MQSeries®

Programmable System Management

SC33-1482-07

MQSeries®

Programmable System Management

SC33-1482-07

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix D, “Notices”

on page

Eighth edition (January 1999)

This edition applies to the following products:

* MQSeries for AIX® Version 5 Release 1

e MQSeries for AS/400® Version 4 Release 2.1

e MQSeries for AT&T GIS UNIX® Version 2 Release 2
e MQSeries for Digital OpenVMS Version 2 Release 2

* MQSeries for HP-UX Version 5 Release 1

* MQSeries for OS/2® Warp Version 5 Release 1

¢ MQSeries for OS/390® Version 2 Release 1

e MQSeries for SINIX and DC/OSx Version 2 Release 2
e MQSeries for Sun Solaris Version 5 Release 1

¢ MQSeries for Tandem NonStop Kernel Version 2 Release 2
* MQSeries for Windows NT® Version 5 Release 1

¢ MQSeries for Windows® Version 2 Release 1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

S0O21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994,1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Contents
About this book Vii
Who this book is for viii
What you need to know viii
How to use thisbook viii
Event monitoring
Programmable Command Formats, ... i
Installable services
Appendixes . .. L
MQSeries publications
MQSeries cross-platform publications X
MQSeries platform-specific publications Xiii
MQSeries Level 1 product publications
Softcopy books
MQSeries information available on the Internet
Summary of changes Xvii
Changes to this edition, SC33-1482-07 XVii
MQSeries for OS/390 V2.1 e Xvil
MQSeries V5.1 XViil
MQSeries for AS/400 VAR2M1 [xxil
Changes to the seventh edition, SC33-1482-06 [xxi]
Changes to the sixth edition, SC33-1482-05 XXil|
Part 1. Event monitoring A
Chapter 1. Using instrumentation events to monitor queue managers .
Chapter 2. Queue manager and channel events
Chapter 3. Understanding performance events
Chapter 4. Event message reference
Chapter 5. Example of using instrumentation events 115
Part 2. Programmable Command Formats 125
Chapter 6. Introduction to Programmable Command Formats 127
Chapter 7. Using Programmable Command Formats
Chapter 8. Definitions of the Programmable Command Formats 139
Chapter 9. Structures used for commands and responses 387
Chapter 10. Example of using PCFs 409

© Copyright IBM Corp. 1994,1999 ili

Figures

Part 3. Installable services
Chapter 11. Installable services and components 423
Chapter 12. Authorization service o 433
Chapter 13. Name Service i
Chapter 14. User identifier service 447
Chapter 15. Installable services interface 453
Part 4. Appendixes 533
Appendix A. Error codes 535
Appendix B. Constants 555
Appendix C. Header, COPY, and INCLUDE files
Appendix D. Notices 575
Part 5. Glossary and Index 579
Glossary of terms and abbreviations
Index . . 593
Figures
1. Monitoring queue managers across different platforms, on a single node 4
2. Understanding instrumentation events 5
3. Understanding queue service interval events 19
4. Queue service interval events - example 1 L. 23
5. Queue service interval events - example 2 25
6. Queue service interval events -example 3 27
7. Definition of MYQUEUEL 30
8. Queuedepthevents (1) 31
9. Queue depth events(2) 33
10. Understanding services, components, and entry points 425
11. Authorization service stanzasingm.ini 435
12. Authorization service stanzas in gm.ini (OS/2) 437
13. Authorization service stanzas (Digital OpenVMS) 437
14. Authorization service stanzas (Tandem NSK) 438
15. Name service stanzas in gm.ini (for Digital OpenvVMS) 443
16. Name service stanzas in gm.ini (for OS/2) 443
17. Name service stanzas in gm.ini (for UNIX systems) 444

iv MQSeries Programmable System Management

Tables

CeNoO~LONE

PR RRERREP R R
NoohkwdhkE O

18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.

Tables

MQSeries programmable system management Vi
Enabling queue manager events using MQSC commands 14
Enabling queue manager events using PCF commands 14
Performance event statistics L 18
Event statistics summary for example 1 L 24
Event statistics summary for example 2 26
Event statistics summary for example 3 27
Event statistics summary for queue depth events (example 1) 32
Summary showing which events are enabled 32
Event statistics summary for queue depth events (example 2) 34
Summary showing which events are enabled 34
Enabling performance events using MQSC 35
Enabling performance events using PCF commands 35
Event message structure for queue service interval events 39
Event message data summary oL 42
MQSeries for AS/400 - object authorities 136
MQSeries for Windows NT, Digital OpenVMS, Tandem NSK, and UNIX

systems - object authorities L 137
Initial values of fields in MQCFH 393
Initial values of fields in MQCFIN 396
Initial values of fields in MQCFST 399
Initial values of fields in MQCFIL 402
Initial values of fields in MQCFSL 406
Installable services and components summary 424
Example of entry-points for an installable service 431
Installable services functions L. 453
Fields in MQZED 458
Cheaderfiles 571
COBOL COPY files 572
PL/I INCLUDE files 572
System/390 Assembler COPY files 573

Tables V

Tables

Vi MQSeries Programmable System Management

About this book

About this book

This book describes the facilities available on MQSeries products for:

* Monitoring instrumentation events in a network of connected systems that use
IBM MQSeries products in different operating system environments

* Writing programs using the MQSeries Programmable Command Formats
(PCFs) to administer IBM MQSeries systems either locally or remotely

e Extending the facilities available to a queue manager, using installable services

This table shows the facilities offered on each MQSeries platform, together with the
short name used in this book for the platform.

Table 1. MQSeries programmable system management

Platform Short name Event monitoring PCF commands Installable
MQSeries for services
AS/400 0S/400® v v No
Digital OpenVMS Digital OpenVMS v v v
0S/390 0S/390 v No No
0S/2 0S/2 v v v
Tandem NonStop Tandem NonStop v v v
Kernel
UNIX® systems UNIX systems v v v
see Note below
VSE/ESA® VSE/ESA No No No
Windows NT Windows NT v v v
Windows V2.0 16-bit Windows No No No
Windows V2.1 32-bit Windows v v No

Note: In this book references to MQSeries for “UNIX systems” include:

IBM MQSeries for AlIX Version 5.1

IBM MQSeries for AT&T GIS UNIX Version 2.21

IBM MQSeries for HP-UX Version 5.1

IBM MQSeries for SINIX and DC/OSx Version 2.2
IBM MQSeries for Sun Solaris Version 5.1

The following table lists the MQSeries products available for Windows, and shows
the Windows platforms on which each runs.

1 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1994,1999

Vil

About this book

MQSeries product Windows 3.1 Windows 95 Windows 98 Windows NT
MQSeries for Windows Client v v v v

MQSeries for Windows NT No No No v

MQSeries for Windows V2.0 v v No No
MQSeries for Windows V2.1 No v v v

MQSeries for Windows Version 2.1 supports most of the features described in this
book. For information on this product, see the MQSeries for Windows User’s
Guide.

Who this book is for

Primarily, this book is intended for system programmers who write programs to
monitor and administer MQSeries products. To do this they may need to use the
event messages, the Programmable Command Formats, and the installable
services that are described in this book.

What you need to know
You should have:
e Experience in writing systems management applications
¢ An understanding of the Message Queue Interface (MQI)

» Experience of MQSeries programs in general, or familiarity with the content of
the other books in the MQSeries library

How to use this book
There are three parts to this book:
e Part 1 — Event monitoring

This part of the book describes how to monitor significant events in a network
of connected systems that use IBM MQSeries products, in different operating
system environments.

e Part 2 — Programmable Command Formats (PCFs)

This part of the book describes the MQSeries (PCFs). PCFs are the formats of
command and response messages that are sent between an MQSeries
systems management application, or other program, and an MQSeries queue
manager.

e Part 3 — Installable services
This part of the book describes the MQSeries installable services. It includes
full reference material for the interface to the installable services.

Go to the part that you are interested in; there is an introduction and discussion of
each topic before the reference material.

viii MQSeries Programmable System Management

About this book

Event monitoring

The first three chapters contain a description of the different types of event, and
provide guidance on their use.

Chapter 4, “Event message reference” on page [37]contains the reference material
for the event messages. Chapter 5, “Example of using instrumentation events” on
page contains a fragment of a C program to illustrate the use of events.

Programmable Command Formats

Chapter 6, “Introduction to Programmable Command Formats” on page [127]and
Chapter 7, “Using Programmable Command Formats” on page contain
introduction and guidance material. If you are using PCFs, you are advised to read
all of this part.

Chapter 8, “Definitions of the Programmable Command Formats” on page [L39]and
Chapter 9, “Structures used for commands and responses” on page contain
the reference material. See Chapter 10, “Example of using PCFs” on page
for an example of how PCFs could be used.

Installable services

Appendixes

Chapter 11, “Installable services and components” on page [423]contains a
description of the available installable services. You must read this chapter if you
are going to use any of the installable services. Read the subsequent chapters as
necessary, according to the services that you are going to install. Three services
are described:

e Chapter 12, “Authorization service” on page
 Chapter 13, “Name service” on page [441].
e Chapter 14, “User identifier service” on page

Chapter 15, “Installable services interface” on page describes the interface for
each service.

The error codes that apply to PCF commands and responses are listed in
Appendix A, “Error codes” on page

The values of constants for events, commands, responses and installable services
are given in Appendix B, “Constants” on page

The various header, COPY, and INCLUDE files that are provided to assist
applications with the processing of event messages, PCF commands, and
installable services are identified in Appendix C, “Header, COPY, and INCLUDE
files” on page [571.

About this book IX

MQSeries publications

MQSeries publications

This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications

Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4R2M1

e MQSeries for AT&T GIS UNIX V2.2

* MQSeries for Digital OpenVMS V2.2

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for 0S/390 V2.1

e MQSeries for SINIX and DC/OSx V2.2
¢ MQSeries for Sun Solaris V5.1

e MQSeries for Tandem NonStop Kernel V2.2
e MQSeries for VSE/ESA V2.1

e MQSeries for Windows V2.0

¢ MQSeries for Windows V2.1

e MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure

The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing

MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide

The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication

The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

X MQSeries Programmable System Management

MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration

The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products only:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries Command Reference

The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management

The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
* MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1
e MQSeries for Windows V2.0

e MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide

The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference

The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary

The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

About this book Xi

MQSeries publications

Xii

MQSeries Using C ++

MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4R2M1
e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
¢ MQSeries for 0OS/390 V2.1

e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

e AIX

e HP-UX

e 0S/2

e Sun Solaris

e Windows NT

¢ Windows 3.1

¢ Windows 95 and Windows 98

MQSeries Using Java ™

MQSeries Using Java, SC34-5456, provides both guidance and reference
information for users of the MQSeries Bindings for Java and the MQSeries Client
for Java. MQSeries Java is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1

MQSeries Administration Interface Programming Guide and Reference

The MQSeries Administration Interface Programming Guide and Reference,
SC34-5390, provides information for users of the MQAI. The MQAI is a
programming interface that simplifies the way in which applications manipulate
Programmable Command Format (PCF) messages and their associated data
structures.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries Queue Manager Clusters

MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
explains the concepts and terminology and shows how you can benefit by taking
advantage of clustering. It details changes to the MQI, and summarizes the syntax
of new and changed MQSeries commands. It shows a number of examples of
tasks you can perform to set up and maintain clusters of queue managers.

This book applies to the following MQSeries products only:
MQSeries for AIX V5.1

MQSeries Programmable System Management

MQSeries publications

MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for 0OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries platform-specific publications

Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AlX

MQSeries for AlX Version 5 Release 1 Quick Beginnings, GC33-1867
MQSeries for AS/400

MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

MQSeries for Digital UNIX

MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869
MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868
MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program Directory

MQSeries for OS/390 Version 2 Release 1 System Management Guide,
SC34-5374

MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
GC34-5376

MQSeries link for R/3
MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934
MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

About this book Xiii

MQSeries publications

MQSeries for Sun Solaris
MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870
MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
MQSeries for Windows NT Using the Component Object Model Interface,
SC34-5387

MQSeries LotusScript Extension, SC34-5404

MQSeries Level 1 product publications

Softcopy books

For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’'s Guide, SC33-1379

Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

BookManager ® format

The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection Kkit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

Xiv MQSeries Programmable System Management

MQSeries publications

HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for Sun Solaris V5.1

e MQSeries for Windows NT V5.1 (compiled HTML)
e MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

http://www.software.ibm.com/ts/mgseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are supplied with these MQSeries
products:

e MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1
e MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also available from the MQSeries
product family Web site at:

http://www.software.ibm.com/ts/mqseries/

PostScript format

The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format

The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

About this book XV

http://www.software.ibm.com/ts/mqseries/
http://www.adobe.com/
http://www.software.ibm.com/ts/mqseries/

MQSeries on the Internet

MQSeries information available on the Internet

— MQSeries Web site

The MQSeries product family Web site is at:

http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:
e Obtain latest information about the MQSeries product family.
¢ Access the MQSeries books in HTML and PDF formats.
¢ Download MQSeries SupportPacs.

XVi MQSeries Programmable System Management

http://www.software.ibm.com/ts/mqseries/

Changes

Summary of changes

This section lists the major revisions to this book for the current edition and the
preceding two editions.

. Changes to this edition, SC33-1482-07

| Changes to the book for this edition are marked by vertical bars in the left margin.

| This edition of MQSeries Programmable System Management applies to these new
| versions and releases of MQSeries products:

| e MQSeries for AIX V5.1

| e MQSeries for AS/400 V4R2M1

[¢ MQSeries for HP-UX V5.1

| e MQSeries for OS/2 Warp V5.1

| e MQSeries for 0S/390 V2.1

| e MQSeries for Sun Solaris V5.1

| e MQSeries for Windows NT V5.1

| Major new function supplied with each of these MQSeries products is summarized
| here.

MQSeries for OS/390 V2.1

I

| MQSeries for OS/390 V2.1 is a new product for the OS/390 platform that offers
| functional enhancements over MQSeries for MVS/ESA V1.2. Those functional

| enhancements specific to MQSeries for OS/390 are summarized here. As a

| general rule, other function described in this book as supported by MQSeries for
| 0S/390 is also supported by MQSeries for MVS/ESA V1.2.

| MQSeries queue manager clusters

| MQSeries queue managers can be connected to form a cluster of queue

| managers. Within a cluster, queue managers can make the queues they host

| available to every other queue manager. Any queue manager can send a

| message to any other queue manager in the same cluster without the need for

| explicit channel definitions, remote queue definitions, or transmission queues for
| each destination. The main benefits of MQSeries clusters are:

| ¢ Fewer system administration tasks
[¢ Increased availability
| ¢ Workload balancing

| Clusters are supported by these MQSeries products:

| ¢ MQSeries for AIX V5.1

| ¢ MQSeries for HP-UX V5.1

| e MQSeries for OS/2 Warp V5.1

| e MQSeries for 0S/390 V2.1

| ¢ MQSeries for Sun Solaris V5.1

| e MQSeries for Windows NT V5.1

| See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
| description of this function.

© Copyright IBM Corp. 1994,1999 XVii

Changes

MQSeries V5.1

0S/390 Automatic Restart Manager (ARM)
If an MQSeries queue manager or channel initiator fails, the OS/390 Automatic
Restart Manager (ARM) can restart it automatically on the same OS/390 image.
If the OS/390 image itself fails, ARM can restart that image’s subsystems and
applications automatically on another OS/390 image in the sysplex, provided that
the LU 6.2 communication protocol is being used. By removing the need for
operator intervention, OS/390 ARM improves the availability of your MQSeries
subsystems.

0S/390 Resource Recovery Services (RRS)
MQSeries Batch and TSO applications can participate in two-phase commit
protocols with other RRS-enabled products, such as DB2®, coordinated by the
0S/390 RRS facility.

MQSeries Workflow
MQSeries Workflow allows applications on various network clients to perform
business functions through System/390® by driving one or more CICS®, IMS®,
or MQSeries applications. This is achieved through format, rule, and table
definition, rather than through application programming.

Support for C ++
MQSeries for OS/390 V2.1 applications can be written in C++.

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

The MQSeries Version 5 Release 1 products are:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

The following new function is provided in all of the V5.1 products:

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they host
available to every other queue manager. Any queue manager can send a
message to any other queue manager in the same cluster without the need for
explicit channel definitions, remote queue definitions, or transmission queues for
each destination. The main benefits of MQSeries clusters are:

¢ Fewer system administration tasks
¢ Increased availability
¢ Workload balancing

Clusters are supported by these MQSeries products:

e MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

¢ MQSeries for OS/2 Warp V5.1
* MQSeries for 0S/390 V2.1

e MQSeries for Sun Solaris V5.1

XViii MQSeries Programmable System Management

Changes

¢ MQSeries for Windows NT V5.1

See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
description of this function.

MQSeries Administration Interface (MQAI)
The MQSeries Administration Interface is an MQSeries programming interface
that simplifies manipulation of MQSeries PCF messages for administrative tasks.
It is described in a new book, MQSeries Administration Interface Programming
Guide and Reference, SC34-5390.

Support for Windows 98 clients
A Windows 98 client can connect to any MQSeries V5.1 server.

Message queue size
A message queue can be up to 2 GB.

Controlled, synchronous shutdown of a queue manager
A new option has been added to the endmgm command to allow controlled,
synchronous shutdown of a queue manager.

Java support
The MQSeries Client for Java and MQSeries Bindings for Java are provided with
all MQSeries V5.1 products. The client, bindings, and common files have been
packaged into .jar files for ease of installation.

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

Conversion of the EBCDIC new-line character
You can control the conversion of EBCDIC new-line characters to ensure that
data transmitted from EBCDIC systems to ASCII systems and back to EBCDIC is
unaltered by the ASCII conversion.

Client connections via MQCONNX
A client application can specify the definition of the client-connection channel at
run time in the MQCNO structure of the MQCONNX call.

Additional new function in MQSeries for AIX V5.1
e The UDP transport protocol is supported.
» Sybase databases can participate in global units of work.
e Multithreaded channels are supported.

Additional new function in MQSeries for HP-UX V5.1
e MQSeries for HP-UX V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
e Multithreaded channels are supported.
e Both HP-UX kernel threads and DCE threads are supported.

Additional new function in MQSeries for OS/2 Warp V5.1
0S/2 high memory support is provided.

Summary of changes XiX

Changes

Additional new function in MQSeries for Sun Solaris V5.1
e MQSeries for Sun Solaris V5.1 runs on both Sun Solaris V2.6 and Sun Solaris

e Sybase databases can participate in global units of work.

e Multithreaded channels are supported.

Additional new function in MQSeries for Windows NT V5.1
MQSeries for Windows NT V5.1 is part of the IBM Enterprise Suite for Windows
NT. New function in this release includes:

* Close integration with Microsoft® Windows NT Version 4.0, including
exploitation of extra function provided by additional Microsoft offerings. The
main highlights are:

— Graphical tools and applications for managing, controlling, and exploring
MQSeries:

- MQSeries Explorer—a snap-in for the Microsoft management console

(MMC) that allows you to query, change, and create the local, remote,
and cluster objects across an MQSeries network.

MQSeries Services—an MMC snhap-in that controls the operation of
MQSeries components, either locally or remotely within the Windows
NT domain. It monitors the operation of MQSeries servers and
provides extensive error detection and recovery functions.

MQSeries API Exerciser—a graphical application for exploring the
messaging and queuing programming functions that MQSeries
provides. It can also be used in conjunction with the MQSeries
Explorer to gain a deeper understanding of the effects of MQSeries
operations on objects and messages.

MQSeries Postcard—a sample application that can be used to verify an
MQSeries installation, for either local or remote messaging.

— Support for the following features of Windows NT has been added:

- Windows NT performance monitor—used to access and display

MQSeries information, such as the current depth of a queue and the
rate at which message data is put onto and taken off queues.

ActiveDirectory—programmable access to MQSeries objects is
available through the Active Directory Service Interfaces (ADSI).

Windows NT user IDs—previous MQSeries restrictions on the validity of
Windows NT user IDs have been removed. All valid Windows NT user
IDs are now valid identifiers for MQSeries operations. MQSeries uses
the associated Windows NT Security Identifier (SID) and the Security
Account Manager (SAM). The SID allows the MQSeries Object
Authority Manager (OAM) to identify the specific user for an
authorization request.

Windows NT registry—now used to hold all configuration and related
data. The contents of any configuration (.INI) files from previous
MQSeries installations of MQSeries for Windows NT products are
migrated into the registry; the .INI files are then deleted.

XX MQSeries Programmable System Management

Changes

- A set of Component Object Model (COM) classes, which allow ActiveX
applications to access the MQSeries Message Queue Interface (MQI)
and the MQSeries Administration Interface (MQAI).

— An online Quick Tour of the product concepts and functions.

— An online Information Center that gives you quick access to task help
information, reference information, and Web-based online books and home
pages.

— Simplified installation of MQSeries for Windows NT, with default options
and automatic configuration.

e Support for web-based administration of an MQSeries network, which provides
a simplified way of using the MQSC commands and scripts and allows you to
create powerful macros for standard administration tasks.

e Support for MQSeries LotusScript Extension (MQLSX), which allows Lotus
Notes applications that are written in LotusScript to communicate with
applications that run in non-Notes environments.

e Support for Microsoft Visual Basic for Windows Version 5.0.

e Performance improvements over the MQSeries for Windows NT Version 5.0
product.

¢ Information and examples on how MQSeries applications can interface with and
exploit the lightweight directory access protocol (LDAP) directories.

e Support for Sybase patrticipation in global units of work.

MQSeries for AS/400 V4R2M1
New function in MQSeries for AS/400 VAR2M1 includes:

e Support for the MQSeries dead-letter queue handler
¢ Improvements to installation and migration procedures

Changes to the seventh edition, SC33-1482-06

¢ New versions of the following products:

— MQSeries for AS/400
— MQSeries for Tandem NonStop Kernel

Summary of changes XXi

Changes

Changes to the sixth edition, SC33-1482-05

* New versions of the following products:

XXii

— MQSeries for AIX

— MQSeries for HP-UX

— MQSeries for OS/2

— MQSeries for Sun Solaris
— MQSeries for Windows NT

e The changes to the products include additional support for:

— Distribution lists

— Direct SPX support

— Channel heartbeats

— Fast messages

— Auto-definition of channels
— MCA exit chaining

MQSeries Programmable System Management

Part 1. Event monitoring

Chapter 1. Using instrumentation events to monitor queue managers .
Monitoring queue managers
What instrumentation events are
Format of event messages E
Monitoring events across different platforms [9
Monitoring performance on Windows NT 9
Chapter 2. Queue manager and channel events
Queue Manager eVENLS
Enabling queue manager events summary
Channel events
Chapter 3. Understanding performance events
What performance events are
Understanding queue service interval events
Queue service interval-events exampleso
Understanding queue depth events
Queue depth events examples
Enabling performance events summary
Chapter 4. Event message reference 37]
Event message formats 38]
MQMD (Message descriptor) [40]
MQCFH (PCF header) 41
Event message data [42]
Alias Base Queue Type Error E
Bridge Started [45]
Bridge Stopped 47]
Channel Activated
Channel Auto-definition Error 51
Channel Auto-definition OK 53
Channel Conversion Error 55
Channel Not Activated 58]
Channel Started 60]
Channel Stopped 62]
Channel Stopped By User 66|
Default Transmission Queue Type Error 68|
Default Transmission Queue Usage Error [70]
GetInhibited 72]
Not Authorized (type 1)
Not Authorized (type 2) 76|
Not Authorized (type 3) 78]
Not Authorized (type 4) 80]
Put Inhibited 82]
Queue Depth High 84
Queue Depth LOW o o oo 36|
Queue Full 88]
Queue Manager Active 90|
Queue Manager Not Active 97
Queue Service Interval High 92]

© Copyright IBM Corp. 1994,1999 1

Queue Service Interval OK
Queue Type Error
Remote Queue Name Error

Transmission Queue Type Error, ‘
Transmission Queue Usage Error ‘
Unknown Alias Base Queue ‘
Unknown Default Transmission Queue |

Unknown Object Name
Unknown Remote Queue Manager
Unknown Transmission Queue

Chapter 5. Example of using instrumentation events

2 MQSeries Programmable System Management

Using events ¢ Monitoring queue managers

Chapter 1. Using instrumentation events to monitor queue

managers

This chapter discusses:

¢ “Monitoring queue managers”

e “What instrumentation events are” on page

 “Format of event messages” on page [9]

* “Monitoring events across different platforms” on page [9]
 “Monitoring performance on Windows NT” on page [9]

MQSeries instrumentation events provide information about errors, warnings, and
other significant occurrences in a queue manager. You can, therefore, use these
events to monitor the operation of queue managers (in conjunction with other
methods such as NetView®). This chapter tells you what these events are, and
how you use them.

Instrumentation events are supported by:

MQSeries for AIX

MQSeries for AS/400

MQSeries for AT&T GIS UNIX
MQSeries for Digital OpenVMS
MQSeries for HP-UX

MQSeries for OS/2 Warp
MQSeries for OS/390

MQSeries for SINIX and DC/OSx
MQSeries for Sun Solaris
MQSeries for Tandem NonStop Kernel
MQSeries for Windows NT
MQSeries for WindowsV2.1

Monitoring queue managers

© Copyright IBM Corp. 1994,1999

Instrumentation events can be generated for queue managers running on Digital
OpenVMS, 0S/2, 0S/390, 0S/400, Tandem NonStopKernel, Windows 95, Windows
98, Windows NT, and UNIX platforms. By incorporating these events into your own
system management application, you can monitor the activities across many queue
managers, across many different nodes, for multiple MQSeries applications. In
particular, you can monitor all the nodes in your system from a single node (for
those nodes that support MQSeries events) as shown in Figure 1 on page

Instrumentation events can be reported through a user-written reporting mechanism
to an administration application that supports the presentation of the events to an
operator.

Instrumentation events

MOQSeries MOQSeries MOQSeries

for MVS/ESA for AIX

for Os/2

J
)

Event

messages

Event monitoring

from a single node

Figure 1. Monitoring queue managers across different platforms, on a single node

Instrumentation events also enable applications acting as agents for other

administration networks, for example NetView, to monitor reports and create the
appropriate alerts.

What instrumentation events are

In MQSeries, an instrumentation event is a logical combination of conditions that is
detected by a queue manager or channel instance. The result of such an event is
that the queue manager or channel instance puts a special message, called an
event message, on an event queue. Event queues are described in “Event
notification through event queues” on page [6]

4 MQSeries Programmable System Management

Instrumentation events

1. Event conditions

2. Event message

put on event queue

3. Event message
processed by a

user application

Queue Manager

For example:
Queue full \

+ event enabled

!

Event message

)

Event queue

LT

User Application

Figure 2. Understanding instrumentation events

For example, the conditions giving rise to a Queue Full event are:

e Queue Full events are enabled for a specified queue

and

* An application issues an MQPUT request to put a message on that queue, but
the request fails because the queue is full.

Other conditions that can give rise to instrumentation events include:

e A threshold limit for the number of messages on a queue is reached.

e A channel instance is started or stopped.

¢ On the MQSeries products for UNIX systems, MQSeries for Digital OpenVMS,
MQSeries for Tandem NonStop Kernel, and on MQSeries for Windows NT, an
application attempts to open a queue specifying a user ID that is not

authorized.

Chapter 1. Using instrumentation events to monitor queue managers 5

Instrumentation events

For the full list of events see Table 15 on page

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

Types of event
MQSeries instrumentation events may be categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue managers.
For example, an application attempts to put a message to a queue that does not
exist.

Performance events
These events are notifications that a threshold condition has been reached by a
resource. For example, a queue depth limit has been reached.

Channel events
These events are reported by channels as a result of conditions detected during
their operation. For example, when a channel instance is stopped.

The event type is returned in the command identifier field in the message data.

— Trigger events

When we discuss triggering in other MQSeries books, we sometimes refer to a
trigger event. This occurs when a queue manager detects that the conditions
for a trigger event have been met. For example, for a queue for which triggers
are active, a message of the required priority has been put on a queue so that
the trigger depth is reached.

The result of a trigger event is that a trigger message is put onto an initiation
queue and an application program is started. No other event messages as
described in this book are involved (unless, for example, the initiation queue fills
up and generates an instrumentation event).

Event notification through event queues

When an event occurs the gueue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:

¢ Gets the message from the queue.

* Processes the message to extract the event data. For an overview of event
message formats, see “Format of event messages” on page [9] For detailed
descriptions about the format of each event message, see “Event message
formats” on page

For each queue manager, each category of event has its own event queue. All
events in that category result in an event message being put onto the same queue.

This event queue: Contains messages from:
SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events

6 MQSeries Programmable System Management

Instrumentation events

You can define event queues either as local queues, alias queues, or as local
definitions of remote queues. If you define all your event queues as local
definitions of the same remote queue on one queue manager, you can centralize
your monitoring activities.

Using triggered event queues

You can set up the event queues with triggers so that when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, certain events may require that an operator be
informed, other events may start off an application that performs some
administration tasks automatically.

When an event queue is unavailable

If an event occurs when the event queue is not available, the event message is
lost. For example, if you do not define an event queue for a category of event, all
event messages for that category will be lost. The event messages are not, for
example, saved on the dead-letter (undelivered-message) queue.

However, the event queue may be defined as a remote queue. Then, if there is a
problem on the remote system putting messages to the resolved queue, the event
message will appear on the remote system’s dead-letter queue.

An event queue may be unavailable for many different reasons including:

e The queue has not been defined.
e The queue has been deleted.

¢ The queue is full.

e The queue has been put-inhibited.

The absence of an event queue does not prevent the event from occurring. For
example, after a performance event, the queue manager changes the queue
attributes and resets the queue statistics. This happens whether te event message
is put on the performance event queue or not. For more information about
performance events changing queue attributes, see Chapter 3, “Understanding
performance events” on page

Enabling and disabling events
You can enable and disable events by specifying the appropriate values for queue

manager or queue attributes (or both) depending on the type of event. You do this
using:
e MQSC (MQSeries) commands. For more information, see Chapter 2, “The
MQSeries commands” in the MQSeries Command Reference book.

e PCF commands, for queue managers on OS/400, OS/2, Digital OpenVMS,
Tandem NonStop Kernel, Windows NT, and UNIX systems. For more
information, see Chapter 6, “Introduction to Programmable Command Formats”

on page

e Control Language (CL) commands for queue managers on 0S/400. For more
information, see the MQSeries for AS/400 Administration Guide

e The operations and controls panels for queue managers on OS/390. For more
information, see the MQSeries for 0S/390 System Management Guide.

Chapter 1. Using instrumentation events to monitor queue managers 7

Instrumentation events

Note: Attributes related to events for both queues and queue managers can be
set by command only. They are not supported by the MQI call MQSET.

Enabling and disabling an event depends on the category of the event:

* Queue Manager events are enabled by setting attributes on the queue
manager. See “Enabling and disabling queue manager events” on page for
more information.

e Performance events as a whole must be enabled on the queue manager,
otherwise no performance events can occur. You can then enable the specific
performance events by setting the appropriate queue attribute. You also have
to specify the conditions that give rise to the event. For more information, see
“Enabling queue service interval events” on page and “Understanding
gueue depth events” on page

¢ Channel events do not require enabling, they occur automatically. Similarly,
channel events cannot be disabled. However, channel events can be
suppressed by not defining the channel events queue, or by making it
put-inhibited. Note that this could cause a queue to fill up if remote event
gueues point to a put-inhibited channel events queue.

Hints and tips for using events
Some things to consider about event queues:

¢ You must not define event queues as transmission queues because event
messages have formats that are incompatible with the format of messages
required for transmission queues.

¢ Performance events are not generated for the event queues themselves.

e |f a queue manager attempts to put a queue manager or a performance event
message on an event queue and an error is detected which would normally
create an event, another event is not created and no action is taken.

Notes:

1. If a channel event is put onto an event queue, an error condition causes
the queue manager to create an event as usual.

2. Putting a message on the dead-letter queue can cause an event to be
generated if the event conditions are met.

e Event queues may have trigger actions associated with them and may
therefore create trigger messages. However, If these trigger messages, in turn,
cause conditions that would normally generate an event, no event is generated.
This ensures that looping does not occur.

e MQGET calls and MQPUT calls within a unit of work can cause performance
related events to occur regardless of whether the unit of work is committed or
backed out.

e The putting of the event message and any subsequent actions arising do not
affect the reason code to the MQI call that caused the event.

8 MQSeries Programmable System Management

Event message format e Monitoring performance

Format of event messages

Event messages contain information about the event and its origin. Typically, these
messages are processed by a system management application program tailored to
meet the requirements of the enterprise at which it runs. As with all MQSeries
messages, an event message has two parts: a message descriptor and the
message data. The message descriptor is based on the MQMD structure, which is
defined in “MQMD - Message descriptor” in the MQSeries Application Programming
Reference manual. The message data is also made up of two parts:

* An event header containing the reason code that identifies the event type
e The event data, which provides further information about the event

“Message descriptors in event messages” on page [38]describes the format of the
message descriptor when used with event messages.

Monitoring events across different platforms
If you write an application using events to monitor queue managers, you need to:
1. Set up channels between the queue managers in your network.

2. Implement the required data conversions. The normal rules of data conversion
apply. For example, if you are monitoring events on a UNIX system queue
manager from an OS/390 queue manager, you must ensure that you perform
the EBCDIC to ASCII conversions.

See Chapter 11, “Writing data-conversion exits” in the MQSeries Application
Programming Guide for more information.

| Monitoring performance on Windows NT

| On Windows NT, performance data is stored using performance counters that can
| be accessed using the system registry. Within the registry, the counters are

| grouped according to the type of object to which they apply. For MQSeries the

| type of object is MQSeries queues.

| For each queue the following performance counters are available:

e The current queue depth

e The queue depth as a percentage of the maximum queue depth

¢ The number of messages per second being placed on the queue

e The number of messages per second being removed from the queue

| For messages sent to a distribution list, the performance monitor counts the
| number of messages put on to each queue. In the case of large messages, the
| performance monitor counts the appropriate number of small messages.

| See “Monitoring local queues with the Windows NT Performance Monitor” in the

| MQSeries System Administration book, for information on using the Windows NT

| performance monitor to view performance information. For details of how to access
| the performance counters in your own application, see the Microsoft Web site at:

| http://msdn.microsoft.com/developer/

| Follow the links from this site to obtain online platform SDK information.

Chapter 1. Using instrumentation events to monitor queue managers 9

http://msdn.microsoft.com/developer/

Monitoring performance

10 MQSeries Programmable System Management

Queue manager and channel events

Chapter 2. Queue manager and channel events

This chapter provides a brief overview of both queue manager events and channel
events, and includes:

e “Queue manager events”
e “Enabling queue manager events summary” on page
 “Channel events” on page

Queue manager events

Queue manager events are related to the definitions of resources within queue
managers. The event messages for queue manager events are put on the
SYSTEM.ADMIN.QMGR.EVENT queue. The following queue manager event types
are supported:

e Authority (on OS/400, Windows NT, Digital OpenVMS, Tandem NonStop
Kernel, and UNIX systems only)

 Inhibit

e Local

e Remote

e Start and Stop (for OS/390: Start only)

For each event type in this list, there is a queue manager attribute that enables or
disables the event type. See Chapter 2, “The MQSeries commands” in the
MQSeries Command Reference for more information.

The conditions that give rise to the event (when enabled) include:

e An application issues an MQI call, which fails. The reason code from the call is
the same as the reason code in the event message.

Note that a similar condition may occur during the internal operation of a queue
manager, for example, when generating a report message. The reason code in
an event message may match an MQI reason code, even though it is not
associated with any application. Therefore you should not assume that,
because an event message reason code looks like an MQI reason code, the
event was necessarily caused by an unsuccessful MQI call from an application.

e A command is issued to a queue manager and the processing of this command
causes an event. For example:

— A queue manager is stopped or started.
— A command is issued where the associated user ID is not authorized for
that command.

Enabling and disabling queue manager events

You enable queue manager events by specifying the appropriate attribute on the
MQSC command ALTER QMGR, or the appropriate parameters and values on the
equivalent PCF command, Change Queue Manager. For example, to enable inhibit
events on the default queue manager, use this MQSC command:

ALTER QMGR INHIBTEV (ENABLED)

© Copyright IBM Corp. 1994,1999 11

Queue manager and channel events

Authority events

Inhibit events

To disable the event, set the INHIBTEV attribute to DISABLED using this MQSC:

ALTER QMGR INHIBTEV (DISABLED)

To enable the same event from a PCF command, use this combination of
parameters and values:

Command Command parameter Parameter value

Change Queue Manager InhibitEvent MQEVR_ENABLED

To disable these events, you issue the same command but specify a parameter
value of MQEVR_DISABLED.

— Note to users

1. All authority events are valid on Digital OpenVMS, 0S/400, Windows NT,
and UNIX systems only.

2. Tandem NSK supports only Not Authorized (type 1).

Authority events indicate that an authorization violation has been detected. For
example, an application attempts to open a queue for which it does not have the
required authority, or a command is issued from a user ID that does not have the
required authority.

You enable authority events using:

e The AUTHOREYV attribute on the MQSC command ALTER QMGR
e The AuthorityEvent parameter on the Change Queue Manager PCF command

For more information about the event data returned in authority event messages
see:

“Not Authorized (type 1)” on page
“Not Authorized (type 2)” on page
“Not Authorized (type 3)” on page
“Not Authorized (type 4)” on page

Inhibit events indicate that an MQPUT or MQGET operation has been attempted
against a queue, where the queue is inhibited for puts or gets respectively.
You enable inhibit events using:

e The INHIBTEV attribute on the MQSC command ALTER QMGR

e The InhibitEvent parameter on the Change Queue Manager PCF command
For more information about the event data returned in inhibit event messages, see:

“Get Inhibited” on page
“Put Inhibited” on page

12 MQSeries Programmable System Management

Local events

Remote events

Queue manager and channel events

Local events indicate that an application (or the queue manager) has not been able
to access a local queue, or other local object. For example, when an application
attempts to access an object that has not been defined.

You enable local events using:

e The LOCALEV attribute on the MQSC command ALTER QMGR
e The LocalEvent parameter on the Change Queue Manager PCF command

For more information about the event data returned in local event messages, see:

“Alias Base Queue Type Error” on page
“Unknown Alias Base Queue” on page
“Unknown Object Name” on page

Remote events indicate that an application (or the queue manager) cannot access
a (remote) queue on another queue manager. For example, when the transmission
queue to be used is not correctly defined.

You enable remote events using:

e The REMOTEEV attribute on the MQSC command ALTER QMGR
e The RemoteEvent parameter on the Change Queue Manager PCF command

For more information about the event data returned in the remote event messages,
see:

“Default Transmission Queue Type Error” on page
“Default Transmission Queue Usage Error” on page
“Queue Type Error” on page

“Remote Queue Name Error” on page
“Transmission Queue Type Error” on page
“Transmission Queue Usage Error” on page
“Unknown Default Transmission Queue” on page
“Unknown Remote Queue Manager” on page @l
“Unknown Transmission Queue” on page [113]

Start and stop events

Start and stop events (start only for 0S/390) indicate that a queue manager has
been started or has been requested to stop or quiesce.
You enable start and stop events using:

e The STRSTPEV attribute on the MQSC command ALTER QMGR

e The StartStopEvent parameter on the Change Queue Manager PCF command

Stop events are not recorded unless the default message-persistence of the
SYSTEM.ADMIN.QMGR.EVENT queue is defined as persistent.

For more information about the event data returned in the start and stop event
messages, see:

“Queue Manager Active” on page
“Queue Manager Not Active” on page @

Chapter 2. Queue manager and channel events 13

Queue manager and channel events

Enabling queue manager events summary

The following figures summarize how to enable queue manager events:

Table 2. Enabling queue manager events using MQSC commands
Queue manager events

Event Queue manager attribute
Authority AUTHOREV (ENABLED)
Inhibit INHIBTEV (ENABLED)
Local LOCALEV (ENABLED)
Remote REMOTEEV (ENABLED)
Start and Stop STRSTPEV (ENABLED)

Table 3. Enabling gqueue manager events using PCF commands

Attribute name Parameter identifier Value

AuthorityEvent MQIA_AUTHORITY_EVENT MQEVR_ENABLED
InhibitEvent MQIA_INHIBIT_EVENT MQEVR_ENABLED
LocalEvent MQIA_LOCAL_EVENT MQEVR_ENABLED
RemoteEvent MQIA_REMOTE_EVENT MQEVR_ENABLED
StartStopEvent MQIA_START_STOP_EVENT MQEVR_ENABLED

Channel events

Channel events are generated:
e By a command to start or stop a channel.
¢ When an IMS® bridge starts or stops (on OS/390 only).
¢ When a channel instance starts or stops.
e When a channel receives a conversion error warning when getting a message.
e When an attempt is made to create a channel automatically; the event is

generated whether the attempt succeeds or fails.
Notes:

1. No channel events are generated when using MQSeries for OS/390 with
distributed queuing provided by CICS®.

2. Client connections on MQSeries for OS/390 Version 2, MQSeries Version 5, or
later products, do not cause Channel Started or Channel Stopped events.

When a command is used to start a channel an event is generated. Another event
is generated when the channel instance starts. However, starting a channel by a
listener, runmqchl, or by a queue manager trigger message does not generate an
event; in this case the only event generated is when the channel instance starts.

A successful start or stop channel command will generate at least two events. The
events are generated for both queue managers that are connected by the channel,
unless one of the queue managers does not support events, for example versions
of MQSeries for AS/400 previous to V3R2. Channel event messages are put onto

14 MQSeries Programmable System Management

Queue manager and channel events

the SYSTEM.ADMIN.CHANNEL.EVENT queue, if it is available. Otherwise, they
are ignored.

For more information about the event data returned in the channel event messages,
see:

“Bridge Started” on page [45](OS/390 only)
“Bridge Stopped” on page [47](0S/390 only)
“Channel Activated” on page

“Channel Auto-definition Error” on page
“Channel Auto-definition OK” on page
“Channel Conversion Error” on page
“Channel Not Activated” on page
“Channel Started” on page

“Channel Stopped” on page

Enabling channel events
Most channel events are enabled automatically and cannot be enabled or disabled
by command. The exceptions are the two automatic channel definition events.
The generation of these events is controlled by the ChannelAutoDefEvent
gueue-manager attribute.

Refer to “Attributes for the queue manager” in the MQSeries Application
Programming Reference manual for further details of this attribute.

If a queue manager does not have a SYSTEM.ADMIN.CHANNEL.EVENT queue, or
if this queue is put inhibited, all channel event messages are discarded, unless they
are being put by an MCA across a link to a remote queue. In this case they are
put on the dead-letter queue.

Chapter 2. Queue manager and channel events 15

Queue manager and channel events

16 MQSeries Programmable System Management

Performance events

Chapter 3. Understanding performance events

This chapter describes what performance events are, how they are generated, how
they can be enabled, and how they are used. The chapter includes:

e “What performance events are”

¢ “Understanding queue service interval events” on page
* “Queue service interval-events examples” on page

e “Understanding queue depth events” on page

e “Queue depth events examples” on page

e “Enabling performance events summary” on page

In this chapter, the examples assume that you set queue attributes by using the
appropriate MQSeries commands (MQSC). See Chapter 2, “The MQSeries
commands” in the MQSeries Command Reference book for more information. You
can also set them using:

e The operations and controls panels, for queue managers, on OS/390.
e The corresponding PCF commands, for queue managers, on:

— Digital OpenVMS
- 0S/2

— 0S/400

— Tandem NSK

— Windows NT

— UNIX systems

See Chapter 6, “Introduction to Programmable Command Formats” on page
for more information.

What performance events are
Performance events are related to conditions that can affect the performance of
applications that use a specified queue.
There are two types of performance event:

* Queue depth events, related to the number of messages on a queue, that is
how full, or empty, the queue is.

* Queue service interval events, related to whether messages are processed
within a user-specified time interval.

The scope of performance events is the queue, so that MQPUT calls and MQGET
calls on one queue do not affect the generation of performance events on another
queue.

Note: A message must be either put on, or removed from, a queue for any
performance event to be generated.

© Copyright IBM Corp. 1994,1999 17

Performance events

Performance event data

When a performance event is generated, the queue manager puts the associated
event message on the SYSTEM.ADMIN.PERFM.EVENT queue.

The event data contains a reason code that identifies the cause of the event, a set
of performance event statistics, and other data. For more information about the
event data returned in performance event messages, see:

“Queue Depth High” on page

“Queue Depth Low” on page

“Queue Full’ on page

“Queue Service Interval High” on page
“Queue Service Interval OK” on page

Understanding performance event statistics

The event data in the event message contains information about the event for
system management programs. For all performance events, the event data
contains the names of the queue manager and the queue associated with the
event. Also, the event data contains statistics related to the event. You can use
these statistics to analyze the behavior of a specified queue. Table 4 summarizes
the event statistics. All the statistics refer to what has happened since the last time
the statistics were reset.

Table 4. Performance event statistics

Parameter Description

TimeSinceReset The elapsed time since the statistics were last reset.

HighQDepth The maximum number of messages on the queue since
the statistics were last reset.

MsgEnqgCount The number of messages enqueued (the number of
MQPUT calls to the queue), since the statistics were last
reset.

MsgDeqCount The number of messages dequeued (the number of
MQGET calls to the queue), since the statistics were last
reset.

Performance event statistics are reset when:
* Any performance event occurs.

¢ The PCF command, Reset Queue Statistics, is issued from a user-written
administration program. There is no MQSC equivalent for this command.

18 MQSeries Programmable System Management

Queue-service-interval-events

Understanding queue service interval events

Queue service interval events indicate whether a queue was ‘serviced’ within a
user-defined time interval called the service interval. Depending on the
circumstances at your installation, you can use queue service interval events to
monitor whether messages are being taken off queues quickly enough.

What queue service interval events are
There are two types of queue service interval event:

¢ A Queue Service Interval OK event, which indicates that following an MQPUT
call or an MQGET call that leaves a non-empty queue, an MQPUT call or an

MQGET call was performed within a user-defined time period, known as the
service interval.

In this section, Queue Service Interval OK events are referred to as OK events.

* A Queue Service Interval High event, which indicates that following an
MQGET or MQPUT call that leaves a non-empty queue, an MQGET call was
not performed within the user-defined service interval.

This event message can be caused by an MQPUT call or an MQGET call.
In this section, Queue Service Interval High events are referred to as high

events.

These events are mutually exclusive, which means that if one is enabled the other
is disabled. However, both events can be simultaneously disabled.

Figure 3 shows a graph of queue depth against time. At P1, an application issues
an MQPUT, to put a message on the queue. At G1, another application issues an
MQGET to remove the message from the queue.

c PUT GET
]
Q
]
T
0
o]
]
3
o
P1 G1 Time —P

Figure 3. Understanding queue service interval events

In terms of queue service interval events, these are the possible outcomes:

» |f the elapsed time between the put and get is less than or equal to the service
interval:

— If OK events are enabled, a Queue Service Interval OK event is generated
at G1.

— If high events are enabled, no event is generated at G1.
— If neither event is enabled, no queue service interval event is generated.

Chapter 3. Understanding performance events 19

Queue-service-interval-events

o |f the elapsed time between the put and get is greater than the service interval:

— If high events are enabled, a Queue Service Interval High event is
generated at G1.

— If OK events are enabled, no event is generated at G1.

— If neither event is enabled, no queue service interval event is generated.

The actual algorithm for starting the service timer and generating events is
described in “Queue service-interval-events algorithm” on page [21].

Understanding the service timer

Queue service interval events use an internal timer, called the service timer, which
is controlled by the queue manager. The service timer is only used if one or other
of the queue service interval events are enabled.

What precisely does the service timer measure?
The service timer measures the elapsed time between an MQPUT call to an
empty queue or an MQGET call and the next put or get, provided the queue
depth is nonzero between these two operations.

When is the service timer active?
The service timer is always active (running), if the queue has messages on it
(depth is nonzero) and a queue service interval event is enabled. If the
gueue becomes empty (queue depth zero), the timer is put into an OFF
state, to be restarted on the next put.

When is the service timer reset?
The service timer is always reset after an MQGET call. It is also reset by an
MQPUT call to an empty queue. However, it is not necessarily reset on a
gueue service interval event.

How is the service timer used?
Following an MQGET call or an MQPUT call, the queue manager compares
the elapsed time as measured by the service timer, with the user-defined
service interval. The result of this comparison is that:

¢ An OK event is generated if the operation is an MQGET call and the
elapsed time is less than or equal to the service interval, AND this event
is enabled.

* A high event is generated if the elapsed time is greater than the service
interval, AND this event is enabled.

Can applications read the service timer?
No, the service timer is an internal timer that is not available to applications.

What about the TimeSinceReset parameter?
The TimeSinceReset parameter is returned as part of the event statistics in
the event data. It specifies the time between successive queue service
interval events, unless the event statistics are reset. The reset can be
caused by a queue depth event or you can reset them yourself explicitly
using the PCF command Reset Queue Statistics.

20 MQsSeries Programmable System Management

Queue-service-interval-events

Enabling queue service interval events
To configure a queue for queue service interval events you must:

1. Enable performance events on the queue manager, using the queue manager
attribute Performancetvent (PERFMEV in MQSC).

2. Set the control attribute, QServicelntervalEvent, for a Queue Service Interval
High or OK event on the queue, as required (QSVCIEV in MQSC).

3. Specify the service interval time by setting the @Servicelnterval attribute for
the queue to the appropriate length of time (QSVCINT in MQSC).

For example, to enable Queue Service Interval High events with a service interval
time of 10 seconds (10 000 milliseconds) use the following MQSC commands:

ALTER QMGR +
PERFMEV (ENABLED)

ALTER QLOCAL('MYQUEUE') +
QSVCINT(10000) +
QSVCIEV (HIGH)

Note: When enabled, a queue service interval event can only be generated on an
MQPUT call or an MQGET call. The event is not generated when the elapsed time
becomes equal to the service interval time.

Automatic enabling of queue service interval events
The high and OK events are mutually exclusive, that is, when one is enabled, the
other is automatically disabled.

When a high event is generated on a queue, the queue manager automatically
disables high events and enables OK events for that queue.

Similarly, when an OK event is generated on a queue, the queue manager
automatically disables OK events and enables high events for that queue.

Queue service-interval-events algorithm
This section gives the formal rules associated with the timer, and the queue service
interval events.

Service timer
The service timer is reset to zero and restarted:

¢ Following an MQPUT call to an empty queue.

¢ Following an MQGET call, if the queue is not empty after the MQGET call.

The resetting of the timer does not depend on whether an event has been
generated.

At queue manager startup the service timer is set to startup time if the queue depth
is greater than zero.

If the queue is empty following an MQGET call, the timer is put into an OFF state.

Chapter 3. Understanding performance events 21

Queue service interval events

Queue Service Interval OK events
e The Queue Service Interval OK event must be enabled.

* If the service time (elapsed time) is less than or equal to the service interval, an
event is generated on the next MQGET call.

Queue Service Interval High events
e The Queue Service Interval High event must be enabled.

» |If the service time is greater than the service interval, an event is generated on
the next MQPUT or MQGET call.

Queue service interval-events examples
This section provides progressively more complex examples to illustrate the use of
gueue service interval events.
The figures accompanying the examples have the same structure:

e The top section is a graph of queue depth against time, showing individual
MQGET calls and MQPUT calls.

e The middle section shows a comparison of the time constraints. There are
three time periods that you must consider:

— The user-defined service interval.

— The time measured by the service timer.

— The time since event statistics were last reset (TimeSinceReset in the
event data).

* The bottom section of each figure shows which events are enabled at any
instant and what events are generated.
The following examples illustrate:
e How the queue depth varies over time.

* How the elapsed time as measured by the service timer compares with the
service interval.

e Which event is enabled.

¢ What events are generated.

Example 1 (queue service interval events)
This example shows a simple sequence of MQGET calls and MQPUT calls, where
the queue depth is always one or zero.

22 MQSeries Programmable System Management

Queue service interval events

Key:
Service interval f—7——]
Service timerON ~ [——p>
Service timer OFF —m08 —M—
Time since reset E.‘:{}
s PUT GET PUT GET
o
[}
o
0}
>
5}
>
(@4
TO P1 Gl P2 G2 Time —»
|
U
' | -
f g | >
>e =
Enabled events
High
OK
High event OK event

Figure 4. Queue service interval events - example 1

Commentary
1. At P1, an application puts a message onto an empty queue. This starts the

service timer.

Note that TO may be queue manager startup time.

. At G1, another application gets the message from the queue. Because the

elapsed time between P1 and G1 is greater than the service interval, a Queue
Service Interval High event is generated on the MQGET call at G1. When the
high event is generated, the queue manager resets the event control attribute
so that:

a. The OK event is automatically enabled.
b. The high event is disabled.

Because the queue is now empty, the service timer is switched to an OFF
state.

3. At P2, a second message is put onto the queue. This restarts the service

timer.

Chapter 3. Understanding performance events 23

Queue service interval events

4. At G2, the message is removed from the queue. However, because the
elapsed time between P2 and G2 is less than the service interval, a Queue
Service Interval OK event is generated on the MQGET call at G2. When the
OK event is generated, the queue manager resets the control attribute so that:

a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is empty, the service timer is again switched to an OFF
state.

Event statistics summary for example 1
Table 5 summarizes the event statistics for this example.

Table 5. Event statistics summary for example 1

Event 1 Event 2
Time of event Ter Teo
Type of event High OK
TimeSinceReset Te1-To Teo - Tpo
HighQDepth 1 1
MsgEngCount 1 1
MsgDeqCount 1 1

The middle part of Figure 4 on page [23] shows the elapsed time as measured by
the service timer compared to the service interval for that queue. To see whether a
gueue service interval event will occur, compare the length of the horizontal line
representing the service timer (with arrow) to that of the line representing the
service interval. If the service timer line is longer, and the Queue Service Interval
High event is enabled, a Queue Service Interval High event will occur on the next
get. If the timer line is shorter, and the Queue Service Interval OK event is
enabled, a Queue Service Interval OK event will occur on the next get.

Example 2 (queue service interval events)

This example illustrates a sequence of MQPUT calls and MQGET calls, where the
gueue depth is not always one or zero. It also shows instances of the timer being
reset without events being generated, for example, at Tp.,.

24 MQSeries Programmable System Management

Queue service interval events

Queue depth —»

Key:
Service interval f—7—
Service timer ON [——p>

Service timer OFF

Time since reset D:&

 N—

T0 P1 P2 Gl G2 Time —»

\ 4
\ /

Enabled events

High
OK

Vv

OK event

Figure 5. Queue service interval events - example 2

Commentary
In this example, OK events are enabled initially and queue statistics were reset at

TO.
1.
2.

At P1, the first put starts the service timer.

At P2, the second put does not generate an event because a put cannot cause
an OK event.

. At G1, the service interval has now been exceeded and therefore an OK event

is not generated. However, the MQGET call causes the service timer to be
reset.

. At G2, the second get occurs within the service interval and this time an OK

event is generated. The queue manager resets the event control attribute so
that:

a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is now empty, the service timer is switched to an OFF
state.

Chapter 3. Understanding performance events 25

Queue service interval events

Event statistics summary for example 2
Table 6 summarizes the event statistics for this example.

Table 6. Event statistics summary for example 2

Time of event Tao
Type of event OK
TimeSinceReset Teo-To
HighQDepth 2
MsgEngCount 2
MsgDeqCount 2

Example 3 (queue service interval events)

This example shows a sequence of MQGET calls and MQPUT calls that is more
sporadic than the previous examples.

Commentary
1. At time T,, the queue statistics are reset and Queue Service Interval High
events are enabled.

2. At P1, the first put starts the service timer.

3. At P2, the second put increases the queue depth to two. A high event is not
generated here because the service interval time has not been exceeded.

4. At P3, the third put causes a high event to be generated. (The timer has
exceeded the service interval.) The timer is not reset because the queue depth
was not zero before the put. However, OK events are enabled.

5. At G1, the MQGET call does not generate an event because the service
interval has been exceeded and OK events are enabled. The MQGET call
does, however, reset the service timer.

6. At G2, the MQGET call does not generate an event because the service
interval has been exceeded and OK events are enabled. Again, the MQGET
call resets the service timer.

7. At G3, the third get empties the queue and the service timer is equal to the
service interval. Therefore an OK event is generated. The service timer is
reset and high events are enabled. The MQGET call empties the queue, and
this puts the timer in the OFF state.

26 MQSeries Programmable System Management

Queue service interval events

Key:

service interval | [—o—1
Service timer ON D—>

Service timer OFF

Time since reset [::&

Queue depth —P>

TO P1 P2 P3 G1 G2 G3 Time —P

4
y
vy

Enabled events

High

OK

V Vv

High event OK event

Figure 6. Queue service interval events - example 3

Event statistics summary for example 3
The following table summarizes the statistics returned in the event message data,
for each event in this example.

Table 7. Event statistics summary for example 3

Event 1 Event 2
Time of event Tps Taa
Type of event High OK
TimeSinceReset Tpz-To Tez - Tps
HighQDepth 3 3
MsgEngCount 3 0
MsgDeqCount 0 3

Chapter 3. Understanding performance events 27

Queue depth events

What queue service interval events tell you

You must exercise some caution when you look at queue statistics. Figure 4 on
page shows a simple case where the messages are intermittent and each
message is removed from the queue before the next one arrives. From the event
data, you know that the maximum number of messages on the queue was one.
You can, therefore, work out how long each message was on the queue.

However, in the general case, where there is more than one message on the
gueue and the sequence of MQGET calls and MQPUT calls is not predictable, you
cannot use queue service interval events to calculate how long an individual
message remains on a queue. The TimeSinceReset parameter, which is returned
in the event data, can include a proportion of time when there are no messages on
the queue. Therefore any results you derive from these statistics are implicitly
averaged to include these times.

Understanding queue depth events

In MQSeries applications it is most important that queues do not become full. If
they do, applications can no longer put messages on the queue that they specify.
Although the message is not lost if this occurs, it can be a considerable
inconvenience. The number of messages can build up on a queue if the messages
are being put onto the queue faster than the applications that process them can
take them off.

The solution to this problem depends on the particular circumstances, but may
involve:

» Diverting some messages to another queue.

e Starting new applications to take more messages off the queue.
e Stopping non-essential message traffic.

¢ Increasing the queue depth to overcome a transient maximum.

Clearly, having advanced warning that problems may be on their way makes it
easier to take preventive action. For this purpose, queue depth events are
provided.

What queue depth events are

Queue depth events are related to the queue depth, that is, the number of
messages on the queue. The types of queue depth events are:

¢ Queue Depth High events , which indicate that the queue depth has increased
to a predefined threshold called the Queue Depth High limit.

¢ Queue Depth Low events , which indicate that the queue depth has decreased
to a predefined threshold called the Queue Depth Low limit.

¢ Queue Full events , which indicate that the queue has reached its maximum
depth, that is, the queue is full.

A Queue Full Event is generated when an application attempts to put a message
on a queue that has reached its maximun depth. Queue Depth High events give
advance warning that a queue is filling up. This means that having received this
event, the system administrator should take some preventive action. If this action
is successful and the queue depth drops to a ‘safe’ level, the queue manager can
be configured to generate a Queue Depth Low event indicating an ‘all clear’ state.

28 MQsSeries Programmable System Management

Enabling queue

Queue depth events

Figure 8 on page shows a graph of queue depth against time in such a case.
The preventive action was (presumably) taken between T, and T, and continues to
have effect until T, when the queue depth is well inside the ‘safe’ zone.

depth events

By default, all queue depth events are disabled. To configure a queue for any of
the queue depth events you must:

1. Enable performance events on the queue manager, using the queue manager
attribute PerformanceEvent (PERFMEV in MQSC).

2. Enable the event on the required queue by setting the following as required:

o (QDepthHighEvent(QDPHIEV in MQSC)
e QDepthLowEvent(QDPLOEV in MQSC)
e (QDepthMaxEvent(QDPMAXEYV in MQSC)

3. Set the limits, if required, to the appropriate levels, expressed as a percentage
of the maximum queue depth, by setting either:

o QDepthHighLimit(QDEPTHHI in MQSC), and
e QDepthLowlimit(QDEPTHLO in MQSC).

Enabling Queue Depth High events

When enabled, a Queue Depth High event is generated when a message is put on
the queue, causing the queue depth to be greater than or equal to the value
determined by the Queue Depth High limit.

To enable Queue Depth High events on the queue MYQUEUE with a limit set at
80%, use the following MQSC commands:

ALTER QMGR PERFMEV (ENABLED)
ALTER QLOCAL('MYQUEUE') QDEPTHHI(80) QDPHIEV(ENABLED)

Automatically enabling Queue Depth High events: A Queue Depth High event
is automatically enabled by a Queue Depth Low event on the same queue.

A Queue Depth High event automatically enables both a Queue Depth Low and a
Queue Full event on the same queue.

Enabling Queue Depth Low events

When enabled, a Queue Depth Low event is generated when a message is
removed from a queue by an MQGET call operation causing the queue depth to be
less than or equal to the value determined by the Queue Depth Low limit.

To enable Queue Depth Low events on the queue MYQUEUE with a limit set at
20%, use the following MQSC commands:

ALTER QMGR PERFMEV (ENABLED)
ALTER QLOCAL('MYQUEUE') QDEPTHLO(20) QDPLOEV (ENABLED)

Chapter 3. Understanding performance events 29

Queue depth events

Automatically enabling Queue Depth Low events: A Queue Depth Low event is
automatically enabled by a Queue Depth High event or a Queue Full event on the
same gueue.

A Queue Depth Low event automatically enables both a Queue Depth High and a
Queue Full event on the same queue.

Enabling Queue Full events
When enabled, a Queue Full event is generated when an application is unable to
put a message onto a queue because the queue is full.

To enable Queue Full events on the queue MYQUEUE, use the following MQSC
commands:

ALTER QMGR PERFMEV (ENABLED)
ALTER QLOCAL('MYQUEUE') QDPMAXEV (ENABLED)

Automatically enabling Queue Full events: A Queue Full event is automatically
enabled by a Queue Depth High or a Queue Depth Low event on the same queue.

A Queue Full event automatically enables a Queue Depth Low event on the same
queue.

Queue depth events examples

This section contains some examples of queue depth events. The following
examples illustrate how queue depth varies over time.

Example 1 (queue depth events)

The queue, MYQUEUE1, has a maximum depth of 1000 messages, and the high
and low queue depth limits are 80% and 20% respectively. Initially, Queue Depth
High events are enabled, while the other queue depth events are disabled.

The MQSeries commands (MQSC) to configure this queue are:

ALTER QMGR PERFMEV (ENABLED)

DEFINE QLOCAL('MYQUEUEL') +
MAXDEPTH(1000) +
QDPMAXEV (DISABLED) +
QDEPTHHI (80) +
QDPHIEV (ENABLED) +
QDEPTHLO(20) +
QDPLOEV (DISABLED)

Figure 7. Definition of MYQUEUE1

30 MQsSeries Programmable System Management

Queue depth events

Depth high

lim it

Queue capacity (%) —>
®
°

Depth low

lim it

20

TO T1 T2 T3 T4 Tim e

Enabled events

High

Low

Full

Y V

Queue Depth High Queue Depth Low

Figure 8. Queue depth events (1)

Commentary
Figure 8 shows how the queue depth changes over time:

1. At T,, the queue depth is increasing (more MQPUT calls than MQGET calls)
and crosses the Queue Depth Low limit. No event is generated at this time.

2. The queue depth continues to increase until T,, when the depth high limit
(80%) is reached and a Queue Depth High event is generated.

This enables both Queue Full and Queue Depth Low events.

3. The (presumed) preventive actions instigated by the event prevent the queue
from becoming full. By time T5, the Queue Depth High limit has been reached
again, this time from above. No event is generated at this time.

4. The queue depth continues to fall until T,, when it reaches the depth low limit
(20%) and a Queue Depth Low event is generated.

This enables both Queue Full and Queue Depth High events.

Table 8 on page [32] summarizes the queue event statistics and Table 9 on
page [32] summarizes which events are enabled at different times for this example.

Chapter 3. Understanding performance events 31

Queue depth events

Table 8. Event statistics summary for queue depth events (example 1)

Event 2 Event 4
Time of event T, Ty
Type of event Queue Depth Queue Depth

High Low
TimeSinceReset T,-Ty Ty-T,
HighQDepth (Maximum queue depth since reset) 800 900
MsgEngCount 1157 1220
MsgDeqCount 357 1820

Table 9. Summary showing which events are enabled

Time period Queue Depth Queue Depth Low Queue Full event
High event event

Before T, ENABLED - -

T,toT, ENABLED - -

T, 10T, - ENABLED ENABLED

T30 T, - ENABLED ENABLED

After T, ENABLED - ENABLED

Example 2 (queue depth events)

This is a more extensive example. However, the principles remain the same. This
example assumes the use of the same queue MYQUEUE1 as defined in Figure 7

on page

Table 10 on page [34] summarizes the queue event statistics and Table 11 on
page [34] summarizes which events are enabled at different times for this example.

Figure 9 on page [33]shows the variation of queue depth over time.

32 MQSeries Programmable System Management

Queue depth events

80

—>
\

20

Queue capacity (%)

To T1 T2 T3 T4aTs Te T7 T8 To Tio0 T11 Ti2

High

Low

Full

Queue Depth High event
Queue Depth Low event
Queue Depth High event
Queue Fullevent

Queue Depth Low event

Figure 9. Queue depth events(2)

Commentary
Some points to note are:

1. No Queue Depth Low event is generated at:

T, (Queue depth increasing, and not enabled)
T, (Not enabled)
T; (Queue depth increasing, and not enabled)

2. At T, a Queue Depth High event occurs. This enables both Queue Full and
Queue Depth Low events.

3. At T4 a Queue Full event occurs after the first message that cannot be put on
the queue because the queue is full.

4. At T,, a Queue Depth Low event occurs.

Chapter 3. Understanding performance events 33

Queue depth events

Event statistics summary (example 2)

Table 10. Event statistics summary for queue depth events (example 2)

Event 4 Event 6 Event 8 Event 9 Event 12
Time of event Ty T Tg Ty T
Type of event Queue Queue Queue Queue Full Queue
Depth High Depth Low Depth High Depth Low
TimeSinceReset Ty -Ty Teg-Ty Tg-Tg Ty -Tg Tio-Tyg
HighQDepth 800 855 800 1000 1000
MsgEnqgCount 1645 311 1377 324 221
MsgDeqgCount 845 911 77 124 1021
Table 11. Summary showing which events are enabled
Time period Queue Depth Queue Depth Low Queue Full event
High event event
Toto T, ENABLED - -
T,to Tg - ENABLED ENABLED
Tegto Tg ENABLED - ENABLED
Tgto Ty - ENABLED ENABLED
Tgto Ty, - ENABLED -
After T, ENABLED - ENABLED

Note: Events are out of syncpoint, therefore you could have an empty queue, then
fill it up causing an event, then roll back all of the messages under the control of a
syncpoint manager. However, event enabling has been automatically set, so that
the next time the queue fills up, no event is generated.

34 MQSeries Programmable System Management

Summary

Enabling performance events summary

Table 12. Enabling performance events using MQSC

Queue depth event

Queue attributes

Queue depth high

Queue depth low

Queue full

QDPHIEV (ENABLED)
QDEPTHHI (hh)

QDPLOEV (ENABLED)
QDEPTHLO (11)

QDPMAXEV (ENABLED)

Queue service interval event

Queue attributes

Queue Service Interval High
Queue Service Interval OK
No queue service interval events

QSVCIEV (HIGH)
QSVCIEV (OK)
QSVCIEV (NONE)

Service interval

QSVCINT (tt)

Notes:

Numeric values

hh Queue depth high limit.

11 Queue depth low limit.
attribute MAXDEPTH.)

tt Service interval time in milliseconds.

All performance events must be enabled using the queue manager attribute PERFMEV.

(Both values are expressed as a percentage of the maximum queue depth, which is specified by the queue

Table 13. Enabling performance events using PCF commands

QServicelntervalEvent

QServicelnterval

MQIA_Q_SERVICE_INTERVAL

MQIA_Q_SERVICE_INTERVAL_EVENT

Attribute Parameter Value
QDepthHighEvent MQIA_Q DEPTH_HIGH_EVENT MQEVR_ENABLED
QDepthHighLimit MQIA_Q DEPTH_HIGH_LIMIT hh
QDepthLowEvent MQIA_Q DEPTH_LOW_EVENT MQEVR_ENABLED
QDepthLowLimit MQIA_Q DEPTH_LOW_LIMIT 11
QDepthMaxEvent MQIA_Q DEPTH_MAX_EVENT MQEVR_ENABLED

MQQSIE_HIGH
MQQSIE_OK
MQQSIE_NONE

tt

hh
1

tt

Notes:

Numeric values

Queue depth high limit.
Queue depth low limit.

All performance events must be enabled using the queue manager attribute PerformanceEvent.

(Both values are expressed as a percentage of the maximum queue depth, which is specified by the queue

attribute MaxQDepth)

Service interval time in milliseconds.

Chapter 3. Understanding performance events

35

Summary

36 MQSeries Programmable System Management

Chapter 4. Event message reference

This chapter describes the information returned in the event message for each
instrumentation event.

It provides an overview of the event message format and descriptions of the
parameters returned in the event messages for each event.

The chapter includes:

e “Event message formats” on page

¢ “MQMD (Message descriptor)” on page

* “MQCFH (PCF header)” on page

* “Event message data” on page

* “Alias Base Queue Type Error” on page
 “Bridge Started” on page

e “Bridge Stopped” on page

e “Channel Activated” on page

e “Channel Auto-definition Error” on page

¢ “Channel Auto-definition OK” on page

e “Channel Conversion Error” on page

e “Channel Started” on page

e “Channel Stopped” on page

e “Channel Stopped By User” on page

e “Default Transmission Queue Type Error” on page
e “Default Transmission Queue Usage Error” on page
 “Get Inhibited” on page

e “Not Authorized (type 1)” on page

» “Not Authorized (type 2)” on page

e “Not Authorized (type 3)” on page

e “Not Authorized (type 4)” on page

* “Put Inhibited” on page

e “Queue Depth High” on page

e “Queue Depth Low” on page

e “Queue Full” on page

¢ “Queue Manager Active” on page

e “Queue Manager Not Active” on page [9]]

e “Queue Service Interval High” on page

e “Queue Service Interval OK” on page

e “Queue Type Error” on page

¢ “Remote Queue Name Error” on page

e “Transmission Queue Type Error” on page
 “Transmission Queue Usage Error” on page
 “Unknown Alias Base Queue” on page

e “Unknown Default Transmission Queue” on page
 “Unknown Object Name” on page
 “Unknown Remote Queue Manager” on page
» “Unknown Transmission Queue” on page

© Copyright IBM Corp. 1994,1999

Event message formats

Event message formats

Event messages are standard MQSeries messages containing a message
descriptor and message data.

Table 14 on page [39]shows the basic structure of these messages, and the names
of the fields in an event message for queue service interval events.

In general, you need only a subset of this information for any system management
programs that you write. For example, your application might need the following
data:

* The name of the application causing the event

e The name of the queue manager on which the event occurred
¢ The queue on which the event was generated

e The event statistics

Message descriptors in event messages

The format of the message descriptor is defined by the MQSeries MQMD data
structure, which is found in all MQSeries messages and is described in “MQMD -
Message descriptor” in the MQSeries Application Programming Reference manual.
The message descriptor contains information that can be used by a user-written
system monitoring application. For example:

e The message type
e The format type
e The date and time that the message was put on the event queue

In particular, the information in the descriptor informs a system management
application that the message type is MQMT_DATAGRAM, and the message format
is MQFMT_EVENT.

In an event message, many of these fields contain fixed data, which is supplied by
the queue manager that generated the message. The fields that make up the
MQMD structure are described in “MQMD (Message descriptor)” on page and
also “Message descriptor for a PCF command” on page [131. The MQMD also
specifies the name of the queue manager (truncated to 28 characters) that put the
message, and the date and time that the event message was put on the event
gueue.

38 MQsSeries Programmable System Management

Event message formats

Table 14. Event message structure for queue service interval events

Message descriptor Message data

MQMD structure 1 Event header Event data 3
MQCFH structure 2

Structure identifier Structure type Queue manager name
Structure version Structure length Queue name

Report options Structure version Time since last
Message type number reset

Expiration time Command identifier Maximum number of
Feedback code (event type) messages on the
Encoding Message sequence queue

Coded character set ID number Number of messages
Message format Control options put on the queue
Message priority Completion code Number of messages
Persistence Reason code (MQRC_¥) taken off the
Message identifier Parameter count queue

Correlation identifier
Backout count

Reply-to queue

Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name

Put date

Put time

Application origin data
Group identifier
Message sequence number
Offset

Message flags

Original length

Notes:

1. MQMD is the standard structure for MQSeries message headers.

2. MQCFH is the standard structure for an event header. This is the same as the PCF header
structure.

3. The parameters shown are those returned for a queue service interval event. The actual event
data depends on the specific event.

Message data in event messages
The event message data is based on the programmable command format (PCF)
that is used in PCF command inquiries and responses. If you do not know about
PCF commands, see Chapter 6, “Introduction to Programmable Command
Formats” on page [127]for information.

The event message consists of two parts: the event header and the event data

(seeTable 14). The event header structure, MQCFH, is described in “MQCFH
(PCF header)” on page [41] and “MQCFH - PCF header” on page

Chapter 4. Event message reference 39

Message descriptor

Event header
The information in MQCFH specifies:

¢ |f the message is an event message.

e The category of event, that is, whether the event is a queue manager,
performance, or channel event.

¢ A reason code specifying the cause of the event. For events caused by MQI
calls, this reason code is the same as the reason code for the MQI call.

Reason codes have names that begin with the characters MQRC_. For example,
the reason code MQRC_PUT _INHIBITED is generated when an application
attempts to put a message on a queue that is not enabled for puts.

Event message data

The event message data contains information specific to the event. This includes
the name of the queue manager and, where appropriate, the name of the queue.

The data structures returned depend on which particular event was generated. In
addition, for some events, certain of the structures are optional, and are returned
only if they contain information that is relevant to the circumstances giving rise to
the event. The values in the data structures depend on the circumstances that
caused the event to be generated.

Note: The event structures in the event data are not returned in a defined order.
They must be identified from the parameter identifiers shown in the description.

MQMD (Message descriptor)

The MQMD structure describes the information that accompanies the message data
of an event message. In this list, the strings in parentheses next to the parameter
name are the data types of each parameter. These are described in Chapter 1,
“Data type descriptions - elementary” in the MQSeries Application Programming
Reference manual.

For an event, the MQMD structure contains these values:

Parameter Value

Strucld (MQCHAR4) MQMD_STRUC_ID

Version (MQLONG) MQMD_VERSION_1 or MQMD_VERSION_2

Report (MQLONG) MQRO_NONE

MsgType (MQLONG) MQMT_DATAGRAM

Expiry (MQLONG) MQEI_UNLIMITED

Feedback (MQLONG) MQFB_NONE

Encoding (MQLONG) Encoding of the queue manager generating the event.

CodedCharSetId (MQLONG) Coded character set ID (CCSID) of the queue manager generating the
event.

Format (MQCHARS) MQFMT_EVENT

Priority (MQLONG) Default priority of the event queue, if it is a local queue, or its local
definition at the queue manager generating the event.

Persistence (MQLONG) Default persistence of the event queue, if it is a local queue, or its local
definition at the queue manager generating the event.

Msgld (MQBYTE24) The value is uniquely generated by the queue manager.

Correlld (MQBYTE24) MQCI_NONE

BackoutCount (MQLONG) Always 0.

ReplyToQ (MQCHARA48) Always blank.

40 MQSeries Programmable System Management

PCF header

ReplyToQMgr (MQCHARA48) The queue manager name at the originating system.

UserIdentifier (MQCHAR12) Always blank.

AccountingToken (MQBYTE32) MQACT_NONE

ApplIdentityData (MQCHAR32) Always blank.

PutApplType (MQLONG) Type of application that put the message: MQAT_QMGR for a local event
queue.

PutApplName (MQCHAR28) Name of application that put the message.

PutDate (MQCHARS) Date when message was put, generated by the queue manager.

PutTime (MQCHARS) Time when message was put, generated by the queue manager.

ApplOriginData (MQCHARA4) Always blank.

If Version is MQMD_VERSION_2, the following additional fields are present:

Parameter Value

GroupId (MQBYTE24) MQGI_NONE
MsgSeqNumber (MQLONG) Always 1.

Offset (MQLONG) Always 0.

MsgFlags (MQLONG) MQMF_NONE
OriginallLength (MQLONG) MQOL_UNDEFINED

MQCFH (PCF header)

The MQCFH structure is the event header, which has the same format as all PCF
headers. In this list, the strings in parentheses next to the parameter name are the
structure types of each parameter. These are described in Chapter 1, “Data type
descriptions - elementary” in the MQSeries Application Programming Reference
manual.

For an event, the MQCFH structure contains these values:

Parameter Value
Type (MQLONG) MQCFT_EVENT
StrucLength (MQLONG) MQCFH_STRUC_LENGTH
Length of command format header structure.
Version (MQLONG) MQCFH_VERSION_1
Command (MQLONG) Command identifier, identifies the category of event as one of:

MQCMD_Q_MGR_EVENT (Queue manager event)
MQCMD_PERFM_EVENT (Performance event)

MQCMD_CHANNEL_EVENT (Channel event)
MsgSeqNumber (MQLONG) Always 1.
Control (MQLONG) MQCFC_LAST

Last message in the group.
CompCode (MQLONG) Completion code, one of:

MQCC_OK (Event reporting OK condition)

MQCC_WARNING (Event reporting warning condition) all events have this
completion code, unless otherwise specified.
Reason (MQLONG) Reason code identifying event. Depends on the event being reported.

Note: Events with the same reason code are further identified by the
ReasonQualifier parameter in the event data.
ParameterCount (MQLONG) The number of parameter structures that follow the MQCFH structure.

Chapter 4. Event message reference 41

Event message data

Event message data

— Notes to users

on page

1. The events described in the reference section are available on all platforms,
unless specific limitations are shown at the start of an event.

2. In the event message reference that follows, the strings in parentheses next
to the parameter name are the structure types of each parameter. These
are described in Chapter 9, “Structures used for commands and responses”

3. Version 2.0 of MQSeries for Windows does not generate MQSeries events.

Use the following table to locate information about a particular event message:

Table 15. Event message data summary

Event type

Event name

Authority events

Not Authorized (type 1)
Not Authorized (type 2)
Not Authorized (type 3)
Not Authorized (type 4)

Channel events

Channel Activated

Channel Auto-Definition Error
Channel Auto-Definition OK
Channel Conversion Error
Channel Not Activated
Channel Started

Channel Stopped

Channel Stopped By User

IMS Bridge events

Bridge Started
Bridge Stopped

o]
BR EE BREEREERE BRRER | &

Inhibit events Get Inhibited
Put Inhibited

Local events Alias Base Queue Type Error 43
Unknown Alias Base Queue 104
Unknown Object Name 108

Performance events Queue Depth High @
Queue Depth Low B8]
Queue Full [88]
Queue Service Interval High 92
Queue Service Interval OK 94

Remote events Default Transmission Queue Type Error [68
Default Transmission Queue Usage Error [70]
Queue Type Error 98]
Remote Queue Name Error e8]
Transmission Queue Type Error 100
Transmission Queue Usage Error 102
Unknown Default Transmission Queue 106!
Unknown Remote Queue Manager [110]
Unknown Transmission Queue 113

Start and stop events Queue Manager Active
Queue Manager Not Active o7

42 MQSeries Programmable System Management

Alias Base Queue Type Error

Alias Base Queue Type Error

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_ALIAS_BASE_Q_TYPE_ERROR

e Event data

Event data summary

Always returned:
QMgrName, QName, BaseQName, QType, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Reason code identifying the event.

The value is:

MQRC_ALIAS_BASE_Q_TYPE_ERROR
(2001, X'7D1'") Alias base queue not a valid type.

An MQOPEN or MQPUT1 call was issued specifying an
alias queue as the destination, but the BaseQName in the
alias queue definition resolves to a queue that is not a
local queue, or local definition of a remote queue.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_ NAME_LENGTH.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Chapter 4. Event message reference 43

Alias Base Queue Type Error

QType (MQCFIN)

Type of queue to which the alias resolves (parameter identifier:
MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_MODEL
Model queue definition.

ApplType (MQCFIN)

Type of the application making the call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)

Name of the application making the call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)

Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

44 MQSeries Programmable System Management

Bridge Started

Bridge Started

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is produced on MQSeries for OS/390 only.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_BRIDGE_STARTED

e Event data

Event data summary
Always returned:
QMgrName, BridgeType, BridgeName

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_BRIDGE_STARTED
(2125, X'84D") Bridge started.

The IMS bridge has been started.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

BridgeType (MQCFIN)
Bridge type (parameter identifier: MQIACF_BRIDGE_TYPE).

The value is:

MQBT_OTMA
OTMA bridge.

BridgeName (MQCFST)
Bridge name (parameter identifier: MQCACF_BRIDGE_NAME).

For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to
which both IMS and MQSeries belong. XCFmember is the XCF

Chapter 4. Event message reference 45

Bridge Started

member name of the IMS system. The maximum length of the
string is MQ_BRIDGE_NAME_LENGTH.

46 MQSeries Programmable System Management

Bridge Stopped

Bridge Stopped

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is produced on MQSeries for OS/390 only.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_BRIDGE_STOPPED

e Event data

Event data summary

Always returned:
QMgrName, ReasonQualifier, BridgeType, BridgeName

Returned optionally:
Errorldentifier,

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_BRIDGE_STOPPED
(2126, X'84E") Bridge stopped.

The IMS bridge has been stopped.

Event data

QMgrName (MQCFST)
The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier that qualifies the reason code (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value is one of the following:

MQRQ_BRIDGE_STOPPED_OK
Bridge has been stopped with either a zero return code
or a warning return code.

For MQBT_OTMA bridges, one side or the other issued
a normal IXCLEAVE request.

MQRQ_BRIDGE_STOPPED_ERROR
Bridge has been stopped but there is an error reported.

Chapter 4. Event message reference 47

Bridge Stopped

BridgeType (MQCFIN)
Bridge type (parameter identifier: MQIACF_BRIDGE_TYPE).

The value is:

MQBT_OTMA
OTMA bridge.

BridgeName (MQCFST)
Bridge name (parameter identifier: MQCACF_BRIDGE_NAME).

For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to
which both IMS and MQSeries belong. XCFmember is the XCF
member name of the IMS system. The maximum length of the
string is MQ_BRIDGE_NAME_LENGTH.

ErrorIdentifier (MQCFIN)
Identifier of the cause of the error (parameter identifier:

MQIACF_ERROR_IDENTIFIER).

When a bridge is stopped due to an error, this is the code that
identifies the error. If the event message is because of a bridge
stop failure, the following fields are set:

¢ The IMS sense code.

48 MQSeries Programmable System Management

Channel Activated

Channel Activated

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using CICS for distributed queue management
in MQSeries for 0S/390.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_ACTIVATED

e Event data

Event data summary

Always returned:
QMgrName, ChannelName,

Returned optionally:
XmitQName, ConnectionName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_CHANNEL_ACTIVATED
(2295, X'8F7') Channel activated.

This condition is detected when a channel, which has
been waiting to become active, and for which a
Channel Not Activated event has been generated, is
now able to become active, because an active slot has
been released by another channel.

This event is not generated for a channel which is able
to become active without waiting for an active slot to be
released.

Event data

OMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 49

Channel Activated

ChannelName (MQCFST)

Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

XmitQName (MQCFST)

Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

This is applicable to sender, server, cluster-sender, and
cluster-receiver channel types only.

ConnectionName (MQCFST)

Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP this is the internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

50 MQseries Programmable System Management

Channel Auto-definition Error

Channel Auto-definition Error

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is produced if you are using MQSeries for 0S/390 without using CICS
for distributed queuing, MQSeries for AS/400 V4R2 or later, or any MQSeries
Version 5.1 product only.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

e Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_AUTO_DEF_ERROR

e Event data

Event data summary

Always returned:
QMgrName, ChannelName, ChannelType, ErrorIdentifier, ConnectionName

Returned optionally:
AuxErrorDatalntl

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_CHANNEL_AUTO_DEF_ERROR
(2234, X'8BA") Automatic channel definition failed.

This condition is detected when the automatic definition
of a channel fails; this may be because an error
occurred during the definition process, or because the
channel automatic-definition exit inhibited the definition.
Additional information is returned in the event message
indicating the reason for the failure.

Event data

QMgrName (MQCFST)
The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

Specifies the name of the channel for which the auto-definition has
failed.

Chapter 4. Event message reference 51

Channel Auto-definition Error

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel for which the auto-definition has
failed.

The value is one of the following:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster-sender.

ErrorIdentifier (MQCFIN)
Identifier of the cause of the error (parameter identifier:
MQIACF_ERROR_IDENTIFIER).

This contains the reason code (MQRC_* or MQRCCF_*) resulting
from the channel definition attempt, or else the value
MQRCCF_SUPPRESSED BY_EXIT) if the attempt to create the
definition was disallowed by the exit.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

Name of partner attempting to establish connection.
The maximum length of the string is MQ_CONN_NAME_LENGTH.

AuxErrorDataIntl (MQCFIN)
Auxiliary error data (parameter identifier:
MQIACF_AUX_ERROR_DATA_INT_1).

This is present only if ErrorIdentifier contains
MQRCCF_SUPPRESSED_BY_EXIT. It contains the value
returned by the exit in the Feedback field of the MQCXP to indicate
why the auto definition has been disallowed.

52 MQsSeries Programmable System Management

Channel Auto-definition OK

Channel Auto-definition OK

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is produced if you are using MQSeries for 0S/390 without using CICS
for distributed queuing, MQSeries for AS/400 V4R2 or later, or any MQSeries
Version 5.1 product only.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

e Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_AUTO_DEF_OK

e Event data

Event data summary

Always returned:
QMgrName, ChannelName, ChannelType, ConnectionName

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_CHANNEL_AUTO_DEF_OK
(2233, X'8B9') Automatic channel definition
succeeded.

This condition is detected when the automatic definition
of a channel is successful. The channel is defined by
the MCA.

Event data

QMgrName (MQCFST)
The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

Specifies the name of the channel being defined.

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

Chapter 4. Event message reference 53

Channel Auto-definition OK

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of channel being defined.

The value is one of the following:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster-sender.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

Name of partner attempting to establish connection.

The maximum length of the string is MQ_CONN_NAME_LENGTH.

54 MQseries Programmable System Management

Channel Conversion Error

Channel Conversion Error

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using CICS for distributed queue management
in MQSeries for 0S/390.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events . This is
because, once you have defined a channel event queue, you cannot stop
channel event messages being generated. If you want MQ to generate
channel events, you must define the channel event queue yourself using the
name SYSTEM.ADMIN.CHANNEL.EVENT.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

¢ Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_CONV_ERROR

e Event data

Event data summary
Always returned:
QMgrName, ConversionReasonCode, ChannelName, Format, ConnectionName,
XmitQName

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code generating the event.

The value is:

MQRC_CHANNEL_CONV_ERROR
(2284, X'8EC"') Channel conversion error.

This condition is detected when a channel is unable to
do data conversion and the MQGET call to get a
message from the transmission queue resulted in a
data conversion error. The conversion reason code
identifies the reason for the failure.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 55

Channel Conversion Error

ConversionReasonCode (MQCFIN)
Identifier of the cause of the conversion error (parameter identifier:
MQIACF_CONV_REASON_CODE).

The value can be one of the following:

MQRC_CONVERTED_MSG_TOO_BIG
(2120, X'848') Converted message too big for
application buffer.

MQRC_FORMAT_ERROR
(2110, X'83E") Message format not valid.

MQRC_NOT_CONVERTED
(2119, X'847'") Application message data not
converted.

MQRC_SOURCE_CCSID_ERROR
(2111, X'83F') Source coded character set identifier
not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR
(2113, X'841') Packed-decimal encoding in message
not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR
(2114, X'842") Floating-point encoding in message not
recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR
(2112, X'840") Integer encoding in message not
recognized.

MQRC_TARGET_CCSID_ERROR
(2115, X'843"') Target coded character set identifier not
valid.

MQRC_TARGET_DECIMAL_ENC_ERROR
(2117, X'845") Packed-decimal encoding specified by
receiver not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR
(2118, X'846"') Floating-point encoding specified by
receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844'") Integer encoding specified by receiver
not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED
(2079, X'81F') Truncated message returned
(processing completed).

MQRC_TRUNCATED_MSG_FAILED
(2080, X'820') Truncated message returned
(processing not completed).

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

56 MQsSeries Programmable System Management

Channel Conversion Error

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

Format (MQCFST)
Name of format (parameter identifier:
MQCACH_FORMAT_NAME).

The maximum length of the string is MQ_FORMAT_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP this is the internet address only if the channel has

successfully established a connection. Otherwise it is the contents

of the ConnectionName field in the channel definition.

Chapter 4. Event message reference

57

Channel Not Activated

Channel Not Activated

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using CICS for distributed queue management
in MQSeries for OS/390.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events . This is
because, once you have defined a channel event queue, you cannot stop
channel event messages being generated. If you want MQ to generate
channel events, you must define the channel event queue yourself using the
name SYSTEM.ADMIN.CHANNEL.EVENT.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

¢ Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_NOT_ACTIVATED

e Event data

Event data summary

Always returned:
QMgrName, ChannelName

Returned optionally:
XmitQName, ConnectionName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_CHANNEL_NOT_ACTIVATED
(2296, X'8F8') Channel cannot be activated.

This condition is detected when a channel is required to
become active, either because it is starting, or because
it is about to make another attempt to establish
connection with its partner. However, it is unable to do
so because the limit on the number of active channels
has been reached. See the:

¢ MaxActiveChannels parameter in the gm.ini file for
0S/2, AlX, HP-UX, and Sun Solaris.

¢ MaxActiveChannels parameter in the Registry for
Windows NT.

e ACTCHL parameter in CSQXPARM for 0S/390.

58 MQseries Programmable System Management

Channel Not Activated

The channel waits until it is able to take over an active
slot released when another channel ceases to be
active. At that time a Channel Activated event is
generated.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

This is applicable to sender, server, cluster-sender, and
cluster-receiver channel types only.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP this is the Internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

Chapter 4. Event message reference 59

Channel Started

Channel Started

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using CICS for distributed queue management
in MQSeries for OS/390. Client connections on MQSeries for 0S/390 or MQSeries
Version 5 products do not produce this event.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events . This is
because, once you have defined a channel event queue, you cannot stop
channel event messages being generated. If you want MQ to generate
channel events, you must define the channel event queue yourself using the
name SYSTEM.ADMIN.CHANNEL.EVENT.

Event message
When an event is generated, an event message is put on the

SYSTEM.ADMIN.CHANNEL.EVENT queue.
The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_STARTED

e Event data

Event data summary
Always returned:
QMgrName, ChannelName

Returned optionally:
XmitQName, ConnectionName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_CHANNEL_STARTED
(2282, X'8EA") Channel started.

Either

¢ An operator has issued a Start Channel command,
or

¢ An instance of a channel has been successfully
established.

This condition is detected when Initial Data
negotiation is complete and resynchronization has
been performed where necessary such that
message transfer can proceed.

60 MQsSeries Programmable System Management

Event data

Channel Started

QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ChannelName (MQCFST)

Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

XmitQName (MQCFST)

Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

This is applicable to sender, server, cluster-sender, and
cluster-receiver channel types only.

ConnectionName (MQCFST)

Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP this is the Internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

Chapter 4. Event message reference 61

Channel Stopped

Channel Stopped

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using CICS for distributed queue management
in MQSeries for OS/390. Client connections on MQSeries for 0S/390 or MQSeries
Version 5 products do not produce this event.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events . This is
because, once you have defined a channel event queue, you cannot stop
channel event messages being generated. If you want MQ to generate
channel events, you must define the channel event queue yourself using the
name SYSTEM.ADMIN.CHANNEL.EVENT.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_STOPPED

e Event data

Event data summary
Always returned:
QMgrName, ReasonQualifier, ChannelName, Erroridentifier,
AuxErrorDatalntl, AuxErrorDatalnt2, AuxErrorDataStrl, AuxErrorDataStr2,
AuxErrorDataStr3

Returned optionally:
XmitQName, ConnectionName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_CHANNEL_STOPPED
(2283, X'8EB"') Channel stopped.

This condition is detected when the channel has been
stopped. The reason qualifier identifies the reasons for

stopping.

Event data

QMgrName (MQCFST)
The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

62 MQSeries Programmable System Management

Channel Stopped

ReasonQualifier (MQCFIN)
Identifier that qualifies the reason code (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value is one of the following:

MQRQ_CHANNEL_STOPPED_OK
Channel has been closed with either a zero return code
or a warning return code.

MQRQ_CHANNEL_STOPPED_ERROR
Channel has been closed but there is an error reported
and the channel is not in stopped or retry state.

MQRQ _CHANNEL_STOPPED_RETRY
Channel has been closed and it is in retry state.

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

ErrorIdentifier (MQCFIN)
Identifier of the cause of the error (parameter identifier:
MQIACF_ERROR_IDENTIFIER).

When a channel is stopped due to an error, this is the code that
identifies the error. If the event message is because of a channel
stop failure, the following fields are set:

1. ReasonQualifier, containing the value
MQRQ_CHANNEL_STOPPED_ERROR

2. Errorldentifier, containing the code number of an error
message that describes the error

. AuxErrorDatalntl, containing error message integer insert 1

. AuxErrorDatalnt2, containing error message integer insert 2

. AuxErrorDataStrl, containing error message string insert 1

. AuxErrorDataStr2, containing error message string insert 2

7. AuxErrorDataStr3, containing error message string insert 3

(206 I -\ OV]

The meanings of the error message inserts depend on the code
number of the error message. Details of error-message code
numbers and the inserts for specific platforms can be found as
follows:

¢ For OS/390, see the section “Distributed queuing message
codes” in the MQSeries for 0S/390 Messages and Codes
book.

¢ For other platforms, the last four digits of Erroridentifier
when displayed in hexadecimal notation indicate the decimal
code number of the error message.

Chapter 4. Event message reference 63

Channel Stopped

For example, if Erroridentifier has the value X'xxxxyyyy',
the message code of the error message explaining the error is

AMQyyyy.
See the MQSeries Messages book.

AuxErrorDatalIntl (MQCFIN)
First integer of auxiliary error data for channel errors (parameter
identifier: MQIACF_AUX_ERROR_DATA_INT_1).

When a channel is in a stopped condition due to an error, this is
the first integer parameter that qualifies the error. This information
is for use by IBM service personnel; include it in any problem
report that you submit to IBM regarding this event message.

AuxErrorDataInt? (MQCFIN)
Second integer of auxiliary error data for channel errors (parameter
identifier: MQIACF_AUX_ERROR_DATA_INT_2).

If the channel is stopped due to an error, this is the second integer
parameter that qualifies the error. This information is for use by
IBM service personnel; include it in any problem report that you
submit to IBM regarding this event message.

AuxErrorDataStrl (MQCFST)
First string of auxiliary error data for channel errors (parameter
identifier: MQCACF_AUX_ERROR_DATA_STR_1).

If the channel is stopped due to an error, this is the first string
parameter that qualifies the error. This information is for use by
IBM service personnel; include it in any problem report that you
submit to IBM regarding this event message.

AuxErrorDataStr2 (MQCFST)
Second string of auxiliary error data for channel errors (parameter
identifier: MQCACF_AUX_ERROR_DATA STR_2).

If the channel is stopped due to an error, this is the second string
parameter that qualifies the error. This information is for use by
IBM service personnel; include it in any problem report that you
submit to IBM regarding this event message.

AuxErrorDataStr3 (MQCFST)
Third string of auxiliary error data for channel errors (parameter
identifier: MQCACF_AUX_ERROR_DATA_STR_3).

If the channel is stopped due to an error, this is the third string
parameter that qualifies the error. This information is for use by
IBM service personnel; include it in any problem report that you
submit to IBM regarding this event message.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

This is applicable to sender, server, cluster-sender, and
cluster-receiver channel types only.

64 MQSeries Programmable System Management

Channel Stopped

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP this is the internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

Chapter 4. Event message reference 65

Channel Stopped By User

Channel Stopped By User

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using CICS for distributed queue management
in MQSeries for OS/390.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events . This is
because once you have defined a channel event queue, you cannot stop
channel event messages being generated. If you want MQSeries to
generate channel events, you must define the channel event queue yourself
using the name SYSTEM.ADMIN.CHANNEL.EVENT.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

¢ Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_STOPPED_BY_USER

e Event data

Event data summary
Always returned:
QMgrName, ReasonQualifier, ChannelName, Erroridentifier,
AuxErrorDatalntl, AuxErrorDatalnt2, AuxErrorDataStrl, AuxErrorDataStr2,
AuxErrorDataStr3

Returned optionally:
XmitQName, ConnectionName

Event header
Reason(MQLONG)
Name of the reason code.

The value is:

MQRC_CHANNEL_STOPPED_BY_USER
(2279, X'8E7") Channel stopped.

This condition is detected when the channel has been
stopped by the operator. The reason qualifier identifies
the reasons for stopping.

Event data

QMgrName(MQCFST)
The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

66 MQSeries Programmable System Management

Channel Stopped By User

ReasonQualifier (MQCFIN)
Identifier that qualifies the reason code (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value is one of the following:

MQRQ_CHANNEL_STOPPED_OK
Channel has been closed with either a zero return code
or a warning return code.

MQRQ_CHANNEL_STOPPED_ERROR
Channel has been closed but there is an error reported
and the channel is not in stopped or retry state.

MQRQ_ CHANNEL_STOPPED RETRY
Channel has been closed and it is in retry state.

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

ErrorIdentifier (MQCFIN)
Identifier of the cause of the error (parameter identifier:
MQIACF_ERROR_IDENTIFIER).

As the event message is generated by a Stop Channel command
and not a channel error, the following fields are set:

1. ReasonQualifier, containing the same value as in the
ReasonQualifier(MQCFIN) field above.

. AuxErrorDatalntl, containing zeros

. AuxErrorDatalnt2, containing zeros

. AuxErrorDataStrl, containing zeros

. AuxErrorDataStr2, containing zeros

6. AuxErrorDataStr3, containing zeros

a b~ wWN

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.
This is only applicable to sender, server, cluster-sender, and
cluster-receiver channel types.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP this is the internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

Chapter 4. Event message reference 67

Default Transmission Queue Type Error

Default Transmission Queue Type Error

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_DEF_XMIT_Q_TYPE_ERROR

e Event data

Event data summary

Always returned:
QMgrName, QName, XmitQName, QType, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_DEF_XMIT_Q_TYPE_ERROR
(2198, X'896"') Default transmission queue not local.

An MQOPEN or MQPUT1 call was issued specifying a
remote queue as the destination. Either a local
definition of the remote queue was specified, or a
gueue-manager alias was being resolved, but in either
case the XmitQName attribute in the local definition is
blank.

No transmission queue is defined with the same name
as the destination queue manager, so the local queue
manager has attempted to use the default transmission
gueue. However, although there is a queue defined by
the DefXmitQName queue-manager attribute, it is not a
local queue. See “Transmission queues” in the
MQSeries Application Programming Guide for more
information.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

68 MQsSeries Programmable System Management

Default Transmission Queue Type Error

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).
The maximum length of the string is MQ_Q_NAME_LENGTH.

XmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QType (MQCFIN)
Type of default transmission queue (parameter identifier:
MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 69

Default Transmission Queue Usage Error

Default Transmission Queue Usage Error

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_DEF_XMIT_Q_USAGE_ERROR

e Event data

Event data summary

Always returned:
QMgrName, QName, XmitQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_DEF_XMIT_Q_USAGE_ERROR
(2199, X'897"') Default transmission queue usage error.

An MQOPEN or MQPUT1 call was issued specifying a
remote queue as the destination. Either a local
definition of the remote queue was specified, or a
gueue-manager alias was being resolved, but in either
case the XmitQName attribute in the local definition is
blank.

No transmission queue is defined with the same name
as the destination queue manager, so the local queue
manager has attempted to use the default transmission
gueue. However, the queue defined by the
DefXmitQName queue-manager attribute does not have a
Usage attribute of MQUS_TRANSMISSION. See
“Transmission queues” in the MQSeries Application
Programming Guide for more information.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

70 MQSeries Programmable System Management

Default Transmission Queue Usage Error

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.
XmitQName (MQCFST)

Default transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 71

Get Inhibited

Get Inhibited

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_GET_INHIBITED

e Event data

Event data summary

Always returned:
QMgrName, QName, ApplType, ApplName,

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_GET_INHIBITED
(2016, X'7EQ") Gets inhibited for the queue.

MQGET calls are currently inhibited for the queue (see the
InhibitGet queue attribute in “Attributes for all queues” in the
MQSeries Application Programming Reference manual) or for the
gueue to which this queue resolves.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of the application that issued the get (parameter identifier:
MQIA_APPL_TYPE).

72 MQSeries Programmable System Management

Get Inhibited

ApplName (MQCFST)
Name of the application that issued the get (parameter identifier:
MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, rather than the client.

Chapter 4. Event message reference 73

Not Authorized (type 1)

Not Authorized (type 1)

Event message

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using MQSeries for OS/390, MQSeries for
0OS/2 Warp, or MQSeries for Windows Version 2.1.

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.
The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_NOT_AUTHORIZED

e Event data

Event data summary

Always returned:
QMgrName, ReasonQualifier, UserIdentifier, ApplType, ApplName

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_NOT_AUTHORIZED
(2035, X'7F3") Not authorized for access.

On an MQCONN call, the user is not authorized to
connect to the queue manager.

Event data

OMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier for type 1 authority events (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value must be:

MQRQ_CONN_NOT_AUTHORIZED
Connection not authorized.

74 MQSeries Programmable System Management

Not Authorized (type 1)

Userldentifier (MQCFST)
User identifier that caused the authorization check (parameter

identifier: MQCACF_USER_IDENTIFIER).
The maximum length of the string is MQ_USER_ID_LENGTH.

ApplType (MQCFIN)
Type of application causing the event (parameter identifier:

MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application causing the event (parameter identifier:

MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

Chapter 4. Event message reference

75

Not Authorized (type 2)

Not Authorized (type 2)

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using MQSeries for OS/390, MQSeries for
0OS/2 Warp, MQSeries for Tandem NSK Version 2.2, or MQSeries for Windows
Version 2.1.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

e Event header, containing a reason code parameter with a value of
MQRC_NOT_AUTHORIZED

e Event data

Event data summary

Always returned:
QMgrName, ReasonQualifier, Options, UserIdentifier, ApplType, ApplName

Returned optionally:
ObjectQMgrName, QName, ProcessName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

On an MQOPEN or MQPUT1 call, the user is not
authorized to open the object for the option(s) specified.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier for type 2 authority events (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value must be:

MQRQ_OPEN_NOT_AUTHORIZED
Open not authorized.

76 MQSeries Programmable System Management

Not Authorized (type 2)

Options (MQCFIN)
Options specified on the MQOPEN call (parameter identifier:
MQIACF_OPEN_OPTIONS).

UserlIdentifier (MQCFST)
User identifier that caused the authorization check (parameter
identifier: MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_USER_ID_LENGTH.

ApplType (MQCFIN)
Type of application causing the authorization check (parameter
identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application causing the authorization check
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
The name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ProcessName (MQCFST)
Name of the process whose attributes have changed (parameter
identifier: MQCA_PROCESS_NAME).

The maximum length of the string is
MQ_PROCESS_NAME_LENGTH.

Chapter 4. Event message reference (7

Not Authorized (type 3)

Not Authorized (type 3)

Event message

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using MQSeries for OS/390, MQSeries for
0OS/2 Warp, MQSeries for Tandem NSK Version 2.2, or MQSeries for Windows
Version 2.1.

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.
The event message consists of the:

e Event header, containing a reason code parameter with a value of
MQRC_NOT_AUTHORIZED

e Event data

Event data summary

Always returned:
QMgrName, ReasonQualifier, QName, UserIdentifier, ApplType, ApplName

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

On an MQCLOSE call, the user is not authorized to
delete the object, which is a permanent dynamic queue,
and the Hobj parameter specified on the MQCLOSE
call is not the handle returned by the MQOPEN call
which created the queue.

Event data

OMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier for type 3 authority events (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value is:

MQRQ_CLOSE_NOT_AUTHORIZED
Close not authorized.

78 MQSeries Programmable System Management

Not Authorized (type 3)

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:

MQCA_Q_NAME).
The maximum length of the string is MQ_Q_NAME_LENGTH.

UserIdentifier (MQCFST)
User identifier that caused the authorization check (parameter

identifier: MQCACF_USER_IDENTIFIER).
The maximum length of the string is MQ_USER_ID_LENGTH.

ApplType (MQCFIN)
Type of application that caused the authorization check (parameter

identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application causing the authorization check

(parameter identifier: MQCACF_APPL_NAME).
The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

Chapter 4. Event message reference 79

Not Authorized (type 4)

Not Authorized (type 4)

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced if you are using MQSeries for OS/390, MQSeries for
0OS/2 Warp, MQSeries for Tandem NSK Version 2.2, or MQSeries for Windows
Version 2.1.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

e Event header, containing a reason code parameter with a value of
MQRC_NOT_AUTHORIZED

e Event data

Event data summary

Always returned:
QMgrName, ReasonQualifier, Command, UserIdentifier

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

Indicates that a command has been issued from a user
ID that is not authorized to access the object specified
in the command.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier for type 4 authority events (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value must be:

MQRQ _CMD_NOT_AUTHORIZED
Command not authorized.

80 MQsSeries Programmable System Management

Not Authorized (type 4)

Command (MQCFIN)
Identifier for the command (parameter identifier:
MQIACF_COMMAND).

See the PCF header (MQCFH) structure, described on page

UserIdentifier (MQCFST)
User identifier that caused the authorization check (parameter
identifier: MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_USER_ID_LENGTH.

Chapter 4. Event message reference 81

Put Inhibited

Put Inhibited

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_PUT_INHIBITED

e Event data

Event data summary

Always returned:
QMgrName, QName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code generating the event.

The value is:

MQRC_PUT_INHIBITED
(2051, X'803") Put calls inhibited for the queue.

MQPUT and MQPUT1 calls are currently inhibited for the queue (see
the InhibitPut queue attribute in “Attributes for all queues” in the
MQSeries Application Programming Reference manual) or for the
gueue to which this queue resolves.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of the application that issued the put (parameter identifier:
MQIA_APPL_TYPE).

82 MQsSeries Programmable System Management

Put Inhibited

ApplName (MQCFST)
Name of the application that issued the put (parameter identifier:
MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Queue-manager name from object descriptor (MQOD) (parameter
identifier: MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned only if it has a value that is different from
QMgrName. This occurs when the 0ObjectQMgrName field in the object
descriptor provided by the application on the MQOPEN or MQPUT1 call is
neither blank nor the name of the application’s local queue manager.
However, it can also occur when 0ObjectQMgrName in the object descriptor is
blank, but a nhame service provides a queue-manager name which is not
the name of the application’s local queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 83

Queue Depth High

Queue Depth High

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_Q_DEPTH_HIGH

e Event data

Event data summary

Always returned:
QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_Q_DEPTH_HIGH
(2224, X'8B0"') Queue depth high limit reached or exceeded.

An MQPUT or MQPUT1 call has caused the queue depth to be
incremented to or above the limit specified in the QDepthHighLimit
attribute.

Corrective action: None. This reason code is only used to identify
the corresponding event message.

Event data

OMgrName (MQCFST)
Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Name of the queue on which the limit has been reached (parameter
identifier: MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were last reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

84 MQsSeries Programmable System Management

Queue Depth High

The value recorded by this timer is also used as the interval time in queue
service interval events.

HighQDepth (MQCFIN)
Maximum number of messages on the queue since the queue statistics
were last reset (parameter identifier: MQIA_HIGH_Q_DEPTH).

MsgEngCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is, the number of messages put on the queue since the queue
statistics were last reset.

MsgDeqCount (MQCFIN)
Number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is, the number of messages removed from the queue since the
gueue statistics were last reset.

Chapter 4. Event message reference 85

Queue Depth Low

Queue Depth Low
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_Q_DEPTH_LOW

e Event data

Event data summary

Always returned:
QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_Q_DEPTH_LOW
(2225, X'8B1') Queue depth low limit reached or exceeded.

An MQGET call has caused the queue depth to be decremented to
or below the limit specified in the QDepthLowLimit attribute.

Corrective action: None. This reason code is only used to identify
the corresponding event message.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Name of the queue on which the limit has been reached (parameter
identifier: MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were last reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

The value recorded by this timer is also used as the interval time in queue
service interval events.

86 MQsSeries Programmable System Management

Queue Depth Low

HighQDepth (MQCFIN)
Maximum number of messages on the queue since the queue statistics
were last reset (parameter identifier: MQIA_HIGH_Q_DEPTH).

MsgEnqgCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is, the number of messages put on the queue since the queue
statistics were last reset.

MsgDeqCount (MQCFIN)
Number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is, the number of messages removed from the queue since the
gueue statistics were last reset.

Chapter 4. Event message reference 87

Queue Full

Queue Full

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_Q_FULL

e Event data

Event data summary

Always returned:
QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_Q_FULL
(2053, X'805"') Queue already contains maximum number of
messages.

On an MQPUT or MQPUT1 call, the call failed because the queue is
full, that is it already contains the maximum number of messages
possible (see the MaxQDepth local-queue attribute in “Attributes for
local queues and model queues” in the MQSeries Application
Programming Reference manual).

This reason code can also occur in the Feedback field in the
message descriptor of a report message; in this case it indicates that
the error was encountered by a message channel agent when it
attempted to put the message on a remote queue.

Corrective action: Retry the operation later. Consider increasing the
maximum depth for this queue, or arranging for more instances of
the application to service the queue.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

88 MQseries Programmable System Management

Queue Full

QName (MQCFST)
The name of the queue on which the put was rejected (parameter
identifier: MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were last reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

HighQDepth (MQCFIN)
The maximum number of messages on a queue (parameter identifier:
MQIA_HIGH_Q DEPTH).

MsgEngCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is, the number of messages placed on the queue since queue
statistics were reset.

MsgDeqCount (MQCFIN)
The number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is, the number of messages removed from the queue since queue
statistics were reset.

Chapter 4. Event message reference 89

Queue Manager Active

Queue Manager Active

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced for the first start of an MQSeries for 0S/390 queue
manager, only on subsequent starts.

Event message
When an event is generated, an event message is put on the

SYSTEM.ADMIN.QMGR.EVENT queue.
The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_Q_MGR_ACTIVE

e Event data

Event data summary

Always returned:
QMgrName

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_Q_MGR_ACTIVE
(2222, X'8AE"') Queue manager created.

This condition is detected when a queue manager
becomes active.

On 0S/390, this event is not generated for the first start
of a queue manager, only on subsequent restarts.

Event data

OMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

90 MQSeries Programmable System Management

Queue Manager Not Active

Queue Manager Not Active
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is not produced by MQSeries for OS/390.

Event message
When an event is generated, an event message is put on the

SYSTEM.ADMIN.QMGR.EVENT queue.
The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_Q_MGR_NOT_ACTIVE

e Event data

Event data summary
Always returned: QMgrName, ReasonQualifier

Returned optionally: None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_Q_MGR_NOT_ACTIVE
(2223, X'8AE"') Queue manager unavailable.

This condition is detected when a queue manager is
requested to stop or quiesce.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier of cases of this reason code (parameter identifier:
MQIACF_REASON_QUALIFIER).

This specifies the type of stop that was requested. The value is
one of the following:

MQRQ_Q_MGR_STOPPING
Queue manager stopping.

MQRQ_Q MGR_QUIESCING
Queue manager quiescing.

Chapter 4. Event message reference 91

Queue Service Interval High

Queue Service Interval High

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_Q_SERVICE_INTERVAL_HIGH

e Event data

Event data summary

Always returned:
QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_Q_SERVICE_INTERVAL_HIGH
(2226, X'8B2') Queue service interval high.

No successful gets or puts have been detected within an interval
which is greater than the limit specified in the @Servicelnterval
attribute.

Corrective action: None. This reason code is only used to identify
the corresponding event message.

Event data

OMgrName (MQCFST)
Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Name of the queue specified on the command which caused this queue
service interval event to be generated (parameter identifier:
MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

92 MQSeries Programmable System Management

Queue Service Interval High

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

For a service interval high event, this value is greater than the service
interval.

HighQDepth (MQCFIN)
Maximum number of messages on a queue, since queue statistics were
reset (parameter identifier: MQIA_HIGH_Q_DEPTH).

MsgEnqgCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is, the number of messages put on the queue since the queue
statistics were last reset.

MsgDeqCount (MQCFIN)
Number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is, the number of messages removed from the queue since the
gueue statistics were last reset.

Chapter 4. Event message reference

93

Queue Service Interval OK

Queue Service Interval OK

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_Q_SERVICE_INTERVAL_OK

e Event data

Event data summary

Always returned:
QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_Q_SERVICE_INTERVAL_OK
(2227, X'8B3"') Queue service interval ok.

A successful get has been detected within an interval which is less
than or equal to the limit specified in the QServicelnterval attribute.

Corrective action: None. This reason code is only used to identify
the corresponding event message.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name specified on the command that caused this queue service
interval event to be generated (parameter identifier:
MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

94 MQsSeries Programmable System Management

Queue Service Interval OK

HighQDepth (MQCFIN)
The maximum number of messages on a queue since statistics were reset
(parameter identifier: MQIA_HIGH_Q_DEPTH).

MsgEnqgCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).
That is the number of messages put on the queue since the queue
statistics were last reset.

MsgDeqCount (MQCFIN)
Number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is the number of messages removed from the queue since the queue
statistics were last reset.

Chapter 4. Event message reference 95

Queue Type Error

Queue Type Error

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_Q_TYPE_ERROR

e Event data

Event data summary

Always returned:
QMgrName, QName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_Q_TYPE_ERROR
(2057, X'809') Queue type not valid.

On an MQOPEN call, the 0bjectQMgrName field in the
object descriptor specifies the name of a local definition
of a remote queue (in order to specify a
gueue-manager alias), and in that local definition the
RemoteQMgriName attribute is the name of the local queue
manager. However, the 0bjectName field specifies the
name of a model queue on the local queue manager;
this is not allowed. See “Transmission queues” in the
MQSeries Application Programming Guide for more
information.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

96 MQSeries Programmable System Management

Queue Type Error

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 97

Remote Queue Name Error

Remote Queue Name Error

Event message

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.
The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_REMOTE_Q_NAME_ERROR

e Event data

Event data summary

Always returned:
QMgrName, QName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_REMOTE_Q_NAME_ERROR
(2184, X'888') Remote queue name not valid.

On an MQOPEN or MQPUT1 call, one of the following
occurred:

¢ A local definition of a remote queue (or an alias to
one) was specified, but the RemoteQName attribute in
the remote queue definition is entirely blank. Note
that this error occurs even if the XmitQName in the
definition is not blank.

e The Object@MgriName field in the object descriptor
was not blank and not the name of the local queue
manager, but the ObjectName field is blank.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

98 MQsSeries Programmable System Management

Remote Queue Name Error

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the
event (parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 99

Transmission Queue Type Error

Transmission Queue Type Error

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_XMIT_Q_TYPE_ERROR

e Event data

Event data summary

Always returned:
QMgrName, QName, XmitQName, QType, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_XMIT_Q_TYPE_ERROR
(2091, X'82B"') Transmission queue not local.

On an MQOPEN or MQPUT1 call, a message is to be
sent to a remote queue manager. The ObjectName or
ObjectQMgriName field in the object descriptor specifies
the name of a local definition of a remote queue but
one of the following applies to the XmitQName attribute
of the definition:

e XmitQName is not blank, but specifies a queue that is
not a local queue

e XmitQName is blank, but RemoteQMgrName specifies a
gueue that is not a local queue

This reason also occurs if the queue name is resolved
through a cell directory, and the remote queue manager
name obtained from the cell directory is the name of a
gueue, but this is not a local queue.

100 MQsSeries Programmable System Management

Transmission Queue Type Error

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).
The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_ NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_ NAME_LENGTH.

QType (MQCFIN)
Type of transmission queue (parameter identifier: MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the current application Name of the application making
the MQI call that caused the event (parameter identifier:
MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 101

Transmission Queue Usage Error

Transmission Queue Usage Error

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_XMIT_Q_USAGE_ERROR

e Event data

Event data summary

Always returned:
QMgrName, QName, XmitQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code generating the event.

The value is:

MQRC_XMIT_Q_USAGE_ERROR
(2092, X'82C") Transmission queue with wrong usage.

On an MQOPEN or MQPUT1 call, a message is to be
sent to a remote queue manager, but one of the
following occurred:

e ObjectQMgrName specifies the name of a local
gueue, but it does not have a Usage attribute of
MQUS_TRANSMISSION.

e The ObjectName or ObjectQMgrName field in the
object descriptor specifies the name of a local
definition of a remote queue but one of the
following applies to the XmitQName attribute of the
definition:

— XmitQName is not blank, but specifies a queue
that does not have a Usage attribute of
MQUS_TRANSMISSION

— XmitQName is blank, but RemoteQMgrName
specifies a queue that does not have a Usage
attribute of MQUS_TRANSMISSION

102 MQsSeries Programmable System Management

Transmission Queue Usage Error

¢ The queue name is resolved through a cell
directory, and the remote queue manager name
obtained from the cell directory is the name of a
local queue, but it does not have a Usage attribute
of MQUS_TRANSMISSION.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
Type of current application (parameter identifier:
MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 103

Unknown Alias Base Queue

Unknown Alias Base Queue

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_ALIAS_BASE_Q

e Event data

Event data summary

Always returned:
QMgrName, QName, BaseQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822"') Unknown alias base queue.

An MQOPEN or MQPUT1 call was issued specifying an
alias queue as the target, but the BaseQName in the alias
gueue attributes is not recognized as a queue name.

Event data

OMgrName (MQCFST)
The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA BASE_Q_ NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

104 MQsSeries Programmable System Management

Unknown Alias Base Queue

ApplType (MQCFIN)
Type of the application making the MQI call that causes the event.
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that causes the
event. (parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 105

Unknown Default Transmission Queue

Unknown Default Transmission Queue

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the Event header.

This event is supported on all platforms.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_DEF_XMIT_Q

e Event data

Event data summary

Always returned:
QMgrName, QName, XmitQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_UNKNOWN_DEF_XMIT_Q
(2197, X'895"') Unknown default transmission queue.

An MQOPEN or MQPUT1 call was issued specifying a
remote queue as the destination. If a local definition of
the remote queue was specified, or if a queue-manager
alias is being resolved, the XmitQName attribute in the
local definition is blank.

No queue is defined with the same name as the
destination queue manager. The queue manager has
therefore attempted to use the default transmission
gueue. However, the name defined by the
DefXmitQName queue-manager attribute is not the name
of a locally-defined queue.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

106 MQsSeries Programmable System Management

Unknown Default Transmission Queue

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.
XmitQName (MQCFST)

Default transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application attempting to open the remote queue
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application attempting to open the remote queue
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 107

Unknown Object Name

Unknown Object Name
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message
When an event is generated, an event message is put on the

SYSTEM.ADMIN.QMGR.EVENT queue.
The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_OBJECT_NAME

e Event data

Event data summary

Always returned:
QMgrName, ApplType, ApplName

In addition, one of:
QName, ProcessName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

On an MQOPEN or MQPUTL1 call, the ObjectQMgrName
field in the object descriptor MQOD is set to one of the
following:

¢ Blank
¢ The name of the local queue manager

¢ The name of a local definition of a remote queue (a
gueue-manager alias) in which the RemoteQMgrName
attribute is the name of the local queue manager

However, the ObjectName in the object descriptor is not
recognized for the specified object type.

See also MQRC_Q_DELETED.

108 MQsSeries Programmable System Management

Unknown Object Name

Event data

ApplType (MQCFIN)
Type of the application issuing the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

AppIName (MQCFST)
Name of the application issuing the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_ NAME_LENGTH.

ProcessName (MQCFST)
Name of the process (application) issuing the MQI call that caused
the event (parameter identifier: MQCA_PROCESS_NAME).

The maximum length of the string is
MQ_PROCESS_NAME_LENGTH.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

Chapter 4. Event message reference 109

Unknown Remote Queue Manager

Unknown Remote Queue Manager

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message

When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_REMOTE_Q_MGR

e Event data

Event data summary
Always returned:

QMgrName, QName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_UNKNOWN_REMOTE_Q_MGR

110 MQsSeries Programmable System Management

(2087, X'827"') Unknown remote queue manager.

On an MQOPEN or MQPUT1 call, an error occurred
with the queue-name resolution, for one of the following
reasons:

e ObjectQMgriName is either blank or the name of the

local queue manager, and ObjectName is the name
of a local definition of a remote queue, which has a
blank XmitQName. However, there is no
(transmission) queue defined with the name of
RemoteQMgrName, and the DefXmitQName
gueue-manager attribute is blank.

ObjectQMgrName is the name of a queue-manager
alias definition (held as the local definition of a
remote queue), which has a blank XmitQName.
However, there is no (transmission) queue defined
with the name of RemoteQMgrName, and the
DefXmitQName queue-manager attribute is blank.

Unknown Remote Queue Manager

e ObjectQMgrName specified is not:

— Blank

— The name of the local queue manager

— The name of a local queue

— The name of a queue-manager alias definition
(that is, a local definition of a remote queue
with a blank RemoteQName)

and the DefXmitQName queue-manager attribute is
blank.

e ObjectQMgrName is blank or is the name of the local
gueue manager, and ObjectName is the name of a
local definition of a remote queue (or an alias to
one), for which RemoteQMgriName is either blank or is
the name of the local queue manager. Note that
this error occurs even if the XmitQName is not blank.

e ObjectQMgrName is the name of a local definition of
a remote queue. In this context, this should be a
gueue-manager alias definition, but the
RemoteQName in the definition is not blank.

e ObjectQMgrName is the name of a model queue.

e The queue name is resolved through a cell
directory. However, there is no queue defined with
the same name as the remote queue manager
name obtained from the cell directory. Also, the
DefXmitQName queue-manager attribute is blank.

Event data

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application attempting to open the remote queue
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application attempting to open the remote queue
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

Chapter 4. Event message reference 111

Unknown Remote Queue Manager

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

112 MQSeries Programmable System Management

Unknown Transmission Queue

Unknown Transmission Queue

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

This event is supported on all platforms.

Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

* Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_XMIT_Q

e Event data

Event data summary

Always returned:
QMgrName, QName, XmitQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

Event header
Reason (MQLONG)
Name of the reason code.

The value is:

MQRC_UNKNOWN_XMIT_Q
(2196, X'894"') Unknown transmission queue.

On an MQOPEN or MQPUT1 call, a message is to be
sent to a remote queue manager. The ObjectName or
the ObjectQMgrName in the object descriptor specifies
the name of a local definition of a remote queue (in the
latter case queue-manager aliasing is being used), but
the XmitQName attribute of the definition is not blank and
not the name of a locally-defined queue.

Event data

OMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Chapter 4. Event message reference 113

Unknown Transmission Queue

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application that made the MQI call (parameter identifier:
MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the current application (parameter identifier:
MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

114 wMQSeries Programmable System Management

Example using events

Chapter 5. Example of using instrumentation events

This example shows how you can write a program for instrumentation events. It is
written in C for queue managers on OS/2 Warp, Windows NT, or UNIX systems. It
is not part of any MQSeries product and is therefore supplied as source only. The
example is incomplete in that it does not enumerate all the possible outcomes of
specified actions. Bearing this in mind, you can use this sample as a basis for your
own programs that use events, in particular, the PCF formats used in event
messages. However, you will need to modify this program to get it to run on your

systems.
/**/
/* */
/* Program name: EVMON */
/* */
/* Description: C program that acts as an event monitor */
/* */
/* */
/**/
/* */
/* Function: */
/* */
/* */
/* EVMON is a C program that acts as an event monitor - reads an =*/
/* event queue and tells you if anything appears on it */
/* */

/* Its first parameter is the queue manager name, the second is */
/* the event queue name. If these are not supplied it uses the */
/* defaults. */
/* */
/**/
#include <time.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#ifndef min

#define min(a,b) (((a) < (b)) 2 (a) : (b))

#endif

#ifdef 0S2
/**/
/* for beep */

/**/

#define INCL_DOSPROCESS
#include <os2.h>

#endif
/**/
/* includes for MQI */

/**/
#include <cmqc.h>

#include <cmqgcfc.h>

void printfmgcfst(MQCFST* pmgcfst);

void printfmgcfin(MQCFIN* pmgcfst);

void printreas(MQLONG reason);

#define PRINTREAS (param) \
case param: \

© Copyright IBM Corp. 1994,1999 115

Example using events

printf("Reason = %s\n",#param); \

break;

/**/

/* global variable

*/

/**/

MQCFH

evtmsg; / evtmsg message buffer */

int main(int argc, char **argv)

{

/**/
/* declare variables */
/**/
int i /* auxiliary counter */
/**/

/* Declare MQI structures needed */
/**/

MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

/**/

/* note, uses defaults where it can */
/**/

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG 0 options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* reason code for MQCONN */
MQLONG buflen; /* buffer length */
MQLONG evtmsglen; /* message length received */
MQCHAR command[1100]; /* call command string ... */
MQCHAR p1[600]; /* Applld insert */
MQCHAR p2[900]; /* evtmsg insert %/
MQCHAR p3[600]; /* Environment insert */
MQLONG mytype; /* saved application type */
char QMName[50] ; /* queue manager name */
MQCFST =paras; /* the parameters */
int counter; /* loop counter */
time_ t 1time;

/**/

/* Connect to queue manager */
/**/

QMName[0] = 0; /* default queue manager */
if (argc > 1)
strcpy (QMName, argv[1]);

MQCONN (QMName, /* queue manager */
&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason) ; /* reason code */

/**/

/* Initialize object descriptor for subject queue */
/**/

strcpy(od.ObjectName, "SYSTEM.ADMIN.QMGR.EVENT");

116 MQSeries Programmable System Management

Example using events

if (argc > 2)
strcpy(od.ObjectName, argv[2]);

/**/

/* Open the event queue for input; exclusive or shared. Use of =*/

/* the queue is controlled by the queue definition here */
/**/
0_options = MQOO_INPUT_AS Q DEF /* open queue for input */
+ MQOO_FAIL IF QUIESCING /* but not if gmgr stopping */
+ MQOO_BROWSE;
MQOPEN (Hcon, /* connection handle */
&od, /* object descriptor for queuex/
0 _options, /* open options */
&Hobj, /* object handle */
&CompCode, /* completion code */
&Reason) ; /* reason code */

/**/
/* Get messages from the message queue */
/**/
while (CompCode != MQCC_FAILED)

/**/
/* I don't know how big this message is so just get the */
/* descriptor first */
/**/
gmo.Options = MQGMO_WAIT + MQGMO_LOCK

+ MQGMO_BROWSE_FIRST + MQGMO_ACCEPT_TRUNCATED_MSG;

/* wait for new messages */
gmo.WaitInterval = MQWI_UNLIMITED;/* no time limit */
buflen = 0; /* amount of message to get */

/**/
/* clear selectors to get messages in sequence */
/**/
memcpy (md.MsgId, MQMI_NONE, sizeof(md.MsgId));

memcpy (md.CorrelId, MQCI_NONE, sizeof(md.Correlld));

/**/

/* wait for event message */
/**/

printf("...>\n");

MQGET (Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options x/
buflen, /* buffer length */
evtmsg, /* evtmsg message buffer */
&evtmsglen, /* message length */
&CompCode, /* completion code */
&Reason) ; /* reason code */

/**/

/* report reason, if any */
/**/

if (Reason != MQRC_NONE && Reason != MQRC_TRUNCATED MSG_ACCEPTED)

{
printf("MQGET ==> %1d\n", Reason);

Chapter 5. Example of using instrumentation events

117

Example using events

}

else
{

gmo.Options = MQGMO_NO_WAIT + MQGMO_MSG_UNDER_CURSOR;

buflen = evtmsglen; /* amount of message to get =/

evtmsg = malloc(buflen);

if (evtmsg != NULL)

{ /**/
/* clear selectors to get messages in sequence */
/**/
memcpy (md.MsgId, MQMI_NONE, sizeof(md.Msgld));
memcpy (md.CorrelId, MQCI_NONE, sizeof(md.Correlld));

/**/

/* get the event message */
/**/

printf("...>\n");

MQGET (Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options x/
buflen, /* buffer Tength */
evtmsg, /* evtmsg message buffer */
&evtmsglen, /* message length */
&CompCode, /* completion code */
&Reason) ; /* reason code */

/**/
/* report reason, if any */
/**/
if (Reason != MQRC_NONE)

}
}
else
{
CompCode = MQCC_FAILED;
}
}

/**/
/* . . . process each message received */
/**/
if (CompCode != MQCC_FAILED)

/**/

printf("MQGET ==> %1d\n", Reason);

/* announce a message */
/**/
#ifdef 0S2

{
unsigned short tone;
for (tone = 1; tone < 8000; tone = tone * 2)
{
DosBeep(tone,50);
}
}

#else

118 MQSeries Programmable System Management

Example using events

printf("\a\a\a\a\a\a\a");
#endif

time(&1time);
printf(ctime(&1time));

if (evtmsglen != buflen)
printf("DataLength = %1d?\n", evtmsglen);
else

{

/**/

/* right let's Took at the data */

/**/

if (evtmsg->Type != MQCFT_EVENT)

{

}

printf("Something's wrong this isn't an event message,"
" its type is %1d\n",evtmsg->Type);

else

{

if (evtmsg->Command == MQCMD_Q_MGR_EVENT)
{

printf("Queue Manager event: ");

}
else
if (evtmsg->Command == MQCMD_CHANNEL_EVENT)
{
printf("Channel event: ");

}

else

{
printf("Unknown Event message, %1d.",
evtmsg->Command) ;

if (evtmsg->CompCode == MQCC_OK)
printf("CompCode(0K)\n");

else if (evtmsg->CompCode == MQCC_WARNING)
printf("CompCode (WARNING)\n");

else if (evtmsg->CompCode == MQCC_FAILED)
printf("CompCode (FAILED)\n");

else
printf("* CompCode wrong * (%1d)\n",

evtmsg->CompCode) ;

if (evtmsg->StruclLength != MQCFH_STRUC_LENGTH)
{

printf("it's the wrong length, %1d\n",evtmsg->StrucLength);
}

if (evtmsg->Version != MQCFH_VERSION_1)
{

printf("it's the wrong version, %1d\n",evtmsg->Version);

}

if (evtmsg->MsgSegNumber != 1)
{

Chapter 5. Example of using instrumentation events 119

Example using events

120

printf("it's the wrong sequence number, %1d\n",
evtmsg->MsgSegNumber) ;
}

if (evtmsg->Control != MQCFC_LAST)
{
printf("it's the wrong control option, %1d\n",
evtmsg->Control);

}

printreas(evtmsg->Reason);
printf("parameter count is %1d\n", evtmsg->ParameterCount);
/**/

/* get a pointer to the start of the parameters */
/**/
paras = (MQCFST =) (evtmsg + 1);
counter = 1;
while (counter <= evtmsg->ParameterCount)
{
switch (paras->Type)
{
case MQCFT_STRING:
printfmgcfst(paras);
paras = (MQCFST =) ((char x)paras
+ paras->StruclLength);
break;
case MQCFT_INTEGER:
printfmgcfin((MQCFIN*)paras);
paras = (MQCFST =) ((char x)paras
+ paras->StruclLength);
break;
default:
printf("unknown parameter type, %1d\n",
paras->Type);
counter = evtmsg->ParameterCount;

break;
1
counter++;
}
}
} /% end evtmsg action */
free(evtmsg);
1 /* end process for successful GET */
} /* end message processing loop */

/**/

/* close the event queue - if it was opened */
/**/
if (OpenCode != MQCC_FAILED)

C options = 0; /* no close options */
MQCLOSE (Hcon, /* connection handle */
&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */
/**/
/* Disconnect from queue manager (unless previously connected) */

MQSeries Programmable System Management

Example using events

[Fkdk ek ok ks ok ok ok ok ko ok ok ok ok ok ke ok ok ok ok ok ok ok ok ke ko ok ok ok ok ko ko ko ke kkk ok ok ok
if (CReason != MQRC_ALREADY CONNECTED)
{

MQDISC(&Hcon, /* connection handle */
&CompCode, /* completion code */
&Reason) ; /* reason code */
/**/
/* */
/* END OF EVMON */
/* */
/**/
}
#define PRINTPARAM(param) \
case param: \
{ \
char *p = #param; \
strncpy (thestring,pmqcfst->String,min(sizeof(thestring), \
pmgcfst->StringlLength)); \
printf("%s %s\n",p,thestring); \
} \
break;
#define PRINTAT (param) \
case param: \
printf("MQIA_APPL TYPE = %s\n",#param); \

break;

void printfmgcfst(MQCFST* pmgcfst)

{

}

char thestring[100];
switch (pmgcfst->Parameter)

PRINTPARAM(MQCA BASE_Q_NAME)
PRINTPARAM(MQCA PROCESS NAME)
PRINTPARAM(MQCA_Q MGR_NAME)
PRINTPARAM(MQCA Q NAME)
PRINTPARAM(MQCA XMIT Q_NAME)
PRINTPARAM(MQCACF_APPL_NAME)

default:
printf("Invalid parameter, %1d\n",pmqcfst->Parameter);
break;

}

void printfmgcfin(MQCFIN* pmgcfst)

{

switch (pmgcfst->Parameter)

{
case MQIA_APPL_TYPE:
switch (pmgcfst->Value)

{
PRINTAT (MQAT_UNKNOWN)

Chapter 5. Example of using instrumentation events

121

Example using events

PRINTAT (MQAT_0S2)
PRINTAT (MQAT_DOS)
PRINTAT (MQAT_UNIX)
PRINTAT (MQAT_QMGR)
PRINTAT (MQAT_0S400)
PRINTAT (MQAT_WINDOWS)
PRINTAT (MQAT_CICS_VSE)
PRINTAT (MQAT_VMS)
PRINTAT (MQAT_GUARDIAN)
PRINTAT (MQAT_VOS)

}

break;

case MQIA_Q TYPE:
if (pmgcfst->Value == MQQT_ALIAS)

printf("MQIA_Q_TYPE is MQQT_ALIAS\n");
}

else

{
if (pmgcfst->Value == MQQT_REMOTE)
{
printf("MQIA_Q_TYPE is MQQT REMOTE\n");
if (evtmsg->Reason == MQRC_ALIAS BASE_Q TYPE_ERROR)
{
printf("but remote is not valid here\n");
}
}
else
{
printf("MQIA Q TYPE is wrong, %1d\n",pmgcfst->Value);
}
}

break;

case MQIACF_REASON QUALIFIER:
printf("MQIACF_REASON_QUALIFIER %1d\n",pmgcfst->Value);
break;

case MQIACF_ERROR_IDENTIFIER:
printf("MQIACF_ERROR_INDENTIFIER %1d (X'%1X')\n",
pmgcfst->Value,pmgcfst->Value);
break;

case MQIACF_AUX_ERROR_DATA INT_ 1:
printf("MQIACF_AUX_ERROR DATA INT 1 %1d (X'%1X')\n",
pmgcfst->Value,pmgcfst->Value);
break;

case MQIACF_AUX_ERROR_DATA_INT 2:
printf("MQIACF_AUX_ERROR DATA INT 2 %1d (X'%1X')\n",
pmgcfst->Value,pmgcfst->Value);

break;

default :
printf("Invalid parameter, %1d\n",pmqcfst->Parameter);
break;

122 MQSeries Programmable System Management

Example using events

}
}

void printreas(MQLONG reason)
{
switch (reason)
{
PRINTREAS(MQRCCF_CFH_TYPE_ERROR)
PRINTREAS(MQRCCF_CFH_LENGTH_ERROR)
PRINTREAS (MQRCCF_CFH_VERSION_ERROR)
PRINTREAS (MQRCCF_CFH_MSG_SEQ_NUMBER_ERR)

PRINTREAS (MQRC_NO_MSG_LOCKED)

PRINTREAS (MQRC_CONNECTION_NOT_AUTHORIZED)
PRINTREAS (MQRC_MSG_TOO_BIG_FOR_CHANNEL)
PRINTREAS (MQRC_CALL_IN_PROGRESS)

default:
printf("It's an unknown reason, %1d\n",
reason);
break;

Chapter 5. Example of using instrumentation events 123

Example using events

124 MmQSeries Programmable System Management

Part 2. Programmable Command Formats

Chapter 6. Introduction to Programmable Command Formats [127]
The problem PCF commands solve 127
What PCFs are 128
Other administration interfaces 128
The MQSeries Administration Interface (MQAI) [130
Chapter 7. Using Programmable Command Formats
PCF command mesSages 131
RESPONSES [133
Authority checking for PCF commands 135
Chapter 8. Definitions of the Programmable Command Formats 1139
How the definitions are shown [139
PCF commands and responses in groups 143
Change Channel 144
Change Namelist 163]
Change Process 165]
Change Queue e 169
Change Queue Manager, [183
Clear QUEUE (191
Copy Channel 193]
Copy Namelist [212]
Copy Process e 1215
Copy QUEUE o [219]
Create Channel [233]
Create Namelist [252]
Create PrOCESS . . . o oo [254]
Create QUEUE 258|
Delete Channel 272
Delete Namelist 274]
Delete Process 275
Delete Queue L [276]
ESCAPE [278]
Escape (ResSponse) [279]
Inquire Channel [280]
Inquire Channel (Response) 1289
Inquire Channel Names, [295
Inquire Channel Names (Response) 297]
Inquire Channel Status 298
Inquire Channel Status (Response) 305
Inquire Cluster Queue Manager (310
Inquire Cluster Queue Manager (Response) [314]
Inquire Namelist
Inquire Namelist (Response) 323
Inquire Namelist Names 1324]
Inquire Namelist Names (ReSpoNse)o, [325
Inquire Process 326
Inquire Process (Response) [328
Inquire Process Names [330
Inquire Process Names (Response) E

© Copyright IBM Corp. 1994,1999 125

Inquire Queue 332
Inquire Queue (RESPONSE) o i [340]
Inquire Queue Manager [348]
Inquire Queue Manager (Response) 1357
Inquire Queue NameS [359
Inquire Queue Names (Response)
Ping Channel 362
Ping Queue Manager 365
Refresh Cluster 366
Reset Channel 367
Reset CIUSIEr [369]
Reset Queue Statistics 371
Reset Queue Statistics (Response) 1373
Resolve Channel [374]
Resume Queue Manager Cluster [376
Start Channel 378|
Start Channel Initiator [380]
Start Channel Listener [382]
Stop Channel 383
Suspend Queue Manager Cluster 385
Chapter 9. Structures used for commands and responses 387
How the structures are shown, 387
Uusage notes e 388
MQCFH - PCF header 1388
MQCFIN - PCF integer parameter, [395
MQCFST - PCF string parameter, 1397
MQCFIL - PCF integer list parameter [400]
MQCFSL - PCF string list parameter [403]
Chapter 10. Example of using PCFs 409
Enquire local queue attributes 409

126 MQSeries Programmable System Management

Introducing PCFs

Chapter 6. Introduction to Programmable Command Formats

This chapter introduces MQSeries Programmable Command Formats (PCFs) and
their relationship to other parts of the MQSeries products. It includes:

e “The problem PCF commands solve”

e “What PCFs are” on page

« “Other administration interfaces” on page

¢ “The MQSeries Administration Interface (MQAI)” on page

The Programmable Command Formats described in this book are supported by:

MQSeries for AlX

MQSeries for AS/400

MQSeries for AT&T GIS UNIX
MQSeries for Digital OpenVMS
MQSeries for HP-UX

MQSeries for OS/2 Warp

MQSeries for SINIX and DC/OSx
MQSeries for Sun Solaris

MQSeries for Tandem NonStop Kernel
MQSeries for Windows NT

MQSeries for Windows Version 2 Release 1

Event messages also use the Programmable Command Formats. See Chapter 1,
“Using instrumentation events to monitor queue managers” on page

The problem PCF commands solve
The administration of distributed networks can become very complex. The
problems of administration will continue to grow as networks increase in size and
complexity.
Examples of administration specific to messaging and queuing include:
e Resource management.
For example, queue creation and deletion.
* Performance monitoring.
For example, maximum queue depth or message rate.
e Control.

For example, tuning queue parameters such as maximum queue depth,
maximum message length, and enabling and disabling queues.

* Message routing.
Definition of alternative routes through a network.
MQSeries PCF commands can be used to simplify queue manager administration
and other network administration. PCF commands allow you to use a single

application to perform network administration from a single queue manager within
the network.

© Copyright IBM Corp. 1994,1999 127

Introducing PCFs e Other administration

What PCFs are

PCFs define command and reply messages that can be exchanged between a
program and any queue manager (that supports PCFs) in a network. You can use
PCF commands in a systems management application program for administration
of MQSeries objects: queue managers, process definitions, queues, and channels.
The application can operate from a single point in the network to communicate
command and reply information with any queue manager, local or remote, via the
local queue manager.

Each queue manager has an administration queue with a standard queue name
and your application can send PCF command messages to that queue. Each
gueue manager also has a command server to service the command messages
from the administration queue. PCF command messages can therefore be
processed by any queue manager in the network and the reply data can be
returned to your application, using your specified reply queue. PCF commands and
reply messages are sent and received using the normal Message Queue interface

(MQI).

Other administration interfaces

Administration of MQSeries objects may be carried out in other ways.

MQSeries for AS/400

In addition to PCFs, there are two further administration interfaces:

OS/400 Control Language (CL)

This can be used to issue administration commands to MQSeries for AS/400 They
can be issued either at the command line or by writing a CL program. These
commands perform similar functions to PCF commands, but the format is
completely different. CL commands are designed exclusively for OS/400 and CL
responses are designed to be human-readable, whereas PCF commands are
platform independent and both command and response formats are intended for
program use.

MQSeries Commands (MQSC)

These provide a uniform method of issuing commands across MQSeries platforms.
The general format of the commands is shown in Chapter 2, “The MQSeries
commands” in the MQSeries Command Reference book.

To issue the commands on OS/400 you create a list of commands in a Script file,
and then run the file using the STRMQMMQSC command.

MQSC responses are designed to be human readable, whereas PCF command
and response formats are intended for program use.

MQSeries for OS/390

MQSeries for OS/390 supports the MQSeries commands (MQSC). With OS/390
these commands can be entered from the OS/390 console, or sent to the system
command input queue. More information about issuing the commands is given in
Chapter 2, “The MQSeries commands” in the MQSeries Command Reference and
the MQSeries for 0S/390 System Management Guide.

128 MQsSeries Programmable System Management

Other administration

Note: PCF commands are not supported by MQSeries for 0OS/390.

MQSeries for Tandem NSK

In addition to PCFs, there are three further administrative interfaces:
¢ MQSeries commands (MQSC)
e Control commands
* Message Queue Management (MQM) facility

MQSeries for Tandem NSK provides a panel interface for some of the
functions. For full details see the MQSeries for Tandem NonStop Kernel
System Management Guide.

MQSeries for Windows

MQSeries for Windows supports the MQSeries commands (MQSC). You can enter
these commands in a window provided by the MQSC utility, and also run MQSC
command files.

MQSeries for Windows NT, OS/2 Warp, Digital OpenVMS, and UNIX

systems

In addition to PCFs, there are four further administrative interfaces:

MQSeries commands (MQSC)

You can use the MQSC as single commands issued at the OS/2 Warp,

Windows NT, or UNIX system command line. To issue more complicated, or
multiple commands, the MQSC can be built into a file that you run from the OS/2
Warp, Windows NT, or UNIX system command line. MQSC can be sent to a
remote queue manager. For full details see Chapter 2, “The MQSeries commands”
in the MQSeries Command Reference book.

Control commands

MQSeries for OS/2 Warp, Windows NT, and UNIX systems provides another type
of command for some of the functions. These are the control commands that you
issue at the system command line. Reference material for these commands is
contained in Chapter 17, “MQSeries control commands” in the MQSeries System
Administration book.

Web administration (Windows NT only)

MQSeries for Windows NT provides a web-based application that allows you to
administer all systems in your MQSeries network from a Windows NT workstation.
The application shows you how to use MQSeries command facilities either as
individual commands or multiple commands from a script.

You invoke Web Administration services at the Windows NT Start prompt and
select Web Admin from the MQSeries for Windows NT list. For full details see
Chapter 2, “An introduction to MQSeries administration” in the MQSeries System
Administration book.

Chapter 6. Introduction to Programmable Command Formats 129

MQSeries Explorer (Windows NT only)

The MQSeries Explorer is an application that runs under the Microsoft Management
Console (MMC). It provides a graphical user interface for controlling resources in a
network. For full details see Chapter 3, “Administration using the MQSeries
Explorer” in the MQSeries System Administration book.

The MQSeries Administration Interface (MQAI)

In addition to the methods described in “Other administration interfaces” on
page MQSeries for Windows NT, OS/2 Warp, AIX, HP-UX, and Sun Solaris
support the MQSeries Administration Interface (MQAI).

The MQAI is a programming interface to MQSeries that gives you an alternative to
the MQI, for sending and receiving PCFs. The MQAI uses data bags which allow
you to handle properties (or parameters) of objects more easily than using PCFs
directly via the MQI.

The MQAI provides easier programming access to PCF messages by passing
parameters into the data bag, so that only one statement is required for each
structure. This removes the need for the programmer to handle arrays and allocate
storage, and provides some isolation from the details of PCF.

The MQAI administers MQSeries by sending PCF messages to the command
server and waiting for a response.

The MQAI is described in the MQSeries Administration Interface Programming
Guide and Reference book. See the MQSeries for Windows NT Using the
Component Object Model Interface book for a description of a component object
model interface to the MQAI.

130 MQsSeries Programmable System Management

Using PCFs

Chapter 7. Using Programmable Command Formats

This chapter describes how to use the PCFs in a systems management application
program for MQSeries remote administration. The chapter includes:

e “PCF command messages”
» “Responses” on page
» “Authority checking for PCF commands” on page

PCF command messages

Each command and its parameters are sent as a separate command message
containing a PCF header followed by a number of parameter structures (see
“MQCFH - PCF header” on page [388). The PCF header identifies the command
and the number of parameter structures that follow in the same message. Each
parameter structure provides a parameter to the command.

Replies to the commands, generated by the command server, have a similar
structure. There is a PCF header, followed by a number of parameter structures.
Replies can consist of more than one message but commands always consist of
one message only.

The queue to which the PCF commands are sent is always called the
SYSTEM.ADMIN.COMMAND.QUEUE. The command server servicing this queue
sends the replies to the queue defined by the ReplyToQ and ReplyToQMgr fields in
the message descriptor of the command message.

How to issue PCF command messages

Use the normal Message Queue Interface (MQI) calls, MQPUT, MQGET and so on,
to put and retrieve PCF command and response messages to and from their
respective queues.

— Note to users

You must start the command server on the target queue manager for the PCF
command to process on that queue manager.

For a list of supplied header files, see Appendix C, “Header, COPY, and INCLUDE
files” on page [571.

Message descriptor for a PCF command

The MQSeries message descriptor is fully documented in “MQMD - Message
descriptor” in the MQSeries Application Programming Reference manual.

A PCF command message contains the following fields in the message descriptor:

Report
Any valid value, as required.

MsgType
This must be MQMT_REQUEST to indicate a message requiring a response.

© Copyright IBM Corp. 1994,1999 131

Using PCFs

Expiry
Any valid value, as required.

Feedback
Set to MQFB_NONE

Encoding
If you are sending to AS/400, OS/2, Windows NT, or UNIX systems, set this
field to the encoding used for the message data; conversion will be performed if
necessary.

CodedCharSetId
If you are sending to AS/400, OS/2, Windows NT, or UNIX systems, set this
field to the coded character-set identifier used for the message data; conversion
will be performed if necessary.

Format
Set to MQFMT_ADMIN.

Priority
Any valid value, as required.

Persistence
Any valid value, as required.

MsgId
The sending application may specify any value, or MQMI_NONE can be
specified to request the queue manager to generate a unique message
identifier.

Correlld
The sending application may specify any value, or MQCI_NONE can be
specified to indicate no correlation identifier.

ReplyToQ
The name of the queue to receive the response.

ReplyToQMgr
The name of the queue manager for the response (or blank).

Message context fields
These can be set to any valid values, as required. Normally the Put message
option MQPMO_DEFAULT_CONTEXT is used to set the message context fields
to the default values.

If you are using a version-2 MQMD structure, you must set the following additional
fields:

Groupld
Set to MQGI_NONE

MsgSeqNumber
Setto 1

Offset
Setto 0

MsgFlags
Set to MQMF_NONE

132 MQSeries Programmable System Management

Using PCFs ¢ Responses

Originallength
Set to MQOL_UNDEFINED

Sending user data

The PCF structures can also be used to send user-defined message data. In this
case the message descriptor Format field should be set to MQFMT_PCF.

Responses

OK response

In response to each command, the command server generates one or more
response messages. A response message has a similar format to a command
message; the PCF header has the same command identifier value as the command
to which it is a response (see “MQCFH - PCF header” on page [388]for details).
The message identifier and correlation identifier are set according to the report
options of the request.

If a single command specifies a generic object name, a separate response is
returned in its own message for each matching object. For the purpose of
response generation, a single command with a generic name is treated as multiple
individual commands (except for the control field MQCFC_LAST or
MQCFC_NOT_LAST). Otherwise, one command message generates one
response message.

Certain PCF responses may return a structure even when it is not requested. This
is shown in the definition of the response (Chapter 8) as always returned. The
reason for this is that, for these responses, it is necessary to name the objects in
the response so that one can know to which object the data applies.

There are three types of response, described below:

e OK response
e Error response
e Data response

This consists of a message starting with a command format header, with a
CompCode field of MQCC_OK or MQCC_WARNING.

For MQCC_OK, the Reason is MQRC_NONE.

For MQCC_WARNING, the Reason identifies the nature of the warning. In this
case the command format header may be followed by one or more warning
parameter structures appropriate to this reason code.

In either case, for an inquire command further parameter structures may follow as
described below.

Chapter 7. Using PCFs 133

Responses

Error response
If the command has an error, one or more error response messages are sent (more
than one may be sent even for a command which would normally only have a
single response message). These error response messages have MQCFC_LAST
or MQCFC_NOT_LAST set as appropriate.

Each such message starts with a response format header, with a CompCode value of
MQCC_FAILED and a Reason field which identifies the particular error. In general
each message describes a different error. In addition, each message has either
zero or one (never more than one) error parameter structures following the header.
This parameter structure, if there is one, is an MQCFIN structure, with a Parameter
field containing one of the following:

« MQIACF_PARAMETER_ID

The Value field in the structure is the parameter identifier of the parameter that
was in error (for example, MQCA_Q_NAME).

« MQIACF_ERROR_ID

This is used with a Reason value (in the command format header) of
MQRC_UNEXPECTED_ERROR. The Value field in the MQCFIN structure is
the unexpected reason code received by the command server.

* MQIACF_SELECTOR

This occurs if a list structure (MQCFIL) sent with the command contains an
invalid or duplicate selector. The Reason field in the command format header
identifies the error, and the Value field in the MQCFIN structure is the
parameter value in the MQCFIL structure of the command that was in error.

« MQIACF_ERROR_OFFSET

This occurs when there is a data compare error on the Ping Channel
command. The Value field in the structure is the offset of the Ping Channel
compare error.

« MQIA_CODED_CHAR_SET_ID

This occurs when the coded character-set identifier in the message descriptor
of the incoming PCF command message does not match that of the target
gueue manager. The Value field in the structure is the coded character-set
identifier of the queue manager.

The last (or only) error response message is a summary response, with a CompCode
field of MQCC_FAILED, and a Reason field of MQRCCF_COMMAND_FAILED.
This message has no parameter structure following the header.

Data response

This consists of an OK response (as described above) to an inquire command.

The OK response is followed by additional structures containing the requested data
as described in Chapter 8, “Definitions of the Programmable Command Formats”
on page

Applications should not depend upon these additional parameter structures being
returned in any particular order.

134 MQSeries Programmable System Management

Authority checking

Message descriptor for a response

A response message (obtained using the Get-message option
MQGMO_CONVERT) has the following fields in the message descriptor, defined by
the putter of the message. The actual values in the fields are generated by the
gueue manager:

MsgType
This is MQMT_REPLY.

Msgld
This is generated by the queue manager.

Correlld
This is generated according to the report options of the command message.

Format
This is MQFMT_ADMIN.

Encoding
Set to MQENC_NATIVE.

CodedCharSetId
Set to MQCCSI_Q_MGR.

Persistence
The same as in the command message.

Priority
The same as in the command message.

The response is generated with MQPMO_PASS IDENTITY_CONTEXT.

Authority checking for PCF commands

When a PCF command is processed, the UserIdentifier from the message
descriptor in the command message is used for the required MQSeries object
authority checks. The checks are performed on the system on which the command
is being processed, therefore this user ID must exist on the target system and have
the required authorities to process the command. If the message has come from a
remote system, one way of achieving this is to have a matching user ID on both the
local and remote systems.

Authority checking is implemented differently on each platform.

MQSeries for AS/400

In order to process any PCF command, the user ID must have *READ authority for
the MQSeries object on the target system.

In addition, MQSeries object authority checks are performed for certain PCF
commands, as shown in Table 16 on page In most cases these are the
same checks as those performed by the equivalent MQSeries CL commands
issued on a local system. See the MQSeries for AS/400 Administration Guide for
more information on the mapping from MQSeries authorities to OS/400 system
authorities, and the authority requirements for the MQSeries CL commands.
Details of security concerning exits are given in Chapter 35, “Channel-exit
programs” the MQSeries Intercommunication book.

Chapter 7. Using PCFs 135

Authority checking

To process any of the following commands

the user ID must have *ALLOBJ

authority, or the user ID must be QPGMR or QSYSOPR:

¢ Ping Channel

¢ Change Channel
e Copy Channel

e Create Channel
e Delete Channel
¢ Reset Channel
¢ Resolve Channel
e Start Channel

e Stop Channel

¢ Start Channel Initiator
e Start Channel Listener

Table 16. MQSeries for AS/400 - object authorities

Command MQSeries object authority *CTLG authority
Change Queue *READ and *UPD n/a

Change Queue Manager *READ and *UPD n/a

Change Process *READ and *UPD n/a

Clear Queue *READ and *DLT n/a

Copy Process from: *READ *ADD

Copy Process (Replace) from: *READ n/a

to: *OBJOPR and *UPD
Copy Queue from: *READ *ADD
Copy Queue (Replace) from: *READ n/a

to: *OBJOPR and *UPD

Create Process (system default process) *READ *ADD
Create Process (Replace) (system default process) *READ n/a
to: *OBJOPR and *UPD
Create Queue (system default queue) *READ *ADD
Create Queue (Replace) (system default queue) *READ n/a
to: *OBJOPR and *UPD
Delete Process *OBJEXIST *DLT
Delete Queue *OBJEXIST *DLT
Inquire Queue *READ n/a
Inquire Queue Manager *READ n/a
Inquire Process *READ n/a
Reset Queue Statistics *UPD n/a
Escape see Note see Note

Note: The required authority is determined by the MQSC command defined by the
escape text, and it will be equivalent to one of the above.

136 MQsSeries Programmable System Management

Authority checking

MQSeries for OS/2 Warp

If there is no authorization service installed, or if the PCF command is a channel
command, OS/2 performs no additional security checking other than making sure
that the UserlIdentifier of the message descriptor is not set to blanks. If there is
an installed authorization service, this controls access to the queue manager,
gueue, and process objects, with access to channels unaffected.

MQSeries also has some channel security exit points so that you can supply your
own user exit programs for security checking. Details are given in Chapter 35,
“Channel-exit programs” in the MQSeries Intercommunication book.

MQSeries for Windows NT, Digital OpenVMS, Tandem NSK, and UNIX
systems

In order to process any PCF command, the user ID must have dsp authority for the
gueue manager object on the target system. In addition, MQSeries object authority
checks are performed for certain PCF commands, as shown in Table 17.

To process any of the following commands the user ID must belong to group
magm.

Note: For Windows NT only the user ID may belong to group Administrators or
group mgm.

¢ Change Channel

e Copy Channel

e Create Channel

e Delete Channel

¢ Ping Channel

¢ Reset Channel

e Start Channel

e Stop Channel

e Start Channel Initiator
e Start Channel Listener
e Resolve Channel

Table 17 (Page 1 of 2). MQSeries for Windows NT, Digital OpenVMS, Tandem NSK,

and UNIX systems - object authorities

Command MQSeries object authority Class authority
(for object type)

Change Queue chg n/a

Change Queue Manager chg n/a

Change Process chg n/a

Clear Queue clr n/a

Copy Process from: dsp crt

Copy Process (Replace) from: dsp n/a

see Note 1 to: chg

Copy Queue from: dsp crt

Copy Queue (Replace) from: dsp n/a

see Note 1 to: chg

Create Process (system default process) dsp crt

Chapter 7. Using PCFs 137

Authority checking

Table 17 (Page 2 of 2). MQSeries for Windows NT, Digital OpenVMS, Tandem NSK,
and UNIX systems - object authorities

Command

MQSeries object authority

Class authority
(for object type)

Create Process (Replace) (system default process) dsp n/a
see Note 1 to: chg

Create Queue (system default queue) dsp crt
Create Queue (Replace) (system default queue) dsp crt
see Note 1 to: nla

Delete Process dit n/a
Delete Queue dit n/a
Inquire Queue dsp n/a
Inquire Queue Manager dsp n/a
Inquire Process dsp n/a
Reset Queue Statistics dsp and chg n/a
Escape see Note 2 see Note 2
Notes:

1. This applies if the object to be replaced does already exist, otherwise the authority
check is as for Create without Replace.
2. The required authority is determined by the MQSC command defined by the escape
text, and it will be equivalent to one of the above.

MQSeries also supplies some channel security exit points so that you can supply
your own user exit programs for security checking. Details are given in
Chapter 35, “Channel-exit programs” in the MQSeries Intercommunication book.

138 MQseries Programmable System Management

Definitions of PCFs

Chapter 8. Definitions of the Programmable Command
Formats

This chapter contains reference material for the Programmable Command Formats
(PCFs) of commands and responses sent between an MQSeries systems
management application program and an MQSeries queue manager.

The chapter discusses:

e “How the definitions are shown”
e “PCF commands and responses in groups” on page

How the definitions are shown

For each PCF command or response there is a description of what the command
or response does, giving the command identifier in parentheses. See “"MQCFH -
PCF header” on page for details of the command identifier.

— Notes to users

1. The PCFs listed in “PCF commands and responses in groups” on page
are available on all platforms to which this book applies, except OS/390,
unless specific limitations are shown at the start of a structure.

2. MQSeries for Windows V2.0 does not support PCFs.

3. You cannot use PCF commands to work with MQSeries connections or
channel groups on MQSeries for Windows Version 2.1.

4. The MQSeries Version 5.1 products provide a new programming interface,
the MQSeries Administration Interface (MQAI), which provides a simplified
way for applications written in the C and Visual Basic programming
language to build and send PCF commands.

On MQSeries for Windows NT Version 5.1 you can use the Microsoft Active
Directory Services Interface (ADSI), as well as PCFs, to inquire about and
set parameters.

For information on the MQAI see the MQSeries Administration Interface
Programming Guide and Reference book, and for information on using
Microsoft ADSI see Chapter 6, “Using the Active Directory Service
Interfaces (ADSI)” in the MQseries for Windows NT Using the Component
Object Model Interface book.

Commands

The required parameters and the optional parameters are listed. The parameters
must occur in the order:

1. All required parameters, in the order stated, followed by

2. Optional parameters as required, in any order, unless specifically noted in the
PCF definition.

© Copyright IBM Corp. 1994,1999 139

Definitions of PCFs

Responses

The response data attribute is always returned whether it is requested or not. This
parameter is required to identify, uniquely, the object when there is a possibility of
multiple reply messages being returned.

The other attributes shown are returned if requested as optional parameters on the
command. The response data attributes are not returned in a defined order.

Parameters and response data

Each parameter name is followed by its structure name in parentheses (details are
given in Chapter 9, “Structures used for commands and responses” on page |387).
The parameter identifier is given at the beginning of the description.

Constants

The values of constants used by PCF commands and responses are included in
Appendix B, “Constants” on page

Error codes

At the end of each command format definition there is a list of error codes that may
be returned by that command. Full descriptions are given in the alphabetic list in
Appendix A, “Error codes” on page

Error codes applicable to all commands

In addition to those listed under each command format, any command may return
the following in the response format header (descriptions of the MQRC_* error
codes are given in “Reason codes” in the MQSeries Application Programming
Reference manual):

Reason (MQLONG)
The value may be:

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_NOT_AUTHORIZED
(2035, X'7F3"') Not authorized for access.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817") Insufficient storage available.

MQRC_MSG_TOO _BIG_FOR_Q
(2030, X'7EE"') Message length greater than maximum for queue.

MQRC_NONE
(0, X'000') No reason to report.

MQRCCF_COMMAND_FAILED
Command failed.

MQRCCF_CFH_COMMAND_ERROR
Command identifier not valid.

MQRCCF_CFH_CONTROL_ERROR
Control option not valid.

140 MQSeries Programmable System Management

MQRCCF_CFH_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFH_MSG_SEQ _NUMBER_ER
Message sequence number not valid.

MQRCCF_CFH_PARM_COUNT_ERROR
Parameter count not valid.

MQRCCF_CFH_TYPE_ERROR
Type not valid.

MQRCCF_CFH_VERSION_ERROR
Structure version number is not valid.

MQRCCF_ENCODING_ERROR
Encoding error.

MQRCCF_MD_FORMAT_ERROR
Format not valid.

MQRCCF_MSG_TRUNCATED
Message truncated.

MQRCCF_MSG_LENGTH_ERROR
Message length not valid.

MQRCCF_MSG_SEQ_NUMBER_ERROR
Message sequence number not valid.

Definitions of PCFs

R

PCF commands and responses in groups

The commands and data responses are given in alphabetic order in this chapter.

They can be usefully grouped as follows:

Queue Manager commands

“Change Queue Manager” on page
“Inquire Queue Manager” on page
“Ping Queue Manager” on page

Namelist commands

“Change Namelist” on page
“Copy Namelist” on page
“Create Namelist” on page
“Delete Namelist” on page [274]
“Inquire Namelist” on page [321
“Inquire Namelist Names” on page

Process commands

“Change Process” on page
“Copy Process” on page

“Create Process” on page
“Delete Process” on page
“Inquire Process” on page
“Inquire Process Names” on page

Chapter 8. Definitions of PCFs

141

Definitions of PCFs

Queue commands

“Change Queue” on page |169

“Clear Queue” on page

“Copy Queue” on page [219

“Create Queue” on page
“Delete Queue” on page
“Inquire Queue” on page
“Inquire Queue Names” on page

Channel commands

“Change Channel” on page
“Copy Channel” on page

“Create Channel” on page
“Delete Channel” on page
“Inquire Channel” on page
“Inquire Channel Names” on page
“Inquire Channel Status” on page
“Ping Channel” on page

“Reset Channel” on page
“Resolve Channel” on page
“Start Channel” on page

“Start Channel Initiator” on page
“Start Channel Listener” on page
“Stop Channel” on page

Statistics command

“Reset Queue Statistics” on page

Escape command

“Escape” on page

Cluster commands

“Inquire Cluster Queue Manager” on page
“Refresh Cluster” on page

“Reset Cluster” on page

“Resume Queue Manager Cluster” on page
“Suspend Queue Manager Cluster” on page

142 MQSeries Programmable System Management

Definitions of PCFs

Data responses to commands

“Escape (Response)” on page

“Inquire Channel (Response)” on page
“Inquire Channel Names (Response)” on page
“Inquire Channel Status (Response)” on page
“Inquire Cluster Queue Manager (Response)” on page
“Inquire Namelist (Response)” on page
“Inquire Namelist Names (Response)” on page
“Inquire Process (Response)” on page

“Inquire Process Names (Response)” on page
“Inquire Queue (Response)” on page

“Inquire Queue Manager (Response)” on page
“Inquire Queue Names (Response)” on page
“Reset Queue Statistics (Response)” on page

Chapter 8. Definitions of PCFs 143

Change Channel

Change Channel

The Change Channel (MQCMD_CHANGE_CHANNEL) command changes the
specified attributes in a channel definition.

This PCF is supported on all platforms.

For any optional parameters that are omitted, the value does not change.

Required parameters:
ChannelName, ChannelType

Optional parameters (any ChannelType):
TransportType, ChannelDesc, SecurityExit, MsgExit, SendExit, ReceiveExit,
MaxMsglLength, SecurityUserData, MsgUserData, SendUserData,
ReceivelserData

Optional parameters (sender or server ChannelType):
ModeName, TpName, ConnectionName, XmitQName, MCAName, BatchSize,
DiscInterval, ShortRetryCount, ShortRetryInterval, LongRetryCount,
LongRetrylInterval, SeqNumberWrap, DataConversion, MCAType,
MCAUserIdentifier, UserIdentifier, Password, HeartbeatInterval,
NonPersistentMsgSpeed Batchinterval

Optional parameters (receiver ChannelType):
BatchSize, PutAuthority, SeqNumberWrap, MCAUserIdentifier, MsgRetryExit,
MsgRetrylUserData, MsgRetryCount, MsgRetrylInterval, HeartbeatiInterval,
NonPersistentMsgSpeed

Optional parameters (requester ChannelType):
ModeName, TpName, ConnectionName, MCAName, BatchSize, PutAuthority,
SeqNumberWrap, MCAType, MCAUserIdentifier, UserIdentifier, Password,
MsgRetryExit, MsgRetrylUserData, MsgRetryCount, MsgRetryInterval
HeartbeatInterval, NonPersistentMsgSpeed

Optional parameters (server-connection ChannelType):
MCAUserIdentifier

Optional parameters (client-connection ChannelType):
ModeName, TpName QMgrName, ConnectionName UserIdentifier, Password

Optional parameters (cluster-receiver ChannelType):
ModeName, TpName, DiscInterval, ShortRetryCount, ShortRetrylnterval,
LongRetryCount, LongRetryInterval, DataConversion, BatchSize,
PutAuthority, SeqNumberWrap, MCAUserIdentifier, MsgRetryExit,
MsgRetrylUserData, MsgRetryCount, MsgRetrylInterval, HeartbeatiInterval,
NonPersistentMsgSpeed, BatchInterval, ClusterName, ClusterNamelist,
ConnectionName, NetworkPriority

Optional parameters (cluster-sender ChannelType):
ModeName, TpName, ConnectionName, MCAName, BatchSize, DiscInterval,
ShortRetryCount, ShortRetrylInterval, LongRetryCount, LongRetrylnterval,
SeqNumberWrap, DataConversion, MCAType, MCAUserIdentifier,
UserIdentifier, Password, HeartbeatInterval, NonPersistentMsgSpeed,
BatchInterval, ClusterName, ClusterNamelist

144 wmQsSeries Programmable System Management

Change Channel

Required parameters

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Specifies the name of the channel definition to be changed.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.
ChannelType (MQCFIN)

Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel being changed. The value may be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

This value is not supported in the following environment: 32-bit
Windows.

MQCHT_CLNTCONN
Client connection.

This value is not supported in the following environments: OS/400,
32-bit Windows.

MQCHT_CLUSRCVR
Cluster-receiver.

This value is supported in the following environments: AIX, HP-UX,
0S/2, Sun Solaris, Windows NT.

MQCHT_CLUSSDR
Cluster-sender.

This value is supported in the following environments: AIX, HP-UX,
0S/2, Sun Solaris, Windows NT.

Optional parameters

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

No check is made that the correct transport type has been specified if the
channel is initiated from the other end. The value may be:

MQXPT_LU62
LU 6.2.

This value is not supported on 32-bit Windows.

Chapter 8. Definitions of PCFs 145

Change Channel

MQXPT_TCP
TCP.

This is the only value supported on 32-bit Windows.

MQXPT_NETBIOS
NetBIOS.

This value is supported in the following environments: OS/2, 32-bit
Windows, Windows NT.

MQXPT_SPX
SPX.

This value is supported in the following environments: OS/2,
Windows NT, Windows client, DOS client.

MQXPT_DECNET
DECnhet.

This value is supported in the following environment: Digital
OpenVMS.

MQXPT_UDP
UDP.

This value is supported in the following environments: 16-bit
Windows, AlX.

ChannelDesc (MQCFST)

Channel description (parameter identifier: MQCACH_DESC).
The maximum length of the string is MQ_CHANNEL_DESC _LENGTH.

Use characters from the character set, identified by the coded character
set identifier (CCSID) for the message queue manager on which the
command is executing, to ensure that the text is translated correctly.

SecurityExit (MQCFST)

Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

If a nonblank name is defined, the security exit is invoked at the following
times:

¢ Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity
to instigate security flows to validate connection authorization.

¢ Upon receipt of a response to a security message flow.

Any security message flows received from the remote processor on
the remote machine are passed to the exit.

The exit is given the entire application message and message descriptor
for modification.

The format of the string depends on the platform, as follows:
¢ On UNIX systems, it is of the form
Tibraryname (functionname)
e On OS/2, Windows NT, and Windows 3.1, it is of the form

d11name(functionname)

146 MQSeries Programmable System Management

Change Channel

where dllname is specified without the suffix “.DLL".
e On 0OS/400, it is of the form
progname 1ibname

where progname occupies the first 10 characters, and libname the
second 10 characters (both blank-padded to the right if necessary).

¢ On Digital OpenVMS, it is of the form

imagename (functionname)

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

MsgExit (MQCFSL)

Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately after a
message has been retrieved from the transmission queue. The exit is
given the entire application message and message descriptor for
modification.

For channels with a channel type (ChannelType) of MQCHT_SVRCONN or
MQCHT_CLNTCONN, this parameter is not relevant, since message exits
are not invoked for such channels.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AlX,
HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

¢ The exits are invoked in the order specified in the list.

¢ A list with only one name is equivalent to specifying a single name in
an MQCEFST structure.

¢ You cannot specify both a list (MQCFSL) and a single entry
(MQCEFST) structure for the same channel attribute.

¢ The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

SendExit (MQCFSL)

Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately before data
is sent out on the network. The exit is given the complete transmission
buffer before it is transmitted; the contents of the buffer can be modified as
required.

Chapter 8. Definitions of PCFs 147

Change Channel

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all supported
environments.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AlX,
HP-UX, 0S/2, 0S/400, Sun Solaris, Windows NT.

¢ The exits are invoked in the order specified in the list.

¢ A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

¢ You cannot specify both a list (MQCFSL) and a single entry
(MQCEFST) structure for the same channel attribute.

¢ The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

ReceiveExit (MQCFSL)

Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

If a nonblank name is defined, the exit is invoked before data received
from the network is processed. The complete transmission buffer is
passed to the exit and the contents of the buffer can be modified as
required.

The format of the string is the same as for SecurityExit.

The maximum length of the exit name depends on the environment in
which the exit is running. MQ_EXIT_NAME_LENGTH gives the maximum
length for the environment in which your application is running.
MQ_MAX_EXIT_NAME_LENGTH gives the maximum for all support