
MQSeries® Integrator

Administration Guide
Version 2.0.1

SC34-5792-02

���

MQSeries® Integrator

Administration Guide
Version 2.0.1

SC34-5792-02

���

Note!
This document contains information of a proprietary nature. All information contained herein shall be kept in confidence.
This information should not be divulged to persons other than IBM employees authorized by the nature of their duties to
receive such information, or individuals and organizations authorized by the IBM Corporation in accordance with existing
policy regarding release of company information.

Before using this information and the product it supports, be sure to read the general information under “Appendix B.
Notices” on page 189.

Third edition (November 2000)

This edition applies to IBM® MQSeries Integrator Version 2 and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
Terms used in this book xi
Where to find more information xii

MQSeries Integrator publications xii
MQSeries publications xiii
MQSeries Publish/Subscribe publications . . . xiii
MQSeries Workflow publications xiv
DB2 publications xiv
MQSeries information available on the Internet xiv

Summary of changes xv
Changes for this edition (SC34–5792–02). xv
Changes for the second edition (SC34–5792–01) . . xv

Part 1. Guidance 1

Chapter 1. Administration overview . . . 3
Administration tasks. 3
System administration overview 4

Configuring the broker domain 4
Managing the broker domain 4
Problem determination 4
Integration and migration 4
System management 5

Chapter 2. How to configure your
MQSeries Integrator network. 7
Definition and authorization tasks 7

Defining and authorizing MQSeries Integrator
user IDs 7
Defining and authorizing database resources . . 9
Defining MQSeries Integrator components . . . 17
Defining MQSeries resources 18

Connection tasks 18
Connecting Control Center clients to the
Configuration Manager (Windows NT only) . . 18
Connecting two MQSeries Integrator components 19

Initialization tasks 21
Starting MQSeries queue managers as a
Windows NT service 21
Starting the Configuration Manager (Windows
NT only) 22
Starting a broker. 23
Starting the User Name Server 23
Starting the Control Center (Windows NT only) 24
Defining and deploying the configuration in the
Control Center 25

Application client and user data tasks 26
Setting up application clients 26
Configuring databases for user data accessed
from message flows 27

General guidance 29

Chapter 3. How to manage your
MQSeries Integrator network 31
Managing the broker domain components 31

Managing components 31
Managing databases 32
Enhancing and updating your broker domain . . 33
Coordinated transactions 35
Deleting components from the broker domain . . 35
Importing and exporting message sets 37
Recovery and restart 38

Managing workload and performance 44
Using MQSeries trusted applications 44
Tuning message flow performance. 45

Chapter 4. Setting up security. 47
Securing MQSeries Integrator resources 47

Using Windows NT primary or trusted security
domains 49
The IBMMQSI2 superuser 51
Windows NT security domain scenarios 51
Using UNIX security domains 57

Securing MQSeries resources 57
Securing database resources 58

DB2 services 59

Chapter 5. Problem determination . . . 61
Traces 61

Windows NT event log messages 61
UNIX syslog messages. 62
Optional traces 63

Messages 71
MQSeries facilities 71

MQSeries logs 71
MQSeries events. 71

Database logs. 72
DB2 logs 72
ODBC tracing 72

Contacting your IBM support center 72

Part 2. Reference 75

Chapter 6. Using MQSeries Integrator
commands 77
Rules for using MQSeries Integrator commands . . 77

Rules for naming resources 77
Responses to commands 78

Command syntax help. 79
How to read syntax diagrams 79

© Copyright IBM Corp. 2000 iii

||

Chapter 7. Using the MQSeries
Integrator Command Assistant 83
Overview 83

Invocation 83
Navigation 83
Command processing 84

Example use 85

Chapter 8. Commands 89
mqsichangebroker (Change broker) 90

Purpose 90
Syntax 90
Required parameters 90
Optional parameters 90
Authorization 91
Responses 92
Examples 92
Related commands 92

mqsichangeconfigmgr (Change Configuration
Manager) 93

Purpose 93
Syntax 93
Optional parameters 93
Authorization 94
Responses 94
Examples 94
Related commands 94

mqsichangetrace (Change trace settings) 95
Purpose 95
Syntax 96
Required parameters 96
Optional parameters 96
Authorization 98
Responses 98
Examples 98
Related commands 98

mqsichangeusernameserver (Change User Name
Server) 99

Purpose 99
Syntax 99
Optional parameters 99
Authorization 100
Responses 100
Examples 100
Related commands 100

mqsiclearmqpubsub (Remove MQSeries
Publish/Subscribe broker as a neighbor) 101

Purpose 101
Syntax. 101
Required parameters 101
Authorization 101
Responses 101
Examples 102
Related commands 102

mqsicreatebroker (Create broker) 103
Purpose 103
Syntax. 104
Required parameters 104
Optional parameters 105
Authorization 106

MQSeries queues created 106
Database tables created 107
Responses 107
Examples 108
Related commands 108

mqsicreateconfigmgr (Create Configuration
Manager) 109

Purpose 109
Syntax 110
Required parameters 110
Optional parameters 111
Authorization 112
MQSeries queues created 112
MQSeries channels created 112
Database tables created 112
Responses 113
Examples 114
Related commands 114

mqsicreateusernameserver (Create User Name
Server) 115

Purpose 115
Syntax 115
Required parameters 115
Optional parameters 116
Authorization 116
MQSeries queues created 117
Responses 117
Examples 117
Related commands 117

mqsideletebroker (Delete broker) 118
Purpose 118
Syntax 118
Required parameters 118
Optional parameters 119
Authorization 119
Responses 119
Examples 119
Related commands 119

mqsideleteconfigmgr (Delete Configuration
Manager) 120

Purpose 120
Syntax. 120
Optional parameters 120
Authorization 121
Responses 121
Examples 122
Related commands 122

mqsideleteusernameserver (Delete User Name
Server) 123

Purpose 123
Syntax. 123
Optional parameters 123
Authorization 123
Responses 123
Examples 124
Related commands 124

mqsiformatlog (Format log) 125
Purpose 125
Syntax. 125
Required parameters 125
Optional parameters 125

iv MQSeries Integrator Administration Guide V2.0.1

Authorization 125
Responses 125
Examples 125
Related commands 126

mqsijoinmqpubsub (Join broker to MQSeries
Publish/Subscribe parent broker) 127

Purpose 127
Syntax. 127
Required parameters 127
Authorization 127
Responses 127
Examples 128
Related commands 128

mqsilcc (Start Control Center trace) 129
Purpose 129
Syntax. 129
Optional parameters 129
Authorization 130
Responses 130
Examples 130

mqsilist (List resources) 131
Purpose 131
Syntax. 131
Optional parameters 131
Authorization 131
Responses 132
Examples 132

mqsilistmqpubsub (List MQSeries
Publish/Subscribe neighbor broker status). . . . 133

Purpose 133
Syntax. 133
Required parameters 133
Authorization 133
Responses 133
Examples 134
Related commands 135

mqsimrmcopymsgset (Copy message set) 136
Purpose 136
Syntax. 136
Required parameters 136
Authorization 137
Examples 137

mqsimrmimpexp (Import/Export message set) . . 138
Purpose 138
Syntax. 138
Required parameters 138
Optional Parameters 139
Authorization 139
Examples 139

mqsinrfreload (Reload NEON messages) 140
Purpose 140
Syntax. 140
Required parameters 140
Authorization 140
Responses 140
Examples 140

mqsireadlog (Read log) 141
Purpose 141
Syntax. 141
Required parameters 141
Optional parameters 142

Authorization 143
Responses 143
Examples 144
Related commands 145

mqsireporttrace (Report trace settings) 146
Purpose 146
Syntax. 146
Required parameters 146
Optional parameters 146
Authorization 147
Responses 147
Examples 147
Related commands 147

mqsistart (Start component) 148
Purpose 148
Syntax. 148
Required parameters 148
Authorization 148
Responses 149
Examples 149
Related commands 149

mqsistop (Stop component). 150
Purpose 150
Syntax. 150
Required parameters 150
Optional parameters 150
Authorization 150
Responses 151
Examples 151
Related commands 151

Part 3. Migration and integration 153

Chapter 9. MQSeries
Publish/Subscribe 155
Before you start 155

Figures used in this chapter 155
Commands and options 155
Stream queues 157

Running two independent broker networks . . . 157
Creating and operating a heterogeneous network 157

Adding an MQSeries Integrator broker as a leaf
node 158
Adding an MQSeries Integrator broker as a
parent node 161
Deleting brokers in a heterogeneous network 163

Migrating MQSeries Publish/Subscribe brokers . . 164
The Control Center and migration 164
Migrating a single broker 165
Migrating a broker network 167
A network of migrated brokers 172

Part 4. Appendixes 175

Appendix A. Event reporting 177
General architecture 178
Configuration changes 178

Changes to the local configuration of the broker 178
Neighbor changes 179

Contents v

Examples 179
ACL updates 180
Examples 181

Operational information 182
Subscriptions and topics. 183
Subscription registration and deregistration . . 183
Examples 183

Operational warnings 185
Expired publications and subscriptions 185
Examples 185

Notification message schema 186

Appendix B. Notices 189
Trademarks 191

Glossary of terms and abbreviations 193

Index 199

Sending your comments to IBM . . . 203

vi MQSeries Integrator Administration Guide V2.0.1

Figures

1. Connecting two MQSeries Integrator
components 20

2. Unformatted user trace. 66
3. Formatted user trace 67
4. Formatted user trace: normal level 68
5. Formatted user trace: debug level 69
6. Create broker: screen 1 85
7. Create broker: screen 2 85
8. Create broker: screen 3 86
9. Modify Configuration Manager: screen 1 86

10. Modify Configuration Manager: screen 2 87
11. Delete User Name Server: screen 1 87
12. Delete User Name Server: screen 2 88
13. Create broker: error response. 88
14. Key to the integration and migration figures 155
15. Adding an MQSeries Integrator broker as a

leaf node 159

16. Adding an MQSeries Integrator broker as a
parent node 161

17. Migrating an MQSeries Publish/Subscribe
broker network: initial state 168

18. Migrating an MQSeries Publish/Subscribe
broker network: first leaf node migration . . 169

19. Migrating an MQSeries Publish/Subscribe
broker network: root node migration. . . . 169

20. Migrating an MQSeries Publish/Subscribe
broker network: breaking the connection . . 170

21. Migrating an MQSeries Publish/Subscribe
broker network: rejoining 171

22. Migrating an MQSeries Publish/Subscribe
broker network: second leaf node migration . 171

23. Migrating an MQSeries Publish/Subscribe
broker network: final state 172

24. An integrated broker network 173

© Copyright IBM Corp. 2000 vii

viii MQSeries Integrator Administration Guide V2.0.1

Tables

1. Supported database options by operating
system platform. 10

2. Summary of administrative task authorization
on Windows NT platforms 50

3. Summary of administrative task authorization
on UNIX platforms 57

4. How to read syntax diagrams 79
5. Service trace: qualifiers valid with

components 143
6. Where to find command information 156

© Copyright IBM Corp. 2000 ix

x MQSeries Integrator Administration Guide V2.0.1

About this book

This book provides guidance and reference information that will help you
administer and manage your MQSeries Integrator broker domain.

“Part 1. Guidance” on page 1 gives a brief overview of MQSeries Integrator Version
2.0.1 administration facilities, and provides detailed guidance information on the
tasks covered in this book.

“Part 2. Reference” on page 75 provides reference material for the set of commands
provided by MQSeries Integrator.

“Part 3. Migration and integration” on page 153 gives details migration
implementation information for existing users of MQSeries Publish/Subscribe and
MQSeries Integrator Version 1.

A glossary is also provided.

For further information about the product, and planning for its use, refer to the
MQSeries Integrator Version 2.0.1 Introduction and Planning book.

This book provides detailed information on system administration: it references but
does not describe in detail the related business administration tasks (for example,
defining message flows) that are supported by the Control Center. For information
about these tasks, you must refer to MQSeries Integrator Version 2.0.1 Using the
Control Center.

Note: If you cut and paste examples of commands from the PDF version of this
book to a command line for execution, you must check the content is correct
before you press Enter. Some characters might be corrupted by local system
and font settings.

Who this book is for
This book is for system administrators of systems on which MQSeries Integrator
Version 2 components are installed and tested.

What you need to know to understand this book
To understand this book, you need to be familiar with the system facilities of your
operating system. You also need to be familiar with the administration facilities of
the MQSeries Messaging product.

Terms used in this book
All references to MQSeries Integrator are to MQSeries Integrator Version 2.0.1
unless otherwise stated.

All new terms introduced in this book are defined in “Glossary of terms and
abbreviations” on page 193. These terms are shown like this at their first use.

© Copyright IBM Corp. 2000 xi

The book uses the following shortened names:
v MQSeries: a general term for IBM MQSeries Messaging products.
v MQSeries Publish/Subscribe: the MQSeries Publish/Subscribe SupportPac™

available on the Internet for several MQSeries server operating systems (the
Internet URL is given in “MQSeries information available on the Internet” on
page xiv).

v DB2®: a general term to encompass IBM DB2 Universal Database® Enterprise
Edition, Connect Enterprise Edition, and Extended Enterprise Edition.

Where to find more information
Becoming familiar with the MQSeries Integrator library will help you accomplish
MQSeries Integrator tasks quickly. The library covers planning, installation,
administration, and client application tasks.

The library also contains references to complementary product libraries, including
the MQSeries Family library.

MQSeries Integrator publications
The following books make up the MQSeries Integrator Version 2 library:
v IBM MQSeries Integrator Version 2.0.1 Introduction and Planning, GC34-5599
v IBM MQSeries Integrator Version 2.0.1 Installation Guide for your computer

platform
v IBM MQSeries Integrator Version 2.0.1 Messages, GC34-5601
v IBM MQSeries Integrator Version 2.0.1 Using the Control Center, SC34-5602
v IBM MQSeries Integrator Version 2.0.1 Programming Guide, SC34-5603
v IBM MQSeries Integrator Version 2.0.1 Administration Guide, SC34-5792 (this

book)

The MQSeries Integrator Installation Guide for your computer platform is provided
in hardcopy with the product. The MQSeries Integrator Introduction and Planning
book is also available in hardcopy.

All books in the MQSeries Integrator library are provided in softcopy, in Adobe
Portable Document Format (PDF) in a searchable PDF library. You can:
v Install the library (by doing a full installation or by specifying the Documentation

component on a custom installation).
v Access the library directly from the Docs subdirectory under the root directory

on the CD without installing them.
v On Windows NT, access the library after installation by selecting Start->Programs

-> MQSeries Integrator Version 2.0 ->Documentation.
v On UNIX platforms, access the library after installation by using the command

mqsidocs.

The MQSeries Integrator Version 1.1 publications are also supplied as PDFs and
can be installed with MQSeries Integrator Version 2.0.1 (the Documentation
component). They can also be retrieved from the MQSeries Web site given in
“MQSeries information available on the Internet” on page xiv.
v IBM MQSeries Integrator Version 1.1 Installation and Configuration Guide,

GC34-5503
v IBM MQSeries Integrator Version 1.1 User’s Guide, GC34-5504

About this book

xii MQSeries Integrator Administration Guide V2.0.1

v IBM MQSeries Integrator Version 1.1 System Management Guide, SC34-5505
v IBM MQSeries Integrator Version 1.1 Programming Reference for NEONRules,

SC34-5506
v IBM MQSeries Integrator Version 1.1 Programming Reference for

NEONFormatter, SC34-5507
v IBM MQSeries Integrator Version 1.1 Application Development Guide, SC34-5508

You can read PDFs using the Adobe Acrobat Reader, or in a Web browser (with
Acrobat Reader as a plug-in). Version 4 is required. You can also print your own
copies of these books.

You can download a free copy of Acrobat Reader from the Adobe Web site at
http://www.adobe.com

MQSeries publications
The following books are referenced in this book to point you to the information
you need to complete MQSeries Messaging product tasks as part of MQSeries
Integrator tasks.
v IBM MQSeries Planning Guide, GC33-1349.

This book describes some key MQSeries concepts, and discusses items that must
be considered before MQSeries is installed.

v IBM MQSeries System Administration, SC33-1873.
This book supports day-to-day management of local and remote MQSeries
objects.

v IBM MQSeries Programmable System Management, SC33-1482.
This book provides reference and guidance information for users of MQSeries
events, programmable command formats (PCFs), and installable services.

v IBM MQSeries Intercommunication, SC33-1872.
This book defines the concepts of distributed queuing and explains how to set
up a distributed queueing network.

v IBM MQSeries Clients, GC33-1632.
This book describes how to install, configure, use, and manage MQSeries clients.

v IBM MQSeries Command Reference, SC33-1369.
This book contains the syntax of the MQSC commands.

v IBM MQSeries Application Programming Reference, SC33-1673
This book provides comprehensive reference information, including MQSeries
return codes.

v IBM MQSeries Application Programming Guide, SC33-0807
This book provides guidance information for programmers.

For a complete list of MQSeries Messaging product publications, refer to the
information on the MQSeries Web site (identified in “MQSeries information
available on the Internet” on page xiv).

MQSeries Publish/Subscribe publications
If you have installed MQSeries Publish/Subscribe and plan to migrate to MQSeries
Integrator Version 2, or to establish a mixed broker network, refer to the following
publication:
v IBM MQSeries Publish/Subscribe User’s Guide, GC34-5269

MQSeries family publications

About this book xiii

This book and the MQSeries Publish/Subscribe SupportPac package are available
from the MQSeries Web site (identified in “MQSeries information available on the
Internet”).

MQSeries Workflow publications
The MQSeries Workflow product has a comprehensive library. Refer to the
following book for introductory information, and for details about other product
publications:
v IBM MQSeries Workflow Concepts and Architecture, GH12-6285

For a complete list of MQSeries Workflow publications, refer to the information on
the MQSeries Web site (identified in “MQSeries information available on the
Internet”).

DB2 publications
If you want more information about DB2, you can download the product
publications from the DB2 Web site at
http://www.ibm.com/software/data/db2

MQSeries information available on the Internet
The MQSeries Business Solution, of which MQSeries Integrator is a part, has a Web
site at:
http://www.ibm.com/software/ts/mqseries

By following links from this Web site you can:
v Obtain the latest information about all MQSeries family products.
v Access all the books for the MQSeries family products.
v Down-load MQSeries SupportPacs.

MQSeries family publications

xiv MQSeries Integrator Administration Guide V2.0.1

Summary of changes

This section describes changes in this edition of MQSeries Integrator Administration
Guide. Changes since the previous edition of the book are marked by vertical lines
to the left of the changes.

Changes for this edition (SC34–5792–02)
v The discussion of issues relating to migration from earlier versions of MQSeries

Integratorhave been removed from this book and are now dealt with in the
MQSeries Integrator Version 2.0.1 Installation Guide for your computer platform

v When using the mqsichangetrace command, be aware of the size limitations for
log files, depending on how you subsequently intend to read the log using the
mqsireadlog command. (See “mqsichangetrace (Change trace settings)” on
page 95.)

Changes for the second edition (SC34–5792–01)
Most changes relate to operating components of the system on the UNIX platforms
which are now supported. However, you should note that, in this release, the
Control Center and the Configuration Manager can only be used on Windows NT.
Specific points you should note:
v You can access the MQSeries Integrator library, provided in softcopy, on all

supported platforms. (See “MQSeries Integrator publications” on page xii.)
v Major activities within the system are recorded in the local error log. On

Windows NT systems, this is the system event log. You will find the equivalent
information in the syslog on UNIX platforms. (See “UNIX syslog messages” on
page 62.)

v Whereas keywords and broker names are not case sensitive on Windows NT,
you should be aware that they are on UNIX platforms. (See “Rules for using
MQSeries Integrator commands” on page 77.)

v The implementation of the MQSeries Integrator security architecture is different
on UNIX platforms. You should also be aware that MQSeries Integrator task
authorizations are limited to eight bytes or less in an environment that includes
clients on heterogeneous platforms. (See “Using UNIX security domains” on
page 57.)

v Both commands mqsicreatebroker and mqsicreateconfigmgr will now enable a
default dead-letter queue (DLQ). See “mqsicreatebroker (Create broker)” on
page 103 and “mqsicreateconfigmgr (Create Configuration Manager)” on
page 109 for details of the implications and changes in behavior that a DLQ
causes.)

v The mqsistop command now has an extra optional parameter to force a broker
to stop immediately. (See “mqsistop (Stop component)” on page 150.)

v There is a new command, mqsimrmcopymsgset, which you may use to create a
copy of a complete message within a message repository. (See
“mqsimrmcopymsgset (Copy message set)” on page 136 for full details.)

v It is now possible to set the maximum Java virtual machine (JVM) heap size
when using the mqsichangeconfigmgr command. (See “mqsichangeconfigmgr
(Change Configuration Manager)” on page 93.)

© Copyright IBM Corp. 2000 xv

|

|
|
|

|
|
|
|

|

v As well creating broker tables in DB2 and SQL Server databases, Oracle and
Sybase databases may also be used. (See “Defining and authorizing database
resources” on page 9.)

v You should be aware that there are issues relating to migration from MQSeries
Integrator Version 2.0 to Version 2.0.1 which should be addressed. (See below.)

Changes

xvi MQSeries Integrator Administration Guide V2.0.1

Part 1. Guidance

Chapter 1. Administration overview 3
Administration tasks. 3
System administration overview 4

Configuring the broker domain 4
Managing the broker domain 4
Problem determination 4
Integration and migration 4
System management 5

Chapter 2. How to configure your MQSeries
Integrator network 7
Definition and authorization tasks 7

Defining and authorizing MQSeries Integrator
user IDs 7

Prerequisite tasks 8
Completing the task for service user IDs on
Windows NT 8
Completing the task for service user IDs on
UNIX platforms 9
Completing the task for Control Center users
(Windows NT only) 9
Subsequent tasks 9

Defining and authorizing database resources . . 9
Database setup and configuration 10
Configuring databases for internal data . . . 13
Defining internal MQSeries Integrator
database connections (Windows NT only) . . 15
Authorizing internal database access 15
Configuring databases for NEON message
formats 17

Defining MQSeries Integrator components . . . 17
Prerequisite tasks 17
Completing the task 17
Subsequent tasks 18

Defining MQSeries resources 18
Connection tasks 18

Connecting Control Center clients to the
Configuration Manager (Windows NT only) . . 18

Prerequisite tasks 18
Completing the task 18
Subsequent tasks 19

Connecting two MQSeries Integrator components 19
Prerequisite tasks 20
Completing the task 20
Subsequent tasks 21

Initialization tasks 21
Starting MQSeries queue managers as a
Windows NT service 21

Prerequisite tasks 22
Completing the task 22
Subsequent tasks 22

Starting the Configuration Manager (Windows
NT only) 22

Prerequisite tasks 22
Completing the task 22
Subsequent tasks 23

Starting a broker. 23
Prerequisite tasks 23
Completing the task 23
Subsequent tasks 23

Starting the User Name Server 23
Prerequisite tasks 23
Completing the task 24
Subsequent tasks 24

Starting the Control Center (Windows NT only) 24
Defining and deploying the configuration in the
Control Center 25

Prerequisite tasks 25
Completing the task 25
Subsequent tasks 26

Application client and user data tasks 26
Setting up application clients 26

MQSeries resources for client applications . . 27
Configuring databases for user data accessed
from message flows 27

Messageflow transactionality and database
design 28

General guidance 29

Chapter 3. How to manage your MQSeries
Integrator network 31
Managing the broker domain components 31

Managing components 31
Starting and stopping components. 31
Viewing and modifying components 31

Managing databases 32
Databases and code pages 32
Managing database access 32

Enhancing and updating your broker domain . . 33
Setting up a publish/subscribe network . . . 33

Coordinated transactions 35
Using DB2 in coordinated transactions . . . 35

Deleting components from the broker domain . . 35
Deleting a broker 35
Removing topic-based security 36

Importing and exporting message sets 37
Recovery and restart 38

Making sure that messages aren’t lost . . . 38
Making sure that subscriptions aren’t lost . . 40
Restart scenarios. 40
Backup and recovery 42
Recovery scenarios 43

Managing workload and performance 44
Using MQSeries trusted applications 44
Tuning message flow performance. 45

Chapter 4. Setting up security 47
Securing MQSeries Integrator resources 47

Using Windows NT primary or trusted security
domains 49
The IBMMQSI2 superuser 51
Windows NT security domain scenarios 51

© Copyright IBM Corp. 2000 1

Scenario 1: operation in a Windows NT
primary domain 52
Scenario 2: operation in a Windows NT
trusted domain 53
Scenario 3: operation on a stand-alone
machine 55

Using UNIX security domains 57
Securing MQSeries resources 57
Securing database resources 58

DB2 services 59
On Windows NT 59
On UNIX platforms 59

Chapter 5. Problem determination 61
Traces 61

Windows NT event log messages 61
UNIX syslog messages. 62
Optional traces 63

Starting user trace 64
Checking user trace options 65
Changing user trace options 65
Retrieving user trace information 65
Formatting user trace information 66
Viewing and interpreting user trace
information 70
Stopping user trace 70
Controlling Service traces. 70

Messages 71
MQSeries facilities 71

MQSeries logs 71
MQSeries events. 71

Database logs. 72
DB2 logs 72
ODBC tracing 72

Contacting your IBM support center 72

2 MQSeries Integrator Administration Guide V2.0.1

Chapter 1. Administration overview

This chapter provides a summary of the administration tasks of MQSeries
Integrator. It assumes you are already familiar with the concepts and components
of MQSeries Integrator: if this is not the case you are recommended to read the
MQSeries Integrator Introduction and Planning book for this information.

This chapter provides:
v “Administration tasks”.
v “System administration overview” on page 4.

Administration tasks
Administration for MQSeries Integrator can be considered in two main categories:
v Business administration. Implementation of the tasks introduced in MQSeries

Integrator Introduction and Planning, Part 2 “Business Planning”. These tasks
include the definition and management of message sets and message flows, and
the management of topics and subscriptions. These tasks are primarily
implemented by the Control Center, which is fully described in the MQSeries
Integrator Using the Control Center book and in the online help.

v System administration. Implementation of the tasks discussed in MQSeries
Integrator Introduction and Planning, Part 4 “Systems Planning”. These tasks
include the administration of MQSeries Integrator components, the security
options that can be put in place, and the MQSeries infrastructure on which
MQSeries Integrator depends. These tasks are primarily implemented by the
command interface described in “Part 2. Reference” on page 75.

You will find that this book and MQSeries Integrator Using the Control Center are
complementary. Some significant tasks are unique to one book: for example, you
create the Configuration Manager using the commands in this book. Other tasks
cover subtasks in both books: for example, to create and use a broker, you must
create the physical broker using the commands in this book, but you cannot use
that broker until you define it to the configuration repository, and assign resources
to it, both of which you must do using the Control Center.

You will also find that there are a very small number of tasks which can be
achieved through more than one interface. For example, you can set trace on for a
particular message flow using either the command (described in this book) or the
options in the Control Center.

Every task that requires action both through commands, and through the Control
Center, or that provides a choice of action, contains cross reference information so
that you can complete the task in the manner you choose.

You should note that, in this release, the Configuration Manager, the Control
Center and the Command Assistant can only be used on Windows NT platforms.

© Copyright IBM Corp. 2000 3

System administration overview
When you have installed MQSeries Integrator, you can use the facilities provided
to help you configure and administer your broker domain and its components.

The tasks and facilities for component administration described in this book are:
v “Configuring the broker domain”.
v “Managing the broker domain”.
v “Problem determination”.
v “System management” on page 5.

Configuring the broker domain
The configuration tasks are:
v Create, modify, and delete the Configuration Manager.
v Create, modify, and delete brokers.
v Create, modify, and delete the User Name Server.

These tasks are discussed in “Chapter 2. How to configure your MQSeries
Integrator network” on page 7. They are implemented by a set of commands
described in detail in “Chapter 8. Commands” on page 89. The configuration tasks
are also supported by a graphical user interface, the MQSeries Integrator
Command Assistant, described in detail in “Chapter 7. Using the MQSeries
Integrator Command Assistant” on page 83.

Managing the broker domain
The tasks for managing the broker domain are:
v Start and stop brokers, the Configuration Manager, and the User Name Server.
v List components, and some resources, on the local system.

These tasks are discussed in “Chapter 3. How to manage your MQSeries Integrator
network” on page 31. They are implemented by a set of commands described in
detail in “Chapter 8. Commands” on page 89.

Problem determination
MQSeries Integrator provides facilities that help you to understand what is going
on in your broker domain, and to track activity and make changes.

These facilities support the following tasks:
v Start and stop tracing for components and subcomponents.
v Retrieve and format log records.

“Chapter 5. Problem determination” on page 61 describes these tasks in more
detail. The commands that implement these tasks are described in “Chapter 8.
Commands” on page 89.

Integration and migration
If you already have an MQSeries Integrator Version 1 network of brokers, or are
using MQSeries Publish/Subscribe, the following tasks are of interest:
v Migration of rules and formats from MQSeries Integrator Version 1.
v Integration and migration of MQSeries Publish/Subscribe brokers.

Administration overview

4 MQSeries Integrator Administration Guide V2.0.1

These tasks are discussed in theMQSeries Integrator Version 2.0.1 Installation Guide
for your computer platform and “Chapter 9. MQSeries Publish/Subscribe” on
page 155 respectively.

System management
MQSeries Integrator provides facilities that assist in centralized system
management. These facilities support the following tasks:
v Monitoring of the status and activity of MQSeries Integrator system components

(brokers, the Configuration Manager and the User Name Server). For example,
reports are generated whenever a broker starts or stops.

v Monitoring of the status and activity of execution groups.
v Monitoring of the status and activity of message flows.

MQSeries Integrator generates reports (similar in function to MQSeries events) to
provide information about the operation and status of the broker domain. The
nature and format of these report messages, in XML, is described in “Appendix A.
Event reporting” on page 177.

These report messages are published with specific associated topics, and external
organizations can therefore subscribe to the topics to support MQSeries Integrator
broker domains from a center of competence anywhere within the MQSeries
network.

Administration overview

Chapter 1. Administration overview 5

Administration overview

6 MQSeries Integrator Administration Guide V2.0.1

Chapter 2. How to configure your MQSeries Integrator
network

This chapter describes the tasks that are needed to configure and activate an
MQSeries Integrator network. It builds on the planning information provided in
MQSeries Integrator Introduction and Planning, and on the configuration of a simple
broker domain described in the MQSeries Integrator Installation Guide for your
computer platform.

The tasks are presented in related groups, in the order in which you are
recommended to complete them after installation. However, you can implement
many of the tasks in isolation, at a later time, if appropriate. For example, if you
want to add a new broker into an existing domain, you can follow the steps to
create a broker described in “Defining MQSeries Integrator components” on
page 17.

Each task identifies its prerequisite tasks, and the tasks that you are required or
recommended to complete following that task. This helps you to ensure you do
everything you need to do to complete each specific task.

All the tasks illustrated use sample names. You can use the same names, or you
can choose your own names. You must remember to substitute your names for the
sample names wherever they are used in these examples, if appropriate.

The tasks are grouped as follows:
v “Definition and authorization tasks”
v “Connection tasks” on page 18
v “Initialization tasks” on page 21
v “Application client and user data tasks” on page 26

Following the task descriptions, some general guidance and recommendations are
provided:
v “General guidance” on page 29

“Chapter 3. How to manage your MQSeries Integrator network” on page 31
describes additional tasks that change the configuration you have created by
completing the tasks in this chapter.

Definition and authorization tasks
When you configure a broker domain, you must define the resources you need,
and grant users the authority to use them:
v “Defining and authorizing MQSeries Integrator user IDs”
v “Defining and authorizing database resources” on page 9
v “Defining MQSeries Integrator components” on page 17
v “Defining MQSeries resources” on page 18

Defining and authorizing MQSeries Integrator user IDs
MQSeries Integrator components (brokers, the Configuration Manager, and the
User Name Server) run under nominated user IDs known as Service User IDs.
You must define these user IDs to your security domain, and add them to the

© Copyright IBM Corp. 2000 7

groups necessary to authorize their operation. You must also define one or more
user IDs for Control Center use. Control Center users must belong to specific
groups to achieve specific tasks.

For a detailed discussion of users, groups, and security, see “Chapter 4. Setting up
security” on page 47.

Prerequisite tasks
You must complete the following task before you start this task:
v Installation of MQSeries Integrator. See theMQSeries Integrator Installation Guide

for details.

Completing the task for service user IDs on Windows NT
You must first decide what user IDs you will nominate as service user IDs for the
Configuration Manager, the User Name Server (if you have one), and for each
broker. If you decide to create new user IDs, follow all the steps below. If you are
using existing user IDs, start with Step 3. You can check the requirements for
service user IDs in Table 2 on page 50.

You must take the following steps:
Step 1. Invoke the Windows NT User Manager on the system that is your security

domain controller. You can access this program from the Windows NT
Start menu (the default is Start->Programs->Administrative Tools-
>User Manager).

Step 2. Create a new user ID.
a. Select the User menu and select New user....
b. Fill in the fields on the dialog presented to create the user ID mqsiuid,

with password mqsipw.
Repeat Step 2 if you want to create additional user IDs.

Step 3. Add the user ID to the MQSeries Integrator group mqbrkrs on the local
system, or to Domain mqbrkrs on the domain controller if you are using
a Windows NT security domain:
a. Click the Groups button on the New User or the User properties dialog.

This presents another dialog, Group Memberships.
b. Add the user to mqbrkrs or Domain mqbrkrs.

Step 4. If this user ID is the Configuration Manager service user ID, you must
also add this id to the MQSeries group mqm on the local system. (See
Table 2 on page 50 for full options for this step.)

Step 5. If this user ID is the broker service user ID, and you plan to run this
broker as a trusted MQSeries application, you must also add this id to the
local MQSeries group mqm (See Table 2 on page 50 for full options for this
step.) (For details of running brokers as trusted applications, see “Using
MQSeries trusted applications” on page 44.)

Step 6. Click OK. The User Manager returns you to the New User or User
properties dialog.

Step 7. Click OK.

You can change the service user ID for a component by invoking the appropriate
mqsichange command or the Command Assistant. However, if the service user ID
is also used for database access, you must follow the instructions given in
“Managing databases” on page 32.

Defining MQSeries Integrator user IDs

8 MQSeries Integrator Administration Guide V2.0.1

Completing the task for service user IDs on UNIX platforms
To set up a new user ID on UNIX platforms, type the following command on Sun
Solaris:
useradd -g mqm -G mqbrkrs <<mqsiuid>

or the following on AIX:
mkuser pgrp=mqm groups=mqbrkrs <mqsiuid>

Where <mqsiuid> is the new user ID.

Completing the task for Control Center users (Windows NT only)
You must add all user IDs that will use the Control Center to the MQSeries
Integrator group or groups that will authorize their use of the Control Center. For
details of the roles the Control Center users can assume, see MQSeries Integrator
Using the Control Center.

You can do this on the domain controller of the security domain specified when
you created the Configuration Manager, or you can do this in the local domain of
the system on which the user will run the Control Center.
Step 1. If you want to create new user IDs for the Control Center users, follow

the instructions for creating new users in “Completing the task for service
user IDs on Windows NT” on page 8 to define the user IDs, either to your
security domain or to the local system on which they will run the Control
Center.

Step 2. For each user ID you want to authorize, double click the user ID to bring
up the User properties dialog.

Step 3. Click the Groups button on this dialog. This presents another dialog,
Group Memberships.

Step 4. If you are on the security domain controller, add the user ID to:
v Domain mqbrasgn, if this user is a “Message flow and Message Set

Assigner”.
v Domain mqbrdevt, if this user is a “Message flow and Message Set

Developer”.
v Domain mqbrops, if this user is an “Operational domain controller”.
v Domain mqbrtpic, if this user is a “Topic security administrator”.

Step 5. If you are on the local system, add the user ID to:
v mqbrasgn, if this user is a “Message flow and Message Set Assigner”.
v mqbrdevt, if this user is a “Message flow and Message Set Developer”.
v mqbrops, if this user is an “Operational domain controller”.
v mqbrtpic, if this user is a “Topic security administrator”.

Step 6. Click OK. The User Manager returns you to the User Properties dialog.
Step 7. Click OK.

Subsequent tasks
When you have completed this task, continue with:
v “Defining and authorizing database resources”

Defining and authorizing database resources
MQSeries Integrator depends on databases for its own configuration and control
purposes. These databases must be defined before you create the MQSeries
Integrator components. You must also authorize specific users to access these
databases.

Defining MQSeries Integrator user IDs

Chapter 2. How to configure your MQSeries Integrator network 9

Table 1 gives information about the supported databases on different operating
system platforms.

This task contains the following subtasks:
v “Database setup and configuration”
v “Configuring databases for internal data” on page 13
v “Defining internal MQSeries Integrator database connections (Windows NT

only)” on page 15
v “Authorizing internal database access” on page 15
v “Configuring databases for NEON message formats” on page 17

Table 1. Supported database options by operating system platform.

Database UNIX platforms Windows NT

DB2 UDB (note 1) v 6.1 (note 2)
v 5.2 fixpack 12
v 6.1 (note 2)

Microsoft SQLServer Not available
v 6.5 SP 5a
v 7.0 SP 1

Oracle
v 7.3.4 (note 3)
v 8.1.5

v 7.3.4 (note 3)
v 8.1.5

Sybase
v 11.5
v 12

v 11.5
v 12

Notes:

1. DB2 UDB 6.1 is the only DBMS supported by MQSeries Integrator Version 2.0.1 which permits a
database to participate as a Resource Manager in a distributed transaction, and coordinated by
MQSeries as the Transaction Manager. In MQSeries Integrator terms, this is described as
supporting a ’globally broker-coordinated’ message broker.

2. See the shipped readme file for details of any required fixpacks.

3. Oracle 7.3.4 is not supported for use as a broker internal database.

The general restriction applies that only DB2 may be used for the configuration and message
repository databases. (See “Configuring databases for internal data” on page 13.) This table describes
the supported options for the broker internal database, and customer databases, accessed in message
flow nodes.

Database setup and configuration
On both Windows NT and UNIX platforms, you need to configure your database
as an ODBC data source:

Windows NT: On Windows NT, an ODBC data source is configured by using the
ODBC Data Source Administrator. (Select Start->Settings->Control Panel and then
select the ODBC icon.) When defining a new data source, select the appropriate
driver for your database and complete the dialog which is displayed. Refer to your
relevant database product documentation for more information. Setup
considerations specific to MQSeries Integrator are described below for the
supported databases:
v Sybase Adaptive Server Enterprise

When using version 3.50 of the Sybase driver, in addition to its own
requirements, you need to ensure that the following are set when creating ODBC
definitions for use with MQSeries Integrator Version 2.0.1:
– Under the Advanced tab, ensure the Enable Describe Parameter box is checked;

and
– Under the Performance tab, ensure the Prepare Method setting is 1 - Partial.

UNIX platforms: In the UNIX environment, there is no ODBC Administrator (also
referred to as a ’Driver Manager’). To configure an ODBC data source name (DSN)
definition, you must edit the required system information, which is held in a plain

Defining database resources

10 MQSeries Integrator Administration Guide V2.0.1

text file called .odbc.ini (note that the name of this file starts with a dot). This file
must be created in the /var/mqsi/odbc directory which is created when MQSeries
Integrator is installed. The file must have file permissions of mqm:mqbrkrs. A
sample template is provided as the file .../mqsi/merant/odbc.ini which contains
examples of how to configure a DSN residing in each of the databases supported
by MQSeries Integrator. The sample template files for the supported platforms are
displayed below. They show the recommended configuration for the supported
databases with keyword values which need to be configured to your local
requirements in italics. Descriptions of these keywords follow.

AIX:
[ODBC Data Sources]
MQSIBKDB=IBM DB2 ODBC Driver
MYDB=IBM DB2 ODBC Driver
ORACLEDB=MERANT 3.60 Oracle 8 Driver
ORACLE7DB=MERANT 3.60 Oracle 7 Driver
SYBASEDB=MERANT 3.60 Sybase 11 Driver

[MQSIBKDB]
Driver=/u/db2inst1/sqllib/lib/db2.o
Description=MQSIBKDB DB2 ODBC Database
Database=MQSIBKDB

[MYDB]
Driver=/u/db2inst1/sqllib/lib/db2.o
Description=MYDB DB2 ODBC Database
Database=MYDB

[ORACLEDB]
Driver=/usr/opt/mqsi/merant/lib/UKor815.so
Description=Oracle8
ServerName=YourServerName
LogonID=scott
Password=tiger
EnableDescribeParam=1
OptimizePrepare=1

[ORACLE7DB]
Driver=/usr/opt/mqsi/merant/lib/UKor715.so
Description=Oracle7
ServerName=YourServerName
LogonID=scott
Password=tiger
EnableDescribeParam=1
OptimizePrepare=1

[SYBASEDB]
Driver=/usr/opt/mqsi/merant/lib/UKsyb1115.so
Description=Sybase11
Database=sybasedb
ServerName=YourServerName
WorkstationID=id
LogonID=sa
Password=
EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=1

[ODBC]
Trace=0
TraceFile=/var/mqsi/odbc/odbctrace.out
TraceDll=/usr/opt/mqsi/merant/lib/odbctrac.so
InstallDir=/usr/opt/mqsi/merant

Defining database resources

Chapter 2. How to configure your MQSeries Integrator network 11

Sun Solaris:
[ODBC Data Sources]
MQSIBKDB=IBM DB2 ODBC Driver
MYDB=IBM DB2 ODBC Driver
ORACLEDB=MERANT 3.60 Oracle 8 Driver
ORACLE7DB=MERANT 3.60 Oracle 7 Driver
SYBASEDB=MERANT 3.60 Sybase 11 Driver

[MQSIBKDB]
Driver=/u/db2inst1/sqllib/lib/libdb2.so
Description=MQSIBKDB DB2 ODBC Database
Database=MQSIBKDB

[MYDB]
Driver=/u/db2inst1/sqllib/lib/libdb2.so
Description=MYDB DB2 ODBC Database
Database=MYDB

[ORACLEDB]
Driver=/opt/mqsi/merant/lib/UKor815.so
Description=Oracle8
ServerName=YourServerName
LogonID=scott
Password=tiger
EnableDescribeParam=1
OptimizePrepare=1

[ORACLE7DB]
Driver=/opt/mqsi/merant/lib/UKor715.so
Description=Oracle7
ServerName=YourServerName
LogonID=scott
Password=tiger
EnableDescribeParam=1
OptimizePrepare=1

[SYBASEDB]
Driver=/opt/mqsi/merant/lib/UKsyb1115.so
Description=Sybase11
Database=sybasedb
ServerName=YourServerName
WorkstationID=id
LogonID=sa
Password=
EnableDescribeParam=1
OptimizePrepare=1
SelectMethod=1

[ODBC]
Trace=0
TraceFile=/var/mqsi/odbc/odbctrace.out
TraceDll=/opt/mqsi/merant/lib/odbctrac.so
InstallDir=/opt/mqsi/merant

The above files should be tailored as follows:

[ODBC Data Sources]
This section describes the data source names (DSNs) for the databases which
are configured in the .odbc.ini file.

Driver=
This should only be tailored when using DB2, since the location of the driver
library is user-defined during installation and configuration of a DB2 instance;
modify the path accordingly. When using Oracle and Sybase, use the path
exactly as shown.

Defining database resources

12 MQSeries Integrator Administration Guide V2.0.1

Database=
The name of the DSN specified in the [ODBC Data Sources] section.

ServerName=
The server name for the database in which the DSN resides.

LogonID=
The LoginID to use when connecting to the DSN (optional).

Password=
The password for the LogonID specified above (optional).

Note: Environment Setup. You should ensure that the appropriate library search
path environment variable (LD_LIBRARY_PATH on Solaris, or LIBPATH on
AIX) is set to reflect the given database products to be used. Refer to your
database product documentation for more details.

Configuring databases for internal data
MQSeries Integrator creates and maintains essential configuration information in
databases. When you have completed installation, you must create the following
databases for this information.
v On all platforms:

– The broker database (local persistent store)
v On Windows NT:

– The configuration repository
– The message repository

The three types of information are held in distinct database tables. You can
therefore choose to create separate databases to hold these tables, or a single
database to hold the tables for all three types of information. When you consider
how to define the database or databases to hold these tables, you must consider:
v The broker database

Broker information includes control data for resources defined to the broker (for
example, deployed message flows). You can create a single database to hold
information for all the brokers: a single set of tables is created when you create
the first broker, and the tables are populated with rows for every broker. Every
row in every table identifies the broker to which it belongs. Therefore there are
no conflicts and the data is unique to each defined broker. If you prefer, you can
define a separate database for each broker.
Broker tables can be created in a DB2 database, a SQL Server database, an Oracle
database or a Sybase database. If you create these tables in a DB2 database, you
can use the same database for the configuration repository, or the message
repository, or both.

v The configuration repository
The configuration repository holds configuration data for all components and
resources defined in the broker domain, and maintains status information to
indicate whether they have been assigned, or deployed, or both. The repository
must be created in a DB2 database. You can create the configuration repository
in the same database as the message repository, or in the same database as the
broker tables (if you create these in DB2), or both.

v The message repository
Message information is all definition information created for messages defined
to, or imported into, the Control Center. The repository must be created in a DB2
database. You can create the message repository in the same database as the
configuration repository, or in the same database as the broker tables (if you
create these in DB2), or both.

Defining database resources

Chapter 2. How to configure your MQSeries Integrator network 13

The tasks illustrated here assume you have decided to create three separate
databases.

When you issue the commands that create a broker and the Configuration
Manager, tables are created within the database to hold the information required
by that component.

Prerequisite tasks: You must complete the following task before you start this
task:
v “Defining and authorizing MQSeries Integrator user IDs” on page 7

Completing the task for a DB2 database on Windows NT: This task is illustrated
using the DB2 Control Center. You are recommended to use this facility, but you
can use any other method supported by DB2 (including command line or batch
files) if you prefer. Refer to the DB2 documentation for details of how to do this.
Step 1. Start the DB2 Control Center.

You must enter a valid user ID and password on the Sign On dialog
presented. For example, you can use the default DB2 administrator user
ID, db2admin, which has a default password of db2admin. The user ID you
use must have full administrator authority to be able to create a database.

Step 2. For each database you want to create (at least one):
a. Expand the Object tree in the DB2 Control Center until you find

Databases. Right-click Databases and select Create Database using
Smartguide.

b. Enter a name and alias for your database. If you have a naming
convention for databases, choose a compatible name. The alias name
can be the same as the database name. Database names are limited to
eight characters. For example, enter MQSIBKDB.

c. Click Done.

When you have completed these steps for every database you created,
click OK.

You must refer to the product specific database documentation for more
information or assistance on this task. Your Database Administrator might also be
able to offer advice and assistance.

Completing the task for a DB2 database on UNIX platforms:

Step 1. Logon as root, and create a database instance using, for example, the
following command:
/opt/IBMdb2/V6.1/instance/db2icrt -u <username> <username>

Step 2. Logon as <username> using the following commands:
.˜/sqllib/db2profile
db2start
db2 create database MQSIBKDB
db2 connect to MQSIBKDB
db2 bind ˜/sqllib/bnd/@db2cli.lst grant public CLIPKG 5

Completing the task for a SQL Server database (Windows NT only): If you are
using SQL Server for the broker database, you must complete the following steps:
Step 1. Invoke the SQL Server Enterprise Manager.
Step 2. Create the database.

Defining database resources

14 MQSeries Integrator Administration Guide V2.0.1

For further information about how to define your SQL Server databases, refer to
the product documentation. Your Database Administrator might also be able to
offer advice and assistance.

Subsequent tasks: When you have completed this task, continue with:
v “Defining internal MQSeries Integrator database connections (Windows NT

only)”

Defining internal MQSeries Integrator database connections
(Windows NT only)
MQSeries Integrator connects to its internal databases as follows:
v It uses the Open Database Connectivity (ODBC) to connect to the broker

database and to the message repository. Each database product provides an
ODBC driver.

v It uses the Java Database Connectivity (JDBC) to connect to the configuration
repository.

The ODBC connections require an additional definition. The JDBC connection does
not. You must remember to create the additional definition for each broker
database, if you use more than one.

Prerequisite tasks: You must complete the following tasks before you start this
task:
v “Configuring databases for internal data” on page 13

Completing the task for a DB2 database: To establish the required ODBC access
for a DB2 database, you must:
Step 1. From the Windows NT Start menu, select Settings->Control Panel. Within

the Control Panel, double-click ODBC. Click the System DSN tab.
Step 2. Click Add. The Create New Data Source window appears.
Step 3. Double-click IBM DB2 ODBC DRIVER.
Step 4. Enter the data source name (the database name) and the database alias.
Step 5. Click OK.

You must refer to the product specific database documentation for more
information or assistance on this task. Your Database Administrator might also be
able to offer advice and assistance.

Completing the task for a SQL Server database: To establish the required ODBC
access for a SQL Server database, you must:
Step 1. Create the ODBC DSN reflecting the values you have defined for this

database according to the instructions in the documentation you have for
SQL Server.

For further information about how to define an ODBC connection for SQL Server
databases, refer to the product documentation. Your Database Administrator might
also be able to offer advice and assistance.

Subsequent tasks: When you have completed this task, continue with:
v “Authorizing internal database access”

Authorizing internal database access
When you have created your internal databases, you must authorize a certain user
ID to access those databases.

Defining database resources

Chapter 2. How to configure your MQSeries Integrator network 15

Prerequisite tasks:
v “Configuring databases for internal data” on page 13

Completing the task for a DB2 database: To authorize the user ID to be used for
access to a DB2 database, you must:
Step 1. Start the DB2 Control Center, if it is not already active. Log on with the

DB2 administrator user ID (the default is dbadmin).
Step 2. Complete the following tasks for each database you created in

“Configuring databases for internal data” on page 13:
a. Expand the object tree until you find the database.
b. Expand the tree under this database and left-click the User and Group

Objects folder. The DB Users and DB Groups folders are displayed in
the right pane.

c. Right-click the DB Users folder in the right pane and select Add from
the pop-up menu. The Add User notebook opens.

d. Select the user ID you want to authorize to access the database (for
example, mqsiuid) from the drop-down list. This must be:
v For the configuration repository, the user ID you specify with the

flag -u when you create the Configuration Manager.
v For the message repository, the user ID you specify with the flag -e

when you create the Configuration Manager.
v For the broker tables, the user ID you specify with the flag -u when

you create the broker.

Select the appropriate options from the choices in the box labelled
Choose the appropriate authorities to grant to the selected user to all the
databases you have created for MQSeries Integrator.

This user ID must have the following authority to each of the
databases you have created for MQSeries Integrator:
v Connect database.
v Create tables.
v Create packages.
v Register functions to execute in database manager’s process.

e. Click OK. The authority or authorities are granted. The dialog is
closed.

Step 3. You can now close the DB2 Control Center.
Step 4. On UNIX platforms, you must also invoke the following command to set

the appropriate environment variables:
v . x<UserName>/sqllib/db2profile

If you need further guidance about any of these tasks, use the online help facility
of the DB2 Control Center. Your Database Administrator might also be able to offer
advice and assistance.

Completing the task for a SQL Server database (Windows NT only): To
authorize the user ID to be used for access to the broker’s SQL Server database,
you must:
1. Create a SQL Server login ID, defining the Server role as Systems Administration.

You must specify this user ID as the user ID that will access this database on
the mqsicreatebroker command (or in the Command Assistant), using the -u
flag or the -i flag (in task “Creating an MQSeries Integrator broker” on
page 17).

Defining database resources

16 MQSeries Integrator Administration Guide V2.0.1

2. Specify that this new user ID can access your new broker database and indicate
the permissions allowed.

For further information about how to authorize access to your SQL Server
databases, refer to the product documentation. Your Database Administrator might
also be able to offer advice and assistance.

Subsequent tasks: When you have completed this task, continue with:
v “Defining MQSeries Integrator components”

Configuring databases for NEON message formats
MQSeries Integrator also supports message formats defined by the
NEONFormatter GUI. These message formats can be stored in the following
databases:
v DB2
v SQL Server
v Oracle
v Sybase

For information about what levels of database are supported, and how you must
configure these databases, see Appendix D “Using NEONFormatter and
NEONRules nodes” in the MQSeries Integrator Installation Guide for your computer
platform.

Defining MQSeries Integrator components
This section describes how to create the MQSeries Integrator components.

Prerequisite tasks
You must complete the following task before you start this task:
v “Authorizing internal database access” on page 15

Completing the task
The steps you take to complete this task depend on the configuration of your
broker domain. The minimum you must define are the Configuration Manager and
one broker. The User Name Server is optional and is required only if you plan to
implement topic-based security.

Creating the MQSeries Integrator Configuration Manager (Windows NT only):
To create the Configuration Manager you must use the command described in
“mqsicreateconfigmgr (Create Configuration Manager)” on page 109 or the
Command Assistant. The parameters on this command provide the Configuration
Manager with all the additional information it requires to be ready for action as
soon as it is started, including the identifiers for both the configuration repository
and the message repository.

Creating an MQSeries Integrator broker: You must create the broker on the
system on which you have installed the broker component. You must give the
broker a unique name, for example, MQSI_SAMPLE_BROKER. Remember that, on
UNIX platforms, broker names are case sensitive. You can use the command
“mqsicreatebroker (Create broker)” on page 103 or the Command Assistant (see
“Chapter 7. Using the MQSeries Integrator Command Assistant” on page 83).

Creating the MQSeries Integrator User Name Server: You must create the User
Name Server on the system on which you have installed the User Name Server
component. You can use the command described in “mqsicreateusernameserver
(Create User Name Server)” on page 115 or the Command Assistant.

Defining database resources

Chapter 2. How to configure your MQSeries Integrator network 17

Subsequent tasks
When you have completed this task:
v If the component or components you have created do not share a queue

manager with other components, continue with “Connecting two MQSeries
Integrator components” on page 19.

v If all of your MQSeries Integrator components share a single queue manager,
continue with “Initialization tasks” on page 21.

Defining MQSeries resources
All MQSeries resources, apart from those required to connect together MQSeries
Integrator components that are supported by different queue managers (whether
on the same or on different physical systems) are defined for you when you define
the MQSeries Integrator components that depend on them.

For details of connecting components, see “Connecting two MQSeries Integrator
components” on page 19.

Connection tasks
The components of the MQSeries Integrator system (brokers, the Configuration
Manager, and the User Name Server) communicate using MQSeries facilities. The
Control Center clients also use MQSeries connections to the Configuration
Manager. The exact requirements for connecting the components together depend
largely on the way in which you set up your environment.

The connection tasks described are:
v “Connecting Control Center clients to the Configuration Manager (Windows NT

only)”
v “Connecting two MQSeries Integrator components” on page 19

Connecting Control Center clients to the Configuration
Manager (Windows NT only)

You can start up multiple instances of the Control Center on one or more systems.
All of them must be able to connect to the Configuration Manager’s queue
manager using an MQSeries Client for Java connection. The Configuration
Manager’s end of the connection is defined when you create the Configuration
Manager (see “Creating the MQSeries Integrator Configuration Manager (Windows
NT only)” on page 17), and the Control Center end of the connection is defined
when you start up the Control Center for the first time (see “Starting the Control
Center (Windows NT only)” on page 24).

You must take one extra step to enable the two ends of the connection to
communicate successfully.

Prerequisite tasks
You must complete the following task before you start this task:
v “Defining MQSeries Integrator components” on page 17

Completing the task
To enable communications you must:
Step 1. Start the listener on the Configuration Manager’s queue manager. You can

use either one of two methods to do this:
a. You are recommended to use MQSeries Services (Start->Programs-

>IBM MQSeries->MQSeries Services). Left-click the queue manager (for
example, MQSI_SAMPLE_QM) to see its services in the right-hand

Defining MQSeries Integrator components

18 MQSeries Integrator Administration Guide V2.0.1

pane. If the Listener is listed, right-click the Listener, and select
All Tasks->Start. This starts the listener as a background task.
If the Listener is not listed, right-click the queue manager and select
New->Listener. This creates a listener with default properties of
transport type TCP and port 1414. When it has been created, right-click
the Listener and select Start.
This starts the listener as a background task.

b. If you prefer, you can use the runmqlsr command. For example:
runmqlsr -t tcp -p 1414 -m MQSI_SAMPLE_QM

When you use this command the listener is started as a foreground
task and is not displayed in the MQSeries Services window.

Note: If the default MQSeries port 1414 is not available (perhaps because it is
already in use by another queue manager), you must assign a different port
number that is suitable. The port value must be set in the Listener properties
dialog (Parameters tab), or as the -p parameter on the runmqlsr command. If
the port is already in use, the Control Center will not be able to contact the
Configuration Manager. For example, if you have set up a default queue
manager on this system, it probably uses port 1414 for its listener. You can
check what listeners are already active using MQSeries Services.

Subsequent tasks
When you have completed this task, continue with:
v “Connecting two MQSeries Integrator components”

Connecting two MQSeries Integrator components
If you have defined all the components in your broker domain on a single queue
manager (task “Defining MQSeries Integrator components” on page 17), you can
omit this step and continue with task “Initialization tasks” on page 21.

If the components in your broker domain are supported by different queue
managers, you must establish MQSeries connections between those queue
managers to enable messages to be exchanged if necessary. Message exchange is
required between:
v Every broker and the Configuration Manager.
v Every broker and the User Name Server, if you have one in your broker domain.
v The Configuration Manager and the User Name Server, if you have one in your

broker domain.

Figure 1 on page 20 illustrates the basic requirements for this type of connection.
You are recommended to read “General guidance” on page 29 before you complete
this task for further guidance on completing this task.

Control Center connections

Chapter 2. How to configure your MQSeries Integrator network 19

Prerequisite tasks
Before you start this task, the following task must be complete for the components
you want to connect:
v “Defining MQSeries Integrator components” on page 17

Completing the task
When you create an MQSeries Integrator component, you identify the queue
manager that supports it. If this queue manager does not already exist, it is created
at the same time. A number of mandatory fixed-name MQSeries resources are
created on the supporting queue manager when the MQSeries Integrator
component is created. These are listed in “mqsicreatebroker (Create broker)” on
page 103, “mqsicreateconfigmgr (Create Configuration Manager)” on page 109, and
“mqsicreateusernameserver (Create User Name Server)” on page 115.

All the steps here are illustrated with MQSC examples. You can use any
appropriate method for defining these resources. These examples assume that the
queue managers are called MQSI1 and MQSI2.

To achieve the connection illustrated in Figure 1, you must complete the following
steps:
Step 1. Define a transmission queue on each component’s queue manager

(xmitq(A) and xmitq(B)). These queues will collect messages ready for
transmission between components.
For example, on queue manager MQSI1:
define qlocal('MQSI2') usage(XMITQ) replace

and on queue manager MQSI2:
define qlocal('MQSI1') usage(XMITQ) replace

Step 2. Define the sender channel on the first component’s queue manager
(Sender(3)). This will transport messages sent by the first component to
the second component.
You must allocate connection names according to your MQSeries network
conventions, and you must specify the protocol you are using for this
connection.
For example, on queue manager MQSI1:
define channel('MQSI1_TO_MQSI2') chltype(sdr) trptype(tcp)
conname('MQSISYS1(1415)') xmitq('MQSI2') replace

Step 3. Define a receiver channel on the first component’s queue manager
(Receiver(2)). Messages sent by the second component to the first will be
received by this channel.

Figure 1. Connecting two MQSeries Integrator components

Component connections

20 MQSeries Integrator Administration Guide V2.0.1

This receiver channel must have the same name as the sender channel on
MQSI2, defined in Step 4. For example, on queue manager MQSI1:
define channel('MQSI2_TO_MQSI1') chltype(rcvr) trptype(tcp) replace

Step 4. Define the sender channel on the second component’s queue manager
(Sender(1)). This will transport messages sent by the second component to
the first component.
You must allocate connection names according to your MQSeries network
conventions, and you must specify the protocol you are using for this
connection.
For example, on queue manager MQSI2:
define channel('MQSI2_TO_MQSI1') chltype(sdr) trptype(tcp)
conname('MQSISYS1(1414)') xmitq('MQSI1') replace

Step 5. Define a receiver channel on the second component’s queue manager
(Receiver(4)). Messages sent by the first component to the second will be
received by this channel.
This receiver channel must have the same name as the sender channel on
MQSI2, defined in Step 2 on page 20. For example, on queue manager
MQSI2:
define channel('MQSI1_TO_MQSI2') chltype(rcvr) trptype(tcp) replace

Step 6. Create and start a listener for each protocol in use (“Connecting Control
Center clients to the Configuration Manager (Windows NT only)” on
page 18 illustrates this task).

Step 7. Start the sender channels (1) and (3) on the respective queue managers.
(You are recommended to set up channel initiators to do this
automatically).

Subsequent tasks
When you have completed this task, continue with:
v “Initialization tasks”

Initialization tasks
When you have completed the setup tasks required to prepare a broker domain for
operation, you must initialize the components to establish a working system. The
tasks covered in this section are:
v “Starting MQSeries queue managers as a Windows NT service”
v “Starting the Configuration Manager (Windows NT only)” on page 22
v “Starting a broker” on page 23
v “Starting the User Name Server” on page 23
v “Starting the Control Center (Windows NT only)” on page 24

The examples used to illustrate these tasks assume that a broker called MQSI1 is
defined on queue manager MQSI1, and the queue manager MQSI2 supports the
Configuration Manager.

Starting MQSeries queue managers as a Windows NT service
When you start the MQSeries Integrator components using the mqsistart command
(illustrated in the following sections), the command will start the queue manager
for this component if it is not already running.

Although the MQSeries Integrator component is started as a service on Windows
NT, the queue manager is not. You can change the properties of the queue
manager service to set start up type to automatic to enable the queue manager to

Component connections

Chapter 2. How to configure your MQSeries Integrator network 21

run as a service. This is an optional task. If you do not want to complete this task,
you can continue with “Starting the Configuration Manager (Windows NT only)”.

Prerequisite tasks
You must complete the following task before you start this task:
v “Defining MQSeries Integrator components” on page 17

Completing the task
To complete this task you must:
Step 1. End the queue managers for the Configuration Manager, the User Name

Server (if you have defined one in your broker domain), and your brokers,
using the endmqm command or MQSeries Services. The queue managers
are already running, because they are started when you create the
MQSeries Integrator components.

Step 2. Select Start->Programs->IBM MQSeries->MQSeries Services.
Step 3. Right-click each queue manager you want to change.
Step 4. Select Properties, and the General tab.
Step 5. Update the Startup Type to Automatic.
Step 6. This setting ensures that the queue manager is started whenever the

MQSeries Service (a Windows NT service) is started.
Step 7. You are also recommended to change the properties of the MQSeries

Services service by updating its Startup Type to automatic using the
Control Panel. This setting starts MQSeries Services when Windows NT
itself starts up. This isolates the operation of the MQSeries Services service
from any logged on user.

Step 8. Restart the queue managers for the Configuration Manager, the User
Name Server (if you define one in your broker domain), and your brokers,
using the strmqm command or MQSeries Services. You must do this
before you start the MQSeries Integrator components.

The changes to the queue managers’s start up type will take effect when you
restart Windows NT.

Subsequent tasks
When you have completed this task, continue with:
v “Starting the Configuration Manager (Windows NT only)”
v “Starting a broker” on page 23
v “Starting the User Name Server” on page 23

Starting the Configuration Manager (Windows NT only)
The Configuration Manager is started as a Windows NT service.

Prerequisite tasks
You must complete the following task before you start this task:
v “Defining MQSeries Integrator components” on page 17

Completing the task
Start your Configuration Manager as follows:
Step 1. Issue the following command at the command line (you cannot do this

using the Command Assistant):
mqsistart configmgr

Windows NT services

22 MQSeries Integrator Administration Guide V2.0.1

This command initiates the start up of the Configuration Manager’s
Windows NT service and can only report on whether that service is
started successfully.

Step 2. Check the Application view of the Windows NT Event Viewer to ensure
that the Configuration Manager has initialized successfully.

If you have not already started the queue manager, it is started by this command.

Subsequent tasks
When you have completed this task, continue with:
v “Starting a broker”

Starting a broker
The broker is started as a Windows NT service or as a background process on
UNIX platforms.

Prerequisite tasks
v “Defining MQSeries Integrator components” on page 17

Completing the task
Start your broker as follows:
Step 1. Issue the following command on the command line (you cannot do this

using the Command Assistant). For example:
mqsistart MQSI1

This command initiates the start up of the broker’s Windows NT service
or UNIX daemon and can only report on whether that process started
successfully.

Step 2. Check the Application view of the Windows NT Event Viewer or the
UNIX syslog to ensure that the broker has initialized and continues to run
successfully.

If you have not already started the queue manager, it is started by this command.

The Configuration Manager cannot contact a broker until a reference to that broker
has been defined in the configuration repository, and the topology deployed. You
must create this reference to the broker using the Control Center. This task is
described in “Defining and deploying the configuration in the Control Center” on
page 25.

Subsequent tasks
When you have completed this task, continue with:
v “Starting the User Name Server”

Starting the User Name Server
If you have not defined a User Name Server in your broker domain (task
“Creating the MQSeries Integrator User Name Server” on page 17), you can omit
this step and continue with task “Starting the Control Center (Windows NT only)”
on page 24.

The User Name Server is started as a Windows NT service or as a background
process on UNIX platforms.

Prerequisite tasks
v “Defining MQSeries Integrator components” on page 17

Starting the Configuration Manager

Chapter 2. How to configure your MQSeries Integrator network 23

Completing the task
Start your User Name Server as follows:
Step 1. Issue the following command on the command line (you cannot do this

using the Command Assistant):
mqsistart UserNameServer

This command initiates the start up of the User Name Server’s Windows
NT service or UNIX daemon and can only report on whether that process
started successfully.

Step 2. Check the Application view of the Windows NT Event Viewer or the
UNIX syslog to ensure that the User Name Server has initialized and
continues to run successfully.

If you have not already started the queue manager, it is started by this command.

Subsequent tasks
When you have completed this task, continue with:
v “Starting the Control Center (Windows NT only)”

Starting the Control Center (Windows NT only)
The basic tasks to define your broker domain are now complete. You must now
initialize the Control Center (on a Windows NT system)so that you can continue
with your configuration by defining your configuration to the Configuration
Manager, and thus to the configuration repository.
Step 1. Start the Control Center by double-clicking the Control Center icon in the

MQSeries Integrator program folder, or by using the Windows NT Start
menu (Start->Programs->IBM MQSeries Integrator 2.0->Control Center).

Step 2. Complete the initial dialog presented by the Control Center, Configuration
Manager Connection, to provide the information needed to connect your
Control Center session to the Configuration Manager. The fields are:
a. Hostname. This is initially blank. Enter the network hostname of the

system on which the Configuration Manager has been created. For
example, the system MQSISYS1 was used in the channel definitions in
“Connecting two MQSeries Integrator components” on page 19.

b. Port. This is initially blank. Enter the number of the port on which the
queue manager is listening. The default value is 1414. You must use
the port number that is in use by the Configuration Manager’s queue
manager: check which port you used when you started the listener
(“Connecting Control Center clients to the Configuration Manager
(Windows NT only)” on page 18).

c. Queue Manager name. This is initially blank. Enter the name of the
Configuration Manager’s queue manager (for example, MQSI2). This
queue manager already has a definition for the server connection
required by the Control Center (the channel SYSTEM.BKR.CONFIG of
type SVRCONN), that was created when the Configuration Manager
was created.

When you have completed these fields, click OK. The Control Center now
contacts the Configuration Manager, which might take a few minutes.

Check for MQSeries or MQSeries Integrator entries in the Windows NT
Event log (Application view) to check the success of this connection.

Starting the User Name Server

24 MQSeries Integrator Administration Guide V2.0.1

If you want to check, or change, these settings at a later time, click
File->Connection to bring up the connection dialog.

Step 3. Set your user role. This must be appropriate for the tasks you will
perform, and have been authorized to complete (see “Defining and
authorizing MQSeries Integrator user IDs” on page 7). The default is “All
roles”.
Complete the following steps:
a. Click File->Preferences.
b. Click User’s role and select the appropriate role (see MQSeries Integrator

Using the Control Center for details of user roles in the Control Center).
c. Click OK to save this setting. This dismisses the dialog and returns

you to the main window of the Control Center where you will see the
views appropriate to the role selected.

Step 4. If you want, you can access the Log view. This view provides feedback on
all the deploy actions you take in the Control Center.
The Log view is initially empty. You must click the Refresh button (top left
hand end of the toolbar) each time you check the Log view to ensure you
have the latest information.

Defining and deploying the configuration in the Control Center
You must now define your topology to the Configuration Manager using the
Control Center. This saves the definitions you make in the configuration repository,
and allows you to deploy the changes. When you deploy, the Configuration
Manager contacts the brokers that are affected by the changes, and sends them
messages that define their updated configuration. The brokers receive the
messages, make the changes, and respond to the Configuration Manager which
passes on the results of the deploy to the Control Center.

Prerequisite tasks
You must complete the following task before you start this task:
v “Initialization tasks” on page 21

Completing the task
To save your changes in the configuration repository, and deploy them through the
broker domain, you must:
Step 1. Check out the broker domain topology. This locks the topology and allows

you to make changes to it.
Step 2. Select Create->Broker. This displays a dialog where you can enter the name

of the broker you want to add to the topology. You must specify the name
that you used to create the broker (in “Creating an MQSeries Integrator
broker” on page 17). You must also enter the same queue manager name
as the queue manager name you specified when you created the broker.
Repeat this step for each broker you have created.

Step 3. You must now save the changes that you have made. Select
File->Check In->All (Save to Shared). This causes two things to happen:
a. The contents of the configuration repository are updated with the new

definitions and assignments and everything is checked in to the
repository.

b. The updated workspace is saved locally. If you are working with a
new workspace (the title bar indicates this by displaying Untitled), you
are asked for a name for this workspace. Enter a name (for example
Topology1) and click Save. This name now appears in the title bar.

Starting the Control Center

Chapter 2. How to configure your MQSeries Integrator network 25

Step 4. Now you must deploy your changes. When you deploy, the Configuration
Manager sends information to the brokers about the resources needed to
support the message flow services.

Step 5. Select the Log view and refresh the contents by clicking the green refresh
icon. It can take a few minutes for all the deployment messages and
responses flowing between the Configuration Manager and the brokers to
be displayed. Keep refreshing this view until you see the completion
messages.

For more details of how to complete all these steps, refer to the Control Center
online help, or to MQSeries Integrator Using the Control Center.

Subsequent tasks
When you have completed this task, continue with:
v “Application client and user data tasks”

Application client and user data tasks
The following sections provide general information for setting up application
clients and user databases.
v “Setting up application clients”
v “Configuring databases for user data accessed from message flows” on page 27

In this context, the term application client refers to an application program written
to the AMI or MQI. It uses the services provided by the message flows deployed
within one or more brokers in the broker domain by interacting with the queues
serviced by those message flows.

Setting up application clients
When you have identified the applications that are to interact with message flows,
you can decide where those applications will execute. Because MQSeries Integrator
clients must use MQSeries facilities to connect to the broker, and to interact with it
(using the MQI and AMI), the setup of clients for MQSeries Integrator is identical
to that for clients for an MQSeries server.

Application clients can use one of two techniques for gaining access to a broker’s
services:
v An application can use an MQSeries client connection. The application can be

running on the same system as the queue manager to which it connects, or on a
different system. It can connect to a queue manager supporting a broker, or to
any other queue manager in the MQSeries network that has a defined path to
the broker’s queue manager.
You can use all of the MQSeries clients supported by MQSeries Version 5.1,
giving you the freedom to connect applications running in a wide variety of
environments into your broker domain.

v An application can use a local connection to a queue manager. If it uses this
method, the client must execute on the same system. It can connect to a queue
manager supporting a broker, or to any other queue manager in the MQSeries
network that has a defined path to the broker’s queue manager.

For more details about applications, putting and getting messages, and the use of
MQSeries clients, see MQSeries Clients and the MQSeries Application Programming
Guide. MQSeries Integrator does not impose any particular conditions or
restrictions on applications.

Deploying the configuration

26 MQSeries Integrator Administration Guide V2.0.1

MQSeries resources for client applications
An application client can run on a system anywhere in the MQSeries network. The
application can access MQSeries Integrator services in two ways.
1. The application can make a local connection to either:

v The broker’s queue manager
You do not have to define any MQSeries resources to support this client
configuration.

v Another queue manager in the network
You must ensure that definitions are in place to support communications
between the queue manager to which the client has connected and the queue
manager that hosts the broker that provides the required service.

2. The application can make an MQSeries client connection to either:
v The broker’s queue manager

You must set up the appropriate client connection and server connection
definitions to support this option.

v Another queue manager in the network
You must set up the appropriate client connection and server connection
definitions to support this option, and ensure that definitions are in place to
support communications between the queue manager to which the client has
connected and the queue manager that hosts the broker that provides the
required service.

An application can only get messages from queues owned by the queue manager
to which it is connected (this is true for all MQSeries applications). Therefore, if an
application expects to receive messages from a queue populated by a service
within a particular broker and owned by that broker’s queue manager, it must
connect to that broker’s queue manager (using a local or MQSeries client
connection).

An application that puts messages, however, can be connected to any queue
manager in the network, as long as the queue manager can resolve the target
destination in some way. In all cases, the queue manager to which the client
application is connected must know the whereabouts of the queue or queues to
which the application puts messages (for example using remote queue definitions).

Configuring databases for user data accessed from message
flows

The following databases are supported for message flow access from message
processing nodes.
v DB2
v SQL Server
v Oracle
v Sybase

The following message processing nodes allow database access:
v Compute
v Filter
v DataInsert
v DataDelete
v DataUpdate
v Database
v Warehouse

Application clients

Chapter 2. How to configure your MQSeries Integrator network 27

Complete the following steps to set up these databases:
Step 1. Create the database. If you are using DB2 or SQL Server, you can follow

the instructions in “Configuring databases for internal data” on page 13.
Step 2. From the Control Panel, select ODBC and create a Data Source Name for

the database you have created. If you are using DB2 or SQL Server, you
can follow the instructions in “Configuring databases for internal data” on
page 13.

Step 3. Set the Data Source property of the node to the DSN for the appropriate
database.

For more details of message processing nodes, how to set properties, and how to
use them in message flows, see MQSeries Integrator Using the Control Center. For
additional information about coordinated transactions, see “Coordinated
transactions” on page 35.

Messageflow transactionality and database design
It is possible to mix the transaction types of nodes that operate on external
databases. That is, some nodes in a message flow may specify ″automatic″
transactionality, meaning that any work they do is not committed until the
message flow successfully completes, and some may specify ″commit″
transactionality, meaning that any work they do is committed, regardless of the
subsequent success or failure of the message flow.

In order to mix nodes with ″automatic″ and ″commit″ transactionality in the same
message flow, where the nodes operate on the same external database, you must
use separate ODBC connections; one for the nodes which are not to commit until
the completion of the message flow, and one for the nodes which are to commit
immediately. Otherwise the nodes which commit immediately will also cause all
operations carried out by antecedent ″automatic″ nodes to be committed as well.

You should be aware that using more than one ODBC connection to the same
database requires care as it may lead to locking problems. In particular, if an
″automatic″ node carries out an operation, such as an INSERT or an UPDATE,
which causes a database object (such as a table) to be locked, and a subsequent
node tries to access that database object using a different ODBC connection, an
infinite lock (deadlock) will occur. The second node will wait for the lock acquired
by the first to be released, but the first node will not commit its operations and
release its lock until the message flow completes - which will never happen
because the second node is waiting for the first node’s database lock to be released.
Such a situation will not be detected by any DBMS automatic deadlock-avoidance
routines because the two operations are interfering with each other indirectly, via
the broker.

There are two ways to avoid this sort of locking problem. You can design your
message flow so that uncommitted (″automatic″) operations do not lock database
objects which subsequent operations using a different ODBC connection need to
access. Or you can configure your database’s lock time-out parameter so that an
attempt to acquire a lock fails after a specified length of time. If a database
operation fails due to a lock time-out, an exception will be thrown which the
broker will handle in the normal way.

For information concerning which database objects are locked by particular
operations, and how to configure your database’s lock time-out parameter, consult
your database product documentation.

Databases for user data

28 MQSeries Integrator Administration Guide V2.0.1

General guidance
In general, you can set up your MQSeries infrastructure as you want. Any
exceptions to this are documented in the previous sections. However, there are
some general guidelines that you can follow when you set up your configurations.
For more specific guidance, you must refer to the MQSeries documentation (for
example, the MQSeries Intercommunication book, and the MQSeries Command
Reference.
v On Windows NT, you might want to change the properties of the queue

managers that you define to support MQSeries Integrator components so that
they run as part of the MQSeries Windows NT service. You can also change the
properties of the MQSeries Service to start up automatically when the Windows
NT system starts or restarts. These tasks are described in “Starting MQSeries
queue managers as a Windows NT service” on page 21.

v You are recommended to use sender-receiver pairs of channels for all two-way
communications between queue managers that host MQSeries Integrator
components. These are used in the task description in “Connecting two
MQSeries Integrator components” on page 19.

v For simple distributed queueing configurations, you are recommended to use
the name of the target queue manager as the name of the transmission queue
through which messages to that queue manager are sent. This is illustrated in
the task description in “Connecting two MQSeries Integrator components” on
page 19 .

v You can set up channel initiators for the channels between the queue managers
supporting your MQSeries Integrator components. This will reduce overhead by
allowing the channels to stop when there is no message traffic, but ensure
automatic start up when there are messages to transport.

v You can set up a single receiver channel on the Configuration Manager’s queue
manager to support all sender channels created for the brokers. This requires a
single definition on the Configuration Manager and a single sender definition on
each broker, which would therefore have to have the same name on each broker.
You can also use this receiver channel on the Configuration Manager to support
communications from the User Name Server.
Likewise, you can set up a single receiver channel on the User Name Server to
support communications from every broker that connects to it.

v All MQSeries connections between MQSeries Integrator components, and
between clients and MQSeries Integrator components, can be set up using any of
the communications protocols supported by MQSeries (TCP/IP and SNA on all
platforms; also, NetBIOS and SPX on Windows NT), with the following
exception:
– The client/server connection between the Control Center and the

Configuration Manager must be a TCP/IP connection.
v You are strongly recommended to set up a dead letter queue (DLQ) on every

queue manager. The DLQ is referenced by MQSeries Integrator when errors
occur processing messages in message flows. If an MQSeries queue manager is
created as a result of using the mqsicreatebroker or mqsicreateconfigmgr
commands, the default DLQ provided by MQSeries
(SYSTEM.DEAD.LETTER.QUEUE) is automatically enabled for you.

v You can use MQSeries clusters if you choose. This will simplify your
configuration in most cases. Refer to the MQSeries Integrator Introduction and
Planning book for specific guidance on the use of clusters with MQSeries
Integrator.

General guidance

Chapter 2. How to configure your MQSeries Integrator network 29

v You can use MQSeries events to provide additional information in analyzing
your system and resolving any problems. See “Part 1 Events monitoring” of the
MQSeries Programmable System Management book for more details about these
events.

v The MQInput node defaults to getting messages from the input queue without
specifying conversion. You must check each message flow to ensure you set an
appropriate value for the conversion property for the MQInput node. For more
details about node properties, see MQSeries Integrator Version 2.0.1 Introduction
and Planning. For more details about conversion of messages, see MQSeries
Application Programming Reference.

General guidance

30 MQSeries Integrator Administration Guide V2.0.1

Chapter 3. How to manage your MQSeries Integrator network

This chapter discusses the following aspects of broker domain management:
v “Managing the broker domain components”.
v “Managing workload and performance” on page 44.

Managing the broker domain components
When you have configured your broker domain, you must manage it to gain the
most robust operation and the most efficient use of the components.
v “Managing components”
v “Managing databases” on page 32
v “Enhancing and updating your broker domain” on page 33
v “Recovery and restart” on page 38

Managing components
When your configuration work is complete, you need to manage the components
on a day-to-day basis. MQSeries Integrator provides a set of commands that enable
you to control the broker domain in two ways.

Starting and stopping components
You can use the following commands to start and stop components:
v “mqsistart (Start component)” on page 148. This command starts the

Configuration Manager, the User Name Server, and the brokers you have
created. You must identify which component is to be started as the first
parameter on the command. The associated queue manager is also started, if it is
not already running.

v “mqsistop (Stop component)” on page 150. This command terminates the
component specified by the first parameter on this command. You can also
request that the associated queue manager is stopped by this command.

Stopping queue managers: When you invoke the mqsistop command and specify
the -q flag, the command initiates a controlled shutdown of the queue managers
on which the MQSeries Integrator component identified on the command depends.
The command cannot complete until shutdown of the queue manager has
completed. All other users of the queue manager are notified that it is shutting
down, and should respond by closing down (and therefore disconnecting)
themselves.

If you are using a single queue manager to support more than one MQSeries
Integrator component (the Configuration Manager and the User Name Server can
share a queue manager, and a single broker can also be defined on the same queue
manager as the Configuration Manager, or the User Name Server, or both) you are
recommended to stop each component and only specify the -q flag on the final
stop command.

Viewing and modifying components
Several commands are provided that allow you to view the existence and status of
components on your system. Commands are also supplied to allow you to modify
a large number (but not all) of the attributes of a component, although you must
stop the component before you can do so.

© Copyright IBM Corp. 2000 31

Listing components: You can use the command mqsilist to return a list of the
components created on this system, with the name of the queue manager that
supports them.

You can also request a list of a broker’s execution groups and message flows.
Execution groups are always returned, but the message flows can only be returned
if the broker is currently active.

Modifying components: If you want to update the parameters currently set for a
component, you can either:
v Use the MQSeries Integrator Command Assistant. For a description of the

Command Assistant, see “Chapter 7. Using the MQSeries Integrator Command
Assistant” on page 83.

v Use the mqsichangebroker, mqsichangeconfigmgr, or
mqsichangeusernameserver command. These commands are all described in
“Chapter 8. Commands” on page 89.

Managing databases
This section describes some aspects of database management within your broker
domain.

Databases and code pages
Subscription data retrieved from client applications (for example, topics from
publishers and subscribers, and content filters from subscribers) and the character
data entered using the Control Center (for example, message flow names) are
stored in the configuration and message repositories. This data is translated from
its originating code page to the code page of the process in which the broker or
Configuration Manager is running, and then by the database manager to the code
page in which the database or databases were created.

To preserve data consistency and integrity, you must ensure that all this
subscription data and Control Center character data is originated in a compatible
code page to the two code pages to which it is translated. If you do not do so,
unpredictable results and loss of data might result.

Data stored in the broker’s local persistent store is not affected in this way.

The restrictions described above are not applicable to user data in messages. It is
your responsibility to ensure that any data in messages generated by your
applications is compatible with the code page of any database you access from
your message flows.

SQL statements generated as a result of explicit reference to databases within
message processing nodes can contain character data that has a variety of sources.
For example, it might have been entered through the Control Center, derived from
message content, or read from another database. All this data is translated from its
originating code page to the code page in which the broker was created, and then
by the database manager to the code page in which the database was created. You
must also ensure that these three code pages are compatible to avoid data
conversion problems.

Managing database access
You can change access to databases by components if you want to, by taking the
following actions:

Managing components

32 MQSeries Integrator Administration Guide V2.0.1

v If you want to change the user ID through which the Configuration Manager
accesses the configuration repository (the DataBaseUserID parameter on
mqsicreateconfigmgr) or message repository (the MRMDataSourceUserID
parameter on mqsicreateconfigmgr) you must:
– Back up the database tables in the repository (these are listed in

“mqsicreateconfigmgr (Create Configuration Manager)” on page 109).
– Back up the workspace, by saving it from the Control Center and backing up

the XML document created by the export, and the message sets stored in the
message repository, as described in “Importing and exporting message sets”
on page 37.

– Stop the Configuration Manager using the mqsistop command.
– Delete the Configuration Manager (command mqsideleteconfigmgr or the

Command Assistant).
– Restore the database tables to the new location.
– Recreate the Configuration Manager specifying the new user ID (or IDs) on

the mqsicreateconfigmgr command (or the Command Assistant).
v If you want to change the user ID through which a broker accesses its database

tables (the DataSourceUserID parameter on the mqsicreatebroker or the
Command Assistant, you must:
– Back up the database tables (these are listed in “mqsicreatebroker (Create

broker)” on page 103).
– Back up the workspace, by saving it from the Control Center and backing up

the XML document created by the export, and the message sets stored in the
message repository, as described in “Importing and exporting message sets”
on page 37.

– Stop the broker using the mqsistop command.
– Delete the broker following the instructions provided in “Deleting

components from the broker domain” on page 35).
– Restore the database tables to the new location.
– Recreate the broker specifying the new user ID on the mqsicreatebroker

command or the Command Assistant.

Enhancing and updating your broker domain
When you have completed your initial broker domain configuration, you might
need to make alterations or enhancements. The tasks listed here represent the most
common things you might want to do:
v “Setting up a publish/subscribe network”
v “Coordinated transactions” on page 35
v “Deleting components from the broker domain” on page 35
v “Importing and exporting message sets” on page 37

Setting up a publish/subscribe network
If your applications exploit publish/subscribe services, you must consider whether
you want to implement topic-based security. This feature is optional, but you are
recommended to employ it to control access to publications generated within your
MQSeries Integrator network. You must ensure that all messages have an
associated topic to take advantage of topic-based security. See the MQSeries
Integrator Introduction and Planning book for more detailed information about the
benefits of topic-based security.

If you decide you want to implement topic-based security, you must complete the
following tasks:

Managing databases

Chapter 3. How to manage your MQSeries Integrator network 33

v “Adding a User Name Server to your broker domain”
v “Setting up collectives”
v “Defining ACLs” on page 35

Adding a User Name Server to your broker domain: If you decide that your
require topic-based security in your broker domain when you first define it, you
will find the tasks you must complete simpler than if you add it later. However, it
is possible to add it later: this is illustrated in the MQSeries Integrator Installation
Guide for your computer platform.
Step 1. You must stop your Configuration Manager and every broker in your

broker domain. Use the mqsistop command.
Step 2. You must create your User Name Server using the

mqsicreateusernameserver command or the Command Assistant. See
“Creating the MQSeries Integrator User Name Server” on page 17 for
more details.
When you create the User Name Server, you must specify the security
domain from which all principals participating in publish/subscribe will
be gathered. You are strongly recommended to specify the same security
domain as the one you specified when you created the Configuration
Manager. For more information about security and domains, see
“Chapter 4. Setting up security” on page 47.

Step 3. You must create additional MQSeries resources that are required to
connect the User Name Server and its queue manager to all other queue
managers that support components in the broker domain. See “Connecting
two MQSeries Integrator components” on page 19 for more details.

Step 4. You must modify the Configuration Manager and all your brokers by
invoking the appropriate mqsichange command to specify the User Name
Server queue manager.

Step 5. You must start the User Name Server, and restart the Configuration
Manager and the brokers.

Step 6. You can now implement topic-based security through the Control Center.

Setting up collectives: You can connect brokers together to form collectives to
improve performance and network traffic. Each broker can belong to at most one
collective. See the MQSeries Integrator Introduction and Planning book for more
detailed information about the benefits of collectives.

You must set up collectives by implementing two subtasks in the following order:
Step 1. “Connecting two MQSeries Integrator components” on page 19
Step 2. “Creating and populating collectives in the Control Center”

Creating and populating collectives in the Control Center: When you have completed
the MQSeries connections between the brokers that are to be defined to a
collective, following the guidance given in “Connecting two MQSeries Integrator
components” on page 19, you can define the collective to the topology.
Step 1. Select the Topology view in the Control Center.
Step 2. Right-click the topology and select the option to create a collective. You

must enter the name of the collective in the properties dialog that appears.
Close the dialog.

Step 3. The collective now appears in the right pane. You can now assign (drag
and drop) the brokers to the new collective.

Step 4. Check in and deploy the updated topology.

Publish/subscribe network

34 MQSeries Integrator Administration Guide V2.0.1

Defining ACLs: You must create ACLs using the Control Center. Detailed
instruction for this task are in the MQSeries Integrator Using the Control Center book.
In summary:
Step 1. Select the Topics view of the Control Center.
Step 2. Select the topics you want to control.
Step 3. Select the option you want to control (publication, subscription, or

persistent delivery).
Step 4. Select the principals you want to authorize for this option.
Step 5. Check in and deploy the changes you have made.

Coordinated transactions
To understand how to configure MQSeries as a transaction manager, you should
refer to the information on database coordination in the MQSeries System
Administration book. MQSeries Integrator Version 2.0.1 fully supports DB2 as an
underlying SQL database in coordinated transactions.

Using DB2 in coordinated transactions
If you want to use DB2 in coordinated transactions, you must follow the
instructions in the section called “DB2 configuration” in the MQSeries System
Administration book.

To enable a message flow to act as a coordinated transaction, set the ’Coordinated
transaction’ property to ’yes’ in the assigned message flow. The default is ’no’. For
further details, see ″Setting the properties of an assigned message flow″ in the
″Assigning resources to a broker″ chapter of the MQSeries Integrator Version 2.0.1
Using the Control Center book.

You must define an XAResourceManager stanza for each of your DB2 databases
that will participate in a coordinated transaction message flow. Additionally, if
your message flows reference message formats in the message repository or
contain Publication nodes, you must also define an XAResourceManager stanza for
the broker database.

Fully globally coordinated message flows that involve a DB2 resource manager are
supported using DB2 Version 6.1 or later.

You should note that pre-built versions of the DB2 switch load file are available to
you:
v On Windows NT, choose the ″Samples and SDK Component″ option at install

time. You can then find the files in the examples\xatm subdirectory.
v On Sun Solaris, choose the ″SDK&Samples″ option at install time. You can then

find the files in the /opt/mqsi/sample subdirectory.
v On AIX, choose the ″mqsi.base.SDK″ option at install time. You can then find the

files in the /usr/opt/mqsi/sample subdirectory.

Deleting components from the broker domain
You might need to change the configuration of your broker domain by deleting
brokers, or by removing topic-based security.

Deleting a broker
When you create a broker, you have to take two actions to complete the task:
v Creating the actual broker on the target machine using the mqsicreatebroker

command or the Command Assistant.

Publish/subscribe network

Chapter 3. How to manage your MQSeries Integrator network 35

v Creating it in the configuration repository and deploying it in the broker domain
topology, using the Control Center.

When you delete a broker, you must perform tasks to reverse the actions you took
to create it. The tasks depend on whether you deployed the broker in the topology.
v If you created the physical broker, but never created the reference in the

configuration repository, you must complete just one task to delete the broker:
Step 1. Stop the broker using the mqsistop command.
Step 2. Delete the physical broker using the mqsideletebroker command or the

Command Assistant.
v If you have created the physical broker and the reference in the configuration

repository, but never deployed the broker, you must:
Step 1. Stop the broker using the mqsistop command.
Step 2. Delete the broker using the Topology view of the Control Center. This

removes all trace of the broker from the configuration repository
immediately, including any contained execution groups.

Step 3. Delete the physical broker using the mqsideletebroker command or the
Command Assistant.

v If you deployed the broker, you must:
Step 1. Delete the broker using the Topology view of the Control Center. The

delete operation does not immediately remove the broker from the
shared configuration, but the broker is marked as logically deleted and
no longer appears in the Topology or Assignments views of the Control
Center, although it still exists in the shared configuration.
This is because the actual broker still contains configuration data that
has previously been deployed to it. It is not until this data has been
removed from the broker itself that the Configuration Manager is able
to remove all trace of the broker from the configuration repository.

Step 2. Deploy the change to the topology by right-clicking the Topology root
and selecting Deploy->Delta configuration (all types). This removes all the
deployed configuration data from the broker. If it is successful (and you
are advised to check the Log view to check that it is), the Configuration
Manager removes all trace of the broker from the configuration
repository.

Step 3. Stop the broker using the mqsistop command.
Step 4. You can now delete the broker using the command mqsideletebroker

or the Command Assistant.

If you are deleting a deployed broker, and you delete the physical broker before
deleting the reference in the configuration repository, the Configuration Manager
detects that the broker is not present when it deploys the updated topology. The
deploy action removes all trace of the logically deleted broker from the
configuration repository.

A warning message is generated and displayed in the Log view to inform you that
the physical broker has already been deleted.

Removing topic-based security
Topic-based security is established by the presence of the User Name Server in
your broker domain. If you want to remove this function, you must remove the
User Name Server and the reference made to it by your Configuration Manager
and all your brokers.

Deleting components

36 MQSeries Integrator Administration Guide V2.0.1

To remove topic-based security:
Step 1. Stop the major components of your broker domain by issuing mqsistop

for all brokers, the Configuration Manager, and the User Name Server.
Step 2. Modify the properties of the Configuration Manager and all the brokers to

remove the reference to the User Name Server. You can use the
mqsichangexxxx commands or the Command Assistant to do this. For
example:
mqsichangeconfigmgr -s “”

Step 3. Delete the User Name Server using the mqsideleteusernameserver
command or the Command Assistant.

Step 4. Restart the Configuration Manager and all your brokers.
Step 5. You can, but do not have to, remove all ACLs from the Control Center

(from the Topics view). If you remove the ACLs, you must deploy your
change to ensure the brokers are notified of the update. If the User Name
Server does not exist, they are no longer applicable, but are simply not
referenced.

Importing and exporting message sets
You can export message sets from the message repository and recreate them in an
additional or replacement message repository by importing them. This allows you
to reuse message sets in different domains, or to save and restore your message
sets if you need to recreate your database, or your Configuration Manager, or both,
for any reason.
v To export a message set:

Step 1. Invoke the mqsimrmimpexp command, specifying the -e flag, the name
of the message set you want to export (you can export one message set
on each command), and the name of the file in which the message set is
to be stored.
You must invoke this command on the system on which the
Configuration Manager exists.

Step 2. When the command completes, the definition of the message set has
been written in XML. Backup the message set file.

Step 3. Copy the message set file to the system on which the additional or
replacement Configuration Manager is created.

v To import a message set:
Step 1. Invoke the mqsimrmimpexp command, specifying the -i flag, and the

name of the file that contains the definition of the message set to be
imported.
You must invoke this command on the system on which the
Configuration Manager exists.

Step 2. When the command completes, the message definition has been stored
in the message repository.

Step 3. You must stop and restart the Configuration Manager and the Control
Center after the import has completed to be able to access the imported
message set.

Step 4. Select the Message Sets view in the Control Center to view the message
set.

Deleting components

Chapter 3. How to manage your MQSeries Integrator network 37

Recovery and restart
This section describes the actions you must take if you need to recover from errors,
and restart some or all of the components of your broker domain. It covers the
following topics:
v “Making sure that messages aren’t lost”
v “Making sure that subscriptions aren’t lost” on page 40
v “Restart scenarios” on page 40
v “Backup and recovery” on page 42

Making sure that messages aren’t lost
It is important to safeguard messages flowing through your broker domain, both
application-generated messages and those used internally for inter-component
communication. MQSeries provides two techniques that protect against message
loss:
v Message persistence

If a message is persistent, MQSeries ensures it is not lost when a failure occurs,
by hardening it to disk.

v Syncpoint control
An application can request that a message is processed in an atomic manner in a
synchronized unit-of-work (UOW)

For more information about how to use these options, refer to MQSeries System
Administration.

Broker internal messages: MQSeries Integrator components use MQSeries
messages to communicate events and data between broker processes and
subsystems. The broker ensures that the MQSeries features listed are exploited to
protect against message loss. Therefore, you do not need to take any additional
steps to configure MQSeries or MQSeries Integrator to protect against loss of
internal messages.

Application messages: If delivery of application messages is critical, you must
design application programs and the message flows they use to ensure that
messages are not lost.
v Using persistent messages

The default action of a message flow is to respect the persistence of each
incoming message. The client program must therefore specify the required
message persistence when it puts the message to the input queue of a message
flow.
If a message is not modified by the message flow, and is subsequently written to
an output queue by an MQOutput node, the message is put with its persistence
unchanged.
If a message passes through a publication node, the persistence of messages sent
to subscribers is determined by the subscribers’ registration options. The default
behavior is that the persistence of the original message is maintained. The
subscriber can override this behavior to request that the message is sent
persistently or non-persistently regardless of the original persistence of the
message.
If a new message is created by a message flow (for example, in a Compute
node), the persistence in the MQMD of the new message is copied from the
persistence in the MQMD of the incoming message.

v Processing messages under syncpoint control

Recovery and restart

38 MQSeries Integrator Administration Guide V2.0.1

The default action of a message flow is to process incoming messages under
syncpoint in a broker-controlled transaction. This means that a message that fails
to be processed for any reason is backed out by the broker. Because it was
received under syncpoint, the failing message is reinstated on the input queue
and can be processed again. Backout processing (described in “Backout
Processing”) might be invoked.

You can define a message flow to handle exceptions or errors by using processing
logic within the flow. Exceptions can be handled in two ways:
1. The failure terminal of a node can be connected to another part of the message

flow. If an error occurs when a message is processed by that node, the message
is propagated through the failure terminal to the next node in the sequence.

2. A TryCatch node can be incorporated in the message flow to catch all
exceptions that are generated by subsequent nodes in the flow, propagating the
message to the catch terminal.

Warning
If you handle exceptions in either of these two ways, the message flow
becomes responsible for handling the exception condition. The default broker
exception handling mechanism is not invoked unless the message flow
throws an exception explicitly.

If an error occurs that is not expected, which might cause termination of the
message flow and hence a backout of the message, an exception must be thrown
by the message flow. You can use the Throw node to achieve this function.

Backout Processing: If your message flow processes messages in a UOW, an error
in your message flow causes the UOW to be backed out. If the input message has
been read under syncpoint, the message is reinstated on the input queue, and is
therefore processed again.

If the error condition persists, the message continues to be passed through the
message flow and backed out, causing a processing loop. This is repeated until the
value of the MQMD BackoutCount equals or exceeds the value of the backout
threshold for the input queue (attribute BOTHRESH). The BackoutCount is
incremented automatically by MQSeries every time a message is backed out.

MQSeries Integrator invokes backout processing by attempting to propagate the
message as follows:
1. To the failure terminal of the current node.
2. To the queue specified as the input queue’s backout requeue name (queue

attribute BOQNAME).
3. To the queue manager’s dead-letter-queue (DLQ).

If none of these queues exist, the message cannot be handled safely without risk of
loss. The message cannot be discarded, therefore the message flow continues to
attempt to backout the message. It records the error situation by writing errors to
the local error log. A second indication of this error is the continual incrementing
of the BackoutCount of the first message in the input queue.

Recovery and restart

Chapter 3. How to manage your MQSeries Integrator network 39

To correct this situation, you can define one of the backout queues mentioned
above. If the condition preventing the message from being processed has cleared,
you can temporarily increase the value of the BOTHRESH attribute. This forces the
message through normal processing.

Making sure that subscriptions aren’t lost
Publish/subscribe applications put subscription registration messages to the queue
SYSTEM.BROKER.CONTROL.QUEUE. If this queue becomes full or damaged, or
contains an invalid message, processing of subscription registrations is affected.

You must ensure that applications do not put invalid messages to this queue. If the
broker detects an invalid message, it rejects the message and generates an Event
log entry.

Every time the broker receives a subscription registration, it stores it in its
database. The broker can therefore retrieve all current subscriptions if it is stopped
and restarted.

Subscription commands that are in progress when the broker terminates might be
lost. You can remove this exposure by ensuring that applications send all
subscription registration messages as persistent messages.

Managing Unused Subscriptions: Because subscriptions are stored in the broker’s
database, you are recommended to ensure applications deregister their
subscriptions when they no longer require publications. If obsolete subscriptions
are deregistered, the database tables do not build up unused subscriptions.

You can use the following techniques to manage the build-up of unused
subscriptions:
v Ensure that your applications register subscriptions with a limited expiry period.

By default subscriptions have unlimited expiry. Subscriptions with an expiry
period are automatically cleaned up by the broker and are therefore removed
from the database. If subscriptions need to be active for longer periods, your
applications must periodically re-register their subscriptions.

v If your applications are not long-lived, or are subject to unexpected termination,
you are recommended to specify a temporary dynamic queue on the broker’s
queue manager to receive publications in those applications. If you do this, the
temporary dynamic queue becomes invalid when the application ends, and the
broker automatically discards the subscription.

v You can view and manage the current subscriptions from the Subscriptions view
of the Control Center. If this view shows subscriptions that are no longer
required, you can delete them immediately on this view.

Restart scenarios
This section illustrates the actions you must take to restart the run-time
components of MQSeries Integrator and other software on which they are
dependent.

Broker: If you need to restart a broker and its environment, you must take the
following actions in this order:
1. Stop the broker using the mqsistop command.
2. Stop the broker’s queue manager using the endmqm command.
3. Stop the database manager. Refer to the documentation for your database for

instructions on how to complete this task.

Recovery and restart

40 MQSeries Integrator Administration Guide V2.0.1

4. When everything has stopped, components must be restarted in the following
order:
a. Start the database manager. Refer to the documentation for your database

for instructions on how to complete this task.
b. Start the broker using the mqsistart command. This automatically restarts

the queue manager.

The broker does not tolerate abnormal or out of sequence termination of the
MQSeries queue manager or the database manager. If this occurs, the broker must
be stopped using the mqsistop command, and all components restarted in the
order listed.

If the problem is caused by the queue manager stopping, reissue the MQSeries
endmqm command specifying the immediate option (-i) before issuing mqsistop.

You do not have to restart the broker execution group processes if they terminate
abnormally, because the broker does this automatically.

Configuration Manager: The Configuration Manager operates independently of
the brokers, and can be stopped and restarted without affecting the operation of
other MQSeries Integrator components in the broker domain. If you need to restart
the Configuration Manager and its environment, you must take the following
actions:
1. Stop the Configuration Manager using the mqsistop command.
2. Stop the MQSeries queue manager using the endmqm command.
3. Stop DB2. Refer to the DB2 documentation for instructions on how to complete

this task.

You are recommended to complete these tasks in the order shown, but the
Configuration Manager tolerates the queue manager and DB2 stopping first.

When everything has been stopped, you are recommended to take the following
actions in this order:
1. Restart DB2. Refer to the DB2 documentation for instructions on how to

complete this task.
2. Restart the Configuration Manager using the mqsistart command.

This automatically restarts the queue manager.

If you restart the Configuration Manager first, it will automatically retry its
initialization until DB2 is started.

The Configuration Manager also tolerates abnormal termination of the MQSeries
queue manager and DB2: if the Configuration Manager detects that either has
terminated abnormally, it restarts automatically. If either DB2, or MQSeries, or
both, are not up and running, initialization is automatically retried every 30
seconds until it is successful.

User Name Server: The User Name Server operates independently of the brokers,
and can be stopped and restarted without affecting the operation of other
MQSeries Integrator components in the broker domain. If you need to restart the
User Name Server and its environment, you must take following actions:
1. Stop the User Name Server using the mqsistop command.
2. Stop the MQSeries queue manager using the endmqm command.

Recovery and restart

Chapter 3. How to manage your MQSeries Integrator network 41

You are recommended to complete these tasks in the order shown, but the User
Name Server tolerates the queue manager stopping first.

When everything has been stopped, you can restart the User Name Server using
the mqsistart command. This automatically restarts the queue manager.

The User Name Server also tolerates abnormal termination of the MQSeries queue
manager. If this occurs the User Name Server restarts automatically. If MQSeries is
not up and running, initialization is retried every 30 seconds until it is successful.

Backup and recovery
Brokers and the Configuration Manager rely on a database manager to maintain
and control all their configuration data. Brokers, the Configuration Manager and
the User Name Server rely on MQSeries to transport and guarantee messages
between components. You must establish a backup process that includes these
sources of information to preserve the integrity and consistency of your broker
domain.
v You must back up database tables. You are strongly recommended to perform

backup frequently and on a regular basis to prevent loss of configuration data if
damage occurs.
You must backup all configuration repository tables, and all message repository
tables, and the following broker database tables:
– BSUBSCRIPTIONS
– BCLIENTUSER
– BUSERCONTEXT
– BRETAINEDPUBS
– BPUBLISHERS
– BMQPSTOPOLOGY

The broker’s configuration is completed when it is redeployed by the
Configuration Manager when the broker domain is restarted. This recreates the
remaining database tables.

The configuration repository and message repository tables contain associated
data: you must coordinate their backup procedures to ensure that a consistent
image is available if recovery is necessary. The complete set of tables that make
up these two repositories is detailed in Appendix A “System changes after
installation” in the MQSeries Integrator Installation Guide for your computer
platform.

If your message flows use any user-defined database tables, you must also back
these up.

Refer to the appropriate database documentation for details of backup
procedures.

v You must back up MQSeries configuration data. Refer to MQSeries System
Administration for further details.

v You must also consider backing up files that are created by users of the Control
Center. When a Control Center user saves a workspace, the workspace XML
document, any newly created objects, and any checked out objects are saved to
the local file system. You are recommended to instruct users to backup this data
by exporting the workspace and backing up the XML document created (in a
file) by the export. You should similarly export and backup message sets stored
in the message repository as described in “Importing and exporting message
sets” on page 37.

Recovery and restart

42 MQSeries Integrator Administration Guide V2.0.1

Recovery scenarios
You can recover the run-time components of MQSeries Integrator if the
environment becomes damaged (for example, if MQSeries objects used by the
broker are damaged), or if database contents are damaged.

Broker: If the environment for a particular broker becomes damaged, or if one or
more of the broker database tables are unusable, you must perform the following
sequence of operations to recover it:
Step 1. Ensure that no Control Center users are deploying to brokers. You must

wait until these actions have completed.
Step 2. Stop the broker using the mqsistop command.
Step 3. Stop the broker’s queue manager using the endmqm command.
Step 4. If there is no damage to any one of broker database tables listed in

“Backup and recovery” on page 42, take a backup of these tables. (These
tables are interdependent and must all be in a consistent state when
restored. You cannot backup or restore individual tables.)

Step 5. Delete the broker using the mqsideletebroker command or the
Command Assistant.

Step 6. Recreate the broker using the mqsicreatebroker command or the
Command Assistant.

Step 7. Restore the broker database tables listed in “Backup and recovery” on
page 42, either from the backup you have just taken, or from a
previously successful backup version.

Step 8. Start the broker using the mqsistart command.
Step 9. Restart the Control Center if it is not currently running. Select the

Topology view.
Step 10. Redeploy the domain configuration by selecting File->Deploy->Complete

configuration (all types)->Normal to ensure that the configuration across the
broker domain is consistent.

Configuration Manager: If the Configuration Manager environment is damaged,
or one or more of the database tables are corrupted, you must perform the
following sequence of operations to recover it:
Step 1. Ensure that all Control Center sessions are stopped.
Step 2. Stop the Configuration Manager using the mqsistop command.
Step 3. Stop the Configuration Manager’s queue manager using the endmqm

command.
Step 4. Delete the Configuration Manager using the mqsideleteconfigmgr

command or the Command Assistant:
a. If you are recovering the Configuration Manager because one or more

of the configuration repository or message repository tables is
damaged, you must include the flags -n -m on the
mqsideleteconfigmgr command.

b. If the database tables are undamaged, you must omit the flags -n -m.
This preserves your configuration data in both repositories.

Step 5. If you are recovering the Configuration Manager because one or more of
the configuration repository or message repository tables is damaged, you
must restore both repositories from a previously successful backup
version. (The data in the two repositories is interdependent, and you must
restore the entire contents of both. You cannot restore individual tables.)

Step 6. Recreate the Configuration Manager using the mqsicreateconfigmgr
command or the Command Assistant.

Recovery and restart

Chapter 3. How to manage your MQSeries Integrator network 43

Step 7. Start the Configuration Manager using the mqsistart command.
Step 8. Start the Control Center, and select the Topology view.
Step 9. If you have completed Steps 4a on page 43 and 5 on page 43, you must

also redeploy the domain configuration by selecting File->Deploy->Complete
configuration (all types)->Normal to ensure that the configuration across the
broker domain is consistent.

User Name Server: If the User Name Server environment becomes damaged, you
must perform the following sequence of operations to recover it:
Step 1. Stop the User Name Server using the mqsistop command.
Step 2. Stop the User Name Server’s queue manager using the endmqm

command.
Step 3. Delete the User Name Server using the mqsideleteusernameserver

command or the Command Assistant.
Step 4. Recreate the User Name Server using the mqsicreateusernameserver

command or the Command Assistant.
Step 5. Start the User Name Server using the mqsistart command.

Managing workload and performance
You can make some changes to your broker domain configuration to influence the
performance and workload. The following topics are covered:
v “Using MQSeries trusted applications”
v “Tuning message flow performance” on page 45

Using MQSeries trusted applications
You can configure the message broker as an “MQSeries trusted (fastpath)
application” by selecting the -t (fastpath) option on the mqsicreatebroker
command. This causes the broker and the MQSeries queue manager agent to run
in the same process, thus improving overall system performance. By default the
broker does not run as a trusted application.

For example, enter the following command to create broker
MQSI_SAMPLE_BROKER as a trusted application:
mqsicreatebroker MQSI_SAMPLE_BROKER -i mqm -a mqmpw

-q MQSI_SAMPLE_QM -s MQSI_SAMPLE_UNS_QM -n MQSIBRDB -t

MQSeries trusted applications must run with an effective user ID and group ID of
mqm. On UNIX platforms, you must therefore specify the user ID mqm as the
service user ID when you create the broker. On Windows NT, any service user ID
which is a member of the mqm group may be used.

You can change the option you selected when you created the broker using the
mqsichangebroker command. You must stop the broker using the mqsistop
command before you change its properties. When you have made the change, you
can restart the broker using the mqsistart command. You might also have to
change the service user ID (and password) if you did not originally create the
broker to use an appropriate service user ID.

For further details on the implications of running the broker as a trusted MQSeries
application, see MQSeries Integrator Introduction and Planning.

The Configuration Manager always runs as an MQSeries fastpath application for
performance reasons. You cannot change this setting.

Recovery and restart

44 MQSeries Integrator Administration Guide V2.0.1

Tuning message flow performance
When you have assigned a message flow to a broker, you can modify its default
properties to improve its throughput.

The following properties control the frequency with which the message flow
commits transactions:
v Commit Count. This represents the number of messages processed from the input

queue before an MQCMIT is issued.
v Commit Interval. This represents the time interval that will elapse before an

MQCMIT is invoked.

You can also increase the throughput of a message flow, and therefore the
efficiency of message processing, by updating the Additional Instances property
of the MQInput node. This instructs the broker to start additional threads to read
messages from the input queue and process them concurrently. You must consider
the impact on message order if you change this property: because several threads
can be processing messages concurrently there is no guarantee that message
processing will complete in the same order, so that messages might be received by
clients in a different order.

If you increase this message flow property you must ensure that the input queue
has been defined with the share attribute which enables multiple threads to read
from the same queue.

You might also want to consider changing the Order Mode property of an assigned
message flow. For more information about additional instances and message order,
see Chapter 4, “Message Flows” in MQSeries Integrator Introduction and Planning.

For more details of these properties and how you can change their values, see
MQSeries Integrator Using the Control Center and the Control Center online help.

Managing workload and performance

Chapter 3. How to manage your MQSeries Integrator network 45

Managing workload and performance

46 MQSeries Integrator Administration Guide V2.0.1

Chapter 4. Setting up security

This chapter describes the actions you must take to ensure security of system
administration tasks. You must grant specific users the authority to complete
certain tasks, before you take the steps that achieve those tasks.

The information in this chapter builds on the planning information provided in
MQSeries Integrator Introduction and Planning, which you should read for a fuller
understanding of security, which options you must implement, and which you can
choose to implement.

Tasks in the following areas are discussed:
v “Securing MQSeries Integrator resources”.
v “Securing MQSeries resources” on page 57.
v “Securing database resources” on page 58.

Securing MQSeries Integrator resources
MQSeries Integrator employs a variety of mechanisms to secure its different
components and these vary between operating systems, as indicated:

Queues and queue managers
MQSeries access control.
v See MQSeries Planning Guide (GC33-1349)

Topic-based security
MQSeries Integrator User Name Server. (Each MQSeries Integrator domain
may contain one User Name Server.)
v If you choose to run the User Name Server on a Windows NT node, it

will map to the Windows systems security domain architecture
v If you choose to run the User Name Server on a UNIX node, it will map

to the UNIX user/group database.

Operational control of brokers and other components
Operating system access control.
v On Windows NT, this is performed by the Windows Security Domains.
v On UNIX platforms, this is the UNIX user/group database.

Roles in Control Center
Operating system access control.
v On Windows NT, this is performed by the Windows Security Domains.
v This is not applicable on UNIX platforms; the Control Center will only

operate on Windows NT.

Security control of MQSeries Integrator components, resources, and tasks depends
on the definition of users and groups of users (principals) in the security
subsystem of the operating system (the Windows NT User Manager or the UNIX
users/groups database). MQSeries Integrator always creates a set of groups on the
system on which it is installed.

© Copyright IBM Corp. 2000 47

These local groups are:
v mqbrkrs
v mqbrasgn
v mqbrdevt
v mqbrops
v mqbrtpic

MQSeries Integrator security architecture is designed to be platform independent.
If you are running MQSeries Integrator in an environment that includes clients on
heterogeneous platforms, you should ensure that all the principals you define for
MQSeries Integrator task authorizations are limited to eight bytes or less. If you
have a Windows NT homogeneous environment, you may create principals of up
to twelve bytes (the limit set by the user identifier field in the MQSeries MQMD,
which MQSeries Integrator uses) but you should only use these longer names if
you are sure there will never be UNIX systems in your MQSeries Integrator
domain.

On Windows NT, MQSeries Integrator draws principals from either the Windows
NT local account security domain, or a Windows NT primary domains, or a
Windows NT trusted domain. Principals must be defined to a specific Windows
NT security domain. You must decide which domain you want to use for
MQSeries Integrator, and define your principals to that domain (using the
Windows NT User Manager on the security domain server). If you already have a
security domain set up to control access to MQSeries resources, you are advised to
use this same domain for MQSeries Integrator: this will not cause any conflict and
will ease your security administration.

If, on Windows NT, you create a Configuration Manager (mqsicreateconfigmgr) or
a User Name Server (mqsicreateusernameserver), specifying a
SecurityDomainName that is your local account security domain (that is, you want
to draw users and groups from your machine’s local user and group repository
rather than from a primary or trusted domain), you should not specify a
ServiceUserID that has the same name as your machine.For example, if you are
working on a machine named \\BROKER1, (account domain BROKER1), you should
not specify a user ″broker1″ as ServiceUserID. If you attempt to start the
Configuration Manager or User Name Server with the same machine name and
ServiceUserID, the Windows NT operating system call will incorrectly retrieve the
Security Identifier (SID) of the machine rather than that of the account and you
will receive the message: BIP8026 Unable to start the component.

On UNIX platforms, MQSeries Integrator draws principals from the operating
system’s user and group tables.

You must assign users (or other groups) to the MQSeries Integrator groups in your
security domain to allow them to perform specific tasks. The authorizations
required are summarized in Table 2 on page 50 for Windows NT and in Table 3 on
page 57 for UNIX platforms.

For a more general discussion on security for MQSeries Integrator see MQSeries
Integrator Introduction and Planning. For further details about Windows NT security
domains, see the information on the Microsoft Web site at
http://www.microsoft.com/ntserver/security/deployment/default.asp

In particular, you are advised to review the contents of the Security Deployment
Resources Roadmap on this Web page.

MQSeries Integrator resources

48 MQSeries Integrator Administration Guide V2.0.1

Using Windows NT primary or trusted security domains
If you are using a primary or trusted security domain, you must define global
groups to your primary or trusted security domain that mirror the local groups
that are created during installation. MQSeries Integrator requires five global
groups:
v Domain mqbrkrs
v Domain mqbrasgn
v Domain mqbrdevt
v Domain mqbrops
v Domain mqbrtpic

These groups must be made members of the local security domain’s equivalent
MQSeries Integrator groups (Domain mqbrkrs must be a member of mqbrkrs,
and so on).
v If you install MQSeries Integrator on the domain controller of a primary or a

trusted security domain, the MQSeries Integrator installation program creates the
local and global groups, and adds the global groups to the local groups.
If you do not intend to install MQSeries Integrator on the domain controller, you
can create these groups yourself using the Windows NT User Manager.

v If you install MQSeries Integrator on a workstation member of a primary
security domain, the MQSeries Integrator installation program creates the local
groups. If the global groups already exist in the primary security domain, it also
adds each global group to the appropriate local group in the local domain.

v If you install MQSeries Integrator on a workstation member of a trusted domain,
MQSeries Integrator cannot recognize the trusted domain, and does not add the
global groups to the local groups. You must do this step yourself.

v If you install MQSeries Integrator on a workstation that is a member of both a
trusted security domain and a primary security domain, the installation program
creates the local groups. If the global groups already exist in the primary
security domain, it also adds each global group to the appropriate local group in
the local domain. It cannot detect the trusted domain and therefore does not add
the global groups of the trusted security domain to the local groups. If you want
these trusted security domain global groups in the local groups instead of, or in
addition to, the primary security global groups, you must make these updates
yourself.

When you define a new user ID to your security domain, you must assign this ID
to the domain group that it authorized for the tasks this user ID is to perform, so
that it is authorized globally.

Table 2 on page 50 summarizes the security requirements for the MQSeries
Integrator administrative tasks. It illustrates what group membership is required if
you are using a local security domain defined on your local system SALONE, or a
primary domain named PRIMARY, or a trusted domain named TRUSTED. The
contents of this table assume that you have created both the Configuration
Manager and the User Name Server with the same security domain (specified on
flag -d).

For information about database authorization, see “Securing database resources” on
page 58.

MQSeries Integrator resources

Chapter 4. Setting up security 49

Table 2. Summary of administrative task authorization on Windows NT platforms

User is... Local domain (SALONE) Primary Domain (PRIMARY) Trusted domain (TRUSTED)

Creating broker,
Configuration
Manager, User
Name Server

v Must be a user ID defined in
SALONE

v Member of Administrators

v Must be a user ID defined in
PRIMARY

v Member of
SALONE\Administrators

v Must be a user ID defined in
TRUSTED

v Member of
SALONE\Administrators

Changing broker,
Configuration
Manager, User
Name Server

v Must be a user ID defined in
SALONE

v Member of Administrators

v Must be a user ID defined in
PRIMARY

v Member of
SALONE\Administrators

v Must be a user ID defined in
TRUSTED

v Member of
SALONE\Administrators

Deleting broker,
Configuration
Manager, User
Name Server

v Member of Administrators v Member of
SALONE\Administrators

v Member of
SALONE\Administrators

Starting broker,
Configuration
Manager, User
Name Server

v Member of Administrators Not applicable. Not applicable.

Listing broker,
Configuration
Manager, User
Name Server

v Must be a user ID defined in
SALONE

v Member of mqbrkrs

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

Changing,
displaying,
retrieving trace
information

v Must be a user ID defined in
SALONE

v Member of mqbrkrs

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

Running User
Name Server
(service user ID)

v Must be a user ID defined in
SALONE

v Member of mqbrkrs

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

Running
Configuration
Manager (service
user ID)

v Must be a user ID defined in
SALONE

v Member of mqbrkrs
v Member of mqm

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Member of SALONE\mqm (see
note 1)

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

v Member of SALONE\mqm (see
note 2)

Running broker
(MQSeries
fastpath off)
(service user ID)

v Must be a user ID defined in
SALONE

v Member of mqbrkrs

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

Running broker
(MQSeries
fastpath on)
(service user ID)

v Must be a user ID defined in
SALONE

v Member of mqbrkrs
v Member of mqm

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Member of SALONE\mqm

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

v Member of SALONE\mqm

Clearing, joining,
listing MQSeries
Publish/Subscribe
brokers

v Must be a user ID defined in
SALONE

v Member of mqbrkrs

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

Running Control
Center (see note 3)

v Must be a user ID defined in
SALONE (see note 4) For
example, SALONE\User1 is
valid, PRIMARY\User2 and
TRUSTED\User3 are not

v Member of one or more of
mqbrasgn, mqbrdevt,
mqbrops, mqbrtpic

v Must be a user ID defined in
PRIMARY (see note 4) For
example, PRIMARY\User2 is valid,
SALONE\User1 and
TRUSTED\User3 are not.

v Member of one or more of
PRIMARY\Domain mqbrasgn,
PRIMARY\Domain mqbrdevt,
and so on.

v Must be a user ID defined in
TRUSTED (see note 4) For
example, TRUSTED\User3 is valid,
SALONE\User1 and
PRIMARY\User2 are not.

v Member of one or more of
TRUSTED\Domain mqbrasgn
TRUSTED\Domain mqbrdevt,
and so on.

MQSeries Integrator resources

50 MQSeries Integrator Administration Guide V2.0.1

Table 2. Summary of administrative task authorization on Windows NT platforms (continued)

User is... Local domain (SALONE) Primary Domain (PRIMARY) Trusted domain (TRUSTED)

Running
publish/subscribe
applications

v Must be a user ID defined in
SALONE For example,
SALONE\User1 is valid,
PRIMARY\User2 and
TRUSTED\User3 are not.

v Must be a user ID defined in
PRIMARY For example,
PRIMARY\User2 is valid,
SALONE\User1 and
TRUSTED\User3 are not.

v Must be a user ID defined in
TRUSTED For example,
TRUSTED\User3 is valid,
SALONE\User1 and
PRIMARY\User2 are not.

Notes:

1. If you are running in a primary domain, you can also:

v Define the user ID in the domain PRIMARY.

v Add this ID to the group PRIMARY\Domain mqm.

v Add the PRIMARY\Domain mqm group to the group SALONE\mqm.

2. If you are running in a trusted domain, you can also:

v Define the user ID in the domain TRUSTED.

v Add this ID to the group TRUSTED\Domain mqm.

v Add the TRUSTED\Domain mqm group to the group SALONE\mqm.

3. All Control Center users need read access to the MQSeries java\lib subdirectory of the MQSeries home directory (the default
is X:\Program Files\MQSeries, where X: is the operating system disk). This access is restricted to users in the local group mqm
by MQSeries. MQSeries Integrator installation overrides this restriction and gives read access for this subdirectory to all users.

4. If a valid user ID is defined in the domain used by the Configuration Manager, (for example, PRIMARY\User4) an identical
user defined in a different domain (for example, DOMAIN2\User4) will be able to access the Control Center with the
authorities of PRIMARY\User4.

The IBMMQSI2 superuser
A superuser user ID is recognized by the Configuration Manager. This user ID,
IBMMQSI2, is a privileged user ID that provides these essential functions:
v It has the authority to unlock any resources locked to another user ID. If a user

ID is removed for any reason (for example, if an employee leaves the company)
and resources are left locked to that user ID, you can start the Control Center
with the privileged user ID and unlock the locked resources.

v The IBM primitive message processing nodes (described in MQSeries Integrator
Using the Control Center) are locked under this user ID. If maintenance that
includes updates to these nodes is supplied by IBM, you must use this user ID
to import the replacement nodes, check them in to the configuration repository,
and re-lock them.

If you find that it is necessary to invoke any of these functions, you must define
this user ID to the security domain specified when you create the Configuration
Manager using the mqsicreateconfigmgr command.You must also add this user ID
to the MQSeries Integrator groups necessary for it to be authorized to complete the
task required on the system on which you are running the Control Center:
v If you are using a primary or trusted security domain, you must add this user

ID to the appropriate Domain mqbrxxxx groups.
v If you are using a local security domain, you must add this user ID to the

appropriate local mqbrxxx groups.

Windows NT security domain scenarios
This section describes three possible scenarios that illustrate the use of primary,
trusted, and local security domains. The domains identified in Table 2 on page 50
to define task authorizations are used in these scenarios.

MQSeries Integrator resources

Chapter 4. Setting up security 51

Scenario 1: operation in a Windows NT primary domain
This scenario describes the security setup required if you are using a primary
security domain. It makes the following assumptions:
1. The broker, User Name Server, and Configuration Manager are to be installed

on separate machines BROKER, UNS, and CFGMGR.
2. The queue manager supporting the User Name Server is to be named

UNSQMGR.
3. These three systems are configured into a primary security domain named

PRIMARY.
4. Control Center users and application users will be defined in the PRIMARY

domain.
5. Publish/subscribe access control for topic-based security is to be enabled.

Installation: During installation, the installation program performs the following
configuration tasks:
1. If any of the systems on which you are installing MQSeries Integrator is the

primary domain controller, the global groups Domain mqbrkrs,
Domain mqbrdevt, Domain mqbrasgn, Domain mqbrops, and
Domain mqbrtopic are created in the PRIMARY domain. If you install on the
primary domain controller, you are recommended to complete this installation
before you do any others.
If you are not installing on the primary domain controller, you must create
these groups yourself using the Windows NT User Manager. You are strongly
recommended to create these groups before you install any components on any
system in the primary security domain. If you do, the installation program
populates the local groups it creates with these global groups. If you do not,
you must add the global groups to the local groups on every system on which
you have installed MQSeries Integrator yourself.

2. When you install the broker component on system BROKER, a local mqbrkrs
group is created in the BROKER account domain and
PRIMARY\Domain mqbrkrs is added to BROKER\mqbrkrs.

3. When you install the User Name Server component on system UNS, a local
mqbrkrs group is created in the UNS account domain and
PRIMARY\Domain mqbrkrs is added to UNS\mqbrkrs.

4. When you install the Configuration Manager component on system CFGMGR:
a. A local mqbrkrs group is created in the CFGMGR account domain and

PRIMARY\Domain mqbrkrs is added to CFGMGR\mqbrkrs.
b. The four remaining MQSeries Integrator local groups (mqbrasgn,

mqbrdevt, mqbrops, and mqbrtpic) are created in the CFGMGR account
domain, and the PRIMARY\Domain mqbrxxxx global groups are added to
the equivalent CFGMGR\mqbrxxxx groups.

Service user IDs: When installation is complete, you must take the following
actions on the PRIMARY domain’s domain controller:
1. Define a user ID BRKSID for the broker’s service user ID in PRIMARY. Add

this ID to the group PRIMARY\Domain mqbrkrs.
2. Define a user ID UNSSID for the User Name Server’s service user ID in

PRIMARY. Add this ID to the group PRIMARY\Domain mqbrkrs.
3. Define a user ID CMSID for the Configuration Manager’s service user ID in

PRIMARY. Add this ID to the group PRIMARY\Domain mqbrkrs, and to the
local mqm group.

Security scenarios

52 MQSeries Integrator Administration Guide V2.0.1

Creating the MQSeries Integrator components: You can now create the
components:
1. On the system UNS, issue the mqsicreateusernameserver command, specifying

-d PRIMARY, -i UNSSID, and -q UNSQMGR.
2. On the system CFGMGR, issue the mqsicreateconfigmgr command, specifying

-d PRIMARY, -i CMSID, and -s UNSQMGR.
3. On the system BROKER, issue the mqsicreatebroker command, specifying

-i BRKSID and -s UNSQMGR.

Note: When you invoke the mqsicreatexxxx commands, your user ID must be a
member of the Windows NT Administrators group on the system where the
command is being executed.

User Name Server run-time operation: When you start the User Name Server the
following are true:
v The User Name Server Windows NT service runs under the user ID UNSSID.
v UNSSID is an indirect member of UNS\mqbrkrs and CFGMGR\mqbrkrs

(through PRIMARY\Domain mqbrkrs) and can therefore access appropriate
MQSeries Integrator queues.

v Users and groups are sourced from the PRIMARY security domain.

Broker run-time operation: When you start the broker the following are true:
v The broker Windows NT service runs under the user ID BRKSID.
v BRKSID is an indirect member of BROKER\mqbrkrs, UNS\mqbrkrs, and

CFGMGR\mqbrkrs, and can therefore access the appropriate MQSeries
Integrator queues.

v Users and groups are supplied by the User Name Server.

Configuration Manager run-time operation: When you start the Configuration
Manager the following are true:
v The Configuration Manager Windows NT service runs under the user ID

CMSID.
v CMSID is an indirect member of BROKER\mqbrkrs, UNS\mqbrkrs, and

CFGMGR\mqbrkrs, and can therefore access the appropriate MQSeries
Integrator queues.

v Control Center users are members of the PRIMARY domain whose roles are
determined by membership of the PRIMARY global groups
(PRIMARY\Domain mqbrdevt and so on).

v The list of principals from which ACLs are created are supplied by the User
Name Server.

Application clients: Clients running application programs must run under user
IDs that are defined to the security domain PRIMARY.

Scenario 2: operation in a Windows NT trusted domain
This scenario describes the security setup required if you are using a trusted
security domain. It makes the following assumptions:
1. The broker, User Name Server, and Configuration Manager are to be installed

on separate machines BROKER, UNS, and CFGMGR.
2. These three systems are configured into the primary security domain

PRIMARY.
3. Control Center users and application users will be defined in the TRUSTED

domain.

Security scenarios

Chapter 4. Setting up security 53

4. Publish/subscribe access control for topic-based security is to be enabled.

Installation: During installation, the installation program performs the following
configuration tasks:
1. If any of the systems on which you are installing MQSeries Integrator is the

primary domain controller, the global groups Domain mqbrkrs,
Domain mqbrdevt, Domain mqbrasgn, Domain mqbrops, and
Domain mqbrtopic are created in the PRIMARY domain.

Note: These groups are created, although in this particular scenario they are
not exploited.

2. When you install the broker component on system BROKER, a local mqbrkrs
group is created in the BROKER account domain and
PRIMARY\Domain mqbrkrs is added to BROKER\mqbrkrs.

3. When you install the User Name Server component on system UNS, a local
mqbrkrs group is created in the UNS account domain and
PRIMARY\Domain mqbrkrs is added to UNS\mqbrkrs.

4. When you install the Configuration Manager component on system CFGMGR:
a. A local mqbrkrs group is created in the CFGMGR account domain and

PRIMARY\Domain mqbrkrs is added to CFGMGR\mqbrkrs.
b. The four remaining MQSeries Integrator local groups (mqbrasgn,

mqbrdevt, mqbrops, and mqbrtpic) are created in the CFGMGR account
domain, and the PRIMARY\Domain mqbrxxxx global groups are added to
the equivalent CFGMGR\mqbrxxxx groups.

Additional group configuration: After installation, you must perform the
following additional configuration tasks:
1. Create global groups Domain mqbrkrs, Domain mqbrdevt,

Domain mqbrasgn, Domain mqbrops, and Domain mqbrtopic in the
TRUSTED domain.

2. Add TRUSTED\Domain mqbrkrs to BROKER\mqbrkrs.
3. Add TRUSTED\Domain mqbrkrs to UNS\mqbrkrs.
4. Add TRUSTED\Domain mqbrkrs to CFGMGR mqbrkrs.
5. Add TRUSTED\Domain mqbrasgn to CFGMGR\mqbrasgn,

TRUSTED\Domain mqbrdevt to CFGMGR\mqbrdevt,
TRUSTED\Domain mqbrops to CFGMGR\mqbrops, and
TRUSTED\Domain mqbrtpic to CFGMGR\mqbrtpic.

Service user IDs: When installation is complete, you must take the following
actions on the TRUSTED domain’s domain controller:
1. Define a user ID BRKSID for the broker’s service user ID in TRUSTED. Add

this ID to the group TRUSTED\Domain mqbrkrs.
2. Define a user ID UNSSID for the User Name Server’s service user ID in

TRUSTED. Add this ID to the group TRUSTED\Domain mqbrkrs.
3. Define a user ID CMSID for the Configuration Manager’s service user ID in

TRUSTED. Add this ID to the group TRUSTED\Domain mqbrkrs, and to the
local mqm group.

Creating the MQSeries Integrator components: You can now create the
components:
1. On the system UNS, issue the mqsicreateusernameserver command, specifying

-d TRUSTED, -i UNSSID, and -q UNSQMGR.

Security scenarios

54 MQSeries Integrator Administration Guide V2.0.1

2. On the system CGFMGR, issue the mqsicreateconfigmgr command, specifying
-d TRUSTED, -i CMSID, and -s UNSQMGR.

3. On the system BROKER, issue the mqsicreatebroker command, specifying
-i BRKSID and -s UNSQMGR.

Note: When you invoke the mqsicreatexxxx commands, your user ID must be a
member of the Windows NT Administrators group on the system where the
command is being executed.

User Name Server run-time operation: When you start the User Name Server the
following are true:
v The User Name Server Windows NT service runs under the user ID UNSSID.
v UNSSID is an indirect member of UNS\mqbrkrs and CFGMGR\mqbrkrs

(through TRUSTED\Domain mqbrkrs) and can therefore access appropriate
MQSeries Integrator queues.

v Users and groups are sourced from the TRUSTED security domain.

Broker run-time operation: When you start the broker the following are true:
v The broker Windows NT service runs under the user ID BRKSID.
v BRKSID is an indirect member of BROKER\mqbrkrs, UNS\mqbrkrs, and

CFGMGR\mqbrkrs, and can therefore access the appropriate MQSeries
Integrator queues.

v Users and groups are supplied by the User Name Server.

Configuration Manager run-time operation: When you start the Configuration
Manager the following are true:
v The Configuration Manager Windows NT service runs under the user ID

CMSID.
v CMSID is an indirect member of BROKER\mqbrkrs, UNS\mqbrkrs, and

CFGMGR\mqbrkrs, and can therefore access the appropriate MQSeries
Integrator queues.

v Control Center users are members of the TRUSTED domain whose roles are
determined by membership of the TRUSTED global groups
(TRUSTED\Domain mqbrdevt and so on).

v The list of principals from which ACLs are created are supplied by the User
Name Server.

Application clients: Clients running application programs must run under user
IDs defined to the security domain TRUSTED.

Scenario 3: operation on a stand-alone machine
This scenario describes the security setup required if you are using a single system
and a local security domain. It makes the following assumptions:
1. The broker, User Name Server, and Configuration Manager are to be installed

on a single system named SALONE.
2. The system SALONE is not configured into a primary domain.
3. Control Center users and application users will be defined in the SALONE

domain.
4. Publish/subscribe access control for topic-based security is to be enabled.

Installation: During installation, the installation program performs the following
configuration tasks when you install all components on system SALONE:
1. A local mqbrkrs group is created in the SALONE account domain.

Security scenarios

Chapter 4. Setting up security 55

2. The local groups mqbrasgn, mqbrdevt, mqbrops, and mqbrtpic are created in
the SALONE account domain.

Service user IDs: When installation is complete, you must take the following
actions:
1. Define a user ID BRKSID for the broker’s service user ID in SALONE. Add this

ID to the group SALONE\mqbrkrs.
2. Define a user ID UNSSID for the User Name Server’s service user ID in

SALONE. Add this ID to the group SALONE\mqbrkrs.
3. Define a user ID CMSID for the Configuration Manager’s service user ID in

SALONE. Add this ID to the group SALONE\mqbrkrs, and to SALONE\mqm
group.

Creating the MQSeries Integrator components: You can now create the
components:
1. Issue the mqsicreateusernameserver command, specifying -i UNSSID and

-q UNSQMGR. You must also either specify -d SALONE, or omit the -d parameter,
in which case SALONE is configured by default.

2. Issue the mqsicreateconfigmgr command, specifying -i CMSID and -s UNSQMGR.
You must also either specify -d SALONE, or omit the -d parameter, in which case
SALONE is configured by default.

3. Issue the mqsicreatebroker command, specifying -i BRKSID and -s UNSQMGR.

Note: When you invoke the mqsicreatexxxx commands, your user ID must be a
member of the Windows NT Administrators group on system SALONE.

User Name Server run-time operation: When you start the User Name Server:
1. The User Name Server Windows NT service runs under the user ID UNSSID.
2. UNSSID is a member of SALONE\mqbrkrs and can therefore access

appropriate MQSeries Integrator queues.
3. Users and groups are sourced from the SALONE security domain.

Broker run-time operation: When you start the broker:
1. The broker Windows NT service runs under the user ID BRKSID.
2. BRKSID is a member of SALONE\mqbrkrs, and can therefore access the

appropriate MQSeries Integrator queues.
3. Users and groups are supplied by the User Name Server.

Configuration Manager run-time operation: When you start the Configuration
Manager:
1. The Configuration Manager Windows NT service runs under the user ID

CMSID.
2. CMSID is a member of SALONE\mqbrkrs and can therefore access the

appropriate MQSeries Integrator queues.
3. Control Center users are members of the SALONE domain whose roles are

determined by membership of the SALONE local groups (SALONE\mqbrdevt
and so on).

4. The list of principals from which ACLs are created are supplied by the User
Name Server.

Application clients: Clients running application programs must run under user
IDs defined to the security domain SALONE.

Security scenarios

56 MQSeries Integrator Administration Guide V2.0.1

Using UNIX security domains
Table 3 summarizes the security requirements for the MQSeries Integrator
administrative tasks.

For information about database authorization, see “Securing database resources” on
page 58.

Table 3. Summary of administrative task authorization on UNIX platforms

User is... UNIX domain

Creating broker, User Name Server v Member of mqbrkrs
v The broker or User Name Server will run as this user, except that ’root’ can

nominate any user to run the broker

Changing broker, User Name Server v User that the broker runs as, or ’root’

Deleting broker, User Name Server v User that the broker runs as, or ’root’

Starting broker, User Name Server v Member of mqbrkrs

Listing broker, User Name Server v Member of mqbrkrs

Changing, displaying, retrieving trace
information

v Member of mqbrkrs

Running User Name Server (service user ID) v Member of mqbrkrs

Running Configuration Manager (service user
ID)

v Not applicable on UNIX platforms

Running broker (MQSeries fastpath off) (service
user ID)

v Member of mqbrkrs

Running broker (MQSeries fastpath on) (service
user ID)

v Must be mqm
v mqm must be a member of mqbrkrs

Clearing, joining, listing MQSeries
Publish/Subscribe brokers

v Member of mqbrkrs

Running Control Center v Not applicable on UNIX platforms

Running publish/subscribe applications v Any user, subject to MQSeries Integrator topic and MQSeries queue access
control

Securing MQSeries resources
MQSeries Integrator depends on a number of MQSeries resources to operate
successfully. You must control access to these resources to ensure that the product
components can access the resources they depend on, and that these same
resources are protected from other users.

Some authorizations are granted on your behalf when commands are issued.
Others depend on the configuration of your broker domain.
v When you issue the command mqsicreatebroker, put and get authority is

granted on your behalf to the group mqbrkrs for the following queues, by the
command:
– SYSTEM.BROKER.ADMIN.QUEUE
– SYSTEM.BROKER.CONTROL.QUEUE
– SYSTEM.BROKER.EXECUTIONGROUP.QUEUE
– SYSTEM.BROKER.EXECUTIONGROUP.REPLY
– SYSTEM.BROKER.INTERBROKER.QUEUE
– SYSTEM.BROKER.MODEL.QUEUE

v When you issue the command mqsicreateconfigmgr:
1. Put and get authority is granted on your behalf to the group mqbrkrs for

the following queues, by the command:
– SYSTEM.BROKER.CONFIG.QUEUE

MQSeries Integrator resources

Chapter 4. Setting up security 57

– SYSTEM.BROKER.CONFIG.REPLY
– SYSTEM.BROKER.ADMIN.REPLY
– SYSTEM.BROKER.SECURITY.REPLY
– SYSTEM.BROKER.MODEL.QUEUE

2. Put and get authority is granted on your behalf to the groups mqbrdevt,
mqbrasgn, mqbrops, and mqbrtpic for the following queues by the
command:
– SYSTEM.BROKER.CONFIG.QUEUE
– SYSTEM.BROKER.CONFIG.REPLY

v When you issue the command mqsicreateusernameserver, put and get authority
is granted on your behalf to the group mqbrkrs for the following queues, by the
command:
– SYSTEM.BROKER.SECURITY.QUEUE
– SYSTEM.BROKER.MODEL.QUEUE

v If you have created MQSeries Integrator components to run on different queue
managers, the transmission queues you define to handle the message traffic
between the queue managers must have put and setall authority granted to the
local mqbrkrs group, or to the service user ID of the component supported by
the queue manager on which the transmission queue is defined. (See
“Connecting two MQSeries Integrator components” on page 19 for more details
of these queues and channels).

v When you start up the Control Center, it connects to the Configuration Manager
using an MQSeries client/server connection. For details of MQSeries channel
security refer to “Setting up MQSeries client security” in the MQSeries Clients
book.

v When you create, assign, and deploy a message flow:
1. You must grant get authority to each input queue identified in an MQInput

node, for the broker’s ServiceUserID.
2. You must grant put authority to each output queue identified in an

MQOutput node, or by an MQReply node, for the broker’s ServiceUserID.
3. You must grant get authority to each output queue identified in an

MQOutput node or an MQReply node to the user ID under which a
receiving or subscribing client application runs.

4. You must grant put authority to each input queue identified in an MQInput
node to the user ID under which a sending or publishing client application
runs.

Securing database resources
MQSeries Integrator creates and maintains essential configuration information in
databases. When you have completed installation, you must create a minimum of
one database that MQSeries Integrator can use for this information. When you
issue the commands that create a broker and the Configuration Manager, tables are
created within the database to hold the information required by that component.
Other commands also need access to the database tables.

You must set up authorizations as follows:
v Creating, changing, or deleting a broker:

1. Grant full access authority to the user ID specified as ServiceUserID. Follow
the steps described in “Authorizing internal database access” on page 15 for
the database you have used for your broker tables.

v Creating, changing, or deleting the Configuration Manager:

MQSeries resources

58 MQSeries Integrator Administration Guide V2.0.1

1. Grant full access authority to the user ID specified as ServiceUserID, as
described in “Authorizing internal database access” on page 15.

v Migrating MQSeries Publish/Subscribe brokers:
1. Grant read access authority to the user ID invoking the command, as

described in “Authorizing internal database access” on page 15 for the
database you have used for your broker tables.

DB2 services

On Windows NT
Some of the DB2 services run as Windows NT services and use and retain the user
ID and password you specified when you installed this product. If you later
change the password for this user ID, you must change it where it is retained in
these services. You can do this by accessing the services from the Control Panel. If
you do not do this, DB2 will fail to operate successfully.

For DB2 Version 6.1, the relevant services are DB2DAS00, DB2 Governor, and DB2
JDBC Applet Server. For other levels of DB2, you must check the DB2
documentation.

On UNIX platforms
DB2 on UNIX systems is started and stopped without needing a password.

Database resources

Chapter 4. Setting up security 59

Database resources

60 MQSeries Integrator Administration Guide V2.0.1

Chapter 5. Problem determination

MQSeries Integrator provides commands and facilities that help you understand
what is happening in your broker domain, and to allow you to find out more
information when you need to.

It provides two major sources of information:
v “Traces”.
v “Messages” on page 71.

You might also find it helpful to refer to additional information provided in the
MQSeries Integrator Version 2.0.1 SupportPac MHI1. This has the latest problem
determination information in a useful question-and-answer format. You can access
this SupportPac from:

http://www.ibm.com/software/mqseries/txppacs/

You can also access information recorded by other products that MQSeries
Integrator interacts with:
v “Database logs” on page 72.
v “MQSeries facilities” on page 71.

Traces
MQSeries Integrator always records a minimum level of trace activity in the broker
domain. You can activate further traces of the major product components (broker,
Configuration Manager, and User Name Server), of the execution groups and
message flows you define in a broker, and for utility programs, if you choose.

Trace records are available from the following sources:
v “Windows NT event log messages”.
v “UNIX syslog messages” on page 62.
v “Optional traces” on page 63.

Windows NT event log messages
MQSeries Integrator components running on Windows NT use the Windows NT
event log to record information about major activities within the system. All
components provide diagnostic information in this form whenever error or
warning conditions affect broker operation. These conditions include:
v Unsuccessful attempts to write a message to an MQSeries output queue.
v Errors interacting with databases.
v Inability to parse an input message.

When an error occurs, you are recommended to check the event log first. You can
access the event log from the Windows NT Start menu, by selecting
Programs->Administrative Tools (Common)->Event Viewer. You must select the
Application view.

You cannot use an MQSeries Integrator command to switch off the event log. It is
an operating system facility, and you must therefore control it using Windows NT
commands. By default, it is always active. If you switch off this facility, you will
lose valuable diagnostic information.

© Copyright IBM Corp. 2000 61

The MQSeries Integrator entries in the event log are all identified by the string
MQSIv201 in the Source field of each record. If you press enter, or double-click a
particular entry, further details are displayed in a separate dialog. The event
identifier (shown in the Event field of the Application view, and as the Event ID
value on the details view), is an MQSeries Integrator message number. The first
part of the message shown in the dialog identifies the MQSeries Integrator
component. You can look up these messages in MQSeries Integrator Messages using
the number, preceded by the characters BIP, as the key.

UNIX syslog messages
MQSeries Integrator components running on UNIX platforms use syslog to record
information about major activities within the system. All components send
diagnostic information to syslog whenever error or warning conditions affect
broker operation. These conditions include:
v Unsuccessful attempts to write a message to an MQSeries output queue.
v Errors interacting with databases.
v Inability to parse an input message.

When an error occurs, you are recommended to check syslog first. Where syslog
messages are sent depends on how your UNIX system has been configured. To
enable syslog to direct readable output from MQSeries Integrator to a text file
called, for example, mqsisyslog:
Step 1. Put the following line in the syslog configuration file (the default file is

/etc/syslog.conf):
user.info /tmp/mqsisyslog

Step 2. The output file mqsisyslog must already exist before it can be written to.
Therefore, create the file by using, for example:
touch /tmp/mqsisyslog

Step 3. The syslogd daemon needs to re-read the configuration file to activate the
command. Therefore, make the syslogd re-scan its configuration file. On
AIX, enter the command:
refresh -s syslogd

On other UNIX platforms, enter the command:
kill -HUP)cat /etc/syslog.pid)

For other syslog options, see the documentation for your particular UNIX platform.

The MQSeries Integrator syslog entries are all identified by the string MQSIv201 and
all have the form:

Date Time HostName MQSIv201: (BrokerName)[ThreadNumber]BIPnnnnX: Message:
SystemInformation

Where:
v HostName is the name of the machine where the message was produced.
v BrokerName is the name of the broker where the message was produced.
v ThreadNumber is the threadID of the broker process where the message was

produced.
v BIPnnnnx is the MQSeries Integrator message identifier, where:

– nnnn is the number of the message, and
– X is a letter indicating the severity level of the message (one of I: information,

W: warning , E: error, and S: serious.

Traces

62 MQSeries Integrator Administration Guide V2.0.1

|

v Message is the Message associated with the message identifier, which may be
referenced in the MQSeries Integrator Messages book.

v SystemInformation is internal information which may be of use if you need to
contact your IBM support center.

Note: On UNIX platforms, MQSeries Integrator makes the assumption that the
local codepage is UTF-8. If MQSeries Integrator is not running in an
environment that has this codepage, some of your national characters may
not display correctly. In order to overcome this, you can use the
environment variable:
MQSI_LOCAL_CCSID

to inform MQSeries Integrator which local codepage you would like to use.
For example, if you have Japanese DBCS characters, using code set ibm-932,
that are to be displayed in syslog, you will need to export:
MQSI_LOCAL_CCSID=932

in the environment in which MQSeries Integrator is to run.

Optional traces
MQSeries Integrator provides optional trace facilities to provide additional
recording of activity in the MQSeries Integrator components. These facilities are
offered in two categories:
v User tracing. You can activate tracing of brokers, execution groups and assigned

message flows.
You are very likely to use this option when you are resolving problems or
unexpected behavior exhibited by your message flows. You can use the Control
Center to control most of the trace activity you will need. It also enables you to
start and stop tracing on systems that are remote to the Control Center.
You can also use the mqsichangetrace command which provides a wider range
of parameters if you need wider flexibility. This command, like the commands to
report trace options, and retrieve and format trace output, must be invoked on
the system on which the component being traced is active.
You are also recommended to include a Trace node in your message flows when
you are developing and testing them. This option not only gives you the ability
to trace messages and activity in the flow, but also allows you to specify an
alternate target file for the trace contents to isolate the detail you are interested
in. For details of how to do this, see MQSeries Integrator Using the Control Center.

v Service tracing. You can activate more comprehensive broker tracing, and start
tracing for the Control Center, Configuration Manager, and User Name Server.
You can activate tracing for all the commands described in “Chapter 8.
Commands” on page 89, including the trace commands themselves. You must
use the commands to work with service trace: you cannot use the Control
Center.
You are recommended to activate these traces only when you receive an error
message that instructs you to start service trace, or when directed to do so by
your IBM Support Center.

All optional traces are inactive by default, and must be explicitly activated by
command when information is required over and above that provided by the
entries in the Event log. When you set tracing on, you are causing additional
processing to be executed for every activity in the component you are tracing.
Large quantities of data are generated by the components.

Traces

Chapter 5. Problem determination 63

You must therefore expect to see some impact in performance while trace is active,
but you can get the best results by being selective about what you trace and by
restricting the time during which trace is active.

MQSeries Integrator provides commands to enable you to control the optional
traces:
v “Starting user trace”.
v “Checking user trace options” on page 65.
v “Changing user trace options” on page 65.
v “Retrieving user trace information” on page 65.
v “Formatting user trace information” on page 66.
v “Viewing and interpreting user trace information” on page 70.
v “Stopping user trace” on page 70.
v “Controlling Service traces” on page 70.

Starting user trace
You can start MQSeries Integrator user trace facilities by using the command
mqsichangetrace, and, for execution groups and assigned message flows, from the
Control Center.You can select only one broker on each invocation of the command,
but you can activate concurrent traces for more than one broker if you want, by
invoking the command more than once. For a full description of this command, see
“mqsichangetrace (Change trace settings)” on page 95.

You must specify an individual execution group or message flow within the
specified broker to limit the scope of a trace. The events recorded when you select
the message flow option include:
v The sending of a message from one message processing node to the next.
v The detailed evaluation of expressions in a filter or compute node.

You can start trace at two levels, normal and debug:
v normal: tracks events that affect objects that you create, delete and can check in

and out, such as nodes.
v debug: tracks the beginning and the end of processes as well as monitoring

objects that are affected by that process.

See Figure 4 on page 68 and Figure 5 on page 69 to see the respective effects of
these two settings.

Before you start to trace a broker, or any of its execution groups or message flows,
you must have deployed these resources using the Control Center. For details of
how to do this, see MQSeries Integrator Using the Control Center.

The user trace log files: When trace is active for any component (including the
Control Center), information is recorded in binary form in files in the \log
subdirectory of the MQSeries Integrator home directory.

The file names reflect the component and subcomponent for which the trace is
active. For example, the broker name and unique execution group identifier form
part of the file name when you are tracing activity within that execution group.

For example, if you have created a broker called MQSIQM, you might see the
following files in the log subdirectory:
MQSIQM.682ec116-dc00-0000-0080-ce28a236e03d.userTrace.bin.1
MQSIQM.682ec116-dc00-0000-0080-ce28a236e03d.userTrace.bin.2

Optional traces

64 MQSeries Integrator Administration Guide V2.0.1

If the trace cannot be associated with a specific component, the component name
part of the file name is set to utility.

You cannot view these files directly, you must use the commands provided to
access the trace information and convert it to a viewable format. See “Retrieving
user trace information” and “Formatting user trace information” on page 66 for
more details.

Example of starting user trace: If you want to start debug level tracing for the
execution group test on a broker you have created with the name MQSI2, enter the
command:
mqsichangetrace MQSI2 -u -e default -l debug

This command is described in full in “mqsichangetrace (Change trace settings)” on
page 95. You can start the same trace from the Control Center. To do this, select the
Operations view, right-click the test execution group, and select User trace->Debug. If
you start the trace in this way, you can check that it has started successfully by
selecting the Log view, and reviewing the log entries.

Checking user trace options
You can check what tracing options are currently active for your brokers by using
the mqsireporttrace command. This command is described in full in
“mqsireporttrace (Report trace settings)” on page 146.

You must specify the component for which the check is required. The command
responds with the current trace status for the component you have specified.

Example of checking user trace options: If you want to check what options are
currently set for the broker MQSI2 and its execution group test, enter the
command:
mqsireporttrace MQSI2 -u -e default

If you had started tracing by following the example in “Starting user trace” on
page 64, the response to the check command is:
BIP8098I: Trace level: debug, mode: safe, size: 1024 KB
BIP8071I: Successful command completion

Changing user trace options
If you want to change the trace options you have set, you can use the
mqsichangetrace command and set different values for the parameters. The
command is fully described in “mqsichangetrace (Change trace settings)” on
page 95. You can also use the Control Center to change the trace options for
execution groups and assigned message flows.

Example of changing user trace options: To change from a debug level of trace to
normal, enter the following command:
mqsichangetrace MQSI2 -u -e default -l normal

Retrieving user trace information
You can access the trace information recorded by the user trace facilities using the
command mqsireadlog. This command retrieves the trace details according to
parameters you specify on the command, and writes the requested records to a file,
or to the command line window, in XML format. For a full description of this
command, see “mqsireadlog (Read log)” on page 141.

Optional traces

Chapter 5. Problem determination 65

Example of retrieving user trace information: To retrieve information for the
trace activated in “Starting user trace” on page 64, and write it to an output file,
enter the command:
mqsireadlog MQSI2 -e default -u -o trace.xml

This sends a log request to the broker to retrieve the user trace log, and stores the
responses in the file trace.xml. You can view this file using an XML editor or
viewer which shows:

Formatting user trace information
The trace information generated by the mqsireadlog command is not easy to read
unless you use an XML viewer. MQSeries Integrator provides the command
mqsiformatlog to format the trace information to a flat file, so you can view it
using a text editor.

The format command takes a file generated by mqsireadlog as input, and flattens
the XML log into structured records. It also retrieves the inserts for the XML
message in the user’s current locale. You can specify the formatted output to be
directed to a file, or viewed in the command line window.

Each user trace entry contains a timestamp and an MQSeries Integrator message,
which contains a number (for example, BIP2622) and a text string containing
variable inserts.

This command is described in full in “mqsiformatlog (Format log)” on page 125.

Example of formatting user trace information: To format the trace file created in
“Retrieving user trace information” on page 65, enter the command:
mqsiformatlog -i trace.xml -o formattrace.log

<UserTraceLog>
<UserTrace timestamp=’2000-02-17 15:24:38.942001’ thread=’2698’

function=’ImbConfigurationNode:: evaluate’ type=’ComIbmConfigurationNode’
name=’ConfigurationNode’ label=’ConfigurationMessageFlow.ConfigurationNode’
text=’Configuration changed successfully and committed to persistent store’
catalog=’MQSIv201’ number=’4040’
file=’f:/build/mqsi2/src/DataFlowEngine/ImbConfigurationNode.cpp’ line=’722’>
<Insert type=’string’ text=’default’/>
<Insert type=’string’ text=’070f555f-dd00-0000-0080-d2e87e40bbd4’/>
<Insert type=’string’ text=’ConfigurationMessageFlow.ConfigurationNode’/>

</UserTrace>
<UserTrace timestamp=’2000-02-17 15:24:38.951999’ thread=’2698’

function=’ImbMqOutputNode:: putMessage’ type=’ComIbmMQOutputNode’
name=’OutputNode’ label=’ConfigurationMessageFlow.outputNode’
text=’Message received and queued successfully’
catalog=’MQSIv201’ number=’2622’
file=’f:/build/mqsi2/src/DataFlowEngine/ImbMqOutputNode.cpp’ line=’1387’>
<Insert type=’string’ text=’REG1’/>
<Insert type=’string’ text=’SYSTEM.BROKER.EXECUTIONGROUP.REPLY’/>
<Insert type=’string’ text=’ConfigurationMessageFlow.outputNode’/>

</UserTrace>
</UserTraceLog>

Figure 2. Unformatted user trace

Optional traces

66 MQSeries Integrator Administration Guide V2.0.1

This command reads the trace information in the file trace.xml, formats it, and
writes it to the file formattrace.log. Figure 3 shows the output when the extract of
an unformatted file is formatted by mqsiformatlog:

Here are two more examples showing formatted user trace. Tracing has been
started on a message flow that contains a compute node. Figure 4 on page 68
shows the normal level trace.

2000-02-29 10:21:31.259000 381 UserTrace
BIP4040I: Configuration changed successfully for Execution Group ″default″.
The message broker received a configuration message
and updated its configuration accordingly.
No user action required.

2000-02-29 10:21:31.489000 381 UserTrace
BIP2622I: Message successfully output to queue
ConfigurationMessageFlow.outputNode
The MQ output node ″ConfigurationMessageFlow.outputNode″
successfully wrote an output message to the specified queue
ConfigurationMessageFlow.outputNode connected to queue
manager SYSTEM.BROKER.EXECUTIONGROUP.REPLY.
No user action required.

2000-02-29 10:24:35.303001 381 UserTrace
BIP2632I: Message being propagated to the output terminal
An input message received from MQSeries input queue in node
″ConfigurationMessageFlow.InputNode″ is being propagated
to any nodes connected to the output terminal.
No user action required.

2000-02-29 10:24:36.674999 381 UserTrace
BIP4040I: Configuration changed successfully for
Execution Group ″default″.
The message broker received a configuration message
and updated its configuration accordingly.
No user action required.

Figure 3. Formatted user trace

Optional traces

Chapter 5. Problem determination 67

Timestamps are formatted in local time, local time is GMT.

2000-03-01 17:50:42.632999 400UserTrace
BIP4040I: Configuration changed successfully for Execution Group ″default″.
The message broker received a configuration message and updated
its configuration accordingly.
No user action required.

2000-03-01 17:50:42.632999 400UserTrace
BIP2622I: Message successfully output to queue SYSTEM.BROKER.EXECUTIONGROUP.
The MQ output node ″ConfigurationMessageFlow.outputNode″
successfully wrote an output message to the specified
queue SYSTEM.BROKER.EXECUTIONGROUP.REPLY
connected to queue manager SRUC
No user action required.

2000-03-01 17:51:18.294000 400UserTrace
BIP2632I: Message being propagated to the output terminal.
An input message received from MQSeries input queue in
node ″ConfigurationMessageFlow.InputNode″ is being propagated
to any nodes connected to the output terminal.
No user action required.

2000-03-01 17:51:18.304000 400UserTrace
BIP4040I: Configuration changed successfully for Execution Group ″default″.
The message broker received a configuration message and updated its
configuration accordingly.
No user action required.

2000-03-01 17:51:18.304000 400UserTrace
BIP2622I: Message successfully output to queue SYSTEM.BROKER.EXECUTIONGROUP
The MQ output node ″ConfigurationMessageFlow.outputNode″
successfully wrote an output message to the specified queue
SYSTEM.BROKER.EXECUTIONGROUP.REPLY connected
to queue manager SRUC.
No user action required.

2000-03-01 17:51:36.369998 356UserTrace
BIP2632I: Message being propagated to the output terminal.
An input message received from MQSeries input queue in node
″ComputeTrace2.MQInput1″ is being propagated to any nodes
connected to the output terminal.
No user action required.

2000-03-01 17:51:36.369998 356UserTrace
BIP4121I: Message propagated to out terminal. The compute node
″ComputeTrace2.Compute1″ has received a message and is propagating
it to any nodes connected to its out terminal.
No user action required

2000-03-01 17:51:36.380001 356UserTrace
BIP2622I: Message successfully output to queue COMPUTEOUT.
The MQ output node ″ComputeTrace2.MQOutput1″ successfully wrote
an output message to the specified queue COMPUTEOUT connected to
queue manager SRUC.
No user action required.

Threads encountered in this trace: 356 400

Figure 4. Formatted user trace: normal level

Optional traces

68 MQSeries Integrator Administration Guide V2.0.1

Figure 5 shows an extract of the debug level trace that reflects the same action
traced at normal level in Figure 4 on page 68.

Timestamps are formatted in local time, local time is GMT.
.
.
.

2000-03-01 17:53:30.284000 356UserTrace
BIP2632I: Message being propagated to the output terminal.
An input message received from MQSeries input queue in node
″ComputeTrace2.MQInput1″ is being propagated to any nodes
connected to the output terminal.
No user action required.

2000-03-01 17:53:30.284000 356UserTrace
BIP2537I: Executing statement at (1, 1).
The statement being executed was SET OutputRoot = InputRoot;.
No user action required.

2000-03-01 17:53:30.284000 356UserTrace
BIP2538I: Evaluating expression at (1, 18).
The expression being evaluated was InputRoot.
No user action required.

2000-03-01 17:53:30.294000 356UserTrace
BIP2542I: (1, 5) : Navigating path element.
No user action required.

2000-03-01 17:53:30.294000 356UserTrace
BIP2568I: Performing tree copy of InputRoot to OutputRoot.
No user action required.

2000-03-01 17:53:30.294000 356UserTrace
BIP2537I: Executing statement at (2, 1).
The statement being executed was SET OutputRoot.*[LAST].Message.Name = ’Wayne’;.
No user action required.

2000-03-01 17:53:30.294000 356UserTrace
BIP2542I: (2, 5) : Navigating path element.
No user action required.

2000-03-01 17:53:30.294000 356UserTrace
BIP2566I: Assigning value ’Wayne’ to OutputRoot.*[LAST].Message.Name.
No user action required.

.

.

.
2000-03-01 17:53:30.294000 356UserTrace
BIP4121I: Message propagated to out terminal.
The compute node ″ComputeTrace2.Compute1″ has received a message
and is propagating it to any nodes connected to its out terminal.
No user action required

.

.

.
Threads encountered in this trace: 356 400

Figure 5. Formatted user trace: debug level

Optional traces

Chapter 5. Problem determination 69

Viewing and interpreting user trace information
A formatted log file, like the one illustrated in Figure 3 on page 67, contains a
sequence of MQSeries Integrator messages that record the activity in a specific part
of the system (the part that you identified when you started the trace). You can use
this sequence to understand what is happening, and check that the behavior
recorded is what you are expecting.

For example, if you have activated message flow trace, you can see entries that
record the path a message takes through the message flow, and why decisions
result in this path (where a choice is available).

If you are seeing unexpected behavior in a message flow, or execution group, you
can use this trace information to check the actions taken and identify the source of
an error or other discrepancy.

In Figure 3 on page 67, the first message indicates a change has been made to a
message flow attribute. In this case, the change was made successfully. If this
action had failed, you would see a different error message that gives details of the
error that occurred. Using this information you can track down errors, and
probable causes.

The messages contain identifiers for the resources that are being traced, for
example the execution groups and message flows. The identifier given is usually
the label (the name) you gave the resource when you defined it, for example,
execution group “exg1”.

Stopping user trace
You can stop an active trace using the command mqsichangetrace. You must
specify a trace level of none. This stops the trace activity for the component you
specify on this command. It does not affect active traces on other components. For
example, if you stop tracing on the execution group test, an active trace on another
execution group will continue. For execution groups or assigned message flows,
you can also use the Control Center to stop an active trace.

You should note that if you redeploy a component from the Control Center, trace
for that component will be returned to its default setting; that is, none. A delta
deploy will maintain the current settings.

Example of stopping user trace: To stop the trace started by the command shown
in “Starting user trace” on page 64, enter the command:
mqsichangetrace MQSI2 -u -e default -l none

For a full description of this command, see “mqsichangetrace (Change trace
settings)” on page 95.

Controlling Service traces
MQSeries Integrator supports more extensive service tracing in addition to the user
level trace. You are recommended to use service traces only when you receive an
error message that instructs you to start service trace, or when directed to do so by
your IBM Support Center.

In summary:
v Service tracing of the brokers, the Configuration Manager, and the User Name

Server are controlled using the trace commands that support and control user
tracing.

Optional traces

70 MQSeries Integrator Administration Guide V2.0.1

v The Control Center can be traced by invoking it with a special command,
mqsilcc, described in “mqsilcc (Start Control Center trace)” on page 129.
When you activate trace for the Control Center, tracing is also activated for the
MQSeries Client for Java. For more information about this trace, refer to the
MQSeries Clients book.

v The commands described in “Chapter 8. Commands” on page 89 (including the
trace commands) may themselves be controlled by the existence and setting (on
both Windows NT and UNIX platforms) of the environment variables
MQSI_UTILITY_TRACE (which can be set to normal or debug) and
MQSI_UTILITY_TRACESIZE (which defines the size of the trace file in KB, to a
maximum of 2GB).

Messages
MQSeries Integrator produces messages in response to most requests for
information and action. For example, when you invoke one of the commands
detailed in “Part 2. Reference” on page 75, you will receive one or more messages
indicating the success or failure of the command.

All MQSeries Integrator messages can be identified by the prefix BIP. These three
characters are followed by a numeric string of four additional characters, which are
a unique message identifier.

MQSeries Integrator Messages contains a detailed description of every message
generated by MQSeries Integrator, and provides information about any action
required by you in response to each message (for example, to correct an error).

MQSeries facilities
MQSeries Integrator components depend on MQSeries resources in many ways.
You can therefore gain valuable information from the MQSeries logs and events.

MQSeries logs
The MQSeries product logs can be very useful in diagnosing errors that occur in
your broker domain. For example, if the Configuration Manager is unable to
communicate with a broker, the channels that connect them might be wrongly
configured, or experiencing network problems.

MQSeries writes entries into the local error log (that is, the Windows NT Event log
or the UNIX platform syslog) as appropriate. It also creates queue manager logs,
normally written to the errors subdirectory of the queue manager’s subdirectory.
Client logs are created in the errors subdirectory of the client’s MQSeries directory.
There are additional logs in the errors directory in the MQSeries data path. These
logs might contain information about failures in the queue manager.

For more information about using MQSeries logs, see the MQSeries System
Administration book.

MQSeries events
MQSeries provides information about errors, warnings, and other significant
occurrences in a queue managers in the form of instrumentation events messages.

Optional traces

Chapter 5. Problem determination 71

You can activate event activity using the MQSC or PCF interfaces in three areas:
v Queue manager events.
v Performance events.
v Channel events.

When active, these event messages are sent to event queues that can be monitored
or triggered. You might find it appropriate to activate MQSeries events when you
are investigating performance, or unexpected behavior, in your MQSeries
Integrator broker domain.

For further details about MQSeries events, see MQSeries Programmable System
Management.

Database logs
The database products used by MQSeries Integrator also record information that
might be useful if you have any problems with their access. You should refer to the
product documentation for details of logs and other problem determination
options.

DB2 logs
DB2 has a number of facilities that assist you with problem diagnosis and recovery.
For example, there are the error logs db2diag.log and db2alert.log that contain
error and alert information recorded by various components of the DB2 product.

Refer to the DB2 Troubleshooting Guide for comprehensive information on what
options are available, how to use them, and how to interpret the information
provided.

ODBC tracing
On Windows NT only, you can initiate trace for ODBC activity by using the
Tracing tab of the ODBC function available in the Windows NT Control Panel.

Contacting your IBM support center
If you are unable to resolve problems that you find when you use MQSeries
Integrator, or if you are directed to do so by an error message generated by
MQSeries Integrator, you can request assistance from your IBM support center.

Before you contact them, use the checklist below to gather key information. Some
items may not necessarily be relevant in every situation. But you should provide as
much information as possible to enable the IBM support center to recreate your
problem.
v For MQSeries Integrator:

– CSDs applied.
– E-fixes applied.
– All current trace and error logs, including relevant Windows NT Event log or

UNIX platform syslog entries. User trace log files at debug level should be
obtained for all relevant message flows and should preferably be formatted.
(See “Optional traces” on page 63 for details of how to obtain and format
these.)

MQSeries facilities

72 MQSeries Integrator Administration Guide V2.0.1

– A list of the components installed. This should include details of the number
of machines and their operating systems, the number of brokers and the
machine on which they are running, and the existence and details of any User
Name Servers.

– The file obtained by exporting your workspace. This action is performed from
the Control Center; see MQSeries Integrator Using the Control Center for details
of how to do this.

– The files obtained by exporting all relevant message sets. This action is
performed for each message set by using the mqsimrmimpexp command
with the -e flag set. See “mqsimrmimpexp (Import/Export message set)” on
page 138 for further details.

– A sample of the messages being used when the problem arose.
– If relevant, the report file from the C or COBOL importer. This is located in

the directory from which the file import was attempted.
v For MQSeries:

– CSDs applied.
– E-fixes applied.
– All current trace and error logs, including relevant Windows NT Event log or

UNIX platform syslog entries and First Failure Support Technology™ (FFST™)
output files. You can find these files, which have the extension FDC, in the
errors subdirectory within the MQSeries home directory.

– Details of MQSeries client software, if appropriate.
v For each database you are using:

– Product and release level (for example, DB2 6.1).
– CSDs applied.
– -- E-fixes applied.
– -- All current trace and error logs, including relevant Windows NT Event log

or UNIX platform syslog entries and First Failure Support Technology (FFST)
output files. Check database product documentation for where to find these
files.

v For Windows NT:
– Version.
– Service Pack level.
– The version of the system files msvcrt.dll, msvcp60.dll, msvcirt.dll, and

mfc42.dll. You can find these files in the WINNT\SYSTEM32 directory. Use the
Windows NT Explorer file properties to display the versions.

v For Sun Solaris:
– Version. You can find the version of Sun Solaris installed by using the uname

-a command.
– Service level applied.

v For AIX:
– Version. You can find the version of AIX installed by using the uname -a

command. More detailed information is available with the lslpp -l bos.rte
command.

– Service level applied.
v Details of the operation you were performing, the results that occurred, and the

results you were expecting.

Contacting IBM

Chapter 5. Problem determination 73

Contacting IBM

74 MQSeries Integrator Administration Guide V2.0.1

Part 2. Reference

Chapter 6. Using MQSeries Integrator commands 77
Rules for using MQSeries Integrator commands . . 77

Rules for naming resources 77
Responses to commands 78

Command syntax help. 79
How to read syntax diagrams 79

Chapter 7. Using the MQSeries Integrator
Command Assistant 83
Overview 83

Invocation 83
Navigation 83
Command processing 84

Example use 85

Chapter 8. Commands 89
mqsichangebroker (Change broker) 90

Purpose 90
Syntax 90
Required parameters 90
Optional parameters 90
Authorization 91
Responses 92
Examples 92
Related commands 92

mqsichangeconfigmgr (Change Configuration
Manager) 93

Purpose 93
Syntax 93
Optional parameters 93
Authorization 94
Responses 94
Examples 94
Related commands 94

mqsichangetrace (Change trace settings) 95
Purpose 95
Syntax 96
Required parameters 96
Optional parameters 96

Additional parameters exclusive to service
trace 98

Authorization 98
Responses 98
Examples 98
Related commands 98

mqsichangeusernameserver (Change User Name
Server) 99

Purpose 99
Syntax 99
Optional parameters 99
Authorization 100
Responses 100
Examples 100
Related commands 100

mqsiclearmqpubsub (Remove MQSeries
Publish/Subscribe broker as a neighbor) 101

Purpose 101
Syntax. 101
Required parameters 101
Authorization 101
Responses 101
Examples 102
Related commands 102

mqsicreatebroker (Create broker) 103
Purpose 103
Syntax. 104
Required parameters 104
Optional parameters 105
Authorization 106
MQSeries queues created 106
Database tables created 107
Responses 107
Examples 108
Related commands 108

mqsicreateconfigmgr (Create Configuration
Manager) 109

Purpose 109
Syntax 110
Required parameters 110
Optional parameters 111
Authorization 112
MQSeries queues created 112
MQSeries channels created 112
Database tables created 112
Responses 113
Examples 114
Related commands 114

mqsicreateusernameserver (Create User Name
Server) 115

Purpose 115
Syntax 115
Required parameters 115
Optional parameters 116
Authorization 116
MQSeries queues created 117
Responses 117
Examples 117
Related commands 117

mqsideletebroker (Delete broker) 118
Purpose 118
Syntax 118
Required parameters 118
Optional parameters 119
Authorization 119
Responses 119
Examples 119
Related commands 119

mqsideleteconfigmgr (Delete Configuration
Manager) 120

Purpose 120
Syntax. 120
Optional parameters 120

© Copyright IBM Corp. 2000 75

Authorization 121
Responses 121
Examples 122
Related commands 122

mqsideleteusernameserver (Delete User Name
Server) 123

Purpose 123
Syntax. 123
Optional parameters 123
Authorization 123
Responses 123
Examples 124
Related commands 124

mqsiformatlog (Format log) 125
Purpose 125
Syntax. 125
Required parameters 125
Optional parameters 125
Authorization 125
Responses 125
Examples 125
Related commands 126

mqsijoinmqpubsub (Join broker to MQSeries
Publish/Subscribe parent broker) 127

Purpose 127
Syntax. 127
Required parameters 127
Authorization 127
Responses 127
Examples 128
Related commands 128

mqsilcc (Start Control Center trace) 129
Purpose 129
Syntax. 129
Optional parameters 129
Authorization 130
Responses 130
Examples 130

mqsilist (List resources) 131
Purpose 131
Syntax. 131
Optional parameters 131
Authorization 131
Responses 132
Examples 132

mqsilistmqpubsub (List MQSeries
Publish/Subscribe neighbor broker status). . . . 133

Purpose 133
Syntax. 133
Required parameters 133
Authorization 133
Responses 133
Examples 134
Related commands 135

mqsimrmcopymsgset (Copy message set) 136
Purpose 136
Syntax. 136
Required parameters 136
Authorization 137
Examples 137

mqsimrmimpexp (Import/Export message set) . . 138

Purpose 138
Syntax. 138
Required parameters 138
Optional Parameters 139
Authorization 139
Examples 139

mqsinrfreload (Reload NEON messages) 140
Purpose 140
Syntax. 140
Required parameters 140
Authorization 140
Responses 140
Examples 140

mqsireadlog (Read log) 141
Purpose 141
Syntax. 141
Required parameters 141
Optional parameters 142

Additional parameters exclusive to service
trace 142

Authorization 143
Responses 143
Examples 144
Related commands 145

mqsireporttrace (Report trace settings) 146
Purpose 146
Syntax. 146
Required parameters 146
Optional parameters 146

Additional parameters exclusive to service
trace 147

Authorization 147
Responses 147
Examples 147
Related commands 147

mqsistart (Start component) 148
Purpose 148
Syntax. 148
Required parameters 148
Authorization 148
Responses 149
Examples 149
Related commands 149

mqsistop (Stop component). 150
Purpose 150
Syntax. 150
Required parameters 150
Optional parameters 150
Authorization 150
Responses 151
Examples 151
Related commands 151

76 MQSeries Integrator Administration Guide V2.0.1

Chapter 6. Using MQSeries Integrator commands

This chapter includes the following general information:
v “Rules for using MQSeries Integrator commands”.
v “Rules for naming resources”.
v “How to read syntax diagrams” on page 79.

Rules for using MQSeries Integrator commands
You should observe the following rules when using the MQSeries Integrator
commands:
v Each command must be issued on the system on which the resource it relates to

is defined (or is to be created).
v Each command starts with a primary keyword (the executable command name)

followed by one or more blanks. Following that, flags (parameters) can occur in
any order.
There are three exceptions to this; the commands mqsimrmimpexp,
mqsimrmcopymsgsetand mqsilcc have positional parameters that must be
specified in the order given.

v If a flag has a corresponding value, its value must follow the flag to which it
relates. A flag can be followed by its value directly or can be separated by any
number of blanks.

v Repeated flags are not allowed.
v Strings that contain blanks or special characters must be enclosed in double

quotation marks. For example, you can specify a broker with the name
“My Broker”. Additionally, you can specify a ’null’, or empty, string with a pair
of double quotes with nothing between: ““.

v The case sensitivity of primary keywords and parameters depends on the
underlying operating system. On Windows NT, keywords are not case sensitive;
mqsistart, mqsiSTART and MQSISTART are all acceptable. On UNIX platforms, you
should use lower case; only mqsistart is acceptable.

All MQSeries Integrator commands have dependencies on MQSeries function. You
must ensure that MQSeries is available before issuing these commands.

Rules for naming resources
There are a few rules you must adhere to when you provide names or identifiers
for the components and resources in your broker domain.

The components of the broker domain are:
v Brokers.
v The Configuration Manager.
v The User Name Server (this component is optional).

The broker resources are:
v Execution groups.
v Message sets and messages.
v Message flows.
v Topics.

© Copyright IBM Corp. 2000 77

The character set that can be used for naming brokers, execution groups and
message identifiers is as follows:
v Uppercase A-Z
v Lowercase a-z
v Numerics 0-9
v Any special characters supported by the underlying file system. The following

are accepted on Windows NT:

$ % ‘ (apostrophe) ’ (quote)
- (dash) _ (underscore) @ ˜ (tilde)
! () {
} [] ∧
& + , (comma)
; =

and the following characters are accepted on UNIX platforms:

. (dot) % - (dash) _ (underscore)
@ ˜ (tilde) ! {
} [] ∧
, (comma) =

You can also use the space character, and any Unicode character with a decimal
value greater than 127 (hexadecimal X'7F’).

For all other resources, any characters that are supported by the database
configuration are supported.

Broker names and fixed names (ConfigMgr and UserNameServer) are not case
sensitive on the Windows NT platform. For example, broker names Broker1 and
BROKER1 refer to the same broker. On UNIX platforms, they are case sensitive and
the previous examples would refer to different brokers. You should use
UserNameServer as shown. (In this context, ConfigMgr is not relevant.) A broker
name specified in the Control Center must always match the case specified when
the broker was created.

Note: These rules are specific to using the commands, the Command Assistant and
the Control Center. There are additional rules for naming message service
folders within the MQRFH2 header: these are described in the MQSeries
Integrator Programming Guide.

Responses to commands
Responses are issued to the commands as messages. If a command is successful, it
returns a return code of zero, and a message with the number BIP8071I (Command
successful).

Warning and error responses are listed in the command descriptions. If the
command is unsuccessful and returns, for example, the message BIP8083, it would
have an exit code, in this case, of 83. You can check the full text of the message,
and the explanation and action, in the MQSeries Integrator Messages book.

The following responses are returned by all the commands, and are not listed with
each individual command:
v BIP8001 Unknown flag selected
v BIP8002 Selected flags incompatible

Rules for using commands

78 MQSeries Integrator Administration Guide V2.0.1

v BIP8003 Duplicate flag
v BIP8004 Invalid flags or arguments
v BIP8005 Flag or argument missing
v BIP8006 Mandatory flag missing
v BIP8007 Mandatory argument missing
v BIP8009 Program name invalid
v BIP8083 Invalid component name

Command syntax help
You can enter the characters “-?” or “/?” after every command to see the syntax it
requires. This identifies optional and mandatory parameters. For example:
mqsicreateusernameserver /?

BIP8107W: Creates the User Name Server.
Syntax:
mqsicreateusernameserver -i ServiceUserId -a ServicePassword
-q QueueManagerName [-d SecurityDomainName]
[-r RefreshInterval] [-w WorkPath]

Command Options
i indicates the userid that the User Name Server should run under.
a the password for the User Name Server userid.
q indicates the MQSeries Queue Manager that the User Name Server

should use. This is created if it does not exist.
d indicates the Security Domain that the User Name Server will use.
r number of seconds between each refresh of the User Name Server

internal cache.
w indicates the directory into which trace logs are placed.

BIP8071I: Successful command completion.

How to read syntax diagrams
This book contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and
left arrow pair. Lines beginning with a single right arrow are continuation lines.
You read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

Table 4. How to read syntax diagrams

Convention Meaning

QQ A B C QR
You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

Rules for using commands

Chapter 6. Using MQSeries Integrator commands 79

Table 4. How to read syntax diagrams (continued)

Convention Meaning

QQ
A

QR
You may specify value A. Optional values are shown below the main
line of a syntax diagram.

QQ A
B
C

QR
Values A, B, and C are alternatives, one of which you must specify.

QQ
A
B
C

QR
Values A, B, and C are alternatives, one of which you may specify.

QQ

S

,

A
B
C

QR

You may specify one or more of the values A, B, and C. Any required
separator for multiple or repeated values (in this example, the
comma (,)) is shown on the arrow.

QQ

S

,

A
QR

You may specify value A multiple times. The separator in this
example is optional.

QQ
A

B
C

QR

Values A, B, and C are alternatives, one of which you may specify. If
you specify none of the values shown, the default A (the value
shown above the main line) is used.

QQ Name QR

Name:

A
B

The syntax fragment Name is shown separately from the main syntax
diagram.

Syntax diagrams

80 MQSeries Integrator Administration Guide V2.0.1

Table 4. How to read syntax diagrams (continued)

Convention Meaning

Punctuation and
uppercase values

Specify exactly as shown.

Lowercase values
(for example, name)

Supply your own text in place of the name variable.

Syntax diagrams

Chapter 6. Using MQSeries Integrator commands 81

Syntax diagrams

82 MQSeries Integrator Administration Guide V2.0.1

Chapter 7. Using the MQSeries Integrator Command Assistant

This chapter introduces the MQSeries Integrator Command Assistant, the preferred
interface for configuring your MQSeries Integrator resources.

Overview
The Command Assistant is a graphical interface that supports a subset of the
command line commands described in “Chapter 8. Commands” on page 89:
v mqsicreatebroker: create a broker.
v mqsichangebroker: change the attributes of a broker.
v mqsideletebroker: delete a broker.
v mqsicreateconfigmgr: create the Configuration Manager.
v mqsichangeconfigmgr: change the attributes of the Configuration Manager.
v mqsideleteconfigmgr: delete the Configuration Manager.
v mqsicreateusernameserver: create a User Name Server.
v mqsichangeusernameserver: change the attributes of a User Name Server.
v mqsideleteusernameserver: delete a User Name Server.

You should note that commands relating to the Configuration Manager are only
available on Windows NT.

The Command Assistant provides a series of easy-to-use windows that
significantly simplify the task of creating and changing components. The create
commands, in particular, have a large number of parameters. The Command
Assistant displays all the parameters with meaningful labels and provides
integrated, context-sensitive help information, and indicates whether each
parameter is mandatory or optional.

The Command Assistant does not change or enhance the function of the equivalent
command in any way.

The Command Assistant does not provide support for starting and stopping these
components. You must issue mqsistart and mqsistop at the command line.

Invocation
On Windows NT, you can invoke the Command Assistant from an icon in the
MQSeries Integrator program folder. You can also access it from the Start menu
(Start->Programs->IBM MQSeries Integrator 2.0->Command Assistant). This presents
a submenu from which you can choose the specific command you want to issue.

On UNIX platforms, change to the subdirectory /opt/mqsi/CmdAsst/ and then issue
one of the commands create_, change_ or delete_ with either broker or uns)
appended (for example, create_broker or change_uns).

Navigation
You can navigate both backwards and forwards through the Command Assistant
using the Next and Back buttons. On Windows NT, you can also invoke help at
any time by clicking the Help button. Help is not available on UNIX platforms.

© Copyright IBM Corp. 2000 83

When you have completed entering the parameters for the command you want to
invoke, click Finish. If the command is successful, the Command Assistant
terminates. If the command returns any error information, this is displayed in the
Error Log pane.

For assistance in responding to the errors shown, see the MQSeries Integrator
Messages book. If you can correct the error by changing the parameters of this
command, you can return to the window on which you must make the change by
clicking Back.

Command processing
Using the Command Assistant helps you specify the parameters you need, and
those you choose to use, for the commands it supports. It provides help for every
parameter to assist you in specifying correct values.

When you have specified the values, the Command Assistant builds a command
string equivalent to the one that you can enter at the command line. It displays
this command before it executes it, so you can check it and change it (by clicking
Back and returning to the previous screens) if you want. You can also save this
command string to a file if you want, by using cut and paste.

If you believe the command string shown is correct, click Finish. The command is
executed, and the response to the command is displayed in the lower pane of the
final window. If the command is successful, the message BIP8071I is displayed. If
the command is not successful, one or more error messages are displayed. Once
you have corrected the error, click Back to reenter the parameter values, and
reissue the command.

The commands and parameters are shown in detail in “Chapter 8. Commands” on
page 89.

Overview

84 MQSeries Integrator Administration Guide V2.0.1

Example use
An example of each type of command (create, change, delete) and an error case,
are illustrated.
1. Create a broker.

The example shows the values entered to create the sample broker used in the
configuration described in the MQSeries Integrator Version 2.0.1 Installation Guide
for your computer platform.

Figure 6. Create broker: screen 1

Figure 7. Create broker: screen 2

Examples

Chapter 7. Using the MQSeries Integrator Command Assistant 85

2. Modify the Configuration Manager.
The example shows the values entered to modify the Configuration Manager to
communicate with a new User Name Server.

Figure 8. Create broker: screen 3

Figure 9. Modify Configuration Manager: screen 1

Examples

86 MQSeries Integrator Administration Guide V2.0.1

3. Delete the User Name Server.
The example shows the values entered to delete the User Name Server.

Figure 10. Modify Configuration Manager: screen 2

Figure 11. Delete User Name Server: screen 1

Examples

Chapter 7. Using the MQSeries Integrator Command Assistant 87

4. Create a broker: failing command.
The example shows the final screen when a create broker command has failed.

Figure 12. Delete User Name Server: screen 2

Figure 13. Create broker: error response

Examples

88 MQSeries Integrator Administration Guide V2.0.1

Chapter 8. Commands

This chapter describes the commands provided by MQSeries Integrator. They are
listed below, grouped by function, with an indication of the computer operating
system on which they are available:

Command

Available on:

Windows NT UNIX platforms

Broker commands

mqsicreatebroker page 103 U U

mqsichangebroker page 90 U U

mqsideletebroker page 118 U U

mqsimigratebroker See the MQSeries Integrator Version 2.0.1 Installation
Guide for your computer platform

Message set commands

mqsimrmcopymsgset page 136 U

mqsimrmimpexp page 138 U

mqsinrfreload page 140 U U

Configuration Manager commands

mqsicreateconfigmgr page 109 U

mqsichangeconfigmgr page 93 U

mqsideleteconfigmgr page 120 U

mqsimigrateconfigmgr See the MQSeries Integrator Version 2.0.1 Installation
Guide for your computer platform

User Name Server commands

mqsicreateusernameserver page 115 U U

mqsichangeusernameserver page 99 U U

mqsideleteusernameserver page 123 U U

Start and stop commands

mqsistart page 148 U U

mqsistop page 150 U U

List and trace commands

mqsilist page 131 U U

mqsichangetrace page 95 U U

mqsiformatlog page 125 U U

mqsilcc page 129 U

mqsireadlog page 141 U U

mqsireporttrace page 146 U U

MQSeries Publish/Subscribe interoperability commands

mqsiclearmqpubsub page 101 U U

mqsijoinmqpubsub page 127 U U

mqsilistmqpubsub page 133 U U

© Copyright IBM Corp. 2000 89

mqsichangebroker (Change broker)

Purpose
Use the mqsichangebroker command to change some of the properties of a broker.

You must stop the broker, using mqsistop, before you can issue this command.
When you restart the broker, using mqsistart, it uses the changed parameters.

You can also use the Command Assistant to issue this command.

Syntax

mqsichangebroker

QQ mqsichangebroker brokername Q

Q
-a ServicePassword

-i ServiceUserID

Q

Q
-p DataSourcePassword -s UserNameServerQueueManagerName

Q

Q
-t
-n

QR

Required parameters
brokername

This must be the first parameter. Specify the name of the broker you want to
modify.

Optional parameters
-a ServicePassword

The password for the ServiceUserID. On UNIX platforms -a is required for
Windows NT compatibility, but is not used in relation to ServiceUserID; it is
only used as a default if -p is not specified. (See notes about the-p parameter
for further details.)

-i ServiceUserID
The user ID under which the broker will run. You can only change this value if
you also change the password.

This can be specified in any valid username syntax. On Windows NT, these
are:
v domain\username
v \\server\username
v .\username

mqsichangebroker

90 MQSeries Integrator Administration Guide V2.0.1

v username

You should note that on UNIX systems, only the last format, username, is valid.

The ServiceUserID specified must be a member of the local group mqbrkrs.
On Windows NT, it may be an indirect or direct member of the group. The
ServiceUserID must also be authorized to access the home directory (where
MQSeries Integrator has been installed).

The security requirements for the ServiceUserID are detailed in Table 2 on
page 50 Table 2 on page 50 for Windows NT and in Table 3 on page 57 for
UNIX platforms.

Note: For Windows NT: If you use the unqualified form for this user ID
(username), the operating system searches for the user ID throughout its
domain, starting with the local system. This search may take some time
to complete.

-p DataSourcePassword
The password of the user ID with which the database containing the broker
tables is to be accessed. If not specified, this defaults to the ServicePassword
specified by -a. For DB2 on UNIX platforms, -u and -p may be specified as
empty strings (″″). In this case, DB2 grants MQSeries Integrator the privileges
of the MQSeries Integrator ServiceUserID which results in a database
connection as ″already verified″. If you specify -a as an empty string as well as
-u and -p, then no passwords are stored by MQSeries Integrator, creating the
most secure configuration.

-s UserNameServerQueueManagerName
The name of the MQSeries queue manager that is associated with the User
Name Server. If you want to remove topic-based security, specify "".

-t Requests that the broker runs as an MQSeries trusted application.

For more details about using MQSeries trusted applications, see “Using
MQSeries trusted applications” on page 44 and MQSeries Intercommunication.

-n Requests that the broker ceases to run as an MQSeries trusted application.

For more details about using MQSeries trusted applications, see “Using
MQSeries trusted applications” on page 44 and MQSeries Intercommunication.

If you want to change other broker properties, you must delete and recreate the
broker, then use the Control Center to redeploy the broker’s configuration. If you
want to change the user ID used for database access, see “Managing databases” on
page 32.

Authorization
On Windows NT, the user ID used to invoke this command must have
Administrator authority on the local system.

On UNIX platforms, the user ID used to invoke this command must either be root
or must be the same as that specified in the -i parameter. It must also be a
member of the mqbrkrs group.

mqsichangebroker

Chapter 8. Commands 91

Responses
This command returns the following responses:
v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8018 Component running
v BIP8021 User ID/password incorrect
v BIP8022 Invalid user ID/password
v BIP8023 Password required
v BIP8030 Unable to modify user ID privileges
v BIP8073 Invalid broker name

Examples
mqsichangebroker MQSI_SAMPLE_BROKER -s MQSI_SAMPLE_UNS_QM

Related commands
“mqsicreatebroker (Create broker)” on page 103
“mqsideletebroker (Delete broker)” on page 118

mqsichangebroker

92 MQSeries Integrator Administration Guide V2.0.1

mqsichangeconfigmgr (Change Configuration Manager)

Purpose
Use the mqsichangeconfigmgr command to change some of the properties of the
Configuration Manager.

You should only use the Configuration Manager on a Windows NT platform. This
command is therefore only applicable when using that operating system.

You must stop the Configuration Manager, using mqsistop, before you can issue
this command. When you restart the Configuration Manager, using mqsistart, it
uses the changed parameters.

You can also use the Command Assistant to issue this command.

Syntax

mqsichangeconfigmgr

QQ mqsichangeconfigmgr
-a ServicePassword

-i ServiceUserID

Q

Q
-p DataBasePassword -r MRMDataSourcePassword

Q

Q
-s UserNameServerQueueManagerName -d SecurityDomainName

Q

Q
-j MaxJVMHeapSize

QR

Optional parameters
-a ServicePassword

The password for the ServiceUserID.

-i ServiceUserID
The user ID under which the Windows NT service must run. You can only
change this value if you also change the password.

This can be specified in any valid Windows NT username syntax:
v domain\username
v \\server\username
v .\username
v username

The ServiceUserID specified must be a member (either direct or indirect) of the
local group mqbrkrs, and must be authorized to access the home directory

mqsichangeconfigmgr

Chapter 8. Commands 93

(where MQSeries Integrator has been installed), and the working directory (if
specified by the -w flag). This ID must also be a member (either direct or
indirect) of the local group mqm.

The security requirements for the ServiceUserID are detailed in Table 2 on
page 50.

Note: For Windows NT: If you use the unqualified form for this user ID
(username), the operating system searches for the user ID throughout its
domain, starting with the local system. This search may take some time
to complete.

-p DataBasePassword
The password for the user ID with which the configuration repository database
is to be accessed.

-r MRMDataSourcePassword
The password for the user ID with which the message repository database is to
be accessed.

-s UserNameServerQueueManagerName
The name of the MQSeries queue manager that is associated with the User
Name Server. If you want to remove topic security, specify “”.

-d SecurityDomainName
The name of the Windows NT security domain. For details about
implementation of security, see “Chapter 4. Setting up security” on page 47.

-j MaxJVMHeapSize
The maximum Java virtual machine (JVM) heap size, in megabytes. The
smallest value that may be set is 64. If this parameter is not set, the default size
of 128 MB is used.

If you want to change other properties, you must delete and recreate the
Configuration Manager. If you want to change the DataBaseUserID or the
MRMDataSourceUserID, see “Managing databases” on page 32 for instructions.

Authorization
The user ID under which the command is invoked must have Windows NT
Administrator authority on this local system.

Responses
This command returns the following responses:
v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8018 Component running
v BIP8021 User ID/password incorrect
v BIP8022 Invalid user ID/password
v BIP8023 Password required
v BIP8030 Unable to modify user ID privileges

Examples
mqsichangeconfigmgr -d MQSI_DOMAIN

Related commands
“mqsicreateconfigmgr (Create Configuration Manager)” on page 109
“mqsideleteconfigmgr (Delete Configuration Manager)” on page 120

mqsichangeconfigmgr

94 MQSeries Integrator Administration Guide V2.0.1

mqsichangetrace (Change trace settings)

Purpose
Use the mqsichangetrace command to set the tracing characteristics for a
component. This command is valid for:
v User trace. Specify the -u option.
v Service trace. Specify the -t option. You are recommended to use this option

only if directed to do so by the action described in a BIPxxxx message, or by
your IBM Support Center.

You can initiate, modify, or terminate user tracing for a broker, or initiate, modify,
or terminate service tracing for a broker, the Configuration Manager, or the User
Name Server (identified by component name). You cannot use this command to
initiate service tracing for the Control Center: you must use the mqsilcc command.

You can also start and stop tracing activity for execution groups and message flows
using the facilities of the Control Center. See MQSeries Integrator Using the Control
Center for more information.

If you specify a broker, or any of its resources, (execution group or message flow),
you must have deployed them before you can start trace.

The trace output generated by these commands is written to trace files in the log
subdirectory. When you have completed the work you want to trace, you may use
mqsireadlog to retrieve the log as an ’XML format’ file. You may use either
mqsiformatlog (to produce a formatted file) or an XML browser to view the XML
records.

When you set tracing on, you are causing additional processing to be executed for
every activity in the component you are tracing. You must therefore expect to see
some impact on performance when trace is active.

For more information on using this command, and examples of its use, see
“Chapter 5. Problem determination” on page 61.

You cannot start tracing for the commands described in this chapter using this
command. For tracing these command executables, you must use the environment
variables MQSI_UTILITY_TRACE and MQSI_UTILITY_TRACESIZE described in
“Controlling Service traces” on page 70.

mqsichangetrace

Chapter 8. Commands 95

Syntax

mqsichangetrace — user trace

QQ mqsichangetrace component -u -e egroup
-f mflow

Q

Q
-r -l level -m mode -c size

QR

mqsichangetrace — service trace

QQ mqsichangetrace component -t Q

Q -b
-e egroup

-f mflow -r
-l level

Q

Q
-m mode -c size

QR

Required parameters
component

The name of the component for which trace parameters are to be changed.
This can either be the name or a broker, or the fixed values ConfigMgr or
UserNameServer (all are case sensitive on UNIX platforms).

Optional parameters
-u Specifies that user trace options are to be modified. This option is only valid if

you have specified a broker name as the component name.

-e egroup
Identifies the execution group for which trace options are to be modified (for
example, started or stopped). This option is only valid if you have specified a
broker name as the component name.

-f mflow
Identifies the message flow for which trace options are to be modified. This
option is only valid if you have specified an execution group (flag -e).

-r This option requests that the trace log is reset: that is, all current records are
discarded. You can use this option when you start a new trace to ensure that
all records in the log are unique to the new trace.

This option is only valid if you have specified an execution group (flag -e).

mqsichangetrace

96 MQSeries Integrator Administration Guide V2.0.1

-l level
Set the level of the trace. This must be one of:

normal. This provides a basic level of trace information.
none. This sets tracing off.
debug. This provides a more comprehensive trace.

Each component is created with a default value of none. If you do not specify
this parameter, the current value is unchanged. Once you successfully change
this value, it is persistent.

This is valid for all components.

-m mode
Indicate the way trace information is to be buffered:

safe. This mode causes trace entries to be written to file when they are
generated.
fast. This mode causes trace entries to be buffered, and only written to file
in batches.

Each component starts with a default value of safe. If you do not specify this
parameter, the current value is unchanged.

This option is only valid if the component you have specified is:
v A broker. If you change this value, it affects tracing for the execution group

(if you have specified one), or for the agent component (if you have not
specified an execution group).

v The User Name Server. If you change this value, it affects tracing for the
entire component. (This is only valid for service trace.) Once you
successfully change this value, it is persistent.

-c size
The size of the trace file in KB (kilobytes). If you do not specify this parameter,
the current value is left unchanged. Each component starts with a default value
of 1024KB. You can specify this option to reset the value. The maximum value
you can specify depends on how you subsequently intend to read the log,
using the mqsireadlog command:
v If you use mqsireadlog with the -f option set, the log file is read directly

from the file system. In this case, the maximum value that may be specified
here is 2097151, which will allow a trace file up to 2GB (gigabyte) to be
created.

v If you use mqsireadlog without setting the -f option, an MQ Series message
is sent to the broker to retrieve the log. In this case, the trace file size should
not be allowed to exceed about 70MB (megabytes). The maximum value that
you may set here, should not be appreciably more than 70000.

However you intend to retrieve the trace file, you are recommended to keep its
size as small as possible, either by using a low value for this parameter or by
using the reset (-r) option on this command to clear the trace log. The benefit
of adopting this approach is that the formatting process (mqsiformatlog) will
consequently be much faster and require less resource to carry out its task.

This option is only valid if the component you have specified is:
v A broker. If you change this value, it affects tracing for the execution group

(if you have specified one), or for the agent component (if you have not
specified an execution group).

mqsichangetrace

Chapter 8. Commands 97

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

v The User Name Server. If you change this value, it affects tracing for the
entire component. (This is only valid for service trace.)

If you change the trace size, the new value is persistent over a restart of the
broker or User Name Server.

Additional parameters exclusive to service trace
You are recommended to use these options only when directed to do so by your
IBM Support Center or by a BIPxxxx message.

-t Specifies that service trace options are to be modified.

-b Specifies that service trace options for the agent subcomponent of the
component specified are to be modified (for example, started or stopped). This
flag can only be specified if -t is also specified.

Authorization
The user ID used to issue the command must have mqbrkrs authority.

Responses
This command returns the following responses:
v BIP8013 Component does not exist
v BIP8020 Unable to access database
v BIP8029 Broker not configured
v BIP8031 Invalid flag supplied
v BIP8032 Unable to connect to queue
v BIP8033 Message send failure
v BIP8035 Response not received before timeout
v BIP8036 Negative response received
v BIP8037 Unsupported flag
v BIP8039 Execution group not available
v BIP8040 Unable to connect to database
v BIP8045 Message flow not found
v BIP8068 Integer argument required

Examples
mqsichangetrace MQSI_SAMPLE_BROKER -u -e default -l normal -c 5000

mqsichangetrace MQSI_SAMPLE_BROKER -u -e "exg1" -m fast

mqsichangetrace usernameserver -t -b -l normal

Related commands
“mqsiformatlog (Format log)” on page 125
“mqsilcc (Start Control Center trace)” on page 129
“mqsireadlog (Read log)” on page 141
“mqsireporttrace (Report trace settings)” on page 146

mqsichangetrace

98 MQSeries Integrator Administration Guide V2.0.1

mqsichangeusernameserver (Change User Name Server)

Purpose
Use the mqsichangeusernameserver command to change some of the properties of
the User Name Server.

You must stop the User Name Server, using mqsistop, before you can issue this
command. When you restart the User Name Server, using mqsistart, it uses the
changed parameters.

You can also use the Command Assistant to issue this command.

Syntax

mqsichangeusernameserver

QQ mqsichangeusernameserver Q

Q
-a ServicePassword

-i ServiceUserID

Q

Q
-d SecurityDomainName -r RefreshInterval

QR

Optional parameters
-a ServicePassword

The password for the ServiceUserID.

-i ServiceUserID
The user ID under which the broker will run. You can only change this value if
you also change the password.

This can be specified in any valid username syntax. On Windows NT, these
are:
v domain\username
v \\server\username
v .\username
v username

You should note that on UNIX systems, only the last format, username, is valid.

The ServiceUserID specified must be a member of the local group mqbrkrs.
On Windows NT, it may be a direct or indirect member of the group. The
ServiceUserID must also be authorized to access the home directory (where
MQSeries Integrator has been installed).

The security requirements for the ServiceUserID are detailed in Table 2 on
page 50 for Windows NT platforms and in Table 3 on page 57 for UNIX
platforms.

mqsichangeusernameserver

Chapter 8. Commands 99

Note: For Windows NT: If you use the unqualified form for this user ID
(username), the operating system searches for the user ID throughout its
domain, starting with the local system. This search may take some time
to complete.

-d SecurityDomainName
The name of the Windows NT security domain. For details about
implementation of security, see “Chapter 4. Setting up security” on page 47.

-r RefreshInterval
The interval, in seconds, at which the User Name Server interrogates the
security subsystem for changes to user or group attributes.

Authorization
On Windows NT, the user ID used to invoke this command must have
Administrator authority on the local system.

On UNIX platforms, the user ID used to invoke this command must either be root
or must be the same as that specified in the -i parameter. It must also be a
member of the mqbrkrs group.

Responses
This command returns the following responses:
v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8018 Component running
v BIP8021 User ID/password incorrect
v BIP8022 Invalid user ID/password
v BIP8023 Password required
v BIP8030 Unable to modify user ID privileges
v BIP8068 Integer argument required

Examples
mqsichangeusernameserver -r 2000

Related commands
“mqsicreateusernameserver (Create User Name Server)” on page 115
“mqsideleteusernameserver (Delete User Name Server)” on page 123

mqsichangeusernameserver

100 MQSeries Integrator Administration Guide V2.0.1

mqsiclearmqpubsub (Remove MQSeries Publish/Subscribe broker as a
neighbor)

Purpose
Use the command to remove an MQSeries Publish/Subscribe broker as a neighbor
of this MQSeries Integrator broker.

This command removes knowledge of the MQSeries Publish/Subscribe broker
from the MQSeries Integrator broker identified on this command. To complete this
action you must also issue the MQSeries Publish/Subscribe command clrmqbrk
against the MQSeries Publish/Subscribe broker. When both clear commands have
completed, all publish/subscribe traffic between the two brokers ceases.

Only use this command if you are integrating this MQSeries Integrator broker with
an MQSeries Publish/Subscribe broker network. Before you issue this command
you must ensure that the MQSeries Integrator broker is ready to receive and
process messages on queue
SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS (that is, you must have
restarted the broker after creating this queue. See “Creating and operating a
heterogeneous network” on page 157 for more details.)

Syntax

mqsiclearmqpubsub

QQ mqsiclearmqpubsub brokername -n NeighborQueueManagerName QR

Required parameters
brokername

The name of the broker from which knowledge of an MQSeries
Publish/Subscribe neighbor broker is to be removed.

-n NeighborQueueManagerName
The name of the queue manager that hosts the MQSeries Publish/Subscribe
broker for which the association as a neighbor is being removed.

Authorization
The user ID used to invoke this command must have put and inq authority to the
queue SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS.

Responses
This command returns the following responses:
v BIP8013 Component does not exist
v BIP8056 Unknown queue manager
v BIP8057 Queue manager error
v BIP8059 Queue manager not available
v BIP8060 Queue error
v BIP8061 No reply received
v BIP8064 Internal broker error

mqsiclearmqpubsub

Chapter 8. Commands 101

v BIP8066 Invalid broker name
v BIP8070 Database exception
v BIP8072 Database exception

Examples
mqsiclearmqpubsub MQSI_SAMPLE_BROKER -n MQBroker1

Related commands
“mqsijoinmqpubsub (Join broker to MQSeries Publish/Subscribe parent
broker)” on page 127
“mqsilistmqpubsub (List MQSeries Publish/Subscribe neighbor broker status)”
on page 133

mqsiclearmqpubsub

102 MQSeries Integrator Administration Guide V2.0.1

mqsicreatebroker (Create broker)

Purpose
Use the mqsicreatebroker command to create a new broker.

This command allows you to specify all the properties required to create a new
broker.

This command performs the following actions:
v Creates an MQSeries queue manager, if one does not already exist.

Note:

If this command creates an MQSeries queue manager, it will also enable
the default dead-letter queue (DLQ) provided by MQSeries
(SYSTEM.DEAD.LETTER.QUEUE). The security settings are the same as
those of other broker-specific MQSeries queues.

If a message in either a user-defined message flow or in the publish
subscribe model cannot be processed, it will be routed to this DLQ as a
last resort.

This behavior differs from previous versions of MQSeries Integrator
where, if there was no failure route defined, the message would have
been backed out onto the input queue, effectively halting the message
flow until the problem was resolved. If you still want to make use of this
behavior, you should disable the DLQ.

The mqsideletebroker command will not delete this queue (unless the
Queue Manager is deleted).

v Starts the MQSeries queue manager, if this is not already running.

Note: If the queue manager is created by this command on Windows NT, it is
not started as a service; it will therefore stop if you log off. To avoid this
happening, you must either remain logged on, or you must change the
start up status of the queue manager service (described in “Starting
MQSeries queue managers as a Windows NT service” on page 21). (If you
lock your workstation, the MQSeries queue manager does not stop).

v Creates the broker-specific MQSeries queues, if these do not already exist.
v Creates database tables for the broker, if they do not already exist.
v On Windows NT, installs a service under which the broker will run.
v Creates a record for the component in the broker registry.

When you have created the broker, you must register it as a broker in the broker
domain. You must do this by defining and deploying the broker using the Topology
view in the Control Center. You must use the same broker name and the same
queue manager name for both the create command and the Control Center
definition.

You can also use the Command Assistant to issue this command.

mqsicreatebroker

Chapter 8. Commands 103

Syntax

mqsicreatebroker

QQ mqsicreatebroker brokername -i ServiceUserID -a ServicePassword Q

Q -q QueueManagerName -n DataSourceName
-u DataSourceUserID

Q

Q
-p DataSourcePassword -s UserNameServerQueueManagerName

Q

Q
-w Workpath -t -m

QR

Required parameters
brokername

The name of the broker you want to create. This must be the first parameter.
The broker name can be up to 242 characters in length. It is case sensitive on
UNIX platforms. For restrictions on the character set that can be used, see
“Rules for naming resources” on page 77.

-i ServiceUserID
The user ID under which the broker will run.

This can be specified in any valid username syntax. On Windows NT, these
are:
v domain\username
v \\server\username
v .\username
v username

You should note that on UNIX systems, only the last format, username, is valid.

The ServiceUserID specified must be a member of the local group mqbrkrs.
On Windows NT, it may be a direct or indirect member of the group. The
ServiceUserID must also be authorized to access the home directory (where
MQSeries Integrator has been installed), and the working directory (if specified
by the -w flag).

If you specify, on Windows NT, that the broker is to run as an MQSeries
trusted application (flag -t), you must also add this user ID to the group
mqm. On UNIX platforms, the ServiceUserID itself must be specified as mqm if
the -t flag is set.

The security requirements for the ServiceUserID are detailed in Table 2 on
page 50.

mqsicreatebroker

104 MQSeries Integrator Administration Guide V2.0.1

Note: For Windows NT: If you use the unqualified form for this user ID
(username), the operating system searches for the user ID throughout its
domain, starting with the local system. This search may take some time
to complete.

If you use this user ID for database access (that is, you do not specify a
different user ID with the -u flag) and you are using SQL Server for your
database, you must create this user ID as a SQL Server login ID and give it the
correct access before you create the broker (see “Authorizing internal database
access” on page 15 for further details). If your broker database exists in DB2,
and this user ID is not known to DB2, DB2 automatically creates if for you.

-a ServicePassword
The password for the ServiceUserID. On UNIX platforms -a is required for
Windows NT compatibility, but is not used in relation to ServiceUserID; it is
only used as a default if -p is not specified. (See notes about the-p parameter
for further details.)

-q QueueManagerName
The name of the queue manager associated with this broker. You are
recommended to use the same name for your broker and the queue manager
to simplify the organization and administration of your network. Note,
however, that queue manager names are limited to 48 characters in length and
are case sensitive.

If the queue manager does not already exist, it is created by this command. It
is not created as the default queue manager: if you want this queue manager
to be the default queue manager on this system, you must either create the
queue manager before you issue this command, or use MQSeries Services to
change the settings of this queue manager to make it the default.

The queue manager attribute MAXMSGL (maximum length of messages that can
be put to queues) is updated to 100MB. This is done whether or not the queue
manager is created by this command.

-n DataSourceName
The ODBC data source name (DSN) of the database in which the broker tables
will be created. This must be the DSN, not the name of the database, if you
have not used the same name for both.

This database must already exist. You must create a System DSN ODBC
connection for this DSN, if you have not already done so. This task is
described in “Defining internal MQSeries Integrator database connections
(Windows NT only)” on page 15.

Optional parameters
-u DataSourceUserID

The user ID with which to access the broker database. If this is not specified, it
defaults to the value specified by -i.

This user ID must have the authority to create tables within this database, and
read from and write to those tables.

On Windows NT, if your broker database exists in DB2, and this user ID is not
known to DB2, it is created for you within DB2. On UNIX platforms, the
service user must have previously been granted the correct privilege. If your
database is SQL Server, you must create this user ID as a SQL Server login ID

mqsicreatebroker

Chapter 8. Commands 105

and give it the correct access before you create the broker (see “Authorizing
internal database access” on page 15 for further details).

If you have an application database in DB2 which was created by this user ID
or to which this user ID has appropriate read, write or create authority,
message flows executing in this broker will be able to access and manipulate
the application data held within it without having to specify explicitly schema
names.

-p DataSourcePassword
The password of the user ID with which the database is to be accessed. If not
specified, this defaults to the ServicePassword specified by -a. For DB2 on
UNIX platforms, -u and -p may be specified as empty strings (″″). In this case,
DB2 grants MQSeries Integrator the privileges of the MQSeries Integrator
ServiceUserID which results in a database connection as ″already verified″. If
you specify -a as an empty string as well as -u and -p, then no passwords are
stored by MQSeries Integrator, creating the most secure configuration.

-s UserNameServerQueueManagerName
The name of the MQSeries queue manager that is associated with the User
Name Server. If this is not specified, the broker assumes there is no User Name
Server defined.

-w WorkPath
The directory in which working files for this broker are stored. If not specified,
files are stored in the default workpath, specified when the product was
installed.

-t Requests that the broker is configured to run as an MQSeries trusted
application.

If you specify this option on Windows NT, you must add the service user ID
(identified by flag -i) to the group mqm. On UNIX platforms, the
ServiceUserID itself must be specified as mqm if this flag is set. For more details
about using MQSeries trusted applications, see “Using MQSeries trusted
applications” on page 44 and MQSeries Intercommunication.

-m Request migration of an existing MQSeries Publish/Subscribe broker. If you
specify this option, the queue manager identified by -q must be the queue
manager being used by the MQSeries Publish/Subscribe broker.

Authorization
On Windows NT, the user ID used to invoke this command must have
Administrator authority on the local system.

On UNIX platforms, the user ID used to invoke this command must either be root
or must be the same as that specified in the -i parameter. It must also be a
member of the mqbrkrs group.

MQSeries queues created
SYSTEM.BROKER.ADMIN.QUEUE
SYSTEM.BROKER.CONTROL.QUEUE
SYSTEM.BROKER.EXECUTIONGROUP.QUEUE
SYSTEM.BROKER.EXECUTIONGROUP.REPLY
SYSTEM.BROKER.INTERBROKER.QUEUE
SYSTEM.BROKER.MODEL.QUEUE

mqsicreatebroker

106 MQSeries Integrator Administration Guide V2.0.1

Access authority is granted for the MQSeries Integrator group mqbrkrs to all these
queues. If the DLQ is enabled, it will also have the same authority.

Database tables created
BACLENTRIES
BCLIENTUSER
BGROUPNAME
BLOGICALTOPHYSNAME
BMQPSTOPOLOGY
BNBRCONNECTIONS
BPHYSICALFILE
BPUBLISHERS
BRETAINEDPUBS
BRMCONFIG
BROKERAA
BROKERAAEG
BROKERRESOURCES
BSUBSCRIPTIONS
BTOPOLOGY
BUSERCONTEXT
BUSERMEMBERSHIP
BUSERNAME
BWFFRELATIONSHIP

Responses
This command returns the following responses:
v BIP8011 Unable to create configuration data
v BIP8012 Unable to connect to system components
v BIP8014 Component cannot be created
v BIP8022 Invalid user ID/password
v BIP8030 Unable to modify user ID privileges
v BIP8040 Unable to connect to database
v BIP8048 Unable to start queue manager
v BIP8050 Unable to create queue manager
v BIP8051 Unable to create queue
v BIP8053 Unable to set security for queue manager
v BIP8054 Unable to set security for queue
v BIP8056 Unknown queue manager
v BIP8070 Database exception
v BIP8072 Database exception
v BIP8073 Invalid broker name
v BIP8084 Unable to create directory
v BIP8086 Queue manager in use
v BIP8087 Component already exists
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping

Note: In some circumstances, you might see the following error message issued by
DB2:

(51002)[IBM][CLI Driver][DB2/NT]SQL0805N
Package “NULLID.SQLLF000” was not found. SQLSTATE=51002.

This error occurs when the bind to the database is not successful.

mqsicreatebroker

Chapter 8. Commands 107

On Windows NT, binding is not needed for broker databases, but is required for
user databases. For the database MYDB, for example, you can effect this by entering
the following commands at the command prompt:
db2 connect to MYDB user db2admin using db2admin
db2 bind X:\sqllib\bnd\@db2cli.lst grant public
db2 connect reset

where X: is the drive on which DB2 is installed.

On UNIX platforms, binding is necessary for all databases. For the database
MQSIBKDB, for example, you can effect this by entering the following commands at
the command prompt:
db2 connect to MQSIBKDB user db2admin using db2admin
db2 bind ˜/sqllib/bnd/@db2cli.lst grant public CLIPKG 5
db2 connect reset

Note: If you are not using the default DB2 user ID and password (db2admin) you
must replace these values in the db2 connect command with the correct
values.

Further information is provided at “Configuring databases for internal data” on
page 13.

If you execute the mqsicreatebroker command for a second time because of a
failure the first time, this will result in the production of a series of messages.
These will indicate any items which cannot be created. There should not be any
detrimental effects as a result of this. For example, as long as the reason for the
first failure has been resolved, attempting to create a broker which failed the first
time should result in a properly created broker.

Examples
mqsicreatebroker MQSI_SAMPLE_BROKER -i mqbroker -a sample
-q MQSI_SAMPLE_BROKER_QM -s MQSI_SAMPLE_CONFIG_QM -n MQSIBKDB

mqsicreatebroker BROKERA -i mqbroker -a sample -q BROKERA -n BRKA_DB -t

Related commands
“mqsichangebroker (Change broker)” on page 90
“mqsideletebroker (Delete broker)” on page 118

mqsicreatebroker

108 MQSeries Integrator Administration Guide V2.0.1

mqsicreateconfigmgr (Create Configuration Manager)

Purpose
Use the mqsicreateconfigmgr command to create the Configuration Manager.

You should only use the Configuration Manager on a Windows NT platform. This
command is therefore only applicable when using that operating system.

This command allows you to specify all the properties required to create the
Configuration Manager.

This command performs the following actions:
v Creates an MQSeries queue manager, if one does not already exist.

Note: If this command creates an MQSeries queue manager, it will also enable
the default dead-letter queue (DLQ) provided by MQSeries
(SYSTEM.DEAD.LETTER.QUEUE). The security settings are the same as
those of other Configuration Manager-specific MQSeries queues.

The mqsideleteconfigmgr command will not delete this queue (unless the
Queue Manager is deleted).

v Starts the MQSeries queue manager, if this is not already running. The
Configuration Manager always runs as an MQSeries trusted application.

Note: If the queue manager is created by this command, it is not started as a
Windows NT service; it will therefore stop if you log off. To avoid this
happening, you must either remain logged on, or you must change the
start up status of the queue manager service (described in “Starting
MQSeries queue managers as a Windows NT service” on page 21). (If you
lock your workstation, the MQSeries queue manager does not stop).

v Creates the Configuration Manager-specific MQSeries queues and channel, if
they do not already exist.

v Creates database tables for the Configuration Manager in the message repository,
if they do not already exist.

v Creates database tables for the Configuration Manager in the configuration
repository, if they do not already exist.

v Installs a Windows NT service, under which the Configuration Manager will
run.

v Creates a record for the component in the broker registry.

This command does not start the listener on the queue manager. You must start
this before you can use the Control Center. See “Connecting Control Center clients
to the Configuration Manager (Windows NT only)” on page 18 for instructions on
how you can start the listener.

You can also use the Command Assistant to issue this command.

Note: If you have installed VisualAge® for Java, and selected the MQSeries
Connector as part of that installation, you must ensure that the CLASSPATH
entry for VisualAge for Java appears after the CLASSPATH entries for
MQSeries for Windows NT Version 5.1 (server or Java client). This is to
ensure that the Configuration Manager accesses the correct MQSeries classes
not the VisualAge classes when it is started (by the mqsistart command). If

mqsicreateconfigmgr

Chapter 8. Commands 109

the Configuration Manager detects an error in this area, it will write
message BIP1004 to the Windows NT Event log or UNIX syslog.

Syntax

mqsicreateconfigmgr

QQ mqsicreateconfigmgr -i ServiceUserID -a ServicePassword Q

Q -q QueueManagerName -n DataBaseName
-u DataBaseUserID

Q

Q
-p DataBasePassword

-m MRMDataSourceName Q

Q
-e MRMDataSourceUserID -r MRMDataSourcePassword

Q

Q
-d SecurityDomainName -s UserNameServerQueueManagerName

Q

Q
-w Workpath

QR

Required parameters
-i ServiceUserID

The user ID under which the Windows NT service must run.

This can be specified in any valid Windows NT username syntax:
v domain\username
v \\server\username
v .\username
v username

The ServiceUserID specified must be a member (either direct or indirect) of the
local group mqbrkrs, and must be authorized to access the home directory
(where MQSeries Integrator has been installed), and the working directory (if
specified by the -w flag). This ID must also be a member (either direct or
indirect) of the local group mqm or of the local Windows NT Administrators
group.

The security requirements for the ServiceUserID are detailed in Table 2 on
page 50.

Note: For Windows NT: If you use the unqualified form for this user ID
(username), the operating system searches for the user ID throughout its
domain, starting with the local system. This search may take some time
to complete.

mqsicreateconfigmgr

110 MQSeries Integrator Administration Guide V2.0.1

-a ServicePassword
The password for the ServiceUserID.

-q QueueManagerName
The name of the queue manager associated with the Configuration Manager.

If the queue manager does not already exist, it is created by this command. It
is not created as the default queue manager: if you want this queue manager
to be the default queue manager on this system, you must create the queue
manager before you issue this command.

The queue manager attribute MAXMSGL (maximum length of messages that can
be put to queues) is updated to 100MB. This is done whether or not the queue
manager is created by this command.

-n DataBaseName
The name of the database you created to hold the configuration repository
tables. This database is the configuration repository for the whole broker
domain, and contains configuration information for all resources, as well as
data internal to the Configuration Manager itself.

This database must already exist. You do not need to create an ODBC
connection for this database because access is provided by JDBC.

The MQSeries Integrator for Windows NT Installation Guide contains details of
how to create a database for all databases required by MQSeries Integrator.

-m MRMDataSourceName
The ODBC DSN name of the database created to hold the message repository
tables. This must be the DSN name, not the name of the database, if you have
not used the same name.

This database must already exist. You must create a System DSN ODBC
connection for this data source name (DSN), if you have not already done so
(see “Defining internal MQSeries Integrator database connections (Windows
NT only)” on page 15 for a description of this task).

Optional parameters
-u DataBaseUserID

The user ID with which the configuration repository database is to be accessed.
If this is not specified, the value set in ServiceUserID is used.

This user ID must have the authority to create tables in the database identified
by the DataBaseName, and to read from and write to that database.

-p DataSourcePassword
The password of the user ID with which the configuration repository database
is to be accessed. If not specified, this defaults to the ServicePassword specified
by -a.

-e MRMDataSourceUserID
The user ID with which the message repository database is to be accessed. If
this is not specified, the value set in ServiceUserID is used.

This user ID must have the authority to create tables in the database identified
by the MRMDataSourceName, and to read from and write to that database.

mqsicreateconfigmgr

Chapter 8. Commands 111

-r MRMDataSourcePassword
The password for the user ID with which the message repository database is to
be accessed. If this is not specified, the value set in ServicePassword is used.

-d SecurityDomainName
The name of the Windows NT security domain. If this is not specified, it
defaults to the system’s local security domain. See “Chapter 4. Setting up
security” on page 47 for more details about using security domains with
MQSeries Integrator.

-s UserNameServerQueueManagerName
The name of the MQSeries queue manager that is associated with the User
Name Server. If this is not specified, the Configuration Manager assumes there
is no User Name Server defined, and will not attempt to communicate with
one.

-w WorkPath
The directory in which working files for the Configuration Manager are stored.
If not specified, the default directory specified when the product was installed
is used.

Authorization
This command changes security privileges for the ServiceUserID; the user ID used
to invoke this command must be a member of the Windows NT Administrators
group on this local system.

MQSeries queues created
SYSTEM.BROKER.CONFIG.QUEUE
SYSTEM.BROKER.CONFIG.REPLY
SYSTEM.BROKER.ADMIN.REPLY
SYSTEM.BROKER.SECURITY.REPLY
SYSTEM.BROKER.MODEL.QUEUE

Access authority is granted for the MQSeries Integrator group mqbrkrs to all these
queues. If the DLQ is enabled, it will also have the same authority.

Access authority is granted for the MQSeries Integrator groups mqbrdevt,
mqbrasgn, mqbrops, and mqbrtpic to the queues
SYSTEM.BROKER.CONFIG.QUEUE and SYSTEM.BROKER.CONFIG.REPLY.

MQSeries channels created
SYSTEM.BKR.CONFIG

Database tables created
The following tables are created in the configuration repository:

CBROKER
CBROKERCEG
CCOLLECTIVE
CCOLLECTIVECBROKER
CDELETED
CEG
CEGCMSGFLOW
CEGCMSGPROJECT
CLOG
CMSGFLOW
CMSGPROJECT

mqsicreateconfigmgr

112 MQSeries Integrator Administration Guide V2.0.1

CNEIGHBOURS
COUTSTANDING
CPRIMITIVES
CPROPERTIES
CSUBSCRIBE
CTOPIC
CTOPICCTOPIC
CTOPOLOGY
CTRACE
CUUIDLOCKS

The following tables are created in the message repository:
CATEGORY_MEMBER
M_ATTRIBUTE
M_CATEGORY
M_CONST_DEF
M_CONTEXT_TAG
M_ELEMENT
M_LENGTH
M_MEMBER_ATTRIBUTE
M_MESSAGE
M_TRANSACTION
M_TYPE
M_VALID_VALUE
MRM_USER
MSG_CONTEXTTAG_MBR
PLUGIN
PROJECT
PROJECT_DEP_MEMBER
REG_PLUGIN_MEMBER
REPOSITORY
TRANSACTION_MEMBER
TYPE_MEMBER
USER_MEMBER
VALID_VALUE_MEMBER

Responses
This command returns the following responses:
v BIP8011 Unable to create configuration data
v BIP8012 Unable to connect to system components
v BIP8014 Component cannot be created
v BIP8022 Invalid user ID/password
v BIP8030 Unable to modify user ID privileges
v BIP8048 Unable to start queue manager
v BIP8050 Unable to create queue manager
v BIP8051 Unable to create queue
v BIP8053 Unable to set security for queue manager
v BIP8054 Unable to set security for queue
v BIP8055 Unable to load Java class
v BIP8056 Unknown queue manager
v BIP8074 Unable to create JVM
v BIP8075 Java exception
v BIP8076 Unable to set current directory
v BIP8077 Error initializing configuration data
v BIP8078 Error initializing configuration data

mqsicreateconfigmgr

Chapter 8. Commands 113

v BIP8084 Unable to create directory
v BIP8087 Component already exists
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping
v BIP8097 Unable to create Java object

Note: The first time you run this command after installation, you might see the
following error message issued by the Java Runtime Environment (JRE)
supplied by MQSeries Integrator.
address: [B@964f60

security properties not found. using defaults.
Can't get saved UUID state: java.io.FileNotFoundException:
<mqsi_root>\bin\..\UUID

where <mqsi_root> is the root directory for your MQSeries Integrator installation.
The error indicates that a file not found exception has been generated. This error
does not cause the mqsicreateconfigmgr command to fail, because the required file
is created dynamically. You can therefore ignore this message.

Examples
mqsicreateconfigmgr -i mqbroker -a sample -q MQSI_SAMPLE_CONFIG_QM
-n MQSICMDB -m MQSIMRDB

Related commands
“mqsichangeconfigmgr (Change Configuration Manager)” on page 93
“mqsideleteconfigmgr (Delete Configuration Manager)” on page 120

mqsicreateconfigmgr

114 MQSeries Integrator Administration Guide V2.0.1

mqsicreateusernameserver (Create User Name Server)

Purpose
Use the mqsicreateusernameserver command to create a new User Name Server.

This command allows you to specify all the properties required to create a User
Name Server.

This command performs the following actions:
v Creates an MQSeries queue manager, if one does not already exist.
v Starts the MQSeries queue manager, if this is not already running.

Note: If the queue manager is started by this command on Windows NT, it is
not started as a service. It will therefore stop if you log off. To avoid this
happening, you must either remain logged on, or you must change the
start up status of the queue manager service (described in “Starting
MQSeries queue managers as a Windows NT service” on page 21). (If you
lock your workstation, the queue manager does not stop).

v Creates the User Name Server-specific MQSeries queues, if these do not already
exist.

v On Windows NT, installs a service under which the User Name Server will run.
v Creates a record for the component in the broker registry.

You can also use the Command Assistant to issue this command.

Syntax

mqsicreateusernameserver

QQ mqsicreateusernameserver -i ServiceUserID -a ServicePassword Q

Q -q QueueManagerName
-d SecurityDomainName

Q

Q
-r RefreshInterval -w Workpath

QR

Required parameters
-i ServiceUserID

The user ID under which the broker will run.

This can be specified in any valid username syntax. On Windows NT, these
are:
v domain\username
v \\server\username
v .\username
v username

mqsicreateusernameserver

Chapter 8. Commands 115

You should note that on UNIX systems, only the last format, username, is valid.

The ServiceUserID specified must be a member of the local group mqbrkrs.
On Windows NT, it may be a direct or indirect member of the group. The
ServiceUserID must also be authorized to access the home directory (where
MQSeries Integrator has been installed).

The security requirements for the ServiceUserID are detailed in Table 2 on
page 50 for Windows NT platforms and in Table 3 on page 57 for UNIX
platforms.

Note: For Windows NT: If you use the unqualified form for this user ID
(username), the operating system searches for the user ID throughout its
domain, starting with the local system. This search may take some time
to complete.

-a ServicePassword
The password for the ServiceUserID.

-q QueueManagerName
The name of the queue manager associated with the User Name Server.

If the queue manager does not already exist, it is created by this command. It
is not created as the default queue manager: if you want this queue manager
to be the default queue manager on this system, you must create the queue
manager before you issue this command.

The queue manager attribute MAXMSGL (maximum length of messages that can
be put to queues) is updated to 100MB. This is done whether or not the queue
manager is created by this command.

Optional parameters
-d SecurityDomainName

The name of the Windows NT security domain. If this is not specified, it
defaults to the system’s local Windows NT security domain. For more details
about the implementation of security in MQSeries Integrator, see “Chapter 4.
Setting up security” on page 47.

-r RefreshInterval
The interval, specified in seconds, at which the User Name Server interrogates
the security subsystem for changes to user or group attributes. If it is not
specified, the User Name Server’s default interval of 60 seconds is used.

-w WorkPath
The directory in which working files for the User Name Server are stored. If
not specified, the default value specified when the product was installed is
used.

Authorization
On Windows NT, the user ID used to invoke this command must have
Administrator authority on the local system.

On UNIX platforms, the user ID used to invoke this command must either be root
or must be the same as that specified in the -i parameter. It must also be a
member of the mqbrkrs group.

mqsicreateusernameserver

116 MQSeries Integrator Administration Guide V2.0.1

MQSeries queues created
SYSTEM.BROKER.SECURITY.QUEUE
SYSTEM.BROKER.MODEL.QUEUE

Access authority has been granted for the MQSeries Integrator group mqbrkrs to
all these queues.

Responses
This command returns the following responses:
v BIP8011 Unable to create configuration data
v BIP8012 Unable to connect to system components
v BIP8014 Component cannot be created
v BIP8022 Invalid user ID/password
v BIP8030 Unable to modify user ID privileges
v BIP8048 Unable to start queue manager
v BIP8050 Unable to create queue manager
v BIP8051 Unable to create queue
v BIP8053 Unable to set security for queue manager
v BIP8054 Unable to set security for queue
v BIP8056 Unknown queue manager
v BIP8068 Integer argument required
v BIP8084 Unable to create directory
v BIP8087 Component already exists
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping

Examples
mqsicreateusernameserver -i mqsiuid -a mqsipw

-q MQSI_SAMPLE_BROKER_QM -r 1000

Related commands
“mqsichangeusernameserver (Change User Name Server)” on page 99
“mqsideleteusernameserver (Delete User Name Server)” on page 123

mqsicreateusernameserver

Chapter 8. Commands 117

mqsideletebroker (Delete broker)

Purpose
Use the mqsideletebroker command to delete a named broker, the queues on its
local queue manager (created when the broker was created), and its tables in the
broker database. You can also specify that the queue manager is to be deleted.

When you delete a broker, you must implement a set of related tasks in a specific
order to ensure the integrity of your network. For more details about deleting
components from your configuration, see “Deleting components from the broker
domain” on page 35. The following tasks must be completed:

v Remove the broker from the configuration repository by deleting it from the
Control Center Topology view.

v Deploy the delta configuration (all types) from the File menu on the Topology
view. This removes the broker configuration data from the configuration
repository.

v Check that the deployment has been successful (use the Log view).
v Stop the broker, using mqsistop.
v Delete the broker, using mqsideletebroker.

For more details of the tasks invoked through the Control Center, see MQSeries
Integrator Using the Control Center.

This command performs the following actions:
v On Windows NT, stops the service that runs the broker.
v Deletes the broker’s queues on the queue manager.
v Stops and deletes the broker’s queue manager, if requested.
v Removes the broker’s tables from the database.
v Removes the record for the component in the broker registry.

You can also use the Command Assistant to issue this command.

Note: If you delete a broker that has MQSeries Publish/Subscribe broker
neighbors, you must also invoke the command clrmqbrk at each of these
neighbors, specifying the MQSeries Integrator broker that you are deleting
with this command. See “Deleting brokers in a heterogeneous network” on
page 163 for more details about deleting brokers.

Syntax

mqsideletebroker

QQ mqsideletebroker brokername
-q -w

QR

Required parameters
brokername

The name of the broker you want to delete.

mqsideletebroker

118 MQSeries Integrator Administration Guide V2.0.1

Optional parameters
-q Specifies that the broker’s queue manager will be deleted. (If this option is not

specified, only the MQSeries Integrator queues and broker tables are deleted.)

If the queue manager hosts another component (the Configuration Manager, or
the User Name Server, or both in addition to this broker) which still exists, this
command will fail.

-w Causes all files related to this broker to be deleted from the workpath.

Authorization
On Windows NT, the user ID used to invoke this command must have
Administrator authority on the local system.

On UNIX platforms, the user ID used to invoke this command must either be root
or must be the same as that specified in the -i parameter when the broker was
created. It must also be a member of the mqbrkrs group.

Responses
v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8017 Component cannot be deleted
v BIP8018 Component running
v BIP8040 Unable to connect to database
v BIP8048 Unable to start queue manager
v BIP8049 Unable to stop queue manager
v BIP8052 Unable to delete queue
v BIP8073 Invalid broker name
v BIP8082 Unable to delete queue manager
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping
v BIP8095 Queue manager reserved

Examples
mqsideletebroker MQSI_SAMPLE_BROKER -q

Related commands
“mqsicreatebroker (Create broker)” on page 103
“mqsichangebroker (Change broker)” on page 90

mqsideletebroker

Chapter 8. Commands 119

mqsideleteconfigmgr (Delete Configuration Manager)

Purpose
Use the mqsideleteconfigmgr command to delete the Configuration Manager and
the queues on its local queue manager (created when the Configuration Manager
was created). You can also specify that database tables in the configuration
repository and the message repository are deleted.

You should only use the Configuration Manager on a Windows NT platform. This
command is therefore only applicable when using that operating system.

You must stop the Configuration Manager, using mqsistop, before you can delete
it.

This command performs the following actions:
v Stops the Windows NT service that runs the Configuration Manager.
v Deletes the Configuration Manager’s queue manager.
v Stops and deletes the Configuration Manager’s queue manager, if requested.
v Removes the tables from the configuration repository and the message

repository, if requested.
v Removes the record for the component in the broker registry.

You can also use the Command Assistant to issue this command.

Syntax

mqsideleteconfigmgr

QQ mqsideleteconfigmgr
-q -w -n -m

QR

Optional parameters
-q Specifies that the Configuration Manager’s queue manager will be deleted. (If

this option is not specified, only the MQSeries Integrator queues are deleted.)

If the queue manager hosts another component (a broker or the User Name
Server, or both) which still exists, this command will fail.

-w Causes all files related to the Configuration Manager to be deleted from the
workpath.

-n -m
Causes the configuration repository and the message repository to be deleted.

The two parameters -n and -m must be specified together. If they are, the tables
in the configuration repository and the message repository are deleted.

mqsideleteconfigmgr

120 MQSeries Integrator Administration Guide V2.0.1

Warning
You must be very careful if you choose to specify this option. The
configuration repository and message repository contain the configuration
data for the whole broker domain, not just data internal to the
Configuration Manager itself. Deleting these repositories therefore
destroys all information pertinent to the broker domain, and requires you
to recreate every resource within it to recover the broker domain.

If you want to change the user ID that you used to create the database tables
for the configuration repository, or the message repository, or both, you must:
v Stop the Configuration Manager.
v Delete the Configuration Manager, but do not specify these flags. The data is

preserved in the existing tables.
v Create the Configuration Manager. Specify the new user ID as the user ID

you want to use for database access. You can specify a unique user ID for
configuration repository access (flag -u), or for the message repository access
(flag -e), or both, or you can specify the ID as the service user ID (flag -i)
and allow database access to default to that ID. Check “mqsicreateconfigmgr
(Create Configuration Manager)” on page 109 for details.

v Copy the old database tables to the new tables.
v Restart the Configuration Manager.
v When you are confident that the transfer is complete, you can delete the old

tables.

If you specify one of these flags, but not the other, the command returns an
error. If neither flag is specified, the tables remain intact in the database.

Authorization
The user ID used to invoke this command must have Windows NT Administrator
authority.

Responses
v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8017 Component cannot be deleted
v BIP8018 Component running
v BIP8038 Unsupported command option
v BIP8048 Unable to start queue manager
v BIP8049 Unable to stop queue manager
v BIP8052 Unable to delete queue
v BIP8055 Unable to load Java class
v BIP8074 Unable to create JVM
v BIP8075 Java exception
v BIP8076 Unable to set current directory
v BIP8077 Error initializing configuration data
v BIP8078 Error initializing configuration data
v BIP8082 Unable to delete queue manager
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping
v BIP8095 Queue manager reserved
v BIP8097 Unable to create Java object

mqsideleteconfigmgr

Chapter 8. Commands 121

Examples
mqsideleteconfigmgr -q

Related commands
“mqsicreateconfigmgr (Create Configuration Manager)” on page 109
“mqsichangeconfigmgr (Change Configuration Manager)” on page 93

mqsideleteconfigmgr

122 MQSeries Integrator Administration Guide V2.0.1

mqsideleteusernameserver (Delete User Name Server)

Purpose
Use the mqsideleteusernameserver command to delete the User Name Server and
the queues on its local queue manager (created when the User Name Server was
created).

You must stop the User Name Server, using mqsistop, before you can delete it.

This command performs the following actions:
v On Windows NT, stops the service that runs the User Name Server.
v Deletes the User Name Server’s queues on the queue manager.
v Stops and deletes the User Name Server’s queue manager, if requested.
v Removes the record for the component in the broker registry.

You can also use the Command Assistant to issue this command.

Syntax

mqsideleteusernameserver

QQ mqsideleteusernameserver
-q -w

QR

Optional parameters
-q Specifies that the User Name Server’s queue manager will be deleted when the

User Name Server has been deleted. (If this option is not specified, only the
MQSeries Integrator queues are deleted.)

If the queue manager hosts another component (a broker or the Configuration
Manager, or both) which still exists, this command will fail.

-w Causes all files related to the User Name Server to be deleted from the
workpath.

Authorization
On Windows NT, the user ID used to invoke this command must have
Administrator authority on the local system.

On UNIX platforms, the user ID used to invoke this command must either be root
or must be the same as that specified in the -i parameter when the User Name
Server was created. It must also be a member of the mqbrkrs group.

Responses
v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8017 Component cannot be deleted
v BIP8018 Component running
v BIP8048 Unable to start queue manager

mqsideleteusernameserver

Chapter 8. Commands 123

v BIP8049 Unable to stop queue manager
v BIP8052 Unable to delete queue
v BIP8082 Unable to delete queue manager
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping
v BIP8095 Queue manager reserved

Examples
mqsideleteusernameserver

Related commands
“mqsicreateusernameserver (Create User Name Server)” on page 115
“mqsichangeusernameserver (Change User Name Server)” on page 99

mqsideleteusernameserver

124 MQSeries Integrator Administration Guide V2.0.1

mqsiformatlog (Format log)

Purpose
Use the mqsiformatlog command to process the XML log created by mqsireadlog
into a formatted content, and retrieve and format any messages that the XML log
contains into a form suitable for the locale of the user invoking the command.

You can specify the output to be directed to file, or to the command shell.

For more information on using this command, and examples of its use, see
“Chapter 5. Problem determination” on page 61.

Syntax

mqsiformatlog

QQ mqsiformatlog -i inputfilename
-o outputfilename

QR

Required parameters
-i inputfilename

The filename of the XML log file that is to be formatted. You are recommended
to use a file extension of .xml.

Optional parameters
-o outputfilename

The filename of the file into which the formatted log output is to be written. If
this is not specified, the formatted log data is written to stdout.

Authorization
The user ID used to invoke this command must have read access to the input file,
and write access to the output file.

Responses
v BIP8041 Unable to open file
v BIP8042 Insufficient memory
v BIP8043 Invalid trace file
v BIP8046 Unable to initialize XML
v BIP8047 Unable to parse data
v BIP8069 Unable to find message
v BIP8079 Unable to locate XML function
v BIP8080 Unable to load resource
v BIP8081 Error processing command

Examples
mqsiformatlog -i filter.xml -o filterout.log

mqsiformatlog

Chapter 8. Commands 125

This produces output for user trace that is similar in appearance to the following
(this is a formatted version of the unformatted log illustrated in “mqsireadlog
(Read log)” on page 141):

2000-02-29 10:27:45.535999.535999 381 UserTrace
BIP2632I: Message being propagated to the output terminal
An input message received from MQSeries input queue in node
"ConfigurationMessageFlow.InputNode" is being propagated to
any nodes connected to the output terminal.
No user action required.

2000-02-29 10:27:46.317001.317001 381 UserTrace
BIP4040I: Configuration changed successfully for Execution Group "default
The message broker received a configuration message and
updated its configuration accordingly.
No user action required.

2000-02-29 10:27:46.967998.967998 381 UserTrace
BIP2622I: Message successfully output to queue
ConfigurationMessageFlow.outputNode
The MQ output node "ConfigurationMessageFlow.outputNode"
successfully wrote an output message to the specified queue
ConfigurationMessageFlow.outputNode connected to queue manager
SYSTEM.BROKER.EXECUTIONGROUP.REPLY .
No user action required.

2000-02-29 10:32:01.554.554000 445 UserTrace
BIP2632I: Message being propagated to the output terminal
An input message received from MQSeries input queue in node
"Verification.MQInput1" is being propagated to any nodes
connected to the output terminal.
No user action required.

2000-02-29 10:32:01.614.614000 445 UserTrace
BIP2622I: Message successfully output to queue Verification.MQOutput1
The MQ output node "Verification.MQOutput1" successfully wrote
an output message to the specified queue Verification.MQOutput1
connected to queue manager OUT.
No user action required.

Threads encountered in this trace:
381 445

Related commands
“mqsichangetrace (Change trace settings)” on page 95
“mqsireadlog (Read log)” on page 141
“mqsireporttrace (Report trace settings)” on page 146

mqsiformatlog

126 MQSeries Integrator Administration Guide V2.0.1

mqsijoinmqpubsub (Join broker to MQSeries Publish/Subscribe parent
broker)

Purpose
Use the mqsijoinmqpubsub command to join this MQSeries Integrator broker to
an MQSeries Publish/Subscribe broker network. The command identifies a specific
MQSeries Publish/Subscribe broker that will be the parent of the MQSeries
Integrator broker.

This is an asynchronous command. Successful completion of this command
indicates that the MQSeries Integrator broker has accepted the request, not that the
required action has completed.

Use the mqsilistmqpubsub command (“mqsilistmqpubsub (List MQSeries
Publish/Subscribe neighbor broker status)” on page 133) to monitor the status of
the asynchronous actions that result from this command.

Only use this command if you are integrating this MQSeries Integrator broker with
an MQSeries Publish/Subscribe broker network. Before you issue this command,
you must ensure that the MQSeries Integrator broker is ready to receive and
process messages on queue
SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS (that is, you must have
restarted the broker after creating this queue. See “Creating and operating a
heterogeneous network” on page 157 for more details.)

Syntax

mqsijoinmqpubsub

QQ mqsijoinmqpubsub brokername -p ParentQueueManagerName QR

Required parameters
brokername

The name of the broker that is to be joined to an MQSeries Publish/Subscribe
broker.

-p ParentQueueManagerName
The name of the queue manager that hosts the MQSeries Publish/Subscribe
broker to which this MQSeries Integrator broker is to be joined.

Authorization
The user ID used to invoke this command must have put and inq authority to the
queue SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS.

Responses
v BIP8013 Component does not exist
v BIP8056 Unknown queue manager
v BIP8057 Queue manager error
v BIP8059 Queue manager not available

mqsijoinmqpubsub

Chapter 8. Commands 127

v BIP8060 Queue error
v BIP8061 No reply received
v BIP8064 Internal broker error
v BIP8066 Invalid broker name

Examples
mqsijoinmqpubsub MQSI_SAMPLE_BROKER -p MQBroker1

Related commands
“mqsiclearmqpubsub (Remove MQSeries Publish/Subscribe broker as a
neighbor)” on page 101
“mqsilistmqpubsub (List MQSeries Publish/Subscribe neighbor broker status)”
on page 133

mqsijoinmqpubsub

128 MQSeries Integrator Administration Guide V2.0.1

mqsilcc (Start Control Center trace)

Purpose
Use the mqsilcc command to start the Control Center with service trace active at
the specified level. When you invoke the Control Center from the MQSeries
Integrator program folder (or the Start menu), it is invoked without trace (that is,
with a trace level of 0 (none)). To activate its tracing, you must start the Control
Center using this command. This command also activates tracing of the MQSeries
Client for Java.

The Control Center is only available on a Windows NT platform. This command is
therefore only applicable when using that operating system.

You are recommended to use this command only when you are instructed to do so
by an MQSeries Integrator error message, or when directed to do so by your IBM
Support Center.

The trace output generated by these commands is written to trace files in the log
subdirectory. When you have completed the work you want to trace, you may use
mqsireadlog to retrieve the log as an ’XML format’ file. You may use either
mqsiformatlog (to produce a formatted file) or an XML browser to view the XML
records.

When you set tracing on, you are causing additional processing to be executed for
every activity in the component you are tracing. You must therefore expect to see
an impact on performance when trace is active.

You must invoke this command from the Tool subdirectory.

The parameters on this command are positional..

Syntax

mqsilcc

QQ mqsilcc
0

1
2

size
QR

Optional parameters
0, 1 or 2

The level of trace you want to start. This can be:
0 This value requests that no tracing is done (the level is none).
1 This value requests a normal level of tracing. Tracing for the MQSeries
Client for Java is started at level 2.
2 This value requests a debug level of tracing. Tracing for the MQSeries
Client for Java is started at level 5.

mqsilcc

Chapter 8. Commands 129

For further information about tracing for the MQSeries Client for Java, see the
MQSeries Clients book.

size
The size of the trace file in KB (kilobytes). This is initially set to 4096 (file size
4MB). The maximum you can specify for size is 2097151 which creates a 2GB
(gigabyte) trace file.

If you do not specify this parameter, the size is unchanged.

If the trace file reaches maximum size when new trace records are written, the
trace file wraps and the new entries overwrite the oldest existing entries.

Authorization
None. However, the actions you can take in the Control Center depend on the
authority of the Control Center user.

Responses
No additional responses are returned.

Examples
To set normal tracing on, with a default trace file size, enter
mqsilcc 1

To set tracing off, enter
mqsilcc

mqsilcc

130 MQSeries Integrator Administration Guide V2.0.1

mqsilist (List resources)

Purpose
Use the mqsilist command to list all of the components installed on this system,
all the execution groups defined to a specific broker, or all the message flows
contained in a named execution group on a named broker.

The output is directed to stdout.

Syntax

mqsilist

QQ mqsilist
brokername

-e egroup

QR

If you do not specify any parameters when you issue this command, a list of
components and queue manager names is displayed for each component created
on this system, in the form:
BIP8099I: brokername - queuemanagername
BIP8099I: ConfigMgr - queuemanagername
BIP8099I: UserNameServer - queuemanagername
BIP8071I: Successful command completion

Optional parameters
brokername

The name of the broker you want resources listed for. This must be a deployed
broker. A list of execution groups configured on this broker and the process ID
(pid) of each is displayed.

-e egroup
Selects an execution group within a broker. You must specify the label of the
execution group for which you want to list message flows. The command
returns a list of message flows assigned to the specified execution group within
the broker.

The broker specified must be active for any message flow information to be
returned.

Authorization
If you have specified a broker name and the -e flag, the user ID used to invoke
this command must have mqbrkrs group membership.

mqsilist

Chapter 8. Commands 131

Responses
v BIP8013 Component does not exist
v BIP8020 Unable to access database
v BIP8029 Broker not configured
v BIP8038 Unsupported command option
v BIP8039 Execution group not available
v BIP8040 Unable to connect to database

Examples
mqsilist MQSI_SAMPLE_BROKER -e DefaultEG

mqsilist

132 MQSeries Integrator Administration Guide V2.0.1

mqsilistmqpubsub (List MQSeries Publish/Subscribe neighbor broker
status)

Purpose
Use the mqsilistmqpubsub command to display the status of the MQSeries
Publish/Subscribe neighbor brokers to the specified MQSeries Integrator broker.

This command indicates the status of the activity started by a previous join request
(see “mqsijoinmqpubsub (Join broker to MQSeries Publish/Subscribe parent
broker)” on page 127). The command reports on the status of each neighbor broker,
which can be:
v Active. Broker status is active if the join request has completed successfully.
v Inactive. Broker status is inactive if the join has been initiated, but has not

completed.

This command also shows the streams that are recognized by both the MQSeries
Integrator broker and its neighbor (on which messages can be published and
distributed between the brokers). Stream information is only provided for
neighbors with active status.

Only use this command if you are integrating with or migrating from an MQSeries
Publish/Subscribe broker network.

The output generated by this command is directed to stdout.

Syntax

mqsilistmqpubsub

QQ mqsilistmqpubsub brokername QR

Required parameters
brokername

The name of the broker for which you want a list of neighbors.

Authorization
None.

Responses
v BIP8013 Component does not exist
v BIP8020 Unable to access database
v BIP8029 Broker not configured
v BIP8040 Unable to connect to database
v BIP8064 Internal broker error
v BIP8070 Database exception
v BIP8072 Database exception

mqsilistmqpubsub

Chapter 8. Commands 133

Examples
If there are no MQSeries Publish/Subscribe brokers, and no mqsijoinmqpubsub
command has been issued, this command returns the following message:
BIP8088I: There are no MQSeries Publish/Subscribe neighbors

If an mqsijoinmqpubsub command has been issued, one of two response
messages is displayed:
v For every broker that is an inactive neighbor of MQSI_SAMPLE_BROKER, (that

is, an mqsijoinmqpubsub command has been successfully initiated either by an
mqsijoinmqpubsub or an strmqbrk -p command, but negotiations for common
streams are still in progress), the following message is displayed:
BIP8089I: MQSeries Publish/Subscribe neighbor <brokername> is inactive.

v For every broker that is an active neighbor of MQSI_SAMPLE_BROKER, (that is,
the two brokers are exchanging publications and subscriptions for each of the
common streams), the following message is displayed:
BIP8090I: MQSeries Publish/Subscribe neighbor <brokername> is active.

Additional messages are displayed for active brokers to indicate the common
streams for which publications and subscriptions are exchanged, in the following
form:
BIP8091I: Common stream streamname

For example,
mqsilistmqpubsub MQSI_SAMPLE_BROKER

might return the following responses:
BIP8090I: MQSeries Publish/Subscribe neighbor MQPS_BROKER_1 is active.
BIP8091I: Common stream SYSTEM.BROKER.DEFAULT.STREAM.
BIP8091I: Common stream STREAM0.
BIP8090I: MQSeries Publish/Subscribe neighbor MQPS_BROKER_2 is active.
BIP8091I: Common stream SYSTEM.BROKER.DEFAULT.STREAM.
BIP8091I: Common stream STREAM150.
BIP8090I: MQSeries Publish/Subscribe neighbor MQPS_BROKER_3 is inactive.

In this example, the MQSeries Integrator broker has three MQSeries
Publish/Subscribe neighbors. Two of these neighbors are active and have been
successfully joined to the MQSeries Integrator broker. The third is inactive and is
in the process of being joined.

The list of streams that are common to the MQSeries Integrator broker and the two
active MQSeries Publish/Subscribe brokers are included in the response. For
MQPS_BROKER_1, the streams SYSTEM.BROKER.DEFAULT.STREAM and
STREAM0 are common. For MQPS_BROKER_2, the streams
SYSTEM.BROKER.DEFAULT.STREAM and STREAM150 are common.

If a neighbor is inactive for a long period of time, it is likely that the
communication link between the two brokers has been broken. You must ensure
that the MQSeries connections between the two brokers (channels and transmission
queues) are running, and that the MQSeries Integrator and MQSeries
Publish/Subscribe brokers are both active.

mqsilistmqpubsub

134 MQSeries Integrator Administration Guide V2.0.1

Related commands
“mqsiclearmqpubsub (Remove MQSeries Publish/Subscribe broker as a
neighbor)” on page 101
“mqsijoinmqpubsub (Join broker to MQSeries Publish/Subscribe parent
broker)” on page 127

mqsilistmqpubsub

Chapter 8. Commands 135

mqsimrmcopymsgset (Copy message set)

Purpose
Use the mqsimrmcopymsgset command to create a copy of a complete message
within the same message repository. This allows quick and easy creation of
message sets similar in structure.

When you have successfully copied a message set, you must stop the
Configuration Manager and restart it. Your new message set will then be available
to add to your workspace.

When you copy a message set, only those resources previously checked into the
repository are copied to the new message set. All resources are created in the new
message set as exact copies of the resources in the source message with the
exception of the source message set context information. That is, message set state,
resource locks and resource states are not copied from the source message set.

This command is only applicable when using the Windows NT operating system.

The parameters on this command are positional.

Syntax

mqsimrmcopymsgset

QQ mqsimrmcopymsgset MRMDataSourceName MRMDataSourceUserID Q

Q MRMDataSourcePassword SourceMessageSetName SourceMessageSetLevel Q

Q TargetMessageSetName TargetMessageSetLevel QR

Required parameters
MRMDataSourceName

The ODBC data source name (DSN) of the database created to hold the
message repository tables.

This database must already exist. You must create a System DSN ODBC
connection for this DSN, if you have not already done so.

The MQSeries Integrator Installation Guide for your computer platform contains
details of how to create a database and an ODBC connection for all databases
required by MQSeries Integrator.

MRMDataSourceUserID
The user ID with which the message repository database is to be accessed. This
user ID must have the authority to read from (export) and write to (import)
the database identified by the MRMDataSourceName.

mqsimrmcopymsgset

136 MQSeries Integrator Administration Guide V2.0.1

MRMDataSourcePassword
The password for the user ID with which the message repository database is to
be accessed.

SourceMessageSetName
The name (not the identifier) of the message set to be copied.

SourceMessageSetLevel
The level of the message set to be copied.

TargetMessageSetName
The name (not the identifier) of the message set to be created.

TargetMessageSetLevel
The level of the message set to be created.

Authorization
None.

Examples
mqsimrmcopymsgset MQSIMRDB mqsiuid mqsipw "Accounts Payable" 1 "Accounts Payable Copy" 1

mqsimrmcopymsgset

Chapter 8. Commands 137

mqsimrmimpexp (Import/Export message set)

Purpose
Use the mqsimrmimpexp command to export a complete message set from the
message repository into an XML-format file, or to import a complete message set
from an XML-format file into the message repository. This allows message sets to
be exported from one MQSeries Integrator broker domain and imported into a
different broker domain.

When you have successfully imported a message set, you must stop the Control
Center and the Configuration Manager and restart them. Your new message set
will then be available to add to your workspace.

When you import or export a new message set, it is placed in Frozen and Unlocked
state.

This command is only applicable when using the Windows NT operating system.

The parameters on this command are positional.

Syntax

mqsimrmimpexp

QQ mqsimrmimpexp -i
-e

MRMDataSourceName MRMDataSourceUserID Q

Q MRMDataSourcePassword
MessageSetName Level

FileName QR

Required parameters
-i Either specify this flag to initiate the import of message sets, or...

-e specify this flag to initiate the export of message sets.

MRMDataSourceName
The ODBC data source name (DSN) of the database created to hold the
message repository tables.

This database must already exist. You must create a System DSN ODBC
connection for this DSN, if you have not already done so.

The MQSeries Integrator Installation Guide for your computer platform contains
details of how to create a database and an ODBC connection for all databases
required by MQSeries Integrator.

MRMDataSourceUserID
The user ID with which the message repository database is to be accessed. This
user ID must have the authority to read from (export) and write to (import)
the database identified by the MRMDataSourceName.

mqsimrmimpexp

138 MQSeries Integrator Administration Guide V2.0.1

MRMDataSourcePassword
The password for the user ID with which the message repository database is to
be accessed.

FileName
The name of the XML file to be used as output for an export, or as input for an
import.

Optional Parameters
MessageSetName

The name (not the identifier) of the message set to be exported. This must be
specified if you specify -e.

Level
The level of the message set to be exported. This must be specified if you
specify -e.

Authorization
None.

Examples
mqsimrmimpexp -e MQSIMRDB mqsiuid mqsipw "Accounts Payable" 1 acctpay.mrp

mqsimrmimpexp -i MQSIMRDB mqsiuid mqsipw acctpay.mrp

mqsimrmimpexp

Chapter 8. Commands 139

mqsinrfreload (Reload NEON messages)

Purpose
Use the mqsinrfreload command to force the broker to re-access the
NEONFormatter and NEONRules database. You must use this command if you
make any changes to the database containing your NEONFormatter and
NEONRules definitions. You must issue it for each broker that needs access to this
database.

Syntax

mqsinrfreload

QQ mqsinrfreload -b brokername QR

Required parameters
-b brokername

The name of the broker that must re-access the NEONFormatter and
NEONRules database. A message is sent to this broker that instructs the broker
to re-access the database.

Authorization
The user ID used to issue the command must be a member of the group mqbrkrs.

Responses
v BIP8013 Component does not exist

Examples
mqsinrfreload -b broker1

mqsinrfreload

140 MQSeries Integrator Administration Guide V2.0.1

mqsireadlog (Read log)

Purpose
Use the mqsireadlog command to retrieve the trace log for the component
specified. This command is valid for:
v User trace. Specify the -u option.
v Service trace. Specify the -t option. You are recommended to use this option

only if directed to do so by the action described in a BIPxxxx message, or by
your IBM Support Center.

The trace records returned by this command are in XML format and can be
browsed with an XML browser or formatted into a flat file using mqsiformatlog.

You can specify the output to be directed to file, or to stdout.

If you specify a broker, or any of its resources, (execution group or message flow),
you must have deployed them before you can start trace and read the log files.

For more information on using this command, and examples of its use, see
“Chapter 5. Problem determination” on page 61.

Syntax

mqsireadlog — user trace

QQ mqsireadlog component -u -e egroup
-f

Q

Q
-o outputfilename

QR

mqsireadlog — service trace

QQ mqsireadlog component -t -b qualifier -f
-e egroup

-f

Q

Q
-o outputfilename

QR

Required parameters
component

The name of the component for which the log is to be read. This can be either
a broker name, or the fixed values ConfigMgr, UserNameServer, or
ControlCenter (all are case sensitive on UNIX platforms).

mqsireadlog

Chapter 8. Commands 141

Optional parameters
-u Read the log contents from the user trace log. This is only valid if you select

the broker component.

-e egroup
Specify the label of the execution group for which log information is to be
read.

-o filename
The name of the file into which the log data is to be written. If you specify a
full pathname, the file is created in the directory specified. If you specify just
the filename, the file is created in the current working directory. You must
specify a file name if you want to format the log using mqsiformatlog. If you
do not specify a filename, the contents of the log are written to stdout.

-f Read the log file directly from the file system. If you do not specify this option,
the command sends an XML message to the component to request the log
contents. If you have specified -t (service trace) then, in general, you must
specify this flag as well. Further details are given in “Additional parameters
exclusive to service trace”.

If you specify this option, you are recommended to stop tracing (using
mqsichangetrace) before you use the mqsireadlog command. If the log file is
in use when you issue this command with this flag specified, partial XML
records might be returned. You can reduce the risk of this happening by
specifying -m safe on the mqsichangetrace command. If the component being
traced has itself stopped, you do not then need to issue a mqsichangetrace
command.

If you do not stop tracing before you issue this command, you are
recommended to check the contents of the log file created and remove any
partial records from the end using a text editor before using the mqsiformatlog
command, as partial records cannot be read by the format command.

Additional parameters exclusive to service trace
You are recommended to use these options only when directed to do so by your
IBM Support Center or by a BIPxxxx message.

-t Read the log contents from the service trace log.

-b qualifier
Read the contents of the log for the broker agent, Configuration Manager
agent, or User Name Server agent, or for the specified command utility
program. This option is only valid if you have specified -t (service trace).

Table 5 on page 143 shows the valid combinations of qualifier and component
for service trace.

You must enter these values exactly as shown.

The agent trace is initiated when you specify the -b flag on the
mqsichangetrace command. You are recommended to do this only when
directed to do so by an MQSeries Integrator error message or when instructed
to do so by your IBM Support Center.

-f Read the log file directly from the file system. When used with service trace,

mqsireadlog

142 MQSeries Integrator Administration Guide V2.0.1

this flag has the same characteristics as when used with user trace. It remains
optional if the -e is specified. If the -b flag is used, then the -f flag must be
specified.

Table 5. Service trace: qualifiers valid with components

Qualifier (below) Component=
Broker

Component=
ConfigMgr

Component=
UserNameServer

Component=
ControlCenter

mqsichangebroker U

mqsichangeconfigmgr U

mqsichangetrace U U U

mqsichangeusernameserver U

mqsiclearmqpubsub U

mqsicreatebroker U

mqsicreateconfigmgr U

mqsicreateusernameserver U

mqsideletebroker U

mqsideleteconfigmgr U

mqsideleteusernameserver U

mqsiformatlog¹ U U U

mqsijoinmqpubsub U

mqsilist² U U U

mqsilistmqpubsub U

mqsinrfreload U

mqsireadlog U U U

mqsireporttrace U U

mqsistart U U U

mqsistop U U U

agent U U U

ControlCenter U

Note:
1. Because this command does not have a component parameter, trace information is recorded in, and will be

retrieved from, the utility component trace files. For further details see “Optional traces” on page 63.
2. If this command has been invoked without a component, trace information is recorded in, and will be retrieved

from, the utility trace files in addition to component specific files. For further details see “Optional traces” on
page 63.

3. The commands mqsilcc, mqsimrmimpexp and mqsimrmcopymsgset are not eligible for utility trace.

Authorization
If the -f flag is specified, the user ID used to invoke this command must have
access to the trace file. If the -f flag is not specified, the user ID used to issue the
command must have mqbrkrs authority.

Responses
v BIP8020 Unable to access database
v BIP8029 Broker not configured
v BIP8032 Unable to connect to queue
v BIP8033 Unable to send XML message

mqsireadlog

Chapter 8. Commands 143

v BIP8035 Response not received within timeout
v BIP8036 Negative response received
v BIP8037 Unsupported flag selected
v BIP8038 Unsupported command option
v BIP8039 Execution group not available
v BIP8040 Unable to connect to database
v BIP8132 Invalid qualifier

Examples
mqsireadlog MQSI_SRU -e test -u -f -o filter.xml

The following output shows records that might be generated by the command
issued in the example above. You can format this log file using the command
mqsiformatlog, or view it using an XML editor or viewer. For an example of the
output viewed with an XML viewer, see “Retrieving user trace information” on
page 65:

<UserTraceLog><UserTrace timestamp='2000-02-29 10:21:31.259000' thread='381'
function='ImbConfigurationNode:: evaluate' type='ComIbmConfigurationNode'
name='ConfigurationNode' label='ConfigurationMessageFlow.ConfigurationNode'
text='Configuration changed successfully and committed to persistent store'
catalog='MQSIv201' number='4040'
file='f:/build/mqsi2/src/DataFlowEngine/ImbConfigurationNode.cpp'
line='722'><Insert type='string' text='default'/><Insert type='string'
text='b9dfd19c-dd00-0000-0080-8123454afe2c'/><Insert type='string'
text='ConfigurationMessageFlow.ConfigurationNode'/></UserTrace>
<UserTrace timestamp='2000-02-29 10:21:31.489000' thread='381'
function='ImbMqOutputNode:: putMessage' type='ComIbmMQOutputNode'
name='OutputNode' label='ConfigurationMessageFlow.outputNode'
text='Message received and queued successfully' catalog='MQSIv201'
number='2622' file='f:/build/mqsi2/src/DataFlowEngine/ImbMqOutputNode.cpp'
line='1387'><Insert type='string' text='MQSI_SRU '/><Insert type='string'
text='SYSTEM.BROKER.EXECUTIONGROUP.REPLY '/>
<Insert type='string' text='ConfigurationMessageFlow.outputNode'/>
</UserTrace>
<UserTrace timestamp='2000-02-29 10:24:35.303001' thread='381'
function='ImbMqInputNode:: readQueue' type='ComIbmMQInputNode'
name='InputNode' label='ConfigurationMessageFlow.InputNode'
text='Dequeued message and propagating to output terminal'
catalog='MQSIv201' number='2632'
file='f:/build/mqsi2/src/DataFlowEngine/ImbMqInputNode.cpp'
line='1018'><Insert type='string' text='ConfigurationMessageFlow.InputNode'
<UserTrace timestamp='2000-02-29 10:24:36.674999' thread='381'
function='ImbConfigurationNode:: evaluate' type='ComIbmConfigurationNode'
name='ConfigurationNode' label='ConfigurationMessageFlow.ConfigurationNode'
text='Configuration changed successfully and committed to persistent store'
catalog='MQSIv201' number='4040'
file='f:/build/mqsi2/src/DataFlowEngine/ImbConfigurationNode.cpp'
line='722'><Insert type='string' text='default'/><Insert type='string'
text='b9dfd19c-dd00-0000-0080-8123454afe2c'/><Insert type='string'
text='ConfigurationMessageFlow.ConfigurationNode'/></UserTrace>
<UserTrace timestamp='2000-02-29 10:24:36.816001' thread='381'
function='ImbMqOutputNode:: putMessage' type='ComIbmMQOutputNode'
name='OutputNode' label='ConfigurationMessageFlow.outputNode'
text='Message received and queued successfully'
catalog='MQSIv201' number='2622'
file='f:/build/mqsi2/src/DataFlowEngine/ImbMqOutputNode.cpp'
line='1387'><Insert type='string' text='MQSI_SRU '/>
<Insert type='string' text='SYSTEM.BROKER.EXECUTIONGROUP.REPLY
<Insert type='string' text='ConfigurationMessageFlow.outputNode'/>
</UserTrace>
<UserTrace timestamp='2000-02-29 10:27:45.535999' thread='381'
function='ImbMqInputNode:: readQueue' type='ComIbmMQInputNode'

mqsireadlog

144 MQSeries Integrator Administration Guide V2.0.1

name='InputNode' label='ConfigurationMessageFlow.InputNode'
text='Dequeued message and propagating to output terminal'
catalog='MQSIv201' number='2632'
file='f:/build/mqsi2/src/DataFlowEngine/ImbMqInputNode.cpp' line='1018'>
<Insert type='string' text='ConfigurationMessageFlow.InputNode'/>
</UserTrace>

Related commands
“mqsichangetrace (Change trace settings)” on page 95
“mqsiformatlog (Format log)” on page 125
“mqsireporttrace (Report trace settings)” on page 146

mqsireadlog

Chapter 8. Commands 145

mqsireporttrace (Report trace settings)

Purpose
Use the mqsireporttrace command to display the trace options currently in effect.
This command is valid for:
v User trace. Specify the -u option.
v Service trace. Specify the -t option. You are recommended to use this option

only if directed to do so by the action described in a BIPxxxx message, or by
your IBM Support Center.

If you specify a broker, or any of its resources, (execution group or message flow),
you must have deployed them before you can query trace settings.

For more information on using this command, and examples of its use, see
“Chapter 5. Problem determination” on page 61.

Syntax

mqsireporttrace — user trace

QQ mqsireporttrace component -u -e egroup
-f mflow

QR

mqsireporttrace — service trace

QQ mqsireporttrace component -t Q

Q -b
-e egroup

-f mflow

QR

Required parameters
component

The name of the broker for which options are reported, or the fixed value
UserNameServer. Both values are case sensitive on UNIX platforms.

Optional parameters
-u Derive report information from the user trace.

-e egroup
Specify the label of the execution group for which a report is required. This is
only valid if you have specified a broker as the component.

mqsireporttrace

146 MQSeries Integrator Administration Guide V2.0.1

-f mflow
Specify the label of the message flow for which a report is required. This is
only valid if you have specified both a broker as the component and an
execution group.

Additional parameters exclusive to service trace
You are recommended to use these options only when directed to do so by your
IBM Support Center or by a BIPxxxx message.

-t Derive report information from the service trace.

-b Request a report for agent function.

Authorization
The user ID used to issue the command must have mqbrkrs authority.

Responses
v BIP8013 Component does not exist
v BIP8020 Unable to access database
v BIP8029 Broker not configured
v BIP8032 Unable to connect to queue
v BIP8033 Unable to send XML message
v BIP8035 Response not received within timeout
v BIP8036 Negative response received
v BIP8037 Unsupported flag selected
v BIP8038 Unsupported command option
v BIP8039 Execution group not available
v BIP8040 Unable to connect to database
v BIP8045 Message flow not available

Examples
mqsireporttrace BrokerA -t -e "exgrp1"

Related commands
“mqsichangetrace (Change trace settings)” on page 95
“mqsiformatlog (Format log)” on page 125

mqsireporttrace

Chapter 8. Commands 147

mqsistart (Start component)

Purpose
Use mqsistart to start an MQSeries Integrator component. If the queue manager
associated with this component (defined in the corresponding create command) is
not already running, it is also started by this command. However, no additional
MQSeries services (listeners, channels, channel initiators) associated with the
started component are started. You must therefore use MQSeries Services (or
MQSC) to start any additional services required.

Successful completion of this command indicates that the Windows NT service or
UNIX daemon has started successfully, and that the component start-up has been
initiated. You must check the Windows NT Event log or UNIX syslog to determine
if the component has successfully completed start-up, and is in an active state. Any
errors detected by the component that have prevented successful start-up are
recorded in the log. You should continue to monitor the Windows NT Event log or
UNIX syslog.

Note: If the queue manager supporting the component specified on this command
is not already running, it is started by this command, but, on Windows NT,
is not started as a service. On this system, it will therefore stop if you log
off. To avoid this happening, you must either remain logged on, or you
must change the start-up status of the queue manager service (described in
“Starting MQSeries queue managers as a Windows NT service” on page 21).
(If you lock your workstation, the queue manager does not stop).

Syntax

mqsistart

QQ mqsistart component QR

Required parameters
component

This must be either a broker name, or the fixed values ConfigMgr or
UserNameServer (all are case sensitive on UNIX platforms).

Authorization
On Windows NT, the user ID used to invoke this command must have
Administrator authority on the local system.

On UNIX platforms, the user ID used to invoke this command must either be root
or must be the same as that specified in the -i parameter when the component
was created. It must also be a member of the mqbrkrs group.

When the Windows NT service or UNIX daemon is started, it runs under the user
ID specified by the -i flag on the mqsicreate command. The component will only
start if the ServiceUserID specified is authorized to access the home directory

mqsistart

148 MQSeries Integrator Administration Guide V2.0.1

(where MQSeries Integrator has been installed), and the working directory (if
specified by the -w flag on the mqsicreate command).

The security requirements for using this command are summarized in Table 2 on
page 50.

Responses
v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8015 Component cannot be started
v BIP8018 Component running
v BIP8024 Unable to locate executable
v BIP8025 Component disabled
v BIP8026 Unable to start component
v BIP8027 Unable to start MQSeries
v BIP8028 MQSeries unavailable
v BIP8030 Unable to modify user privileges
v BIP8048 Unable to start queue manager
v BIP8056 Unknown queue manager
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping

Examples
mqsistart MQSI_SAMPLE_BROKER

Related commands
“mqsistop (Stop component)” on page 150

mqsistart

Chapter 8. Commands 149

mqsistop (Stop component)

Purpose
Use the mqsistop command to stop an MQSeries Integrator component.

Syntax

mqsistop

QQ mqsistop component
-q -i

QR

Required parameters
component

This must be either a broker name, or the fixed values ConfigMgr or
UserNameServer (all are case sensitive on UNIX platforms).

Optional parameters
-q Stop the MQSeries queue manager associated with this resource.

You are recommended to specify this flag only if the MQSeries Integrator
component is the last (or only) MQSeries Integrator component active on this
queue manager. This command initiates a controlled shutdown of the queue
manager, and will inform other users of the queue manager that it is closing. If
you do not stop other MQSeries Integrator components that use this queue
manager before you issue this command with this option, you must stop them
afterwards or restart the queue manager.

If you request this option, you must be aware that any listeners associated
with this queue manager are not stopped with the queue manager. You must
stop these manually after issuing this command.

-i Immediately stop the broker.

You are recommended to specify this flag only if invoking the command
without it has failed to stop the broker.

Authorization
The user ID used to invoke this command must belong to the Windows NT
Administrators group.

The security requirements for using this command are summarized in Table 2 on
page 50.

mqsistop

150 MQSeries Integrator Administration Guide V2.0.1

Responses
v BIP8012 Unable to connect to system components
v BIP8013 Component does not exist
v BIP8016 Component cannot be stopped
v BIP8019 Component stopped
v BIP8030 Unable to modify user privileges
v BIP8049 Unable to stop queue manager
v BIP8093 Queue manager being created
v BIP8094 Queue manager stopping

Examples
mqsistop ConfigMgr -q

Related commands
“mqsistart (Start component)” on page 148

mqsistop

Chapter 8. Commands 151

mqsistop

152 MQSeries Integrator Administration Guide V2.0.1

Part 3. Migration and integration

Chapter 9. MQSeries Publish/Subscribe . . . 155
Before you start 155

Figures used in this chapter 155
Commands and options 155
Stream queues 157

Running two independent broker networks . . . 157
Creating and operating a heterogeneous network 157

Adding an MQSeries Integrator broker as a leaf
node 158
Adding an MQSeries Integrator broker as a
parent node 161
Deleting brokers in a heterogeneous network 163

Migrating MQSeries Publish/Subscribe brokers . . 164
The Control Center and migration 164
Migrating a single broker 165

Preparing for the migration. 165
Preparing the replacement broker 165
Migrating the MQSeries Publish/Subscribe
broker 166
Deploying the stream queues 166

Migrating a broker network 167
Stage 1: migration of the LONDON broker 168
Stage 2: migration of the NEWYORK broker 169
Stage 3: migration of the TOKYO broker . . 171

A network of migrated brokers 172

© Copyright IBM Corp. 2000 153

154 MQSeries Integrator Administration Guide V2.0.1

Chapter 9. MQSeries Publish/Subscribe

This chapter describes the tasks you must complete to integrate your two broker
networks, or to migrate your MQSeries Publish/Subscribe brokers to MQSeries
Integrator Version 2 brokers.

The following scenarios, described in MQSeries Integrator Introduction and Planning,
are addressed:
1. “Running two independent broker networks” on page 157.

You can choose to have two independent broker networks, and therefore have
two separate broker domains for publications and subscriptions.

2. “Creating and operating a heterogeneous network” on page 157.
You can integrate the two networks to allow publications and subscriptions to
flow throughout the mixed network.

3. “Migrating MQSeries Publish/Subscribe brokers” on page 164.
You can selectively and gradually migrate individual brokers from MQSeries
Publish/Subscribe to MQSeries Integrator Version 2.

Before you start
Before you start to implement a migration or integration of an MQSeries
Publish/Subscribe and MQSeries Integrator network, refer to the detailed planning
information provided in MQSeries Integrator Introduction and Planning. This gives a
description of the options implemented here, and the advantages of each.

If appropriate, you must check that you have updated any of your client
applications that are affected by the differences in the two products. See MQSeries
Integrator Introduction and Planning for details of the differences, and suggested
changes, before you implement the network changes described here.

Figures used in this chapter
The figures illustrating the migration scenarios in this chapter use the key shown
in Figure 14.

Commands and options
To complete the tasks required to achieve an integrated network, or to migrate
MQSeries Publish/Subscribe brokers to MQSeries Integrator, you will use a
number of commands supplied by MQSeries Integrator and MQSeries
Publish/Subscribe.

Figure 14. Key to the integration and migration figures

© Copyright IBM Corp. 2000 155

The following commands are provided by MQSeries Publish/Subscribe:
v clrmqbrk. This command removes an MQSeries Publish/Subscribe broker as a

neighbor of an MQSeries Integrator broker.
v dltmqbrk. This command deleted an MQSeries Publish/Subscribe broker and

removes and neighbor connections.
v endmqbrk. This command stops a running MQSeries Publish/Subscribe broker.
v migmqbrk. This command transfers state information from an MQSeries

Publish/Subscribe broker to an MQSeries Integrator broker. For further details of
what this information includes, see “Migrating MQSeries Publish/Subscribe
brokers” on page 164.

Note: This command is only available in the latest level of the MQSeries
Publish/Subscribe SupportPac. You must download this latest level to
implement migration of MQSeries Publish/Subscribe brokers to MQSeries
Integrator brokers.

v strmqbrk. This command starts an MQSeries Publish/Subscribe broker.

The following commands are provided by MQSeries Integrator:
v mqsicreatebroker. This command creates an MQSeries Integrator broker.
v mqsistart. This command starts an MQSeries Integrator broker.
v mqsiclearmqpubsub. This command removes an MQSeries Publish/Subscribe

broker as a neighbor of an MQSeries Integrator broker.
v mqsijoinmqpubsub. This command joins and MQSeries Integrator broker to an

MQSeries Publish/Subscribe broker network.
v mqsilistmqpubsub. This command displays the status of MQSeries

Publish/Subscribe neighbor brokers after a join command.

Table 6 gives you a further reference to the definition and detail of all these
commands. You must check these references for further information, or to correct
any errors that occur.

Table 6. Where to find command information

Command Reference

clrmqbrk MQSeries Publish/Subscribe User’s Guide

dltmqbrk MQSeries Publish/Subscribe User’s Guide

endmqbrk MQSeries Publish/Subscribe User’s Guide

migmqbrk MQSeries Publish/Subscribe User’s Guide

strmqbrk MQSeries Publish/Subscribe User’s Guide

mqsiclearmqpubsub “mqsiclearmqpubsub (Remove MQSeries Publish/Subscribe broker
as a neighbor)” on page 101

mqsicreatebroker¹ “mqsicreatebroker (Create broker)” on page 103

mqsijoinmqpubsub “mqsijoinmqpubsub (Join broker to MQSeries Publish/Subscribe
parent broker)” on page 127

mqsilistmqpubsub “mqsilistmqpubsub (List MQSeries Publish/Subscribe neighbor
broker status)” on page 133

mqsistart “mqsistart (Start component)” on page 148

Note:

1. This command can also be issued through the Command Assistant. See “Chapter 7.
Using the MQSeries Integrator Command Assistant” on page 83 for details.

156 MQSeries Integrator Administration Guide V2.0.1

Stream queues
The migration examples in this chapter always specify the noshare option on the
commands that create stream queues. MQSeries Publish/Subscribe required this
option to be specified: MQSeries Integrator does not require it. Sharing queues is
one way of increasing throughput, but can affect the order in which publications
are received by subscribers. For details of throughput and order, see the section
entitled Throughput in Appendix A of MQSeries Integrator Introduction and Planning.

Running two independent broker networks
If you want to run in this mode with two separate, independent networks, you do
not have to take any specific actions. You can retain your existing MQSeries
Publish/Subscribe network, and install and configure an MQSeries Integrator
Version 2 network, without any interaction.

Your existing applications in both networks can work unchanged, and do not
interact in any way.

You must be aware that a single queue manager cannot support both an MQSeries
Publish/Subscribe broker and an MQSeries Integrator Version 2 broker. If you have
brokers of both types on a single system, each must have its own dedicated queue
manager.

Creating and operating a heterogeneous network
You can integrate your existing MQSeries Publish/Subscribe broker network with
an MQSeries Integrator Version 2.0.1 broker network to create a mixed,
heterogeneous network. This enables publications and subscriptions to be
propagated through one logical network, made up of two or more physical
networks. Thus subscribers to the MQSeries Publish/Subscribe brokers can target
information being published to the MQSeries Integrator broker network, and vice
versa. MQSeries Publish/Subscribe brokers and MQSeries Integrator Version 2.0.1
brokers can be running on Windows NT or other platforms.

There are two ways in which an MQSeries Integrator broker can be joined to the
MQSeries Publish/Subscribe network: it can be joined as a leaf node (that is, as a
child of an existing MQSeries Publish/Subscribe broker) or as a parent node (that
is, as the parent of an existing MQSeries Publish/Subscribe broker). For details of
the advantages of these two options, and why you might choose one or the other,
see MQSeries Integrator Introduction and Planning.

Every MQSeries Integrator broker you integrate into an MQSeries
Publish/Subscribe network must have a minimum of two queues available:
v SYSTEM.BROKER.DEFAULT.STREAM

This queue supports the default publication stream. You must create this queue
on every broker. You must also create and deploy a message flow that services
this stream queue.

v SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS
This queue is used by the broker to communicate with neighboring MQSeries
Publish/Subscribe brokers. You must create this queue on every broker, however
the message flow for this queue is created internally by the broker.

You must ensure that the two queue managers (for example, MQPS_BROKER1 and
MQSI_SAMPLE_BROKER) have MQSeries connections. Sender-receiver pairs of

Chapter 9. MQSeries Publish/Subscribe 157

channels and a transmission queue at the sending end are required for both queue
managers to enable two-way communications. For example:
1. On the queue manager for broker MQPS_BROKER1:

define channel('MQPS_TO_MQSI') chltype(sdr) trptype(tcp)
conname('MQSISYS1') xmitq('MQSI_SAMPLE_BROKER) replace

define channel('MQSI_TO_MQPS') chltype(rcvr) trptype(tcp) replace

define qlocal('MQSI_SAMPLE_BROKER') usage(xmitq)
get(enabled) put(enabled) replace

2. On the queue manager for broker MQSI_SAMPLE_BROKER:
define channel('MQSI_TO_MQPS') chltype(sdr) trptype(tcp)
conname('MQSISYS2') xmitq('MQPS_BROKER1) replace

define channel('MQPS_TO_MQSI') chltype(rcvr) trptype(tcp) replace

define qlocal('MQPS_BROKER1') usage(xmitq)
get(enabled) put(enabled) replace

The requirements for channels and transmission queues, and how to activate them
is described in the MQSeries Publish/Subscribe User’s Guide: the same requirements
exist whether the broker being joined to the network is an MQSeries
Publish/Subscribe broker or an MQSeries Integrator broker.

The steps described in the following sections (“Adding an MQSeries Integrator
broker as a leaf node” and “Adding an MQSeries Integrator broker as a parent
node” on page 161) assume you are joining:
v An MQSeries Integrator broker named MQSI_SAMPLE_BROKER. When this

broker was created, the same name was specified for the queue manager.
v An MQSeries Publish/Subscribe broker network with a root broker

MQPS_ROOT_BROKER, and two leaf brokers MQPS_BROKER1 and
MQPS_BROKER2.

You must substitute the real names of your brokers for these examples wherever
they are used.

Note: All commands shown must be issued on the system on which the
appropriate resource is defined. MQSeries commands (for example, to define
a queue) are shown in MQSC format. For more information about MQSeries
commands, see MQSeries System Administration.

Adding an MQSeries Integrator broker as a leaf node
This section describes the actions you must complete to add the MQSeries
Integrator broker as a leaf node within your MQSeries Publish/Subscribe broker
network. This is illustrated in Figure 15 on page 159 which shows MQSeries
Integrator broker MQSI_SAMPLE_BROKER joined to the MQSeries
Publish/Subscribe network, with broker MQPS_BROKER1 as its parent broker.

Heterogeneous networks

158 MQSeries Integrator Administration Guide V2.0.1

Step 1. Ensure that the MQSeries Integrator broker’s default execution group is
successfully deployed. This execution group is deployed the first time
you deploy a newly created MQSeries Integrator broker. You can check
the status of both the execution group and the broker from the Topology
view in the Control Center. For further information about deployment,
see MQSeries Integrator Using the Control Center.

Step 2. Define the queue required to support interbroker communications with
MQSeries Publish/Subscribe neighbors on the MQSeries Integrator
broker’s queue manager:
define qlocal(SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS) noshare

Step 3. Stop the MQSeries Integrator broker:
mqsistop MQSI_SAMPLE_BROKER

Step 4. Restart the MQSeries Integrator broker:
mqsistart MQSI_SAMPLE_BROKER

When the MQSeries Integrator broker is restarted, the presence of the
interbroker queue (defined above) enables the broker to receive and
process messages on this queue.

Step 5. Create the resources required on the MQSeries Integrator broker to
support the default MQSeries Publish/Subscribe stream:
a. Create the default stream queue:

define qlocal(SYSTEM.BROKER.DEFAULT.STREAM) noshare

b. Create a message flow based on the supplied publish/subscribe
message flow:
1) Start up the Control Center and select the message flow view.
2) If you have not already imported and saved the default message

flows supplied (described in MQSeries Integrator Introduction and
Planning), you are recommended to import these now. This will
enable you to reuse the default publish/subscribe flow here.
Select File->Import and open the file, called

Figure 15. Adding an MQSeries Integrator broker as a leaf node

Heterogeneous networks

Chapter 9. MQSeries Publish/Subscribe 159

SamplesWorkspaceForImport, in the examples subdirectory within
the MQSeries Integrator home directory. It will take a few minutes
to complete. (You can find more detailed instructions for working
with this import file in the MQSeries Integrator Installation Guide
for your computer platform.)
(If you prefer, you can create your own message flow. See the
MQSeries Integrator Using the Control Center for details of how to
do this).

3) Make a copy of the supplied message flow and rename it.
4) Check the properties of the nodes in the message flow. You must

set the appropriate input (stream) queue property for the
MQInput node. Check the other properties of the nodes are set
correctly for your requirements.

5) Finally, check in your changes and deploy the message flow to the
default execution group of the broker MQSI_SAMPLE_BROKER.

You can find full details of how to complete these steps in the online
help for the Control Center.

Step 6. If you are using additional streams in the MQSeries Publish/Subscribe
network, you must also enable these on the MQSeries Integrator broker.
Although the MQSeries Integrator broker is able to support all the
streams of its MQSeries Publish/Subscribe neighbors, you need only
define queues, and define and deploy message flows, for those streams
requested by MQSeries Integrator subscriber clients.
a. Create a local queue on the MQSeries Integrator broker’s queue

manager for each stream on which messages are to be processed. For
example:
define qlocal(STREAM.X) noshare

b. Create and deploy a message flow to read and process the MQSeries
Publish/Subscribe messages that are sent to each stream (publication)
queue.
You can use the supplied publish/subscribe message flow as the basis
for each new message flow. Each MQInput node representing a
non-default stream must have the property implicitStreamNaming
set (this is the default setting).

Step 7. Ensure that the MQSeries Publish/Subscribe broker is running: if not, you
can start it using the start command:
strmqbrk MQPS_BROKER1

Step 8. Ensure that the MQSeries connection between the two brokers is enabled:
you must start the listeners for the receiver channels, and you must then
start the sender channels.

Step 9. Join the MQSeries Integrator broker to the MQSeries Publish/Subscribe
network as a child of the MQSeries Publish/Subscribe broker:
mqsijoinmqpubsub MQSI_SAMPLE_BROKER -p MQPS_BROKER1

Step 10. Verify the success of the join command to ensure that the MQSeries
Publish/Subscribe broker is an active neighbor:
mqsilistmqpubsub MQSI_SAMPLE_BROKER

If the join command has completed successfully, you will see a response
to the list command that will be similar to:

Heterogeneous networks

160 MQSeries Integrator Administration Guide V2.0.1

BIP8090I: MQSeries Publish/Subscribe neighbor MQSI_SAMPLE_BROKER
is active

BIP8091I: Common stream SYSTEM.BROKER.DEFAULT.STREAM
BIP8091I: Common stream STREAM.X

Adding an MQSeries Integrator broker as a parent node
This section describes the actions you must complete to add the MQSeries
Integrator broker as a leaf node within your MQSeries Publish/Subscribe broker
network. This is illustrated in Figure 16, which shows MQSeries Integrator broker
MQSI_SAMPLE_BROKER joined to the MQSeries Publish/Subscribe network as
the new parent node (that is, as the parent of the original parent node
MQPS_ROOT_BROKER).

Step 1. Ensure that the MQSeries Integrator broker’s default execution group is
successfully deployed. This execution group is deployed the first time
you deploy a newly created MQSeries Integrator broker. You can check
the status of both the execution group and the broker from the Topology
view in the Control Center. For further information about deployment,
see MQSeries Integrator Using the Control Center.

Step 2. Define the queue required to support interbroker communications with
MQSeries Publish/Subscribe neighbors on the MQSeries Integrator
broker’s queue manager:
define qlocal(SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS) noshare

Step 3. Stop the MQSeries Integrator broker:
mqsistop MQSI_SAMPLE_BROKER

Step 4. Restart the MQSeries Integrator broker:
mqsistart MQSI_SAMPLE_BROKER

When the MQSeries Integrator broker is restarted, it is enabled to receive
and process messages on the interbroker queue.

Figure 16. Adding an MQSeries Integrator broker as a parent node

Heterogeneous networks

Chapter 9. MQSeries Publish/Subscribe 161

Step 5. Create the resources required on the MQSeries Integrator broker to
support the default MQSeries Publish/Subscribe stream:
a. Create the default stream queue:

define qlocal(SYSTEM.BROKER.DEFAULT.STREAM) noshare

b. Create a message flow for publish/subscribe, either your own, or one
based on the supplied publish/subscribe message flow: :
1) Start up the Control Center and select the message flow view.
2) Make a copy of the supplied message flow and rename it. (You

must import this default message flow before you can access and
use it: details are in “Adding an MQSeries Integrator broker as a
leaf node” on page 158)

3) Check the properties of the nodes in the message flow. You must
set the appropriate input (stream) queue property for the
MQInput node. Check the other properties of the nodes are set
correctly for your requirements.

4) Finally, deploy the message flow to the default execution group of
the broker MQSI_SAMPLE_BROKER.

You can find full details of how to complete these steps in the online
help for the Control Center.

Step 6. If you are using additional streams in the MQSeries Publish/Subscribe
network, you must also enable these on the MQSeries Integrator broker.
Although the MQSeries Integrator broker is able to support all the
streams of its MQSeries Publish/Subscribe neighbors, you need only
define queues, and define and deploy message flows, for those streams
requested by MQSeries Integrator subscriber clients.
a. Create a local queue on the MQSeries Integrator broker’s queue

manager for each stream on which messages are to be processed:
For example:
define qlocal(STREAM.X) noshare

b. Create and deploy a message flow to read and process the MQSeries
Publish/Subscribe messages that are sent to each stream (publication)
queue.
You can use the supplied publish/subscribe message flow as the basis
for each new message flow. Each MQInput node representing a
non-default stream must have the property implicitStreamNaming
set.

Step 7. Enter the following MQSeries Publish/Subscribe command against the
broker that is the current MQSeries Publish/Subscribe parent broker, to
terminate its activities:
endmqbrk -c -m MQPS_ROOT_BROKER

This requests a controlled shutdown (-c). When the shutdown has
completed, the broker can be restarted. You can request an immediate
shutdown (by specifying -i instead of -c) if you need to force this
shutdown to complete.

Step 8. Ensure that the MQSeries connection between the two brokers is active:
you must start the listeners for the receiver channels, and you must then
start the sender channels.

Step 9. Enter the following MQSeries Publish/Subscribe command against the
current MQSeries Publish/Subscribe parent broker to restart it:
strmqbrk -m MQPS_ROOT_BROKER -p MQSI_SAMPLE_BROKER

Heterogeneous networks

162 MQSeries Integrator Administration Guide V2.0.1

If the queue manager associated with the MQSeries Integrator broker
MQSI_SAMPLE_BROKER has not been created with the same name as the
broker, you must specify the queue manager name here after the -p flag,
not the broker name.

Step 10. Verify the success of the integration:
mqsilistmqpubsub MQSI_SAMPLE_BROKER

If the MQSeries Integrator broker has been integrated into the MQSeries
Publish/Subscribe network successfully, you will see a response that will
be similar to:
BIP8090I: MQSeries Publish/Subscribe neighbor MQSI_SAMPLE_BROKER

is active

BIP8091I: Common stream SYSTEM.BROKER.DEFAULT.STREAM
BIP8091I: Common stream STREAM.X

Deleting brokers in a heterogeneous network
If you have a mixed broker network, you must take particular care to maintain the
integrity of the network if you need to remove or delete a broker from the
network:
v When you issue the mqsideletebroker command to delete an MQSeries

Integrator broker, the MQSeries Publish/Subscribe brokers that are neighbors of
this MQSeries Integrator broker are not automatically informed of its deletion.
You are therefore recommended to remove the MQSeries Integrator broker from
the network using the clear commands mqsiclearmqpubsub (at the MQSeries
Integrator broker) and clrmqbrk (at its MQSeries Publish/Subscribe neighbors)
before you delete it.
You can find references to more information about both of these commands in
Table 6 on page 156.

v If you delete an MQSeries Integrator broker before you remove it from the
network, and it has a parent MQSeries Publish/Subscribe broker, the parent
broker continues to attempt to send publication and subscription messages to it.
You can correct this behavior by issuing the clrmqbrk command at the parent.
For example, if you issue:
mqsideletebroker -m MQSI_CHILD_BROKER

while the MQSeries Integrator broker is still known to its parent MQSeries
Publish/Subscribe broker, you can then issue the command
clrmqbrk -m MQPS_PARENT_BROKER -c MQSI_CHILD_BROKER

to the parent broker to clean up the network.
v When you issue the dltmqbrk command to delete an MQSeries

Publish/Subscribe broker that is a child of an MQSeries Integrator broker, the
MQSeries Integrator broker does receive notification of the deletion.
Therefore you do not have to issue the mqsiclearmqpubsub command to
remove knowledge of the deleted child at the MQSeries Integrator parent broker.
For example, if you want to delete the child broker MQPS_CHILD_BROKER you
must issue the following single command:
dltmqbrk -m MQPS_CHILD_BROKER

Note: You are prevented from deleting an MQSeries Publish/Subscribe broker
that is a parent of any broker: the dltmqbrk command fails.

Heterogeneous networks

Chapter 9. MQSeries Publish/Subscribe 163

Migrating MQSeries Publish/Subscribe brokers
When you plan for migration of one or more brokers, you must take account of the
product differences described in MQSeries Integrator Introduction and Planning. You
must take any action to make changes to applications, or topics, or both, before
you start migration.

The information here tells you the steps you must take to migrate a single broker,
and an MQSeries Publish/Subscribe broker network.

These steps result in replacement of the MQSeries Publish/Subscribe brokers by
MQSeries Integrator brokers. Each replacement MQSeries Integrator broker must
be created on the same queue manager as the MQSeries Publish/Subscribe broker
it is replacing. Because the MQSeries Publish/Subscribe broker shares the same
name as the queue manager that supports it, you must specify the MQSeries
Publish/Subscribe broker name as the queue manager parameter on the
mqsicreatebroker command (the -q flag).

Migration involves the transfer of the following state information from the
MQSeries Publish/Subscribe broker to the MQSeries Integrator broker:
v Subscriptions.

All client subscriptions are exported from all streams except
SYSTEM.BROKER.ADMIN.STREAM.

v Retained publications.
All retained publications in MQRFH format are exported from all streams except
SYSTEM.BROKER.ADMIN.STREAM.

v Local publishers.
Registrations for all publishers that are producing local publications are exported
from all streams except SYSTEM.BROKER.ADMIN.STREAM.

v Related brokers.
If the broker is part of a multi-broker hierarchy, details of all of its relations are
exported. This includes the names of all streams which the broker to be
migrated has in common with the relation.

This information is exported as a series of messages that the migrating MQSeries
Publish/Subscribe broker sends to its replacement. When migration is complete the
MQSeries Publish/Subscribe broker is deleted automatically, and cannot be
recreated.

The Control Center and migration
If you are migrating an MQSeries Publish/Subscribe broker, you cannot fully
deploy it in your MQSeries Integrator broker domain until migration has
completed successfully. In particular, you are advised not to deploy additional
execution groups or message flows until after you have successfully migrated the
MQSeries Publish/Subscribe broker.

Before you start migration, the MQSeries Integrator broker must be created in the
Control Center Topology view. You must then deploy it by selecting
File->Deploy->Delta configuration (all types).

If migration fails, and you want to revert to your MQSeries Publish/Subscribe
broker, you must delete the broker following the guidance given in “Deleting
components from the broker domain” on page 35.

Migrating brokers

164 MQSeries Integrator Administration Guide V2.0.1

Migrating a single broker
When you migrate an MQSeries Publish/Subscribe broker that is not part of a
network, you are replacing it in the network and assigning all the function
previously supported by that broker to an MQSeries Integrator broker.

You must shutdown the MQSeries Publish/Subscribe broker before you attempt
migration. You are therefore recommended to ensure that all applications using this
broker are also quiesced.

Preparing for the migration
Before you can migrate a broker, you need to do some preparation.
Step 1. Identify the MQSeries Publish/Subscribe broker you are going to migrate.

The steps used here assume you have chosen the name
MQSI_SAMPLE_BROKER for your new MQSeries Integrator broker, and
that the MQSeries Publish/Subscribe broker you are migrating is currently
hosted by the queue manager MQPS_BROKER1.

Step 2. Backup the queue manager hosting the MQSeries Publish/Subscribe
broker.
Although you are not required to do this, you are advised to complete this
backup before you start the migration process. This allows you to retrieve
the old MQSeries Publish/Subscribe broker after successful migration, if
you should need to do so for any reason. The MQSeries System
Administration book describes this backup process.

Step 3. Quiesce any applications registered with the broker.
Although you are not required to do this, any messages (publications, and
control and client publish messages) generated during the migration
exercise are queued and could cause performance or capacity problems.
Ending the applications as well as the broker ensures that
publish/subscribe traffic is only generated when there is a broker ready to
process it.

Step 4. End your MQSeries Publish/Subscribe broker operation:
endmqbrk MQPS_BROKER1

Preparing the replacement broker
You are now ready to work with the new broker.
Step 1. Create an MQSeries Integrator broker.

You must create the new broker on the system on which the queue
manager MQPS_BROKER1 is defined. You must select the migration
option (flag -m) on the command.
mqsicreatebroker MQSI_SAMPLE_BROKER -q MQPS_BROKER1
-i mqbroker -a sample -n MQSI_SAMPLE_BROKER_DB -m

Step 2. Start the new MQSeries Integrator broker:
mqsistart MQSI_SAMPLE_BROKER

Step 3. Configure the broker in the Control Center.
Create the configuration for this broker in the configuration repository by
adding the broker to the broker domain topology from the Topology view
in the Control Center. This action also creates the default execution group
for this broker.

Step 4. Check in your changes and deploy the broker by selecting
File->Deploy->Delta configuration. This results in initialization messages
flowing from the Configuration Manager to the new broker. This causes
activation of a message flow that runs in the broker’s default execution

Migrating brokers

Chapter 9. MQSeries Publish/Subscribe 165

group to accept and implement the migration messages generated by the
MQSeries Publish/Subscribe broker during the next step.

Migrating the MQSeries Publish/Subscribe broker
The new MQSeries Integrator broker is ready to receive migration data for the
MQSeries Publish/Subscribe broker that it is to replace.
Step 1. Migrate the MQSeries Publish/Subscribe broker function to the

replacement MQSeries Integrator broker by issuing the following
command:
migmqbrk -m MQPS_BROKER1

This command is supplied as part of the MQSeries Publish/Subscribe
package on the Web. You must ensure you have the latest level of this
command, and the MQSeries Publish/Subscribe User’s Guide that describes
its use. Check the URL identified in “MQSeries information available on
the Internet” on page xiv for details.

The command retrieves the persistent information (subscriptions and
retained publications) from the MQSeries Publish/Subscribe broker, and
sends it in specially constructed messages to the queue
SYSTEM.BROKER.INTERBROKER.QUEUE on the new MQSeries
Integrator broker. The message flow that services this queue (deployed
when you deployed the broker and its default execution group) receives
these messages and records the information. Once all the messages have
been processed, the message flow is terminated and cannot be
re-initialized.

The migration command is implemented such that it can always, but only,
be re-invoked if the whole process of migration has not completed
successfully. If any error occurs, for any reason, the MQSeries
Publish/Subscribe broker is recoverable and can be restarted. You can
then continue to use it. The MQSeries Integrator broker also exists, but has
not recorded any migration information. You can delete and create this
broker to restart the migration process.

If the whole process succeeds, the MQSeries Publish/Subscribe broker no
longer exists and cannot be recovered: it, and all its functions, have been
subsumed by the new MQSeries Integrator broker.

You receive the following message on successful completion of migration:
MQSeries Publish/Subscribe broker has been successfully migrated

Once migration has successfully completed for all MQSeries
Publish/Subscribe brokers that you plan to migrate, you are
recommended to delete or rename the file strmqbrk.exe. This will prevent
any accidental start up of the MQSeries Publish/Subscribe brokers.

Deploying the stream queues
The new MQSeries Integrator broker is now set up to take over from the MQSeries
Publish/Subscribe broker. You must create and deploy the message flows it needs
to activate the streams: you do not need to define the stream queues, because these
are already defined to the queue manager (the queue definitions are not deleted
when the migration takes place, and the queue manager is the same for the
MQSeries Publish/Subscribe broker and the MQSeries Integrator broker that has
replaced it).

Migrating brokers

166 MQSeries Integrator Administration Guide V2.0.1

You can create the message flows you need by following these steps:
Step 1. Start up the Control Center and select the message flow view.
Step 2. For each stream, including the default stream:

a. Build a basic publish/subscribe message flow by copying and
renaming the supplied publish/subscribe message flow (see “Adding
an MQSeries Integrator broker as a leaf node” on page 158 for more
details about this supplied flow).

b. Check the properties of the nodes in each message flow you create.
You must set the input queue name (the stream queue) property in the
input node. You must also set the implicitStreamNaming property for
every non-default stream queue input node.

c. Finally, assign the message flow to an execution group of the broker
MQSI_SAMPLE_BROKER, check in your changes, and deploy the
broker.

Migrating a broker network
The procedure you must follow to migrate an MQSeries Publish/Subscribe broker
that is part of a multi-broker network is basically the same as that needed to
migrate a single broker.

MQSeries Integrator Introduction and Planning gives guidance on planning how to
approach migrating a network, including:
v The order in which you migrate the brokers.
v The place of each broker in the network, and the relationships it has with its

neighbors.
v The use of collectives in the MQSeries Integrator network.

You must refer to this planning information before starting the migration of your
network.

The following sequence of figures illustrates the migration of a network of three
brokers. The actions taken to migrate the network assumes that the three brokers
are migrated one at a time, and that all three will be grouped in a single collective
in the MQSeries Integrator broker domain.

Figure 17 on page 168 shows the initial state, with the three brokers (the root
NEWYORK plus two child brokers LONDON and TOKYO) connected together as
a network of MQSeries Publish/Subscribe brokers.

Migrating brokers

Chapter 9. MQSeries Publish/Subscribe 167

These brokers do not have to be migrated in any particular order. This example
shows the migration being done in the following order:
v LONDON
v NEWYORK
v TOKYO

The migration is completed in a number of separate steps, each one taken when
network traffic is at a minimum (for example, at weekends). The whole migration
is planned in three stages, that can be carried out when appropriate for the
business.

Stage 1: migration of the LONDON broker
The steps you need to take for migrating a single broker within a network are
exactly the same as those you need to take for migrating a stand-alone MQSeries
Publish/Subscribe broker. You can therefore implement the tasks described in
“Migrating a single broker” on page 165 for the LONDON broker. In particular,
review the points discussed in “Preparing for the migration” on page 165:
v You are recommended to quiesce all client applications at both the LONDON

and NEWYORK brokers. This ensures that no publications are missed by any
subscribers while the topology change is taking place.

v You are also recommended to quiesce all other brokers in the network (in this
example, the TOKYO broker). This guarantees that no publications are delivered
during the topology change.

This results in a mixed network, consisting of two MQSeries Publish/Subscribe
brokers and a single MQSeries Integrator broker. This is shown in Figure 18 on
page 169.

Figure 17. Migrating an MQSeries Publish/Subscribe broker network: initial state

Migrating brokers

168 MQSeries Integrator Administration Guide V2.0.1

The connection between the LONDON and NEWYORK brokers is an MQSeries
Publish/Subscribe connection. The Control Center only recognizes MQSeries
Integrator brokers, and therefore only LONDON has been defined to it. An
MQSeries Integrator connection cannot be created at this stage.

This mixed network is in a perfectly valid state. It can be maintained in this state
until the next stage can be implemented.

Stage 2: migration of the NEWYORK broker
You can now follow the step-by-step procedure for migrating a single broker for
broker NEWYORK. In particular, review the points discussed in “Preparing for the
migration” on page 165:
v You are recommended to quiesce all client applications at all brokers to which

NEWYORK is a neighbor (in this network, all brokers). This ensures that no
publications are missed by any subscribers while the topology change is taking
place.

v You are also recommended to quiesce all the brokers in the network. This
guarantees that no publications are delivered during the topology change.

The network now contains two MQSeries Integrator brokers, with one remaining
MQSeries Publish/Subscribe broker (TOKYO). This is shown in Figure 19.

The LONDON and NEWYORK brokers are still connected by an MQSeries
Publish/Subscribe connection. They can remain connected in this way for as long

Figure 18. Migrating an MQSeries Publish/Subscribe broker network: first leaf node migration

Figure 19. Migrating an MQSeries Publish/Subscribe broker network: root node migration

Migrating brokers

Chapter 9. MQSeries Publish/Subscribe 169

as necessary. However, as you begin to develop applications to exploit the richer
function of MQSeries Integrator you will need to join the two MQSeries Integrator
brokers together using the Control Center.

When appropriate, the connection can be upgraded to an MQSeries Integrator
connection by completing the following tasks:
1. The original MQSeries Publish/Subscribe connection between LONDON and

NEWYORK must be removed.
To the remove this connection, the MQSeries Integrator command
mqsiclearmqpubsub is issued at both brokers, as follows:
mqsiclearmqpubsub NEWYORK -n LONDON
mqsiclearmqpubsub LONDON -n NEWYORK

After the connection has been broken, the network is temporarily in the state
shown in Figure 20.

You must now define the relationship between the two brokers using the Control
Center. Both brokers are already defined, but the collective to which they are to be
assigned is not. You can define this collective from the Topology view, and assign
the two brokers to it. All brokers in a collective are assumed to be connected, so
you do not have to make those connections using the Control Center.

The new topology can now be deployed. The connection between LONDON and
NEWYORK is now implemented using MQSeries Integrator functions. The current
network state is shown in Figure 21 on page 171.

Figure 20. Migrating an MQSeries Publish/Subscribe broker network: breaking the connection

Migrating brokers

170 MQSeries Integrator Administration Guide V2.0.1

The two brokers, LONDON and NEWYORK, are no longer in a parent-child
relationship but are neighbors within a single collective. The topology of the
MQSeries Integrator network is not based on a hierarchical structure as was the
MQSeries Publish/Subscribe network. Now that LONDON and NEWYORK form a
collective, there is no root node left in the MQSeries Publish/Subscribe network.
NEWYORK is providing a gateway service from an MQSeries Publish/Subscribe
broker (TOKYO) to the MQSeries Integrator collective of brokers.

Stage 3: migration of the TOKYO broker
The final MQSeries Publish/Subscribe broker, TOKYO, is now ready to be
migrated. The procedure given in “Migrating a single broker” on page 165 is
implemented for this third broker.

Following these actions, the network structure is as shown in Figure 22.

When migration of the broker has completed successfully, the MQSeries
Publish/Subscribe connection between TOKYO and NEWYORK can be broken.
This must be done by clearing the connection at each end by issuing the following
commands to brokers NEWYORK and TOKYO respectively:
mqsiclearmqpubsub NEWYORK -n TOKYO
mqsiclearmqpubsub TOKYO -n NEWYORK

Figure 21. Migrating an MQSeries Publish/Subscribe broker network: rejoining

Figure 22. Migrating an MQSeries Publish/Subscribe broker network: second leaf node
migration

Migrating brokers

Chapter 9. MQSeries Publish/Subscribe 171

The TOKYO broker must now be added to the MQSeries Integrator network, and
to the appropriate collective, through the Control Center. The operation of a
collective requires that all brokers have direct physical connections with each other
(via MQSeries).

Before the topology of the new MQSeries Integrator network can be deployed, an
additional MQSeries connection between LONDON and TOKYO is required. A
series of MQSeries commands must be invoked to define the channels and
transmission queues supporting two-way traffic.

When you have completed migration of all the brokers in the collective, you have
removed the single point of failure at the NEWYORK broker. Subscribers on the
LONDON broker can receive publications from the TOKYO broker even when the
NEWYORK broker is not running. Prior to migration, traffic between brokers was
always routed through NEWYORK, the root node, which was therefore the single
point of failure.

For further details of connecting brokers to each other, see “Chapter 2. How to
configure your MQSeries Integrator network” on page 7. For more general
information about distributed MQSeries networks, refer to MQSeries
Intercommunication.

When all migration and associated tasks have been completed, the network
comprises a single collective, containing three MQSeries Integrator brokers
connected as equals. The final state for these three brokers is shown in Figure 23.

A network of migrated brokers
Figure 24 on page 173 illustrates a possible extension of the small network that has
been migrated in this chapter. It represents the ability to integrate a mixed network
of brokers for both MQSeries Integrator and MQSeries Publish/Subscribe.

Figure 23. Migrating an MQSeries Publish/Subscribe broker network: final state

Migrating brokers

172 MQSeries Integrator Administration Guide V2.0.1

LOS ANGELES

MANCHESTER BIRMINGHAM EDINBURGH

LONDON

NEWYORK

TOKYO

OSAKA

CHICAGO DALLAS DETROIT

Figure 24. An integrated broker network

Migrating brokers

Chapter 9. MQSeries Publish/Subscribe 173

Migrating brokers

174 MQSeries Integrator Administration Guide V2.0.1

Part 4. Appendixes

© Copyright IBM Corp. 2000 175

176 MQSeries Integrator Administration Guide V2.0.1

Appendix A. Event reporting

This chapter describes the event messages that are published by a message broker
in response to:
v Configuration changes
v State changes
v User actions (such as subscription registrations, and when retained publications

expire)

The events are published on a series of system-defined topics. The body of the
message contains additional information in XML format. Every message is
generated in code page 1208.

The following set of events can be reported:
v Configuration changes:

– An execution group has been changed, created, or deleted
– A message flow has been changed, created, or deleted
– A neighbor has been created, changed, or deleted
– An ACL for a topic has been created, changed, or deleted

v Operational information:
– A broker has been started or stopped
– A message flow has been started or stopped
– A subscription has been registered or de-registered

v Operational warnings, for example:
– A retained publication has expired
– A subscription has expired

This chapter describes reserved topics on which brokers themselves publish
messages after significant events within the broker. By subscribing to these topics,
a client may be informed when events occur.

For each topic, the type of event and message body are explained. The body of
these messages is in XML format.

An event publication can contain more than one entry if the topic is the same (for
example, if several message flows are created in the same operation).

© Copyright IBM Corp. 2000 177

General architecture
The general form of the system topics on which events are published is:
$SYS/Broker/<broker_name>/<event_type>/...

where:

<broker_name>
Is the name of the broker issuing or raising this event.

<event_type>
Is the type of the event and is one of:
v Configuration
v Neighbor
v Subscription
v Topic
v Status
v Expiry

This specification of topics helps clients to filter events, based on the broker from
which the event originated and the type of the event. For specific events,
additional information is included in the topic to help filter on the specific object
that raised the event. (The inclusion of the string Broker at the second level of the
topic hierarchy allows for future extension should other subsystems (such as the
queue manager or configuration manager) that publish system management events
through the broker be supported in the future.

Configuration changes
Configuration changes include changes to the operational configuration of a single
broker (for example, the addition or removal of a message flow) and changes to
the topology for a multi-broker network.

Changes to the local configuration of the broker
Notification of changes to the broker’s configuration (create, change, or delete
entities) is provided by publishing events on the following system topic:
$SYS/Broker/<broker_name>/Configuration/ExecutionGroup/<exec_grp_name>

where:

<broker_name>
Is the name of the broker issuing this message.

<exec_grp_name>
Is the name of the execution group for which the configuration has
changed.

One such event is published for each configuration request message that is
received and processed by an execution group within the broker and may thus
contain information that reflects complex configuration changes to multiple entities
within the broker.

The body of each publication is that part of the configuration request that caused
the event to be triggered. If an execution group is renamed, subsequent
publications that report the state of that execution group will use the new name.

These events are published non-persistently as non-retained publications.

General architecture

178 MQSeries Integrator Administration Guide V2.0.1

Only create, change, and delete actions on the message flow are reported.

Configuration change
The following example shows a notification for when a message flow is created.
The number of attributes mentioned in the example can vary.
<Broker uuid="1234" label="Broker1" version="1">
<ExecutionGroup uuid="2345" >
<Create>
<MessageFlow uuid="3456" label="MessageFlow1">
<!-- Create the Input and Output Nodes -->
<ComIbmMqInputNode uuid="4567"
queueName="InputQueue1" label="InputNode1" />
<ComIbmMqOutputNode uuid="5678"

queueName="OutputQueue1"
label="OutputNode1"/>

<ComIbmMqOutputNode uuid="6789"
queueManagerName="QueueManager1"
queueName="OutputQueue2"

label="OutputNode2"/>
<!-- Create the filter -->
<ComIbmFilterNode uuid="7890"

filterExpression="Company=IBM"
label="FilterNode1"/>

<!-- Connect them together -->
<Connection sourceNode="4567"
sourceTerminal="out"
targetNode="7890" targetTerminal="in"/>
<Connection sourceNode="7890"
sourceTerminal="true"
targetNode="5678" targetTerminal="in"/>
<Connection sourceNode="7890"
sourceTerminal="false"
targetNode="6789" targetTerminal="in"/>

</MessageFlow>
</Create>
</ExecutionGroup>
</Broker>

Neighbor changes
A change in the set of neighbors (the topology) for a given broker causes an event
to be published using the following system topic:
$SYS/Broker/<broker_name>/Neighbour

where <broker_name> is the name of the broker issuing this message.

The body of each publication is an XML message that describes the change made.

These events are non-persistent, non-retained publications.

Certain operations cause the deletion of all neighbor (topology) information at a
broker. In this case, the individual deleted neighbors are not published in the event
publication. Instead, the body of the event publication contains a single XML tag
which indicates that all neighbors have been deleted.

Examples
Here are example event messages for when a neighbor is created, changed, and
deleted.

Configuration changes

Appendix A. Event reporting 179

Neighbor created
Event publication topic = "$SYS/Broker/Broker1/Neighbour"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Create>

<Neighbour name="5678" collectiveId="">
<MQBrokerConnection queueManagerName="nbr_QM_Name"/>

</Neighbour>
</Create> </DynamicSubscriptionEngine>

</ControlGroup>
</Broker>

Neighbor changed
Event publication topic = "$SYS/Broker/Broker1/Neighbour"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Change>

<Neighbour name="5678"
collectiveId="12345678-1234-1234-1234-123456789abc"/>

</Change>
</DynamicSubscriptionEngine>

</ControlGroup>
</Broker>

Neighbor deleted
Event publication topic = "$SYS/Broker/Broker1/Neighbour"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Delete>

<Neighbour name="5678"/>
</Delete>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

All neighbors deleted
Event publication topic = "$SYS/Broker/Broker1/Neighbour"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Delete>

<AllNeighbours/>
</Delete>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

ACL updates
The creation, deletion, or modification of the ACL associated with a topic causes a
publication using the following system topics:
$SYS/Broker/<broker_name>/Topic/<topic>

where:

<broker_name>
Is the name of the broker issuing this message.

Configuration changes

180 MQSeries Integrator Administration Guide V2.0.1

<topic>
Is the topic whose ACL is being modified.

The body of each publication is an XML message that describes the ACL update.

These events are non-persistent, non-retained publications.

Certain operations cause the deletion of all ACL entries for a single topic or for all
topics. In this case, the individual entries are not published in the event
publication. Instead, the body of the event publication contains a single XML tag
which indicates that all ACL entries have been deleted.

Examples
Here are example event messages for when an ACL is created, changed, and
deleted.

ACL created
Event publication topic = "$SYS/Broker/Broker1/Topic/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Topic name="stock/IBM">

<Create>
<ACLEntry

principalName="Fred"
principalType="user"
publish="false"
subscribe="inherit"
persistent="true"/>

</Create>
</Topic>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

ACL changed
Event publication topic = "$SYS/Broker/Broker1/Topic/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Topic name="stock/IBM">

<Change>
<ACLEntry

principalName="Fred"
principalType="user"
publish="true"
subscribe="false"
persistent="inherit/>

</Change>
</Topic>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

ACL deleted
Event publication topic = "$SYS/Broker/Broker1/Topic/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>

Configuration changes

Appendix A. Event reporting 181

<Topic name="stock/IBM">
<Delete>

<ACLEntry principalName="Fred"/>
</Delete>

</Topic>
</DynamicSubscriptionEngine>

</ControlGroup>
</Broker>

All ACLs deleted on a single topic
Event publication topic = "$SYS/Broker/Broker1/Topic/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Topic name="stock/IBM">

<Delete>
<AllACLEntries/>

</Delete>
</Topic>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

All ACLs deleted on all topics
Event publication topic = "$SYS/Broker/Broker1/Topic"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Delete>

<AllACLEntries/>
</Delete>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

Operational information
Changes to the execution state of a broker or an individual message flow cause
events to be published using the following system topics:
$SYS/Broker/<broker_name>/Status

$SYS/Broker/<broker_name>/Status/ExecutionGroup/<exec_grp_name>

where:

<broker_name>
Is the name of the broker whose execution state has changed.

<exec_grp_name>
Is the name of the execution group which contains the message flow
whose execution state has changed.

The body of each publication is an XML message giving additional information
concerning the state change which caused the event to be triggered, specifically
indicating whether the entity has been started or stopped.

Thus, for example, starting a message flow will generate the following:
<Broker uuid="1234" label="Broker1" version="1">
<ExecutionGroup uuid="5678">

<Start>

Configuration changes

182 MQSeries Integrator Administration Guide V2.0.1

<MessageFlow uuid="7812"/>
</Start>
</ExecutionGroup>
</Broker>

Stopping a broker generates the following message body:
<Broker uuid="1234" label="Broker1" version="1">
<StatusChange state="Stopped"/>
</Broker>

Currently, the only states notified for both brokers and message flows are Started
and Stopped.

These events are non-persistent, retained publications.

Subscriptions and topics
Events are published to provide notification of changes to the subscription tables,
changes in the list of defined topics or their access control lists.

Subscription registration and deregistration
Registration or deregistration of subscriptions causes events to be published using
the following system topics:
$SYS/Broker/<broker_name>/Subscription/<topic>

where:

<broker_name>
Is the name of the broker issuing this message.

<topic>
Is the original topic on which the subscription is being, or was, registered.

The body of each publication is an XML message giving additional information
concerning the registration or deregistration request.

These events are non-persistent, non-retained publications.

Examples
Here are example event messages for when a subscription is created, changed,
deleted, and expired.

Subscription created
Event publication topic = "$SYS/Broker/Broker1/Subscription/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Topic name="stock/IBM">

<Create>
<Subscription

clientId="mqrfh2:Broker1:client1queue"
subscriptionPoint="poundsSterling"
filter="currentPrice>100"
user="Fred"
persistent="true"
localOnly="false"
pubOnReqOnly="false"
informIfRet="true"
expiryTimeStamp="2000-12-31 23:59:59"

Operational information

Appendix A. Event reporting 183

createTimeStamp="2000-01-01 00:00:00"
tempDynamicQueue="false"
clientContext="hex digits"/>

</Create>
</Topic>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

Subscription changed
Event publication topic = "$SYS/Broker/Broker1/Subscription/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Topic name="stock/IBM">

<Change>
<Subscription

clientId="mqrfh2:Broker1:client1queue"
subscriptionPoint="poundsSterling"
filter="currentPrice>100"
user="Fred"
persistent="false"
localOnly="true"
pubOnReqOnly="true"
informIfRet="false"
expiryTimeStamp="2005-12-31 23:59:59"
createTimeStamp="2000-01-01 00:00:00"
tempDynamicQueue="false"
clientContext="hex digits"/>

</Change>
</Topic>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

Subscription deleted (deregistered)
Event publication topic = "$SYS/Broker/Broker1/Subscription/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Topic name="stock/IBM">

<Delete>
<Subscription

clientId="mqrfh2:Broker1:client1queue"
subscriptionPoint="poundsSterling"
filter="currentPrice>100"
user="Fred"/>

</Delete>
</Topic>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

Operational information

184 MQSeries Integrator Administration Guide V2.0.1

Operational warnings
Operational warnings provide notification about expired subscriptions or retained
publications.

Expired publications and subscriptions
Notification of expiry of retained publications and subscriptions is published on
the following system topics:
$SYS/Broker/<broker_name>/warning/expiry/Publication/<timestamp>/<topic>

$SYS/Broker/<broker_name>/warning/expiry/Subscription/<timestamp>/<topic>

where:

<broker_name>
Is the name of the broker issuing this message.

<timestamp>
Is the timestamp of the expiry of the subscription or retained publication
(expressed as a GMT time).

<topic>
Is the topic of the subscription or retained publication.

These events are non-persistent, non-retained publications.

Examples
Here are examples event message for when a retained publication and subscription
have expired.

Publication expired
Event publication topic =
"$SYS/Broker/Broker1/warning/expiry/Publication/2000-12-31
23:59:59/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Topic name="stock/IBM">

<Delete>
<RetainedPublication

subscriptionPoint="poundsSterling"/>
</Delete>

</Topic>
</DynamicSubscriptionEngine>

</ControlGroup>
</Broker>

Subscription expired
Here is an example event message for when a subscription has expired.
Event publication topic =
"$SYS/Broker/Broker1/warning/expiry/Subscription/2000-12-31
23:59:59/stock/IBM"

<Broker uuid="1234" label="Broker1" version="1">
<ControlGroup>

<DynamicSubscriptionEngine>
<Topic name="stock/IBM">

<Delete>
<Subscription

clientId="mqrfh2:Broker1:client1queue"

Operational warnings

Appendix A. Event reporting 185

subscriptionPoint="poundsSterling"
filter="currentPrice>100"
user="Fred"/>

</Delete>
</Topic>

</DynamicSubscriptionEngine>
</ControlGroup>

</Broker>

Notification message schema
The following specification describes the structure of all valid notification
messages. Note that this diagram describes the structure of the messages only. It
says nothing about how many or the order of elements within the messages. The
rules for the number of elements are:
v One broker element.
v Other elements: zero, one, or more.

There are no rules for order in notification messages.
<Broker identifier label>
. <ExecutionGroup identifier>
. . <Create>
. . . <MessageFlow message_flow_identifier message_flow_attributes>
. . . . <???Node node_identifier node_attributes>
. . . . <Connection connection_identifier>
. . <Change>
. . . <MessageFlow message_flow_identifier message_flow_attributes>
. . <Delete>
. . . <AllMessageFlows>
. . . <MessageFlow message_flow_identifier>
. . <Start>
. . . <AllMessageFlows>
. . . <MessageFlow message_flow_identifier>
. . <Stop>
. . . <AllMessageFlows>
. . . <MessageFlow message_flow_identifier>
. <ControlGroup>
. . <DynamicSubscriptionEngine>
. . . <Create>
. . . . <Neighbour neighbour_identifier neighbour_attributes>
. <MQBrokerConnection mqbrokerconnection_attributes>
. . . . <Neighbour neighbour_identifier neighbour_attributes>
. . . . <Topic topic_identifier>
. <ACLEntry>
. <Subscription>
. . . <Change>
. . . . <Neighbour neighbour_identifier neighbour_attributes>
. . . <Delete>
. . . . <AllNeighbours>
. . . . <Neighbour neighbour_identifier>
. . . . <Topic topic_identifier>
. . . . <AllACLEntries>
. . . . <AllSubscriptions>
. . . . <AllRetainedPublications>
. . . <Topic topic_identifier>
. . . . <Create>
. <ACLEntry acl_identifier acl_attributes>
. <Subscription subscription_identifier subscription_attributes>
. . . . <Change>
. <ACLEntry acl_identifier acl_attributes>
. <Subscription subscription_identifier subscription_attributes>
. . . . <Delete>
. <AllACLEntries>
. <ACLEntry acl_identifier>

Operational warnings

186 MQSeries Integrator Administration Guide V2.0.1

. <AllSubscriptions>

. <Subscription subscription_identifier>

. <RetainedPublication retained_publication_identifier>

Notes:

1. <...> = XML element
2. ??? = Individual class names allowed

The following section describes the identifiers and attributes that are used in the
schema.

Items shown as [....] are optional attributes. Items shown as {xxx | yyy} mean
that the value can be one of the alternatives given. Items shown in italics mean that
the variable can have any value.
uuid:

The universally unique identifier for MQSeries Integrator Version 2.0.1
objects (for example, nodes in a message flow)

client identifier:
Identifies the delivery destination for the subscriber (for example,
mqrfh2:MQSIQM:subscriberqueue or mqrfh:MQSIQM:subscriberqueue2:CorrelId)

identifier:
uuid="uuid"

label:
label="label"

message_flow_identifier:
uuid="message_flow_identifier" //Note: This is usually a uuid

message_flow_attributes:
[label='label']
[additionalInstances="number"]
[commitCount="number"]
[commitInterval"number"]
[coordinatedTransaction={"yes" | "no" }]

node_identifier:
uuid='node_flow_identifier' //Note: This is usually a

number of uuids concatenated

node_attributes:
[label='label']
Others vary according to type. All are optional. See the node
descriptions for details.

connection_identifier:
sourceNode='source_node identifier'
sourceTerminal='source_terminal_name'
targetNode='target_node_identifier'
targetTerminal='target_terminal_name'

neighbour_identifier:
name="uuid"

neighbour_attributes:
collectiveId={"" | "uuid"}

(collectiveId is "" if the neighbor is in the same collective as
the broker; otherwise, it is the identifier for the neighbor's
collective)

mqbrokerconnection_attributes:
queueManagerName="queueManagerName"

Message schema

Appendix A. Event reporting 187

topic_identifier:
name="topicName"

acl_identifier:
principalName="userIdentifier"

acl_attributes:
principalType={"user" | "group"}
[publish={"yes" | "no" | "inherit"}]
[subscribe={"yes" | "no" | "inherit"}]
[persistent={"yes" | "no" | "inherit"}]

subscription_identifier:
clientId="client identifier"
[subscriptionPoint="subscriptionPointName"]
[filter="filterExpression"]

subscription_attributes:
userId="userIdentifier"
persistent={"true" | "false" | "asPublish" | "asQDef"}
localOnly={"true" | "false"}
pubOnReqOnly={"true" | "false"}
informIfRet={"true" | "false"}
expiryTimeStamp={"GMTTimeStamp" | "0" }
createTimeStamp="GMTTimeStamp"
tempDynamicQueue={"true" | "false"}
clientContext="clientContext"

retainedpublication_identifier:
[subscriptionPoint="subscriptionPointName"]

Message schema

188 MQSeries Integrator Administration Guide V2.0.1

Appendix B. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000 189

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Notices

190 MQSeries Integrator Administration Guide V2.0.1

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX DB2 DB2 Universal Database
FFST First Failure Support

Technology
IBM

MQSeries SupportPac VisualAge

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix B. Notices 191

192 MQSeries Integrator Administration Guide V2.0.1

Glossary of terms and abbreviations

This glossary defines MQSeries® Integrator terms
and abbreviations used in this book. If you do not
find the term you are looking for, see the index or
the IBM® Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute. Copies
may be ordered from the American National
Standards Institute, 11 West 42 Street, New York,
New York 10036. Definitions are identified by the
symbol (A) after the definition.

A
Access Control List (ACL). The list of principals that
have explicit permissions (to publish, to subscribe to,
and to request persistent delivery of a publication
message) against a topic in the topic tree. The ACLs
define the implementation of topic-based security.

ACL. Access Control List.

AMI. Application Messaging Interface.

Application Messaging Interface (AMI). The
programming interface provided by MQSeries that
defines a high level interface to message queuing
services. See also MQI and JMS.

B
blob. Binary Large OBject. A block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid entity
that cannot be interpreted. Also written as BLOB.

broker. See message broker.

broker domain. A collection of brokers that share a
common configuration, together with the single
Configuration Manager that controls them.

C
callback function. See implementation function.

category. An optional grouping of messages that are
related in some way. For example, messages that relate
to a particular application.

check in. The Control Center action that stores a new
or updated resource in the configuration or message
respository.

check out. The Control Center action that extracts and
locks a resource from the configuration or message
respository for local modification by a user. Resources
from the two repositories can only be worked on when
they are checked out by an authorized user, but can be
viewed (read only) without being checked out.

collective. A hyperconnected (totally connected) set of
brokers forming part of a multi-broker network for
publish/subscribe applications.

configuration. In the broker domain, the brokers,
execution groups, message flows and message sets
assigned to them, topics and access control
specifications.

Configuration Manager. A component of MQSeries
Integrator that acts as the interface between the
configuration repository and an executing set of
brokers. It provides brokers with their initial
configuration, and updates them with any subsequent
changes. It maintains the broker domain configuration.

configuration repository. Persistent storage for broker
configuration and topology definition.

connector. See message processing node connector.

content-based filter. An expression that is applied to
the content of a message to determine how the message
is to be processed.

context tag. A tag that is applied to an element within
a message to enable that element to be treated
differently in different contexts. For example, an
element could be mandatory in one context and
optional in another.

Control Center. The graphical interface that provides
facilities for defining, configuring, deploying, and
monitoring resources of the MQSeries Integrator
network.

D
datagram. The simplest form of message that
MQSeries supports. Also known as send-and-forget. This
type of message does not require a reply. Compare with
request/reply.

deploy. Make operational the configuration and
topology of the broker domain.

© Copyright IBM Corp. 2000 193

destination list. A list of internal and external
destinations to which a message is sent. These can be
nodes within a message flow (for example, when using
the RouteToLabel and Label nodes) or MQSeries
queues (when the list is examined by an MQOutput
node to determine the final target for the message).

distribution list. A list of MQSeries queues to which a
message can be put using a single statement.

Document Type Definition. The rules that specify the
structure for a particular class of SGML or XML
documents. The DTD defines the structure with
elements, attributes, and notations, and it establishes
constraints for how each element, attribute, and
notation can be used within the particular class of
documents. A DTD is analogous to a database schema
in that the DTD completely describes the structure for a
particular markup language.

DTD. Document Type Definition

E
e-business. A term describing the commercial use of
the Internet and World Wide Web to conduct business
(short for electronic-business).

element. A unit of data within a message that has
business meaning, for example, street name

element qualifier. See context tag.

ESQL. Extended SQL. A specialized set of SQL
statements based on regular SQL, but extended with
statements that provide specialized functions unique to
MQSeries Integrator.

exception list. A list of exceptions that have been
generated during the processing of a message, with
supporting information.

execution group. A named grouping of message flows
that have been assigned to a broker. The broker is
guaranteed to enforce some degree of isolation between
message flows in distinct execution groups by ensuring
that they execute in separate address spaces, or as
unique processes.

Extensible Markup Language (XML). A W3C
standard for the representation of data.

F
filter. An expression that is applied to the content of a
message to determine how the message is to be
processed.

format. A format defines the internal structure of a
message, in terms of the fields and order of those
fields. A format can be self-defining, in which case the
message is interpreted dynamically when read.

G
graphical user interface (GUI). An interface to a
software product that is graphical rather than textual. It
refers to window-based operational characteristics.

I
implementation function. Function written by a
third-party developer for a plug-in node or parser. Also
known as a callback function.

input node. A message flow node that represents a
source of messages for the message flow.

installation mode. The installation mode can be Full,
Custom, or Broker only. The mode defines the
components of the product installed by the installation
process on Windows NT® systems.

J
Java™ Database Connectivity (JDBC). An application
programming interface that has the same characteristics
as ODBC but is specifically designed for use by Java
database applications.

Java Development Kit (JDK). A software package that
can be used to write, compile, debug, and run Java
applets and applications.

Java Message Service (JMS). An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment. A subset of the Java
Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes and supporting files.

JDBC™. Java Database Connectivity.

JDK™. Java Development Kit.

JMS. Java Message Service. See also AMI and MQI.

JRE. Java Runtime Environment.

L
local error log. A generic term that refers to the logs
to which MQSeries Integrator writes records on the
local system. On Windows NT, this is the Event log. On
UNIX® systems, this is the syslog. See also system log.
Note that MQSeries records many events in the log that
are not errors, but information about events that occur
during operation, for example, successful deployment
of a configuration.

Glossary

194 MQSeries Integrator Administration Guide V2.0.1

M
message broker. A set of execution processes hosting
one or more message flows.

messages. Entities exchanged between a broker and its
clients.

message dictionary. A repository for (predefined)
message type specifications.

message domain. The source of a message definition.
For example, a domain of MRM identifies messages
defined using the Control Center, a domain of NEON
identifies messages created using the NEON user
interfaces.

message flow. A directed graph that represents the set
of activities performed on a message or event as it
passes through a broker. A message flow consists of a
set of message processing nodes and message
processing node connectors.

message flow component. See message flow.

message parser. A program that interprets a message
bitstream.

message processing node. A node in the message
flow, representing a well defined processing stage. A
message processing node can be one of several
primitive types or can represent a subflow.

message processing node connector. An entity that
connects the output terminal of one message processing
node to the input terminal of another. A message
processing node connector represents the flow of
control and data between two message flow nodes.

message queue interface (MQI). The programming
interface provided by MQSeries queue managers. The
programming interface allows application programs to
access message queuing services. See also AMI and
JMS.

message repository. A database holding message
template definitions.

message set. A grouping of related messages.

message template. A named and managed entity that
represents the format of a particular message. Message
templates represent a business asset of an organization.

message type. The logical structure of the data within
a message. For example, the number and location of
character strings.

metadata. Data that describes the characteristic of
stored data.

MQI. Message queue interface.

MQRFH. An architected message header that is used
to provide metadata for the processing of a message.
This header is supported by MQSeries
Publish/Subscribe.

MQRFH2. An extended version of MQRFH, providing
enhanced function in message processing.

multilevel wildcard. A wildcard that can be specified
in subscriptions to match any number of levels in a
topic.

N
node. See message processing node.

O
ODBC. Open Database Connectivity.

Open Database Connectivity. A standard application
programming interface (API) for accessing data in both
relational and non-relational database management
systems. Using this API, database applications can
access data stored in database management systems on
a variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based on
the call level interface (CLI) specification of the
X/Open SQL Access Group.

output node. A message processing node that
represents a point at which messages flow out of the
message flow.

P
plug-in. An extension to the broker, written by a
third-party developer, to provide a new message
processing node or message parser in addition to those
supplied with the product. See also implementation
function and utility function.

point-to-point. Style of messaging application in
which the sending application knows the destination of
the message. Compare with publish/subscribe.

POSIX. Portable Operating System Interface For
Computer Environments. An IEEE standard for
computer operating systems (for example, AIX® and
Sun Solaris).

predefined message. A message with a structure that
is defined before the message is created or referenced.
Compare with self-defining message.

primitive. A message processing node that is supplied
with the product.

Glossary

Glossary of terms and abbreviations 195

principal. An individual user ID (for example, a log-in
ID) or a group. A group can contain individual user
IDs and other groups, to the level of nesting supported
by the underlying facility.

property. One of a set of characteristics that define the
values and behaviors of objects in the Control Center.
For example, message processing nodes and deployed
message flows have properties.

publication node. An end point of a specific path
through a message flow to which a client application
subscribes. A publication node has an attribute,
subscription point. If this is not specified, the
publication node represents the default subscription
point for the message flow.

publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

publisher. An application that makes information
about a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that
programs can access messages on the queues that the
queue manager owns.

R
retained publication. A published message that is
kept at the broker for propagation to clients that
subscribe at some point in the future.

request/reply. Type of messaging application in which
a request message is used to request a reply from
another application. Compare with datagram.

rule. A rule is a definition of a process, or set of
processes, applied to a message on receipt by the
broker. Rules are defined on a message format basis, so
any message of a particular format will be subjected to
the same set of rules.

S
self-defining message. A message that defines its
structure within its content. For example, a message
coded in XML is self-defining. Compare with pre-defined
message.

send and forget. See datagram.

setup type. The definition of the type of installation
requested on Windows NT systems. This can be one of
Full, Broker only, or Custom.

shared. All configuration data that is shared by users
of the Control Center. This data is not operational until
it has been deployed.

signature. The definition of the external characteristics
of a message processing node.

single-level wildcard. A wildcard that can be
specified in subscriptions to match a single level in a
topic.

subscriber. An application that requests information
about a specified topic from a publish/subscribe
broker.

subscription. Information held within a publication
node, that records the details of a subscriber
application, including the identity of the queue on
which that subscriber wants to receive relevant
publications.

subscription filter. A predicate that specifies a subset
of messages to be delivered to a particular subscriber.

subscription point. An attribute of a publication node
that differentiates it from other publication nodes on
the same message flow and therefore represents a
specific path through the message flow. An unnamed
publication node (that is, one without a specific
subscription point) is known as the default publication
node.

system log. A generic term used in the MQSeries
Integrator messages (BIPxxx) that refers to the local
error logs to which records are written on the local
system. On Windows NT, this is the Event log. On
UNIX systems, this is the syslog. See also local error log.

T
terminal. The point at which one node in a message
flow is connected to another node. Terminals enable
you to control the route that a message takes,
depending whether the operation performed by a node
on that message is successful.

topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

Glossary

196 MQSeries Integrator Administration Guide V2.0.1

topic based subscription. A subscription specified by
a subscribing application that includes a topic for
filtering of publications.

topic security. The use of ACLs applied to one or
more topics to control subscriber access to published
messages.

topology. In the broker domain, the brokers,
collectives, and connections between them.

transform. A defined way in which a message of one
format is converted into one or more messages of
another format.

U
Uniform Resource Identifier. The generic set of all
names and addresses that refer to World Wide Web
resources.

Uniform Resource Locator. A specific form of URI
that identifies the address of an item on the World
Wide Web. It includes the protocol followed by the
fully qualified domain name (sometimes called the host
name) and the request. The Web server typically maps
the request portion of the URL to a path and file name.
Also known as Universal Resource Locator.

URI. Uniform Resource Identifier

URL. Uniform Resource Locator

User Name Server. The MQSeries Integrator
component that interfaces with operating system
facilities to determine valid users and groups.

utility function. Function provided by MQSeries
Integrator for the benefit of third-party developers
writing plug-in nodes or parsers.

W
warehouse. A persistent, historical datastore for events
(or messages). The Warehouse node within a message
flow supports the recording of information in a
database for subsequent retrieval and processing by
other applications.

wildcard. A character that can be specified in
subscriptions to match a range of topics. See also
multilevel wildcard and single-level wildcard.

wire format. This describes the physical representation
of a message within the bit-stream.

W3C. World Wide Web Consortium. An international
industry consortium set up to develop common
protocols to promote evolution and interoperability of
the World Wide Web.

X
XML. Extensible Markup Language.

Glossary

Glossary of terms and abbreviations 197

Glossary

198 MQSeries Integrator Administration Guide V2.0.1

Index

Special Characters
$SYS/Broker 178

A
about this book xi
ACL update event messages 180
administration

broker domain 4
overview 3
problem determination 4
system management 5
tasks 3

application clients 26
MQSeries resources 27

architecture of event messages 178
authorization

DB2 database 16
SQL Server database 16

authorization tasks, networks 7

B
backout processing 39
backup and recovery 42
bibliography xii
BIP messages 71
blanks in commands 77
broker

deleting 35
starting 23
trace 61

broker domain
administration 4
enhancing and updating 33
management 4, 31
performance, managing 44
securing MQSeries resources 57
User Name Server, adding 34
workload, managing 44

C
case sensitivity

broker names and fixed names 78
primary keywords and

parameters 77
changes for this edition

SC34–5792–02 xv
changes for this edition, list xv
character set for commands 78

Unicode characters 78
clients, application 26
collective 34
Command Assistant 83
commands

character set 78
list of 89
naming rules 77
platform availability 89

commands (continued)
responses 78
rules for using 77
syntax help 79
use of 77
using Command Assistant 83

components
deleting 35
listing 32
modifying 32
starting and stopping 31
viewing and modifying 31

configuration 7
application client tasks 26
authorization tasks 7
connecting components 19
connection tasks 18
Control Center user IDs 9
database 9
defining MQSeries Integrator

components 17
defining MQSeries resources 18
definition tasks 7
general guidance 29
initialization tasks 21
serviceuserID

UNIX platforms 9
Windows NT 8

user data tasks 26
user IDs 7

configuration changes event
messages 178

Configuration Manager
Control Center connection 18
starting 22
starting a listener 18
trace 61

connection
DB2 database 15
SQL Server database 15

connections
JDBC 15
ODBC 15

contacting IBM 72
Control Center

connecting to Configuration
Manager 18

creating collectives 34
defining ACLs 35
defining topology 25
deploying configuration 25
MQSeries Publish/Subscribe

migration 164
populating collectives 34
starting 24
starting user trace 64
superuser 51
user IDs, authorizing 9

creating and populating collectives 34

D
database

access 32
access from message flows 27
authority 16
authorization 9
authorizing access 15
broker 13
code page support 32
configuration repository 13
DB2 9, 14

logs 72
transaction manager 35
UNIX processes 59
Windows NT services 59

deadlock 28
defining internal connections 15
definition 9
logs 72
management 32
message flow transactionality 28
message repository 13
Microsoft SQLServer 9
NEON data 17
Oracle 9
security 58
setup and configuration 10

UNIX platforms 10
Windows NT 10

SQL Server 14
supported options by platform 10
Sybase 9

DB2
defining and authorizing 9
publications xiv
services 59

DB2, as transaction manager 35
deadlock, database 28
debug trace 63
defining ACLs 35
definition tasks, networks 7
delete broker 35
deleting components 35
deleting MQSeries Integrator

components 35

E
enhancing broker domains 33
environment variables

library search path 13
trace 71
UNIX codepage 63

error messages 71
event reporting 177

ACL updates 180
configuration changes 178
examples 179
expired messages 185
general architecture 178
neighbor changes messages 179

© Copyright IBM Corp. 2000 199

event reporting 177 (continued)
notification message schema 186
operational information 182
operational warnings 185
subscription registration and

deregistration 183
subscriptions and topics 183

expired publications and subscriptions
event messages 185

exporting message sets 37

F
formatted trace

debug example 69
normal example 67

I
IBM Support Center 72
IBMMQSI2 superuser ID 51
importing message sets 37
information, where to find more xii

L
LD_LIBRARY_PATH 13
LIBPATH 13
local error log 61, 71

UNIX syslog 62
Windows NT event log 61

losing subscriptions 40

M
message

persistence 38
under syncpoint control 38

message flow
database access from 27
transactionality and database

design 28
tuning for performance 45

message set, importing and
exporting 37

MHI1 SupportPac for problem
determination 61

MQSeries
defining channels 20
defining resources 18
events 71
logs 71
publications xiii
securing resources 57
stopping queue managers 31
transaction manager 35
transmission queue 20
trusted applications 44
Web site xiv

MQSeries Integrator Command
Assistant 4, 83

commands supported 84
examples 85

create a broker 85
create broker, error condition 88
delete the User Name Server 87

MQSeries Integrator Command
Assistant 4, 83 (continued)

examples 85 (continued)
modify the Configuration

Manager 86
invocation 83
navigation 83

MQSeries Integrator Version 1
publications xii

MQSeries Integrator Version 2.0.1
administration 3
changes for this edition, list xv
channels 20
Command Assistant 83
connecting components 19
connecting MQSeries Integrator

components 20
defining components 17

broker 17
Configuration Manager 17
User Name Server 17

listing components 32
modifying components 31, 32
publications xii
queue manager as Windows NT

service 21
securing resources 47
starting 31
starting the broker 23
starting the Configuration

Manager 22
starting the Control Center 24
starting the User Name Server 23
stopping 31
stopping queue managers 31
viewing components 31

MQSeries Publish/Subscribe
publications xiii

MQSeries Publish/Subscribe
migration 4, 155

broker, network 167
broker, single 165

deployment 166
implementation 166
preparation 165

brokers, transfer of data 164
commands and options 155
Control Center 164
deleting brokers 163
independent networks 157
key to figures 155
migrating brokers 164
mixed network 157

adding a leaf node 158
adding a parent node 161
MQSeries channels 158
MQSeries queues 157

preparation 155
stream queues 157

MQSeries Workflow publications xiv
MQSI_LOCAL_CCSID 63
MQSI_UTILITY_TRACE 71
MQSI_UTILITY_TRACESIZE 71
mqsichangebroker 90

modifying components 32
mqsichangeconfigmgr 93

modifying components 32

mqsichangetrace 95
changing user trace 65
starting user trace 64
stopping user trace 70
use in optional trace 63

mqsichangeusernameserver 99
modifying components 32

mqsiclearmqpubsub 101
mqsicreatebroker 103

managing database access 33
MQSeries security 57
MQSeries trusted applications 44
recovery and restart 43

mqsicreateconfigmgr 109
managing database access 33
MQSeries security 57
recovery and restart 43
security domains 48
superuser ID 51

mqsicreateusernameserver 115
MQSeries security 58
recovery and restart 44
security domains 48
User Name Server, adding 34

mqsideletebroker 118
deleting a broker 35
recovery and restart 43

mqsideleteconfigmgr 120
recovery and restart 43

mqsideleteusernameserver 123
recovery and restart 44
removing topic-based security 36

mqsiformatlog 125
formatting user trace 66

mqsijoinmqpubsub 127
mqsilcc 129
mqsilist 131

listing components 32
mqsilistmqpubsub 133
mqsimigratebroker 89
mqsimigrateconfigmgr 89
mqsimrmcopymsgset 136
mqsimrmimpexp 138

message set, importing and
exporting 37

mqsinrfreload 140
mqsireadlog 141

reading user trace 66
retrieving user trace 65

mqsireporttrace 146
checking user trace 65

mqsistart 148
mqsistop 150

stopping queue managers 31

N
network, managing MQSeries

Integrator 31
network configuration 7
normal trace 63
notification message schema 186
notification messages 177

O
ODBC tracing 72
operational warnings 185

200 MQSeries Integrator Administration Guide V2.0.1

Oracle database, defining and
authorizing 9

P
parameters

-a ServicePassword
mqsichangebroker 90
mqsichangeconfigmgr 93
mqsichangeusernameserver 99
mqsicreatebroker 105
mqsicreateconfigmgr 111
mqsicreateusernameserver 116

-b (agent subcomponent)
mqsichangetrace 98
mqsireporttrace 147

-b brokername
mqsinrfreload 140

-b qualifier
mqsireadlog 142

-c size
mqsichangetrace 97

-d SecurityDomainName
mqsichangeconfigmgr 94
mqsichangeusernameserver 100
mqsicreateconfigmgr 112
mqsicreateusernameserver 116

-e (export message set)
mqsimrmimpexp 138

-e egroup
mqsichangetrace 96
mqsilist 131
mqsireadlog 142
mqsireporttrace 146

-e MRMDataSourceUserID
mqsicreateconfigmgr 111

-f mflow
mqsichangetrace 96
mqsireporttrace 147

-f (read from file system)
mqsireadlog 142

-i (immediate stop)
mqsistop 150

-i (import message set)
mqsimrmimpexp 138

-i inputfilename
mqsiformatlog 125

-i ServiceUserID
mqsichangebroker 90
mqsichangeconfigmgr 93
mqsichangeusernameserver 99
mqsicreatebroker 104
mqsicreateconfigmgr 110
mqsicreateusernameserver 115

-j MaxJVMHeapSize
mqsichangeconfigmgr 94

-l level
mqsichangetrace 97

-m (migrate existing broker)
mqsicreatebroker 106

-m mode
mqsichangetrace 97

-m MRMDataSourceName
mqsicreateconfigmgr 111

-n -m (delete repositories)
mqsideleteconfigmgr 120

-n DataBaseName
mqsicreateconfigmgr 111

parameters (continued)
-n DataSourceName

mqsicreatebroker 105
-n NeighborQueueManagerName

mqsiclearmqpubsub 101
-n (stop running as trusted

application)
mqsichangebroker 91

-o outputfilename
mqsiformatlog 125
mqsireadlog 142

-p DataBasePassword
mqsichangeconfigmgr 94

-p DataSourcePassword
mqsichangebroker 91
mqsicreatebroker 106
mqsicreateconfigmgr 111

-p ParentQueueManagerName
mqsijoinmqpubsub 127

-q (delete queue manager)
mqsideletebroker 119
mqsideleteconfigmgr 120
mqsideleteusernameserver 123

-q QueueManagerName
mqsicreatebroker 105
mqsicreateconfigmgr 111
mqsicreateusernameserver 116

-q (stop MQSeries queue manager)
mqsistop 150

-r MRMDataSourcePassword
mqsichangeconfigmgr 94
mqsicreateconfigmgr 112

-r RefreshInterval
mqsichangeusernameserver 100
mqsicreateusernameserver 116

-r (reset trace log)
mqsichangetrace 96

-s UserNameServerQueueManagerName
mqsichangebroker 91
mqsichangeconfigmgr 94
mqsicreatebroker 106
mqsicreateconfigmgr 112

-t (read from service trace log)
mqsireadlog 142
mqsireporttrace 147

-t (run as trusted application)
mqsichangebroker 91
mqsicreatebroker 106

-t (service trace options)
mqsichangetrace 98

-u DataBaseUserID
mqsicreateconfigmgr 111

-u DataSourceUserID
mqsicreatebroker 105

-u (read from user trace log)
mqsireadlog 142
mqsireporttrace 146

-u (user trace options)
mqsichangetrace 96

-w (delete workpath files)
mqsideletebroker 119
mqsideleteconfigmgr 120
mqsideleteusernameserver 123

-w WorkPath
mqsicreatebroker 106
mqsicreateconfigmgr 112
mqsicreateusernameserver 116

parameters (continued)
0, 1 or 2

mqsilcc 129
brokername

mqsichangebroker 90
mqsiclearmqpubsub 101
mqsicreatebroker 104
mqsideletebroker 118
mqsijoinmqpubsub 127
mqsilist 131
mqsilistmqpubsub 133

component
mqsichangetrace 96
mqsireadlog 141
mqsireporttrace 146
mqsistart 148
mqsistop 150

FileName
mqsimrmimpexp 139

Level
mqsimrmimpexp 139

MessageSetName
mqsimrmimpexp 139

MRMDataSourceName
mqsimrmcopymsgset 136
mqsimrmimpexp 138

MRMDataSourcePassword
mqsimrmcopymsgset 137
mqsimrmimpexp 139

MRMDataSourceUserID
mqsimrmcopymsgset 136
mqsimrmimpexp 138

SourceMessageSetLevel
mqsimrmcopymsgset 137

SourceMessageSetName
mqsimrmcopymsgset 137

TargetMessageSetLevel
mqsimrmcopymsgset 137

TargetMessageSetName
mqsimrmcopymsgset 137

performance 44

tuning message flows 45

position of parameters 77

primary security domain, Windows
NT 49

principals

global groups 49
IBMMQSI2 51
MQSeries Integrator groups 48

problem determination 61

MHI1 SupportPac 61

publications xii

DB2 xiv
MQSeries xiii
MQSeries Integrator Version 1 xii
MQSeries Integrator Version 2.0.1 xii
MQSeries Publish/Subscribe xiii
MQSeries Workflow xiv

publish/subscribe

collective 34
removing topic-based security 36
setting up a network 33
unused subscriptions 40

Index 201

Q
queue manager

log 71
stopping 31
Windows NT service, starting as 21

R
recovery and restart 38

application messages 38
backout processing 39
backup 42
broker internal messages 38
messages 38
recovery scenarios 43

broker 43
Configuration Manager 43
User Name Server 44

restart scenarios 40
broker 40
Configuration Manager 41
User Name Server 41

subscriptions 40
unused subscriptions 40

responses to commands 78
restarting components 38, 40
rules for using commands 77

blanks in commands 77
case sensitivity

broker names and fixed names 78
primary keywords and

parameters 77
naming of identifiers 77

S
security 47

brokers and other components 47
Control Center 47
database resources 58
MQSeries Integrator resources 47
MQSeries resources 57
principals 48
queues and queue managers 47
scenarios 51

in a local domain 55
in a primary domain 52
in a trusted domain 53

topic-based 47
UNIX security domain 48
UNIX security domains 57
Windows NT

primary security domain 49
trusted security domain 49

Windows NT security domain 48
service trace 63, 70
service user ID, authorizing

UNIX platforms 9
Windows NT 8

setting up security 47
SQLServer database, defining and

authorizing 9
starting user trace 64
state changes event messages 182
stopping user trace 70

subscription registration and
deregistration event messages 183

subscriptions
losing 40
unused, managing 40

subscriptions and topics event
messages 183

superuser ID, IBMMQSI2 51
support center, IBM 72
Sybase database, defining and

authorizing 9
syntax diagrams, how to read 79
syntax help, commands 79
system administration overview 4
system management 5, 177

T
terms used in this book xi
topic-based security 33
trace 61

changing options 65
current options 65
debug 63
formatting 66
levels 64
log files 64
mqsichangetrace 95
mqsiformatlog 125
mqsilcc 129
mqsireadlog 141
normal 63
ODBC 72
optional 63
reading 66
retrieving logs 65
service 63, 70
starting trace 64
stopping 70
Trace node 63
unformatted, viewing 66
UNIX codepage 63
UNIX syslog 62
user 63
viewing 70
Windows NT event log 61

transaction management, using
MQSeries 35

trusted applications 44
trusted security domain, Windows

NT 49

U
unformatted trace, XML viewer

example 66
Unicode characters 78
UNIX database setup and

configuration 10
UNIX security domains 57
UNIX syslog 62
updating broker domains 33
user IDs

authorization 7
database authority 16
definition 7

User Name Server
adding to broker domain 34

User Name Server (continued)
removing topic-based security 36
starting 23
trace 61

user trace 63

V
viewing user trace 70

W
Web site for MQSeries xiv
Windows NT

database setup and configuration 10
event log 61
security domains 49
service, starting queue managers

as 21
workload 44

202 MQSeries Integrator Administration Guide V2.0.1

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000 203

204 MQSeries Integrator Administration Guide V2.0.1

����

Printed in U.S.A.

SC34-5792-02

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book
	Where to find more information
	MQSeries Integrator publications
	MQSeries publications
	MQSeries Publish/Subscribe publications
	MQSeries Workflow publications
	DB2 publications
	MQSeries information available on the Internet

	Summary of changes
	Changes for this edition (SC34–5792–02)
	Changes for the second edition (SC34–5792–01)

	Part 1. Guidance
	Chapter 1. Administration overview
	Administration tasks
	System administration overview
	Configuring the broker domain
	Managing the broker domain
	Problem determination
	Integration and migration
	System management

	Chapter 2. How to configure your MQSeries Integratornetwork
	Definition and authorization tasks
	Defining and authorizing MQSeries Integrator user IDs
	Prerequisite tasks
	Completing the task for service user IDs on Windows NT
	Completing the task for service user IDs on UNIX platforms
	Completing the task for Control Center users (Windows NT only)
	Subsequent tasks

	Defining and authorizing database resources
	Database setup and configuration
	Configuring databases for internal data
	Defining internal MQSeries Integrator database connections(Windows NT only)
	Authorizing internal database access
	Configuring databases for NEON message formats

	Defining MQSeries Integrator components
	Prerequisite tasks
	Completing the task
	Subsequent tasks

	Defining MQSeries resources

	Connection tasks
	Connecting Control Center clients to the ConfigurationManager (Windows NT only)
	Prerequisite tasks
	Completing the task
	Subsequent tasks

	Connecting two MQSeries Integrator components
	Prerequisite tasks
	Completing the task
	Subsequent tasks

	Initialization tasks
	Starting MQSeries queue managers as a Windows NT service
	Prerequisite tasks
	Completing the task
	Subsequent tasks

	Starting the Configuration Manager (Windows NT only)
	Prerequisite tasks
	Completing the task
	Subsequent tasks

	Starting a broker
	Prerequisite tasks
	Completing the task
	Subsequent tasks

	Starting the User Name Server
	Prerequisite tasks
	Completing the task
	Subsequent tasks

	Starting the Control Center (Windows NT only)
	Defining and deploying the configuration in the Control Center
	Prerequisite tasks
	Completing the task
	Subsequent tasks

	Application client and user data tasks
	Setting up application clients
	MQSeries resources for client applications

	Configuring databases for user data accessed from messageflows
	Messageflow transactionality and database design

	General guidance

	Chapter 3. How to manage your MQSeries Integrator network
	Managing the broker domain components
	Managing components
	Starting and stopping components
	Viewing and modifying components

	Managing databases
	Databases and code pages
	Managing database access

	Enhancing and updating your broker domain
	Setting up a publish/subscribe network

	Coordinated transactions
	Using DB2 in coordinated transactions

	Deleting components from the broker domain
	Deleting a broker
	Removing topic-based security

	Importing and exporting message sets
	Recovery and restart
	Making sure that messages aren’t lost
	Making sure that subscriptions aren’t lost
	Restart scenarios
	Backup and recovery
	Recovery scenarios

	Managing workload and performance
	Using MQSeries trusted applications
	Tuning message flow performance

	Chapter 4. Setting up security
	Securing MQSeries Integrator resources
	Using Windows NT primary or trusted security domains
	The IBMMQSI2 superuser
	Windows NT security domain scenarios
	Scenario 1: operation in a Windows NT primary domain
	Scenario 2: operation in a Windows NT trusted domain
	Scenario 3: operation on a stand-alone machine

	Using UNIX security domains

	Securing MQSeries resources
	Securing database resources
	DB2 services
	On Windows NT
	On UNIX platforms

	Chapter 5. Problem determination
	Traces
	Windows NT event log messages
	UNIX syslog messages
	Optional traces
	Starting user trace
	Checking user trace options
	Changing user trace options
	Retrieving user trace information
	Formatting user trace information
	Viewing and interpreting user trace information
	Stopping user trace
	Controlling Service traces

	Messages
	MQSeries facilities
	MQSeries logs
	MQSeries events

	Database logs
	DB2 logs
	ODBC tracing

	Contacting your IBM support center

	Part 2. Reference
	Chapter 6. Using MQSeries Integrator commands
	Rules for using MQSeries Integrator commands
	Rules for naming resources
	Responses to commands

	Command syntax help
	How to read syntax diagrams

	Chapter 7. Using the MQSeries Integrator Command Assistant
	Overview
	Invocation
	Navigation
	Command processing

	Example use

	Chapter 8. Commands
	mqsichangebroker (Change broker)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsichangeconfigmgr (Change Configuration Manager)
	Purpose
	Syntax
	Optional parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsichangetrace (Change trace settings)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Additional parameters exclusive to service trace

	Authorization
	Responses
	Examples
	Related commands

	mqsichangeusernameserver (Change User Name Server)
	Purpose
	Syntax
	Optional parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsiclearmqpubsub (Remove MQSeries Publish/Subscribe broker as aneighbor)
	Purpose
	Syntax
	Required parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsicreatebroker (Create broker)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Authorization
	MQSeries queues created
	Database tables created
	Responses
	Examples
	Related commands

	mqsicreateconfigmgr (Create Configuration Manager)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Authorization
	MQSeries queues created
	MQSeries channels created
	Database tables created
	Responses
	Examples
	Related commands

	mqsicreateusernameserver (Create User Name Server)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Authorization
	MQSeries queues created
	Responses
	Examples
	Related commands

	mqsideletebroker (Delete broker)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsideleteconfigmgr (Delete Configuration Manager)
	Purpose
	Syntax
	Optional parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsideleteusernameserver (Delete User Name Server)
	Purpose
	Syntax
	Optional parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsiformatlog (Format log)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsijoinmqpubsub (Join broker to MQSeries Publish/Subscribe parentbroker)
	Purpose
	Syntax
	Required parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsilcc (Start Control Center trace)
	Purpose
	Syntax
	Optional parameters
	Authorization
	Responses
	Examples

	mqsilist (List resources)
	Purpose
	Syntax
	Optional parameters
	Authorization
	Responses
	Examples

	mqsilistmqpubsub (List MQSeries Publish/Subscribe neighbor brokerstatus)
	Purpose
	Syntax
	Required parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsimrmcopymsgset (Copy message set)
	Purpose
	Syntax
	Required parameters
	Authorization
	Examples

	mqsimrmimpexp (Import/Export message set)
	Purpose
	Syntax
	Required parameters
	Optional Parameters
	Authorization
	Examples

	mqsinrfreload (Reload NEON messages)
	Purpose
	Syntax
	Required parameters
	Authorization
	Responses
	Examples

	mqsireadlog (Read log)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Additional parameters exclusive to service trace

	Authorization
	Responses
	Examples
	Related commands

	mqsireporttrace (Report trace settings)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Additional parameters exclusive to service trace

	Authorization
	Responses
	Examples
	Related commands

	mqsistart (Start component)
	Purpose
	Syntax
	Required parameters
	Authorization
	Responses
	Examples
	Related commands

	mqsistop (Stop component)
	Purpose
	Syntax
	Required parameters
	Optional parameters
	Authorization
	Responses
	Examples
	Related commands

	Part 3. Migration and integration
	Chapter 9. MQSeries Publish/Subscribe
	Before you start
	Figures used in this chapter
	Commands and options
	Stream queues

	Running two independent broker networks
	Creating and operating a heterogeneous network
	Adding an MQSeries Integrator broker as a leaf node
	Adding an MQSeries Integrator broker as a parent node
	Deleting brokers in a heterogeneous network

	Migrating MQSeries Publish/Subscribe brokers
	The Control Center and migration
	Migrating a single broker
	Preparing for the migration
	Preparing the replacement broker
	Migrating the MQSeries Publish/Subscribe broker
	Deploying the stream queues

	Migrating a broker network
	Stage 1: migration of the LONDON broker
	Stage 2: migration of the NEWYORK broker
	Stage 3: migration of the TOKYO broker

	A network of migrated brokers

	Part 4. Appendixes
	Appendix A. Event reporting
	General architecture
	Configuration changes
	Changes to the local configuration of the broker
	Configuration change

	Neighbor changes
	Examples
	Neighbor created
	Neighbor changed
	Neighbor deleted
	All neighbors deleted

	ACL updates
	Examples
	ACL created
	ACL changed
	ACL deleted
	All ACLs deleted on a single topic
	All ACLs deleted on all topics

	Operational information
	Subscriptions and topics
	Subscription registration and deregistration
	Examples
	Subscription created
	Subscription changed
	Subscription deleted (deregistered)

	Operational warnings
	Expired publications and subscriptions
	Examples
	Publication expired
	Subscription expired

	Notification message schema

	Appendix B. Notices
	Trademarks

	Glossary of terms and abbreviations
	Index
	Sending your comments to IBM

