MQSeries®

Using C++

SC33-1877-02

MQSeries®

Using C++

SC33-1877-02

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix D, “Notices”

on page

Third edition (January 1999)

This edition applies to the following products:

* MQSeries for AIX® Version 5.1

e MQSeries for AS/400® Version 4.2.1

e MQSeries for HP-UX Version 5.1

¢ MQSeries for OS/2® Warp Version 5.1
* MQSeries for OS/390® Version 2.1

¢ MQSeries for Sun Solaris Version 5.1

¢ MQSeries for Windows NT® Version 5.1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

S0O21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997,1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Contents

About this book Vii
What you need to know Vil
How to use thisbook Vil
MQSeries publications Viii

MQSeries cross-platform publications Viii

MQSeries platform-specific publications E

MQSeries Level 1 product publications Xil

Softcopy books L Xii
MQSeries information available on the Internet
Related publications Xiv
Summary of changes
Changes for this edition (SC33-1877-02)

MQSeries for OS/390 V2.1 e

MQSeries V5.1

MQSeries for AS/400 VAR2M1
Changes for the second edition (SC33-1877-01)
Chapter 1. Introduction to MQSeries C ++ a
Features of MQSeries C++ il
Preparing message data
Reading MeSSAGES . . . o o o o
Writing a message to the dead-letter queue L. 12]
Writing a message to the IMS bridge 13]
Writing a message to the CICS bridge [14]
Writing a message to the work header El
The sample programs 15
Implicit operations El
Binary and character strings
Unsupported functions
Chapter 2. C++ language considerations 23
Header files 23]
Methods 23]
AttribUteS . . . 23]
Data types 24]
Manipulating binary strings 24]
Manipulating character strings 24]
Initial state of objects 25]
Using C from C++
Notational conventions
Chapter 3. MQSeries C ++classes 27]
ImaBinary 29]
ImgCache 37]
ImqCICSBridgeHeader 34]
ImgDeadLetterHeader [47]
ImgDistributionList [44]
IMQEITOr [46]
ImgGetMessageOptions El

© Copyright IBM Corp. 1997,1999 ili

Figures

Figures

MQSeries Using C++

ImgHeader 57]
ImgIMSBridgeHeader 53]
IMaltem [56]
IMGMESSAGE .« .« « o o o e e 58]
ImgMessageTracker 63]
ImgNamelist [66]
IMQObJECt . . . o 68]
IMgProcess
ImgPutMessageOptions
ImqQUeUe [79]
ImgQueueManNager 90]
ImgReferenceHeader
IMQString
ImgTrigger [107]
ImgWorkHeader [110]
Appendix A. Compiling and linking 113
Compilers for MQSeries platforms 114]
Compiling C++ sample programs for AS/400, using OS/2 115
Compiling VisualAge C++ sample programs for Windows 95 and NT 117
Building an application on OS/390 117
Appendix B. MQI cross-reference 119
Data structure, class, and include-file cross-reference 1119
Class attribute cross-reference L 120
Appendix C. Reason codes, 129
Appendix D. Notices 135
Programming interface information L 136
Trademarks L 137
Glossary of terms and abbreviations L 139
INdeX . . .
1. MQSeries C++ classes (Queue management) 2
2. MQSeries C++ classes (item handling) 3
3. Ways of preparing message data 5
4. Retrieving items withina message 6
5. Custom encapsulated message-writing code L. 8
6. Custom encapsulated message-reading code 9
7. Retrieving messages into a fixed area of storage 11
8. Writing a message to the dead-letter queue 12
9. Writing a message to the IMS bridge 13
10. Writing a message to the CICS bridge 14
11. Writing a message to the work header 15
12. The HELLO WORLD sample program 16

Tables

13.
14.
15.
16.
17.
18.

©CoNoO~LONE

e
= o

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,

Tables

Manipulating binary strings oo
Declaration and use conventions
Format for string text to integer conversion
Retrieving integers from string text
Retrieving tokens from string text L.
Parsingapathinastring

C/C++ header files
ImgCICSBridgeHeader class return codes
MQSeries C++ switches and link libraries
0S/390 sample program files
Data structure, class, and include-file cross-reference
ImgCache cross-reference L
ImqCICSBridgeHeader cross reference
ImgDeadLetterHeader cross reference,
ImgError cross reference
ImgGetMessageOptions cross reference
ImgHeader cross reference L.
ImgIMSBridgeHeader cross reference
Imqgltem cross reference
ImgMessage cross reference
ImgMessageTracker cross reference
ImgNamelist cross reference
ImqObject cross reference
ImgProcess cross reference L
ImgPutMessageOptions cross reference
ImgQueue cross reference L
ImgQueueManager cross reference
ImgReferenceHeader
ImqTrigger cross reference
ImgWorkHeader cross reference

Figures

\Y

Tables

Vi MQSeries Using C++

About this book

About this book

This publication describes the C++ programming-language binding to the Message
Queue Interface (MQI). This part of the MQSeries products is referred to as
MQSeries C++.

MQSeries C++ is supplied as part of the following products:

e MQSeries for AlX Version 5 and later

e MQSeries for AS/400 Version 4 Release 2 and later
¢ MQSeries for HP-UX Version 5 and later

e MQSeries for OS/2 Warp Version 5 and later

e MQSeries for OS/390

e MQSeries for Sun Solaris Version 5 and later

¢ MQSeries for Windows NT Version 5 and later

The information is intended for application programmers who write programs to
make use of the MQI.

What you need to know
You should have:
¢ Knowledge of the C programming language
* Knowledge of the C++ programming language

* Understanding of the purpose of the Message Queue Interface (MQI) as
described in Chapter 6, “Introducing the Message Queue Interface” in the
MQSeries Application Programming Guide and in Chapter 3, “Call descriptions
in the MQSeries Application Programming Reference book

e Experience of MQSeries programs in general, or familiarity with the content of
the other MQSeries publications

How to use this book
First read Chapter 1, “Introduction to MQSeries C++” on page [1. This chapter is a
guide to programming in C++ for MQSeries, as well as an introduction.

There are some things specific to C++ that you may need to know in Chapter 2,
“C++ language considerations” on page

The main, reference part of the book is Chapter 3, “MQSeries C++ classes” on
page
The Appendixes contain information about compiling and linking your programs, a

cross-reference to the MQSeries data structures, object attributes, calls, and some
additional reason codes.

© Copyright IBM Corp. 1997,1999 vii

MQSeries publications

MQSeries publications

This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications

Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4R2M1

e MQSeries for AT&T GIS UNIX V2.2

* MQSeries for Digital OpenVMS V2.2

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for 0S/390 V2.1

e MQSeries for SINIX and DC/OSx V2.2
¢ MQSeries for Sun Solaris V5.1

e MQSeries for Tandem NonStop Kernel V2.2
e MQSeries for VSE/ESA® V2.1

e MQSeries for Windows® V2.0

¢ MQSeries for Windows V2.1

e MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure

The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing

MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide

The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication

The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

viii MQSeries Using C++

MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration

The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products only:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries Command Reference

The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management

The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
* MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1
e MQSeries for Windows V2.0

e MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide

The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference

The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary

The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

About this book IX

MQSeries publications

X MQSeries Using C++

MQSeries Using C ++

MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4R2M1
e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
¢ MQSeries for 0OS/390 V2.1

e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

e AIX

e HP-UX

e 0S/2

e Sun Solaris

e Windows NT

¢ Windows 3.1

¢ Windows 95 and Windows 98

MQSeries Using Java ™

MQSeries Using Java, SC34-5456, provides both guidance and reference
information for users of the MQSeries Bindings for Java and the MQSeries Client
for Java. MQSeries Java is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1

MQSeries Administration Interface Programming Guide and Reference

The MQSeries Administration Interface Programming Guide and Reference,
SC34-5390, provides information for users of the MQAI. The MQAI is a
programming interface that simplifies the way in which applications manipulate
Programmable Command Format (PCF) messages and their associated data
structures.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries Queue Manager Clusters

MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
explains the concepts and terminology and shows how you can benefit by taking
advantage of clustering. It details changes to the MQI, and summarizes the syntax
of new and changed MQSeries commands. It shows a number of examples of
tasks you can perform to set up and maintain clusters of queue managers.

This book applies to the following MQSeries products only:
MQSeries for AIX V5.1

MQSeries publications

MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for 0OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries platform-specific publications

Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AlX

MQSeries for AlX Version 5 Release 1 Quick Beginnings, GC33-1867
MQSeries for AS/400

MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX ®

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

MQSeries for Digital UNIX

MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869
MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868
MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program Directory

MQSeries for OS/390 Version 2 Release 1 System Management Guide,
SC34-5374

MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
GC34-5376

MQSeries link for R/3
MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934
MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

About this book Xi

MQSeries publications

MQSeries for Sun Solaris
MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870
MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
MQSeries for Windows NT Using the Component Object Model Interface,
SC34-5387

MQSeries LotusScript Extension, SC34-5404

MQSeries Level 1 product publications

Softcopy books

Xii

MQSeries Using C++

For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’'s Guide, SC33-1379

Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

BookManager ® format

The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection Kkit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

MQSeries publications

HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for Sun Solaris V5.1

e MQSeries for Windows NT V5.1 (compiled HTML)
e MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

http://www.software.ibm.com/ts/mgseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are supplied with these MQSeries
products:

e MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1
e MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also available from the MQSeries
product family Web site at:

http://www.software.ibm.com/ts/mqseries/

PostScript format

The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format

The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

About this book Xiii

http://www.software.ibm.com/ts/mqseries/
http://www.adobe.com/
http://www.software.ibm.com/ts/mqseries/

MQSeries on the Internet e Related publications

MQSeries information available on the Internet
— MQSeries Web site

The MQSeries product family Web site is at:

http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:
e Obtain latest information about the MQSeries product family.
¢ Access the MQSeries books in HTML and PDF formats.
¢ Download MQSeries SupportPacs.

Related publications

The Booch methodology

Object-Oriented Analysis and Design with Applications 2nd Edition, by Grady
Booch, Benjamin/Cummings Publishing, ISBN 0-8053-5340-2.

C++ programming
VisualAge® for C++ for OS/2.

VisualAge for C++ for AS/400 User's Guide.
OTMA User's Guide.

Xiv MQSeries Using C++

http://www.software.ibm.com/ts/mqseries/

Changes

Summary of changes

This information includes changes to the MQSeries product and changes to this
edition of the MQSeries Using C++ manual.

Changes to the previous edition are marked in the left-hand margin with bars.

Changes for this edition (SC33-1877-02)

This edition of MQSeries Using C++ applies to these new versions and releases of
MQSeries products:

e MQSeries for AIX V5.1

e MQSeries for AS/400 V4R2M1
e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for 0S/390 V2.1

e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

Major new function supplied with each of these MQSeries products is summarized
here.

MQSeries for OS/390 V2.1

MQSeries for OS/390 V2.1 is a new product for the OS/390 platform that offers
functional enhancements over MQSeries for MVS/ESA V1.2. Those functional
enhancements specific to MQSeries for OS/390 are summarized here. As a
general rule, other function described in this book as supported by MQSeries for
0S/390 is also supported by MQSeries for MVS/ESA V1.2.

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they host
available to every other queue manager. Any queue manager can send a
message to any other queue manager in the same cluster without the need for
explicit channel definitions, remote queue definitions, or transmission queues for
each destination. The main benefits of MQSeries clusters are:

¢ Fewer system administration tasks
¢ Increased availability
¢ Workload balancing

Clusters are supported by these MQSeries products:

¢ MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for 0S/390 V2.1

¢ MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
description of this function.

© Copyright IBM Corp. 1997,1999 XV

Changes

MQSeries V5.1

XVi

MQSeries Using C++

0S/390 Automatic Restart Manager (ARM)
If an MQSeries queue manager or channel initiator fails, the OS/390 Automatic
Restart Manager (ARM) can restart it automatically on the same OS/390 image.
If the OS/390 image itself fails, ARM can restart that image’s subsystems and
applications automatically on another OS/390 image in the sysplex, provided that
the LU 6.2 communication protocol is being used. By removing the need for
operator intervention, OS/390 ARM improves the availability of your MQSeries
subsystems.

0S/390 Resource Recovery Services (RRS)
MQSeries Batch and TSO applications can participate in two-phase commit
protocols with other RRS-enabled products, such as DB2®, coordinated by the
0S/390 RRS facility.

MQSeries Workflow
MQSeries Workflow allows applications on various network clients to perform
business functions through System/390® by driving one or more CICS®, IMS®,
or MQSeries applications. This is achieved through format, rule, and table
definition, rather than through application programming.

Support for C ++
MQSeries for OS/390 V2.1 applications can be written in C++.

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

The MQSeries Version 5 Release 1 products are:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

The following new function is provided in all of the V5.1 products:

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they host
available to every other queue manager. Any queue manager can send a
message to any other queue manager in the same cluster without the need for
explicit channel definitions, remote queue definitions, or transmission queues for
each destination. The main benefits of MQSeries clusters are:

¢ Fewer system administration tasks
¢ Increased availability
¢ Workload balancing

Clusters are supported by these MQSeries products:

e MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

¢ MQSeries for OS/2 Warp V5.1
* MQSeries for 0S/390 V2.1

e MQSeries for Sun Solaris V5.1

Changes

¢ MQSeries for Windows NT V5.1

See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
description of this function.

MQSeries Administration Interface (MQAI)
The MQSeries Administration Interface is an MQSeries programming interface
that simplifies manipulation of MQSeries PCF messages for administrative tasks.
It is described in a new book, MQSeries Administration Interface Programming
Guide and Reference, SC34-5390.

Support for Windows 98 clients
A Windows 98 client can connect to any MQSeries V5.1 server.

Message queue size
A message queue can be up to 2 GB.

Controlled, synchronous shutdown of a queue manager
A new option has been added to the endmgm command to allow controlled,
synchronous shutdown of a queue manager.

Java support
The MQSeries Client for Java and MQSeries Bindings for Java are provided with
all MQSeries V5.1 products. The client, bindings, and common files have been
packaged into .jar files for ease of installation.

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

Conversion of the EBCDIC new-line character
You can control the conversion of EBCDIC new-line characters to ensure that
data transmitted from EBCDIC systems to ASCII systems and back to EBCDIC is
unaltered by the ASCII conversion.

Client connections via MQCONNX
A client application can specify the definition of the client-connection channel at
run time in the MQCNO structure of the MQCONNX call.

Additional new function in MQSeries for AIX V5.1
e The UDP transport protocol is supported.
» Sybase databases can participate in global units of work.
e Multithreaded channels are supported.

Additional new function in MQSeries for HP-UX V5.1
e MQSeries for HP-UX V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
e Multithreaded channels are supported.
e Both HP-UX kernel threads and DCE threads are supported.

Additional new function in MQSeries for OS/2 Warp V5.1
0S/2 high memory support is provided.

Summary of changes XVii

Changes

XVviii

Additional new function in MQSeries for Sun Solaris V5.1

e MQSeries for Sun Solaris V5.1 runs on both Sun Solaris V2.6 and Sun Solaris

e Sybase databases can participate in global units of work.

e Multithreaded channels are supported.

Additional new function in MQSeries for Windows NT V5.1
MQSeries for Windows NT V5.1 is part of the IBM Enterprise Suite for Windows
NT. New function in this release includes:

MQSeries Using C++

* Close integration with Microsoft® Windows NT Version 4.0, including
exploitation of extra function provided by additional Microsoft offerings. The
main highlights are:

— Graphical tools and applications for managing, controlling, and exploring
MQSeries:

- MQSeries Explorer—a snap-in for the Microsoft management console

(MMC) that allows you to query, change, and create the local, remote,
and cluster objects across an MQSeries network.

MQSeries Services—an MMC snhap-in that controls the operation of
MQSeries components, either locally or remotely within the Windows
NT domain. It monitors the operation of MQSeries servers and
provides extensive error detection and recovery functions.

MQSeries API Exerciser—a graphical application for exploring the
messaging and queuing programming functions that MQSeries
provides. It can also be used in conjunction with the MQSeries
Explorer to gain a deeper understanding of the effects of MQSeries
operations on objects and messages.

MQSeries Postcard—a sample application that can be used to verify an
MQSeries installation, for either local or remote messaging.

— Support for the following features of Windows NT has been added:

- Windows NT performance monitor—used to access and display

MQSeries information, such as the current depth of a queue and the
rate at which message data is put onto and taken off queues.

ActiveDirectory—programmable access to MQSeries objects is
available through the Active Directory Service Interfaces (ADSI).

Windows NT user IDs—previous MQSeries restrictions on the validity of
Windows NT user IDs have been removed. All valid Windows NT user
IDs are now valid identifiers for MQSeries operations. MQSeries uses
the associated Windows NT Security Identifier (SID) and the Security
Account Manager (SAM). The SID allows the MQSeries Object
Authority Manager (OAM) to identify the specific user for an
authorization request.

Windows NT registry—now used to hold all configuration and related
data. The contents of any configuration (.INI) files from previous
MQSeries installations of MQSeries for Windows NT products are
migrated into the registry; the .INI files are then deleted.

Changes

- A set of Component Object Model (COM) classes, which allow ActiveX
applications to access the MQSeries Message Queue Interface (MQI)
and the MQSeries Administration Interface (MQAI).

— An online Quick Tour of the product concepts and functions.

— An online Information Center that gives you quick access to task help
information, reference information, and Web-based online books and home
pages.

— Simplified installation of MQSeries for Windows NT, with default options
and automatic configuration.

e Support for web-based administration of an MQSeries network, which provides
a simplified way of using the MQSC commands and scripts and allows you to
create powerful macros for standard administration tasks.

e Support for MQSeries LotusScript™ Extension (MQLSX), which allows Lotus
Notes applications that are written in LotusScript to communicate with
applications that run in non-Notes environments.

e Support for Microsoft Visual Basic for Windows Version 5.0.

e Performance improvements over the MQSeries for Windows NT Version 5.0
product.

¢ Information and examples on how MQSeries applications can interface with and
exploit the lightweight directory access protocol (LDAP) directories.

e Support for Sybase patrticipation in global units of work.

MQSeries for AS/400 V4R2M1
New function in MQSeries for AS/400 VAR2M1 includes:

e Support for the MQSeries dead-letter queue handler
¢ Improvements to installation and migration procedures

Changes for the second edition (SC33-1877-01)

MQSeries C++ is supplied as part of MQSeries for AS/400 Version 4 Release 2, in
addition to being supplied as part of the MQSeries Version 5 products.

Summary of changes XiX

Changes

XX MQSeries Using C++

Features

Chapter 1. Introduction to MQSeries C ++

MQSeries C++ allows you to write MQSeries application programs in the C++
programming language.

This chapter introduces the features of MQSeries C++. There are details about
preparing message data, reading messages and writing messages to the
dead-letter queue. The sample programs provided are introduced and there is a
sample program listing. Implicit operations (connect, open, reopen, close and
disconnect) are explained and there are some notes about binary and character
strings.

MQSeries C++ can be used with the following products when they have been
installed as a full queue manager:

¢ MQSeries for AlX Version 5 and later

e MQSeries for AS/400 Version 4 Release 2 and later
e MQSeries for HP-UX Version 5 and later

e MQSeries for OS/2 Warp Version 5 and later

¢ MQSeries for OS/390

e MQSeries for Sun Solaris Version 5 and later

e MQSeries for Windows NT Version 5 and later

MQSeries C++ can also be used with an MQSeries client supplied with the Version
5 products and installed on the following platforms:

o AIX

e HP-UX

e 0S/2

e Sun Solaris
¢ Windows 3.1
e Windows 95
¢ Windows NT

Features of MQSeries C ++
MQSeries C++ provides the following features:

e Automatic initialization of MQSeries data structures

¢ Just-in-time queue manager connection and queue opening
e Implicit queue closure and queue manager disconnection

e Dead-letter header transmission and receipt

e IMS® Bridge header transmission and receipt

¢ Reference message header transmission and receipt

e Trigger message receipt

* CICS® Bridge header transmission and receipt

e Work header transmission and receipt

All the classes in the following Booch class diagrams are broadly parallel to those
MQSeries entities in the procedural MQI (for example C) that have either handles
or data structures. All classes inherit from the ImgError (see “ImgError” on

page class, which allows an error condition to be associated with each object.

© Copyright IBM Corp. 1997,1999 1

Features

To interpret Booch class diagrams correctly, you must be aware of the following:
¢ Methods and noteworthy attributes are listed below the class name.
¢ A small triangle within a cloud denotes an abstract class.
* Inheritance is denoted by an arrow to the parent class.

e An undecorated line between clouds denotes a cooperative relationship
between classes.

* A line decorated with a humber denotes a referential relationship between two
classes. The number indicates the number of objects that may participate in a
given relationship at any one time.

o~
- — AN

—
S N
— / T / Cache N
Namelist b Object) / buffer length : Integer
< ;« close() ((data offset : Integer
name : String message length : Integer
\ — j open() j AN useEmptyBuffer()
NI / . useFullBuffer() j
managed by \ o
/o S
Queue Manager / Message Tracker)
/ backout() / correlation id : Binary
/ begin() (group id : Binary
commit() [\ message id : Bmary
o ~— connect()
disconnect())
Queue

.
/ get() IVIessage N

put() _ WVIE9odYE
< gueue manager name : StringH priority : Integer

o \ N

-
referenced by f& PN

/4\\/&/\ Get Message

Dlstrlbutlon \ Put Message < wait irft)ee\t/:hzteger(

(List (/ Options / N ')

N
S \) \ -

L~ o ~

Figure 1. MQSeries C++ classes (queue management)

2 MQSeries Using C++

Features

ST
/ Message
format : String) / Item b
< formatlis() H copyOut() (
~_ readltem() \ pasteln()
\ writeltem())

/\ . W/
/T - / \
cICS \ ~_

/ Bridge Header
T
. Header \(character set : Integer / / riager /
\ j encoding : Integer)

format : String \
header flags : Integer —
T ~
< Dead Letter \W - Reference\
Header
Header (
\ /\
/ —
. — IMS Brldge
\ \ Header
Work \)
Header -
N

Figure 2. MQSeries C++ classes (item handling)

The following classes and data types are used in the C++ method signatures of the
gueue management classes (see Figure 1 on page [2) and the item handling
classes (see Figure 2):

 The ImgBinary class (see “ImgBinary” on page [29), which encapsulates byte
arrays such as MQBYTE24.

e The ImgBoolean data type, which is defined as typedef unsigned char
ImgBoolean .

« The ImgString class (see “ImqString” on page [L01), which encapsulates
character arrays such as MQCHARG64.

Entities with data structures are subsumed within appropriate object classes.
Individual data structure fields (see Appendix B, “MQI cross-reference” on
page [119) are accessed with methods.

Entities with handles come under the ImqObject (see “ImqObject” on page
class hierarchy and provide encapsulated interfaces to the MQI. Objects of these
classes exhibit intelligent behavior that can reduce the number of method
invocations required relative to the procedural MQI. For example, you can
establish and discard queue manager connections as required, or you can open a
gueue with appropriate options, then close it.

The ImgMessage class (see “ImgMessage” on page encapsulates the MQMD
data structure and also acts as a holding point for user data and items
(see “Reading messages” on page [5) by providing cached buffer facilities. You

Chapter 1. Introduction to MQSeries C++

3

Preparing message data

can provide fixed-length buffers for user data and use the buffer many times, the
amount of data present in the buffer can vary from one use to the next.
Alternatively, the system can provide and manage a buffer of flexible length. Both
the size of the buffer (the amount available for receipt of messages) and the
amount actually used (either the number of bytes for transmission or the number of
bytes actually received) become important considerations.

Preparing message data

4 MQSeries Using C++

When you send a message, message data is first prepared in a buffer managed by
an ImgCache object (see “ImgCache” on page [37)). A buffer is associated (by
inheritance) with each ImgMessage object (see “ImgMessage” on page [58): it can
be supplied by the application (using either the useEmptyBuffer or useFullBuffer
method); or it can be supplied automatically by the system. The advantage of the
application supplying the message buffer is that no data copying is necessary in
many cases because the application can use prepared data areas directly; the
disadvantage is that the supplied buffer is of a fixed length.

The buffer can be reused, and the number of bytes transmitted can be varied each
time, by using the setMessagelLength method prior to transmission.

When supplied automatically by the system, the number of bytes available is
managed by the system, and data can be copied into the message buffer using, for
example, the ImgCache write method, or the ImgMessage writeltem method. The
message buffer grows according to need. As the buffer grows, there is no loss of
previously written data. A large or multipart message can be written in sequential
pieces.

Figure 3 on page [5]shows simplified straightforward message sends:

Reading messages

/* 1. Use prepared data in a user-supplied buffer. */
char pszBuffer[] = "Hello world" ;

msg.useFullBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);

/* 2. Use prepared data in a user-supplied buffer, */
/* where the buffer size exceeds the data size. */
char pszBuffer[24] = "Hello world" ;

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);
msg.setMessagelLength(12);

/* 3. Copy data to a user-supplied buffer. */
char pszBuffer[12];

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

/* 4. Copy data to a system-supplied buffer. =/
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

/* 5. Copy data to a system-supplied buffer using objects. */
/* (Objects set the message format as well as content.) x/
ImgString strText("Hello world");

msg.writeltem(strText);

Figure 3. Ways of preparing message data

Reading messages

When receiving data, the application or the system can supply a suitable message
buffer. The same buffer can be used for both multiple transmission and multiple
receipt for a given ImgMessage object. If the message buffer is supplied
automatically, it grows to accommodate whatever length of data is received.
However, if the application supplies the message buffer, it might not be big enough.
Then either truncation or failure might occur, depending on the options used for
message receipt.

Incoming data can be accessed directly from the message buffer, in which case the
data length indicates the total amount of incoming data. Alternatively, incoming
data can be read sequentially from the message buffer. In this case, the data
pointer addresses the next byte of incoming data, and the data pointer and data
length are updated each time data is read.

Items are pieces of a message, all in the user area of the message buffer, that
need to be processed sequentially and separately. Apart from regular user data,
an item might be a dead-letter header or a trigger message. Iltems are always
associated with message formats; message formats are not always associated with
items.

Chapter 1. Introduction to MQSeries C++ 5

Reading messages

There is a class of object for each item that corresponds to a recognizable
MQSeries message format. There is one for a dead-letter header and one for a
trigger message. There is no class of object for user data. That is, once the
recognizable formats have been exhausted, processing the remainder is left to the
application program. Classes for user data can be written by specializing the
Imgltem class.

Figure 4 shows a message receipt that takes account of a number of potential
items that can precede the user data, in an imaginary situation. Nonitem user data
is simply defined as anything that occurs after items that can be identified. An
automatic buffer (the default) is used to hold an arbitrary amount of message data.

ImgQueue queue ;
ImgMessage msg ;

if (queue.get(msg)) {

/* Process all items of data in the message buffer. */
do while (msg.dataLength()) {
ImgBoolean bFormatKnown = FALSE ;

/* There remains unprocessed data in the message buffer. */
/* Determine what kind of item is next. =/

if (msg.formatIs(MQFMT_DEAD LETTER_HEADER)) {
ImgDeadLetterHeader header ;

/* The next item is a dead-letter header. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;

if (msg.readItem(header)) {

/* The dead-Tetter header has been extricated from the */
/* buffer and transformed into a dead-letter object. */
/* The encoding and character set of the dead-letter =/
/* object itself are MQENC_NATIVE and MQCCSI_Q MGR. */
/* The encoding and character set from the dead-letter */
/* header have been copied to the message attributes =/
/* to reflect any remaining data in the buffer. */

/* Process the information in the dead-letter object. =/

/* Note that the encoding and character set have */
/* already been processed. */

}

Figure 4 (Part 1 of 3). Retrieving items within a message

6 MQSeries Using C++

Reading messages

/* There might be another item after this, */
/* or just the user data. */

}

if (msg.formatIs(MQFMT TRIGGER)) {
ImgTrigger trigger ;

/* The next item is a trigger message. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. =/
bFormatKnown = TRUE ;

if (msg.readItem(trigger)) {
/* The trigger message has been extricated from the */
/* buffer and transformed into a trigger object. */

/* Process the information in the trigger object. */

} .

/* There is usually nothing after a trigger message. */

}

if (msg.formatIs(FMT_USERCLASS)) {
UserClass object ;

/* The next item is an item of a user-defined class. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;

if (msg.readItem(object)) {
/* The user-defined data has been extricated from the x/
/* buffer and transformed into a user-defined object. */

/* Process the information in the user-defined object. */

}...

/* Continue looking for further items. =/

}

if (! bFormatKnown) {
/* There remains data which is not associated with a specific
/* item class.
char * pszDataPointer = msg.dataPointer(); /* Address.
int iDatalLength = msg.datalLength(); /* Length.

*/

*/
*/
*/

Figure 4 (Part 2 of 3). Retrieving items within a message

Chapter 1. Introduction to MQSeries C++

7

Reading messages

8 MQSeries Using C++

/* The encoding and character set for the remaining data are =*/
/* reflected in the attributes of the message object, even */
/* if a dead-letter header was present. */

}
}

Figure 4 (Part 3 of 3). Retrieving items within a message

In Figure 4 on page [6] FMT_USERCLASS is a constant representing the
8-character format name associated with an object of class UserClass, and is
defined by the application.

UserClass would be derived from the Imgltem class (see “Imgltem” on page [56),
and would implement the virtual copyOut and pasteln methods from that class.

Figure 5 and Figure 6 on page [9]show example code from the
ImgDeadLetterHeader class (see “ImgDeadLetterHeader” on page).

// Insert a dead-Tetter header.

// Return TRUE if successful.

ImgBoolean ImgDeadlLetterHeader :: copyOut (ImgMessage & msg) {
ImgBoolean bSuccess ;

if (msg.moreBytes(sizeof(omgdlh))) {
ImqCache cacheData(msg); // Preserve the original message content.

// Note the original message attributes in the dead-letter header.
setEncoding(msg.encoding());

setCharacterSet(msg.characterSet());

setFormat (msg.format());

// Set the message attributes to reflect the dead-letter header.
msg.setEncoding(MQENC_NATIVE);

msg.setCharacterSet(MQCCSI_Q MGR);

msg.setFormat(MQFMT _DEAD LETTER HEADER);

// Replace the existing data with the dead-letter header.
msg.clearMessage();
if (msg.write(sizeof(omgdlh), (char *) & omgdlh)) {

Figure 5 (Part 1 of 2). Custom encapsulated message-writing code

Reading messages

// Append the original message data.
bSuccess = msg.write(cacheData.messagelength(),
cacheData.bufferPointer());
} else {
bSuccess = FALSE ;
}
} else {
bSuccess = FALSE ;

}

// Reflect and cache error in this object.

if (! bSuccess) {
setReasonCode(msg.reasonCode());
setCompletionCode(msg.completionCode());

}

return bSuccess ;

}

Figure 5 (Part 2 of 2). Custom encapsulated message-writing code

// Read a dead-letter header.

// Return TRUE if successful.

ImgBoolean ImgDeadlLetterHeader :: pasteIn (ImgMessage & msg) {
ImgBoolean bSuccess = FALSE ;

// First check that the eye-catcher is correct.
// This is also our guarantee that the "character set" is correct.
if (Imqltem::structureIdIs(MQDLH_STRUC_ID, msg)) {

// Next check that the "encoding" is correct, as the MQDLH contains
// numeric data.
if (msg.encoding() == MQENC_NATIVE) {

// Finally check that the "format" is correct.
if (msg.formatIs(MQFMT_DEAD LETTER_HEADER)) {
char * pszBuffer = (char *) & omgdlh ;

// Transfer the MQDLH from the message and move the pointer on.
if (bSuccess = msg.read(sizeof(omdlh), pszBuffer)) {

Figure 6 (Part 1 of 2). Custom encapsulated message-reading code

Chapter 1. Introduction to MQSeries C++

9

Reading messages

10 MQSeries Using C++

// Update the encoding, character set and format of the message
// to reflect the remaining data.
msg.setEncoding(encoding());
msg.setCharacterSet(characterSet());
msg.setFormat(format());
} else {

// Reflect the cache error in this object.
setReasonCode(msg.reasonCode());
setCompletionCode(msg.completeionCode());

}

} else {
setReasonCode(MQRC_INCONSISTENT FORMAT);
setCompletionCode(MQCC_FAILED);
}
} else {
setReasonCode(MQRC_ENCODING_ERROR);
setCompletionCode(MQCC FAILED);
{
} else {

setReasonCode(MQRC_STRUC_ID ERROR);
setCompletionCode(MQCC_FAILED);

}

return bSuccess ;

}

Figure 6 (Part 2 of 2). Custom encapsulated message-reading code

With an automatic buffer, it is important to remember that the buffer storage is
volatile. That is, buffer data might be held at a different physical location after each
get method invocation. Therefore each time buffer data is referenced, use the
bufferPointer or dataPointer methods to access message data.

You may want a program to set aside a fixed area for receiving message data. In
this case invoke the useEmptyBuffer method before using the get method.

Using a fixed, nonautomatic area limits messages to a maximum size, so it is
important to consider the MQGMO_ACCEPT_TRUNCATED_MSG option of the
ImqGetMessageOptions object. If this option is not specified (this is the default),
the MQRC_TRUNCATED_MSG_FAILED reason code can be expected. If this
option is specified, the MQRC_TRUNCATED_MSG_ACCEPTED reason code may
be expected depending on the design of the application.

Figure 7 on page shows how a fixed area of storage might be used to receive
messages:

Reading messages

char * pszBuffer = new char[100];
msg.useEmptyBuffer(pszBuffer, 100);
gmo.setOptions(MQGMO_ACCEPT_TRUNCATED MSG);
queue.get(msg, gmo);

delete [] pszBuffer ;

Figure 7. Retrieving messages into a fixed area of storage

Note: The responsibility for discarding a user-defined (nonautomatic) buffer rests
with the application, not with the ImgCache class object.

In the fragment shown in Figure 7, the buffer can always be addressed directly,
with pszBuffer, as opposed to using the bufferPointer method, although it is
advisable to use the dataPointer method for general-purpose access.

Note: Specifying a null pointer and zero length with useEmptyBuffer does not
nominate a fixed length buffer of length zero, as might be expected. This
combination is actually interpreted as a request to ignore any previous user-defined
buffer, and instead revert to the use of an automatic buffer.

Chapter 1. Introduction to MQSeries C++ 11

Writing to dead-letter queue

Writing a message to the dead-letter queue

A typical case of a multipart message is one containing a dead-letter header. The
data from a message that cannot be processed is appended to the dead-letter

header.
ImgQueueManager mgr ; // The queue manager.
ImgQueue queueln ; // Incoming message queue.
ImgQueue queueDead ; // Dead-Tetter message queue.
ImgMessage msg ; // Incoming and outgoing message.

ImgDeadLetterHeader header ; // Dead-letter header information.

// Retrieve the message to be rerouted.
queueln.setConnectionReference(mgr);
queueln.setName(MY _QUEUE);
queueln.get(msg);

// Set up the dead-letter header information.
header.setDestinationQueueManagerName(mgr.name());
header.setDestinationQueueName(queueIn.name());
header.setPutApplicationName(/* ? %/);
header.setPutApplicationType(/* ? %/);
header.setPutDate(/* TODAY =*/);

header.setPutTime(/* NOW %/);
header.setDeadLetterReasonCode(FB_APPL_ERROR 1234);

// Insert the dead-Tetter header information. This will vary
// the encoding, character set and format of the message.

// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the dead-letter queue.
queueDead.setConnectionReference(mgr);
queueDead.setName(mgr.deadLetterQueueName());
queueDead.put(msg);

Figure 8. Writing a message to the dead-letter queue

12 MQSeries Using C++

Writing to IMS bridge

Writing a message to the IMS bridge

Messages sent to MQSeries for OS/390 via the IMS bridge require a special
header. The IMS bridge header is prefixed to regular message data.

ImgQueueManager mgr ; // The queue manager.

ImgQueue queueln ; // Incoming message queue.
ImgQueue queueBridge ; // IMS bridge message queue.
ImgMessage msg ; // Incoming and outgoing message.

ImqIMSBridgeHeader header ; // IMS bridge header information.

// Retrieve the message to be forwarded.
queueln.setConnectionReference(mgr);
queueln.setName(MY _QUEUE);
queueln.get(msg);

// Set up the IMS bridge header information.

// The reply-to format is often specified.

// Other attributes can be specified, but all have default values.
header.setReplyToFormat(/x ? =/);

// Insert the IMS bridge header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeltem(header);

// Send the message to the IMS bridge queue.
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? %/);
queueBridge.put(msg);

Figure 9. Writing a message to the IMS bridge

Chapter 1. Introduction to MQSeries C++ 13

Writing to CICS bridge

. Writing a message to the CICS bridge

| Messages sent to MQSeries for OS/390 via the CICS bridge require a special
| header. The CICS bridge header is prefixed to regular message data.

ImqCicsBridgeHeader header ; // CICS bridge header information.

| ImgQueueManager mgr ; // The queue manager.

[ImgQueue queueln ; // Incoming message queue.

| ImgQueue queueBridge ; // CICS bridge message queue.

| ImgMessage msg ; // Incoming and outgoing message.
|

I

// Retrieve the message to be forwarded.
queueln.setConnectionReference(mgr);
queueln.setName(MY _QUEUE);
queueln.get(msg);

// Set up the CICS bridge header information.

// The reply-to format is often specified.

// Other attributes can be specified, but all have default values.
header.setReplyToFormat(/x ? =/);

// Insert the CICS bridge header information. This will vary
// the encoding, character set and format of the message.

// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the CICS bridge queue.
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? %/);
queueBridge.put(msg);

| Figure 10. Writing a message to the CICS bridge

14 MQSeries Using C++

Writing to work header ¢ Sample programs

. Writing a message to the work header

| Messages sent to MQSeries for OS/390, which are destined for a queue managed
| by the OS/390 Workload Manager, require a special header. The work header is
| prefixed to regular message data.

| ImgQueueManager mgr ; // The queue manager.

| ImgQueue queueln ; // Incoming message queue.

| ImgQueue queueWLM ; // WLM managed queue.

| ImgMessage msg ; // Incoming and outgoing message.
| ImgWorkHeader header ; // Work header information

|

// Retrieve the message to be frowarded.
queueln.setConnectionReference(mgr);
queueln.setName(MY_QUEUE);
queueln.get(msg);

// Insert the Work header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the WLM managed queue.
queueWLM.setConnectionReference(mgr);
queueWLM.setName(/* 2 */);

queueWLM.put(msg);

[Figure 11. Writing a message to the work header

The sample programs
The sample programs are:

e HELLO WORLD (imqwrld.cpp)
e SPUT (imgsput.cpp) and SGET (imqgsget.cpp)
e DPUT (imqdput.cpp)

Note: DPUT is not supported on OS/390.

Sample program HELLO WORLD (imgwrld.cpp)
This program shows how to put or get a regular datagram (C structure) using the
ImgMessage class. This sample, which is shown in Figure 12 on page uses
few method invocations, taking advantage of implicit method invocations such as
open, close, and disconnect .

Chapter 1. Introduction to MQSeries C++ 15

Sample programs

On all platforms except OS/390
Using a server connection to MQSeries:

1. Run! imgwrlds to use the existing default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

2. Run imgwrlds SYSTEM.DEFAULT.MODEL.QUEUE to use a temporary
dynamically assigned queue.
Using a client connection to MQSeries:
1. Run imgwrldc .
On OS/390

e Construct and run a batch job, using the sample JCL imgwrldr . See “Running
sample programs on 0S/390” on page for more information.

extern "C" {
#include <stdio.h>

}

#include <imgi.hpp> // MQSeries C++

#define EXISTING_QUEUE "SYSTEM.DEFAULT.LOCAL.QUEUE"
#define BUFFER SIZE 12

static char gpszHello[BUFFER_SIZE] = "Hello world" ;

int main (int argc, char * % argv) {
ImgQueueManager manager ;
int iReturnCode = 0 ;

// Connect to the queue manager.

if (argc >2) {
manager.setName(argv[2]);

}

if (manager.connect()) {
ImgQueue * pqueue = new ImgQueue ;
ImgMessage * pmsg = new ImgMessage ;

Figure 12 (Part 1 of 4). The HELLO WORLD sample program

1 For details of executing AS/400 programs see “Compiling C++ sample programs for AS/400, using OS/2” on page

16 MQSeries Using C++

Sample programs

// Identify the queue which will hold the message.
pqueue -> setConnectionReference(manager);
if (argc>1) {

pqueue -> setName(argv[1]);

// The named queue can be a model queue, which will result in the
// creation of a temporary dynamic queue, which will be destroyed
// as soon as it is closed. Therefore we must ensure that such a
// queue is not automatically closed and reopened. We do this by
// setting open options which will avoid the need for closure and
// reopening.

pqueue -> setOpenOptions(MQOO_OUTPUT | MQOO_INPUT SHARED |

MQOO_INQUIRE);

} else {
pqueue -> setName(EXISTING QUEUE);

// The existing queue is not a model queue, and will not be
// destroyed by automatic closure and reopening. Therefore we will
// let the open options be selected on an as-needed basis. The
// queue will be opened implicitly with an output option during
// the "put", and then implicitly closed and reopened with the
// addition of an input option during the "get".

}

// Prepare a message containing the text "Hello world".
pmsg -> useFullBuffer(gpszHello , BUFFER SIZE);
pmsg -> setFormat(MQFMT_STRING);

// Place the message on the queue, using default put message options.
// The queue will be automatically opened with an output option.
if (pqueue -> put(* pmsg)) {

ImgString strQueue(pqueue -> name());

// Discover the name of the queue manager.
ImgString strQueueManagerName(manager.name());
printf("The queue manager name is %s.\n",

(char *)strQueueManagerName);

// Show the name of the queue.
printf("Message sent to %s.\n", (char *)strQueue);

Figure 12 (Part 2 of 4). The HELLO WORLD sample program

Chapter 1. Introduction to MQSeries C++ 17

Sample programs

18 MQsSeries Using C++

// Retrieve the data message just sent ("Hello world" expected)
// from the queue, using default get message options. The queue
// is automatically closed and reopened with an input option
// if it is not already open with an input option. We get the
// message just sent, rather than any other message on the
// queue, because the "put" will have set the ID of the message
// so, as we are using the same message object, the message ID
// acts as in the message object, a filter which says that we
// are interested in a message only if it has this particular ID.
if (pqueue -> get(» pmsg)) {

int iDatalLength = pmsg -> datalength();

// Show the text of the received message.
printf("Message of length %d received, ", iDatalength);

if (pmsg -> formatIs(MQFMT_STRING)) {
char * pszText = pmsg -> bufferPointer();

// If the last character of data is a null, then we can
// assume that the data can be interpreted as a text string.
if (! pszText[iDatalLength - 1]) {

printf("text is \"%s\".\n", pszText);

} else {
printf("no text.\n");
1
} else {
printf("non-text message.\n");
}
} else {

printf("ImgQueue::get failed with reason code %1d\n",
pqueue -> reasonCode());
iReturnCode = (int)pqueue -> reasonCode();

}

} else {
printf("ImgQueue::open/put failed with reason code %1d\n",
pqueue -> reasonCode());
iReturnCode = (int)pqueue -> reasonCode();

}

Figure 12 (Part 3 of 4). The HELLO WORLD sample program

Sample programs

// Deletion of the queue will ensure that it is closed.

// If the queue is dynamic then it will also be destroyed.
delete pqueue ;

delete pmsg ;

} else {
printf("ImgQueueManager::connect failed with reason code %1d\n"
manager.reasonCode());
iReturnCode = (int)manager.reasonCode(