<|lI!

MQSeries™

Intercommunication

SC33-1872-05

Note!
Before using this information and the product it supports, be sure to read the general information under W

mﬁ—nn—pw “ .

Sixth edition (November 2000)

This edition applies to the following products:

e MQSeries for AIX®, V5.1

» MQSeries for AS/400® V5.1

¢ MQSeries for AT&T GIS UNIX® V2.2

¢ MQSeries for Compaq (DIGITAL) OpenVMS, V2.2.1.1
¢ MQSeries for Compaq Tru64 UNIX V5.1

* MQSeries for HP-UX, V5.1

» MQSeries for OS/390®, V5.2

+ MQSeries for OS/2® Warp, V5.1

* MQSeries for SINIX and DC/OSx, V2.2

* MQSeries for Sun Solaris, V5.1

* MQSeries for Tandem NonStop Kernel, V2.2.0.1
* MQSeries for VSE/ESA™ V2.1

» MQSeries for Windows® V2.0

* MQSeries for Windows V2.1

* MQSeries for Windows NT®, V5.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures Xxiii
Tables. XV

About thisbook Xvii

Who this book is for xvii
What you need to know to understand thrs book xvii
How to use this book L. ..o xviil

Appearance of text in this book D 6 D

Terms used in this bookxix
Summary of changes XXi
Changes for this edition (SC33-1872- 05) ... oLxxd
Changes for the previous edition (SC33-1872-04) xxi
Changes for the fourth edition (SC33-1872-03) . . xxi
Changes for the third edition (SC33-1872-02) . . . xxi

Part 1. Introduction. 1

Chapter 1. Concepts of
intercommunication 3
What is intercommunication?3
How does distributed queuing work73
Distributed queuing components 7
Message channels. 7

Message channel agents9
Transmission queues10
Channel initiators and hsteners 1o
Channel-exit programs12
Dead-letter queves13
Remote queue definitions. . . P
How to get to the remote queue manager T
Multi-hopping14
Sharing channels14
Using different channels15
Using clustering.16

Chapter 2. Making your appllcatlons

communicate. P V4
How to send a message to another queue manager 17
Defining the channels18
Defining the queves19
Sending the messages20
Starting the channel20
Triggering channels.20
Safety of messages22
Fast, nonpersistent messages22
Undelivered messages.23

Chapter 3. More about
intercommunication 25

Addressing information25
What are aliases?25

© Copyright IBM Corp. 1993, 2000

Queue name resolution26
Queue manager alias definitions26
Outbound messages - remapping the queue
manager name 26
Outbound messages - alterlng or spec1fy1ng the
transmission queue. . . .27
Inbound messages - determlnrng the destrnatron 27
Reply-to queue alias definitions28
What is a reply-to queue alias def1n1t10n7 .. .28
Reply-to queue name29
Networks oD
Channel and transrnlssmn queue names. . . .29
Network planner31

Part 2. How intercommunication
works.33

Chapter 4. MQSeries
distributed-messaging techniques. . . 35

Message flow control35
Queue names in transmission header36
How to create queue manager and reply-to
aliases36

Putting messages on remote queues37
More about name resolution.38

Choosing the transmission queve39

Receiving messages.40
Receiving alias queue manager names 40

Passing messages through your system41
Method 1: Using the incoming location name . . 42
Method 2: Using an alias for the queue manager 42
Method 3: Selecting a transmission queue . . . 42
Using these methods42

Separating message flows . . R

Concentrating messages to dlverse locatlons .. 44

Diverting message flows to another destination . . 45

Sending messages to a distribution list46

Reply-to queue . . . e V4
Reply-to queue alias example ..o 48
How the example works50
How the queue manager makes use of the
reply-to queue alias.51
Reply-to queue alias walk- through 1 |

Networking considerations52

Return routing53

Managing queue name translatlons53

Channel message sequence numbering54
Sequential retrieval of messages55
Sequence of retrieval of fast, nonpersistent
messages55

Loopback testing56

Chapter 5. DQM |mplementat|on . . .57
Functions of DQMbh7

iii

Message sending and receiving .
Channel parameters .
Channel status and sequence numbers
Channel control function .
Preparing channels .
Channel states
Adopting an MCA . .
Stopping and quiescing channels (not MQSenes
for Windows).
Stopping and qu1esc1ng channels (MQSenes for
Windows) . PR
Restarting stopped channels
In-doubt channels .
Problem determination
What happens when a message cannot be
delivered? . .o .
Initialization and conf1gurat1on f1les .
0S/390 without CICS .
0S/390 using CICS.
Windows NT . .
0S5/2, Digital OpenVMS Tandem NSK OS / 400
and UNIX systems . o
VSE/ESA .
Data conversion . .
Writing your own message channel agents

Chapter 6. Channel attributes .

Channel attributes in alphabetical order .
Alter date (ALTDATE).
Alter time (ALTTIME) .
Auto start (AUTOSTART).
Batch interval (BATCHINT) .
Batch size (BATCHSZ).
Channel name (CHANNEL).
Channel type (CHLTYPE)
CICS profile name .
Cluster (CLUSTER).
Cluster namelist (CLUSNL) .
Connection name (CONNAME)
Convert message (CONVERT) .
Description (DESCR) .
Disconnect interval (DISCINT) .
Heartbeat interval (HBINT) .
Long retry count (LONGRTY) .
Long retry interval (LONGTMR)
LU 6.2 mode name (MODENAME) .
LU 6.2 transaction program name (TPNAME) .
Maximum message length (MAXMSGL).
Maximum transmission size . .
Message channel agent name (MCANAME)
Message channel agent type (MCATYPE)
Message channel agent user identifier
(MCAUSER) .
Message exit name (MSGEXIT)
Message exit user data (MSGDATA) .
Message-retry exit name (MREXIT)
Message-retry exit user data (MRDATA).
Message retry count (MRRTY) .
Message retry interval (MRTMR) .
Network-connection priority (NETPRTY)
Nonpersistent message speed (NPMSPEED)

iv MQSeries Intercommunication

. 58
. 59
. 59
. 59
. 60
. 62
. 67

. 67

. 69
. 69
. 70
.71

.71
.73
.73
.73
.73

.73
.75
.75
.75

.77
.77
. 78
. 78
. 78
.79
.79
. 80
. 81
. 81
. 81
. 82
. 82
. 83
. 84
. 84
. 85
. 85
. 85
. 86
. 86
. 87
. 87
. 87
. 88

. 88
. 88
. 89
. 89
. 89
. 89
.90
.90

Password (PASSWORD)9

PUT authority (PUTAUT).90
Queue manager name (QMNAME)91
Receive exit name (RCVEXIT)91
Receive exit user data (RCVDATA)92
Security exit name (SCYEXIT)93
Security exit user data (SCYDATA)93
Send exit name (SENDEXIT).93
Send exit user data (SENDDATA)93
Sequence number wrap (SEQWRAP)93
Sequential delivery . . . R
Short retry count (SHORTRTY) B 2
Short retry interval (SHORTTMR) 9%
Target system identifier 9%
Transaction identifier)
Transmission queue name (XMITQ)9
Transport type (TRPTYPE)95
UserID(USERID)9

Chapter 7. Example configuration
chapters inthisbook97

Network infrastructure98
Communications software98
How to use the communication examples99

IT responsibilities100

Part 3. DQM in MQSeries for 0S/2
Warp, Windows NT, Digital

OpenVMS, Tandem NSK, and UNIX
systems101

Chapter 8. Monitoring and controlling
channels on distributed platforms . . 105

The DQM channel control function 105
Functions available106
Getting started with objects. 108
Creating objects108
Creating default objects 108
Creating a channel109
Displaying a channel 110
Displaying channel status 110
Starting a channel11
Renaming a channel e i |
Channel attributes and channel types B U |
Channel functions.113

Chapter 9. Preparing MQSeries for
distributed platforms 117

Transmission queues and triggering 117
Creating a transmission queue. 117
Triggering channels117

Channel programs.119

Other things to consider.120
Undelivered-message queue 120
Queues inuse 120
Multiple message Channels per transm1ss1on
queueo 120
Security of MQSenes ob]ects12

System extensions and user-exit programs. . . 122

Running channels and listeners as trusted

applications122
Whatnext?123

Chapter 10. Setting up communication
for 0S/2 and Windows NT. 125

Deciding on a connection125
Defining a TCP connection.126
Sendingend.126
Receivingon TCP126
Defining an LU 6.2 connection 128
Sending end for OS/2129
Sending end for Windows NT. 130
ReceivingonLUG62130
Defining a NetBIOS connection 131
Defining the MQSeries local NetBIOS name . . 131
Establishing the queue manager NetBIOS
session, command, and name limits. 132
Establishing the LAN adapter number 132
Initiating the connection.133
Target listener 133
Defining an SPX Connectlon T e
Sendingend.134
ReceivingonSPX13
IPX/SPX parameters136

Chapter 11. Example configuration -
IBM MQSeries for 0S/2 Warp. 139

Configuration parameters for an LU 6.2 connection 139

Configuration worksheet139
Explanation of terms . . . o o142
Establishing an LU 6.2 cormectlon Lo 144
Defining local node characteristics 144
Connecting to a peer system 147
Connecting to a host system 149
Verifying the configuration. 150
What next? . . . B 13 |
Establishing a TCP cormectlon R Fo7
What next? . . . B 14
Establishing a NetBIOS connectron153
Establishing an SPX connection 153
IPX/SPX parameters153
SPX addressing. 154
Using the SPX KEEPALIVE optron 155
Receiving on SPX 155
MQSeries for OS/2 Warp conflguratlon 155
Basic configuration . . P 614)
Channel configuration 156
Running channels as processes or threads .. . 160

Chapter 12. Example configuration -
IBM MQSeries for Windows NT. . . . 163

Configuration parameters for an LU 6.2 connection 163

Configuration worksheet 164
Explanation of terms 166
Establishing an LU 6.2 cormectlon 168
Configuring the localnode. 168
Adding a connection.170
Adding a partner172

Adding a CPI-Centry173
Configuring an invokable TP 173
What next? . . . B V43
Establishing a TCP connectlon N V()
What next? . . . L. .. 176
Establishing a NetBIOS connectlon 176
Establishing an SPX connection 177
IPX/SPX parameters177
SPX addressing.178
Receiving on SPX 178
MQSeries for Windows NT conflguratlon .o 179
Default configuration.179
Basic configuration179
Channel configuration180
Automatic startup. 184
Running channels as processes or threads .. 184

Chapter 13. Setting up communication
inUNIXsystems 185

Deciding on a connection185
Defining a TCP connection.185
Sendingend.18
ReceivingonTCP.186
Defining an LU 6.2 connection 188
Sendingend.18
ReceivingonLUG62189

Chapter 14. Example configuration -
IBM MQSeries for AIX. 191

Configuration parameters for an LU 6.2 connection 191

Configuration worksheet 191
Explanation of terms 194
Establishing a session using Commumcatlons
Server for AIXV5.19
Configuring your node19
Configuring connectivity to the network N 4
Defining a local LU199
Defining a transaction program 200
Establishing a TCP connection.203
What next?203
Establishing a UDP cormectron203
What next?203
MQSeries for AIX conflguratlon203
Basic configuration204
Channel configuration204

Chapter 15. Example configuration -
IBM MQSeries for Compaq Tru64 UNIX 209

Establishing a TCP connection. . . . 209
What next? 209
MQSeries for Compaq Tru64 UNIX conflguratlon 209
Basic configuration . . v 0
Channel configuration210

Chapter 16. Example configuration -
IBM MQSeries for HP-UX 213

Configuration parameters for an LU 6.2 connection 213
Configuration worksheet213
Explanation of terms216

Contents V

Establishing a session using HP SNAplusZ . 217
SNAplus2 configuration . . . 217
APPC configuration . . 221
HP-UX operation . . 231
What next? . . 231

Establishing a TCP connectlon . 231
What next? 232

MQSeries for HP-UX Conflguratlon . . 232
Basic configuration - . 232
Channel configuration . 232

Chapter 17. Example configuration -

IBM MQSeries for AT&T GIS UNIX,

Version 2.2 . 237

Configuration parameters for an LU 6 2 connection 237

Configuration worksheet . 237
Explanation of terms . . . 240
Establishing a connection using AT&T GIS SNA
Server . .o . 240
Defining local node characterlstlcs . 241
Connecting to a partner node . . 243
Configuring a remote node. . 243
What next? . . 245
Establishing a TCP Connectlon . 245
What next? . . 245
MQSeries for AT&T GIS UNIX conflguratlon . 245
Basic configuration .o .o . 246
Channel configuration . 246
Chapter 18. Example configuration -
IBM MQSeries for Sun Solaris . . 251
Configuration parameters for an LU 6.2 connection 251
Configuration worksheet . 251
Explanation of terms . . 254

Establishing a connection using Suank Verswn
9125

SunLink 9.1 base conflguratlon . 255
Configuring a PU 2.1 server . 256
Adding a LAN connection . . 257
Configuring a connection to a remote PU . 258
Configuring an independent LU . . 259
Configuring a partner LU . 261
Configuring the session mode . . 262
Configuring a transaction program . . 263
CPI-C side information . . 264
What next? . . 265
Establishing a TCP connectlon . 265
What next? . . . 265
MQSeries for Sun Solarls conﬁguratlon . 265
Basic configuration . 266
Channel configuration . 266
Chapter 19. Setting up communication
in Digital OpenVMS systems . 271
Deciding on a connection . 271
Defining a TCP connection . . 272
Sending end. . 272
Receiving channels usmg Compaq (DIGITAL)
TCP/IP services (UCX) for OpenVMS . . 272

vi MQSeries Intercommunication

Receiving channels using Cisco MultiNet for

OpenVMS . 273
Receiving channels usmg Attachmate PathWay
for OpenVMS . 274
Receiving channels using Process Software
Corporation TCPware . 274
Defining an LU 6.2 connection . 275
SNA configuration. . 275
Specifying SNA Conﬁguratlon parameters to
MQSeries. . 277
Sample MQSeries conflguratlon . 278
Problem solving . 279
Defining a DECnet Phase IV connectlon . 279
Sending end. . . 280
Receiving on DECnet Phase IV . 280
Defining a DECnet Phase V connection. . 280
Chapter 20. Setting up communication
in Tandem NSK . 283
Deciding on a connection . 283
SNA channels . .o . 283
LU 6.2 responder processes. . 285
TCP channels . . 285
Communications examples . . 285
SNAX communications example . . 285
ICE communications example . . 293
TCP/IP communications example . 297
Chapter 21. Message channel
planning example for distributed
platforms . . . 299
What the example shows . 299
Queue manager QM1 example . 301
Queue manager QM2 example . 302
Running the example. . 303
Expanding this example . . 303
Chapter 22. Example SINIX and
DC/OSx configuration files . 305
Configuration file on bight . . 306
Configuration file on forties . . 307
Working configuration files for Pyramld DC/OSx 307
Output of dbd command . . 308
Part 4. DQM in MQSeries for
0S/390. 313
Chapter 23. Distributed queuing with
queue-sharing groups . 317
Concepts . . 317
Class of service. . 317
Generic interface . 317
Components. . 317
Listeners . . . 317
Transmission queue . 318
Message channel agents . . 318
Synchronization queue . 318
Benefits . 319

Load-balanced channel start . 319
Shared channel recovery. . 319
Client channels. . . 320
Clusters and queue-sharing groups . . 320
Chapter 24. Intra-group queuing . 321
Concepts . . . 321
Intra-group queumg and the 1ntra group
queuing agent . . 321
Terminology . . 322
Intra-group queuing . . . 322
Shared transmission queue for use by
intra-group queuing . . . 323
Intra-group queuing agent . . 323
Benefits . 323
Reduced system defmrtlons . 323
Reduced system administration . 323
Improved performance . . 323
Supports migration . . 323
Transparent delivery of messages when
multi-hopping between queue managers in a
queue-sharing group . . 324
Limitations . . 324
Messages ehglble for transfer usmg 1ntra group
queuing . e . 324
Number of mtra—group queuing agents per
queue manager. . 325
Starting and stoppmg the 1ntra group queumg
agent . . .o . . 325
Getting started . .o . 325
Enabling intra-group queuing . . 325
Disabling intra-group queuing. . 325
Using intra-group queuing . . 325
Configurations32
Distributed queuing w1th mtra group queuing
(multiple delivery paths) . . 326
Clustering with intra-group queuing (multrple
delivery paths) . . . 328
Clustering, intra-group queumg and dlstrlbuted
queuing . . 329
Messages . . . 330
Message structure . . 330
Message persistence . . 330
Message size . 330
Default message persrstence and default
message priority Coe . 330
Undelivered /unprocessed messages . . 330
Report messages . 331
Security . . 331
Intra-group queumg authorlty (IGQAUT) . 332
Intra-group queuing user indentifier (IGQUSER) 332
Specific properties . . . 332
Queue name resolutlon . . 332
Invalidation of object handles
(MQRC_OBJECT_CHANGED). . 332
Self recovery of the intra-group queuing agent 333
Retry capability of the intra-group queuing
agent . e . 333
An example . . 333
Configuration 1 . 333
Configuration 2 . 334

Configuration 3
Running the example.

Chapter 25. Monitoring and
controlling channels on 0S/390
The DQM channel control function .
Using the panels and the commands
Using the initial panel
Managing your channels
Defining a channel .
Altering a channel definition .
Displaying a channel definition
Deleting a channel definition .
Displaying information about DQM .
Starting a channel initiator .
Stopping a channel initiator
Starting a channel listener .
Stopping a channel listener.
Starting a channel .
Testing a channel . .
Resetting message sequence numbers for a
channel .o
Resolving in-doubt messages on a channel
Stopping a channel .
Displaying channel status .
Displaying cluster channels.

Chapter 26. Preparing MQSeries for
0S/390 .
Setting up communication .
TCP setup
APPC/MVS setup
Defining DQM requirements to MQSerles
Defining MQSeries objects . .
Synchronization queue .
Channel command queues .
Channel operation considerations

0S/390 Automatic Restart Management (ARM)

Chapter 27. Message planning

examples for 0S/390 .

What the first example shows .
Queue manager QM1 example
Queue manager QM2 example

Running the example.

Expanding this example .

What the second example shows .
Queue-sharing group definitions .
Queue manager QM3 example
Remaining definitions
Running the example.

Chapter 28. Monitoring and
controlling channels in 0S/390 with
CICS . .
The DQM channel control functlon .

CICS regions

Starting DOM panels
The Message Channel List panel

Contents

. 335
. 339

. 3
. 341
. 342
. 342
. 344
. 344
. 345
. 345
. 345
. 346
. 346
. 347
. 348
. 349
. 349
. 351

. 351
. 352
. 352
. 353
. 356

. 359
. 359
. 359
. 361
. 362
. 362
. 363
. 363
. 364

364

. 365
. 365
. 366
. 367
. 369
. 369
. 369
. 371
. 371
. 372
. 372

. 373
. 373
. 374
. 374
. 375

vii

Keyboard functions375

Selecting a channel376
Working with channels376
Creating a channel377
Altering a channel.378
Browsing a channel378
Renaming a channel379
Selected menu-bar choice379
Edit menu-bar choice.389
View menu-bar choice393
Help menu-bar choice3%
The channel definition panels 3%
Channel menu-bar choice39
Help menu-bar choice39
Channel settings panel fields39%
Details of sender channel settings panel ... 398
Details of receiver channel settings panel . . . 399
Details of server channel settings panel. . . . 400
Details of requester channel settings panel. . . 401

Chapter 29. Preparing MQSeries for
0S/390 when using CICS 403

Setting up CICS communication for MQSeries for

0s/3% B 1
Connecting CICS systems408
Defining an LU 6.2 connection 404
Installing the connection. 405
Communications between CICS systems
attached to one queue manager 405

Defining DQM requirements to MQSeries 406

Defining MQSeries objects 406
Multiple message channels per transmlss1on
queue 406

Channel operation C0n51derat10ns B 114

Chapter 30. Message channel
planning example for 0S/390 using
CciIcCs.409

Chapter 31. Example configuration -
IBM MQSeries for 0S/390 417

Configuration parameters for an LU 6.2 connection 417

Configuration worksheet 418
Explanation of terms . . . L. .. 420
Establishing an LU 6.2 connectlon ... o422
Defining yourself to the network 422
Defining a connection to a partner 424
Using generic resources424
What next? 425
Establishing an LU 6.2 Connectlon usmg CICS .. 425
Defining a connection 425
Defining the sessions. L4206
Installing the new group deﬁmtlon Coe L 427
What next? . . . o427
Establishing a TCP connectlon B 4
Using WLM/DNS.428
What next? . . . oo .. 428
MQSeries for OS/390 conflguratlonA428
Channel configuration429

viii MQSeries Intercommunication

Part 5. MQSeries for AS/400. . . . 435

Chapter 32. Monitoring and
controlling channels in MQSeries for

AS/400 437
The DQM channel control functlon 437
Operator commands438
Getting started440
Creating objects440
Creating a channel440
Starting a channel443
Selecting a channel444
Browsing a channel444
Renaming a channel446
Work with channel status 446
Work-with-channel choices.448
Panel choices449
F6=Create449
2=Change45
3=Copy450
4=Delete451
5=Display . . 3
8=Work with Status o Y |
13=Ping45
4=Start45
15=End452
16=Reset.453
17=Resolve453

Chapter 33. Preparlng MQSeries for

AS/400 455
Creating a transmission queue. 455
Triggering channels457
Channel programs. . oo 459
Channel states on OS/ 400460
Other things to consider.46l
Undelivered-message queue46l
Queues inuse . . . P 1Y |
Maximum number of channels 1Y
Multiple message channels per transmission
queue46l
Security of MQSerles for AS / 400 ob]ects .. .46l
System extensions and user-exit programs. . . 462

Chapter 34. Setting up communication
for MQSeries for AS/400. 463

Deciding on a connection463
Defining a TCP connection.463
Receivingon TCP.464
Defining an LU 6.2 connection465
Initiating end (Sending) 466
Initiated end (Receiver)469

Chapter 35. Example configuration -
IBM MQSeries for AS/400 473

Configuration parameters for an LU 6.2 connection 473

Configuration worksheet473
Explanation of terms . . . R V()
Establishing an LU 6.2 connectlon B V¢

Local node configuration . 478
Connection to partner node . 479
What next? . . . 483
Establishing a TCP connectlon . 483
Adding a TCP/IP interface . . 483
Adding a TCP/IP loopback mterface . 483
Adding a default route . . . 484
What next? 484
MQSeries for AS/400 confrguratron . . 485
Basic configuration .o . 485
Channel configuration . 485
Defining a queue . . 489
Defining a channel . 490
Chapter 36. Message channel
planning example for 0S/400 . 491
What the example shows . 491
Queue manager QM1 example . 492
Queue manager QM2 example . 494
Running the example. . 496
Expanding this example . . 496
Part 6. DQM in MQSeries for
VSE/ESA. . 497
Chapter 37. Example configuration -
MQSeries for VSE/ESA . 499

Configuration parameters for an LU 6.2 connection 499

Configuration worksheet . 499
Explanation of terms . . 501
Establishing an LU 6.2 connectlon . 502
Defining a connection . 502
Defining a session . . . 502
Installing the new group defmltlon . . 503
What next? . . 503
Establishing a TCP connectlon . . 504
MQSeries for VSE/ESA configuration . . 504
Configuring channels. . . 504
Defining a local queue . 507
Defining a remote queue . 509
Defining a SNA LU 6.2 sender channel . 511
Defining a SNA LUS6.2 receiver channel. . 512
Defining a TCP/IP sender channel . . 514
Defining a TCP receiver channel . . 515
Part 7. Further intercommunication
considerations . . 517
Chapter 38. Channel-exit programs 519
What are channel-exit programs? . . 519
Processing overview . . . 520
Channel security exit programs . 521
Channel send and receive exit programs . 526
Channel message exit programs . . 529
Channel message retry exit program. . 530
Channel auto-definition exit program . 530
Transport-retry exit program . 531
Writing and compiling channel-exit programs . 532

MQSeries for OS/390 without CICS .
MQSeries for OS/390 using CICS.
MQSeries for AS/400. .
MQSeries for OS/2 Warp

Windows 3.1 client

MQSeries for Windows NT server, MQSerres
client for Windows NT, and MQSeries client for

Windows 95 and Windows 98 .
MQSeries for Windows .
MQSeries for AIX .

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Compaq Tru64 UNIX .
MQSeries for HP-UX . ..
MQSeries for AT&T GIS UNIX
MQSeries for Sun Solaris
MQSeries for SINIX and DC/ OSx
MQSeries for Tandem NonStop Kernel .

Supplied channel-exit programs using DCE

security services

What do the DCE Channel eXlt programs do7
How do the DCE channel-exit programs work?
How to use the DCE channel-exit programs .

Chapter 39. Channel-exit calls and
data structures.

Data definition files
MQ_CHANNEL_EXIT - Channel ex1t

Syntax.

Parameters .

Usage notes .

C invocation.

COBOL invocation

PL/I invocation

RPG invocation (ILE).

RPG invocation (OPM) .

System /390 assembler invocation.
MQ_CHANNEL_AUTO_DEF_EXIT - Channel
auto-definition exit

Syntax.

Parameters .

Usage notes .

C invocation.

COBOL invocation

RPG invocation (ILE).

RPG invocation (OPM) .

System /390 assembler invocation.
MQXWAIT - Wait .

Syntax.

Parameters .

C invocation. .

System /390 assembler mvocatlon
MQ_TRANSPORT_EXIT - Transport retry ex1t

Syntax. L. .

Parameters .

Usage notes .

C invocation. .
MQCD - Channel data structure .

Fields .

C declaration

COBOL declaration

PL/I declaration

Contents

. 534
. 535
. 536
. 536
. 538

. 538
. 540
. 541

542

. 543
. 544
. 545
. 546
. 546
. 547

. 551

551
552

. 554

. 557
. 558
. 559
. 559
. 559
. 561
. 562
. 562
. 562
. 563
. 563
. 564

. 564
. 564
. 564
. 565
. 565
. 565
. 565
. 565
. 566
. 566
. 566
. 566
. 567
. 567
. 567
. 567
. 567
. 568
. 568
. 569
. 571
. 594
. 595
. 597

ix

ILE RPG declaration . . 599
OPM RPG declaration . . 601
System/390% assembler declarat1on . . 603
MQCXP - Channel exit parameter structure . 605
Fields . . 605
C declaration . 616
COBOL declaration . 616
PL/1 declaration . 617
ILE RPG declaration . . 617
OPM RPG declaration . 618
System /390 assembler declaratlon . 618
MQTXP - Transport-exit data structure . . 620
Fields . o . 620
C declaration . . 623
MQXWD - Exit wait descrlptor structure . . 624
Fields . . 624
C declaration . 625
System /390 assembler declaratlon . 625
Chapter 40. Problem determination in
DQM . . . 627
Error message from channel control . 627
Ping . 627
Dead-letter queue consrderatlons . 628
Validation checks . . 628
In-doubt relationship . . . 629
Channel startup negotiation errors . 629
When a channel refuses to run . 629
Triggered channels . 630
Conversion failure. . 631
Network problems . 631
Dial-up problems . . 631
Retrying the link . . 631
Retry considerations . . 632
Data structures . . 632
User exit problems . 632
Disaster recovery . . 632
Channel switching. . 633
Connection switching. . 633
Client problems . 634
Terminating clients . 634
Error logs . 634
Error logs for OS/ 2 and Wlndows NT . 634
Error logs on UNIX systems . 635
Error logs on DOS, Windows 3.1, and Wlndows
95 and Windows 98 clients635
Error logs on OS/390. . . 635
Error logs on MQSeries for Wlndows . 635
Error logs on MQSeries for VSE/ESA . 635
Error logs on MQSeries for Tandem NSK . . 635
Part 8. Appendixes . . 637
Appendix A. Channel plannlng form 639
How to use the form . . 639
Appendix B. Constants for channels
and exits . 643
List of constants . 643

X MQSeries Intercommunication

MQ_* (Lengths of character string and byte
fields) . .
MQCD_* (Channel def1n1tlon structure length)

MQCD_* (Channel definition structure version)

MQCDC_* (Channel data conversion) .
MQCE_* (Channel capability flags) .
MQCHT_* (Channel type) .

MQCXP_* (Channel-exit parameter structure
identifier). .

MQCXP_* (Channel—ex1t parameter structure
version) . . .

MQMCAT_* (MCA type) .

MQNPMS_* (Nonpersistent message speed)
MQPA_* (Put authority) . . .
MQSID_* (Security identifier) . .
MQSIDT_* (Security identifier type) .
MQTXP_* (Transport retry exit structure
identifier).

MQTXP_* (Transport retry ex1t structure
version) . . -

MQXCC_* (Ex1t response) .

MOQXPT_* (Transmission protocol type)
MQXR_* (Exit reason) . .
MQXR2_* (Secondary exit response)
MQXT_* (Exit identifier). .
MQXUA_* (Exit user area) . . .
MQXWD_* (Exit wait descriptor structure
identifier).

MQXWD_* (Exit wa1t descrrptor Versron)

Appendix C. Queue name resolution
What is queue name resolution? .
How queue name resolution works .

Appendix D. Configuration file stanzas
. 653

for distributed queuing .

Appendix E. Notices
Programming interface information .
Trademarks .

Glossary of terms and abbreviations

Bibliography. ..
MQSeries cross-platform publications
MQSeries platform-specific publications
Softcopy books .

HTML format .

Portable Document Format (PDF)

BookManager® format .

PostScript format .

Windows Help format . .
MQSeries information available on the Internet .
Related publications .

Programming

0S/390

CICS .

0S/400

Digital.

SNA

. 643
644
644

. 644
. 644
. 644

. 645

. 645
. 645
. 645
. 645
. 645
. 646

. 646

. 646
. 646
. 647
. 647
. 647
. 647
. 648

. 648
. 648

649

. 651
. 652

. 657
. 658
. 659

661

. 675
. 675
. 675
. 676
. 676
. 676
. 677
. 677
. 677
. 677
. 677
. 677
. 677
. 677
. 677
. 677
. 677

SINIX. 677 Sending your comments to IBM . . . 695

Index.679

Contents X1

xii MQSeries Intercommunication

Figures

1.

—_

17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.

OO XN E LN

Overview of the components of distributed
queuing .

Sending messages

Sending messages in both dlrectrons

A cluster of queue managers .

A sender-receiver channel .

A requester-server channel .

A requester-sender channel.

A cluster-sender channel

Channel initiators and listeners .
Sequence in which channel exit programs are
called

. Passing through mtermed1ate queue managers
12.
13.
14.
15.
16.

Sharing a transmission queue

Using multiple channels

The concepts of triggering

Queue manager alias

Reply-to queue alias used for changmg reply
location .

Network d1agram show1ng all channels
Network diagram showing QM-concentrators

A remote queue definition is used to resolve a

queue name to a transmission queue to an
adjacent queue manager

The remote queue definition allows a d1fferent

transmission queue to be used . .
Receiving messages directly, and resolving
alias queue manager name

Three methods of passing messages through
your system

Separating messages flows .
Combining message flows on to a Channel
Diverting message streams to another
destination .

Reply-to queue name subst1tut10n durmg PUT

call
Reply-to queue al1as example
Distributed queue management model
Channel states .
Flows between channel states
What happens when a message cannot be
delivered .
MQSeries channel to be set up in the example
configuration chapters in this book.
Local LU window .
Mode window .
CPI-C side information ﬁle for Suank
Version 9.0 .
The message channel example for OS/ 2
Windows NT, and UNIX systems .
An example of intra-group queuing .
An example of migration support.
An example configuration .
An example of Clustermg with intra- group
queuing
Configuration 1

© Copyright IBM Corp. 1993, 2000

—

= O \O 00 0 N\ O Ul =

14

.15
.15
.21
.27

28

30

32

. 38

. 39

. 40

. 41
. 43

44

. 45

. 47
. 49
. 58
. 62
. 63

.72

.97
. 199
. 200

. 265

. 300
. 322
. 324
. 326

. 328
. 333

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

54.
55.
56.
57.

58.
59.

60.
61.
62.
63.

64.
65.

66.

67.
68.
69.
70.
71.

72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

85.
86.

87.
88.

Configuration 2 .

Configuration 3. .

The operations and controls m1t1al panel
Listing channels.

Starting a system function

Stopping a function control .

Starting a channel .

Testing a channel

Stopping a channel

Listing channel connections .

Displaying channel connections - f1rst panel
Displaying channel connections - second
panel . .

Listing cluster channels . .

The first example for MQSeries for OS / 390
The second example for MQSeries for OS/390
Sample configuration of channel control and
MCA .

The Message Channel L1st panel . .
The Message Channel List panel pull down
menus . . S
The Channel pull down menu .
Sender/server Stop action window
Requester/receiver Stop action window

The Reset Channel Sequence Number action
window

The Resolve Channel actlon w1ndow

An example of a sender channel Display
Channel Status window .

An example of a receiver channel D1splay
Channel Status window .

The Ping action window .

The Exit confirmation secondary wmdow
The Copy action window

The Create action window .

Example of default values during Create for a
channel .o .

The Delete action wmdow . .

The Find a Channel action window .

The Include search criteria action window
The Help pull-down menu .

The Help choice pull-down menu.

The sender channel settings panel. .
The sender channel settings panel - screen 2
The receiver channel settings panel

The receiver channel settings panel - screen 2
The server channel settings panel . .
The server channel settings panel - screen 2
The requester channel settings panel .

The requester channel settings panel - screen
2.

CICS LU 6 2 Connect1on def1n1t1on
Connecting two queue managers in MQSenes
for OS/390 using CICS

Sender settings (1) .

Sender settings (2) .

. 334
. 335

342

. 343
. 347
. 348
. 350
. 351
. 353
. 354

355

. 356
. 357

365
370

. 374
. 375

. 377
. 379
. 382

383

. 385

386

. 387

. 387
. 388

389

. 390

. 391

. 391
. 392
. 392

393

. 394
. 395
. 398

398

. 399

399

. 400

400

. 401

. 401

. 405

. 409
. 411
. 412

xiii

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.

116.
117.
118.
119.
120.
121.
122.
123.
124.

125.
126.

Connection definition (1).
Connection definition (2).
Connection definition (1).
Connection definition (2).
Receiver channel settings (1)
Receiver channel settings (2)
Channel Initiator APPL definition.
Channel Initiator initialization parameters
Channel Initiator initialization parameters
Create channel (1) .

Create channel (2) .

Create channel (3) .

Create channel (4) .

Work with channels .o
Display a TCP/IP channel (1) .
Display a TCP/IP channel (2) .
Display a TCP/IP channel (3) .
Channel status (1)
Channel status (2) .

Channel status (3) .

Create a queue (1) .

Create a queue (2) .

Create a queue (3) .

Create a queue (4) .

Create process (1) .

Create process (2) .

LU 6.2 communication setup panel - 1n1t1at1ng

end .

LU 6.2 communlcatlon setup panel - 1n1t1ated

end .

LU 6.2 communlcatlon setup panel - 1n1t1ated

end .

The message channel example for MQSenes
for AS/400

Channel configuration panel

Security exit loop . .

Example of a send exit at the sender end of
message channel

Example of a receive exit at the receiver end
of message channel . .
Sender-initiated exchange with agreement

Sender-initiated exchange with no agreement

Receiver-initiated exchange with agreement
Receiver-initiated exchange with no
agreement

xiv MQSeries Intercommunication

. 412
. 413
. 413
. 414
. 414
. 415
. 423

424
428

. 441
. 442
. 442
. 443
. 444
. 445
. 445
. 446
. 447
. 447
. 448
. 455
. 456
. 456
. 457
. 458

. 459

. 466

. 469

. 470
. 491
. 515
. 520
. 520

. 521

523
524
525

. 525

127.
128.
129.
130.
131.
132.
133.

134.
135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.
151.

Sample source code for a channel exit on
0S/2 .

Sample DEF file for a channel ex1t on OS/ 2
Sample make file for a channel exit on OS/2
Sample source code for a channel exit on
Windows 3.1.

Sample source code for a channel ex1t on
Windows NT, Windows 95, or Windows 98
Sample DEF file for Windows NT, Windows
95, Windows 98, or Windows .

Sample source code for a channel exit on
Windows .

Sample source code for a channel ex1t on AIX

Sample compiler and loader commands for
channel exits on AIX .

Sample export file for AIX .

Sample make file for AIX .
Sample source code for a channel exit on
Digital OVMS .

Sample source code for a channel ex1t on
Compaq Tru64 UNIX .

Sample compiler and loader commands for
channel exits on Compaq Tru64 UNIX .
Sample source code for a channel exit on
HP-UX. .

Sample compiler and loader commands for
channel exits on HP-UX .

Sample source code for a channel ex1t on
AT&T GIS UNIX .

Sample compiler and loader commands for
channel exits on AT&T GIS UNIX.

Sample source code for a channel exit on Sun

Solaris .

Sample compller and loader commands for
channel exits on Sun Solaris. .
Sample source code for a channel exit on
SINIX and DC/OSx .

Sample compiler and loader commands for
channel exits on SINIX and DC/OSx.
Security exit flows .

Name resolution

qm.ini stanzas for dlstrlbuted queumg

. 537

537
538

. 538

. 539

. 540

. 540
541

. 541

. 542

. 542

. 542

. 544

. 544

. 545

. 545

. 545

. 546

. 546

. 546

. 547

. 547

. 552
. 649

654

Tables

—_

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.
24.

Example of channel names

Three ways of using the remote queue
definition object .

Reply-to queue alias e
Queue name resolution at queue manager
QMA .

Queue name resolutlon at queue manager
QMB. .
Reply-to queue name translatlon at queue
manager QMA .
Functions available in OS/ 2, Wmdows NT
Digital OpenVMS, Tandem NSK, and UNIX
systems

Channel attrlbutes for the channel types in
0S/2, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems .

Channel programs for OS/2 and Wmdows
NT

Channel programs for UNIX systems, Dlgltal
OpenVMS, and Tandem NSK . .
Default outstanding connection requests on
0S/2 and Windows NT . .

Settings on the local OS/2 or Wmdows NT

system for a remote queue manager platform .

Default outstanding connection requests on
0OS/2 and Windows NT .

Configuration worksheet for Commumcatlons
Manager/2

Configuration worksheet for MQSerres for
0OS/2 Warp .

Configuration worksheet for IBM
Communications Server for Windows NT .
Configuration worksheet for MQSeries for
Windows NT .

Default outstanding connectlon requests
Settings on the local UNIX system for a
remote queue manager platform .
Configuration worksheet for Commurucatlons
Server for AIX .

Configuration worksheet for MQSerres for
AIX.

Conﬁguration worksheet for MQSeries for
Compaq Tru64 UNIX .

Configuration worksheet for HP SNAplusZ
Configuration worksheet for MQSeries for
HP-UX.

© Copyright IBM Corp. 1993, 2000

. 30

. 37
. 51

. 54

. 54

. 54

. 106

111

. 119

. 119

. 127

128

. 135

. 140

. 157

. 164

. 180

187

. 188

. 191

. 205

. 210

213

. 233

25.

26.

27.

28.

29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

52.
53.

Configuration worksheet for AT&T GIS SNA

Services .

Configuration worksheet for MQSerles for

AT&T GIS UNIX .

Configuration worksheet for Suank Ver51on

9.1 .

Configuration worksheet for MQSerles for

Sun Solaris

Channel tasks . .

Settings on the local OS/ 390 system for a

remote queue manager platform .

Program and transaction names

Message Channel List menu-bar choices

Menu-bar choices on channel panels .

Channel attribute fields per channel type

Settings for LU 6.2 TP name on the local

0S/390 system for a remote queue manager

platform . .

Configuration worksheet for OS / 390 usmg

LU62.

Configuration worksheet for MQSerles for

0S/390 .

Channel attribute flelds per message charmel

type. . .

Program and transactron names

Channel states on OS/400 .

Settings on the local OS/400 system for a

remote queue manager platform .

Configuration worksheet for SNA on an

AS/400 system .

Configuration worksheet for MQSerles for

AS/400 .

Configuration worksheet for VSE / ESA usmg

APPC .

Configuration worksheet for MQSerles for
VSE/ESA .

Channel exits avallable for eaCh Channel type

Identifying API calls .

Fields in MQCD

Fields in MQCXP .

Fields in MQTXP

Fields in MQXWD .

Channel planning form .

Channel planning form .

. 237

. 247

. 251

. 266
. 344

. 361
. 373

376

. 394

396

. 396

. 418

. 429

. 449
. 459
. 460
. 465

. 473

. 486

. 499

. 504
519

. 528
. 569
. 605
. 620
. 624
. 641
. 642

XV

xvi MQSeries Intercommunication

About this book

This book describes intercommunication between MQSeries products. It introduces
the concepts of intercommunication; transmission queues, message channel agent
programs, and communication links, that are brought together to form message
channels. It describes how geographically separated queue managers are linked
together by message channels to form a network of queue managers. It discusses
the distributed-queuing management (DQM) facility of IBM® MQSeries, which
provides the services that enable applications to communicate via queue managers.

DQM provides communications that conform to the MQSeries Message Channel
Protocol. Each MQSeries product has its own implementation of this specification,
and this book is concerned with these implementations.

Who this book is for

This book is for anyone needing a description of DQM. In addition, the following
readers are specifically addressed:

* Network planners responsible for designing the overall queue manager network.

* Local channel planners responsible for implementing the network plan on one
node.

* Application programmers responsible for designing applications that include
processes, queues, and channels, perhaps without the assistance of a systems
administrator.

* Systems administrators responsible for monitoring the local system, controlling
exception situations, and implementing some of the planning details.

* System programmers with responsibility for designing and programming the
user exits.

What you need to know to understand this book

To use and control DQM you need to have a good knowledge of MQSeries in
general. You also need to understand the MQSeries products for the specific
platforms you will be using, and the communications protocols that will be used
on those platforms.

© Copyright IBM Corp. 1993, 2000 xvii

About this book

How to use this book

This book has the following parts:

2

”

Introduces the concepts of MQSeries intercommunication.

This part of the book introduces MQSeries intercommunication. The
description in this part is general, and is not restricted to a particular
platform or system.

Note: Some references are made to individual MQSeries products. Details
are given only for the products that this edition of the book applies
to (see the edition notice for information about which MQSeries
products these are).

”

Describes the functions performed by the distributed-queuing management
(DQM) facilities. Read this part to understand DQM’s role in the context of
MQSeries.

FPart 3 DOM in MQSeries for OS/2 Warp,_Wind NT Digital OpenVMS)
Candem NSK,_and TINTX systems” an page 101l

”

Is specific to MQSeries products on distributed platforms. It helps you to
install and customize DQM on these platforms. It explains how to establish
message channels to other systems and how to manage and control them.

”

Is specific to MQSeries for OS/390. It helps you to install and customize
DQM. It explains how to establish message channels to other systems and
how to manage and control them.

”

Is specific to MQSeries for AS/400. It helps you to install and customize
DQM. It explains how to establish message channels to other systems and
how to manage and control them.

”

Is specific to MQSeries for VSE/ESA. It contains an example of how to set
up communication to other systems.

”

Tells you about channel exit programs, which are an optional feature of
DQM that allow you to add your own facilities to distributed queuing. It
gives some guidance on the problems you may experience, how to
recognize these problems, and what to do about them.

The Appendixes

contain extra information that is pertinent to DQM:

Wppendix A_Channel planning fornd gives an explanation of one suggested

method of planning and maintaining DQM objects and channels.

itd gives the values of named
constants that apply to the channels and exits in the MQI that are
discussed in this book.

Wppendix C_Queue name resolutiod provides a detailed description of

name resolution by queue managers. You need to understand this process
in order to take full advantage of DQM.

xviii MQSeries Intercommunication

About this book
I 5D Confl i o Tiate] 1 o gives

information about the configuration file stanzas that relate to distributed
queuing.

Appearance of text in this book

This book uses the following type styles:
CompCode
Example of the name of a parameter of a call

Terms used in this book

In the body of this book, the following shortened names are used:

CICS® The CICS Transaction Server for OS/390 (CICS/Enterprise Systems
Architecture) product. (Note that, unlike other MQSeries books, this book
does not use the term generically to include other CICS products such as
CICS for VSE/ESA.)

0S/2 OS/2 Warp

0S/390
In general, function described in this book as supported by MQSeries for
0S/390 is also supported by MQSeries for MVS/ESA™.

The term “UNIX systems” is used to denote the following UNIX operating
systems:

+ AIX

¢ AT&T GIS UNIX

e Compaq Tru64 UNIX

¢ HP-UX

¢ SINIX and DC/OSx

* Sun Solaris (SPARC and Intel® Platform Editions)

Throughout this book, the name mgmtop has been used to represent the name of
the base directory where MQSeries is installed on UNIX systems.

¢ For AIX, the name of the actual directory is /ust/mqm

* For other UNIX systems, the name of the actual directory is /opt/mqm

There is a glossary and a bibliography at the back of the book.

About this book XiX

XX MQSeries Intercommunication

Summary of changes

This section describes changes in this edition of MQSeries Intercommunication.
Changes since the previous edition of the book are marked by vertical lines to the
left of the changes.

Changes for this edition (SC33-1872-05)
This edition of MQSeries Intercommunication deals with the following new features
for MQSeries for OS/390 Version 5.2:
* Chapter 23, 'Distributed queuing with queue-sharing groups’
¢ Chapter 24, 'Intra-group queuing’.

The effects of these new features on monitoring, preparing and planning for
MQSeries for OS/390 are dealt with in the other chapters of Part 4 , 'DQM in
MQSeries for OS/390" that cover MQSeries for OS/390 without CICS.

This edition also includes revisions to Part 1, 'Introduction” and Part 2, 'MQSeries
distributed-messaging techniques’.

Changes for the previous edition (SC33-1872-04)

This edition was not published.

Changes for the fourth edition (SC33-1872-03)

The fourth edition of MQSeries Intercommunication included:
* Addition of support for MQSeries for AS/400 V5.1.

+ Addition of support for MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX),
V2.2.1.

* Addition of support for MQSeries for Tandem NonStop Kernel, V2.2.0.1.

Changes for the third edition (SC33-1872-02)

The third edition of MQSeries Intercommunication applies to the following versions
and releases of MQSeries products:

* MQSeries for AIX V5.1

* MQSeries for AS/400 V4R2M1

* MQSeries for HP-UX V5.1

* MQSeries for OS/2 Warp V5.1

* MQSeries for OS5/390 V2.1

* MQSeries for Sun Solaris V5.1

* MQSeries for VSE/ESA V2.1

* MQSeries for Windows NT V5.1

Major new function supplied with each of these MQSeries products is summarized
below:

* Additional new function and changes in MQSeries for OS/390

© Copyright IBM Corp. 1993, 2000 xxi

Changes

— Automatic Restart Manager (ARM).
— TCP OpenEdition® sockets interface.

— Screens in EChapter 25 Monitoring and controlling channels on QS/390” onl

MQSeries queue manager clusters implemented on MQSeries for AIX, HP-UX,
0OS/2 Warp, OS/390, Sun Solaris, and Windows NT.

Using the TCP listener backlog option on UNIX systems.
Additional new function in MQSeries for AIX, V5.1
The UDP transport protocol is supported.

Sybase databases can participate in global units of work.
Multithreaded channels are supported.

4 : ”

Additional new function in MQSeries for HP-UX, V5.1

— MQSeries for HP-UX, V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
— Multithreaded channels are supported.

— Both HP-UX kernel threads and DCE threads are supported.

Additional new function in MQSeries for Sun Solaris, V5.1

MQSeries for Sun Solaris, V5.1 runs on both Sun Solaris V2.6 and Sun Solaris
7.

Sybase databases can participate in global units of work.

Multithreaded channels are supported.

”

Windows NT registry—now used to hold all configuration and related data. The
contents of any configuration (.INI) files from previous MQSeries installations of
MQSeries for Windows NT products are migrated into the registry; the .INI files
are then deleted.

F'MQSeries far VSE/ESA rnnﬁ'gnmh’nn” on page 504

Transport-retry exit program for MQSeries for AIX V5.1 and MQSeries for
Windows V2.0.

ADOPTNEWMCA, ADOPTNEWMCATIMEOUT, and ADOPTNEWMCACHECK
configuration stanzas.

xxii MQSeries Intercommunication

Part 1. Introduction

Chapter 1. Concepts of intercommunication .
What is intercommunication? . .
How does distributed queuing work7 .
What do we call the components?
Components needed to send a message
Components needed to return a message .
Cluster components .
Distributed queuing components
Message channels.
Sender-receiver channels
Requester-server channel
Requester-sender channel .
Server-receiver channel .
Cluster-sender channels.
Cluster-receiver channels
Message channel agents
Transmission queues .
Channel initiators and hsteners
Channel-exit programs
Dead-letter queues .
Remote queue definitions. .
How to get to the remote queue manager
Multi-hopping
Sharing channels .
Using different channels .
Using clustering .

Chapter 2. Making your applications
communicate
How to send a message to another queue manager
Defining the channels .
Defining the queues
Sending the messages .
Starting the channel
Triggering channels.
Safety of messages . .o
Fast, nonpersistent messages
Undelivered messages .

Chapter 3. More about intercommunication .
Addressing information
What are aliases?
Queue name resolution
Queue manager alias definitions
Outbound messages - remapping the queue
manager name
Outbound messages - altermg or spec1fy1ng the
transmission queue.
Inbound messages - determlnmg the destlnatron
Reply-to queue alias definitions
What is a reply-to queue alias def1n1t10n7
Reply-to queue name .
Networks . . Lo
Channel and transmlssmn queue names .
Network planner

© Copyright IBM Corp. 1993, 2000

O O O O 00O INIONO Ul kW WwWww

.17

17

.18
. 19
. 20
. 20
. 20
.22
.22
.23

. 25
. 25
. 25
. 26
. 26

. 26

.27

27

. 28
. 28
. 29
.29
.29
.31

Introduction

2 MQSeries Intercommunication

Chapter 1. Concepts of intercommunication

This chapter introduces the concepts of intercommunication in MQSeries.

* The basic concepts of intercommunication are explained in
i cation2’]
e The objects that you need for intercommunication are described in

7

This chapter goes on to introduce:

G ”

What is intercommunication?

In MQSeries, intercommunication means sending messages from one queue
manager to another. The receiving queue manager could be on the same machine
or another; nearby or on the other side of the world. It could be running on the
same platform as the local queue manager, or could be on any of the platforms
supported by MQSeries. This is called a distributed environment. MQSeries handles
communication in a distributed environment such as this using Distributed Queue
Management (DQM).

The local queue manager is sometimes called the source queue manager and the
remote queue manager is sometimes called the target queue manager or the partner
queue manager.

How does distributed queuing work?
Bigure 1 on page 4 shows an overview of the components of distributed queuing.

© Copyright IBM Corp. 1993, 2000 3

What is intercommunication?

Application

MQCONN

MQOPEN

QM1 Qm2

Message
QUEUE Store
DEFNS
QUEUE
Message DEFNS
Store

Transport Service

Moving Moving
Service Service

Figure 1. Overview of the components of distributed queuing

An application uses the MQCONN call to connect to a queue manager.

The application then uses the MQOPEN call to open a queue so that it can put
messages on it.

A queue manager has a definition for each of its queues, specifying information
such as the maximum number of messages allowed on the queue.

If the messages are destined for a queue on a remote system, the local queue
manager holds them in a message store until it is ready to forward them to the
remote queue manager. This can be transparent to the application.

Each queue manager contains communications software called the moving
service component; through this, the queue manager can communicate with
other queue managers.

The transport service is independent of the queue manager and can be any one

of the following (depending on the platform):

* Systems Network Architecture Advanced Program-to Program
Communication (SNA APPC)

* Transmission Control Protocol/Internet Protocol (TCP/IP)

* Network Basic Input/Output System (NetBIOS)

¢ Sequenced Packet Exchange (SPX)

 User-Datagram Protocol (UDP)

What do we call the components?

1.

MQSeries applications can put messages onto a local queue, that is, a queue on
the queue manager the application is connected to.

A queue manager has a definition for each of its queues. It can also have
definitions for queues that are owned by other queue managers. These are
called remote queue definitions. MQSeries applications can also put messages
targeted at these remote queues.

If the messages are destined for a remote queue manager, the local queue
manager stores them on a transmission queue until it is ready to send them to
the remote queue manager. A transmission queue is a special type of local

4 MQSeries Intercommunication

What is intercommunication?

queue on which messages are stored until they can be successfully transmitted
and stored at the remote queue manager.

4. The software that handles the sending and receiving of messages is called the
Message Channel Agent (MCA).

5. Messages are transmitted between queue managers on a channel. A channel is a
one-way communication link between two queue managers. It can carry
messages destined for any number of queues at the remote queue manager.

Components needed to send a message
If a message is to be sent to a remote queue manager, the local queue manager

needs definitions for a transmission queue and a channel.

Each end of a channel has a separate definition, defining it, for example, as the
sending end or the receiving end. A simple channel consists of a sender channel
definition at the local queue manager and a receiver channel definition at the
remote queue manager. These two definitions must have the same name, and
together constitute one channel.

There is also a message channel agent (MCA) at each end of a channel.
Each queue manager should have a dead-letter queue (also known as the undelivered
message queue). Messages are put on this queue if they cannot be delivered to their

destination.

w shows the relationship between queue managers, transmission queues,
channels, and MCAs.

QM1 Qm2

Dead Letter Queue Dead Letter Queue

Message Flow
MCA MCA _/
Ly >
Transmission \

Queue

A\

Channel Application
Queues

Figure 2. Sending messages

Components needed to return a message
If your application requires messages to be returned from the remote queue

manager, you need to define another channel, to run in the opposite direction
between the queue managers, as shown in IFi

Chapter 1. Concepts of intercommunication 5

What is intercommunication?

QM1 J Qm2

Application

|
Transmission |
i Queue

Queue

|
Application ! | Transmission
Queue ! | Queue

Figure 3. Sending messages in both directions

Cluster components
An alternative to the traditional MQSeries network is the use of clusters. Clusters

are supported on V5.1 of MQSeries for AIX, AS/400, Compaq Tru64 UNIX, HP-UX,
OS/2 Warp, Sun Solaris, and Windows NT and MQSeries for OS/390 only.

A cluster is a network of queue managers that are logically associated in some
way. You can group queue managers in a cluster so that queue managers can make
the queues that they host available to every other queue manager in the cluster.
Assuming you have the necessary network infrastructure in place, any queue
manager can send a message to any other queue manager in the same cluster
without the need for explicit channel definitions, remote-queue definitions, or
transmission queues for each destination. Every queue manager in a cluster has a
single transmission queue that transmits messages to any other queue manager in
the cluster. Each queue manager needs to define only one cluster-receiver channel
and one cluster-sender channel.

Eigure 4 on page 7 shows the components of a cluster called CLUSTER:
* CLUSTER contains three queue managers, QM1, QM2, and QM3.

* QM1 and QM2 host repositories of information about the queue managers and
queues in the cluster.

* QM2 and QM3 host some cluster queues, that is, queues that are accessible to
any other queue manager in the cluster.

* Each queue manager has a cluster-receiver channel called TO.qmgr on which it
can receive messages.

* Each queue manager also has a cluster-sender channel on which it can send
information to one of the repository queue managers.

* QM1 and QM3 send to the repository at QM2 and QM2 sends to the repository
at QMI1.

6 MQSeries Intercommunication

What is intercommunication?

CLUSTER

Figure 4. A cluster of queue managers

As with distributed queuing, you use the MQPUT call to put a message to a queue
at any queue manager. You use the MQGET call to retrieve messages from a local
queue.

For further information about clusters, see the MQS.eues_Q.uaue_MngeLCLusiad

book.

Distributed queuing components

This section describes the components of distributed queuing. These are:
* Message channels

* Message channel agents

e Transmission queues

¢ Channel initiators and listeners

* Channel-exit programs

Message channels

Message channels are the channels that carry messages from one queue manager to
another.

Do not confuse message channels with MQI channels. There are two types of MQI
channel, server-connection and client-connection. These are discussed in the
MQSeries Clientd book.

The definition of each end of a message channel can be one of the following types:
* Sender

* Receiver

* Server

* Requester

* Cluster sender

* Cluster receiver

Chapter 1. Concepts of intercommunication 7

Distributed queuing components

A message channel is defined using one of these types defined at one end, and a
compatible type at the other end. Possible combinations are:

¢ Sender-receiver

* Requester-server

* Requester-sender (callback)

* Server-receiver

* Cluster sender-cluster receiver

Sender-receiver channels
A sender in one system starts the channel so that it can send messages to the other

system. The sender requests the receiver at the other end of the channel to start.
The sender sends messages from its transmission queue to the receiver. The
receiver puts the messages on the destination queue.

QM1 QM2
Session Initiation

SENDER > RECEIVER

=
(9]
>
<
[0}
w
w
QO
«
(0]
m
[}
s
v

1

!
= |
Ol |
>
\

Transmission | T\
Queue | |
L

| chame | Application
Queues

Figure 5. A sender-receiver channel

Requester-server channel
A requester in one system starts the channel so that it can receive messages from

the other system. The requester requests the server at the other end of the channel
to start. The server sends messages to the requester from the transmission queue
defined in its channel definition.

A server channel can also initiate the communication and send messages to a
requester, but this applies only to fully qualified servers, that is server channels that
have the connection name of the partner specified in the channel definition. A fully
qualified server may either be started by a requester, or may initiate a
communication with a requester.

QM1 QM2

SERVER ~ Session Initiation ~ REQUESTER

Message Flow

MCA > MCA _/
L= an
Transmission \U

Queue

Channel Application
Queues

Figure 6. A requester-server channel

8 MQSeries Intercommunication

Distributed queuing components

Requester-sender channel
The requester starts the channel and the sender terminates the call. The sender

then restarts the communication according to information in its channel definition
(this is known as callback). It sends messages from the transmission queue to the
requester.

QM1 QM2
Session Initiation

SENDER ~ Callback ~ REQUESTER

Transmission : T\W F

Queue | |
L

. 7776h7an7neil 77777777777777777 Application
Queues

Figure 7. A requester-sender channel

Server-receiver channel
This is similar to sender-receiver but applies only to fully qualified servers, that is

server channels that have the connection name of the partner specified in the
channel definition. Channel startup must be initiated at the server end of the link.

The illustration of this is similar to the illustration in Eigure 5 on page 8.

Cluster-sender channels
In a cluster, each queue manager has a cluster-sender channel on which it can send

cluster information to one of the repository queue managers. Queue managers can
also send messages to other queue managers on cluster-sender channels.

QM1 @ Qm2

CLUSTERSENDER CLUSTERRECEIVER

MCA Message Flow . MCA __/'U
0 TO.QM2 L 'U

SYSTEM.

CLUSTER. Application

TRANSMIT. Queues
QUEUE

Figure 8. A cluster-sender channel

In a cluster, each queue manager also has a cluster-receiver channel on which it
can receive messages and information about the cluster. (See [Figure d.)

Cluster-receiver channels
In a cluster, each queue manager has a cluster-receiver channel on which it can

receive messages and information about the cluster. The illustration of this is
similar to the illustration in

Message channel agents

A message channel agent (MCA) is a program that controls the sending and receiving
of messages. There is one message channel agent at each end of a channel. One

Chapter 1. Concepts of intercommunication 9

Distributed queuing components

MCA takes messages from the transmission queue and puts them on the
communication link. The other MCA receives messages and delivers them onto a
queue on the remote queue manager.

A message channel agent is called a caller MCA if it initiated the communication,
otherwise it is called a responder MCA. A caller MCA may be associated with a
sender, cluster-sender, server (fully qualified), or requester channel. A responder
MCA may be associated with any type of message channel, except a cluster sender.

Transmission queues

A transmission queue is a special type of local queue used to store messages before
they are transmitted by the MCA to the remote queue manager. In a
distributed-queuing environment, you need to define one transmission queue for
each sending MCA, unless you are using MQSeries Queue Manager clusters.

You specify the name of the transmission queue in a remote queue definition, (see

Z). If you do not specify the name, the queue
manager looks for a transmission queue with the same name as the remote queue
manager.

You can specify the name of a default transmission queue for the queue manager.
This is used if you do not specify the name of the transmission queue, and a
transmission queue with the same name as the remote queue manager does not
exist.

Channel initiators and listeners

A channel initiator acts as a trigger monitor for sender channels, because a
transmission queue may be defined as a triggered queue. When a message arrives
on a transmission queue that satisfies the triggering criteria for that queue, a
message is sent to the initiation queue, triggering the channel initiator to start the
appropriate sender channel. You can also start server channels in this way if you
specified the connection name of the partner in the channel definition. This means
that channels can be started automatically, based upon messages arriving on the
appropriate transmission queue.

You need a channel listener program to start receiving (responder) MCAs.
Responder MCAs are started in response to a startup request from the caller MCA;
the channel listener detects incoming network requests and starts the associated
channel.

Eigure 9 on page 11l shows how channel initiators and channel listeners are used.

10 MQSeries Intercommunication

Distributed queuing components

SESSION
REQUEST
»| CHANNEL
LISTENER Qm2
QM1
J START
T v
I MCA MCA i
%* |
: [
Transmission ! |
Queue I |
W Channel
—
Queue INITIATOR

Figure 9. Channel initiators and listeners

The implementation of channel initiators is platform specific.

On OS/390 native distributed queuing, there is one channel initiator for each
queue manager and it runs as a separate address space. You start it using the
MQSeries command START CHINIT, which you would normally issue as part of
your queue manager startup. It monitors the system-defined queue
SYSTEM.CHANNEL.INITQ, which is the initiation queue that is recommended
for all the transmission queues.

On 0S/390, if you are using CICS for distributed queuing, there is no channel
initiator. To implement triggering, use the CICS trigger monitor transaction,
CKTI, to monitor the initiation queue.

MQSeries for Windows does not support triggering and does not have channel
initiators.

On other platforms, you can start as many channel initiators as you like,
specifying a name for the initiation queue for each one. Normally you need only
one initiator. V5.1 of MQSeries for AIX, AS/400, Compaq Tru64 UNIX, HP-UX,
0OS/2 Warp, Sun Solaris and Windows NT allows you to start up to three (the
default value) but you can change this value. On these platforms that support
clustering, when you start a queue manager, a channel initiator is automatically
started too.

The channel initiator is also required for other functions, discussed later in this
book.

The implementation of channel listeners is platform specific.

Use the channel listener programs provided by MQSeries if you are using
0S/390 native distributed queuing, MQSeries for Compaq (DIGITAL) Open
VMS, MQSeries for Tandem NonStop Kernel, or MQSeries for Windows.

Note: On OS/390, The TCP/IP listener can be started many times with different
combinations of port number and address to listen on. For more
information, see ['Listeners” on page 317.

If you are using CICS for distributed queuing on OS/390, you do not need a
channel listener because CICS provides this function.

On 0S/400%, use the channel listener program provided by MQSeries if you are
using TCP/IP. If you are using SNA, you do not need a listener program. SNA
starts the channel by invoking the receiver program on the remote system.

Chapter 1. Concepts of intercommunication 11

Distributed queuing components

* On OS/2 and Windows NT, you can use either the channel listener program
provided by MQSeries, or the facilities provided by the ‘operating system’ (for
example, Attach manager for LU 6.2 communications on OS/2). If performance
is important in your environment and if the environment is stable, you can
choose to run the MQSeries listener as a trusted application as described in

i i icati . See the

hQSeries Application Bxagzzammiﬂ-&w' for information about trusted

applications.

* On UNIX systems, use the channel listener program provided by MQSeries or
the facilities provided by the ‘operating system” (for example, inetd for TCP/IP
communications).

Channel-exit programs

If you want to do some additional processing (for example, encryption or data
compression) you can write your own channel-exit programs, or sometimes use
SupportPacs. The Transaction Processing SupportPacs library for MQSeries is
available on the Internet at URL:

http://www.software.ibm.com/mgseries/txppacs/txpsumm.html

MQSeries calls channel-exit programs at defined places in the processing carried
out by the MCA. There are six types of channel exit:

Security exit
Used for security checking.

Message exit
Used for operations on the message, for example, encryption prior to
transmission.

Send and receive exits
Used for operations on split messages, for example, data compression and
decompression.

Message-retry exit
Used when there is a problem putting the message to the destination

Channel auto-definition exit
Used to modify the supplied default definition for an automatically
defined receiver or server-connection channel.

Transport-retry exit
Used to suspend data being sent on a channel when communication is not
possible.

The sequence of processing is as follows:

1. The security exits are called after the initial data negotiation between both ends
of the channel. These must end successfully for the startup phase to complete
and to allow messages to be transferred.

2. The message exit is called by the sending MCA, and then the send exit is called
for each part of the message that is transmitted to the receiving MCA.

3. The receiving MCA calls the receive exit when it receives each part of the
message, and then calls the message exit when the whole message has been
received.

This is illustrated in Eigure 10 on page 13.

12 MQSeries Intercommunication

Distributed queuing components

QM1 Qm2

MCA MCA _/U
L— _\M
Transmission | 1 | 4 —I_I'

Queue v v
SECURITY > SECURITY Application
Queues
MESSAGE MESSAE:E

Vseno 1H » RECEIVE
Ll:
| Message Flow }[MESSAGE
RETRY

Channel

Figure 10. Sequence in which channel exit programs are called

The message-retry exit is used to determine how many times the receiving MCA will
attempt to put a message to the destination queue before taking alternative action.

This exit program is described in _ =

. It is not supported on MQSeries for Wind_ows, or on MQSeries for
0S/390.

For more information about channel exits, see !Chapter 38 Channel-exit programs’|

Dead-letter queues

The dead-letter queue (or undelivered-message queue) is the queue to which
messages are sent if they cannot be routed to their correct destination. Messages
are put on this queue when they cannot be put on the destination queue for some
reason (for example, because the queue does not exist, or because it is full).
Dead-letter queues are also used at the sending end of a channel, for
data-conversion errors.

We recommend that you define a dead-letter queue for each queue manager. If you
do not, and the MCA is unable to put a message, it is left on the transmission
queue and the channel is stopped.

Also, if fast, non-persistent messages (see {/Fast_nonpersistent messages” onl

) cannot be delivered and no DLQ exists on the target system, these
messages are discarded.

However, using dead-letter queues can affect the sequence in which messages are
delivered, and so you may choose not to use them.

Dead-letter queues are not supported on MQSeries for Windows.

Chapter 1. Concepts of intercommunication 13

Remote queue definitions

Remote queue definitions

Whereas applications can retrieve messages only from local queues, they can put
messages on local queues or remote queues. Therefore, as well as a definition for
each of its local queues, a queue manager may have remote queue definitions. These
are definitions for queues that are owned by another queue manager. The
advantage of remote queue definitions is that they enable an application to put a
message to a remote queue without having to specify the name of the remote
queue or the remote queue manager, or the name of the transmission queue. This
gives you location independence.

There are other uses for remote queue definitions, which will be described later.

How to get to the remote queue manager

You may not always have one channel between each source and target queue
manager. Consider these alternative possibilities.

Multi-hopping
If there is no direct communication link between the source queue manager and
the target queue manager, it is possible to pass through one or more intermediate
queue managers on the way to the target queue manager. This is known as a
multi-hop.

You need to define channels between all the queue managers, and transmission
queues on the intermediate queue managers. This is shown in

QM1 -

I [mca MCA [T : mMCa | Message Flow e
| /y‘—\‘ | \

Transmission | | Transmission | | Application
Queue [J Queue | | Queue

Application 1
Queue [

J Queue [| Queue

Figure 11. Passing through intermediate queue managers

Sharing channels

As an application designer, you have the choice of 1) forcing your applications to
specify the remote queue manager name along with the queue name, or 2) creating
a remote queue definition for each remote queue to hold the remote queue manager
name, the queue name, and the name of the transmission queue. Either way, all
messages from all applications addressing queues at the same remote location have

14 MQSeries Intercommunication

Getting to remote queue manager

their messages sent through the same transmission queue. This is shown in

QM1 Qm2

Dead Letter Queue

Message Flow
MCA MCA _/
— >
Transmission \

Queue

Remote queue
definitions

A\

Channel Application
Queues

Figure 12. Sharing a transmission queue

w illustrates that messages from multiple applications to multiple remote
queues can use the same channel.

Using different channels

If you have messages of different types to send between two queue managers, you
can define more than one channel between the two. There are times when you
need alternative channels, perhaps for security purposes, or to trade off delivery
speed against sheer bulk of message traffic.

To set up a second channel you need to define another channel and another
transmission queue, and create a remote queue definition specifying the location
and the transmission queue name. Your applications can then use either channel
but the messages will still be delivered to the same target queues. This is shown in

QM1 QM2
Message Flow c
MCA > MCA —
M N \U
u ./'
Transmission /,/' Application
Queue Vi Queue
/
Channels /,/'
Message Flow L
MCA > MCA
1—- i
Transmission Application
Queue Queue

Figure 13. Using multiple channels

When you use remote queue definitions to specify a transmission queue, your
applications must not specify the location (that is, the destination queue manager)
themselves. If they do, the queue manager will not make use of the remote queue
definitions. Remote queue definitions make the location of queues and the
transmission queue transparent to applications. Applications can put messages to a

Chapter 1. Concepts of intercommunication 15

Getting to remote queue manager

logical queue without knowing where the queue is located and you can alter the
physical queue without having to change your applications.

Using clustering

Every queue manager within a cluster defines a cluster-receiver channel and when
another queue manager wants to send a message to that queue manager, it defines
the corresponding cluster-sender channel automatically. For example, if there is
more than one instance of a queue in a cluster, the cluster-sender channel could be
defined to any of the queue managers that host the queue. MQSeries uses a
workload management algorithm that uses a round-robin routine to select an
available queue manager to route a message to. For more information about this,

see the MQSeries Quene Maunager Clusterd book.

16 MQSeries Intercommunication

Chapter 2. Making your applications communicate

This chapter provides more detailed information about intercommunication
between MQSeries products. Before reading this chapter it is helpful to have an
understanding of channels, queues, and the other concepts introduced in

4 . ”

This chapter covers the following topics:

G 7)

° 4 : : ”

. 7 ”

How to send a

message to another queue manager

This section describes the simplest way to send a message from one queue
manager to another.

Before you do this you need to do the following:

1. Check that your chosen communication protocol is available.
2. Start the queue managers.

3. Start the channel initiators.

4. Start the listeners.

On MQSeries for Windows, instead of steps 2, 3, and 4, you start a connection,
which includes a queue manager, channels, and a listener. See the MQSeries for
Windows User’s Guide for more information.

You also need to have the correct MQSeries security authorization (except on
MQSeries for Windows) to create the objects required.

To send messages from one queue manager to another:

¢ Define the following objects on the source queue manager:
— Sender channel
— Remote queue definition
— Initiation queue (required on OS/390, otherwise optional)
— Transmission queue
— Dead-letter queue (recommended)
— Process (required on OS/390, otherwise optional)

* Define the following objects on the target queue manager:
— Receiver channel
— Target queue
— Dead-letter queue (recommended)

You can use several different methods to define these objects, depending on your

MQSeries platform:

0S/390 or MVS/ESA
If you are using OS/390 native distributed queuing, you can use the
Operation and Control panels or information from the MQSeries MQSA

Command Referencd book. If you are using OS/390 distributed queuing with

CICS, you must use the supplied CICS transaction CKMC for channels.

© Copyright IBM Corp. 1993, 2000

17

Sending messages
0S/400

You can use the panel interface, the control language (CL) commands
described in the MQSeries for AS/400 System Administration, MQSeries
commands described in the MQSeries MQSC Command Referencd book, or
the programmable command format (PCF) commands described in the

1 book.

MQSeries for Windows

0S/2, Windows NT, UNIX systems, and Digital OpenVMS

You can use MQSC commands, PCF commands, or the MQSeries
properties dialog. Not all MQSC and PCF commands are supported; see
the MQSeries for Windows User’s Guide.

Note: On MQSeries for Windows there is no initiation queue, dead-letter
queue, Or process.

You can use the MQSeries commands described in the %
Conunand Referencd book, or the PCF commands described in the
Programumable System Managementl book. On Windows NT only, you can also

use the graphical user interfaces, the MQSeries explorer and the MQSeries
Web Administration.

Tandem NSK

You can use MQSC commands, PCF commands, or the Message Queue
Management facility. See the MQSeries for Tandem NonStop Kernel System
Management Guide for more information about the control commands and
the Message Queue Management facility.

VSE/ESA

You can use the panel interface as described in the MQSeries for VSE/ESA
System Management Guide.

The different methods are described in more detail in the platform-specific parts of
this book.

Defining the channels

To send messages from one queue manager to another, you need to define two
channels; one on the source queue manager and one on the target queue manager.

On the

18 MQSeries Intercommunication

source queue manager
Define a channel with a channel type of SENDER. You need to specify the
following:

¢ The name of the transmission queue to be used (the XMITQ attribute).
* The connection name of the partner system (the CONNAME attribute).

* The name of the communication protocol you are using (the TRPTYPE
attribute). For V5.1 MQSeries for AIX, AS/400, Compaq Tru64 UNIX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and MQSeries for
Windows, you do not have to specify this. You can leave it to pick up
the value from your default channel definition. On MQSeries for
Windows the protocol must be TCP or UDP. On MQSeries for VSE/ESA,
the protocol must be TCP or LU 6.2; you can choose T or L accordingly
on the Maintain Channel Definition menu. On MQSeries for OS/390,
the protocol must be TCP or LU6.2.

Details of all the channel attributes are given in Chapter 6 Channel

Sending messages

On the target queue manager
Define a channel with a channel type of RECEIVER, and the same name as
the sender channel.

Specify the name of the communication protocol you are using (the
TRPTYPE attribute). For V5.1 MQSeries for AIX, AS/400, Compaq Tru64
UNIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and MQSeries
for Windows, you do not have to specify this. You can leave it to pick up
the value from your default channel definition. On MQSeries for Windows
the protocol must be TCP or UDP. If you are using CICS to define a
channel, you cannot specify TRPTYPE. Instead you should accept the
defaults provided. On MQSeries for VSE/ESA, you can choose T (TCP) or
L (LU 6.2) on the Maintain Channel Definition menu. On MQSeries for
0S5/390, the protocol must be TCP or LU6.2.

Note that other than on MQSeries for Windows, receiver channel
definitions can be generic. This means that if you have several queue
managers communicating with the same receiver, the sending channels can
all specify the same name for the receiver, and one receiver definition will
apply to them all.

When you have defined the channel, you can test it using the PING CHANNEL
command. This command (which is not supported on MQSeries for Windows)
sends a special message from the sender channel to the receiver channel and
checks that it is returned.

Defining the queues

To send messages from one queue manager to another, you need to define up to
six queues; four on the source queue manager and two on the target queue
manager.

On the source queue manager
* Remote queue definition
In this definition you specify the following:

Remote queue manager name
The name of the target queue manager.

Remote queue name
The name of the target queue on the target queue manager.

Transmission queue name
The name of the transmission queue. You do not have to specify
this. If you do not, a transmission queue with the same name as
the target queue manager is used, or, if this does not exist, the
default transmission queue is used. You are advised to give the
transmission queue the same name as the target queue manager
so that the queue is found by default.

¢ Initiation queue definition

Not supported on MQSeries for Windows, required on OS/390, and is
optional on other platforms. On OS/390 you must use the initiation
queue called SYSTEM.CHANNEL.INITQ and you are recommended to
do so on other platforms also.

* Transmission queue definition

A local queue with the USAGE attribute set to XMITQ. If you are using
the MQSeries for AS/400 V5.1 native interface, the USAGE attribute is
*TMQ.

Chapter 2. Making your applications communicate 19

Sending messages

¢ Dead-letter queue definition—recommended (not applicable to MQSeries
for Windows)

Define a dead-letter queue to which undelivered messages can be
written.

On OS/390 you should also define a process if you want your channels to
be triggered automatically. (See I'Triggering channels”)

On the target queue manager
* Local queue definition

The target queue. The name of this queue must be the same as that
specified in the remote queue name field of the remote queue definition
on the source queue manager.

* Dead-letter queue definition—recommended (not applicable to MQSeries
for Windows)

Define a dead-letter queue to which undelivered messages can be
written.

Sending the messages

When you put messages on the remote queue defined at the source queue
manager, they are stored on the transmission queue until the channel is started.
When the channel has been started, the messages are delivered to the target queue
on the remote queue manager.

Starting the channel

Start the channel on the sending queue manager using the START CHANNEL
command. When you start the sending channel, the receiving channel is started
automatically (by the listener) and the messages are sent to the target queue. Both
ends of the message channel must be running for messages to be transferred.

Because the two ends of the channel are on different queue managers, they could
have been defined with different attributes. To resolve any differences, there is an
initial data negotiation between the two ends when the channel starts. In general,
the two ends of the channel agree to operate with the attributes needing the fewer
resources, thus enabling larger systems to accommodate the lesser resources of
smaller systems at the other end of the message channel.

The sending MCA splits large messages before sending them across the channel.
They are reassembled at the remote queue manager. This is transparent to the user.

Triggering channels

This explanation is intended as an overV1ew of triggering Concepts You can find a
complete description in the

For platform-specific information see the following:
* For OS5/2, Windows NT, UNIX systems, Digital OpenVMS, and Tandem NSK,

* For 0S/390 native distributed queuing, 'Defining MQSeries objects” on page 362

* For 0S/390 distributed queuing with CICS, 'How to trigger channels” on
» For 0S/400, I'Triggering channels” on page 457

Triggering is not supported on MQSeries for Windows.

20 MQSeries Intercommunication

Triggering channels

Application Queue manager Application

Localprogram

Localor 1. T — 5. st_arted by _
MCA ransmissionqueue trigger monitor
puts message or
message l retrieved MCA started by
onqueue 2.triggermessage channelinitiator
A
Initiation queue

3.
trigger Program
message
retrieved
Channel
initiator
(Long 4.Queueserverstarted
running)

Figure 14. The concepts of triggering

The objects required for triggering are shown in [Figure 14. It shows the following
sequence of events:

1.

2.

The local queue manager places a message from an application or from a
message channel agent (MCA) on the transmission queue.

When the triggering conditions are fulfilled, the local queue manager places a
trigger message on the initiation queue.

The long-running channel initiator program monitors the initiation queue, and
retrieves messages as they appear.

The channel initiator processes the trigger messages according to information
contained in them. This information may include the channel name, in which
case the corresponding MCA is started.

The local application or the MCA, having been triggered, retrieves the
messages from the transmission queue.

To set up this scenario, you need to:

Create the transmission queue with the name of the initiation queue (that is,
SYSTEM.CHANNEL.INITQ) in the corresponding attribute.

Ensure that the initiation queue (SYSTEM.CHANNEL.INITQ) exists.

Ensure that the channel initiator program is available and running. The channel
initiator program must be provided with the name of the initiation queue in its
start command. On OS/390 native distributed queuing, the name of the
initiation queue is fixed, so is not used on the start command.

Create the process definition for the triggering, if it does not exist, and ensure
that its UserData field contains the name of the channel it serves. For V5.1
MQSeries for AIX, AS/400, Compaq Tru64 UNIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT, the process definition is optional (it is not supported
on MQSeries for VSE/ESA). Instead, you can specify the channel name in the
TriggerData attribute of the transmission queue. V5.1 MQSeries for AIX, AS/400,
Compagq Tru64 UNIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT allow

Chapter 2. Making your applications communicate 21

Triggering channels
the channel name to be specified as blank, in which case the first available
channel definition with this transmission queue is used.

* Ensure that the transmission queue definition contains the name of the process
definition to serve it, (if applicable), the initiation queue name, and the
triggering characteristics you feel are most suitable. The trigger control attribute
allows triggering to be enabled, or not, as necessary.

Notes:

1. The channel initiator program acts as a ’trigger monitor’ monitoring the
initiation queue used to start channels.

2. An initiation queue and trigger process can be used to trigger any number of
channels.

3. Any number of initiation queues and trigger processes can be defined.

4. A trigger type of FIRST is recommended, to avoid flooding the system with
channel starts.

Safety of messages

In addition to the usual recovery features of MQSeries, distributed queue
management ensures that messages are delivered properly by using a syncpoint
procedure coordinated between the two ends of the message channel. If this
procedure detects an error, it closes the channel to allow you to investigate the
problem, and keeps the messages safely in the transmission queue until the
channel is restarted.

The syncpoint procedure has an added benefit in that it attempts to recover an
in-doubt situation when the channel starts up. (In-doubt is the status of a unit of
recovery for which a syncpoint has been requested but the outcome of the request
is not yet known.) Also associated with this facility are the two functions:

1. Resolve with commit or backout

2. Reset the sequence number

The use of these functions occurs only in exceptional circumstances because the
channel recovers automatically in most cases.

Fast, nonpersistent messages
In V5.1 of MQSeries for AIX, AS/400, Compaq Tru64 UNIX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT , MQSeries for OS/390 native distributed queuing
and MQSeries for Windows V2.1, the nonpersistent message speed (NPMSPEED)
channel attribute can be used to specify that any nonpersistent messages on the

If a channel terminates while fast, nonpersistent messages are in transit, the
messages may be lost and it is up to the application to arrange for their recovery if
required. Similarly, if the MQPUT by the receiving MCA fails for any reason, the
messages are lost.

If the receiving channel cannot put the message to its destination queue then it is
placed on the dead letter queue, if one has been defined. If not, the message is
discarded.

In MQSerie for Compaq (DIGITAL) OpenVMS fast messages are enabled
differently. For channels of type sender, server, receiver or requester, set the
description field at both ends of the channel as follows:

22 MQSeries Intercommunication

Safety of messages
DESCR('>>> description') +

Specifying >>> as the first characters in the channel description defines the channel
as fast for nonpersistent messages.

Note: If the other end of the channel does not support the option, the channel runs
at normal speed.

Undelivered messages

For information about what happens when a message cannot be delivered, see

Chapter 2. Making your applications communicate 23

Introduction

24 MQSeries Intercommunication

Chapter 3. More about intercommunication

This chapter mentions three aliases:
* Remote queue definition

* Queue manager alias definition

* Reply-to queue alias definition

”

These are all based on the remote queue definition object introduced in

This discussion does not apply to alias queues. These are described in the w

This chapter also discusses [!Netwarks” on page 29.

Addressing information

In a single-queue-manager environment, the address of a destination queue is
established when an application opens a queue for putting messages to. Because
the destination queue is on the same queue manager, there is no need for any
addressing information.

In a distributed environment the queue manager needs to know not only the
destination queue name, but also the location of that queue (that is, the queue
manager name), and the route to that remote location (that is, the transmission
queue). When an application puts messages that are destined for a remote queue
manager, the local queue manager adds a transmission header to them before
placing them on the transmission queue. The transmission header contains the
name of the destination queue and queue manager, that is, the addressing
information. The receiving channel removes the transmission header and uses the
information in it to locate the destination queue.

You can avoid the need for your applications to specify the name of the destination
queue manager if you use a remote queue definition. This definition specifies the
name of the remote queue, the name of the remote queue manager to which
messages are destined, and the name of the transmission queue used to transport
the messages.

What are aliases?

Aliases are used to provide a quality of service for messages. The queue manager
alias enables a system administrator to alter the name of a target queue manager
without causing you to have to change your applications. It also enables the
system administrator to alter the route to a destination queue manager, or to set up
a route that involves passing through a number of other queue managers
(multi-hopping). The reply-to queue alias provides a quality of service for replies.

Queue manager aliases and reply-to queue aliases are created using a
remote-queue definition that has a blank RNAME. These definitions do not define
real queues; they are used by the queue manager to resolve physical queue names,
queue manager names, and transmission queues.

Alias definitions are characterized by having a blank RNAME.

© Copyright IBM Corp. 1993, 2000 25

What are aliases?

Queue name resolution

Queue name resolution occurs at every queue manager each time a queue is
opened. Its purpose is to identify the target queue, the target queue manager
(which may be local), and the route to that queue manager (which may be null).
The resolved name has three parts: the queue manager name, the queue name,
and, if the queue manager is remote, the transmission queue.

When a remote queue definition exists, no alias definitions are referenced. The
queue name supplied by the application is resolved to the name of the destination
queue, the remote queue manager, and the transmission queue specified in the
remote queue definition. For more detailed information about queue name

resolution, see 'Appendix C_Queue name resolution” on page 649,

If there is no remote queue definition and a queue manager name is specified, or
resolved by the name service, the queue manager looks to see if there is a queue
manager alias definition that matches the supplied queue manager name. If there
is, the information in it is used to resolve the queue manager name to the name of
the destination queue manager. The queue manager alias definition can also be
used to determine the transmission queue to the destination queue manager.

If the resolved queue name is not a local queue, both the queue manager name
and the queue name are included in the transmission header of each message put
by the application to the transmission queue.

The transmission queue used usually has the same name as the resolved queue
manager, unless changed by a remote queue definition or a queue manager alias
definition. If you have not defined such a transmission queue but you have
defined a default transmission queue, then this is used.

Note: Names of queue managers running on OS/390 are limited to four
characters.

Queue manager alias definitions

Queue manager alias definitions apply when an application that opens a queue to
put a message, specifies the queue name and the queue manager name.

Queue manager alias definitions have three uses:

* When sending messages, remapping the queue manager name

* When sending messages, altering or specifying the transmission queue

* When receiving messages, determining whether the local queue manager is the
intended destination for those messages

Outbound messages - remapping the queue manager nhame

Queue manager alias definitions can be used to remap the queue manager name
specified in an MQOPEN call. For example, an MQOPEN call specifies a queue
name of THISQ and a queue manager name of YOURQM. At the local queue
manager there is a queue manager alias definition like this:

DEFINE QREMOTE (YOURQM) RQMNAME (REALQM)

This shows that the real queue manager to be used, when an application puts
messages to queue manager YOURQM, is REALQM. If the local queue manager is
REALQM, it puts the messages to the queue THISQ, which is a local queue. If the
local queue manager is not called REALQM, it routes the message to a

26 MQSeries Intercommunication

Queue manager alias definitions

transmission queue called REALQM. The queue manager changes the transmission
header to say REALQM instead of YOURQM.

Outbound messages - altering or specifying the transmission

queue

w shows a scenario where messages arrive at queue manager ‘QM1” with
transmission headers showing queue names at queue manager ‘QM3’. In this
scenario, ‘OMB3’ is reachable by multi-hopping through ‘QM2’.

— Channel.in A

T

— Channel_in B

Adjacent
system

\ \
i i
QM1 : Qm2 :
i i
i i
i i
[[A | |
I Queue | 'QM3' | |
| D P ' '
\ \
i i
\ \
, | |

Queue | 'QM2' -+ Channel out 1 Queue '‘QM3’ —» Channel out 2 —»t
(o]

! ! QM3
\ \
i i
i i
\ \

Local system 1 Adjacent system " Remote

system

Figure 15. Queue manager alias

All messages for ‘QM3’ are captured at ‘QM1’ with a queue manager alias. The
queue manager alias is named ‘QM3’ and contains the definition ‘QM3 via
transmission queue QM2’. The definition looks like this:

DEFINE QREMOTE (QM3) RNAME() RQMNAME(QM3) XMITQ(QM2)

The queue manager puts the messages on transmission queue ‘QM2’ but does not
make any alteration to the transmission queue header because the name of the
destination queue manager, ‘QM3’, does not alter.

All messages arriving at ‘OM1” and showing a transmission header containing a
queue name at ‘QM2” are also put on the ‘QM2’ transmission queue. In this way,
messages with different destinations are collected onto a common transmission
queue to an appropriate adjacent system, for onward transmission to their
destinations.

Inbound messages - determining the destination

A receiving MCA opens the queue referenced in the transmission header. If a
queue manager alias definition exists with the same name as the queue manager
referenced, then the queue manager name received in the transmission header is
replaced with the ROMNAME from that definition.

This has two uses:

* Directing messages to another queue manager
 Altering the queue manager name to be the same as the local queue manager

Chapter 3. More about intercommunication 27

Reply-to queue alias definitions

Reply-to queue alias definitions

When an application needs to reply to a message it may look at the data in the
message descriptor of the message it received to find out the name of the queue to
which it should reply. It is up to the sending application to suggest where replies
should be sent and to attach this information to its messages. This has to be
coordinated as part of your application design.

What is a reply-to queue alias definition?

A reply-to queue alias definition specifies alternative names for the reply
information in the message descriptor. The advantage of this is that you can alter
the name of a queue or queue manager without having to alter your applications.
Queue name resolution takes place at the sending end, before the message is put to
a queue.

Note: This is an unusual use of queue-name resolution. It is the only situation in
which name resolution takes place at a time when a queue is not being
opened.

Normally an application specifies a reply-to queue and leaves the reply-to queue
manager name blank. The queue manager fills in its own name at put time. This
works well except when you want an alternate channel to be used for replies, for
example, a channel that uses transmission queue ‘QM1_relief’ instead of the
default return channel which uses transmission queue ‘QM1". In this situation, the
queue manager names specified in transmission-queue headers do not match
“real” queue manager names but are re-specified using queue manager alias
definitions. In order to return replies along alternate routes, it is necessary to map
reply-to queue data as well, using reply-to queue alias definitions.

Queue manager'QM1' Queue manager'QM2'
Application Queue 'Inquiry’

'____; __________________

I Queue ‘ '‘QM3_relief —® Channel_out_1 —»{ Queue ‘ 'QM3 _relief —» Channel_out_2 —»
Inquiring | | _________ L

Queue ! 'Reply_to'

_____ L S
! Queue ¢+ 'QM1_relief <4+— Channel_in_1 4——{ Queue ‘ 'QM1_relief <«—— Channel_in_2 <—
Local system Adjacentsystem Remote system

Figure 16. Reply-to queue alias used for changing reply location

In the example in w:

1. The application puts a message using the MQPUT call and specifying the
following in the message descriptor:

ReplyToQ="'Reply_to'
RepTlyToQMgr=""

28 MQSeries Intercommunication

Reply-to queue alias definitions

Note that ReplyToQMgr must be blank in order for the reply-to queue alias to
be used.

2. You create a reply-to queue alias definition called ‘Reply_to’, which contains
the name “Answer’, and the queue manager name ‘QM1_relief’.
DEFINE QREMOTE ('Reply to') RNAME ('Answer')

RQMNAME ('QM1_relief')

3. The messages are sent with a message descriptor showing ReplyToQ="Answer’
and ReplyToQMgr="QM1_relief’.

4. The application specification must include the information that replies are to be
found in queue ‘Answer’ rather than ‘Reply_to’".

To prepare for the replies you have to create the parallel return channel. This
involves defining:

* At QM2, the transmission queue named ‘QM1_relief’
DEFINE QLOCAL ('QM1_relief') USAGE(XMITQ)

* At QMI, the queue manager alias QM1_relief’
DEFINE QREMOTE ('QM1_relief') RNAME() RQMNAME (QM1)

This queue manager alias terminates the chain of parallel return channels and
captures the messages for QM.

If you think you might want to do this at sometime in the future, arrange for your
applications to use the alias name from the start. For now this is a normal queue
alias to the reply-to queue, but later it can be changed to a queue manager alias.

Reply-to queue name

Care is needed with naming reply-to queues. The reason that an application puts a
reply-to queue name in the message is that it can specify the queue to which its
replies will be sent. But when you create a reply-to queue alias definition with this
name, you cannot have the actual reply-to queue (that is, a local queue definition)
with the same name. Therefore, the reply-to queue alias definition must contain a
new queue name as well as the queue manager name, and the application
specification must include the information that its replies will be found in this
other queue.

The applications now have to retrieve the messages from a different queue from
the one they named as the reply-to queue when they put the original message.

Networks

So far this book has covered creating channels between your system and any other
system with which you need to have communications, and creating multi-hop
channels to systems where you have no direct connections. The message channel
connections described in the scenarios are shown as a network diagram in

Channel and transmission queue names

You can give transmission queues any name you like, but to avoid confusion, you
can give them the same names as the destination queue manager names, or queue
manager alias names, as appropriate, to associate them with the route they use.
This gives a clear overview of parallel routes that you create through intermediate
(multi-hopped) queue managers.

Chapter 3. More about intercommunication 29

Networks

This is not quite so clear-cut for channel names. The channel names in [Figure 12
for QM2, for example, must be different for incoming and outgoing channels. All
channel names may still contain their transmission queue names, but they must be
qualified to make them unique.

For example, at QM2, there is a QM3 channel coming from QM1, and a QM3
channel going to QM3. To make the names unique, the first one may be named

‘QM3_from_QMY’, and the second may be named ‘QM3_from_QM?2’. In this way,
the channel names show the transmission queue name in the first part of the name,

and the direction and adjacent queue manager name in the second part of the

name.

A table of suggested channel names for w is given in Mable d.

QM2
QM2 fast
‘QM1! ‘Qm2’ '‘QM3!

QM1 QM1

QM1_fast

QM1_relief QM1 _relief

QM3 QM3

QM3 _relief QM3 _relief
Figure 17. Network diagram showing all channels
Table 1. Example of channel names
Route name Queue managers Transmission queue name Suggested channel name

hosting channel

QM1 QM1 & QM2 QM1 (at QM2) QM1.from.QM2
QM1 QM2 & QM3 QM1 (at QM3) QM1.from.QM3
QM1_fast QM1 & QM2 QM1_fast (at QM2) QM1_fast.from.QM2
QM1 _relief QM1 & QM2 QM1 _relief (at QM2) QM1 _relief from.QM2
QM1 _relief QM2 & QM3 QM1 _relief (at QM3) QM1 _relief from.QM3
QM2 QM1 & QM2 QM2 (at QM1) QM2.from.QM1
QM2_fast QM1 & QM2 QM2_fast (at QM1) QM2_fast.from.QM1
QM3 QM1 & QM2 QM3 (at QM1) QM3.from.QM1
QM3 QM2 & QM3 QM3 (at QM2) QM3.from.QM2
QM3_relief QM1 & QM2 QM3_relief (at QM1) QM3_relief from.QM1
QM3_relief QM2 & QM3 QM3_relief (at QM2) QM3_relief from.QM2
Notes:

1. On MQSeries for OS/390, queue manager names are limited to 4 characters.

30 MQSeries Intercommunication

Networks

2. You are strongly recommended to name all the channels in your network

uniquely. As shown in [able 1 on page 30, including the source and target

queue manager names in the channel name is a good way to do this.

Network planner

This chapter has discussed application designer, systems administrator, and
channel planner functions. Creating a network assumes that there is another,
higher level function of network planner whose plans are implemented by the other
members of the team.

If an application is used widely, it is more economical to think in terms of local
access sites for the concentration of message traffic, using wide-band links between
the local access sites, as shown in m

In this example there are two main systems and a number of satellite systems (The
actual configuration would depend on business considerations.) There are two
concentrator queue managers located at convenient centers. Each QM-concentrator
has message channels to the local queue managers:

* QM-concentrator 1 has message channels to each of the three local queue
managers, QM1, QM2, and QM3. The applications using these queue managers
can communicate with each other through the QM-concentrators.

* QM-concentrator 2 has message channels to each of the three local queue
managers, QM4, QM5, and QM6. The applications using these queue managers
can communicate with each other through the QM-concentrators.

* The QM-concentrators have message channels between themselves thus allowing
any application at a queue manager to exchange messages with any other
application at another queue manager.

Chapter 3. More about intercommunication 31

Introduction

Figure 18. Network diagram showing QM-concentrators

32 MQSeries Intercommunication

‘QM1’

‘Qm2’

'‘QM-
Concentrator
1

'‘QM4!

‘QM3’

'‘QM-
Concentrator
o

‘QM5’

'‘QM6’

Part 2. How intercommunication works

Chapter 4. MQSeries distributed-messaging
techniques . .
Message flow control . .

Queue names in transmission header

How to create queue manager and reply-to

aliases . .

Putting messages on remote queues .
More about name resolution.
Choosing the transmission queue .
Receiving messages.
Receiving alias queue manager names
Passing messages through your system . .

Method 1: Using the incoming location name .

Method 2: Using an alias for the queue manager

Method 3: Selecting a transmission queue

Using these methods

Separating message flows

Concentrating messages to dlverse locatlons
Diverting message flows to another destination
Sending messages to a distribution list
Reply-to queue .

Reply-to queue alias example .
Definitions used in this example at QMl
Definitions used in this example at QM2
Put definition at QM1 . L.
Put definition at QM2 .

How the example works . . .

How the queue manager makes use of the

reply-to queue alias.

Reply-to queue alias walk- through

Networking considerations .

Return routing .

Managing queue name translatlons
Channel message sequence numbering .

Sequential retrieval of messages .

Sequence of retrieval of fast, nonpersistent

messages .

Loopback testing

Chapter 5. DQM implementation.
Functions of DQM . .
Message sending and receiving.
Channel parameters .
Channel status and sequence numbers
Channel control function .
Preparing channels . .
Auto-definition of channels .
Defining other objects . .
Starting a channel (not MQSerles for
Windows) .
Starting a channel on MQSerles for Wmdows
Channel states
Current and active .
Channel errors
Checking that the other end of the channel is
still available .

© Copyright IBM Corp. 1993, 2000

. 35
. 35
. 36

. 36
. 37
. 38
. 39
. 40
. 40
.41
.42

42

.42
.42
.42
. 44
. 45
. 46
. 47
. 48
. 49
. 50
. 50
. 50
. 50

. 51
. 51
. 52
. 53
. 53
. 54
. 55

. 55
. 56

. 57
. 57
. 58
. 59
. 59
. 59
. 60
. 60
. 61

. 61

61

. 62
. 62
. 65

. 66

Adopting an MCA . .
Stopping and quiescing channels (not MQSerles
for Windows).
Stopping and qu1esc1ng channels (MQSerles for
Windows) . Ce e
Restarting stopped channels
In-doubt channels
Problem determination
Command validation .
Processing problems
Messages and codes
What happens when a message cannot be
delivered? . .o .
Initialization and conflguratron frles .
0S/390 without CICS .
0S/390 using CICS.
Windows NT . .o
0S/2, Digital OpenVMS, Tandem NSK OS / 400
and UNIX systems . o
MQSeries configuration flle .
Queue manager configuration file .
VSE/ESA .
Data conversion . .
Writing your own message channel agents .

Chapter 6. Channel attributes.

Channel attributes in alphabetical order .
Alter date (ALTDATE).
Alter time (ALTTIME) .
Auto start (AUTOSTART).
Batch interval (BATCHINT) .
Batch size (BATCHSZ).
Channel name (CHANNEL).
Channel type (CHLTYPE)
CICS profile name .
Cluster (CLUSTER).
Cluster namelist (CLUSNL) .
Connection name (CONNAME)
Convert message (CONVERT) .
Description (DESCR) .
Disconnect interval (DISCINT) .
Heartbeat interval (HBINT) .
Long retry count (LONGRTY) .
Long retry interval (LONGTMR)
LU 6.2 mode name (MODENAME) .
LU 6.2 transaction program name (TPNAME)
Maximum message length (MAXMSGL).
Maximum transmission size . .
Message channel agent name (MCANAME)
Message channel agent type (MCATYPE)
Message channel agent user identifier
(MCAUSER) .
Message exit name (MSGEXIT)
Message exit user data (MSGDATA) .
Message-retry exit name (MREXIT)
Message-retry exit user data (MRDATA).

. 67

. 67

. 69
. 69
. 70
.71
.71
.71
.71

.71
.73
.73
.73
.73

.73
. 74
.74
.75
.75
.75

.77
.77
.78
.78
. 78
.79
.79
. 80
. 81
.81
. 81
. 82
. 82
. 83
. 84
. 84
. 85
. 85
. 85
. 86
. 86
. 87
. 87
. 87
. 88

. 88
. 88
. 89
. 89
. 89

33

Intercommunication

Message retry count (MRRTY)89
Message retry interval MRTMR)89
Network-connection priority (NETPRTY) . . . 90
Nonpersistent message speed (NPMSPEED) . .90
Password (PASSWORD)9
PUT authority (PUTAUT).90
Queue manager name (QMNAME)91
Receive exit name (RCVEXIT)91
Receive exit user data (RCVDATA)92
Security exit name (SCYEXIT)93
Security exit user data (SCYDATA)93
Send exit name (SENDEXIT).93
Send exit user data (SENDDATA)93
Sequence number wrap (SEQWRAP)93
Sequential delivery . . . B
Short retry count (SHORTRTY) B °Z
Short retry interval (SHORTTMR) 9%
Target system identifier9%
Transaction identifier9
Transmission queue name (XMITQ)9
Transport type (TRPTYPE)9
UserID(USERID)9
Chapter 7. Example configuration chapters in
thisbook.97
Network infrastructure98
Communications software98
How to use the communication examples L. 99
IT responsibilities100

34 MQSeries Intercommunication

Chapter 4. MQSeries distributed-messaging techniques

This chapter describes techniques that are of use when planning channels. It
introduces the concept of message flow control and explains how this is arranged
in distributed queue management (DQM). It gives more detailed information about
the concepts introduced in the preceding chapters and starts to show how you
might use distributed queue management. This chapter covers the following topics:

. I A ol

G : ”

Message flow control

Message flow control is a task that involves the setting up and maintenance of
message routes between queue managers. This is very important for routes that
multi-hop through many queue managers.

You control message flow using a number of techniques that were introduced in
[Chapter 2_Making your applications communicate” on page 19. If your queue
manager is in a cluster, message flow is controlled using different techniques, as
described in the MQSeries Queue Manager Clusterd book. If your queue managers
are in a queue sharing group and intra-group queuing (IGQ) is enabled, then the
message flow can be controlled by IGQ agents, which are described in

|nt]:a—grm]p q]]e]]jng” on page 32" X

This chapter describes how you use your system’s queues, alias queue definitions,
and message channels to achieve message flow control.

You make use of the following objects:
* Transmission queues

* Message channels

* Remote queue definition

* Queue manager alias definition

* Reply-to queue alias definition

The i ueue manager and queue objects are described in the MQSeries Systen]

Administration book for MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, in the DMQSeries for AS/400 System Administrationd book for MQSeries
for AS/400, in the MQSeries for QS/390 Coucepts and Planning Guidd for MQSeries

for OS/390, or in the MQSeries System Management Guide for your platform.

© Copyright IBM Corp. 1993, 2000 35

Message flow control

Message channels are described in ’Message channels” on page 7. The following

techniques use these objects to create message flows in your system:
* Putting messages to remote queues

* Routing via particular transmission queues

* Receiving messages

* Passing messages through your system

* Separating message flows

* Switching a message flow to another destination

* Resolving the reply-to queue name to an alias name

— Note
All the concepts described in this chapter are relevant for all nodes in a
network, and include sending and receiving ends of message channels. For
this reason, only one node is illustrated in most examples, except where the
example requires explicit cooperation by the administrator at the other end of
a message channel.

Before proceeding to the individual techniques it is useful to recap on the concepts
of name resolution and the three ways of using remote queue definitions. See

7 n 0 0 173

Queue names in transmission header

The queue name used by the application, the logical queue name, is resolved by
the queue manager to the destination queue name, that is, the physical queue
name. This destination queue name travels with the message in a separate data
area, the transmission header, until the destination queue has been reached after
which the transmission header is stripped off.

You will be changing the queue manager part of this queue name when you create
parallel classes of service. Remember to return the queue manager name to the
original name when the end of the class of service diversion has been reached.

How to create queue manager and reply-to aliases

As discussed above, the remote queue definition object is used in three different

ways. [able 2 on page 37 explains how to define each of the three ways:

* Using a remote queue definition to redefine a local queue name.

The application provides only the queue name when opening a queue, and this
queue name is the name of the remote queue definition.

The remote queue definition contains the names of the target queue and queue
manager, and optionally, the definition can contain the name of the transmission
queue to be used. If no transmission queue name is provided, the queue
manager uses the queue manager name, taken from the remote queue definition,
for the transmission queue name. If a transmission queue of this name is not
defined, but a default transmission queue is defined, the default transmission
queue is used.

* Using a remote queue definition to redefine a queue manager name.

The application, or channel program, provides a queue name together with the
remote queue manager name when opening the queue.

If you have provided a remote queue definition with the same name as the
queue manager name, and you have left the queue name in the definition blank,
then the queue manager will substitute the queue manager name in the open
call with the queue manager name in the definition.

36 MQSeries Intercommunication

Message flow control

In addition, the definition can contain the name of the transmission queue to be
used. If no transmission queue name is provided, the queue manager takes the
queue manager name, taken from the remote queue definition, for the
transmission queue name. If a transmission queue of this name is not defined,
but a default transmission queue is defined, the default transmission queue is
used.

* Using a remote queue definition to redefine a reply-to queue name.

Each time an application puts a message to a queue, it may provide the name of
a reply-to queue for answer messages but with the queue manager name blank.

If you provide a remote queue definition with the same name as the reply-to
queue then the local queue manager replaces the reply-to queue name with the
queue name from your definition.

You may provide a queue manager name in the definition, but not a
transmission queue name.

Table 2. Three ways of using the remote queue definition object

Usage Queue manager |Queue name Transmission
name queue name

1. Remote queue definition (on OPEN call)

Supplied in the call blank or local QM | (*) required -

Supplied in the definition required required optional

2. Queue manager alias (on OPEN call)

Supplied in the call (*) required and | required -
not local QM
Supplied in the definition required blank optional

3. Reply-to queue alias (on PUT call)

Supplied in the call blank (*) required -

Supplied in the definition optional optional blank

Note: (*) means that this name is the name of the definition object

For a formal description, see Appendix C_Queue name resolution” on page 649,

Putting messages on remote queues

In a distributed-queuing environment, a transmission queue and channel are the
focal point for all messages to a location whether the messages originate from
applications in your local system, or arrive through channels from an adjacent
system. This is shown in [Eigure 19 an page 38 where an application is placing
messages on a logical queue named ‘QA_norm’. The name resolution uses the
remote queue definition ‘QA_norm’ to select the transmission queue ‘QMB’, and
adds a transmission header to the messages stating ‘QA_norm at QMB’.

Messages arriving from the adjacent system on ‘Channel_back” have a transmission
header with the physical queue name ‘QA_norm at QMB’, for example. These
messages are placed unchanged on transmission queue QMB.

The channel moves the messages to an adjacent queue manager.

Chapter 4. MQSeries distributed-messaging techniques 37

Messages on remote queues

Adjacent
system

Application

QA norm

Channel_back

Local system

'‘QMA’

———— > Queue

QA norm at QMB via QMB
I
! 'QA norm'

_______ qm—mm

QA_norm at QMB

Channel_out —»

Channel to adjacent system

Figure 19. A remote queue definition is used to resolve a queue name to a transmission
queue to an adjacent queue manager. Note: The dashed outline represents a remote queue
definition. This is not a real queue, but a name alias that is controlled as though it were a

real queue.

If you are the MQSeries system administrator, you must:

¢ Define the message channel from the adjacent system

* Define the message channel to the adjacent system

* Create the transmission queue ‘QMB’

* Define the remote queue object ‘QA_norm’ to resolve the queue name used by
applications to the desired destination queue name, destination queue manager
name, and transmission queue name

In a clustering environment, you only need to define a cluster-receiver channel at
the local queue manager. You do not need to define a transmission queue or a

remote queue object. For information about this, see the MQSeries Queue Managen

book.

More about name resolution

The effect of the remote queue definition is to define a physical destination queue
name and queue manager name; these names are put in the transmission headers

of messages.

Incoming messages from an adjacent system have already had this type of name
resolution carried out by the original queue manager, and have the transmission
header showing the physical destination queue name and queue manager name.

These messages are unaffected by remote queue definitions.

38 MQSeries Intercommunication

Choosing the transmission queue

Choosing the transmission queue

Adjacent
system

Local system

Application '‘QMA'

QA norm at
QMB_priority via TXI
QA norm it qTT T

|

TXI' Channelout —»

| Queue

Channel to adjacent system

Figure 20. The remote queue definition allows a different transmission queue to be used

In a distributed-queuing environment, when you need to change a message flow
from one channel to another, use the same system configuration as shown in
Eigure 19 on page 34. Figure 20 shows how you use the remote queue definition to
send messages over a different transmission queue, and therefore over a different
channel, to the same adjacent queue manager.

For the configuration shown in [Eigure 20 you must provide:

* The remote queue object “QA_norm’ to choose:
— Queue ‘QA_norm’ at the remote queue manager
— Transmission queue "TX1’
— Queue manager ‘QMB_priority’
* The transmission queue “TX1". Specify this in the definition of the channel to the
adjacent system

Messages are placed on transmission queue “TX1” with a transmission header
containing ‘QA_norm at QMB_priority’, and are sent over the channel to the
adjacent system.

The channel back has been left out of this illustration because it would need a
queue manager alias; this is discussed in the following example.

In a clustering environment, you do not need to define a transmission gueue ora

remote queue definition. For more information about this, see the

Manager Clusterd book.

Chapter 4. MQSeries distributed-messaging techniques 39

Receiving messages

Receiving messages

Adjacent
system

Local system

Application '‘QMB'

QA_norm

i Queue 'QA_norm'

—» Channel_back

‘ QA nnorm at QMB
i
i

— Channel back > Queue | 'QMB_priority’
QA _norm at ;
QMB_ priority QMB _priority to QMB

Figure 21. Receiving messages directly, and resolving alias queue manager name

As well as arranging for messages to be sent, the system administrator must also
arrange for messages to be received from adjacent queue managers. Received
messages contain the physical name of the destination queue manager and queue
in the transmission header. They are treated exactly the same as messages from a
local application that specifies both queue manager name and queue name.
Because of this, you need to ensure that messages entering your system do not
have an unintentional name resolution carried out. See Eéj,@ for this scenario.

For this configuration, you must prepare:
* Message channels to receive messages from adjacent queue managers

* A queue manager alias definition to resolve an incoming message flow,
‘QMB_priority’, to the local queue manager name, ‘QMB’

* The local queue, ‘QA_norm’, if it does not already exist

Receiving alias queue manager names

The use of the queue manager alias definition in this illustration has not selected a
different destination queue manager. Messages passing through this local queue
manager and addressed to ‘OMB_priority” are intended for queue manager ‘QMB’.
The alias queue manager name is used to create the separate message flow.

40 MQSeries Intercommunication

Passing messages through system

Passing messages through your system

Adjacent ! Local system | Adjacent
system i | system
i 'QMB' i
\ \
i i
i I
Channelin Queue ‘QmMC’ Channel_out
T T
i i
: PSSR PO 1
Channelin ———— Queue | 'QMD_norm’ :
[P !
| ’ i
1 \
‘ y
i Queue '"TX1' Channel_out
\
i i
i 1
] T N \
Channelin | —— Queue |'QMD_PRIORITY' ;
. | P i
i i
j) i
{ Queue '‘QMD_fast' Channel_out
i \

Figure 22. Three methods of passing messages through your system

Following on from the technique shown in Eigure 21 on page 40, where you saw

how an alias flow is captured, Eigure 23 illustrates the ways networks are built up
by bringing together the techniques we have discussed.

The configuration shows a channel delivering three messages with different
destinations:

1. ‘QB at QMC’

2. ‘OB at QMD_norm’

3. ‘QB at QMD_PRIORITY’

You must pass the first message flow through your system unchanged; the second
message flow through a different transmission queue and channel, while reverting
the messages from the alias queue manager name ‘QMD_norm’ to the physical
location ‘QMD’; and the third message flow simply chooses a different
transmission queue without any other change.

In a clustering environment, all messages are passed through the cluster
transmission queue, SYSTEM.CLUSTER. TRANSMIT.QUEUE. This is illustrated in

Eigured on page 7

The following methods describe techniques applicable to a distributed-queuing
environment:

Chapter 4. MQSeries distributed-messaging techniques 41

Passing messages through system

Method 1: Using the incoming location name

When you are going to receive messages with a transmission header containing
another location name, the simplest preparation is to have a transmission queue
with that name, ‘OMC’ in this example, as a part of a channel to an adjacent queue
manager. The messages are delivered unchanged.

Method 2: Using an alias for the queue manager

The second method is to use the queue manager alias object definition, but specify

a new location name, ‘QMD’, as well as a particular transmission queue, “TX1".

This action:

¢ Terminates the alias message flow set up by the queue manager name alias
‘OMD_norm’. That is the named class of service ‘QMD_norm’.

* Changes the transmission headers on these messages from ‘QMD_norm’ to
‘QMD’.

Method 3: Selecting a transmission queue

The third method is to have a queue manager alias object defined with the same
name as the destination location, ‘QMD_PRIORITY’, and use the definition to
select a particular transmission queue, ‘QMD_fast’, and therefore another channel.
The transmission headers on these messages remain unchanged.

Using these methods
For these configurations, you must prepare the:
* Input channel definitions
* Output channel definitions

* Transmission queues:
- QMC
- TX1
- QMD_fast
* Queue manager alias definitions:
- OMD_norm with ‘OMD_norm to QMD via TX1’
— QMD_PRIORITY with “QMD_PRIORITY to QMD_PRIORITY via QMD_fast’

Note
None of the message flows shown in the example changes the destination
queue. The queue manager name aliases simply provide separation of
message flows.

Separating message flows

In a distributed-queuing environment, the need to separate messages to the same
queue manager into different message flows can arise for a number of reasons. For
example:

* You may need to provide a separate flow for very large, medium, and small
messages. This also applies in a clustering environment and, in this case, you
may create clusters that overlap. There are a number of reasons you might do
this, for example:

— To allow different organizations to have their own administration.
— To allow independent applications to be administered separately.

42 MQSeries Intercommunication

Separating message flows

— To create a class of service. For example you could have a cluster called
STAFF that is a subset of the cluster called STUDENTS. When you put a

message to a queue advertised in the STAFF cluster, a restricted channel is

used. When you put a message to a queue advertised in the STUDENTS

cluster, either a general channel or a restricted channel may be used.

— To create test and production environments.

* It may be necessary to route incoming messages via different paths from the

path of the locally generated messages.

* Your installation may require to schedule the movement of messages at certain
times (for example, overnight) and the messages then need to be stored in

reserved queues until scheduled.

Adjacent Local system

|
system ‘
i '‘QMB"
\

1

QB at QMC_small [T
— Channel back » Queue | '‘QMC_small'
1

Application ‘QB_small’ ‘ pomm———- —

| Adjacent
| system

|
|
|
|
|
|
|
'
|
|
L

QB_large !
E——

o
c
)
c
®
[E—
o
(ve]
o
=
Q
@

Channel_out

—»

L

s}
c
(o)
c
(o)
]
X
2
«Q
@

QB at QMC large =TT
— Channel_back » Queue

, I

[E—
[}
<
o
2

«Q
('D_

Channel_out

—»

IQueue ‘ 'TX_external'

Channel_out

—»

Figure 23. Separating messages flows

In the example shown in w, the two incoming flows are to alias queue
manager names ‘QMC_small’ and ‘QMC_large’. You provide these flows with a
queue manager alias definition to capture these flows for the local queue manager.
You have an application addressing two remote queues and you need these
message flows to be kept separate. You provide two remote queue definitions that
specify the same location, ‘OMC’, but specify different transmission queues. This
keeps the flows separate, and nothing extra is needed at the far end as they have
the same destination queue manager name in the transmission headers. You

provide:
¢ The incoming channel definitions

¢ The two remote queue definitions QB_small and QB_large

¢ The two queue manager alias definitions QMC_small and QMC_large

* The three sending channel definitions

¢ Three transmission queues: TX_small, TX_large, and TX_external

Chapter 4. MQSeries distributed-messaging techniques 43

Separating message flows

Coordination with adjacent systems
When you use a queue manager alias to create a separate message flow, you
need to coordinate this activity with the system administrator at the remote
end of the message channel to ensure that the corresponding queue manager
alias is available there.

Concentrating messages to diverse locations

Adjacent Local system Adjacent
system system
'‘QMB’
QBatQME I
—| Channel_back Queue | 'QME'
—_—
Application
QA T
>} Queue | 'QA’
S
QB (T
» Queue | 'QB’
l L__I_J _______
Channel_out Queue | X1
‘QmcC!
Localqueue
Queue '‘QA'
Channel_back Queue '‘QMD! Channel_out — QBatQMD
!
Queue | '‘QME’ Channel_out —» QBatQME
T

Figure 24. Combining message flows on to a channel

Eigure 24 illustrates a distributed-queuing technique for concentrating messages
that are destined for various locations on to one channel. Two possible uses would
be:

* Concentrating message traffic through a gateway

* Using wide bandwidth highways between nodes

In this example, messages from different sources, local and adjacent, and having
different destination queues and queue managers, are flowed via transmission
queue ‘TX1" to queue manager QMC. Queue manager QMC delivers the messages
according to the destinations, one set to a transmission queue ‘QMD’ for onward

44 MQSeries Intercommunication

Concentrating messages

transmission to queue manager QMD, another set to a transmission queue ‘QME’
for onward transmission to queue manager QME, while other messages are put on
the local queue ‘QA’.

You must provide:

* Channel definitions

* Transmission queue TX1

* Remote queue definitions:
— QA with ‘QA at QMC via TX1’
— QB with ‘QB at QMD via TX1’

* Queue manager alias definition:
- QME with ‘QME via TX1’

The complementary administrator who is configuring QMC must provide:
* Receiving channel definition with the same channel name

* Transmission queue QMD with associated sending channel definition

¢ Transmission queue QME with associated sending channel definition

* Local queue object QA.

Diverting message flows to another destination

Adjacent
system

Local system Adjacent system Adjacent system

‘QMA' '‘QMB' '‘QMD!

Channel_back

QB atQMC !

»iQueue: '‘QMC’

.

| Oueue| '‘QMB’ —

»l Channel |—<

»I Queue | ‘QMD'

»l Channel |—<

Local queue

>| Queue | '‘QB’

Figure 25. Diverting message streams to another destination

w illustrates how you can redefine the destination of certain messages.
Incoming messages to QMA are destined for ‘QB at QMC’. They would normally
arrive at QMA and be placed on a transmission queue called QMC which would
have been part of a channel to QMC. QMA must divert the messages to QMD, but
is able to reach QMD only over QMB. This method is useful when you need to
move a service from one location to another, and allow subscribers to continue to
send messages on a temporary basis until they have adjusted to the new address.

The method of rerouting incoming messages destined for a certain queue manager
to a different queue manager uses:

* A queue manager alias to change the destination queue manager to another
queue manager, and to select a transmission queue to the adjacent system

* A transmission queue to serve the adjacent queue manager

* A transmission queue at the adjacent queue manager for onward routing to the
destination queue manager

You must provide:
¢ Channel_back definition

Chapter 4. MQSeries distributed-messaging techniques 45

Diverting message flows

* Queue manager alias object definition QMC with QB at QMD via QMB
¢ Channel_out definition
* The associated transmission queue QMB

The complementary administrator who is configuring QMB must provide:
* The corresponding channel_back definition

* The transmission queue, QMD

* The associated channel definition to QMD

You can use aliases within a clustering environment. For information about this,

see the hAQSeues_Q.uauLMamgar_CLus.tad book.

Sending messages to a distribution list

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
an application can send a message to several destinations with a single MQPUT
call. This applies in both a distributed-queuing environment and a clustering
environment. You have to define the destinations in a distribution list, as described

in the MQSeries Application Programming Guidd,

Not all queue managers support distribution lists. When an MCA establishes a
connection with a partner, it determines whether or not the partner supports
distribution lists and sets a flag on the transmission queue accordingly. If an
application tries to send a message that is destined for a distribution list but the
partner does not support distribution lists, the sending MCA intercepts the
message and puts it onto the transmission queue once for each intended
destination.

A receiving MCA ensures that messages sent to a distribution list are safely
received at all the intended destinations. If any destinations fail, the MCA
establishes which ones have failed so that it can generate exception reports for
them and can try to re-send the messages to them.

46 MQSeries Intercommunication

Reply-to queue

Reply-to queue

Application

Lo

QA at QMB
reply-to
QR

cal system | Adjacent system
i
QMA : QmB Application
i
i
|I=T T T B i
| Queue | 'QR' ‘ 'F'
[A ‘
1 i
|
j QA at QMB
Queue ‘ QMB' : Queue ‘ 'QA'
i
jm=m———- g mm e !
! Queue | 'QMA class1’ L Queue ‘ 'QMA _class1'
i B Ammmmmm- QRR at !
l QMA class1!
v |
Queue ‘ QRR' !
|
i
|
i

Figure 26. Reply-to queue name substitution during PUT call

A complete remote queue processing loop using a reply-to queue is shown in
m. This applies in both a distributed-queuing environment and a clustering

environment. The details are as shown in [[able 6 on page 54.

The application opens QA at QMB and puts messages on that queue. The messages
are given a reply-to queue name of QR, without the queue manager name being
specified. Queue manager QMA finds the reply-to queue object QR and extracts
from it the alias name of QRR and the queue manager name QMA_classl. These
names are put into the reply-to fields of the messages.

Reply messages from applications at QMB are addressed to QRR at QMA _class].
The queue manager alias name definition QMA_class1 is used by the queue
manager to flow the messages to itself, and to queue QRR.

This scenario depicts the way you give applications the facility to choose a class of
service for reply messages, the class being implemented by the transmission queue
QMA _classl at QMB, together with the queue manager alias definition,

QMA _classl at QMA. In this way, you can change an application’s reply-to queue
so that the flows are segregated without involving the application. That is, the
application always chooses QR for this particular class of service, and you have the
opportunity to change the class of service with the reply-to queue definition QR.

You must create:

* Reply-to queue definition QR

* Transmission queue object QMB

* Channel_out definition

* Channel_back definition

* Queue manager alias definition QMA_class1
* Local queue object QRR, if it does not exist

The complementary administrator at the adjacent system must create:

Chapter 4. MQSeries distributed-messaging techniques 47

Reply-to queue

* Receiving channel definition

¢ Transmission queue object QMA _classl
* Associated sending channel

* Local queue object QA.

Your application programs use:
* Reply-to queue name QR in put calls
* Queue name QRR in get calls

In this way, you may change the class of service as necessary, without involving
the application, by changing the reply-to alias ‘“QR’, together with the transmission
queue ‘QMA _classl” and queue manager alias ‘QMA_class1’.

If no reply-to alias object is found when the message is put on the queue, the local
queue manager name is inserted in the blank reply-to queue manager name field,
and the reply-to queue name remains unchanged.

Name resolution restriction
Because the name resolution has been carried out for the reply-to queue at
‘QOMA’ when the original message was put, no further name resolution is
allowed at ‘QMB’, that is, the message is put with the physical name of the
reply-to queue by the replying application.

Note that the applications must be aware of the naming convention that the name
they use for the reply-to queue is different from the name of the actual queue
where the return messages are to be found.

For example, when two classes of service are provided for the use of applications
with reply-to queue alias names of ‘C1_alias’, and ‘C2_alias’, the applications use
these names as reply-to queue names in the message put calls, but the applications
will actually expect messages to appear in queues ‘C1” and ‘C2’, respectively.

However, an application is able to make an inquiry call on the reply-to alias queue
to check for itself the name of the real queue it must use to get the reply messages.

Reply-to queue alias example

This example illustrates the use of a reply-to alias to select a different route
(transmission queue) for returned messages. The use of this facility requires the
reply-to queue name to be changed in cooperation with the applications.

As shown in Eigure 27 on page 49, the return route must be available for the reply

messages, including the transmission queue, channel, and queue manager alias.

48 MQSeries Intercommunication

Reply-to queue

‘QM1’ ‘Qm2’
o T
iQueue i ‘Inquiry’

] o
Queue | 'QM2’ Channel_out ' Queue ! 'Inquiry'
L P,

---------- pooommmo-oooooo-

1 '‘Answer_alias'

Q='Answer'
QM='QM1_relief'

Queue |'Answer’

'‘QM1_relief' = Channel back Queue '‘QM1_relief’

Figure 27. Reply-to queue alias example

This example is for requester applications at ‘QM1’ that send messages to server
applications at ‘QM2’. The servers’ messages are to be returned through an
alternative channel using transmission queue ‘QM1_relief’ (the default return
channel would be served with a transmission queue ‘QM1’).

The reply-to queue alias is a particular use of the remote queue definition named
‘Answer_alias’. Applications at QM1 include this name, “Answer_alias’, in the
reply-to field of all messages that they put on queue ‘Inquiry’.

Reply-to queue definition “Answer_alias’ is defined as ‘Answer at QM1_relief’.
Applications at QM1 expect their replies to appear in the local queue named
‘Answer’.

Server applications at QM2 use the reply-to field of received messages to obtain
the queue and queue manager names for the reply messages to the requester at
QM1.

Definitions used in this example at QM1
The MQSeries system administrator at QM1 must ensure that the reply-to queue

‘Answer’ is created along with the other objects. The name of the queue manager
alias, marked with a “*’, must agree with the queue manager name in the reply-to
queue alias definition, also marked with an "'

Chapter 4. MQSeries distributed-messaging techniques 49

Reply-to queue

Object Definition

Local transmission queue QM2

Remote queue definition Object name Inquiry
Remote queue manager name QM2
Remote queue name Inquiry
Transmission queue name QM2 (DEFAULT)

Queue manager alias Object name QM1 _relief *
Queue manager name oM1
Queue name (blank)

Reply-to queue alias Object name Answer_alias
Remote queue manager name QM1 _relief *
Remote queue name Answer

Definitions used in this example at QM2

The MQSeries system administrator at QM2 must ensure that the local queue exists
for the incoming messages, and that the correctly named transmission queue is
available for the reply messages.

Object Definition
Local queue Inquiry
Transmission queue QM1 _relief

Put definition at QM1
Applications fill the reply-to fields with the reply-to queue alias name, and leave
the queue manager name field blank.

Field Content
Queue name Inquiry
Queue manager name (blank)
Reply-to queue name Answer_alias
Reply-to queue manager (blank)

Put definition at QM2

Applications at QM2 retrieve the reply-to queue name and queue manager name
from the original message and use them when putting the reply message on the
reply-to queue.

Field Content
Queue name Answer
Queue manager name QM1 _relief

How the example works

In this example, requester applications at QM1 always use ‘Answer_alias” as their
reply-to queue in the relevant field of the put call, and they always retrieve their
messages from the queue named ‘Answer’.

The reply-to queue alias definitions are available for use by the QM1 system
administrator to change the name of the reply-to queue ‘Answer’, and of the
return route ‘QM1_relief’.

Changing the queue name ‘Answer’ is normally not useful because the QM1

applications are expecting their answers in this queue. However, the QM1 system
administrator is able to change the return route (class of service), as necessary.

50 MQSeries Intercommunication

Reply-to queue
How the queue manager makes use of the reply-to queue alias

Queue manager QM1 retrieves the definitions from the reply-to queue alias when
the reply-to queue name, included in the put call by the application, is the same as
the reply-to queue alias, and the queue manager part is blank.

The queue manager replaces the reply-to queue name in the put call with the
queue name from the definition. It replaces the blank queue manager name in the
put call with the queue manager name from the definition.

These names are carried with the message in the message descriptor.

Table 3. Reply-to queue alias

Field name Put call Transmission header
Queue name Answer_alias Answer
Queue manager name (blank) QM1 _relief

Reply-to queue alias walk-through

To complete this example, let us take a walk through the process, from an
application putting a message on a remote queue at queue manager ‘QM1’,
through to the same application removing the reply message from the alias
reply-to queue.
1. The application opens a queue named ‘Inquiry’, and puts messages to it. The
application sets the reply-to fields of the message descriptor to:

Reply-to queue name Answerable
Reply-to queue manager name (blank)

2. Queue manager ‘QM1’ responds to the blank queue manager name by
checking for a remote queue definition with the name “Answer_alias’. If none
is found, the queue manager places its own name, ‘QM1’, in the reply-to
queue manager field of the message descriptor.

3. If the queue manager finds a remote queue definition with the name
‘Answer_alias’, it extracts the queue name and queue manager names from
the definition (queue name="Answer’ and queue manager name=
‘QOM1_relief”) and puts them into the reply-to fields of the message descriptor.

4. The queue manager ‘OM1’ uses the remote queue definition ‘Inquiry’ to
determine that the intended destination queue is at queue manager ‘QM2’,
and the message is placed on the transmission queue ‘QM2’". ‘QM2’ is the
default transmission queue name for messages destined for queues at queue
manager ‘QM2’.

5. When queue manager ‘OM1’ puts the message on the transmission queue, it
adds a transmission header to the message. This header contains the name of
the destination queue, ‘Inquiry’, and the destination queue manager, ‘QM2".

6. The message arrives at queue manager ‘QM2’, and is placed on the ‘Inquiry’
local queue.

7. An application gets the message from this queue and processes the message.
The application prepares a reply message, and puts this reply message on the
reply-to queue name from the message descriptor of the original message.

This is:
Reply-to queue name Answer
Reply-to queue manager name QMI_relief

Chapter 4. MQSeries distributed-messaging techniques 51

Reply-to queue

8. Queue manager ‘QM?2’ carries out the put command, and finding that the
queue manager name, ‘QM1_relief’, is a remote queue manager, it places the
message on the transmission queue with the same name, ‘QM1_relief’. The
message is given a transmission header containing the name of the destination
queue, ‘Answer’, and the destination queue manager, ‘OM1_relief’.

9. The message is transferred to queue manager ‘QM1” where the queue
manager, recognizing that the queue manager name ‘QM1_relief” is an alias,
extracts from the alias definition ‘QM1_relief’ the physical queue manager
name ‘QM1".

10. Queue manager ‘QM1’ then puts the message on the queue name contained in
the transmission header, ‘Answer’.

11. The application extracts its reply message from the queue ‘Answer’.

Networking considerations

In a distributed-queuing environment, because message destinations are addressed
with just a queue name and a queue manager name, the following rules apply:

1. Where the queue manager name is given, and the name is different from the
local queue manager’s name:

* A transmission queue must be available with the same name, and this
transmission queue must be part of a message channel moving messages to
another queue manager, or

* A queue manager alias definition must exist to resolve the queue manager
name to the same, or another queue manager name, and optional
transmission queue, or

e If the transmission queue name cannot be resolved, and a default
transmission queue has been defined, the default transmission queue is used.

2. Where only the queue name is supplied, a queue of any type but with the same

name must be available on the local queue manager. This queue may be a

remote queue definition which resolves to: a transmission queue to an adjacent

queue manager, a queue manager name, and an optional transmission queue.

To see how this works in a clustering environment, see the w

Manager Clusterd book.

If the queue managers are running in a queue sharing group (QSG) and
intra-group queuing (IGQ) is enabled, the SYSTEM.QSG.TRANSMIT.QUEUE may

be used. For more information, see I‘Chapter 24 Intra-group queuing” on page 321.

Consider the scenario of a message channel moving messages from one queue
manager to another in a distributed-queuing environment.

The messages being moved have originated from any other queue manager in the
network, and some messages may arrive that have an unknown queue manager
name as destination. This can occur when a queue manager name has changed or
has been removed from the system, for example.

The channel program recognizes this situation when it cannot find a transmission
queue for these messages, and places the messages on your undelivered-message
(dead-letter) queue. It is your responsibility to look for these messages and arrange
for them to be forwarded to the correct destination, or to return them to the
originator, where this can be ascertained.

52 MQSeries Intercommunication

Networking considerations

Exception reports are generated in these circumstances, if report messages were
requested in the original message.

— Name resolution convention
It is strongly recommended that name resolution that changes the identity of
the destination queue, (that is, logical to physical name changing), should
only occur once, and only at the originating queue manager.

Subsequent use of the various alias possibilities should be used only when
separating and combining message flows.

Return routing

Messages may contain a return address in the form of the name of a queue and
queue manager. This applies in both a distributed-queuing environment and a
clustering environment. This address is normally specified by the application that
creates the message, but may be modified by any application that subsequently
handles the message, including user exit applications.

Irrespective of the source of this address, any application handling the message
may choose to use this address for returning answer, status, or report messages to
the originating application.

The way these response messages are routed is not different from the way the
original message is routed. You need to be aware that the message flows you
create to other queue managers will need corresponding return flows.

— Physical name conflicts
The destination reply-to queue name has been resolved to a physical queue
name at the original queue manager, and must not be resolved again at the
responding queue manager.

This is a likely possibility for name conflict problems that can only be
prevented by a network-wide agreement on physical and logical queue
names.

Managing queue name translations

This description is mainly provided for application designers and channel planners
concerned with an individual system that has message channels to adjacent
systems. It takes a local view of channel planning and control.

When you create a queue manager alias definition or a remote queue definition,
the name resolution is carried out for every message carrying that name, regardless
of the source of the message. To oversee this situation, which may involve large
numbers of queues in a queue manager network, you keep tables of:

* The names of source queues and of source queue managers with respect to
resolved queue names, resolved queue manager names, and resolved
transmission queue names, with method of resolution

¢ The names of source queues with respect to:
— Resolved destination queue names
— Resolved destination queue manager names

Chapter 4. MQSeries distributed-messaging techniques 53

Managing queue nhame translations

— Transmission queues
Message channel names
Adjacent system names
- Reply-to queue names

Note: The use of the term source in this context refers to the queue name or the
queue manager name provided by the application, or a channel program
when opening a queue for putting messages.

An example of each of these tables is shown in [Lable d, Lable 5, and [Table .

The names in these tables are derived from the examples in this chapter, and this
table is not intended as a practical example of queue name resolution in one node.

Table 4. Queue name resolution at queue manager QMA

Resolved transmission

Source queue
specified when

Source queue manager
specified when queue is

Resolved queue
name

Resolved queue
manager name

queue name

Resolution type

queue is opened | opened

QA_norm - QA_norm QMB QMB Remote queue

(any) QMB - - QMB (none)

QA_norm - QA_norm QMB TX1 Remote queue

QB QMC QB QMD QMB Queue manager alias

Table 5. Queue name resolution at queue manager QMB

Source queue
specified when

Source queue manager
specified when queue is

Resolved queue
name

Resolved queue
manager name

Resolved transmission
queue name

Resolution type

queue is opened | opened

QA_norm - QA_norm QMB - (none)

QA_norm QMB QA_norm QMB - (none)

QA_norm QMB_PRIORITY QA_norm QMB - Queue manager alias
(any) QMC (any) QMC QMC (none)

(any) QMD_norm (any) QMD_norm X1 Queue manager alias
(any) QMD_PRIORITY (any) QMD_PRIORITY QMD_fast Queue manager alias
(any) QMC_small (any) QMC_small TX_small Queue manager alias
(any) QMC_large (any) QMC_large TX_external Queue manager alias
QB_small QMC QB_small QMC TX_small Remote queue
QB_large QMC QB_large QMC TX_large Remote queue

(any) QME (any) QME X1 Queue manager alias
QA QMC QA QMC X1 Remote queue

QB QMD QB QMD X1 Remote queue

Table 6. Reply-to queue name translation at queue manager QMA

Application design

Reply-to alias definition

Local QMGR
QMA

Queue name for messages
QRR

QR

Reply-to queue alias name

Redefined to
QRR at QMA_class1

Channel message sequence numbering

The channel uses sequence numbers to assure that messages are delivered,

delivered without duplication, and stored in the same order as they were taken
from the transmission queue. The sequence number is generated at the sending
end of the channel and is incremented by one before being used, which means that
the current sequence number is the number of the last message sent. This
information can be displayed using DISPLAY CHSTATUS (see IMQSeries MQS(
Command Referencd). The sequence number and an identifier called the LUWID are

54 MQSeries Intercommunication

Message sequence humbering

stored in persistent storage for the last message transferred in a batch. These
values are used during channel start-up to ensure that both ends of the link agree
on which messages have been transferred successfully.

Note: On OS/390, if you are using distributed queuing with CICS, and you do not
use the sequential delivery option, then message sequence numbering is not
used.

Sequential retrieval of messages

If an application puts a sequence of messages to the same destination queue, those
messages can be retrieved in sequence by a single application with a sequence of
MQGET operations, if the following conditions are met:

+ All of the put requests were done from the same application.

* All of the put requests were either from the same unit of work, or all the put
requests were made outside of a unit of work.

e The messages all have the same priority.
* The messages all have the same persistence.

* For remote queuing, the configuration is such that there can only be one path
from the application making the put request, through its queue manager,
through intercommunication, to the destination queue manager and the target
queue.

* The messages are not put to a dead-letter queue (for example, if a queue is
temporarily full).

* The application getting the message does not deliberately change the order of
retrieval, for example by specifying a particular MsgId or Correlld or by using
message priorities.

¢ Only one application is doing get operations to retrieve the messages from the
destination queue. If this is not the case, these applications must be designed to
get all the messages in each sequence put by a sending application.

Note: Messages from other tasks and units of work may be interspersed with the
sequence, even where the sequence was put from within a single unit of
work.

If these conditions cannot be met, and the order of messages on the target queue is
important, then the application can be coded to use its own message sequence
number as part of the message to assure the order of the messages.

Sequence of retrieval of fast, nonpersistent messages

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, Windows V2.1, and Windows NT, nonpersistent messages on a fast channel
may overtake persistent messages on the same channel and so arrive out of
sequence. The receiving MCA puts the nonpersistent messages on the destination
queue immediately and makes them visible. Persistent messages are not made
visible until the next syncpoint.

Chapter 4. MQSeries distributed-messaging techniques 55

Loopback testing

Loopback testing

Loopback testing is a technique on non-OS/390 platforms that allows you to test a
communications link without actually linking to another machine. You set up a
connection between two queue managers as though they are on separate machines,
but you test the connection by looping back to another process on the same
machine. This means that you can test your communications code without
requiring an active network.

The way you do this depends on which products and protocols you are using. For

example the command to allow TCP/IP loopback testing on OS/2 without a
network, is:

ifconfig lo ipaddress
On Windows NT, you can use the “loopback” adapter.

Refer to the documentation for the products you are using for more information.

56 MQSeries Intercommunication

Chapter 5. DQM implementation

This chapter describes the implementation of the concepts introduced in

4 ”
? a

Distributed queue management (DQM):

* Enables you to define and control communication channels between queue
managers

* Provides you with a message channel service to move messages from a type of
local queue, known as a transmission queue, to communication links on a local
system, and from communication links to local queues at a destination queue
manager

* Provides you with facilities for monitoring the operation of channels and
diagnosing problems, using panels, commands, and programs

This chapter discusses:

% 7

Functions of DQM

Distributed queue management has these functions:
* Message sending and receiving

* Channel control

* Initialization file

¢ Data conversion

¢ Channel exits

Channel definitions associate channel names with transmission queues,
communication link identifiers, and channel attributes. Channel definitions are
implemented in different ways on different platforms. Message sending and
receiving is controlled by programs known as message channel agents (MCAs),
which use the channel definitions to start up and control communication.

The MCAs in turn are controlled by DQM itself. The structure is platform
dependent, but typically includes listeners and trigger monitors, together with
operator commands and panels.

A message channel is a one-way pipe for moving messages from one queue manager
to another. Thus a message channel has two end-points, represented by a pair of
MCAs. Each end-point has a definition of its end of the message channel. For
example, one end would define a sender, the other end a receiver.

© Copyright IBM Corp. 1993, 2000 57

Functions of DQM

For details of how to define channels, see:

For information about channel exits, see ‘Chapter 38_Channel-exit programs” odl

Message sending and receiving

w shows the relationships between entities when messages are transmitted,
and shows the flow of control.

Operator
Synchronization Channel
Information definitions
A A A
Status Commands
A
User Message Message User
Exits Channel Commands Channel Control Commands Channel Exits
Agent Function Agent
* (MCA) (MCA) *
Status Status
*x | B g— *
Channel : : Listener
SENDING Initiator | i RECEIVING
/'y ' ' /Y
Messages Messages

A4

. ,
1 1
Communications

Messages Network Messages

l Messages T

TO ADJACENT QUEUE MANAGER

Queue | Transmission

Trigger L——— Initiation

message

—_————e e — |

Figure 28. Distributed queue management model

Notes:

1. There is one MCA per channel, depending on the platform. There may be one
or more channel control functions for a given queue manager.

2. The implementation of MCAs and channel control functions is highly platform
dependent; they may be programs or processes or threads, and they may be a
single entity or many comprising several independent or linked parts.

58 MQSeries Intercommunication

Message sending and receiving

3. All components marked with a star can use the MQIL.

Channel parameters
An MCA receives its parameters in one of several ways:

* If started by a command, the channel name is passed in a data area. The MCA
then reads the channel definition directly to obtain its attributes.

e For sender, and in some cases server channels, the MCA can be started
automatically by the queue manager trigger. The channel name is retrieved from
the trigger process definition, where applicable, and is passed to the MCA. The
remaining processing is the same as that described above.

* If started remotely by a sender, server, requester, or client-connection, the
channel name is passed in the initial data from the partner message channel
agent. The MCA reads the channel definition directly to obtain its attributes.

Certain attributes not defined in the channel definition are also negotiable:

Split messages
If one end does not support this, split messages will not be sent.

Conversion capability
If one end cannot perform the necessary code page conversion or numeric
encoding conversion when needed, the other end must handle it. If neither
end supports it, when needed, the channel cannot start.

Distribution list support
If one end does not support distribution lists, the partner MCA sets a flag
in its transmission queue so that it will know to intercept messages
intended for multiple destinations.

Channel status and sequence numbers

Message channel agent programs keep records of the current sequence number and
logical unit of work number for each channel, and of the general status of the
channel. Some platforms allow you to display this status information to help you
control channels.

Channel control function

The channel control function provides facilities for you to define, monitor, and
control channels. Commands are issued through panels, programs, or from a
command line to the channel control function. The panel interface also displays
channel status and channel definition data.

Note: For the channel control function on MQSeries for OS/2 Warp, Windows NT,
Windows V2.1, UNIX systems, Digital OpenVMS, and Tandem NSK, you
can use Programmable Command Formats or those MQSerles commands
(MQSC) and control Commands that are detailed in

The commands fall into the following groups:
¢ Channel administration

¢ Channel control

¢ Channel status monitoring

Channel administration commands deal with the definitions of the channels. They
enable you to:
e Create a channel definition

Chapter 5. DQM implementation 59

Channel control function

* Copy a channel definition
e Alter a channel definition
e Delete a channel definition

Channel control commands manage the operation of the channels. They enable you

to:

* Start a channel

* Stop a channel

* Re-synchronize with partner (in some implementations)

* Reset message sequence numbers

* Resolve an in-doubt batch of messages

* Ping; send a test communication across the channel (not on MQSeries for
Windows)

Channel monitoring displays the state of channels, for example:
* Current channel settings

* Whether the channel is active or inactive

* Whether the channel terminated in a synchronized state

Preparing channels

Before trying to start a message channel or MQI channel, you must make sure that
all the attributes of the local and remote channel definitions are correct and

compatible. ’Chapter 6 Channel attributes” on page 774 describes the channel

definitions and attributes.

Although you set up explicit channel definitions, the channel negotiations carried
out when a channel starts up may override one or other of the values defined. This
is quite normal, and transparent, and has been arranged like this so that otherwise
incompatible definitions can work together.

Auto-definition of channels

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, and
0S/390 (cluster-receiver and cluster-sender channels only), if there is no
appropriate channel definition, then for a receiver or server-connection channel
that has auto-definition enabled, a definition is created automatically. The
definition is created using:

1. The appropriate model channel definition, SYSTEM.AUTO.RECEIVER or
SYSTEM.AUTO.SVRCONN. The model channel definitions for auto-definition
are the same as the system defaults, SYSTEM.DEF.RECEIVER and
SYSTEM.DEESVRCONN, except for the description field, which is
“Auto-defined by” followed by 49 blanks. The systems administrator can
choose to change any part of the supplied model channel definitions.

2. Information from the partner system. The partner’s values are used for the
channel name and the sequence number wrap value.

3. A channel exit program, which you can use to alter the values created by the
auto-definition. See L - 7

The description is then checked to determine whether it has been altered by an
auto-definition exit or because the model definition has been changed. If the first
44 characters are still “Auto-defined by” followed by 29 blanks, the queue manager
name is added. If the final 20 characters are still all blanks the local time and date
are added.

60 MQSeries Intercommunication

Channel control function

Once the definition has been created and stored the channel start proceeds as
though the definition had always existed. The batch size, transmission size, and
message size are negotiated with the partner.

Defining other objects

Before a message channel can be started, both ends must be defined (or enabled
for auto-definition) at their respective queue managers. The transmission queue it
is to serve must be defined to the queue manager at the sending end, and the
communication link must be defined and available. In addition, it may be
necessary for you to prepare other MQSeries objects, such as remote queue
definitions, queue manager alias definitions, and reply-to queue alias definitions,
so as to implement the scenarios described in L i

”

For information about MQI channels, see the MQSeries Clientd book.

Starting a channel (not MQSeries for Windows)
A channel can be caused to start transmitting messages in one of four ways. It can
be:

* Started by an operator (not receiver, cluster-receiver or server-connection
channels).

 Triggered from the transmission queue (sender, and possibly server channels
only). You will need to prepare the necessary objects for triggering channels.

* Started from an application program (not receiver, cluster-receiver or
server-connection channels).

* Started remotely from the network by a sender, cluster-sender, requester, server,
or client-connection channel. Receiver, cluster-receiver and possibly server and
requester channel transmissions, are started this way; so are server-connection
channels. The channels themselves must already be started (that is, enabled).

Note: Because a channel is ‘started’ it is not necessarily transmitting messages, but,
rather, it is ‘enabled’ to start transmitting when one of the four events
described above occurs. The enabling and disabling of a channel is achieved
using the START and STOP operator commands.

Starting a channel on MQSeries for Windows
On MQSeries for Windows you start channels in the following ways:

* Using the start connection function of the MQSeries for Windows properties
dialog. This function starts the components defined for the connection. The
components are a queue manager, and optionally, a channel group. The channel
group can contain the listener and up to eight channels. See the MQSeries for
Windows User’s Guide.

¢ Using the START CHANNEL MQSC command or, in Version 2.1, the START
CHANNEL PCF command. This command starts just the specified channel. The
queue manager must already be running.

Chapter 5. DQM implementation 61

Channel control function

Channel states

% shows the hierarchy of all possible channel states, and Figure 30 orl
s

hows the links between them. These apply to all types of message
channel. On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris,
and Windows NT, these states apply also to server-connection channels.

Channel

|

U H

Inactive Current

[

| H [H

Stopped Starting Retrying Active

I
| H H H H H

Initializing Binding Requesting Running Paused Stopping

Figure 29. Channel states
Current and active

The channel is “current” if it is in any state other than inactive. A current channel
is “active” unless it is in RETRYING, STOPPED, or STARTING state.

62 MQSeries Intercommunication

Channel control function

Start
channel

START command
or
TRIGGER
or
REMOTE INITIATION
or
CHANNEL INITIATOR

-:> STARTING

One attempt to
establish session fails

STOPPED
Disabled

RETRYING
Waiting until time
for next attempt

BINDING
Establishing session and
initial data exchange

PAUSED
Waiting for
message-retry
interval

Retryable error, one
attempt failed, retry
count not exhausted

STOP command,
non-retryable error
or retry limit reached

RUNNING
Transferring or ready
to transfer

Error or STOP request or
disconnect interval expires
STOPPING
Check limits if

retrying

)

Disconnect interval expires

Figure 30. Flows between channel states

Notes:

1. When a channel is in one of the six states highlighted in w
(INITIALIZING, BINDING, REQUESTING, RUNNING, PAUSED, or
STOPPING), it is consuming resource and a process or thread is running; the

Chapter 5. DQM implementation 63

Channel control function

channel is active. (INITIALIZING occurs on OS/390 and on V5.1 of MQSeries
for AIX, AS/400, Compaq Tru64 UNIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT. PAUSED does not occur on OS/390.)

2. When a channel is in STOPPED state, the session may be active because the
next state is not yet known.

Specifying the maximum number of current channels: You can specify the
maximum number of channels that can be current at one time. This is the number
of channels that have entries in the channel status table, including channels that
are retrying and channels that are disabled (that is, stopped). Specify this in the
channel initiator parameter module for OS/390, the queue manager initialization
file for OS/400, the queue manager configuration file for OS/2, Tandem NSK, and
UNIX systems, or the registry for Windows NT. For more information about the
alues you set usmg the 1n1t1ahzat10n or the conflguratlon file see
. For more

information about spec1fy1ng the maximum number of channels, see the

book for V5.1 of MQSeries for AIX, AS/400, Compaq Tru64
UNIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, the MQSeries for AS/400

Eysizm_A.d.m.st.tm.ﬁad book for MQSeries for AS/400, or the MQSeries for OS/390
Concepts and Planning Guide, SC34-5650 for your platform.

Notes:

1. On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
Windows NT, server-connection channels are included in this number.

2. A channel must be current before it can become active. If a channel is started,
but cannot become current, the start fails.

3. If you are using CICS for distributed queuing on OS/390, you cannot specify
the maximum number of channels.

4. MQSeries for Windows does not support the qm.ini file. The maximum number
of current channels and the maximum number of active channels is eight.

Specifying the maximum number of active channels: You can also specify the
maximum number of active channels (except on MQSeries for OS/390 using CICS
and MQSeries for Windows). You can do this to prevent your system being
overloaded by a large number of starting channels. If you use this method, you
should set the disconnect interval attribute to a low value to allow waiting
channels to start as soon as other channels terminate.

Each time a channel that is retrying attempts to establish connection with its
partner, it must become an active channel. If the attempt fails, it remains a current
channel that is not active, until it is time for the next attempt. The number of times
that a channel will retry, and how often, is determined by the retry count and retry
interval channel attributes. There are short and long values for both these
attributes. See L z for more information.

When a channel has to become an active channel (because a START command has
been issued, or because it has been triggered, or because it is time for another retry
attempt), but is unable to do so because the number of active channels is already
at the maximum value, the channel waits until one of the active slots is freed by
another channel instance ceasing to be active. If, however, a channel is starting
because it is being initiated remotely, and there are no active slots available for it at
that time, the remote initiation is rejected.

Whenever a channel, other than a requester channel, is attempting to become
active, it goes into the STARTING state. This is true even if there is an active slot

64 MQSeries Intercommunication

Channel control function

immediately available, although in this case it will only be in STARTING state for
a very short time. However, if the channel has to wait for an active slot, it is in
STARTING state while it is waiting.

Requester channels do not go into STARTING state. If a requester channel cannot
start because the number of active channels is already at the limit, the channel
ends abnormally.

Whenever a channel, other than a requester channel, is unable to get an active slot,
and so waits for one, a message is written to the log or the OS/390 console, and an
event is generated. When a slot is subsequently freed and the channel is able to
acquire it, another message and event are generated. Neither of these events and
messages are generated if the channel is able to acquire a slot straightaway.

If a STOP CHANNEL command is issued while the channel is waiting to become
active, the channel goes to STOPPED state. A Channel-Stopped event is raised as
usual.

On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
Windows NT, server-connection channels are included in the maximum number of
active channels.

For more information about specifying the maximum number of active channels,
see the hi@&ezmj.ystem_AMﬂmM book for V5.1 of MQSeries for AIX, AS/400,
Compaq Tru64 UNIX, HP-UX, OS/ 2 Warp, Sun Solaris, and Windows NT, the

book for MQSeries for AS/400, the
MQSeries for Windows User’s Guide, or the MQSeries for OS/390 Concepts and
Planning Guide, SC34-5650 for the OS/390 platform.

Channel errors

Errors on channels cause the channel to stop further transmissions. If the channel
is a sender or server, it goes to RETRY state because it is possible that the problem
may clear itself. If it cannot go to RETRY state, the channel goes to STOPPED state.
For sending channels, the associated transmission queue is set to GET(DISABLED)
and triggering is turned off. (A STOP command takes the side that issued it to
STOPPED state; only expiry of the disconnect interval will make it end normally
and become inactive.) Channels that are in STOPPED state need operator

intervention before they will restart (see 'Restarting stopped channels” on page 69).

Note: For Digital OpenVMS, OS/2 Warp, OS/400, UNIX systems, Tandem NSK,
and Windows NT, in order for retry to be attempted a channel initiator must
be running. On platforms other than V5.1 of MQSeries for AIX, AS/400,
Compagq Tru64 UNIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
the channel initiator must be monitoring the initiation queue specified in the
transmission queue that the channel is using. MQSeries for Windows does
not have a channel initiator; restarts are controlled by the MQSeries
properties daemon task running in the background.

G ”

describes how retrying works. If the
error clears, the channel restarts automatically, and the transmission queue is
re-enabled. If the retry limit is reached without the error clearing, the channel goes
to STOPPED state. A stopped channel must be restarted manually by the operator.
If the error is still present, it does not retry again. When it does start successfully,
the transmission queue is re-enabled.

Chapter 5. DQM implementation 65

Channel control function

On MQSeries for AIX, HP-UX, OS/2 Warp, OS/390 without CICS, Sun Solaris, and
Windows NT, if the channel initiator or queue manager stops while a channel is in
RETRYING or STOPPED status, the channel status is remembered when the
channel initiator or queue manager is restarted.

On MQSeries for OS/2 Warp, Windows NT, OS/400, Tandem NSK, and UNIX
systems, if a channel is unable to put a message to the target queue because that
queue is full or put inhibited, the channel can retry the operation a number of
times (specified in the message-retry count attribute) at a given time interval
(specified in the message-retry interval attribute). Alternatively, you can write your
own message-retry exit that determines which circumstances cause a retry, and the
number of attempts made. The channel goes to PAUSED state while waiting for
the message-retry interval to finish.

ee Chapter 6 _Channel attributes” on page 74 for information about the channel
attrlbutes and ['Chapter 38 Channel-exit programs” on page 519 for information

about the message-retry exit.

Checking that the other end of the channel is still available

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, and Windows NT, you can use the heartbeat-interval channel attribute to
specify that flows are to be passed from the sending MCA when there are no
messages on the transmission queue. This is described in ‘Heartheat interval

”

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, VSE/ESA, and Windows NT, if you are using TCP as your transport
protocol, you can use the SO_KEEPALIVE option on the TCP/IP socket. If you
specify this option, TCP periodically checks that the other end of the connection is
still available, and if it is not, the channel is terminated.

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
if you are using TCP as your transport protocol, the receiving end of inactive
connections can also be closed if no data is received for a period of time. This
period of time is determined according to the HBINT (heartbeat interval) value.

The time-out value is set as follows:

1. For an initial number of flows, before any negotiation has taken place, the
timeout is twice the HBINT value from the channel definition.

2. When the channels have negotiated a HBINT value, the timeout is set to twice
this value.

Notes:
1. If either of the above values is zero, then there is no timeout.

2. For connections that do not support heartbeats, the HBINT value is negotiated
to zero in step B and hence there is no timeout, so we must use TCP/IP
KEEPALIVE.

3. For client connections, heartbeats are only flowed from the server when the
client issues an MQGET call with wait; none are flowed during other MQI calls.
Therefore, you are not recommended to set the heartbeat interval too small for
client channels. For example, if the heartbeat is set to ten seconds, an MQCMIT
call will fail (with MQRC_CONNECTION_BROKEN) if it takes longer than
twenty seconds to commit because no data will have been flowed during this
time. This can happen with large units of work. However, it should not happen

66 MQSeries Intercommunication

Channel control function

if appropriate values are chosen for the heartbeat interval because only MQGET
with wait should take significant periods of time.

4. Aborting the connection after twice the heartbeat interval is valid because we
expect flows (data or heartbeat) at least every heartbeat interval. If the
heartbeat interval is set too small, however, problems can occur, especially if
channel exits are in use. For example, if the HBINT value is one second, and a
send or receive exit is used, the receiving end will only wait for two seconds
before aborting the channel. This may not be long enough if the sending MCA
spends a long time in the send exit, perhaps encrypting the message.

If you have unreliable channels that are suffering from TCP errors, use of
SO_KEEPALIVE will mean that your channels are more likely to recover.

You can specify time intervals to control the behavior of the SO_KEEPALIVE
option. When you change the time interval, only TCP/IP channels started after the
change are affected. The value that you choose for the time interval should be less
than the value of the disconnect interval for the channel.

For more information about using the SO_KEEPALIVE option on OS/390, see
MQSeries fnr 0S/390 anrppfq and Plﬂwniwg Guidd . For other platforms, see the

chapter about setting up communications for your platform in this manual.

Adopting an MCA

If a channel suffers a communications failure, the receiver channel could be left in
a ‘'communications receive’ state. When communications are re-established the
sender channel attempts to reconnect. If the remote queue manager finds that the
receiver channel is already running it does not allow another version of the same
receiver channel to be started. This problem requires user intervention to rectify
the problem or the use of system keepalive.

The Adopt MCA function solves the problem automatically. It enables MQSeries to
cancel a receiver channel and to start a new one in its place.

The function can be set up with various options. For more information see
MQSeries for 0S/390 System Setup Guidd for OS/390 and the appropriate

publications for other platforms.

Stopping and quiescing channels (not MQSeries for Windows)

Message channels are designed to be long-running connections between queue
managers with orderly termination controlled only by the disconnect interval
channel attribute. This mechanism works well unless the operator needs to
terminate the channel before the disconnect time interval expires. This can occur in
the following situations:

e System quiesce

* Resource conservation

* Unilateral action at one end of a channel

In this case, an operator command is provided to allow you to stop the channel.
The command provided varies by platform, as follows:

For 0S/390 without CICS:
The STOP CHANNEL MQSC command or the Stop a channel panel

For OS/390 using CICS:
The Stop option on the Message Channel List panel

Chapter 5. DQM implementation 67

Channel control function

For OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems:
The STOP CHANNEL MQSC or PCF command

For OS/400:
ENDMOQMCHL or the END option on the WRKMQMCHL panel

For VSE/ESA:
The CLOSE command from the MOQMMSC panel or MQCL transaction
closes (rather than stops) the channel.

For all of these commands there is a FORCE and a QUIESCE option. The FORCE
option attempts to stop the channel immediately and may require the channel to
resynchronize when it restarts because the channel may be left in doubt. The
QUIESCE option attempts to end the current batch of messages and then terminate
the channel. Note that both of these options leave the channel in a STOPPED state,
requiring operator intervention to restart it.

Stopping the channel at the sending end is quite effective but does require operator
intervention to restart. At the receiving end of the channel, things are much more
difficult because the MCA is waiting for data from the sending side, and there is
no way to initiate an orderly termination of the channel from the receiving side; the
stop command is pending until the MCA returns from its wait for data.

Consequently there are three recommended ways of using channels, depending
upon the operational characteristics required:

* If you want your channels to be long running, you should note that there can be
orderly termination only from the sending end. When channels are interrupted,
that is, stopped, operator intervention (a START CHANNEL command) is
required in order to restart them.

 If you want your channels to be active only when there are messages for them
to transmit, you should set the disconnect interval to a fairly low value. Note
that the default setting is quite high and so is not recommended for channels
where this level of control is required. Because it is difficult to interrupt the
receiving channel, the most economical option is to have the channel
automatically disconnect and reconnect as the workload demands. For most
channels, the appropriate setting of the disconnect interval can be established
heuristically.

* For MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, and Windows NT, you can use the heartbeat-interval attribute to cause
the sending MCA to send a heartbeat flow to the receiving MCA during periods
in which it has no messages to send. This releases the receiving MCA from its
wait state and gives it an opportunity to quiesce the channel without waiting for
the disconnect interval to expire. Give the heartbeat interval a lower value than
the value of the disconnect interval.

Notes:

1. It is particularly advisable to set the disconnect interval to a low value, or to
use heartbeats, for server channels. This is to allow for the case where the
requester channel ends abnormally (for example, because the channel was
canceled) when there are no messages for the server channel to send. In this
case, the server does not detect that the requester has ended (it will only do
this the next time it tries to send a message to the requester). While the
server is still running, it holds the transmission queue open for exclusive
input in order to get any more messages that may arrive on the queue. If an
attempt is made to restart the channel from the requester, the start request

68 MQSeries Intercommunication

Channel control function

receives an error because the server still has the transmission queue open for
exclusive input. It is necessary to stop the server channel, and then restart
the channel from the requester again.

2. On 0S/390, without CICS, and on V5.1 of MQSeries for AIX, AS/400,
Compaq Tru64 UNIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
server-connection channels can also be stopped like receiver channels.

Stopping and quiescing channels (MQSeries for Windows)

On MQSeries for Windows you can stop or quiesce channels in the following

ways:

* Using the stop connection function of the MQSeries for Windows properties
dialog. This function stops the queue manager and any channels. Channels are
forced to stop if necessary and may go into in-doubt status if a batch of
messages is currently in transit. Any fast, nonpersistent messages that are in
transit are lost.

* Using the STOP CHANNEL MQSC command or, in Version 2.1, the STOP
CHANNEL PCF command. You can specify a FORCE or QUIESCE option on
this command. Using this command stops just the specified channel and leaves
the queue manager running.

Restarting stopped channels

When a channel goes into STOPPED state (either because you have stopped the
channel manually using one of the methods given in i iesci
i i ” , or because of a channel error)

you have to restart the channel manually.

To do this, issue one of the following commands:

For MQSeries for OS/390 without CICS:
The START CHANNEL MQSC command or the Start a channel panel

For MQSeries for 0OS/390 using CICS:
The Start option on the Message Channel List panel

For MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK,
and UNIX systems:
The START CHANNEL MQSC or PCF command

For MQSeries for AS/400:
The START command on the WRKMQMCHL panel, the STRMQMCHL
command, or the START CHANNEL MQSC or PCF command

For MQSeries for Windows:
The START CHANNEL MQSC command, in Version 2.1 the START
CHANNEL PCF command, or the start connection function of the
MQSeries properties dialog.

For MQSeries for VSE/ESA:
The OPEN command from the MOQMMSC panel or MQCL transaction
opens (rather than restarts) the channel.

For sender or server channels, when the channel entered the STOPPED state, the
associated transmission queue was set to GET(DISABLED) and triggering was set
off. When the start request is received, these attributes are reset automatically. On
V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and
MQSeries for OS/390 without CICS, if the channel initiator or queue manager
stops while a channel is in RETRYING or STOPPED status, the channel status is

Chapter 5. DQM implementation 69

Channel control function

remembered when the channel initiator or queue manager is restarted. On other
platforms (apart from MQSeries for Windows), if the channel initiator or queue

manager is restarted the status is lost and you have to alter the queue attributes
manually to re-enable triggering of the channel.

Note: If you are using CICS for distributed queuing on OS/390, these queue
attributes are not reset automatically; you always have to alter them
manually when you restart a channel.

In-doubt channels

Observe the distinction between a channel being in doubt, which means that it is
in doubt with its partner channel about which messages have been sent and
received, and the queue manager being in doubt about which messages should be
committed to a queue.

Normally, all resolution of in-doubt situations on channels is handled
automatically. Even if communication is lost, leaving the channel in doubt with a
batch of messages at the sender whose receipt status is unknown, the situation will
be resolved when communications are reestablished. Sequence number and
LUWID records are kept for this purpose. (In fact, channels are only in doubt for
the short period at the end of a batch while LUWID information is exchanged, and
no more than one batch of messages can be in doubt for each channel.)

In exceptional circumstances it is possible to manually resynchronize the channel.
(In this case, the term manual may refer to operators or to programs that contain
MQSeries system management commands.) The manual resynchronization process
works as follows. MQSC commands are used in this description; you can use the
PCF equivalents instead.

1. On platforms other than MQSeries for Windows, use the DISPLAY CHSTATUS
command to find the last-committed logical unit of work ID (LUWID) for each
side of the channel. Do this using the following commands:

e For the in-doubt side of the channel:
DISPLAY CHSTATUS(name) SAVED CURLUWID

You can use the CONNAME and XMITQ parameters to further identify the
channel.

* For the receiving side of the channel:
DISPLAY CHSTATUS (name) SAVED LSTLUWID

You can use the CONNAME parameter to further identify the channel.

The commands are different because only one side (the sending side) of the
channel can be in doubt. The receiving side is never in doubt.

On MQSeries for AS/400, the DISPLAY CHSTATUS command can be executed
from a file using the STRMQMMOQSC command. Alternatively, the Work with
MQM Channel Status CL command, WRKMQMCHST, provides similar
function.

On MQSeries for Windows, the DISPLAY CHSTATUS command is not
supported. Instead, use the Status button on the Components tab of the
MQSeries for Windows properties dialog.

2. If you find that the two LUWIDs are the same, the receiving side has
committed the unit of work that the sender considers to be in doubt. Therefore,

70 MOQSeries Intercommunication

Channel control function

the sending side can remove the in-doubt messages from the transmission
queue and re-enable it. This is done with the following channel RESOLVE
command:

RESOLVE CHANNEL (name) ACTION(COMMIT)

3. If you find that the two LUWIDs are different, the receiving side has not
committed the unit of work that the sender considers to be in doubt. On some
platforms you can find out how many messages are in doubt by displaying the
saved channel status. The sending side needs to retain the in-doubt messages
on the transmission queue and re-send them. This is done with the following
channel RESOLVE command:

RESOLVE CHANNEL (name) ACTION(BACKOUT)

On MQSeries for AS/400, the Resolve MQM Channel command,
RSVMQMCHL, provides a similar function.

Once this process is complete the channel will no longer be in doubt. This means
that, if required, the transmission queue can be used by another channel.

Problem determination

There are two distinct aspects to problem determination:
¢ Problems discovered when a command is being submitted
¢ Problems discovered during operation of the channels

Command validation

Commands and panel data must be free from errors before they are accepted for
processing. Any errors found by the validation are immediately notified to the user
by error messages.

Problem diagnosis begins with the interpretation of these error messages and
taking the recommended corrective action.

Processing problems

Problems found during normal operation of the channels are notified to the system
console or the system log or, for MQSeries for Windows, the channel log. Problem
diagnosis begins with the collection of all relevant information from the log, and
continues with analysis to identify the problem.

Confirmation and error messages are returned to the terminal that initiated the
commands, when possible.

Messages and codes
Where provided, the Messages and Codes manual of the particular platform can help
with the primary diagnosis of the problem.

What happens when a message cannot be delivered?

Eigure 31 on page 74 shows the processing that occurs when an MCA is unable to
put a message to the destination queue. (Note that the options shown do not apply

on all platforms.)

Chapter 5. DQM implementation 71

Undelivered messages

MQPUT

Channels / Qm2 \

-—,————————— - ————

[Message Flow

Transmission
Queue

Transient Failure
Retry Exit

)
Application
Queue

Returnto
Sender

— I
Transmission
Queue Dead Letter

Queue /
{

DLQHandler

Figure 31. What happens when a message cannot be delivered

As shown in the figure, the MCA can do several things with a message that it
cannot deliver. The action taken is determined by options specified when the
channel is defined and on the MQPUT report options for the message.

1. Message-retry
If the MCA is unable to put a message to the target queue for a reason that
could be transitory (for example, because the queue is full), the MCA has
the option to wait and retry the operation later. You can determine if the
MCA waits, for how long, and how many times it retries.

* You can specify a message-retry time and interval for MQPUT errors
when you define your channel. If the message cannot be put to the
destination queue because the queue is full, or is inhibited for puts, the
MCA retries the operation the number of times specified, at the time
interval specified.

* You can write your own message-retry exit. The exit enables you to
specify under what conditions you want the MCA to retry the MQPUT
or MQOPEN operation. Specify the name of the exit when you define
the channel.

Message-retry is not available on MQSeries for OS/390, MQSeries for
Windows, or MQSeries for VSE/ESA.

2. Return-to-sender
If message-retry was unsuccessful, or a different type of error was
encountered, the MCA can send the message back to the originator.

To enable this, you need to specify the following options in the message
descriptor when you put the message to the original queue:
¢ The MQRO_EXCEPTION_WITH_FULL_DATA report option

72 MQSeries Intercommunication

Undelivered messages

¢ The MQRO_DISCARD_MSG report option
¢ The name of the reply-to queue and reply-to queue manager

If the MCA is unable to put the message to the destination queue, it
generates an exception report containing the original message, and puts it
on a transmission queue to be sent to the reply-to queue specified in the
original message. (If the reply-to queue is on the same queue manager as
the MCA, the message is put directly to that queue, not to a transmission
queue.)

Return-to-sender is not available on MQSeries for OS/390 or on MQSeries
for VSE/ESA.

3. Dead-letter queue
If a message cannot be delivered or returned, it is put on to the dead-letter
queue. You can use the DLQ handler to process the message. This is
described in the MQSeries System Administratiod book for V5.1 of MQSeries
for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, the @
book for MQSeries for OS/400, and in the
for OS/390.

If the dead-letter queue is not available, the sending MCA leaves the
message on the transmission queue, and the channel stops. On a fast
channel, nonpersistent messages that cannot be written to a dead-letter
queue are lost.

Dead-letter queues are not supported on MQSeries for Windows.

Initialization and configuration files

The handling of channel initialization data depends on your MQSeries platform.

0S/390 without CICS

In MQSeries for OS/390 without CICS, initialization and configuration information
is in the channel initiator parameter module CSQXPARM. You can also put
commands in the CSQINPX initialization input data set, which is processed every
time you start the channel initiator if you specify the optional DD statement
CSQINPX in the channel initiator started task procedure. See IMQSeries for 0S/39(1

Concepts and Planning Guiddfor information about both of these.
0S/390 using CICS

In MQSeries for OS/390 using CICS there is no channel initiator.

Windows NT

On MQSeries for Windows NT, the registry file holds basic configuration
information about the MQSeries installation. That is, information relevant to all of
the queue managers on the MQSeries system and also information relating to
individual queue managers.

0S/2, Digital OpenVMS, Tandem NSK, 0S/400 and UNIX
systems

On MQSeries for OS/2 Warp, MQSeries for Compaq (DIGITAL) OpenVMS,
MQSeries for Tandem NonStop Kernel, OS/400 and MQSeries on UNIX systems,
there are configuration files to hold basic configuration information about the
MQSeries installation.

Chapter 5. DQM implementation 73

Initialization and configuration files

There are two configuration files: one applies to the machine, the other applies to
an individual queue manager.

MQSeries configuration file

This holds information relevant to all of the queue managers on the MQSeries
system. The file is called MQSINI on Tandem NSK and mgs.ini on other platforms.
It is fully described in the lAALQSamsﬁysi:em_Adm.Lmstmtzad book for MQSeries for
AIX, MQSeries for HP-UX, MQSeries for OS/2 Warp, and MQSeries for Sun
Solaris, in the MOSeries for AS/400 System Administration book for MQSeries for

AS/400, or in the Mgmmasw&c@mp&mawg_&udé for 0S/390.

Queue manager configuration file

The queue manager configuration file holds configuration information relating to
one particular queue manager. The file is called QMINI on Tandem NSK, and
gm.ini on other platforms.

It is created during queue manager creation and may hold configuration
information relevant to any aspect of the queue manager. Information held in the
file includes details of how the configuration of the log differs from the default in
MQSeries configuration file.

The queue manager configuration file is held in the root of the directory tree
occupied by the queue manager. On MQSeries for Windows NT, the qm.ini file is
held in the registry. For example, for the DefaultPath attributes, the queue manager
configuration files for a queue manager called QMNAME would be:

For OS/2:
c:\mgm\gmgrs\QMNAME\gm. ini

For UNIX systems:
/var/mgm/qgmgrs/QMNAME/qgm. ini

For Digital OpenVMS:
mgs_root: [mgm.gmgrs.QMNAME] gm. ini

For Tandem NSK:

The file is held in the subvolume of the queue manager. For example, the path and
name for a configuration file for a queue manager called QMNAME could be
$VOLUME.QMNAMED.QMINL

An excerpt of a gm.ini file follows. It specifies that the TCP/IP listener is to listen
on port 2500, the maximum number of current channels is to be 200 and the
maximum number of active channels is to be 100.
TCP:
Port=2500
CHANNELS :
MaxChannels=200
MaxActiveChannels=100

Note: For Tandem NSK, the format of the qm.ini file is slightly different. For more
details about this, see the MQSeries for Tandem NonStop Kernel System
Management Guide.

For OS/400:
/QIBM/UserData/mqm/gmgrs/QMNAME/gm.ini

74 MQSeries Intercommunication

Initialization and configuration files

For more information about gm.ini files see [!Appendix D. Configuration fild

”

VSE/ESA

There is no gm.ini file on VSE/ESA. Instead, use the Configuration main menu on
the MOMMCEFG panel to configure the queue manager.

Data conversion

An MQSeries message consists of two parts:
* Control information in a message descriptor
* Application data

Either of the two parts may require data conversion when sent between queues on
different queue managers. For information about data conversion, see the

Wpplication Programming Guidd.

Writing your own message channel agents

MQSeries products other than MQSeries for Windows allow you to write your
own message channel agent (MCA) programs or to install one from an
independent software vendor. You might want to do this to make an MQSeries
product interoperate over your own, proprietary communications protocol or to
send messages over a protocol that MQSeries does not support. (You cannot write
your own MCA to interoperate with an MQSeries-supplied MCA at the other end.)

If you decide to use an MCA that was not supplied by MQSeries, you need to
consider the following.

Message sending and receiving
You need to write a sending application that gets messages from wherever
your application puts them, for example from a transmission queue (see
the MQSeries Application Programming Referencd book), and sends them out
on a protocol with which you want to communicate. You also need to
write a receiving application that takes messages from this protocol and
puts them onto destination queues. The sending and receiving applications
use the message queue interface (MQI) calls, not any special interfaces.

You need to ensure that messages are delivered once and once only.
Syncpoint coordination can be used to help with this.

Channel control function
You need to provide your own administration functions to control
channels. You cannot use MQSeries channel administration functions either
for configuring (for example, the DEFINE CHANNEL command) or
monitoring (for example, DISPLAY CHSTATUS) your channels.

Initialization file
You need to provide your own initialization file, if you require one.

Application data conversion
You will probably want to allow for data conversion for messages you
send to a different system. If so, use the MQGMO_CONVERT option on
the MQGET call when retrieving messages from wherever your application
puts them, for example the transmission queue.

Chapter 5. DQM implementation 75

Writing message channel agents

User exits
Consider whether you need user exits. If so, you can use the same
interface definitions that MQSeries uses.

Triggering
If your application puts messages to a transmission queue, you can set up

the transmission queue attributes so that your sending MCA is triggered
when messages arrive on the queue.

Channel initiator
You may need to provide your own channel initiator.

76 MQSeries Intercommunication

Chapter 6. Channel attributes

The previous chapters have introduced the basic concepts of the product, the
business perspective basis of its design, its implementation, and the control
features.

This chapter describes the channel attributes held in the channel definitions. This is
product-sensitive programming interface information.

You choose the attributes of a channel to be optimal for a given set of
circumstances for each channel. However, when the channel is running, the actual
values may have changed during startup negotiations. See L. i Z

Many attributes have default values, and you can use these for most channels.
However, in those circumstances where the defaults are not optimal, refer to this
chapter for guidance in selecting the correct values.

Note: In MQSeries for AS/400, most parameters can be specified as *SYSDFTCHL,
which means that the value is taken from the system default channel in
your system.

Channel attributes in alphabetical order

MQSeries for some platforms may not implement all the attributes shown in the
list. Exceptions and platform differences are mentioned in the individual attribute
descriptions, where relevant.

The keyword that you can specify in MQSC is shown in brackets for each attribute.
(Attributes that apply only to MQSeries for OS/390 with CICS do not have MQSC
keywords.)

The attributes are arranged in alphabetical order, as follows:

Attribute See page
[Auto start (ATITOSTART]
[Alter date (ATTDATE]
[Alter fime (ATTTIME)
Batch interval (BATCHINT] i
Batch size (RATCHSZ] i
Channel name (CHANNEI)
Channel type (CHITYPE) Rl
o e 5
Cluster (CTIISTER)

Cluster namelist (CTTISNI) k3
Connection name (CONNAME] B2
Convert message (CONVERT) %]
Deorinbon (DEaCT] ¥
Lgng_retr.)ucomt.ﬁ.QNGRDd |
Eong retry interval T ONCTMR] kd

© Copyright IBM Corp. 1993, 2000 77

Channel attributes

Attribute

(7]
(0]
(]
sl
o
Qa9
[d]

L1 A2 mode name (MODENAME)

Mpcqagp retry count (MRRTY)

N = - o e
Password (PASSWQRD)

PUT_authority (PL ITAITT)I

Becuritv exit name (SCYEXIT)
Bend exit name (SENDEXIT)
Bhort retry count (SHORTRTY)
Bhort retrv interval (SHORTTMR)

W > Ve
[Cranspart type (TRPTYPE)

User ID (1ISERIDY

&l 51 &1 £ E1 £ E1£1 8181 8181 81 £ E18] E1E] E1€1E] & &l £

Alter date (ALTDATE)

This is the date on which the definition was last altered, in the form yyyy-mm-dd.

This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390, OS/400, Sun

Solaris, and Windows NT only.

Alter time (ALTTIME)

This is the time at which the definition was last altered, in the form hh:mm:ss.

This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390, OS/400, Sun

Solaris, and Windows NT only.

Auto start (AUTOSTART)

In MQSeries for Tandem NonStop Kernel there is no SNA listener process. Each
channel initiated from a remote system must have its own, unique TP name on
which it can listen. Such channels must be defined to MQSC with the attribute
AUTOSTART(ENABLED) to ensure that there is an LU 6.2 responder process
listening on this TP name whenever the queue manager is started.

78 MOQSeries Intercommunication

Auto start (AUTOSTART)

SNA channels defined AUTOSTART(DISABLED) do not listen for incoming SNA
requests. LU 6.2 responder processes are not started for such channels.

Batch interval (BATCHINT)

In V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, and MQSeries for OS/390 without CICS, you can specify a period of
time, in milliseconds, during which the channel will keep a batch open even if
there are no messages on the transmission queue. You can specify any number of
milliseconds, from zero through 999 999 999. The default value is zero.

If you do not specify a batch interval, the batch closes when the number of
messages specified in BATCHSZ has been sent or when the transmission queue
becomes empty. On lightly loaded channels, where the transmission queue
frequently becomes empty the effective batch size may be much smaller than
BATCHSZ.

You can use the BATCHINT attribute to make your channels more efficient by
reducing the number of short batches. Be aware, however, that you may slow
down the response time, because batches will last longer and messages will remain
uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following
conditions is met:

¢ The number of messages specified in BATCHSZ have been sent.

* There are no more messages on the transmission queue and a time interval of
BATCHINT has elapsed while waiting for messages (since the first message of
the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for
messages. It does not include the time spent retrieving messages that are
already available on the transmission queue, or the time spent transferring
messages.

This attribute applies only to sender, cluster-sender, server, and cluster-receiver
channels.

Batch size (BATCHSZ)

The batch size is the maximum number of messages to be sent before a syncpoint
is taken. The batch size does not affect the way the channel transfers messages;
messages are always transferred individually, but are committed or backed out as a
batch.

To improve performance, you can set a batch size to define the maximum number
of messages to be transferred between two syncpoints. The batch size to be used is
negotiated when a channel starts up, and the lower of the two channel definitions
is taken. On some implementations, the batch size is calculated from the lowest of
the two channel definitions and the two queue manager
MAXUMSGS/MAXSMSGS values. The actual size of a batch can be less than this;
for example, a batch completes when there are no messages left on the
transmission queue or the batch interval expires.

A large value for the batch size increases throughput, but recovery times are
increased because there are more messages to back out and re-send. The default

Chapter 6. Channel attributes 79

Batch size (BATCHSZ)

BATCHSZ is 50, and you are advised to try that value first. You might choose a
lower value for BATCHSZ if your communications are unreliable, making the need
to recover more likely.

Syncpoint procedure needs a unique logical unit of work identifier to be
exchanged across the link every time a syncpoint is taken, to coordinate batch
commit procedures.

If the synchronized batch commit procedure is interrupted, an in-doubt situation
may arise. In-doubt situations are resolved automatically when a message channel
starts up. If this resolution is not successful, manual intervention may be necessary,
making use of the RESOLVE command.

Some considerations when choosing the number for batch size:

e If the number is too large, the amount of queue space taken up on both ends of
the link becomes excessive. Messages take up queue space when they are not
committed, and cannot be removed from queues until they are committed.

* If there is likely to be a steady flow of messages, you can improve the
performance of a channel by increasing the batch size. However, this has the
negative effect of increasing restart times, and very large batches may also affect
performance.

* If message flow characteristics indicate that messages arrive intermittently, a
batch size of 1 with a relatively large disconnect time interval may provide a
better performance.

* The number may be in the range 1 through 9999. However, for data integrity
reasons, channels connecting to any of the current platforms, as described in this
book, should specify a batch size greater than 1. (A value of 1 is for use with
Version 1 products, apart from MQSeries for MVS/ESA.)

For OS/390 using CICS it must also be at least 3 less than the value set by the
DEFINE MAXSMSGS command.

* Even though nonpersistent messages on a fast channel do not wait for a
syncpoint, they do contribute to the batch-size count.

Channel name (CHANNEL)

Specifies the name of the channel definition. The name can contain up to 20
characters, although as both ends of a message channel must have the same name,
and other implementations may have restrictions on the size, the actual number of
characters may have to be smaller.

Where possible, channel names should be unique to one channel between any two
queue managers in a network of interconnected queue managers.

The name must contain characters from the following list:

Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)
Numerics (0-9)

Period ()

Forward slash /)

Underscore)

Percentage sign (%)

80 MQSeries Intercommunication

Channel name (CHANNEL)

Notes:
1. Embedded blanks are not allowed, and leading blanks are ignored.
2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

Channel type (CHLTYPE)

Specifies the type of the channel being defined. The possible channel types are:

Message channel types:

* Sender

* Server (not MQSeries for VSE/ESA)

* Cluster-sender (MQSeries for OS/390 without CICS, V5.1 of MQSeries
for AIX, AS/400, Compaq Tru64 UNIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT only)

* Receiver

* Requester (not MQSeries for VSE/ESA)

* Cluster-receiver (MQSeries for OS/390 without CICS, V5.1 of MQSeries
for AIX, AS/400, Compaq Tru64 UNIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT only)

MQI channel types:

* Client-connection (MQSeries for OS/2 Warp, Windows NT, UNIX
systems, VSE/ESA, DOS, Windows 3.1, Windows 95, and Windows 98
only)

Note: Client-connection channels can also be defined on OS/390 for use
on other platforms.

* Server-connection (not MQSeries for OS/390 using CICS)

The two ends of a channel must have the same name and have compatible types:
* Sender with receiver

* Requester with server

* Requester with sender (for Call_back)

* Server with receiver (server is used as a sender)

* Client-connection with server-connection

e Cluster-sender with cluster-receiver

CICS profile name

This is for OS/390 using CICS only, to give extra definition for the session
characteristics of the connection when CICS performs a communication session
allocation, for example to select a particular COS.

The name must be known to CICS and be one to eight alphanumeric characters
long.

Cluster (CLUSTER)

The name of the cluster to which the channel belongs. The maximum length is 48
characters conforming to the rules for naming MQSeries objects.

This parameter is valid only for cluster-sender and cluster-receiver channels. Up to
one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of the

values is nonblank, the other must be blank.

This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
0S/400, Sun Solaris, and Windows NT only.

Chapter 6. Channel attributes 81

Cluster namelist (CLUSNL)
Cluster namelist (CLUSNL)

The name of the namelist that specifies a list of clusters to which the channel
belongs.

This parameter is valid only for cluster-sender and cluster-receiver channels. Up to
one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of the
values is nonblank, the other must be blank.

This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
0S/400, Sun Solaris, and Windows NT only.

Connection name (CONNAME)

This is the communications connection identifier. It specifies the particular
communications link to be used by this channel.

This attribute is required for sender channels, cluster-sender channels,
cluster-receiver channels, requester channels, and client-connection channels. It
does not apply to receiver or server-connection channel types.

It is optional for server channels, except on OS/390 using CICS where it is
required in the channel definition, but is ignored unless the server is initiating the
conversation.

For OS/390 using CICS this attribute names the CICS communication connection
identifier for the session to be used for this channel. The name is one to four
alphanumeric characters long.

Otherwise, the name is up to 48 characters for OS/390, 264 characters for other
platforms, and:

If the transport type is TCP
This is either the hostname or the network address of the remote machine
(or the local machine for cluster-receiver channels). For example,
(MACH1.ABC.COM) or (19.22.11.162). It may include the port number, for
example (MACHINE(123)). It can include the IP_name of an OS/390
dynamic DNS group or a network dispatcher input port.

If the transport type is UDP
For MQSeries for AIX and MQSeries for Windows V2.0 only, UDP is an
alternative to TCP. As with TCP/IP, it is either the hostname or the
network address of the remote machine.

If the transport type is LU 6.2
For Version 5.1 of MQSeries for OS/2, OS/400, Windows NT, and UNIX
systems, give the fully-qualified name of the partner LU if the TPNAME
and MODENAME are specified. For other versions or if the TPNAME and
MODENAME are blank, give the CPI-C side information object name as
described in the section in this book about setting up communication for
your platform.

On OS/390 there are two forms in which to specify the value:

* Logical unit name

The logical unit information for the queue manager, comprising the
logical unit name, TP name, and optional mode name. This can be
specified in one of 3 forms:

luname, for example IGY12355

82 MQSeries Intercommunication

Connection nhame (CONNAME)

luname/TPname, for example I1GY12345/APING
luname/TPname/modename, for example 1GY12345/APINGD/#INTER
For the first form, the TP name and mode name must be specified for

the TPNAME and MODENAME attributes ; otherwise these attributes
must be blank.

Note: For client-connection channels, only the first form is allowed.
¢ Symbolic name

The symbolic destination name for the logical unit information for the
queue manager, as defined in the side information data set. The
TPNAME and MODENAME attributes must be blank.

Note: For cluster-receiver channels, the side information is on the other
queue managers in the cluster. Alternatively, in this case it can be
a name that a channel auto-definition exit can resolve into the
appropriate logical unit information for the local queue manager.

The specified or implied LU name can be that of a VTAM® generic
resources group.

For Digital OpenVMS, specify the Gateway Node name, the Access Name
to the channel program, and the TPNAME used to invoke the remote
program. For example: CONNAME (' SNAGWY . VMSREQUESTER(HOSTVR) ').

For Tandem NonStop Kernel, the value depends on whether SNAX or ICE

is used; see I'Chapter 20 Setting up communication in Tandem NSK” an

If the transmission protocol is NetBIOS
This is the NetBIOS name defined on the remote machine.

If the transmission protocol is SPX
This is an SPX-style address consisting of a 4-byte network address, a
6-byte node address and a 2-byte socket number. Enter these in
hexadecimal, with the network and node addresses separated by a fullstop
and the socket number in brackets. For example:

CONNAME (' 0a0Ob0c0d.804abcde23al(5e86) ')

If the socket number is omitted, the default MQSeries SPX socket number
is used. The default is X'5E86'.

Note: The definition of transmission protocol is contained in FTransport typd

klRME)_QD_pa%BﬁS” .
Convert message (CONVERT)

Application message data is usually converted by the receiving application.
However, if the remote queue manager is on a platform that does not support data
conversion, use this channel attribute to specify that the message should be
converted into the format required by the receiving system before transmission.

This attribute applies only to sender, cluster-sender, server, and cluster-receiver
channels and does not apply to MQSeries for OS/390 with CICS or MQSeries for
Windows.

The possible values are “yes” and no’. If you specify ‘yes’, the application data in
the message is converted before sending if you have specified one of the built-in

Chapter 6. Channel attributes 83

Convert message (CONVERT)

format names, or a data conversion exit is available for a user-defined format (See

the MQSeries Application Programming Guidd). If you specify ‘no’, the application

data in the message is not converted before sending.

Description (DESCR)

This contains up to 64 bytes of text that describes the channel definition.

Note: The maximum number of characters is reduced if the system is using a
double byte character set (DBCS).

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager to ensure that the text is translated
correctly if it is sent to another queue manager.

Disconnect interval (DISCINT)

This is a time-out attribute, specified in seconds, for the server, cluster-sender,
sender, and cluster-receiver channels. The interval is measured from the point at
which a batch ends, that is when the batch size is reached or when the batch
interval expires and the transmission queue becomes empty. If no messages arrive
on the transmission queue during the specified time interval, the channel closes
down. (The time is approximate.)

The close-down exchange of control data between the two ends of the channel
includes an indication of the reason for closing. This ensures that the
corresponding end of the channel remains available to start up again.

On all platforms except OS/390 with CICS, you can specify any number of seconds
from zero through 999 999 where a value of zero means no disconnect; wait
indefinitely.

In OS/390 using CICS, you can specify any number of seconds from zero through
9999 where a value of zero means disconnect as soon as the transmission queue is
empty.

Note: Performance is affected by the value specified for the disconnect interval.

A very low value (a few seconds) may cause excessive overhead in
constantly starting up the channel. A very large value (more than an hour)
could mean that system resources are unnecessarily held up. For V5.1 of
MQSeries for AIX, AS/400, Compaq Tru64 UNIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT and MQSeries for OS/390 without CICS, you can
also specify a heartbeat interval, so that when there are no messages on the
transmission queue, the sending MCA will send a heartbeat flow to the
receiving MCA, thus giving the receiving MCA an opportunity to quiesce
the channel without waiting for the disconnect interval to expire. For these
two values to work together effectively, the heartbeat interval value must be
significantly lower than the disconnect interval value.

A value for the disconnect interval of a few minutes is a reasonable value to
use. Change this value only if you understand the implications for
performance, and you need a different value for the requirements of the
traffic flowing down your channels.

For more information, see I‘Stapping and quiescing channels (not MQSeried

”

84 MQSeries Intercommunication

Heartbeat interval (HBINT)

Heartbeat interval (HBINT)

This attribute applies to V5.1 of MQSeries for AIX, AS/400, Compaq Tru64 UNIX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT and MQSeries for OS/390
without CICS. You can specify the approximate time between heartbeat flows that
are to be passed from a sending MCA when there are no messages on the
transmission queue. Heartbeat flows unblock the receiving MCA, which is waiting
for messages to arrive or for the disconnect interval to expire. When the receiving
MCA is unblocked it can disconnect the channel without waiting for the disconnect
interval to expire. Heartbeat flows also free any storage buffers that have been
allocated for large messages and close any queues that have been left open at the
receiving end of the channel.

The value is in seconds and must be in the range 0 through 999 999. A value of
zero means that no heartbeat flows are to be sent. The default value is 300. To be
most useful, the value should be significantly less than the disconnect interval
value.

This attribute is valid for sender, cluster-sender, server, receiver, cluster-receiver,
and requester channels. Other than on OS/390 and OS/400, it also applies to
server-connection and client-connection channels. On these channels, heartbeats
flow when a server MCA has issued an MQGET command with the WAIT option
on behalf of a client application.

Long retry count (LONGRTY)

Specify the maximum number of times that the channel is to try allocating a
session to its partner. If the initial allocation attempt fails, the short retry count
number is decremented and the channel retries the remaining number of times. If
it still fails, it retries a long retry count number of times with an interval of long
retry interval between each try. If it is still unsuccessful, the channel closes
down. The channel must subsequently be restarted with a command (it is not
started automatically by the channel initiator).

(Retry is not attempted if the cause of failure is such that a retry is not likely to be
successful.)

If the channel initiator or queue manager stops while the channel is retrying, the
short retry count and long retry count are reset when the channel initiator or queue
manager is restarted.

The long retry count attribute is valid only for channel types of sender,
cluster-sender, server, and cluster-receiver. It is also valid for requester channels on
0S/390 if you are u