
* Code to process the illegal field.

:
#EIF

v The following is an example of how to check a 3-character field.

The field called FLD contains 3 characters. The first 2 characters must be KL and
the third character can be either of the following:
– The character M
– A numeric character.

This implies the following:
FLD=’K’ AND FLD+1=’L’ AND (FLD+2=’M’ OR FLD+2>=’0’ AND FLD+2<=’9’)

Again, there are two groups, separated by the AND connector. However, simply
replacing the AND connector with the ANDIF connector does not work because
of rule 8 on page 24, which states that each ANDIF connector must be preceded
by either an OR or an ORIF connector; otherwise, it has no grouping effect and
functions as a normal AND connector.

The ANDIF connector must be preceded by an OR connector so the sequence
has to be reversed to allow the ANDIF connector to function. The conditional
expression in condensed form is:

Structured Programming Macros Conditional Expressions 25

#IF FLD+2,EQ,C’M’,OR,GE,C’0’,AND,LE,C’9’,
ANDIF,FLD,EQ,C’K’,AND,
FLD+1,EQ,C’L’ Format of field correct

:
* Code to process the field.

:
#ELSE Format error

:
* Code to process the illegal field.

:
#EIF

v The following is another example of checking a 3-character field.

The field called FLD contains 3 characters.
– The first character must be a K.
– The second character can be an L or a U.
– If the second character is a U, the third character must be either 0 or 1.

This implies the following:
FLD=’K’ AND (FLD+1=’L’ OR FLD+1=’U’ AND (FLD+2=’0’ OR FLD+2=’1’))

This expression uses double parentheses and, therefore, contains nested groups.
The SPM evaluator does not support nested groups. However, the expression
can be split into two groups by duplicating the first test.

FLD=’K’ AND FLD+1=’L’ ORIF FLD=’K’ AND FLD+1=’U’ AND (FLD+2=’0’ OR FLD+2=’1’)

This still leaves a parenthesis preceded by an AND connector, which cannot be
split simply by replacing the AND connector with an ANDIF connector (see rule 5
on page 24). The expression must be rearranged as follows:

#IF (FLD+2,EQ,C’0’),OR
(FLD+2,EQ,C’1’),ANDIF
(FLD+1,EQ,C’U’),ORIF,
(FLD+1,EQ,C’L’),ANDIF,
(FLD,EQ,C’K’) Format of field correct

:
* Code to process the field.

:
#ELSE Format error

:
* Code to process the illegal field.

:
#EIF

26 TPFDF R1 and TPF V4R1 Structured Programming Macros

TPFDF Structured Programming Macros: Reference

The following contains an alphabetic listing of the TPFDF structured programming
macros (SPMs). The description of each SPM includes the following information:

Format
Provides a syntax (railroad track) diagram for the macro and a description
of each parameter and variable. See “How to Read the Syntax Diagrams”
on page x for more information about syntax diagrams.

Entry Requirements
Lists any special conditions that must be true when you use the macro.

Return Conditions
Lists what is returned when the macro has finished processing.

Programming Considerations
Lists any additional considerations for using the macro, including any
restrictions or limitations.

Examples
Provides one or more examples that show you how to code the macro.

Related Macros
Lists where to find information about related macros.

See “TPFDF Structured Programming Macro Group Processing Diagrams” on
page 79 for figures that show the processing flow of the TPFDF macro groups.

© Copyright IBM Corp. 1996, 2001 27

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

#–Line Continuation
Use this macro to continue conditional expressions across more than one line. This
macro is used instead of the continuation character in column 72 of the previous
line.

Format

�� # inputline ��

inputline
is the continuation of a conditional expression and can be one of the following:

v Whole conditional expression, including those with Boolean connectors

v Whole test (symbolic assembler instructions or macro tests cannot be split).

Entry Requirements
You can only code this macro following a #DO, #IF, or #GOTO macro.

Return Conditions
Control is passed to the next sequential instruction.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v You cannot use the # macro with the normal assembler continuation character.

v You must code a comma (,) immediately after the last operand on the previous
line.

v When you use the #DO macro with a Boolean connector, the Boolean connector
cannot be coded as the last operand on the previous line.

Examples
v In the following example, the # macro is used to continue Boolean connectors.

#IF (CLI,0(R4),NL,C’0’),AND,
(CLI,0(R4),NH,C’9’),ORIF,
(CLI,0(R4),NL,C’A’),AND,
(CLI,0(R4),NH,C’Z’)

v In the following example, the # macro is used to continue conditional
expressions.

#DO WHILE=(R2,GE,R3),
AND,(EBW000,BIT1,OFF),
UNTIL=(FIELD,ZERO)

Related Information
v “#DO Macro Group” on page 48

v “#GOTO Macro Group” on page 61

v “#IF Macro Group” on page 63.

#

28 TPFDF R1 and TPF V4R1 Structured Programming Macros

#CASE Macro Group
Use this macro group to process specific code based on a numeric value, referred
to as a case number. The #CASE macro group includes the following macros:
v #CAST
v #CASE
v #ECAS.

See “#CASE Macro Group Processing” on page 79 for a diagram that shows the
processing flow of the #CASE macro group.

Format

�� #CAST reg1
,POWER=0

,POWER=multval (1)
,MAX=maxcase

,PREFIX=#@LB

,PREFIX=label
�

� � �

,

#CASE
num code1 (1)

#CASE ERROR
code2

#ECAS ��

Notes:

1 If you specify the MAX parameter, you must also code a #CASE ERROR
macro statement.

#CAST reg1
starts a group of #CASE selections, where reg1 is a register that contains the
case number. The case number in reg1 is adjusted to index into a branch table
generated by the #ECAS macro.

Do not use register 0 for reg1.

POWER=multval
specifies the incremental value between case numbers, where multval is the
value. The increment value is 2multval. For example, if you specify POWER=3,
the case numbers are multiples of 8. If you do not specify the POWER
parameter, the case numbers are generated in increments of 1.

MAX=maxcase
specifies the maximum case number allowed in a group, where maxcase is the
maximum number.

If you specify the MAX parameter, you must also code a #CASE ERROR
statement.

PREFIX=label
specifies a prefix for all link labels that are generated by this macro group,
where label is a 4-character name.

#CASE

TPFDF Structured Programming Macros: Reference 29

#CASE num
starts a case or group of cases, where num is the case number. The code up to
the next #CASE macro or #ECAS macro is processed when reg1 contains the
relevant case number.

code1
is the code to process for the specified case or cases.

#CASE ERROR
specifies the start of the code to process for case numbers that are not valid. If
you specify the MAX parameter on the #CAST macro, you must also code a
#CASE ERROR macro statement.

code2
is the code to process for incorrect case numbers.

#ECAS
ends the selection. This macro generates a branch table entry for each case
number specified in a #CASE macro statement. A dummy table entry is
generated for each valid but unused case number.

Entry Requirements
None.

Return Conditions
v The value in reg1 is modified during processing except when you specify

POWER=2.

v Control is returned to the next sequential instruction after the #ECAS macro
statement unless another assembler instruction or macro passes control outside
the #CASE structure.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v The #CAST, #CASE, and #ECAS macros can only be used with the #CASE
macro group.

v Each macro statement and assembler instruction must begin on a new line in the
application.

v A section of code (represented by code1, and so on) can consist of any number
of standard assembler instructions, including other SPMs or assembler macros.

v The SPMs generate assembler instructions according to the specified macro
parameters. The necessary branch instructions and link labels are generated
internally to support the nonsequential processing. The SPMs generate standard
link labels in the following format:

#@LBn EQU *

Where:
#@LB is the link-label prefix.
n is a sequence number that is generated automatically.

You can use the PREFIX parameter to change the standard link-label prefix.

v The labels generated by macros nested inside a structure have the standard
prefix #@LB unless another PREFIX parameter is specified with the inner SPMs.

#CASE

30 TPFDF R1 and TPF V4R1 Structured Programming Macros

v The first case number must be 2multval; multval can be 0. That is, the first case
number can be 1, 2, 4, 8, and so on. Other case numbers in the same group
must be multiples of the first case number. Use the POWER parameter to
change the multiples for the case number.

v An assembly error is issued if:

– A case number (num) conflicts with the POWER parameter.

– A case number (num) is greater than the value specified by the MAX
parameter on the #CAST macro.

v If reg1 contains a 0, the whole case structure is bypassed and processing
continues at the next instruction after the #ECAS macro.

v Use the MAX parameter on the #CAST macro and the #CASE ERROR macro
statement to check for case numbers, specified by reg1, that are not valid.
During processing, a case number is not valid if the value of reg1 is:

– Greater than the largest case number specified by the MAX parameter on the
#CAST macro

– Not a multiple of the first case number

– A negative number.

v If you do not specify the MAX parameter:

– All case numbers are treated as valid during assembly.

– No checking is performed during processing.

– A case number greater than the largest specified in any of the #CASE macro
statements causes an unpredictable branch in the program.

v All valid, unspecified case numbers bypass the structure without performing any
cases, and processing continues at the next instruction after the #ECAS macro.

v Only one section of code is performed each time the #CASE structure is
processed.

Examples
v In the following example, the case numbers are multiples of 8 (23). The #ECAS

macro generates a 4-word branch table with entries as follows:

8 Branch to code for cases 8 and 32

16 Branch to code for case 16

24 Dummy entry (case not used); branch to the next sequential instruction
after the #ECAS macro

32 Branch to code for cases 8 and 32.

A value other than 8, 16, 24, or 32 in R2 will cause results that cannot be
predicted.

#CAST R2,POWER=3
#CASE 32,8
:

* Code to process if R2 contains 8 or 32
:
#CASE 16
:

* Code to process if R2 contains 16
:
#ECAS

v In the following example, the maximum number of cases allowed is 10. The case
number increment defaults to 1. The #ECAS macro generates a 10-word branch
table with entries as follows:

#CASE

TPFDF Structured Programming Macros: Reference 31

1 Branch to code for cases 1, 3, 5, and 7
2 Dummy entry
3 Branch to code for cases 1, 3, 5, and 7
4 Branch to code for cases 4 and 8
5 Branch to code for cases 1, 3, 5, and 7
6 Dummy entry
7 Branch to code for cases 1, 3, 5, and 7
8 Branch to code for cases 4 and 8
9 Dummy entry
10 Dummy entry

Case numbers 2, 6, 9, and 10 bypass the structure, and processing continues
with the instruction after the #ECAS macro.

#CAST R2,MAX=10
#CASE 1,3,5,7
:

* Code to process if R2 contains 1, 3, 5, or 7
:
#CASE 4,8
:

* Code to process if R2 contains 4 or 8
:
#CASE ERROR
:

* Code to process if R2 contains a negative value or a value greater
than 10.

:
#ECAS

Related Information
None.

#CASE

32 TPFDF R1 and TPF V4R1 Structured Programming Macros

#CONB–Convert Character Decimal to Binary
Use this macro to generate inline code to convert a character decimal number to a
binary value. A character decimal number is a number represented in a string that
contains only EBCDIC 0–9.

Note: See Table 1 on page 10 for a summary of all the conversion macros.

Format

�� #CONB
INPUT=R14

INPUT=reg1

,TO=R15

,TO=reg2 (1)
,MAX=reg3

�

�
,WORK=CE1ARS

,WORK=workarea
��

Notes:

1 If you do not specify the MAX parameter, the maximum number of
characters defaults to 16 bytes.

INPUT=reg1
specifies a register, reg1, that points to the start of the string to convert.

TO=reg2
specifies a register, reg2, that will contain the converted binary value. Do not
use R0 for reg2.

MAX=reg3
specifies a register, reg3, that contains a binary number indicating the maximum
number of characters to convert. Leading zeros (C"0") in the input string are
ignored. You can specify a maximum of 16 bytes.

WORK=workarea
specifies a 16-byte work area.

Entry Requirements
None.

Return Conditions
v reg1 points to the next byte following the last byte that was converted.

v reg2 contains one of the following:

– The resulting binary value.

– X'FFFFFFFF', if the first character is not numeric; for example, the string
C"A94732".

– X'FFFFFFFF', if more than 9 digits following any leading zeros are specified;
for example, the string C"1234567890".

v The contents of reg3 are overwritten during the conversion process.

#CONB

TPFDF Structured Programming Macros: Reference 33

Programming Considerations
v You can specify the parameters for this macro in any order.

v All labels used in the SPM conditional expression can be no more than 32
characters long. Any additional characters are truncated.

v This macro converts the input string only up to the first nondigit character. For
example, if the input string contains C"789B2", the macro converts only C"789",
and reg1 points to B.

Examples
v In the following example:

Before the conversion: R14 points to CONB0, which contains C"12713971".
R15 contents are unknown.
R0 contains 8.

After the conversion: R14 points to CONB0+8.
R15 contains X'C1FFF3'.
R0 contents are overwritten.

LA R14,CONB0 SET UP INPUT ADDRESS
LA R0,8 SET UP INPUT LENGTH
#CONB INPUT=R14,TO=R15,MAX=R0 EBCDIC-STRING TO BINARY
:

CONB0 DC C’12713971’ DECIMAL INPUT STRING

v In the following example:

Before the conversion: R14 points to CONB4, which contains C"789B2".
R15 contents are unknown.
R0 contains 16.

After the conversion: R14 points to CONB4+3.
R15 contains X'00000315'.
R0 contents are overwritten.

LA R14,CONB4 SET UP INPUT ADDRESS
LA R0,16 SET UP INPUT LENGTH
#CONB INPUT=R14,TO=R15,WORK=EBX024,MAX=R0
:

CONB4 DC C’789B2’ DECIMAL INPUT STRING

Related Information
“#CONH–Convert Character Hexadecimal to Binary” on page 37.

#CONB

34 TPFDF R1 and TPF V4R1 Structured Programming Macros

#COND–Convert Binary to Character Decimal
Use this macro to generate inline code to convert a binary number to character
decimal with leading zeros.

Note: See Table 1 on page 10 for a summary of all the conversion macros.

Format

�� #COND
INPUT=R14

INPUT=reg1

,TO=R1

,TO=reg2

,LENGTH=8

,LENGTH=maxval
�

�
,WORK=CE1ARS

,WORK=workarea
��

INPUT=reg1
specifies a register, reg1, that contains the binary number to convert.

TO=reg2
specifies a register, reg2, that points to the location that will contain the
converted value.

LENGTH=maxval
specifies the length of the resulting character decimal string, where maxval is
the length. The maximum value for maxval is 15.

WORK=workarea
specifies an 8-byte work area.

Entry Requirements
None.

Return Conditions
v reg2 points to the next available byte following the result.

v If the length specified is too short, the result is truncated to the left. If the length
specified is longer then the input string, the result is padded to the left with zeros
(X'F0').

Programming Considerations
v You can specify the parameters for this macro in any order.

v All labels used in the SPM conditional expression can be no more than 32
characters long. Any additional characters are truncated.

Examples
v In the following example:

Before the conversion: R14 contains X'0000F394'.
R15 points to EBW000.
The length is 8.

#COND

TPFDF Structured Programming Macros: Reference 35

After the conversion: R14 is unchanged.
EBW000 contains C"00062356".
R15 points to EBW000+8.

L R14,COND1 SET UP BINARY VALUE
LA R15,EBW000 WHERE TO PLACE
#COND INPUT=R14,TO=R15,LENGTH=8 BINARY TO EBCDIC
:

COND1 DC X'0000F394' BINARY VALUE (DEC 62356)

v In the following example:

Before the conversion: R14 contains X'0000F394'.
R15 points to EBW020.
The length is 5.

After the conversion: R14 is unchanged.
EBW020 contains C"62356".
R15 points to EBW020+5.

L R14,COND2 SET UP BINARY VALUE
LA R15,EBW020 WHERE TO PLACE
#COND INPUT=R14,TO=R15,LENGTH=5 BINARY TO EBCDIC
:

COND2 DC X'0000F394' BINARY VALUE (DEC 62356)

v In the following example:

Before the conversion: R14 contains F"355".
R15 points to EBW040.
The length is 2.

After the conversion: R14 is unchanged.
EBW040 contains C"55".
R15 points to EBW040+2.

L R14,COND3 SET UP BINARY VALUE
LA R15,EBW040 WHERE TO PLACE
#COND INPUT=R14,LENGTH=2,TO=R15 BINARY TO EBCDIC
:

COND3 DC F"355" BINARY VALUE

Related Information
“#CONS–Convert Binary to Character Decimal with Zero Suppression” on page 42.

#COND

36 TPFDF R1 and TPF V4R1 Structured Programming Macros

#CONH–Convert Character Hexadecimal to Binary
Use this macro to generate inline code to convert a character hexadecimal number
to a binary value. Each pair of character hexadecimal digits converts to 1 byte of
binary.

This macro only converts data that corresponds to the EBCDIC characters A–Z and
0–9. The corresponding hexadecimal values are as follows:

Hexadecimal Value EBCDIC Value
X'C1'–X'C9' A–I
X'D1'–X'D9' J–R
X'E2'–X'E9' S–Z
X'F0'–X'F9' 0–9

Note: See Table 1 on page 10 for a summary of all the conversion macros.

Format

�� #CONH
INPUT=R14

INPUT=reg1

,TO=R15

,TO=reg2

,MAX=R0

,MAX=reg3

,WORK=CE1ARS

,WORK=workarea
��

INPUT=reg1
specifies a register, reg1, that points to the start of the string to convert.

TO=reg2
specifies a register, reg2, that points to the location that will contain the
converted value.

MAX=reg3
specifies a register, reg3, that contains the maximum number of characters to
convert. Specify this value as a multiple of 2. If the value is not a multiple of 2,
it will be rounded up to a multiple of 2. For example, if you specify 3, the value
used will be 4.

WORK=workarea
specifies an 8-byte work area.

Entry Requirements
None.

Return Conditions
v reg1 points to the next byte immediately following the input string. The input

string is overwritten during the conversion process.

v reg2 points to the next available byte following the output string.

v reg3 contains the number of bytes remaining to be converted (normally zero). If
the value specified for reg3 was not a multiple of 2, reg3 contains X'FFFFFFFF'.

Programming Considerations
v You can specify the parameters for this macro in any order.

#CONH

TPFDF Structured Programming Macros: Reference 37

v All labels used in the SPM conditional expression can be no more than 32
characters long. Any additional characters are truncated.

v This macro converts the input string only up to the first character that is not A–Z
or 0–9. For example, if the input string contains C"7B9*2", the macro converts
only C"7B9", and reg1 points to the asterisk (*).

Examples
v In the following example:

Before the conversion: R14 points to EBX000, which contains C"12713971".
R15 points to EBW000.
R0 contains 8.

After the conversion: R14 points to EBX000+8.
EBW000 contains X'12713971'.
R15 points to EBW000+4.
R0 is zero (no bytes left to convert).

MVC EBX000(8),=C’12713971’
LA R14,EBX000
LA R15,EBW000
LA R0,8
#CONH INPUT=R14,TO=R15,MAX=R0

v In the following example:

Before the conversion: R14 points to EBX000, which contains C"ACD9E7".
R15 points to EBW010.
R0 contains 6.

After the conversion: R14 points to EBX000+6.
EBW010 contains X'ACD9E7'.
R15 points to EBW010+3.
R0 is zero (no bytes left to convert).

MVC EBX000(6),=C’ACD9E7’ SET UP INPUT STRING
LA R14,EBX000 SET UP INPUT ADDRESS
LA R15,EBW010 WHERE TO PLACE
LA R0,6 NUMBER OF INPUT CHARS
#CONH INPUT=R14,TO=R15,MAX=R0 HEXADECIMAL TO BINARY

v In the following example:

Before the conversion: R14 points to EBX020, which contains C"AB35*CDE".
R15 points to EBW030.
R0 contains 8.

After the conversion: R14 points to EBX020+4 (C"*").
EBW030 contains X'AB35'.
R15 points to EBW030+2.
R0 contains 4.

MVC EBX020(8),=C’AB35*CDE’ SET UP INPUT STRING
LA R14,EBX020 SET UP INPUT ADDRESS
LA R15,EBW030 WHERE TO PLACE
LA R0,8 NUMBER OF INPUT CHARS
#CONH INPUT=R14,TO=R15,MAX=R0 HEXADECIMAL TO BINARY

Related Information
“#CONB–Convert Character Decimal to Binary” on page 33.

#CONH

38 TPFDF R1 and TPF V4R1 Structured Programming Macros

#CONP–Convert Binary to Character Hexadecimal with EBCDIC
Interpretation

Use this macro to generate inline code to convert binary data to character
hexadecimal. A character hexadecimal number is a hexadecimal number
represented in a string that contains only EBCDIC 0–9 and A–F.

The data is converted to character hexadecimal unless it is a binary value
corresponding to the EBCDIC characters A–Z and 0–9. The corresponding
hexadecimal values are as follows:

Hexadecimal Value EBCDIC Value
X'C1'–X'C9' A–I
X'D1'–X'D9' J–R
X'E2'–X'E9' S–Z
X'F0'–X'F9' 0–9

A fill character is inserted in the output string to differentiate between these
characters and the hexadecimal characters (see the FILLCHR parameter).

Note: See Table 1 on page 10 for a summary of all the conversion macros.

Format

�� #CONP
INPUT=R14

INPUT=reg1

,TO=R1

,TO=reg2 (1)
,LENGTH=reg3

�

�
,FILLCHR=C' '

,FILLCHR=fill
��

Notes:

1 If you do not specify the LENGTH parameter, the length defaults to 1
character.

INPUT=reg1
specifies a register, reg1, that points to the start of the string to convert.

TO=reg2
specifies a register, reg2, that points to the location that will contain the
converted value.

LENGTH=reg3
specifies a register, reg3, that contains the number of characters to convert.

FILLCHR=fill
specifies the character that pads the converted output, where fill is the
character specified as an immediate value.

For example, FILLCHR=C"." specifies a "." for the fill character. The string
X'C1C2FFC4' is converted to C".A.BFF.D".

#CONP

TPFDF Structured Programming Macros: Reference 39

Entry Requirements
None.

Return Conditions
v reg1 points to the next byte immediately following the input string.

v reg2 points to the next available byte following the output string.

v reg3 contains X'00000000'.

Programming Considerations
v You can specify the parameters for this macro in any order.

v All labels used in the SPM conditional expression can be no more than 32
characters long. Any additional characters are truncated.

Examples
v In the following example:

Before the conversion: R14 points to CONP0, which contains X'C1FFF3'.
R15 points to EBW000.
R0 (the length) contains 3.

After the conversion: R14 points to CONP0+3.
EBW000 contains C" AFF 3".
R15 points to EBW000+6.
R0 contains 0.

LA R14,CONP0
LA R15,EBW000
LA R0,L’CONP0
#CONP INPUT=R14,TO=R15,LENGTH=R0,FILLCHR=C’ ’
:

CONP0 DC X'C1FFF3'

v In the following example:

Before the conversion: R14 points to CONP1, which contains X'C1C2FFC4'.
R15 points to EBW050.
The length defaults to 1 byte.

After the conversion: R14 points to CONP1+1.
EBW050 contains C" A".
R15 points to EBW050+2.

LA R14,CONP1
LA R15,EBW050
#CONP INPUT=14,TO=R15,FILLCHR=C’ ’
:

CONP1 DC X'C1C2FFC4'

v In the following example:

Before the conversion: R14 points to CONP2, which contains X'C3F361F5C4C1'.
R15 points to EBW070.
R0 (the length) contains 5.

After the conversion: R14 points to CONP2+5.
EBW070 contains C"/C/361/5/D".
R15 points to EBW070+10.
R0 contains 0.

#CONP

40 TPFDF R1 and TPF V4R1 Structured Programming Macros

LA R14,CONP2
LA R15,EBW070
LA R0,5
#CONP INPUT=R14,TO=R15,LENGTH=R0,FILLCHR=C"/"
:

CONP2 DC X'C3F361F5C4C1'

Related Information
“#CONX–Convert Binary to Character Hexadecimal” on page 46.

#CONP

TPFDF Structured Programming Macros: Reference 41

#CONS–Convert Binary to Character Decimal with Zero Suppression
Use this macro to generate inline code to convert a binary number to character
decimal with leading blanks.

Note: See Table 1 on page 10 for a summary of all the conversion macros.

Format

�� #CONS
INPUT=R14

INPUT=reg1

,TO=R1

,TO=reg2

,LENGTH=4

,LENGTH=maxval
�

�
,WORK=CE1ARS

,WORK=workarea
��

INPUT=reg1
specifies a register, reg1, that contains the binary number to be converted.

TO=reg2
specifies a register, reg2, that points to the location that will contain the
converted value.

LENGTH=maxval
specifies the length of the resulting character decimal string, where maxval is
the length.

You can specify a maximum value of 15 for the MAX parameter.

WORK=workarea
specifies an 8-byte work area.

Entry Requirements
None.

Return Conditions
v The contents of reg1 are overwritten during the conversion process.

v reg2 points to the next available byte following the output string.

v If the length specified is too short, the result is truncated to the left. If the length
specified is longer than the input string, the result is padded to the left with
blanks (X'40').

Programming Considerations
v You can specify the parameters for this macro in any order.

v All labels used in the SPM conditional expression can be no more than 32
characters long. Any additional characters are truncated.

#CONS

42 TPFDF R1 and TPF V4R1 Structured Programming Macros

Examples
v In the following example,

Before the conversion: R14 contains X'0000F394'.
R15 points to EBW000.
The length is 8.

After the conversion: R14 is overwritten.
EBW000 contains C" 62356".
R15 points to EBW000+8.

L R14,CONS1
LA R15,EBW000
#CONS INPUT=R14,TO=R15,LENGTH=8
:

CONS1 DC X'0000F394'

v In the following example,

Before the conversion: R14 contains X'0000F394'.
R15 points to EBW080.
The length is 4.

After the conversion: R14 is overwritten.
EBW080 contains C"2356".
R15 points to EBW080+4.

L R14,CONS2
LA R15,EBW080
#CONS INPUT=R14,TO=R15,LENGTH=4
:

CONS2 DC X'0000F394'

v In the following example,

Before the conversion: R14 contains F"355".
R15 points to EBW040.
The length is 7.

After the conversion: R14 is overwritten.
EBW040 contains C" 355".
R15 points to EBW040+7.

L R14,CONS3
LA R15,EBW040
#CONS INPUT=R14,TO=R15,LENGTH=7
:

CONS3 DC F"355"

Related Information
“#COND–Convert Binary to Character Decimal” on page 35.

#CONS

TPFDF Structured Programming Macros: Reference 43

#CONT–Convert Binary to Character Binary
Use this macro to generate inline code to convert a binary number in the low-order
byte of a register to character binary. A character binary number is a binary number
represented in a string that contains only EBCDIC 0 or 1.

Note: See Table 1 on page 10 for a summary of all the conversion macros.

Format

�� #CONT
INPUT=R14

INPUT=reg1

,TO=R1

,TO=reg2

,ON=C'1'

,ON=C'onchar'
�

�
,OFF=C'0'

,OFF=C'offchar'

,WORK=CE1ARS

,WORK=workarea
��

INPUT=reg1
specifies a register, reg1, that contains the binary number to convert.

TO=reg2
specifies a register, reg2, that points to the location that will contain the
converted value.

ON=C'onchar'
specifies the character used to represent binary 1 in the output string, where
onchar is the character.

OFF=C'offchar'
specifies the character used to represent binary 0 in the output string, where
offchar is the character.

WORK=workarea
specifies a 5-byte work area.

Entry Requirements
None.

Return Conditions
v The contents of reg1 are overwritten during the conversion process.

v reg2 points to the next available byte following the output string.

Programming Considerations
v You can specify the parameters for this macro in any order.

v All labels used in the SPM conditional expression can be no more than 32
characters long. Any additional characters are truncated.

#CONT

44 TPFDF R1 and TPF V4R1 Structured Programming Macros

Examples
v In the following example,

Before the conversion: R14 contains F"43".
R15 points to EBW000.
ON is 1 and OFF is 0.

After the conversion: R14 is overwritten.
EBW000 contains C"00101011".
R15 points to EBW000+8.

L R14,CONT0 SET UP BINARY VALUE
LA R15,EBW000 WHERE TO PLACE
#CONT INPUT=R14,TO=R15,ON=’1’,OFF=C’0’,WORK=CE1ARS
:

CONT0 DC F’43’ BINARY VALUE (X'2B')

v In the following example,

Before the conversion: R14 contains X'ABF1FF23'.
R15 points to EBW030.
ON is 1 and OFF is 0.

After the conversion: R14 is overwritten.
EBW030 contains C"00100011".
R15 points to EBW030+8.

L R14,CONT1 SET UP BINARY VALUE
LA R15,EBW030 WHERE TO PLACE
#CONT INPUT=R14,TO=R15 LOW-ORDER BYTE TO BINARY
:

CONT1 DC X'ABF1FF23' BINARY VALUE

v In the following example:

Before the conversion: R14 contains F"241".
R15 points to EBW010.
ON is "*" and OFF is "-".

After the conversion: R14 is overwritten.
EBW010 contains C"****---*".
R15 points to EBW010+8.

L R4,CONT2 SET UP BINARY VALUE
LA R15,EBW010 WHERE TO PLACE
#CONT INPUT=R14,TO=R15,ON=C"*",OFF=C"-"

LOW-ORDER BYTE TO BINARY : CONT2 DC F’241’ BINARY VALUE
(X'F1')

Related Information
None.

#CONT

TPFDF Structured Programming Macros: Reference 45

#CONX–Convert Binary to Character Hexadecimal
Use this macro to generate inline code to convert binary data to character
hexadecimal. Unlike the #CONP macro, #CONX converts each byte to character
hexadecimal. For example:
v #CONX converts X'C1' to C"C1" (X'C3F1').
v #CONP converts X'C1' to C" A" (X'40C1').

Note: See Table 1 on page 10 for a summary of all the conversion macros.

Format

��
INPUT=R14 ,TO=R1

#CONX
INPUT=reg1 ,TO=reg2 (1)

,LENGTH=reg3

��

Notes:

1 If you do not specify the LENGTH parameter, the length defaults to 1
character.

INPUT=reg1
specifies a register, reg1, that points to the start of the string to convert.

TO=reg2
specifies a register, reg2, that points to the location that will contain the
converted value.

LENGTH=reg3
specifies a register, reg3, that contains the number of bytes to convert.

Entry Requirements
None.

Return Conditions
v reg1 points to the next byte immediately following the input string.

v reg2 points to the next available byte, which contains a blank.

v reg3 contains X'00000000'.

Programming Considerations
v You can specify the parameters for this macro in any order.

v All labels used in the SPM conditional expression can be no more than 32
characters long. Any additional characters are truncated.

Examples
v In the following example,

Before the conversion: R14 points to CONX0, which contains X'C1FFF3'.
R15 points to EBW000.
Length is 3.

#CONX

46 TPFDF R1 and TPF V4R1 Structured Programming Macros

After the conversion: R14 points to CONX0+3.
EBW000 contains C"C1FFF3".
R15 points to EBW000+6.

LA R14,CONX0
LA R15,EBW000
LA R0,L’CONX0
#CONX INPUT=R14,TO=R15,LENGTH=R0
:

CONX0 DC X’C1FFF3’

v In the following example,

Before the conversion: R14 points to CONX1, which contains X'C1C2FFC4'.
R15 points to EBW050.
The length defaults to 1.

After the conversion: R14 points to CONX1+1.
EBW050 contains C"C1".
R15 points to EBW050+2.

LA R14,CONX1
LA R15,EBW050
#CONX INPUT=R14,TO=R15
:

CONX1 DC X’C1C2FFC4’

v In the following example,

Before the conversion: R14 points to CONX2, which contains X'C3F361F5C4C1'.
R15 points to EBW070.
Length is 5.

After the conversion: R14 points to CONX2+5.
EBW070 contains C"C3F361F5C4".
R15 points to EBW070+10.

LA R14,CONX2
LA R15,EBW070
LA R0,5
#CONX INPUT=R14,TO=R15,LENGTH=R0
:

CONX2 DC X’C3F361F5C4C1’

Related Information
“#CONP–Convert Binary to Character Hexadecimal with EBCDIC Interpretation” on
page 39.

#CONX

TPFDF Structured Programming Macros: Reference 47

#DO Macro Group
Use this macro group to process specific code based on one of the following:
v A conditional expression
v A branch register (BCT, BCTR, BXLE, or BXH).

The #DO macro group includes the following macros:
v #EXIF
v #OREL
v #DOEX
v #ELOP
v #EDO.

See “#DO Macro Group Processing” on page 80 for diagrams that show the
processing flow of the #DO macro group.

Format

�� #DO
(1)

WHILE= Conditional Expression
UNTIL= Conditional Expression
TIMES=(reg1)

,initval
,initval,reg2
,initval,save1
,,reg2
,,save1

FROM Using BC or BCR
FROM Using BXH or BXLE

INF
ONCE

,PREFIX=#@LB

,PREFIX=label code1
�

� �

#EXIF Conditional Expression
code2 #OREL

code3

�

� �

#DOEX Conditional Expression
code4

#ELOP
code5

#EDO ��

Notes:

1 A #DO statement can contain one of each of the WHILE, UNTIL, TIMES,
and FROM conditions.

#DO

48 TPFDF R1 and TPF V4R1 Structured Programming Macros

FROM Using BC or BCR:

FROM=(reg1)
,initval
,initval,reg2
,,reg2

, BY=byval , TO=(toval)
,INCLUSIVE
,EXCLUSIVE

FROM Using BXH or BXLE:

BXLE,
BXH,

FROM=(reg1)
,initval
,initval,save1
,,save1

�

� , BY=(byreg) , TO=(toreg)
,byval2 ,toval2
,byval2,save2
,,save2

#DO
specifies the start of the #DO structure.

WHILE
specifies the start of a #DO WHILE loop based on a conditional expression. Any
code that follows this parameter is processed only if and while the conditional
expression is true. See “Conditional Expression Format” on page 14 for
information about the syntax of a conditional expression.

UNTIL
specifies the start of a #DO UNTIL loop based on a conditional expression. Any
code that follows this parameter is processed at least once and is repeated until
the conditional expression is true. See “Conditional Expression Format” on
page 14 for information about the syntax of a conditional expression.

TIMES
specifies the number of times to repeat the loop. Any code that follows this
parameter is repeated based on a loop counter.

FROM
specifies the number of times to repeat the loop. Any code that follows this
parameter is repeated based on a loop counter.

The form of #DO FROM using a BC or BCR loop is the basic form. The form of
#DO FROM using a BXH or BXLE loop allows values to be saved during the
processing of the loop. The type of loop generated depends on the following:
v Number of parameters
v Use of initial values
v Use of negative values
v Number of registers used.

Note: #DO FROM is only available for compatibility with older applications. Use
the #DO TIMES form for new applications.

INF
specifies an unconditional loop. You must code a #DOEX or #EXIF macro to
avoid creating an infinite loop.

ONCE
creates a non-loop where the processing is performed only once. This

#DO

TPFDF Structured Programming Macros: Reference 49

parameter allows you to use the conditional branching macros (#EXIF, #DOEX,
and so on) to construct a procedure that is processed the same way as inline
code.

reg1
is a register that contains the loop counter. When you specify the TIMES
parameter, the value in reg1 must be positive.

initval
is an initial value for the loop counter that gets loaded into the register specified
by reg1.

The value of initval can be:
v A numeric value
v Another general register (enclosed in parentheses)
v A literal (byte, halfword, or fullword)
v A length (with a value less than 4096)
v An equate
v A label
v An address.

You can enter an address in one of the following ways:
v A/label
v L/label

In both cases, the initial value is the address of label label.

You can enter labels in one of the following ways:

v X/label, which indicates that the initial value is the 1 byte at label.

v H/label, which indicates that the initial value is the 2 bytes (halfword) starting
at label.

v label, which indicates that the initial value is the 4 bytes (fullword) starting at
label.

reg2
is the branch register. If you specify reg2 with the TIMES parameter, a BCTR
loop is generated. If you do not specify reg2 with the TIMES parameter, a BCT
loop is generated. If you specify reg2 with the FROM parameter, a BCR loop is
generated. If you do not specify reg2 with the FROM parameter, a BC loop is
generated.

save1
is a fullword area where reg1 is saved. This allows reg1 to be used during the
execution of the loop. If you specify save1 with the TIMES parameter, a BCT
loop is generated.

BY=byval
specifies the value with which to increment reg1, where byval is the value. This
value is added to the value in reg1 at the end of each iteration.

The valid values for byval are the same as for initval, with the exception of
single-byte fields or single-byte literals.

TO=toval
specifies when to end the loop, where toval is a field that contains the ending
value for the loop. The value in toval is compared with the value in reg1 at the
end of each iteration.

The valid values for toval are the same as for initval, with the exception of
single-byte fields or single-byte literals.

#DO

50 TPFDF R1 and TPF V4R1 Structured Programming Macros

INCLUSIVE
processes the loop including the ending value, toval.

EXCLUSIVE
processes the loop excluding the ending value, toval.

BXLE
specifies a BXLE loop.

BXH
specifies a BXH loop.

BY=byreg
specifies the increment value, where byreg is a register that contains the value
with which to increment reg1.

byval2
is an initial increment value to load into the register specified by byreg.

save2
is a full or double word save area into which byreg and toreg are saved. They
are stored at the beginning of each iteration and reloaded at the end of each
iteration before the BXLE or BXH loop. Only 1 fullword is required during the
loop processing if byreg and toreg are the same odd-numbered register.

TO=toreg
specifies when to end the loop, where toreg is a register that contains the
ending value for the loop, where:

v If byreg is an even-numbered register, toreg must be the next
(odd-numbered) register.

v If byreg is an odd-numbered register, toreg must be the same register.

toval2
is an initial value to load in toreg.

PREFIX=label
specifies a prefix for all link labels generated by this macro group, where label
is a 4-character alphabetic name.

code1
is the code to process.

#EXIF
specifies the start of the exit code to process when the conditional expression is
true. See “Conditional Expression Format” on page 14 for information about the
syntax of a conditional expression. After the exit code is performed, processing
exits from the whole #DO group. If the conditional expression is false, #EXIF
branches to the next #OREL macro.

code2
is the exit code to process when the #EXIF condition is true. The exit code
consists of any code between the #EXIF macro and the next sequential #OREL
macro.

#OREL
specifies the start of the code to process when the previous #EXIF condition is
not true. After the code is processed, control returns to the top of the loop and
processing continues.

For clarity, it is recommended that you always code a matching #OREL macro
for each #EXIF macro. However, if you do not specify the #OREL macro, it will
be automatically generated between a #EXIF macro and any of the following:

#DO

TPFDF Structured Programming Macros: Reference 51

v #DOEX macro
v #ELOP macro
v Another #EXIF macro.

code3
is the code to process when the previous #EXIF condition is false.

#DOEX
exits from the loop based on a conditional expression. See “Conditional
Expression Format” on page 14 for information about the syntax of a conditional
expression. If the conditional expression is true, #DOEX branches to the #ELOP
macro. If the #ELOP macro is not specified, processing branches to the #EDO
macro.

Note: The #DOEX macro provides a conditional exit from the iteration loop.
This optional exit is a violation of structured programming rules. Restrict
the use of this macro to special cases where you would otherwise have
to:

v Use a #GOTO macro. See “#GOTO Macro Group” on page 61 for
more information about the #GOTO macro.

v Set and test an additional indicator.

code4
is the code to process when the #DOEX condition is false.

#ELOP
ends the iteration loop and specifies the start of any code to be processed at
the end of the loop. The #ELOP macro must be the last structured
programming macro (SPM) in the #DO group before the #EDO macro. If you do
not specify the #ELOP macro, it is automatically generated by the #EDO macro.

code5
is the code to process at the end of the loop. This code is processed only once
when the iteration loop ends. This code is bypassed only when the iteration is
ended by a true #EXIF condition.

#EDO
specifies the end of the loop-end processing and the whole #DO group.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction after the #EDO macro
statement unless another assembler instruction or macro passes control outside the
#DO structure.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v The #DO, #EXIF, #OREL, #DOEX, #ELOP, and #EDO macros can only be used
with the #DO macro group.

v Each macro statement and assembler instruction must begin on a new line in the
application.

v A section of code (represented by code1, and so on) can consist of any number
of standard assembler instructions, including other SPMs or assembler macros.

#DO

52 TPFDF R1 and TPF V4R1 Structured Programming Macros

v The SPMs generate assembler instructions according to the specified macro
parameters. The necessary branch instructions and link labels are generated
internally to support the nonsequential processing. The SPMs generate standard
link labels in the following format:

#@LBn EQU *

Where:
#@LB is the link-label prefix.
n is a sequence number that is generated automatically.

You can use the PREFIX parameter to change the standard link-label prefix.

v The labels generated by macros nested inside a structure have the standard
prefix #@LB unless another PREFIX parameter is specified with the inner SPMs.

v If symbols referred to by reg1, reg2, byval, toval, byreg, or toreg are changed
during loop processing, the results cannot be predicted.

v For #DO FROM using a BXH or BXLE loop, if all the parameter registers are
loaded previously with the values necessary to process the loop, you must
specify the BXH or BXLE parameter. See ESA/370 Principles of Operation or
ESA/390 Principles of Operation for more information about the BXH and BXLE
instructions.

v A #DO macro statement can contain one of each of the following parameters:
– WHILE
– UNTIL
– TIMES
– FROM.

v Additional loop-end processing can be performed (only once) between the
#ELOP and #EDO macros.

v The #ELOP macro is reached when:

– The iteration ends because the #DO WHILE condition is false (normal loop
completion)

– The iteration ends because the #DO UNTIL condition is true (normal loop
completion)

– The iteration ends with a #DOEX condition.

v You can also force an exit with a #EXIF macro combined with a #OREL macro. If
the #EXIF condition is true, any code between the #EXIF macro and the next
#OREL macro is processed and exits to the #EDO macro. If the #EXIF condition
is false, processing continues after the #OREL macro.

Examples
v In the following #DO WHILE example, a #DOEX macro is used to exit the loop if

R2 = R3.
#DO WHILE=(OC,FLD,FLD,NZ)

:
* Code to be processed repeatedly only if FLD is not zero.
* This code will be done more than once only as long as
* R2 does not equal R3 because of the following #DOEX.

:
#DOEX (CR,R2,EQ,R3)

:
* Exit the loop if R2 = R3.
* Code to be processed repeatedly if FLD is not zero and
* R2 does not equal R3.

:
#EDO

#DO

TPFDF Structured Programming Macros: Reference 53

v The following is an example of a simple #DO UNTIL loop.
#DO UNTIL=(CLC,FLDA,GE,FLDB)
:

* Code to be processed at least once, and more than
* once as long as FLDA remains less than FLDB.

:
#EDO

v The following is an example of a full #DO UNTIL loop using all the #DO group
parameters.

#DO UNTIL=(CR,R2,GE,R3)
:

* Code to process until R2 >= R3.
* This is done on each iteration, and at least once.

:
#EXIF TM,0(R2),X’FF’,O

:
* Code to process if the bits are set to X'FF'.
* Exit processing is performed (once only) the first
* time the TM results in ones.
* Processing continues at the #EDO macro.

:
#OREL

:
* Code to process if the bits are not set.
* Processing to be done on each iteration, as long as no exits
* are taken.

:
#EXIF CH,R4,NL,MAX

:
* Code for another #EXIF process: Maximum reached.
* Exit processing to be performed (once only) the first
* time R4 >= MAX.
* Processing continues at the #EDO macro.

:
*** #OREL generated automatically here
*

#DOEX CLC,4(4,R2),EQ,=F’0’
:

* If #DOEX indicates no more items, go to #ELOP macro for
* loop-end processing.
*
* Code to be processed on each iteration, as long as no exits
* are taken.

:
#ELOP

:
* End of loop, start loop-end processing.
* Loop-end processing is done once only as a result of
* iteration termination by the UNTIL condition (R2 >= R3),
* or because the #DOEX exit was taken.
*
* If one of the #EXIF exits was taken, this code is never
* processed.

:
#EDO

v In the following #DO TIMES example, a BCT loop is processed the number of
times specified by the value in register 2 (R2). The loop count was previously
loaded in R2. R2 is used for a BCT instruction and contains successive values
down to 1. On exit from the #EDO, R2 is 0.

#DO

54 TPFDF R1 and TPF V4R1 Structured Programming Macros

#DO TIMES=(R2)
:

* Code to process the number of times specified by the
* value in R2.

:
#EDO

v In the following #DO TIMES example, a BCTR loop is processed 100 times. R2
and R3 are used for a BCTR instruction. R2 contains successive values 100, 99,
98, and so on down to 1; R3 holds the address of the start of the loop for the
BCTR. On exit from the #EDO, R2 is 0.

#DO TIMES=(R2,100,R3)
:

* Code to process 100 times.
:

#EDO

v In the following #DO TIMES example, the value in EBW000 is loaded in R15 and
a BCT loop is generated.

#DO TIMES=(R15,X/EBW000)
:

* Code to process the number of times specified by the value in
* the byte at EBW000.

:
#EDO

v In the following #DO FROM example, a simple BC loop is generated. The
processing is performed at least once with R3=0, then successively (with 4, 8,
12, and so on) up to and including the last value less than or equal to the
contents of fullword in EBW000. For example,
– If EBW000 contains 16, the last iteration is done with R3=16.
– If EBW000 contains 15, the last iteration is done with R3=12.

#DO FROM=(R3,0),BY=4,TO=(EBW000)
:

* Code to process the specified number of times.
:

#EDO

v In the following #DO FROM example, a BC loop is generated that excludes the
ending loop count. The processing is performed at least once with R3 equal to
the contents of the fullword EBW000. At the end of each iteration, R3 is
incremented by the length of field FL and compared to halfword EBW020. The
loop continues as long as R3 is less than EBW020. For example, if EBW000
contains 10, EBW020 contains 100, and L'FL is 10, the iterations are performed
with R3=10, 20, 30, and so on up to 90, but not 100.

#DO FROM=(R3,EBW000),BY=L’FL,TO=(H/EBW020,EXCLUSIVE)
:

* Code to process the specified number of times.
:

#EDO

v In the following #DO FROM example, a BXLE loop is generated. Processing is
performed 10 times with R2 successively equal to 10, 20, 30, and so on up to
100.

#DO FROM=(R2,10),BY=(R4,10),TO=(R5,100)
:

* Code to process 10 times.
:

#EDO

v In the following #DO FROM example, a BXH loop is generated. Processing is
performed at least once, with R2 successively equal to 100, 96, 92, and so on
down to the last value that is greater than the contents of R5. R5 is initialized
with an LA R5,VAL instruction. For example, if R5 contains 3, the processing is
done 25 times with 4 as the last value used in R2.

#DO

TPFDF Structured Programming Macros: Reference 55

#DO FROM=(R2,100),BY=(R4,-4),TO=(R5,A/VAL)
:

* Code to process the specified number of times.
:

#EDO

v In the following #DO FROM example, a BXLE loop is generated and registers
are saved during processing. Processing is performed at least once, with R3
successively equal to 1000, 1020, 1040, and so on up to the last value less than
or equal to the contents of R15 (initialized from fullword EBW048). R5 is
initialized with an LA R5,VAL instruction. The registers are saved during loop
processing and reloaded by #ELOP for the BXLE:
– R3 in EBW040
– R14 in EBW044
– R15 in EBW048.

If there is no #ELOP macro, the #EDO macro reloads the registers.
#DO FROM=(R3,1000,EBW040),BY=(R14,20,EBW044),TO=(R15,EBW048)

:
* Code to process the specified number of times.

:
#EDO

v In the following #DO FROM example, a BXLE loop is generated. In this example,
the BXLE parameter is required because the type of loop cannot be determined
from the parameters.

#DO BXLE,FROM=(R2),BY=(R4),TO=(R5)
:

* Code to process using a BXLE loop based on the contents of
* R2, R4, and R5.

:
#EDO

v In the following example, the WHILE and UNTIL parameters are used together.
#DO WHILE=(LTR,R0,R0,Z),UNTIL=(CR,R2,LE,R3)

*
* The WHILE condition is tested here.

:
* loop processing

:
* The UNTIL condition is tested here.
*

#EDO

v In the following example, the WHILE and TIMES parameters are used together.
#DO WHILE=(CR,R2,EQ,R3),TIMES=(R14,10)

*
* The WHILE condition is tested here.

:
* loop processing

:
* The TIMES BCT is generated here.
*

#EDO

v In the following example, the WHILE, UNTIL, and TIMES parameters are used
together.

#DO WHILE=(R3,NZ),UNTIL=(R2,EQ,R4),TIMES=(R5,#ITEMS)
*
* The WHILE condition is tested here.

:
* loop processing

:
* The UNTIL condition is tested here.

#DO

56 TPFDF R1 and TPF V4R1 Structured Programming Macros

*
* The TIMES BCT is generated here.
*

#EDO

Related Information
“#EXEC–Execute Macro” on page 58.

#DO

TPFDF Structured Programming Macros: Reference 57

#EXEC–Execute Macro
Use this macro to generate an EX instruction. See ESA/370 Principles of Operation
or ESA/390 Principles of Operation for more information about the EX instruction.

Note: You can also use the #EXEC macro as a conditional expression; see
“Conditional Expression Format” on page 14 for more information about the
syntax of a conditional expression.

Format

�� #EXEC reg, copcode,operand ,operand
(,msk ,mnemonic)

opcode,operand ,operand
(,msk ,mnemonic)

��

reg
is the register to use as the first operand in the EX instruction.

copcode
is an operation code starting with C; for example, CLC, CR, and so on.

opcode
is an operation code that sets a condition code but does not start with C; for
example, TM, OC, and so on.

operand
is an operand for the instruction, which can be anything that the assembler
language allows for an assembler instruction operand. See ESA/370 Principles
of Operation or ESA/390 Principles of Operation for more information about
assembler instructions and valid operands. Some of the types of operands
include:

v A register, in the form Rn, where n is the register number; for example, R1.

v A label refers to a defined area of storage (DS), a defined constant (DC), or
an equated value. Generally, the size and type of label is implied from the
type of instruction. However, you can force the size and type by prefixing the
label as follows:

A/label
specifies a 4-byte address contained at location label.

F/label
specifies a fullword starting at location label.

H/label
specifies a halfword starting at location label.

X/label
specifies a byte starting at location label.

I/label
specifies a 1-byte equated value.

P/label
specifies packed data at location label.

v A numeric value, which must be an integer.

v A literal, for example:

#EXEC

58 TPFDF R1 and TPF V4R1 Structured Programming Macros

– A fullword (=F"1000")
– A halfword (=H"10")
– Characters (=C"HELLO").

See ESA/370 Principles of Operation or ESA/390 Principles of Operation for
more information about literals.

v An equate.

v An immediate value, which is a string that represents 1 byte and can be one
of the following:
– Character (C"A")
– Hexadecimal (X'40')
– Binary (B'10101010')
– Length (L'EBW000).

v An arithmetic expression, which is an expression that resolves into an
arithmetic value. For example:
– 10 + 3
– FLD + 10

msk
is the M3 or R3 operand of an RS instruction. See ESA/370 Principles of
Operation or ESA/390 Principles of Operation for more information about the
RS instruction.

Note: You must specify the msk with an RS instruction. Do not specify the
msk for a non-RS instruction.

mnemonic
is one of the condition-code mnemonics shown in Table 2 on page 15.

Note: You must specify the mnemonic when you use the #EXEC macro as a
conditional expression. Do not specify the mnemonic when using the
#EXEC macro alone.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v The register specified for reg is used as the first operand in the EX instruction.
The rest of the expression is the subject instruction of the EX instruction and the
branching condition. See ESA/370 Principles of Operation or ESA/390 Principles
of Operation for more information about the EX instruction.

Examples
v In the following example, the #EXEC macro is used as a conditional expression

for a #IF statement.

#EXEC

TPFDF Structured Programming Macros: Reference 59

#IF #EXEC,R2,TM,FLAGS,X’00’,ON
:

* Code to process
:
#EIF

v In the following example, the #EXEC macro is used to process a Move Character
(MVC) instruction.

#EXEC R5,MVC,EBW008(0),EBW008
:

v In the following example, the #EXEC macro is used to process a Compare
Logical Character under Mask (CLM) instruction.

#EXEC R5,CLM,R6,0,0(R14)
:

Related Information
v “#DO Macro Group” on page 48

v “#GOTO Macro Group” on page 61

v “#IF Macro Group” on page 63.

#EXEC

60 TPFDF R1 and TPF V4R1 Structured Programming Macros

#GOTO Macro Group
Use this macro group to pass control to another section of code.

The #GOTO macro group includes the following macros:
v #GOTO
v #LOCA.

See “#GOTO Macro Group Processing” on page 85 for a diagram that shows the
processing flow of the #GOTO macro group.

Format

�� #GOTO name
,IF, Conditional Expression

()

�

�
,PREFIX=#@LB

,PREFIX=label
��

��
,PREFIX=#@LB

#LOCA name
,PREFIX=label

��

#GOTO
generates a branch to the code starting with a corresponding #LOCA macro.

name
is a name assigned to the section of code associated with the #LOCA macro.

IF specifies when to take the branch condition based on a conditional expression.
See “Conditional Expression Format” on page 14 for information about the
syntax of a conditional expression.

PREFIX=label
specifies a prefix for all link labels generated by this macro group, where label
is a 4-character alphabetic name.

#LOCA
specifies the start of the code for processing.

Entry Requirements
None.

Return Conditions
v For the #GOTO macro, control is passed to the next instruction if the conditional

expression is false. Otherwise, control is passed to the corresponding #LOCA
macro.

v For the #LOCA macro, control is passed to the next instruction.

#GOTO

TPFDF Structured Programming Macros: Reference 61

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v Each macro statement and assembler instruction must begin on a new line in the
application.

v The SPMs generate assembler instructions according to the specified macro
parameters. The necessary branch instructions and link labels are generated
internally to support the nonsequential processing. The SPMs generate standard
link labels in the following format:

#@LBn EQU *

Where:
#@LB is the link-label prefix.
n is a sequence number that is generated automatically.

You can use the PREFIX parameter to change the standard link-label prefix.

v The labels generated by macros nested inside a structure have the standard
prefix #@LB unless another PREFIX parameter is specified with the inner SPMs.

v The TPFDF macros include an ERROR parameter that causes a branch to a
#LOCA macro if an error occurs. You must code a #LOCA macro if you specify
the ERROR parameter on a TPFDF macro.

See the TPFDF Programming Concepts and Reference for more information
about the TPFDF macros.

v You must code a #LOCA macro if you code a #GOTO macro.

v You can have multiple #GOTO macro statements for 1 #LOCA macro statement.

v You can code the #GOTO and the #LOCA macros statements in any order.

Examples
In the following example, a conditional expression is used to control the exit
processing.

#GOTO XSR1ERR1,IF,(LTR,R0,R0,Z)
:

* Code to process if R0 is not zero (the condition is false).
:

#LOCA XSR1ERR1
:

* Code to process if R0 is zero (the condition is true).
:

Related Information
“#EXEC–Execute Macro” on page 58.

#GOTO

62 TPFDF R1 and TPF V4R1 Structured Programming Macros

#IF Macro Group
Use this macro group to process specific code based on a set of conditions. The
#IF macro group includes the following macros:
v #IF
v #ELIF
v #ELSE
v #EIF
v #EIFM.

See “#IF Macro Group Processing” on page 84 for a diagram that shows the
processing flow of the #IF macro group.

Format

��
,PREFIX=#@LB

#IF Conditional Expression
,PREFIX=label code1

�

� �

#ELIF Conditional Expression
code2

#ELSE
code3

�

�
(1)

#EIF
#EIFM num

��

Notes:

1 Only code the #EIFM macro when you are nesting #IF structures. The
#EIF macro is not required for every #IF macro if you use the #EIFM
macro.

#IF
specifies the start of the #IF structure based on a conditional expression. Any
code immediately following this macro is processed if the conditional expression
is true. See “Conditional Expression Format” on page 14 for information about
the syntax of a conditional expression.

PREFIX=label
specifies a prefix for all link labels generated by this macro group, where label
is a 4-character alphabetic name.

code1
is the code to process when the #IF condition is true.

#ELIF
specifies the start of an additional selection (referred to as else if) based on a
conditional expression. Any code immediately following this macro is processed
when the #IF condition and any previous #ELIF conditions are false and the
#ELIF condition is true.

#IF

TPFDF Structured Programming Macros: Reference 63

See “Conditional Expression Format” on page 14 for information about the
syntax of a conditional expression.

code2
is the code to process when the #ELIF condition is true.

#ELSE
specifies the start of the else selection. Any code that follows the #ELSE macro
is processed when none of the #IF or #ELIF conditions are true.

code3
is the code to process when none of the #IF or #ELIF conditions are true.

#EIF
ends the #IF structure.

#EIFM num
generates multiple #EIF macro statements, where num is the number #EIF
macros to generate. Use this when multiple nested #IF structures all end at the
same location.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction after the #EIF macro statement
unless another assembler instruction or macro passes control outside of the #IF
structure.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v The #IF, #ELIF, #ELSE, #EIF, and #EIFM macros can only be used with the #IF
macro group.

v Each macro statement and assembler instruction must begin on a new line in the
application.

v A section of code (represented by code1, and so on) can consist of any number
of standard assembler instructions, including other SPMs or assembler macros.

v The SPMs generate assembler instructions according to the specified macro
parameters. The necessary branch instructions and link labels are generated
internally to support the nonsequential processing. The SPMs generate standard
link labels in the following format:

#@LBn EQU *

Where:
#@LB is the link-label prefix.
n is a sequence number that is generated automatically.

You can use the PREFIX parameter to change the standard link-label prefix.

v The labels generated by macros nested inside a structure have the standard
prefix #@LB unless another PREFIX parameter is specified with the inner SPMs.

v Only one section of code is performed each time the #IF structure is processed.

v You can nest several #IF structures. When nesting, each nested #IF structure
must be completely contained in the previous #IF structure. When processed, the
#ELSE macro will be tied to the most recent #IF macro.

#IF

64 TPFDF R1 and TPF V4R1 Structured Programming Macros

Examples
v In the following example, an explicit #ELIF macro and #ELSE macro are used to

specify alternate selections.
#IF (CLI,XSREST,EQ,1)
:

* Code to process if the field XSREST = 1
:
#ELIF (TM,XSFLAG,X’80’,ON)
:

* Code to process if the field XSREST does not equal 1,
* but bit 0 of XSFLAG is ON.

:
#ELSE
:

* Code to process for all other cases,
* XSREST does not equal 1 and bit 0 of XSFLAG is OFF.

:
#EIF
:

* Processing continues here after one (and only one) of
* the above processes has been performed.

:

v In the following example, the #ELSE macro is not specified because there is no
specific processing required if R2 < R3.

#IF CR,R2,GE,R3
:

* Code to process if R2 >= R3.
:
#EIF

v In the following example, the #EIFM macro is used to end several nested #IF
structures. Also, note that the #ELSE macro is associated with the third #IF
macro statement.

#IF (CLI,XSREST,EQ,1)
:

* Code to process if the field XSREST = 1.
:
#IF CR,R2,GE,R3

:
* Code to process if the field XSREST = 1 and R2 >= R3.

:
#IF CR,R4,LT,R5

:
* Code to process if the field XSREST = 1, R2 >= R3, and R4 < R5.

:
#ELSE
:

* Code to process if the field XSREST = 1 and R2 >= R3,
* but R4 >= R5.

:
#EIFM 3

:
* Processing continues here.

:

Related Information
“#EXEC–Execute Macro” on page 58.

#IF

TPFDF Structured Programming Macros: Reference 65

#SPM–Assembly Output Processing
Use this macro to control the printing of the following:
v Nesting-level indication
v Link-label indication (#@LBnn)
v Structured programming macro (SPM) expansions.

Format

�� �

,
LEVEL=YES

#SPM LEVEL= NO
POP

PRINT=NOMOD
PRINT= GEN

NOGEN
POP

��

LEVEL
controls the printing of assembler messages that indicate the nesting level and
link labels, where:

YES
prints the assembler messages.

NO
does not print the assembler messages.

POP
restores the assembler message printing to the state that was set before
the previous #SPM macro with the LEVEL parameter.

PRINT
controls the printing of the SPM macro expansions, where:

GEN
prints the macro expansions.

NOGEN
does not print the macro expansions.

NOMOD
cancels any previous #SPM PRINT=GEN or #SPM PRINT=NOGEN
statement.

POP
restores the macro expansion printing to the state that was set before the
previous #SPM macro with the PRINT parameter.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction.

#SPM

66 TPFDF R1 and TPF V4R1 Structured Programming Macros

Programming Considerations
None.

Examples
v The following is an example of the PRINT parameter.

#SPM PRINT=GEN

When PRINT=GEN is coded, each SPM (except #) generates the following code
at the beginning of the macro.

PUSH PRINT
PRINT GEN

The following code is generated at the end of each macro:
POP PRINT

v The following example shows how the nesting levels, link labels, and macro
expansions are printed.

#SPM PRINT=GEN,LEVEL=YES
#DO WHILE=(CR,R2,EQ,R3),PREFIX=AAAA

+ PUSH PRINT
+ PRINT GEN
+AAAA3 EQU *
+ CR R2,R3
+ BC 15-8,AAAA2
+*,1
+ POP PRINT

#DO WHILE=(CR,R3,EQ,R4)
+ PUSH PRINT
+ PRINT GEN
+#@LB9 EQU *
+ CR R3,R4
+ BC 15-8,#@LB8
+*,2
+ POP PRINT

#IF ICM,R2,7,EBW000,NZ
+ PUSH PRINT
+ PRINT GEN
+ ICM R2,7,EBW000
+ BC 15-7,#@LB14 BR FALSE TO #ELSE OR #EIF
+*,3
+ POP PRINT

LA R4,0
#EIF

+ PUSH PRINT
+ PRINT GEN
+#@LB14 EQU *
+*,2
+ POP PRINT

#EDO
+ PUSH PRINT
+ PRINT GEN
+ BC 15,#@LB9
+#@LB8 EQU *
+ POP PRINT
+ PUSH PRINT
+ PRINT GEN
+*,1
+ POP PRINT

LA R0,0
#EDO

+ PUSH PRINT
+ PRINT GEN

#SPM

TPFDF Structured Programming Macros: Reference 67

Related Information
None.

#SPM

68 TPFDF R1 and TPF V4R1 Structured Programming Macros

#STPC–Step a Byte or Character
Use this macro to generate inline code to increment or decrement (also referred to
as step) a 1-byte value at a specified location.

Format

�� #STPC reg1,number,location ��

reg1
is a working register for the macro.

number
is the amount by which to increment or decrement the specified value. If you
specify a positive number, the value at the specified location will be
incremented. If you specify a negative number, the value at the specified
location will be decremented.

location
is the label of the area that contains the value to be incremented or
decremented.

Entry Requirements
None.

Return Conditions
v The contents of reg1 are overwritten.

v Control is returned to the next sequential instruction.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v In a tightly coupled environment, use care when changing common storage. It is
possible that more than one program can change a value at the same time. Use
the #STPF macro when updating shared storage to ensure the field is updated
consistently.

Examples
v In the following example, the value in the byte at EBW033 is incremented by 10.

#STPC R0,10,EBW033

v In the following example, the value in the byte at EBX008 is decremented by 4.
#STPC R14,-4,EBX008

Related Information
v “#STPF–Step a Fullword” on page 70

v “#STPH–Step a Halfword” on page 72

v “#STPR–Step Registers” on page 73.

#STPC

TPFDF Structured Programming Macros: Reference 69

#STPF–Step a Fullword
Use this macro to generate inline code to increment or decrement a fullword value
at a specified location. You can also use this macro to step shared common
storage.

Format

�� #STPF reg1 ,number,location
(reg1,reg2)

��

reg1
is a working register for the macro.

reg1,reg2
are a pair of registers used by the Compare and Swap (CS) instruction. See
ESA/370 Principles of Operation or ESA/390 Principles of Operation for more
information about the CS instruction. Use this form to change the contents of a
fullword in shared storage to ensure the field is always updated consistently.

number
is the amount by which to increment or decrement the specified value. If you
specify a positive number, the value at the specified location will be
incremented. If you specify a negative number, the value at the specified
location will be decremented.

location
is the label of the area that contains the value to be incremented or
decremented.

Entry Requirements
None.

Return Conditions
v The contents of reg1 are overwritten.

v Control is returned to the next sequential instruction.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v In a tightly coupled environment, use care when changing common storage. It is
possible that more than one program can change a value at the same time. Use
a pair of registers (reg1,reg2) with this macro when changing common storage to
avoid this problem.

Examples
v In the following example, the value in the fullword at EBX004 is incremented by

100000.
#STPF R2,100000,EBX004

v In the following example, the value in the fullword at EBX036 is decremented by
760.

#STPF

70 TPFDF R1 and TPF V4R1 Structured Programming Macros

#STPF R5,-760,EBX036

v In the following example, the value in the fullword at the shared location called
SHARED is incremented by 20.

#STPF (R2,R3),20,SHARED

Related Information
v “#STPC–Step a Byte or Character” on page 69

v “#STPH–Step a Halfword” on page 72

v “#STPR–Step Registers” on page 73.

#STPF

TPFDF Structured Programming Macros: Reference 71

#STPH–Step a Halfword
Use this macro to generate inline code to increment or decrement a halfword value
at a specified location.

Format

�� #STPH reg1,number,location ��

reg1
is a working register for the macro.

number
is the amount by which to increment or decrement the specified value. If you
specify a positive number, the value at the specified location will be
incremented. If you specify a negative number, the value at the specified
location will be decremented.

location
is the label of the halfword area that contains the value to be incremented or
decremented.

Entry Requirements
None.

Return Conditions
v The contents of reg1 are overwritten.

v Control is returned to the next sequential instruction.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v In a tightly coupled environment, use care when changing common storage. It is
possible that more than one program can change a value at the same time. Use
the #STPF macro when updating shared storage to ensure the field is updated
consistently.

Examples
v In the following example, the value in the halfword at EBW002 is incremented by

300.
#STPH R4,300,EBW002

v In the following example, the value in the halfword at EBW086 is decremented by
400.

#STPH R7,-400,EBW086

Related Information
v “#STPC–Step a Byte or Character” on page 69

v “#STPF–Step a Fullword” on page 70

v “#STPR–Step Registers” on page 73.

#STPH

72 TPFDF R1 and TPF V4R1 Structured Programming Macros

#STPR–Step Registers
Use this macro to generate inline code to increment or decrement 1 or more
registers.

Format

�� �

,

#STPR reg ,number
,type/label
,register

��

reg
is a register that contains the value to be incremented or decremented. You can
specify as many as 10 registers.

number
is the amount by which to increment or decrement the specified value. If you
specify a positive number, the value in the specified register will be
incremented. If you specify a negative number, the value in the specified
register will be decremented.

type/label
specifies the amount by which to increment or decrement the specified value,
where label is the label of a location that contains the amount and is prefixed by
one of the following:

A/label
specifies a 4-byte address contained at location label.

F/label
specifies a fullword starting at location label.

H/label
specifies a halfword starting at location label.

X/label
specifies a byte starting at location label.

I/label
specifies a 1-byte equated value.

P/label
specifies packed data at location label.

register
is a register that contains the amount by which to increment or decrement the
specified value.

Entry Requirements
None.

Return Conditions
v The contents of reg are overwritten.

v Control is returned to the next sequential instruction.

#STPR

TPFDF Structured Programming Macros: Reference 73

Programming Considerations
All labels used in the SPM conditional expression can be no more than 32
characters long. Any additional characters are truncated.

Examples
v In the following example, registers R0 and R4 are incremented by the contents of

R7.
#STPR R0,R4,R7

v In the following example, registers R0 through R5 are incremented by the value
of the fullword at location EBX000.

#STPR R0,R1,R2,R3,R4,R5,F/EBX000

v In the following example, the specified registers are incremented by the value of
the halfword at location EBX032.

#STPR R0,R4,R14,R2,R5,R3,H/EBX032

v In the following example, registers R7 and R15 are incremented by 12.
#STPR R7,R15,12

v In the following example, registers R0 and R4 are decremented by 4.
#STPR R0,R4,-4

v In the following example, registers R14, R15 and R0 are incremented by the
length of the field GR00ALC.

#STPR R14,R15,R0,L’GR00ALC

Related Information
v “#STPC–Step a Byte or Character” on page 69

v “#STPH–Step a Halfword” on page 72

v “#STPF–Step a Fullword” on page 70.

#STPR

74 TPFDF R1 and TPF V4R1 Structured Programming Macros

#SUBR Macro Group
Use this macro group to call common subroutines. Generally, subroutines:
v Are logically self-contained entities
v Have one entry point
v Have one exit point
v Are not enclosed in any other logic structures.

The #SUBR macro group includes the following macros:
v #PERF
v #SUBR
v #ESUB.

See “#SUBR Macro Group Processing” on page 86 for a diagram that shows the
processing flow of the #SUBR macro group.

Format

��
,PREFIX=#@LB

#PERF reg,name
,save1 ,PREFIX=label

��

��
,PREFIX=#@LB

#SUBR name
,reg ,PREFIX=label
,reg,save2

code1
#ESUB ��

#PERF
branches to a specified subroutine.

#SUBR
specifies the start of the subroutine.

#ESUB
specifies the end of the subroutine. If save2 was specified on the #SUBR
macro, reg is reloaded before control is returned.

reg
is a work register used for branching to the subroutine. If the subroutine code is
physically located before the corresponding #PERF macro, the reg parameter
must be specified on the #SUBR macro as well.

The register specified on the #SUBR macro must be the same register
specified on the #PERF macro. If there is a conflict between the registers, an
assembly error is issued and the register specified on #SUBR is ignored.

name
is the name of the subroutine.

save1
is a fullword save area into which reg is stored before branching to the
subroutine. On return from the subroutine, reg is reloaded from save1.

#SUBR

TPFDF Structured Programming Macros: Reference 75

save2
is a fullword save area into which reg is stored for the duration of the subroutine
processing. This allows the subroutine to use reg during processing.

If you do not specify save2 on the #SUBR macro, reg is not saved.

PREFIX=label
specifies a prefix for all link labels generated by this macro group, where label
is a 4-character alphabetic name.

code1
is the code to process for the subroutine.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction.

Programming Considerations
v All labels used in the SPM conditional expression can be no more than 32

characters long. Any additional characters are truncated.

v The #PERF, #SUBR, and #ESUB macros can only be used with the #SUBR
macro group.

v Each macro statement and assembler instruction must begin on a new line in the
application.

v A section of code (represented by code1, and so on) can consist of any number
of standard assembler instructions, including other SPMs or assembler macros.

v The SPMs generate assembler instructions according to the specified macro
parameters. The necessary branch instructions and link labels are generated
internally to support the nonsequential processing. The SPMs generate standard
link labels in the following format:

#@LBn EQU *

Where:
#@LB is the link-label prefix.
n is a sequence number that is generated automatically.

You can use the PREFIX parameter to change the standard link-label prefix.

v The labels generated by macros nested inside a structure have the standard
prefix #@LB unless another PREFIX parameter is specified with the inner SPMs.

v You can have multiple #PERF macro statements for one #SUBR macro
statement.

v Subroutines cannot be nested; that is, a subroutine cannot call another
subroutine. A nested subroutine generates an assembly warning; however, the
assembly continues normally.

Examples
In the following example, there is a call to subroutine XSR1RLCH.

#PERF R14,XSR1RLCH,EBW080 Release old chain
*
* R14 is stored in EBW080, the subroutine is executed,
* then R14 is reloaded from EBW080.
* Processing continues with R14 as it was before the

#SUBR

76 TPFDF R1 and TPF V4R1 Structured Programming Macros

* subroutine was invoked by #PERF
* (assuming the subroutine itself did not corrupt
* EBW080 through EBW083).

:
:
:

*
#SUBR XSR1RLCH,R14,EBW084 Chain-release subroutine

*
* The return register (R14) is stored in EBW084 and can be
* used in subroutine logic (but do not change the contents
* of EBW080 through EBW087...).

:
* subroutine processing

:
#ESUB End of subroutine named XSR1RLCH

* R14 is restored from EBW084
* before the BR to return

Related Information
None.

#SUBR

TPFDF Structured Programming Macros: Reference 77

#SUBR

78 TPFDF R1 and TPF V4R1 Structured Programming Macros

TPFDF Structured Programming Macro Group Processing
Diagrams

The following contains diagrams that show the flow of each of the following:
v Selection and iteration macro groups (#CASE, #DO, and #IF)
v Branch and subroutine macro groups (#GOTO and #SUBR).

Selection and Iteration Macro Groups
The following section shows the processing flow of the selection and iteration macro
groups.

#CASE Macro Group Processing
Figure 5 on page 80 shows the processing flow of the #CASE macro group.

© Copyright IBM Corp. 1996, 2001 79

|
|
|

#DO Macro Group Processing
Figure 6 on page 81 shows the processing flow of a #DO WHILE loop.

#CASE 1

#CASE 2

#CASE n

#CASE ERROR

Process case 1

Process case 2

Process case n

Process error

#CAST#CAST

#ECAS

#CASE

#CASE

#CASE

#CASE ERROR

#CAST

#ECAS

number

number

n

Processing for this case (or cases).

Processing for this case (or cases).

Processing for this case (or cases).

The code to process case numbers
outside the range.

case register

Generic code:

Figure 5. Selection: #CASE Macro Group. In this diagram, the boxes with broken lines are optional.

80 TPFDF R1 and TPF V4R1 Structured Programming Macros

Figure 7 on page 82 shows the processing flow of a #DO UNTIL loop.

True False

Check A

Perform
process A

True

#EXIF B1

False

Perform
process B1

Perform
process B2

#OREL

True

#DOEX C

False

Perform
process C

#ELOP

Perform
process D

#EDO

1

1

#EXIF

#OREL

#ELOP

#EDO

#DO WHILE=condition A

The code for process A.

condition B1

The code for process B1.

The code for process B2.

(The #OREL delimits the previous #EXIF.)

#DOEX condition C

The code for process C.

(The #ELOP delimits the iteration loop.)

The code for process D.

(The #EDO delimits the #DO structure.)

Generic code:

Note: Process B1 goes to the #EDO.

Figure 6. Iteration: #DO Macro Group with the WHILE Parameter. In this diagram, the boxes with broken lines are
optional.

TPFDF Structured Programming Macro Group Processing Diagrams 81

Figure 8 on page 83 shows the processing flow of a #DO TIMES or #DO FROM
loop.

Perform
process A

True

#EXIF B1

False

Perform
process B2

#OREL

True

#DOEX C

False

Perform
process C

#EXIF

#OREL

#DOEX

#ELOP

#EDO

#DO UNTIL= condition A

The code for process A.

condition B1

The code for process B1.

The code for process B2.

(The #OREL delimits the previous #EXIF.)

condition C

The code for process C.

(The #ELOP delimits the iteration loop.)

The code for process D.

(The #EDO delimits the #DO structure.)

Generic code:

False True

Check A

#ELOP

Perform
process D

#EDO

Perform
process B1

Figure 7. Iteration: #DO Macro Group with the UNTIL Parameter. In this diagram, the boxes with broken lines are
optional.

82 TPFDF R1 and TPF V4R1 Structured Programming Macros

Figure 9 on page 84 shows the processing flow of a #DO INF loop.

Perform
process A

True

#EXIF B1

False

Perform
process B2

#OREL

True

#DOEX C

False

Perform
process C

#EXIF

#OREL

#DOEX

#ELOP

#EDO

#DO TIMES = loop value

The code for process A.

condition B1

The code for process B1.

The code for process B2.

(The #OREL delimits the previous #EXIF.)

condition C

The code for process C.

(The #ELOP delimits the iteration loop.)

The code for process D.

(The #EDO delimits the #DO structure.)

Generic code:

No

End condition

#ELOP

Perform
process D

#EDO

Perform
process B1

Initialize
registers

Adjust the
registers

Yes

loop value
or

#DO FROM =

Figure 8. Iteration: #DO Macro Group with the FROM or TIMES Parameter. In this diagram, the boxes with broken
lines are optional.

TPFDF Structured Programming Macro Group Processing Diagrams 83

#IF Macro Group Processing
Figure 10 on page 85 shows the processing flow of the #IF macro group.

Perform
process A

True

#EXIF B1

False

Perform
process B2

#OREL

True

#DOEX C

False

Perform
process C

#EXIF

#OREL

#DOEX

#ELOP

#EDO

#DO INF

The code for process A.

condition B1

The code for process B1.

The code for process B2.

(The #OREL delimits the previous #EXIF.)

condition C

The code for process C.

(The #ELOP delimits the iteration loop.)

The code for process D.

(The #EDO delimits the #DO structure.)

Generic code:

#ELOP

Perform
process D

#EDO

Perform
process B1

Figure 9. Iteration: #DO Macro Group with the INF Parameter. In this diagram, the boxes with broken lines are
optional.

84 TPFDF R1 and TPF V4R1 Structured Programming Macros

Branch and Subroutine Macro Groups
The following section shows the processing flow of the branch and subroutine
macro groups.

#GOTO Macro Group Processing
Figure 11 on page 86 shows the processing flow of the #GOTO macro group.

Perform
process A

#ELIF

#ELIF

#EIF

#IF

The code for process A.

condition B

The code for process B.

The code for process N.

condition N

The code to handle the ELSE case.

Generic code:

#ELOP

Perform
process B

False

#ELIF B

True

#EIF

Perform
process N

False

#ELIF N

True

#ELSE

Perform
ELSE code

#ELSE

condition A

False

Check A

True

Figure 10. Selection: #IF Macro Group. In this diagram, the boxes with broken lines are optional.

TPFDF Structured Programming Macro Group Processing Diagrams 85

#SUBR Macro Group Processing
Figure 12 shows the processing flow of the #SUBR macro group.

#GOTO

#LOCA

Generic code

name name(Go to code starting at location .)

Other code.

name

#GOTO

#LOCA

Perform the
process

Figure 11. Branch: #GOTO Macro Group

#PERF

#SUBR

Generic code

name name(Call the subroutine .)

Other code.

name

#PERF

#SUBR

Perform the
process

#ESUB

Subroutine code.

#ESUB

Figure 12. Subroutine: #SUBR Macro Group

86 TPFDF R1 and TPF V4R1 Structured Programming Macros

Part 3. TPF Structured Programming Macros

TPF Structured Programming Macros: Reference 89
CASE Macro Group . 90
DCL–Declare . 93
DCLREG–Declare General Registers. 96
DO Macro Group . 97
GOTO–Branch Macro . 103
IF Macro Group . 104
LEAVE–Exit from a DO Loop 111
LET–Assignment . 112
SELECT Macro Group. 117
SET–Flag or Switch Assignment 120

© Copyright IBM Corp. 1996, 2001 87

88 TPFDF R1 and TPF V4R1 Structured Programming Macros

TPF Structured Programming Macros: Reference

The following contains an alphabetic listing of the TPF structured programming
macros (SPMs).

Note: These SPMs are available only with the TPF system. If you use TPFDF in an
Airline Control System (ALCS) environment, see Part 2, “TPFDF Structured
Programming Macros” on page 7 for information about the SPMs available
for your environment.

The description of each SPM includes the following information:

Format
Provides a syntax (railroad track) diagram for the macro and a description
of each parameter and variable. See “How to Read the Syntax Diagrams”
on page x for more information about syntax diagrams.

Entry Requirements
Lists any special conditions that must be true when you use the macro.

Return Conditions
Lists what is returned when the macro is finished processing.

Programming Considerations
Lists any additional considerations for using the macro, including any
restrictions or limitations.

Examples
Provides one or more examples that show you how to code the macro.

Related Macros
Lists where to find information about related macros.

© Copyright IBM Corp. 1996, 2001 89

|
|

CASE Macro Group
Use this macro group to select between several alternatives without using complex
If-Then-Else logic. This macro group is used when the choice between a number of
different code paths can be controlled by an arithmetic variable.

The CASE macro group includes the following macros:
v CASE
v SCASE
v ENDSC
v ENDC.

Format

�� CASE �Arithmetic Expression SCASE ENDSC
code1

ENDC ��

Arithmetic Expression:

� arithval,arithop,arithval
arithval

CASE
starts a group of subcases based on an arithmetic expression.

If the arithmetic expression resolves to 0, the first subcase is processed; if the
arithmetic expression resolves to 1, the second subcase is processed, and so
on. There is no default subcase.

arithval
is a number represented directly in numeric form or in symbolic form. This value
can be one of the following:
v Variable
v Constant
v Result of an arithmetic expression.

arithop
is one of the following arithmetic operators:

Operator Description
+ Addition
− Subtraction
* Multiplication
/ Integer division
// Remainder.

SCASE
specifies the start of a subcase.

code1
is the code to process for the associated subcase.

CASE

90 TPFDF R1 and TPF V4R1 Structured Programming Macros

ENDSC
specifies the end of a subcase.

ENDC
specifies the end of the group of subcases.

Entry Requirements
None.

Return Conditions
v Control is returned to the next sequential instruction after the ENDC macro

statement unless another assembler instruction or macro passes control outside
the CASE structure.

v Any combination (or none) of the four work registers (default R0–R1, R14–R15)
can be used by the CASE macro. A message is generated for each work register
used. The contents of each work register used are unknown. The work registers
can be changed by coding the WORK0 and WORK2 parameters of the DCL
macro. Each of these parameters must be the even register of an even-odd pair.
The contents of all other registers are preserved across this macro call.

Programming Considerations
v The CASE, SCASE, ENDSC, and ENDC macros can only be used with the

CASE macro group.

v Each macro statement and assembler instruction must begin on a new line in the
application.

v A section of code (represented by code1, and so on) can consist of any number
of standard assembler instructions, including other SPMs or assembler macros.

v Because the SPMs are assembler language macros, all symbols used with the
macros must be previously defined to the assembler. In addition, for the TPF
SPMs, you must declare the attributes of the symbols using the DCL macro.

v If you do not code all the possible subcases, the results cannot be predicted.

Examples
v In the following example, the subcase is selected based on the result of 1+1;

therefore, the subcase with LA R1,3 is always selected.
CASE 1,+,1

SCASE
LA R1,1

ENDSC
SCASE

LA R1,2
ENDSC
SCASE

LA R1,3
ENDSC

ENDC

v The following example shows the use of variables in the arithmetic expression.
NUM1 EQU EBW012,4 Reentrant for NUM1 DS A
NUM2 EQU EBW024,4 Reentrant for NUM2 DS A

DCL NUM1,UNSIGNED
DCL NUM2,UNSIGNED

:
:

* Code that assigns values to NUM1 and NUM2
:

CASE

TPF Structured Programming Macros: Reference 91

:
*

CASE NUM1,-,NUM2
SCASE

* WHEN NUM1-NUM2 = 0
:

ENDSC
SCASE

* WHEN NUM1-NUM2 = 1
:

ENDSC
ENDC

Related Information
v “DCL–Declare” on page 93

v “SELECT Macro Group” on page 117.

CASE

92 TPFDF R1 and TPF V4R1 Structured Programming Macros

DCL–Declare
Use this macro to specify the attributes for symbols referred to in the IF, DO, CASE,
and LET macros. These attributes remain in effect until they are changed by a
subsequent DCL macro.

Format

�� DCL
symbol

,attribute
,arithcon

,LIST=YES
�

�
,WORK0=0

,WORK0=n

,WORK2=14

,WORK2=m
��

symbol
is the label of a variable or constant that will be referred to in the structured
programming macros (SPMs).

attribute
is one of the following types for the symbol being declared:

SIGNED
The attribute normally given to fullword (F) or halfword (H) symbols. The
SIGNED attribute causes the field to be treated as containing a positive or
negative fixed binary number whose high-order bit indicates the sign.

UNSIGNED
The attribute normally given to any symbol whose type is not a fullword (F),
halfword (H), or character (C). The UNSIGNED attribute causes the field to
be treated as containing a positive fixed binary number.

REGISTER
The attribute normally given to symbols defined to the assembler as follows:

symbol EQU n

The REGISTER attribute causes the symbol to be treated as a
general-purpose register using n as the register number.

CHARACTER
The attribute normally given to character (C) symbols. The CHARACTER
attribute causes the field to be treated as a string of bytes.

If you do not specify an attribute for a symbol, the symbol is removed from the
symbol table.

arithcon
is a decimal integer that represents the length of the symbol, in bytes, unless
REGISTER is specified as the attribute. In that case, it is the general-purpose
register number. If you do not specify arithcon, the length (L') defined to the
assembler is used. This length (L') is not available at assembly time under
some assemblers if the symbol is generated by a macro. If REGISTER is

DCL

TPF Structured Programming Macros: Reference 93

specified but the register number is not specified, the register defaults to the
length of the symbol, or 1 if the symbol is an equate.

The value of the arithmetic constant is restricted by the attributes declared as
follows:

Attribute Value Range
SIGNED 1–4
UNSIGNED 1–4
CHARACTER 1–256
REGISTER 0–15

LIST=YES
prints all symbols that currently have their assembler attributes overridden with
the DCL macro. The last attributes assigned are printed with the symbol.

WORK0=n
defines the first even-odd pair of general-purpose registers to be used by the
SPMs. The value of n must be even. The registers are available for use in
between macros but will be changed during macro processing.

WORK2=m
defines the second even-odd pair of general-purpose registers to be used by
the structured programming macros. The value of m must be even and cannot
be 0. The registers are available for use in between macros but may be
changed during macro processing.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction.

Programming Considerations
v Because the SPMs are assembler language macros, all symbols used with the

macros must be previously defined to the assembler. In addition, for the TPF
SPMs, you must declare the attributes of the symbols using the DCL macro.

For example, to use a symbol in a conditional expression following the IF macro,
you must define the symbol to the assembler and specify the symbol using the
DCL macro.

There are two ways to define a symbol to the assembler:
– Use an EQUATE value.
– Use DS to specify space if a reentrant program is not required.

For example:
NUM EQU EBX016,4,C’F’

is a reentrant form of:
NUM DS F

To use NUM in the SPMs, the attributes for the NUM symbol must be declared
using the DCL macro:

DCL NUM,SIGNED,4

DCL

94 TPFDF R1 and TPF V4R1 Structured Programming Macros

The previous declaration specifies that the NUM symbol is a fullword signed
integer. Any value consistent with a fullword plus a sign bit can be assigned to
the symbol NUM. For example:

LET NUM,=,65537

NUM can be an integer 1 larger than a halfword.

v If you do not specify a symbol, the attributes are determined as follows.

– If the symbol is defined to the assembler as type C, the attribute is
CHARACTER.

– If the symbol is defined to the assembler as type F or H, the attribute is
SIGNED.

– If the symbol is defined with an EQU statement, the attribute is REGISTER.

– All other types are given the attribute UNSIGNED including undefined
symbols.

v Use this macro primarily for items (or usage) unique to an individual program.
Also, when possible, do not specify the length so that changes in size do not
require recoding.

v Use the REGISTER attribute only with variables declared with an equate or with
variables not previously defined.

v The DCLREG macro provides a convenient method of declaring each of the
general registers, R0–R15. This allows the registers to be used in subsequent IF,
DO, CASE macros, and as operands to the LET macro. See “DCLREG–Declare
General Registers” on page 96 for more information about the DCLREG macro.

Examples
The following example shows several DCL macro statements.

DCL WORK0=8
DCL R2,REGISTER,2
DCL MY0CCT,UNSIGNED,2
DCL MY1CCT,SIGNED,2
DCL MY0TXT,CHARACTER,99
DCL EBW020,CHARACTER,4
DCL FRIEDT
DCL LIST=YES

Related Information
“DCLREG–Declare General Registers” on page 96.

DCL

TPF Structured Programming Macros: Reference 95

DCLREG–Declare General Registers
Use this macro to define all general registers with a name starting with the letter R.
For example, general register 5 is defined as R5. The new register definitions can
then be used with other TPF structured programming macros (SPMs).

Format

�� DCLREG ��

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction.

Programming Considerations
Coding a DCLREG macro is equivalent to coding the following DCL macro
statements:

DCL R0,REGISTER,0
DCL R1,REGISTER,1
DCL R2,REGISTER,2
DCL R3,REGISTER,3
DCL R4,REGISTER,4
DCL R5,REGISTER,5
DCL R6,REGISTER,6
DCL R7,REGISTER,7
DCL R8,REGISTER,8
DCL R9,REGISTER,9
DCL R10,REGISTER,10
DCL R11,REGISTER,11
DCL R12,REGISTER,12
DCL R13,REGISTER,13
DCL R14,REGISTER,14
DCL R15,REGISTER,15

See “DCL–Declare” on page 93 for more information about the DCL macro.

Examples
The following defines all general registers with a name that starts with the letter R.

DCLREG

Related Information
“DCL–Declare” on page 93.

DCLREG

96 TPFDF R1 and TPF V4R1 Structured Programming Macros

DO Macro Group
Use this macro group to process specific code repeatedly based on a condition.

The DO macro group includes the following macros:
v DO
v ENDDO.

Format

�� DO
Loop Count Expression

,WHILE, Conditional Expression
,UNTIL, Conditional Expression

WHILE, Conditional Expression
UNTIL, Conditional Expression

�

� ENDDO
code1

��

Loop Count Expression:

loopcnt
,=,init

BY,1

,
BY,byval

,TO,limit

Conditional Expression:

Simple Conditional Expression
ccmask

�

� �

,booleanop, Simple Conditional Expression
ccmask

Simple Conditional Expression:

Arithmetic Comparison
String Comparison
Bit Mask Comparison

DO

TPF Structured Programming Macros: Reference 97

Arithmetic Comparison:

arithval,operator,arithval

String Comparison:

strcon
,LENGTH,bytelen

strsymbl
,OFFSET,byteoff ,LENGTH,bytelen

,operator, �

� strcon
,LENGTH,bytelen

strsymbl
,OFFSET,byteoff ,LENGTH,bytelen ,PAD,padval

Bit Mask Comparison:

bitsymbl ,MASK,bitmsk,operator, 1
,OFFSET,byteoff 0

,=,L'bitsymbl

DO
specifies the start of the DO structure. If you do not specify any parameters, an
unconditional loop is generated; use the LEAVE or GOTO macro to avoid
creating an infinite loop. See “LEAVE–Exit from a DO Loop” on page 111 and
“GOTO–Branch Macro” on page 103 for more information about the LEAVE and
GOTO macros.

loopcnt
is an arithmetic variable used to control the loop. An arithmetic variable is a
symbol that represents a numeric value.

init
is an initial value for the loop counter (loopcnt). The initial value can be one of
the following:
v Variable
v Constant
v An arithmetic expression.

If you do not specify an initial value, the TPF system assumes that the loop
counter (loopcnt) is already initialized.

BY,byval
specifies a value that is used to increment or decrement the loop counter,
where byval is a number or a symbol that represents a number.

If byval is preceded by a minus sign (−), the value is used to decrement the
loop counter. For example,

BY,−,1

TO,limit
specifies when to end the loop, where limit is a number or a symbol that
represents a number. The limit is compared to the loop counter, and when the
value of loopcnt is greater than the value of limit the loop exits. If byval is
preceded by a minus sign (−), the loop exits when loopcnt is less than limit.

DO

98 TPFDF R1 and TPF V4R1 Structured Programming Macros

If you specify a loop counter and do not specify a WHILE or UNTIL parameter,
you must specify the TO limit.

WHILE
specifies the start of a DO WHILE loop based on a conditional expression. The
loop is processed only if and while the conditional expression is true.

UNTIL
specifies the start of a DO UNTIL loop based on a conditional expression. The
loop is processed only if and while the conditional expression is false.

ccmask
is any value that can be used as the mask in a branch on condition instruction.
The SPMEQ equate macro defines some of these condition code masks.

booleanop
is one of the following Boolean connectors:
v AND
v OR.

arithval
is a number represented directly in numeric form or in symbolic form. This value
can be one of the following:
v Variable
v Constant
v Result of an arithmetic expression.

operator
is one of the following relational operators:

Operator Description
= Equal
EQ Equal
¬= Not equal
NE Not equal
< Less than
LT Less than
> Greater than
GT Greater than
<= Less than or equal
LE Less than or equal
>= Greater than or equal
GE Greater than or equal.

strcon
is a string constant, which can be one of the following:
v Character (C"HELLO")
v Hexadecimal (X'4040404040')
v Binary (B'10101010').

strsymbl
is a symbol that represents a character string. This symbol must be defined with
a CHARACTER attribute. See “DCL–Declare” on page 93 for more information
about defining the attribute for a symbol.

OFFSET,byteoff
specifies a substring, where byteoff is the distance (starting from zero) from the
leftmost byte of the string. For example,

C"12345",OFFSET,3

resolves to a substring of C"45".

DO

TPF Structured Programming Macros: Reference 99

See the restrictions listed in the programming considerations.

LENGTH,bytelen
specifies a substring, where bytelen is the length of the string starting from the
leftmost byte. For example,

C"12345",LENGTH,4

resolves to a substring of C"1234".

See the restrictions listed in the programming considerations.

PAD,padval
concatenates a character, padval, on the end of a string to fill out the string to
the end of the declared length.

See the restrictions listed in the programming considerations.

bitsymbl
is a symbol that represents a value for the bit mask comparison. This symbol
can be defined with any attribute, but only the leftmost byte is used in the
comparison. See “DCL–Declare” on page 93 for more information about defining
the attribute for a symbol.

L'bitsymbl
specifies the length of bitsymbl and resolves to the number of bytes of storage
that bitsymbl represents.

MASK,bitmsk
specifies a bit mask, where bitmsk is a value that can be used as immediate
data for a test under mask (TM) instruction. See ESA/370 Principles of
Operation or ESA/390 Principles of Operation for more information about the
TM instruction.

code1
is the code to process.

ENDDO
ends the loop processing.

Entry Requirements
None.

Return Conditions
v Control is returned to the next sequential instruction after the ENDDO macro

statement unless another assembler instruction or macro passes control outside
the DO structure.

v Any combination (or none) of the four work registers (default R0–R1, R14–R15)
can be used by the DO macro. A message is generated for each work register
used. The contents of each work register used are unknown. The work registers
can be changed by coding the WORK0 and WORK2 parameters of the DCL
macro. Each of these parameters must be the even register of an even-odd pair.
The contents of all other registers are preserved across this macro call.

Programming Considerations
v The DO and ENDDO macros can only be used with the DO macro group.

v Each macro statement and assembler instruction must begin on a new line in the
application.

DO

100 TPFDF R1 and TPF V4R1 Structured Programming Macros

v A section of code (represented by code1, and so on) can consist of any number
of standard assembler instructions, including other SPMs or assembler macros.

v Because the SPMs are assembler language macros, all symbols used with the
macros must be previously defined to the assembler. In addition, for the TPF
SPMs, you must declare the attributes of the symbols using the DCL macro.

v If you specify a DO macro with no parameters, the loop will process forever
unless you code a LEAVE macro or an explicit branch instruction. See
“LEAVE–Exit from a DO Loop” on page 111 for more information about the
LEAVE macro.

v If you specify both the OFFSET and LENGTH parameters, you must code the
OFFSET parameter first.

v If you specify the OFFSET and PAD parameters with the second operand, you
must specify the LENGTH parameter on the second operand as well.

v The DO loop is processed as follows:
1. The loop counter begins at its initial value.
2. The application program processes through the loop.
3. The increment is added to the control variable.
4. A test is made to ensure the result is below the limit.
5. If below the limit, the application program processes through the loop again;

otherwise, the program branches to the statement following the ENDDO.

v If symbols referred to by loopcnt, byval, or limit are changed during loop
processing, the results cannot be predicted.

Symbols in the conditional expression are evaluated at the beginning of each
repetition and can be changed in the DO group to end the loop.

v The most efficient code is produced when variables have the REGISTER
attribute. (See “DCL–Declare” on page 93 for more information about specifying
the attribute for a symbol.) In particular, use a register as the control variable for
the following two special cases:

1. DO variable,BY,−,1,TO,1

2. DO variable,BY,x,TO,y

Where y is an odd-numbered register and x is the same as y or is the next lower
register.

Case 1 will use a BCT instruction to control the loop, and case 2 will use a BXLE
instruction if the control variable is a register.

Examples
v The following example shows a simple DO loop.

LET ANS1,=,0
DO NUM1,=,1,TO,10

LET ANS1,=,ANS1,+,1
ENDDO

v The following example shows a simple DO WHILE loop.
LET ANS1,=,0
DO NUM1,WHILE,ANS1,LT,10

LET ANS1,=,ANS1,+,1
ENDDO

v The following example shows a simple DO UNTIL loop.
LET ANS1,=,0
DO NUM1,UNTIL,ANS1,GE,10

LET ANS1,=,ANS1,+,1
ENDDO

DO

TPF Structured Programming Macros: Reference 101

Related Information
v “DCL–Declare” on page 93

v “IF Macro Group” on page 104

v “LEAVE–Exit from a DO Loop” on page 111

DO

102 TPFDF R1 and TPF V4R1 Structured Programming Macros

GOTO–Branch Macro
Use this macro to pass control to another section of code.

Format

�� GOTO label ��

label
is a symbolic label where control will be passed.

Entry Requirements
None.

Return Conditions
Control is passed to the label specified on the GOTO macro.

Programming Considerations
The label cannot be coded between the GOTO macro and the next structured
programming macro at the same level of nesting.

Examples
The following example causes a branch to label ENDLOOP.

GOTO ENDLOOP

Related Information
None.

GOTO

TPF Structured Programming Macros: Reference 103

IF Macro Group
Use this macro group to define code process specific code based on a set of
conditions. The IF macro group includes the following macros:
v IF
v THEN
v ELSE
v ENDIF.

Format

�� IF Conditional Expression THEN
code1 ELSE

code2

ENDIF ��

Conditional Expression:

Simple Conditional Expression
ccmask

�

� �

,booleanop, Simple Conditional Expression
ccmask

Simple Conditional Expression:

Arithmetic Comparison
String Comparison
Bit Mask Comparison

Arithmetic Comparison:

arithval,operator,arithval

IF

104 TPFDF R1 and TPF V4R1 Structured Programming Macros

String Comparison:

strcon
,LENGTH,bytelen

strsymbl
,OFFSET,byteoff ,LENGTH,bytelen

,operator, �

� strcon
,LENGTH,bytelen

strsymbl
,OFFSET,byteoff ,LENGTH,bytelen ,PAD,padval

Bit Mask Comparison:

bitsymbl ,MASK,bitmsk,operator, 1
,OFFSET,byteoff 0

,=,L'bitsymbl

IF specifies the start of the IF structure based on a conditional expression.

ccmask
is any value that can be used as the mask in a branch on condition instruction.
The SPMEQ equate macro defines some of these condition code masks.

booleanop
is one of the following Boolean connectors:
v AND
v OR.

arithval
is a number represented directly in numeric form or in symbolic form. This value
can be one of the following:
v Variable
v Constant
v Result of an arithmetic expression.

operator
is one of the following relational operators:

Operator Description
= Equal
EQ Equal
¬= Not equal
NE Not equal
< Less than
LT Less than
> Greater than
GT Greater than
<= Less than or equal
LE Less than or equal
>= Greater than or equal
GE Greater than or equal.

strcon
is a string constant, which can be one of the following:
v Character (C"HELLO")
v Hexadecimal (X'4040404040')
v Binary (B'10101010').

IF

TPF Structured Programming Macros: Reference 105

strsymbl
is a symbol that represents a character string. This symbol must be defined with
a CHARACTER attribute. See “DCL–Declare” on page 93 for more information
about defining the attribute for a symbol.

OFFSET,byteoff
specifies a substring, where byteoff is the distance (starting from zero) from the
leftmost byte of the string. For example,

C"12345",OFFSET,3

resolves to a substring of C"45".

See the restrictions listed in the programming considerations.

LENGTH,bytelen
specifies a substring, where bytelen is the length of the string starting from the
leftmost byte. For example,

C"12345",LENGTH,4

resolves to a substring of C"1234".

See the restrictions listed in the programming considerations.

PAD,padval
concatenates a character, padval, on the end of a string to fill out the string to
the end of the declared length.

See the restrictions listed in the programming considerations.

bitsymbl
is a symbol that represents a value for the bit mask comparison. This symbol
can be defined with any attribute, but only the leftmost byte is used in the
comparison. See “DCL–Declare” on page 93 for more information about defining
the attribute for a symbol.

L'bitsymbl
specifies the length of bitsymbl and resolves to the number of bytes of storage
that bitsymbl represents.

MASK,bitmsk
specifies a bit mask, where bitmsk is a value that can be used as immediate
data for a test under mask (TM) instruction. See ESA/370 Principles of
Operation or ESA/390 Principles of Operation for more information about the
TM instruction.

THEN
specifies the start of the code to process when the conditional expression is
true.

code1
is the code to process when the conditional expression is true.

ELSE
specifies the start of the code to process when the conditional expression is
false.

code2
is the code to process when the conditional expression is false.

ENDIF
ends the IF structure.

IF

106 TPFDF R1 and TPF V4R1 Structured Programming Macros

Entry Requirements
None.

Return Conditions
v Control is returned to the next sequential instruction after the ENDIF macro

statement unless another assembler instruction or macro passes control outside
of the IF structure.

v Any combination (or none) of the four work registers (default R0–R1, R14–R15)
can be used by the IF macro. A message is generated for each work register
used. The contents of each work register used are unknown. The work registers
can be changed by coding the WORK0 and WORK2 parameters of the DCL
macro. Each of these parameters must be the even register of an even-odd pair.
The contents of all other registers are preserved across this macro call.

v If the expression is true, control is returned to the next sequential instruction (the
THEN macro). Otherwise, control is given to the matching ELSE macro. If the
ELSE macro is not used, control is passed to the matching ENDIF macro.

Programming Considerations
v The IF, THEN, ELSE, and ENDIF macros can only be used with the IF macro

group.

v Each macro statement and assembler instruction must begin on a new line in the
application.

Note: You can code the THEN macro on the same line as the IF expression, but
you must separate the expression and the THEN macro with a comma (,).

v A section of code (represented by code1, and so on) can consist of any number
of standard assembler instructions, including other SPMs or assembler macros.

v Because the SPMs are assembler language macros, all symbols used with the
macros must be previously defined to the assembler. In addition, for the TPF
SPMs, you must declare the attributes of the symbols using the DCL macro.

v All operations are performed left to right except when a sublist (items in
parentheses) is encountered. All items within a sublist are evaluated before
applying the preceding operator to the sublist.

v If you specify both the OFFSET and LENGTH parameters, you must code the
OFFSET parameter first.

v If you specify the OFFSET and PAD parameters with the second operand, you
must specify the LENGTH parameter on the second operand as well.

v The conditional expression is evaluated as follows:

1. If you code only one operand, or if the first operand is not a sublist but is
followed by THEN, AND, or OR, the first operand is treated as a condition
code mask. The hardware condition code is tested against the mask. If a
branch on condition instruction with this mask would have branched, the
condition is evaluated as true. Otherwise, it is evaluated as false (see step 6
on page 108).

2. If the first (next) item is a sublist, the key parameter following the sublist is
checked. If it is THEN, AND, or OR, the sublist is evaluated as a conditional
expression as in step 3 on page 108 through step 6 on page 108. Otherwise
it is evaluated as an arithmetic expression and is used as the left side of an
arithmetic comparison. Note that the arithmetic expression cannot contain
sublists.

IF

TPF Structured Programming Macros: Reference 107

3. A conditional expression is treated as a bit mask comparison if the MASK key
parameter appears. The bits specified by the mask are tested for 0 or 1 as
indicated by the right side value.

4. A conditional expression is treated as an arithmetic comparison if the left side
does not have the CHARACTER attribute. (See “DCL–Declare” on page 93
for information about defining the attribute for a symbol.) The left and right
side values are first converted to a 32-bit binary number. Symbols with the
UNSIGNED attribute are extended on the left with zeros. Otherwise, the
high-order bit is propagated and used as the sign of the number.

If either side is a sublist (enclosed in parentheses), it is first evaluated as an
arithmetic expression and the result is placed in one of the work registers so
that the comparison can be performed.

The comparison is then performed. The comparison is logical if the left side
symbol is UNSIGNED and not enclosed in parentheses. Otherwise, the
comparison is algebraic; that is, the high-order bit is treated as the sign of
each number.

5. A string comparison is performed when the left side symbol has the
CHARACTER attribute. The right side must be a string constant or a symbol
with the CHARACTER attribute. The comparison is performed left to right
using the length of the shortest field unless the PAD key parameter is used.
In this case, the shorter string is extended conceptually with bytes containing
the pad value to the length of the longer string.

6. If the comparison results match the relational operator the conditional
expression is true. Otherwise it is false. If the conditional expression is true
and is followed by OR, the rest of the IF expression is skipped and the entire
expression is evaluated as true. (If the conditional expression is in a sublist,
the rest of the sublist is skipped and the sublist is evaluated as true).

If the conditional expression is false and is followed by AND, the remainder of
the expression (or sublist) is skipped and evaluated as false.

Otherwise, the next expression is evaluated as in item 2.

If and when the last (or only) relational expression is evaluated, it determines
the evaluation of the whole expression (or sublist).

7. The end of the IF expression is indicated by a null operand or the THEN key
parameter in an operator position. The THEN key parameter causes the
THEN macro to be processed. Otherwise, the IF macro must be immediately
followed by a THEN macro.

Examples
The following examples assume that the attributes for the referenced symbols have
been defined with following DCL macro statements:

DCL EOFSW,UNSIGNED,1
DCL I,SIGNED,4
DCL X,SIGNED,4
DCL Y,SIGNED,4
DCL Z,SIGNED,2
DCL AMOTXT,CHARACTER,99
DCL ARG,CHARACTER,4
DCL R3,REGISTER,3
IF EOFSW,=,0

v In the following example, a specific section of code is processed if the expression
((EOFSW=1) OR (I>(X+Y))) AND (Z<3) is true.

IF

108 TPFDF R1 and TPF V4R1 Structured Programming Macros

IF EOFSW,=,1,OR,I,GT,(X,+,Y),AND,Z,LT,3
THEN

:
* Code to process

:
ENDIF

v In the following example, a specific section of code is processed if
AM0TXT=C"ZLXXX". If AM0TXT does not equal C"ZLXXX", the section of code
following the ELSE macro is processed.

IF AMOTXT,=,C'ZLXXX'
THEN

:
* Code to process

:
ELSE

:
* Code to process

:
ENDIF

v In the following example, the expression is evaluated with the OFFSET,
LENGTH, and PAD parameters.

IF AMOTXT,=,ARG,OFFSET,(X,+,Y),LENGTH,3,PAD,C’ ’
THEN

:
* Code to process

:
ENDIF

v The following example shows a bit mask comparison. If the bits set on in mask
byte SLSTRCPL do not match those in test byte SLSTLC3, the test is true and
the code following the THEN macro is processed. If any bits in SLSTRCPL and
SLSTLC3 do match, the test is false and the code following the ELSE macro is
processed.

IF SLSTLC3,MASK,SLSTRCPL,=,0
THEN

:
* Code to process

:
ELSE

:
* Code to process

:
ENDIF

v The following example shows a test that uses a number.
BUSY EQU 2

IF BUSY,THEN
:

* Code to process
:

ENDIF

v The following example shows the use of the length attribute in a bit mask
comparison.
OPTION_1 DS 0XL1
OPTION_2 DS 0XL2
FLAG_BYTE DS XL1

* Code to process

IF FLAG_BYTE,MASK,L’OPTION_1,EQ,1
THEN

:
* Code to process

:

IF

TPF Structured Programming Macros: Reference 109

ENDIF
:

* Code to process
:

IF FLAG_BYTE,MASK,L’OPTION_2,EQ,1
THEN

:
* Code to process

:
ENDIF

Related Information
v “DCL–Declare” on page 93

v “DO Macro Group” on page 97

v “LEAVE–Exit from a DO Loop” on page 111.

IF

110 TPFDF R1 and TPF V4R1 Structured Programming Macros

LEAVE–Exit from a DO Loop
Use this macro to exit a DO loop when the condition being tested by the
corresponding CASE, IF, or SELECT macro is true.

Format

��
1

LEAVE level ��

level
is a self-defining term or SETA assembler variable equal to the number of DO
loop nesting levels to leave. For example, if a DO loop contains a nested DO
loop, coding LEAVE 2 in the inner DO loop causes processing to branch to the
outer ENDDO macro, which ends the outer DO loop. If you do not specify level,
the default is 1; that is, a branch is taken to the end of the innermost DO loop
that contains the LEAVE macro.

Entry Requirements
You must code this macro between a DO and ENDDO macro group and after a
CASE, IF-THEN, or SELECT macro statement.

Return Conditions
When the condition being tested for is true, LEAVE causes processing to continue
with the next sequential instruction following the ENDDO statement of the current
DO-ENDDO block, or as many levels of DO-ENDDO blocks as specified by the
level parameter.

Programming Considerations
None.

Examples
This example sets up a DO loop to add 1 to the contents of R1 10 times. When the
value of control variable LPCNT exceeds 8, the IF statement is true and the LEAVE
macro is processed. This causes processing to continue with R1 equal to 8
beginning after the ENDDO statement.

LA R1,0
DO LPCNT,=,1,TO,10

IF LPCNT,GT,8
THEN

LEAVE ,
ENDIF

LA R1,1(,R1)
ENDDO

Related Information
v “DO Macro Group” on page 97

v “IF Macro Group” on page 104.

LEAVE

TPF Structured Programming Macros: Reference 111

LET–Assignment
Use this macro to assign values to symbols declared with the DCL macro. Symbols
can be assigned arithmetic, string, or bit values. These symbols can be used in
other structured programming macro (SPM) or in mainline code.

Format

�� LET Arithmetic Assignment
String Assignment
Bit Mask Assignment

��

Arithmetic Assignment:

�arithvar,=, arithval,arithop,arithval
constant

String Assignment:

strsymbl
,OFFSET,byteoff ,LENGTH,bytelen

,=, �

� strcon
,LENGTH,bytelen

strsymbl,||,strsymbl
strsymbl

,OFFSET,byteoff ,LENGTH,bytelen ,PAD,padval

Bit Mask Assignment:

bitsymbl ,MASK,bitmsk,=, 1
,OFFSET,byteoff 0

,=,L'bitsymbl

arithvar
is a symbolic name to which the arithmetic value will be assigned. For example:

LET NUM,=,4

arithval
is a number represented directly in numeric form or in symbolic form. This value
can be one of the following:
v Variable
v Constant
v Result of an arithmetic expression.

arithop
is one of the following arithmetic operators:

Operator Description
+ Addition
− Subtraction
* Multiplication

LET

112 TPFDF R1 and TPF V4R1 Structured Programming Macros

/ Integer division
// Remainder.

constant
is an arithmetic constant that will be assigned to the symbol specified by
arithvar. The value must be an integer and must be appropriate for the size of
the symbol to which this value will be assigned (arithvar). For example, if the
number you specify for constant is greater than 65536, the symbol you specify
for arithvar must be declared to be a fullword. See “DCL–Declare” on page 93
for more information about declaring the attributes for a symbol.

strcon
is a string constant, which can be one of the following:
v Character (C"HELLO")
v Hexadecimal (X'4040404040')
v Binary (B'10101010').

strsymbl
is a symbol that represents a character string. This symbol must be defined with
a CHARACTER attribute. See “DCL–Declare” on page 93 for more information
about defining the attribute for a symbol.

|| concatenates two or more strings into one string. For example,
LET PART1,=,C"ABC"
LET PART2,=,C"123" LET WHOLE,=,PART1,||,PART2

In this example, WHOLE will have the value C"ABC123".

OFFSET,byteoff
specifies a substring, where byteoff is the distance (starting from zero) from the
leftmost byte of the string. For example,

C"12345",OFFSET,3

resolves to a substring of C"45".

See the restrictions listed in the programming considerations.

LENGTH,bytelen
specifies a substring, where bytelen is the length of the string starting from the
leftmost byte. For example,

C"12345",LENGTH,4

resolves to a substring of C"1234".

See the restrictions listed in the programming considerations.

PAD,padval
concatenates a character, padval, on the end of a string to fill out the string to
the end of the declared length.

See the restrictions listed in the programming considerations.

bitsymbl
is a symbol that represents a value for the bit mask assignment. In a bit mask
assignment, either the leftmost byte or the one byte specified by the OFFSET
parameter is used.

L'bitsymbl
specifies the length of bitsymbl and resolves to the number of bytes of storage
that bitsymbl represents.

LET

TPF Structured Programming Macros: Reference 113

MASK,bitmsk
specifies a bit mask, where bitmsk is a value that specifies the portions of the
byte affected by the bit that is being assigned. For example:
LET SYMB,=,C"ABC"
LET SYMB,MASK,B'00101000',=,1

In this example, the symbol SYMB will contain the value ZBC. This is
determined as follows:

EBCDIC A: B’1100 0001’
mask on: B’0010 1000’

set to ones: ------------
results in: B’1110 1001’ or EBCDIC Z

Entry Requirements
None.

Return Conditions
v Control is returned to the next sequential instruction.

v Any combination (or none) of the four work registers (default R0–R1, R14–R15)
can be used by the LET macro. A message is generated for each work register
used. The contents of each work register used are unknown. The work registers
can be changed by coding the WORK0 and WORK2 parameters of the DCL
macro. Each of these parameters must be the even register of an even-odd pair.
The contents of all other registers are preserved across this macro call.

Programming Considerations
v Because the SPMs are assembler language macros, all symbols used with the

macros must be previously defined to the assembler. In addition, for the TPF
SPMs, you must declare the attributes of the symbols using the DCL macro.

v A LET macro expression is limited to 13 items. That is, in addition to assigning
the symbol and the equal sign (=), 11 additional symbols, numbers, or operators
can be contained in any LET macro. If expressions are longer than 13 items,
they must be broken up.

v You can concatenate several strings on a single LET macro statement. However,
do not specify concatenation with the OFFSET or LENGTH parameters.

v If you specify both the OFFSET and LENGTH parameters, you must code the
OFFSET parameter first.

Examples
v The following example shows the assignment of a constant arithmetic value.

* Declare a full word, signed integer called TEST
TEST EQU EBW000,4 Reentrant for TEST DS F

DCL TEST,SIGNED,4
*
* Assign variable TEST the decimal value 255

LET TEST,=,255

v The following example shows the assignment of a variable arithmetic value.
* Declare a several arithmetic variables
*
SUMM EQU EBW000,4 Reentrant for SUMM DS F

DCL SUMM,SIGNED,4

MULT EQU EBW004,4 Reentrant for MULT DS F
DCL MULT,SIGNED,4

LET

114 TPFDF R1 and TPF V4R1 Structured Programming Macros

ANSWER EQU EBW008,4 Reentrant for ANSWER DS F
DCL ANSWER,SIGNED,4

:
* Assign arithmetic values

LET SUMM,=,2,+,4,+,6
LET MULT,=,4,*,3

*
LET ANSWER,=,SUMM,/,MULT

v The following example shows the assignment of string values.
* Declare a string 80 bytes long called OUT
OUT EQU EBW000,80 Reentrant for OUT DS CL80

DCL OUT,CHARACTER,80
:

* Declare a string 20 bytes long called NAME
NAME EQU EBX000,20 Reentrant for NAME DS CL20

DCL NAME,CHARACTER,20
:

* Declare a string 40 bytes long called ADDRESS
ADDRESS EQU EBX020,40 Reentrant for ADDRESS DS CL40

DCL ADDRESS,CHARACTER,40
:

* Declare a string 20 bytes long called PHONE
PHONE EQU EBX060,20 Reentrant for PHONE DS CL20

DCL PHONE,CHARACTER,20
:

* Assign variable NAME a constant string value
LET NAME,=,C’Robert Cohen’,PAD,’ ’

:
* Assign variable ADDRESS a constant string value

LET ADDRESS,=,C’40 Apple Ridge Road $ Danbury, Ct 06810’
:

* Assign variable PHONE a constant string value
LET PHONE,=,C’ (203) 790-2000’,PAD,’ ’

:
* Assign variable OUT the concatenations of NAME, ADDRESS, and PHONE

LET OUT,=,NAME,||,ADDRESS,||,PHONE

v The following is another example of assigning string values.
* Declare some strings

PART1 EQU EBW000,5 Reentrant for PART1 DS CL5
PART2 EQU EBW005,5 Reentrant for PART2 DS CL5
MIDL EQU EBW010,20 Reentrant for MIDL DS CL20
WHOLE EQU EBX000,40 Reentrant for WHOLE DS CL40

:
DCL PART1,CHARACTER,5
DCL PART2,CHARACTER,5
DCL MIDL,CHARACTER,20
DCL WHOLE,CHARACTER,40

:
* Assign variable WHOLE a constant string of 40 characters

LET WHOLE,=,C’ABCDEFGHIJ1234567890KLMNOPQRST0987654321’
:

* Assign variable PART1 the first five characters of WHOLE
LET PART1,=,WHOLE,LENGTH,5

* PART1 is ’ABCDE’
:

* Assign variable PART2 the last five characters of WHOLE
LET PART2,=,WHOLE,OFFSET,35

* PART2 is ’54321’
:

* Assign variable MIDL 10 characters from WHOLE starting 15 characters
* from the beginning of WHOLE. Pad MIDL with blanks

LET MIDL,=,WHOLE,OFFSET,15,LENGTH,10,PAD,’ ’
* MIDL is ’67890KLMNObbbbbbbbbb’ where ’b’ represents a ’blank’

LET

TPF Structured Programming Macros: Reference 115

v The following example shows an assignment using a bit mask. This example sets
the 4 most significant bits of TEST to binary ones. The 4 least significant bits of
TEST are not affected.
TEST DS B

DCL TEST,CHARACTER,1
LET TEST,MASK,B’11110000’,=,1

v The following example shows how a bit mask assignment is used to convert
uppercase characters to lowercase characters in a DO loop.

In this example, the symbol INDX is declared as an unsigned variable and the
string variable STR is initialed as THIS IS A TEST with a length of 14. The DO
loop initializes the value of INDX to be 1. The LET assignment in the DO loop is
coded in an IF structure to ensure that the byte specified by the value of INDX is
not blank. When not blank, the LET assignment takes the value of string STR,
offsets the byte specified by the value of INDX, and casts a mask over that byte.
The mask isolates the high-order bit of the byte that is being specified. The bit is
assigned value 0. The remaining bits of the byte are unaffected (because the
mask has zeros in their places). The original value of string STR is changed by
this byte change. The value of INDX is incremented by 1 at the top of the DO
loop, and the loop proceeds with INDX being 2, 3, until 14. Each value of INDX
specifies a different byte in string STR.

DCL INDX,UNSIGNED
DCL STR,CHARACTER,14
:
LET STR,=,C’THIS IS A TEST’
DO INDX,=,1,TO,14

IF STR,OFFSET,INDX,NE,C’ ’
THEN

LET STR,OFFSET,INDX,MASK,B’10000000’,=,0
ENDIF

ENDDO

Related Information
“DCL–Declare” on page 93.

LET

116 TPFDF R1 and TPF V4R1 Structured Programming Macros

SELECT Macro Group
Use this macro group to control the choice among a number of different code paths
by a logical comparison. The SELECT macro group is similar to the CASE macro
group except that instead of using an arithmetic expression to select an alternative
clause, SELECT conditions are successively evaluated until an alternative can be
selected.

The SELECT macro group includes the following macros:
v SELECT
v WHEN
v OTHERW
v ENDSEL.

Format

�� SELECT � WHEN When Expression
code1

OTHERW
code2

�

� ENDSEL ��

When Expression:

operand1,operator,operand2 �

, OR ,operand1,operator,operand2
|

SELECT
specifies the start of the SELECT structure.

WHEN
specifies the start of a selection.

operand1
is a symbol, a register enclosed in parentheses, or a literal that can be used as
the first operand on a compare or test under mask (TM) instruction.

operand2
is a symbol or a register enclosed in parentheses that can be used as the
second operand on a compare or test under mask (TM) instruction.

operator
is one of the following relational operators:

Operator Description
EQ Equal
= Equal
NE Not equal
¬= Not equal

SELECT

TPF Structured Programming Macros: Reference 117

LE Less than or equal
<= Less than or equal
LT Less than
< Less than
GE Greater than or equal
>= Greater than or equal
GT Greater than
> Greater than
Z Zeroes (or OFF)
O Ones (or ON)
M Mixed zeros and ones
NZ Not zeros
NO Not ones
NM Not mixed.

OR
allows additional expressions to be evaluated on one WHEN statement.

| allows additional expressions to be evaluated on one WHEN statement.

code1
is the code to process when the associated WHEN statement is true.

OTHERW
specifies the start of the code to process when all the previous WHEN
statements are false.

code2
is the code to process when the previous WHEN statements are false.

ENDSEL
ends the SELECT structure.

Entry Requirements
None.

Return Conditions
v If the conditional expression associated with a WHEN clause is true, the code

following the WHEN clause is processed until the next WHEN or OTHERW
clause in that SELECT macro is found.

v If the conditional expression is false in a particular WHEN macro statement,
control is passed to the next sequential WHEN macro or the OTHERW macro if
there are no more WHEN macros in the current SELECT structure.

v After the instructions following a particular WHEN or OTHERW macro statement
are processed, control is passed to the ENDSEL macro.

v If the conditional expression for more than one WHEN is true, only the code
following the first true WHEN is processed.

v The contents of all the user registers are preserved across this macro call.

Programming Considerations
v The SELECT, WHEN, OTHERW, and ENDSEL macros can only be used with the

SELECT macro group.

v Each macro statement and assembler instruction must begin on a new line in the
application.

v A section of code (represented by code1, and so on) can consist of any number
of standard assembler instructions, including other SPMs or assembler macros.

SELECT

118 TPFDF R1 and TPF V4R1 Structured Programming Macros

v Because the SPMs are assembler language macros, all symbols used with the
macros must be previously defined to the assembler. In addition, for the TPF
SPMs, you must declare the attributes of the symbols using the DCL macro.

v You can specify a maximum of 39 operands with the WHEN macro.

v If you specify the OR parameter, if any of the expressions separated by the OR
parameter is true, the whole WHEN macro statement is true.

v The SELECT and ENDSEL sequence of macros can be nested up to a limit of
eight.

Examples
The following is an example of a SELECT macro group.

SELECT
WHEN EBW000,EQ,OPTION1
:

* Code to process
:
WHEN EBW000,EQ,OPTION2,OR,EBW000,EQ,OPTION3
:

* Code to process
:
OTHERW
:

* Code to process
:

ENDSEL

Related Information
v “DCL–Declare” on page 93

v “CASE Macro Group” on page 90.

SELECT

TPF Structured Programming Macros: Reference 119

SET–Flag or Switch Assignment
Use this macro to turn on 1 or more bits in a byte or to replace the value of an
entire byte. A single macro parameter determines both the type of assignment and
the assignment operands.

Format

�� �

,

SET setsymbol ��

setsymbol
is an equate or assembler label from which the following is determined:

v The address of a byte in storage. The setsymbol itself (that is, its value as
defined to the assembler) determines the address of the byte in storage.

v An immediate value. The length attribute of the setsymbol determines the
immediate value.

v How the immediate value affects the byte in storage. The type attribute of the
setsymbol determines whether the immediate value is:
– Assigned to the byte in storage
– Used as a mask for turning on selected bits within the byte in storage.

Entry Requirements
None.

Return Conditions
v Control is returned to the next sequential instruction.

v The contents of all registers are preserved across this macro call.

Programming Considerations
v Any number of setsymbols can be coded for a single SET macro statement.

v If a setsymbol-type attribute is X, its length attribute is taken as a bit-string and
ORed with the contents of the byte. Otherwise, the entire content of the byte is
replaced by the length attribute.

v There are two ways to define a setsymbol:

– Define a label using DS. Set the location counter to the displacement of the
byte to be set, and code the DS operand to define the desired length and type
attributes.

– Define an equated symbol using EQU with all 3 operands.

1. Code the first EQU operand as the symbolic address of the byte to be set.

2. Code the second operand as the value to be set.

3. Code the third operand as C"X" to generate an or immediate (OI)
instruction, or as any value other than C"X" to generate a move immediate
(MVI) instruction.

The third EQU operand must be explicitly coded as C"X" to OR on
selected bits of a byte because the default type for equates is U.

SET

120 TPFDF R1 and TPF V4R1 Structured Programming Macros

Examples
v The following example shows the difference between setting a symbol that is

defined as type X and setting a symbol that is defined as something other than
type X (such as U).

* TYPE = ’X’ VS. TYPE ^= ’X’ *
* BITWISE-OR VS. ASSIGNMENT *

*
* A_BIT_FLAG = X’08’ (Bit 4 is on)
* A_BYTE_FLAG = X’BC’

SET A_BIT_FLAG,A_BYTE_FLAG
+ OI A_BIT_FLAG,L’A_BIT_FLAG
+ MVI A_BYTE_FLAG,L’A_BYTE_FLAG

:
:

CONTROL_BYTE DS XL1 STORAGE FOR BIT FLAGS
FLAG_BYTE DS XL1 STORAGE FOR BYTE FLAG
A_BIT_FLAG EQU CONTROL_BYTE,X’08’,C’X’ TYPE IS ’X’
A_BYTE_FLAG EQU FLAG_BYTE,X’BC’ TYPE IS ’U’

v In the following example, the set symbols are defined using a DS statement.

* DEFINING SETSYMBOLS USING DS *

SET TAG_ASGN2 TAG_BYTE = X’02’
+ MVI TAG_ASGN2,L’TAG_ASGN2

:
:

TAG_BYTE DS X STORAGE FOR TAGS
ORG TAG_BYTE RESET LOCATION COUNTER

TAG_ASGN1 DS 0CL1 DEFINE 3 ASSIGNMENTS
TAG_ASGN2 DS 0CL2
TAG_ASGN3 DS 0CL3

ORG

v In the following example, the set symbols are defined using an EQU statement.

* DEFINING SETSYMBOLS USING EQU *

SET SWITCH1 BIT 7 OF CNTRL_BYTE = B’1’
+ OI SWITCH1,L’SWITCH1

:
:

CNTRL_BYTE DS X STORAGE FOR SWITCHES
SWITCH1 EQU CNTRL_BYTE,B’00000001’,C’X’
SWITCH2 EQU CNTRL_BYTE,B’00000010’,C’X’
SWITCH3 EQU CNTRL_BYTE,B’00000100’,C’X’

Related Information
None.

SET

TPF Structured Programming Macros: Reference 121

SET

122 TPFDF R1 and TPF V4R1 Structured Programming Macros

Index

Special characters
macro

description of 28
example of 28

#CASE macro group
#CASE macro 29
#CAST macro 29
#ECAS macro 29
description of 29
example of 31
processing flow 79

#CONB macro
description of 33
example of 34

#COND macro
description of 35
example of 35

#CONH macro
description of 37
example of 38

#CONP macro
description of 39
example of 40

#CONS macro
description of 42
example of 43

#CONT macro
description of 44
example of 45

#CONX macro
description of 46
example of 46

#DO macro group
#DO macro

FROM parameter 48
TIMES parameter 48
UNTIL parameter 48
WHILE parameter 48

#DOEX macro 48
#EDO macro 48
#ELOP macro 48
#EXIF macro 48
#OREL macro 48
description of 48
example of 53
processing flow 80

#EXEC macro
description of 58
example of 59

#GOTO macro group
#GOTO macro 61
#LOCA macro 61
example of 62
processing flow 85

#IF macro group
#EIF macro 63
#EIFM macro 63

#IF macro group (continued)
#ELIF macro 63
#ELSE macro 63
#IF macro 63
description of 63
example of 65
processing flow 84

#SPM macro
description of 66
example of 67

#STPC macro
description of 69
example of 69

#STPF macro
description of 70
example of 70

#STPH macro
description of 72
example of 72

#STPR macro
description of 73
example of 74

#SUBR macro group
#ESUB macro 75
#PERF macro 75
#SUBR macro 75
description of 75
example of 76
processing flow 86

A
Airline Control System (ALCS)

using FILNC macro 17
using FILWC macro 17
using FIWHC macro 17
using structured programming macros in 3
using WAITC macro 17

assembly messages
#SPM macro 66
printing 66

B
binary

#COND macro 35
#CONP macro 39
#CONS macro 42
#CONT macro 44
#CONX macro 46
converting to character binary 44
converting to character decimal 35, 42
converting to character hexadecimal 46
converting to character hexadecimal (EBCDIC) 39

Boolean connectors
between groups of tests 13
between tests 13

© Copyright IBM Corp. 1996, 2001 123

Boolean connectors (continued)
condensed forms 23
examples 25
rules 23
sequence of evaluation

between groups 24
in a group 23

C
CASE macro group

CASE macro 90
description of 90
ENDC macro 90
ENDSC macro 90
example of 91
SCASE macro 90

character decimal
#CONB macro 33
converting to binary 33

character hexadecimal
#CONH macro 37
converting to binary 37

concatenation
in the LET macro 113
with Boolean connectors 13, 23
with the # macro 28

condensed expressions
Boolean connectors 23
compare 22
LTR instruction 22
OC instruction 22
overview 21
TM instruction 22

conditional expressions
checking a CPU ID 13
condensed forms 21
empty file

testing for 19
end-of-file (EOF)

testing for 18
examples of 19
index detail file

testing for 19
logical record (LREC)

testing for 18
overview 13
testing TPFDF return codes 13
TPFDF errors

testing for 18
using assembler instructions

branch on condition code instructions 13
compare instructions 13
noncompare instructions 13

using FILNC macro 17
using FILWC macro 17
using FIWHC macro 17
using WAITC macro 17

conversion macros
#CONB macro 33
#COND macro 35

conversion macros (continued)
#CONH macro 37
#CONP macro 39
#CONS macro 42
#CONT macro 44
#CONX macro 46
example of 34, 35, 38, 40, 43, 45, 46
summary of 10

CPU
checking the ID 13

example of 21

D
DBEMPTY parameter

using in conditional expression 19
example of 21

DBEOF parameter
using in conditional expression 18

example of 21
DBERROR parameter

using in conditional expression 18
example of 21

DBFOUND parameter
using in conditional expression 18

example of 21
DBIDX parameter

using in conditional expression 19
example of 21

DCL macro
description of 93
example of 95

DCLREG macro
description of 96
example of 96

diagrams for macro models x
DO macro group

description of 97
DO macro

UNTIL parameter 97
WHILE parameter 97

ENDDO macro 97
example of 101
exit the loop

LEAVE macro 111

E
end-of-file (EOF)

testing for 18
entry points 6
errors, TPFDF

testing for 18
examples

macro 28
#CASE macro group 31
#CONB macro 34
#COND macro 35
#CONH macro 38
#CONP macro 40
#CONS macro 43

124 TPFDF R1 and TPF V4R1 Structured Programming Macros

examples (continued)
#CONT macro 45
#CONX macro 46
#DO macro group 53
#EXEC macro 59
#GOTO macro group 62
#IF macro group 65
#SPM macro 67
#STPC macro 69
#STPF macro 70
#STPH macro 72
#STPR macro 74
#SUBR macro group 76
Boolean combinations 25
Boolean expressions, condensed 23
CASE macro group 91
conditional expressions

branch on condition code 19
checking a CPU ID 21
compare conditional expression 19
noncompare 20
testing SW00RT2 21
testing SW00RTN 21
TPF and ALCS macros 20

DCL macro 95
DCLREG macro 96
DO macro group 101
GOTO macro 103
IF macro group 108
LEAVE macro 111
LET macro 114
SELECT macro group 119
SET macro 121

exit points 6
exit processing

#GOTO macro 61
GOTO macro 103

F
FILNC macro

using in conditional expression 17
FILWC macro

using in conditional expression 17
FIWHC macro

using in conditional expression 17

G
general rules 6
GOTO macro

description of 103
example of 103

guidelines 6

I
IF macro group

description of 104
ELSE macro 104
ENDIF macro 104

IF macro group (continued)
example of 108
IF macro 104
THEN macro 104

indenting 10
index detail file

testing for 19
iteration

#DO macro group 48
definition of 5
DO macro group 97

L
label attributes

DCL macro 93
specifying 93

LEAVE macro
description of 111
example of 111

LET macro
description of 112
example of 114

link-label prefix
changing 9, 30, 53, 62, 64, 76

logical record (LREC)
testing for 18

M
macro model diagrams x
macros

TPF
CASE macro group 90
DCL macro 93
DCLREG macro 96
DO macro group 97
GOTO macro 103
IF macro group 104
introduction 3
LEAVE macro 111
LET macro 112
SELECT macro group 117
SET macro 120

TPFDF
macro 28
#CASE macro group 29
#CONB macro 33
#COND macro 35
#CONH macro 37
#CONP macro 39
#CONS macro 42
#CONT macro 44
#CONX macro 46
#DO macro group 48
#EXEC macro 58
#GOTO macro 61
#IF macro group 63
#SPM macro 66
#STPC macro 69
#STPF macro 70

Index 125

macros (continued)
TPFDF (continued)

#STPH macro 72
#STPR macro 73
#SUBR macro group 75
conversion macros, summary of 10
general information about 9
indenting 10
introduction 3
line continuation 28

messages, assembly
#SPM macro 66
printing 66

models of macro invocations x

N
nesting level 10

P
prefix, link-label

changing 9, 30, 53, 62, 64, 76

R
railroad tracks x
registers

DCL macro 93
defining 93

return codes
testing TPFDF

SW00RT2 21
SW00RTN 21

rules 6

S
SELECT macro group

description of 117
ENDSEL macro 117
example of 119
OTHERW macro 117
SELECT macro 117
WHEN macro 117

selection
#CASE macro group 29
#IF macro group 63
CASE macro group 90
definition of 4
IF macro group 104
SELECT macro group 117

sequence
definition of 4

SET macro
description of 120
example of 121

step macros
#STPC macro 69
#STPF macro 70

step macros (continued)
#STPH macro 72
#STPR macro 73
example of 69, 70, 72, 74

structured programming macros (SPMs)
advantages of 3
forms of 4
indenting 10
introduction 3
iteration

#DO macro group 48
definition of 5
DO macro group 97

nesting level 10
rules for 6
selection

#CASE macro group 29
#IF macro group 63
CASE macro group 90
definition of 4
IF macro group 104
SELECT macro group 117

sequence
definition of 4

TPF
CASE macro group 90
DCL macro 93
DCLREG macro 96
DO macro group 97
GOTO macro 103
IF macro group 104
introduction 3
LEAVE macro 111
LET macro 112
SELECT macro group 117
SET macro 120

TPFDF
macro 28
#CASE macro group 29
#CONB macro 33
#COND macro 35
#CONH macro 37
#CONP macro 39
#CONS macro 42
#CONT macro 44
#CONX macro 46
#DO macro group 48
#EXEC macro 58
#GOTO macro 61
#IF macro group 63
#SPM macro 66
#STPC macro 69
#STPF macro 70
#STPH macro 72
#STPR macro 73
#SUBR macro group 75
conversion macros, summary of 10
general information about 9
indenting 10
introduction 3
line continuation 28

126 TPFDF R1 and TPF V4R1 Structured Programming Macros

SW00RT2
testing 21

SW00RTN
testing 21

symbols
assigning values to 112
DCL macro 93
declaring attributes for 93
LET macro 112

syntax diagrams x

T
TPF Database Facility (TPFDF)

errors, testing for 18
testing SW00RTN 13

Transaction Processing Facility (TPF)
using FILNC macro 17
using FILWC macro 17
using FIWHC macro 17
using structured programming macros in 3
using WAITC macro 17

W
WAITC macro

using in conditional expression 17

Index 127

128 TPFDF R1 and TPF V4R1 Structured Programming Macros

����

File Number: S370/30XX-40
Program Number: 5706-196

5748-T14

Printed in U.S.A.

SH31-0183-04

	Contents
	Figures
	Tables
	About This Book
	Before You Begin
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	How to Read the Syntax Diagrams
	Related Information
	IBM TPF Database Facility (TPFDF) Books
	IBM Transaction Processing Facility (TPF) 4.1 Books
	IBM Airline Control System (ALCS) Books
	Miscellaneous IBM Books
	Online Information

	How to Send Your Comments

	Part 1. Structured Programming Macros Overview
	Structured Programming Macros Introduction
	Advantages of Structured Programming Macros
	An Overview of Structured Forms
	General Rules for Structured Programming Macros

	Part 2. TPFDF Structured Programming Macros
	TPFDF Structured Programming Macros General Information
	Additional Functions
	Conversion Macros

	Nesting Levels and Indenting

	Structured Programming Macros Conditional Expressions
	Forms of Conditional Expressions
	Conditional Expression Format
	Examples of Conditional Expressions
	Branch on Condition Code Conditional Expression
	Compare Conditional Expressions
	Noncompare Conditional Expressions
	TPF and ALCS Macros as Conditional Expressions
	Checking the CPU ID Example
	Testing SW00RTN Bits Examples
	Testing SW00RT2 Bits Example

	Condensed Forms of Conditional Expressions
	Condensed Forms of Compare
	Condensed Forms of TM
	Condensed Forms of LTR and OC
	Condensed Forms of Boolean Expressions

	Processing Rules for Boolean Connectors
	Evaluating Concatenated Expressions
	Boolean Expression Examples

	TPFDF Structured Programming Macros: Reference
	#–Line Continuation
	#CASE Macro Group
	#CONB–Convert Character Decimal to Binary
	#COND–Convert Binary to Character Decimal
	#CONH–Convert Character Hexadecimal to Binary
	#CONP–Convert Binary to Character Hexadecimal with EBCDIC Interpretation
	#CONS–Convert Binary to Character Decimal with Zero Suppression
	#CONT–Convert Binary to Character Binary
	#CONX–Convert Binary to Character Hexadecimal
	#DO Macro Group
	#EXEC–Execute Macro
	#GOTO Macro Group
	#IF Macro Group
	#SPM–Assembly Output Processing
	#STPC–Step a Byte or Character
	#STPF–Step a Fullword
	#STPH–Step a Halfword
	#STPR–Step Registers
	#SUBR Macro Group

	TPFDF Structured Programming Macro Group Processing Diagrams
	Selection and Iteration Macro Groups
	#CASE Macro Group Processing
	#DO Macro Group Processing
	#IF Macro Group Processing

	Branch and Subroutine Macro Groups
	#GOTO Macro Group Processing
	#SUBR Macro Group Processing

	Part 3. TPF Structured Programming Macros
	TPF Structured Programming Macros: Reference
	CASE Macro Group
	DCL–Declare
	DCLREG–Declare General Registers
	DO Macro Group
	GOTO–Branch Macro
	IF Macro Group
	LEAVE–Exit from a DO Loop
	LET–Assignment
	SELECT Macro Group
	SET–Flag or Switch Assignment

	Index

