
MQSeries® for Compaq OpenVMS Alpha®

System Administration Guide
Version 5 Release 1

SC34-5884-00

���

MQSeries® for Compaq OpenVMS Alpha®

System Administration Guide
Version 5 Release 1

SC34-5884-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix L.
Notices” on page 361.

First edition (May 2001)

This edition applies to MQSeries for Compaq OpenVMS Alpha, Version 5.1 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

About this book xiii
Who this book is for xiii
What you need to know to understand this book xiii
How to use this book xiii

Using the appendixes. xiii
Information about MQSeries on the Internet . . . xiii

What’s new in MQSeries for Compaq
OpenVMS Alpha, V5.1 xv

Part 1. Guidance 1

Chapter 1. Introduction to MQSeries . . 5
MQSeries and message queuing 5

Time-independent applications 5
Message-driven processing 5

Messages and queues 5
What is a message? 6
What is a queue? 6

Objects 7
Object names 8
Managing objects 8
MQSeries queue managers. 8
MQSeries queues 9
Process definitions 12
Channels 12
Clusters 12
Namelists 13

System default objects 13
Local and remote administration 13
Clients and servers 14

MQSeries applications in a client-server
environment 14

Extending queue manager facilities 14
User exits 15
Installable services 15

Security 15
Object Authority manager (OAM) facility . . . 16
DCE security 16

Transactional support 16

Chapter 2. An introduction to MQSeries
administration 17
Local and remote administration 17
Performing administration tasks using control
commands. 17
Performing administrative tasks using MQSC
commands. 18

Performing administrative tasks using PCF
commands. 18

Attributes in MQSC and PCFs 19
Escape PCFs 19

Understanding MQSeries file names 19
Queue manager name transformation. 19
Object name transformation 20

Understanding case sensitivity 20
Case sensitivity in control commands. 20
Case sensitivity in MQSC commands 21

Chapter 3. Managing queue managers
using control commands 23
Using control commands 23

Using control commands 23
Creating a queue manager 24

Guidelines for creating queue managers 24
Creating a default queue manager 27
Starting a queue manager 28
Making an existing queue manager the default . . 28
Stopping a queue manager 28

Quiesced shutdown 28
Immediate shutdown 29
Preemptive shutdown 29
If you have problems shutting down a queue
manager 29

Restarting a queue manager 30
Deleting a queue manager 30

Chapter 4. Administering local
MQSeries objects 31
Supporting application programs that use the MQI 31
Performing local administration tasks using MQSC
commands. 32

Before you start 32
Using the MQSC facility interactively. 33
Feedback from MQSC commands 34
Ending interactive input to MQSC. 34
Displaying queue manager attributes 34
Using a queue manager that is not the default. . 35
Altering queue manager attributes. 35

Running MQSC commands from text files 36
MQSC command files 36
MQSC reports 37
Running the supplied MQSC command files . . 38
Using runmqsc to verify commands 38

Resolving problems with MQSC 39
Working with local queues 40

Defining a local queue. 40
Defining a dead-letter queue 41
Displaying default object attributes 41
Copying a local queue definition 42
Changing local queue attributes 43
Clearing a local queue 43
Deleting a local queue 44

© Copyright IBM Corp. 1994, 2001 iii

Browsing queues 44
Working with alias queues 48

Defining an alias queue 48
Using other commands with queue aliases . . . 49

Working with model queues. 49
Defining a model queue 50
Using other commands with model queues. . . 50

Managing objects for triggering. 51
Defining an application queue for triggering . . 51
Defining an initiation queue 52
Creating a process definition 52
Displaying your process definition 53

Chapter 5. Automating administration
tasks 55
PCF commands 55

Attributes in MQSC and PCFs 56
Escape PCFs 56
Using the MQAI to simplify the use of PCFs . . 56

Managing the command server for remote
administration 57

Starting the command server 57
Displaying the status of the command server . . 57
Stopping a command server 58

Chapter 6. Administering remote
MQSeries objects 59
Channels, clusters and remote queuing 59

Remote administration using clusters 60
Remote administration from a local queue manager
using MQSC commands 61

Preparing queue managers for remote
administration 61
Preparing channels and transmission queues for
remote administration 62
Defining channels and transmission queues . . 63
Starting the channels 64
Automatic definition of channels 65
Issuing MQSC commands remotely 65
Working with queue managers on MVS/ESA . . 66
If you have problems using MQSC remotely . . 67

Creating a local definition of a remote queue . . . 67
Understanding how local definitions of remote
queues work 67
An alternative way of putting messages on a
remote queue. 69
Using other commands with remote queues . . 69
Creating a transmission queue 69

Using remote queue definitions as aliases 70
Queue manager aliases 70
Reply-to queue aliases 70
Data conversion 71
Changing the queue manager CCSID 72

Chapter 7. Protecting MQSeries objects 73
Why you need to protect MQSeries resources . . . 73
Before you begin 73

User IDs in MQSeries for Compaq OpenVMS
with resource identifier MQM 73
For more information 74

Understanding the Object Authority Manager . . . 74
How the OAM works 75
Managing access through rights identifiers . . . 75
Default rights identifier 76
Resources you can protect with the OAM . . . 76
Using rights identifiers for authorizations . . . 76
Disabling the object authority manager 76

Using the Object Authority Manager commands . . 77
What you specify when you use the OAM
commands. 77
Using the setmqaut command 78
Access authorizations 79
Display authority command 79

Object Authority Manager guidelines 79
User IDs 79
Queue manager directories 79
Queues 80
Alternate user authority 80
Context authority 80
Remote security considerations 81
Channel command security 81

Understanding the authorization specification tables 82
MQI authorizations. 83
Administration authorizations 86
Authorizations for MQSC commands in escape
PCFs 86

Understanding authorization files 88
Authorization file paths 89
What the authorization files contain 89
Managing authorization files 91

Chapter 8. The MQSeries dead-letter
queue handler 93
Invoking the DLQ handler 93

The sample DLQ handler, amqsdlq 94
The DLQ handler rules table 94

Control data 94
Rules (patterns and actions) 96
Rules table conventions 98

How the rules table is processed 100
Ensuring that all DLQ messages are processed 101

An example DLQ handler rules table 102

Chapter 9. Instrumentation events . . 105
What are instrumentation events? 105
Why use events? 106

Types of events 107
Event notification through event queues . . . 108
Enabling and disabling events 108
Event messages. 109

Chapter 10. Transactional support . . 111
Database coordination 112

Restrictions 113
Database connections 113
Configuring database managers 113

Oracle configuration 115
Minimum supported levels for Oracle 115
Checking the environment variable settings . . 115
Enabling Oracle XA support 115

iv MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Creating the Oracle switch load file 115
Adding XAResourceManager configuration
information for Oracle 117
Changing Oracle configuration parameters . . 119

Administration tasks 119
In-doubt units of work 120
Using the dspmqtrn command 120
Using the rsvmqtrn command 121
Mixed outcomes and errors. 122
Changing configuration information 123

Chapter 11. Recovery and restart . . . 125
Making sure that messages are not lost (logging) 125

What logs look like 125
Types of logging 126

Checkpointing – ensuring complete recovery . . . 127
Calculating size of log 130
Managing logs 131

What happens when a disk gets full. 132
Managing log files. 132

Using the log for recovery 133
Recovering from problems 133
Media recovery. 133
Recovering damaged objects during startup . . 135
Recovering damaged objects at other times . . 135

Protecting MQSeries log files 135
Backup and restore 136

Backing up MQSeries. 136
Restoring MQSeries 136

Recovery scenarios 137
Disk drive failures. 137
Damaged queue manager object 138
Damaged single object 138
Automatic media recovery failure 138

Dumping the contents of the log using the
dmpmqlog command. 138

Chapter 12. Using the name service 157
Using DCE to share queues on different queue
managers. 157

Configuration tasks for shared queues 157
DCE configuration 158

Chapter 13. Configuring MQSeries 159
MQSeries configuration files 159

Editing configuration files 159
The MQSeries configuration file, mqs.ini . . . 160
Queue manager configuration files, qm.ini . . 160

Attributes for changing MQSeries configuration
information 161

The AllQueueManagers stanza 161
The ClientExitPath stanza 162
The DefaultQueueManager stanza 162
The ExitProperties stanza 163
The LogDefaults stanza 163
The QueueManager stanza 165

Changing queue manager configuration
information 166

The Service stanza. 166
The ServiceComponent stanza 167

The Log stanza 167
The XAResourceManager stanza 169
The Channels stanza 170
The LU62 and TCP stanzas 172
The ExitPath stanza 173

Example mqs.ini and qm.ini files 173

Chapter 14. Problem determination 177
Preliminary checks 177

Has MQSeries run successfully before? 177
Are there any error messages?. 177
Are there any return codes explaining the
problem? 177
Can you reproduce the problem? 178
Have any changes been made since the last
successful run? 178
Has the application run successfully before? . . 178
Does the problem affect specific parts of the
network? 179
Does the problem occur at specific times of the
day? 179
Is the problem intermittent? 179
Have you applied any service updates? . . . 180
Do you need to apply an updates? 180

Common programming errors 180
What to do next 180

Have you obtained incorrect output? 181
Have you failed to receive a response from a
PCF command? 181
Are some of your queues failing?. 182
Does the problem affect only remote queues? 182

Application design considerations 183
Effect of message length 183
Effect of message persistence 183
Searching for a particular message 183
Queues that contain messages of different
lengths 183
Frequency of syncpoints 184
Use of the MQPUT1 call. 184

Incorrect output 184
Messages that do not appear on the queue . . 184
Messages that contain unexpected or corrupted
information 185
Problems with incorrect output when using
distributed queues. 186

Error logs 187
Log files 187
Early errors 188
Operator messages 188
Example error log 188

Dead-letter queues 191
Configuration files and problem determination . . 191
Using MQSeries trace 191

Trace file names 192
Sample trace data 192

First failure support technology (FFST) 192
How to examine the FFSTs 192

Problem determination with clients 197
Terminating clients 198
Error messages with clients. 198

Contents v

Chapter 15. Performance tuning . . . 199
Setting the value of process specific parameters 200

Chapter 16. MQSeries for OpenVMS
and clustering 203
Installing MQSeries in an OpenVMS cluster . . . 203
OpenVMS cluster failover sets 204

Overview of OpenVMS cluster failover sets . . 204
OpenVMS cluster failover set concepts 204
Preparing to configure an OpenVMS cluster
failover set 206
Configuring an OpenVMS cluster failover set 206
OpenVMS cluster failover set post-configuration
tasks 207
Editing the FAILOVER.INI configuration file 207
Command procedures used by failover sets . . 208
Administration of failover sets 209
Startup of failover monitors 210
Starting a queue manager within a failover set 210
Ending a queue manager within a failover set 210
Moving a queue manager within a failover set 211
Displaying the state of a failover set 211
Setting DCL symbols to the state of a failover
set 212
Halting a failover monitor process 213
Executing commands while an update is in
progress 213
Changing the state of a failover set 214
Setting up security for ICC associations . . . 214
Troubleshooting problems with failover sets . . 215
Using MultiNet for OpenVMS with failover sets 216
An example of using failover sets 216

Part 2. Reference 223

Chapter 17. MQSeries control
commands 225
Rules for naming MQSeries objects 225

Looking at object files 225
How to read syntax diagrams 226
Syntax help 227

Examples 227
MQSeries return codes 228
crtmqcvx (Data conversion). 229
crtmqm (Create queue manager) 231
dltmqm (Delete queue manager) 235
dmpmqlog (Dump log) 237
dspmqaut (Display authority) 239
dspmqcsv (Display command server) 243
dspmqfls (Display MQSeries files) 244
dspmqtrc (Display MQSeries formatted trace
output) 246
dspmqtrn (Display MQSeries transactions) . . . 248
endmqcsv (End command server) 250
endmqlsr (End listener) 253
endmqm (End queue manager) 254
endmqtrc (End MQSeries trace) 257
failover (Manage a failover set) 258
rcdmqimg (Record media image) 262

rcrmqobj (Recreate object) 264
rsvmqtrn (Resolve MQSeries transactions) 267
runmqchi (Run channel initiator) 269
runmqchl (Run channel) 270
runmqdlq (Run dead-letter queue handler) . . . 271
runmqfm (Start a failover monitor) 273
runmqlsr (Run listener) 274
runmqsc (Run MQSeries commands) 276
runmqtmc (Start client trigger monitor). 279
runmqtrm (Start trigger monitor) 280
setmqaut (Set/reset authority) 281
strmqcsv (Start command server) 288
strmqm (Start queue manager) 289
strmqtrc (Start MQSeries trace) 291

Part 3. Appendixes 293

Appendix A. MQSeries for Compaq
OpenVMS at a glance 295
Program and part number 295
Hardware requirements 295
Software requirements 295
Connectivity. 295
Security 295
Maintenance functions 296
Compatibility 296

Supported compilers 296
Language selection 296
Internationalization 296

Appendix B. System defaults 297

Appendix C. Directory structure . . . 299
Directories and files in MQS_ROOT:[MQM] . . . 300
Directories and files in the
MQS_ROOT:[MQM.QMGRS.QMNAME]
subdirectory 300

Appendix D. Comparing command
sets 305
Commands for queue manager administration . . 305
Commands for command server administration 305
Commands for queue administration 306
Commands for process administration 306
Commands for channel administration 307
Other control commands 307

Appendix E. Sample MQI programs
and MQSC files 309
MQSC command file samples 309
C and COBOL program samples 309
Miscellaneous tools 310

Appendix F. OpenVMS cluster failover
set templates 311
Template Configuration File
FAILOVER.TEMPLATE 311

vi MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Template StartCommand procedure
START_QM.TEMPLATE 313
Template EndCommand procedure
END_QM.TEMPLATE 314
Template TidyCommand procedure
TIDY_QM.TEMPLATE 317

Appendix G. Codeset support on
MQSeries for Compaq OpenVMS . . . 319

Appendix H. MONMQ diagnostic utility 321
Overview. 321
Variables within MONMQ 322

Assigning default values 323
Opening or creating a trace section and associated
mailbox 324
Displaying the logical unit definition 324
Closing and deleting an LU 324
Display channel details 325
Display the current trace mask for a channel . . . 325
Display the contents of the target threads stack . . 326
Display active MQSeries related processes and
memory usage 326
Displays all messages held in a channel 326
Display all MQSeries related global sections on the
current node 327
Signals target thread to send mutex table to client
trace process 328
Signals target thread to send internal events table
to client trace process. 329
Signals target thread to send internal mapped
shared memory table to the client trace process . . 330
Displays active MQSeries components by name
and hexadecimal ids 331
Display functions within specified component . . 331
Activate tracing from the point a process starts . . 332
Prevent MQSeries process from tracing
immediately from startup 332
Connect target thread to specified channel. . . . 332
Disconnect target thread to specified channel . . . 333
Display real-time trace message written to the LUs
trace mailbox 333
Detach and end current client process 333
Specify trace data 333
Remove single entry from the trace filter table . . 334
Client process writes trace messages to a binary file 334
Close binary trace messages file 335
Client process writes trace messages to a text file 335
Close text trace messages file 335
Timestamp messages 335
Stop timestamping messages 335
Enable tracing 335
Disable tracing 335

Save message history 336
Disable message history 336
Delete message history 336
Set history depth 336
Reset stack and history data for a channel 336
Enable or disable mask bit 336
Set a color for a channel 338
Redirect output to file 338
Analyze trace binary file 338
Display current state of MQSeries threads 341
Close trace and exit MONMQ 341
Quit MONMQ without closing trace. 341
Managing shared memory with MONMQ 342
Scripts and macros in MONMQ 343
Sample trace session 344

Appendix I. User exits. 355
Channel and Workload Exits 355
MQSeries Cluster Workload Exits. 355

Appendix J. Trusted applications . . . 357
User applications 357

Setting up trusted applications 357
Running channels and listeners as trusted
applications 358

Fast, nonpersistent messages 358

Appendix K. Ancillary information . . 359
Application Programming Guide 359

Application triggering 359

Appendix L. Notices 361
Trademarks 362

Bibliography. 365
MQSeries cross-platform publications 365
MQSeries platform-specific publications 365
Softcopy books 366

HTML format 366
Portable Document Format (PDF) 366
BookManager® format 367
PostScript format 367
Windows Help format 367

MQSeries information available on the Internet . . 367
Related publications 367

Glossary of terms and abbreviations 369

Index 381

Sending your comments to IBM . . . 391

Contents vii

viii MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Figures

1. Queues, messages, and applications 31
2. Typical output from a DISPLAY QMGR

command 35
3. Extract from the MQSC command file,

myprog.in 37
4. Extract from the MQSC report file,

myprog.out. 38
5. Typical results from a queue browser 45
6. Remote administration 62
7. Setting up channels and queues for remote

administration 63
8. An example rule from a DLQ handler rules

table 96
9. Understanding instrumentation events 106

10. Monitoring queue managers across different
platforms, on a single node 107

11. Source code for Oracle switch load file,
oraswit.c 115

12. Sample XAResourceManager entry for Oracle 119
13. Sample dspmqtrn output 121
14. Sample dspmqtrn output for a transaction in

error 123
15. Commented out XAResourceManager stanza 124
16. Checkpointing 128

17. Checkpointing with a long-running
transaction 129

18. Example dmpmqlog output 143
19. Example of an MQSeries configuration file for

MQSeries for Compaq OpenVMS systems . . 174
20. Example queue manager configuration file for

MQSeries for Compaq OpenVMS 175
21. Sample MQSeries for Compaq OpenVMS

trace 192
22. Sample entry required for

ICC$SYSTARTUP.COM 215
23. Failover.template for creating a

FAILOVER.INI configuration file 217
24. start_failover_set command procedure 219
25. end_failover_set command procedure 221
26. Default directory structure after a queue

manager has been started 299
27. Template configuration file: failover.template 312
28. Template StartCommand procedure:

Start_QM.template 313
29. Template EndCommand procedure:

END_QM.template. 316
30. Template TidyCommand procedure:

TIDY_QM.template 317

© Copyright IBM Corp. 1994, 2001 ix

x MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Tables

1. Categories of control commands 23
2. Security authorization needed for MQI calls 83
3. MQSC commands and security authorization

needed 86
4. PCF commands and security authorization

needed 87
5. XA-compliant relational databases 112
6. Log overhead sizes (All values are

approximate). 130
7. List of possible ISO CCSIDs. 162
8. Default outstanding connection requests

(TCP) 172
9. Description of the fields within the

FAILOVER.INI file 207
10. Parameters passed to command procedures 208
11. Failover set queue manager states. 211
12. Failover set node queue manager states 211
13. Failover set node monitor states 212
14. DCL symbols and description 213
15. How to read syntax diagrams 226

16. Security authorities from the dspmqaut
command 240

17. Specifying authorizations for different object
types 284

18. System and default objects for queues 297
19. System and default objects for channels 297
20. System and default objects for namelists 298
21. System and default objects for processes 298
22. Commands for queue manager

administration 305
23. Commands for command server

administration 305
24. Commands for queue administration 306
25. Commands for process administration 306
26. Commands for channel administration 307
27. Other control commands. 307
28. MQSC command files. 309
29. Sample programs - source files. 309
30. Miscellaneous files 310
31. Locales and CCSIDs 319

© Copyright IBM Corp. 1994, 2001 xi

xii MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

About this book

MQSeries for Compaq OpenVMS Alpha, V5.1 –also referred to in this book as
MQSeries for Compaq OpenVMS or MQSeries, as the context permits–is part of the
MQSeries family of products. These products provide application programming
services that enable application programs to communicate with each other using
message queues. This form of communication is referred to as commercial messaging.
The applications involved can exist on different nodes on a wide variety of
machine and operating system types. They use a common application
programming interface, called the Message Queuing Interface or MQI, so that
programs developed on one platform can readily be transferred to another.

This book describes the system administration aspects of MQSeries for Compaq
OpenVMS Alpha, V5.1 and the services it provides to support commercial
messaging in an OpenVMS environment. This includes managing the queues that
applications use to receive their messages, and ensuring that applications have
access to the queues that they require.

Who this book is for
Primarily, this book is for system administrators, and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book
To use this book, you should have a good understanding of the OpenVMS
operating system and associated utilities. You do not need to have worked with
message queuing products before, but you should have an understanding of the
basic concepts of message queuing.

How to use this book
The body of this book:
v Introduces MQSeries
v Describes day-to-day management of an OpenVMS system, addressing topics

such as administration of local and remote MQSeries objects, security,
transactional support, and problem determination.

Using the appendixes
The appendixes provide reference material. Some include information that will be
incorporated in other MQSeries books at the next opportunity.

Information about MQSeries on the Internet

MQSeries URL
The URL of the MQSeries product family home page is:

http://www.ibm.com/software/ts/mqseries/

© Copyright IBM Corp. 1994, 2001 xiii

MQSeries on the Internet

xiv MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

What’s new in MQSeries for Compaq OpenVMS Alpha, V5.1

This following new function is described in this edition of the MQSeries for Compaq
OpenVMS Alpha, V5.1 System Administration Guide.

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they
host available to every other queue manager. Any queue manager can send
a message to any other queue manager in the same cluster without the
need for explicit channel definitions, remote queue definitions, or
transmission queues for each destination. The main benefits of MQSeries
clusters are:
v Fewer system administration tasks
v Increased availability
v Workload balancing

See “Clusters” on page 12 for more information.

Note: MQSeries clusters are not the same as OpenVMS clusters. When the
term cluster is used, it refers to an MQSeries queue manager cluster.
An OpenVMS cluster is always referred to as an OpenVMS cluster.
For more on OpenVMS clusters, see “Chapter 16. MQSeries for
OpenVMS and clustering” on page 203.

MQSeries Application Interface (MQAI)

MQSeries for Compaq OpenVMS now supports the MQSeries Application
Interface (MQAI), a programming interface that simplifies the use of PCF
messages to configure MQSeries. For more information about the MQAI,
including full command descriptions, see MQSeries Administration Interface
Programming Guide and Reference.

Message queue size
A message queue can be up to 2 GB.

Controlled, wait shutdown of a queue manager
A new option has been added to the endmqm command to allow
controlled, synchronous shutdown of a queue manager.

Java® support
MQSeries for Compaq OpenVMS now works with Java compilers.

Web administration
You can now perform remotely the following administration tasks for
MQSeries for Compaq OpenVMS using an HTML browser (for example,
Netscape Navigator or Microsoft® Internet Explorer) on a Windows NT ®

system:
v Log on as an MQSeries Administrator
v Select a queue manager and issue MQSC commands against it
v Create, edit and delete MQSC scripts.

© Copyright IBM Corp. 1994, 2001 xv

xvi MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Part 1. Guidance

Chapter 1. Introduction to MQSeries. 5
MQSeries and message queuing 5

Time-independent applications 5
Message-driven processing 5

Messages and queues 5
What is a message? 6

Message lengths 6
What is a queue? 6

How do applications send and receive
messages? 6
Predefined and dynamic queues 7
Retrieving messages from queues 7

Objects 7
Object names 8
Managing objects 8

Object attributes 8
MQSeries queue managers. 8

MQI calls 9
MQSeries queues 9

Using queue objects 9
Specific local queues used by MQSeries . . . 10

Process definitions 12
Channels 12
Clusters 12
Namelists 13

System default objects 13
Local and remote administration 13
Clients and servers 14

MQSeries applications in a client-server
environment 14

Extending queue manager facilities 14
User exits 15
Installable services 15

Security 15
Object Authority manager (OAM) facility . . . 16
DCE security 16

Transactional support 16

Chapter 2. An introduction to MQSeries
administration 17
Local and remote administration 17
Performing administration tasks using control
commands. 17
Performing administrative tasks using MQSC
commands. 18
Performing administrative tasks using PCF
commands. 18

Attributes in MQSC and PCFs 19
Escape PCFs 19

Understanding MQSeries file names 19
Queue manager name transformation. 19
Object name transformation 20

Understanding case sensitivity 20
Case sensitivity in control commands. 20
Case sensitivity in MQSC commands 21

Chapter 3. Managing queue managers using
control commands 23
Using control commands 23

Using control commands 23
Creating a queue manager 24

Guidelines for creating queue managers 24
Specifying a unique queue manager name . . 24
Limiting the number of queue managers . . 25
Specifying the default queue manager . . . 25
Specifying a dead-letter queue 26
Specifying a default transmission queue . . . 26
Specifying the required logging parameters. . 26
Backing up configuration files after creating a
queue manager 27

Creating a default queue manager 27
Starting a queue manager 28
Making an existing queue manager the default . . 28
Stopping a queue manager 28

Quiesced shutdown 28
Immediate shutdown 29
Preemptive shutdown 29
If you have problems shutting down a queue
manager 29

Restarting a queue manager 30
Deleting a queue manager 30

Chapter 4. Administering local MQSeries objects 31
Supporting application programs that use the MQI 31
Performing local administration tasks using MQSC
commands. 32

Before you start 32
MQSeries object names 32
Redirecting input and output 33

Using the MQSC facility interactively. 33
Feedback from MQSC commands 34
Ending interactive input to MQSC. 34
Displaying queue manager attributes 34
Using a queue manager that is not the default. . 35
Altering queue manager attributes. 35

Running MQSC commands from text files 36
MQSC command files 36
MQSC reports 37
Running the supplied MQSC command files . . 38
Using runmqsc to verify commands 38

Resolving problems with MQSC 39
Working with local queues 40

Defining a local queue. 40
Defining a dead-letter queue 41
Displaying default object attributes 41
Copying a local queue definition 42
Changing local queue attributes 43
Clearing a local queue 43
Deleting a local queue 44
Browsing queues 44

Working with alias queues 48
Defining an alias queue 48

© Copyright IBM Corp. 1994, 2001 1

Using other commands with queue aliases . . . 49
Working with model queues. 49

Defining a model queue 50
Using other commands with model queues. . . 50

Managing objects for triggering. 51
Defining an application queue for triggering . . 51
Defining an initiation queue 52
Creating a process definition 52
Displaying your process definition 53

Chapter 5. Automating administration tasks . . 55
PCF commands 55

Attributes in MQSC and PCFs 56
Escape PCFs 56
Using the MQAI to simplify the use of PCFs . . 56

Managing the command server for remote
administration 57

Starting the command server 57
Displaying the status of the command server . . 57
Stopping a command server 58

Chapter 6. Administering remote MQSeries
objects 59
Channels, clusters and remote queuing 59

Remote administration using clusters 60
Remote administration from a local queue manager
using MQSC commands 61

Preparing queue managers for remote
administration 61
Preparing channels and transmission queues for
remote administration 62
Defining channels and transmission queues . . 63
Starting the channels 64
Automatic definition of channels 65
Issuing MQSC commands remotely 65
Working with queue managers on MVS/ESA . . 66

Recommendations for remote queuing . . . 66
If you have problems using MQSC remotely . . 67

Creating a local definition of a remote queue . . . 67
Understanding how local definitions of remote
queues work 67

Example 67
An alternative way of putting messages on a
remote queue. 69
Using other commands with remote queues . . 69
Creating a transmission queue 69

Default transmission queues 69
Using remote queue definitions as aliases 70

Queue manager aliases 70
Reply-to queue aliases 70
Data conversion 71

When a queue manager cannot convert
messages in built-in formats 71
File ccsid.tbl 71
Conversion of messages in user-defined
formats 72

Changing the queue manager CCSID 72

Chapter 7. Protecting MQSeries objects 73
Why you need to protect MQSeries resources . . . 73
Before you begin 73

User IDs in MQSeries for Compaq OpenVMS
with resource identifier MQM 73
For more information 74

Understanding the Object Authority Manager . . . 74
How the OAM works 75
Managing access through rights identifiers . . . 75

Rights identifiers and the primary rights
identifier 75
When a principal holds more than one rights
identifier 75

Default rights identifier 76
Resources you can protect with the OAM . . . 76
Using rights identifiers for authorizations . . . 76
Disabling the object authority manager 76

Using the Object Authority Manager commands . . 77
What you specify when you use the OAM
commands. 77

Authorization lists 77
Using the setmqaut command 78

Authority commands and installable services 78
Access authorizations 79
Display authority command 79

Object Authority Manager guidelines 79
User IDs 79
Queue manager directories 79
Queues 80
Alternate user authority 80
Context authority 80
Remote security considerations 81
Channel command security 81

PCF commands 82
MQSC channel commands 82
Control commands for channels 82

Understanding the authorization specification tables 82
MQI authorizations. 83
Administration authorizations 86
Authorizations for MQSC commands in escape
PCFs 86

Authorizations for PCF commands 87
Understanding authorization files 88

Authorization file paths 89
Authorization directories 89

What the authorization files contain 89
Class authorization files 90
All class authorization files 91

Managing authorization files 91
Authorizations to authorization files 91

Chapter 8. The MQSeries dead-letter queue
handler 93
Invoking the DLQ handler 93

The sample DLQ handler, amqsdlq 94
The DLQ handler rules table 94

Control data 94
Rules (patterns and actions) 96

The pattern-matching keywords 96
The action keywords 97

Rules table conventions 98
How the rules table is processed 100

Ensuring that all DLQ messages are processed 101
An example DLQ handler rules table 102

2 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 9. Instrumentation events 105
What are instrumentation events? 105
Why use events? 106

Types of events 107
Event notification through event queues . . . 108

Using triggered event queues 108
Enabling and disabling events 108
Event messages. 109

Chapter 10. Transactional support. 111
Database coordination 112

Restrictions 113
Database connections 113
Configuring database managers 113

Creating switch load files 113
Defining database managers 114

Oracle configuration 115
Minimum supported levels for Oracle 115
Checking the environment variable settings . . 115
Enabling Oracle XA support 115
Creating the Oracle switch load file 115

Creating the Oracle switch load file on
OpenVMS systems 116

Adding XAResourceManager configuration
information for Oracle 117
Changing Oracle configuration parameters . . 119

Administration tasks 119
In-doubt units of work 120
Using the dspmqtrn command 120
Using the rsvmqtrn command 121
Mixed outcomes and errors. 122
Changing configuration information 123

Removing database manager instances . . . 123

Chapter 11. Recovery and restart 125
Making sure that messages are not lost (logging) 125

What logs look like 125
Log control file 126

Types of logging 126
Circular logging 126
Linear logging 126

Checkpointing – ensuring complete recovery . . . 127
Calculating size of log 130
Managing logs 131

What happens when a disk gets full. 132
Managing log files. 132

Log file location 133
Using the log for recovery 133

Recovering from problems 133
Media recovery. 133

Recovering media images 134
Recovering damaged objects during startup . . 135
Recovering damaged objects at other times . . 135

Protecting MQSeries log files 135
Backup and restore 136

Backing up MQSeries. 136
Restoring MQSeries 136

Recovery scenarios 137
Disk drive failures. 137
Damaged queue manager object 138
Damaged single object 138

Automatic media recovery failure 138
Dumping the contents of the log using the
dmpmqlog command. 138

Chapter 12. Using the name service 157
Using DCE to share queues on different queue
managers. 157

Configuration tasks for shared queues 157
DCE configuration 158

Chapter 13. Configuring MQSeries 159
MQSeries configuration files 159

Editing configuration files 159
When do you need to edit a configuration
file? 160
Configuration file priorities. 160
Implementing changes to configuration files 160

The MQSeries configuration file, mqs.ini . . . 160
Queue manager configuration files, qm.ini . . 160

Attributes for changing MQSeries configuration
information 161

The AllQueueManagers stanza 161
The ClientExitPath stanza 162
The DefaultQueueManager stanza 162
The ExitProperties stanza 163
The LogDefaults stanza 163
The QueueManager stanza 165

Changing queue manager configuration
information 166

The Service stanza. 166
The ServiceComponent stanza 167
The Log stanza 167
The XAResourceManager stanza 169
The Channels stanza 170
The LU62 and TCP stanzas 172
The ExitPath stanza 173

Example mqs.ini and qm.ini files 173

Chapter 14. Problem determination 177
Preliminary checks 177

Has MQSeries run successfully before? 177
Are there any error messages?. 177
Are there any return codes explaining the
problem? 177
Can you reproduce the problem? 178
Have any changes been made since the last
successful run? 178
Has the application run successfully before? . . 178

If the application has not run successfully
before 179

Does the problem affect specific parts of the
network? 179
Does the problem occur at specific times of the
day? 179
Is the problem intermittent? 179
Have you applied any service updates? . . . 180
Do you need to apply an updates? 180

Common programming errors 180
What to do next 180

Have you obtained incorrect output? 181

Part 1. Guidance 3

Have you failed to receive a response from a
PCF command? 181
Are some of your queues failing?. 182
Does the problem affect only remote queues? 182

Application design considerations 183
Effect of message length 183
Effect of message persistence 183
Searching for a particular message 183
Queues that contain messages of different
lengths 183
Frequency of syncpoints 184
Use of the MQPUT1 call. 184

Incorrect output 184
Messages that do not appear on the queue . . 184
Messages that contain unexpected or corrupted
information 185
Problems with incorrect output when using
distributed queues. 186

Error logs 187
Log files 187
Early errors 188
Operator messages 188
Example error log 188

Dead-letter queues 191
Configuration files and problem determination . . 191
Using MQSeries trace 191

Trace file names 192
Sample trace data 192

First failure support technology (FFST) 192
How to examine the FFSTs 192

Problem determination with clients 197
Terminating clients 198
Error messages with clients. 198

OS/2, UNIX, and OpenVMS systems clients 198
DOS and Windows® clients 198

Chapter 15. Performance tuning 199
Setting the value of process specific parameters 200

Chapter 16. MQSeries for OpenVMS and
clustering 203
Installing MQSeries in an OpenVMS cluster . . . 203
OpenVMS cluster failover sets 204

Overview of OpenVMS cluster failover sets . . 204
OpenVMS cluster failover set concepts 204
Preparing to configure an OpenVMS cluster
failover set 206
Configuring an OpenVMS cluster failover set 206
OpenVMS cluster failover set post-configuration
tasks 207
Editing the FAILOVER.INI configuration file 207
Command procedures used by failover sets . . 208
Administration of failover sets 209
Startup of failover monitors 210
Starting a queue manager within a failover set 210
Ending a queue manager within a failover set 210
Moving a queue manager within a failover set 211
Displaying the state of a failover set 211
Setting DCL symbols to the state of a failover
set 212
Halting a failover monitor process 213

Executing commands while an update is in
progress 213
Changing the state of a failover set 214
Setting up security for ICC associations . . . 214
Troubleshooting problems with failover sets . . 215
Using MultiNet for OpenVMS with failover sets 216
An example of using failover sets 216

Customizing failover.template 216
Modification of failover set command
procedures 218
Example failover set start command
procedure, start_failover_set.com 218
Example failover set end command
procedure, end_failover_set.com 220

4 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 1. Introduction to MQSeries

This chapter introduces MQSeries for Compaq OpenVMS from an administrator’s
perspective, and describes the basic concepts of MQSeries and messaging. It
contains these sections:
v “MQSeries and message queuing”
v “Messages and queues”
v “Objects” on page 7
v “System default objects” on page 13
v “Local and remote administration” on page 13
v “Clients and servers” on page 14
v “Extending queue manager facilities” on page 14
v “Security” on page 15

MQSeries and message queuing
MQSeries allows application programs to use message queuing to participate in
message-driven processing. Application programs can communicate across
different platforms by using the appropriate message queuing software products.
For example, OpenVMS and MVS/ESA® applications can communicate through
MQSeries for Compaq OpenVMS and MQSeries for OS/390® respectively. The
applications are shielded from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface
known as the message queue interface (MQI) whatever platform the applications
are run on. This makes it easier for you to port applications from one platform to
another.

The MQI is described in detail in the MQSeries Application Programming Reference
book.

Time-independent applications
With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving applications are decoupled so that the sender can continue processing
without having to wait for the receiver to acknowledge the receipt of the message.
In fact, the target application does not even have to be running when the message
is sent. It can retrieve the message after it has been started.

Message-driven processing
Upon arrival on a queue, messages can automatically start an application using a
mechanism known as triggering. If necessary, the applications can be stopped when
the message or messages have been processed.

Messages and queues
Messages and queues are the basic components of a message queuing system.

© Copyright IBM Corp. 1994, 2001 5

What is a message?
A message is a string of bytes that is meaningful to the applications that use it.
Messages are used for transferring information from one application to another (or
to different parts of the same application). The applications can be running on the
same platform, or on different platforms.

MQSeries messages have two parts:
v application data

The content and structure of the application data is defined by the application
programs that use them.

v message descriptor

The message descriptor identifies the message and contains other control
information, such as the type of message and the priority assigned to the
message by the sending application.
The format of the message descriptor is defined by MQSeries. For a complete
description of the message descriptor, see the MQSeries Application Programming
Reference guide.

Message lengths
In MQSeries, the maximum message length is 100 MB (where 1 MB equals
1 048 576 bytes). In practice, the message length may be limited by:
v The maximum message length defined for the receiving queue.
v The maximum message length defined for the queue manager.
v The maximum message length defined by either the sending or receiving

application.
v The amount of storage available for the message.

It may take several messages to send all the information that an application
requires.

What is a queue?
A queue is a data structure used to store messages. The messages may be put on
the queue by application programs or by a queue manager as part of its normal
operation.

Each queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns and for storing all the messages it receives onto
the appropriate queues.

The maximum size of a queue is 2 GB. For information about planning the amount
of storage you require for queues, see the MQSeries Planning Guide or visit the
following web site for platform-specific performance reports:

http://www.ibm.com/software/ts/mqseries/txppacs/txpm1.html

How do applications send and receive messages?
Applications send and receive messages using MQI calls. For example, to put a
message onto a queue, an application:
1. Opens the required queue by issuing an MQI MQOPEN call.
2. Issues an MQI MQPUT call to put the message onto the queue
3. Another application can retrieve the message from the same queue by issuing

an MQI MQGET call.

Messages and queues

6 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

For more information about MQI calls, see the MQSeries Application Programming
Reference book.

Predefined and dynamic queues
Queues can be characterized by the way they are created:
v Predefined queues are created by an administrator using the appropriate command

set. For example, the MQSC command DEFINE QLOCAL creates a predefined
local queue. Predefined queues are permanent; they exist independently of the
applications that use them and survive MQSeries restarts.

v Dynamic queues are created when an application issues an OPEN request
specifying the name of a model queue. The queue created is based on a template
queue definition, which is the model queue. You can create a model queue using
the MQSC command DEFINE QMODEL. The attributes of a model queue, for
example the maximum number of messages that can be stored on it, are
inherited by any dynamic queue that is created from it.
Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on a restart.

Retrieving messages from queues
In MQSeries, suitably authorized applications can retrieve messages from a queue
according to these retrieval algorithms:
v First-in-first-out (FIFO).
v Message priority, as defined in the message descriptor. Messages that have the

same priority are retrieved on a FIFO basis.
v A program request for a specific message.

The MQGET request from the application determines the method used.

Objects
Many of the tasks described in this book involve manipulating MQSeries objects. In
MQSeries Version 5.1, the object types include queue managers, queues, process
definitions, channels, clusters, and namelists.

The manipulation or administration of objects includes:
v Starting and stopping queue managers
v Creating objects, particularly queues, for applications.
v Working with channels to create communication paths to queue managers on

other (remote) systems. This is described in detail in the MQSeries
Intercommunication book.

v Creating clusters of queue managers to simplify the overall administration
process, or to achieve workload balancing.

This book contains detailed information about administration in the following
chapters:
v “Chapter 2. An introduction to MQSeries administration” on page 17
v “Chapter 3. Managing queue managers using control commands” on page 23
v “Chapter 4. Administering local MQSeries objects” on page 31
v “Chapter 6. Administering remote MQSeries objects” on page 59

Messages and queues

Chapter 1. Introduction to MQSeries 7

Object names
The naming convention adopted for MQSeries objects depends on the object.

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any
given message should be sent.

For the other types of objects, each object has a name associated with it and can be
referenced by that name. These names must be unique within one queue manager
and object type. For example, you can have a queue and a process with the same
name, but you cannot have two queues with the same name.

In MQSeries, names can have a maximum of 48 characters, with the exception of
channels, which have a maximum of 20 characters. For more information about
names see “Rules for naming MQSeries objects” on page 225.

Managing objects
You can create, alter, display and delete objects using:
v Control commands, which are typed in from a keyboard
v MQSeries commands (MQSC), which can be typed in from a keyboard or read

from a file.
v Programmable Command Format (PCF) commands, which can be used in an

automation program.
v MQSeries Administration Interface (MQAI) calls in a program.

For more information, see “Chapter 2. An introduction to MQSeries
administration” on page 17.

Object attributes
The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a queue
can accommodate is defined by its MaxMsgLength attribute; you can specify this
attribute when you create a queue. The DefinitionType attribute specifies how the
queue was created; you can only display this attribute.

In MQSeries, there are two ways of referring to an attribute:
v Using its PCF name, for example, MaxMsgLength.
v Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the MQSC facility
is an important part of this book, you are more likely to see the MQSC name in
examples than the PCF name of a given attribute.

MQSeries queue managers
A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:
v Object attributes are changed according to the commands received.
v Special events such as trigger events or instrumentation events are generated

when the appropriate conditions are met.

Objects

8 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v Messages are put on the correct queue, as requested by the application making
the MQPUT call. The application is informed if this cannot be done, and an
appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager. The queue manager to which an application is connected is
said to be the local queue manager for that application. For the application, the
queues that belong to its local queue manager are local queues.

A remote queue is simply a queue that belongs to another queue manager.

A remote queue manager is any queue manager other than the local queue manager.
A remote queue manager may exist on a remote machine across the network or it
may exist on the same machine as the local queue manager.

MQSeries supports multiple queue managers on the same machine.

MQI calls
A queue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Note: You cannot put messages on a queue manager object; messages are always
put on queue objects, not on queue manager objects.

MQSeries queues
Queues are defined to MQSeries using:
v The appropriate MQSC DEFINE command
v The PCF Create Queue command

The commands specify the type of queue and its attributes. For example, a local
queue object has attributes that specify what happens when applications reference
that queue in MQI calls. Examples of attributes are:
v Whether applications can retrieve messages from the queue (GET enabled).
v Whether applications can put messages on the queue (PUT enabled).
v Whether access to the queue is exclusive to one application or shared between

applications.
v The maximum number of messages that can be stored on the queue at the same

time (maximum queue depth).
v The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see the MQSeries Command
Reference or the MQSeries Programmable System Management book.

Using queue objects
In MQSeries, there are various types of queue object. Each type of object can be
manipulated by the product commands and is associated with real queues in
different ways:
v Local queue object

A local queue object identifies a local queue belonging to the queue manager to
which the application is connected. All queues are local queues in the sense that
each queue belongs to a queue manager and, for that queue manager, the queue
is a local queue.

Objects

Chapter 1. Introduction to MQSeries 9

v Remote queue object

A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The
information you specify when you define a remote queue object allows the local
queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.
Before applications can send messages to a queue on another queue manager,
you must have defined a transmission queue and channels between the queue
managers, unless you have grouped one or more queue managers together into
a cluster. For more information about clusters, see “Remote administration using
clusters” on page 60.

v Alias queue object

An alias queue object allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This allows you to change the queues that applications use without changing the
application in any way—you merely change the alias queue definition to reflect
the name of the new queue to which the alias resolves.
An alias queue is not a queue, but an object that you can use to access another
queue.

v Model queue object

A model queue object defines a set of queue attributes that are used as a
template for creating a dynamic queue. Dynamic queues are created by the
queue manager when an application issues an MQOPEN request specifying a
queue name that is the name of a model queue. The dynamic queue that is
created in this way is a local queue whose attributes are taken from the model
queue definition. The dynamic queue name can be specified by the application
or the queue manager can generate the name and return it to the application.
Dynamic queues defined in this way may be temporary queues, which do not
survive product restarts, or permanent queues, which do.

Specific local queues used by MQSeries
MQSeries uses some local queues for specific purposes related to its operation. You
must define them before MQSeries can use them.

Application queues: A queue that is used by an application (through the MQI) is
referred to as an application queue. This can be a local queue on the queue manager
to which an application is connected, or it can be a remote queue that is owned by
another queue manager.

Applications can put messages on local or remote queues. However, they can only
get messages from a local queue.

Initiation queues: Initiation queues are queues that are used in triggering. A queue
manager puts a trigger message on an initiation queue when a trigger event
occurs. A trigger event is a logical combination of conditions that is detected by a
queue manager. For example, a trigger event may be generated when the number
of messages on a queue reaches a predefined depth. This event causes the queue
manager to put a trigger message on a specified initiation queue. This trigger
message is retrieved by a trigger monitor, a special application that monitors an
initiation queue. The trigger monitor then starts up the application program that
was specified in the trigger message.

Objects

10 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

See “Managing objects for triggering” on page 51, and “runmqtrm (Start trigger
monitor)” on page 280. For more information about triggering, see the MQSeries
Application Programming Guide.

Transmission queues: A transmission queue temporarily stores messages that are
destined for a remote queue manager. You must define at least one transmission
queue for each remote queue manager to which the local queue manager is to send
messages directly. These queues are also used in remote administration; see
“Remote administration from a local queue manager using MQSC commands” on
page 61. For information about the use of transmission queues in distributed
queuing, see the MQSeries Intercommunication book.

Cluster transmission queues: Each queue manager within a cluster has a cluster
transmission queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition of
this queue is created by default on every queue manager on Version 5.1.

A queue manager that is part of the cluster can send messages on the cluster
transmission queue to any other queue manager that is in the same cluster.

Cluster queue managers can communicate with queue managers that are not part
of the cluster. To do this, you must define channels and a transmission queue from
a queue manager within the cluster to the other queue manager outside the cluster
in the same way as in a traditional distributed-queuing environment.

During name resolution, the cluster transmission queue takes precedence over the
default transmission queue. When a queue manager that is not part of the cluster
puts a message onto a remote queue, the default action, if there is no transmission
queue with the same name as the destination queue manager, is to use the default
transmission queue.

When a queue manager is part of a cluster, the default action is to use the
SYSTEM.CLUSTER.TRANSMIT.QUEUE, except when the destination queue
manager is not a part of the cluster.

Dead-letter queues: A dead-letter queue stores messages that cannot be routed to
their correct destinations. This occurs when, for example, the destination queue is
full. The supplied dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.
These queues are also referred to as undelivered-message queues on other
platforms.

For distributed queuing, you should define a dead-letter queue on each queue
manager involved.

Command queues: The command queue, named
SYSTEM.ADMIN.COMMAND.QUEUE, is a local queue to which suitably
authorized applications can send MQSeries commands for processing. These
commands are then retrieved by an MQSeries component called the command
server. The command server validates the commands, passes the valid ones on for
processing by the queue manager, and returns any responses to the appropriate
reply-to queue.

A command queue is created automatically for each queue manager when that
queue manager is created.

Objects

Chapter 1. Introduction to MQSeries 11

Reply-to queues: When an application sends a request message, the application
that receives the message can send back a reply message to the sending
application. This message is put on a queue, called a reply-to queue, which is
normally a local queue to the sending application. The name of the reply-to queue
is specified by the sending application as part of the message descriptor.

Event queues: MQSeries Version 5.1 supports instrumentation events, which can
be used to monitor queue managers independently of MQI applications.
Instrumentation events can be generated in several ways, for example:
v An application attempting to put a message on a queue that is not available or

does not exist.
v A queue becoming full.
v A channel being started.

When an instrumentation event occurs, the queue manager puts an event message
on an event queue. This message can then be read by a monitoring application
which may inform an administrator or initiate some remedial action if the event
indicates a problem.

Note: Trigger events are quite different from instrumentation events in that trigger
events are not caused by the same conditions, and do not generate event
messages.

For more information about instrumentation events, see the MQSeries Programmable
System Management book.

Process definitions
A process definition object defines an application that is to be started in response to a
trigger event on an MQSeries queue manager. See “Initiation queues” on page 10
for more information.

The process definition attributes include the application ID, the application type,
and data specific to the application.

Use the MQSC command DEFINE PROCESS or the PCF command Create Process
to create a process definition.

Channels
Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages, and
another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see the MQSeries
Intercommunication book, and also “Preparing channels and transmission queues for
remote administration” on page 62.

Clusters
In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another

Objects

12 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

queue manager it must have defined a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network
without the need for complex transmission queues, channels and queue definitions.

Note: MQSeries clusters are not the same as OpenVMS clusters. When the term
cluster is used, it refers to an MQSeries queue manager cluster. An
OpenVMS cluster is always referred to as an OpenVMS cluster. For more on
OpenVMS clusters, see “Chapter 16. MQSeries for OpenVMS and clustering”
on page 203.

For information about clusters, see “Chapter 6. Administering remote MQSeries
objects” on page 59 and the MQSeries Queue Manager Clusters book.

Namelists
A namelist is an MQSeries object that contains a list of other MQSeries objects.
Typically, namelists are used by applications such as trigger monitors, where they
are used to identify a group of queues. The advantage of using a namelist is that it
is maintained independently of applications; that is, it can be updated without
stopping any of the applications that use it. Also, if one application fails, the
namelist is not affected and other applications can continue using it.

Namelists are also used with queue manager clusters so that you can maintain a
list of clusters referenced by more than one MQSeries object.

System default objects
The system default objects are a set of object definitions that are created
automatically whenever a queue manager is created. You can copy and modify any
of these object definitions for use in applications at your installation. Default object
names have the stem SYSTEM.DEF; for example, the default local queue is
SYSTEM.DEFAULT.LOCAL.QUEUE; the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of these
names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, the attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

See “Appendix B. System defaults” on page 297 for more information about system
defaults.

Local and remote administration
Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet, and carry out
administration there. In MQSeries, you can consider this as local administration
because no channels are involved, that is, the communication is managed by the
operating system.

Objects

Chapter 1. Introduction to MQSeries 13

MQSeries supports administration from a single point through what is known as
remote administration. This allows you to issue commands from your local system
that are processed on another system. You do not have to log on to that system,
although you do need to have the appropriate channels defined. The queue
manager and command server on the target system must be running. For example,
you can issue a remote command to change a queue definition on a remote queue
manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

Clients and servers
MQSeries supports client-server configurations for MQSeries applications.

An MQSeries client is a part of the MQSeries product that is installed on a machine
to accept MQI calls from applications and pass them to an MQI server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects, for example queues, exist only on the queue
manager machine, that is, on the MQI server machine. A server can support
normal local MQSeries applications as well.

The difference between an MQI server and an ordinary queue manager is that a
server has a dedicated communications link with each client. For more information
about creating channels for clients and servers, see the MQSeries Intercommunication
book.

For information about client support in general, see the MQSeries Clients book.

MQSeries applications in a client-server environment
When linked to a server, client MQSeries applications can issue MQI calls in the
same way as local applications. The client application issues an MQCONN call to
connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
queue manager.

You must link your applications to the appropriate client libraries. See the
MQSeries Clients book for further information.

Extending queue manager facilities
The facilities provided by a queue manager can be extended by:
v User exits
v Installable services

Local and remote administration

14 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

User exits
User exits provide a mechanism for users to insert their own code into a queue
manager function. The supported user exits are:
v Channel exits

These exits change the way that channels operate. Channel exits are described in
the MQSeries Intercommunication book.

v Data conversion exits

These exits create source code fragments that can be put into application
programs to convert data from one format to another. Data conversion exits are
described in the MQSeries Application Programming Guide.

v Cluster workload exit

The function performed by this exit is defined by the provider of the exit. Call
definition information is given in the MQSeries Queue Manager Clusters book.

All types of exit are related to distributed queueing. For more information about
these exits and how to use them, see the MQSeries Intercommunication book.

Installable services
Installable services are more extensive than exits in that they have formalized
interfaces (an API) with multiple entry points.

An implementation of an installable service is called a service component. You can
use the components supplied with the product, or you can write your own
component to perform the functions that you require.

Currently, the following installable services are provided:
v Authorization service.

The authorization service allows you to build your own security facility.
The default service component that implements the service is the Object
Authority Manager (OAM), which is supplied with the product. By default, the
OAM is active, that is, you do not have to do anything to configure it. You can
use the authorization service interface to create other components to replace or
augment the OAM. For more information about the OAM, see “Chapter 7.
Protecting MQSeries objects” on page 73.

v Name service.
The name service enables the sharing of queues by allowing applications to
identify remote queues as though they were local queues. A default service
component that implements the name service is provided with MQSeries Version
5.1. It uses the Open Software Foundation (OSF) Distributed Computing
Environment (DCE). You can also write your own name service component, for
example, if you do not have DCE installed. By default, the name service is
inactive.

See “Chapter 12. Using the name service” on page 157 and also the MQSeries
Programmable System Management book.

Security
In the MQSeries Version 5 products, there are two methods of providing security:
v The Object Authority Manager (OAM) facility
v DCE security

Extending facilities

Chapter 1. Introduction to MQSeries 15

Object Authority manager (OAM) facility
Authorization for using MQI calls, commands, and access to objects is provided by
the Object Authority Manager (OAM), which by default is enabled. Access to
MQSeries entities is controlled through MQSeries user groups and the OAM. A
command line interface is provided to enable administrators to grant or revoke
authorizations as required.

For more information about creating authorization service components, see the
MQSeries Programmable System Management book.

DCE security
Channel exits that use the DCE Generic Security Service (GSS) are provided by
MQSeries. For more information, see the MQSeries Intercommunication book.

Transactional support
An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of
work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work may be coordinated by the
queue manager itself.

For more information, see “Chapter 10. Transactional support” on page 111.

Security

16 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 2. An introduction to MQSeries administration

This chapter introduces the subject of MQSeries administration.

Administration tasks include creating, starting, altering, viewing, stopping, and
deleting MQSeries objects (queue managers, queues, processes, namelists, clusters,
and channels).

This chapter contains the following sections:
v “Local and remote administration”
v “Performing administration tasks using control commands”
v “Performing administrative tasks using MQSC commands” on page 18
v “Performing administrative tasks using PCF commands” on page 18
v “Understanding MQSeries file names” on page 19.
v “Understanding case sensitivity” on page 20

Local and remote administration
You administer MQSeries objects locally or remotely.

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet, and carry out
administration there. In MQSeries, you can consider this as local administration
because no channels are involved, that is, the communication is managed by the
operating system.

MQSeries supports administration from a single point through what is known as
remote administration. This allows you to issue commands from your local system
that are processed on another system. You do not have to log on to that system,
although you do need to have the appropriate channels defined. The queue
manager and command server on the target system must be running. For example,
you can issue a remote command to change a queue definition on a remote queue
manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

“Chapter 6. Administering remote MQSeries objects” on page 59 describes the
subject of remote administration in greater detail.

Performing administration tasks using control commands
Control commands allow you to perform administrative tasks on queue managers
themselves.

See “Chapter 3. Managing queue managers using control commands” on page 23
for more information about control commands.

© Copyright IBM Corp. 1994, 2001 17

Performing administrative tasks using MQSC commands
You use the MQSeries commands (MQSC) to manage queue manager objects,
including the queue manager itself, channels, queues, and process definitions. For
example, there are commands to define, alter, display, and delete a specified queue.

You run MQSC commands by invoking the control command runmqsc from a
command line. You can run MQSC commands:
v Interactively by typing them at the keyboard. See “Using the MQSC facility

interactively” on page 33.
v As a sequence of commands from an ASCII text file. See “Running MQSC

commands from text files” on page 36.

You can run the runmqsc command in three modes, depending on the flags set on
the command:
v Verification mode, where the MQSC commands are verified on a local queue

manager, but are not actually run.
v Direct mode, where the MQSC commands are run on a local queue manager.
v Indirect mode, where the MQSC commands are run on a remote queue manager.

For more information about using the MQSC facility and text files, see “Running
MQSC commands from text files” on page 36. For more information about the
runmqsc command, see “runmqsc (Run MQSeries commands)” on page 276.

Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

MQSC commands are available on other platforms, including AS/400® and
OS/390.

MQSC commands are summarized in “Appendix D. Comparing command sets” on
page 305.

See the MQSeries Command Reference book for a description of each MQSC
command and its syntax.

See “Performing local administration tasks using MQSC commands” on page 32 for
more information about using MQSC commands in local administration.

Performing administrative tasks using PCF commands
The purpose of the MQSeries programmable command format (PCF) commands is
to allow administration tasks to be programmed into an administration program.
In this way you can create queues and process definitions, and change queue
managers, from a program.

PCF commands cover the same range of functions that are provided by the MQSC
facility.

See “PCF commands” on page 55 for more information.

For a complete description of the PCF data structures and how to implement them,
see the MQSeries Programmable System Management book.

MQSeries commands

18 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

You can use the MQSeries Administration Interface (MQAI) to obtain easier
programming access to PCF messages. This is described in greater detail in “Using
the MQAI to simplify the use of PCFs” on page 56.

Attributes in MQSC and PCFs
Object attributes specified in MQSC are shown in this book in uppercase, for
example RQMNAME, although they are not case sensitive. These attribute names
are limited to eight characters, so it is not easy to work out the meaning of some of
them, for example, QDPHIEV. Object attributes in PCF are shown in italics, are not
limited to eight characters, and are therefore easier to read. The PCF equivalent of
RQMNAME, is RemoteQMgrName and of QDPHIEV is QDepthHighEvent.

Escape PCFs
Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see the MQSeries Programmable
System Management book.

Understanding MQSeries file names
Each MQSeries queue, queue manager, namelist, and process object is represented
by a file. Because object names are not necessarily valid file names, the queue
manager converts the object name into a valid file name where necessary.

The path to a queue manager directory is formed from the following:
v A prefix - the first part of the name:

MQS_ROOT:[MQM]

This prefix is defined in the queue manager configuration file.
v A literal:

QMGRS

v A coded queue manager name, which is the queue manager name transformed
into a valid directory name. For example, the queue manager:
QUEUE.MANAGER

would be represented as:
QUEUE$MANAGER

This process is referred to as name transformation.

Queue manager name transformation
In MQSeries you can give a queue manager a name containing up to 48 characters.

For example, you could name a queue manager:
QUEUE.MANAGER.ACCOUNTING.SERVICES

However, each queue manager is represented by a file and there are limitations to
the maximum length a file name can be, and to the characters that can be used in
the name. As a result, the names of files representing objects are automatically
transformed to meet the requirements of the file system.

PCF commands

Chapter 2. An introduction to MQSeries administration 19

The rules governing the transformation of a queue manager name, using the
example of a queue manager with the name QUEUE.MANAGER, are as follows:
1. Transform individual characters:

· becomes $
/ becomes _
% becomes _

2. If the name is still not valid:
a. Truncate it to eight characters
b. Append a three-character numeric suffix

For example, assuming the default prefix, the queue manager name becomes:
MQS_ROOT:[MQM.QMGRS.QUEUE$MANAGER]

The transformation algorithm also allows distinction between names that differ
only in case, on file systems that are not case sensitive.

Object name transformation
Object names are not necessarily valid file system names. Therefore the object
names may need to be transformed. The method used is different from that for
queue manager names because, although there only a few queue manager names
per machine, there can be a large number of other objects for each queue manager.
Only process definitions, queues and namelists are represented in the file system;
channels are not affected by these considerations.

When a new name is generated by the transformation process there is no simple
relationship with the original object name. You can use the dspmqfls command to
convert between real and transformed object names.

Queue file names begin with the letter “Q”.

For more information on naming objects, see “Rules for naming MQSeries objects”
on page 225.

Understanding case sensitivity

Case sensitivity in control commands
OpenVMS is normally described as a case-insensitive operating system. This means
that, in general, the following three commands all create a queue manager called
″QUEUEMANAGER″.

With MQSeries for Compaq OpenVMS, you can use double quotes around the
name of the queue manager (or similar parameter) to protect its case. When the
double quotes are used, the following three commands now create three different
queue managers.

$ crtmqm QueueManager
$ crtmqm queuemanager
$ crtmqm QUEUEMANAGER

$ crtmqm "QueueManager" creates a queue manager called QueueManager
$ crtmqm "queuemanager" creates a queue manager called queuemanager
$ crtmqm "QUEUEMANAGER" creates a queue manager called QUEUEMANAGER

Understanding MQSeries names

20 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

OpenVMS Version 7.2 introduced the following new command:

This command changes how OpenVMS handles upper and lower case characters.

If set process /parse_style command is not used, or if it is used with the
traditional option, then OpenVMS behaves as it always has done with regard to
case sensitivity.

If this command is used with the extended option, the behaviour of the
LIB$GET_FOREIGN run time library routine changes so that it preserves the case
of text that it retrieves. Because MQSeries uses this routine to obtain command line
parameters, the case of the parameters is preserved, even when the parameters are
not enclosed in double quotes.

For example, the following sequence of commands creates three different queue
managers. Notice the parameters are not enclosed in double quotes.

The OpenVMS set process /parse_style command changes a number of things
besides case sensitivity. You may want to learn more about the command from the
information provided in the OpenVMS DCL Dictionary before applying it to your
system.

Case sensitivity in MQSC commands
MQSeries control commands (for example, runmqsc which invokes the MQSC
facility) are not case sensitive.

MQSC commands, including their attributes, can be written in upper or lower
case. Object names in MQSC commands are automatically converted to upper case
unless the names are enclosed in single quotation marks. If single quotation marks
are not used, the object is processed with a name in upper case. See the MQSeries
Command Reference book for more information.

$ set process /parse_style = (traditional | extended)

$ set process /parse_style = extended
$ crtmqm QueueManager creates a queue manager called QueueManager
$ crtmqm queuemanager creates a queue manager called queuemanager
$ crtmqm QUEUEMANAGER creates a queue manager called QUEUEMANAGER

Understanding MQSeries names

Chapter 2. An introduction to MQSeries administration 21

22 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 3. Managing queue managers using control
commands

This chapter describes how you can perform operations on queue managers and
command servers. It contains these sections:
v “Using control commands”
v “Guidelines for creating queue managers” on page 24
v “Creating a default queue manager” on page 27
v “Starting a queue manager” on page 28
v “Making an existing queue manager the default” on page 28
v “Stopping a queue manager” on page 28
v “Restarting a queue manager” on page 30
v “Deleting a queue manager” on page 30
v “Looking at object files” on page 225

Using control commands
You use control commands to perform operations on queue managers, command
servers, and channels. Control commands can be divided into three categories, as
shown in Table 1 on page 23.

Table 1. Categories of control commands

Category Description

Queue manager commands Queue manager control commands include
commands for creating, starting, stopping,
and deleting queue managers and command
servers.

Channel commands Channel commands include commands for
starting and ending channels and channel
initiators.

Utility commands Utility commands include commands
associated with:
v Running MQSC commands
v Conversion exits
v Authority management
v Recording and recovering media images

of queue manager resources
v Displaying and resolving transactions
v Trigger monitors
v Displaying the file names of MQSeries

objects

For information about administration tasks for channels, see the MQSeries
Intercommunication book.

Using control commands
In MQSeries for Compaq OpenVMS, you enter control commands at a DCL
prompt. The command name and flags themselves are not case sensitive, but the
parameters may or may not be converted to upper case, depending on an
OpenVMS process option and whether the parameters were enclosed in double

© Copyright IBM Corp. 1994, 2001 23

quotes to protect the case. For more on how the OpenVMS command and double
quotes affect case, see “Understanding case sensitivity” on page 20.

Typically, in this example:

v The dead-letter queue could be SYSTEM.DEAD.LETTER.QUEUE, even though it
was entered in lower case. Whether its case is automatically converted to upper
case depends on the setting of the OpenVMS command set process/parse_style.
See “Understanding case sensitivity” on page 20.

v The queue manager name is specified as ″jupiter.queue.manager″ (which is
different from ″JUPITER.queue.manager″) because it was enclosed in double
quotes.

Therefore, take care to type the commands exactly as you see them in the
examples.

Creating a queue manager
A queue manager manages the resources associated with it, in particular the
queues that it owns. It provides queuing services to applications for Message
Queueing Interface (MQI) calls and commands to create, modify, display, and
delete MQSeries objects.

Before you can do anything with messages and queues, you must create at least
one queue manager and its associated objects. To create a queue manager, you use
the MQSeries control command crtmqm. The crtmqm command automatically
creates the required default objects and system objects. Default objects form the
basis of any object definitions that you make; system objects are required for queue
manager operation. When a queue manger and its objects have been created, you
use the strmqm command to start the queue manager.

Guidelines for creating queue managers
Before creating a queue manager, there are several points you need to consider
(especially in a production environment). Work through this checklist:
v Specifying a unique queue manager name.
v Limiting the number of queue managers.
v Specifying a default queue manager.
v Specifying a dead-letter queue.
v Specifying a default transmission queue.
v Specifying the required logging parameters.
v Backing up configuration files after creating a queue manager.

The tasks in this list are explained in the sections that follow.

Specifying a unique queue manager name
When you create a queue manager, ensure that no other queue manager has the
same name anywhere in your network. Queue manager names are not checked at
creation time, and names that are not unique will prevent you from using channels
for distributed queuing.

crtmqm -u system.dead.letter.queue "jupiter.queue.manager"

Using control commands

24 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

One way of ensuring uniqueness is to prefix each queue manager name with its
own (unique) node name. For example, if a node is called accounts, you could
name your queue manager accounts.saturn.queue.manager, where saturn
identifies a particular queue manager and queue.manager is an extension you can
give to all queue managers. Alternatively, you can omit this, but note that
accounts.saturn and accounts.saturn.queue.manager are different queue manager
names.

If you are using MQSeries for communicating with other enterprises, you can also
include your own enterprise as a prefix. We do not actually do this in the
examples, because it makes them more difficult to follow.

Note: Queue manager names in control commands may or may not be converted
to upper case, depending on an OpenVMS process option and whether the
queue manager name was enclosed in double quotes to protect the case.
This means that you could create two queue managers with the names
jupiter.queue.manager and JUPITER.queue.manager. For more on how the
OpenVMS process option and double quotes affect case, see “Understanding
case sensitivity” on page 20.

Limiting the number of queue managers
You can create as many queue managers as resources allow. However, because
each queue manager requires its own resources, it is generally better to have one
queue manager with 100 queues on a node than to have ten queue managers with
ten queues each.

In production systems, many nodes will be run with a single queue manager, but
larger server machines may run with multiple queue managers.

Specifying the default queue manager
Each node should have a default queue manager, though it is possible to configure
MQSeries on a node without one.

To create a queue manager use the crtmqm command. For a detailed description of
this command and its parameters, see “crtmqm (Create queue manager)” on
page 231.

What is a default queue manager?
The default queue manager is the queue manager that applications connect
to if they do not specify a queue manager name in an MQCONN call. It is
also the queue manager that processes MQSC commands when you invoke
the runmqsc command without specifying a queue manager name.

How do you specify a default queue manager?
You include the -q flag on the crtmqm command to specify that the queue
manager you are creating is the default queue manager. Omit this flag if
you do not want to the queue manager you are creating to become a
default queue manager.

Specifying a queue manager as the default replaces any existing default
queue manager specification for the node.

What happens if I decide to change the default queue manager?
If you decide to change the default queue manager, be aware that this can
affect other users or applications. The change has no effect on
currently-connected applications, because they can use the handle from
their original connect call in any further MQI calls. This handle ensures

Creating queue managers

Chapter 3. Managing queue managers using control commands 25

that the calls are directed to the same queue manager. Any applications
connecting after the change connect to the new default queue manager.

This may be what you intend, but you should take this into account before
you change the default.

Specifying a dead-letter queue
The dead-letter queue is a local queue where messages are put if they cannot be
routed to their correct destination.

Attention:
It is vitally important to have a dead-letter queue on each queue manager in
your network. Failure to do so may mean that errors in application programs
cause channels to be closed or that replies to administration commands are
not received.

For example, if an application attempts to put a message on a queue on another
queue manager, but the wrong queue name is given, the channel is stopped, and
the message remains on the transmission queue. Other applications cannot then
use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues. The
undelivered message is simply put on the dead-letter queue at the receiving end,
leaving the channel and its transmission queue available.

Therefore, when you create a queue manager you should use the -u flag to specify
the name of the dead-letter queue. You can also use an MQSC command to alter
the attributes of a queue manager and specify the dead-letter queue to be used. See
“Altering queue manager attributes” on page 35 for an example of an MQSC
ALTER command.

When you find messages on a dead-letter queue, you can use the dead-letter queue
handler, supplied with MQSeries, to process these messages. See “Chapter 8. The
MQSeries dead-letter queue handler” on page 93 for further information about the
dead-letter queue handler itself, and how to reduce the number of messages that
might otherwise be placed on the dead-letter queue.

Specifying a default transmission queue
A transmission queue is a local queue on which messages in transit to a remote
queue manager are queued pending transmission. The default transmission queue
is the queue that is used when no transmission queue is explicitly defined. Each
queue manager can be assigned a default transmission queue.

When you create a queue manager you should use the -d flag to specify the name
of the default transmission queue. This does not actually create the queue; you
have to do this explicitly later on. See “Working with local queues” on page 40 for
more information.

Specifying the required logging parameters
You can specify logging parameters on the crtmqm command, including the type
of logging, and the path and size of the log files. In a development environment,
the default logging parameters should be adequate. However, you can change the
defaults if, for example:
v You have a low-end system configuration that cannot support large logs.

Creating queue managers

26 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v You anticipate a large number of long messages being on your queues at the
same time.

For more information about specifying logging parameters:
v On the crtmqm command, see “crtmqm (Create queue manager)” on page 231.
v Using configuration files, see “The Log stanza” on page 167.

Backing up configuration files after creating a queue manager
There are two configuration files to consider:
1. When you install the product, the MQSeries configuration file (mqs.ini) is

created. It contains a list of queue managers, which is updated each time you
create or delete a queue manager. There is one mqs.ini file per node.

2. When you create a new queue manager, a new queue manager configuration
file (qm.ini) is automatically created. This contains configuration parameters for
the queue manager.

You should make a backup of these files. If, later on, you create another queue
manager that causes you problems, you can reinstate the backups when you have
removed the source of the problem. As a general rule, you should back up your
configuration files each time you create a new queue manager.

For more information about configuration files, see “Chapter 13. Configuring
MQSeries” on page 159.

Creating a default queue manager
You create a default queue manager using the crtmqm command. The crtmqm
command specified with a q flag:
v Creates a default queue manager called saturn.queue.manager

v Creates the default and system objects
v Specifies the names of both its default transmission queue and its dead-letter

queue

where:

-q Indicates that this queue manager is the default queue manager.

-d MY.DEFAULT.XMIT.QUEUE
Is the name of the default transmission queue.

-u SYSTEM.DEAD.LETTER.QUEUE
Is the name of the dead-letter queue.

“saturn.queue.manager”
Is the name of this queue manager. For crtmqm, this must be the last
parameter in the command.

Creating a default queue manager allows you to issue some commands against it
(such as strmqm and runmqsc) without having to specify a queue manager name.
Other commands (such as endmqm and dltmqm) require a specified queue
manager name.

crtmqm -q -d MY.DEFAULT.XMIT.QUEUE -u SYSTEM.DEAD.LETTER.QUEUE “saturn.queue.manager”

Creating queue managers

Chapter 3. Managing queue managers using control commands 27

Notice that the queue manager name in this example is in lower case and that the
the lower case is protected by double quotes. For more information on how case
sensitivity is handled for parameters, see “Understanding case sensitivity” on
page 20.

Starting a queue manager
Although you have created a queue manager, it cannot process commands or MQI
calls until it has been started. Start the queue manager by typing in this command:

The strmqm command does not return control until the queue manager has started
and is ready to accept connect requests.

Making an existing queue manager the default
When you create a default queue manager, the name of the default queue manager
is inserted in the DefaultQueueManager stanza in the MQSeries configuration file
(mqs.ini). The stanza and its contents are automatically created if they do not exist.

You may need to edit this stanza:
v To make an existing queue manager the default. To do this you have to change

the queue manager name in this stanza to the name of the new default queue
manager. You must do this manually, using a text editor.

v If you do not have a default queue manager on the node, and you want to
make an existing queue manager the default. To do this you must create the
DefaultQueueManager stanza—with the required name—yourself.

v If you accidentally make another queue manager the default and wish to
revert to the original default queue manager. To do this, edit the
DefaultQueueManager stanza in the MQSeries configuration file, replacing the
name of the unwanted default queue manager with that of the one you do want.

See “Chapter 13. Configuring MQSeries” on page 159 for information about
configuration files.

When the stanza contains the required information, stop the queue manager and
restart it.

Stopping a queue manager
You use the endmqm command to stop a queue manager. For example, to stop a
queue manager called saturn.queue.manager type:

Quiesced shutdown
By default, the endmqm command performs a controlled or quiesced shutdown of
the specified queue manager. This may take a while to complete—a controlled
shutdown waits until all connected applications have disconnected.

strmqm “saturn.queue.manager”

endmqm “saturn.queue.manager”

Creating queue managers

28 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Use this type of shutdown to notify applications to stop. If you type:

you are not told when all applications have stopped. (An endmqm -c
“saturn.queue.manager” command is equivalent to an endmqm
“saturn.queue.manager” command.)

Immediate shutdown
For an immediate shutdown any current MQI calls are allowed to complete, but
any new calls fail. This type of shutdown does not wait for applications to
disconnect from the queue manager.

Use this as a normal way to stop the queue manager, optionally after a quiesce
period. For an immediate shutdown, type:

Preemptive shutdown
Attention: Do not use this method unless all other attempts to stop the queue
manager using the endmqm command have failed. This method can have
unpredictable consequences for connected applications.

If an immediate shutdown does not work, you must resort to a preemptive
shutdown, specifying the -p flag. For example:

This stops all queue manager code immediately.

Note: After a forced or preemptive shutdown, or if the queue manager fails, the
queue manager may have ended without cleaning up the shared memory
that it owns. This can lead to problems restarting. For information on how
to use the MONMQ utility to clean up after an abrupt ending of this type,
see “Managing shared memory with MONMQ” on page 342.

If you have problems shutting down a queue manager
Problems in shutting down a queue manager are often caused by applications. For
example, when applications:
v Do not check MQI return codes properly.
v Do not request a notification of a quiesce.
v Terminate without disconnecting from the queue manager (by issuing an

MQDISC call).

If a shutdown of a queue manager is very slow, or you believe that the queue
manager is not going to stop, you can break out of the endmqm command using
Ctrl-Y. You can then issue another endmqm command, but this time with a flag
specifying either an immediate or a preemptive shutdown.

endmqm -c “saturn.queue.manager”

endmqm -i “saturn.queue.manager”

endmqm -p “saturn.queue.manager”

Creating queue managers

Chapter 3. Managing queue managers using control commands 29

For a detailed description of the endmqm command and its options, see “endmqm
(End queue manager)” on page 254.

Restarting a queue manager
To restart a queue manager, use the command:

Deleting a queue manager
To delete a queue manager, first stop it, then use the following command:

Attention: Deleting a queue manager is a drastic step, because you also delete all
the resources associated with it. This includes not only all queues and their
messages, but also all object definitions.

For a description of the dltmqm command and its options, see “dltmqm (Delete
queue manager)” on page 235. You should ensure that only trusted administrators
have the authority to use this command.

strmqm “saturn.queue.manager”

dltmqm “saturn.queue.manager”

Creating queue managers

30 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 4. Administering local MQSeries objects

This chapter describes how to administer local MQSeries objects to support
application programs that use the Message Queuing Interface (MQI). In this
context, local administration means creating, displaying, changing, copying, and
deleting MQSeries objects.

This chapter contains these sections:
v “Supporting application programs that use the MQI”
v “Performing local administration tasks using MQSC commands” on page 32
v “Running MQSC commands from text files” on page 36
v “Resolving problems with MQSC” on page 39
v “Working with local queues” on page 40
v “Working with alias queues” on page 48
v “Working with model queues” on page 49
v “Managing objects for triggering” on page 51

Supporting application programs that use the MQI
MQSeries application programs need certain objects before they can run
successfully. For example, Figure 1 shows an application that removes messages
from a queue, processes them, and then sends some results to another queue on
the same queue manager.

Whereas applications can put (using MQPUT) messages on local or remote queues,
they can only get (using MQGET) messages directly from local queues.

Before this application can be run, these conditions must be satisfied:
v The queue manager must exist and be running.
v The first application queue, from which the messages are to be removed, must

be defined.
v The second queue, on which the application puts the messages, must also be

defined.

Application

Queue Manager

From other
applications

To other
applications

getput

putget

Figure 1. Queues, messages, and applications

© Copyright IBM Corp. 1994, 2001 31

v The application must be able to connect to the queue manager. To do this it
must be linked to the product code. See the MQSeries Application Programming
Guide for more information.

v The applications that put the messages on the first queue must also connect to a
queue manager. If they are remote, they must also be set up with transmission
queues and channels. This part of the system is not shown in Figure 1 on
page 31.

Performing local administration tasks using MQSC commands
In this section, we assume that you will be issuing commands using the runmqsc
command. You can do this interactively—entering the commands at the
keyboard—or you can redirect SYS$INPUT to run a sequence of commands from
an ASCII text file. In both cases, the format of the commands is the same.

The MQSeries Command Reference book contains a description of each MQSC
command and its syntax.

You can use MQSeries script commands (MQSC) to manage queue manger objects,
including the queue manager itself, clusters, channels, queues, namelists and
process definitions. This section deals with queue managers, queues and process
definitions; for information about administering channel objects, see DQM
implementation in the MQSeries Intercommunication book.

You issue MQSC commands to a queue manager using the runmqsc command.
You can do this interactively, issuing commands from the keyboard, or you can
redirect standard input to run a sequence of commands from an ASCII text file. In
both cases, the format of the commands is the same.

You can run the runmqsc command in three modes, depending on the flags set on
the command:
v Verification mode, where the MQSC commands are verified on a local queue

manager, but are not actually run.
v Direct mode, where the MQSC commands are run on a local queue manager.
v Indirect mode, where the MQSC commands are run on a remote queue manager.

Object attributes specified in MQSC are shown in this book in upper case (for
example, RQMNAME) although they are not case sensitive. (For more on case
sensitivity, see “Case sensitivity in MQSC commands” on page 21.) MQSC attribute
names are limited to eight characters.

Before you start
Before you can run MQSC commands, you must have created and started the
queue manager that is going to run the commands, see “Creating a default queue
manager” on page 27.

MQSeries object names
In examples, we use some long names for objects. This is to help you identify what
type of object it is you are dealing with.

When you are issuing MQSC commands, you need only specify the local name of
the queue. In our examples, we use queue names such as:
ORANGE.LOCAL.QUEUE

Application programs

32 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a
local queue. It is not required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name.

The queue.manager part of the name is simply to illustrate that this object is a
queue manager. It is not required for the names of queue managers in general.

You do not have to use these names, but if you do not, you must modify any
commands in examples that specify them.

Redirecting input and output
To improve the ease of migration from other operating systems to OpenVMS,
MQSeries supports the UNIX® style of redirection indicators for sys$input,
sys$output, and sys$error, as follows:

< specifies the source for SYS$INPUT
> specifies the source for SYS$OUTPUT
2> specifies the source for SYS$ERROR

This feature is also included with the executable versions of the sample programs.
However, it is not included in the source of the samples and, therefore, will not be
available if you rebuild the samples from the source code.

Using the MQSC facility interactively
To enter commands interactively, at a DCL prompt type:

In this command, a queue manager name has not been specified, therefore the
MQSC commands will be processed by the default queue manager. Now you can
type in any MQSC commands, as required. For example, try this one:

Continuation characters must be used to indicate that a command is continued on
the following line:
v A minus sign (-) indicates that the command is to be continued from the start of

the following line.
v A plus sign (+) indicates that the command is to be continued from the first

nonblank character on the following line.

Command input terminates with the final character of a nonblank line that is not a
continuation character. You can also terminate command input explicitly by
entering a semicolon (;). (This is especially useful if you accidentally enter a
continuation character at the end of the final line of command input.)

runmqsc

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

Issuing MQSC commands

Chapter 4. Administering local MQSeries objects 33

Feedback from MQSC commands
When you issue commands from the MQSC facility, the queue manager returns
operator messages that confirm your actions or tell you about the errors you have
made. For example:

The first message confirms that a queue has been created; the second indicates that
you have made a syntax error. These messages are sent to the standard output
device. If you have not entered the command correctly, refer to the MQSeries
Command Reference book for the correct syntax.

Ending interactive input to MQSC
To end interactive input of MQSC commands, type the MQSC END command:

Alternatively, you can exit by typing the EOF character <CTRL Z>.

If you are redirecting input from other sources, such as a text file, you do not have
to do this.

Displaying queue manager attributes
To display the attributes of the queue manager specified on the runmqsc
command, use the following MQSC command:

A typical output is displayed in Figure 2 on page 35.

AMQ8006: MQSeries queue created
.
.
.
AMQ8405: Syntax error detected at or near end of command segment below:-
z

AMQ8426: Valid MQSC commands are:

ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING
REFRESH
RESET
RESOLVE
RESUME
START
STOP
SUSPEND

END

DISPLAY QMGR ALL

Issuing MQSC commands

34 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

The ALL parameter on the DISPLAY QMGR command causes all the queue
manager attributes to be displayed. In particular, because no queue manager name
was specified when the command was run, the output tells us the default queue
manager name (saturn.queue.manager), and the names of the dead-letter queue
(SYSTEM.DEAD.LETTER.QUEUE) and the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE).

Before you go further, confirm that these queues have been created by typing the
command:

This displays a list of queues that match the stem ‘SYSTEM.*’. The parentheses are
required.

Using a queue manager that is not the default
You can specify the queue manager name on the runmqsc command to run MQSC
commands on a local queue manager other than the default. For example, to run
MQSC commands on queue manager jupiter.queue.manager, use the command:

After this, all the MQSC commands you type in are processed by this queue
manager—assuming that it is on the same node and is already running.

You can also run MQSC commands on a remote queue manager; see “Issuing
MQSC commands remotely” on page 65.

Altering queue manager attributes
To alter the attributes of the queue manager specified on the runmqsc command,
use the MQSC command ALTER QMGR, specifying the attributes and values that

1 : display qmgr all
AMQ8408: Display Queue Manager details.

DESCR() DEADQ()
DEFXMITQ() CHADEXIT()
CLWLEXIT() CLWLDATA()
REPOS() REPOSNL()
COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE) QMNAME(saturn.queue.manager)
CRDATE(2001-01-16) CRTIME(11.13.56)
ALTDATE(2001-01-16) ALTTIME(11.13.56)
QMID(saturn.queue.manager_2001-01-16_11.13.56)
TRIGINT(999999999) MAXHANDS(256)
MAXUMSGS(10000) AUTHOREV(DISABLED)
INHIBTEV(DISABLED) LOCALEV(DISABLED)
REMOTEEV(DISABLED) PERFMEV(DISABLED)
STRSTPEV(ENABLED) CHAD(DISABLED)
CHADEV(DISABLED) CLWLLEN(100)
MAXMSGL(4194304) CCSID(819)
MAXPRTY(9) CMDLEVEL(510)
PLATFORM(OpenVMS) SYNCPT
DISTL(YES)

Figure 2. Typical output from a DISPLAY QMGR command

DISPLAY QUEUE (SYSTEM.*)

runmqsc “jupiter.queue.manager”

Issuing MQSC commands

Chapter 4. Administering local MQSeries objects 35

you want to change. For example, use the following commands to alter the
attributes of jupiter.queue.manager:

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

Running MQSC commands from text files
Running MQSC commands interactively is suitable for quick tests, but if you have
very long commands, or sequences of commands that you want to repeat, you
should provide input from a text file. (See “Redirecting input and output” on
page 33 for information about redirection indicators.) To do this, first create a text
file containing the MQSC commands using your familiar text editor. For example,
the following command runs a sequence of commands contained in the text file
myprog.in:

Similarly, you can also redirect the output to a file. A file containing the MQSC
commands for input is called an MQSC command file. The output file containing
replies from the queue manager is called the report file.

To redirect both SYS$INPUT and SYS$OUTPUT on the runmqsc command, use this
form of the command:

This command invokes the MQSC commands contained in the MQSC command
file myprog.in. Because we have not specified a queue manager name, the MQSC
commands are run against the default queue manager. The output is sent to the
report file myprog.out. Figure 3 on page 37 shows an extract from the MQSC
command file myprog.in and Figure 4 on page 38 shows the corresponding extract
of the report file myprog.out.

To redirect SYS$INPUT and SYS$OUTPUT on the runmqsc command, for a queue
manager (saturn.queue.manager) that is not the default, use this form of the
command:

MQSC command files
MQSC commands are written in human-readable form, that is, in ASCII text.
Figure 3 on page 37 is an extract from an MQSC command file showing an MQSC

runmqsc “jupiter.queue.manager”

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

runmqsc < myprog.in

runmqsc < myprog.in > myprog.out

runmqsc “saturn.queue.manager” < myprog.in > myprog.out

Issuing MQSC commands

36 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

command (DEFINE QLOCAL) with its attributes. The MQSeries Command Reference
book contains a description of each MQSC command and its syntax.

For portability among MQSeries environments, you are recommended to limit the
line length in MQSC command files to 72 characters. The plus sign indicates that
the command is continued on the next line.

For MQSeries for Compaq OpenVMS, you must limit lines to a maximum of 80
characters, including the continuation character. The plus sign indicates that the
command is continued on the next line.

MQSC reports
The runmqsc command returns a report, which is sent to SYS$OUTPUT. The report
contains:
v A header identifying MQSC as the source of the report:

Starting MQSeries Commands.

v An optional numbered listing of the MQSC commands issued. By default, the
text of the input is echoed to the output. Within this output, each command is
prefixed by a sequence number, as shown in Figure 4 on page 38. However, you
can use the -e flag on the runmqsc command to suppress the output.

v A syntax error message for any commands found to be in error.
v An operator message indicating the outcome of running each command. For

example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

AMQ8006: MQSeries queue created.

v Other messages resulting from general errors when running the script file.
v A brief statistical summary of the report indicating the number of commands

read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager only attempts to process those commands that have
no syntax errors.

.

.

.
DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +

DESCR(' ') +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT(SHARED) +
NOHARDENBO +
USAGE(NORMAL) +
NOTRIGGER

.

.

.

Figure 3. Extract from the MQSC command file, myprog.in

Running MQSC commands

Chapter 4. Administering local MQSeries objects 37

Running the supplied MQSC command files
When you install MQSeries for Compaq OpenVMS, the following MQSC command
files is supplied:

amqscos0.tst
Definitions of objects used by sample programs.

The file is located in the directory MQS_EXAMPLES:

Using runmqsc to verify commands
You can use the runmqsc command to verify MQSC commands on a local queue
manager without actually running them. To do this, set the -v flag in the runmqsc
command, for example:

When you invoke runmqsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. This allows you to check the syntax of all the commands in your
command file. This is particularly important if you are running a large number of
commands from a command file.

This report is similar to that shown in Figure 4.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:

Starting MQSeries Commands.
.
.

12: DEFINE QLOCAL('RED.LOCAL.QUEUE') REPLACE +
: DESCR(' ') +
: PUT(ENABLED) +
: DEFPRTY(0) +
: DEFPSIST(NO) +
: GET(ENABLED) +
: MAXDEPTH(5000) +
: MAXMSGL(1024) +
: DEFSOPT(SHARED) +
: USAGE(NORMAL) +
: NOTRIGGER

AMQ8006: MQSeries queue created.
:

.

.
15 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

Figure 4. Extract from the MQSC report file, myprog.out.

runmqsc -v < myprog.in > myprog.out

runmqsc -w 30 -v “jupiter.queue.manager” < myprog.in > myprog.out

Running MQSC commands

38 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

the -w flag, which you use to indicate that the queue manager is remote, is
ignored, and the command is run locally in verification mode .

Resolving problems with MQSC
If you cannot get your MQSC commands to run, use the following checklist to see
if any of these common problems apply to you. It is not always obvious what the
problem is when you read the error generated.

When you use the runmqsc command, remember:
v Use the indirection operator < when redirecting input from a file. If you omit

the indirection operator, the queue manager interprets the file name as a queue
manager name and issues the following error message:

v If you redirect output to a file, use the > indirection operator. By default, the
output goes to the directory from which you ran the runmqsc command. Specify
a fully-qualified file name to send your output to a specific file and directory.

v Check that you have created the queue manager that is going to run the
commands.
To do this, look in the configuration file mqs.ini, which by default is located in
the MQS_ROOT:[MQM] directory. This file contains the names of the queue
managers and the name of the default queue manager, if you have one.

v The queue manager should already be started. If it is not, start it; see “Starting a
queue manager” on page 28. You get an error message if it is already started.

v Specify a queue manager name on the runmqsc command if you have not
defined a default queue manager, otherwise you get this error:

To correct this type of problem, see “Making an existing queue manager the
default” on page 28.

v You cannot specify an MQSC command as a runmqsc parameter. For example,
the following is invalid:

v You cannot enter MQSC commands from DCL before you issue the runmqsc
command. For example:

AMQ8118: MQSeries queue manager does not exist.

AMQ8146: MQSeries queue manager not available.

runmqsc DEFINE QLOCAL(FRED)

DEFINE QLOCAL(QUEUE1)

%DCL-W-PARMDEL, invalid parameter delimiter - check use of special characters

Running MQSC commands

Chapter 4. Administering local MQSeries objects 39

v You cannot run control commands from runmqsc. For example, you cannot start
a queue manager once you are running MQSC interactively:

See also “If you have problems using MQSC remotely” on page 67.

Working with local queues
This section contains examples of some of the MQSC commands that you can use.
Refer to the MQSeries Command Reference book for a complete description of these
commands.

Defining a local queue
For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager are
said to be local to that queue manager.

Use the MQSC command DEFINE QLOCAL to create a definition of a local queue
and also to create the data structure that is called a queue. You can also modify the
queue characteristics from those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to
have these characteristics:
v It is enabled for gets, disabled for puts, and operates on a first-in-first-out (FIFO)

basis.

$ runmqsc
0790997, 5724-A38 (C) Copyright IBM Corp. 1996, 2001 ALL RIGHTS RESERVED.
Starting MQSeries Commands.

strmqm saturn.queue.manager
1 : strmqm saturn.queue.manager

AMQ8405: Syntax error detected at or near end of command segment below:-
s

AMQ8426: Valid MQSC commands are:

ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING
REFRESH
RESET
RESOLVE
RESUME
START
STOP
SUSPEND

CANCEL

One MQSC command read.
One command has a syntax error.
All valid MQSC commands were processed.
$

Problems with MQSC

40 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v It is an ‘ordinary’ queue, that is, it is not an initiation queue or a transmission
queue, and it does not generate trigger messages.

v The maximum queue depth is 1000 messages; the maximum message length is
2000 bytes.

The following MQSC command does this:

Notes:

1. Most of these attributes are the defaults as supplied with the product.
However, they are shown here for purposes of illustration. You can omit them
if you are sure that the defaults are what you want or have not been changed.
See also “Displaying default object attributes”.

2. USAGE (NORMAL) indicates that this queue is not a transmission queue.
3. If you already have a local queue on the same queue manager with the name

ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute, if
you want to overwrite the existing definition of a queue, but see also
“Changing local queue attributes” on page 43.

Defining a dead-letter queue
Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval. You must explicitly tell the queue manager about the dead-letter
queue. You can do this by specifying a dead-letter queue on the crtmqm command
or you can use the ALTER QMGR command to specify one later. You must also
define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product. This queue is automatically created when you run the sample.
You can modify this definition, if required. There is no need to rename it.

A dead-letter queue has no special requirements except that
v It must be a local queue.
v Its MAXMSGL (maximum message length) attribute must enable the queue to

accommodate the largest messages that the queue manager has to handle plus
the size of the dead-letter header (MQDLH).

MQSeries provides a dead-letter queue handler that allows you to specify how
messages found on a dead-letter queue are to be processed or removed. For further
information, see “Chapter 8. The MQSeries dead-letter queue handler” on page 93.

Displaying default object attributes
When you define an MQSeries object, it takes any attributes that you do not
specify from the default object. For example, when you define a local queue, the

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +
DESCR('Queue for messages from other systems') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL)

Working with local queues

Chapter 4. Administering local MQSeries objects 41

queue inherits any attributes that you omit in the definition from the default local
queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what
these attributes are, use the following command:

Note: The syntax of this command is different from that of the corresponding
DEFINE command.

You can selectively display attributes by specifying them individually. For example:

This command displays the three specified attributes as follows:

CURDEPTH is the current queue depth, that is, the number of messages on the
queue. This is a useful attribute to display, because by monitoring the queue depth
you can ensure that the queue does not become full.

Copying a local queue definition
You can copy a queue definition using the LIKE attribute on the DEFINE
command. For example:

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.

You can also use this form of the DEFINE command to copy a queue definition,
and substitute one or more changes to the attributes of the original. For example:

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
queue THIRD.QUEUE, but specifies that the maximum message length on the new
queue is to be 1024 bytes, rather than 2000.

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE) ALL

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +
MAXDEPTH +
MAXMSGL +
CURDEPTH

AMQ8409: Display Queue details.
QUEUE(ORANGE.LOCAL.QUEUE)
MAXDEPTH(1000)
MAXMSGL(2000)
CURDEPTH(0)

DEFINE QLOCAL (MAGENTA.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE)

DEFINE QLOCAL (THIRD.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE) +
MAXMSGL(1024)

Working with local queues

42 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
queue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

Changing local queue attributes
You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
“Defining a local queue” on page 40, we defined the queue
ORANGE.LOCAL.QUEUE. Suppose, for example, you wanted to increase the
maximum message length on this queue to 10 000 bytes.
v Using the ALTER command:

This command changes a single attribute, that of the maximum message length;
all the other attributes remain the same.

v Using the DEFINE command with the REPLACE option, for example:

This command changes not only the maximum message length, but all the other
attributes, which are given their default values. The queue is now put enabled
whereas previously it was put inhibited. Put enabled is the default, as specified
by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue
To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:

You cannot clear a queue if:
v There are uncommitted messages that have been put on the queue under

syncpoint.
v An application currently has the queue open.

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000)

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000) REPLACE

CLEAR QLOCAL (MAGENTA.QUEUE)

Working with local queues

Chapter 4. Administering local MQSeries objects 43

Deleting a local queue
Use the MQSC command DELETE QLOCAL to delete a local queue. A queue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages, and no uncommitted messages, it can only be
deleted if you specify the PURGE option. For example:

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

Browsing queues
If you need to look at the contents of the messages on a queue, MQSeries for
OpenVMS provides a sample queue browser for this purpose. The browser is
supplied both as source and as a module that can be run. By default, the file
names and paths are:
Source

MQS_EXAMPLES:AMQSBCG0.C
Executable

[.BIN]AMQSBCG.EXE, under
MQS_EXAMPLES:

.

The sample takes two parameters, which are the:
v Queue name, for example, SYSTEM.ADMIN.RESPQ.TEST.
v Queue manager name, for example, JJJH

as shown in the following command:

There are no defaults; both parameters are required. Typical results from this
commands are shown in Figure 5 on page 45.

DELETE QLOCAL (PINK.QUEUE) PURGE

amqsbcg “SYSTEM.ADMIN.RESPQ.TEST” “JJJH”

Working with local queues

44 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

$ amqsbcg "SYSTEM.ADMIN.RESPQ.TEST" "JJJH"

AMQSBCG0 - starts here

MQOPEN - 'SYSTEM.ADMIN.RESPQ.TEST'

MQGET of message number 1
****Message descriptor****

StrucId : 'MD ' Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 819
Format : 'MQSTR '
Priority : 0 Persistence : 0
MsgId : X'414D51204A4A4A4820202020202020206EC8753A13200000'
CorrelId : X'00'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : 'JJJH '
** Identity Context
UserIdentifier : 'SYSTEM '
AccountingToken :
X'05363535343006'
ApplIdentityData : ' '
** Origin Context
PutApplType : '12'
PutApplName : 'AMQSPUT.EXE '
PutDate : '20010129' PutTime : '19483901'
ApplOriginData : ' '

GroupId : X'00'
MsgSeqNumber : '1'
Offset : '0'
MsgFlags : '0'
OriginalLength : '14'

**** Message ****

length - 14 bytes

00000000: 7465 7374 206D 6573 7361 6765 2031 'test message 1 '

Figure 5. Typical results from a queue browser (Part 1 of 3)

Working with local queues

Chapter 4. Administering local MQSeries objects 45

MQGET of message number 2
****Message descriptor****

StrucId : 'MD ' Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 819
Format : 'MQSTR '
Priority : 0 Persistence : 0
MsgId : X'414D51204A4A4A4820202020202020206EC8753A23200000'
CorrelId : X'00'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : 'JJJH '
** Identity Context
UserIdentifier : 'SYSTEM '
AccountingToken :
X'05363535343006'
ApplIdentityData : ' '
** Origin Context
PutApplType : '12'
PutApplName : 'AMQSPUT.EXE '
PutDate : '20010129' PutTime : '19484323'
ApplOriginData : ' '

GroupId : X'00'
MsgSeqNumber : '1'
Offset : '0'
MsgFlags : '0'
OriginalLength : '14'

**** Message ****

length - 14 bytes

00000000: 6D65 7373 6167 6520 3220 4441 5441 'message 2 DATA '

MQGET of message number 3
****Message descriptor****

StrucId : 'MD ' Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 819
Format : 'MQSTR '
Priority : 0 Persistence : 0
MsgId : X'414D51204A4A4A4820202020202020206EC8753A33200000'
CorrelId : X'00'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : 'JJJH '
** Identity Context
UserIdentifier : 'SYSTEM '
AccountingToken :
X'05363535343006'
ApplIdentityData : ' '
** Origin Context
PutApplType : '12'
PutApplName : 'AMQSPUT.EXE '
PutDate : '20010129' PutTime : '19491145'
ApplOriginData : ' '

Figure 5. Typical results from a queue browser (Part 2 of 3)

Working with local queues

46 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

GroupId : X'00'
MsgSeqNumber : '1'
Offset : '0'
MsgFlags : '0'
OriginalLength : '28'

**** Message ****

length - 28 bytes

00000000: 6D65 7373 6167 6520 3320 6461 7461 202D 'message 3 data -'
00000010: 2065 6E64 206F 6620 696E 666F ' end of info '

MQGET of message number 4
****Message descriptor****

StrucId : 'MD ' Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 819
Format : 'MQSTR '
Priority : 0 Persistence : 0
MsgId : X'414D51204A4A4A4820202020202020206EC8753A43200000'
CorrelId : X'00'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : 'JJJH '
** Identity Context
UserIdentifier : 'SYSTEM '
AccountingToken :
X'05363535343006'
ApplIdentityData : ' '
** Origin Context
PutApplType : '12'
PutApplName : 'AMQSPUT.EXE '
PutDate : '20010129' PutTime : '19510318'
ApplOriginData : ' '

GroupId : X'00'
MsgSeqNumber : '1'
Offset : '0'
MsgFlags : '0'
OriginalLength : '81'

**** Message ****

length - 81 bytes

00000000: 4A4F 484E 534F 4E2C 4441 5649 4420 4D52 'JOHNSON,DAVID MR'
00000010: 2020 2020 3239 2D4A 414E 2D32 3030 3120 ' 29-JAN-2001 '
00000020: 3133 3A34 3220 3431 3233 3030 3831 2031 '13:42 41230081 1'
00000030: 3238 332E 3334 2020 3030 3235 2E32 3220 '283.34 0025.22 '
00000040: 2030 3030 302E 3030 2020 3739 3235 2E36 ' 0000.00 7925.6'
00000050: 35 '5 '

No more messages
MQCLOSE
MQDISC
$

Figure 5. Typical results from a queue browser (Part 3 of 3)

Working with local queues

Chapter 4. Administering local MQSeries objects 47

Working with alias queues
An alias queue (also known as a queue alias) provides a method of redirecting
MQI calls. An alias queue is not a real queue but a definition that resolves to a real
queue. The alias queue definition contains a target queue name which is specified
by the TARGQ attribute (BaseQName in PCF). When an application specifies an alias
queue in an MQI call, the queue manager resolves the real queue name at run
time.

For example, an application has been developed to put messages on a queue called
MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an
MQOPEN request and, indirectly, if it puts a message on this queue. The
application is not aware that the queue is an alias queue. For each MQI call using
this alias, the queue manager resolves the real queue name, which could be either
a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for maintenance,
migration, and load balancing.

Defining an alias queue
The following command creates an alias queue:

This command redirects MQI calls that specify MY.ALIAS.QUEUE, to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear to
have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:
v Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed

to get messages from it.
v Application BETA can get messages from YELLOW.QUEUE, but is not allowed

to put messages on it.

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE) REPLACE

Working with alias queues

48 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

You can do this using the following commands:

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in
the same way that you use them with local queues.

Using other commands with queue aliases
You can use the appropriate MQSC commands to display or alter queue alias
attributes, or delete the queue alias object. For example:

You cannot delete a queue alias if, for example, an application currently has the
queue open or has a queue open that resolves to this queue. See the MQSeries
Command Reference book for more information about this and other queue alias
commands.

Working with model queues
A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

* This alias is put enabled and get disabled for application ALPHA

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +
GET (DISABLED)

* This alias is put disabled and get enabled for application BETA

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +
GET (ENABLED)

* Display the queue alias' attributes
* ALL = Display all attributes

DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE) ALL

* ALTER the base queue name, to which the alias resolves.
* FORCE = Force the change even if the queue is open.

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

* Delete this queue alias, if you can.

DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

Working with alias queues

Chapter 4. Administering local MQSeries objects 49

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue
You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not.) For example:

This command creates a model queue definition. From the DEFTYPE attribute, the
actual queues created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

Using other commands with model queues
You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or delete the model queue object. For example:

DEFINE QMODEL (GREEN.MODEL.QUEUE) +
DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL) +
DEFTYPE (PERDYN)

* Display the model queue's attributes
* ALL = Display all attributes

DISPLAY QUEUE (GREEN.MODEL.QUEUE) ALL

* ALTER the model to enable puts on any
* dynamic queue created from this model.

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

* Delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Working with model queues

50 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Managing objects for triggering
MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called triggering
and is described in detail in the MQSeries Application Programming Guide. This
section describes how to set up the required objects to support triggering on
MQSeries for Compaq OpenVMS.

Defining an application queue for triggering
An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC).

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue MOTOR.INS.QUEUE, as follows:

Where:

QLOCAL (MOTOR.INS.QUEUE)
Specifies the name of the application queue being defined.

PROCESS (MOTOR.INS.PROC)
Specifies the name of the application to be started by a trigger monitor
program.

MAXMSGL (2000)
Specifies the maximum length of messages on the queue.

DEFPSIST (YES)
Specifies that messages are persistent on this queue.

INITQ (MOTOR.INS.INT.Q)
Is the name of the initiation queue on which the queue manager is to put
the trigger message.

TRIGGER
Is the trigger attribute value.

TRIGTYPE (DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRIMPRI) reaches the number specified in
TRIGDPTH.

TRIGDPTH (100)
Specifies the number of messages required to generate a trigger event.

DEFINE QLOCAL (MOTOR.INS.QUEUE) +
PROCESS (MOTOR.INS.PROC) +
MAXMSGL (2000) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INT.Q) +
TRIGGER +
TRIGTYPE (DEPTH) +
TRIGDPTH (100)+
TRIGMPRI (5)

Managing objects for triggering

Chapter 4. Administering local MQSeries objects 51

TRIGMPRI (5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority
5 or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues
have no special settings, but you can use the following definition of the local
queue MOTOR.INS.INT.Q for guidance:

Creating a process definition
Use the DEFINE PROCESS command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PROCESS attribute on the
application queue MOTOR.INS.QUEUE. The following MQSC command defines
the required process, MOTOR.INS.PROC, identified in this example:

Where:

MOTOR.INS.PROC
Is the name of the process definition, limited to 15 characters.

DESCR ('Insurance request message processing')
Is the descriptive text of the application program to which the definition
relates, following the keyword. This text is displayed when you use the
DISPLAY PROCESS command. This can help you to identify what the
process does. If you use spaces in the string, you must enclose the string in
single quotes.

APPLTYPE (OPENVMS)
Is the type of the application that runs on OpenVMS.

APPLICID (’DKA0:[MQM.ADMIN.TEST]IRMP01.EXE’)
Is the name of the application executable program.

USERDATA (’open, close, 235’)
Is user-defined data, which can be used by the application.

DEFINE QLOCAL(MOTOR.INS.INT.Q) +
GET (ENABLED) +
NOSHARE +
NOTRIGGER +
MAXMSGL (2000) +
MAXDEPTH (10)

DEFINE PROCESS (MOTOR.INS.PROC) +
DESCR (‘Insurance request message processing’) +
APPLTYPE (OPENVMS) +
APPLICID (‘DKA0:[MQM.ADMIN.TEST]IRMP01.EXE’) +
USERDATA (‘open, close, 235’)

Managing objects for triggering

52 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Displaying your process definition
Use the DISPLAY PROCESS command, with the ALL keyword, to examine the
results of your definition. For example:

You can also use the MQSC command ALTER PROCESS to alter an existing
process definition and DELETE PROCESS to delete a process definition.

DISPLAY PROCESS (MOTOR.INS.PROC) ALL

24 : DISPLAY PROCESS (MOTOR.INS.PROC) ALL
AMQ8407: Display Process details.

DESCR (‘Insurance request message processing’) +
APPLICID (‘DKA0:[MQM.ADMIN.TEST]IRMP01.EXE’) +
USERDATA (open, close, 235) +
PROCESS (MOTOR.INS.PROC) +
APPLTYPE (OPENVMS)

Managing objects for triggering

Chapter 4. Administering local MQSeries objects 53

54 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 5. Automating administration tasks

This chapter assumes that you have experience of administering MQSeries objects.

There may come a time when you decide that it would be beneficial to your
installation to automate some administration and monitoring tasks. You can
automate administration tasks for both local and remote queue managers using
programmable command format (PCF) commands.

This chapter describes:
v How to use programmable command formats to automate administration tasks

in “PCF commands”
v How to use the command server in “Managing the command server for remote

administration” on page 57

PCF commands
The purpose of MQSeries programmable command format (PCF) commands is to
allow administration tasks to be programmed into an administration program. In
this way you can create queues, process definitions, channels, and namelists, and
change queue managers, from a program.

PCF commands cover the same range of functions provided by the MQSC facility.

Therefore, you can write a program to issue PCF commands to any queue manager
in the network from a single node. In this way, you can both centralize and
automate administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue manager
using the MQI function MQPUT in the same way as any other message. The
command server on the queue manager receiving the message interprets it as a
command message and runs the command. To get the replies, the application
issues an MQGET call and the reply data is returned in another data structure. The
application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:

Message type (MsqType) is MQMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:

The PCF message type (Type) specifies MQCFT_COMMAND.
The command identifier specifies the command, for example, Change
Queue (MQCMD_CHANGE_Q).

© Copyright IBM Corp. 1994, 2001 55

For a complete description of the PCF data structures and how to implement them,
see the MQSeries Programmable System Management book.

Attributes in MQSC and PCFs
Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

Object attributes in PCF, which are not limited to eight characters, are shown in
this book in italics. For example, the PCF equivalent of RQMNAME is
RemoteQMgrName.

Escape PCFs
Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see the MQSeries Programmable
System Management book.

Using the MQAI to simplify the use of PCFs
The MQAI is an administration interface to MQSeries that is available on the
OpenVMS platform.

It performs administration tasks on a queue manager through the use of data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using PCFs.

The MQAI can be used:
v To simplify the use of PCF messages

The MQAI is an easy way to administer MQSeries; you do not have to write
your own PCF messages and this avoids the problems associated with complex
data structures.
To pass parameters in programs that are written using MQI calls, the PCF
message must contain the command and details of the string or integer data. To
do this, several statements are needed in your program for every structure, and
memory space must be allocated. This task is long and laborious.
On the other hand, programs written using the MQAI pass parameters into the
appropriate data bag and only one statement is required for each structure. The
use of MQAI data bags removes the need for you to handle arrays and allocate
storage, and provides some degree of isolation from the details of the PCF.

v To implement self-administering applications and administration tools

For example, the Active Directory Services provided by MQSeries for Windows
NT and Windows 2000 Version 5.2 uses the MQAI. (There is currently no
example of this usage on OpenVMS platform.)

v To handle error conditions more easily

It is difficult to get return codes back from MQSC commands, but the MQAI
makes it easier for the program to handle error conditions.

After you have created and populated your data bag, you can then send an
administration command message to the command server of a queue manager,
using the mqExecute call, which will wait for any response messages. The
mqExecute call handles the exchange with the command server and returns
responses in a response bag.

PCF commands

56 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

For more information about using the MQAI, see the MQSeries Administration
Interface Programming Guide and Reference book.

For more information about PCFs in general, see the MQSeries Programmable System
Management book.

Managing the command server for remote administration
Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command.

A command server is mandatory for all administration involving PCFs, the MQAI,
and also for remote administration.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
queue manager from which they are issued. Instead, these messages are
queued in the local transmission queue that serves the remote queue
manager. This situation should be avoided, if at all possible.

Starting the command server
To start the command server use this command:

where saturn.queue.manager is the queue manager for which the command server
is being started.

Displaying the status of the command server
For remote administration, ensure that the command server on the target queue
manager is running. If it is not running, remote commands cannot be processed.
Any messages containing commands are queued in the target queue manager’s
command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the command is:

You must issue this command on the target machine. If the command server is
running, the following message is returned:

strmqcsv "saturn.queue.manager"

dspmqcsv "saturn.queue.manager"

AMQ8027 MQSeries Command Server Status ..: Running

PCF commands

Chapter 5. Automating administration tasks 57

Stopping a command server
To end a command server, the command, using the previous example is:

You can stop the command server in two different ways:
v For a controlled stop, use the endmqcsv command with the -c flag, which is the

default.
v For an immediate stop, use the endmqcsv command with the -i flag.

Note: Stopping a queue manager also ends the command server associated with it
(if one has been started).

endmqcsv "saturn.queue.manager"

Command server remote administration

58 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 6. Administering remote MQSeries objects

This chapter describes how to administer MQSeries objects on another queue
manager. It also describes how you can use remote queue objects to control the
destination of messages and reply messages.

It contains these sections:
v “Channels, clusters and remote queuing”
v “Remote administration from a local queue manager using MQSC commands”

on page 61
v “Creating a local definition of a remote queue” on page 67
v “Using remote queue definitions as aliases” on page 70

For more information about channels, their attributes, and how to set them up,
refer to the MQSeries Intercommunication book.

Channels, clusters and remote queuing
A queue manager communicates with another queue manager by sending a
message and, if required, receiving back a response. The receiving queue manager
could be:
v On the same machine
v On another machine in the same location or on the other side of the world
v Running on the same platform as the local queue manager
v Running on another platform supported by MQSeries

These messages may originate from:
v User-written application programs that transfer data from one node to another.
v User-written administration applications that use PCFs, the MQAI, or the ADSI.
v Queue managers sending:

– Instrumentation event messages to another queue manager.
– MQSC commands issued from a runmqsc command in indirect mode (where

the commands are run on another queue manager).

Before a message can be sent to a remote queue manager, the local queue manager
needs a mechanism to detect the arrival of messages and transport them
consisting:
v Of at least one channel
v A transmission queue
v A message channel agent (MCA)
v A channel listener
v A channel initiator

A channel is a one-way communication link between two queue managers and can
carry messages destined for any number of queues at the remote queue manager.

Each end of the channel has a separate definition. For example, if one end is a
sender or a server, the other end must be a receiver or a requester. A simple
channel consists of a sender channel definition at the local queue manager end and a
receiver channel definition at the remote queue manager end. The two definitions
must have the same name and together constitute a single channel.

© Copyright IBM Corp. 1994, 2001 59

If the remote queue manager is expected to respond to messages sent by the local
queue manager, a second channel needs to be set up to send responses back to the
local queue manager.

Channels are defined using the MQSC DEFINE CHANNEL command. In this
chapter, the examples relating to channels use the default channel attributes unless
otherwise specified.

There is a message channel agent (MCA) at each end of a channel which controls
the sending and receiving of messages. It is the job of the MCA to take messages
from the transmission queue and put them on the communication link between the
queue managers.

A transmission queue is a specialized local queue that temporarily holds messages
before they are picked up by the MCA and sent to the remote queue manager. You
specify the name of the transmission queue on a remote queue definition.

“Preparing channels and transmission queues for remote administration” on
page 62 shows how to use these definitions to set up remote administration.

For more information about setting up distributed queuing in general, see the
MQSeries Intercommunication book.

Remote administration using clusters
In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another
queue manager it must have defined a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

A cluster is a group of queue managers set up in such a way so that the queue
managers can communicate directly with one another over a single network
without the need for complex transmission queue, channel, and queue definitions.
Clusters can be set up easily, and typically contain queue managers that are
logically related in some way and need to share data or applications.

Once a cluster has been created the queue managers within it can communicate
with each other without the need for complicated channel or remote queue definitions.
Even the smallest cluster will reduce system administration overheads.

Establishing a network of queue managers in a cluster involves fewer definitions
than establishing a traditional distributed queuing environment. With fewer
definitions to make, you can set up or change your network more quickly and
easily, and the risk in making an error in your definitions is reduced.

To set up a cluster, you usually need one cluster sender (CLUSSDR) definition and
one cluster receiver (CLUSRCVR) definition per queue manager. You do not need
any transmission queue definitions or remote queue definitions. The principles of
remote administration are the same when used within a cluster, but the definitions
themselves are greatly simplified.

For more information about clusters, their attributes, and how to set them up, refer
to the MQSeries Queue Manager Clusters book.

Administering remote objects

60 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Remote administration from a local queue manager using MQSC
commands

This section tells you how to administer a remote queue manager from a local
queue manager. You can implement remote administration from a local node using:
v MQSC commands
v PCF commands

Preparing the queues and channels is essentially the same for both methods. In this
book, the examples show MQSC commands, because they are easier to understand.
However, you can convert the examples to PCFs if you wish. For more information
about writing administration programs using PCFs, see the MQSeries Programmable
System Management book.

In remote administration you send MQSC commands to a remote queue
manager—either interactively or from a text file containing the commands. The
remote queue manager may be on the same machine or, more typically, on a
different machine. You can remotely administer queue managers in different
MQSeries environments, including AIX®, AS/400, MVS/ESA, and OS/2®.

To implement remote administration, you must create certain objects. Unless you
have specialized requirements, you should find that the default values (for
example, for message length) are sufficient.

Preparing queue managers for remote administration
Figure 6 on page 62 shows the configuration of queue managers and channels that
are required for remote administration using the runmqsc command.
source.queue.manager is the source queue manager from which you can issue
MQSC commands and to which the results of these commands (operator messages)
are returned, if possible. target.queue.manager is the destination queue manager,
which processes the commands and generates any operator messages.

Note: source.queue.manager must be the default queue manager. For further
information on creating a queue manager, see “crtmqm (Create queue
manager)” on page 231.

Remote administration

Chapter 6. Administering remote MQSeries objects 61

On both systems, if you have not already done so, you must:
v Create the queue manager, using the crtmqm command.
v Start the queue manager, using the strmqm command.

You have to run these commands locally or over a network facility, for example
Telnet.

On the destination queue manager:
v The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.

This queue is created by default when a queue manager is created.
v The command server must be started, using the strmqcsv command.

Preparing channels and transmission queues for remote
administration

To run MQSC commands remotely, you must set up two channels, one for each
direction, and their associated transmission queues. This example assumes that
TCP/IP is being used as the transport type and that you know the TCP/IP address
involved.

The channel source.to.target is for sending MQSC commands from the source
queue manager to the destination. Its sender is at source.queue.manager and its
receiver is at queue manager target.queue.manager. The channel target.to.source
is for returning the output from commands and any operator messages that are
generated to the source queue manager. You must also define a transmission queue
for each sender. This queue is a local queue that is given the name of the receiving
queue manager. The XMITQ name must match the remote queue manager name
for remote administration to work, unless you are using a queue manager alias.
Figure 7 on page 63 summarizes this configuration.

runmqsc

MQSC commands

replies

Process commands
for example:
DEFINE QLOCAL

Local system Remote system

source.queue.manager target.queue.manager

Figure 6. Remote administration

Remote administration

62 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

See the MQSeries Intercommunication book for more information about setting up
remote channels.

Defining channels and transmission queues
On the source queue manager, issue these MQSC commands to define the channels
and the transmission queue:

repl ies

runmqsc

Local system Remote system

source.queue.manager target.queue.manager

XMITQ=target.queue.manager

source.to.target

target.to.source

XMITQ=source.queue.manager

SYSTEM.ADMIN.COMMAND.QUEUE

SYSTEM.MQSC.REPLY.QUEUE

commands

Figure 7. Setting up channels and queues for remote administration

* Define the sender channel at the source queue manager

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ ('target.queue.manager') +
TRPTYPE(TCP)

* Define the receiver channel at the source queue manager

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(RCVR) +
TRPTYPE(TCP)

* Define the transmission queue on the source

DEFINE QLOCAL ('target.queue.manager') +
USAGE (XMITQ)

Remote administration

Chapter 6. Administering remote MQSeries objects 63

Issue these commands on the destination queue manager (target.queue.manager),
to create the channels and the transmission queue there:

Note: The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the network name
of the machine at the other end of the connection. Use the values appropriate
for your network.

Starting the channels
The following description assumes that both ends of the channel are running on
MQSeries for Compaq OpenVMS. If this is not the case, refer to the relevant
documentation for the non-OpenVMS end of the channel.

To start the two channels, first ensure that the TCP/IP services have been
configured for MQSeries on both nodes, and are running at both ends of the
connections.

Start a listener at the receiver end of each channel.
v On the source queue manager, type:

v On the destination queue manager, type:

The queue manager name is not required on the runmqchl command for the
source queue manager because the source queue manager must be the default
queue manager. The queue manager name is required on the runmchl command
for the destination queue manager if the destination queue manager is not the
default queue manager on its node.

* Define the sender channel on the destination queue manager

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(SDR) +
CONNAME (RHX7721) +
XMITQ ('source.queue.manager') +
TRPTYPE(TCP)

* Define the receiver channel on the destination queue manager

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(RCVR) +
TRPTYPE(TCP)

* Define the transmission queue on the destination queue manager

DEFINE QLOCAL ('source.queue.manager') +
USAGE (XMITQ)

runmqlsr -m "source.queue.manager" -t tcp

runmqlsr -m "target.queue.manager" -t tcp

Remote administration

64 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Then start the channels:
v On the source queue manager, type:

v On the destination queue manager, type:

The runmqlsr and runmqchl commands are MQSeries control commands. They
cannot be issued using runmqsc. Listeners and channels can be started using
runmqsc commands or scripts (start channel and start listener).

Automatic definition of channels
Automatic definition of channels applies only if the destination queue manager is
running on MQSeries Version 5.1, or later, products. If an inbound attach request is
received and an appropriate receiver or server-connection definition cannot be
found in the channel definition file (CDF), MQSeries creates a definition
automatically and adds it to the CDF. Automatic definitions are based on two
default definitions supplied with MQSeries: SYSTEM.AUTO.RECEIVER and
SYSTEM.AUTO.SVRCONN.

You enable automatic definition of receiver and server-connection definitions by
updating the queue manager object using the MQSC command, ALTER QMGR (or
the PCF command Change Queue Manager).

For more information about the automatic creation of channel definitions, see the
MQSeries Intercommunication book.

For information about the automatic definition of channels for clusters, see the
MQSeries Queue Manager Clusters book.

Issuing MQSC commands remotely
The command server must be running on the destination queue manager, if it is
going to process MQSC commands remotely. (This is not necessary on the source
queue manager.)
v On the destination queue manager, type:

v On the source queue manager, you can then run MQSC interactively in queued
mode by typing:

This form of the runmqsc command—with the -w flag—runs the MQSC
commands in queued mode, where commands are put (in a modified form) on the
command-server input queue and executed in order.

runmqchl -m "source.queue.manager" -c "source.to.target"

runmqchl -m "target.queue.manager" -c "target.to.source"

strmqcsv “target.queue.manager”

runmqsc -w 30 “target.queue.manager”

Remote administration

Chapter 6. Administering remote MQSeries objects 65

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if a
reply is not received within 30 seconds, the following message is generated on the
local (source) queue manager:

At the end of the MQSC session, the local queue manager displays any timed-out
responses that have arrived. When the MQSC session is finished, any further
responses are discarded.

In indirect mode, you can also run an MQSC command file on a remote queue
manager. For example:

where mycomds.in is a file containing MQSC commands and report.out is the
report file.

Working with queue managers on MVS/ESA
You can issue MQSC commands to an MVS/ESA queue manager from an
MQSeries for Compaq OpenVMS queue manager. However, to do this, you must
modify the runmqsc command and the channel definitions at the sender.

In particular, you add the -x flag to the runmqsc command on an OpenVMS node:

On the sender channel, set the CONVERT attribute to YES. This specifies that the
required data conversion between the systems is performed at the OpenVMS end.
The channel definition command now becomes:

You must also define the receiver channel and the transmission queue at the source
queue manager as before. Again, this example assumes that TCP/IP is the
transmission protocol being used.

Recommendations for remote queuing
When you are implementing remote queuing:
1. Put the MQSC commands to be run on the remote system in a command file.
2. Verify your MQSC commands locally, by specifying the -v flag on the runmqsc

command.

AMQ8416: MQSC timed out waiting for a response from the command server.

runmqsc -w 60 “target.queue.manager” < mycomds.in > report.out

runmqsc -w 30 -x “target.queue.manager”

* Define the sender channel at the source queue manager on OpenVMS

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ ('target.queue.manager') +
TRPTYPE(TCP) +
CONVERT (YES)

Remote administration

66 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

You cannot use runmqsc to verify MQSC commands on another queue
manager.

3. Check, as far as possible, that the command file runs locally without error.
4. Finally, run the command file against the remote system.

If you have problems using MQSC remotely
If you have difficulty in running MQSC commands remotely, use the following
checklist to see if you have:
v Started the command server on the destination queue manager.
v Defined a valid transmission queue.
v Defined the two ends of the message channels for both:

– The channel along which the commands are being sent.
– The channel along which the replies are to be returned.

v Specified the correct connection name (CONNAME) in the channel definition.
v Started the listeners before you started the message channels.
v Checked that the disconnect interval has not expired, for example, if a channel

started but then shut down after some time. This is especially important if you
start the channels manually.

v Ensured that you are not sending requests from a source queue manager that do
not make sense to the destination queue manager (for example, requests that
include new parameters).

See also “Resolving problems with MQSC” on page 39.

Creating a local definition of a remote queue
You can use a remote queue definition as a local definition of a remote queue. You
create a remote queue object on your local queue manager to identify a local queue
on another queue manager.

Understanding how local definitions of remote queues work
An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of the
destination queue, the destination queue manager, and optionally, a transmission
queue. To put a message on the remote queue, the application issues an MQPUT
call, specifying the handle returned from the MQOPEN call. The queue manager
appends the remote queue name and the remote queue manager name to a
transmission header in the message. This information is used to route the message
to its correct destination in the network.

As administrator, you can control the destination of the message by altering the
remote queue definition.

Example

Purpose: An application is required to put a message on a queue owned by a
remote queue manager.

How it works: The application connects to a queue manager, for example,
saturn.queue.manager. The destination queue is owned by another queue manager.

Remote administration

Chapter 6. Administering remote MQSeries objects 67

On the MQOPEN call, the application specifies these fields:

Field value Description

ObjectName
CYAN.REMOTE.QUEUE

Specifies the local name of the remote queue object.
This defines the destination queue and the
destination queue manager.

ObjectType (Queue) Identifies this object as a queue.

ObjectQmgrName Blank or
saturn.queue.manager

This field is optional.

If blank, the name of the local queue manager is
assumed. (This is the queue manager on which the
remote queue definition was made and to which the
application is connected.)

If not blank, the name of the local queue manager
must be specified.

After this, the application issues an MQPUT call to put a message on to this queue.

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

Where:

QREMOTE (CYAN.REMOTE.QUEUE)
Specifies the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the
MQOPEN call to open the queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the remote queue
manager jupiter.queue.manager.

DESCR (’Queue for auto insurance requests from the branches’)
Additional text that describes the use of the queue.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)
Specifies the name of the destination queue on the remote queue manager.
This is the real destination queue for messages that are sent by applications
that specify the queue name CYAN.REMOTE.QUEUE. The queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE must be defined as a local
queue on the remote queue manager.

RQMNAME (’jupiter.queue.manager’)
Specifies the name of the remote queue manager that owns the destination
queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE. This name must be
enclosed in single quotations.

XMITQ (INQUOTE.XMIT.QUEUE)
Specifies the name of the transmission queue. This is optional; if not
specified, a queue with the same name as the remote queue manager is
used.

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE) +
RQMNAME ('jupiter.queue.manager') +
XMITQ (INQUOTE.XMIT.QUEUE)

Local definition of remote queue

68 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(USAGE(XMIT) in MQSC).

An alternative way of putting messages on a remote queue
Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, which includes
the remote queue manager name, as part of the MQOPEN call. In this case, a local
definition of a remote queue is not required. However, this alternative means that
applications must either know or have access to the name of the remote queue
manager at run time.

Using other commands with remote queues
You can use the appropriate MQSC commands to display or alter the attributes of
a remote queue object, or you can delete the remote queue object. For example:

Note: If you delete a remote queue, you only delete the local representation of the
remote queue. You do not delete the remote queue itself or any messages on
it.

Creating a transmission queue
A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel. The
channel provides a one-way link to the remote queue manager. Messages are
queued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The Usage attribute (USAGE in MQSC) defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues
Optionally, you can specify a transmission queue in a remote queue object, using
the XmitQName attribute (XMITQ in MQSC). If no transmission queue is defined, a
default is used. When applications put messages on a remote queue, if a
transmission queue with the same name as the destination queue manager exists,

* Display the remote queue's attributes.
* ALL = Display all attributes

DISPLAY QUEUE (CYAN.REMOTE.QUEUE) ALL

* ALTER the remote queue to enable puts.
* This does not affect the destination queue,
* only applications that specify this remote queue.

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

* Delete this remote queue
* This does not affect the destination queue
* only its local definition

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Local definition of remote queue

Chapter 6. Administering remote MQSeries objects 69

that queue is used. If this queue does not exist, the queue specified by the
DefaultXmitQ attribute (DEFXMITQ in MQSC) on the local queue manager is used.

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager:

Applications can put messages directly on a transmission queue, with an
appropriate header, or they can be put there indirectly, for example, through a
remote queue definition. See also “Creating a local definition of a remote queue”
on page 67.

Using remote queue definitions as aliases
In addition to locating a queue on another queue manager, you can also use a local
definition of a remote queue for both:
v Queue manager aliases
v Reply-to queue aliases

Both types of aliases are resolved through the local definition of a remote queue.

As usual in remote queuing, the appropriate channels must be set up if the
message is to arrive at its destination.

Queue manager aliases
An alias is the process by which the name of the destination queue manager—as
specified in a message—is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see the MQSeries
Intercommunication book.

Reply-to queue aliases
Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue. If the application that processes the message extracts
the name of the reply-to queue, it knows where to send the reply message, if
required.

A reply-to queue alias is the process by which a reply-to queue – as specified in a
request message – is altered by a queue manager on the message route. The
sending application is not aware that the reply-to queue name specified is an alias.

A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

DEFINE QLOCAL ('target.queue.manager') +
DESCR ('Default transmission queue for target qm') +
USAGE (XMITQ)

Local definition of remote queue

70 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

For more information about request messages, reply messages, and reply-to
queues, see the MQSeries Application Programming Reference book. For more
information about reply-to queue aliases, see the MQSeries Intercommunication book.

Data conversion
Message data in MQSeries-defined formats (also known as built-in formats) can be
converted by the queue manager from one coded character set to another,
provided that both character sets relate to a single language or a group of similar
languages.

For example, conversion between coded character sets whose identifiers (CCSIDs)
are 850 and 500 is supported, because both apply to Western European languages.

For EBCDIC new line (NL) character conversions to ASCII, see “The
AllQueueManagers stanza” on page 161.

Supported conversions are defined in Code page conversion tables in the MQSeries
Application Programming Reference book.

When a queue manager cannot convert messages in built-in
formats
The queue manager cannot automatically convert messages in built-in formats if
their CCSIDs represent different national-language groups. For example,
conversion between CCSID 850 and CCSID 1025 (which is an EBCDIC coded
character set for languages using Cyrillic script) is not supported because many of
the characters in one coded character set cannot be represented in the other. If you
have a network of queue managers working in different national languages, and
data conversion among some of the coded character sets is not supported, you can
enable a default conversion. Default data conversion is described in “Default data
conversion”.

File ccsid.tbl
The file ccsid.tbl specifies:
v Any additional code sets. To specify additional code sets, you need to edit

ccsid.tbl (guidance on how to do this is provided in the file).
v any default data conversion.

You can update the information recorded in ccsid.tbl. You might want to do this if,
for example, a future release of your operating system supports additional coded
character sets.

In MQSeries for Compaq OpenVMS, a sample ccsid.tbl file is provided as
MQS_EXAMPLES:CCSID.TBL

and the active ccsid.tbl file is located in directory
MQS_ROOT:[MQM.CONV.TABLE]

Default data conversion: To implement default data conversion, you edit ccsid.tbl
to specify a default EBCDIC CCSID and a default ASCII CCSID, and also to
specify the defaulting CCSIDs. Instructions for doing this are included in the file.

If you update ccsid.tbl to implement default data conversion, the queue manager
must be restarted before the change can take effect.

Aliases

Chapter 6. Administering remote MQSeries objects 71

The default data conversion process is as follows:
v If conversion between the source and target CCSIDs is not supported, but the

CCSIDs of the source and target environments are either both EBCDIC or both
ASCII, the character data is passed to the target application without conversion.

v If one CCSID represents an ASCII coded character set, and the other represents
an EBCDIC coded character set, MQSeries converts the data using the default
data-conversion CCSIDs defined in ccsid.tbl.

Note: You should try to restrict the characters being converted to those that have
the same code values in the coded character set specified for the message
and in the default coded character set. If you use only that set of characters
that is valid for MQSeries object names you will, in general, satisfy this
requirement. Exceptions occur with EBCDIC CCSIDs 290, 930, 1279, and
5026 used in Japan, where the lowercase characters have different codes
from those used in other EBCDIC CCSIDs.

Conversion of messages in user-defined formats
Messages in user-defined formats cannot be converted from one coded character
set to another by the queue manager. If data in a user-defined format requires
conversion, you must supply a data-conversion exit for each such format. The use
of default CCSIDs for converting character data in user-defined formats is not
recommended, although it is possible. For more information about converting data
in user-defined formats and about writing data conversion exits, see the MQSeries
Application Programming Guide.

Changing the queue manager CCSID
You are recommended to stop and restart the queue manager when you change the
CCSID of the queue manager, by using the CCSID attribute of the ALTER QMGR
command.

This ensures that all running applications, including the command server and
channel programs, are stopped and restarted.

This is necessary, because any applications that are running when the queue
manager CCSID is changed, continue to use the existing CCSID.

Aliases

72 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 7. Protecting MQSeries objects

This chapter describes the features of security control in MQSeries for Compaq
OpenVMS and how you can implement this control.

It contains these sections:
v “Why you need to protect MQSeries resources”
v “Before you begin”
v “Understanding the Object Authority Manager” on page 74
v “Using the Object Authority Manager commands” on page 77
v “Object Authority Manager guidelines” on page 79
v “Understanding the authorization specification tables” on page 82
v “Understanding authorization files” on page 88

Why you need to protect MQSeries resources
Because MQSeries queue managers handle the transfer of information that is
potentially valuable, you need the safeguard of an authority system. This ensures
that the resources that a queue manager owns and manages are protected from
unauthorized access, which could lead to the loss or disclosure of the information.
In a secure system, it is essential that none of the following are accessed or
changed by any unauthorized user or application:
v Connections to a queue manager.
v Access to MQSeries objects such as queues, clusters, channels, and processes.
v Commands for queue manager administration, including MQSC commands and

PCF commands.
v Access to MQSeries messages.
v Context information associated with messages.

You should develop your own policy with respect to which users have access to
which resources.

Before you begin
All queue manager resources run with the VMS Rights Identifier:

MQM

This rights identifier is created during MQSeries installation and you must grant
this resource attribute to all users who need to control MQSeries resources.

User IDs in MQSeries for Compaq OpenVMS with resource
identifier MQM

If your user ID holds the MQM OpenVMS rights identifier, you have all authorities
to all MQSeries resources. Your user ID must hold the OpenVMS MQM rights
identifier to be able to use all the MQSeries for Compaq OpenVMS control
commands except crtmqcvx. In particular, you need this authority to:
v Use the runmqsc command to run MQSC commands.
v Administer authorities on MQSeries for Compaq OpenVMS using the setmqaut

command.

© Copyright IBM Corp. 1994, 2001 73

If you are sending channel commands to queue managers on a remote system, you
must ensure that your user ID holds the OpenVMS rights identifier MQM on the
target system. For a list of PCF and MQSC channel commands, see “Channel
command security” on page 81.

In addition, installation of MQSeries creates an identifier MQS_SERVER. This is
granted ownership of the resource domain where VMS keeps lock information for
MQSeries. By default, access authorities to this identifier are granted to users who:
v Are in the same user group as the user MQM, or
v Are system users, or
v Have SYSPRV, SYSLCK, or BYPASS privilege set

To allow other users access to the MQ resources, you need to ensure that the
MQS_SERVER identifier has appropriate WORLD privilege by running the
command:

Note: It is not essential for your user ID to hold the rights identifier MQM for
issuing:
v PCF commands—including Escape PCFs—from an administration

program
v MQI calls from an application program

For more information
For more information about:
v MQSeries for Compaq OpenVMS command sets, see “Chapter 2. An introduction

to MQSeries administration” on page 17.
v MQSeries for Compaq OpenVMS control commands, see “Chapter 17. MQSeries

control commands” on page 225.
v PCF commands and Escape PCFs, see the MQSeries Programmable System

Management book.
v MQI calls, see the MQSeries Application Programming Guide and MQSeries

Application Programming Reference book.

Understanding the Object Authority Manager
By default, access to queue manager resources is controlled through an
authorization service installable component. This component is formally called the
Object Authority Manager (OAM) for MQSeries for Compaq OpenVMS. It is
supplied with MQSeries for Compaq OpenVMS and is automatically installed and
enabled for each queue manager you create, unless you specify otherwise. In this
chapter, the term OAM is used to denote the Object Authority Manager supplied
with this product.

The OAM is an installable component of the authorization service. Providing the
OAM as an installable service gives you the flexibility to:
v Replace the supplied OAM with your own authorization service component

using the interface provided.
v Augment the facilities supplied by the OAM with those of your own

authorization service component, again using the interface provided.
v Remove or disable the OAM and run with no authorization service at all.

SET SECURITY/CLASS=RESOURCE [MQS_SERVER] /PROTECTION=(W:RWL)

Before you begin

74 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

For more information on installable services, see the MQSeries Programmable System
Management book.

The OAM manages users’ authorizations to manipulate MQSeries objects,
including queues, process definitions, and channels. It also provides a command
interface through which you can grant or revoke access authority to an object for a
specific group of users. The decision to allow access to a resource is made by the
OAM, and the queue manager follows that decision. If the OAM cannot make a
decision, the queue manager prevents access to that resource.

How the OAM works
The OAM works by exploiting the security features of the underlying OpenVMS
operating system. In particular, the OAM uses OpenVMS user, group IDs, and
rights identifiers. Users can access queue manager objects only if they have the
required authority.

Managing access through rights identifiers
In the command interface, we use the term principal rather than user ID. The
reason for this is that authorities granted to a user ID can also be granted to other
entities, for example, an application program that issues MQI calls, or an
administration program that issues PCF commands. In these cases, the principal
associated with the program is not necessarily the user ID that was used when the
program was started. However, in this discussion, principals and user IDs are
always OpenVMS user IDs.

Rights identifiers and the primary rights identifier
Managing access permissions to MQSeries resources is based on OpenVMS rights
identifiers, that is, identifiers held by principals. A principal can hold one or more
OpenVMS rights identifiers. A group is defined as the set of all principals that
have been granted a specific rights identifier.

The OAM maintains authorizations at the level of rights identifiers rather than
individual principals. The mapping of principals to identifier names is carried out
within the OAM and operations are carried out at the rights identifier level. You
can, however, display the authorizations of an individual principal.

When a principal holds more than one rights identifier
The authorizations that a principal has are the union of the authorizations of all
the rights identifiers that it holds, that is, its process rights. Whenever a principal
requests access to a resource, the OAM computes this union, and then checks the
authorization against it. You can use the control command setmqaut to set the
authorizations for a specific principal, or identifier.

Note: Any changes made using the setmqaut command take immediate effect,
unless the object is in use. In this case, the change comes into force when
the object is next opened. However, changes to a principal’s rights identifier
list do not come into effect until a queue manager is reset, that is, stopped
and restarted.

The authorizations associated with a principal are cached when they are computed
by the OAM. Any changes made to an identifier’s authorizations after it has been
cached are not recognized until the queue manager is restarted. Avoid changing
any authorizations while the queue manager is running.

Object authority manager

Chapter 7. Protecting MQSeries objects 75

Default rights identifier
The OAM recognizes a default to which all users are nominally assigned. This
group is defined by the pseudo rights identifier of 'NOBODY'. 'NOBODY' can be
used as if it were a valid rights identifier to assign authorizations using MQSeries
commands. By default, no authorizations are given to this identifier. Users without
specific authorizations can be granted access to MQSeries resources through this
rights identifier.

Resources you can protect with the OAM
Through OAM you can control:
v Access to MQSeries objects through the MQI. When an application program

attempts to access an object, the OAM checks if the user ID making the request
has the authorization (through the identifier held) for the operation requested.
In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

v Permission to use MQSC commands; only principals which hold rights identifier
MQM can execute queue manager administration commands, for example, to
create a queue.

v Permission to use control commands; only principals which hold rights identifier
MQM can execute control commands, for example, creating a queue manager,
starting a command server, or using runmqsc.

v Permission to use PCF commands.

Different users may be granted different kinds of access authority to the same
object. For example, for a specific queue, users holding one identifier may be
allowed to perform both put and get operations; users with another identifier may
only be allowed to browse the queue (MQGET with browse option). Similarly,
users with identifiers may have get and put authority to a queue, but are not
allowed to alter or delete the queue.

Using rights identifiers for authorizations
Using identifiers, rather than individual principals, for authorization reduces the
amount of administration required. Typically, a particular kind of access is required
by more than one principal. For example, you might define an identifier consisting
of end users who want to run a particular application. New users can be given
access simply by granting the appropriate identifier to their OpenVMS user ID.

Try to keep the number of identifiers as small as possible. For example, dividing
principals into one group for application users and one for administrators is a
good place to start.

Disabling the object authority manager
By default, the OAM is enabled. You can disable it by setting the logical name
MQSNOAUT before the queue manager is created, as follows:

However, if you do this you cannot, in general, restart the OAM later. A much
better approach is to have the OAM enabled and ensure that all users and
applications have access through an appropriate user ID.

$ DEFINE/SYSTEM MQSNOAUT TRUE

Object authority manager

76 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

You can also disable the OAM for testing purposes only by removing the
authorization service stanza in the queue manager configuration file (qm.ini).

Using the Object Authority Manager commands
The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be suitably authorized – your user
ID must hold the OpenVMS rights identifier MQM. This identifier should have
been set up when you installed the product.

If your user ID holds identifier MQM, you have management authority to the
queue manager. This means that you are authorized to issue any MQI request or
command from your user ID.

The OAM provides two commands that you can invoke from your OpenVMS DCL
to manage the authorizations of users. These are:
v setmqaut (Set or reset authority)
v dspmqaut (Display authority)

Authority checking occurs in the following calls: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE.

Authority checking is only performed at the first instance of any of these calls, and
authority is not amended until you reset (that is, close and reopen) the object.

Therefore, any changes made to the authority of an object using setmqaut do not
take effect until you reset the object.

What you specify when you use the OAM commands
The authority commands apply to the specified queue manager; if you do not
specify a queue manager, the default queue manager is used. On these commands,
you must specify the object uniquely, that is, you must specify the object name and
its type. You also have to specify the principal or identifier name to which the
authority applies.

Authorization lists
On the setmqaut command you specify a list of authorizations. This is simply a
shorthand way of specifying whether authorization is to be granted or revoked,
and which resources the authorization applies to. Each authorization in the list is
specified as a lowercase keyword, prefixed with a + or − sign. Use a + sign to add
the specified authorization or a − sign to remove the authorization. You can specify
any number of authorizations in a single command. For example:

+browse -get +put

Object authority manager

Chapter 7. Protecting MQSeries objects 77

Using the setmqaut command
Provided you have the required authorization, you can use the setmqaut command
to grant or revoke authorization of a principal or rights identifier to access a
particular object. The following example shows how the setmqaut command is
used:

In this example:

This term... Specifies the...

saturn.queue.manager Queue manager name.

queue Object type.

RED.LOCAL.QUEUE Object name.

GROUPA ID of the group to be given the authorizations.

+browse -get +put Authorization list for the specified queue. There
must be no spaces between the ‘+’ or ‘−’ signs and
the keyword.

The authorization list specifies the authorizations to be given, where:

This term... Does this...

+browse Adds authorization to browse (MQGET with
browse option) messages on the queue.

-get Removes authorization to get (MQGET) messages
from the queue.

+put Adds authorization to put (MQPUT) messages on
the queue.

This means that applications started with user IDs that hold OpenVMS identifier
GROUPA have these authorizations.

You can specify one or more principals and, at the same time, one or more
identifiers. For example, the following command revokes put authority on the
queue MyQueue to the principal FVUSER and to identifiers GROUPA and GROUPB.

Note: This command also revokes put authority for all rights identifiers held by
FVUSER, that is, all groups to which FVUSER belongs.

For a formal definition of the command and its syntax, see “setmqaut (Set/reset
authority)” on page 281.

Authority commands and installable services
The setmqaut command takes an additional parameter that specifies the name of
the installable service component to which the update applies. You must specify
this parameter if you have multiple installable components running at the same

setmqaut -m “saturn.queue.manager” -t queue -n RED.LOCAL.QUEUE -g GROUPA +browse -get +put

setmqaut -m “saturn.queue.manager” -t queue -n “MyQueue” -p FVUSER -g GROUPA -g GROUPB -put

Using OAM commands

78 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

time. By default, this is not the case. If the parameter is omitted, the update is
made to the first installable service of that type, if one exists. By default, this is the
supplied OAM.

Access authorizations
Authorizations defined by the authorization list associated with the setmqaut
command can be categorized as follows:
v Authorizations related to MQI calls
v Authorization related administration commands
v Context authorizations
v General authorizations, that is, for MQI calls, for commands, or both

Each authorization is specified by a keyword used with the setmqaut and
dspmqaut commands. These are described in “setmqaut (Set/reset authority)” on
page 281.

Display authority command
You can use the command dspmqaut to view the authorizations that a specific
principal or identifier has for a particular object. The flags have the same meaning
as those in the setmqaut command. Authorization can only be displayed for one
identifier or principal at a time. See “dspmqaut (Display authority)” on page 239
for a formal specification of this command.

For example, the following command displays the authorizations that the group
GpAdmin has to a process definition named Annuities on queue manager QueueMan1.

The keywords displayed as a result of this command identify the authorizations
that are active.

Object Authority Manager guidelines
Some operations are particularly sensitive and should be limited to privileged
users. For example,
v Starting and stopping queue managers.
v Accessing certain special queues, such as transmission queues or the command

queue SYSTEM.ADMIN.COMMAND.QUEUE.
v Programs that use full MQI context options.
v In general, creating and copying application queues.

User IDs
The special user ID MQM that you created during product installation is intended
for use by the product only. It should never be available to non-privileged users.

The user ID used for authorization checks, associated with an MQ process, is the
OpenVMS user ID.

Queue manager directories
The directory containing queues and other queue manager data is private to the
product. Objects in this directory have OpenVMS user authorizations that relate to

dspmqaut -m “QueueMan1” -t process -n "Annuities" -g "GpAdmin"

Using OAM commands

Chapter 7. Protecting MQSeries objects 79

their OAM authorizations. However, do not use standard OpenVMS commands to
grant or revoke authorizations to MQI resources because:
v MQSeries objects are not necessarily the same as the corresponding system

object name. See “Understanding MQSeries file names” on page 19 for more
information about this.

v All objects are owned by resource ID MQM.

Queues
The authority to a dynamic queue is based on—but not necessarily the same
as—that of the model queue from which it is derived. See note 1 on page 86 for
more information.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a user ID to access an alias queue that resolves to a local queue to
which the user ID has no access permissions.

You should limit the authority to create queues to privileged users. If you do not,
some users may bypass the normal access control simply by creating an alias.

Alternate user authority
Alternate user authority controls whether one user ID can use the authority of
another user ID when accessing an MQSeries object. This is essential where a
server receives requests from a program and the server wishes to ensure that the
program has the required authority for the request. The server may have the
required authority, but it needs to know whether the program has the authority for
the actions it has requested.

For example:
v A server program running under user ID PAYSERV retrieves a request message

from a queue that was put on the queue by user ID USER1.
v When the server program gets the request message, it processes the request and

puts the reply back into the reply-to queue specified with the request message.
v Instead of using its own user ID (PAYSERV) to authorize opening the reply-to

queue, the server can specify some other user ID, in this case, USER1. In this
example, you can use alternate user authority to control whether PAYSERV is
allowed to specify USER1 as an alternate user ID when it opens the reply-to
queue.

The alternate user ID is specified on the AlternateUserId field of the object
descriptor.

Note: You can use alternate user IDs on any MQSeries object. Use of an alternate
user ID does not affect the user ID used by any other resource managers.

Context authority
Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section
This part specifies who the message came from. It consists of the following
fields:
v UserIdentifier

OAM guidelines

80 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v AccountingToken
v ApplIdentityData

Origin section
This section specifies where the message came from, and when it was put
onto the queue. It consists of the following fields:
v PutApplType
v PutApplName
v PutDate
v PutTime
v ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT
call is made. This data may be generated by the application, it may be passed on
from another message, or it may be generated by the queue manager by default.
For example, context data can be used by server programs to check the identity of
the requester, testing whether the message came from an application, running
under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user.

You use context authorization to control whether the user can specify any of the
context options on any MQOPEN or MQPUT1 call. For information about the
context options, see the MQSeries Application Programming Guide. For descriptions
of the message descriptor fields relating to context, see the MQSeries Application
Programming Reference book.

Remote security considerations
For remote security, you should consider:

Put authority
For security across queue managers you can specify the put authority that
is used when a channel receives a message sent from another queue
manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user ID. This is the user ID that the message channel agent
is running under.

CTX The user ID in the message context.

Transmission queues
Queue managers automatically put remote messages on a transmission
queue; no special authority is required for this. However, putting a
message directly on a transmission queue requires special authorization;
see Table 2 on page 83.

Channel exits
Channel exits can be used for added security.

For more information, see the MQSeries Intercommunication book.

Channel command security
Channel commands can be issued as PCF commands, through the MQAI, MQSC
commands, and control commands.

OAM guidelines

Chapter 7. Protecting MQSeries objects 81

PCF commands
You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote OpenVMS system. The user
ID, as specified in the message descriptor of the PCF message, must hold rights
identifier MQM on the target system. These commands are:
v ChangeChannel
v CopyChannel
v CreateChannel
v DeleteChannel
v PingChannel
v ResetChannel
v StartChannel
v StartChannelInitiator
v StartChannelListener
v StopChannel
v ResolveChannel

See the MQSeries Programmable System Management book for the PCF security
requirements.

MQSC channel commands
You can issue MQSC channel commands to a remote OpenVMS system either by
sending the command directly in a PCF escape message or by issuing the
command using runmqsc in indirect mode. The user ID as specified in the
message descriptor of the associated PCF message must hold rights identifier
MQM on the target system. (PCF commands are implicit in MQSC commands
issued from runmqsc in indirect mode.) These commands are:
v ALTER CHANNEL
v DEFINE CHANNEL
v DELETE CHANNEL
v PING CHANNEL
v RESET CHANNEL
v START CHANNEL
v START CHINIT
v START LISTENER
v STOP CHANNEL
v RESOLVE CHANNEL

For MQSC commands issued from the runmqsc command, the user ID in the PCF
message is normally that of the current user.

Control commands for channels
For the control commands for channels, the user ID that issues them must hold
rights identifier MQM. These commands are:
v runmqchi (Run channel initiator)
v runmqchl (Run channel)

Understanding the authorization specification tables
The authorization specification tables starting on page 83 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:
v Applications that issue MQI calls.
v Administration programs that issue MQSC commands as escape PCFs.
v Administration programs that issue PCF commands.

OAM guidelines

82 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

In this section, the information is presented as a set of tables that specify the
following:

Action to be performed
MQI option, MQSC command, or PCF command.

Access control object
Queue, process, or queue manager.

Authorization required
Expressed as an ‘MQZAO_’ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in
the authorization list for the setmqaut command for the particular entity. For
example, MQZAO_BROWSE corresponds to the keyword +browse; similarly, the
keyword MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall and
so on. These constants are defined in the header file cmqzc.h, which is supplied
with the product. See “What the authorization files contain” on page 89 for more
information.

MQI authorizations
An application is only allowed to issue certain MQI calls and options if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls may require authorization checks: MQCONN, MQOPEN,
MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the
object being opened, and not on the name, or names, resulting after a name has
been resolved. For example, an application may be granted authority to open an
alias queue without having authority to open the base queue to which the alias
resolves. The rule is that the check is carried out on the first definition encountered
during the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority—which is obtained through an authorization for the queue-manager
object—is required.

Table 2 summarizes the authorizations needed for each call.

Table 2. Security authorization needed for MQI calls

Authorization
required for:

Queue
object (1)

Process
object

Queue
manager

object
Namelists

MQCONN option Not applicable Not applicable MQZAO_
CONNECT

Not applicable

MQOPEN Option

MQOO_INQUIRE MQZAO_INQUIRE
(2)

MQZAO_INQUIRE
(2)

MQZAO_INQUIRE
(2)

MQZAO_INQUIRE
(2)

MQOO_BROWSE MQZAO_BROWSE Not applicable No check Not applicable

MQOO_INPUT_* MQZAO_INPUT Not applicable No check Not applicable

MQOO_SAVE_
ALL_CONTEXT (3)

MQZAO_INPUT Not applicable No check Not applicable

Authorization specification tables

Chapter 7. Protecting MQSeries objects 83

Table 2. Security authorization needed for MQI calls (continued)

Authorization
required for:

Queue
object (1)

Process
object

Queue
manager

object
Namelists

MQOO_OUTPUT (Normal
queue) (4)

MQZAO_OUTPUT Not applicable No check Not applicable

MQOO_PASS_
IDENTITY_CONTEXT (5)

MQZAO_PASS_
IDENTITY_
CONTEXT

Not applicable No check Not applicable

MQOO_PASS_
ALL_CONTEXT (5, 6)

MQZAO_PASS
_ALL_CONTEXT

Not applicable No check Not applicable

MQOO_SET_
IDENTITY_CONTEXT (5, 6)

MQZAO_SET_
IDENTITY_
CONTEXT

Not applicable MQZAO_SET_
IDENTITY_
CONTEXT (7)

Not applicable

MQOO_SET_
ALL_CONTEXT (5, 8)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

Not applicable

MQOO_OUTPUT
(Transmission queue) (9)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

Not applicable

MQOO_SET MQZAO_SET Not applicable No check Not applicable

MQOO_ALTERNATE_
USER_AUTHORITY

(10) (10) MQZAO_
ALTERNATE_
USER_
AUTHORITY (10,
11)

(10)

MQPUT1 Option

MQPMO_PASS_
IDENTITY_CONTEXT

MQZAO_PASS_
IDENTITY_
CONTEXT (12)

Not applicable No check Not applicable

MQPMO_PASS_
ALL_CONTEXT

MQZAO_PASS_
ALL_CONTEXT
(12)

Not applicable No check Not applicable

MQPMO_SET_
IDENTITY_CONTEXT

MQZAO_SET_
IDENTITY_
CONTEXT (12)

Not applicable MQZAO_SET_
IDENTITY_
CONTEXT (7)

Not applicable

MQPMO_SET_
ALL_CONTEXT

MQZAO_SET_
ALL_CONTEXT
(12)

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

Not applicable

(Transmission queue) (9) MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

Not applicable

MQPMO_ALTERNATE_
USER_AUTHORITY

(13) Not applicable MQZAO
ALTERNATE
USER_
AUTHORITY (11)

Not applicable

MQCLOSE Option

MQCO_DELETE MQZAO_DELETE
(14)

Not applicable Not applicable Not applicable

MQCO_DELETE_PURGE MQZAO_DELETE
(14)

Not applicable Not applicable Not applicable

Specific notes:

1. If a model queue is being opened:

Authorization specification tables

84 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v MQZAO_DISPLAY authority is needed for the model
queue, in addition to whatever other authorities (also for
the model queue) are required for the open options
specified.

v MQZAO_CREATE authority is not needed to create the
dynamic queue.

v The user identifier used to open the model queue is
automatically granted all of the queue-specific authorities
(equivalent to MQZAO_ALL) for the dynamic queue
created.

2. Either the queue, process, namelist or queue manager object is
checked, depending on the type of object being opened.

3. MQOO_INPUT_* must also be specified. This is valid for a
local, model, or alias queue.

4. This check is performed for all output cases, except the case
specified in note 9.

5. MQOO_OUTPUT must also be specified.
6. MQOO_PASS_IDENTITY_CONTEXT is also implied by this

option.
7. This authority is required for both the queue manager object

and the particular queue.
8. MQOO_PASS_IDENTITY_CONTEXT,

MQOO_PASS_ALL_CONTEXT, and
MQOO_SET_IDENTITY_CONTEXT are also implied by this
option.

9. This check is performed for a local or model queue that has a
Usage queue attribute of MQUS_TRANSMISSION, and is
being opened directly for output. It does not apply if a remote
queue is being opened (either by specifying the names of the
remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

10. At least one of MQOO_INQUIRE (for any object type), or (for
queues) MQOO_BROWSE, MQOO_INPUT_*,
MQOO_OUTPUT, or MQOO_SET must also be specified. The
check carried out is as for the other options specified, using
the supplied alternate user identifier for the specific-named
object authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

11. This authorization allows any AlternateUserId to be specified.
12. An MQZAO_OUTPUT check is also carried out, if the queue

does not have a Usage queue attribute of
MQUS_TRANSMISSION.

13. The check carried out is as for the other options specified,
using the supplied alternate user identifier for the
specific-named queue authority, and the current application
authority for the MQZAO_ALTERNATE_USER_IDENTIFIER
check.

14. The check is carried out only if both of the following are true:
v A permanent dynamic queue is being closed and deleted.
v The queue was not created by the MQOPEN which

returned the object handle being used.

Authorization specification tables

Chapter 7. Protecting MQSeries objects 85

Otherwise, there is no check.

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that
are relevant to the object type:
v MQZAO_CONNECT
v MQZAO_INQUIRE
v MQZAO_SET
v MQZAO_BROWSE
v MQZAO_INPUT
v MQZAO_OUTPUT
v MQZAO_PASS_IDENTITY_CONTEXT
v MQZAO_PASS_ALL_CONTEXT
v MQZAO_SET_IDENTITY_CONTEXT
v MQZAO_SET_ALL_CONTEXT
v MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14 on page 85) and MQZAO_DISPLAY are classed
as administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.
4. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot issue an MQPUT call to a process object.

Administration authorizations
These authorizations allow a user to issue administration commands. This can be
an MQSC command as an escape PCF message or as a PCF command itself. These
methods allow a program to send an administration command as a message to a
queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs
Table 3 summarizes the authorizations needed for each MQSC command that is
contained in Escape PCF.

Table 3. MQSC commands and security authorization needed

(2)Authorization
required for:

Queue object
Process

object

Queue
manager

object
Namelists

MQSC command

ALTER object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

CLEAR QLOCAL MQZAO_CLEAR Not applicable Not applicable Not applicable

DEFINE object
NOREPLACE (3)

MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable MQZAO_CREATE (4)

DEFINE object
REPLACE (3, 5)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

DELETE object MQZAO_DELETE MQZAO_DELETE Not applicable MQZAO_DELETE

DISPLAY object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Specific notes:

1. The user identifier, under which the program (for example,
runmqsc) which submits the command is running, must also
have MQZAO_CONNECT authority to the queue manager.

Authorization specification tables

86 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

2. Either the queue, process, namelist or queue manager object is
checked, depending on the type of object.

3. For DEFINE commands, MQZAO_DISPLAY authority is also
needed for the LIKE object if one is specified, or on the
appropriate SYSTEM.DEFAULT.xxx object if LIKE is omitted.

4. The MQZAO_CREATE authority is not specific to a particular
object or object type. Create authority is granted for all objects,
for a specified queue manager, by specifying an object type of
QMGR on the SETMQAUT command.

5. This applies if the object to be replaced does in fact already
exist. If it does not, the check is as for DEFINE object
NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue
manager object.

Authorizations for PCF commands
Table 4 summarizes the authorizations needed for each PCF command.

Table 4. PCF commands and security authorization needed

(2) Authorization
required for:

Queue object Process object
Queue
manager

object
Namelists

PCF command

Change object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

Clear Queue MQZAO_CLEAR Not applicable Not applicable Not applicable

Copy object (without
replace) (3)

MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable MQZAO_CREATE (4)

Copy object (with
replace) (3, 6)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

Create object (without
replace) (5)

MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable MQZAO_CREATE (4)

Create object (with
replace) (5, 6)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

Delete object MQZAO_DELETE MQZAO_DELETE Not applicable MQZAO_DELETE

Inquire object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Inquire object names No check No check No check No check

Reset queue statistics MQZAO_DISPLAY
and
MQZAO_CHANGE

Not applicable Not applicable Not applicable

Specific notes:

Authorization specification tables

Chapter 7. Protecting MQSeries objects 87

1. The user identifier under which the program submitting the
command is running must also have authority to connect to its
local queue manager, and to open the command admin queue
for output.

2. Either the queue, process, namelist or queue-manager object is
checked, depending on the type of object.

3. For Copy commands, MQZAO_DISPLAY authority is also
needed for the From object.

4. The MQZAO_CREATE authority is not specific to a particular
object or object type. Create authority is granted for all objects,
for a specified queue manager, by specifying an object type of
QMGR on the SETMQAUT command.

5. For Create commands, MQZAO_DISPLAY authority is also
needed for the appropriate SYSTEM.DEFAULT.* object.

6. This applies if the object to be replaced already exists. If it does
not, the check is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The special authorization MQZAO_ALL_ADMIN includes all of the following
that are relevant to the object type:
v MQZAO_CHANGE
v MQZAO_CLEAR
v MQZAO_DELETE
v MQZAO_DISPLAY

MQZAO_CREATE is not included, because it is not specific to a particular
object or object type.

3. ‘No check’ means that no authorization checking is carried out.
4. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot use a Clear Queue command on a process
object.

Understanding authorization files

Note: The information in this section is given for problem determination. Under
normal circumstances, use authorization commands to view and change
authorization information.

MQSeries for Compaq OpenVMS uses a specific file structure to implement
security. You do not have to do anything with these files, except to ensure that all
the authorization files are themselves secure.

Security is implemented by authorization files. From this perspective, there are
three types of authorization:
v Authorizations applying to single object, for example, the authority to put a

message on a queue.
v Authorizations applying to a class of objects, for example, the authority to create

a queue.
v Authorizations applying across all classes of objects, for example, the authority

to perform operations on behalf of different users.

Authorization specification tables

88 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Authorization file paths
The path to an authorization file depends on its type. When you specify an
authorization for an object, for example, the queue manager creates the appropriate
authorization files. It puts these files into a sub-directory, the path of which is
defined by the queue manager name, the type of authorization, and where
appropriate, the object name.

Not all authorizations apply directly to instances of objects. For example, the
authorization to create an object applies to the class of objects rather than to an
individual instance. Also, some authorizations apply across the entire queue
manager, for example, alternate user authority means that a user can assume the
authorities associated with another user.

Authorization directories
By default, the authorization directories, for a queue manager called saturn are:

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.QUEUES]
Authorization files for queues.

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.PROCDEF]
Authorization files for process definitions.

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.QMANAGER]
Authorization files for the queue manager.

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH]$ACLASS
Authorizations applying to all classes.

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.NAMELIST]
Authorizations applying to all namelists.

In the object directories, the $CLASS files hold the authorizations related to the
entire class.

Note: There is a difference between $CLASS (the authorization file that specifies
authorization for a particular class) and $ACLASS (the authorization file that
specifies authorizations to all classes).

The paths of the object authorization files are based on those of the object itself,
where AUTH is inserted ahead of the object type directory. You can use the
dspmqfls command to display the path to a specified object.

For example, if the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:
MQS_ROOT:[MQM.QMGRS.SATURN.QUEUES.SYSTEM$DEFAULT$LOCAL$QUEUE]

the name and path of the corresponding authorization file is:
MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.QUEUES.SYSTEM$DEFAULT$LOCAL$QUEUE]

Note: In this case, the actual names of the files associated with the queue are not
the same as the name of the queue itself. See “Understanding MQSeries file
names” on page 19 for details.

What the authorization files contain
The authorizations of a particular identifier are defined by a set of stanzas in the
authorization file. See “Understanding authorization files” on page 88 for more

Authorization files

Chapter 7. Protecting MQSeries objects 89

information. The authorizations apply to the object associated with this file. For
example:

This stanza defines the authority for the identifier GROUPB. The authority
specification is the union of the individual bit patterns based on the following
assignments:

These definitions are made in the header file cmqzc.h. In the following example,
GROUPB has been granted authorizations based on the hexadecimal number 0x40007.
This corresponds to:

These access rights mean that anyone in GROUPB can issue the MQI calls:
MQCONN
MQGET (with browse)

They also have DISPLAY authority for the object associated with this authorization
file.

Class authorization files
The class authorization files hold authorizations that relate to the entire class. These
files are called “$CLASS” and exist in the same directory as the files for specific

groupb:
Authority=0x0040007

Authorization Formal name Hexadecimal
keyword Value

connect MQZAO_CONNECT 0x00000001
browse MQZAO_BROWSE 0x00000002
get MQZAO_INPUT 0x00000004
put MQZAO_OUTPUT 0x00000008
inq MQZAO_INQUIRE 0x00000010
set MQZAO_SET 0x00000020
passid MQZAO_PASS_IDENTITY_CONTEXT 0x00000040
passall MQZAO_PASS_ALL_CONTEXT 0x00000080
setid MQZAO_SET_IDENTITY_CONTEXT 0x00000100
setall MQZAO_SET_ALL_CONTEXT 0x00000200
altusr MQZAO_ALTERNATE_USER_AUTHORITY 0x00000400
allmqi MQZAO_ALL_MQI 0x000007FF
crt MQZAO_CREATE 0x00010000
dlt MQZAO_DELETE 0x00020000
dsp MQZAO_DISPLAY 0x00040000
chg MQZAO_CHANGE 0x00080000
clr MQZAO_CLEAR 0x00100000
chgaut MQZAO_AUTHORIZE 0x00800000
alladm MQZAO_ALL_ADMIN 0x009E0000
none MQZAO_NONE 0x00000000
all MQZAO_ALL 0x009E07FF

MQZAO_CONNECT 0x00000001
MQZAO_BROWSE 0x00000002
MQZAO_INPUT 0x00000004
MQZAO_DISPLAY 0x00040000

Authority is: 0x00040007

Authorization files

90 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

objects. The entry MQZAO_CRT in the $CLASS file gives authorization to create
an object in the class. This is the only class authority.

All class authorization files
The all class authorization file holds authorizations that apply to an entire queue
manager. This file is called $ACLASS and exists in the auth subdirectory of the
queue manager.

The following authorizations apply to the entire queue manager and are held in
the all class authorization file:

The entry... Gives authorization to...

MQZAO_ALTERNATE_USER_AUTHORITY
Assume the identity of another user when interacting with
MQSeries objects.

MQZAO_SET_ALL_CONTEXT
Set the context of a message when issuing MQPUT.

MQZAO_SET_IDENTITY_CONTEXT
Set the identity context of a message when issuing MQPUT.

Managing authorization files
Here are some pointers that you need to take into consideration when managing
your authorization files:
1. You must ensure that the authorization files are secure and not write-accessible

by non-trusted general users. See “Authorizations to authorization files”.
2. To be able to reproduce your file authorizations, ensure that you do at least one

of the following:
v Back up the AUTH subdirectory after any significant updates
v Retain DCL command files containing the commands used

3. You can copy and edit authorization files. However, you should not normally
have to create or repair them manually. Should an emergency occur, you can
use the information given here to recover lost or damaged authorization files.

Authorizations to authorization files
Authorization files must be readable by any principal. However, only the system
manager and user with the MQM identifier should be allowed to update these
files.

The permissions on authorization files, created by the OAM, are:
S:RWD, O:RWD, G:RWD, W:R (ID=MQM, ACCESS=R+W+E+D+C)

Do not alter these permissions without reviewing carefully whether there are any
security exposures.

To alter authorizations using the command supplied with MQSeries for Compaq
OpenVMS, your process must have the MQM rights identifier.

Authorization files

Chapter 7. Protecting MQSeries objects 91

92 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 8. The MQSeries dead-letter queue handler

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message queue, is a
holding queue for messages that cannot be delivered to their destination queues.
Every queue manager in a network should have an associated DLQ.

Messages can be put on the DLQ by queue managers, by message channel agents
(MCAs), and by applications. All messages on the DLQ should be prefixed with a
dead-letter header structure, MQDLH. Messages put on the DLQ by a queue
manager or by a message channel agent always have an MQDLH; applications
putting messages on the DLQ are strongly recommended to supply an MQDLH.
The Reason field of the MQDLH structure contains a reason code that identifies
why the message is on the DLQ.

In all MQSeries environments, there should be a routine that runs regularly to
process messages on the DLQ. MQSeries supplies a default routine, called the
dead-letter queue handler (the DLQ handler), which you invoke using the runmqdlq
command.

Instructions for processing messages on the DLQ are supplied to the DLQ handler
by means of a user-written rules table. That is, the DLQ handler matches messages
on the DLQ against entries in the rules table: when a DLQ message matches an
entry in the rules table, the DLQ handler performs the action associated with that
entry.

This chapter contains the following sections:
v “Invoking the DLQ handler”
v “The DLQ handler rules table” on page 94
v “How the rules table is processed” on page 100
v “An example DLQ handler rules table” on page 102

Invoking the DLQ handler
You invoke the DLQ handler using the runmqdlq command. You can name the
DLQ you want to process and the queue manager you want to use in two ways:
v As parameters to runmqdlq from the command prompt. For example:

v In the rules table. For example:

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

runmqdlq ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER < qrule.rul

INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

© Copyright IBM Corp. 1994, 2001 93

The runmqdlq command takes its input from SYS$INPUT: you associate the rules
table with runmqdlq by redirecting SYS$INPUT from the rules table.

Attention: Running the DLQ handler without redirecting SYS$INPUT to a rule file
causes the DLQ handler to loop.

In order to run the DLQ handler, you must be authorized to access both the DLQ
itself and any message queues to which messages on the DLQ are forwarded.
Furthermore, if the DLQ handler is to be able to put messages on queues with the
authority of the user ID in the message context, you must be authorized to assume
the identity of other users.

For more information about the runmqdlq command, see “runmqdlq (Run
dead-letter queue handler)” on page 271.

The sample DLQ handler, amqsdlq
In addition to the DLQ handler invoked using the runmqdlq command, MQSeries
provides the source of a sample DLQ handler, amqsdlq, whose function is similar
to that provided via runmqdlq. The sources are provided as templates only and
must be customized to provide a DLQ handler that meets specific, local
requirements. For example, you might decide that you want a DLQ handler that
can process messages without dead-letter headers. (Both the default DLQ handler
and the sample, amqsdlq, process only those messages on the DLQ that begin with
a dead-letter header, MQDLH. Messages that do not begin with an MQDLH are
identified as being in error, and remain on the DLQ indefinitely.)

The source of amqsdlq is supplied in the directory:
[.DLQ], under MQS_EXAMPLES

and the compiled version is supplied in the directory:
[.BIN], under MQS_EXAMPLES

The DLQ handler rules table
The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:
v The first entry in the table, which is optional, contains control data.
v All other entries in the table are rules for the DLQ handler to follow. Each rule

consists of a pattern (a set of message characteristics) that a message is matched
against, and an action to be taken when a message on the DLQ matches the
specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

Control data

This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Please note the following:
v The default value for a keyword, if any, is underlined.
v The vertical line (|) separates alternatives, only one of which can be specified.
v All keywords are optional.

DLQ handler

94 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

INPUTQ (QueueName|' ')
Allows you to name the DLQ you want to process:
1. If you specify an INPUTQ value as a parameter to the runmqdlq

command, this overrides any INPUTQ value in the rules table.
2. If you do not specify an INPUTQ value as a parameter to the runmqdlq

command but you do specify a value in the rules table, the INPUTQ value
in the rules table is used.

3. If no DLQ is specified or you specify INPUTQ(’ ’) in the rules table, the
name of the DLQ belonging to the queue manager whose name is supplied
as a parameter to the runmqdlq command is used.

4. If you do not specify an INPUTQ value as a parameter to the runmqdlq
command or as a value in the rules table, the DLQ belonging to the queue
manager named on the INPUTQM keyword in the rules table is used.

INPUTQM (QueueManagerName|' ')
Allows you to name the queue manager that owns the DLQ named on the
INPUTQ keyword:
1. If you specify an INPUTQM value as a parameter to the runmqdlq

command, this overrides any INPUTQM value in the rules table.
2. If you do not specify an INPUTQM value as a parameter to the runmqdlq

command, the INPUTQM value in the rules table is used.
3. If no queue manager is specified or you specify INPUTQM(' ') in the rules

table, the default queue manager for the installation is used.

RETRYINT (Interval|60)
Is the interval, in seconds, at which the DLQ handler should attempt to
reprocess messages on the DLQ that could not be processed at the first
attempt, and for which repeated attempts have been requested. By default, the
retry interval is 60 seconds.

WAIT (YES|NO|nnn)
Indicates whether the DLQ handler should wait for further messages to arrive
on the DLQ when it detects that there are no further messages that it can
process.

YES Causes the DLQ handler to wait indefinitely.

NO Causes the DLQ handler to terminate when it detects that the DLQ is
either empty or contains no messages that it can process.

nnn Causes the DLQ handler to wait for nnn seconds for new work to
arrive before terminating, after it detects that the queue is either empty
or contains no messages that it can process.

You are recommended to specify WAIT (YES) for busy DLQs, and WAIT (NO)
or WAIT (nnn) for DLQs that have a low level of activity. If the DLQ handler is
allowed to terminate, you are recommended to reinvoke it by means of
triggering.

As an alternative to including control data in the rules table, you can supply the
names of the DLQ and its queue manager as input parameters of the runmqdlq
command. If any value is specified both in the rules table and on input to the
runmqdlq command, the value specified on the runmqdlq command takes
precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

DLQ handler

Chapter 8. The MQSeries dead-letter queue handler 95

Rules (patterns and actions)
Figure 8 shows an example rule from a DLQ handler rules table.

All keywords that you can use on a rule are described in the remainder of this
section. Please note the following:
v The default value for a keyword, if any, is underlined. For most keywords, the

default value is * (asterisk), which matches any value.
v The vertical line (|) separates alternatives, only one of which can be specified.
v All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords
The pattern-matching keywords, which you use to specify values against which
messages on the DLQ are matched, are described below. All pattern-matching
keywords are optional.

APPLIDAT (ApplIdentityData|*)
Is the ApplIdentityData value specified in the message descriptor, MQMD, of
the message on the DLQ.

APPLNAME (PutApplName|*)
Is the name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutApplName field of the message descriptor, MQMD, of the
message on the DLQ.

APPLTYPE (PutApplType|*)
Is the PutApplType value specified in the message descriptor, MQMD, of the
message on the DLQ.

DESTQ (QueueName|*)
Is the name of the message queue for which the message is destined.

DESTQM (QueueManagerName|*)
Is the name of the queue manager of the message queue for which the
message is destined.

FEEDBACK (Feedback|*)
When the MsgType value is MQFB_REPORT, Feedback describes the nature of
the report.

Symbolic names can be used. For example, you can use the symbolic name
MQFB_COA to identify those messages on the DLQ that require confirmation
of their arrival on their destination queues.

FORMAT (Format|*)
Is the name that the sender of the message uses to describe the format of the
message data.

PERSIST(MQPER_PERSISTENT) REASON(MQRC_PUT_INHIBITED) +
ACTION(RETRY) RETRY(3)

Figure 8. An example rule from a DLQ handler rules table. This rule instructs the DLQ
handler to make 3 attempts to deliver to its destination queue any persistent message that
was put on the DLQ because MQPUT and MQPUT1 were inhibited.

DLQ handler

96 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

MSGTYPE (MsgType|*)
Is the message type of the message on the DLQ.

Symbolic names can be used. For example, you can use the symbolic name
MQMT_REQUEST to identify those messages on the DLQ that require replies.

PERSIST (Persistence|*)
Is the persistence value of the message. (The persistence of a message
determines whether it survives restarts of the queue manager.)

Symbolic names can be used. For example, you can use the symbolic name
MQPER_PERSISTENT to identify those messages on the DLQ that are
persistent.

REASON (ReasonCode|*)
Is the reason code that describes why the message was put to the DLQ.

Symbolic names can be used. For example, you can use the symbolic name
MQRC_Q_FULL to identify those messages placed on the DLQ because their
destination queues were full.

REPLYQ (QueueName|*)
Is the name of the reply-to queue specified in the message descriptor, MQMD,
of the message on the DLQ.

REPLYQM (QueueManagerName|*)
Is the name of the queue manager of the reply-to queue, as specified in the
message descriptor, MQMD, of the message on the DLQ.

USERID (UserIdentifier|*)
Is the user ID of the user who originated the message on the DLQ, as specified
in the message descriptor, MQMD.

The action keywords
The action keywords, which you use to describe how a matching message is to be
processed, are described below.

ACTION (DISCARD|IGNORE|RETRY|FWD)
Is the action to be taken for any message on the DLQ that matches the pattern
defined in this rule.

DISCARD
Causes the message to be deleted from the DLQ.

IGNORE
Causes the message to be left on the DLQ.

RETRY
Causes the DLQ handler to try again to put the message on its
destination queue.

FWD Causes the DLQ handler to forward the message to the queue named
on the FWDQ keyword.

The ACTION keyword must be specified. The number of attempts made to
implement an action is governed by the RETRY keyword. The interval between
attempts is controlled by the RETRYINT keyword of the control data.

FWDQ (QueueName|&DESTQ|&REPLYQ)
Is the name of the message queue to which the message should be forwarded
when ACTION (FWD) is requested.

QueueName
Is the name of a message queue. FWDQ(' ') is not valid.

DLQ handler

Chapter 8. The MQSeries dead-letter queue handler 97

&DESTQ
Causes the queue name to be taken from the DestQName field in the
MQDLH structure.

&REPLYQ
Causes the name to be taken from the ReplyToQ field in the message
descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ (&REPLYQ)
matches a message with a blank ReplyToQ field, you can specify
REPLYQ (?*) in the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM|' ')
Identifies the queue manager of the queue to which a message is to be
forwarded.

QueueManagerName
Is the name of the queue manager of the queue to which a message is
to be forwarded when ACTION (FWD) is requested.

&DESTQM
Causes the queue manager name to be taken from the DestQMgrName
field in the MQDLH structure.

&REPLYQM
Causes the name to be taken from the ReplyToQMgr field in the
message descriptor, MQMD.

' ' FWDQM(' '), which is the default value, identifies the local queue
manager.

HEADER (YES|NO)
Specifies whether the MQDLH should remain on a message for which
ACTION (FWD) is requested. By default, the MQDLH remains on the message.
The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)
Defines the authority with which messages should be put by the DLQ handler:

DEF Causes messages to be put with the authority of the DLQ handler
itself.

CTX Causes the messages to be put with the authority of the user ID in the
message context. If you specify PUTAUT (CTX), you must be
authorized to assume the identity of other users.

RETRY (RetryCount|1)
Is the number of times, in the range 1–999,999,999, that an action should be
attempted (at the interval specified on the RETRYINT keyword of the control
data).

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If the DLQ handler is restarted,
the count of attempts made to apply a rule is reset to zero.

Rules table conventions
The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:
v A rules table must contain at least one rule.
v Keywords can occur in any order.

DLQ handler

98 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v A keyword can be included once only in any rule.
v Keywords are not case sensitive.
v A keyword and its parameter value must be separated from other keywords by

at least one blank or comma.
v Any number of blanks can occur at the beginning or end of a rule, and between

keywords, punctuation, and values.
v Each rule must begin on a new line.
v For reasons of portability, the significant length of a line should not be greater

than 72 characters.
v Use the plus sign (+) as the last nonblank character on a line to indicate that the

rule continues from the first nonblank character in the next line. Use the minus
sign (−) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

v Comment lines, which begin with an asterisk (*), can occur anywhere in the
rules table.

v Blank lines are ignored.
v Each entry in the DLQ handler rules table comprises one or more keywords and

their associated parameters. The parameters must follow these syntax rules:
– Each parameter value must include at least one significant character. The

delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:
FORMAT('ABC') 3 significant characters
FORMAT(ABC) 3 significant characters
FORMAT('A') 1 significant character
FORMAT(A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant characters:
FORMAT('')
FORMAT()
FORMAT()
FORMAT

– Wildcard characters are supported: you can use the question mark (?) in place
of any single character, except a trailing blank; you can use the asterisk (*) in
place of zero or more adjacent characters. The asterisk (*) and the question
mark (?) are always interpreted as wildcard characters in parameter values.

– Wildcard characters cannot be included in the parameters of these keywords:
ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard matches.
However, leading and embedded blanks within strings in quotation marks are
significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard character.
The asterisk (*) can be used in place of an entire numeric parameter, but
cannot be included as part of a numeric parameter. For example, these are
valid numeric parameters:
MSGTYPE(2) Only reply messages are eligible
MSGTYPE(*) Any message type is eligible
MSGTYPE('*') Any message type is eligible

DLQ handler

Chapter 8. The MQSeries dead-letter queue handler 99

However, MSGTYPE('2*') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

– Numeric parameters must be in the range 0–999,999,999. If the parameter
value is in this range, it is accepted, even if it is not currently valid in the
field to which the keyword relates. Symbolic names can be used for numeric
parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character
field:
'ABCDEFGH' 8 characters
'A*C*E*G*I' 5 characters excluding asterisks
'*A*C*E*G*I*K*M*O*' 8 characters excluding asterisks

– Strings that contain blanks, lowercase characters, or special characters other
than period (.), forward slash (/), underscore (_), and percent sign (%) must
be enclosed in single quotation marks. Lowercase characters not enclosed in
quotation marks are folded to uppercase. If the string includes a quotation,
two single quotation marks must be used to denote both the beginning and
the end of the quotation. When the length of the string is calculated, each
occurrence of double quotation marks is counted as a single character.

How the rules table is processed
The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When a rule with a matching pattern is
found, the action from that rule is attempted. The DLQ handler increments the
retry count for a rule by 1 whenever it attempts to apply that rule. If the first
attempt fails, the attempt is repeated until the count of attempts made matches the
number specified on the RETRY keyword. If all attempts fail, the DLQ handler
searches for the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful.
When each matching rule has been attempted the number of times specified on its
RETRY keyword, and all attempts have failed, ACTION (IGNORE) is assumed.
ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule may consist of
an action only. Note, however, that action-only rules are applied to all messages
on the queue that have MQDLHs and that have not already been processed in
accordance with other rules in the table.

3. The rules table is validated when the DLQ handler is started, and errors are
flagged at that time. You can make changes to the rules table at any time, but
those changes do not come into effect until the DLQ handler is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
queues with the message option MQPMO_PASS_ALL_CONTEXT.

5. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

DLQ handler

100 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

6. Multiple instances of the DLQ handler could run concurrently against the same
queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed
The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still has to keep a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ will be seen, even if the DLQ is
defined as first-in-first-out (FIFO). Therefore, if the queue is not empty, a periodic
rescan of the DLQ is performed to check all messages. For these reasons, you
should try to ensure that the DLQ contains as few messages as possible; if
messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:

Similarly, the final rule in the table should be a catchall to process messages that
have not been addressed by earlier rules in the table. For example, the final rule in
the table could be something like this:

This action causes messages that fall through to the final rule in the table to be
forwarded to the queue REALLY.DEAD.QUEUE, where they can be processed manually.
If you do not have such a rule, messages are likely to remain on the DLQ
indefinitely.

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

DLQ handler

Chapter 8. The MQSeries dead-letter queue handler 101

An example DLQ handler rules table
Here is an example rules table that contains a single control-data entry and several
rules:

* An example rules table for the runmqdlq command *

* Control data entry
* ------------------
* If no queue manager name is supplied as an explicit parameter to
* runmqdlq, use the default queue manager for the machine.
* If no queue name is supplied as an explicit parameter to runmqdlq,
* use the DLQ defined for the local queue manager.
*
inputqm(' ') inputq(' ')

* Rules
* -----
* We include rules with ACTION (RETRY) first to try to
* deliver the message to the intended destination.

* If a message is placed on the DLQ because its destination
* queue is full, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited
* condition, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

* The AAAA corporation are always sending messages with incorrect
* addresses. When we find a request from the AAAA corporation,
* we return it to the DLQ (DEADQ) of the reply-to queue manager
* (&REPLYQM).
* The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never do things by half measures. If
* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

* The CCCC corporation considers itself very security
* conscious, and believes that none of its messages
* will ever end up on one of our DLQs.
* Whenever we see a message from a CCCC queue manager on our
* DLQ, we send it to a special destination in the CCCC organization
* where the problem is investigated.

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

* Messages that are not persistent run the risk of being
* lost when a queue manager terminates. If an application
* is sending nonpersistent messages, it should be able
* to cope with the message being lost, so we can afford to
* discard the message.

DLQ handler

102 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

* For performance and efficiency reasons, we like to keep
* the number of messages on the DLQ small.
* If we receive a message that has not been processed by
* an earlier rule in the table, we assume that it
* requires manual intervention to resolve the problem.
* Some problems are best solved at the node where the
* problem was detected, and others are best solved where
* the message originated. We don't have the message origin,
* but we can use the REPLYQM to identify a node that has
* some interest in this message.
* Attempt to put the message onto a manual intervention
* queue at the appropriate node. If this fails,
* put the message on the manual intervention queue at
* this node.

REPLYQM('?*') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

DLQ handler

Chapter 8. The MQSeries dead-letter queue handler 103

DLQ handler

104 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 9. Instrumentation events

You can use the MQSeries instrumentation events to monitor the operation of
queue managers. This chapter provides a short introduction to instrumentation
events. For a more complete description, see the section on instrumentation events
in the MQSeries Programmable System Management book.

What are instrumentation events?
Instrumentation events cause special messages, called event messages, to be
generated whenever the queue manager detects a predefined set of conditions. For
example, the following conditions give rise to a Queue Full event:
v Queue Full events are enabled for a specified queue.
v An application issues an MQPUT call to put a message on that queue, but the

call fails because the queue is full.

Other conditions that can give rise to instrumentation events include:
v A threshold limit for the number of messages on a queue being reached.
v A queue not being serviced within a specified time period.
v A channel instance being started or stopped.
v In an MQSeries for Compaq OpenVMS system, an application attempting to

open a queue specifying a user ID that is not authorized.

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

© Copyright IBM Corp. 1994, 2001 105

The event message, which contains information about the conditions giving rise to
the event, is put onto an event queue. An application can retrieve the event message
from this queue for analysis.

Why use events?
If you specify your event queues as remote queues, you can put all the event
queues on a single queue manager (for those nodes that support instrumentation
events). You can then use the events generated to monitor a network of queue
managers from a single node. Figure 10 on page 107 illustrates this.

Queue Manager

For example:
Queue full

+ event enabled1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user application

Event message

Event queue

User Application

Figure 9. Understanding instrumentation events. When a queue manager detects that the
conditions for an event have been met, it puts an event message on the appropriate event
queue.

Instrumentation events

106 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Types of events
MQSeries events may be categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue
managers. For example, an application attempts to put a message to a
queue that does not exist.

Performance events
These events are notifications that a threshold condition has been reached
by a resource. For example, a queue depth limit has been reached or,
following a get, the queue was not serviced within a predefined time limit.

Channel events
These events are reported by channels as a result of conditions detected
during their operation. For example, when a channel instance is stopped.

Event monitoring
from a single node

Event
messages

MQSeries
for MVS/ESA

MQSeries
for OS/2

MQSeries for
UNIX
OPERATING SYSTEMS

Figure 10. Monitoring queue managers across different platforms, on a single node

Use of events

Chapter 9. Instrumentation events 107

Trigger events

When we discuss triggering in this and other MQSeries books, we sometimes
refer to a trigger event. This occurs when a queue manager detects that the
conditions for a trigger event have been met. For example, a queue can be
configured to generate a trigger event each time a message arrives. (The
conditions for trigger events and instrumentation events are quite different.)

A trigger event causes a trigger message to be put on an initiation queue and,
optionally, an application program is started.

Event notification through event queues
When an event occurs, the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:
v Gets the message from the queue.
v Processes the message to extract the event data. For a description of event

message formats, see the MQSeries Programmable System Management book.

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

This event queue... Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT
Queue manager events

SYSTEM.ADMIN.PERFM.EVENT
Performance events

SYSTEM.ADMIN.CHANNEL.EVENT
Channel events

You can define event queues as either local or remote queues. If you define all
your event queues as remote queues on the same queue manager, you can
centralize your monitoring activities.

Using triggered event queues
You can set up the event queues with triggers so that, when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, certain events may require that an operator be
informed, other events may start an application that performs some administration
tasks automatically.

Enabling and disabling events
You enable and disable events by specifying the appropriate values for the queue
manager, or queue attributes, or both, depending on the type of event. You do this
using either of the following:
v MQSC commands. For more information, see the MQSeries Command Reference

book.

Use of events

108 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v PCF commands for queue managers on UNIX systems, OpenVMS systems, and
OS/2. For more information, see the MQSeries Programmable System Management
book.

v MQAI commands. For more information, see the MQSeries Administration
Interface Programming Guide and Reference book.

Enabling an event depends on the category of the event:
v Queue manager events are enabled by setting attributes on the queue manager.
v Performance events as a whole must be enabled on the queue manager, or no

performance events can occur. You then enable the specific performance events
by setting the appropriate queue attribute. You also have to specify the
conditions that give rise to the event, for example, a queue depth high limit.

v Channel events occur automatically; they do not need to be enabled. If you do
not want to monitor channel events, you can put-inhibit the channel event
queue.

Event messages
Event messages contain information relating to the origin of an event, including
the type of event, the name of the application that caused the event, and for
performance events a short statistics summary for the queue.

The format of event messages is similar to that of PCF response messages. The
message data can be retrieved from them by user-written administration programs
using the data structures described in the MQSeries Programmable System
Management book.

Use of events

Chapter 9. Instrumentation events 109

110 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 10. Transactional support

The MQSeries Application Programming Guide contains a complete introduction to
the subject of this chapter. A brief introduction only is provided here.

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of
work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work may be coordinated by the
queue manager itself.

In summary, queue manager resources can be updated as part of local or global
units of work:

Local unit of work
Use local units of work when the only resources to be updated are those of
the MQSeries queue manager. Updates are committed using the MQCMIT
verb or backed out using MQBACK.

Global unit of work
Use global units of work when you also need to include updates to
XA-compliant database managers. Here the coordination may be internal
or external to the queue manager.

Queue manager coordination
Global units of work are started using the MQBEGIN verb and
then committed using MQCMIT or backed out using MQBACK. A
two-phase commit process is used whereby XA-compliant resource
managers such as Oracle® are firstly all asked to prepare to
commit. Only if all are prepared successfully will they then be
asked to commit. If any resource manager signals that it cannot
prepare to commit, each will be asked to back out instead.

External coordination
Here the coordination is performed by an XA-compliant
transaction manager such as IBM CICS®, Transarc Encina, or BEA
Tuxedo. Units of work are started and committed under control of
the transaction manager. The MQBEGIN, MQCMIT and MQBACK
verbs are unavailable.

This chapter describes how to enable support for global units of work (support for
local units of work does not need to be specifically enabled).

© Copyright IBM Corp. 1994, 2001 111

It contains these sections:
v “Database coordination”
v “Oracle configuration” on page 115
v “Administration tasks” on page 119

Database coordination
When the queue manager coordinates global units of work itself it becomes
possible to integrate database updates within MQ units of work. That is, a mixed
MQI and SQL application can be written, and the MQCMIT and MQBACK verbs
can be used to commit or roll back the changes to the queues and databases
together.

The queue manager achieves this using a two-phase commit protocol. When a unit
of work is to be committed, the queue manager first asks each participating
database manager whether it is prepared to commit its updates. Only if all of the
participants, including the queue manager itself, are prepared to commit, are all of
the queue and database updates committed. If any participant cannot prepare its
updates, the unit of work is backed out instead.

Full recovery support is provided if the queue manager loses contact with any of
the database managers during the commit protocol. If a database manager becomes
unavailable while it is in doubt, that is, it has been called to prepare but has yet to
receive a commit or back out decision, the queue manager remembers the outcome
of the unit of work until it has been successfully delivered. Similarly, if the queue
manager terminates with incomplete commit operations outstanding, these are
remembered over queue manager restart.

The MQI verb, MQBEGIN, must be used to denote units of work that are also to
involve database updates. The MQSeries Application Programming Guide identifies
sample programs that make MQSeries and database updates within the same unit
of work.

The queue manager communicates with the database managers using the XA
interface as described in X/Open Distributed Transaction Processing: The XA
Specification (ISBN 1 872630 24 3). This means that the queue manager can
communicate to database managers that also adhere to this standard. Such
database managers are known as XA-compliant database managers.

Table 5 identifies XA-compliant database managers that are supported by the
MQSeries Version 5.1 products.

Table 5. XA-compliant relational databases

MQSeries product DB2® Oracle Sybase®

MQSeries for AIX Yes Yes Yes

MQSeries for HP-UX Yes Yes No

MQSeries for Sun Solaris Yes Yes Yes

MQSeries for Compaq OpenVMS
Alpha

No Yes No

MQSeries for Windows NT and
Windows 2000

Yes No Yes

Transactional support

112 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Restrictions
The following restrictions apply to the database coordination support:
v The ability to coordinate database updates within MQSeries units of work is not

supported in an MQI client application.
v The MQI updates and database updates must be made on the same queue

manager server machine.
v The database server may reside on a different machine from the queue manager

server. In this case, the database needs to be accessed via an XA-compliant client
feature provided by the database manager itself.

v Although the queue manager itself is XA-compliant, it is not possible to
configure another queue manager as a participant in global units of work. This
is because only one connection at a time can be supported.

Database connections
An application that establishes a standard connection to the queue manager will be
associated with a thread in a separate local queue manager agent process. When
the application issues MQBEGIN then both it and the agent process will need to
connect to the databases that are to be involved in the unit of work. The database
connections are maintained while the application remains connected to the queue
manager. This is an important consideration if the database only supports a limited
number of users or connections.

One method of reducing the number of connections is for the application to use
the MQCONNX call to request a fastpath binding. In this case the application and
the local queue manager agent become the same process and consequently can
share a single database connection. Before you do this, consult the MQSeries
Application Programming Guide for a list of restrictions that apply to fastpath
applications.

Configuring database managers
There are several tasks that you must perform before a database manager can
participate in global units of works coordinated by the queue manager:
1. Create an XA switch load file1 for the database manager.
2. Define the database manager in the queue manager’s configuration file, qm.ini.

Various items, including the name of the switch load file, must be defined in
qm.ini.

Creating switch load files
Instructions for creating switch load files for the supported database managers are
provided in “Creating the Oracle switch load file” on page 115.

Refer to your MQSeries installation documentation for more information about the
installation procedure.

The sample source modules that are used to produce the switch load files all
contain a single function called MQStart. When the switch load file is loaded, the
queue manager calls this function and it returns the address of a structure called
an XA switch. The switch load file is linked to a library provided by the database
manager, which enables MQSeries to call that database manager.

1. An XA switch load file is a dynamically loaded object that enables the queue manager and the database manager to communicate
with each other.

Restrictions

Chapter 10. Transactional support 113

The sample source modules used to build the switch load files for Oracle are
oraswit.c.

Defining database managers
When you have created a switch load file for your database manager, you must
specify its location to your queue manager. This is done in the queue manager’s
qm.ini file in the XAResourceManager stanza.

You need to add an XAResourceManager stanza for each database manager that your
queue manager is going to coordinate.

The attributes of the XAResourceManager stanza are as follows.

Name=name
User-chosen string that identifies the database manager instance.

The name is mandatory and can be up to 31 characters in length. It must be
unique. It could simply be the name of the database manager, although to
maintain its uniqueness in more complicated configurations it could, for
example, also include the name of the database being updated.

The name that you choose should be meaningful because the queue manager
uses it to refer to this database manager instance both in messages and in
output when the dspmqtrn command is used.

Once you have chosen a name, do not change this attribute. Information
about changing configuration information is given in “Changing configuration
information” on page 123.

SwitchFile=name
This is the fully-qualified name of the database manager’s XA switch load file.
This is a mandatory attribute.

XAOpenString=string
This is a string of data that is passed in calls to the database manager’s
xa_open entry point. The format for this string depends on the particular
database manager, but it should usually identify the name of the database that
is to be updated.

This is an optional attribute; if it is omitted a blank string is assumed.

XACloseString=string
This is a string of data that is passed in calls to the database manager’s
xa_close entry point. The format for this string depends on the particular
database manager.

This is an optional attribute; if it is omitted a blank string is assumed.

ThreadOfControl=THREAD|PROCESS
The ThreadOfControl value can be THREAD or PROCESS. The queue manager
uses it for serialization purposes.

If the database manager is “thread-safe”, the value for ThreadOfControl can be
THREAD, and the queue manager can call the database manager from
multiple threads at the same time.

If the database manager is not thread-safe, the value for ThreadOfControl should
be PROCESS. The queue manager serializes all calls to the database manager
so that only one call at a time is made from within a particular process.

See “The XAResourceManager stanza” on page 169 for fuller descriptions of these
attributes.

Configuring database managers

114 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

“Oracle configuration” gives more information about the specific tasks you need to
perform to configure MQSeries with each of the supported database managers.

Oracle configuration
You need to perform the following tasks:
v Check Oracle level and apply patches if you have not already done so.
v Check environment variable settings.
v Enable Oracle XA support.
v Create the Oracle switch load file.
v Add XAResourceManager configuration information to the qm.ini file.
v Change the Oracle configuration parameters, if necessary.

Minimum supported levels for Oracle
The minimum supported level of Oracle on OpenVMS is 8.1.6.

Checking the environment variable settings
Ensure that your Oracle environment variables are set for queue manager
processes as well as in your application processes. In particular, the following
environment variables should always be set prior to starting the queue manager:

ORACLE_HOME
Is the Oracle home directory

ORACLE_SID
Is the Oracle SID being used

Enabling Oracle XA support
You need to ensure that Oracle XA support is enabled. In particular, an Oracle
shared library must have been created; this happens during installation of the
Oracle XA library.

During installation of Oracle8, the library is built automatically. If you need to
rebuild the library, refer to the Oracle8 Administrator’s Reference publication
appropriate to your platform.

Creating the Oracle switch load file
The simplest method for creating the Oracle switch load file is to use the sample
file. The source code used to create the Oracle switch load file is shown in
Figure 11.

The xa.h header file that is included is shipped with MQSeries in the same
directory as oraswit.c.

#include <cmqc.h>
#include "xa.h"

extern struct xa_switch_t xaosw;

struct xa_switch_t * MQENTRY MQStart(void)
{

return(&xaosw);
}

Figure 11. Source code for Oracle switch load file, oraswit.c

Configuring database managers

Chapter 10. Transactional support 115

Creating the Oracle switch load file on OpenVMS systems
To create the Oracle switch load file on OpenVMS systems, oraswit.c must be
compiled and linked against the Oracle client library ″oraclient_v816.exe″.
1. Create the directory into which the Oracle switch load file, oraswit, will be

built.
2. Copy the following files from mqs_examples:[xatm] into this directory:

v xa.h
v oraswit.c

3. Compile the copied source file (oraswit.c). For example:

4. Generate the switch load file:

5. The MQStart procedure is dynamically loaded at runtime from the generated
image. Therefore, either a logical name must be defined in the system logical
name table to point to the generated file without the ".exe" extension or the
file copied to sys$share. For example, if the location of the built file is
disk$a_device:[a_directory]oraswit0.exe, then use one of the following:

or

$ cc oraswit0.c

$ link/share oraswit0.obj, sys$input/options
ora_root:[util]oraclient_v816.exe/share
SYMBOL_VECTOR=(MQStart=PROCEDURE)

$ define/sys/exec oraswit0 disk$a_device:[a_directory]oraswit0

$ copy disk$a_device:[a_directory]oraswit0.exe sys$share:oraswit0.exe

Oracle configuration

116 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Adding XAResourceManager configuration information for
Oracle

The next step is to modify the qm.ini configuration file of the queue manager, to
define Oracle as a participant in global units of work. You need to add an
XAResourceManager stanza with the following attributes:

Name=name
This attribute is mandatory. Choose a suitable name for this participant. You
could include the name of the database being updated.

SwitchFile=name
This attribute is mandatory. The fully-qualified name of the Oracle switch load
file.

Oracle configuration

Chapter 10. Transactional support 117

XAOpenString=string
The XA open string for Oracle has the following format:

Oracle_XA+Acc=P//|P/userName/passWord
+SesTm=sessionTimeLimit
[+DB=dataBaseName]
[+GPwd=P/groupPassWord]
[+LogDir=logDir]
[+MaxCur=maximumOpenCursors]
[+SqlNet=connectString]

where:

Acc= Is mandatory and is used to specify user access information. P//
indicates that no explicit user or password information is provided and
that the ops$login form is to be used. P/userName/passWord indicates a
valid ORACLE user ID and the corresponding password.

SesTm=
Is mandatory and is used to specify the maximum amount of time that
a transaction can be inactive before the system automatically deletes it.
The unit of time is in seconds.

DB= Is used to specify the database name, where DataBaseName is the
name Oracle precompilers use to identify the database. This field is
required only when applications explicitly specify the database name
(that is, use an AT clause in their SQL statements).

GPwd=
GPwd is used to specify the server security password, where
P/groupPassWord is the server security group password name. Server
security groups provide an extra level of protection for different
applications running against the same ORACLE instance. The default is
an ORACLE-defined server security group.

LogDir=
LogDir is used to specify the directory on a local machine where the
Oracle XA library error and tracing information can be logged. If a
value is not specified, the current directory is assumed. Make sure that
user mqm has write-access to this directory.

MaxCur=
MaxCur is used to specify the number of cursors to be allocated when
the database is opened. It serves the same purpose as the precompiler
option, maxopencursors.

SqlNet=
SqlNet is used to specify the SQL*Net connect string that is used to log
on to the system. The connect string can be either an SQL*Net V1
string, SQL*Net V2 string, or SQL*Net V2 alias. This field is required
when you are setting up Oracle on a machine separate from the queue
manager.

See the Oracle8 Server Application Developer’s Guide (Part Number A54642-01) for
more information.

XACloseString=string
Oracle does not require an XA close string.

ThreadOfControl=THREAD|PROCESS
You do not need to specify this parameter on MQSeries for Compaq OpenVMS
platforms.

Oracle configuration

118 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

For fuller descriptions of each of these attributes, see “The XAResourceManager
stanza” on page 169.

In Figure 12, the database to be updated is called MQBankDB. Note that it is
recommended to add a LogDir to the XA open string so that all error and tracing
information is logged to the same place. It is assumed that the Oracle switch load
file was copied to the sys$share directory after it had been created.

Changing Oracle configuration parameters
The queue manager and user applications use the user ID specified in the XA open
string when they connect to Oracle.
v Database privileges The Oracle user ID specified in the open string must have

the privileges to access the DBA_PENDING_TRANSACTIONS view.
The necessary privilege can be given using the following command, where
userID is the user ID for which access is being given.

See “Chapter 7. Protecting MQSeries objects” on page 73 for more information
about security.

Administration tasks
In normal operations only a minimal amount of administration is necessary after
you have completed the configuration steps. The administration job is made easier
because the queue manager is tolerant of database managers not being available. In
particular this means that:
v The queue manager can be started at any time without first starting each of the

database managers.
v The queue manager does not need to be stopped and restarted if one of the

database managers becomes unavailable.

This allows you to start and stop the queue manager independently from the
database managers, and vice versa if the database manager supports it.

Whenever contact is lost between the queue manager and a database manager they
need to resynchronize when both become available again.

Resynchronization is the process by which any in-doubt units of work involving
that database are completed. In general, this occurs automatically without the need
for user intervention. The queue manager asks the database manager for a list of
units of work in which it is in doubt. Next it instructs the database manager to
either commit or rollback each of these in-doubt units of work.

When the queue manager stops, it needs to resynchronize with each database
manager instance during restart. When an individual database manager becomes

XAResourceManager:
Name=Oracle MQBankDB
SwitchFile=sys$share:oraswit0
XAOpenString=Oracle_XA+Acc=P/jim/tiger+SesTm=35+LogDir=/tmp/ora.log+DB=MQBankDB

Figure 12. Sample XAResourceManager entry for Oracle

grant select on DBA_PENDING_TRANSACTIONS to userID;

Oracle configuration

Chapter 10. Transactional support 119

unavailable, only that database manager need be resynchronized the next time the
queue manager notices that the database manager is available again.

The queue manager attempts to regain contact with an unavailable database
manager automatically as new global units of work are started. Alternatively, the
rsvmqtrn command can be used to resolve explicitly all in-doubt units of work.

In-doubt units of work
A database manager may be left with in-doubt units of work if contact with the
queue manager is lost after the database manager has been instructed to PREPARE.
Until the database manager receives the COMMIT or ROLLBACK outcome from
the queue manager, it needs to retain the database locks associated with the
updates.

Because these locks prevent other applications from updating, or maybe reading,
database records, resynchronization needs to take place as soon as possible.

If for some reason you cannot wait for the queue manager to resynchronize with
the database automatically, you could use facilities provided by the database
manager to commit or rollback the database updates manually. This is called
making a heuristic decision and should be used only as a last resort because of the
possibility of compromising data integrity; you may end up committing the
database updates when all of the other participants rollback, or vice versa.

It is far better to restart the queue manager, or use the rsvmqtrn command when
the database has been restarted, to initiate automatic resynchronization.

Using the dspmqtrn command
While a database manager is unavailable it is possible to use the dspmqtrn
command to check the state of outstanding units of work (UOWs) involving that
database.

When a database manager becomes unavailable, before the two-phase commit
process is entered, any in-flight UOWs in which it was participating are rolled
back. The database manager itself rolls back its in-flight UOWs when it next
restarts.

The dspmqtrn command displays only those units of work in which one or more
participants are in doubt, awaiting the COMMIT or ROLLBACK from the queue
manager.

For each of these units of work the state of each of the participants is displayed. If
the unit of work did not update the resources of a particular resource manager, it
is not displayed.

With respect to an in-doubt unit of work, a resource manager is said to have done
one of the following things:
Prepared The resource manager is prepared to commit its updates.
Committed The resource manager has committed its updates.
Rolled-back The resource manager has rolled back its updates.
Participated The resource manager is a participant, but has not prepared,

committed, or rolled back its updates.

Note that the queue manager does not remember the individual states of the
participants when the queue manager restarts. If the queue manager is restarted,

Administration tasks

120 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

but is unable to contact a database manager, then the in-doubt units of work in
which that database manager was participating are not resolved during restart. In
this case, the database manager is reported as being in prepared state until such
time as resynchronization has occurred.

Whenever the dspmqtrn command displays an in-doubt UOW, it first lists all the
possible resource managers that could be participating. These are allocated a
unique identifier, RMId, which is used instead of the Name of the resource
managers when reporting their state with respect to an in-doubt UOW.

Figure 13 shows the result of issuing the following command:

The output from Figure 13 shows that there are three resource managers associated
with the queue manager. The first is the resource manager 0, which is the queue
manager itself. The other two resource manager instances are the MQBankDB and
MQFeeDB Oracle databases.

The example shows only a single in-doubt unit of work. A message is issued for all
three resource managers, which means that updates had been made to the queue
manager and both Oracle databases within the unit of work.

The updates made to the queue manager, resource manager 0, have been
committed. The updates to the Oracle databases are in prepared state, which means
that Oracle must have become unavailable before it was called to commit the
updates to the MQBankDB and MQFeeDB databases.

The in-doubt unit of work has an external identifier called an XID. This is the
identifier that Oracle associates with the updates.

Using the rsvmqtrn command
The output shown in Figure 13 showed a single in-doubt UOW in which the
commit decision had yet to be delivered to both Oracle databases.

In order to complete this unit of work, the queue manager and Oracle need to
resynchronize when Oracle next becomes available. The queue manager uses the
start of new units of work as an opportunity to attempt to regain contact with
Oracle. Alternatively, you can instruct the queue manager to resynchronize

dspmqtrn -m MY_QMGR

AMQ7107: Resource manager 0 is MQSeries.
AMQ7107: Resource manager 1 is Oracle MQBankDB
AMQ7107: Resource manager 2 is Oracle MQFeeDB

AMQ7056: Transaction number 0,1.
XID: formatID 5067085, gtrid_length 12, bqual_length 4

gtrid [3291A5060000201374657374]
bqual [00000001]

AMQ7105: Resource manager 0 has committed.
AMQ7104: Resource manager 1 has prepared.
AMQ7104: Resource manager 2 has prepared.

Figure 13. Sample dspmqtrn output

Administration tasks

Chapter 10. Transactional support 121

explicitly using the rsvmqtrn command. You should do this soon after Oracle has
been restarted so that any database locks associated with the in-doubt unit of work
are released as quickly as possible.

This is achieved using the -a option which tells the queue manager to resolve all
in-doubt units of work. In the following example, Oracle had been restarted so the
queue manager was able to resolve the in-doubt unit of work:

Any in-doubt transactions have been resolved.

Mixed outcomes and errors
Although the queue manager uses a two-phase commit protocol this does not
completely remove the possibility of some units of work completing with mixed
outcomes. This is where some participants commit their updates, and some back
out their updates.

Units of work that complete with a mixed outcome have serious implications
because shared resources are no longer in a consistent state.

Mixed outcomes are mainly caused when heuristic decisions are made about units
of work instead of allowing the queue manager to resolve in-doubt units of work
itself.

Whenever the queue manager detects heuristic damage it produces FFST®

information and documents the failure in its error logs, with one of two messages:
v If a database manager rolled back instead of committing:

v If a database manager committed instead of rolling back:

Further messages are issued that identify the databases that are heuristically
damaged. It is then your responsibility to perform recovery steps local to the
affected databases so that consistency is restored. This is a complicated procedure
in which you need first to isolate the update that has been wrongly committed or
rolled back, then to undo or redo the database change manually.

Damage occurring due to software errors is less likely. Units of work affected in
this way have their transaction number reported by message AMQ7112. The
participants may be in an inconsistent state.

rsvmqtrn -m MY_QMGR -a

AMQ7606 A transaction has been committed but one or more resource
managers have rolled back.

AMQ7607 A transaction has been rolled back but one or more resource
managers have committed.

Administration tasks

122 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

The queue manager does not attempt to recover from such failures until the next
queue manager restart. In Figure 14, this would mean that the updates to resource
manager 1, the MQBankDB database, would be left in prepared state even if the
rsvmqtrn was issued to resolve the unit of work.

Changing configuration information
After the queue manager has successfully started to coordinate global units of
work you should be wary about making changes to any of the
XAResourceManager stanzas in the qm.ini file.

If you do need to change the qm.ini file you can do so at any time, but the
changes do not take effect until after the queue manager has been restarted. For
example, if you need to alter the XA open string passed to a database manager,
you need to restart the queue manager for your change to take effect.

Note that if you remove an XAResourceManager stanza you are effectively
removing the ability for the queue manager to contact that database manager.

You should never change the Name attribute in any of your XAResourceManager
stanzas. This attribute uniquely identifies that database manager instance to the
queue manager. If this unique identifier is changed, the queue manager assumes
that the database manager instance has been removed and a completely new
instance has been added. The queue manager still associates outstanding units of
work with the old Name, possibly leaving the database in an in-doubt state.

Removing database manager instances
If you do need to remove a database or database manager from your configuration
permanently, you should first ensure that the database is not in doubt. You should
perform this check before you restart the queue manager. Most database managers
provide commands for listing in-doubt transactions. If there are any in-doubt
transactions, first allow the queue manager to resynchronize with the database
manager before you remove its XAResourceManager stanza.

If you fail to observe this procedure the queue manager still remembers all
in-doubt units of work involving that database. A warning message, AMQ7623, is
issued every time the queue manager is restarted. If you are never going to
configure this database with the queue manager again, you can instruct the queue
manager to forget about the participation of the database in its in-doubt
transactions using the -r option of the rsvmqtrn command.

rsvmqtrn -m MY_QMGR

AMQ7107: Resource manager 0 is MQSeries.
AMQ7107: Resource manager 1 is Oracle MQBankDB
AMQ7107: Resource manager 2 is Oracle MQFeeDB

AMQ7112: Transaction number 0,1 has encountered an error.
XID: formatID 5067085, gtrid_length 12, bqual_length 4

gtrid [3291A5060000201374657374]
bqual [00000001]

AMQ7105: Resource manager 0 has committed.
AMQ7104: Resource manager 1 has prepared.
AMQ7104: Resource manager 2 has rolled back.

Figure 14. Sample dspmqtrn output for a transaction in error

Administration tasks

Chapter 10. Transactional support 123

Note: The queue manager will finally forget about transactions only when
syncpoint processing has been completed with all participants.

There are times when you might need to remove an XAResourceManager stanza
temporarily. This is best achieved by commenting out the stanza so that it can be
easily reinstated at a later time. You may decide to take this action if you are
suffering errors every time the queue manager contacts a particular database or
database manager. Temporarily removing the XAResourceManager entry concerned
allows the queue manager to start global units of work involving all of the other
participants. An example of a commented out XAResourceManager stanza follows:

This database has been temporarily removed
#XAResourceManager:
Name=Oracle MQBankDB
SwitchFile=sys$share:oraswit0
XAOpenString=MQBankDB

Figure 15. Commented out XAResourceManager stanza

Administration tasks

124 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 11. Recovery and restart

A messaging system ensures that messages entered into the system are delivered to
their destination. This means that it must provide a method of tracking the
messages in the system, and of recovering messages if the system fails for any
reason.

MQSeries ensures that messages are not lost by maintaining records (logs) of the
activities of the queue managers that handle the receipt, transmission, and delivery
of messages. It uses these logs for three types of recovery:
1. Restart recovery, when you stop MQSeries in a planned way.
2. Crash recovery, when MQSeries is stopped by an unexpected failure.
3. Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in when
the queue manager stopped. Any in-flight transactions are rolled back, removing
from the queues any messages that were not committed at the time the queue
manager stopped. Recovery restores all persistent messages; non-persistent
messages are lost during the process.

The rest of this chapter introduces the concepts of recovery and restart in more
detail and then tells you how to recover if problems occur. It covers the following
topics:
v “Making sure that messages are not lost (logging)”
v “Checkpointing – ensuring complete recovery” on page 127
v “Calculating size of log” on page 130
v “Managing logs” on page 131
v “Using the log for recovery” on page 133
v “Protecting MQSeries log files” on page 135
v “Backup and restore” on page 136
v “Recovery scenarios” on page 137
v “Dumping the contents of the log using the dmpmqlog command” on page 138.

Making sure that messages are not lost (logging)
MQSeries records all significant changes to the data controlled by the queue
manager in a log. This includes the creation and deletion of objects, all persistent
message updates, transaction states, changes to object attributes, and channel
activities. Therefore, the log contains the information you need to recover all
updates to message queues by:
v Keeping records of queue manager changes.
v Keeping records of queue updates for use by the restart process.
v Enabling you to restore data after a hardware or software failure.

What logs look like
An MQSeries log consists of two components:
1. One or more files of log data
2. A log control file

There are a number of log files which contain the data being recorded. You can
define the number and size (as explained in “Calculating size of log” on page 130),
or take the system default of 3 files, each 4MB in size.

© Copyright IBM Corp. 1994, 2001 125

When you create a queue manager, the number of log files you define is the
number of primary log files allocated. If you do not specify a number, the default
value is used. If you have not changed the log path, they are created in the
directory:
MQS_ROOT:[MQM.LOG.QmName.ACTIVE]

MQSeries starts with these primary log files, but, if the log starts to get full,
allocates secondary log files. It does this dynamically, and removes them when the
demand for log space reduces. By default, up to two secondary log files can be
allocated, providing a further 8MB of disk space. The default number can also be
changed, see “Chapter 13. Configuring MQSeries” on page 159.

Log control file
The log control file contains the information needed to monitor the use of log files:
their size and location, the name of the next available file, and so on.

Note: You should ensure that the logs created when you start a queue manager
are large enough to accommodate the size and volume of messages that
your applications will handle. The default log numbers and sizes will
require modification to meet your requirements. How to change the default
values is described on page 130.

Types of logging
In MQSeries, the number of files that are used for logging depends on the file size,
the number of messages you have received, and the length of the messages. There
are two ways of maintaining records of queue manager activities: circular logging
and linear logging.

Circular logging
Use circular logging if all you want is restart recovery, using the log to roll back
transactions that were in progress when the system stopped.

Circular logging keeps all restart data in a ring of log files. Logging fills the first
file in the ring, then moves on to the next, and so on, until all the files are filled. It
then goes back to the first file in the ring and starts again. This continues as long
as the product is in use and has the advantage that you never run out of log files.

The above is a simple explanation of circular logging. However, there is a
complication. The log entries required to restart the queue manager without loss of
data are kept until they are no longer required to ensure queue manager data
recovery. The mechanism for releasing log files for reuse is described in
“Checkpointing – ensuring complete recovery” on page 127. For now, you should
know that MQSeries uses secondary log files to extend the log capacity as
necessary.

Linear logging
Use linear logging if you want both restart recovery and media or forward
recovery (recreating lost or damaged data by replaying the contents of the log).

Linear logging keeps the log data in a continuous sequence of files. Space is not
reused, so you can always retrieve any record logged from the time that the queue
manager was created.

As disk space is finite, you may have to think about some form of archiving. It is
an administrative task to manage your disk space for the log, reusing or extending
the existing space as necessary.

Logging

126 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

The number of log files used with linear logging can be very large depending on
your message flow and the age of your queue manager. However, there are a
number of files which are said to be active. Active files contain the log entries
required to restart the queue manager. The number of active log files is usually the
same as the number of primary log files as defined in the configuration files. (See
“Calculating size of log” on page 130 for further details of how to define the
number.)

The key event that controls whether a log file is termed active or not is a
checkpoint. An MQSeries checkpoint is a group of log records containing
information to allow a successful restart of the queue manager. Any information
recorded previously is not required to restart the queue manager and can therefore
be termed inactive. (See “Checkpointing – ensuring complete recovery” for further
information about checkpointing.)

You must decide when inactive log files are no longer required. You may select to
archive them, or you may delete them as being no longer of interest to your
operation. Refer to “Managing logs” on page 131 for further information about the
disposition of log files.

If a new checkpoint is recorded in the second, or later, primary log file, then the
first file becomes inactive and a new primary file is formatted and added to the
end of the primary pool, restoring the number of primary files available for
logging. In this way the primary log file pool can be seen to be a current set of
files in an ever extending list of log files. Again, it is an administrative task to
manage the inactive files according to the requirements of your operation.

Although secondary log files are defined for linear logging, they are not used in
normal operation. If a situation should arise when, probably due to long-lived
transactions, it is not possible to free a file from the active pool because it may still
be required for a restart, secondary files are formatted and added to the active log
file pool.

If the number of secondary files available is used up, requests for most further
operations requiring log activity will be refused with an
MQRC_RESOURCE_PROBLEM being returned to the application.

Both types of logging can cope with unexpected loss of power assuming that there
is no hardware failure.

Checkpointing – ensuring complete recovery
Persistent updates to message queues happen in two stages. First, the records
representing the update are written to the log, then the queue file is updated. The
log files can thus become more up-to-date than the queue files. To ensure that
restart processing begins from a consistent point, MQSeries uses checkpoints. A
checkpoint is a point in time when the record described in the log is the same as
the record in the queue. The checkpoint itself consists of the series of log records
needed to restart the queue manager; for example, the state of all transactions (that
is, units of work) active at the time of the checkpoint.

Checkpoints are generated automatically by MQSeries. They are taken when the
queue manager starts, at shutdown, when logging space is running low, and after
every 1000 operations logged. As the queues handle further messages, the
checkpoint record becomes inconsistent with the current state of the queues.

Logging

Chapter 11. Recovery and restart 127

When MQSeries is restarted, it locates the latest checkpoint record in the log. This
information is held in the checkpoint file that is updated at the end of every
checkpoint. The checkpoint record represents the most recent point of consistency
between the log and the data. The data from this checkpoint is used to rebuild the
queues as they existed at the checkpoint time. When the queues are recreated, the
log is then played forward to bring the queues back to the state they were in
before system failure or close down.

MQSeries maintains internal pointers to the head and tail of the log. It moves the
head pointer to the most recent checkpoint that is consistent with recovering
message data.

Checkpoints are used to make recovery more efficient, and to control the reuse of
primary and secondary log files.

In Figure 16, all records before the latest checkpoint, checkpoint 2, are no longer
needed by MQSeries. The queues can be recovered from the checkpoint
information and any later log entries. For circular logging, any freed files prior to
the checkpoint can be reused. For a linear log, the freed log files no longer need to
be accessed for normal operation and become inactive. In the example, the queue
head pointer is moved to point at the latest checkpoint, Checkpoint 2, which then
becomes the new queue head, head 2. Log File 1 can now be reused.

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put Put GetGetGet

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

Figure 16. Checkpointing. For simplicity, only the ends of the log files are shown.

Checkpointing

128 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Figure 17 shows how a long-running transaction affects reuse of log files. In the
example, a long-running transaction has caused an entry to the log, shown as LR 1,
after the first checkpoint shown. The transaction does not complete, shown as LR
2, until after the third checkpoint. All the log information from LR 1 onwards is
retained to allow recovery of that transaction, if necessary, until it has completed.

After the long-running transaction has completed, at LR 2, the head of the log is
moved to checkpoint 3, the latest logged checkpoint. The files containing log
records prior to checkpoint 3, Head 2, are no longer needed. If you are using
circular logging, the space can be reused.

If the primary log files are completely filled before the long-running transaction
completes, secondary log files are used to avoid the risk of a log full situation if
possible.

When the log head is moved and you are using circular logging, the primary log
files may become eligible for reuse and the logger, after filling the current file,
reuses the first primary file available to it. If instead you are using linear logging,
the log head is still moved down the active pool and the first file becomes inactive.
A new primary file is formatted and added to the bottom of the pool in readiness
for future logging activities.

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put PutGetCheckpoint
3

Get

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

LR 1

LR 2

Figure 17. Checkpointing with a long-running transaction. For simplicity, only the ends of the
log files are shown.

Checkpointing

Chapter 11. Recovery and restart 129

Calculating size of log
After deciding whether the queue manager should use circular or linear logging,
your next task is to estimate the size of the log that the queue manager will need.
The size of the log is determined by the following log configuration:

LogFilePages
The size of each primary and secondary log file in units of 4 KB pages

LogPrimaryFiles
The number of preallocated primary log files

LogSecondaryFiles
The number of secondary log files that can be created for use when the
primary log files are full

Table 6 shows the amount of data the queue manager logs for various operations.
Most operations performed by the queue manager require a minimal amount of
log space, however, when a persistent message is put to a queue, all of the
message data must be written to the log to make recovery of the message possible.
Therefore, the size of the log depends, typically, upon the number and size of the
persistent messages the queue manager needs to handle.

Table 6. Log overhead sizes (All values are approximate)

Operation Size

Put persistent message 750 bytes + message length. If the message
is large, it is divided into segments of 15700
bytes, each with a 300–byte overhead.

Get message 260 bytes

Syncpoint, commit 750 bytes

Syncpoint, roll-back 1000 bytes + 12 bytes for each get or put to
be rolled back

Create object 1500 bytes

Delete object 300 bytes

Alter attributes 1024 bytes

Record media image 800 bytes + image. The image is divided into
segments of 15700 bytes, each having a
300–byte overhead

Checkpoint 750 bytes + 200 bytes for each active unit of
work. Additional data may be logged for
any uncommitted puts or gets that have
been buffered for performance reasons.

Notes:

1. The number of primary and secondary log files can be changed each time the
queue manager is started.

2. The log file size cannot be changed and needs to be determined before the
queue manager is created.

3. The number of primary log files and the log file size determine the amount of
the log space that is preallocated when the queue manager is created. You are
advised to organize this space as a smaller number of larger log files rather
than a larger number of small log files.

4. The total number of primary and secondary log files cannot exceed 63, which,
in the presence of long-running transactions, limits the maximum amount of

Checkpointing

130 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

log space that can be made available to the queue manager for restart recovery.
The amount of log space the queue manager may need to use for media
recovery does not share this limit.

5. When circular logging is being used, the queue manager reuses primary log
space. This means that the queue manager’s log can be smaller than the
amount of data you have estimated that the queue manager needs to log. The
queue manager will, up to a limit, allocate a secondary log file when a log file
becomes full, and the next primary log file in the sequence is not available.

6. Primary log files are made available for reuse during checkpoint. The queue
manager takes both the primary and secondary log space into consideration
before a checkpoint is taken because the amount of log space is running low.
If you do not define more primary log files than secondary log files, the queue
manager may allocate secondary log files before a checkpoint is taken. This
makes the primary log files available for reuse.

Managing logs
Over time, some of the log records written become unnecessary for restarting the
queue manager, and the queue manager reclaims freed space in the log files. This
activity is transparent to the user and you do not usually see the amount of disk
space used reduce because the space allocated is quickly reused.

Of the log records, only those written since the start of the last complete
checkpoint, and those written by any active transactions, are needed to restart the
queue manager. Thus, the log may fill if a checkpoint has not been taken for a long
time, or if a long-running transaction wrote a log record a long time ago. The
queue manager tries to take checkpoints sufficiently frequently to avoid the first
problem.

When a long-running transaction fills the log, attempts to write log records fail and
some MQI calls return MQRC_RESOURCE_PROBLEM. (Space is reserved to
commit or rollback all in-flight transactions, so MQCMIT or MQBACK should not
fail.)

The queue manager rolls back transactions that consume too much log space. An
application whose transaction is rolled back in this way is unable to perform
subsequent MQPUT or MQGET operations specifying syncpoint under the same
transaction. An attempt to put or get a message under syncpoint in this state
returns MQRC_BACKED_OUT. The application may then issue MQCMIT, which
returns MQRC_BACKED_OUT, or MQBACK and start a new transaction. When
the transaction consuming too much log space has been rolled back, its log space is
released and the queue manager continues to operate normally.

If the log fills, a message is issued (AMQ7463). In addition, if the log fills because
a long-running transaction has prevented the space being released, message
AMQ7465 is issued.

Finally, if records are being written to the log faster than the asynchronous
housekeeping processes can handle them, message AMQ7466 is issued. If you see
this message, you should increase the number of log files or reduce the amount of
data being processed by the queue manager.

Checkpointing

Chapter 11. Recovery and restart 131

What happens when a disk gets full
The queue manager logging component can cope with a full disk, and with full log
files. If the disk containing the log fills, the queue manager issues message
AMQ6708 and an error record is taken.

The log files are created at their maximum size, rather than being extended as log
records are written to them. This means that MQSeries can only run out of disk
space when it is creating a new file. It therefore cannot run out of space when it is
writing a record to the log. MQSeries always knows how much space is available
in the existing log files and manages the space within the files accordingly.

If you fill the drive containing the log files, you may be able to free some disk
space. If you are using a linear log, there may be some inactive log files in the log
directory which you can copy to another drive or device. If you still run out of
space, check that the configuration of the log in the queue manager configuration
file is correct. You may be able to reduce the number of primary or secondary log
files so that the log does not outgrow the available space. Note that it is not
possible to alter the size of the log files for an existing queue manager. The queue
manager assumes that all log files are the same size.

Managing log files
If you are using circular logging, ensure that there is sufficient space to hold the
log files. You do this when you configure your system (see “The LogDefaults
stanza” on page 163 and “The Log stanza” on page 167). The amount of disk space
used by the log, including the space required for secondary files to be created
when required, is limited by the configured size of the disk.

If you are using a linear log, the log files are added continually as data is logged,
and the amount of disk space used increases with time. If the rate of data being
logged is high, disk space is consumed rapidly by new log files.

Over time, the older log files for a linear log are no longer required to restart the
queue manager or perform media recovery of any damaged objects. Periodically,
the queue manager issues a pair of messages to indicate which of the log files is
required:
v Message AMQ7467 gives the name of the oldest log file needed to restart the

queue manager. This log file and all newer log files must be available during
queue manager restart.

v Message AMQ7468 gives the name of the oldest log file needed to do media
recovery.

Any log files older than these do not need to be online. You can copy them to an
archive medium such as tape for disaster recovery, and remove them from the
active log directory. Any log files needed for media recovery but not for restart can
also be off-loaded to an archive.

If any log file that is needed cannot be found, operator message AMQ6767 is
issued. Make the log file, and all subsequent log files, available to the queue
manager and retry the operation.

Note: When performing media recovery, all the required log files must be available
in the log file directory at the same time. Make sure that you take regular
media images of any objects you may wish to recover to avoid running out
of disk space to hold all the required log files.

Managing logs

132 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Log file location
When choosing a location for your log files, remember that operation is severely
impacted if MQSeries fails to format a new log because of lack of disk space.

If you are using a circular log, ensure that there is sufficient space on the drive for
at least the configured primary log files. You should also leave space for at least
one secondary log file which is needed if the log has to grow.

If you are using a linear log, you should allow considerably more space; the space
consumed by the log increases continuously as data is logged.

Ideally, the log files should be placed on a separate disk drive from the queue
manager data. This has benefits in terms of performance. It may also be possible to
place the log files on multiple disk drives in a mirrored arrangement. This gives
protection against failure of the drive containing the log. Without mirroring, you
could be forced to go back to the last backup of your MQSeries system.

Using the log for recovery
There are several ways that your data can be damaged. MQSeries for Compaq
OpenVMS helps you recover from:
v A damaged data object
v A power loss in the system
v A communications failure
v A damaged log volume

This section looks at how the logs are used to recover from these problems.

Recovering from problems
MQSeries can recover from both communications failures and loss of power. In
addition, it is sometimes possible to recover from other types of problem, such as
inadvertent deletion of a file.

In the case of a communications failure, messages remain on queues until they are
removed by a receiving application. If the message is being transmitted, it remains
on the transmission queue until it can be successfully transmitted. To recover from
a communications failure, it is normally sufficient simply to restart the channels
using the link that failed.

If you lose power, when the queue manager is restarted MQSeries restores the
queues to their state at the time of the failure. This ensures that no persistent
messages are lost. Nonpersistent messages are discarded; they do not survive when
MQSeries stops.

There are ways in which an MQSeries object can become unusable, for example
due to inadvertent damage. You then have to recover either your complete system
or some part of it. The action required depends on when the damage is detected,
whether the log method selected supports media recovery, and which objects are
damaged.

Media recovery
Media recovery means recreating objects from information recorded only in a
linear log. Media recovery is not supported with circular logging. For example, if
an object file is inadvertently deleted, or becomes unusable for some other reason,
media recovery can be used to recreate it. The information in the log required for

Managing logs

Chapter 11. Recovery and restart 133

media recovery of an object is called a media image. Media images can be recorded
manually, using the rcdmqimg command, or automatically in certain
circumstances.

A media image is a sequence of log records containing an image of an object from
which the object itself can be recreated.

The first log record required to recreate an object is known as its media recovery
record; it is the start of the latest media image for the object. The media recovery
record of each object is one of the pieces of information recorded during a
checkpoint.

When recreating an object from its media image, it is also necessary to replay any
log records describing updates performed on the object since the last image was
taken.

Consider, for example, a local queue that has an image of the queue object taken
before a persistent message is put onto the queue. In order to recreate the latest
image of the object, it is necessary to replay the log entries recording the putting of
the message to the queue, as well as replaying the image itself.

When an object is created, the log records written contain enough information to
completely recreate the object. These records make up the object’s first media
image. Subsequently, media images are recorded automatically by the queue
manager when:
v Images of all process objects and non-local queues are taken at each shutdown.
v Local queue images are taken when the queue becomes empty.

Media images can also be recorded manually using the rcdmqimg command,
described in “rcdmqimg (Record media image)” on page 262.

Recovering media images
MQSeries automatically recovers some objects from their media image if it finds
that they are corrupt or damaged. In particular, this applies to objects found to be
damaged during the normal queue manager startup. If any transaction was
incomplete at the time of the last shutdown of the queue manager, any queue
affected is also recovered automatically in order to complete the startup operation.

You must recover other objects manually, using the rcrmqobj command. This
command replays the records in the log to recreate the MQSeries object. The object
is recreated from its latest image found in the log, together with all applicable log
events between the time the image was saved and the time the recreate command
is issued. Should an MQSeries object become damaged, the only valid actions that
can be performed are either to delete it or to recreate it by this method. Note,
however, that nonpersistent messages cannot be recovered in this way.

See “rcrmqobj (Recreate object)” on page 264 for further details of the rcrmqobj
command.

It is important to remember that you must have the log file containing the media
recovery record, and all subsequent log files, available in the log file directory
when attempting media recovery of an object. If a required file cannot be found,
operator message AMQ6767 is issued and the media recovery operation fails. If
you do not take regular media images of the objects that you may wish to recreate,
you can get into the situation where you have insufficient disk space to hold all
the log files required to recreate an object.

Using the log

134 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Recovering damaged objects during startup
If the queue manager discovers a damaged object during startup, the action it
takes depends on the type of object and whether the queue manager is configured
to support media recovery.

If the queue manager object is damaged, the queue manager cannot start unless it
can recover the object. If the queue manager is configured with a linear log, and
thus supports media recovery, MQSeries automatically tries to recreate the
MQSeries object from its media images. If the log method selected does not
support media recovery, you can either restore a backup of the queue manager or
delete the queue manager.

If any transactions were active when the queue manager stopped, the local queues
containing the persistent, uncommitted messages put or got inside these
transactions are also needed to start the queue manager successfully. If any of
these local queues are found to be damaged, and the queue manager supports
media recovery, it automatically attempts to recreate them from their media
images. If any of the queues cannot be recovered, MQSeries cannot start.

If any damaged local queues containing uncommitted messages are discovered
during startup processing on a queue manager that does not support media
recovery, the queues are marked as damaged objects and the uncommitted
messages on them are ignored. This is because it is not possible to perform media
recovery of damaged objects on such a queue manager and the only action left is
to delete them. Message AMQ7472 is issued to report any damage.

Recovering damaged objects at other times
Media recovery of objects is only automatic during startup. At other times, when
object damage is detected, operator message AMQ7472 is issued and most
operations using the object fail. If the queue manager object is damaged at any
time after the queue manager has started, the queue manager performs a
preemptive shutdown. When an object has been damaged you may delete it or, if
the queue manager is using a linear log, attempt to recover it from its media image
using the rcrmqobj command (see “rcrmqobj (Recreate object)” on page 264 for
further details).

Protecting MQSeries log files
It is important that when an MQSeries queue manager is running you do not
remove the log files manually. If a user inadvertently (or maliciously) deletes the
log files which a queue manager needs to restart, MQSeries does not issue any
errors and continues to process data including persistent messages. The queue
manager shuts down normally, but will fail to restart. Media recovery of messages
then becomes impossible.

Any user with the authority to remove logs that are being used by an active queue
manager also has authority to delete other important queue manager resources
(such as authorization files, queue files, the object catalog, and MQSeries
executables). They therefore can damage, perhaps through inexperience or even
intent, a running or dormant queue manager in a way against which MQSeries
cannot protect itself.

Exercise caution when granting users elevated privileges or the MQM rights
identifier.

Using the log

Chapter 11. Recovery and restart 135

Backup and restore
Periodically, you may want to take a backup of your queue manager data to
provide protection against possible corruption due to hardware failures. However,
because message data is often short-lived, you may choose not to take backups.

Backing up MQSeries
To take a backup of a queue manager’s data, you must:
1. Ensure that the queue manager is not running.

If your queue manager is running, stop it with the endmqm command.

Note: If you try to take a backup of a running queue manager, the backup may
not be consistent due to updates in progress when the files were copied.

2. Locate the directories under which the queue manager places its data and its
log files.
You can use the information in the configuration files to determine these
directories. For more information about this, see “Chapter 13. Configuring
MQSeries” on page 159.

Note: You may have some difficulty in understanding the names that appear in
the directory. This is because the names are transformed to ensure that
they are compatible with the platform on which you are using MQSeries.
For more information about name transformations, see “Understanding
MQSeries file names” on page 19.

3. Take copies of all the queue manager’s data and log file directories, including
all subdirectories.
Make sure that you do not miss any of the files, especially the log control file
and the configuration files. Some of the directories may be empty, but they will
all be required if you restore the backup at a later date, so it is advisable to
save them too.

4. Ensure that you preserve the ownerships of the files. You can do this with the
BACKUP command and the /BY_OWNER parameter.

Restoring MQSeries
To restore a backup of a queue manager’s data, you must:
1. Ensure that the queue manager is not running.
2. Locate the directories under which the queue manager places its data and its

log files. This information is held in the configuration file.
3. Clear out the directories into which you are going to place the backed up data.
4. Copy the backed up queue manager data and log files into the correct places.

Check the resulting directory structure to ensure that you have all of the required
directories.

See “Appendix C. Directory structure” on page 299 for more information about
MQSeries directories and subdirectories.

Make sure that you have a log control file as well as the log files. Also check that
the MQSeries and queue manager configuration files are consistent so that
MQSeries can look in the correct places for the restored data.

Backup and restore

136 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

If the data was backed up and restored correctly, the queue manager will now
start.

Note: Even though the queue manager data and log files are held in different
directories, you should back up and restore the directories at the same time.
If the queue manager data and log files have different ages, the queue
manager is not in a valid state and will probably not start. If it does start,
your data will almost certainly be corrupt.

Recovery scenarios
This section looks at a number of possible problems and indicates how to recover
from them.

Disk drive failures
You may suffer problems with a disk drive containing either the queue manager
data, the log, or both. Problems can include data loss or corruption. The three cases
differ only in the part of the data that survives, if any.

In all cases you must first check the directory structure for any damage and, if
necessary, repair such damage. If you lose queue manager data, there is a danger
that the queue manager directory structure has been damaged. If so, you must
recreate the directory tree manually before you try to restart the queue manager.
Having checked for structural damage, there are a number of alternative things
you can do, depending on the type of logging that you use.
v Where there is major damage to the directory structure or any damage to the

log, remove all the old files back to the QMgrName level, including the
configuration files, the log, and the queue manager directory, restore the last
backup, and try to restart the queue manager.

v For linear logging with media recovery, ensure the directory structure is intact
and try to restart the queue manager. If the queue manager does not restart,
restore a backup. If the queue manager restarts, check whether any other objects
have been damaged using MQSC. Recover the ones you find, using the
rcrmqobj command, for example:

where QMgrName is the queue manager being recovered. -t * * indicates that any
object of any type will be recovered. If only one or two objects have been
reported as damaged, you may want to specify those objects by name and type
here.

Note: These commands do not apply to channels.
v For linear logging with media recovery and with an undamaged log, you may

be able to restore a backup of the queue manager data leaving the existing log
files and log control file unchanged. Starting the queue manager applies the
changes from the log to bring the queue manager back to its state when the
failure occurred.
This method relies on two facts. Firstly, it is vital that the checkpoint file be
restored as part of the queue manager data. This file contains the information
determining how much of the data in the log must be applied to give a
consistent queue manager.

rcrmqobj -m QMgrName -t * *

Backup and restore

Chapter 11. Recovery and restart 137

Secondly, you must have the oldest log file which was required to start the
queue manager at the time of the backup, and all subsequent log files, available
in the log file directory.
If this is not possible, you must restore a backup of both the queue manager
data and the log, both of which were taken at the same time.

v For circular logging, or linear logging without media recovery, you must
restore the queue manager from the latest backup that you have. Once you have
restored the backup, restart the queue manager and check as above for damaged
objects. However, because you do not have media recovery, you must find other
ways of recreating the damaged objects.

Damaged queue manager object
If the queue manager object has been reported as damaged during normal
operation, the queue manager performs a preemptive shutdown. There are two
ways of recovering in these circumstances depending on the type of logging you
use:
v For linear logging only, manually delete the file containing the damaged object

and restart the queue manager. Media recovery of the damaged object is
automatic.

v For circular or linear logging, restore the last backup of the queue manager data
and log and restart the queue manager.

Damaged single object
If a single object is reported as damaged during normal operation, there are two
ways of recovering, depending on the type of logging you use:
v For linear logging, recreate the object from its media image.
v For circular logging, restore the last backup of the queue manager data and log

and restart the queue manager.

Automatic media recovery failure
If a local queue required for queue manager startup with a linear log is damaged,
and the automatic media recovery fails, restore the last backup of the queue
manager data and log and restart the queue manager.

Dumping the contents of the log using the dmpmqlog command
The dmpmqlog command can be used to dump the contents of the queue manager
log. By default all active log records are dumped, that is, the command starts
dumping from the head of the log. Normally this is from the start of the last
completed checkpoint.

The log can be dumped only when the queue manager is not running. Because the
queue manager takes a checkpoint during shutdown, the active portion of the log
usually contains a small number of log records. However, the dmpmqlog
command can be instructed to dump more log records using one of the following
options to change the start position of the dump:
v The simplest option is to start dumping from the base of the log. The base of the

log is the first log record in the log file that contains the head of the log. The
amount of additional data dumped in this case depends upon where the head of
the log is positioned in the log file. If it is near to the start of the log file only a
small amount of additional data is dumped. If the head is near to the end of the
log file then significantly more data is dumped.

Recovery scenarios

138 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v Another option enables the start position of the dump to be specified as an
individual log record. Each log record is identified by a unique log sequence
number (LSN). In the case of circular logging, this starting log record cannot be
prior to the base of the log; this restriction does not apply to linear logs. Inactive
log files may need to be reinstated before running the command. For this option
a valid LSN must be specified as the start position. This must be taken from
previous dmpmqlog output.
For example, with linear logging you could specify the nextlsn from your last
dmpmqlog output. The Next LSN appears in Log File Header and indicates the
LSN of the next log record to be written. This can therefore be used as a start
position to format all log records that have been written since the last time the
log was dumped.

v The third option is for linear logs only. The dumper can be instructed to start
formatting log records from any given log file extent. In this case the log
dumper expects to find this log file, and each successive one, in the same
directory as the active log files. This option does not apply to circular logs,
because in this case the log dumper cannot access log records prior to the base
of the log.

The output from the dmpmqlog command is the Log File Header and a series of
formatted log records. The queue manager uses several log records to record
changes to its data.

Some of the information that is formatted is of use only internally. The following
list includes the most useful log records:

Log File Header
Each log has a single log file header, which is always the first thing formatted
by the dmpmqlog command. It contains the following fields:

logactive The number of primary log extents.

loginactive The number of secondary log extents.

logsize The number of 4 KB pages per extent.

baselsn The first LSN in the log extent containing the head of the log.

nextlsn The LSN of next log record to be written.

headlsn The LSN of the log record at the head of the log.

tailsn The LSN identifying the tail position of the log.

hflag1 Identifies whether log is CIRCULAR or LOG RETAIN (linear).

HeadExtentID The log extent containing the head of the log.

Log Record Header
Each log record within the log has a fixed header containing the following
information:

LSN The log sequence number.

LogRecdType The type of the log record.

XTranid The transaction identifier associated with this log record (if
any).

A TranType of MQI indicates an MQ-only transaction. A
TranType of XA is involved with other resource managers.
Updates involved within the same unit of work have the same
XTranid.

Using dmpmqlog

Chapter 11. Recovery and restart 139

QueueName The queue associated with this log record (if any).

Qid The unique internal identifier for the queue.

PrevLSN LSN of previous log record within the same transaction (if
any).

Start Queue Manager
This logs that the queue manager has been started.

StartDate The date that the queue manager was started.

StartTime The time that the queue manager was started.

Stop Queue Manager
This logs that the queue manager has been stopped.

StopDate The date that the queue manager was stopped.

StopTime The time that the queue manager was stopped.

ForceFlag The type of shutdown that was used.

Start Checkpoint
This denotes the start of a queue manager checkpoint.

End Checkpoint
This denotes the end of a queue manager checkpoint.

ChkPtLSN The LSN of the log record that started this checkpoint.

Put Message
This logs a persistent message put to a queue. If the message was put under
syncpoint, then the log record header contains a nonnull XTranid. The
remainder of the record contains:

SpcIndex An identifier for the message on the queue. It can be used to
match the corresponding MQGET that was used to get this
message from the queue. In this case a subsequent Get Message
log record can be found containing the same QueueName and
SpcIndex. At this point the SpcIndex identifier can be reused
for a subsequent put message to that queue.

Data Contained in the hex dump for this log record is various
internal data followed by the Message Descriptor (eyecatcher
MD) and the message data itself.

Put Part
Persistent messages that are too large for a single log record are logged as a
single Put Message record followed by multiple Put Part log records.

Data Continues the message data where the previous log record left off.

Get Message
Only gets of persistent messages are logged. If the message was got under
syncpoint then the log record header contains a nonnull XTranid. The
remainder of the record contains:

SpcIndex Identifies the message that was got from the queue. The most
recent Put Message log record containing the same QueueName
and SpcIndex identifies the message that was got.

QPriority The priority of the message got from the queue.

Start Transaction
Indicates the start of a new transaction. A TranType of MQI indicates an

Using dmpmqlog

140 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

MQ-only transaction. A TranType of XA indicates one that involves other
resource managers. All updates made by this transaction will have the same
XTranid.

Prepare Transaction
Indicates that the queue manager is prepared to commit the updates associated
with the specified XTranid. This log record is written as part of a two-phase
commit involving other resource managers.

Commit Transaction
Indicates that the queue manager has committed all updates made by a
transaction.

Rollback Transaction
This log record denotes the queue manager’s intention to roll back a
transaction.

End Transaction
This log record denotes the end of a rolled-back transaction.

Transaction Table
This record is written during syncpoint. It records the state of each transaction
that has made persistent updates. For each transaction the following
information is recorded:

XTranid Transaction identifier.

FirstLSN LSN of first log record associated with transaction.

LastLSN LSN of last log record associated with transaction.

Transaction Participants
This log record is written by the XA Transaction Manager component of the
queue manager. It records the external resource managers that are participating
in transactions. For each participant the following is recorded:

RMName The name of the resource manager.

RMId Resource manager identifier. This is also logged in subsequent
Transaction Prepared log records which record global
transactions in which the resource manager is participating.

SwitchFile The switch load file for this resource manager.

XAOpenString The XA open string for this resource manager.

XACloseString The XA open string for this resource manager.

Transaction Prepared
This log record is written by the XA Transaction Manager component of the
queue manager. It indicates that the specified global transaction has been
successfully prepared. Each of the participating resource managers will be
instructed to commit. The RMId of each prepared resource manager is recorded
in the log record. If the queue manager itself is participating in the transaction
a Participant Entry with an RMID of zero will be present.

Transaction Forget
This log record is written by the XA Transaction Manager component of the
queue manager. It follows the Transaction Prepared log record when the
commit decision has been delivered to each participant.

Purge Queue
This logs the fact that all messages on a queue have been purged, for example,
using the RUNMQSC CLEAR command.

Using dmpmqlog

Chapter 11. Recovery and restart 141

Queue Attributes
This logs the initialization or change of the attributes of a queue.

Create Object
Logs the creation of an MQSeries object.

ObjName The name of the object that was created.

UserId The user ID performing the creation.

Delete Object
Logs the deletion of an MQSeries object.

ObjName The name of the object that was deleted.

Figure 18 on page 143 shows example output from a dmpmqlog command. The
dump, which started at the LSN of a specific log record, was produced using the
following command:

dmpmqlog -m "testqm" -s 0:0:0:44162

Using dmpmqlog

142 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

AMQ7701: DMPMQLOG command is starting.
LOG FILE HEADER

counter1 . . . : 23 counter2 . . . : 23
FormatVersion . : 2 logtype : 10
logactive . . . : 3 loginactive . . : 2
logsize : 1024 pages
baselsn : <0:0:0:0>
nextlsn : <0:0:0:60864>
lowtranlsn . . : <0:0:0:0>
minbufflsn . . : <0:0:0:58120>
headlsn : <0:0:0:58120>
taillsn : <0:0:0:60863>
logfilepath . . : ""
hflag1 : 1

-> CONSISTENT
-> CIRCULAR

HeadExtentID . : 1 LastEID : 846249092
LogId : 846249061 LastCommit . . : 0
FirstArchNum . : 4294967295 LastArchNum . . : 4294967295
nextArcFile . . : 4294967295 firstRecFile . : 4294967295
firstDlteFile . : 4294967295 lastDeleteFile : 4294967295
RecHeadFile . . : 4294967295 FileCount . . . : 3
frec_trunclsn . : <0:0:0:0>
frec_readlsn . : <0:0:0:0>
frec_extnum . . : 0 LastCId : 0
onlineBkupEnd . : 0 softmax : 4194304

LOG RECORD - LSN <0:0:0:44162>

HLG Header: lrecsize 212, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ALM Start Checkpoint (1025)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 192 LogRecdOwnr . . : 1024 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

No data for Start Checkpoint Record

Figure 18. Example dmpmqlog output (Part 1 of 13)

Using dmpmqlog

Chapter 11. Recovery and restart 143

LOG RECORD - LSN <0:0:0:44374>

HLG Header: lrecsize 220, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Transaction Table (773)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 200 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Version : 1
TranCount . . . : 0

LOG RECORD - LSN <0:0:0:44594>

HLG Header: lrecsize 1836, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : Transaction Participants (1537)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 1816 LogRecdOwnr . . : 1536 (T)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Id. : TLPH
Version : 1 Flags : 3
Count : 2

Participant Entry 0
RMName : DB2 MQBankDB
RMId : 1
SwitchFile . . : /Development/sbolam/build/devlib/tstxasw
XAOpenString . :
XACloseString . :

Participant Entry 1
RMName : DB2 MQBankDB
RMId : 2
SwitchFile . . : /Development/sbolam/build/devlib/tstxasw
XAOpenString . :
XACloseString . :

Figure 18. Example dmpmqlog output (Part 2 of 13)

Using dmpmqlog

144 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

LOG RECORD - LSN <0:0:0:46448>

HLG Header: lrecsize 236, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ALM End Checkpoint (1026)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 216 LogRecdOwnr . . : 1024 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

ChkPtLSN . . . : <0:0:0:44162>
OldestLSN . . . : <0:0:0:0>
MediaLSN . . . : <0:0:0:0>

LOG RECORD - LSN <0:0:0:52262>

HLG Header: lrecsize 220, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Start Transaction (769)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 200 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: MQI TranNum{High 0, Low 1}
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Version : 1
SoftLogLimit . : 10000

Figure 18. Example dmpmqlog output (Part 3 of 13)

Using dmpmqlog

Chapter 11. Recovery and restart 145

LOG RECORD - LSN <0:0:0:52482>

HLG Header: lrecsize 730, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : AQM Put Message (257)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 710 LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: MQI TranNum{High 0, Low 1}
QueueName . . . : Queue1
Qid : {Hash 196836031, Counter: 0}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:52262>

Version : 3
SpcIndex . . . : 1
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High 0, Low 2048}
Data.Locn . . . : 2048 Data.Length . . : 486
Data :
00000: 41 51 52 48 00 00 00 04 FF FF FF FF FF FF FF FF AQRH............
00016: 00 00 00 00 00 00 00 00 00 00 00 01 00 01 01 C0À
00032: 00 00 00 00 00 00 00 01 00 00 00 22 00 00 00 00"....
00048: 00 00 00 00 41 4D 51 20 74 65 73 74 71 6D 20 20AMQ testqm
00064: 20 20 20 20 33 80 2D D2 00 00 10 13 00 00 00 00 3€-........
00080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00096: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00112: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
00128: 00 00 00 00 00 00 00 22 00 00 00 00 00 00 00 00"........
00144: 00 00 00 00 00 00 00 C9 2C B5 C0 25 FF FF FF FF,µÀ%....
00160: 4D 44 20 20 00 00 00 01 00 00 00 00 00 00 00 08 MD
00176: 00 00 00 00 00 00 01 11 00 00 03 33 20 20 20 203
00192: 20 20 20 20 00 00 00 00 00 00 00 01 20 20 20 20
00208: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00224: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00240: 20 20 20 20 20 20 20 20 20 20 20 20 74 65 73 74 test
00256: 71 6D 20 20 20 20 20 20 20 20 20 20 20 20 20 20 qm
00272: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00288: 20 20 20 20 20 20 20 20 20 20 20 20 73 62 6F 6C sbol
00304: 61 6D 20 20 20 20 20 20 04 37 34 38 30 00 00 00 am .7480...
00320: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00336: 00 00 00 00 00 00 00 00 20 20 20 20 20 20 20 20
00352: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00368: 20 20 20 20 20 20 20 20 00 00 00 06 75 74 7A 61utza
00384: 70 69 20 20 20 20 20 20 20 20 20 20 20 20 20 20 pi
00400: 20 20 20 20 20 20 20 20 31 39 39 37 30 35 31 39 19970519
00416: 31 30 34 32 31 35 32 30 20 20 20 20 00 00 00 00 10421520
00432: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00448: 50 65 72 73 69 73 74 65 6E 74 20 6D 65 73 73 61 Persistent messa
00464: 67 65 20 70 75 74 20 75 6E 64 65 72 20 73 79 6E ge put under syn
00480: 63 70 6F 69 6E 74 cpoint

Figure 18. Example dmpmqlog output (Part 4 of 13)

Using dmpmqlog

146 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

LOG RECORD - LSN <0:0:0:53458>

HLG Header: lrecsize 734, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : AQM Put Message (257)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 714 LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: NULL
QueueName . . . : Queue2
Qid : {Hash 184842943, Counter: 2}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Version : 3
SpcIndex . . . : 1
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High 0, Low 2048}
Data.Locn . . . : 2048 Data.Length . . : 490
Data :
00000: 41 51 52 48 00 00 00 04 FF FF FF FF FF FF FF FF AQRH............
00016: 00 00 00 00 00 00 00 00 00 00 00 01 00 01 01 C0À
00032: 00 00 00 00 00 00 00 01 00 00 00 26 00 00 00 00&;...
00048: 00 00 00 00 41 4D 51 20 74 65 73 74 71 6D 20 20AMQ testqm
00064: 20 20 20 20 33 80 2D D2 00 00 10 13 00 00 00 00 3€-........
00080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00096: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00112: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
00128: 00 00 00 00 00 00 00 26 00 00 00 00 00 00 00 00&;.......
00144: 00 00 00 00 00 00 00 C9 2C B6 D8 DD FF FF FF FF,.Ø.....
00160: 4D 44 20 20 00 00 00 01 00 00 00 00 00 00 00 08 MD
00176: 00 00 00 00 00 00 01 11 00 00 03 33 20 20 20 203
00192: 20 20 20 20 00 00 00 00 00 00 00 01 20 20 20 20
00208: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00224: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00240: 20 20 20 20 20 20 20 20 20 20 20 20 74 65 73 74 test
00256: 71 6D 20 20 20 20 20 20 20 20 20 20 20 20 20 20 qm
00272: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00288: 20 20 20 20 20 20 20 20 20 20 20 20 73 62 6F 6C sbol
00304: 61 6D 20 20 20 20 20 20 04 37 34 38 30 00 00 00 am .7480...
00320: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00336: 00 00 00 00 00 00 00 00 20 20 20 20 20 20 20 20
00352: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00368: 20 20 20 20 20 20 20 20 00 00 00 06 75 74 7A 61utza
00384: 70 69 20 20 20 20 20 20 20 20 20 20 20 20 20 20 pi
00400: 20 20 20 20 20 20 20 20 31 39 39 37 30 35 31 39 19970519
00416: 31 30 34 33 32 37 30 36 20 20 20 20 00 00 00 00 10432706
00432: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00448: 50 65 72 73 69 73 74 65 6E 74 20 6D 65 73 73 61 Persistent messa
00464: 67 65 20 6E 6F 74 20 70 75 74 20 75 6E 64 65 72 ge not put under
00480: 20 73 79 6E 63 70 6F 69 6E 74 syncpoint

Figure 18. Example dmpmqlog output (Part 5 of 13)

Using dmpmqlog

Chapter 11. Recovery and restart 147

LOG RECORD - LSN <0:0:0:54192>

HLG Header: lrecsize 216, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Commit Transaction (774)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 196 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: MQI TranNum{High 0, Low 1}
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:52482>

Version : 1
LOG RECORD - LSN <0:0:0:54408>

HLG Header: lrecsize 220, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Start Transaction (769)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 200 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: MQI TranNum{High 0, Low 3}
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Version : 1
SoftLogLimit . : 10000

LOG RECORD - LSN <0:0:0:54628>

HLG Header: lrecsize 240, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : AQM Get Message (259)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 220 LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: MQI TranNum{High 0, Low 3}
QueueName . . . : Queue1
Qid : {Hash 196836031, Counter: 0}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:54408>

Version : 2
SpcIndex . . . : 1 QPriority . . . : 0
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High 4294967295, Low 4294967295}

Figure 18. Example dmpmqlog output (Part 6 of 13)

Using dmpmqlog

148 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

LOG RECORD - LSN <0:0:0:54868>

HLG Header: lrecsize 240, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : AQM Get Message (259)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 220 LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: NULL
QueueName . . . : Queue2
Qid : {Hash 184842943, Counter: 2}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Version : 2
SpcIndex . . . : 1 QPriority . . . : 0
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High 4294967295, Low 4294967295}
LOG RECORD - LSN <0:0:0:55108>

HLG Header: lrecsize 216, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Commit Transaction (774)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 196 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: MQI TranNum{High 0, Low 3}
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:54628>

Version : 1

LOG RECORD - LSN <0:0:0:55324>

HLG Header: lrecsize 220, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Start Transaction (769)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 200 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: XA

XID: formatID 5067085, gtrid_length 14, bqual_length 4
gtrid [3270BDB40000102374657374716D]
bqual [00000001]

QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Version : 1
SoftLogLimit . : 10000

Figure 18. Example dmpmqlog output (Part 7 of 13)

Using dmpmqlog

Chapter 11. Recovery and restart 149

LOG RECORD - LSN <0:0:0:55544>

HLG Header: lrecsize 738, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : AQM Put Message (257)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 718 LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: XA

XID: formatID 5067085, gtrid_length 14, bqual_length 4
gtrid [3270BDB40000102374657374716D]
bqual [00000001]

QueueName . . . : Queue2
Qid : {Hash 184842943, Counter: 2}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:55324>

Version : 3
SpcIndex . . . : 1
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High 0, Low 2048}
Data.Locn . . . : 2048 Data.Length . . : 494
Data :
00000: 41 51 52 48 00 00 00 04 FF FF FF FF FF FF FF FF AQRH............
00016: 00 00 00 00 00 00 00 00 00 00 00 01 00 01 01 C0À
00032: 00 00 00 00 00 00 00 01 00 00 00 2A 00 00 00 00*....
00048: 00 00 00 01 41 4D 51 20 74 65 73 74 71 6D 20 20AMQ testqm
00064: 20 20 20 20 33 80 2D D2 00 00 10 13 00 00 00 00 3€-........
00080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00096: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00112: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
00128: 00 00 00 00 00 00 00 2A 00 00 00 00 00 00 00 00*........
00144: 00 00 00 00 00 00 00 C9 2C B8 3E E8 FF FF FF FF,¸>.....
00160: 4D 44 20 20 00 00 00 01 00 00 00 00 00 00 00 08 MD
00176: 00 00 00 00 00 00 01 11 00 00 03 33 20 20 20 203
00192: 20 20 20 20 00 00 00 00 00 00 00 01 20 20 20 20
00208: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00224: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00240: 20 20 20 20 20 20 20 20 20 20 20 20 74 65 73 74 test
00256: 71 6D 20 20 20 20 20 20 20 20 20 20 20 20 20 20 qm
00272: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00288: 20 20 20 20 20 20 20 20 20 20 20 20 73 62 6F 6C sbol
00304: 61 6D 20 20 20 20 20 20 04 37 34 38 30 00 00 00 am .7480...
00320: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00336: 00 00 00 00 00 00 00 00 20 20 20 20 20 20 20 20
00352: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00368: 20 20 20 20 20 20 20 20 00 00 00 06 75 74 7A 61utza
00384: 70 69 20 20 20 20 20 20 20 20 20 20 20 20 20 20 pi
00400: 20 20 20 20 20 20 20 20 31 39 39 37 30 35 31 39 19970519
00416: 31 30 34 34 35 38 37 32 20 20 20 20 00 00 00 00 10445872
00432: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00448: 41 6E 6F 74 68 65 72 20 70 65 72 73 69 73 74 65 Another persiste
00464: 6E 74 20 6D 65 73 73 61 67 65 20 70 75 74 20 75 nt message put u
00480: 6E 64 65 72 20 73 79 6E 63 70 6F 69 6E 74 nder syncpoint

Figure 18. Example dmpmqlog output (Part 8 of 13)

Using dmpmqlog

150 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

LOG RECORD - LSN <0:0:0:56282>

HLG Header: lrecsize 216, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Prepare Transaction (770)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 196 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: XA

XID: formatID 5067085, gtrid_length 14, bqual_length 4
gtrid [3270BDB40000102374657374716D]
bqual [00000001]

QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:55544>

Version : 1

LOG RECORD - LSN <0:0:0:56498>

HLG Header: lrecsize 708, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : Transaction Prepared (1538)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 688 LogRecdOwnr . . : 1536 (T)
XTranid : TranType: XA

XID: formatID 5067085, gtrid_length 14, bqual_length 4
gtrid [3270BDB40000102374657374716D]
bqual [00000001]

QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Id. : TLPR
Version : 1 Flags : 1
Count : 3

Participant Entry 0
RMId : 0 State : 2

Participant Entry 1
RMId : 1 State : 2

Participant Entry 2
RMId : 2 State : 2

Figure 18. Example dmpmqlog output (Part 9 of 13)

Using dmpmqlog

Chapter 11. Recovery and restart 151

LOG RECORD - LSN <0:0:0:57206>

HLG Header: lrecsize 216, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Commit Transaction (774)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 196 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: XA

XID: formatID 5067085, gtrid_length 14, bqual_length 4
gtrid [3270BDB40000102374657374716D]
bqual [00000001]

QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:56282>

Version : 1
LOG RECORD - LSN <0:0:0:57440>

HLG Header: lrecsize 224, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : Transaction Forget (1539)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 204 LogRecdOwnr . . : 1536 (T)
XTranid : TranType: XA

XID: formatID 5067085, gtrid_length 14, bqual_length 4
gtrid [3270BDB40000102374657374716D]
bqual [00000001]

QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Id. : TLFG
Version : 1 Flags : 0

Figure 18. Example dmpmqlog output (Part 10 of 13)

Using dmpmqlog

152 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

LOG RECORD - LSN <0:0:0:58120>

HLG Header: lrecsize 212, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ALM Start Checkpoint (1025)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 192 LogRecdOwnr . . : 1024 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

No data for Start Checkpoint Record

LOG RECORD - LSN <0:0:0:58332>

HLG Header: lrecsize 220, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ATM Transaction Table (773)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 200 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Version : 1
TranCount . . . : 0

Figure 18. Example dmpmqlog output (Part 11 of 13)

Using dmpmqlog

Chapter 11. Recovery and restart 153

LOG RECORD - LSN <0:0:0:58552>

HLG Header: lrecsize 1836, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : Transaction Participants (1537)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 1816 LogRecdOwnr . . : 1536 (T)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Id. : TLPH
Version : 1 Flags : 3
Count : 2

Participant Entry 0
RMName : DB2 MQBankDB
RMId : 1
SwitchFile . . : /Development/sbolam/build/devlib/tstxasw
XAOpenString . :
XACloseString . :

Participant Entry 1
RMName : DB2 MQFeeDB
RMId : 2
SwitchFile . . : /Development/sbolam/build/devlib/tstxasw
XAOpenString . :
XACloseString . :

LOG RECORD - LSN <0:0:0:60388>

HLG Header: lrecsize 236, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ALM End Checkpoint (1026)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 216 LogRecdOwnr . . : 1024 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

ChkPtLSN . . . : <0:0:0:58120>
OldestLSN . . . : <0:0:0:0>
MediaLSN . . . : <0:0:0:0>

Figure 18. Example dmpmqlog output (Part 12 of 13)

Using dmpmqlog

154 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Notes for Figure 18 on page 143:

1. The headlsn in the Log File Header has a value of <0:0:0:58120>. This is
where the dump would have started had we not requested a different starting
LSN.

2. The nextlsn is <0:0:0:60864> which will be the LSN of the first log record that
the queue manager will write when it is next restarted.

3. The HeadExtentID is 1, indicating that the head of the log currently resides in
log file S0000001.LOG.

4. The first log record formatted is a Start Checkpoint log record. The
checkpoint spans a number of log records until the End CheckPoint record at
<0:0:0:46448>.

5. One of the records logged during checkpoint is the Transaction Participants
log record at <0:0:0:44594>. This details the resource managers that participate
in global transactions coordinated by the queue manager.

6. The Start Transaction log record at <0:0:0:52262> denotes the start of a
transaction. The XTranid shows a TranType of MQI, which indicates that it is a
local transaction including MQ updates only.

7. The next log record is a Put Message log record that records the persistent
MQPUT under the syncpoint that started the transaction. The MQPUT was
made to the queue Queue1 and the message data is logged as Persistent
message put under syncpoint. This message has been allocated a SpcIndex of
1, which will be matched to the later MQGET of this message.

8. The next log record at LSN <0:0:0:53458> is also a Put Message record. This
persistent message was put to a different queue, Queue2, but was not made
under syncpoint since the XTranid is NULL. It too has a SpcIndex of 1, which is
a unique identifier for this particular queue.

9. The next log record at LSN <0:0:0:54192> commits the message that was put
under syncpoint.

10. In log records <0:0:0:54408> and <0:0:0:54628> a new transaction is started by
an MQGET under syncpoint for queue Queue1. The SpcIndex in the Get
Message log record is 1 indicating that this was the same message that was put
to Queue1 in <0:0:0:52262>.

11. The next log record gets the message that was put to Queue2 by the other Put
Message log record.

LOG RECORD - LSN <0:0:0:60624>

HLG Header: lrecsize 240, version 1, rmid 0, eyecatcher HLRH

LogRecdType . . : ALM Stop Queue Manager (1028)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 220 LogRecdOwnr . . : 1024 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <0:0:0:0>
PrevLSN : <0:0:0:0>

Version : 1
StopDate . . . : 19970519 StopTime . . . : 10490868
SessionNumber . : 0 ForceFlag . . . : Quiesce

AMQ7702: DMPMQLOG command has finished successfully.

Figure 18. Example dmpmqlog output (Part 13 of 13)

Using dmpmqlog

Chapter 11. Recovery and restart 155

12. The MQGET under syncpoint has been committed as indicated by the Commit
Transaction log record at <0:0:0:55108>.

13. Finally an MQBEGIN is used to start a global transaction in the Start
Transaction log record at <0:0:0:55324>. The XTranid in this log record has a
TranType of XA.

14. The following Put Message records a persistent message put to Queue2. This
shares the same XTranid as the previous log record.

15. If a Transaction Prepared log record is written for this Xtranid then the
transaction as a whole must be committed. The absence of such a log record
can be taken as an indication that the transaction was rolled back. In this case
a Transaction Prepared log record is found at <0:0:0:56498>. This records the
queue manager itself as a participant with an RMId of zero. There are two
further participants, their RMIds of 1 and 2 can be matched with the previous
Transaction Participants log record.

16. During the commit phase the XA Transaction Manager component of the
queue manager does not log individual responses from the participants. The
log indicates only whether the queue manager updates were committed or
not. The Commit Transaction log record at <0:0:0:57206> indicates that the
message was indeed committed to Queue2.

17. The Transaction Forget log record at <0:0:0:57440> indicates that the commit
decision was also delivered to the other two resource managers. Any failure of
these resource managers to commit their updates will have been diagnosed in
the queue manager’s error logs.

Using dmpmqlog

156 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 12. Using the name service

The name service is an installable service that enables an application connected to
one queue manager to open what it thinks are local queues. These queues are
actually queues defined on another queue manager – on another machine – with
the SCOPE attribute set to CELL.

The application can perform all the operations permitted for remote queues on
queues opened in this way. The supplied implementation uses DCE (Distributed
Computing Environment), although you are free to write your own component
that does not use DCE.

To use the supplied name service component, you must define the name service
and its installed component to the queue manager. You do this by inserting the
appropriate stanza in the queue manager configuration file (qm.ini) file. See the
MQSeries Programmable System Management book for details. You will also need to
do some DCE configuration.

Using DCE to share queues on different queue managers
If your queue managers are located on nodes within a Distributed Computing
Environment (DCE) cell, you can configure them to share queues. Applications can
then connect to one queue manager and open a queue on another queue manager
on another node. To the application, this is transparent; it is not aware that the
queue actually resides on another queue manager. (Normally, the queue manager
rejects open requests from a local application if the queue does not exist on that
queue manager.)

Configuration tasks for shared queues
This section describes how you set up shared queues on queue managers that
reside on nodes that are within the DCE cell.

For each queue manager:
1. Configure the name service by adding the required name service stanza to the

queue manager configuration file. The contents of this stanza are described in
MQSeries Programmable System Management book. To invoke the name service,
you have to restart the queue manager.

2. Use the endmqm command to stop the queue manager if it is running.
3. Use the strmqm command to restart the queue manager.
4. Set up channels for messaging between queue managers; see “Preparing

channels and transmission queues for remote administration” on page 62.

© Copyright IBM Corp. 1994, 2001 157

For any queue that you want to be shared, specify the SCOPE attribute as CELL.
For example, use these MQSC commands:

or

The queue created or altered must belong to a queue manager on a node within
the DCE cell.

DCE configuration
To use the supplied name service component, you must have the OSF Distributed
Computing Environment (DCE) installed. This service enables applications that
connect to one queue manager to open queues that belong to another queue
manager in the same DCE cell.

An example DCL shell script, that allows the supplied name service to run, is
supplied in the mqs_examples:dcesetu.com.

DEFINE QLOCAL(GREY.PUBLIC.QUEUE) SCOPE(CELL)

ALTER QLOCAL(PINK.LOCAL.QUEUE) SCOPE(CELL)

Sharing queues

158 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 13. Configuring MQSeries

This chapter explains how to change the behavior of an individual queue manager,
or of a node, to suit your installation’s needs.

You change MQSeries configuration information by modifying the values specified
on a set of configuration attributes (or parameters) which govern MQSeries.

How you change this configuration information, and where MQSeries stores your
changes, is platform-specific. Users of MQSeries for Compaq OpenVMS change the
configuration information by editing the MQSeries configuration files.

This chapter:
v Describes the attributes you can use to modify MQSeries configuration

information in “Attributes for changing MQSeries configuration information” on
page 161.

v Describes the attributes you can use to modify queue manager configuration
information in “Changing queue manager configuration information” on page
166.

v Provides examples of mqs.ini and qm.ini files for MQSeries for Compaq
OpenVMS in “Example mqs.ini and qm.ini files” on page 173.

MQSeries configuration files
Users of MQSeries for Compaq OpenVMS modify MQSeries configuration
attributes within:
v An MQSeries configuration file (mqs.ini) to make changes to MQSeries on the

node as a whole. There is one mqs.ini file per node.
v A queue manager configuration file (qm.ini) to make changes to specific queue

managers. There is one qm.ini file for each queue manager on the node.

A configuration file (which may also be referred to as a stanza file or .ini file)
contains one or more stanzas, which are simply groups of lines in the file that
together have a common function or define part of a system, for example, log
functions, channel functions, and installable services.

Any changes you make to a configuration file will not take effect until the next
time the queue manager is started.

Editing configuration files
Before attempting to edit a configuration file, back it up so that you have a copy
you can revert to if the need arises!

You can edit configuration files either:
v Automatically, using commands that change the configuration of queue

managers on the node
v Manually, using a standard text editor

You can edit the default values in the MQSeries configuration files after
installation.

© Copyright IBM Corp. 1994, 2001 159

If you set an incorrect value on a configuration file attribute, the value is ignored
and an operator message is issued to indicate the problem. (The effect is the same
as missing out the attribute entirely.)

When you create a new queue manager, you should:
v Back up the MQSeries configuration file
v Back up the new queue manager configuration file

When do you need to edit a configuration file?
You may need to edit a configuration file if, for example:
v You lose a configuration file; recover from backup if possible.
v You need to move one or more queue managers to a new directory.
v You need to change your default queue manager; this could happen if you

accidentally delete the existing queue manager.
v You are advised to do so by your IBM Support Center.

Configuration file priorities
The attribute values of a configuration file are set according to the following
priorities:
v Parameters entered on the command line take precedence over values defined in

the configuration files
v Values defined in the qm.ini files take precedence over values defined in the

mqs.ini file.

Implementing changes to configuration files
If you edit a configuration file, the changes are not implemented immediately by
the queue manager. Changes made to the MQSeries configuration file are only
implemented when MQSeries is started. Changes made to a queue manager
configuration file are implemented when the queue manager is started. If the
queue manager is running when you make the changes, you must stop and then
restart the queue manager for any changes to be recognized by the system.

The MQSeries configuration file, mqs.ini
The MQSeries configuration file, mqs.ini, contains information relevant to all the
queue managers on the node. It is created automatically during installation. In
particular, the mqs.ini file is used to locate the data associated with each queue
manager.

The mqs.ini file is stored in the data directory by default, MQS_ROOT:[MQM].

The mqs.ini file contains:
v The names of the queue managers
v The name of the default queue manager
v The location of the files associated with each of them.

For more information on mqs.ini contents, see “Attributes for changing MQSeries
configuration information” on page 161.

Queue manager configuration files, qm.ini
A queue manager configuration file, qm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager. The qm.ini file is automatically created when the queue manager
with which it is associated is created.

Configuration files

160 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

A qm.ini file is held in the root of the directory tree occupied by the queue
manager.

For example, in MQSeries for Compaq OpenVMS, the path and the name for a
configuration file for a queue manager called QMNAME is:
MQS_ROOT:[MQM.QMGRS.QMNAME]QM.INI

Note: The queue manager name can be up to 48 characters in length. However,
this does not guarantee that the name is valid or unique. Therefore, a
directory name is generated based on the queue manager name. This
process is known as name transformation. For a description, see
“Understanding MQSeries file names” on page 19.

For more information about qm.ini, see “Changing queue manager configuration
information” on page 166.

Attributes for changing MQSeries configuration information
The following groups of attributes appear in mqs.ini:
v The AllQueueManagers stanza
v “The ClientExitPath stanza” on page 162
v “The DefaultQueueManager stanza” on page 162
v “The ExitProperties stanza” on page 163
v “The LogDefaults stanza” on page 163
v “The QueueManager stanza” on page 165

A sample mqs.ini is shown in “Example mqs.ini and qm.ini files” on page 173.

The AllQueueManagers stanza
The AllQueueManagers stanza can specify:
v The path to the qmgrs directory where the files associated with a queue

manager are stored
v The method for converting EBCDIC-format data to ASCII format

DefaultPrefix=directory_name
This attribute specifies the path to the qmgrs directory, below which the queue
manager data is kept.

If you change the default prefix for the queue manager, you must replicate the
directory structure that was created at installation time (see “Appendix C.
Directory structure” on page 299).

In particular, the qmgrs structure must be created. You must stop MQSeries
before changing the default prefix, and restart MQSeries only after the
structures have been moved to the new location and the default prefix has
been changed.

As an alternative to changing the default prefix, you can use the logical
MQSPREFIX to override the DefaultPrefix for the crtmqm command.

ConvEBCDICNewline=NL_TO_LF|TABLE|ISO
EBCDIC code pages contain a new line (NL) character that is not supported by
ASCII code pages; although some ISO variants of ASCII do contain an
equivalent.

Use the ConvEBCDICNewline attribute to specify the method MQSeries is to
use when converting the EBCDIC NL character into ASCII format.

Queue manager configuration file

Chapter 13. Configuring MQSeries 161

NL_TO_LF
Specify NL_TO_LF if you want the EBCDIC NL character (X'15') converted
to the ASCII line feed character, LF (X'0A'), for all EBCDIC to ASCII
conversions.

NL_TO_LF is the default.

TABLE
Specify TABLE if you want the EBCDIC NL character converted according
to the conversion tables used on your platform for all EBCDIC to ASCII
conversions.

Note that the effect of this type of conversion may vary from platform to
platform and from language to language; while on the same platform, the
behavior may vary if you use different CCSIDs.

ISO
Specify ISO if you want:
v ISO CCSIDs to be converted using the TABLE method
v All other CCSIDs to be converted using the NL_TO_LF method.

Possible ISO CCSIDs are shown in Table 7.

Table 7. List of possible ISO CCSIDs

CCSID Code Set

819 ISO8859-1

912 ISO8859-2

915 ISO8859-5

1089 ISO8859-6

813 ISO8859-7

916 ISO8859-8

920 ISO8859-9

1051 roman8

If the ASCII CCSID is not an ISO subset, ConvEBCDICNewline defaults to
NL_TO_LF.

For more information about data conversion, see the MQSeries Application
Programming Guide or “Data conversion” on page 71.

The ClientExitPath stanza
The ClientExitPath stanza specifies the default path for location of the channel
exit on the client.

ExitsDefaultPath=defaultprefix
The ExitsDefaultPath attribute specifies the default prefix for the platform.

The DefaultQueueManager stanza
The DefaultQueueManager stanza specifies the default queue manager for the node.

Name=default_queue_manager
The default queue manager processes any commands for which a queue
manager name is not explicitly specified. The DefaultQueueManager attribute is
automatically updated if you create a new default queue manager. If you

Changing MQSeries configuration file

162 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

inadvertently create a new default queue manager and then want to revert to
the original, you must alter the DefaultQueueManager attribute manually.

The ExitProperties stanza
The ExitProperties stanza specifies configuration options used by queue manager
exit programs.

CLWLMode=SAFE|FAST
The cluster workload exit, CLWL, allows you to specify which cluster queue in
the cluster is to be opened in response to an MQAPI call (MQOPEN or
MQPUT and so on). The CLWL exit runs either in FAST mode or SAFE mode
depending on the value you specify on the CLWLMode attribute. If the
CLWLMode attribute is not specified, the cluster workload exit runs in SAFE
mode.

SAFE
The SAFE option specifies that the CLWL exit is to run in a separate
process to the queue manager. This is the default.

If a problem arises with the user-written CLWL exit when running in SAFE
mode, the following happens:
v The CLWL server process (amqzlwa0) fails
v The queue manager restarts the CLWL server process
v The error is reported to you in the error log. If an MQAPI call is in

progress, you receive notification in the form of a bad return code.

The integrity of the queue manager is preserved.

Note: There is an overhead associated with running the CLWL exit in a
separate process, which can affect performance.

FAST
Specify FAST if you want the cluster exit to run inline in the queue
manager process.

Specifying this option improves performance by avoiding the overheads
associated with running in SAFE mode, but does so at the expense of
queue manager integrity. Therefore, you should only run the CLWL exit in
FAST mode if you are convinced that there are no problems with your
CLWL exit, and you are particularly concerned about performance
overheads.

If a problem arises when the CLWL exit is running in FAST mode, the
queue manager will fail and you run the risk of the integrity of the queue
manager being compromised.

The LogDefaults stanza
The LogDefaults stanza specifies the default log attributes for the node. The log
attributes are used as default values when you create a queue manager, but can be
overridden if you specify the log attributes on the crtmqm command. See “crtmqm
(Create queue manager)” on page 231 for details of this command.

Once a queue manager has been created, the log attributes for that queue manager
are read from its log stanza in the qm.ini file.

Changing MQSeries configuration file

Chapter 13. Configuring MQSeries 163

The DefaultPrefix attribute (in the AllQueueManagers stanza) and the LogPath
attribute in the LogDefaults stanza allow for the queue manager and its log to be
on different physical drives. This is the recommended method, although, by
default, they are on the same drive.

For information about calculating log sizes, see “Calculating size of log” on
page 130.

Note: The limits given in the following parameter list are limits set by MQSeries.
Operating system limits may reduce the maximum possible log size.

LogPrimaryFiles=3|2-62
Primary log files are the log files allocated during creation for future use.

The minimum number of primary log files you can have is 2 and the
maximum is 62. The default is 3.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

This value is overwritten by the -lp parameter of the crtmqm command when
the queue manager is created.

LogSecondaryFiles=2|1-61
Secondary log files are the log files allocated when the primary files are
exhausted.

The minimum number of secondary log files is 1 and the maximum is 61. The
default number is 2.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

This value is overwritten by the -ls parameter of the crtmqm command when
the queue manager is created.

LogFilePages=number
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

For MQSeries for Compaq OpenVMS, the default number of log file pages is
1024, giving a log file size of 4 MB. The minimum number of log file pages is
64 and the maximum is 16 384.

This value is overwritten by the -lf parameter of the crtmqm command when
the queue manager is created.

LogType=CIRCULAR|LINEAR
The LogType attribute is used to define the type to be used. The default is
CIRCULAR.

CIRCULAR
Set this value if you want to start restart recovery using the log to roll back
transactions that were in progress when the system stopped.

See “Circular logging” on page 126 for a fuller explanation of circular
logging.

LINEAR
Set this value if you want both restart recovery and media or forward
recovery (creating lost or damaged data by replaying the contents of the
log).

See “Linear logging” on page 126 for a fuller explanation of linear logging.

Changing MQSeries configuration file

164 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

If you want to change the default logtype, you can edit the LogType attribute in
the mqs.ini file. Alternatively, you can override the default by specifying linear
logging using the -ll parameter on the crtmqm command. You cannot change
the logging method after a queue manager has been created.

LogBufferPages=17|4-32
The amount of memory allocated to buffer records for writing is configurable.
The size of the buffers is specified in units of 4 KB pages.

The minimum number of buffer pages is 4 and the maximum is 32. Larger
buffers lead to higher throughput, especially for larger messages.

The default number of buffer pages is 17, equating to 68 KB.

The value is examined when the queue manager is created or started, and may
be increased or decreased at either of these times. However, a change in the
value is not effective until the queue manager is restarted.

LogDefaultPath=directory_name
You can specify the directory in which the log files for a queue manager reside.
The directory should exist on a local device to which the queue manager can
write and, preferably, should be on a different drive from the message queues.
Specifying a different drive gives added protection in case of system failure.

The default for MQSeries for Compaq OpenVMS is MQS_ROOT:[MQM.LOG].

Alternatively, you can specify the name of a directory on the crtmqm
command using the -ld flag. When a queue manager is created, a directory is
also created under the queue manager directory, and this is used to hold the
log files. The name of this directory is based on the queue manager name. This
ensures that the Log File Path is unique, and also that it conforms to any
limitations on directory name lengths.

If you do not specify -ld on the crtmqm command, the value of the
LogDefaultPath attribute in the mqs.ini file is used by default and this is
MQS_ROOT:[MQM.LOG].

The queue manager name is appended to the log file directory name to ensure
that multiple queue managers use different log directories.

When the queue manager has been created, a LogPath value is created in the
Log stanza in the qm.ini file giving the complete directory name for the queue
manager’s log files. This value is used to locate the log files when the queue
manager is started or deleted.

The QueueManager stanza
There is one QueueManager stanza for every queue manager. These attributes
specify the queue manager name, and the name of the directory containing the
files associated with that queue manager. The name of the directory is based on the
queue manager name, but is transformed if the queue manager name is not a valid
file name.

See “Understanding MQSeries file names” on page 19 for more information about
name transformation.

Name=queue_manager_name
This attribute specifies the name of the queue manager.

Prefix=prefix
This attribute specifies where the queue manager files are stored. By default,

Changing MQSeries configuration file

Chapter 13. Configuring MQSeries 165

this is the same as the value specified on the DefaultPrefix attribute of the
AllQueueManager stanza in the mqs.ini file.

Directory=name
This attribute specifies the name of the subdirectory where the queue manager
files are stored. This will normally be under MQS_ROOT:[MQM.QMGRS] unless an
alternative prefix value has been specified. This name is based on the queue
manager name but can be transformed if there is a duplicate name, or if the
queue manager name is not a valid file name.

Changing queue manager configuration information
The following groups of attributes can appear in a qm.ini file particular to a given
queue manager, or used to override values set in mqs.ini.
v “The Service stanza”
v “The ServiceComponent stanza” on page 167
v “The Log stanza” on page 167
v “The XAResourceManager stanza” on page 169
v “The Channels stanza” on page 170
v “The LU62 and TCP stanzas” on page 172
v “The ExitPath stanza” on page 173

The Service stanza
The Service stanza specifies the name of an installable service, and the number of
entry points to that service. There must be one Service stanza for every service
used.

For each component within a service, there must be a ServiceComponent stanza,
which identifies the name and path of the module containing the code for that
component. See The ServiceComponent stanza for more information.

Name=AuthorizationService|NameService
Specifies the name of the required service.

AuthorizationService
For MQSeries, the Authorization Service component is known as the Object
Authority Manager, or OAM.

In MQSeries for Compaq OpenVMS, the AuthorizationService stanza and
its associated ServiceComponent stanza are added automatically when the
queue manager is created, but can be overridden through the use of
mqsnoaut, by setting the mqsnoaut logical before creating the queue
manager. (See “Disabling the object authority manager” on page 76 for
more information.) Any other ServiceComponent stanzas must be added
manually.

NameService
The NameService stanza must be added to the qm.ini file manually to
enable the supplied name service.

EntryPoints=number-of-entries
Specifies the number of entry points defined for the service. This includes the
initialization and termination entry points.

For more information about installable services and components, see the MQSeries
Programmable System Management book.

Changing MQSeries configuration file

166 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

For more information about security services in general, see “Chapter 7. Protecting
MQSeries objects” on page 73.

The ServiceComponent stanza
The ServiceComponent stanza identifies the name and path of the module
containing the code for that component.

There can be more than one ServiceComponent stanza for each service, but each
ServiceComponent stanza must match the corresponding Service stanza.

In MQSeries for Compaq OpenVMS, the authorization service stanza is present by
default, and the associated component, the OAM, is active.

Service=service_name
Specifies the name of the required service. This name must match the value
specified on the Name attribute of the Service stanza.

Name=component_name
Specifies the descriptive name of the service component. This name must be
unique, and must contain only those characters that are valid for the names of
MQSeries objects (for example, queue names). This name occurs in operator
messages generated by the service. It is recommended, therefore, that this
name begins with a company trademark or similar distinguishing string.

Module=module_name
Specifies the name of the module to contain the code for this component.

Note: Specify a full path name.

ComponentDataSize=size
Specifies the size, in bytes, of the component data area passed to the
component on each call. Specify zero if no component data is required.

For more information about installable services and components, see the MQSeries
Programmable System Management book.

The Log stanza
The Log stanza specifies the log attributes for a particular queue manager. By
default, these are inherited from the settings specified in the LogDefaults stanza in
the mqs.ini file when the queue manager is created, unless overridden by specific
parameters in the crtmqm command. For more information, see both “The
LogDefaults stanza” on page 163 and “crtmqm (Create queue manager)” on
page 231.

Only change attributes of this stanza if this particular queue manager needs to be
configured differently from your other ones.

The values specified on the attributes in the qm.ini file are read when the queue
manager is started. The file is created when the queue manager is created.

For information about calculating log sizes, see “Calculating size of log” on
page 130.

Note: The limits given in the following parameter list are limits set by MQSeries.
Operating system limits may reduce the maximum possible log size.

Changing MQSeries configuration file

Chapter 13. Configuring MQSeries 167

LogPrimaryFiles=3|2-62
Primary log files are the log files allocated during creation for future use.

The minimum number of primary log files you can have is 2 and the
maximum is 62. The default is 3.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

The value is examined when the queue manager is created or started. You can
change it after the queue manager has been created. However, a change in the
value is not effective until the queue manager is restarted, and the effect may
not be immediate.

LogSecondaryFiles=2|1-61
Secondary log files are the log files allocated when the primary files are
exhausted.

The minimum number of secondary log files is 1 and the maximum is 61. The
default number is 2.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

The value is examined when the queue manager is started. You can change this
value, but changes do not become effective until the queue manager is
restarted, and even then the effect may not be immediate.

LogFilePages=number
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

In MQSeries for Compaq OpenVMS, the default number of log file pages is
1024, giving a log file size of 4 MB. The minimum number of log file pages is
64 and the maximum is 16 384.

Note: The size of the log files specified during queue manager creation cannot
be changed for an existing queue manager.

LogType=CIRCULAR|LINEAR
The LogType attribute defines the type of logging to be used by the queue
manager. However, you cannot change the type of logging to be used once the
queue manager has been created. Refer to the description of the LogType
attribute in “The LogDefaults stanza” on page 163 for information about
creating a queue manager with the type of logging you require.

CIRCULAR
Set this value if you want to start restart recovery using the log to roll back
transactions that were in progress when the system stopped.

See “Circular logging” on page 126 for a fuller explanation of circular
logging.

LINEAR
Set this value if you want both restart recovery and media or forward
recovery (creating lost or damaged data by replaying the contents of the
log).

See “Linear logging” on page 126 for a fuller explanation of linear logging.

LogBufferPages=17|4-32
The amount of memory allocated to buffer records for writing is configurable.
The size of the buffers is specified in units of 4 KB pages.

Changing MQSeries configuration file

168 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

The minimum number of buffer pages is 4 and the maximum is 32. Larger
buffers lead to higher throughput, especially for larger messages.

The default number of buffer pages is 17, equating to 68 KB.

The value is examined when the queue manager is started, and may be
increased or decreased at either of these times. However, a change in the value
is not effective until the queue manager is restarted.

LogPath=directory_name
You can specify the directory in which the log files for a queue manager reside.
The directory should exist on a local device to which the queue manager can
write and, preferably, should be on a different drive from the message queues.
Specifying a different drive gives added protection in case of system failure.

The default is MQS_ROOT:[MQM.LOG].

You can specify the name of a directory on the crtmqm command using the -ld
flag. When a queue manager is created, a directory is also created under the
queue manager directory, and this is used to hold the log files. The name of
this directory is based on the queue manager name. This ensures that the log
file path is unique, and also that it conforms to any limitations on directory
name lengths.

If you do not specify -ld on the crtmqm command, the value of the
LogDefaultPath attribute in the mqs.ini file is used.

Note: In MQSeries for Compaq OpenVMS, user ID mqm and group mqm
must have full authorities to the log files. If you change the locations of
these files, you must give these authorities yourself. This is not required
if the log files are in the default locations supplied with the product.

The XAResourceManager stanza
The XAResourceManager stanza specifies the resource managers to be involved in
global units of work coordinated by the queue manager.

One XAResourceManager stanza is required in qm.ini for each instance of a resource
manager participating in global units of work; no default values are supplied via
mqs.ini.

See “Database coordination” on page 112 for more information about adding
XAResourceManager attributes to qm.ini.

Name=name (mandatory)
This attribute identifies the resource manager instance.

The Name value can be up to 31 characters in length and must be unique within
qm.ini. You can use the name of the resource manager as defined in its
XA-switch structure. However, if you are using more than one instance of the
same resource manager, you must construct a unique name for each instance.
You could ensure uniqueness by including the name of the database in the
Name string, for example.

MQSeries uses the Name value in messages and in output from the dspmqtrn
command.

You are recommended not to change the name of a resource manager instance,
or to delete its entry from qm.ini once the associated queue manager has
started and the resource-manager name is in effect.

Changing MQSeries configuration file

Chapter 13. Configuring MQSeries 169

SwitchFile=name (mandatory)
This attribute specifies the fully-qualified name of the load file containing the
resource manager’s XA switch structure.

XAOpenString=string (optional)
This attribute specifies the string of data to be passed to the resource
manager’s xa_open entry point. The contents of the string depend on the
resource manager itself. For example, the string could identify the database
that this instance of the resource manager is to access. For more information
about defining this attribute, see “Adding XAResourceManager configuration
information for Oracle” on page 117 and consult your resource manager
documentation for the appropriate string.

XACloseString=string (optional)
This attribute specifies the string of data to be passed to the resource
manager’s xa_close entry point. The contents of the string depend on the
resource manager itself. For more information about defining this attribute,
see“Adding XAResourceManager configuration information for Oracle” on
page 117 and consult your database documentation for the appropriate string.

ThreadOfControl=THREAD|PROCESS
The value set on the ThreadOfControl attribute is used by the queue manager
for serialization purposes when it needs to call the resource manager from one
of its own multithreaded processes.

THREAD
Means that the resource manager is fully “thread aware”. In a
multithreaded MQSeries process, XA function calls can be made to the
external resource manager from multiple threads at the same time.

PROCESS
Means that the resource manager is not “thread safe”. In a multithreaded
MQSeries process, only one XA function call at a time can be made to the
resource manager.

The ThreadOfControl entry does not apply to XA function calls issued by the
queue manager in a multithreaded application process. In general, an
application that has concurrent units of work on different threads requires this
mode of operation to be supported by each of the resource managers.

The Channels stanza
The Channels stanza contains information about the channels.

MaxChannels=100|number
This attribute specifies the maximum number of channels allowed. The default
is 100.

MaxActiveChannels=MaxChannels_value
This attribute specifies the maximum number of channels allowed to be active
at any time. The default is the value specified on the MaxChannels attribute.

MaxInitiators=3|number
This attribute specifies the maximum number of initiators.

MQIBINDTYPE=FASTPATH|STANDARD
This attribute specifies the binding for applications.

FASTPATH
Channels connect using MQCONNX FASTPATH. That is, there is no agent
process.

Changing MQSeries configuration file

170 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

STANDARD
Channels connect using STANDARD.

AdoptNewMCA=NO|SVR|SDR|RCVR|CLUSRCVR|ALL|FASTPATH
If MQSeries receives a request to start a channel but finds that an amqcrsta
process already exists for the same channel, the existing process must be
stopped before the new one can start. The AdoptNewMCA attribute allows you to
control the termination of an existing process and the startup of a new one for
a specified channel type.

If you specify the AdoptNewMCA attribute for a given channel type but the new
channel fails to start because the channel is already running:
1. The new channel tries to stop the previous one by politely inviting it to

end.
2. If the previous channel server does not respond to this invitation by the

time the AdoptNewMCATimeout wait interval expires, the process (or the
thread) for the previous channel server is killed.

3. If the previous channel server has not ended after step 2, and after the
AdoptNewMCATimeout wait interval expires for a second time, MQSeries
ends the channel with a “CHANNEL IN USE” error.

You specify one or more values, separated by commas or blanks, from the
following list:
NO The AdoptNewMCA feature is not required. This is the default.
SVR Adopt server channels
SDR Adopt sender channels
RCVR Adopt receiver channels
CLUSRCVR

Adopt cluster receiver channels
ALL Adopt all channel types, except for FASTPATH channels
FASTPATH

Adopt the channel if it is a FASTPATH channel. This happens only if
the appropriate channel type is also specified, for example,
AdoptNewMCA=RCVR,SVR,FASTPATH

Attention!
The AdoptNewMCA attribute may behave in an unpredictable
fashion with FASTPATH channels because of the internal design
of the queue manager. Therefore exercise great caution when
enabling the AdoptNewMCA attribute for FASTPATH channels.

AdoptNewMCATimeout=60|1—3600
This attribute specifies the amount of time, in seconds, that the new process
should wait for the old process to end. Specify a value, in seconds, in the
range 1—3600. The default value is 60.

AdoptNewMCACheck=QM|ADDRESS|NAME|ALL
The AdoptNewMCACheck attribute allows you to specify the type checking
required when enabling the AdoptNewMCA attribute. It is important for you to
perform all three of the following checks, if possible, to protect your channels
from being, inadvertently or maliciously, shut down. At the very least check
that the channel names match.

Changing MQSeries configuration file

Chapter 13. Configuring MQSeries 171

Specify one or more values, separated by commas or blanks, from the
following:
QM This means that listener process should check that the queue manager

names match.
ADDRESS

This means that the listener process should check the communications
address. For example, the TCP/IP address.

NAME
This means that the listener process should check that the channel
names match.

ALL You want the listener process to check for matching queue manager
names, the communications address, and for matching channel names.

AdoptNewMCACheck=NAME,ADDRESS is the default for FAP1, FAP2, and FAP3,
while AdoptNewMCACheck=NAME,ADDRESS,QM is the default for FAP4 and later.

The LU62 and TCP stanzas
These stanzas specify network protocol configuration parameters. They override
the default attributes for channels.

Note: Only attributes representing changes to the default values need to be
specified.

LU62
The following attributes can be specified:

TPName
This attribute specifies the TP name to start on the remote site.

LocalLU
This is the name of the logical unit to use on local systems.

TCP
The following attributes can be specified:

Port=1414|port_number
This attribute specifies the default port number, in decimal notation, for
TCP/IP sessions. The “well known” port number for MQSeries is 1414.

KeepAlive=YES|NO
Use this attribute to switch the KeepAlive function on or off.
KeepAlive=YES causes TCP/IP to check periodically that the other end of
the connection is still available. If it is not, the channel is closed.

ListenerBacklog=number
When receiving on TCP/IP, a maximum number of outstanding connection
requests is set. This can be considered to be a backlog of requests waiting
on the TCP/IP port for the listener to accept the request. The default
listener backlog values are shown in Table 8.

Table 8. Default outstanding connection requests (TCP)

Platform Default ListenerBacklog value

OS/390 255

OS/2 Warp 10

Windows NT Server 100

Windows NT Workstation 5

AS/400 255

Changing MQSeries configuration file

172 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Table 8. Default outstanding connection requests (TCP) (continued)

Platform Default ListenerBacklog value

Sun Solaris 100

HP-UX 20

AIX V4.2 or later 100

AIX V4.1 or earlier 10

All other platforms 5

If the backlog reaches the values shown in Table 8 on page 172, the TCP/IP
connection is rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state
and retrying the connection at a later time.

For client connections, the client receives an
MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
should retry the connection at a later time.

The ListenerBacklog attribute allows you to override the default number
of outstanding requests for the TCP/IP listener.

Note: Some operating systems support a larger value than the default
shown. If necessary, this can be used to avoid reaching the
connection limit.

The ExitPath stanza
ExitDefaultPath=string

The ExitDefaultPath attribute specifies the location of:
v Channel exits for clients
v Channel exits and data conversion exits for servers

The exit path is read from the ClientExitPath stanza in the mqs.ini file for
clients and from this (ExitPath) stanza for servers.

Example mqs.ini and qm.ini files
Figure 19 on page 174 shows an example of an mqs.ini file in MQSeries for
Compaq OpenVMS.

Changing MQSeries configuration file

Chapter 13. Configuring MQSeries 173

Figure 20 on page 175 shows how groups of attributes might be arranged in a
queue manager configuration file in MQSeries for Compaq OpenVMS.

#***#
#* Module Name: mqs.ini *#
#* Type : MQSeries Configuration File *#
#* Function : Define MQSeries resources for the node *#
#* *#
#***#
#* Notes : *#
#* 1) This is an example MQSeries configuration file *#
#* *#
#***#
AllQueueManagers:

#**#
#* The path to the qmgrs directory, below which queue manager data *#
#* is stored *#
#**#
DefaultPrefix=mqs_root:[mqm]

ClientExitPath:
ExitsDefaultPath=mqs_root:[mqm.exits]

LogDefaults:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=mqs_root:[mqm.log]

QueueManager:
Name=saturn.queue.manager
Prefix=mqs_root:[mqm]
Directory=saturn$queue$manager

DefaultQueueManager:
Name=saturn.queue.manager

QueueManager:
Name=pluto.queue.manager
Prefix=mqs_root:[mqm]
Directory=pluto$queue$manager

Figure 19. Example of an MQSeries configuration file for MQSeries for Compaq OpenVMS systems

Changing MQSeries configuration file

174 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Notes:

MQSeries on the node is using the default locations for queue managers and for
the logs.

#***#
#* Module Name: qm.ini *#
#* Type : MQSeries queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#* *#
#***#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#
#* *#
#***#
ExitPath:

ExitsDefaultPath=mqm_root:[mqm.exits]

Service:
Name=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.UNIX.auth.service
Module=amqzfu
ComponentDataSize=0

Service:
Name=NameService
EntryPoints=5

ServiceComponent:
Service=NameService
Name=MQSeries.DCE.name.service
Module=amqzfa
ComponentDataSize=0

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogPath=mqm_root:[mqm.log.saturn$queue$manager]

XAResourceManager:
Name=Oracle Resource Manager Bank
SwitchFile=sys$share:oraswit0.exe
XAOpenString=MQBankDB
XACloseString=
ThreadOfControl=PROCESS

CHANNELS:
MaxChannels = 20 ; Maximum number of Channels allowed.

; Default is 100.
MaxActiveChannels = 10 ; Maximum number of Channels allowed to be

; active at any time. The default is the
; value of MaxChannels.

TCP: ; TCP/IP entries.
KeepAlive = Yes ; Switch KeepAlive on

Figure 20. Example queue manager configuration file for MQSeries for Compaq OpenVMS

Changing MQSeries configuration file

Chapter 13. Configuring MQSeries 175

The queue manager saturn.queue.manager is the default queue manager for the
node. The directory for files associated with this queue manager has been
automatically transformed into a valid file name for the OpenVMS file system.

Because the MQSeries configuration file is used to locate the data associated with
queue managers, a nonexistent or incorrect configuration file can cause some or all
MQSeries commands to fail. Also, applications cannot connect to a queue manager
that is not defined in the MQSeries configuration file.

Changing MQSeries configuration file

176 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 14. Problem determination

This chapter suggests some ways to deal with the problems you may have using
MQSeries for Compaq OpenVMS.

Not all problems can be solved immediately; for example, performance problems
may be caused by the limitations of your hardware. Also, if you think that the
cause of the problem is in the MQSeries code, contact your IBM® Support Center.
This chapter contains these sections:
v “Preliminary checks”
v “Common programming errors” on page 180
v “What to do next” on page 180
v “Application design considerations” on page 183
v “Incorrect output” on page 184
v “Error logs” on page 187
v “Dead-letter queues” on page 191
v “Configuration files and problem determination” on page 191
v “Using MQSeries trace” on page 191
v “First failure support technology (FFST)” on page 192
v “Problem determination with clients” on page 197

Preliminary checks
Problems with MQSeries typically arise from one of the following components:
v MQSeries
v The network
v The application
v The underlying operating system.

The sections that follow provide some basic questions that you should consider
while investigating the problem.

Has MQSeries run successfully before?
If MQSeries has not run successfully before, it may not have been set up correctly.
See MQSeries for Compaq OpenVMS Alpha, Quick Beginnings, Version 5.1 to check
that MQSeries has been installed and set up correctly.

Are there any error messages?
MQSeries uses error logs to capture messages concerning the operation of
MQSeries itself, any queue managers that you start, and error data coming from
the channels that are in use. Check the error logs to see if any messages have been
recorded that are associated with your problem.

See “Error logs” on page 187 for information about the contents of the error logs,
and their locations.

Are there any return codes explaining the problem?
If your application gets a return code indicating that a Message Queue Interface
(MQI) call has failed, refer to the MQSeries Application Programming Reference book
for a description of that return code.

© Copyright IBM Corp. 1994, 2001 177

Can you reproduce the problem?
If you can reproduce the problem, consider the conditions under which it is
reproduced:
v Is it caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

v Is it caused by a program? Does it fail on all MQSeries systems and all queue
managers, or only on some?

v Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application to see if it is in error.

Have any changes been made since the last successful run?
When you are considering changes that might recently have been made, think
about the MQSeries system, and also about the other programs it interfaces with,
the hardware, and any new applications. Consider also the possibility that a new
application that you are not aware of might have been run on the system.
v Have you changed, added, or deleted any queue definitions?
v Have you changed or added any channel definitions? Changes may have been

made to either MQSeries channel definitions or any underlying communications
definitions required by your application.

v Do your applications deal with return codes that they might get as a result of
any changes you have made?

Has the application run successfully before?
If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Before you answer Yes to this question, consider the following:
v Have any changes been made to the application since it last ran successfully?

If so, it is likely that the error lies somewhere in the new or modified part of the
application. Take a look at the changes and see if you can find an obvious
reason for the problem. Is it possible to retry using a back level of the
application?

v Have all the functions of the application been fully exercised before?
Could it be that the problem occurred when part of the application that had
never been invoked before was used for the first time? If so, it is likely that the
error lies in that part of the application. Try to find out what the application was
doing when it failed, and check the source code in that part of the program for
errors.
If a program has been run successfully on many previous occasions, check the
current queue status, and the files that were being processed when the error
occurred. It is possible that they contain some unusual data value that causes a
rarely used path in the program to be invoked.

v Does the application check all return codes?
Has your MQSeries system been changed, perhaps in a minor way, such that
your application does not check the return codes it receives as a result of the
change. For example, does your application assume that the queues it accesses
can be shared? If a queue has been redefined as exclusive, can your application
deal with return codes indicating that it can no longer access that queue?

Preliminary checks

178 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v Does the application run on other MQSeries systems?
Could it be that there is something different about the way that this MQSeries
system is set up which is causing the problem? For example, have the queues
been defined with the same message length or priority?

If the application has not run successfully before
If your application has not yet run successfully, you need to examine it carefully to
see if you can find any errors.

Before you look at the code, and depending upon which programming language
the code is written in, examine the output from the translator, or the compiler and
linkage editor, if applicable, to see if any errors have been reported.

If your application fails to translate, compile, or link-edit into the load library, it
will also fail to run if you attempt to invoke it. See the MQSeries Application
Programming Reference book for information about building your application.

If the documentation shows that each of these steps was accomplished without
error, you should consider the coding logic of the application. Do the symptoms of
the problem indicate the function that is failing and, therefore, the piece of code in
error? See “Common programming errors” on page 180 for some examples of
common errors that cause problems with MQSeries applications.

Does the problem affect specific parts of the network?
You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of MQSeries has been started.

Check that messages are reaching the transmission queue, and check the local
queue definition of the transmission queue and any remote queues.

Have you made any network-related changes, or changed any MQSeries
definitions, that might account for the problem?

Does the problem occur at specific times of the day?
If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at mid-morning and
mid-afternoon, so these are the times when load-dependent problems are most
likely to occur. (If your MQSeries network extends across more than one time zone,
peak system loading might seem to occur at some other time of day.)

Is the problem intermittent?
An intermittent problem could be caused by failing to take into account the fact
that processes can run independently of each other. For example, a program may
issue an MQGET call, without specifying a wait option, before an earlier process
has completed. An intermittent problem may also be seen if your application tries
to get a message from a queue while the call that put the message is in-doubt (that
is, before it has been committed or backed out).

Preliminary checks

Chapter 14. Problem determination 179

Have you applied any service updates?
If a service update has been applied to MQSeries, check that the update action
completed successfully and that no error message was produced.
v Did the update have any special instructions?
v Was any test run to verify that the update had been applied correctly and

completely?
v Does the problem still exist if MQSeries is restored to the previous service level?
v If the installation was successful, check with the IBM Support Center for any

patch error.
v If a patch has been applied to any other program, consider the effect it might

have on the way MQSeries interfaces with it.

Do you need to apply an updates?
MQSeries depends upon the underlying operating system (OpenVMS) and various
networking products, such as TCP/IP. Check with the appropriate vendor to
ensure that you have applied all necessary service updates for these products.

Common programming errors
The errors in the following list illustrate the most common causes of problems
encountered while running MQSeries programs. You should consider the
possibility that the problem with your MQSeries system could be caused by one or
more of these errors:
v Assuming that queues can be shared, when they are in fact exclusive.
v Passing incorrect parameters in an MQI call.
v Passing insufficient parameters in an MQI call. This may mean that MQI cannot

set up completion and reason codes for your application to process.
v Failing to check return codes from MQI requests.
v Passing variables with incorrect lengths specified.
v Passing parameters in the wrong order.
v Failing to initialize MsgId and CorrelId correctly.

What to do next
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the MQSeries library (see the Bibliography) and in the libraries of other licensed
programs.

If you have not yet found the cause, you must start to look at the problem in
greater detail.

The purpose of this section is to help you identify the cause of your problem if the
preliminary checks have not enabled you to find it.

When you have established that no changes have been made to your system, and
that there are no problems with your application programs, choose the option that
best describes the symptoms of your problem.
v “Have you obtained incorrect output?” on page 181
v “Have you failed to receive a response from a PCF command?” on page 181
v “Does the problem affect only remote queues?” on page 182

Preliminary checks

180 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

If none of these symptoms describe your problem, consider whether it might have
been caused by another component of your system.

Have you obtained incorrect output?
In this book, “incorrect output” refers to your application:
v Not receiving a message that it was expecting.
v Receiving a message containing unexpected or corrupted information.
v Receiving a message that it was not expecting, for example, one that was

destined for a different application.

In all cases, check that any queue or queue manager aliases that your applications
are using are correctly specified and accommodate any changes that have been
made to your network.

If an MQSeries error message is generated, all of which are prefixed with the
letters “AMQ”, you should look in the error log. See “Error logs” on page 187 for
further information.

Have you failed to receive a response from a PCF command?
If you have issued a command but you have not received a response, consider the
following questions:
v Is the command server running?

Work with the dspmqcsv command to check the status of the command server.
– If the response to this command indicates that the command server is not

running, use the strmqcsv command to start it.
– If the response to the command indicates that the

SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for MQGET requests,
enable the queue for MQGET requests.

v Has a reply been sent to the dead-letter queue?
The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the MQSeries Application Programming Reference book
for information about the dead-letter queue header structure (MQDLH).
If the dead-letter queue contains messages, you can use the provided browse
sample application (amqsbcg) to browse the messages using the MQGET call.
The sample application steps through all the messages on a named queue for a
named queue manager, displaying both the message descriptor and the message
context fields for all the messages on the named queue.

v Has a message been sent to the error log?
See “Error logs” on page 187 for further information.

v Are the queues enabled for put and get operations?
v Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See the MQSeries
Application Programming Reference book for information about the WaitInterval
field, and completion and reason codes from MQGET.)

v If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to take a syncpoint?
Unless you have specifically excluded your request message from syncpoint, you
need to take a syncpoint before attempting to receive reply messages.

What next

Chapter 14. Problem determination 181

v Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

v Are you using the CorrelId and MsgId fields correctly?
Set the values of MsgId and CorrelId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with either a queue
manager or the whole of the MQSeries system. First try stopping individual queue
managers to try and isolate a failing queue manager. If this does not reveal the
problem, try stopping and restarting MQSeries, responding to any messages that
are produced in the error log.

If the problem still occurs after restart, contact your IBM Support Center for help.

Are some of your queues failing?
If you suspect that the problem occurs with only a subset of queues, check the
local queues that you think are having problems:
1. Display the information about each queue. You can use the MQSC command

DISPLAY QUEUE to display the information.
2. Use the data displayed to do the following checks:

v If CURDEPTH is at MAXDEPTH, this indicates that the queue is not being
processed. Check that all applications are running normally.

v If CURDEPTH is not at MAXDEPTH, check the following queue attributes to
ensure that they are correct:
– If triggering is being used:

- Is the trigger monitor running?
- Is the trigger depth too great? That is, does it generate a trigger event

often enough?
- Is the process name correct?
- Is the process available and operational?

– Can the queue be shared? If not, another application could already have it
open for input.

– Is the queue enabled appropriately for GET and PUT?
v If there are no application processes getting messages from the queue,

determine why this is so. It could be because the applications need to be
started, a connection has been disrupted, or the MQOPEN call has failed for
some reason.
Check the queue attributes IPPROCS and OPPROCS. These attributes
indicate whether the queue has been opened for input and output. If a value
is zero, it indicates that no operations of that type can occur. Note that the
values may have changed and that the queue was open but is now closed.
You need to check the status at the time you expect to put or get a message.

If you are unable to solve the problem, contact your IBM Support Center for help.

Does the problem affect only remote queues?
If the problem affects only remote queues, check the following:
v Check that required channels have been started and are triggerable, and that any

required initiators are running.

What next

182 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v Check that the programs that should be putting messages to the remote queues
have not reported problems.

v If you use triggering to start the distributed queuing process, check that the
transmission queue has triggering set on. Also, check that the channel initiator is
running.

v Check the error logs for messages indicating channel errors or problems.
v If necessary, start the channel manually. See the MQSeries Intercommunication

book for information about how to do this.

See the MQSeries Intercommunication book for information about how to define
channels.

Application design considerations
There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making MQSeries calls are discussed in the following sections.

For more information about application design, see the MQSeries Application
Programming Guide.

Effect of message length
Although MQSeries allows messages to hold up to 100MB of data, the amount of
data in a message affects the performance of the application that processes the
message. To achieve the best performance from your application, you should send
only the essential data in a message; for example, in a request to debit a bank
account, the only information that may need to be passed from the client to the
server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are logged. Logging messages reduces the performance of your
application, so you should use persistent messages for essential data only. If the
data in a message can be discarded if the queue manager stops or fails, use a
nonpersistent message.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and CorrelId) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. Using the MQGET call in this way affects the performance of
your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field
set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

What next

Chapter 14. Problem determination 183

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
queue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLength attribute of the queue. This
method could use large amounts of storage, however, because the value of this
queue attribute could be as high as 100 MB, the maximum allowed by MQSeries
for Compaq OpenVMS.

Frequency of syncpoints
Programs that issue numerous MQPUT calls within syncpoint, without committing
them, can cause performance problems. Affected queues can fill up with messages
that are currently inaccessible, while other tasks might be waiting to get these
messages. This has implications in terms of storage, and in terms of threads tied
up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Incorrect output
The term “incorrect output” can be interpreted in many different ways. For the
purpose of problem determination within this book, the meaning is explained in
“Have you obtained incorrect output?” on page 181.

Two types of incorrect output are discussed in this section:
v Messages that do not appear when you are expecting them
v Messages that contain the wrong information, or information that has been

corrupted

Additional problems that you might find if your application includes the use of
distributed queues are also discussed.

Messages that do not appear on the queue
If messages do not appear when you are expecting them, check for the following:
v Has the message been put on the queue successfully?

– Has the queue been defined correctly. For example, is MAXMSGL sufficiently
large?

– Is the queue enabled for putting?
– Is the queue already full? This could mean that an application was unable to

put the required message on the queue.
v Are you able to get any messages from the queue?

– Do you need to take a syncpoint?
If messages are being put or retrieved within syncpoint, they are not available
to other tasks until the unit of recovery has been committed.

– Is your wait interval long enough?
You can set the wait interval as an option for the MQGET call. You should
ensure that you are waiting long enough for a response.

– Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or CorrelId)?

Application design considerations

184 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Check that you are waiting for a message with the correct MsgId or CorrelId.
A successful MQGET call sets both these values to that of the message
retrieved, so you may need to reset these values in order to get another
message successfully.
Also, check whether you can get other messages from the queue.

– Can other applications get messages from the queue?
– Was the message you are expecting defined as persistent?

If not, and MQSeries has been restarted, the message has been lost.
– Has another application got exclusive access to the queue?

If you are unable to find anything wrong with the queue, and MQSeries is
running, make the following checks on the process that you expected to put the
message on to the queue:
v Did the application get started?

If it should have been triggered, check that the correct trigger options were
specified.

v Did the application stop?
v Is a trigger monitor running?
v Was the trigger process defined correctly?
v Did the application complete correctly?

Look for evidence of an abnormal end in the job log.
v Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the MsgId of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a reason code of MQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multi-server environment must be designed to cope
with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages that contain unexpected or corrupted information”.

Messages that contain unexpected or corrupted information
If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:
v Has your application, or the application that put the message onto the queue,

changed?
Ensure that all changes are simultaneously reflected on all systems that need to
be aware of the change.
For example, the format of the message data may have been changed, in which
case, both applications must be recompiled to pick up the changes. If one
application has not been recompiled, the data will appear corrupt to the other.

v Is an application sending messages to the wrong queue?

Incorrect output

Chapter 14. Problem determination 185

Check that the messages your application is receiving are not really intended for
an application servicing a different queue. If necessary, change your security
definitions to prevent unauthorized applications from putting messages on to
the wrong queues.
If your application has used an alias queue, check that the alias points to the
correct queue.

v Has the trigger information been specified correctly for this queue?
Check that your application should have been started; or should a different
application have been started?

If these checks do not enable you to solve the problem, you should check your
application logic, both for the program sending the message, and for the program
receiving it.

Problems with incorrect output when using distributed queues
If your application uses distributed queues, you should also consider the following
points:
v Has MQSeries been correctly installed on both the sending and receiving

systems, and correctly configured for distributed queuing?
v Are the links available between the two systems?

Check that both systems are available, and connected to MQSeries. Check that
the connection between the two systems, and the channels between the two
queue managers, are active.

v Is triggering set on in the sending system?
v Is the message you are waiting for a reply message from a remote system?

Check that triggering is activated in the remote system.
v Is the queue already full?

This could mean that an application was unable to put the required message
onto the queue. If this is so, check if the message has been put onto the
dead-letter queue.
The dead-letter queue header contains a reason or feedback code explaining why
the message could not be put onto the target queue. See the MQSeries Application
Programming Reference book for information about the dead-letter queue header
structure.

v Is there a mismatch between the sending and receiving queue managers?
For example, the message length could be longer than the receiving queue
manager can handle.

v Are the channel definitions of the sending and receiving channels compatible?
For example, a mismatch in sequence number wrap stops the distributed
queuing component. See the MQSeries Intercommunication book for more
information about distributed queuing.

v Is data conversion involved? If the data formats between the sending and
receiving applications differ, data conversion is necessary. Automatic conversion
occurs when the MQGET is issued if the format is recognized as one of the
built-in formats.
If the data set is not recognized for conversion, the data conversion exit is taken
to allow you to perform the translation with your own routines.
An exception to the above occurs if you are sending data to MQSeries for
MVS/ESA.

Incorrect output

186 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Refer to the MQSeries Intercommunication book for further details of data
conversion.

Error logs
MQSeries uses a number of error logs to capture messages concerning the
operation of MQSeries itself, any queue managers that you start, and error data
coming from the channels that are in use.

The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.
v If the queue manager name is known and the queue manager is available:

MQS_ROOT:[MQM.QMGRS.QMgrName.ERRORS]AMQERR01.LOG

v If the queue manager is not available:
MQS_ROOT:[MQM.QMGRS.$SYSTEM.ERRORS]AMQERR01.LOG

v If an error has occurred with a client application:
MQS_ROOT:[MQM.ERRORS]AMQERR01.LOG

v First Failure Support Technology® (FFST) – see “How to examine the FFSTs” on
page 192.

Note: In the case of clients, the errors are stored on the client’s root drive.

Log files
At installation time an [MQM.QMGRS.$SYSTEM.ERRORS] directory is created in the
QMGRS file path. The errors subdirectory can contain up to three error log files
named:
v AMQERR01.LOG
v AMQERR02.LOG
v AMQERR03.LOG

After you have created a queue manager, three error log files are created when
they are needed by the queue manager. These files have the same names as the
$SYSTEM ones, that is AMQERR01, AMQERR02, and AMQERR03, and each has a
capacity of 256 KB. The files are placed in the errors subdirectory of each queue
manager that you create.

As error messages are generated they are placed in AMQERR01. When
AMQERR01 gets bigger than 256 KB it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03.LOG. The previous contents, if any, of
AMQERR03 are discarded.

The latest error messages are thus always placed in AMQERR01, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files unless the name of their queue manager is unknown or the
queue manager is unavailable. When the queue manager name is unavailable or its
name cannot be determined, channel-related messages are placed in the
[MQM.QMGRS.$SYSTEM.ERRORS] subdirectory.

To examine the contents of any error log file, use your usual OpenVMS editor.

Incorrect output

Chapter 14. Problem determination 187

Early errors
There are a number of special cases where the above error logs have not yet been
established and an error occurs. MQSeries attempts to record any such errors in an
error log. The location of the log depends on how much of a queue manager has
been established.

If, due to a corrupt configuration file for example, no location information can be
determined, errors are logged to an errors directory that is created at installation
time on the root directory, mqm.

If the MQSeries configuration file is readable, and the DefaultPrefix attribute of the
AllQueueManagers stanza is readable, errors are logged in the
DefaultPrefix[.errors] directory.

For further information about configuration files, see “Chapter 13. Configuring
MQSeries” on page 159.

Operator messages
In MQSeries for Compaq OpenVMS, operator messages identify normal errors,
typically caused directly by users doing things like using parameters that are not
valid on a command. Operator messages are national language (NLS) enabled,
with message catalogs installed in standard locations.

These messages are written to the associated window, if any, and are also written
to the error log AMQERR01.LOG in the queue manager directory. For example:
MQS_ROOT:[MQM.QMGRS.QUEUE$MANAGER.ERRORS]

Some errors are logged to the AMQERR01.LOG file in the queue manager
directory and others to the $SYSTEM directory copy of the error log.

Example error log
This example shows part of a MQSeries for Compaq OpenVMS error log:
...

06/29/00 09:41:39 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this may
be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory. If you move any of the log
files required to recreate objects from their media images, you will
have to restore them to recreate the objects.
--- --
06/29/00 09:41:39 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any
log files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory.
--- --
06/29/00 09:42:05 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this
may be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory. If you move any of the log
files required to recreate objects from their media images,
you will have to restore them to recreate the objects.

Error logs

188 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

--------------------------------------- --
06/29/00 09:42:05 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any
log files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory.
--------------------------------------- --
06/29/00 09:42:06 AMQ8003: MQSeries queue manager started.

EXPLANATION: MQSeries queue manager BKM1 started.
ACTION: None.
--------------------------------------- --
06/29/00 09:42:06 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this
may be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory. If you move any of the
log files required to recreate objects from their media images,
you will have to restore them to recreate the objects.
--------------------------------------- --
06/29/00 09:42:06 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images.
Any log files prior to this will not be accessed by media recovery
operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
--------------------------------------- --
06/29/00 09:46:27 AMQ7030: Request to quiesce the queue manager accepted.
The queue manager will stop when there is no further work for it to
perform.

EXPLANATION: You have requested that the queue manager end when there is no
more work for it. In the meantime, it will refuse new applications
that attempt to start, although it allows those already running to
complete their work.
ACTION: None.
--------------------------------------- --
06/29/00 09:46:43 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this may be
required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory. If you move any of the
log files required to recreate objects from their media images, you
will have to restore them to recreate the objects.
----------------------------------- --
06/29/00 09:46:43 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any
log files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
----------------------------------- --
06/29/00 09:46:44 AMQ8004: MQSeries queue manager ended.

EXPLANATION: MQSeries queue manager BKM1 ended.
ACTION: None.
----------------------------------- --
06/29/00 09:46:59 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this
may be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory. If you move any of the log files
required to recreate objects from their media images, you will have to

Error logs

Chapter 14. Problem determination 189

restore them to recreate the objects.
------------------------------------- --
06/29/00 09:47:00 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any log
files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
-------------------------------------- --
06/29/00 09:47:08 AMQ7472: Object TEST1, type queue damaged.

EXPLANATION: Object TEST1, type queue has been marked as damaged. This
indicates that the queue manager was either unable to access the object in
the file system, or that some kind of inconsistency with the data in
the object was detected.
ACTION: If a damaged object is detected, the action performed depends on
whether the queue manager supports media recovery and when the damage
was detected. If the queue manager does not support media recovery,
you must delete the object as no recovery is possible. If the queue manager
does support media recovery and the damage is detected during the processing
performed when the queue manager is being started, the queue manager will
automatically initiate media recovery of the object. If the queue
manager supports media recovery and the damage is detected once the queue
manager has started, it may be recovered from a media image using the
rcrmqobj command or it may be deleted.
-------------------------------------- --
06/29/00 09:47:09 AMQ8003: MQSeries queue manager started.

EXPLANATION: MQSeries queue manager BKM1 started.
ACTION: None.
--------------------------------------- --
06/29/00 09:47:09 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this may be
required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory. If you move any of the log files
required to recreate objects from their media images, you will have to
restore them to recreate the objects.
------------------------------------ --
06/29/00 09:47:10 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any log
files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
------------------------------------- --
06/29/00 09:47:47 AMQ7081: Object TEST1, type queue recreated.

EXPLANATION: The object TEST1, type queue was recreated from its media
image.
ACTION: None.
------------------------------------- --
06/29/00 11:22:10 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this may
be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory. If you move any of the log files
required to recreate objects from their media images, you will have
to restore them to recreate the objects.
----------------------------------- --
06/29/00 11:22:10 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any log files
prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
-------------------------------- --
06/29/00 11:22:11 AMQ8004: MQSeries queue manager ended.

Error logs

190 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

EXPLANATION: MQSeries queue manager BKM1 ended.
ACTION: None.
-------------------------------- --
...

Dead-letter queues
Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing an
MQSC DISPLAY QUEUE command. If the queue contains messages, you can use
the provided browse sample application (amqsbcg) to browse messages on the
queue using the MQGET call. The sample application steps through all the
messages on a named queue for a named queue manager, displaying both the
message descriptor and the message context fields for all the messages on the
named queue.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems may occur if you do not have a dead-letter queue on each queue
manager you are using. When the queue manager is created using the crtmqm
command, a dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is
automatically created as a default object. However, this queue is not defined as the
dead-letter queue for the queue manager. See “Defining a dead-letter queue” on
page 41.

Configuration files and problem determination
Configuration file errors typically prevent queue managers from being found and
result in “queue manager unavailable” type errors.

There are several checks you can make on the configuration files:
v Ensure that the configuration files exist.
v Ensure that they have appropriate permissions, for example:

MQS.INI;1 MQM (RWED, RWED, RW, R)
(identifier=MQM, ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)

v Ensure that the MQSeries configuration file references the correct queue manager
and log directories.

Using MQSeries trace
MQSeries for Compaq OpenVMS uses the following commands for the trace
facility:
v strmqtrc – see “strmqtrc (Start MQSeries trace)” on page 291
v dspmqtrc – see “dspmqtrc (Display MQSeries formatted trace output)” on

page 246
v endmqtrc – see “endmqtrc (End MQSeries trace)” on page 257

The trace facility uses one file for each entity being traced, with the trace
information being recorded in the appropriate file.

Files associated with trace are created in the directory MQS_ROOT:[MQM.TRACE].

The files in this directory include details of queue managers, as well as all early
tracing and all $SYSTEM tracing.

Error logs

Chapter 14. Problem determination 191

Trace file names
Trace file names are constructed in the following way:
AMQpppppppp.TRC

where pppppppp is the process identifier (PID) of the process producing the trace.

Notes:

1. In MQSeries for Compaq OpenVMS, the value of the process identifier is
always eight characters long.

2. There will be one trace file for each process running as part of the entity being
traced.

Sample trace data
The following sample is an extract from an OpenVMS trace:

Notes:

1. In this example the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

First failure support technology (FFST)
Information that is normally recorded in FFST logs is, on MQSeries for Compaq
OpenVMS, recorded in a file in the MQS_ROOT:[MQM.ERRORS] directory.

These errors are normally severe, unrecoverable errors and indicate either a
configuration problem with the system or an MQSeries internal error.

How to examine the FFSTs
The files are named AMQnnnnnnnn_mm.FDC, where:
nnnnnnnn

Is the process id reporting the error

...
ID ELAPSED_MSEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

30d 0 0 MQS CEI Exit!. 12484.1 xcsWaitEventSem rc=10806020
30d 0 0 MQS CEI Exit! 12484.1 zcpReceiveOnLink rc=20805311
30d 0 0 MQS FNC Entry 12484.1 zxcProcessChildren
30d 0 0 MQS CEI Entry. 12484.1 xcsRequestMutexSem
30d 1 0 MQS CEI Entry.. 12484.1 xcsHSHMEMBtoPTR
30d 1 0 MQS CEI Exit... 12484.1 xcsHSHMEMBtoPTR rc=00000000
30d 1 0 MQS FNC Entry.. 12484.1 xllSemGetVal
30d 1 0 MQS FNC Exit... 12484.1 xllSemGetVal rc=00000000
30d 1 0 MQS FNC Entry.. 12484.1 xllSemReq
30d 1 0 MQS FNC Exit... 12484.1 xllSemReq rc=00000000
30d 1 0 MQS CEI Exit.. 12484.1 xcsRequestMutexSem rc=00000000
30d 2 0 MQS CEI Entry. 12484.1 xcsReleaseMutexSem
30d 2 0 MQS CEI Entry.. 12484.1 xcsHSHMEMBtoPTR
30d 2 0 MQS CEI Exit... 12484.1 xcsHSHMEMBtoPTR rc=00000000
30d 2 0 MQS FNC Entry.. 12484.1 xllSemRel
30d 2 0 MQS FNC Exit... 12484.1 xllSemRel rc=00000000
30d 2 0 MQS CEI Exit.. 12484.1 xcsReleaseMutexSem rc=00000000
30d 2 0 MQS CEI Entry. 12484.1 xcsHSHMEMBtoPTR
...

Figure 21. Sample MQSeries for Compaq OpenVMS trace

Using MQSeries trace

192 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

mm Is a sequence number, normally 0

When a process creates an FFST it also writes an entry in the system error log. The
record contains the name of the FFST file to assist in automatic problem tracking.
+---+
| |
| MQSeries First Failure Symptom Report |
| ===================================== |
| |
| Date/Time :- Monday January 29 21:32:03 GMT 2001 |
| Host Name :- CELERY (Unknown) |
| PIDS :- 5697175 |
| LVLS :- 510 |
| Product Long Name :- MQSeries for OpenVMS Alpha |
| Vendor :- IBM |
| Probe Id :- ZX005025 |
| Application Name :- MQM |
| Component :- zxcProcessChildren |
| Build Date :- Jan 8 2001 |
| Userid :- [400,400] (SJACKSON) |
| Program Name :- AMQZXMA0.EXE |
| Process :- 202001DA |
| Thread :- 00000001 |
| QueueManager :- JJJH |
| Major Errorcode :- zrcX_PROCESS_MISSING |
| Minor Errorcode :- OK |
| Probe Type :- MSGAMQ5008 |
| Probe Severity :- 2 |
| Probe Description :- AMQ5008: An essential MQSeries process 538968541 |
| cannot be found and is assumed to be terminated. |
| Arith1 :- 538968541 202001dd |
| VMS Errorcode :- -SYSTEM-W-NONEXPR, nonexistent process (000008E8) |
| |
| JPI Quota information: |
| ====================== |
| ASTCNT=247/250(98%) * BIOCNT=500/500(100%) * |
| BYTCNT=183616/183616(100%) * DIOCNT=250/250(100%) * |
| ENQCNT=4885/5000(97%) * FILCNT=241/250(96%) * |
| PAGFILCNT=975280/1000000(97%) * TQCNT=246/250(98%) * |
| FREPTECNT=2147483647 APTCNT=0 |
| GPGCNT=5808 PPGCNT=5872 |
| VIRTPEAK=203264 DFWSCNT=1392 |
| WSAUTH=2784 WSAUTHEXT=65536 |
| WSEXTENT=65536 WSPEAK=11680 |
| WSQUOTA=2784 WSSIZE=15792 |
| CPULIM=0 MAXDETACH=0 |
| MAXJOBS=0 JOBPRCCNT=2 |
| PAGEFLTS=2895 PRCCNT=2/100(2%) + |
| (*) - % resource remaining, (+) - % resource used |
| |
| Privilege and rights information: |
| ================================= |
| CURPRIV=bugchk detach netmbx prmgbl sysgbl sysprv tmpmbx world |
| IMAGPRIV=bugchk prmgbl sysgbl world |
| AUTHPRIV=bugchk detach netmbx prmgbl sysgbl sysprv tmpmbx world |
| SJACKSON INTERACT |
| REMOTE MQM |
| SYS |
| IMAGE_RIGHTS= |
| SYS$NODE_CELERY |
| |
| SYI information: |
| ================ |
| ACTIVE CPU=1/1(100%) + CLUSTER NODES=1 |
| FREE_GBLPAGES=16000528/16174643(98%) * GBLPAGFIL=1000000 |
| FREE_GBLSECTS=936/1550(60%) * MEMSIZE=16384 |
| PAGEFILE_FREE=16888/16888(100%) * PAGE_SIZE=8192 |
| SWAPFILE_FREE=936/936(100%) * MAXPROCESSCNT=102 |
| PROCSECTCNT=64 BALSETCNT=100 |
| WSMAX=65536 NPAGEDYN=2269184 |
| NPAGEVIR=9437184 PAGEDYN=1597440 |
| VIRTUALPAGECNT=2147483647 LOCKIDTBL_MAX=109437 |
| PQL_DASTLM=24 PQL_MASTLM=100 |
| PQL_DBIOLM=32 PQL_MBIOLM=100 |
| PQL_DBYTLM=65536 PQL_MBYTLM=100000 |
| PQL_DCPULM=0 PQL_MCPULM=0 |
| PQL_DDIOLM=32 PQL_MDIOLM=100 |
| PQL_DFILLM=128 PQL_MFILLM=100 |

FFST

Chapter 14. Problem determination 193

| PQL_DPGFLQUOTA=65536 PQL_MPGFLQUOTA=32768 |
| PQL_DPRCLM=32 PQL_MPRCLM=10 |
| PQL_DTQELM=16 PQL_MTQELM=0 |
| PQL_DWSDEFAULT=1392 PQL_MWSDEFAULT=1392 |
| PQL_DWSQUOTA=2784 PQL_MWSQUOTA=2784 |
| PQL_DWSEXTENT=65536 PQL_MWSEXTENT=65536 |
| PQL_DENQLM=128 PQL_MENQLM=300 |
| PQL_DJTQUOTA=4096 PQL_MJTQUOTA=0 |
| CLISYMTBL=750 DEFMBXMXMSG=256 |
| DEFMBXBUFQUO=1056 CHANNELCNT=5000 |
| DLCKEXTRASTK=2560 PIOPAGES=575 |
| CTLPAGES=256 CTLIMGLIM=35 |
| (*) - % resource remaining, (+) - % resource used |
| |
+---+

MQM Function Stack
zxcProcessChildren
xcsFFST

MQM Trace History
--> xllFreeSem
<-- xllFreeSem rc=OK
--> xcsFreeQuickCell
--> xllSpinLockRequest
<-- xllSpinLockRequest rc=OK
--> xstFreeCell
<-- xstFreeCell rc=OK
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK

<-- xcsFreeQuickCell rc=OK
<-- xcsCloseEventSem rc=OK
--> xcsFreeMemBlock
--> xstFreeMemBlock
--> xcsRequestThreadMutexSem
<-- xcsRequestThreadMutexSem rc=OK
--> xcsReleaseThreadMutexSem
<-- xcsReleaseThreadMutexSem rc=OK
--> xstFreeBlockFromSharedMemSet
--> xllSpinLockSlowRequest
<-- xllSpinLockSlowRequest rc=OK
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK
--> xstFreeBlockInExtent
--> xcsQueryMutexSem
<-- xcsQueryMutexSem rc=OK
--> xcsRequestMutexSem
--> xllSemReq
--> vms_mtx
--> vms_get_lock
<-- vms_get_lock rc=OK

<-- vms_mtx rc=OK
<-- xllSemReq rc=OK

<-- xcsRequestMutexSem rc=OK
--> xclDeleteMutexMem
--> xllCSCloseMutex
--> xihHANDLEtoSUBPOOLFn
--> xihGetConnSPDetailsFromList
--> xihGetConnSPDetails
<-- xihGetConnSPDetails rc=OK

<-- xihGetConnSPDetailsFromList rc=OK
<-- xihHANDLEtoSUBPOOLFn rc=OK
--> xllSpinLockSlowRequest
<-- xllSpinLockSlowRequest rc=OK
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK
--> xllFreeSem
<-- xllFreeSem rc=OK
--> vms_mtx
--> vms_get_lock
<-- vms_get_lock rc=OK

<-- vms_mtx rc=OK
--> xcsFreeQuickCell
--> xllSpinLockRequest
<-- xllSpinLockRequest rc=OK
--> xstFreeCell
<-- xstFreeCell rc=OK
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK

<-- xcsFreeQuickCell rc=OK

FFST

194 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

<-- xllCSCloseMutex rc=OK
<-- xclDeleteMutexMem rc=OK
--> xstSerialiseExtent
--> xllSpinLockRequest
<-- xllSpinLockRequest rc=OK

<-- xstSerialiseExtent rc=OK
--> xstFreeChunk
--> xstDeleteChunk
<-- xstDeleteChunk rc=OK
--> xstInsertChunk
<-- xstInsertChunk rc=OK

<-- xstFreeChunk rc=OK
--> xstReleaseSerialisationOnExtent
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK

<-- xstReleaseSerialisationOnExtent rc=OK
<-- xstFreeBlockInExtent rc=OK

<-- xstFreeBlockFromSharedMemSet rc=OK
<-- xstFreeMemBlock rc=OK

<-- xcsFreeMemBlock rc=OK
<-- zcpDeleteIPC rc=OK
--> xcsReleaseMutexSem
--> xllSemRel
--> vms_mtx
--> vms_get_lock
<-- vms_get_lock rc=OK

<-- vms_mtx rc=OK
<-- xllSemRel rc=OK

<-- xcsReleaseMutexSem rc=OK
--> xcsFreeMemBlock
--> xstFreeMemBlock
--> xcsRequestThreadMutexSem
<-- xcsRequestThreadMutexSem rc=OK
--> xcsReleaseThreadMutexSem
<-- xcsReleaseThreadMutexSem rc=OK
--> xstFreeBlockFromSharedMemSet
--> xllSpinLockSlowRequest
<-- xllSpinLockSlowRequest rc=OK
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK
--> xstFreeBlockInExtent
--> xcsQueryMutexSem
<-- xcsQueryMutexSem rc=OK
--> xcsRequestMutexSem
--> xllSemReq
--> vms_mtx
--> vms_get_lock
<-- vms_get_lock rc=OK

<-- vms_mtx rc=OK
<-- xllSemReq rc=OK

<-- xcsRequestMutexSem rc=OK
--> xclDeleteMutexMem
--> xllCSCloseMutex
--> xihHANDLEtoSUBPOOLFn
--> xihGetConnSPDetailsFromList
--> xihGetConnSPDetails
<-- xihGetConnSPDetails rc=OK

<-- xihGetConnSPDetailsFromList rc=OK
<-- xihHANDLEtoSUBPOOLFn rc=OK
--> xllSpinLockSlowRequest
<-- xllSpinLockSlowRequest rc=OK
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK
--> xllFreeSem
<-- xllFreeSem rc=OK
--> vms_mtx
--> vms_get_lock
<-- vms_get_lock rc=OK

<-- vms_mtx rc=OK
--> xcsFreeQuickCell
--> xllSpinLockRequest
<-- xllSpinLockRequest rc=OK
--> xstFreeCell
<-- xstFreeCell rc=OK
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK

<-- xcsFreeQuickCell rc=OK
<-- xllCSCloseMutex rc=OK

<-- xclDeleteMutexMem rc=OK
--> xstSerialiseExtent

FFST

Chapter 14. Problem determination 195

--> xllSpinLockRequest
<-- xllSpinLockRequest rc=OK

<-- xstSerialiseExtent rc=OK
--> xstFreeChunk
--> xstDeleteChunk
<-- xstDeleteChunk rc=OK
--> xstInsertChunk
<-- xstInsertChunk rc=OK

<-- xstFreeChunk rc=OK
--> xstReleaseSerialisationOnExtent
--> xllSpinLockRelease
<-- xllSpinLockRelease rc=OK

<-- xstReleaseSerialisationOnExtent rc=OK
<-- xstFreeBlockInExtent rc=OK

<-- xstFreeBlockFromSharedMemSet rc=OK
<-- xstFreeMemBlock rc=OK

<-- xcsFreeMemBlock rc=OK
<-- zxcCleanupAgent rc=OK
--> xcsReleaseMutexSem
--> xllSemRel
--> vms_mtx
--> vms_get_lock
<-- vms_get_lock rc=OK

<-- vms_mtx rc=OK
<-- xllSemRel rc=OK

<-- xcsReleaseMutexSem rc=OK
--> xcsCheckProcess
--> kill
<-- kill rc=OK

<-- xcsCheckProcess rc=OK
--> xcsCheckProcess
--> kill
<-- kill rc=OK

<-- xcsCheckProcess rc=OK
--> xcsRequestMutexSem
--> xllSemReq
--> vms_mtx
--> vms_get_lock
<-- vms_get_lock rc=OK

<-- vms_mtx rc=OK
<-- xllSemReq rc=OK

<-- xcsRequestMutexSem rc=OK
--> xcsReleaseMutexSem
--> xllSemRel
--> vms_mtx
--> vms_get_lock
<-- vms_get_lock rc=OK

<-- vms_mtx rc=OK
<-- xllSemRel rc=OK

<-- xcsReleaseMutexSem rc=OK
--> xcsCheckProcess
--> kill
<-- kill rc=Unknown(FFFF)

<-- xcsCheckProcess rc=xecP_E_INVALID_PID
--> xcsBuildDumpPtr
--> xcsGetMem
<-- xcsGetMem rc=OK

<-- xcsBuildDumpPtr rc=OK
<-- xcsBuildDumpPtr rc=OK

<-- xcsBuildDumpPtr rc=Unknown(4B)
--> xcsFFST

ECAnchor
6A91B0 5A584541 ZXEA
6A91C0 03000000 E8030000 03220000 0100DA01è...."....Ú.
6A91D0 2C05A500 D4040000 0A00DA01 01000000 ,.¥.Ô.....Ú.....
6A91E0 B0000000 0A00DA01 03000000 E8030000 °.....Ú.....è...
6A91F0 03220000 0100DA01 07000000 00000000 ."....Ú.........
6A9200 283F9700 03000000 F0030000 08410000 (?—..........A..
6A9210 0300DA01 03000000 F0030000 08410000 ..Ú..........A..
6A9220 0300DA01 01000000 B4000000 0200DA01 ..Ú.....u.....Ú.
6A9230 03000000 E8030000 03220000 0100DA01è...."....Ú.
6A9240 00000000 00000000 00000000 00000000
6A9250 00000000 00000000 00000000 00000000
6A9260 00000000 01000000 B4000000 0200DA01u.....Ú.
6A9270 03000000 E8030000 03220000 0100DA01è...."....Ú.
6A9280 B41F0000 0200DA01 01000000 B4000000 u.....Ú.....u...
6A9290 0200DA01 03000000 E8030000 03220000 ..Ú.....è...."..
6A92A0 0100DA01 DA012020 00000000 EFCD0300 ..Ú.Ú.Í..
6A92B0 00000000 00000000 00000000 00000000

FFST

196 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

6A92C0 00000000 00000000 01000000 00000000
6A92D0 44454641 554C5400 00000000 00000000 DEFAULT.........
6A92E0 00000000 00000000 00000000 00000000
6A92F0 00000000 00000000 00000000 00000000
6A9300 2F6D7173 5F726F6F 742F6D71 6D000000 /mqs_root/mqm...
6A9310 00000000 00000000 00000000 00000000
6A9320 to 6A93F0 suppressed, lines same as above
6A9400 5A435048 01000000 B8000000 0400DA01 ZCPH....¸.....Ú.
6A9410 03000000 F0030000 08410000 0300DA01A....Ú.
6A9420 DC040000 0400DA01 01000000 B8000000 Ü.....Ú.....¸...
6A9430 0400DA01 03000000 F0030000 08410000 ..Ú..........A..
6A9440 0300DA01 00000000 00000000 00000000 ..Ú.............
6A9450 00000000 00000000 00000000 00000000
6A9460 to 6A9470 suppressed, lines same as above
6A9480 00000000 00000000 5A435048 01000000ZCPH....
6A9490 B8000000 0500DA01 03000000 F0030000 ¸.....Ú.........
6A94A0 08410000 0300DA01 DC040000 0500DA01 .A....Ú.Ü.....Ú.
6A94B0 01000000 B8000000 0500DA01 03000000¸.....Ú.....
6A94C0 F0030000 08410000 0300DA01 4C4B0000A....Ú.LK..
6A94D0 0500DA01 01000000 B8000000 0500DA01 ..Ú.....¸.....Ú.
6A94E0 03000000 F0030000 08410000 0300DA01A....Ú.
6A94F0 07000000 00090000 50140000 0100DA01P.....Ú.
6A9500 01000000 B0000000 0100DA01 03000000°.....Ú.....
6A9510 E8030000 03220000 0100DA01 98170000 è...."....Ú.˜...
6A9520 0200DA01 01000000 B4000000 0200DA01 ..Ú.....u.....Ú.
6A9530 03000000 E8030000 03220000 0100DA01è...."....Ú.
6A9540 00000000 00000000 08000000 3C0A0000<...
6A9550 50140000 0100DA01 01000000 B0000000 P.....Ú.....°...
6A9560 0100DA01 03000000 E8030000 03220000 ..Ú.....è...."..
6A9570 0100DA01 08180000 0200DA01 01000000 ..Ú.......Ú.....
6A9580 B4000000 0200DA01 03000000 E8030000 u.....Ú.....è...
6A9590 03220000 0100DA01 00000000 00000000 ."....Ú.........
6A95A0 00000000 00000000 00000000 00000000
6A95B0 to 6A9650 suppressed, lines same as above
6A9660 01000000 00000000 78180000 0200DA01x.....Ú.
6A9670 01000000 B4000000 0200DA01 03000000u.....Ú.....
6A9680 E8030000 03220000 0100DA01 09000000 è...."....Ú.....
6A9690 780B0000 50140000 0100DA01 01000000 x...P.....Ú.....
6A96A0 B0000000 0100DA01 03000000 E8030000 °.....Ú.....è...
6A96B0 03220000 0100DA01 00000000 00000000 ."....Ú.........
6A96C0 00000000 00000000 00000000 00000000
6A96D0 to 6A9750 suppressed, lines same as above
6A9760 00000000 00000000 DD012020 00000000Ý.
6A9770 00000000 00000000 01000000 09000000
6A9780 00000000

The Function Stack and Trace History are used by IBM to assist in problem
determination. In most cases there is little that the system administrator can do
when an FFST is generated, apart from raising problems through the support
centers.

However, there is one set of problems that they may be able to solve. If the FFST
shows “quota exceeded” or “out of space on device” descriptions when calling one
of the internal functions, it is likely that the relevant SYSGEN parameter limit has
been exceeded.

To resolve the problem, adjust the system parameters to increase the internal limits.
See “Chapter 13. Configuring MQSeries” on page 159 for further details.

Problem determination with clients
An MQI client application receives MQRC_* reason codes in the same way as
non-client MQI applications. However, there are now additional reason codes for
error conditions associated with clients. For example:
v Remote machine not responding
v Communications line error
v Invalid machine address

FFST

Chapter 14. Problem determination 197

The most common time for errors to occur is when an application issues an
MQCONN and receives the response MQRC_Q_MQR_NOT_AVAILABLE. An error
message, written to the client log file, explains the cause of the error. Messages
may also be logged at the server depending on the nature of the failure.

Terminating clients
Even though a client has terminated it is still possible for the process at the server
to be holding its queues open. Normally, this will only be for a short time until the
communications layer detects that the partner has gone.

Error messages with clients
When an error occurs with a client system, error messages are put into the error
files associated with the server, if possible. If an error cannot be placed there, the
client code attempts to place the error message in an error log in the root directory
of the client machine.

OS/2, UNIX, and OpenVMS systems clients
Error messages for OS/2, UNIX, and OpenVMS systems clients are placed in the
error logs on their respective MQSeries server systems. Typically, these files appear
in the MQS_ROOT:[MQM.ERRORS] directory on OpenVMS systems and in
/var/mqm/errors on UNIX systems.

DOS and Windows® clients
The location of the log file AMQERR01.LOG is set by the MQDATA environment
variable. The default location, if not overridden by MQDATA, is:
C:\

Working in the DOS environment involves the environment variable MQDATA.

This is the default library used by the client code to store trace and error
information; it also holds the directory name in which the qm.ini file is stored.
(needed for NetBIOS setup). If not specified, it defaults to the C drive.

The names of the default files held in this library are:

AMQERR01.LOG
For error messages.

AMQERR01.FDC
For First Failure Data Capture messages.

Client problem determination

198 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 15. Performance tuning

This chapter discusses how you can tune your OpenVMS system to obtain the best
performance from MQSeries.

It is not possible for a product like MQSeries to define values for the various
tuning OpenVMS parameters that are correct in all circumstances. The most
effective values are determined by the workload for MQSeries itself and the
OpenVMS system as a whole. Although the parameter settings given in the
MQSeries for Compaq OpenVMS Alpha, Version 5.1 Quick Beginnings book provide
sensible minimum or initial values, these values may need to increase as the
workload for the queue managers grows. The process of doing this is called
″tuning″.

Performance tuning of any OpenVMS systems is described in the OpenVMS
Performance Management book. Use the information found in that book as well as
the following points which are relevant to MQSeries specifically:
v Some tuning parameters apply to the system as a whole (for example,

GBLPAGES). These parameters are controlled by the SYSGEN utility and are
therefore sometimes called SYSGEN parameters. If used regularly, the
AUTOGEN FEEDBACK mechanism monitors the resources being used by the
system and adjusts SYSGEN parameters automatically to track the changing
workload. This can greatly reduce the manual intervention required to keep the
system properly tuned and help avoid errors arising from resource exhaustion.
The SYSGEN parameters that are relevant to MQSeries are:

GBLPAGES, GBLSECTIONS and GBLPAGFIL
The queue manager is implemented as a set of cooperating processes
that communicate via shared (global) memory. Therefore, it is important
to ensure that the SYSGEN parameters that control global memory
(GBLPAGES, GBLSECTIONS and GBLPAGFIL) are sufficiently large. The
MQSeries for Compaq OpenVMS Alpha, Version 5.1 Quick Beginnings book
provides sensible initial values for these parameters. As the number of
users of MQSeries grows, the demand for global memory increases and
you may need to increase the corresponding SYSGEN parameters as
well.

CHANNELCNT
The queue manager processes use the OpenVMS mailboxes as an
interprocess communication and synchronization mechanism. These
mailboxes are accessed via channels and so it is necessary to ensure that
the SYSGEN parameter CHANNELCNT is large enough. In most cases
the value set during the installation will be sufficient. However, in
heavily-loaded systems with many active MQSeries processes, the value
may have to been increased.

To set SYSGEN parameters explicitly, modify the file MODPARAMS.DAT as
described in the OpenVMS Performance Management book.

v Some OpenVMS tuning parameters apply to individual user names or processes
(for example, PGFLQUOTA). These parameters are typically (but not always)
controlled by the AUTHORIZE utility. There is no automatic method for
adjusting these parameters. However, since these parameters represent a limit on
the amount of some resource that can be used by a particular process, you may

© Copyright IBM Corp. 1994, 2001 199

want to set them higher than strictly necessary to provide spare capacity for
occasional peak loads. The process specific parameters that are relevant to
MQSeries are:

PGFLQUOTA
This controls the amount of pagefile space that a process is allowed to
use. Since MQSeries processes are typically moving messages that may
be very large or numerous or both, they could potentially consume large
amounts of pagefile space.

PRCLM
This parameter controls the number of subprocesses that a given process
can create. Since most MQSeries processes are created as subprocesses of
the execution controller, the system will require a high value for
PRCLM.

ENQLM, ASTLM, TQELM
As mentioned previously, the queue manager is implemented as a set of
cooperating processes. These processes synchronize their activities using
the OpenVMS lock manager, asynchronous system traps (ASTs) and
timers. The three parameters that limit use of these resources must be set
to a large enough value to cope with the needs of the queue manager.

Setting the value of process specific parameters
The most common way to set these parameters is to use the AUTHORIZE utility to
adjust the value for the appropriate user name (which for MQSeries is usually
MQM).

However, on OpenVMS some process quotas are shared by all processes in the
same job, that is, a parent process and all other processes that are subprocesses of
the parent. Process quotas in this category include BYTLM, FILLM, PGFLQUOTA,
PRCLM, TQELM and ENQLM and these are called pooled quotas.

Since most queue manager processes are created as subprocesses of the execution
controller, it follows that the pooled quotas are shared by all queue manager
processes. Therefore, it is usually necessary to set these quotas to values that seem
excessive for a single process. This is particularly true of PGFLQUOTA since this
parameter limits the amount of virtual memory that the queue manager processes
can collectively create. For this reason, when the execution controller starts, it does
not obtain its initial quota values from the authorization file maintained by
AUTHORIZE, but sets them explicitly itself to reasonable values. As a result of
this, AUTHORIZE can no longer be used to modify these values. Instead you can
override the explicit quota values using the following logical names:
MQS_ASTLM
MQS_BIOLM
MQS_BYTLM
MQS_DIOLM
MQS_ENQLM
MQS_FILLM
MQS_PGFLQUOTA
MQS_PRCLM
MQS_TQELM

Performance tuning

200 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

You can set these logicals using a file called SYS$MANAGER:MQS_SYSTARTUP.COM.
MQSeries provides a file called SYS$MANAGER:MQS_SYSTARTUP.TEMPLATE that can be
edited and renamed. For example, to provide a different value for the
PGFLQUOTA parameter:
1. Copy the .TEMPLATE file, MQS_SYSTARTUP.TEMPLATE to a .COM file.
2. Edit the MQS_SYSTARTUP.COM file you have just created to uncomment (activate)

the lines that define the logicals corresponding to the process quotas such as
mqs_pgflquota.

3. Define new values.
For example:

might become

4. Invoke the mqs_systartup file to define the logicals. For example:

Typically, this is done as part of the system startup procedure.

Shortages of pooled quotas typically become apparent when either a new client
application fails to connect to the queue manager or some other application fails
because the new connection has consumed too much resource.

Also note that since the execution controller is started with explicit settings for
many of its quotas, the SYSGEN PQL_D* parameters do not apply to the EC.

$! DEFINE/SYSTEM MQS_PGFLQUOTA 1000000

$ DEFINE/SYSTEM MQS_PGFLQUOTA 5000000

$ @sys$manager:mqs_systartup

Setting process specific parameters

Chapter 15. Performance tuning 201

202 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 16. MQSeries for OpenVMS and clustering

OpenVMS clusters and MQSeries queue manager clusters are two different things,
independent of one another.

Note: When the term cluster is used, it refers to an MQSeries queue manager
cluster. An OpenVMS cluster is always referred to as OpenVMS cluster.

MQSeries queue manager clusters do not necessarily use OpenVMS cluster
intercommunication protocols, the OpenVMS cluster distributed lock manager or
the OpenVMS cluster file system. All communication between queue managers in
an MQSeries cluster is via MQSeries channels using one of the supported
protocols. Thus it is possible to configure MQSeries queue manager clusters with
queue managers that run on OpenVMS systems that are not part of the same
OpenVMS cluster.

If an MQSeries queue manager is configured within an OpenVMS cluster, the
MQSeries queue manager can run only on one OpenVMS node (referred to as a
node for the rest of this chapter) within the OpenVMS cluster at a time. The
function of a single MQSeries queue manager cannot be distributed across multiple
OpenVMS nodes within an OpenVMS cluster. If an attempt is made to start an
MQSeries queue manager on more than one OpenVMS node, an error is returned.
However, if there are multiple MQSeries queue managers configured in an
OpenVMS cluster they can be run on different OpenVMS nodes within the
OpenVMS cluster.

To provide a higher level availability of MQSeries queue managers in an
OpenVMS cluster a new feature called Failover Sets has been introduced in
MQSeries V5.1. This enables a queue manager to be automatically restarted on
another OpenVMS cluster node if a failure occurs. This feature can be used with or
without MQSeries queue manager clusters. (See “OpenVMS cluster failover sets”
on page 204).

Installing MQSeries in an OpenVMS cluster
Installing MQSeries for Compaq OpenVMS Alpha, V5.1 in an OpenVMS cluster is
very similar to installing MQSeries on a standalone OpenVMS system. However,
before installing, you need to consider the following:
v If there are multiple system disks in the OpenVMS cluster, MQSeries needs to be

installed on each system disk that has a node booted from it and that has to run
MQSeries. MQSeries needs to be installed only once per system disk, not once
per node.

v The disk holding the MQS_ROOT directory structure must be mounted system
wide on the OpenVMS nodes that are to run the queue managers contained
within the directory structure. It is possible to have different MQS_ROOT
directory structures for each node. But, if failover sets are to be configured, each
OpenVMS node in a failover set must refer to the same MQS_ROOT directory
structure. When installing MQSeries, you must specify the MQS_ROOT directory
(in response to the question ’Enter the root device for the MQSeries datafiles:’)
for each installation.

© Copyright IBM Corp. 1994, 2001 203

v If the disk containing the log files for a queue manager is different from the disk
containing MQS_ROOT, the disk containing the log files must be mounted
system-wide on all nodes in a Failover set.

v MQSeries uses an account MQM which has a default directory
SYS$SPECIFIC:[MQS_SERVER]. This directory is created only for the node on
which MQSeries is installed. The directory must be created for each additional
node that boots from the same system disk and that has to run MQSeries. This
can be done by executing the following DCL commands on each additional
node:

OpenVMS cluster failover sets

Overview of OpenVMS cluster failover sets
OpenVMS cluster failover sets are a new feature available in MQSeries for Compaq
OpenVMS, V5.1. They allow MQSeries queue managers to be automatically
restarted on another OpenVMS node in an OpenVMS cluster if the MQSeries
queue manager fails. The following types of failure are supported by OpenVMS
cluster failover sets:
v Halt of an OpenVMS node running an MQSeries queue manager
v System crash of an OpenVMS node running an MQSeries queue manager
v Shutdown of an OpenVMS node running an MQSeries queue manager without

the clean ending of the MQSeries queue manager
v The failure of an MQSeries queue manager Execution Controller process

The following types of failure are not supported by OpenVMS cluster failover sets:
v A fault on an OpenVMS node running an MQSeries queue manager that does

not cause the node or the MQSeries queue manager to fail.
v The failure of an MQSeries queue manager process except for the Execution

Controller process. An MQSeries queue manager is never automatically restarted
on the same node.

v A software or hardware failure of the disk holding the MQSeries queue manager
queue files and log data.

v Corruption of the MQSeries queue manager queue files or log data.

OpenVMS cluster failover sets are supported only for queue managers that use the
TCP/IP protocol for MQSeries channels. The following TCP/IP stacks are
supported:
v Digital® TCP/IP Services for OpenVMS V5.0A
v Porcess Software’s TCPware® for OpenVMS V5.4
v Process Software’s Multinet® for OpenVMS 4.3

OpenVMS cluster failover set concepts
An OpenVMS cluster failover set is a collection of OpenVMS nodes that can
potentially run an MQSeries queue manager. There may be between one and four

$create/directory sys$specific:[mqs_server]/owner=[mqs_server] -
/protection=(s:rwed,o:rwed,g,w)
$set sec/acl=(identifier=mqm,options=default,access=r+w+e+d+c) -
sys$specific:[000000]mqs_server.dir
$set sec/acl=(identifier=mqm,access=r+w+e+d+c) -
sys$specific:[000000]mqs_server.dir

Installing in an OpenVMS cluster

204 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

OpenVMS nodes in an OpenVMS cluster failover set and all the OpenVMS nodes
must be members of the same OpenVMS cluster. An OpenVMS cluster failover set
is specific to one MQSeries queue manager. There may be more than one
OpenVMS cluster failover set configured in an OpenVMS cluster. Note that the
maximum length of a queue manager name supported by OpenVMS cluster
failover sets is 25 characters.

Failover is the process by which an MQSeries queue manager is restarted on
another OpenVMS node when a supported failure occurs. After this process has
completed the MQSeries queue manager is said to have failed over.

Failback is the process by which an MQSeries queue manager is restarted on its
original OpenVMS node after a failure has been resolved. OpenVMS cluster
failover sets do not support automatic failback but it can be performed manually.
After this process has completed the MQSeries queue manager is said to have
failed back.

A failover monitor is a process that runs on each member of an OpenVMS cluster
failover set. The failover monitors are responsible for performing all functions of
the failover sets. The failover monitors within an OpenVMS cluster failover set
cooperate with one another to provide these functions. A failover monitor is started
using the runmqfm command. (For more on this command, see “runmqfm (Start a
failover monitor)” on page 273.)

One failover monitor is nominated as the watcher failover monitor and this failover
monitor is said to be in a watching state. The first failover monitor to start in a
failover set is the initial watcher failover monitor. A failover set becomes live when
the first failover monitor is started. If the watcher failover monitor fails, or the
OpenVMS node on which it is running fails, another failover monitor is
automatically nominated as the watcher failover monitor. The watcher failover
monitor is responsible for checking that the MQSeries queue manager is running
and for initiating a failover operation if a supported failure occurs. Any operation
that must be performed on another OpenVMS node is forwarded by the watcher
failover monitor to the failover monitor running on the relevant OpenVMS node
which actually performs the operation.

OpenVMS cluster failover sets are administered using the DCL command failover.
The failover command can be used from any node in the OpenVMS cluster
failover set. All commands are sent to the watcher failover monitor which then
decides which failover monitor should process the command and if necessary
forwards it onto another failover monitor.

The OpenVMS cluster failover set configuration file holds the details of the
OpenVMS cluster failover set including the number and names of the OpenVMS
nodes. The file is called FAILOVER.INI and resides in the directory
MQS_ROOT:[MQM.QMGRS.queuemanagername]. It is a text file which is modified with a
text editor and must be created prior to starting the first failover monitor. A
template configuration file called FAILOVER.TEMPLATE is provided in the directory
MQS_EXAMPLES. The parameters in the configuration file cannot be changed
dynamically. For a change to take effect all failover monitors must be stopped and
then started again. Care must be taken when this is done because automatic
failover of the MQSeries queue manager cannot occur when the failover monitors
are not started.

For an MQSeries queue manager in a failover set, all MQSeries commands
continue to work as normal except for the strmqm and endmqm commands. These

OpenVMS cluster failover sets concepts

Chapter 16. MQSeries for OpenVMS and clustering 205

two commands return an error when an MQSeries queue manager is in a live
failover set. The failover command must be used to start and end the MQSeries
queue manager.

The OpenVMS node priority is the priority given to each OpenVMS node in the
OpenVMS cluster failover set and is used to determine on which OpenVMS node
the queue manager should be started after a failure has occurred. The OpenVMS
node with the lowest numeric priority value has the highest priority.

The OpenVMS cluster failover set TCP/IP address is the TCP/IP address assigned
to the failover set. All channels that refer to the failover set queue manager must
be configured to specify this TCP/IP address in the connection name. Each
OpenVMS cluster failover set must use a unique TCP/IP address. All OpenVMS
nodes in the OpenVMS cluster failover set must have an interface TCP/IP address
in the same subnet and the OpenVMS cluster failover set TCP/IP address must be
in the same subnet.

Preparing to configure an OpenVMS cluster failover set
The following steps must be taken before configuring an OpenVMS cluster failover
set:
1. Create the queue manager using crtmqm if it does not already exist.
2. Obtain a TCP/IP address for the OpenVMS cluster failover set.
3. Create or modify MQSeries channels to use the OpenVMS cluster TCP/IP

failover set TCP/IP address.
4. Decide on the OpenVMS nodes that are to be in the OpenVMS cluster failover

set and decide their priorities.
5. Ensure that the MQS_ROOT logical refers to the same directory on all

OpenVMS nodes in the OpenVMS cluster failover set and that the disk is
mounted system-wide on all of the nodes. The disks containing the MQS_ROOT
directory and the log files should not be MSCP served from one node in the
failover set to another node because if the node serving the disk becomes
unavailable, the node to which the disk is served will no longer be able to
access the disks.

Configuring an OpenVMS cluster failover set
The following steps are required to configure an OpenVMS cluster failover set:
1. Copy the MQS_EXAMPLES:FAILOVER.TEMPLATE file to

MQS_ROOT:[MQM.QMGRS.queuemanagername]FAILOVER.INI.

2. Edit the MQS_ROOT:[MQM.QMGRS.queuemanagername]FAILOVER.INI file and modify
for this OpenVMS cluster failover set configuration. (See “Editing the
FAILOVER.INI configuration file” on page 207.)

3. Edit the START_QM.COM, END_QM.COM and TIDY_QM.COM command
procedures. (See “Command procedures used by failover sets” on page 208.)

4. Set up ICC security for the ICC Association used by the failover monitors (See
“Setting up security for ICC associations” on page 214.)

5. Start a failover monitor on each node in the OpenVMS cluster failover set using
the runmqfm -m queuemanagername command.

6. Start the queue manager using the failover -m queuemanagername -n nodename -s
command.

OpenVMS cluster failover sets concepts

206 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

7. Modify the site specific shutdown to:
v End or Move the queue manager if it is running on a node when it is shut

down.
v Halt the failover monitor.

OpenVMS cluster failover set post-configuration tasks
The following are tasks you can perform after your cluster failover set has been
configured:
v Edit the system startup file to start the failover monitor processes on each node

in the OpenVMS cluster failover set using the runmqfm command. The
runmqfm command should be placed after the command to start MQSeries.

v If it is required to start the queue manager automatically on system startup,
place a command in the system startup on the relevant node to start the queue
manager after the failover monitor has been started. The command to start the
queue manager on a node is failover -m queuemanagername -n nodename -s.

v Modify the site specific shutdown to end the failover monitor on shutdown of
the system. Also End or Move the queue manager if it is running on a node
when it is shut down.

Editing the FAILOVER.INI configuration file
The FAILOVER.INI file must be customized for each OpenVMS cluster failover set.
The meaning of each of the fields is listed in Table 9 on page 207. The template
configuration file supplied in MQS_EXAMPLES is included the “Appendix F. OpenVMS
cluster failover set templates” on page 311. Any line in the file that begins with a
’#’ character is ignored when it is read by a failover monitor process. The character
case of the field names within the file must be as specified in the template file.
Each field name must be followed by an ’=’ character and then the associated
value. All the fields in the template file are mandatory so no fields must be
removed.

Table 9. Description of the fields within the FAILOVER.INI file

Field name Description

IpAddress The TCP/IP address to be used by the failover set

PortNumber The TCP/IP port number used by the listener for the queue
manager

TimeOut This time out value is passed to the EndCommand procedure.
See “Command procedures used by failover sets” on page 208.

StartCommand The command procedure used to start the queue manager

EndCommand The command procedure used to end the queue manager

TidyCommand The command procedure used to tidy up on a node after a queue
manager failure in which the OpenVMS node survives

LogDirectory The directory which holds the log files created by the
StartCommand, EndCommand and TidyCommand procedures

NodeCount The number of nodes in the failover set. The number of node
triplets defined after this field must correspond to this value. The
maximum number of nodes supported is four.

NodeName The node name of the node. That is the value specified for the
SCSNODE OpenVMS system parameter.

Configuring OpenVMS cluster failover sets

Chapter 16. MQSeries for OpenVMS and clustering 207

Table 9. Description of the fields within the FAILOVER.INI file (continued)

Field name Description

Interface The TCP/IP interface name for the node when using the Digital
TCP/IP Services for OpenVMS TCP/IP stack. This can be
obtained from the output of the $tcpip show interface command.
This field is not used when using the TCPware for OpenVMS
TCP/IP or Multinet for OpenVMS TCP/IP stacks but the default
value of we0 should still be specified. (Do not remove the field
from the configuration file.)

Priority This is the priority given to this node within the failover set. The
value must be between 1 and 10. A value of 1 is the highest
priority. Multiple nodes can have the same priority. When a
failure occurs or no specific node is specified in a failover -s or -f
command, the queue manager is started on the highest priority
node that is available.

Command procedures used by failover sets
Failover sets use three command procedures to implement some of its functions.
The locations of these command procedures are specified in the FAILOVER.INI
configuration file by the field names StartCommand, EndCommand and
TidyCommand. Template files for these command procedures, with names
START_QM.TEMPLATE, END_QM.TEMPLATE and TIDY_QM.TEMPLATE
respectively, are provided in MQS_EXAMPLES. These files are listed in “Appendix F.
OpenVMS cluster failover set templates” on page 311.

The command procedures are passed five or six parameters. These are listed in
Table 10 on page 208:

Table 10. Parameters passed to command procedures

Parameter Value

P1 Queue manager name

P2 Queue manager directory name

P3 Cluster TCP/IP address

P4 Node Interface name

P5 Listener port number

P6 End queue manager timeout (EndCommand procedure only)

The StartCommand procedure is used to start the queue manager in the following
circumstances:
v When explicitly specified with the -s flag of the failover command
v When the queue manager is moved to another OpenVMS node using the -f flag

of the failover command.
v When automatically restarted after a queue manager failure

By default the StartCommand procedure configures the failover set TCP/IP
address on the node to run the Queue manager and then starts the queue manager
using the strmqm -m queuemanagername command. Depending on system
requirements the command procedure can be modified in the following ways:
v Change the strmqm command
v Add commands to start additional MQSeries processes such as the listener

Editing failover.ini

208 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v Add commands to start application processes

The StartCommand procedure must exit with a status of 1 for the queue manager
to be monitored after the queue manager has started.

The EndCommand procedure is used to end the queue manager in the following
circumstances:
v When explicitly specified with the -e flag of the failover command
v When the queue manager is moved to another OpenVMS node using the -f flag

of the failover command

By default the EndCommand procedure attempts to end the queue manager with
the endmqm -i queuemanagername command. If the queue manager has not ended
within the timeout period specified in the configuration file, the procedure
attempts to end the queue manager with the endmqm -p queuemanagername
command. If the queue has still not ended within another timeout period, the
queue manager is ended by deleting the Execution Controller process. Once the
Queue manager is ended, the failover set TCP/IP address is deconfigured. If the
queue manager is successfully ended using the endmqm commands, the status
SS$_NORMAL is returned. If the queue manager is ended by deleting the
Execution Controller, the status SS$_ABORT is returned. If the queue manager is
not ended after a third timeout period, the status SS$_TIMEOUT is returned. These
statuses are used by the watcher failover monitor to determine the outcome of the
EndCommand procedure and sets the state of the failover set accordingly.
Depending on system requirements the command procedure can be modified in
the following ways:
v Add commands to end additional MQSeries processes such as the listener
v Add commands to end Application processes

The TidyCommand procedure is used to tidy up on an OpenVMS node if the
queue manager fails but the OpenVMS node continues to run.

By default the TidyCommand procedure deconfigures the failover set TCP/IP
address. Depending on system requirements the command procedure can be
modified in the following ways:
v Add commands to end any MQSeries processes that are still running such as the

listener
v Add commands to end Application processes that are still running

The template files are set up by default to use Digital TCP/IP Services for
OpenVMS commands to configure and de-configure the TCP/IP address. If you
are using TCPware for OpenVMS or MultiNet for OpenVMS, comment out
(deactivate) the Digital TCP/IP Services for OpenVMS commands and uncomment
(activate) the TCPware for OpenVMS or MultiNet for OpenVMS commands.

Administration of failover sets
Failover sets must be managed from the SYSTEM account or from an MQSeries
Administration account. Failover sets are managed using two commands DCL
runmqfm and failover. The runmqfm command is used to start the failover
monitors and the failover command performs all other administration tasks. These
commands are described in “runmqfm (Start a failover monitor)” on page 273 and
“failover (Manage a failover set)” on page 258.

Command procedures

Chapter 16. MQSeries for OpenVMS and clustering 209

Startup of failover monitors
Failover monitors are started by executing the runmqfm command on the
OpenVMS node on which it is required to have the failover monitor started. For
example to start a failover monitor for queue manager TESTQM, use the command:

This creates a detached process with a name based on the queue manager name
and ending in _FM. In this example the process name is TESTQM_FM. This process is
listed in a monmq active display.

If a log file is required, this can be specified by redirecting output of the runmqfm
command and additional debug information can be displayed in the log file by
specifying the -d flag. For example:

Note that the runmqfm command only starts failover monitor processes it does not
start the queue manager.

Starting a queue manager within a failover set
To start a queue manager within a failover set, at least one failover monitor must
be running and there must be a failover monitor running on the node on which
you wish to start the queue manager. A queue manager is started using the -s flag
of the failover command. The command can be executed from any OpenVMS node
within the failover set. For example if you wish to start the queue manager TESTQM
on node BATMAN, use the following command:

If it is required to start the queue manager on the OpenVMS node with the highest
priority available omit the -n flag from the command. For example:

Note that once a failover monitor is started for a queue manager (on any node),
any attempt to use the strmqm command to start a queue manager will fail.
However, once all failover monitors have been stopped for a queue manager, the
strmqm command can be used normally.

Ending a queue manager within a failover set
To end a queue manager within a failover set, there must be a failover monitor
running on the node on which the queue manager is running. A queue manager is
ended using the -e flag of the failover command. The command can be executed
from any OpenVMS node within the failover set. For example if you wish to end
the queue manager TESTQM, use the following command:

$ runmqfm -m TESTQM

$ runmqm -m TESTQM -d > sys$manager:fm.log

$ failover -m TESTQM -n BATMAN -s

$ failover -m TESTQM -s

Starting failover monitors

210 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Note that once a failover monitor is started for a queue manager (on any node),
any attempt to use the endmqm command to end a queue manager will fail.
However, once all failover monitors have been stopped for a queue manager, the
endmqm command can be used normally.

Moving a queue manager within a failover set
Moving a queue manager within a failover set means stopping the queue manager
on the node on which it is currently running and then starting it again on another
node within the failover set. To move a queue manager within a failover set, there
must be a failover monitor running on the node on which the queue manager is
currently running and there must be a failover monitor running on the node on
which you wish to move the queue manager.

A queue manager is moved using the -f flag of the failover command. The
command can be executed from any OpenVMS node within the failover set. For
example if you wish to move the queue manager TESTQM to node ROBIN, use the
following command:

If it is required to move the queue manager to the OpenVMS node with the
highest priority available, omit the -n flag from the command. For example:

Displaying the state of a failover set
There are three types of state that the describe the over all state of the failover set:
v The failover set queue manager state
v The failover set node queue manager states (one for each node)
v The failover set Node Monitor states (one for each node)

The possible values of each of the states are described in the following three tables.

Table 11. Failover set queue manager states

State Description

STOPPED The queue manager has never been started in the failover set or has
been cleanly shutdown

STARTED The queue manager has been started in the failover set. The failover
set will try to restart the queue manager if a queue manager failure
occurs.

Table 12. Failover set node queue manager states

State Description

AVAILABLE The node is free to have the queue manager started on it if a failure
occurs on another node.

RUNNING The queue manager is running on this node.

$ failover -m TESTQM -e

$ failover -m TESTQM -n ROBIN -f

$ failover -m TESTQM -f

Ending failover set

Chapter 16. MQSeries for OpenVMS and clustering 211

Table 12. Failover set node queue manager states (continued)

State Description

EXCLUDED The queue manager was stopped on this node in an unclean manner
without the node itself failing. If a queue manager fails on another
node it will not be restarted on this node.

Table 13. Failover set node monitor states

State Description

STARTED A failover monitor is running on this node but it is not the watcher.

WATCHING A failover monitor is running on this node and it is the watcher.

STOPPED There is no failover monitor running on this node.

The state of a failover set is displayed using the -q flag of the failover command.
There must be at least one failover monitor process running and the command can
be executed from any node within the failover set. For example to display the state
of the failover set for the queue manager TESTQM, use the following command:

Sample output from the command is shown below:

Setting DCL symbols to the state of a failover set
In some cases it may be necessary to write DCL command procedures to control
failover sets. The -l flag of the failover command sets three local DCL symbols to
indicate the state of the failover set. These symbols can then be used to take
conditional actions based on the state of the queue manager. There must be at least
one failover monitor process running and the command can be executed from any
node within the failover set. The symbols that are set are shown in Table 14 on
page 213

$ failover -m TESTQM -q

83H8439, 5697-270 (C) Copyright IBM Corp. 1996. ALL RIGHTS RESERVED.

OpenVMS Cluster Failover Set - Configuration and State.

Queue Manager Name : TESTQM
Sequence No : 11
TCP/IP Address : 10.20.30.40
Listener Port Number : 1414
Timeout to end the Queue Manager : 30
Queue Manager state in Failover Set : STARTED

OpenVMS Node - Configuration and State

Node name : BATMAN
Priority : 2
TCP/IP Interface : we0
Queue Manager state : RUNNING
Failover Monitor state : WATCHING

Node name : ROBIN
Priority : 1
TCP/IP Interface : we0
Queue Manager state : EXCLUDED
Failover Monitor state : STARTED

Moving a queue manager

212 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

page 213.

Table 14. DCL symbols and description

DCL symbol name Description

MQS$QMGR_NODE Set to the OpenVMS node that is running
the queue manager or a null string if there is
no queue manager running

MQS$AVAILABLE_NODES Set to the list of OpenVMS nodes that are
available to run the queue manager. That is
the nodes that are in the queue manager
AVAILABLE state and that have a failover
monitor running.

MQS$MONITOR_NODES Set to the list of OpenVMS nodes that have
a failover monitor running on them.

For example to set the symbols to the state of the failover set for the queue
manager TESTQM, use the following command:

Example results for the setting of the symbols are shown below:

Halting a failover monitor process
The failover monitor process on an OpenVMS node can be halted using the -h flag
of the failover command. The command can be executed from any node within the
failover set. For example to halt the failover monitor for queue manager TESTQM on
node BATMAN use the following command:

If the failover monitor being halted is the watcher failover monitor, another
failover monitor becomes the watcher if one exists. If the failover monitor being
halted is the last failover monitor for the failover set, the failover set will no longer
be live. In this case, the queue manager can now be started and ended using the
strmqm and endmqm commands. The -h flag of the failover command never ends
a queue manager. If the queue manager is running on the OpenVMS node on
which the failover monitor is being halted, the queue manager will continue to
run.

Executing commands while an update is in progress
The failover commands with flags -s, -e, -f and -c are considered updates. While
these commands are in progress, an update in progress flag is set by the watcher
failover monitor. When this flag is set, any other update and failover monitor halt

$ failover -m TESTQM -l

MQS$AVAILABLE_NODES = ""
MQS$MONITOR_NODES = "BATMAN,ROBIN"
MQS$QMGR_NODE = "BATMAN"

$ failover -m TESTQM -n BATMAN -h

Setting DCL symbols

Chapter 16. MQSeries for OpenVMS and clustering 213

command will fail because simultaneous updates are not allowed. Non-update
commands such as the -q and -l flags continue to work when an update is in
progress.

In rare circumstances, a failed update may leave the update in progress flag set.
The -u flag of the failover command clears the update in progress flag. This
command should be used with caution. For example to clear the update in
progress flag for queue manager TESTQM, use the following command:

Changing the state of a failover set
In some circumstances it may be necessary to change the state of a failover set.
This is achieved using the -c flag of the failover command. This is most likely
needed when a queue manager state on a node is EXCLUDED after a failure and
you want to change the state back to AVAILABLE after cleaning up the node. For
example, to change the state to AVAILABLE for queue manager TESTQM on node
BATMAN, use the following command:

Also you may want to temporarily exclude a node from being considered as a
candidate for running the queue manager by changing the Node queue manager
state from AVAILABLE to EXCLUDED. For example to change the state to
EXCLUDED for queue manager TESTQM on node BATMAN, use the following
command:

It is also possible to change all of the other states but any change takes effect only
if the change requested is consistent with the running system. For instance, if a
failover monitor is running on a node and you try to change the Monitor state to
STOPPED, this change will not take effect. Apart from changing the Node queue
manager states between EXCLUDED and AVAILABLE, it should not be necessary
to use the change state command because every 30 seconds the watcher failover
monitor performs an integrity check and makes any changes to the states if there is
a discrepancy with the running system.

Setting up security for ICC associations
The failover set monitor and client programs use OpenVMS Intra Cluster
Communication (ICC) calls to pass messages. To prevent unauthorized users
sending messages to the failover monitor processes, the security for the ICC
Associations should be configured in the SYS$STARTUP:ICC$SYSTARTUP.COM
command procedure.

Each failover set uses two association names: one with the name of the queue
manager which is used for communication with the watcher failover monitor and
the other with the name of the queue manager with _MQ_FM appended which is
used to communicate with each failover monitor.

$ failover -m TESTQM -u

$ failover -m TESTQM -n BATMAN -c -qmgr available

$ failover -m TESTQM - n BATMAN -c -qmgr excluded

Halting a failover monitor

214 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

An example is shown in Figure 22 on page 215 of the entries required in
ICC$SYSTARTUP.COM for each node in a failover set. There are two nodes in the
failover set called BATMAN and ROBIN and the queue manager name is TESTQM.

Note that ICC Association names are limited to 31 characters, therefore the
maximum supported length of MQSeries queue manager name is 25 characters
when used in a failover set. Further information on setting up the security of ICC
Associations can be found in the OpenVMS System Manager’s Manual.

Troubleshooting problems with failover sets
When the start_qm.com, end_qm.com and tidy_qm.com procedures are executed,
a log file is written to the LogDirectory specified in the failover.ini configuration
file. The names of the log files are qmgrname_procedurename.log. For example for a
queue manager name of TESTQM the start_qm.com command procedure will
produce a log file with name testqm_start_qm.log.

By default the failover monitor does not produce a log file, but a log file can be
specified using the redirection parameter on the runmqfm command. Additional
debug information can be written to the file by specifying the -d parameter on the
runmqfm command.

Check whether any FDC files have been generated in MQS_ROOT:[MQM.ERRORS].

$! --------------------- List Nodes with Special Actions -------------------
$!
$ nodeactions = "/BATMAN/ROBIN/"
$ if f$locate("/"+nodename+"/",nodeactions) .eq. f$length(nodeactions) -
then goto exit ! No action for this node
$ goto 'nodename' ! Go to action code for this node
$!
$! -------------------- Major Nodes ----------------------
$BATMAN:
$ROBIN:
$!
$! Place in here calls to @SYS$MANAGER:ICC$CREATE_SECURITY_OBJECT and
$! @SYS$MANAGER:ICC$ADD_REGISTRY_TABLE that apply to FAilover odes in the
$! cluster
$!
$!
$ @SYS$MANAGER:ICC$CREATE_SECURITY_OBJECT ICC$::"TESTQM" -
"/owner=MQM/acl=((id=MQM,access=open+access),(id=*,access=none))"
$!
$ @SYS$MANAGER:ICC$CREATE_SECURITY_OBJECT 'nodename'::"TESTQM" -
"/owner=MQM/acl=((id=MQM,access=open+access),(id=*,access=none))"
$!
$ @SYS$MANAGER:ICC$CREATE_SECURITY_OBJECT 'nodename'::"TESTQM_MQ_FM" -
"/owner=MQM/acl=((id=MQM,access=open+access),(id=*,access=none))"
$!
$ set security/class=logical_name_table icc$registry_table -

/acl=(id=MQM,access=read+write)
$!
$ GOTO EXIT
$!

Figure 22. Sample entry required for ICC$SYSTARTUP.COM

Setting up security

Chapter 16. MQSeries for OpenVMS and clustering 215

Using MultiNet for OpenVMS with failover sets
To use Multinet for OpenVMS with failover sets, the cluster alias service must be
enabled. The cluster alias service is enabled with command:

The template command files assume that there is only one cluster alias address,
and that is used by the failover set. However, if there are other cluster alias
addresses being used, the command procedures will need to be modified so that
the other addresses remain in the MULTINET_CLUSTER_IP_ALIASES logical
name.

An example of using failover sets
The following is an example of configuring two nodes, BATMAN and ROBIN, in
an OpenVMS cluster into a failover set for queue manager TESTQM. The failover set
TCP/IP address is 10.20.30.40 and the TCP/IP listener port is 1414. The node
BATMAN is nominated as the primary node and ROBIN the secondary node.
Initially the queue manager will be started on BATMAN and if the queue manager
fails, it will be restarted on ROBIN. If the queue manager is running on ROBIN the
queue manager will not be failed back onto BATMAN when ROBIN is rebooted. If
the node running the queue manager is shutdown, the queue manager is ended
and the failover monitor halted. If the node is not running, the queue manager is
not shut down and only the failover monitor is halted.

Customizing failover.template
The failover.template file is modified as follows and copied as
mqs_root:[mqm.qmgrs.testqm]failover.ini.

$ MULTINET CONFIGURE/SERVERS
SERVER-CONFIG> ENABLE CLUSTERALIAS
SERVER-CONFIG> EXIT

Using MultiNet

216 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

FAILOVER.TEMPLATE
Template for creating a FAILOVER.INI configuration file
All lines beginning with a '#' are treated as comments
#
OpenVMS Cluster Failover Set Configuration information
--
#
The TCP/IP address used by the OpenVMS Cluster Failover Set
#
IpAddress=10.20.30.40
#
The TCP/IP port number used by the MQSeries Queue Manager
#
PortNumber=1414
#
The timeout used by the EndCommand command procedure
#
TimeOut=30
#
The command procedure used to start the Queue Manager
#
StartCommand=@sys$manager:start_qm
#
The command procedure used to end the Queue Manager
#
EndCommand=@sys$manager:end_qm
#
The command procedure used to tidy up on a node after a
Queue Manager failure but the OpenVMS node did not fail
#
TidyCommand=@sys$manager:tidy_qm
#
The directory in which the log files for the start, end and
tidy commands are written
#
LogDirectory=mqs_root:[mqm.errors]
#
The number of nodes in the OpenVMS Cluster Failover Set. The
number of nodes defined below must agree with this number
#
NodeCount=2
#
The Name of the OpenVMS node
#
NodeName=BATMAN
#
The TCP/IP interface name for the node
#Interface=we0
#
The priority of the node
#
Priority=1
#
The Name of the OpenVMS node
#
NodeName=ROBIN
#
The TCP/IP interface name for the node
#
Interface=we0
#
The priority of the node
#
Priority=2

Figure 23. Failover.template for creating a FAILOVER.INI configuration file

Example failover set

Chapter 16. MQSeries for OpenVMS and clustering 217

Modification of failover set command procedures
The command procedures are copied from the template files. The only
modifications are that the start of the listener in start_qm.com and the end of the
listener in end_qm.com are uncommented (activated). If there are applications to
be stopped and started, the appropriate commands could be added to the
command procedures.

Example failover set start command procedure,
start_failover_set.com
The start_failover_set.com command procedure is used to start the failover
monitor on each node and conditionally start the queue manager. The procedure is
called from the system startup after the MQS_STARTUP.COM command
procedure has been executed. The procedure is passed two parameters: the queue
manager name and the primary node name. In this case it is called as follows:

The start_failover_set.com command procedure starts the failover monitor and
then uses then -l parameter on the failover command to find out the state of the
failover set. Note that the failover monitor may not have completely started when
the failover command is executed so the command is retried up to three times
with a second between each attempt. Then if the node is the primary node and the
queue manager is not started, it is started using the -s parameter of the failover
command.

$@start_failover_set testqm batman

Example failover set

218 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

$on error then exit
$@sy$manager:mqs_symbols
$!
$! start_failover_set.com
$! ----------------------
$! Command procedure to start a Failover Set Queue Manager during startup
$!
$! p1 = Queue Manager name
$! p2 = Primary Node name
$!
$! Check that the Queue Manager has been specified
$!
$if p1 .eqs ""
$then
$ Write sys$output "Queue Manager name omitted"
$ exit
$else
$ qmgr_name = p1
$endif
$!
$! Check that the primary node name has been specified
$!
$if p2 .eqs ""
$then
$ Write sys$output "Node name omitted"
$ exit
$else
$ primary_node = p2
$endif
$!
$! Get the node name of this node
$!
$this_node=f$getsyi("nodename")
$!
$! Start the Failover Monitor on this node
$!
$runmqfm -m 'qmgr_name'
$!
$! Check that the Failover Monitor has fully started
$! Wait up to 3 seconds
$!
$count = 0
$check_start:
$on error then continue
$!
$! Set the MQS$* symbols to the state of Failover Set
$! Wait up to 3 seconds
$!

Figure 24. start_failover_set command procedure (Part 1 of 2)

Example failover set

Chapter 16. MQSeries for OpenVMS and clustering 219

Example failover set end command procedure,
end_failover_set.com
The end_failover_set.com command procedure is used to conditionally end the
queue manager and then the failover monitor on each node. The procedure is
called from the site-specific shutdown before the MQS_SHUTDOWN.COM
command procedure has been executed. The procedure is passed one parameter,
the queue manager name. In this case it is called as follows:

$failover -m 'qmgr_name' -l
$!
$! If an error is returned wait a second and try again
$!
$if (($status/8) .and %xfff) .ne. 0 then goto wait
$!
$! If this node is not listed as running a monitor wait a second and try again
$!
$if f$locate(this_node, mqs$monitor_nodes) .ne. f$length(mqs$monitor_nodes)
$then
$ goto start_qm
$endif
$wait:
$on error then exit
$count = count + 1
$!
$! If we have waited 3 seconds display an error and exit
$!
$if count .ge. 3
$then
$ write sys$output "Failover Monitor not started"
$ exit
$else
$ wait 00:00:01
$ goto check_start
$endif
$start_qm:
$!
$! Only start the Queue Manager on the primary node
$!
$if this_node .nes. primary_node
$then
$ write sys$output "Queue Manager not started on Secondary node"
$ exit
$endif
$!
$! Start the Queue Manager on the primary node if it is not already running.
$!
$if mqs$qmgr_node .eqs. ""
$then
$ failover -m 'qmgr_name' -n 'this_node' -s
$else
write sys$output "Queue Manager already started"
$endif
$exit

Figure 24. start_failover_set command procedure (Part 2 of 2)

$@start_failover_set testqm

Example failover set

220 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

The end_failover_set.com command procedure obtains the failover set state using
the -l parameter of the failover command. Then if the queue manager is running
on this node, it is ended. Then the failover monitor is halted.

on error then exit
$@sys$manager:mqs_symbols
$!
$! end_failover_set.com
$! --------------------------
$! Command procedure to end a Failover Set Queue Manager during shutdown
$!
$! p1 = Queue Manager name
$!
$! Check that the Queue Manager has been specified
$!
$if p1 .eqs ""
$then
$ Write sys$output "Queue Manager name omitted"
$ exit
$else
$ qmgr_name = p1
$endif
$!
$! Get the node name of this node
$!
$this_node=f$getsyi("nodename")
$!
$! Set the MQS$* symbols to the state of the Failover Set
$!
$failover -m 'qmgr_name' -l
$!
$! If an error then exit
$!
$if (($status/8) .and %xfff) .ne. 0
$then
$ write sys$output "Error querying Failover Set"
$ exit
$endif
$!
$! If the Queue Manager is not running on this node then exit
$!
$ if mqs$qmgr_node .nes. this_node
$then
$ write sys$output "Queue Manager not running on this node"
$ goto halt_fm
$endif
$!
$! End the Queue Manager
$!
$failover -m gjtest -e
$halt_fm:
$!
$! Halt the Failover Monitor
$!
$failover -m gjtest -n 'this_node' -h

Figure 25. end_failover_set command procedure

Example failover set

Chapter 16. MQSeries for OpenVMS and clustering 221

222 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Part 2. Reference

Chapter 17. MQSeries control commands . . . 225
Rules for naming MQSeries objects 225

Looking at object files 225
How to read syntax diagrams 226
Syntax help 227

Examples 227
MQSeries return codes 228
crtmqcvx (Data conversion). 229
crtmqm (Create queue manager) 231
dltmqm (Delete queue manager) 235
dmpmqlog (Dump log) 237
dspmqaut (Display authority) 239
dspmqcsv (Display command server) 243
dspmqfls (Display MQSeries files) 244
dspmqtrc (Display MQSeries formatted trace
output) 246
dspmqtrn (Display MQSeries transactions) . . . 248
endmqcsv (End command server) 250
endmqlsr (End listener) 253
endmqm (End queue manager) 254
endmqtrc (End MQSeries trace) 257
failover (Manage a failover set) 258
rcdmqimg (Record media image) 262
rcrmqobj (Recreate object) 264
rsvmqtrn (Resolve MQSeries transactions) 267
runmqchi (Run channel initiator) 269
runmqchl (Run channel) 270
runmqdlq (Run dead-letter queue handler) . . . 271
runmqfm (Start a failover monitor) 273
runmqlsr (Run listener) 274
runmqsc (Run MQSeries commands) 276
runmqtmc (Start client trigger monitor). 279
runmqtrm (Start trigger monitor) 280
setmqaut (Set/reset authority) 281
strmqcsv (Start command server) 288
strmqm (Start queue manager) 289
strmqtrc (Start MQSeries trace) 291

© Copyright IBM Corp. 1994, 2001 223

224 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Chapter 17. MQSeries control commands

This chapter contains reference material for the control commands used with
MQSeries for Compaq OpenVMS. All commands in this chapter can be issued
from an OpenVMS DCL prompt.

Command names and their flags are not case sensitive: you can enter them in
upper case, lower case, or a combination of upper case and lower case. However,
parameters to control commands (such as queue names) can be case sensitive. See
“Case sensitivity in control commands” on page 20 for more information.

Before using any control command, mqs_startup must have been run once since
the last reboot.

Rules for naming MQSeries objects
In general, the names of MQSeries objects can have up to 48 characters. This rule
applies to all the following objects:
v Queue managers (However, if the queue manager is supported by an OpenVMS

cluster failover set then the maximum length is 25 characters.)
v Queues
v Process definitions
v Namelists
v Clusters

The maximum length of channel names is 20 characters.

The characters that can be used for all MQSeries names are:
v Upper case A–Z
v Lower case a–z
v Numerics 0–9
v Period (.)
v Underscore (_)
v Forward slash (/) (see note 1)
v Percent sign (%) (see note 1)

Notes:

1. Forward slash and percent are special characters. However, you cannot use
forward slash and percent as the first character in a name. If you use either of
these characters in a name, the name must be enclosed in double quotation
marks whenever it is used.

2. Leading or embedded blanks are not allowed.
3. National language characters are not allowed.
4. Names may be enclosed in double quotation marks, but this is only essential if

special characters are included in the name, or if case needs to be preserved.

Looking at object files
Each MQSeries queue, queue manager, or process object is represented by a file.
Because these object names are not necessarily valid file names, the queue manager
converts the object name into a valid file name, where necessary. This is described
in “Understanding MQSeries file names” on page 19.

© Copyright IBM Corp. 1994, 2001 225

To find out how to display the real file name of an object, see “dspmqfls (Display
MQSeries files)” on page 244.

How to read syntax diagrams
This chapter contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and
left arrow pair. Lines beginning with a single right arrow are continuation lines.
You read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

Table 15. How to read syntax diagrams

Convention Meaning

ee A B C ef
You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

ee
A

ef
You may specify value A. Optional values are shown below the main
line of a syntax diagram.

ee A
B
C

ef
Values A, B, and C are alternatives, one of which you must specify.

ee
A
B
C

ef
Values A, B, and C are alternatives, one of which you may specify.

ee

g

,

A
B
C

ef

You may specify one or more of the values A, B, and C. Any required
separator for multiple or repeated values (in this example, the
comma (,)) is shown on the arrow.

ee
A

B
C

ef

Values A, B, and C are alternatives, one of which you may specify. If
you specify none of the values shown, the default A (the value
shown above the main line) is used.

Names

226 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Table 15. How to read syntax diagrams (continued)

Convention Meaning

ee Name ef

Name:

A
B

The syntax fragment Name is shown separately from the main syntax
diagram.

Syntax help
You can obtain help about the syntax of any of the commands in this chapter by
entering the command followed by a question mark. MQSeries responds by listing
the syntax required for the selected command. The syntax shows all the parameters
and variables associated with the command. Different forms of parentheses are
used to indicate whether a parameter is required or not. For example:

where:

CmdName Is the command name for which help has been
requested.

[-x OptParam] The square brackets indicate that this is an optional
parameter.

(-c | -b) A mandatory field. In this case, you must select
one of the flags c or b.

{ -p principal } An optional list of variables that you may supply,
but, if this is shown, at least one variable must be
provided when you enter the command.

argument An argument required to be supplied with this
command, mandatory if shown on the response to
the query.

Examples
1. Result of entering endmqm ?

2. Result of entering rcdmqimg ?

CmdName [-x OptParam] (-c | -b) { -p principal } argument

endmqm [-z][-c | -i | -p] QMgrName

rcdmqimg [-z] [-m QMgrName] -t ObjType [GenericObjName]

Reading syntax diagrams

Chapter 17. MQSeries control commands 227

MQSeries return codes
Most of the MQSeries commands, for example crtmqm, write a status line when
ending to indicate the success or failure of the command.

If the status of a command is to be tested in a DCL command file, it may be
necessary to interpret the status value returned from an MQSeries program.

The MQSeries return codes are defined in a message file called
SYS$MESSAGE:MQS_MSG.EXE.

To access the message text associated with a return code in the file, you must use
the DCL SET MESSAGE command. This command loads the message codes into
the message table of your process. For example:

After this, you can use the F$MESSAGE lexical function to print the text of an
MQSeries return code. For example:

To convert the OpenVMS return code to a return code value used in MQSeries for
OS/2 or UNIX systems, you can use the following DCL equation:

For example:

$ SET MESSAGE SYS$MESSAGE:MQS_MSG.EXE

$ strmqm)(*bad-qm-name&%$#
The queue manager name is either not valid or not known
$ WRITE SYS$OUTPUT F$MESSAGE($STATUS)
%MQS-F-CSPRC_Q_MGR_NAM, Queue manager name error

$ RC = $STATUS / 8 .AND. %xFFF

$ crtmqm &*)*(
The queue manager name is either not valid or not known
$ RC = $STATUS / 8 .AND. %xFFF
$ SHOW SYMBOL RC

RC = 72 Hex = 00000048 Octal = 00000000110

syntax help

228 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

crtmqcvx (Data conversion)

Purpose
Use the crtmqcvx command to create a fragment of code that performs data
conversion on data type structures. The command generates a C function that can
be used in an exit to convert your C structures.

The command reads an input file containing a structure or structures to be
converted. It then writes an output file containing a code fragment or fragments to
convert those structures.

For further information about this command and how to use it, refer to the
MQSeries Application Programming Guide.

Syntax

ee crtmqcvx SourceFile TargetFile ef

Required parameters
SourceFile

Specifies the input file containing the C structures to be converted.

TargetFile
Specifies the output file containing the code fragments generated to convert the
structures.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
The following example shows the results of using the data conversion command
against a source C structure. The command issued is:

crtmqcvx source.tmp target.c

crtmqcvx

Chapter 17. MQSeries control commands 229

The input file, source.tmp looks like this:

The output file, target.c, produced by the command is shown below. You can use
these code fragments in your applications to convert data structures. However, if
you do so, you should understand that the fragment uses macros supplied in the
MQSeries header file amqsvmha.h.

/* This is a test C structure which can be converted by the */
/* crtmqcvx utility */

struct my_structure
{

int code;
MQLONG value;

};

MQLONG Convertmy_structure(
PMQBYTE *in_cursor,
PMQBYTE *out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_lastbyte,
MQHCONN hConn,
MQLONG opts,
MQLONG MsgEncoding,
MQLONG ReqEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

{
MQLONG ReturnCode = MQRC_NONE;

ConvertLong(1); /* code */

AlignLong();
ConvertLong(1); /* value */

Fail:
return(ReturnCode);

}

crtmqcvx

230 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

crtmqm (Create queue manager)

Purpose
Use the crtmqm command to create a local queue manager. Once a queue manager
has been created, use the strmqm command to start it.

Syntax

ee crtmqm g

-c Text
-d DefaultTransmissionQueue
-h MaximumHandleLimit
-q
-t IntervalValue
-u DeadLetterQueue
-x MaximumUncommittedMessages
-z

e

e g
-lc

-ll -lf LogFileSize
-ld LogPath
-lp LogPrimaryFiles
-ls LogSecondaryFiles

QMgrName ef

Required parameters
QMgrName

Specifies the name of the queue manager to be created. The name can contain
up to 48 characters. This must be the last item in the command.

Optional parameters
-c Text

Specify some descriptive text for this queue manager. The default is all blanks.

You can use up to 64 characters. If mixed case is required, the description must
be enclosed in double quotes.

-d DefaultTransmissionQueue
Specifies the name of the local transmission queue that remote messages are
placed on if a transmission queue is not explicitly defined for their destination.
There is no default.

-h MaximumHandleLimit
Specifies the maximum number of handles that any one application can have
open at the same time.

Specify a value in the range 1 through 999 999 999. The default value is 256.

crtmqm

Chapter 17. MQSeries control commands 231

-q Specifies that this queue manager is to be made the default queue manager.
The new queue manager replaces any existing queue manager as the default.

If you accidentally use this flag and wish to revert to an existing queue
manager as the default queue manager, you can edit the DefaultQueueManager
stanza in the MQSeries configuration file. See “Chapter 13. Configuring
MQSeries” on page 159 for information about configuration files.

-t IntervalValue
Specifies the trigger time interval in milliseconds for all queues controlled by
this queue manager. This value specifies the time after the receipt of a trigger
generating message when triggering is suspended. That is, if the arrival of a
message on a queue causes a trigger message to be put on the initiation queue,
any message arriving on the same queue within the specified interval does not
generate another trigger message.

You can use the trigger time interval to ensure that your application is allowed
sufficient time to deal with a trigger condition before it is alerted to deal with
another on the same queue. You may wish to see all trigger events that
happen; if so, set a low or zero value in this field.

Specify a value in the range 0 through 999 999 999. The default is 999 999 999
milliseconds, a time of more than 11 days. Allowing the default to be taken
effectively means that triggering is disabled after the first trigger message.
However, triggering can be reenabled by an application servicing the queue
using an alter queue command to reset the trigger attribute.

-u DeadLetterQueue
Specifies the name of the local queue that is to be used as the dead-letter
(undelivered-message) queue. Messages are put on this queue if they cannot be
routed to their correct destination.

The default if the attribute is omitted is no dead-letter queue.

-x MaximumUncommittedMessages
Specifies the maximum number of uncommitted messages under any one
syncpoint. That is, the sum of:
v The number of messages that can be retrieved from queues
v The number of messages that can be put on queues
v Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside a
syncpoint.

Specify a value in the range 1 through 10 000. The default value is 1000
uncommitted messages.

-z Suppresses error messages.

This flag is normally used within MQSeries to suppress unwanted error
messages. As use of this flag could result in loss of information, it is
recommended that you do not use it when entering commands on a command
line.

The following set of flags is used to define the logging to be used by the queue
manager being created. For more information about logs, see “Using the log for
recovery” on page 133.

-lc Circular logging is to be used. This is the default logging method.

-ll Linear logging is to be used.

crtmqm

232 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

-lf LogFileSize
Specifies the size of the log files in units of 4 KB. The minimum value is
64, and the maximum is 16384 The default value is 1024, giving a default
log size of 4 MB.

-ld LogPath
Specifies the directory to be used to hold the log files. The default is
MQS_ROOT:[MQM.LOG]. The default can also be changed when MQSeries is
customized.

User ID mqm and group mqm must have full authorities to the log files. If
you change the locations of these files, you must give these authorities
yourself. This is done automatically if the logs files are in their default
locations.

-lp LogPrimaryFiles
Specifies the number of primary log files to be allocated. The default value
is 3, the minimum is 2, and the maximum is 62.

-ls LogSecondaryFiles
Specifies the number of secondary log files to be allocated. The default
value is 2, the minimum is 1, and the maximum is 61.

Note: The total number of log files is restricted to 63, regardless of the
number requested.

The limits given in the previous parameter descriptions are limits set
by MQSeries. Operating system limits may reduce the maximum
possible log size.

Return codes
0 Queue manager created
8 Queue manager already exists
49 Queue manager stopping
69 Storage not available
70 Queue space not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid
111 Queue manager created. However, there was a problem processing the

default queue manager definition in the product configuration file. The
default queue manager specification may be incorrect.

115 Invalid log size

Examples
1. This command creates a default queue manager named Paint.queue.manager,

which is given a description of Paint shop. It also specifies that linear logging
is to be used:

crtmqm -c “Paint shop” -ll -q “Paint.queue.manager”

crtmqm

Chapter 17. MQSeries control commands 233

2. This example requests a number of log files. Two primary and three secondary
log files are specified.

3. In this example, another queue manager, travel, is created. The trigger interval
is defined as 5000 milliseconds (or 5 seconds) and its dead-letter queue is
specified as SYSTEM.DEAD.LETTER.QUEUE.

Once a trigger event has been generated, further trigger events are disabled for
five seconds.

Related commands
strmqm Start queue manager
endmqm End queue manager
dltmqm Delete queue manager

crtmqm -c “Paint shop” -ll -lp 2 -ls 3 -q “Paint.queue.manager”

crtmqm -t 5000 -u SYSTEM.DEAD.LETTER.QUEUE "travel"

crtmqm

234 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

dltmqm (Delete queue manager)

Purpose
Use the dltmqm command to delete a specified queue manager. All objects
associated with this queue manager are also deleted. Before you can delete a queue
manager you must end it using the endmqm command.

Syntax

ee dltmqm
-z

QMgrName ef

Required parameters
QMgrName

Specifies the name of the queue manager to be deleted.

Optional parameters
-z Suppresses error messages.

Return codes
0 Queue manager deleted
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid
112 Queue manager deleted. However, there was a problem processing the

default queue manager definition in the product configuration file. The
default queue manager specification may be incorrect.

Examples
1. The following command deletes the queue manager saturn.queue.manager.

2. The following command deletes the queue manager travel and also suppresses
any messages caused by the command.

dltmqm "saturn.queue.manager"

dltmqm -z "travel"

dltmqm

Chapter 17. MQSeries control commands 235

Related commands
crtmqm Create queue manager
strmqm Start queue manager
endmqm End queue manager

dltmqm

236 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

dmpmqlog (Dump log)

Purpose
Use the dmpmqlog command to dump a formatted version of the MQSeries
system log.

The log to be dumped must have been created on the same type of operating
system as that being used to issue the command.

Syntax

ee dmpmqlog
-b
-s StartLSN
-n ExtentNumber

-e EndLSN -f LogFilePath
e

e
-m QMgrName

ef

Optional parameters
Dump start point

Use one of the following parameters to specify the log sequence number (LSN)
at which the dump should start. If no start point is specified, dumping starts
by default from the LSN of the first record in the active portion of the log.

-b Specifies that dumping should start from the base LSN. The base LSN
identifies the start of the log extent that contains the start of the active
portion of the log.

-s StartLSN
Specifies that dumping should start from the specified LSN. The LSN is
specified in the format nnnn:nnnn:nnnn:nnnn.

If you are using a circular log, the LSN value must be equal to or greater
than the base LSN value of the log.

-n ExtentNumber
Specifies that dumping should start from the specified extent number. The
extent number must be in the range 0–9 999 999.

This parameter is valid only for queue managers whose LogType (as
recorded in the configuration file, qm.ini) is LINEAR.

-e EndLSN
Specifies that dumping should end at the specified LSN. The LSN is specified
in the format nnnn:nnnn:nnnn:nnnn.

-f LogFilePath
Is the absolute, rather than the relative, directory path name to the log files.
The specified directory must contain the log header file (amqhlctl.lfh) and a
subdirectory called active. The active subdirectory must contain the log files.
By default, log files are assumed to be in the directories specified in the

dmpmqlog

Chapter 17. MQSeries control commands 237

mqs.ini and qm.ini files. If this option is used then queue names, associated
with queue identifiers, will only be shown in the dump if a queue manager
name is specified explicitly for the -m option and that queue manager has the
object catalog file in its directory path.

On a system that supports long filenames this file is named qmqmobjcat and, in
order to map the queue identifiers to queue names, it must be the file used
when the log files were created. As an example, for a queue manager named
qm1, the object catalog file is located in the directory
MQS_ROOT:[MQM.QMGRS.QM1.QMANAGER]. To achieve this mapping, it may be
necessary to create a temporary queue manager, for example named tmpq,
replace its object catalog with the one associated with the specific log files, and
then start dmpmqlog, specifying -m tmpq and -f with the absolute directory
path name to the log files.

-m QMgrName
Is the name of the queue manager. If this parameter is omitted, the name of
the default queue manager is used.

The queue manager you specify, or default to, must not be running when the
dmpmqlog command is issued. Similarly, the queue manager must not be
started while dmpmqlog is running.

dmpmqlog

238 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

dspmqaut (Display authority)

Purpose
Use the dspmqaut command to display the current authorizations to a specified
object.

Only one group may be specified.

If a user ID is a member of more than one group, this command displays the
combined authorizations of all of the groups.

Syntax

ee dspmqaut
-m QMgrName

-n ObjectName -t ObjectType e

e -g GroupName
-p PrincipalName -s ServiceComponent

ef

Required parameters
-n ObjectName

Specifies the name of the object on which the inquiry is to be made.

This is a required parameter unless the inquiry relates to the queue manager
itself, in which case it must not be included.

You must specify the name of a queue manager, queue, or process definition.

-t ObjectType
Specifies the type of object on which the inquiry is to be made. Possible values
are:
queue or q A queue or queues matching the object type parameter
qmgr A queue manager object
process or prcs

A process
namelist or nl A namelist

Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the inquiry is to be made.

-g GroupName
Specifies the name of the user group on which the inquiry is to be made. You
can only specify one name, which must be the name of an existing rights
identifier.

-p PrincipalName
Specifies the name of a user whose authorizations to the specified object are to
be displayed.

dspmqaut

Chapter 17. MQSeries control commands 239

-s ServiceComponent
This parameter only applies if you are using installable authorization services,
otherwise it is ignored.

If installable authorization services are supported, this parameter specifies the
name of the authorization service to which the authorizations apply. This
parameter is optional; if it is not specified, the authorization inquiry is made to
the first installable component for the service.

Returned parameters
This command returns an authorization list, which can contain none, one, or more
authorization parameters. Each authorization parameter returned means that any
user ID in the specified group has the authority to perform the operation defined
by that parameter.

Table 16 shows the authorities that can be given to the different object types.

Table 16. Security authorities from the dspmqaut command

Authority Queue Process Qmgr Namelist

all U U U U

alladm U U U U

allmqi U U U U

altusr U

browse U

chg U U U U

clr U

connect U

cpy U U U U

crt U U U U

dlt U U U U

dsp U U U U

get U

inq U U U U

passall U

passid U

put U

set U U U

setall U U

setid U U

The following list defines the authorizations associated with each parameter:

all Use all operations relevant to the object.

alladm Perform all administration operations relevant to the object.

allmqi Use all MQI calls relevant to the object.

altusr Specify an alternate user ID on an MQI call.

dspmqaut

240 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

browse Retrieve a message from a queue by issuing an MQGET call with
the BROWSE option.

chg Change the attributes of the specified object, using the appropriate
command set.

clr Clear a queue (PCF command Clear queue only).

connect Connect the application to the specified queue manager by issuing
an MQCONN call.

cpy Copy the definition of an object, for example, the PCF Copy queue
command.

crt Create objects of the specified type, using the appropriate
command set.

dlt Delete the specified object, using the appropriate command set.

dsp Display the attributes of the specified object, using the appropriate
command set.

get Retrieve a message from a queue by issuing an MQGET call.

inq Make an inquiry on a specific queue by issuing an MQINQ call.

passall Pass all context.

passid Pass the identity context.

put Put a message on a specific queue by issuing an MQPUT call.

set Set attributes on a queue from the MQI by issuing an MQSET call.

setall Set all context on a queue.

setid Set the identity context on a queue.

The authorizations for administration operations, where supported, apply to these
command sets:
v Control commands
v MQSC commands
v PCF commands

Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing

dspmqaut

Chapter 17. MQSeries control commands 241

Examples
The following example shows a command to display the authorizations on queue
manager saturn.queue.manager associated with user group staff:

The results from this command are:

Related commands
setmqaut Set or reset authority

dspmqaut -m "saturn.queue.manager" -t qmgr -g staff

Entity staff has the following authorizations for object:
get
browse
put
inq
set
connect
altusr
passid
passall
setid

dspmqaut

242 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

dspmqcsv (Display command server)

Purpose
Use the dspmqcsv command to display the status of the command server for the
specified queue manager.

The status can be one of the following:
v Starting
v Running
v Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets
v Ending
v Stopped

Syntax

ee dspmqcsv
QMgrName

ef

Optional parameters
QMgrName

Specifies the name of the local queue manager for which the command server
status is being requested.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
The following command displays the status of the command server associated with
venus.q.mgr:

Related commands
strmqcsv Start a command server
endmqcsv End a command server

dspmqcsv "venus.q.mgr"

dspmqcsv

Chapter 17. MQSeries control commands 243

dspmqfls (Display MQSeries files)

Purpose
Use the dspmqfls command to display the real file system name for all MQSeries
objects that match a specified criterion. You can use this command to identify the
files associated with a particular MQSeries object. This is useful for backing up
specific objects. See “Understanding MQSeries file names” on page 19 for further
information about name transformation.

Syntax

ee dspmqfls
-m QMgrName -t ObjType

GenericObjName ef

Required parameters
GenericObjName

Specifies the name of the MQSeries object. The name is a string with no flag
and is a required parameter. If the name is omitted an error is returned.

This parameter supports a wild card character * at the end of the string.

Optional parameters
-m QMgrName

Specifies the name of the queue manager for which files are to be examined. If
omitted, the command operates on the default queue manager.

-t ObjType
Specifies the MQSeries object type. The following list shows the valid object
types. The abbreviated name is shown first followed by the full name.

* or all All object types; this is the default

q or queue A queue or queues matching the object name parameter

ql or qlocal A local queue

qa or qalias An alias queue

qr or qremote A remote queue

qm or qmodel A model queue

qmgr A queue manager object

prcs or process
A process

ctlg or catalog An object catalog

nl or namelist A namelist

Note: The dspmqfls command displays the directory containing the queue, not
the name of the queue itself.

dspmqfls

244 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Return codes
0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

Examples
1. The following command displays the details of all objects with names

beginning SYSTEM.ADMIN that are defined on the default queue manager.

2. The following command displays file details for all processes with names
beginning PROC defined on queue manager RADIUS.

dspmqfls SYSTEM.ADMIN*

dspmqfls -m RADIUS -t prcs PROC*

dspmqfls

Chapter 17. MQSeries control commands 245

dspmqtrc (Display MQSeries formatted trace output)

Purpose
Use the dspmqtrc command to display MQSeries formatted trace output.

Syntax

ee dspmqtrc
-t FormatTemplate -h -o OutputFilename

e

e InputFileName ef

Required parameters
InputFileName

Specifies the name of the file containing the unformatted trace. For example
MQS_ROOT:[MQM.TRACE]AMQ20202345.TRC.

Optional parameters
-t FormatTemplate

Specifies the name of the template file containing details of how to display the
trace. The default value is SYS$SHARE:AMQTRC.FMT.

-h Omit header information from the report.

-o output_filename
The name of the file into which to write formatted data.

Examples
1. The following command shows the redirection of output:

dspmqtrc mqs_root:[mqm.trace]amq20202345.trc > mqs_root:[mqm.trace]amq20202345.fmt

dspmqtrc

246 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Related commands
endmqtrc End MQSeries trace
strmqtrc Start MQSeries trace

dspmqtrc

Chapter 17. MQSeries control commands 247

dspmqtrn (Display MQSeries transactions)

Purpose
Use the dspmqtrn command to display the transactions that are in prepared status
in a two-phase commit procedure and that are known to a queue manager (see the
Attention notice below).

Each transaction is displayed as a transaction number (a human-readable
transaction identifier), the transaction state, and the transaction ID. Transaction IDs
can be up to 128 characters long, hence the need for a transaction number.

Syntax

ee dspmqtrn
-e -i -m QMgrName

ef

Attention: The only time that you can expect to use this command is if you are
using an external transaction manager and are involved with two-phase
commitment procedures. If you do not use two-phase commit, do not use this
command. This command should be used only if the syncpoint manager has failed
to resolve a transaction.

Optional parameters
-m QMgrName

Specifies the name of the queue manager whose transactions are to be
examined. If omitted, the command operates on the default queue manager.

-e Requests details of externally coordinated, in-doubt transactions. Such
transactions are those for which MQSeries has been asked to prepare to
commit, but has not yet been informed of the transaction outcome.

-i Requests details of internally coordinated, in-doubt transactions. Such
transactions are those for each resource manager has been asked to prepare to
commit, but MQSeries has yet to inform the resource managers of the
transaction outcome.

Information about the deduced state of the transaction in each of its
participating resource managers is displayed. This information can help you
assess the effects of failure in a particular resource manager.

Note: If you specify neither -e or -i, details of both internally and externally
coordinated in-doubt transactions are displayed.

Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error

dspmqtrn

248 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

72 Queue manager name error
102 No transactions found

Related commands
rsvmqtrn Resolve MQSeries transaction

dspmqtrn

Chapter 17. MQSeries control commands 249

endmqcsv (End command server)

Purpose
Use the endmqcsv command to stop the command server on the specified queue
manager.

Syntax

ee endmqcsv
-c

-i
QMgrName ef

Required parameters
QMgrName

Specifies the name of the queue manager for which the command server is to
be ended.

Optional parameters
-c Specifies that the command server is to be stopped in a controlled manner. The

command server is allowed to complete the processing of any command
message that it has already started. No new message is read from the
command queue.

This is the default.

-i Specifies that the command server is to be stopped immediately. Actions
associated with a command message currently being processed may not be
completed.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
1. The following command stops the command server on queue manager

saturn.queue.manager:

The command server can complete processing any command it has already
started before it stops. Any new commands received remain unprocessed in the
command queue until the command server is restarted.

2. The following command stops the command server on queue manager pluto
immediately:

endmqcsv -c "saturn.queue.manager"

endmqcsv

250 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

endmqcsv -i "pluto"

endmqcsv

Chapter 17. MQSeries control commands 251

Related commands
strmqcsv Start a command server
dspmqcsv Display the status of a command server

endmqcsv

252 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

endmqlsr (End listener)

Purpose
The endmqlsr command ends all listener process for the specified queue manager.

The queue manager must be stopped before the endmqlsr command is issued.

Syntax

ee endmqlsr
-m QMgrName

ef

Optional parameters
-m QMgrName

Specifies the name of the queue manager. If no name is specified, the
processing will be done for the default queue manager.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

endmqlsr

Chapter 17. MQSeries control commands 253

endmqm (End queue manager)

Purpose
Use the endmqm command to end (stop) a specified local queue manager. This
command stops a queue manager in one of three modes:
v Normal or quiesced shutdown
v Immediate shutdown
v Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not
affected. You can restart the queue manager using the strmqm (Start queue
manager) command.

To delete a queue manager, you must stop it and then use the dltmqm (Delete
queue manager) command.

Syntax

ee endmqm
-c

-i
-p
-w

-z
QMgrName ef

Required parameters
QMgrName

Specifies the name of the message queue manager to be stopped.

Optional parameters
-c Controlled (or quiesced) shutdown. The queue manager stops but only after all

applications have disconnected. Any MQI calls currently being processed are
completed. This is the default.

Control is returned to you immediately and you are not notified of when the
queue manager has stopped.

-w Wait shutdown

This type of shutdown is equivalent to a controlled shutdown except that
control is returned to you only after the queue manager has stopped. You
receive the message ″Waiting for queue manager QMgrName to end″ while
shutdown progresses.

-i Immediate shutdown. The queue manager stops after it has completed all the
MQI calls currently being processed. Any MQI requests issued after the
command has been issued fail. Any incomplete units of work are rolled back
when the queue manager is next started.

-p Preemptive shutdown.

endmqm

254 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Use this type of shutdown only in exceptional circumstances. For example,
when a queue manager does not stop as a result of a normal endmqm
command.

The queue manager stops without waiting for applications to disconnect or for
MQI calls to complete. This can give unpredictable results for MQSeries
applications. All processes in the queue manager that fail to stop are
terminated 30 seconds after the command is issued.

Note: After a forced or preemptive shutdown, or if the queue manager fails,
the queue manager may have ended without cleaning up the shared
memory that it owns. This can lead to problems restarting. For
information on how to use the MONMQ utility to clean up after an
abrupt ending of this type, see “Managing shared memory with
MONMQ” on page 342.

-z Suppresses error messages on the command.

Return codes
0 Queue manager ended
3 Queue manager being created
16 Queue manager does not exist
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error

Examples
The following examples show commands that end (stop) the specified queue
managers.
1. This command ends the queue manager named mercury.queue.manager in a

controlled way. All applications currently connected are allowed to disconnect.

2. This command ends the queue manager named saturn.queue.manager
immediately. All current MQI calls complete, but no new ones are allowed.

endmqm "mercury.queue.manager"

endmqm -i "saturn.queue.manager"

endmqm

Chapter 17. MQSeries control commands 255

Related commands
crtmqm Create a queue manager
strmqm Start a queue manager
dltmqm Delete a queue manager

endmqm

256 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

endmqtrc (End MQSeries trace)

Purpose
Use the endmqtrc command to end tracing for the specified entity or all entities.

Syntax

ee endmqtrc
-a
-m QMgrName

-e

ef

Optional parameters
-m QMgrName

Is the name of the queue manager for which tracing is to be ended.

A maximum of one -m flag and associated queue manager name can be
supplied on the command.

A queue manager name and -m flag can be specified on the same command as
the -e flag.

-e If this flag is specified, early tracing is ended.

-a If this flag is specified all tracing is ended.

This flag must be specified alone.

Return codes
AMQ5611 This message is issued if arguments that are not valid are supplied

to the command.

Examples
This command ends tracing of data for a queue manager called QM1.

Related commands
dspmqtrc Display formatted trace output
strmqtrc Start MQSeries trace

endmqtrc -m QM1

endmqtrc

Chapter 17. MQSeries control commands 257

failover (Manage a failover set)

Purpose
Use the failover command to manage a failover set. The failover command
includes both update and query parameters. The failover command can be
executed from any OpenVMS node in the failover set.

Syntax

ee failover -m QMgrName
-n NodeName

e

e
-q
-l
-s
-e
-f
-h
-u
-c

-cluster state -qmgr state -monitor state

ef

Required parameters
-m QMgrName

Specifies the name of the queue manager to which the failover command is to
be applied. The maximum length supported for the QMgrName name is 25
characters.

-n NodeName
Specifies the OpenVMS node name to which the command applies. This
parameter is required for the -h and the -c parameters.

Optional parameters
-q Queries the state of the failover set and displays the output.

-l Queries the state of the failover set and sets the following DCL symbols:

DCL symbol name Description

MQS$QMGR_NODE Set to the OpenVMS node that is running the queue
manager and a null string if there is no queue
manager running

MQS$AVAILABLE_NODES Set to the list of OpenVMS nodes that are available to
run the queue manager. That is the nodes that are in
the queue manager AVAILABLE state and that have a
failover monitor running.

MQS$MONITOR_NODES Set to the list of OpenVMS nodes that have a failover
monitor running on them

failover

258 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

-s Starts the queue manager in the failover set. If the -n parameter is specified,
the queue manager is started on the OpenVMS node specified; otherwise it is
started on the highest priority available node.

-e Ends the queue manager in the failover set.

-f Moves the queue manager to another node in the failover set. If the -n
parameter is specified, the queue manager is moved to the node specified;
otherwise the queue manager is moved to the highest priority available node.

-h Halts the failover monitor that is running on the node specified with the -n
parameter.

-u Clears the update in progress flag.

-c Changes the failover set state. The states that are changed are determined by
the following three parameters. Changes take effect only if they are consistent
with the running state of the failover set.

-cluster started | stopped
Used with the -c parameter to change the overall failover set state.

-qmgr available | running | excluded
Used with the -c parameter to change the node queue manager state
for the node specified with the -n parameter.

-monitor started | stopped | watching
Used with the -c parameter to change the node failover monitor state
for the node specified with the -n parameter.

Return codes
0 Command completed normally
5 The queue manager is running
36 Arguments supplied to a command are not valid
326 MQseries queue manager not running
1925 There is no failover monitor started for queue manager
1926 Failover set update operation in progress
1937 No node available on which to start the queue manager
1939 The ending of the queue manager was forced
1940 The ending of the queue manager timed out before completion.

OpenVMS error codes
36 %SYSTEM-F-NOPRIV, insufficient privilege or object protection violation
652 %SYSTEM-F-NOSUCHNODE, remote node is unknown
660 %SYSTEM-F-REJECT, connect to network object rejected

Examples
1. This example queries the state of a failover set for a queue manager called

testqm.

2. This example starts the queue manager called testqm on node batman.

failover -m "testqm" -q

failover -m "testqm" -n batman -s

failover

Chapter 17. MQSeries control commands 259

3. This example moves the queue manager called testqm to the highest priority
available node.

failover -m "testqm" -f

failover

260 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Related commands
runmqfm Start a failover monitor

failover

Chapter 17. MQSeries control commands 261

rcdmqimg (Record media image)

Purpose
Use the rcdmqimg command to write an image of an MQSeries object, or group of
objects, to the log for use in media recovery. Use the associated command
rcrmqobj to recreate the object from the image.

This command is used with an active queue manager. Further activity on the
queue manager is logged so that, although the image becomes out of date, the log
records reflect any changes to the object.

Syntax

ee rcdmqimg
-m QMgrName -z

-t ObjectType GenericObjName ef

Required parameters
GenericObjName

Specifies the name of the object that is to be recorded. This parameter may
have a trailing asterisk to indicate that any objects with names matching the
portion of the name prior to the asterisk are to be recorded.

This parameter is required unless you are recording a queue manager object or
the channel synchronization file. If you specify an object name for the channel
synchronization file, it is ignored.

-t ObjectType
Specifies the type of objects whose images are to be recorded. Valid object
types are:

prcs or process
Processes

q or queue All types of queue

ql or qlocal Local queues

qa or qalias Alias queues

qr or qremote Remote queues

qm or qmodel Model queues

qmgr Queue manager object

syncfile Channel synchronization file

nl or namelist Namelists

ctlg or catalog An object catalog

* or all All of the above

rcdmqimg

262 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Optional parameters
-m QMgrName

Specifies the name of the queue manager for which images are to be recorded.
If omitted, the command operates on the default queue manager.

-z Suppresses error messages.

Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
68 Media recovery is not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
131 Resource problem
132 Object damaged
135 Temporary object cannot be recorded

Examples
The following command records an image of the queue manager object
saturn.queue.manager in the log.

Related commands
rcrmqobj Recreate a queue manager object

rcdmqimg -t qmgr -m "saturn.queue.manager"

rcdmqimg

Chapter 17. MQSeries control commands 263

rcrmqobj (Recreate object)

Purpose
Use the rcrmqobj command to recreate an object, or group of objects, from their
images contained in the log. Use the associated command, rcdmqimg, to record the
object images to the log.

This command must be used on a running queue manager. All activity on the
queue manager after the image was recorded is logged. To recreate an object you
must replay the log to recreate events that occurred after the object image was
captured.

Syntax

ee rcrmqobj
-m QMgrName -z

-t ObjectType GenericObjName ef

Required parameters
GenericObjName

Specifies the name of the object that is to be recreated. This parameter may
have a trailing asterisk to indicate that any objects with names matching the
portion of the name prior to the asterisk are to be recreated.

This parameter is required unless the object type is the channel synchronization
file; if an object name is supplied for this object type, it is ignored.

-t ObjectType
Specifies the type of objects to be recreated. Valid object types are:

prcs or process
Processes

q or queue All types of queue

ql or qlocal Local queues

qa or qalias Alias queues

qr or qremote Remote queues

qm or qmodel Model queues

nl or namelist Namelists

ctlg or catalog An object catalog

* or all All the above

syncfile The channel synchronization file

Note: Using this flag causes the channel synchronization file to
be regenerated for the queue manager specified. This is
necessary because the file is not saved by the rcdmqimg
command.

rcrmqobj

264 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Optional parameters
-m QMgrName

Specifies the name of the queue manager for which objects are to be recreated.
If omitted, the command operates on the default queue manager.

-z Suppresses error messages.

Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
66 Media image not available
68 Media recovery is not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
135 Temporary object cannot be recovered
136 Object in use

Examples
1. The following command recreates all local queues for the default queue

manager:

2. The following command recreates all remote queues associated with queue
manager store:

rcrmqobj -t ql *

rcrmqobj -m "store" -t qr *

rcrmqobj

Chapter 17. MQSeries control commands 265

Related commands
rcdmqimg Record an MQSeries object in the log

rcrmqobj

266 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

rsvmqtrn (Resolve MQSeries transactions)

Purpose
Use the rsvmqtrn command to commit or back out internally or externally
coordinated in-doubt transactions.

Use this command only when you are certain that transactions cannot be resolved
by the normal protocols. Issuing this command may result in the loss of
transactional integrity between resource managers for a distributed transaction.

Syntax

ee rsvmqtrn -a -m QMgrName
-b Transaction
-c Transaction
-r RMIdTransaction

ef

Required parameters
-m QMgrName

Specifies the name of the queue manager. This parameter is mandatory.

Optional parameters
-a Specifies that the queue manager should attempt to resolve all internally

coordinated, in-doubt transactions (that is, all global units of work).

-b Specifies that the named transaction is to be backed out. This flag is valid for
externally coordinated transactions (that is, for external units of work) only.

-c Specifies that the named transaction is to be committed. This flag is valid for
externally coordinated transactions (that is, for external units of work) only.

-r RMId
Identifies the resource manager to which the commit or back out decision
applies. This flag is valid for internally coordinated transactions only, and for
resource managers that are no longer configured in the queue manager’s
qm.ini file. The outcome delivered will be consistent with the decision reached
by MQSeries for the transaction.

Transaction
Is the transaction number of the transaction being committed or backed out. To
discover the relevant transaction number, use the dspmqtrn command This
parameter is required with the -b, -c, and -r RMId parameters.

Return codes
0 Successful operation
32 Transactions could not be resolved
34 Resource manager not recognized
35 Resource manager not permanently available
36 Invalid arguments supplied
40 Queue manager not available

rsvmqtrn

Chapter 17. MQSeries control commands 267

49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
85 Transactions not known

Related commands
dspmqtrn Display list of prepared transactions

rsvmqtrn

268 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

runmqchi (Run channel initiator)

Purpose
Use the runmqchi command to run a channel initiator process. For more
information about the use of this command, refer to the MQSeries
Intercommunication book.

Syntax

ee runmqchi
-q InitiationQName -m QMgrName

ef

Optional parameters
-q InitiationQName

Specifies the name of the initiation queue to be processed by this channel
initiator. If not specified, SYSTEM.CHANNEL.INITQ is used.

-m QMgrName
Specifies the name of the queue manager on which the initiation queue exists.
If the name is omitted, the default queue manager is used.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If errors occur that result in return codes of either 10 or 20, you should review the
queue manager error log that the channel is associated with for the error messages.
You should also review the $SYSTEM error log, as problems that occur before the
channel is associated with the queue manager are recorded there. For more
information about error logs, see “Error logs” on page 187.

runmqchi

Chapter 17. MQSeries control commands 269

runmqchl (Run channel)

Purpose
Use the runmqchl command to run a Sender (SDR), a Requester (RQSTR).

The channel runs synchronously. To stop the channel, issue the MQSC command
STOP CHANNEL.

Syntax

ee runmqchl -c ChannelName
-m QMgrName

ef

Required parameters

-c ChannelName
Specifies the name of the channel to run.

Optional parameters
-m QMgrName

Specifies the name of the queue manager with which this channel is associated.
If no name is specified, the default queue manager is used.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If return codes 10 or 20 are generated, review the error log of the associated queue
manager for the error messages. You should also review the $SYSTEM error log
because problems that occur before the channel is associated with the queue
manager are recorded there.

runmqchl

270 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

runmqdlq (Run dead-letter queue handler)

Purpose
Use the runmqdlq command to start the dead-letter queue (DLQ) handler, a utility
that you can run to monitor and handle messages on a dead-letter queue.

The dead-letter queue handler can be used to perform various actions on selected
messages by specifying a set of rules that can both select a message and define the
action to be performed on that message.

The runmqdlq command takes its input from SYS$INPUT When the command is
processed, the results and a summary are put into a report that is sent to
SYS$OUTPUT.

By taking SYS$INPUT from the keyboard, you can enter runmqdlq rules
interactively.

By redirecting the input from a file, you can apply a rules table to the specified
queue. The rules table must contain at least one rule.

If the DLQ handler is used in foreground mode without redirecting SYS$INPUT
from a file, (the rules table) the DLQ handler:
v Reads its input from the keyboard.
v Does not start to process the named queue until it receives an end_of_file (ctrl-Z)

character.

For more information about rules tables and how to construct them, see “The DLQ
handler rules table” on page 94.

Syntax

ee runmqdlq
QName

QMgrName

ef

Optional parameters
The MQSC rules for comment lines and for joining lines also apply to the DLQ
handler input parameters.

QName
Specifies the name of the queue to be processed.

If no name is specified the dead letter queue defined for the local queue
manager is used. If one or more blanks (' ') are used, the dead letter queue of
the local queue manager is explicitly assigned.

A DLQ handler can be used to select particular messages on a dead-letter
queue for special processing. For example, you could redirect the messages to
different dead-letter queues. Subsequent processing with another instance of
the DLQ handler might then process the messages, according to a different
rules table.

runmqdlq

Chapter 17. MQSeries control commands 271

QMgrName
The name of the queue manager that owns the queue to be processed.

If no name is specified, the default queue manager for the installation is used.
If one or more blanks (' ') are used, the default queue manager for this
installation is explicitly assigned.

runmqdlq

272 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

runmqfm (Start a failover monitor)

Purpose
Use the runmqfm command to start a failover monitor on an OpenVMS node. The
failover monitor runs on the OpenVMS node on which the runmqfm command is
executed.

Syntax

ee runmqfm -m QMgrName
-d

ef

Required parameters
-m QMgrName

Specifies the name of the queue manager for which the runmqfm command is
to be started. The maximum length supported for the QMgrName name is 25
characters.

Optional parameters
-d Specifies that additional debug information is to be logged in the log file.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
The following example starts a failover monitor for a queue manager called testqm
and writes debug information to a log file called test.log.

Related commands
failover Manage a failover set.

runmqfm -m "testqm" -d > test.log

runmqfm

Chapter 17. MQSeries control commands 273

runmqlsr (Run listener)

Purpose
The runmqlsr (Run listener) command runs a listener process.

Syntax

ee runmqlsr -t tcp
-p Port -b Backlog

lu62 -n TpName

e

e
-m QMgrName

ef

Required parameters
-t Specifies the transmission protocol to be used:

tcp Transmission Control Protocol / Internet Protocol (TCP/IP)

lu62 SNA LU 6.2. (For the latest information on how to use this parameter,
see the release notes in sys$help:mqseries0510.release_notes.)

Optional parameters
-p Port

Port number for TCP/IP. This flag is valid for TCP and UDP. If a value is not
specified, the value is taken from the queue manager configuration file, or
from defaults in the program. The default value is 1414.

-n TpName
LU 6.2 transaction program name. This flag is valid only for the LU 6.2
transmission protocol. If a value is not specified, the value is taken from the
queue manager configuration file. If a value is not given, the command fails.

-m QMgrName
Specifies the name of the queue manager. If no name is specified, the
command operates on the default queue manager.

-b Backlog
Specifies the number of concurrent connection requests that the listener
supports. See “The LU62 and TCP stanzas” on page 172 for a list of default
values and further information.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

runmqlsr

274 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Examples
The following command runs a listener on the default queue manager using the
TCP/IP protocol. The command specifies that the listener should use port 4321.

runmqlsr -t tcp -p 4321

runmqlsr

Chapter 17. MQSeries control commands 275

runmqsc (Run MQSeries commands)

Purpose
Use the runmqsc command to issue MQSC commands to a queue manager. MQSC
commands enable you to perform administration tasks, for example defining,
altering, or deleting a local queue object. MQSC commands and their syntax are
described in the MQSeries Application Programming Guide.

Syntax

ee runmqsc g

-e
-v
-w WaitTime

-x

QMgrName
ef

Description
You can invoke the runmqsc command in three modes:

Verify mode
MQSC commands are verified but not actually run. An output report is
generated indicating the success or failure of each command. This mode is
only available on a local queue manager.

Direct mode
MQSC commands are sent directly to a local queue manager.

Indirect mode
MQSC commands are run on a remote queue manager. These commands
are put on the command queue on a remote queue manager and are run in
the order in which they were queued. Reports from the commands are
returned to the local queue manager.

Note: The user ID running the remote queue manager needs to exist locally and
have the correct authorizations.

The runmqsc command takes its input from SYS$INPUT. When the commands are
processed, the results and a summary are put into a report that is sent to
SYS$OUTPUT.

By taking SYS$INPUT from the keyboard, you can enter MQSC commands
interactively.

By redirecting the input from a file you can run a sequence of frequently-used
commands contained in the file. You can also redirect the output report to a file.

Optional parameters
-e Prevents source text for the MQSC commands from being copied into a report.

This is useful when you enter commands interactively.

runmqsc

276 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

-v Specifies verification mode; this verifies the specified commands without
performing the actions. This mode is only available locally. The -w and -x flags
are ignored if they are specified at the same time.

-w WaitTime
Specifies indirect mode, that is, the MQSC commands are to be run on another
queue manager. You must have the required channel and transmission queues
set up for this.

WaitTime
Specifies the time, in seconds, that runmqsc waits for replies. Any
replies received after this are discarded, however, the MQSC
commands are still run. Specify a time between 1 and 999 999 seconds.

Each command is sent as an Escape PCF to the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE) of the target queue manager.

The replies are received on queue SYSTEM.MQSC.REPLY.QUEUE and
the outcome is added to the report. This can be defined as either a
local queue or a model queue.

Indirect mode operation is performed through the default queue
manager.

This flag is ignored if the -v flag is specified.

-x Specifies that the target queue manager is running under MVS/ESA. This flag
applies only in indirect mode. The -w flag must also be specified. In indirect
mode, the MQSC commands are written in a form suitable for the MQSeries
for MVS/ESA command queue.

QMgrName
Specifies the name of the target queue manager on which the MQSC
commands are to be run. If omitted, the MQSC commands run on the default
queue manager.

Return codes
0 MQSC command file processed successfully.
10 MQSC command file processed with errors—report contains reasons for failing

commands.
20 Error—MQSC command file not run.

Examples
1. Type in this command at the OpenVMS command prompt:

Now you can type MQSC commands directly at the OpenVMS command
prompt. No queue manager name was specified, therefore, the MQSC
commands are processed on the default queue manager.

2. Use this command to specify that MQSC commands are verified only:

runmqsc

runmqsc -v BANK < DKA0:[USERS]COMMFILE.IN

runmqsc

Chapter 17. MQSeries control commands 277

This verifies the MQSC command file COMMFILE.IN in directory DKA0:[USERS].
The queue manager name is BANK. The output is displayed in the current
window.

3. This command runs the MQSC command file MQS_ROOT:[MQM.MQSC]MQSCFILE.IN
against the default queue manager.

In this example, the output is directed to file
MQS_ROOT:[MQM.MQSC]MQSCFILE.OUT.

runmqsc < MQS_ROOT:[MQM.MQSC]MQSCFILE.IN > MQS_ROOT:[MQM.MQSC]MQSCFILE.OUT

runmqsc

278 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

runmqtmc (Start client trigger monitor)

Purpose
Use the runmqtmc command to invoke a trigger monitor for a client. For further
information about using trigger monitors, refer to the MQSeries Application
Programming Guide.

Note: This command is available only on OpenVMS, OS/2, and AIX clients.

Syntax

ee runmqtmc
-m QMgrName -q InitiationQName

ef

Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the client trigger monitor
operates. If omitted, the client trigger monitor operates on the default queue
manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed. If omitted,
SYSTEM.DEFAULT.INITIATION.QUEUE is used.

Return codes
0 Not used. The client trigger monitor is designed to run continuously and

therefore not to end. The value is reserved.
10 Client trigger monitor interrupted by an error.
20 Error—client trigger monitor not run.

runmqtmc

Chapter 17. MQSeries control commands 279

runmqtrm (Start trigger monitor)

Purpose
Use the runmqtrm command to invoke a trigger monitor. For further information
about using trigger monitors, refer to the MQSeries Application Programming Guide.

Syntax

ee runmqtrm
-m QMgrName -q InitiationQName

ef

Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the trigger monitor
operates. If omitted, the trigger monitor operates on the default queue
manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed. If omitted,
SYSTEM.DEFAULT.INITIATION.QUEUE is used.

Return codes
0 Not used. The trigger monitor is designed to run continuously and therefore

not to end. The value is reserved.
10 Trigger monitor interrupted by an error.
20 Error— trigger monitor not run.

runmqtrm

280 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

setmqaut (Set/reset authority)

Purpose
Use the setmqaut command to change the authorizations to an object or to a class
of objects. Authorizations can be granted to, or revoked from, any number of
principals or groups.

Syntax

ee setmqaut -m QMgrName -n ObjectName -t ObjectType e

e
-s ServiceComponent

g -p PrincipalName
-g GroupName

e

e g MQI authorizations
Context authorizations
Administration authorizations
Generic authorizations

ef

MQI authorizations:

g +get
−get
+browse
−browse
+put
−put
+inq
−inq
+set
−set
+connect
−connect
+altusr
−altusr

Context authorizations:

setmqaut

Chapter 17. MQSeries control commands 281

g +passid
−passid
+passall
−passall
+setid
−setid
+setall
−setall

Administration authorizations:

g +crt
−crt
+dlt
−dlt
+chg
−chg
+dsp
−dsp
+clr
−clr

Generic authorizations:

g +allmqi
−allmqi
+alladm
−alladm
+all
−all

Description
You can use this command both to set an authorization, that is, give a user group
or principal permission to perform an operation, and to reset an authorization, that
is, remove the permission to perform an operation. You must specify the user
groups and principals to which the authorizations apply and also the queue
manager, object type, and object name of the object. You can specify any number of
groups and principals in a single command.

Attention: If you specify a set of authorizations for a principal, the same
authorizations are given to all principals in the same primary group.

The authorizations that can be given are categorized as follows:
v Authorizations for issuing MQI calls
v Authorizations for MQI context
v Authorizations for issuing commands for administration tasks

setmqaut

282 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the
command. Each item in the list is a string prefixed by ‘+’ or ‘−’. For example, if
you include +put in the authorization list, you are giving authority to issue
MQPUT calls against a queue. Alternatively, if you include −put in the
authorization list, you are removing the authorization to issue MQPUT calls.

Authorizations can be specified in any order provided that they do not clash. For
example, specifying allmqi with set causes a clash.

You can specify as many groups or authorizations as you require in a single
command.

If a user ID is a member of more than one group, the authorizations that apply are
the union of the authorizations of each group to which that user ID belongs.

Required parameters
-m QMgrName

Specifies the name of the queue manager of the object for which the
authorizations are to be changed. The name can contain up to 48 characters.

-n ObjectName
Specifies the name of the object for which the authorizations are to be changed.

This is a required parameter unless it is the queue manager itself. You must
specify the name of a queue manager, queue, or process, but must not use a
generic name.

-t ObjectType
Specifies the type of object for which the authorizations are to be changed.

Possible values are:
v q or queue
v prcs or process
v qmgr

Optional parameters
-p PrincipalName

Specifies the name of the principal for which the authorizations are to be
changed.

You must have at least one principal or one group.

-g GroupName
Specifies the name of the rights identifier representing the user group whose
authorizations are to be changed. You can specify more than one rights
identifier name, but each name must be prefixed by the -g flag.

-s ServiceComponent
This parameter applies only if you are using installable authorization services,
otherwise it is ignored.

If installable authorization services are supported, this parameter specifies the
name of the authorization service to which the authorizations apply. This
parameter is optional; if it is not specified, the authorization update is made to
the first installable component for the service.

setmqaut

Chapter 17. MQSeries control commands 283

Authorizations
Specifies the authorizations to be given or removed. Each item in the list is
prefixed by a ‘+’ indicating that authority is to be given, or a ‘−’, indicating
that authorization is to be removed. For example, to give authority to issue an
MQPUT call from the MQI, specify +put in the list. To remove authority to
issue an MQPUT call, specify −put.

Table 17 shows the authorities that can be given to the different object types.

Table 17. Specifying authorizations for different object types

Authority Queue Process Qmgr Namelist

all U U U U

alladm U U U U

allmqi U U U U

altusr U

browse U

chg U U U U

clr U

connect U

crt U U U U

dlt U U U U

dsp U U U U

get U

inq U U U U

passall U

passid U

put U

set U U U

setall U U

setid U U

Authorizations for MQI calls

altusr Use an alternate user ID in a message.

See the MQSeries Application Programming Guide for more information
about alternate user IDs.

browse
Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

connect
Connect the application to the specified queue manager by issuing an
MQCONN call.

get Retrieve a message from a queue by issuing an MQGET call.

inq Make an inquiry on a specific queue by issuing an MQINQ call.

put Put a message on a specific queue by issuing an MQPUT call.

set Set attributes on a queue from the MQI by issuing an MQSET call.

setmqaut

284 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Note: If you open a queue for multiple options, you have to be authorized for
each of them.

Authorizations for context

passall
Pass all context on the specified queue. All the context fields are copied
from the original request.

passid Pass identity context on the specified queue. The identity context is the
same as that of the request.

setall Set all context on the specified queue. This is used by special system
utilities.

setid Set identity context on the specified queue. This is used by special
system utilities.

Authorizations for commands

chg Change the attributes of the specified object.

clr Clear the specified queue (PCF Clear queue command only).

crt Create objects of the specified type.

dlt Delete the specified object.

dsp Display the attributes of the specified object.

Authorizations for generic operations

all Use all operations applicable to the object.

alladm
Perform all administration operations applicable to the object.

allmqi Use all MQI calls applicable to the object.

Return codes
0 Command completed normally
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing
150 Authorization specification missing
151 Invalid authorization specification

Examples
1. This example shows a command that specifies that the object on which

authorizations are being given is the queue orange.queue on queue manager
saturn.queue.manager.

setmqaut

Chapter 17. MQSeries control commands 285

The authorizations are being given to user group tango and the associated
authorization list specifies that user group tango:
v Can issue MQINQ calls.
v Has authority to perform all administration operations on that object.

2. In this example, the authorization list specifies that user group foxy:
v Cannot issue any calls from the MQI to the specified queue.
v Has authority to perform all administration operations on the specified

queue.

3. In this example, the authorization list specifies that user group waltz has
authority to create and delete queue manager saturn.queue.manager:

setmqaut -m "saturn.queue.manager" -n "orange.queue" -t queue -g "tango" +inq +alladm

setmqaut -m "saturn.queue.manager" -n "orange.queue" -t queue -g "foxy" -allmqi +alladm

setmqaut -m "saturn.queue.manager" -t qmgr -g "waltz" +crt +dlt

setmqaut

286 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Related commands
dspmqaut Display authority

setmqaut

Chapter 17. MQSeries control commands 287

strmqcsv (Start command server)

Purpose
Use the strmqcsv command to start the command server for the specified queue
manager. This enables MQSeries to process commands sent to the command
queue.

Syntax

ee strmqcsv
QMgrName

ef

Optional parameters
QMgrName

Specifies the name of the queue manager for which the command server is to
be started.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
The following command starts a command server for queue manager earth:

Related commands
endmqcsv End a command server

dspmqcsv Display the status of a command server

strmqcsv "earth"

strmqcsv

288 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

strmqm (Start queue manager)

Purpose
Use the strmqm command to start a local queue manager.

Note: Before using the strmqm command, or any other control command,
mqs_startup must have been run once since the last reboot before the queue
manager can be started and run successfully.

Syntax

ee strmqm
-c -z QMgrName

ef

Optional parameters
-c Starts the queue manager, redefines the default and system objects, then stops

the queue manager. (The default and system objects for a queue manager are
created initially by the crtmqm command.) Any existing system and default
objects belonging to the queue manager are replaced if you specify this flag.

QMgrName
Specifies the name of a local queue manager to be started. If omitted, the
default queue manager is started.

-z Suppresses error messages.

This flag is used within MQSeries to suppress unwanted error messages.
Because using this flag could result in loss of information, you should not use
it when entering commands on a command line.

Return codes
0 Queue manager started
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
23 Log not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid

Examples
The following command starts the queue manager account:

strmqm "account"

strmqm

Chapter 17. MQSeries control commands 289

Related commands
crtmqm Create a queue manager
dltmqm Delete a queue manager
endmqm End a queue manager

strmqm

290 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

strmqtrc (Start MQSeries trace)

Purpose
Use the strmqtrc command to enable tracing. This command can be run whether
tracing is enabled or not. If tracing is already enabled, the trace options in effect
are modified to those specified on the latest invocation of the command.

Syntax

ee strmqtrc
-m QMgrName -e -t TraceType

e

e
-l MaxSize

ef

Description
Different levels of trace detail can be requested. For each flow tracetype value you
specify, including -t all, specify either -t params or -t detail for any particular trace
type, only a default-detail trace is generated for that trace type.

For examples of trace data generated by this command, see “Using MQSeries
trace” on page 191.

Optional parameters
-m QMgrName

Is the name of the queue manager to be traced.

A queue manager name and the -m flag can be specified on the same
command as the -e flag. If more than one trace specification applies to a given
entity being traced, the actual trace includes all of the specified options.

It is an error to omit the -m flag and queue manager name, unless the -e flag is
specified.

-e If this flag is specified, early tracing is requested. Consequently, it is possible to
trace the creation or startup of a queue manager. This involves trace
information being written, before the processes know to which MQSeries
component they belong. Any process, belonging to any component of any
queue manager, traces its early processing if this flag is specified. The default,
if this flag is not specified, is not to perform early tracing.

-t TraceType
Defines which points during processing can be traced. If this flag is omitted, all
trace points are enabled and a full trace generated.

Alternatively, one or more of the options in the following list can be supplied.

Note: If multiple trace types are supplied, each must have its own -t flag. Any
number of -t flags can be specified, as long as each has a valid trace
type associated with it.

strmqtrc

Chapter 17. MQSeries control commands 291

It is not an error to specify the same trace type on multiple -t flags.
all Output data for every trace point in the system. This is also the

default if the -t flag is not specified.
api Output data for trace points associated with the MQI and

major queue manager components.
comms Output data for trace points associated with data flowing over

communications networks.
csflows Output data for trace points associated with processing flow in

common services.
lqmflows Output data for trace points associated with processing flow in

the local queue manager.
remoteflows Output data for trace points associated with processing flow in

the communications component.
otherflows Output data for trace points associated with processing flow in

other components.
csdata Output data for trace points associated with internal data

buffers in common services.
lqmdata Output data for trace points associated with internal data

buffers in the local queue manager.
remotedata Output data for trace points associated with internal data

buffers in the communications component.
otherdata Output data for trace points associated with internal data

buffers in other components.
versiondata Output data for trace points associated with the version of

MQSeries running.
commentary Output data for trace points associated with comments in the

MQSeries components.

-l MaxSize
The value of MaxSize denotes the maximum size of a trace file
(AMQnnnn.TRC) in millions of bytes. For example, if you specify a MaxSize of
1, the size of the trace is limited to 1 million bytes.

When a trace file reaches the specified maximum, it is renamed from
AQnnnn.TRC to AMQnnnn.TRS and a new AMQnnnn.TRC file is started. All
trace files are restarted when the maximum limit is reached. If a previous copy
of an AMQnnnn.TRS file exists, it will be deleted.

Return codes
AMQ7024 This message is issued if arguments that are not valid are supplied

to the command.
AMQ8304 The maximum number of nine concurrent traces is already

running.

Examples
This command enables tracing of data from common services and the local queue
manager, for a queue manager called QM1.

Related commands
dspmqtrc Display formatted trace output
endmqtrc End MQSeries trace

strmqtrc -m QM1 -t csdata -t lqmdata

strmqtrc

292 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Part 3. Appendixes

© Copyright IBM Corp. 1994, 2001 293

294 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix A. MQSeries for Compaq OpenVMS at a glance

Program and part number
v 5724–A38 MQSeries for Compaq OpenVMS, Alpha Version 5 Release 1, part

number 0790997.

Hardware requirements
MQSeries servers can be any Compaq Alpha machine with minimum system disk
space of 128 MB.

Software requirements
Software requirements are identical for server and client Compaq OpenVMS
environments unless otherwise stated.

Minimum support levels are shown:
v Compaq OpenVMS Alpha Version 7.2–1.

Connectivity
MQSeries for Compaq OpenVMS supports the following network protocols and
hardware:

Network protocols:
v SNA LU6.2
v TCP/IP
v DECnet Phase V

And any communications hardware supporting DECnet or TCP/IP, or DIGITAL
DECnet/SNA Gateway.

For DECnet connectivity:

v DECnetPLUS Version 7.1 for OpenVMS Version 7.2–1

For TCP/IP connectivity:

v DIGITAL TCP/IP Services for OpenVMS AlphaV5.0.a and V5.1
v Process Software's TCPWare V5.4
v Process Software's Multinet V4.3

For SNA connectivity: SNA APPC LU6.2 software and license must be installed. It
must have access to a suitably configured SNA gateway.
v DECnet SNA Gateway ST V1.3
v DECnet SNA LU6.2 API V2.4

Security
MQSeries for Compaq OpenVMS uses the security features of the Object Authority
Manager (OAM) for MQSeries for Compaq OpenVMS.

© Copyright IBM Corp. 1994, 2001 295

All MQSeries resources run with the VMS Rights Identifier MQM. This rights
identifier is created during MQSeries installation and you must grant the rights
identifier with this resource attribute to all users who need to control MQSeries
resources.

Maintenance functions
MQSeries functions with:
v The runmqsc command-line interface.

Compatibility
The MQI for MQSeries for Compaq OpenVMS Alpha, V5.1 is compatible with
existing applications running Version 2.2.1.1.

Supported compilers
Programs can be written using C, C++, COBOL, or Java.
v C programs can use the DEC C compiler
v C++ programs can use the DEC C++ compiler
v COBOL programs can use the DEC COBOL compiler
v Java programs can use the Java compiler

Language selection
A supplied message text file is encoded in the 7–bit character set that is native to
the OpenVMS operating system.

Internationalization
MQSeries for Compaq OpenVMS lets the CCSID be specified when the queue
manager instance is created. The queue manager CCSID defaults to 819. MQSeries
for Compaq OpenVMS supports character-set conversion into the configured
CCSID of the queue manager. For information about the CCSIDs that can be
specified for an MQSeries for Compaq OpenVMS queue manager, including those
that provide support for the euro character, see the MQSeries Application
Programming Reference book.

Security

296 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix B. System defaults

When you create a queue manager using the crtmqm control command, the system
objects and default objects are created automatically.
v The system objects are those MQSeries objects required for the operation of a

queue manager or channel.
v The default objects define all of the attributes of an object. When you create an

object, such as a local queue, any attributes that you do not specify explicitly are
inherited from the default object.

Table 18. System and default objects for queues

Object Name Description

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.DEAD.LETTER.QUEUE Sample dead-letter (undelivered-message)
queue.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.CICS.INITIATION.QUEUE Default CICS® initiation queue.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for
remote MQSC commands, and PCF
commands.

SYSTEM.MQSC.REPLY.QUEUE MQSC reply-to-queue. This a model queue
that creates a temporary dynamic queue for
replies to remote MQSC commands.

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channel events.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ The queue which holds the synchronization
data for channels.

SYSTEM.CLUSTER.COMMAND.QUEUE The queue used to carry messages to the
repository queue manager.

SYSTEM.CLUSTER.REPOSITORY.QUEUE The queue used to store all repository
information.

SYSTEM.CLUSTER.TRANSMIT.QUEUE The transmission queue for all messages to
clusters.

Table 19. System and default objects for channels

Object Name Description

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

© Copyright IBM Corp. 1994, 2001 297

Table 19. System and default objects for channels (continued)

Object Name Description

SYSTEM.DEF.SVRCONN Default server connection channel.

SYSTEM.DEF.CLNTCONN Default client connection channel.

SYSTEM.AUTO.RECEIVER Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel.

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster used
to supply default values for any attributes
not specified when a CLUSRCVR channel is
created on a queue manager in a cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster used
to supply default values for any attributes
not specified when CLUSSDR channel is
created on a queue manager in the cluster.

Table 20. System and default objects for namelists

Object Name Description

SYSTEM.DEFAULT.NAMELIST Default namelist.

Table 21. System and default objects for processes

Object Name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

Defaults

298 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix C. Directory structure

Figure 26 shows the general layout of the data and log directories associated with a
specific queue manager. The directories shown apply to the default installation. If
you change this, the locations of the files and directories will be modified
accordingly.

In Figure 26, the layout is representative of MQSeries after a queue manager has
been in use for some time. The actual structure that you have depends on which
operations have occurred on the queue manager.

[.trace]

[.qmname]

[.$SYSTEM]

mqs.ini

[.exits]*

[.errors]

[.qmgrs]

amqalchk.fil

[.auth]

[.dce]

[.errors]

[.msem]

[.esem]

[.isem]

[.namelist] *-System$default$namelist.;

[.errors]

[.esem]

ccsid.tbl

[.isem]

[.msem]

$aclass.;

[.namelist]

[.procdef]

[.qmanager]

[.queues]

qaadmin.;

$class.;

[.$mangled]

system$default$namelist.;

$class.;

[.$mangled]

system$default$process.;

$class.;

[.$mangled]

self.;

$class.;

[.$mangled]

[.shmem] [.perQueue]

[.ssem]

mqs_root:[mqm]

[.qmanager]

qmstatus.ini

[.queues]

[.ssmem]

[.perQueue]

[.startprm]

[.$ ipcc]

[.plugcomp]

[.procdef]

qm.ini

[.shmem]

[.qmname][.log] amqhlctl.lfh

[.active]

[.lib]*

[.conv]*

[.iconv]

[.table]

amqclchl.tab

amqrfcda.dat

[.esem]

[.isem]

[.msem]

[.shmem] [.perQueue]

[.ssem]

Figure 26. Default directory structure after a queue manager has been started

© Copyright IBM Corp. 1994, 2001 299

Directories and files in MQS_ROOT:[MQM]
By default, the following directories and files are located in the directory
MQS_ROOT:[MQM]:

.conv This directory contains all files used for data conversion.

.table This directory contains the ccsid.tbl. file.

.errors This directory contains the operator message files, from newest to oldest:
AMQERR01.LOG
AMQERR02.LOG
AMQERR03.LOG

.exits An empty directory to contain user-written exits.

.lib This directory contains the subdirectory .iconv. The subdirectory contains
all the codeset conversion tables.

.iconv A directory containing codeset conversion tables (such as
002501B5.TBL to 44B031A8.TBL).

.log This directory contains the following subdirectory and files after you have
installed MQSeries, created and started a queue manager, and have been
using that queue manager for some time.

amqhlctl.lfh
Log control file.

active This directory contains the log files, numbered as follows:
S0000000.LOG
S0000001.LOG
S0000002.LOG
... and so on.

mqs.ini
MQSeries configuration file.

.qmgrs
This directory contains a subdirectory .$system and a subdirectory .qmname
for each queue manager. The .$system directory contains directories and
files used internally by MQSeries. For more information about the .qmname
subdirectory, see “Directories and files in the
MQS_ROOT:[MQM.QMGRS.QMNAME] subdirectory”.

.trace This directory contains the trace files created from the strmqtrc command.

Directories and files in the MQS_ROOT:[MQM.QMGRS.QMNAME]
subdirectory

By default, the following directories and files are located in the directory
MQS_ROOT:[MQM.QMGRS.QMNAME]. The .QMNAME is created for every
queue manager created and running on the system.

amqalchk.fil
Checkpoint file containing information about last checkpoint.

.auth This directory contains subdirectories and files associated with authority.

$aclass.;
This file contains the authority stanzas for all classes.

Directory structure

300 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

.namelist
This directory contains a file for each namelist. Each file contains
the authority stanzas for the associated namelist.

$class.;
This file contains the authority stanzas for the namelist
class.

.$mangled
When namelist names contain invalid OpenVMS
characters, they are automatically converted to valid
OpenVMS names. The valid OpenVMS names are held in
this file. See “Understanding MQSeries file names” on
page 19.

system$default$namelist
This file contains authority stanzas for the system default
namelist.

.procdef
Each MQSeries process definition is associated with a file in this
directory.

$class.;
This file contains the authority stanzas for the process
definition class.

.$mangled
When process definition names contain invalid OpenVMS
characters, they are automatically converted to valid
OpenVMS names. The valid OpenVMS names are held in
this file. See “Understanding MQSeries file names” on
page 19.

.system$default$process.;
This file contains authority stanzas for the system default
processes.

.qmanager
This directory contains a file for each queue manager. Each file
contains the authority stanzas for the associated queue manager.

$class.;
This file contains the authority stanzas for the queue
manager class.

.$mangled
When queue manager definition names contain invalid
OpenVMS characters, they are automatically converted to
valid OpenVMS names. The valid OpenVMS names are
held in this file. See “Understanding MQSeries file names”
on page 19.

self.; This file contains the authority stanzas for the queue
manager object.

.queues
This directory contains a file for each queue. Each file contains the
authority stanzas for the associated queue.

$CLASS
This file contains the authority stanzas for the queue class.

Directory structure

Appendix C. Directory structure 301

.$mangled
When queue names contain invalid OpenVMS characters,
they are automatically converted to valid OpenVMS names.
The valid OpenVMS names are held in this file. See
“Understanding MQSeries file names” on page 19.

Definition files for the queue
Each file corresponds to an object predefined for the queue
manager.

system$admin$channel$event.;
system$admin$command$queue.;
system$admin$perfm$event.;
system$admin$qmgr$event.;
system$channel$initq.;
system$channel$syncq.;
system$cics$initiation$queue.;
system$cluster$command$queue.;
system$cluster$repository$queue.;
system$cluster$transmit$queue.;
system$dead$letter$queue.;
system$default$alias$queue.;
system$default$initiation$queue.;
system$default$local$queue.;
system$default$model$queue.;
system$default$remote$queue.;
system$mqsc$reply$queue.;

.qaadmin.;
File used internally for controlling authorizations.

.dce Empty directory reserved for use by DCE support.

.errors This directory contains the operator message files, from newest to oldest:
amqerr01.log
amqerr02.log
amqerr03.log

.esem Directory containing files used internally.

.isem Directory containing files used internally.

.msem Directory containing files used internally.

.namelist
This directory contains namelists for each queue manager.

.plugcomp
This empty directory is reserved for use by installable services.

.procdef
Each MQSeries process definition is associated with a file in this directory.
The filename matches the process definition name.

qm.ini Queue manager configuration file.

.qmanager
The queue manager object.

qmstatus.ini
This file contains text describing the status of the queue manager.

.queues
Each queue has a directory in here containing a single file called ‘q’.

Directory structure

302 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

The file name matches the queue name—subject to certain restrictions; see
“Understanding MQSeries file names” on page 19.

.shmem

.perQueue
Directory containing files used internally.

.ssem Directory containing files used internally.

.startprm
Directory containing temporary files used internally.

.$ipcc
amqclchl.tab

Client channel table file.
amqrfcda.dat

Channel table file.
.esem Directory containing files used internally.
.isem Directory containing files used internally.
.msem Directory containing files used internally.
.shmem

.perQueue
Directory containing files used internally.

.ssem Directory containing files used internally.

Directory structure

Appendix C. Directory structure 303

Directory structure

304 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix D. Comparing command sets

The following tables compare the facilities available from the different
administration command sets:
v “Commands for queue manager administration”
v “Commands for command server administration”
v “Commands for queue administration” on page 306
v “Commands for process administration” on page 306
v “Commands for channel administration” on page 307
v “Other control commands” on page 307

Note: Only MQSC commands that apply to MQSeries for Compaq OpenVMS are
shown.

Commands for queue manager administration
Table 22. Commands for queue manager administration

PCF MQSC Control

Change Queue Manager ALTER QMGR –

(Create queue manager). – crtmqm

(Delete queue manager). – dltmqm

Inquire Queue Manager DISPLAY QMGR –

(Stop queue manager). – endmqm

Ping Queue Manager PING QMGR –

(Start queue manager). – strmqm

Note: . Not available as PCF commands.

Commands for command server administration
Table 23. Commands for command server administration

Description Control

Display command server dspmqcsv

Start command server strmqcsv

Stop command server endmqcsv

Note: Functions in this group are available only as control commands. There are no
equivalent MQSC or PCF commands in this group.

© Copyright IBM Corp. 1994, 2001 305

Commands for queue administration
Table 24. Commands for queue administration

PCF MQSC

Change Queue ALTER QLOCAL
ALTER QALIAS
ALTER QMODEL
ALTER QREMOTE

Clear Queue CLEAR QUEUE

Copy Queue DEFINE QLOCAL(x) LIKE(y)
DEFINE QALIAS(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)
DEFINE QREMOTE(x) LIKE(y)

Create Queue DEFINE QLOCAL
DEFINE QALIAS
DEFINE QMODEL
DEFINE QREMOTE

Delete Queue DELETE QLOCAL
DELETE QALIAS
DELETE QMODEL
DELETE QREMOTE

Inquire Queue DISPLAY QUEUE

Inquire Queue Names DISPLAY QUEUE

Note: There are no equivalent control commands in this group.

Commands for process administration
Table 25. Commands for process administration

PCF MQSC

Change Process ALTER PROCESS

Copy Process DEFINE PROCESS(x) LIKE(y)

Create Process DEFINE PROCESS

Delete Process DELETE PROCESS

Inquire Process DISPLAY PROCESS

Inquire Process Names DISPLAY PROCESS

Note: There are no equivalent control commands in this group.

Comparing command sets

306 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Commands for channel administration
Table 26. Commands for channel administration

PCF MQSC Control

Change Channel ALTER CHANNEL –

Copy Channel DEFINE CHANNEL(x) LIKE(y) –

Create Channel DEFINE CHANNEL –

Delete Channel DELETE CHANNEL –

Inquire Channel DISPLAY CHANNEL –

Inquire Channel Names DISPLAY CHANNEL –

Ping Channel PING CHANNEL –

Reset Channel RESET CHANNEL –

Resolve Channel RESOLVE CHANNEL –

Start Channel START CHANNEL runmqchl

Start Channel Initiator START CHINIT runmqchi

Start Channel Listener – runmqlsr

Stop Channel STOP CHANNEL –

Other control commands
Table 27. Other control commands

Description Control

Create MQSeries conversion exit crtmqcvx

Display authority dspmqaut

Display files used by objects dspmqfls

Display MQSeries formatted trace output dspmqtrc

End MQSeries trace endmqtrc

Manage a failover set failover

Record media image rcdmqimg

Recreate media object rcrmqobj

Resolve MQSeries transactions rsvmqtrn

Run MQSC commands runmqsc

Run trigger monitor runmqtrm

Run client trigger monitor runmqtmc

Set or reset authority setmqaut

Start a failover monitor runmqfm

Start MQSeries trace strmqtrc

Note: Functions in this group are available only as control commands. There are no direct
PCF or MQSC equivalents.

Comparing command sets

Appendix D. Comparing command sets 307

Comparing command sets

308 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix E. Sample MQI programs and MQSC files

MQSeries for Compaq OpenVMS provides a set of short sample MQI programs
and MQSC command files that you can use and experiment with. These are
described in the following sections:
v “MQSC command file samples”
v “C and COBOL program samples”
v “Miscellaneous tools” on page 310

MQSC command file samples
Table 28 lists the MQSC command file samples. These are simply ASCII text files
containing MQSC commands. You can invoke the runmqsc command against each
file in turn to create the objects specified in the file. See “Running the supplied
MQSC command files” on page 38.

By default, these files are located in directory MQS_EXAMPLES:

Table 28. MQSC command files

File name Purpose

AMQSCOS0.TST Creates a set of MQI objects for use with the C and COBOL program samples.

C and COBOL program samples
Table 29 lists the sample MQI source files. By default, the source files are located in
directory MQS_EXAMPLES: and the compiled versions in [.BIN] directory under
MQS_EXAMPLES:. To find out more about what the programs do and how to use
them, see the MQSeries Application Programming Guide.

Table 29. Sample programs - source files

C COBOL Purpose

AMQSBCG0.C – Reads and then outputs both the message descriptor and message context
fields of all the messages on a specified queue.

AMQSECHA.C AMQVECHX.COB Echoes a message from a message queue to the reply-to queue. Can be run
as a triggered application program.

AMQSGBR0.C AMQ0GBR0.COB Writes messages from a queue to SYS$OUTPUT leaving the messages on
the queue. Uses MQGET with the browse option.

AMQSGET0.C AMQ0GET0.COB Removes the messages from the named queue (using MQGET) and writes
them to SYS$OUTPUT.

AMQSINQA.C AMQVINQX.COB Reads the triggered queue; each request read as a queue name; responds
with information about that queue.

AMQSPUT0.C AMQ0PUT0.COB Copies SYS$INPUT to a message and then puts this message on a specified
queue.

AMQSREQ0.C AMQ0REQ0.COB Puts request messages on a specified queue and then displays the reply
messages.

AMQSSETA.C AMQVSETX.COB Inhibits puts on a named queue and responds with a statement of the
result. Runs as a triggered application.

© Copyright IBM Corp. 1994, 2001 309

Table 29. Sample programs - source files (continued)

C COBOL Purpose

AMQSTRG0.C – A trigger monitor that reads a named initiation queue and then starts the
program associated with each trigger message. Provides a subset of the full
triggering function of the supplied runmqtrm command.

AMQSVFCX.C – A sample C skeleton of a Data Conversion exit routine.

Miscellaneous tools
These tool files are provided to support the formatter and code conversion.

Table 30. Miscellaneous files

File name Location Purpose

AMQTRC.FMT SYS$LIBRARY Defines MQSeries trace formats.

CCSID.TBL MQS_ROOT:[MQM.CONV.TABLE] Edit this file to add any newly
supported CSSID values to your
MQSeries system. For more
information about CCSID, see the
CDRA (Character Data
Representation Architecture)
documentation.

samples

310 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix F. OpenVMS cluster failover set templates

This appendix contains the following failover set templates:
v “Template Configuration File FAILOVER.TEMPLATE”
v “Template StartCommand procedure START_QM.TEMPLATE” on page 313
v “Template EndCommand procedure END_QM.TEMPLATE” on page 314
v “Template TidyCommand procedure TIDY_QM.TEMPLATE” on page 317

Template Configuration File FAILOVER.TEMPLATE
#**#
#* *#
#* Statement: Licensed Materials - Property of IBM *#
#* *#
#* 33H2205, 5622-908 *#
#* 33H2267, 5765-623 *#
#* 29H0990, 5697-176 *#
#* (C) Copyright IBM Corp. 2000, 2001 *#
#* *#
#**#
#
FAILOVER.TEMPLATE
Template for creating a FAILOVER.INI configuration file
All lines beginning with a '#' are treated as comments
#
OpenVMS Cluster Failover Set Configuration information
--
#
The TCP/IP address used by the OpenVMS Cluster Failover Set
#
IpAddress=n.n.n.n
#
The TCP/IP port number used by the MQSeries Queue Manager
#
PortNumber=1414
#
The timeout used by the EndCommand command procedure
#
TimeOut=30
#
The command procedure used to start the Queue Manager
#
StartCommand=@sys$manager:start_qm
#
The command procedure used to end the Queue Manager
#
EndCommand=@sys$manager:end_qm
#
The command procedure used to tidy up on a node after a
Queue Manager failure but the OpenVMS node did not fail
#
TidyCommand=@sys$manager:tidy_qm
#
The directory in which the log files for the start, end and
tidy commands are written
#
LogDirectory=mqs_root:[mqm.errors]
#
The number of nodes in the OpenVMS Cluster Failover Set. The
number of nodes defined below must agree with this number

© Copyright IBM Corp. 1994, 2001 311

#
NodeCount=2
#
The Name of the OpenVMS node
#
NodeName=BATMAN
#
The TCP/IP interface name for the node
#
Interface=we0
#
The priority of the node
#
Priority=1
#
The Name of the OpenVMS node
#
NodeName=ROBIN
#
The TCP/IP interface name for the node
#
Interface=we0
#
The priority of the node
#
Priority=2

Figure 27. Template configuration file: failover.template

FAILOVER.TEMPLATE

312 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Template StartCommand procedure START_QM.TEMPLATE
$ on error then exit
$!**
$!* Statement: Licensed Materials - Property of IBM *
$!* 33H2205, 5622-908 *
$!* 33H2267, 5765-623 *
$!* 29H0990, 5697-176 *
$!* (C) Copyright IBM Corp. 2000, 2001 *
$!**
$! Template command procedure used by Failover Sets to start the
$! queue manager
$! Parameters :
$! P1 = Queue Manager Name
$! P2 = Queue Manager Directory Name
$! P3 = TCP/IP address
$! P4 = TCP/IP interface name
$! P5 = Listener port number
$!
$ @sys$startup:mqs_symbols
$ set def mqs_root:[mqm.qmgrs.'p2'.errors]
$ define sys$scratch mqs_root:[mqm.qmgrs.'p2'.errors]
$!
$! Digital TCP/IP Services for OpenVMS commands
$!
$ @sys$startup:tcpip$define_commands
$!
$! Configure the IP address
$!
$ ifconfig 'p4' alias 'p3'
$!
$! TCPware for OpenVMS commands
$!
$! @tcpware:tcpware_commands
$!
$! Configure the IP address
$!
$! netcu add secondary 'p3'
$!
$! MultiNet for OpenVMS commands
$!
$! Configure the IP address
$!
$! define/sys/exec multinet_ip_cluster_aliases "''p3'"
$!
$! Restart the Multinet server
$!
$! @multinet:start_server
$!$! Start the queue manager
$!
$ strmqm 'p1'
$!
$! Start the listener
$!
$! runmqlsr -t tcp -p 'p5' -m 'p1'
$!
$! Insert commands to start any applications
$!
$exit

Figure 28. Template StartCommand procedure: Start_QM.template

START_QM.TEMPLATE

Appendix F. OpenVMS cluster failover set templates 313

Template EndCommand procedure END_QM.TEMPLATE
$ on error then exit
$!
$!**
$!* *
$!* Statement: Licensed Materials - Property of IBM *
$!* *
$!* 33H2205, 5622-908 *
$!* 33H2267, 5765-623 *
$!* 29H0990, 5697-176 *
$!* (C) Copyright IBM Corp. 2000, 2001 *
$!* *
$!**
$!
$! Template Command procedure used by Failover Sets to end the
$! queue manager
$!
$! Parameters :
$!
$! P1 = Queue Manager Name
$! P2 = Queue Manager Directory Name
$! P3 = TCP/IP address
$! P4 = TCP/IP interface name
$! P5 = Listener port number
$! P6 = End Queue Manager Timeout
$!
$ @sys$startup:mqs_symbols
$ check_qm:==syssystem:mqcheckqm
$ set def mqs_root:[mqm.qmgrs.'p2'.errors]
$ define sys$scratch mqs_root:[mqm.qmgrs.'p2'.errors]
$ SS$_NORMAL=1
$ SS$_ABORT=44
$ SS$_TIMEOUT=556
$!
$! Insert commands to shutdown any applications prior to ending MQSeries
$!
$! Get the timeout period for each operation seconds
$!
$ timeout = 'p6'
$!
$! Initialise the outer loop
$!
$ out_count = 0
$!
$! Initialise the complete flag
$!
$ complete = 0
$!
$ out_next:
$ if (out_count .gt. 2) .or. (complete .eq. 1) then goto out_finish
$!
$ if out_count .eq. 0
$ then
$!
$! End the queue manager gracefully first
$!
$ spawn/nowait $endmqm -i 'p1'
$ else
$ if out_count .eq. 1
$ then
$!
$! End the queue manager abruptly
$!
$ spawn/nowait $endmqm -p 'p1'
$ else
$!

END_QM.TEMPLATE

314 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

$! Stop/id the execution controller
$!
$ check_qm -m 'p1'
$ if (mqs$ec_pid .nes. "") then $stop/id='mqs$ec_pid'
$ endif
$ endif
$!
$ in_start:
$!
$! Initialise the outer loop
$!
$ in_count = 0
$!
$ in_next:
$!
$! Inner loop
$!
$ if ((in_count .ge. timeout) .and. (timeout .ne. 0)) -

.or. (complete .eq. 1) then goto in_finish
$!
$! Check if the execution controller is still running
$!
$ check_qm -m 'p1'
$ if mqs$ec_pid .eqs. ""
$ then
$!
$! The Execution controller is no longer running so we are finished
$!
$ complete = 1
$ goto in_finish
$ endif
$!
$! Wait a second and go round again
$!
$ wait 00:00:01
$ in_count = in_count + 1
$ goto in_next
$ in_finish:
$!
$! End of the inner loop
$!
$ out_count = out_count + 1
$ goto out_next
$ out_finish:
$!
$! End of the outer loop
$!
$! Digital TCP/IP Services for OpenVMS commands
$!
$ @sys$startup:tcpip$define_commands
$!
$! De-configure the IP address
$!
$ ifconfig 'p4' -alias 'p3'
$!
$! TCPware for OpenVMS commands
$!
$! @tcpware:tcpware_commands
$!
$! De-configure the IP address
$!
$! netcu remove secondary 'p3'
$!
$! MultiNet for OpenVMS commands
$!
$! De-configure the IP address
$!

END_QM.TEMPLATE

Appendix F. OpenVMS cluster failover set templates 315

$! deass/sys/exec multinet_ip_cluster_aliases
$!
$! Restart the Multinet server
$!
$! @multinet:start_server
$!
$!
$! If the Queue Manager was shutdown successfully set the status
$! to SS$_NORMAL. If it was necessary to STOP/ID the Execution
$! controller set the status to SS$_ABORT and if the Execution
$! controller is still running set the status to SS$_TIMEOUT to
$! indicate an error
$!
$ if (complete .eq. 1)
$then
$!
$! End the listener process
$!
$! endmqlsr -m 'p1'
$!
$ if (out_count .eq. 3)
$ then
$ exit SS$_ABORT
$ else
$ exit SS$_NORMAL
$ endif
$else
$ exit SS$_TIMEOUT
$endif

Figure 29. Template EndCommand procedure: END_QM.template

END_QM.TEMPLATE

316 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Template TidyCommand procedure TIDY_QM.TEMPLATE
$ on error then exit
$!**
$!* Statement: Licensed Materials - Property of IBM *
$!* *
$!* 33H2205, 5622-908 *
$!* 33H2267, 5765-623 *
$!* 29H0990, 5697-176 *
$!* (C) Copyright IBM Corp. 2000, 2001 *
$!**
$! Template Command procedure used by Failover Sets to tidy up after
$! a queue manager failure
$!
$! Parameters :
$! P1 = Queue Manager Name
$! P2 = Queue Manager Directory Name
$! P3 = TCP/IP address
$! P4 = TCP/IP interface name
$! P5 = Listener port number
$!
$ @sys$startup:mqs_symbols
$ set def mqs_root:[mqm.qmgrs.'p2'.errors]
$ define sys$scratch mqs_root:[mqm.qmgrs.'p2'.errors]
$!
$! Insert commands to do any tidying up after a queue manager has failed
$!
$! Digital TCP/IP Services for OpenVMS commands
$!
$ @sys$startup:tcpip$define_commands
$!
$! De-configure the IP address
$!
$ ifconfig 'p4' -alias 'p3'
$!
$! TCPware for OpenVMS commands
$!
$! @tcpware:tcpware_commands
$!
$! De-configure the IP address
$!
$! netcu remove secondary 'p3'
$!
$! MultiNet for OpenVMS commands
$!
$! De-configure the IP address
$!
$! deass/sys/exec multinet_ip_cluster_aliases
$!
$! Restart the Multinet server
$!
$! @multinet:start_server
$!
$exit

Figure 30. Template TidyCommand procedure: TIDY_QM.template

TIDY_QM.TEMPLATE

Appendix F. OpenVMS cluster failover set templates 317

318 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix G. Codeset support on MQSeries for Compaq
OpenVMS

MQSeries for Compaq OpenVMS supports most of the codesets used by the locales
– that is, the subsets of the user’s environment which define the conventions for a
specific culture – that are provided as standard on MQSeries for Compaq
OpenVMS.

If the locale is not set the CCSID used is 819 - the ISO8859-1 codeset.

The CCSID (Coded Character Set Identifier) used in MQSeries to identify the
codeset used for the message and message header data is obtained by analyzing
the LC_CTYPE category of the locale configuration.

Table 31 shows the locales and the CCSIDs that are registered for the codeset used
by the locale.

Table 31. Locales and CCSIDs

Locale Language codeset CCSID

C English ISO8859-1 819

CS_CZ_ISO8859-2 Czech ISO8859-2 912

DA_DK_ISO8859-1 Danish ISO8859-1 819

DE_DE_ISO8859-1 German ISO8859-1 819

DE_CH_ISO8859-1 German -
Switzerland

ISO8859-1 819

EL_GR_ISO8859-7 Greek ISO8859-7 813

EN_GB_ISO8859-1 English - United
Kingdom

ISO8859-1 819

EN_US_ISO8859-1 English - USA ISO8859-1 819

ES_ES_ISO8859-1 Spanish ISO8859-1 819

FI_FI_ISO8859-1 Finnish ISO8859-1 819

FR_FR_ISO8859-1 French - France ISO8859-1 819

FR_BE_ISO8859-1 French - Belgium ISO8859-1 819

FR_CA_ISO8859-1 French - Canada ISO8859-1 819

FR_CH_ISO8859-1 French - Switzerland ISO8859-1 819

HU_HU_ISO8859-2 Hungarian ISO8859-2 912

IS_IS_ISO8859-1 Icelandic ISO8859-1 819

IT_IT_ISO8859-1 Italian - Italy ISO8859-1 819

IW_IL_ISO8859-8 Hebrew ISO8859-8 916

JA_JP_EUCJP Japanese eucJP 954

JA_JP_SDECKANJI Japanese SDECKANJI 954**

JA_JP_SJIS Japanese SJIS 932

KO_KR_DECKOREANKorean DECKOREAN 970**

NL_NL_ISO8859-1 Dutch - Netherlands ISO8859-1 819

© Copyright IBM Corp. 1994, 2001 319

Table 31. Locales and CCSIDs (continued)

Locale Language codeset CCSID

NL_BE_ISO8859-1 Dutch - Belgium ISO8859-1 819

NO_NO_ISO8859-1 Norwegian ISO8859-1 819

PL_PL_ISO8859-2 Polish ISO8859-2 912

PT_PT_ISO8859-1 Portuguese ISO8859-1 819

SK_SK_ISO8859-2 Slovak ISO8859-2 912

RU_RU_ISO8859-5 Cyrillic ISO8859-5 915

SV_SE_ISO8859-1 Swedish ISO8859-1 819

TR_TR_ISO8859-9 Turkish ISO8859-9 920

ZH_CN_DECHANZI Chinese - Simplified DECHANZI 1383**

ZH_HK_DECHANZI Chinese - Simplified DECHANZI 1383**

ZH_HK_EUCTW Chinese - Traditional eucTW 964

ZH_HK_EUCTW Chinese - Traditional eucTW 964

ZH_HK_DECHANYU Chinese - Traditional DECHANYU 964**

ZH_TW_DECHANYU Chinese - Traditional DECHANYU 964**

ZH_HK_BIG5 Chinese - Traditional big5 950

ZH_TW_BIG5 Chinese - Traditional big5 950

Note:

** The CCSID used is the nearest registered IBM CCSID.

For further information listing inter-platform support for these locales, see the
MQSeries Application Programming Reference book.

Supported codesets

320 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix H. MONMQ diagnostic utility

The MONMQ utility is a tool to assist in the diagnosis and resolution of problems
with MQSeries for Compaq OpenVMS. The MONMQ utility can be used
interactively, from the command line, or from within a DCL script.

The MONMQ utility is most commonly used to:
v Manage shared memory
v Help gather OpenVMS resource usage information
v Obtain trace output from a running queue manager.

MONMQ has a help system to assist with parameters and can also run a script of
MONMQ commands. When MONMQ starts, a default script
sys$manager:mqs_trace_startup.mqt is run to provide an initial configuration.

Overview
Tracing MQSeries on OpenVMS is implemented using global sections and
mailboxes. Up to ten trace sections (LUs) can coexist on any one node where
MQSeries is installed. However, it is strongly recommended that a trace session
only ever employs one LU at any time. It is also not advisable for more than one
user to have the same LU open at any one time. The results of either of these
conditions are unpredictable.

Each shared section (LU) contains the channel definitions and the LU definition
itself. Each channel definition contains the connected thread details, the threads
private stack and the threads circular buffer. Furthermore the shared section
contains a set of flags used for interprocess communication between MONMQ and
the connected threads.

For each LU there is an associated mailbox used for receiving realtime trace
messages. To perform realtime tracing, a client process must be initiated using the
TRACE START command. This dedicated detached process reads, formats and
displays each message as it arrives in the LUs mailbox. Each connected thread
writes to the same mailbox and thus provides you with the ability to physically
view the intercommunication between MQSeries processes/threads.

MONMQ, if driven correctly, can provide a comprehensive method for diagnosing
problems such as, interprocess timing problems, exhausted operating system
resources or even coding problems.

The MONMQ commands are described in this appendix.

$monmq
ok - trace mailbox 0 opened as default

MQT> help
Help can be used to display information about available commands or parameters
Help [<verb> || <parameter/variable name> || commands || parameters || examples]

Valid trace commands are in the format:
Verb [<parameters>] [<variable = expression>][;][optional second command]

© Copyright IBM Corp. 1994, 2001 321

Variables within MONMQ
Many commands within MONMQ make use of variables. A variable uses a default
value, defined by the set command, if one is not specified within the command.
When a variable is used with a command other than set, the default value for that
variable is not changed.

Variables can contain:
v Integer variables (either decimal or hexadecimal).

Hexadecimal values can be entered with a leading 0x, or by entering a value
with letters a-f where a hexadecimal value is expected.

v Text, which must be quoted.
v A range, which is entered by putting minimum:maximum.

A range is used so that, for example, a command can apply to a range of
channels.

For example:

The current default value for the variables can be displayed by using the variables
command.

You are recommended to set default values to simplify the commands. For
example, the following command sequences are functionally identical:

or

MQT> set lu=2
MQT> set pid=0x223
MQT> set pid=2fa
MQT> set buffile="filename.buf"
MQT> set chl=0:20

MQT> variables
defined variables
lu=0:0 nochls=20 buffer=1000
chl=0:20 component=0(HEX) line=0
mask=0(HEX) pid=0(HEX) node=(null)
function=0(HEX) div=0 depth=32
resource=0 wait=1(BOOL) timestamp=0(BOOL)
listfile=(null) buffile=(null) step=0(BOOL)
active=0(BOOL) fname=(null) delay=100
post=0(BOOL)

defined constants
fent=1(HEX) fout=2(HEX) ferr=4(HEX)
fxxx=8(HEX) dgn=10(HEX) shm=20(HEX)
spl=40(HEX) evt=80(HEX) mtx=100(HEX)
prc=200(HEX) msc=400(HEX) inf=800(HEX)
log=2000(HEX) shl=4000(HEX) memory=3
mutex=4 mailbox=5 nanoseconds=1
microseconds=2 milliseconds=3 seconds=4

MQT> open lu=0 buffer=1000 nochls=20
MQT> open lu=1 buffer=1000 nochls=20
MQT> show channels lu=0 chl=1:10
MQT> show channels lu=1 chl=1:10

Variables within MONMQ

322 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

MONMQ commands can be abbreviated to the minimum number of characters
required to ensure a unique command. This series of commands could be
shortened still further to:

MONMQ can also perform simple arithmetic operations with variables so that
commands such as set lu=lu+1 is possible.

New variables can be declared with the declare command. The parameters are:
v Variable name
v Variable type
v Help text. The help command can then retrieve the help text.

Assigning default values
DEFAULT variable=<expression> [variable=expression] ...

This command allows default values to be assigned to all variables defined within
MONMQ. Once set, the default variable name can then be omitted from the
command line. For example:

This command sets the default value 2 to the lu variable and the values 3 to 6
inclusive to the channel variable. From now on, when using a typical command
such as show channels, channels 3 to 6 inclusive on lu 2 is displayed.

Default values are used only where the variable is omitted from the command line.
All default values are set in the startup script file MQS_TRACE_STARTUP.MQT. This file
can be edited to suit your needs.

MQT> set nochls=20 chl=0:10 buffer=1000 lu=0
MQT> open
MQT> open lu=1
MQT> show channels
MQT> show channels lu=1

MQT> se noc=20 ch=0:10 buffe=1000 lu=0
MQT> op
MQT> op lu=1
MQT> sh ch
MQT> sh ch lu=1

MQT> declare ec int "channel number for execution controller"
MQT> set ec = 4
MQT> show channel chl=ec
Chl Pid Mailbox Stack Active Post Time Mask Process Name
4 2c1f 7ee70290 4 0 0 0 ffffffff AMQZXMA0.EXE

MQT> help ec

VARIABLE ec:
channel number for execution controller

MQT>

MQT>default lu=2 chl=3:6

Variables within MONMQ

Appendix H. MONMQ diagnostic utility 323

Opening or creating a trace section and associated mailbox
OPEN [lu=number] [nochls=number] [buffer=number]

This command opens or creates a trace section and associated mailbox. The open
command creates the basic resource required for tracing MQSeries processes. Each
LU has an associated shared section and mailbox used to communicate with
MQSeries processes.

This command takes three optional parameters. The first parameter [LU] is the
number assigned to the trace section/mailbox and is used as a reference by most
other MONMQ commands. A maximum of ten LUs may be created on a single
node. The default value is zero. If the specified LU already exists then MONMQ
connects to the existing trace section. If no section exists then a new section is
created.

The second parameter [nochls] specifies the number of channels that this LU will
have. Each channel represents a single MQSeries process/thread connection. The
default value is 20.

The third parameter [buffer] specifies the maximum size of the trace history buffer
for each channel. The default is 1000.

You must have at least one LU open before being able to perform other MONMQ
commands.

Displaying the logical unit definition
SHOW SEGMENT [lu=range]

This command displays the Logical Unit definition. An example of the output is
shown below with a brief description along side each field when you type the
command show segment lu=0.

Closing and deleting an LU
CLOSE [lu=number]

Trace LU : 0 /* The LU number as specified in the OPEN [lu] parameter.
Mailbox name : MQS_TRC_MBX_0 /* The permanent mailbox name assigned to this LU
Device name : MBA1065: /* The device name of the mailbox
Status : Disabled /* The current status of the mailbox ie.
Mailbox channel : 352 /* The mailbox channel number assigned to the MONMQ process
History buffer size: 1000 /* The maximum number of message entries in the history

/* circular buffer (as specified by the OPEN [buffer] parameter)
Threads mapped # : 1 /* The number of processes/threads mapped to this LUs global

/* section (MONMQ always attached)
Time stamping : Enabled /* Global timestamp flag (not yet implemented)
Max channels # : 20 /* Number of channels defined for this LU as specified by the

/* OPEN [nochls] parameter.
Display depth : 0 /* The stack display depth. Default (0) is to display all stack entries.
Text filename : /* The client text trace file
Binary filename : /* The client binary trace file
Last status : 1 /* Last status of mailbox Qio activity (useful if VMS low on

/* resources and MONMQ fails)
Connection map[0] : 0 /* A bit map of all connected channels (maximum no. of channels is 128)

OPEN

324 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

This command performs the opposite to OPEN and closes and deletes the specified
LU. The LU is closed in a controlled sequence by first signalling each connected
process to disconnect, then resetting each channel and then finally deassigning the
trace mailbox and deleting the shared section. This command should only be
performed when a trace session has been completed.

Display channel details
SHOW CHANNELS [full] [connected] [chl=range]

This command displays the details of the specified channels. The [connected]
parameter will cause only channels that have a thread connected to be displayed.
For example, the show channels connected command displays the following:

The [full] parameter displays the complete definition of the specified channels. For
example, the show channels full connected chl=0:3 command displays:

Display the current trace mask for a channel
SHOW MASK [chl=range]

This command displays the current trace mask for a channel. A highlighted line
indicates that the btrace mask bit is enabled. For example, the command, show
mask chl=1 displays:

Chl Pid/Tid Mailbox Stack History RTime Time Mask Process Name
0 00000245/1 800b0330 4 0 0 0 fffffff AMQZLAA0.EXE
1 00000244/1 800b0200 8 0 0 0 ffffffff RUNMQCHI.EXE
2 00000243/1 800b01e0 10 0 0 0 ffffffff AMQRRMFA.EXE
3 00000242/1 800b01c0 4 0 0 0 ffffffff AMQZLLP0.EXE
4 00000241/1 800b0220 5 0 0 0 ffffffff AMQHASMX.EXE
5 00000240/1 800b03f0 4 0 0 0 ffffffff AMQZXMA0.EXE

Pid/Tid : 0000024b/1 /* Connected threads process id and thread sequence number
Status : *** Connected *** /* Current status of channel (thread is connected)
Process name : AMQRRMFA.EXE /* Process name of connected thread
Assigned LU : 0 /* This channels associated LU
Channel no. : 2 /* Allocated channle number within the LU
Mailbox channel : 800b01e0 /* Connected threads mailbox channel number for the trace mailbox
Current stack depth : 10 /* Threads current stack depth
Circular logging : Disabled /* History enabled flag
Next log entry : 0 /* Next history buffer slot number
Realtime tracing : Disabled /* Real time enable flag (needs client to read messages)
Time stamping : Disabled /* Enables timestamping for this threads messages
Trace mask : ffffffff /* Hexadecimal format of trace mask for this thread (see show mask command)
Step mode : Off /* Not yet implemented
No Wait : On /* Forces threads qio activity to wait for a resource if not available
Last QIO status : 0 /* Threads last qio call status
Mapped address : 9a2000-c9ffff /* The virtual mapped address range of the LU global section for this thread

Trace Mask for Channel 1

Bit 00 - (fent) function entry Function entry messages
Bit 01 - (fout) function exit Function exit messages
Bit 02 - (ferr) function exit with error Function exit with error return status
Bit 03 - (fxx) missing function exit Unbalanced function entry/exit message (see note below)
Bit 04 - (dgn) diagnostic messages Diagnostic messages
Bit 05 - (shm) shared memory OVMS shared memory messages
Bit 06 - (spl) spinlocks OVMS spinlock messages
Bit 07 - (evt) events OVMS event messages
Bit 08 - (mtx) mutexes OVMS mutex messages
Bit 09 - (prc) process msgs OVMS thread messages
Bit 10 - (msc) miscellaneous OVMS kernal niscellaneous messages
Bit 11 - (inf) informational Internal data messages as requested by show command
Bit 12 - Reserved for user defined messages

CLOSE LU

Appendix H. MONMQ diagnostic utility 325

This output shows that function entry, function exit, spinlocks and event messages
will be traced for this thread. All other types of messages are blocked.

Display the contents of the target threads stack
SHOW STACK [chl=range]

This command displays the contents of the target threads stack. For example, the
command show stack chl=0:1 displays:

Display active MQSeries related processes and memory usage
SHOW PROCESSES

This command displays all active MQSeries related processes on the current node
along with their memory usage. For example, the command show process
displays:

Displays all messages held in a channel
SHOW HISTORY [chl=range]

This command displays all messages held in the channel circular history buffer.
Each message is formatted and the output is indented according to the stack depth
at which it was generated. For example, the command show history chl=3
displays:

0001- 00:00:00.00 03 - 01 -->| ExecCtrlrMain
0002 - 12:36:20.18 03 - 02 --->| zcpReceiveOnLink
0003 - 12:36:20.81 03 - 03 ---->| xcsWaitEventSem
0004 - 12:36:20.83 03 - 04 ----->| vms_evt

0001- 00:00:00.00 03 - 01 -->| ExecCtrlrMain
0002 - 12:36:20.18 03 - 02 --->| zcpSendOnLink
0003 - 12:36:20.81 03 - 03 ---->| xcsPostEventSem
0004 - 12:36:20.83 03 - 04 ----->| vms_evt

PID Proc_Name Image Process WS_Size WS_Peak Virt_Peak Gbl_Pg_Cnt Prc_Pg_Cnt Total_Mem

0000023D BKM3_AG AMQZLAA0 Agent 23152 16576 203776 3616 12960 16576
0000023C BKM3_CI RUNMQCHI Run Chan Init 8752 6208 180832 1840 4368 6208
0000023B BKM3_RM AMQRRMFA Repository Mgr 11152 8144 185360 2224 5920 8144
0000023A BKM3_CP AMQZLLP0 Checkpoint 8752 6384 185952 1920 4464 6384
00000239 BKM3_LG AMQHASMX Logger 8752 6288 182016 2080 4208 6288
00000238 BKM3_EC AMQZXMA0 EC 20752 15232 203792 3536 11680 15216
00000128 _FTA4: MONMQ MONMQ Utility 8400 8528 198736 2224 3584 5808

SHOW MASK

326 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

This sample output shows the line number within the history buffer, the time the
message was generated, the channel number, the stack depth when the message
was generated and the name of the function. When the LU was opened, the
maximum number of history messages entries was defined. When this buffer is
full, MONMQ wraps back to the first entry and overwrites the first and
subsequent messages. While tracing, if an FFST is generated, then at the point of
failure tracing is disabled for the failing thread. This is to prevent trace messages
generated by error routines from filling the buffer. Therefore the last message
displayed in the history buffer is the point at which the FFST was generated.

Display all MQSeries related global sections on the current node
SHOW GLOBALS

This command displays all MQSeries related global sections on the current node.

0215 - 12:35:44.52 03 - 02 ---<| zxcProcessChildren
0216 - 12:35:44.55 03 - 02 --->| zxcStartWLMServer
0217 - 12:35:44.57 03 - 02 ---<| zxcStartWLMServer
0218 - 12:35:44.59 03 - 02 --->| zcpReceiveOnLink
0219 - 12:35:44.61 03 - 03 ---->| xcsRequestMutexSem
0220 - 12:35:44.63 03 - 04 ----->| xllSemReq
0221 - 12:35:44.66 03 - 05 ------>| vms_mtx
0222 - 12:35:44.66 03 - 05| vms_mtx :- Locking BKM3/@ipcc_m_1_10 - timeout: -1
0223 - 12:35:44.70 03 - 06 ------->| vms_get_lock
0224 - 12:35:44.72 03 - 06 -------<| vms_get_lock
0225 - 12:35:44.74 03 - 05 ------<| vms_mtx
0226 - 12:35:44.76 03 - 04 -----<| xllSemReq
0227 - 12:35:44.79 03 - 03 ----<| xcsRequestMutexSem
0228 - 12:35:44.81 03 - 03 ---->| xcsResetEventSem
0229 - 12:35:44.83 03 - 04 ----->| vms_evt
0230 - 12:35:44.83 03 - 04| vms_evt Reset on mailbox BKM3/@ipcc_e_1_2 : tout = -1
0231 - 12:35:44.87 03 - 05 ------>| vms_get_mbx_chan
0232 - 12:35:44.87 03 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0233 - 12:35:44.87 03 - 05| vms_get_mbx_chan Returning key 1a0
0234 - 12:35:44.94 03 - 05 ------<| vms_get_mbx_chan
0235 - 12:35:44.83 03 - 04| vms_evt rc = 0
0236 - 12:35:44.98 03 - 04 -----<| vms_evt
0237 - 12:35:45.00 03 - 03 ----<| xcsResetEventSem
0238 - 12:35:45.03 03 - 03 ---->| xcsReleaseMutexSem
0239 - 12:35:45.05 03 - 04 ----->| xllSemRel
0240 - 12:35:45.07 03 - 05 ------>| vms_mtx
0241 - 12:35:45.07 03 - 05| vms_mtx :- Unlocking BKM3/@ipcc_m_1_10 - timeout: -1
0242 - 12:35:45.11 03 - 06 ------->| vms_get_lock
0243 - 12:35:45.13 03 - 06 -------<| vms_get_lock
0244 - 12:35:45.16 03 - 05 ------<| vms_mtx

SHOW HISTORY

Appendix H. MONMQ diagnostic utility 327

Signals target thread to send mutex table to client trace process
SHOW MUTEX [chl=range]

This command signals the target thread to send the contents of its internal mutex
table to the client trace process. Note that it is important that the correct trace
mask bits are set to enable this type of informational data to be displayed by the
client. Bits INF and DGN must be enabled in the trace mask for this channel. (See
“Enable or disable mask bit” on page 336.) For example, the command show mutex
chl=2 displays:

MQS1_shm_00000000
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=6128/383

MQS1_shm_01300010
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=1904/119

MQS1_shm_012c000f
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=464/87

MQS1_shm_012c000e
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=4112/514

MQS1_shm_012c000d
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=240/30

MQS1_shm_012c000c
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=528/132

MQS1_shm_012c000b
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=272/51

MQS1_shm_012c000a
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=4112/771

MQS1_shm_012c0009
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=272/51

MQS1_shm_012c0008
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=144/27

MQS1_shm_012c0007
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=528/99

MQS1_shm_012c0006
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=16/2

MQS1_shm_012c0005
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=128/24

MQS1_shm_012c0004
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=1968/492

MQS1_shm_012c0003
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=1904/476

MQS1_shm_012c0002
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=304/76

MQS1_shm_012c0001
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=1904/595

MQS1_shm_01280000
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=16/6

MQS1_shm_fffffffe
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=16/0

MQS1_shm_ffffffff
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=144/63

SHOW MUTEX

328 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

The data shows the line number in the history file, the mutex name and the system
lock id.

Signals target thread to send internal events table to client trace
process

SHOW EVENTS [chl=range]

This command signals the target thread to send the contents of its internal events
table to the client trace process. Note that it is important that the correct trace
mask bits are set to enable this type of informational data to be displayed by the
client. Bits INF and DGN must be enabled in the trace mask for this channel. (See
“Enable or disable mask bit” on page 336.) For example, the command show
events chl=2 displays:

Mutex Utilisation for Process AMQZXMA0.EXE - Pid 248 ***

0960 - Lock ID: 0100013c - Name: BKM3/@ipcc_m_1_24
0961 - Lock ID: 020006ca - Name: BKM3/@ipcc_m_1_23
0962 - Lock ID: 0b00061e - Name: BKM3/@ipcc_m_1_22
0963 - Lock ID: 0900068e - Name: BKM3/@ipcc_m_1_21
0964 - Lock ID: 0b00032f - Name: BKM3/@ipcc_m_1_20
0965 - Lock ID: 210006eb - Name: BKM3/@ipcc_m_1_19
0966 - Lock ID: 07000742 - Name: BKM3/@ipcc_m_1_18
0967 - Lock ID: 1e000075 - Name: BKM3/@ipcc_m_1_17
0968 - Lock ID: 0c0004dd - Name: BKM3_m_1_45
0969 - Lock ID: 0d00035a - Name: BKM3/@ipcc_m_1_16
0970 - Lock ID: 190000a1 - Name: BKM3/@ipcc_m_1_15
0971 - Lock ID: 1a0005a3 - Name: BKM3/@ipcc_m_1_14
0972 - Lock ID: 14000628 - Name: BKM3/@ipcc_m_1_13
0973 - Lock ID: 130005f3 - Name: BKM3/@ipcc_m_1_12
0974 - Lock ID: 0f0000dc - Name: BKM3_m_1_43
0975 - Lock ID: 02000095 - Name: BKM3_m_1_42
0976 - Lock ID: 2200053e - Name: BKM3_m_1_41
0977 - Lock ID: 020000fc - Name: BKM3_m_1_40
0978 - Lock ID: 31000113 - Name: BKM3_m_1_39
0979 - Lock ID: 02000555 - Name: BKM3_m_1_38
0980 - Lock ID: 2e000389 - Name: BKM3_m_1_37
0981 - Lock ID: 2300011f - Name: BKM3_m_1_36
0982 - Lock ID: 02000109 - Name: BKM3_m_1_35
0983 - Lock ID: 02000327 - Name: BKM3_m_1_34
0984 - Lock ID: 020004a8 - Name: BKM3_m_1_33
0985 - Lock ID: 02000453 - Name: BKM3_m_1_32
0986 - Lock ID: 260007ad - Name: BKM3_m_1_31
0987 - Lock ID: 0200060c - Name: BKM3_m_1_30

SHOW MUTEX

Appendix H. MONMQ diagnostic utility 329

The data shows the line number in the history file, the mailbox channel number
and the event name.

Signals target thread to send internal mapped shared memory table to
the client trace process

SHOW MEMORY [chl=range]

This command signals the target thread to send the contents of its internal mapped
shared memory table to the client trace process. Please note that it is important
that the correct trace mask bits are set to enable this type of informational data to
be received by the client. Bits INF and DGN must be enabled in the trace mask for
this channel. (See “Enable or disable mask bit” on page 336.) For example, the
command show memory chl=2 displays:

The data shows the line number in the history file, shared memory id, the virtual
mapped address range, the flags used in creating/mapping to the section and the
internal MQSeries name given to the section.

Event Utilisation for Process AMQZXMA0.EXE - Pid 248 ***

1037 - Channel: 000003e0 - Name: BKM3/@ipcc_e_1_19
1038 - Channel: 000003d0 - Name: BKM3/@ipcc_e_1_18
1039 - Channel: 000003c0 - Name: BKM3/@ipcc_e_1_17
1040 - Channel: 000003b0 - Name: BKM3/@ipcc_e_1_14
1041 - Channel: 000003a0 - Name: BKM3/@ipcc_e_1_13
1042 - Channel: 00000390 - Name: BKM3/@ipcc_e_1_12
1043 - Channel: 00000380 - Name: BKM3/@ipcc_e_1_10
1044 - Channel: 00000370 - Name: BKM3/@ipcc_e_1_9
1045 - Channel: 00000360 - Name: BKM3/@ipcc_e_1_8
1046 - Channel: 00000330 - Name: BKM3/@ipcc_e_1_7
1047 - Channel: 00000300 - Name: BKM3/@ipcc_e_1_6
1048 - Channel: 000002f0 - Name: BKM3/@ipcc_e_1_5
1049 - Channel: 000002b0 - Name: BKM3_e_1_11
1050 - Channel: 000002a0 - Name: BKM3_e_1_10
1051 - Channel: 00000290 - Name: BKM3_e_1_9
1052 - Channel: 00000280 - Name: BKM3_e_1_8
1053 - Channel: 00000270 - Name: BKM3_e_1_7
1054 - Channel: 00000260 - Name: BKM3_e_1_6
1055 - Channel: 00000250 - Name: BKM3_e_1_5
1056 - Channel: 00000240 - Name: BKM3_e_1_4
1057 - Channel: 00000230 - Name: BKM3_e_1_3
1058 - Channel: 00000220 - Name: BKM3_e_1_2
1059 - Channel: 00000210 - Name: BKM3_e_1_1
1060 - Channel: 00000200 - Name: BKM3_e_1_0
1061 - Channel: 000001c0 - Name: BKM3/@ipcc_e_1_4
1062 - Channel: 000001b0 - Name: BKM3/@ipcc_e_1_3
1063 - Channel: 000001a0 - Name: BKM3/@ipcc_e_1_2
1064 - Channel: 00000190 - Name: BKM3/@ipcc_e_1_1
1065 - Channel: 00000180 - Name: BKM3/@ipcc_e_1_0
1066 - *** End of data ***

*** Shared Memory Utilisation for Process AMQZXMA0.EXE - pid/tid 248-1 ***

0942 - ShmId: 0248000f - Addr: 011d8000/01211fff - Perm: 950 - Size: 00038530 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/AMQ
0943 - ShmId: 0248000e - Addr: 00fbc000/011bdfff - Perm: 950 - Size: 002005f8 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/AMQ
0944 - ShmId: 0248000d - Addr: 00f1c000/00f39fff - Perm: 950 - Size: 0001d478 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/WLM
0945 - ShmId: 0248000c - Addr: 00cba000/00cfbfff - Perm: 944 - Size: 000405f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/HMEMSET.0
0946 - ShmId: 0248000b - Addr: 00c98000/00cb9fff - Perm: 944 - Size: 000205f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon005.0
0947 - ShmId: 0248000a - Addr: 00a96000/00c97fff - Perm: 944 - Size: 00200584 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon004.0
0948 - ShmId: 02480009 - Addr: 00a74000/00a95fff - Perm: 944 - Size: 000205f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon003.0
0949 - ShmId: 02480008 - Addr: 00a62000/00a73fff - Perm: 944 - Size: 000105f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon002.0
0950 - ShmId: 02480007 - Addr: 00a20000/00a61fff - Perm: 944 - Size: 000405f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon001.0
0951 - ShmId: 02480006 - Addr: 00908000/00909fff - Perm: 950 - Size: 00001664 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/PLU
0952 - ShmId: 02480005 - Addr: 008f8000/00907fff - Perm: 950 - Size: 0000fff8 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/IPC
0953 - ShmId: 02480004 - Addr: 00802000/008f7fff - Perm: 950 - Size: 000f4838 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/IPC
0954 - ShmId: 02480003 - Addr: 00714000/00801fff - Perm: 950 - Size: 000ec718 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/SUB
0955 - ShmId: 02480002 - Addr: 006ee000/00713fff - Perm: 944 - Size: 000253a8 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/zutSESSAN
0956 - ShmId: 02480001 - Addr: 00600000/006edfff - Perm: 944 - Size: 000ec710 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/SUBPOOL.0
0957 - ShmId: 01280000 - Addr: 005f8000/005f9fff - Perm: 950 - Size: 00000454 Name: /var/mqm/errors
0958 - *** End of data ***

SHOW EVENTS

330 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Displays active MQSeries components by name and hexadecimal ids
SHOW COMPONENTS

This command displays all active MQSeries components by name and their
associated hexadecimal ids. Use these hex ids in other MONMQ show commands
such as show functions and select component. For example, the command show
components displays:

Display functions within specified component
SHOW FUNCTIONS [comp=hex]

This command displays all functions within the specified component. The
component must be entered in hex. Use SHOW COMPONENT to display all active
MQSeries components. For example, the command show functions
component=0x1f displays:

00000001 - Data hardening
00000002 - Log management
00000003 - Object Catalogue
00000004 - Queue management
00000005 - Transaction Management
00000006 - Mobile Component
00000007 - Mobile Component
00000008 - Communications
0000000a - Object Authority Manager
0000000b - Logger
0000000d - LQM Kernal
0000000f - Administration App
00000010 - Administration App
00000013 - Command Server
00000014 - Remote queue processor
00000015 - XA Transaction Manager
00000016 - Data Conversion
00000017 - Common Services
00000018 - Common Services (overflow)
00000019 - Application Interface
0000001a - IPCC
0000001b - DCE Support
0000001c - Pluggable Services
0000001d - Agent
0000001e - XA Transaction Manager
0000001f - C++ Layer
00000020 - CLI
00000021 - Z Utilities
00000022 - Execution Controller
00000023 - App. Bindings
00000024 - Service Component
00000025 - Publish/Subscribe
00000026 - MMC Snap-in for Admin
00000027 - Web Administration
00000028 - KYG Services
00000029 - OVMS MQ kernel

SHOW COMPONENTS

Appendix H. MONMQ diagnostic utility 331

Activate tracing from the point a process starts
ONSTARTUP [start] [lu=number] [chl=range]

This command allows tracing to be activated from the point a process starts. When
executed, a logical name MQS_DEF_TRACE is defined in the system logical name
table and has an equivalent name of the following format: lu channel. When any
MQSeries process starts, this logical name is checked inside the processes
initialization routine and, if present, connects to the specified LU and channel
number. If the channel id is already allocated then the next available channel is
used. This command is useful when tracing is required during the early phases of
MQSeries process/thread creation.

Prevent MQSeries process from tracing immediately from startup
ONSTARTUP [stop]

This command deasssigns the MQS_DEF_TRACE logical from the system logical
name table and thus prevents MQSeries processes from tracing immediately from
startup.

Connect target thread to specified channel
CONNECT pid number [tid=number] [chl=range]

This command signals the target thread to connect to the specified channel. If no
channel is specified then the first available channel is used.

00000000 - ImqBinary::copyOut
00000001 - ImqBinary::pasteIn
00000002 - ImqCache::operator =
00000003 - ImqCache::moreBytes
00000004 - ImqCache::read
00000005 - ImqCache::resizeBuffer
00000006 - ImqCache::setDataOffset
00000007 - ImqCache::setMessageLength
00000008 - ImqCache::useEmptyBuffer
00000009 - ImqCache::write
0000000a - ImqDeadLetterHeader::pasteIn
0000000b - ImqDistributionList::openInfoPrepare
0000000c - ImqItem::structureIdIs
0000000d - ImqQueueManager::backout
0000000e - ImqQueueManager::begin
0000000f - ImqQueueManager::commit
00000010 - ImqQueueManager::connect
00000011 - ImqQueueManager::disconnect
00000012 - ImqMessageTracker::setAccountingToken
00000013 - ImqMessageTracker::setCorrelationId
00000014 - ImqMessageTracker::setGroupId
00000015 - ImqMessageTracker::setMessageId
00000016 - ImqObject::close
00000017 - ImqObject::closeTemporarily
00000018 - ImqObject::inquire
00000019 - ImqObject::open
0000001a - ImqObject::openFor
............

ONSTARTUP start

332 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Disconnect target thread to specified channel
DISCONNECT [chl=range]

This command signals the target thread to disconnect from the specified channel.

Display real-time trace message written to the LUs trace mailbox
TRACE START [node=string]

This command launches a client trace process to display the real-time trace
message written to the LUs trace mailbox. The optional node parameter creates a
window on the specified node and directs output to that window.

Detach and end current client process
TRACE STOP

This command causes the current client process to detach from the trace mailbox
and end. All threads currently writing to this mailbox are disabled from writing
messages.

The above output appears on the trace client window.

Specify trace data
SELECT [component] AND/OR [function] OR [fname]

This command allows you to specify up to eight combinations of
component/functions to be traced. All other trace data are filtered out. Either a
function name can specified or a component or a component/function. The
selected component/function if valid is written to the filter table. If no entries exist
then ALL function component/functions are traced as the default.

Entering the SELECT command with no parameters causes the contents of the
filter table to be displayed. Against each line of output will be the table index
entry and the component and function in hex and the text name of the function. If
only a component is entered then all functions within this component are traced.
This is shown as 0xffff against the function value.

For example, the command SELECT on its own displays:

MQT> trace stop

Circular buffering has been disabled for process 24d thread 1
Circular buffering has been disabled for process 24c thread 1
Circular buffering has been disabled for process 24b thread 1
Circular buffering has been disabled for process 248 thread 1
Disconnecting thread pid : 24d, tid : 1 from channel 0 OK
Disconnecting thread pid : 24c, tid : 1 from channel 1 OK
Disconnecting thread pid : 24b, tid : 1 from channel 2 OK
Disconnecting thread pid : 248, tid : 1 from channel 3OK

*** Trace ended - no processes connected ***

DISCONNECT

Appendix H. MONMQ diagnostic utility 333

The following set of commands,

displays:

Remove single entry from the trace filter table
DESELECT INDEX=<0:7>

This command removes a single entry from the trace filter table as specified by the
table index parameter. All components/functions are traced when all eight entries
are empty. For example, a select command displays the following entries with their
indexes:

The following deselect commands remove the specified processes or functions:

Client process writes trace messages to a binary file
OPEN BINARY [filename=string]

This command opens a trace message binary file and causes the client process to
write realtime trace messages to this file. This file can be later used for analyzing
performance of MQSeries applications. The default filename is
mqs_root:[mqm.errors]mqs_buffer_xx.bin (where xx is the LU number).

Chl:0 - Cmp/fnc selection criteria
ALL component/functions

MQT>select fname="kill"
MQT>select comp=0x1f
MQT>select comp=0x20 func=0x3
MQT>select

Chl:0 - Cmp/fnc selection criteria
Idx: 0 - Cmp: 00000029 - Fnc: 00000005 - Name - kill
Idx: 1 - Cmp: 00000019 - Fnc: 0000ffff - Name -
Idx: 2 - Cmp: 00000016 - Fnc: 00000003 - Name - vqiAddCacheEntry

Chl:0 - Cmp/fnc selection criteria
Idx: 0 - Cmp: 00000029 - Fnc: 00000005 - Name - kill
Idx: 1 - Cmp: 00000019 - Fnc: 0000ffff - Name -
Idx: 2 - Cmp: 00000016 - Fnc: 00000003 - Name - vqiAddCacheEntry

MQT> desel index=0
MQT> desel index=2

MQT>select
Chl:0 - Cmp/fnc selection criteria
Idx: 1 - Cmp: 00000019 - Fnc: 0000ffff - Name -
--
MQT> deselect index=1
MQT> select

Chl:0 - Cmp/fnc selection criteria
ALL component/functions
--

SELECT

334 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Close binary trace messages file
CLOSE BINARY

This command closes the specified LU binary trace file.

Client process writes trace messages to a text file
OPEN TEXT [filename=string]

This command opens a readable text file and causes the client process to write
formatted binary trace messages to this file. This file can be viewed later by simply
using the DCL type command or edit. The default filename is
mqs_root:[mqm.errors]mqs_buffer_xx.lis (where xx is the LU number). The
advantages of using this type of output file is that it requires no preprocessing for
it to be read. However the disadvantage is that it consumes more disk space than a
binary file.

Close text trace messages file
CLOSE TEXT

This command closes the specified LU text trace file.

Timestamp messages
ENABLE TIMESTAMP [chl=range]

This command sets the Timestamp flag in the channel definition table. Use this
command to force MQSeries processes to stamp each message with the current
time. This flag has to be set when using a binary trace file for performance
analysis.

Stop timestamping messages
DISABLE TIMESTAMP [chl=range]

This command unsets the Timestamp flag in the channel definition table. (See
“Timestamp messages”.)

Enable tracing
ENABLE TRACE [chl=range]

This command sets the RTime trace flag in the channel definition table. Use this
flag to enable and disable the sending of trace messages to a trace client. When a
thread is connected and a trace client is present, for example, TRACE START can
be used to switch the channel in or out rather than disconnecting this thread.

Disable tracing
DISABLE TRACE [chl=range]

This command unsets the RTime trace flag in the channel definition table. (See
“Enable tracing”.)

CLOSE BINARY

Appendix H. MONMQ diagnostic utility 335

Save message history
ENABLE HISTORY [chl=range]

This command sets the History flag in the channel definition table for the specified
channels. This command signals the connected thread to write trace messages to
the LUs circular buffer. As the writing of the message is performed by the traced
process then it is not necessary for a client process to exist. The size of the trace
circular buffer is defined during LU creation by the open command. This buffer
wraps back to the beginning when the last entry is written. The Next Log record
field in the LU definition table specifies where the next record in the buffer is to be
written.

Disable message history
DISABLE HISTORY [chl=range]

This command unsets the History flag in the channel definition table for the
specified channels. See “Save message history”.

Delete message history
DELETE HISTORY [chl=range]

This command deletes all messages in the circular history buffer. This command
can be performed even when there are processes writing to the buffer so it is not
necessary to disable history before deleting.

Set history depth
SET [depth]

This command controls the maximum stack depth to be output to the trace client
window. Messages deeper than this value will not be output however they will
appear in the binary trace file and history buffer if enabled. The default value of
zero allows all messages at whatever stack depth to be output. Users are advised
to set this to a very low value (for example, 1) when writing analysis data to the
binary file. Full stack display will adversely affect the performance of a client
process.

Reset stack and history data for a channel
SET [free] [chl=range]

This command resets the specified channel. All existing stack and history data is
deleted and the channel is unallocated and available for reuse.

Enable or disable mask bit
SET [mask=var] [chl=range]

ENABLE HISTORY

336 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

This command either enables or disables a mask bit within the connected threads
bit mask field. Each bit represents a message type that is generated by an
MQSeries process. You can use this command to filter the type of messages that
need to be traced. The message types are as follows:

To specify a combination of these message types delimit each mask type with an
OR symbol for example:

MQT>set mask = 0xffffff chl=1
MQT>show mask chl=1

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT>set mask =0x0 chl=1 MQT>show mask chl=1

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT>set mask = mtx | evt | fent chl=1
MQT>show mask chl=1

SET mask

Appendix H. MONMQ diagnostic utility 337

Each mask comprises of eight mask types which you can toggle to either enable or
disable a particular message type. For example if you were interested only in
function entry points then enter the command set mask = fent.

Set a color for a channel
SET COLOR [chl=range]

This command associates a color with the specified channel. All output related to
this channel is displayed in this color until either the color is changed or the
channel is reset. This command is useful for highlighting or distinguishing
between different threads’ messages within a single output stream. For example,
the commands:

displays:

where Channel 0 is blue and Channel 2 is yellow.

Redirect output to file
SET OUTPUT [filename=string]

This command directs all output to the specified file and disables output to the
display. The output command, when used as a parameter with other commands, is
effective for that command only. Note that errors continue to be reported to the
display device and not to file. Only valid trace data is written to the specified file.

Analyze trace binary file
ANALYSE [component] [function] [unit=xx]

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT> set color=yellow chl=2
MQT> set color=blue chl=0
MQT> sho chan chl=0:3 connected

Chl Pid/Tid Mailbox Stack History RTime Time Mask Process Name
0 00000245/1 800b0330 4 0 0 0 ffffffff AMQZLAA0.EXE
1 00000244/1 800b0200 8 0 0 0 ffffffff RUNMQCHI.EXE
2 00000243/1 800b01e0 10 0 0 0 ffffffff AMQRRMFA.EXE
3 00000242/1 800b01c0 4 0 0 0 ffffffff AMQZLLP0.EXE

SET mask

338 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

This command analyzes the contents of trace binary file previously used in a trace
session. Although you can specify the component or function to be analyzed, this
is effective only if the file contains such data relating to this component or
function. For example, if when the file was generated, you specified a trace mask
or even selected a specific component, then only these selected items are found in
the binary file and hence components or functions outside this criteria cannot be
used in the analysis.

Note: If you are going to use the full command, spell it ANALYSE with a S. Do
not confuse this MONMQ command with the OpenVMS command
ANALYZE. The two commands are different from each other.

The unit parameter is used to specify the unit of time for the analysis and can
have one of the following values (xx) - seconds, milliseconds, microseconds,
nanoseconds The default is milliseconds.

For example, to display output in microseconds, using the command analyse
unit=micro: The following is a sample output for this command:

ANALYSE

Appendix H. MONMQ diagnostic utility 339

Columns are:
Calls The number of entries into the function during the trace session.
Minimum This is the fastest time spent inside the function.
Average This is the total time spent inside all calls to the function divided

by the number of calls.
Maximum The longest time spent inside the function.
Total The total time spent in this function for all calls.
Function The function name.

Note: The scope of the analysis is the content of the binary trace file. It is up to the
user to define the boundaries of the analysis by opening a trace binary file
and enable/disabling the trace at the desired time.

==
COMPONENT :- Common Services

==
Calls Minimum Average Maximum Total Function
42 0.00 66.41 311.78 2789.15 xcsRequestMutexSem
42 0.00 96.98 222.64 4072.98 xcsReleaseMutexSem
6 0.00 138.50 286.11 831.00 xcsResetEventSem
5 0.00 10112.60 10159.51 50563.01 xcsWaitEventSem
6 0.00 564.74 1029.23 3388.45 xcsCheckExtendMemory
42 0.00 51.32 266.86 2155.41 xllSemReq
42 0.00 73.05 159.17 3068.16 xllSemRel

==
COMPONENT :- Common Services (overflow)

==
Calls Minimum Average Maximum Total Function
36 0.00 41.15 122.06 1481.35 xcsCheckProcess
6 0.00 37.92 68.35 227.52 xihGetConnSPDetailsFromList
6 0.00 65.26 114.25 391.58 xihHANDLEtoSUBPOOLFn
6 0.00 12.69 23.44 1267.49 xihGetNextSetConnDetailsFromList
6 0.00 12.53 22.46 75.19 xcsRequestThreadMutexSem
6 0.00 12.37 22.46 74.21 xcsReleaseThreadMutexSem

==
COMPONENT :- IPCC

==
Calls Minimum Average Maximum Total Function

5 0.00 10589.97 11029.84 52949.85 xcpReceiveOnLink
==

COMPONENT :- CLI
==
Calls Minimum Average Maximum Total Function

6 0.00 1.95 1.95 11.72 zapInquireStatus
==

COMPONENT :- Execution Controller
==
Calls Minimum Average Maximum Total Function

6 0.00 954.46 3275.18 11726.79 zxcProcessChildren
6 0.00 12.69 22.46 76.17 zxcStartWLMServer

==
COMPONENT :- OVMS MQ kernel

==
Calls Minimum Average Maximum Total Function
36 0.00 15.49 99.60 557.58 kill
6 0.00 0.65 3.91 3.91 vms_mapgbl
84 0.00 11.17 88.16 938.68 vms_get_lock
84 0.00 42.41 221.94 3562.54 vms_mtx
12 0.00 44.51 149.40 534.14 vms_get_mbx_chan
11 0.00 4651.77 10137.05 51169.42 vms_evt
6 0.00 1.63 4.88 9.76 vms_check_health

ANALYSE

340 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Display current state of MQSeries threads
FFST [chl=range]

This command forces the thread connected to the target channel to force an FFST.
This command does NOT effect the target threads path of execution. This
command allows you to take a snapshot of any MQSeries threads current state.
The FFST cut contains the threads resource usage, privileges and other useful
system information. The FFST is clearly marked in the header as having been
created by MONMQ (see below) and is NOT a result of a failure.

The following is some sample output:

Close trace and exit MONMQ
EXIT

This command performs a CLOSE command and exits MONMQ.

Quit MONMQ without closing trace
QUIT

This command does not perform a CLOSE command but exits MONMQ. This
command is useful if you want to leave Trace running but want to shutdown
MONMQ. The next time MONMQ is activated the previous trace session is
resumed.

MQSeries First Failure Symptom Report
=====================================

Date/Time :- Wednesday November 12 10:59:38 GMT 2000
Host Name :- CATWMN (Unknown)
PIDS :- 5697175
LVLS :- 510
Product Long Name :- MQSeries for OpenVMS Alpha
Vendor :- IBM
Probe Id :- VM026000
Application Name :- MQM
Component :- vms_evt
Build Date :- Oct 22 2000 (Collector)
Userid :- [400,400] (SYSTEM)
Program Name :- AMQZXMA0.EXE
Process :- 00000248
Thread :- 00000001
QueueManager :- BKM3
Major Errorcode :- xecF_E_UNEXPECTED_SYSTEM_RC
Minor Errorcode :- OK
Probe Type :- MSGAMQ6119
Probe Severity :- 2
Probe Description :- AMQ6119: An internal MQSeries error has occurred

(*** FORCED FFST BY USER ***)
Comment1 :- *** FORCED FFST BY USER ***
Comment2 :- -SYSTEM-S-NORMAL, normal successful completion

etc.....

FFST

Appendix H. MONMQ diagnostic utility 341

Managing shared memory with MONMQ
In unusual circumstances, for example, a queue manager failure or forced
shutdown with the OpenVMS stop /id command, it is possible that MQSeries
shared memory segments will not be automatically deleted by the queue manager.
If this occurs it will not be possible to restart the queue manager, because strmqm
will report that the queue manager is already running.

MONMQ can list MQ shared memory (global sections) that currently exist, and can
delete these shared memory sections.

Note: Ensure that all queue managers are shutdown before using the MONMQ
utility to delete shared memory segments. Deleting the shared memory of a
running queue manager causes the queue manager to fail, possibly
corrupting the queue files.

The MONMQ SHOW PROCESS command can be used to ensure that there are no
MQ processes running. If there are processes running on a failed queue manager
that can not be stopped by the endmqm command then the OpenVMS DCL
command stop /id=<pid> can be used.

Check there are no MQSeries processes running by using the following command:

List the shared memory global sections that currently exist by using the command:

Delete these global sections:

The error deleting section MQS_shm_00000000 is expected since this section is used
by MONMQ. You can now exit MONMQ by issuing the command:

MQT> show process

MQ Processes
PID Proc Name Image Process WS Size WS Peak Virt Peak Gbl Pg Cnt Prc Pg Cnt Total Mem
--------- --------------- --------- --------------- ---------- ---------- ---------- ---------- ---------- ----------

List the shared memory global sections that currently exist

MQT> show globals
MQS1_shm_2695000a

(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=4112/514
MQS1_shm_26950009

(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=272/34
MQS1_shm_ffffffff

(00000000) WRT DZRO TMP SYS Pgltcnt/Refcnt=144/63
MQS1_shm_00000000

(00000000) WRT DZRO TMP SYS Pgltcnt/Refcnt=6304/394

MQT> show globals

MQT> delete
Deleted global section: MQS1_shm_2695000a
Deleted global section: MQS1_shm_26950009
Deleted global section: MQS1_shm_ffffffff
sys$delgbl - unable to delete section MQS1_shm_00000000

QUIT

342 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

You can use the delete command from within a script if you are certain that all
queue manager processes are stopped:

Scripts and macros in MONMQ
It is possible to run a script of MONMQ commands either from within MONMQ
or from the command prompt. Scripts can be useful to collect a set of data, or to
configure the MONMQ environment. When MONMQ starts, a script is run from
SYS$MANAGER:MQS_TRACE_STARTUP.MQT to configure the trace variables in MONMQ.

Note: If the script is not in the current directory, the full path name to the script
must be quoted. For example:

It is also possible to define a macro to shorten common or repetitive tasks. A macro
declaration consists of three parts:
1. The first part is the macro name, which must be a unique command name.
2. The second part is the macro body, which can span multiple lines and consists

of a list of MQSeries commands. The macro body is delimited by { and }.
The MONMQ prompt changes to **MACRO> when a multiple line macro body
is being declared. Any $n, where n is a single digit number, is replaced with
parameter n on the macro command line.

3. The third part of a macro definition is a short help text description that is
displayed when help <macroname> is used. The help text must be quoted.

You must consider timing issues when declaring a macro. A macro processes very
quickly, but some MONMQ commands signal a remote process to perform a task,
and this task must be finished before the next macro command is started.

For this reason a short delay is sometimes required. You do this by using the sleep
command, which has a delay parameter that is specified in tenths of a second.

The following commands can be entered to create a macro that disconnects a
channel, resets the trace mask, and frees the channel.

Note: More than one MONMQ command can be placed on a line by using the “;”
as a separator.

MQT> exit

$ monmq delete
Deleted global section: MQS1_shm_2695000a
Deleted global section: MQS1_shm_26950009
Deleted global section: MQS1_shm_ffffffff
sys$delgbl - unable to delete section MQS1_shm_00000000

MQT> ! “sys$manager:test.mqt“

QUIT

Appendix H. MONMQ diagnostic utility 343

Sample trace session
This section describes a typical trace session showing each MONMQ command in
sequence. This sample is tracing a running queue manager’s execution controller
and its related agents main thread.

Before you begin the trace, the following conditions must be met:
v Start queue manager to be traced - STRMQM BKM3
v Check that sys$manager:mqs_trace_startup.mqt has no additional commands

apart from the preinstalled defaults.
v Check that the logical MQS_DEF_TRACE is NOT defined. If it is then perform an

ONSTARTUP END in MONMQ.

Start momq.

The MONMQ prompt is displayed:

Open a single LU with an ID of zero with ten channels and a history buffer of 100
messages. (Note: 100 messages would be too small for normal tracing purposes.
1000 is normally adequate.)

Display LU1 definition:

MQT> declare tmpchl intrange "variable to hold a chl range temporarily"
MQT> macro remove { set tmpchl = chl ; dis chl= $1 ; sleep delay=5
**MACRO> set mask=0xffffffff chl= $1 ; set free chl = $1
**MACRO> set chl=tmpchl
**MACRO> } "A macro to disconnect and free channels Param: chl number"
MQT> help remove

VERB remove:
A macro to disconnect and free channels Param: chl number

Macro text:
set tmpchl = chl ; dis chl= $1 ; sleep delay=5 ; set mask=0xffffffff chl=$1
; set free chl = $1 ; set chl=tmpchl
MQT>remove 4
ok - process disconnected process 282 from channel 4

>monmq

MQT>

MQT> open lu=0 nochls=10 buffer=100
ok - LU:0 opened

MQT> show seg lu=1

Sample trace session

344 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Display MQSeries processes:

Identify the execution controller and agent process and connect them to channel
one and two respectively.

Check connection details.

Trace LU : 1
Mailbox name : MQS_TRC_MBX_1
Device name : MBA431:
Status : Disabled
Mailbox channel : 384
History buffer size : 100
Threads mapped # : 1
Time stamping : Enabled
Max channels # : 10
Display depth : 0
Text filename :
Binary filename :
Last status : 1
Connection map[0] : 0
==

MQT> show process

PID Proc_Name Image Process WS_Size WS_Peak Virt_Peak Gbl_Pg_Cnt Prc_Pg_Cnt Total_Mem

2A00023D BKM1_AG AMQZLAA0 Agent 23152 16576 203776 3616 12960 16576
2A00023C BKM1_CI RUNMQCHI Run Chan Init 8752 6208 180832 1840 4368 6208
2A00023B BKM1_RM AMQRRMFA Repository Mgr11152 8144 185360 2224 5920 8144
2A00023A BKM1_CP AMQZLLP0 Checkpoint 8752 6384 185952 1920 4464 6384
2A000239 BKM1_LG AMQHASMX Logger 8752 6288 182016 2080 4208 6288
2A000238 BKM1_EC AMQZXMA0 EC 20752 15232 203792 3536 11680 15216
2A000128 _FTA4: MONMQ MONMQ Utility 8400 8528 198736 2224 3584 5808

52112

MQT>connect pid=0x238 tid=1 lu=1 chl=1
MQT>connect pid=0x23D tid=1 lu=1 chl=2

MQT>show channel full connected lu=1

Sample trace session

Appendix H. MONMQ diagnostic utility 345

Set defaults for chl, lu and tid to save entering these each time for subsequent
commands.

Set channel colors so as to distinguish between different trace message. Note that
the chl parameter is specified in these two commands because, had the default
(1:2) been used then both channels would have been set to yellow and then cyan.

Now show channels.

Pid/Tid : 2a000bc/1
Status : *** Connected ***
Process name : AMQZXMA0.EXE
Assigned LU : 1
Channel no. : 1
Mailbox channel : 800c03f0
Current stack depth : 4
Circular logging : Disabled
Next log entry : 0
Realtime tracing : Disabled
Time stamping : Disabled
Trace mask : ffffffff
Step mode : Off
No Wait : On
Last QIO status : 0
Mapped address : 1242000-126bfff
==

Pid/Tid : 2a000c1/1
Status : *** Connected ***
Process name : AMQZLAA0.EXE
Assigned LU : 1
Channel no. : 2
Mailbox channel : 800c03f0
Current stack depth : 4
Circular logging : Disabled
Next log entry : 0
Realtime tracing : Disabled
Time stamping : Disabled
Trace mask : ffffffff
Step mode : Off
No Wait : On
Last QIO status : 0
Mapped address : 1376000-139ffff
==

MQT>default chl=1:2 lu=1 tid=1

MQT>set chl=1 color=yellow
MQT>set chl=2 color=cyan

MQT>show channels

Chl Pid/Tid Mailbox Stack History RTime Time Mask Process Name
1 2a0000bc/1 800c03f0 4 0 0 0 ffffffff AMQZXMA.EXE
2 2a0000c1/1 800c0360 4 0 0 0 ffffffff AMQZLAA0.EXE

Sample trace session

346 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Now that both processes have been connected to channels, we can now examine
their stacks.

By enabling timestamping for these two channels we are able to see whether either
process has hung or not.

It can now be seen that there are some messages with a valid timestamp. This
shows that both processes are active. In this case both processes are in an event
loop with a 10 second timeout period. This timeout can be checked against the
message timestamp by continuously performing a show stack command until
there is a change in the timestamp data.

By enabling history we can now force each process to write their trace messages to
the circular buffer.

At this point we are writing all trace messages to the buffer. You can check this by
showing the trace mask and the component/function table.

MQT>show stacks

0001- 00:00:00.00 03 - 01 -->| ExecCtrlrMain
0002 - 00:00:00.00 03 - 02 --->| zcpReceiveOnLink
0003 - 00:00:00.00 03 - 03 ---->| xcsWaitEventSem
0004 - 00:00:00.00 03 - 04 ----->| vms_evt

0001- 00:00:00.00 03 - 01 -->| zlaMain
0002 - 00:00:00.00 03 - 02 --->| zcpReceiveOnLink
0003 - 00:00:00.00 03 - 03 ---->| xcsWaitEventSem
0004 - 00:00:00.00 03 - 04 ----->| vms_evt

MQT>enable timestamp
MQT>show stack

0001- 00:00:00.00 03 - 01 -->| ExecCtrlrMain
0002 - 12:36:20.18 03 - 02 --->| zcpReceiveOnLink
0003 - 12:36:20.81 03 - 03 ---->| xcsWaitEventSem
0004 - 12:36:20.83 03 - 04 ----->| vms_evt

0001- 00:00:00.00 03 - 01 -->| zlaMain
0002 - 12:36:20.18 03 - 02 --->| zcpReceiveOnLink
0003 - 12:36:20.81 03 - 03 ---->| xcsWaitEventSem
0004 - 12:36:20.83 03 - 04 ----->| vms_evt

MQT>enable history
MQT> show history

MQT>show mask

Sample trace session

Appendix H. MONMQ diagnostic utility 347

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

Trace Mask for Channel 2
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT> select

Chl:1 - Cmp/fnc selection criteria
ALL component/functions
--
Chl:2 - Cmp/fnc selection criteria
ALL component/functions
--

Sample trace session

348 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Let’s now focus on a particular type of message. Say, for example, that we are
interested only in shared memory diagnostic messages.

Both processes will now only write diagnostic memory type messages to the buffer.
Let’s delete the buffer, wait a few seconds and re-examine the contents of the
buffer.

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

Trace Mask for Channel 2
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT>set mask=shm
MQT>show mask

MQT>clear history

(wait a few seconds)

MQT> show history

Sample trace session

Appendix H. MONMQ diagnostic utility 349

Now let’s also display event type diagnostic messages in the trace output. We must
wait for a few seconds after setting the mask.

*** Trace History Chl:1 ***

0990 - 00:00:00.00 00 - 04| vms_mapgbl key : fffffffe - addr : 0/0
0991 - 00:00:00.00 00 - 04| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0992 - 00:00:00.00 00 - 04| vms_mapgbl key : fffffffe - addr : 0/0
0993 - 00:00:00.00 00 - 04| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0994 - 00:00:00.00 00 - 04| vms_mapgbl key : fffffffe - addr : 0/0
0995 - 00:00:00.00 00 - 04| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0996 - 00:00:00.00 00 - 04| vms_mapgbl key : fffffffe - addr : 0/0
0997 - 00:00:00.00 00 - 04| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0998 - 00:00:00.00 00 - 04| vms_mapgbl key : fffffffe - addr : 0/0
0999 - 00:00:00.00 00 - 04| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff

*** End of buffer ***
*** Trace History Chl: ***

*** End of buffer ***

MQT>set mask=evt | shm

(wait a few seconds)

MQT>show history

Sample trace session

350 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Now we focus on tracing a specific function. Using SHOW COMPONENT and
SHOW FUNCTION we can identify the particular area we want to trace. In this
example we are going to trace the common services function
’xcsRequestMutexSem’. The component is 0x17 and the function code is 0x1b. We
can set this one of two ways:

*** Trace History Chl:1 ***

0977 - 00:00:00.00 00 - 04| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0978 - 00:00:00.00 00 - 04| vms_evt Event BKM3/@ipcc_e_1_2 TIMEOUT
0979 - 00:00:00.00 00 - 04| vms_evt rc = 1
0980 - 00:00:00.00 00 - 04| vms_mapgbl key : fffffffe - addr : 0/0
0981 - 00:00:00.00 00 - 04| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0982 - 00:00:00.00 00 - 04| vms_evt Reset on mailbox BKM3/@ipcc_e_1_2 : tout = -1
0983 - 00:00:00.00 00 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0984 - 00:00:00.00 00 - 05| vms_get_mbx_chan Returning key 1a0
0985 - 00:00:00.00 00 - 04| vms_evt rc = 0
0986 - 00:00:00.00 00 - 04| vms_evt Wait on mailbox BKM3/@ipcc_e_1_2 : tout = 10000
0987 - 00:00:00.00 00 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0988 - 00:00:00.00 00 - 05| vms_get_mbx_chan Returning key 1a0
0989 - 00:00:00.00 00 - 04| vms_evt Event BKM3/@ipcc_e_1_2 TIMEOUT
0990 - 00:00:00.00 00 - 04| vms_evt rc = 1
0991 - 00:00:00.00 00 - 04| vms_mapgbl key : fffffffe - addr : 0/0
0992 - 00:00:00.00 00 - 04| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0993 - 00:00:00.00 00 - 04| vms_evt Reset on mailbox BKM3/@ipcc_e_1_2 : tout = -1
0994 - 00:00:00.00 00 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0995 - 00:00:00.00 00 - 05| vms_get_mbx_chan Returning key 1a0
0996 - 00:00:00.00 00 - 04| vms_evt rc = 0
0997 - 00:00:00.00 00 - 04| vms_evt Wait on mailbox BKM3/@ipcc_e_1_2 : tout = 10000
0998 - 00:00:00.00 00 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0999 - 00:00:00.00 00 - 05| vms_get_mbx_chan Returning key 1a0

*** End of buffer ***

*** Trace History Chl:2 ***

0982 - 00:00:00.00 01 - 04| vms_evt Event BKM3/@ipcc_e_1_7 TIMEOUT
0983 - 00:00:00.00 01 - 04| vms_evt rc = 1
0984 - 00:00:00.00 01 - 04| vms_evt Reset on mailbox BKM3/@ipcc_e_1_7 : tout = -1
0985 - 00:00:00.00 01 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_7
0986 - 00:00:00.00 01 - 05| vms_get_mbx_chan Returning key 1c0
0987 - 00:00:00.00 01 - 04| vms_evt rc = 0
0988 - 00:00:00.00 01 - 04| vms_evt Wait on mailbox BKM3/@ipcc_e_1_7 : tout = 10000
0989 - 00:00:00.00 01 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_7
0990 - 00:00:00.00 01 - 05| vms_get_mbx_chan Returning key 1c0
0991 - 00:00:00.00 01 - 04| vms_evt Event BKM3/@ipcc_e_1_7 TIMEOUT
0992 - 00:00:00.00 01 - 04| vms_evt rc = 1
0993 - 00:00:00.00 01 - 04| vms_evt Reset on mailbox BKM3/@ipcc_e_1_7 : tout = -1
0994 - 00:00:00.00 01 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_7
0995 - 00:00:00.00 01 - 05| vms_get_mbx_chan Returning key 1c0
0996 - 00:00:00.00 01 - 04| vms_evt rc = 0
0997 - 00:00:00.00 01 - 04| vms_evt Wait on mailbox BKM3/@ipcc_e_1_7 : tout = 10000
0998 - 00:00:00.00 01 - 05| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_7
0999 - 00:00:00.00 01 - 05| vms_get_mbx_chan Returning key 1c0

*** End of buffer ***

MQT>disable history
MQT>clear history

Sample trace session

Appendix H. MONMQ diagnostic utility 351

or

If we now enable history, we find that no output appears in the buffer. This is
because we need to reset the trace mask bits to all.

MQT>select comp=0x17 func=0x1b

MQT>select fname="xcsRequestMutexSem"

MQT>enable history
MQT>show history

*** Trace History Chl:1 ***

*** End of buffer ***
*** Trace History Ch:2 ***

*** End of buffer ***

MQT>set mask=0xffffffff
MQT>show history

*** Trace History Chl:1 ***

0973 - 00:00:00.00 01 - 02 --->| xcsRequestMutexSem
0974 - 00:00:00.00 01 - 03 ---->| xllSemReq
0975 - 00:00:00.00 01 - 04 ----->| vms_mtx
0976 - 00:00:00.00 01 - 04| vms_mtx :- Locking BKM3_m_1_45 - timeout: -1
0977 - 00:00:00.00 01 - 05 ------>| vms_get_lock
0978 - 00:00:00.00 01 - 05 ------<| vms_get_lock
0979 - 00:00:00.00 01 - 04 -----<| vms_mtx
0980 - 00:00:00.00 01 - 03 ----<| xllSemReq
0981 - 00:00:00.00 01 - 02 ---<| xcsRequestMutexSem
0982 - 00:00:00.00 01 - 03 ---->| xcsRequestMutexSem
0983 - 00:00:00.00 01 - 04 ----->| xllSemReq
0984 - 00:00:00.00 01 - 05 ------>| vms_mtx
0985 - 00:00:00.00 01 - 05| vms_mtx :- Locking BKM3_m_1_6 - timeout: -1
0986 - 00:00:00.00 01 - 06 ------->| vms_get_lock
0987 - 00:00:00.00 01 - 06 -------<| vms_get_lock
0988 - 00:00:00.00 01 - 05 ------<| vms_mtx
0989 - 00:00:00.00 01 - 04 -----<| xllSemReq
0990 - 00:00:00.00 01 - 03 ----<| xcsRequestMutexSem
0991 - 00:00:00.00 01 - 03 ---->| xcsRequestMutexSem
0992 - 00:00:00.00 01 - 04 ----->| xllSemReq
0993 - 00:00:00.00 01 - 05 ------>| vms_mtx
0994 - 00:00:00.00 01 - 05| vms_mtx :- Locking BKM3/@ipcc_m_1_18 - timeout: -1
0995 - 00:00:00.00 01 - 06 ------->| vms_get_lock
0996 - 00:00:00.00 01 - 06 -------<| vms_get_lock
0997 - 00:00:00.00 01 - 05 ------<| vms_mtx
0998 - 00:00:00.00 01 - 04 -----<| xllSemReq
0999 - 00:00:00.00 01 - 03 ----<| xcsRequestMutexSem

*** End of buffer ***

Sample trace session

352 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

We can now see that only the specified function and child functions are traced for
both processes. Up to eight components and functions can be traced
simultaneously using the select command. To enable trace in real time (that is, as it
happens) we need to create a client process to display the messages for a specific
LU. We do this by performing the TRACE command.

This launches a client process on the specified node and waits for incoming trace
messages. Trace sessions on client windows can still be controlled using MONMQ.

Now enable the client process and display the messages as and when they arrive.

MQSeries threads can be added or removed from the trace output at will. Threads
can remain connected but their trace data can be disabled so that tracing has no
adverse effects on performance.

Tracing can be initiated the moment a process or thread starts. The ONSTARTUP
command is used to do this and results in all new MQSeries processes to be traced
from startup.

To shutdown a trace session, all active channels should be disabled and client
process ended. The close command will do all this for you.

If you want to leave tracing running then use quit from MONMQ and resume
tracing at a later date.

Note that trace mask bits and component/function selection are very different.
Trace mask bits control the output of trace message types. For example trace entry
and trace output are message types. If you disable these then whatever you set
using the select command will have no effect because component/function
selection relies on these mask bits being set.

MQT>trace start node="mihell"

MQT>enable trace

Sample trace session

Appendix H. MONMQ diagnostic utility 353

354 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix I. User exits

MQSeries for Compaq OpenVMS supports both channel exit programs and
data-conversion exit programs. For information about channel exits, see the
MQSeries Intercommunication book. For information about data-conversion exits, see
the MQSeries Application Programming Guide and the MQSeries Application
Programming Reference book.

This appendix provides information specific to the use of exit programs in
MQSeries for Compaq OpenVMS.

Channel and Workload Exits
The requirement to link a separate threaded version of an Exit is not applicable in
MQSeries for Compaq OpenVMS.

MQSeries Cluster Workload Exits
When linking a workload exit on OpenVMS, the following should be specified in
the linker options file:
sys$share:mqm/share
sys$share:mqutl/share
SYMBOL_VECTOR=(clwlFunction=PROCEDURE,MQStart=PROCEDURE)

A system wide executive logical name is required to reference the exit image. For
example if the exit name is SYS$SHARE:AMQSWLM.EXE the following logical
name should be defined:
$DEFINE/SYSTEM/EXEC AMQSWLM SYS$SHARE:AMQSWLM

The .EXE file extension must not be specified in the logical name definition.

For this logical name to be defined during system startup, define it in
SYS$MANAGER:MQS_SYSTARTUP.COM.

© Copyright IBM Corp. 1994, 2001 355

356 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix J. Trusted applications

If performance is an important consideration in your environment and your
environment is stable, then user applications, channels, and listeners may be
defined to be ″trusted″ that is, they use fastpath binding. (The time taken to
process MQPUT and MQGET calls of nonpersistent messages can be reduced by
up to 400% on OpenVMS systems.)

In a trusted application, the MQSeries application and the local queue manager
agent become the same process. The application connects directly to queue
manager resources and effectively becomes an extension of the queue manager.
This option can compromise the integrity of a queue manager as there is no
protection from overwriting its storage.

Also, trusted applications may need to create certain resources like shared memory.
These resources may need to be accessed by another queue manager process and,
therefore, must be owned by the same UIC. The queue manager processes all run
under the MQM account and thus trusted applications must also run under this
account.

The issues detailed above should be considered before using trusted applications.

User applications
It is not necessary to run your application directly from the MQM account.
Following a successful connection to a queue manager, MQSeries will
automatically modify the security profile of the active thread such that the thread
assumes the identity of the MQM account. The natural identity of the thread is
resumed following a call to disconnect from the queue manager.

It is important to note that while a trusted application is connected to a queue
manager the application will be effectively running under the MQM account. If it
is necessary to change the identity of the thread to another UIC while connected to
a queue manager, you must ensure that you change it back to MQM before making
the next MQI call.

Setting up trusted applications
To run a trusted application on MQSeries for OpenVMS you should specify the
type of binding in the Options field of the MQCONNX call to be
MQCNO_FASTPATH_BINDING. (For standard binding use the
MQCNO_STANDARD_BINDING option.) If no options are specified
(MQCNO_NONE) the default is to use STANDARD_BINDING.

In addition, the logical name MQ_CONNECT_TYPE may be used to override the
binding type specified on the MQCONNX call. If the logical name is defined, it
should have the value FASTPATH or STANDARD to select the type of binding
required. However, FASTPATH binding is used only if the connect option is
appropriately specified on the MQCONNX call. This logical name enables you to
execute an application with the STANDARD_BINDING if any problems occur with
the FASTPATH_BINDING, without the need to rebuild the application.

In summary, to run a trusted application, either:

© Copyright IBM Corp. 1994, 2001 357

v Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and
define the MQ_CONNECT_TYPE logical name as FASTPATH

or
v Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and

leave the MQ_CONNECT_TYPE logical name undefined.

For further information on the use of trusted applications see the MQSeries
Intercommunication.

Running channels and listeners as trusted applications
Channel programs started using the runmqsc start channel command run under
the MQM account. Channel receiver programs started by incoming TCP (or
DECnet connect) requests run under the MQM account also.

The runmqchl and runmqlsr commands create a detached process that runs under
the MQM account. A combination of the MQ_CONNECT_TYPE logical name and
MQIBindType in the channels stanza of a queue manager’s qm.ini file define
whether a channel or listener is to be run as trusted.

To set up a trusted channel or listener, either:
v Specify MQIBindType=FASTPATH in the qm.ini file and set the logical name to

FASTPATH

or
v Specify MQIBindType=FASTPATH in the qm.ini file and leave the logical name

undefined.

Fast, nonpersistent messages
The nonpersistent message speed (NPMSPEED) channel attribute can be used to
specify the speed at which nonpersistent messages are to be sent. You can specify
either normal or fast. The default is fast, which means that nonpersistent messages
on a channel need not wait for syncpoint before being made available for retrieval.
Such messages become available for retrieval far more quickly but may be lost if
there is a transmission failure or if the channel stops while the messages are in
transit. For further information on running channels and listeners as trusted
applications and fast, nonpersistent messages see the MQSeries Intercommunication
book.

Setting up trusted applications

358 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix K. Ancillary information

This appendix lists any ancillary information that you need to setup MQSeries for
Compaq OpenVMS.

The information contained in this appendix will be inserted into the identified
book, the next time that the book is refreshed.

Application Programming Guide
The information on programming on OpenVMS will be amended to note that
Message Queue Interface calls cannot be made from within an AST routine.

The reason for this is that MQSeries uses AST routines itself and these routines
cannot run while another AST routine is active.

Application triggering
The command file MQTRIGGER.COM is supplied as an example of a command
file designed to take the parameters supplied by the MQSeries trigger monitor
(RUNMQTRM) and separate the fields in the MQTMC2 structure.

The command file expects the first parameter to be the image, or command file, to
invoke with selected fields from the MQTMC2 structure.

MQTRIGGER passes the following fields from the MQTMC2 structure to the
invoked image or command file:

Parameter MQTMC2 Field

1 QName
2 ProcessName
3 TriggerData
4 ApplType
5 UserData
6 QMgrName

Examples
1. To trigger the amqsech image:

The ApplicId field of the trigger process definition is specified as follows:

This example assumes that the MQBIN logical directory has been defined as:

2. To invoke a command file, dka200:[user]cmd.com:

APPLICID('@mqs_examples:mqtrigger $mqbin:amqsech')

SYS$SYSROOT:[SYSHLP.EXAMPLES.MQSERIES.BIN]

© Copyright IBM Corp. 1994, 2001 359

The ApplicId field of the trigger process definition is specified as follows:

APPLICID('@mqs_examples:mqtrigger @dka200:[user]cmd')

Ancillary information

360 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Appendix L. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2001 361

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:

AIX IBM
MQSeries AS/400
MVS/ESA NetView
CICS OS/2
First Failure Support Technology VSE/ESA
OS/390 BookManager

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Notices

362 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

DIGITAL, OpenVMS, Compaq, DecNet and Alpha are trademarks of the Compaq
Corporation.

Intel is a registered trademark of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, and the Windows Logo are trademarks of Microsoft
Corporation.

MultiNet and TCPware are registered trademarks of Process Software.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix L. Notices 363

364 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Bibliography

This section describes the documentation
available for all current MQSeries® products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX, V5.2
v MQSeries for AS/400, V5.2
v MQSeries for AT&T GIS UNIX, V2.2
v MQSeries for Compaq OpenVMS Alpha, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.2
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA, V2.1.1
v MQSeries for Windows, V2.0
v MQSeries for Windows, V2.1
v MQSeries for Windows NT and Windows 2000,

V5.2

The MQSeries cross-platform publications are:
v MQSeries Brochure, G511-1908
v An Introduction to Messaging and Queuing,

GC33-0805
v MQSeries Intercommunication, SC33-1872
v MQSeries Queue Manager Clusters, SC34-5349
v MQSeries Clients, GC33-1632
v MQSeries System Administration, SC33-1873
v MQSeries Command Reference, SC33-1369
v MQSeries Event Monitoring, SC34-5760
v MQSeries Programmable System Management,

SC33-1482
v MQSeries Administration Interface Programming

Guide and Reference, SC34-5390
v MQSeries Messages, GC33-1876
v MQSeries Application Programming Guide,

SC33-0807

v MQSeries Application Programming Reference,
SC33-1673

v MQSeries Programming Interfaces Reference
Summary, SX33-6095

v MQSeries Using C++, SC33-1877
v MQSeries Using Java, SC34-5456
v MQSeries Application Messaging Interface,

SC34-5604

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX, V5.2

MQSeries for AIX, V5.0 Quick
Beginnings, GC33-1867

MQSeries for AS/400, V5.2

MQSeries for AS/400 V5.1 Quick
Beginnings, GC34-5557
MQSeries for AS/400 V5.1 System
Administration, SC34-5558
MQSeries for AS/400 V5.1 Application
Programming Reference (RPG),
SC34-5559

MQSeries for AT&T GIS UNIX, V2.2

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq OpenVMS Alpha, V5.1

MQSeries for Compaq OpenVMS Alpha
Quick Beginnings, GC34-5885
MQSeries for Compaq OpenVMS Alpha
System Administration Guide, SC34-5884

MQSeries for Compaq Tru64 UNIX, V5.1

MQSeries for Compaq Tru64 UNIX, V5.1
Quick Beginnings, GC34-5684

MQSeries for HP-UX, V5.2

MQSeries for HP-UX, V5.0 Quick
Beginnings, GC33-1869

MQSeries for Linux, V5.2

MQSeries for Linux Quick Beginnings,
GC34-5691

© Copyright IBM Corp. 1994, 2001 365

MQSeries for OS/2 Warp, V5.1

MQSeries for OS/2 Warp, V5.0 Quick
Beginnings, GC33-1868

MQSeries for OS/390, V5.2

MQSeries for OS/390 Concepts and
Planning Guide, GC34-5650
MQSeries for OS/390 System Setup
Guide, SC34-5651
MQSeries for OS/390 System
Administration Guide, SC34-5652
MQSeries for OS/390 System
Administration Guide, GC34-5892
MQSeries for OS/390 Messages and
Codes, GC34-5891
MQSeries for OS/390® Licensed Program
Specifications, GC34-5893
MQSeries for OS/390 Program Directory

MQSeries link for R/3, Version 1.2

MQSeries link for R/3 Version 1.2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx, V2.2

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris, V5.2

MQSeries for Sun Solaris, V5.0 Quick
Beginnings, GC33-1870

MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

MQSeries for Sun Solaris, Intel Platform
Edition Quick Beginnings, GC34-5851

MQSeries for Tandem NonStop Kernel, V2.2.0.1

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA, V2.1.1

MQSeries for VSE/ESA™ Licensed
Program Specifications, GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows, V2.0

MQSeries for Windows V2.0 User’s
Guide, GC33-1822

MQSeries for Windows, V2.1

MQSeries for Windows V2.1 User’s
Guide, GC33-1965

MQSeries for Windows NT and Windows 2000,
V5.2

MQSeries for Windows NT, V5.0 Quick
Beginnings, GC34-5389
MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387
MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX, V5.2
v MQSeries for AS/400, V5.2
v MQSeries for Compaq OpenVMS Alpha, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.2
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Windows NT and Windows 2000,

V5.2 (compiled HTML)
v MQSeries link for R/3, V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:

http://www.ibm.com/software/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX, V5.2
v MQSeries for AS/400, V5.2
v MQSeries for Compaq OpenVMS Alpha, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2

Bibliography

366 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.2
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Windows NT and Windows 2000,

V5.2
v MQSeries link for R/3, V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:

http://www.ibm.com/software/mqseries/

BookManager® format
The MQSeries library is supplied in IBM®

BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows®

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows, Version 2.0 and MQSeries for
Windows, Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.

v Download an MQSeries SupportPac™.

Related publications
v Compaq OpenVMS Performance Management,

January 1999
This book provides information to help you
optimize performance on OpenVMS systems.

v Compaq OpenVMS System Management Utilities 2
volumes, January 1999
These books contain reference information for
system management utilities with OpenVMS.

v Character Data Representation Library, Character
Data Representation Architecture, Reference and
Registry, SC09–2190–00
This document provides an overview of
Character Data Representation Architecture
(CDRA), and defines the elements of the
architecture in the form of a reference manual.

v DecNet SNA Gateway for Synchronous Transport
Installation (OpenVMS), November 1993
This guide explains how to install and
configure DecNet SNA Gateway.

v Digital SNA APPC/LU6.2 Programming Interface
for OpenVMS, May 1996
This guide explains how to install and
configure SNA APPC/LU6.2.

v Digital TCP/IP Services for OpenVMS Installation
and Configuration, January 1999
This guide provides instructions for installing
and configuring Digital TCP/IP.

v Guidelines for OpenVMS Cluster Configurations,
January 1999
This guide describes how to maximize
OpenVMS cluster availability and scalability.

v Introduction to Compaq Networking and Data
Communications, (Compaq Part No. 093148)
This guide provides an overview of Compaq
networking and data communications concepts,
tasks, products, and manuals.

Bibliography

Bibliography 367

Related publications

368 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
OS/390. A complete list of MQSeries for OS/390 abend
reason codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes book.

active log. See recovery log.

adapter. An interface between MQSeries for OS/390
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space. The area of virtual storage available for
a particular job.

address space identifier (ASID). A unique,
system-assigned identifier for an address space.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alert monitor. In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

allied address space. See ally.

ally. An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

application environment. The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application log. In Windows NT, a log that records
significant application events.

application queue. A queue used by an application.

archive log. See recovery log.

ASID. Address space identifier.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, a service that provides
authority checking of commands and MQI calls for the
user identifier associated with the command or call.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

B
backout. An operation that reverses all the changes
made during the current unit of recovery or unit of

© Copyright IBM Corp. 1994, 2001 369

work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS). A VSAM data set that
contains:

v An inventory of all active and archived log data sets
known to MQSeries for OS/390

v A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

BSDS. Bootstrap data set.

buffer pool. An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C
call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint. In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

circular logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, the process of keeping all
restart data in a ring of log files. Logging fills the first
file in the ring and then moves on to the next, until all
the files are full. At this point, logging goes back to the
first file in the ring and starts again, if the space has
been freed or is no longer needed. Circular logging is
used during restart recovery, using the log to roll back
transactions that were in progress when the system
stopped. Contrast with linear logging.

CL. Control Language.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF). In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor. The MQSeries component that
processes commands.

370 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

completion code. A return code indicating how an
MQI call has ended.

configuration file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, a file that contains
configuration information related to, for example, logs,
communications, or installable services. Synonymous
with .ini file. See also stanza.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, a command that can be entered
interactively from the operating system command line.
Such a command requires only that the MQSeries
product be installed; it does not require a special utility
or program to run it.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL). In MQSeries for AS/400, a
language that can be used to issue commands, either at
the command line or by writing a CL program.

controlled shutdown. See quiesced shutdown.

CPF. Command prefix.

D
DAE. Dump analysis and elimination.

data conversion interface (DCI). The MQSeries
interface to which customer- or vendor-written
programs that convert application data between
different machine encodings and CCSIDs must
conform. A part of the MQSeries Framework.

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler. An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with a
user-written rules table.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection. A pending event that is activated
when a CICS subsystem tries to connect to MQSeries
for OS/390 before MQSeries for OS/390 has been
started.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE).
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging. A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode. See dual logging.

dump analysis and elimination (DAE). An OS/390
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

Glossary of terms and abbreviations 371

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E
environment. See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log. See application log.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer. A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE). An
OS/390 macro that provides recovery capability and
gives control to the specified exit routine for
processing, diagnosing an abend, or specifying a retry
address.

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST). Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT and Windows 2000, and
MQSeries for AS/400 to detect and report software
problems.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

forced shutdown. A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

Framework. In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

v MQSeries data conversion interface (DCI)

v MQSeries message channel interface (MCI)

v MQSeries name service interface (NSI)

v MQSeries security enabling interface (SEI)

v MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR). An OS/390
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC). An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF). An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

global trace. An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

GTF. Generalized Trace Facility.

H
handle. See connection handle and object handle.

hardened message. A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure. See also persistent
message.

372 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

I
immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

.ini file. See configuration file.

initialization input data sets. Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

installable services. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, additional functionality
provided as independent components. The installation
of each component is optional: in-house or third-party
components can be used instead. See also authorization
service, name service, and user identifier service.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS). A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating
standard screen panels and interactive dialogues
between the application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
linear logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, the process of keeping restart
data in a sequence of files. New files are added to the
sequence as necessary. The space in which the data is
written is not reused until the queue manager is
restarted. Contrast with circular logging.

listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale. On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log control file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, the file containing information
needed to monitor the use of log files (for example,
their size and location, and the name of the next
available file).

log file. In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT and
Windows 2000, a file in which all significant changes to
the data controlled by a queue manager are recorded. If
the primary log files become full, MQSeries allocates
secondary log files.

logical unit of work (LUW). See unit of work.

Glossary of terms and abbreviations 373

M
machine check interrupt. An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

media image. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, the sequence of log records that
contain an image of an object. The object can be
recreated from this image.

message. In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries client. Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI calls
from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

name service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, the facility that determines
which queue manager owns a specified queue.

name service interface (NSI). The MQSeries interface
to which customer- or vendor-written programs that
resolve queue-name ownership must conform. A part of
the MQSeries Framework.

name transformation. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT and Windows 2000, an internal process that
changes a queue manager name so that it is unique and
valid for the system being used. Externally, the queue
manager name remains unchanged.

374 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

New Technology File System (NTFS). A Windows NT
recoverable file system that provides security for files.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character. The character that is represented by
X'00'.

O
OAM. Object authority manager.

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM). In MQSeries on
UNIX systems, MQSeries for AS/400, and MQSeries for
Windows NT and Windows 2000, the default
authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading. In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

output log-buffer. In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P
page set. A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command. See programmable command format.

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

point of recovery. In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries for
OS/390 page sets and the corresponding log data sets
required to recover these page sets. These backup
copies provide a potential restart point in the event of
page set loss (for example, page set I/O error).

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal. In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT and
Windows 2000, a term used for a user identifier. Used
by the object authority manager for checking
authorizations to system resources.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of
MQSeries message used by:

v User administration applications, to put PCF
commands onto the system command input queue of
a specified queue manager

v User administration applications, to get the results of
a PCF command from a specified queue manager

v A queue manager, as a notification that an event has
occurred

Glossary of terms and abbreviations 375

Contrast with MQSC.

program temporary fix (PTF). A solution or by-pass of
a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

v An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

v A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R
RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log. In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the active
log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM). A program that
handles all normal and abnormal termination of tasks
by passing control to a recovery routine associated with
the terminating function.

Registry. In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor. In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive. In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA). The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender

376 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

RESLEVEL. In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

Resource Recovery Services (RRS). An OS/390
facility that provides 2-phase syncpoint support across
participating resource managers.

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

RRS. Resource Recovery Services.

RTM. Recovery termination manager.

rules table. A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEI. Security enabling interface.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

session ID. In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be
used by a message channel agent when moving
messages from a transmission queue to a link.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling. In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

Glossary of terms and abbreviations 377

single logging. A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza. A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT and Windows 2000, a
configuration (.ini) file may contain a number of
stanzas.

storage class. In MQSeries for OS/390, a storage class
defines the page set that is to hold the messages for a
particular queue. The storage class is specified when
the queue is defined.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem. In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC). An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile. In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a
refresh security command is issued. Each switch profile
that MQSeries detects turns off checking for the
specified resource.

symptom string. Diagnostic information displayed in
a structured format designed for searching the IBM
software support database.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF). An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA). Data recorded
in a SYS1.LOGREC entry, which describes a program or
hardware error.

system initialization table (SIT). A table containing
parameters used by CICS on start up.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

T
TACL. Tandem Advanced Command Language.

target library high-level qualifier (thlqual).
High-level qualifier for OS/390 target data set names.

task control block (TCB). An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching. The overlapping of I/O operations
and processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

termination notification. A pending event that is
activated when a CICS subsystem successfully connects
to MQSeries for OS/390.

thlqual. Target library high-level qualifier.

378 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid. See transaction identifier.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS. User identifier service.

undelivered-message queue. See dead-letter queue.

undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made
to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS). In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

Glossary of terms and abbreviations 379

380 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Index

A
action keywords, rules table 97
administration

authorizations 86
command sets 17

control commands 17
MQSeries commands (MQSC) 18
programmable command format

commands (PCF) 18
local 31
remote 61

channels 62
objects 59
transmission queues 62

AdoptNewMCA attribute 171
alias queues 48

authorizations to 80
description 10

aliases
queue manager 70
reply-to queues 70

AllQueueManagers stanza, mqs.ini 161
alter queue manager attributes 35
alternate user authority 80
amqsdlq, the sample DLQ handler 94
analyse trace command (MONMQ) 338
ancillary information 359
application

client-server environment 14
connecting to local queue

manager 67
data 6
design considerations 183
MQI administration support 31
programming errors, examples

of 180
time-independent 5
trusted 357

APPLIDAT keyword, rules table 96
APPLNAME keyword, rules table 96
APPLTYPE keyword, rules table 96
attributes

ALL attribute 41
altering 35
changing 43
default 41
displaying queue manager 34
MQSC and PCFs compared 19
queue manager

altering 35
displaying 34

queues 9
authority

alternate user 80
commands 78
context 80
installable services 78
set/reset command 281

authorization
administration 86
dspmqaut command 79

authorization (continued)
lists 77
MQI 83
rights identifiers 76
setmqaut command 79

authorization files
all class 91
authorization to 91
class 90
contents 89
directories 89
managing 91
paths 89
understanding 88

AUTHORIZE utility 200
automatic definition of channels 65

B
binary

close trace binary file 335
open a trace binary file 334

bindings
for trusted applications 357

BookManager 367
browsing queues 44

C
case sensitivity 20

control commands 20
MQSC commands 21
queue manager names 20

ccsid.tbl 71
CCSIDs 319

data conversion 71
restarting queue manager 72
supported by MQSeries for Compaq

OpenVMS 296
cell, DCE and queues 157
changing queue attributes 43
channel

auto-definition of 65
Channels stanza, qm.ini 170
command security requirements 81
commands 81
connect target thread to 332
defining 63
defining between queue managers 10
description 12, 59
disconnect target thread from 333
escape command authorizations 86
events 107
fastpath 171
receiver channel definition 59
remote administration 62
remote queuing 59
run command 270
run initiator command 269
security 81, 82

channel (continued)
sender channel definition 59
show channel details (MONMQ) 325
show history of messages 326
show mask (MONMQ) 325
starting 64
trusted 358

Channels stanza, qm.ini 170
circular logging 126
clearing a local queue 43
ClientExitPath stanza, mqs.ini 162
clients 14

creating channels for 14
error messages on DOS and

Windows 198
link applications 14
problem determination 197
trigger monitor start command 279

close binary command (MONMQ) 335
close LU command (MONMQ) 324
close text command (MONMQ) 335
cluster

description of 60
ExitProperties stanza attributes 163
of queue managers 7
OpenVMS

difference from queue manager
cluster 203

failover sets 204
installing MQSeries 203

queue manager
description 12
difference from OpenVMS

cluster 13
transmission queue 11
using namelist 13
workload exit 15, 355

remote queuing 59
cluster alias service 216
cluster transmission queue

description 11
cluster workload exit 355
coded character set

identifier 319
coded character sets 71
codeset 319
command files 36
command procedures 208

examples 218
modifying 218

command queue 11
command server

display command 243
displaying status 57
end command 250
remote administration 57
start command 288
starting a command server 57
stopping a command server 58

command set
administration 17

© Copyright IBM Corp. 1994, 2001 381

command set (continued)
comparison 305

commands
comparison of sets 305
control 17
create queue manager (crtmqm) 231
data conversion (crtmqcvx) 229
delete queue manager (dltmqm) 235
display authority (dspmqaut) 239
display command server

(dspmqcsv) 243
display MQSeries files

(dspmqfls) 244
display MQSeries formatted trace

(dspmqtrc) 246
display MQSeries transactions

(dspmqtrn) 248
dump log (dmpmqlog)

command 237
end command server

(endmqcsv) 250
end listener (endmqlsr)

command 253
end MQSeries trace (endmqtrc) 257
end queue manager (endmqm) 254
help with syntax 227
manage failover (failover) 258
MQSC

ALTER QLOCAL 43
ALTER QREMOTE 69
DEFINE CHANNEL 63
DEFINE QALIAS 48
DEFINE QLOCAL 42
DEFINE QLOCAL LIKE 42
DEFINE QLOCAL REPLACE 43
DEFINE QMODEL 50
DEFINE QREMOTE 67
DELETE QLOCAL 44
DELETE QREMOTE 69
DISPLAY QREMOTE 69

MQSC command files
input 36
output reports 37

MQSeries (MQSC)
using 18
verifying 38

MQSeries commands (MQSC) 18
programmable command format

(PCF) 18
record media image (rcdmqimg) 262
recreate object (rcrmqobj) 264
resolve MQSeries transactions

(rsvmqtrn) 267
run channel (runmqchl) 270
run channel initiator (runmqchi) 269
run dead-letter queue handler 271
run DLQ handler (runmqdlq) 93
run listener (runmqlsr)

command 274
run MQSeries commands

(runmqsc) 276
runmqsc 33
security commands

dspmqaut 79
setmqaut 77

set/reset authority (setmqaut) 78,
281

commands (continued)
start client trigger monitor

(runmqtmc) 279
start command server (strmqcsv) 288
start failure monitor (runmqfm) 273
start MQSeries trace (strmqtrc) 291
start queue manager (strmqm) 289
start trigger monitor (runmqtrm) 280

commands for MQSeries 17
component

show functions (MONMQ) 331
configuration files

editing 159
failover.template 311
MQSeries (mqs.ini)

AllQueueManagers stanza 161
ClientExitPath stanza 162
contents 160
DefaultQueueManager stanza 162
ExitProperties stanza 163
LogDefaults stanza 163
path 39
QueueManager stanza 165

OpenVMS cluster failover set 207
queue manager (qm.ini)

Channels stanza 170
contents 160, 174
disabling the object authority

manager 76
ExitPath stanza 173
Log stanza 167
LU62 and TCP stanzas 172
Service Component stanza 167
Service stanza 166
XARsourceManager stanza 169

configuring
AllQueueManagers stanza,

mqs.ini 161
Channels stanza, qm.ini 170
ClientExitPath stanza, mqs.ini 162
database managers 113
databases, qm.ini 169
DefaultQueueManager stanza,

mqs.ini 162
editing 159
example qm.ini file 174
Exitpath stanza, qm.ini 173
ExitProperties stanza, mqs.ini 163
failover.ini 207
implementing changes 160
Log stanza, qm.ini 167
LogDefaults stanza, mqs.ini 163
logs 167
LU62 stanza, qm.ini 172
mqs.ini, description of 160
OpenVMS cluster failover set 207
Oracle 115
priorities 160
queue manager configuration file,

qm.ini 160
QueueManager stanza, mqs.ini 165
Service stanza, qm.ini 166
ServiceComponent stanza,

qm.ini 167
TCP stanza, qm.ini 172
XAResourceManager stanza,

qm.ini 169

connect command (MONMQ) 332
context authority 80
control commands 17

case sensitivity 20
runmqsc 33
using 23

controlled shutdown 28
CorrelId, performance considerations

when using 183
creating

crtmqm command 231
objects 8
process definitions 52
queue manager 24, 27
queues 9

crtmqcvx command
examples 229
parameters 229
return codes 229

crtmqm command 231
examples 233
parameters 231
related commands 234
return codes 233

current queue depth 42

D
data conversion 71

ConvEBCDICNewline attribute,
AllQueueManagers stanza 161

converting user-defined message
formats 72

crtmqcvx command 229
default data conversion 71
EBCDIC NL character conversion to

ASCII 161
database managers

changing the configuration
information 123

configuring 113
connections to 113
coordination 112
database manager instances,

removing 123
defining database managers in

qm.ini 114
dspmqtrn command, checking

outstanding UOWs 120
in-doubt units of work 120
restrictions, database coordination

support 113
rsvmqtrn command, explicit

resynchronization of UOWs 121
switch load files, creating 113

DCE
cell 157
configuration 158
security 16
sharing queues 157

dead-letter header, MQDLH 93
dead-letter queue (DLQ)

description 11
handler, See also DLQ handler 93
run dead-letter queue handler

(runmqdlq) 271
specifying 26

382 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

debugging
common programming errors 180
preliminary checks 177
secondary checks 180

default
attributes of objects 41
objects 13
queue manager 25

accidental change 28
accidental deletion 232
changing 28, 35
commands processed 33

rights identifier for authority 76
system objects 297
transmission queue 26

default data conversion 71
default transmission queue 69
default variable command

(MONMQ) 323
DefaultQueueManager stanza,

mqs.ini 162
delete history command (MONMQ) 336
deleting

dltmqm command 235
local queue 44
queue manager 30

deselect index command (MONMQ) 334
destination queue

defining 68
name of owning queue manager 68
undelivered messages to 93

destination queue manager
assigning an alias to 70
creating channels 63
creating transmission queue 63
defining 68
not part of cluster 11
starting channels 64

DESTQ keyword, rules table 96
DESTQM keyword, rules table 96
Digital TCP/IP Services for

OpenVMS 209
directories

authorization 89
queue manager 79

directory structure 299
disable history command

(MONMQ) 336
disable timestamp command

(MONMQ) 335
disable tracing command

(MONMQ) 335
disabling events 108
disabling the object authority

manager 76
disconnect command (MONMQ) 333
display

active MQSeries processes 326
authority command 239
command server command 243
hexidecimal ids for components 331
memory table 330
MQSeries files command 244
MQSeries formatted trace output

command 246
MQSeries transactions command 248
process definitions 53

display (continued)
queue manager attributes 34
status of command server 57
target threads stack 326

distributed queuing
dead-letter queue 11
incorrect output 186
undelivered-message queue 11

DLQ handler
invoking 93
rules table 94
sample, amqsdlq 94

dltmqm command 235
examples 235
parameters 235
related commands 236
return codes 235

DOS clients error messages 198
dspmqaut command 239

examples 242
parameters 239
related commands 242
return codes 241
using 77, 78

dspmqcsv command 243
examples 243
parameters 243
related commands 243
return codes 243

dspmqfls command 244
examples 245
parameters 244
return codes 245

dspmqtrc command 246
examples 246
parameters 246
related commands 247

dspmqtrn command 248
parameters 248
related commands 249
return codes 248

dump
dumping log records (dmpmqlog

command) 138
dumping the contents of a recovery

log 138
formatted system log (dmpmqlog)

command 237
dump log

format 237
parameters 237
purpose 237

dynamic definition of channels 65
dynamic queues 7

authorizations to 80
description 7

E
EBCDIC NL character conversion to

ASCII 161
enable history command (MONMQ) 336
enable timestamp command

(MONMQ) 335
enable tracing command (MONMQ) 335
enabling

events 108

enabling (continued)
security 76

End command procedure 208
end MQSeries trace 257
EndCommand procedure

template 314
ending a queue manager 29
ending interactive MQSC commands 34
endmqcsv command 250

examples 250
parameters 250
related commands 252
return codes 250

endmqlsr (end listener) command
format 253
parameters 253
purpose 253
return codes 253

endmqm command 28, 254
examples 255
parameters 254
related commands 256
return codes 255

endmqtrc command 257
examples 257
parameters 257
related commands 257
return codes 257

environment variables
MQSPREFIX 161
ORACLE_HOME, Oracle 115
ORACLE_SID, Oracle 115

error log
error occurring before

established 188
example 188
overview of 187

error messages 34
escape PCFs 19, 56
euro support 296
event-driven processing 5
event queue 12
events

channel 107
instrumentation

description 105
enabling and disabling 108
message 109
types of 107
what they are 105
why use them 106

queues 108
show events (MONMQ) 329
trigger 108
types of 107

examples
creating a transmission queue 69
crtmqcvx command 229
crtmqm command 233
dltmqm command 235
dspmqaut command 242
dspmqcsv command 243
dspmqfls command 245
dspmqtrc command 246
endmqcsv command 250
endmqm command 255
endmqtrc command 257

Index 383

examples (continued)
error log 188
failover command 259
mqs.ini file, MQSeries for Compaq

OpenVMS 173
programming errors 180
qm.ini file 174
rcdmqimg command 263
rcrmqobj command 265
runmqfm command 273
runmqlsr command 275
runmqsc command 277
setmqaut command 285
strmqcsv command 288
strmqm command 289
strmqtrc command 292

exit
channel exit 15
cluster workload 355
cluster workload exit 15
user exit 15

exit command (MONMQ) 341
Exitpath stanza, qm.ini 173
ExitProperties stanza,mqs.ini 163

F
failback

description 205
failover

description 205
failover command 205, 208, 258

examples 259
parameters 258
related commands 261
return codes 259

failover.ini configuration file 216
editing 207

failover monitor
description 205
halting 213
starting 210
watcher 205

failover set
changing state 214
command procedures 208
configuration file 205
configuring 206
displaying state 211
ending queue manager within 210
example configuration 216
moving queue manager within 211
starting queue manager within 210
steps before configuring 206
troubleshooting 215
using Intra Cluster Communication

(ICC) 214
using MultiNet for OpenVMS 216

failover set templates 311
failover sets

administration 209
description 204

failover.template 216
fastpath binding 357
fastpath channel 171
feedback from MQSC commands 34
FEEDBACK keyword, rules table 96

FFST
FFST (MONMQ) 341

FFST, examining 192
FFST command (MONMQ) 341
files

authorization
all class 91
authorizations to 91
class 90
contents 89
managing 91
paths 89
understanding 88

configuration
in problem determination 191

log control 126
MQSeries configuration 160
queue manager configuration 160
understanding names 19

FORMAT keyword, rules table 96
format of logs 125
functions

display within component 331
FWDQ keyword, rules table 97
FWDQM keyword, rules table 98

G
global memory

controlling using sysgen
parameters 199

global sections 327
global units of work

adding XAResourcemanager stanza to
qm.ini, Oracle 117

definition of 111
glossary 369

H
HEADER keyword, rules table 98
help for syntax 227
hexadecimal ids

display for components 331
history

delete history (MONMQ) 336
disable history (MONMQ) 336
enable history (MONMQ) 336
of messages in channel 326
reset for channel (MONMQ) 336
set history (MONMQ) 336

HTML (Hypertext Markup
Language) 366

Hypertext Markup Language
(HTML) 366

I
incorrect output 184
indoubt transactions

database managers 120
initiation queue

defining 52
description 10

INPUTQ keyword, rules table 95
INPUTQM keyword, rules table 95

installable component
authority manager (OAM) 74
name service 157

installable services
disabling object authority manager

disabling 76
name service 157
object authority manager 74

instrumentation event
description 105
enabling 108
messages 109
types of 107
why use them 106

interactive MQSC
ending 34
feedback from 34
using 33

Intra Cluster Communication (ICC) 214
issuing MQSeries commands 32

L
LIKE attribute 42
linear logging 126
listener

end listener (endmqlsr)
command 253

trusted 358
using the run listener (runmqlsr)

command 274
ListenerBacklog attribute 173
local administration 31
local queues

clearing 43
command 11
copying definitions 42
dead-letter 11
defining one 40
deleting 44
description 9
initiation 10
transmission 11
undelivered-message 11

local unit of work
definition of 111

locale 319
log

configuring 167
dumping log records (dmpmqlog

command) 138
dumping the contents of 138
error 187
error, example of 188
file

control 126
location 133
reuse 127

format 125
Log stanza, qm.ini 167
managing 131
output from the dmpmqlog

command 139
parameters 26
queue manager 125
using for recovery 133

log files 187

384 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Log stanza, qm.ini 167
LogDefaults stanza, mqs.ini 163
logging

checkpoints 127
circular 126
linear 126
media recovery 134
types of 126

logical name, disabling security 76
logical unit

close (MONMQ) 324
display using show segment

(MONMQ) 324
LU62 stanza, qm.ini 172

M
macros

MONMQ 343
manage failover sets 258
managing access 75
managing log files 132
managing objects for triggering 51
managing shared memory 342
mask

set mask (MONMQ) 336
maximum

message length 6, 8
name length for MQSeries objects 8
number of messages 7, 9
queue depth 9
size of queue 6

maximum line length for MQSC
commands 37

MAXMSGL 8
MaxMsgLength attribute 8
media images

description 133
record 134
record command 262
recovering 134

memory table 330
message

containing unexpected
information 185

description 6
descriptor 6, 55
errors on DOS and Windows

clients 198
for instrumentation events 109
maximum length for 6
nonpersistent message speed 358
not appearing on queues 184
operator 188
performance considerations

lengths of 183
persistent 183

queuing 5
retrieval algorithms 7
searching for particular 183
undelivered 191
variable length 183

message channel agent (MCA)
AdoptNewMCA attribute 171
channel in RETRY state 173
description 60

message-driven processing 5

message length, decreasing 43
message queue interface (MQI) 5
message queuing 5
model queues

defining 50
description 10
working with 49

MODPARAMS.DAT file 199
monitoring queue managers 106
monmq utility

commands
analyse trace 338
close binary 335
close lu 324
close text 335
connect 332
default variable 323
delete history 336
deselect index 334
disable history 336
disable timestamp 335
disable trace 335
disconnect 333
enable history 336
enable timestamp 335
enable trace 335
exit 341
FFST 341
onstartup start 332
onstartup stop 332
open 324
open binary 334
open text 335
select 333
set color 338
set depth 336
set free 336
set mask 336
set output 338
show channels 325
show components 331
show events 329
show functions 331
show globals 327
show history 326
show mask 325
show memory 330
show mutex 328
show process 326
show segment 324
show stack 326
trace start 321, 333
trace stop 333

managing shared memory with 342
overview 321
tracing MQSeries processes

sample trace session 344
scripts and macros in

MONMQ 343
variables within MONMQ 322

MQAI
description of 56

MQDATA 198
MQDLH, dead-letter header 93
MQI

authorizations 83
description 5

MQI (continued)
local administration support 31
queue manager calls 9

MQM
rights identifier 73
user ID 79

MQOPEN authorizations 83
MQPUT and MQPUT1, performance

considerations 184
MQPUT authorizations 83
mqs.ini

AllQueueManagers stanza 161
ClientExitPath stanza 162
DefaultQueueManager stanza 162
definition of 159
editing 159
ExitProperties stanza 163
LogDefaults stanza 163
path to 39
priorities 160
QueueManager stanza 165

MQSC
attributes 19
case sensitivity 21
command files

input 36
output reports 37
running 38

commands 18
ending interactive input 34
escape PCFs 19
how to issue commands 32
issuing commands interactively 33
issuing remotely 65
maximum line length 37
problems

local 39
remote 67

redirecting input and output 33
running commands from text files 36
sample files 309
security requirements on channels 82
timed out command responses 66
using commands 36
verifying commands 38

MQSC commands
ALTER QLOCAL 43
ALTER QREMOTE 69
case sensitivity 21
DEFINE CHANNEL 63
DEFINE QALIAS 48
DEFINE QLOCAL 42
DEFINE QLOCAL LIKE 42
DEFINE QLOCAL REPLACE 43
DEFINE QMODEL 50
DEFINE QREMOTE 67
DELETE QLOCAL 44
DELETE QREMOTE 69
DISPLAY QREMOTE 69
issuing interactively 33
maximum line length 37
using 18

MQSeries
overview for OpenVMS 295
rights identifier, MQM 73

MQSeries publications 365
MQSNOAUT logical name 76

Index 385

MQSPREFIX, environment variable 161
MQZAO constants and authority 83
MsgId, performance considerations when

using 183
MSGTYPE keyword, rules table 97
MultiNet for OpenVMS 216

configuring template files 209
mutex table 328
MVS/ESA queue manager 66

N
name service 157
namelist

description 13
used by queue manager cluster 13

names
allowed for objects 225
maximum number of characters 8
objects 8

naming conventions, national language
support 225

national language support
EBCDIC NL character conversion to

ASCII 161
naming conventions 225

NL character, EBCDIC conversion to
ASCII 161

nobody, default rights identifier 76
nonpersistent message 358
notification of events 108

O
OAM 74
object

name transformation 20
object authority manager 74

default rights identifier 76
disabling 76
dspmqaut command 79
how it works 75
principals 75
sensitive operations 79
setmqaut command 77, 78

objects
access to 73
attributes 8
default

attributes 41
file representing an object 225
for triggering 51
managing 8
media image 134
namelist 13
names 8, 32
naming conventions 225
process definition 12
queue 9
queue manager

MQI calls 9
recovery 134
recreate command 264
remote administration 59
system default 13, 297
types 7

onstartup start command
(MONMQ) 332

onstartup stop command
(MONMQ) 332

open binary command (MONMQ) 334
open command (MONMQ) 324
open text command (MONMQ) 335
OpenVMS

hardware required 295
overview of 295
software required 295

OpenVMS cluster failover set 206
OpenVMS clusters 203
OpenVMS logged-in user ID 79
OpenVMS rights identifier

default, nobody 76
MQM 73

operating system logical name, disabling
security 76

operator commands, no response
from 181

operator messages 188
oracle

configuration parameters,
changing 119

configuring 115
environment variable settings,

checking 115
minimum supported levels 115
ORACLE_HOME, environment

variable 115
ORACLE_SID, environment

variable 115
Oracle XA support, enabling 115
switch load file, creating 115
XAResourcemanager stanza, adding to

qm.ini 117
output

redirect 338
overview of MQSeries for Compaq

OpenVMS 295

P
pattern-matching keywords, rules

table 96
PCF commands

attributes in MQSC and PCF 56
automating administrative tasks using

PCF 55
escape PCFs 56
MQAI, using to simplify use of 56

PDF (Portable Document Format) 366
peformance considerations

advantages of MQPUT1 184
CorrelId 183
message length 183
message persistence 183
MsgId 183
syncpoint 184
variable message length 183

performance considerations
when using trace 191

performance events 107
performance tuning 199
permanent queues 7
PERSIST keyword, rules table 97

pooled quotas 200
Portable Document Format (PDF) 366
PostScript format 367
predefined queues 7
preemptive queue manager

shutdown 29
primary group authorizations 75
primary rights identifier, for

authority 75
principals

holding more than one rights
identifier 75

managing access to 75
problem determination 177

clients 197
configuration files 191
further checks 180
incorrect output

messages containing unexpected
information 185

messages not appearing on
queues 184

with distributed queuing 186
no response from commands 181
programming errors 180
things to check first 177, 180
trace 191

problems
recovering from 133
running MQSC commands 39
using MQSC locally 39
using MQSC remotely 67

process
point to start trace 332

process definitions
creating 52
description 12
displaying 53

process rights authorizations 75
processing, event-driven 5
programmable command format (PCF)

administration with 18
attributes 19
authorizations 83
commands, description of 18
escape PCFs 19
security requirements 82

programming errors, examples of 180
programs, samples supplied 309
protected resources 76
PUTAUT keyword, rules table 98

Q
qm.ini configuration file

Channels stanza 170
definition of 160
editing 159
Exitpath stanza 173
Log stanza 167
LU62 stanza 172
priorities 160
Service stanza 166
ServiceComponent stanza 167
TCP stanza 172
XAResourceManager stanza 169

386 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

queue depth
current 42
determining 42

queue manager
alias using remote queue 70
authorization directories 89
authorizations 79
circular logging, restart recovery 127
cluster 11, 12
command server 57
configuration files

specifying 27
converting messages 71
creating 24, 27
crtmqm command 231
default 25

accidental change 28
accidental deletion 232
changing 28

deleting 30
description 8
directories 79
dltmqm command 235
dumping formatted system log

(dmpmqlog) command 237
dumping the contents of a recovery

log 138
ending within failover set 210
endmqm command 254
events 107
immediate shutdown 29
linear logging 126
local administration 31
logs 125
monitoring 106
moving within failover set 211
name transformation 19
numbers of 25
object authority manager

description 74
disabling 76

objects
MQI calls 9

on MVS/ESA 66
preemptive shutdown 29
qm.ini files 160
recording media images 134
remote administration 59
restart 30
restart after change to CCSID 72
shutdown

controlled 28
quiesce 28

specifying on runmqsc 35
starting 28
starting within failover set 210
stopping 28
unique name 24

queue manager cluster
See also cluster 12

queued mode, of runmqsc 65
QueueManager stanza, mqs.ini 165
queues

alias 10
aliases, working with 48
application, defining for

triggering 51

queues (continued)
attributes 9

changing 43
authorizations to 80
browsing 44
cluster transmission 11
command 11
dead-letter 11

specifying 26
defining 9
description 6
distributed, incorrect output

from 186
dynamic 7
event 12
event notification 108
failing 182
for MQSeries applications 31
initiation

defining 52
trigger messages 10

local 9
clearing 43
copying 42
default 13
defining 40
deleting 44

model 10
defining 50
working with 49

objects
alias 10
local 9
model 10
remote 10

predefined 7
remote 9, 10

creating 67
queue manager alias 70
working with 70

reply-to 12, 70
shared configuration tasks 157
shared on different queue

managers 157
temporary 7
transmission 11

creating 69
default 26, 69
defining 63
remote administration 62

undelivered-message 11
specifying 26

working with 40
quiesce shutdown, queue manager 28
quit command (MONMQ) 341

R
railroad diagrams, how to read 226
rcdmqimg command 262

examples 263
parameters 262
related commands 263
return codes 263

rcrmqobj command 264
examples 265
parameters 264

rcrmqobj command 264 (continued)
related commands 266
return codes 265

reason code 9, 93, 97
REASON keyword, rules table 97
receiver channel, automatic definition

of 65
receiver channel definition 59
recovering media images 134
recovery scenarios

damaged queue manager object 138
damaged single object 138
disk drive failures 137

redirecting input and output, on MQSC
commands 33

related publications 367
remote

administration 61
issuing of MQSC commands 65
queue definition, creating 67
queue object, working with 70
queues

as queue manager aliases 70
as reply-to queue aliases 70

queuing
recommendations 66

security considerations 81
remote administration

command server 57
initial problems 67
of objects 59

remote queues
authorizations to 80
description 9, 10

remote queuing 59
REPLACE attribute, DEFINE

commands 37
reply-to queue 12
reply-to queue aliases 70
REPLYQ keyword, rules table 97
REPLYQM keyword, rules table 97
requirements

hardware 295
software 295

resources
protected 76
why protect 73

restart queue manager 30
restart recovery, circular logging 127
restrictions

access to MQM objects 73
database coordination support 113
object names 225

retrieval algorithms for messages 7
RETRY keyword, rules table 98
RETRYINT keyword, rules table 95
return codes 177

crtmqcvx command 229
crtmqm command 233
dltmqm command 235
dspmqaut command 241
dspmqcsv command 243
dspmqfls command 245
dspmqtrn command 248
endmqcsv command 250
endmqlsr command 253
endmqm command 255

Index 387

return codes 177 (continued)
endmqtrc command 257
failover command 259
interpreting values of 228
rcdmqimg command 263
rcrmqobj command 265
rsvmqtrn command 267
runmqchi command 269
runmqchl command 270
runmqfm command 273
runmqlsr command 274
runmqsc command 277
runmqtmc command 279
runmqtrm command 280
setmqaut command 285
strmqcsv command 288
strmqm command 289
strmqtrc command 292

rights identifier
default, nobody 76
default for authority 76
MQM 73

rights identifiers, for authority 75
rsvmqtrn command 267

parameters 267
related commands 268
return codes 267

rules table, DLQ handler 94
control data entry 94

INPUTQ keyword 95
INPUTQM keyword 95
RETRYINT keyword 95
WAIT keyword 95

example 102
patterns and actions (rules) 96

ACTION keyword 97
APPLIDAT keyword 96
APPLNAME keyword 96
APPLTYPE keyword 96
DESTQ keyword 96
DESTQM keyword 96
FEEDBACK keyword 96
FORMAT keyword 96
FWDQ keyword 97
FWDQM keyword 98
HEADER keyword 98
MSGTYPE keyword 97
PERSIST keyword 97
PUTAUT keyword 98
REASON keyword 97
REPLYQ keyword 97
REPLYQM keyword 97
RETRY keyword 98
USERID keyword 97

processing of 100
syntax 98

runmqchi command 269
parameters 269
return codes 269

runmqchl command 270
parameters 270
return codes 270

runmqdlq command 93
runmqfm command 205, 273

examples 273
parameters 258, 273
related commands 273

runmqfm command 205, 273
(continued)

return codes 273
runmqlsr (run listener) command

example 275
format 274
parameters 274
purpose 274
return codes 274

runmqsc
ending 34
feedback 34
issuing MQSC commands 32
problems 39
queued mode 65
specifying a queue manager 35
using 36
using interactively 33
verifying 38

runmqsc command 276
examples 277
parameters 276
redirecting input and output 33
return codes 277

runmqtmc command 279
parameters 279
return codes 279

runmqtrm command 280
parameters 280
return codes 280

S
SAFEGUARD 295
sample

MQSC files 309
programs, using 309
trace data 192

scripts
MONMQ 343

security 73
enabling 76
failover set monitor 214
remote 81
using the commands 77, 79

select command (MONMQ) 333
sender channel definition 59
server-connection channel, automatic

definition of 65
Service stanza, qm.ini 166
ServiceComponent stanza, qm.ini 167
set color command (MONMQ) 338
set depth command (MONMQ) 336
set free command (MONMQ) 336
set mask command (MONMQ) 336
set output command (MONMQ) 338
setmqaut command 281

examples 285
installable services 78
parameters 283
related commands 287
return codes 285
using 77, 78

shared queues
configuration tasks 157

sharing queues 157

show channels command
(MONMQ) 325

show components command
(MONMQ) 331

show events command (MONMQ) 329
show functions command

(MONMQ) 331
show globals command (MONMQ) 327
show history command (MONMQ) 326
show mask command (MONMQ) 325
show memory command

(MONMQ) 330
show mutex command (MONMQ) 328
show processes command

(MONMQ) 326
show segment command

(MONMQ) 324
show stack command (MONMQ) 326
shutdown

queue manager 28
controlled 28, 29
immediate 29
preemptive 29
quiesce 28

softcopy books 366
specified operating environment 295
stanzas

AllQueueManagers, mqs.ini 161
Channels, qm.ini 170
ClientExitPath, mqs.ini 162
DefaultQueueManager, mqs.ini 162
ExitPath, qm.ini 173
ExitProperties, mqs.ini 163
Log, qm.ini 167
LogDefaults, mqs.ini 163
LU62, qm.ini 172
QueueManager, mqs.ini 165
Service, qm.ini 166
ServiceComponent, qm.ini 167
TCP, qm.ini 172
XAResourceManager, qm.ini 169

Start command procedure 208
start MQSeries trace command 291
start queue manager command 289
StartCommand procedure

template 313
starting

a queue manager 28
channels 64
queue manager within failover

set 210
strmqcsv command 288

examples 288
parameters 288
related commands 288
return codes 288

strmqm command 289
examples 289
parameters 289
related commands 290
return codes 289

strmqtrc command 291
examples 292
parameters 291
related commands 292
return codes 292

SupportPac 367

388 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

switch load files, creating 113
syncpoint, performance

considerations 184
syntax

diagrams, how to read 226
error, in MQSC commands 34
help 227

SYS$INPUT, on runmqsc 36
SYS$OUTPUT, on runmqsc 36
sysgen parameters 199
system

default objects 13, 297

T
TCP/IP

configured by StartCommand
procedure 208

configuring 172
connection rejected 173
define for listener process 274
Digital TCP/IP Services for

OpenVMS 209
mandatory for OpenVMS cluster

operation 206
remote administration 13
set up channels 62
starting channels 64
supported packages 295
supports OpenVMS clusters 204

TCP stanza, qm.ini 172
temporary queues 7
terminology used in this book 369
Tidy command procedure 208
TidyCommand procedure

template 317
time-independent applications 5
timed out responses from MQSC

commands 66
timestamp

disable timestamp (MONMQ) 335
enable timestamp (MONMQ) 335

trace
data sample 192
disable trace (MONMQ) 335
enable trace (MONMQ) 335
exit trace (MONMQ) 341
performance considerations 191
quit MONMQ trace 341
sample MONMQ session 344
specify component or function 333
start trace (MONMQ) 333
start when process starts 332
stop trace (MONMQ) 333
using MONMQ 321

trace start command (MONMQ) 333
trace stop command (MONMQ) 333
transactional support

transactional support 111
transactions

display MQSeries command 248
resolve MQSeries command 267

transmission queue
cluster 11
creating 69
default 11, 26, 69
defining 63

transmission queue (continued)
defining between queue managers 10
description 11, 60
remote administration 62
specifying name 68

trigger
event queues 108
events compared with instrumentation

events 108
failure monitor

start command 273
messages on initiation queue 10
monitor

description 11
start command 280
using namelist 13

triggering 359
application queue, defining 51
definition 5
managing objects for 51

trusted application 357
bindings 357

types of event 107
types of objects 7

U
unauthorized access, protecting from 73
undelivered message queue 93
unit of work

definition of 111
explicit resynchronization of

(rsvmqtrn command) 121
mixed outcomes 122

user-defined message formats 72
user exit 355

channel exit 15
cluster workload 15, 355
data conversion exit 15
description 15

user ID
authority 73
authorization 79
belonging to group nobody 76
for authorization 79
OpenVMS logged-in user 79
principals 75

USERID keyword, rules table 97

V
verifying MQSC commands 38

W
WAIT keyword, rules table 95
watcher failover monitor

description 205
halting 213

Windows clients error messages 198
Windows Help 367
workload balancing

redirecting MQI calls 48
using clusters 7

X
XA-compliant relational databases 112
XAResourceManager stanza, qm.ini 169

Index 389

390 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–842327
– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2001 391

392 MQSeries for Compaq OpenVMS Alpha, Version 5 Release 1 System Administration Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5884-00

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Using the appendixes

	Information about MQSeries on the Internet

	What's new in MQSeries for Compaq OpenVMS Alpha, V5.1
	Part 1. Guidance
	Chapter 1. Introduction to MQSeries
	MQSeries and message queuing
	Time-independent applications
	Message-driven processing

	Messages and queues
	What is a message?
	Message lengths

	What is a queue?
	How do applications send and receive messages?
	Predefined and dynamic queues
	Retrieving messages from queues

	Objects
	Object names
	Managing objects
	Object attributes

	MQSeries queue managers
	MQI calls

	MQSeries queues
	Using queue objects
	Specific local queues used by MQSeries

	Process definitions
	Channels
	Clusters
	Namelists

	System default objects
	Local and remote administration
	Clients and servers
	MQSeries applications in a client-server environment

	Extending queue manager facilities
	User exits
	Installable services

	Security
	Object Authority manager (OAM) facility
	DCE security

	Transactional support

	Chapter 2. An introduction to MQSeries administration
	Local and remote administration
	Performing administration tasks using control commands
	Performing administrative tasks using MQSC commands
	Performing administrative tasks using PCF commands
	Attributes in MQSC and PCFs
	Escape PCFs

	Understanding MQSeries file names
	Queue manager name transformation
	Object name transformation

	Understanding case sensitivity
	Case sensitivity in control commands
	Case sensitivity in MQSC commands

	Chapter 3. Managing queue managers using controlcommands
	Using control commands
	Using control commands

	Creating a queue manager
	Guidelines for creating queue managers
	Specifying a unique queue manager name
	Limiting the number of queue managers
	Specifying the default queue manager
	Specifying a dead-letter queue
	Specifying a default transmission queue
	Specifying the required logging parameters
	Backing up configuration files after creating a queue manager

	Creating a default queue manager
	Starting a queue manager
	Making an existing queue manager the default
	Stopping a queue manager
	Quiesced shutdown
	Immediate shutdown
	Preemptive shutdown
	If you have problems shutting down a queue manager

	Restarting a queue manager
	Deleting a queue manager

	Chapter 4. Administering local MQSeries objects
	Supporting application programs that use the MQI
	Performing local administration tasks using MQSC commands
	Before you start
	MQSeries object names
	Redirecting input and output

	Using the MQSC facility interactively
	Feedback from MQSC commands
	Ending interactive input to MQSC
	Displaying queue manager attributes
	Using a queue manager that is not the default
	Altering queue manager attributes

	Running MQSC commands from text files
	MQSC command files
	MQSC reports
	Running the supplied MQSC command files
	Using runmqsc to verify commands

	Resolving problems with MQSC
	Working with local queues
	Defining a local queue
	Defining a dead-letter queue
	Displaying default object attributes
	Copying a local queue definition
	Changing local queue attributes
	Clearing a local queue
	Deleting a local queue
	Browsing queues

	Working with alias queues
	Defining an alias queue
	Using other commands with queue aliases

	Working with model queues
	Defining a model queue
	Using other commands with model queues

	Managing objects for triggering
	Defining an application queue for triggering
	Defining an initiation queue
	Creating a process definition
	Displaying your process definition

	Chapter 5. Automating administration tasks
	PCF commands
	Attributes in MQSC and PCFs
	Escape PCFs
	Using the MQAI to simplify the use of PCFs

	Managing the command server for remote administration
	Starting the command server
	Displaying the status of the command server
	Stopping a command server

	Chapter 6. Administering remote MQSeries objects
	Channels, clusters and remote queuing
	Remote administration using clusters

	Remote administration from a local queue manager using MQSCcommands
	Preparing queue managers for remote administration
	Preparing channels and transmission queues for remoteadministration
	Defining channels and transmission queues
	Starting the channels
	Automatic definition of channels
	Issuing MQSC commands remotely
	Working with queue managers on MVS/ESA
	Recommendations for remote queuing

	If you have problems using MQSC remotely

	Creating a local definition of a remote queue
	Understanding how local definitions of remote queues work
	Example

	An alternative way of putting messages on a remote queue
	Using other commands with remote queues
	Creating a transmission queue
	Default transmission queues

	Using remote queue definitions as aliases
	Queue manager aliases
	Reply-to queue aliases
	Data conversion
	When a queue manager cannot convert messages in built-informats
	File ccsid.tbl
	Conversion of messages in user-defined formats

	Changing the queue manager CCSID

	Chapter 7. Protecting MQSeries objects
	Why you need to protect MQSeries resources
	Before you begin
	User IDs in MQSeries for Compaq OpenVMS with resourceidentifier MQM
	For more information

	Understanding the Object Authority Manager
	How the OAM works
	Managing access through rights identifiers
	Rights identifiers and the primary rights identifier
	When a principal holds more than one rights identifier

	Default rights identifier
	Resources you can protect with the OAM
	Using rights identifiers for authorizations
	Disabling the object authority manager

	Using the Object Authority Manager commands
	What you specify when you use the OAM commands
	Authorization lists

	Using the setmqaut command
	Authority commands and installable services

	Access authorizations
	Display authority command

	Object Authority Manager guidelines
	User IDs
	Queue manager directories
	Queues
	Alternate user authority
	Context authority
	Remote security considerations
	Channel command security
	PCF commands
	MQSC channel commands
	Control commands for channels

	Understanding the authorization specification tables
	MQI authorizations
	Administration authorizations
	Authorizations for MQSC commands in escape PCFs
	Authorizations for PCF commands

	Understanding authorization files
	Authorization file paths
	Authorization directories

	What the authorization files contain
	Class authorization files
	All class authorization files

	Managing authorization files
	Authorizations to authorization files

	Chapter 8. The MQSeries dead-letter queue handler
	Invoking the DLQ handler
	The sample DLQ handler, amqsdlq

	The DLQ handler rules table
	Control data
	Rules (patterns and actions)
	The pattern-matching keywords
	The action keywords

	Rules table conventions

	How the rules table is processed
	Ensuring that all DLQ messages are processed

	An example DLQ handler rules table

	Chapter 9. Instrumentation events
	What are instrumentation events?
	Why use events?
	Types of events
	Event notification through event queues
	Using triggered event queues

	Enabling and disabling events
	Event messages

	Chapter 10. Transactional support
	Database coordination
	Restrictions
	Database connections
	Configuring database managers
	Creating switch load files
	Defining database managers

	Oracle configuration
	Minimum supported levels for Oracle
	Checking the environment variable settings
	Enabling Oracle XA support
	Creating the Oracle switch load file
	Creating the Oracle switch load file on OpenVMS systems

	Adding XAResourceManager configuration information forOracle
	Changing Oracle configuration parameters

	Administration tasks
	In-doubt units of work
	Using the dspmqtrn command
	Using the rsvmqtrn command
	Mixed outcomes and errors
	Changing configuration information
	Removing database manager instances

	Chapter 11. Recovery and restart
	Making sure that messages are not lost (logging)
	What logs look like
	Log control file

	Types of logging
	Circular logging
	Linear logging

	Checkpointing – ensuring complete recovery
	Calculating size of log
	Managing logs
	What happens when a disk gets full
	Managing log files
	Log file location

	Using the log for recovery
	Recovering from problems
	Media recovery
	Recovering media images

	Recovering damaged objects during startup
	Recovering damaged objects at other times

	Protecting MQSeries log files
	Backup and restore
	Backing up MQSeries
	Restoring MQSeries

	Recovery scenarios
	Disk drive failures
	Damaged queue manager object
	Damaged single object
	Automatic media recovery failure

	Dumping the contents of the log using the dmpmqlog command

	Chapter 12. Using the name service
	Using DCE to share queues on different queue managers
	Configuration tasks for shared queues

	DCE configuration

	Chapter 13. Configuring MQSeries
	MQSeries configuration files
	Editing configuration files
	When do you need to edit a configuration file?
	Configuration file priorities
	Implementing changes to configuration files

	The MQSeries configuration file, mqs.ini
	Queue manager configuration files, qm.ini

	Attributes for changing MQSeries configuration information
	The AllQueueManagers stanza
	The ClientExitPath stanza
	The DefaultQueueManager stanza
	The ExitProperties stanza
	The LogDefaults stanza
	The QueueManager stanza

	Changing queue manager configuration information
	The Service stanza
	The ServiceComponent stanza
	The Log stanza
	The XAResourceManager stanza
	The Channels stanza
	The LU62 and TCP stanzas
	The ExitPath stanza

	Example mqs.ini and qm.ini files

	Chapter 14. Problem determination
	Preliminary checks
	Has MQSeries run successfully before?
	Are there any error messages?
	Are there any return codes explaining the problem?
	Can you reproduce the problem?
	Have any changes been made since the last successful run?
	Has the application run successfully before?
	If the application has not run successfully before

	Does the problem affect specific parts of the network?
	Does the problem occur at specific times of the day?
	Is the problem intermittent?
	Have you applied any service updates?
	Do you need to apply an updates?

	Common programming errors
	What to do next
	Have you obtained incorrect output?
	Have you failed to receive a response from a PCF command?
	Are some of your queues failing?
	Does the problem affect only remote queues?

	Application design considerations
	Effect of message length
	Effect of message persistence
	Searching for a particular message
	Queues that contain messages of different lengths
	Frequency of syncpoints
	Use of the MQPUT1 call

	Incorrect output
	Messages that do not appear on the queue
	Messages that contain unexpected or corrupted information
	Problems with incorrect output when using distributed queues

	Error logs
	Log files
	Early errors
	Operator messages
	Example error log

	Dead-letter queues
	Configuration files and problem determination
	Using MQSeries trace
	Trace file names
	Sample trace data

	First failure support technology (FFST)
	How to examine the FFSTs

	Problem determination with clients
	Terminating clients
	Error messages with clients
	OS/2, UNIX, and OpenVMS systems clients
	DOS and Windows® clients

	Chapter 15. Performance tuning
	Setting the value of process specific parameters

	Chapter 16. MQSeries for OpenVMS and clustering
	Installing MQSeries in an OpenVMS cluster
	OpenVMS cluster failover sets
	Overview of OpenVMS cluster failover sets
	OpenVMS cluster failover set concepts
	Preparing to configure an OpenVMS cluster failover set
	Configuring an OpenVMS cluster failover set
	OpenVMS cluster failover set post-configuration tasks
	Editing the FAILOVER.INI configuration file
	Command procedures used by failover sets
	Administration of failover sets
	Startup of failover monitors
	Starting a queue manager within a failover set
	Ending a queue manager within a failover set
	Moving a queue manager within a failover set
	Displaying the state of a failover set
	Setting DCL symbols to the state of a failover set
	Halting a failover monitor process
	Executing commands while an update is in progress
	Changing the state of a failover set
	Setting up security for ICC associations
	Troubleshooting problems with failover sets
	Using MultiNet for OpenVMS with failover sets
	An example of using failover sets
	Customizing failover.template
	Modification of failover set command procedures
	Example failover set start command procedure,start_failover_set.com
	Example failover set end command procedure,end_failover_set.com

	Part 2. Reference
	Chapter 17. MQSeries control commands
	Rules for naming MQSeries objects
	Looking at object files

	How to read syntax diagrams
	Syntax help
	Examples

	MQSeries return codes
	crtmqcvx (Data conversion)
	crtmqm (Create queue manager)
	dltmqm (Delete queue manager)
	dmpmqlog (Dump log)
	dspmqaut (Display authority)
	dspmqcsv (Display command server)
	dspmqfls (Display MQSeries files)
	dspmqtrc (Display MQSeries formatted trace output)
	dspmqtrn (Display MQSeries transactions)
	endmqcsv (End command server)
	endmqlsr (End listener)
	endmqm (End queue manager)
	endmqtrc (End MQSeries trace)
	failover (Manage a failover set)
	rcdmqimg (Record media image)
	rcrmqobj (Recreate object)
	rsvmqtrn (Resolve MQSeries transactions)
	runmqchi (Run channel initiator)
	runmqchl (Run channel)
	runmqdlq (Run dead-letter queue handler)
	runmqfm (Start a failover monitor)
	runmqlsr (Run listener)
	runmqsc (Run MQSeries commands)
	runmqtmc (Start client trigger monitor)
	runmqtrm (Start trigger monitor)
	setmqaut (Set/reset authority)
	strmqcsv (Start command server)
	strmqm (Start queue manager)
	strmqtrc (Start MQSeries trace)

	Part 3. Appendixes
	Appendix A. MQSeries for Compaq OpenVMS at a glance
	Program and part number
	Hardware requirements
	Software requirements
	Connectivity
	Security
	Maintenance functions
	Compatibility
	Supported compilers

	Language selection
	Internationalization

	Appendix B. System defaults
	Appendix C. Directory structure
	Directories and files in MQS_ROOT:[MQM]
	Directories and files in the MQS_ROOT:[MQM.QMGRS.QMNAME]subdirectory

	Appendix D. Comparing command sets
	Commands for queue manager administration
	Commands for command server administration
	Commands for queue administration
	Commands for process administration
	Commands for channel administration
	Other control commands

	Appendix E. Sample MQI programs and MQSC files
	MQSC command file samples
	C and COBOL program samples
	Miscellaneous tools

	Appendix F. OpenVMS cluster failover set templates
	Template Configuration File FAILOVER.TEMPLATE
	Template StartCommand procedure START_QM.TEMPLATE
	Template EndCommand procedure END_QM.TEMPLATE
	Template TidyCommand procedure TIDY_QM.TEMPLATE

	Appendix G. Codeset support on MQSeries for CompaqOpenVMS
	Appendix H. MONMQ diagnostic utility
	Overview
	Variables within MONMQ
	Assigning default values

	Opening or creating a trace section and associated mailbox
	Displaying the logical unit definition
	Closing and deleting an LU
	Display channel details
	Display the current trace mask for a channel
	Display the contents of the target threads stack
	Display active MQSeries related processes and memory usage
	Displays all messages held in a channel
	Display all MQSeries related global sections on the current node
	Signals target thread to send mutex table to client trace process
	Signals target thread to send internal events table to client traceprocess
	Signals target thread to send internal mapped shared memory table tothe client trace process
	Displays active MQSeries components by name and hexadecimal ids
	Display functions within specified component
	Activate tracing from the point a process starts
	Prevent MQSeries process from tracing immediately from startup
	Connect target thread to specified channel
	Disconnect target thread to specified channel
	Display real-time trace message written to the LUs trace mailbox
	Detach and end current client process
	Specify trace data
	Remove single entry from the trace filter table
	Client process writes trace messages to a binary file
	Close binary trace messages file
	Client process writes trace messages to a text file
	Close text trace messages file
	Timestamp messages
	Stop timestamping messages
	Enable tracing
	Disable tracing
	Save message history
	Disable message history
	Delete message history
	Set history depth
	Reset stack and history data for a channel
	Enable or disable mask bit
	Set a color for a channel
	Redirect output to file
	Analyze trace binary file
	Display current state of MQSeries threads
	Close trace and exit MONMQ
	Quit MONMQ without closing trace
	Managing shared memory with MONMQ
	Scripts and macros in MONMQ
	Sample trace session

	Appendix I. User exits
	Channel and Workload Exits
	MQSeries Cluster Workload Exits

	Appendix J. Trusted applications
	User applications
	Setting up trusted applications

	Running channels and listeners as trusted applications
	Fast, nonpersistent messages

	Appendix K. Ancillary information
	Application Programming Guide
	Application triggering
	Examples

	Appendix L. Notices
	Trademarks

	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	HTML format
	Portable Document Format (PDF)
	BookManager® format
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications

	Glossary of terms and abbreviations
	Index
	Sending your comments to IBM

