
MQSeries® Adapter Kernel for Multiplatforms

Quick Beginnings
Version 1 Release 1

GC34-5855-04

IBM

MQSeries® Adapter Kernel for Multiplatforms

Quick Beginnings
Version 1 Release 1

GC34-5855-04

IBM

Note: Before using this information and the product it supports, read the information in “Notices” on page 97.

Fifth Edition (December 2000)

This edition applies to version 1, release 1 of MQSeries Adapter Kernel for Multiplatforms (product number
5648-D75) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can make comments on this information via e-mail at idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

mailto:idrcf@hursley.ibm.com

Contents

Figures v

Tables vii

Welcome to the MQSeries Adapter Kernel
Quick Beginnings ix
Who should use this information ix
Related information ix

Conventions xi

Summary of changes xiii

Chapter 1. About MQSeries Adapter Offering 1
Build time and run time 2

About the kernel 4
How the kernel works 8
Components of the kernel run time 8
Message and message format 10
Routing and delivery 12
Run-time flow 12

Transactional capabilities 22
Tracing. 22

Chapter 2. Planning to install the kernel . . 23
Hardware 23
Software 24
Prerequisites for OS/400 installation 25

Using remote AWT. 26
Using an attached client 27

Components of the kernel 27

Chapter 3. Installing the kernel 31
Preparing for installation. 31
Installing the kernel 32
Verifying the installation 38

Verification procedure. 39
Common verification problems. 40
Optional verification 42

Removing the kernel 42
Upgrading the kernel 43

Chapter 4. Using the kernel 45
Preparing for production. 45

Configuring the kernel 46
The setup file 47
The configuration file 47

Configuring MQSeries and MQSeries
Integrator 64
Performance recommendations. 64
Starting the kernel 65

Stopping the kernel 66
Maintaining the kernel 67
Diagnosing problems 67

Version number 68
Exception messages 68
Trace messages 69
Utilities 69

Creating MQSeries queues 69

Chapter 5. Using MQSeries Adapter Kernel
APIs 71

Chapter 6. Obtaining additional information 73
Available on the Internet 73
References 73

Appendix A. Communication modes . . . 75
Using JMS object storage 78

Appendix B. Validated configurations. . . 81

Appendix C. Message headers 83
MQSeries message descriptor header. . . . 83
MQSeries without MQSeries Integrator . . . 84
MQSeries Integrator version 1 header . . . 85
MQSeries Integrator version 2 header . . . 86

Appendix D. Sample of the configuration
file 89
Sample of a minimum configuration file . . 93

Appendix E. Sample of the setup file . . . 95

Notices 97
Trademarks 99

Glossary 101

© Copyright IBM Corp. 2000 iii

Index 105

iv MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Figures

1. Overview of MQSeries Adapter Offering 5
2. Marshal, send, route, and trace a

message — overview 13

3. High-level structure of the configuration
file 50

© Copyright IBM Corp. 2000 v

vi MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Tables

1. Conventions used in this book xi
2. Communication modes and supporting

Java classes 76
3. Communication modes and formatter

interfaces 76
4. Formatter interfaces, formatter

classnames, and purposes 77

5. LMS classes and transactional support 77
6. MQSeries header 83
7. MQSeries Integrator version 1 header —

RFH1 85
8. MQSeries Integrator version 2 header —

RFH2 86

© Copyright IBM Corp. 2000 vii

viii MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Welcome to the MQSeries Adapter Kernel Quick
Beginnings

This document describes the MQSeries® Adapter Kernel and explains how to
plan for, install, and use it.

To make the kernel ready to use, perform the following general steps:
1. Read “Chapter 1. About MQSeries Adapter Offering” on page 1.
2. Prepare for installation. See “Preparing for installation” on page 31 for

details.
3. Install the kernel. See “Installing the kernel” on page 32 for details.
4. Verify the installation. See “Verifying the installation” on page 38 for

details.
5. Configure the kernel. See “Configuring the kernel” on page 46 for details.
6. If desired, configure optional software to work with the kernel. See

“Configuring MQSeries and MQSeries Integrator” on page 64 for details.
7. Build your adapters by using the MQSeries Adapter Builder, then test and

deploy them. See the MQSeries Adapter Builder documentation for details.
8. Start the kernel. See “Starting the kernel” on page 65 for details.

To use this information, you also need to know about prerequisite and
optional products. See “Chapter 2. Planning to install the kernel” on page 23.
See also “References” on page 73.

Who should use this information

This information is for those who need to plan for, install, or use the
MQSeries Adapter Kernel.

Related information

For additional information, see the following:
v The readme.txt file. This file possibly contains information that became

available after this book was completed. Before installation, the readme.txt
file is located in the root directory of the product CD-ROM. After
installation, the readme.txt file is located in the root directory of the
MQSeries Adapter Kernel installation.

v The Problem Determination Guide, form number SC34-5897, which describes
tools, including trace, for solving specific problems with the MQSeries

© Copyright IBM Corp. 2000 ix

Adapter Kernel. The Problem Determination Guide is available in the
MQSeries Adapter Kernel Information Center, which is installed with the
product.

v The online application programming interface (API) documentation that is
provided in the MQSeries Adapter Kernel Information Center. This
information is provided only as an aid to understanding how the kernel
functions and an aid to diagnostics. See “Chapter 5. Using MQSeries
Adapter Kernel APIs” on page 71.

v MQSeries Adapter Builder information, including books and help system.
v The MQSeries product family Web site at

http://www.ibm.com/software/ts/mqseries/.
By following links from this Web site you can:
– Obtain the latest information about the MQSeries product family,

including MQSeries Adapter Offering.
– Access MQSeries books in HTML and PDF formats, possibly including a

more recent edition of this book.
– Download MQSeries SupportPacs.

x MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

http://www.ibm.com/software/ts/mqseries/

Conventions

MQSeries Adapter Kernel documentation uses the following typographical
and keying conventions.

Table 1. Conventions used in this book

Convention Meaning

Bold Indicates command names. When referring to graphical user interfaces
(GUIs), indicates menus, menu items, labels, and buttons.

Monospace Indicates text you must enter at a command prompt and values you must
use literally, such as file names, paths, and elements of programming
languages such as functions, classes, and methods. Monospace also indicates
screen text and code examples.

Italics Indicates variable values you must provide (for example, you supply the
name of a file for fileName). Italics also indicates emphasis and the titles of
books.

% Represents the UNIX command-shell prompt for a command that does not
require root privileges.

Represents the UNIX command-shell prompt for a command that requires
root privileges.

C:\> Represents the command prompts on Windows
®

systems.

> When used to describe a menu, shows a series of menu selections. For
example, “Click File > New” means “From the File menu, click the New
command.”

Entering commands When instructed to “enter” or “issue” a command, type the command and
then press Return. For example, the instruction “Enter the ls command”
means type ls at a command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

{ } Enclose lists from which you must choose an item in syntax descriptions.

| Separates items in a list of choices enclosed in braces ({ }) in syntax
descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding
item one or more times. Ellipses in examples indicate that information was
omitted from the example for the sake of brevity.

Note: The term Epic appears in some values and names in the kernel
software and in this book. With regard to the MQSeries Adapter
Offering, this term has no significance in itself.

© Copyright IBM Corp. 2000 xi

xii MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Summary of changes

The fifth edition (the current edition) includes the following changes from the
fourth edition:
v Information on using the kernel on the Windows® 2000, OS/400®, HP-UX,

and Solaris platforms. Support for these platforms is new in MQSeries
Adapter Kernel version 1.1. The kernel was previously available only on
Windows NT® and AIX®.

v Updates of all installation instructions to reflect MQSeries Adapter Kernel
version 1.1.

v Information on using the aqmconfig.xml file to configure MQSeries Adapter
Kernel. The kernel was previously configured with the
aqmconfig.properties file. See “The configuration file” on page 47 for
details.

v Information on the new MQ and JMS (Java Messaging Service)
communication modes. See “Appendix A. Communication modes” on
page 75 for details.

v Information on tracing was moved from this document to the new Problem
Determination Guide document. See the Problem Determination Guide for
detailed information on using MQSeries Adapter Kernel’s tracing
capabilities.

The fourth edition included the following changes from the third edition:
v Instructions for installing the Corrective Service Diskette (CSD) release of

MQSeries Adapter Kernel version 1.0.
v Information about the transactional capabilities of MQSeries Adapter

Kernel; see “Transactional capabilities” on page 22.
v Information about thread-scheduling policies on AIX; see Step 20 on

page 18.
v Clarification of the supported C compiler on AIX; see “″Prerequisites for

AIX″” on page 24.
v A sample of the aqmsetup file; see “Appendix E. Sample of the setup file” on

page 95.

© Copyright IBM Corp. 2000 xiii

xiv MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 1. About MQSeries Adapter Offering

IBM MQSeries Adapter Kernel is part of a set of application integration
products that together are called IBM MQSeries Adapter Offering. IBM
MQSeries Adapter Offering works with MQSeries messaging and other
messaging services to enable you to reduce the risk, complexity, and cost of
managing the point-to-point integration of your business processes.

In point-to-point integration, each application interfaces individually with each
of the other applications. Each interface is different and there are many
different interfaces. A change in one application typically requires changes to
many interfaces. As the number of applications increases, the cost of
point-to-point integration rapidly increases. Integrating each new application
typically requires more work than integrating the last one.

With MQSeries Adapter Offering, you can evolve from using point-to-point
integration to using one-to-any integration. Benefits of one-to-any integration
include the following:
v All applications can use one common interface.
v Data from a source application, in the form of a message, is routed to one or

more target applications.
v A change in one application typically affects only that one interface.
v Using a common interface that is application neutral—for example, an

industry standard such as extensible markup language (XML)—can be even
more cost effective. More applications can be supported with less effort.

v As the number of applications increases, one-to-any integration becomes
even more cost effective. Adding each new application typically does not
require significant changes to the interfaces of all the other applications.

v Integration work can be automated and can be based on templates.

MQSeries Adapter Offering can be deployed without changing applications or
business processes at all. Typically, all integration work is performed in
MQSeries Adapter Offering, thus reducing the need to write custom code.

In MQSeries Adapter Offering, the interface to or from one application is
provided by an adapter. All applications need an adapter to provide the
interface between the application environment and the messaging
environment. Each adapter is specific to an application.

© Copyright IBM Corp. 2000 1

MQSeries Adapter Kernel can optionally be deployed with MQSeries
Integrator to perform brokering and message transformation. MQSeries
Adapter Offering can be complemented by service offerings from IBM and
others.

Example uses of adapters include the following:
v Add a sales order.
v Synchronize a customer record.
v Synchronize an inventory record.
v Synchronize an item.
v Synchronize a sales order.

Build time and run time

MQSeries Adapter Offering consists of two primary components, the Adapter
Builder (also called the builder) and the Adapter Kernel (also called the
kernel). This section describes these components, as well as the adapters that
are built and run by the Adapter Offering.

adapter

Software that provides an interface to or from an application.
Adapters are built in the MQSeries Adapter Builder. Typically, each
adapter is built to be specific to one message type that is sent from or to
an application. Adapters themselves are not part of MQSeries Adapter
Offering.

An adapter consists of C source code that compiles to a shared library.
When the adapters and the MQSeries Adapter Kernel run together,
they perform the run-time functionality of the MQSeries Adapter
Offering.

Depending on how it is modeled in the MQSeries Adapter Builder,
the adapter can contain a wide variety of functionalities such as
controlflow, dataflow, sequential navigation, conditional branching
including decision and iteration, data typing, storage of data context,
transformation of data elements, transactional capabilities, logical
operations, and custom code.

Adapters can be reused.

There are two types of adapters:
v Source adapters, for the application that sends the data.
v Target adapters, for the application that receives the data.

Sending one type of message from one application to a second
application typically requires one source adapter and one target
adapter. If the second application must send one type of message to

2 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

the first application, another source adapter and another target
adapter are required. Thus, in this case, to send one type of message
from the first application to the second application and then to send
another type of message from the second application back to the first
application, four adapters are typically deployed.

A separate adapter is required for each message type.

MQSeries Adapter Builder
A graphical user interface (GUI) that enables you to build an adapter
for virtually any application. The user interface is similar to MQSeries
Integrator’s user interface. For more information, see the MQSeries
Web site at http://www.ibm.com/software/ts/mqseries/.

MQSeries Adapter Kernel
A set of application programming interfaces (APIs), several executable
programs in C and Java™, and several configuration files. The kernel
enables the deployment and execution of adapters. In addition to
directly supporting adapters, the kernel performs related functions,
including simple routing of messages and infrastructure services such
as message construction, transactional control, tracing, and interfacing
with MQSeries or other messaging software.

The kernel is installed on each computer on which a source adapter or
a target adapter runs.

With MQSeries Adapter Offering, business processes and each application can
remain isolated from the specifics of middleware, message details, and other
applications. A common interface for messaging enables the addition of new
applications without changing existing applications or business processes.

MQSeries Adapter Kernel can be deployed in two tiers. One tier is the source
side of the run time; the other tier is the target side of the run time. Two-tier
deployment provides efficient operation and low administrative overhead. A
third tier for routing and delivery is not required to reside between the two
sides of the run time. However, MQSeries Integrator can optionally be added
to perform brokering, such as complex routing, data transformation, and data
mediation. Using MQSeries Integrator adds a third tier.

Except where specified, the rest of this document pertains only to MQSeries
Adapter Kernel. For detailed information about the MQSeries Adapter Builder,
see that product’s Information Center.

Chapter 1. About MQSeries Adapter Offering 3

http://www.ibm.com/software/ts/mqseries/

About the kernel
At its simplest, the run time—that is, the kernel and the adapters that you
build—has the following purposes:
1. To transfer data from a source application to a target application.
2. To convert the source application’s data to a message, typically in an

application-neutral format, that is routed through the kernel, by using
MQSeries or other messaging software.

3. To route the message to the target application.
4. To determine how to get the data to the target application.
5. To convert the data from the format of the message that is routed through

the kernel through an adapter to the target application’s format.

In this section, the kernel’s functionality is discussed at a high level. The
functionality is discussed in greater detail in “Run-time flow” on page 12.

There are two sides of the kernel:
v The source side, which begins when the message is received from the source

adapter and ends when the message is put onto a message queue.
v The target side, which begins when the message is retrieved from the

message queue and ends when the message is sent to the target adapter.

Each side typically resides on a different computer, but they can both reside
on the same computer.

See Figure 1 on page 5. It depicts the following sequence.

Source side of the kernel

1. On the source side of the kernel, the source application sends the data in
its source application format, by using an application-specific interface, to a
source adapter that was built in the MQSeries Adapter Builder. A different
source adapter is required for each message type, for example, for “add a
sales order” or for “synchronize a customer record.”
The application-specific interface must be developed outside of the
MQSeries Adapter Offering. The exact nature of the application-specific
interface depends on the characteristics of the source application or target
application. Examples include API calls and user exits, file reads and
writes, database triggers, and message queues.
Note that the source adapter is run in the source application’s process.
Any daemon or server that contains the source adapter needs to be
started.

2. The source adapter performs its function according to how it was built. A
typical function is transformation of data elements, that is, mapping
elements from the source application format to an integration messaging

4 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

data format for body data. The body data and additional metadata
representing control values are put into a kernel message holder object.

3. When the source adapter passes the message holder object to the kernel by
using the native adapter, control values in the message holder object
(message control values) are used by the kernel to control the marshaling of
the message holder object into a communications message format and
routing of the communications messages.
If the message does not contain certain message control values, the kernel
can use defaults or message control values obtained from the configuration
file. For definitions of message control values, see “Message control
values” on page 14.

4. The kernel performs its functions, including message marshaling, simple
routing, and, optionally, tracing. See “Message and message format” on
page 10, “Routing and delivery” on page 12, and “Tracing” on page 22.

Delivery from source side to target side of the kernel

5. The kernel, by using its native adapter, puts the message on the appropriate
message queue.
There are two send methods used on the source side:
v sendMsg, which sends the message and returns immediately. The sendMsg

method can also be used with the begin, commit, and rollback methods
to send messages transactionally; that is, messages can be sent if (and
only if) other operations complete successfully. See “Transactional
capabilities” on page 22 for more information.

Figure 1. Overview of MQSeries Adapter Offering.

Chapter 1. About MQSeries Adapter Offering 5

v sendRequestResponse, which sends the message and waits for a
response. The sendRequestResponse method cannot be issued
transactionally.
Note that a third method, sendResponse, is used on the target side of the
kernel when the sender requests a response.

MQSeries or other messaging software transports the message. See “Role
of MQSeries or other messaging software” on page 7. Note that MQSeries
must already be configured to support MQSeries Adapter Offering.

Optionally, if MQSeries Integrator has been configured in the kernel as the
destination, MQSeries Integrator can perform brokering functions. See
“Role of MQSeries Integrator” on page 7. If the final destination, a message
queue, has been configured in MQSeries Integrator’s rules or
messageflows, then MQSeries Integrator sends the message to the message
queue.

The message arrives on the appropriate message queue.

Target side of the kernel

6. On the target side of the kernel, there are two potential delivery models for
the interface between the run time and the target application.
v The most common model is push, in which the kernel is responsible for

initiating and managing delivery of the message to the target
application. The push model typically does not require changing the
target application to support MQSeries Adapter Offering.

v In the pull model, the target application is responsible for managing
the reception of the message. The pull model requires changing the
target application to support MQSeries Adapter Offering. The target
application must manage the kernel’s interface to the target
application.

Under the push model, note that on the target side, the kernel’s processes
must be started by the user beforehand to get and deliver the message.
See “Starting the kernel” on page 65.

In the push model, the kernel gets the message off the message queue. It
performs tracing if tracing is enabled. It continues to route the message
by selecting the appropriate target adapter. In general, a different target
adapter is required for each message type.

7. The kernel delivers the message to the appropriate target adapter. The
target adapter performs the functionality that was built into it. A typical
function is mapping elements from the integration messaging data format
to elements in the target application format.

6 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

8. The target adapter sends the data to the target application in the target
application format by using an application-specific interface developed
outside of MQSeries Adapter Offering.

9. When the target adapter has delivered its message, a commit occurs. This
removes the message from the queue.

10. If the source adapter has set a message control value to request an
acknowledgment, the kernel delivers either an acknowledgment of
message delivery or target adapter output to the source adapter by using
the sendResponse method.

11. In case of error, the kernel puts the original message on the error queue.
If the kernel cannot put the original message on the error queue, the
commit does not occur.

Role of MQSeries or other messaging software
MQSeries Adapter Offering’s communication messages are transported over
message queues. Message queues are provided by messaging software such as
MQSeries or the Java Messaging Service (JMS). Messages transported by
MQSeries Adapter Offering use the following types of queues:
v Receive queues, in the terminology of MQSeries Adapter Offering. These are

used as the main input queues to receive messages. There can be multiple
receive queues per target application.

v Error queues, in the terminology of MQSeries Adapter Offering. These are
used when a message that is obtained from a receive queue cannot be
processed.

v As an option, reply queues. These are used with the sendRequestResponse
method.

MQSeries Adapter Offering uses certain MQSeries capabilities, such as the
following message types:
v Datagrams, used by the sendMsg method.
v Request, used by the sendRequestResponse method.
v Reply, used by the sendRequestResponse method and the sendResponse

method.

MQSeries can optionally act as an application-specific interface.

See “Appendix B. Validated configurations” on page 81 for a list of validated
configurations of MQSeries and MQSeries Adapter Offering. See “Software”
on page 24 for a list of supported versions of MQSeries and other software.

Role of MQSeries Integrator
MQSeries Integrator can optionally be deployed with MQSeries Adapter
Kernel. It can be used to meet several potential requirements for brokering:

Chapter 1. About MQSeries Adapter Offering 7

v Complex routing, that is, routing based on the content of the message
header or message body. The routing can change dynamically as the content
of the message body changes. See “Routing and delivery” on page 12 for
information about complex routing and simple routing.

v Data transformation, that is, changing to a different document type.
v Data mediation, that is, changing the content of the message body. For

example, if the source application provides the value each in a field but the
target application expects that field’s value to be ea, data mediation
replaces the provided value with the expected value.

You can use MQSeries Integrator to perform most of the routing in your site;
you can also use less of the MQSeries Adapter Kernel’s routing functionality.

See “Appendix B. Validated configurations” on page 81 for a list of validated
configurations of MQSeries Integrator and MQSeries Adapter Offering. See
“Software” on page 24 for a list of supported versions of MQSeries Integrator
and other software.

How the kernel works

The following items are discussed in this section:
1. “Components of the kernel run time”
2. “Message and message format” on page 10
3. “Routing and delivery” on page 12
4. “Run-time flow” on page 12

Components of the kernel run time

When the adapters that you build, the custom code that you develop, and
MQSeries Adapter Kernel run together, they provide the functionality of
MQSeries Adapter Offering.

The major components of the kernel run time are as follows:

source adapter
Software that is built for a specific application (typically by using
MQSeries Adapter Builder) to convert data from that application into
an integration messaging format (body data). Source adapters
typically run on the same machine as the source application, either
within the application’s process or as a separate process. Examples of
source data include files, C structures, and Java objects. An example of
an integration messaging format is XML, typically following an
industry standard such as OAG or RosettaNet.

message holder
A container for metadata used by the kernel to encapsulate the

8 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

integration message and other control data used by the kernel.
Examples of metadata include application identifiers (logical
identifiers) of the source and target applications, the category of the
message (for example, OAG), the type of the message (for instance,
″Purchase Order″), and the communications message (body data)
being sent or received.

native adapter
Software used for sending and receiving message holder objects.
When sending messages, the native adapter provides simple data
routing and the ability to support one or more communication
transport mechanisms. Simple data routing is based on metadata in
the message holder object such as the category of message and type of
message. Messages can be sent asynchronously or synchronously.
Depending on the communication transport mechanism used,
messages can be sent under single-phase transactional control.
Transactional support is limited to the capabilities of the transport
mechanism used. The message holder object is marshaled into the
communications message format used by the transport mechanism.
When a communications message is received, the native adapter
unmarshals the message back into the message holder object.

adapter daemon
A process that instantiates adapter workers. After it is started, the
adapter daemon remains active. For each target application, there can
be one adapter daemon for each application receive queue.

adapter worker
A process that delivers each message to the appropriate target adapter.
Each worker manages one native adapter. The adapter daemon creates
and starts the workers.

The purpose of having multiple workers is to enable multithreaded
message delivery to target adapters. Each worker, along with its native
adapter, can handle one thread. If there is only one worker, then the
delivery of messages to the target adapter, and hence to the target
application, is single threaded.

In addition to managing a native adapter, the worker also performs
the following tasks:
v It instantiates the trace client, if tracing is enabled.
v It instantiates the logon class that is appropriate for each target

application.
v It selects the target adapter based on the body type and body

category of the message.
v It sends the message to the selected target adapter.

Chapter 1. About MQSeries Adapter Offering 9

v If it cannot perform a commit, it performs a rollback, sets a flag for
all other workers under that adapter daemon, and shuts itself and
its native adapter down. This signifies that the message has a
problem. Shutting down all workers prevents other workers from
reprocessing the same problem message with the same result.

v When it recognizes the flag set by another worker to shut down, it
shuts itself and its native adapter down.

target adapter
Software that is built for a specific application (typically by using
MQSeries Adapter Builder) to convert data from an integration
messaging format (body data) to the native data types required by a
target application. The target adapter invokes the necessary APIs on
the target application to deliver the message. Target adapters run on
the same machine as the application or application client.

configuration component
Data used for resolving logical identifiers into objects such as queue
names. The configuration data can be specified either in a file or in
the WebSphere Business-to-Business Integrator product’s LDAP
structure. The data controls the following aspects of the kernel’s
configuration:
v Marshaling and routing of messages
v Verifying installation
v Communication mode
v Tracing

See “The configuration file” on page 47 for a full description of the
configuration file.

tracing component
Its purpose is to write trace messages. Most of the kernel’s
components use the tracing component. See “Tracing” on page 22 for
an overview of tracing and the Problem Determination Guide for details
about trace.

Message and message format

In MQSeries and MQSeries Adapter Offering, a message is a collection of data
that is sent by one program and intended for another program. The format of
the message at any given point of time depends on the message’s location in
the message flow at that particular time. MQSeries Adapter Kernel specifies
three types of messages, as follows:
v Integration message—A message consisting of data from a source application

converted into an application-neutral format such as XML for sending to a
target application. The integration message is inserted into the message

10 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

holder object as the message’s body data. XML is a standard for the
representation of data. When the format is XML, the format is defined by a
Document Type Definition (DTD). A DTD is one or more files that contain a
formal definition of a document—in this case, of the message body. The
message body is not required to be in an application-neutral format.
Although the format of the message body can be proprietary or otherwise
specialized, this type of format is not recommended.
Business Object Documents (BODs) can be used by MQSeries Adapter
Offering to define message bodies in its integration formatted messages. A
BOD is a representation of a standard business process that flows within an
organization or between organizations. Examples are “add purchase order”,
“show product availability”, and “add sales order”. BODs are defined in
XML by the Open Applications Group (OAG). Use of BODs is
recommended but is not required.

v Message holder object—An object containing the integration message and
additional header metadata representing control values that are specific to
MQSeries Adapter Kernel. The source adapter creates the message holder
object, sets appropriate control information, and, if there is an integration
message to be sent, sets the body data. Target adapters receive message
holder objects, get the body data, and convert the body data to data specific
to the target application. Source adapters and target adapters are created by
using MQSeries Adapter Builder.

v Communications message—Any communications transport-specific
information plus the message holder object, converted into a messaging
format specific to the communications transport being used. Some
communications transports support more than one messaging format.
Typically, the kernel header metadata values combined with the
communications message is considered to be application data by the
communications transport. For more information, see “Appendix A.
Communication modes” on page 75. Examples for MQSeries transport
consist of the MQSeries-specific message header plus the marshaled
message holder object. Specific MQSeries formats include the following:
– The MQSeries message header that is added by MQSeries
– If MQSeries Integrator is used, the version-specific message header:

- The MQSeries Integrator version 1 message header, if MQSeries
Integrator version 1.1 is used

- The MQSeries Integrator version 2 message header, if MQSeries
Integrator version 2 is used

– The kernel-specific header metadata representing control values
– The integration message (body data)

See “Appendix C. Message headers” on page 83 for a list of relevant fields
used in MQSeries Adapter Offering’s message headers and their
descriptions.

Chapter 1. About MQSeries Adapter Offering 11

Routing and delivery

The kernel routes each message from the source adapter and delivers it to the
appropriate target adapter. Routing is performed in two stages:
1. The source side of the kernel puts the message on the appropriate message

queue.
2. The target side of the kernel gets the message from the message queue

and invokes the appropriate target adapter.

Routing is determined by several things:
1. Message queues. On the most basic level, message queues must be

configured to support MQSeries Adapter Offering’s routing.
2. The message control values in the message. They include source logical

identifier, destination logical identifier, respond to logical identifier, body
category, body type, transaction identifier, message identifier,
acknowledgment requested, and time stamps. See “Message control
values” on page 14 for details. The destination logical identifier in the
message can override the kernel’s configuration file. Routing can change
dynamically as these message control values in each message header
changes. However, the content of the message body data (integration
message) cannot determine routing.

3. The message control values in the kernel’s configuration file. It can contain
destination logical identifier, queue names, and associated target adapters.
Determine and modify configuration by editing this file. See “The
configuration file” on page 47 for additional information.

4. Optionally, MQSeries Integrator can be used to broker messages, including
complex routing. The routing can change dynamically as the content of the
message body changes. See “Role of MQSeries Integrator” on page 7. In
contrast, by itself MQSeries Adapter Offering can perform only simple
routing. Simple routing is based on a combination of message control
values in the message and associated message control values in the
configuration file. It is not based on the content of the message body.

The kernel can be requested to acknowledge message delivery. This is an
application-level acknowledgment.

Run-time flow

This section discusses the run-time flow in detail—how the kernel sends,
routes, traces, and delivers a message in a typical production environment.
See Figure 2 on page 13 for a diagram of the run-time flow.

Before the kernel can process a message in production, you must prepare for
production. See “Preparing for production” on page 45.

12 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Source side of the kernel

1. By using an application-specific interface, the source adapter acquires a
message from the source application. Typically, the source adapter is
invoked by the application-specific interface.

Figure 2. Marshal, send, route, and trace a message — overview.

Chapter 1. About MQSeries Adapter Offering 13

2. The source adapter performs the functionality that was built into it in
MQSeries Adapter Builder. Typically, it transforms the data in the source
application format into an application-neutral integration format (for the
message body).
As part of its functionality, the source adapter puts several message
control values into the MQSeries Adapter Kernel header; it uses these
values to envelope the message. The first five message control values
determine marshaling and routing, and the last value determines
acknowledgment.

Message control values

source logical identifier
Logical identifier of the source application. It is always required
in the message.

destination logical identifier
Logical identifier of the target application. If it is not present in
the message, default values in the configuration file are used
instead. In the configuration file, multiple destination logical
identifiers can be used in place of values that are not contained
in the message.

respond to logical identifier
The logical identifier of the application to which replies are to be
sent if a reply is requested. It defaults to the source logical
identifier in the message.

body category
Represents the message’s application type—for example, OAG or
RosettaNet. It is always required in the message.

body type
Represents the specific purpose of the message—for example,
“add sales order” or “synchronize inventory”. It is always
required in the message.

acknowledgment requested
Determines whether the source application requests a reply. The
reply can be either of the following forms:
v Reply data from the target application
v An OAG Confirm BOD message

Note: The Confirm BOD message is predefined by the OAG.
Its body category is OAG and its body type is
CONFIRM_BOD_003. It can also contain data.

This reply is an application-level acknowledgment.

14 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

When the kernel uses the sendRequestResponse method to send
the message, only the first reply received by the
sendRequestResponse method is used. If the original message is
sent to multiple destinations and requests a reply (which is not
recommended), only the first reply is sent back to the source
application.

The default is no acknowledgment; thus, no reply is requested or
sent.

3. The source adapter initializes the native adapter and passes it the
following:
v The logical identifier of the application under which the source adapter

is running.
v The message object, which contains the message control values and the

message body data.
4. The native adapter looks in the configuration file to determine whether

trace is enabled for that source logical identifier. If trace is enabled, the
native adapter instantiates a trace client.

5. The trace client looks in the configuration file to determine which trace
level to use and to obtain other values. The trace client uses the trace
level to filter out trace messages. See “Tracing” on page 22 for an
overview of tracing and the Problem Determination Guide for detailed
information about tracing.

6. The native adapter looks in the message object for a destination logical
identifier. If present, it is used.
v If the destination logical identifier is not present, the native adapter

looks up the default destination logical identifier in the configuration
file, based on the source logical identifier, body category, and body
type.

v Based on the source logical identifier, the native adapter performs a
two-stage lookup in the configuration file, in the following order:
a. For specific body category and body type values that are associated

with that source logical identifier.
b. If no specific values are present, default body category and body

type values are used. The default value for body category is
DEFAULT. The default value for body type is DEFAULT.

Note: The kernel uses this two-stage lookup each time it looks up
values in the configuration file based on the body category and
body type.

7. For each destination logical identifier determined in the previous step,
the native adapter looks up the communication mode, based on the

Chapter 1. About MQSeries Adapter Offering 15

destination logical identifier, body category, and body type. The following
communication modes are supported:

MQPP The kernel transports messages by using MQSeries base
services.

MQRFH1 The kernel transports messages by using MQSeries and
brokers messages by using MQSeries Integrator version
1.1.

MQRFH2 The kernel transports messages by using MQSeries and
brokers messages by using MQSeries Integrator version 2.

MQBD The kernel transports messages by using MQSeries base
services but sends and receives body data only.

MQ The kernel transports messages by using MQSeries.

JMS The kernel transports messages by using the Java
Messaging Service (JMS).

FILE The kernel puts messages into a file and gets them from
a file. This mode is provided for diagnostic purposes
only.

In each communication mode, the message structure is different. See
“Message and message format” on page 10. For more information about
communication modes, see “Appendix A. Communication modes” on
page 75.

Note: If MQSeries Integrator is used, the final destination to which
MQSeries Integrator sends the message must also be configured to
receive messages by using the same communication mode as
MQSeries Integrator.

8. Based on the communication mode, the native adapter instantiates a
subclass within itself to handle the message. The subclass is called the
logical message service. Each communication mode has a different logical
message service subclass.
The native adapter passes the destination logical identifiers, body
category, and body type to the logical message service.

9. The logical message service subclass finds the parameters that it needs to
send the message. For example, if the communication mode is MQPP,
parameters include the format and the receive, reply, and error queue
names. Based on the destination logical identifiers, body category, and
body type that are passed to it, the logical message service performs a
two-stage lookup in the configuration file:
v For specific parameter values that are associated with the destination

logical identifiers, body category, and body type

16 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v If no specific parameter values are present, default parameter values

At this point, the logical message service has all the information that it needs
to route and to marshal the message.
10. The logical message service performs the following tasks:

v Marshals the message as appropriate for the communication mode and
format. Each communication mode uses a default format if the format
is not otherwise specified. For example, if the communication mode is
MQRFH2, the logical message service creates appropriate headers and
structures the message for transporting by using MQSeries and
brokering by using MQSeries Integrator.

v Sends the message. For example, if the communication mode is
MQRFH2, it puts the message on the appropriate message queue.

11. There are two methods that can be used to send the message:
v If the native adapter used the sendMsg method to send the message, the

native adapter simply returns.
v If the native adapter uses the sendRequestResponse method to send the

message, the logical message service waits for the reply. The native
adapter, by using the logical message service, monitors the reply queue
for the receive timeout period that is set in the configuration file.
The receive timeout period is based on the source application identifier,
body category, and body type.
– If an acknowledgment is received, the native adapter returns the

message.
– If an acknowledgment is not received within the receive timeout

period, the native adapter does not return a message.
12. MQSeries or other messaging software transports the message according

to how it was configured. Optionally, MQSeries Integrator performs
brokering services. See “Role of MQSeries Integrator” on page 7.

13. When the source adapter is completely finished with the native
adapter—that is, when it no longer needs the native adapter—it closes
the native adapter to free resources.

Target side of the kernel
This is the push model of delivery in which the kernel is responsible for
initiating and managing delivery of the message to the target application. See
“delivery models” on page 102 for a short description of the models.
14. There is one adapter daemon for each target application’s receive queue.

The adapter daemon is started.
At its startup, it is given a name. Typically, each adapter daemon’s name
is based on the destination logical identifier, that is, the logical identifier
of the target application. For example, if the adapter daemon is servicing
a target application whose destination logical identifier is ABC, the adapter
daemon’s name is ABCdaemon.

Chapter 1. About MQSeries Adapter Offering 17

The adapter daemon determines the destination logical identifier to use
by looking in the configuration file for a dependency application
identifier. If the daemon finds a dependency application identifier in the
configuration file, it uses the dependency application identifier as the
destination logical identifier. If the daemon does not find a dependency
application identifier in the configuration file, it uses the name with
which the daemon was started as the destination logical identifier.
Other parameters that can be passed to the adapter daemon at startup
include body category and body type. The native adapter uses them later
to determine the communication mode and the receive queue for
incoming messages.
See “Starting the kernel” on page 65 for instructions for starting the
adapter daemon.

15. At its startup, the adapter daemon looks in the configuration file to
determine if trace is enabled for that adapter daemon name. If trace is
enabled, the adapter daemon instantiates a trace client.
See the Problem Determination Guide for details on trace.

16. At its startup, the adapter daemon instantiates the first worker and
passes it the adapter daemon’s name and the body category and body
type.

17. The first worker looks in the configuration file to determine whether
trace is enabled for that adapter daemon. If trace is enabled, the first
worker instantiates a trace client, and the trace client looks in the
configuration file to determine the trace level. See the Problem
Determination Guide for a list of valid trace levels.

18. The first worker looks in the configuration file, based on the adapter
daemon’s application identifier, for the values that indicate the minimum
number of workers that are to be instantiated and started.
The first worker also looks up the dependency application identifier. The
dependency application identifier is the name of the application that the
worker services. It is later passed to the native adapter.

19. The adapter daemon queries the first worker for the minimum number of
workers.

20. The adapter daemon starts the first worker, then instantiates and starts
the minimum number of workers.
The purpose of having multiple workers is to enable multithreaded
message delivery to target adapters. Each worker, along with its native
adapter, can handle one thread. If there is only one worker, then the
delivery of messages to the target adapter, and hence to the target
application, is single threaded.
On AIX systems, two scheduling policies are available for threads:
process-based scheduling and system-based scheduling. In process-based
scheduling (the default), all user threads are mapped to a pool of

18 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

operating-system kernel threads and run on a pool of virtual processors.
In system-based scheduling, each user thread is mapped to a single OS
kernel thread and runs on a single virtual processor. If you are using C
source adapters that are called from C executable files on AIX, you must
use system-based scheduling. For information on setting the
thread-scheduling policy on AIX, see Step 14 on page 36.
Note that only process-based scheduling is supported on Windows
systems, HP-UX, Solaris, and OS/400.

The other workers also perform the following steps that the first worker
performs:
21. Each worker instantiates its associated native adapter. There is one native

adapter associated with each worker. The dependency application
identifier, body category, and body type are passed to the native adapter.
The native adapter uses these three values to determine the
communication mode and, by using the logical message service, the
format and the receive queue for incoming messages. This process is
similar to the process used for sending messages.

22. The native adapter gets the communications message from the receive
queue under commit control and converts it into a message object. All
the communication transport-specific headers except the native kernel
header are removed from the message.

23. The native adapter passes the message object to the worker, which reads
the body category, body type, and requested acknowledgment value from
the message’s native kernel header.
Based on the dependency application identifier, body category, and body
type, the worker performs a two-stage lookup in the configuration file for
the target command to invoke, in the following order:
a. It searches for specific body category and body type values that are

associated with that dependency logical identifier.
b. If no specific values are present, it uses default body category and

body type values. The default value for body category is DEFAULT.
The default value for body type is DEFAULT.

Together, the body category and body type values determine the message
type, for example, “update sales order”. Based on the message type, the
worker determines the appropriate target adapter command, a Java class
that processes that particular message type. It instantiates that particular
target adapter.

24. The worker passes the message object to the appropriate command.
25. Each command has three methods that the worker calls. They run in the

following order:
a. The set message input method, which sets the message to process into

the target adapter.

Chapter 1. About MQSeries Adapter Offering 19

b. The execute method, which processes the message that was put into
the target adapter by using the set message input method, then waits.
1) The target adapter performs the functionality that was built into it

by using MQSeries Adapter Builder. Typically, it transforms the
data from the integration formatted message into the target
application format. It maps element to element.

2) The target adapter, by using an application-specific interface,
sends the message to the target application.

3) Depending on the nature of the target application, it sends or does
not send a reply back to the target adapter.

c. The get message output method, which gets the reply from the target
adapter. The reply can indicate simply that the target application
received the message; it can also contain data.

26. If the target adapter command does not throw an exception or if it does
not have a Confirm BOD reply (which can indicate an error), the worker
commits the received message from the receive queue by using the native
adapter.

27. If an acknowledgment was requested, the worker calls the sendResponse
method on the native adapter.
v If the target adapter created a reply, it puts the respond to logical

identifier of the original message into the destination logical identifier
field of the reply message.

v If the target adapter did not create a reply, then the worker creates a
Confirm BOD reply message containing the completion status.
– If there are no errors, the completion status is success.
– If there are errors, the completion status is set to an error condition.

28. The reply is sent.
a. The worker sends the reply message, if one has been created, to the

native adapter.
b. The native adapter puts the reply message into the reply queue.
c. The native adapter sends the reply message, depending on the

original message it received:
v If it was an MQSeries request message, then the native adapter

obtains the queue information for the reply from the MQSeries
request message. This queue information overrides the destination
logical identifier in the message.

v If it was not an MQSeries request message, then the native adapter
uses the sendMsg method to send the reply.

29. In case of exception or a Confirm BOD reply message with an error
status, the worker logs an exception message into an exception file called
EpicSystemExceptionFilennnnnnnn.log that resides in the same directory
as the adapter daemon. See “Exception messages” on page 68.

20 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

30. In case of exception or a Confirm BOD reply message with an error
status, the worker directs the native adapter to put the original message
on the error queue. The name of the error queue is obtained from the
configuration file based on the dependency logical identifier, body
category, and body type of the original message.
Based on the dependency application identifier, body category, and body
type, the worker performs a two-stage lookup in the configuration file in
the following order:
a. For specific body category and body type values that are associated

with that dependency logical identifier.
b. If no specific values are present, default body category and body type

values are used. The default value for body category is DEFAULT.
The default value for body type is DEFAULT.

v If the native adapter is able to put the error message on the error
queue, the native adapter is directed to commit the message from the
receive queue.

v If the native adapter is not able to put the error message on the error
queue, the following occurs:
a. The worker directs the native adapter to roll back, that is, not to

commit.
b. The worker sets a flag that directs all workers under that adapter

daemon to shut down. This signifies that the message has a
problem. Shutting down all workers prevents other workers from
reprocessing the same problem message with the same result.

c. If an out-of-memory error occurs, the exception is treated in the
same way as all other exceptions except that the worker sets a flag
for itself to stop when it has completed processing the current
message. This makes more memory available for other workers.

31. When the native adapter notifies the worker that the work is done, the
worker checks two flags:
v Whether this worker is to stop. This can be caused by a Java

out-of-memory condition.
v Whether all workers are to stop, caused as described in the previous

step.
32. If either flag is set, the worker stops. If neither flag is set, the worker

processes the next message. The worker requests that the native adapter
receive a message.

33. If a reply message is put onto the reply queue or if an error message is
put onto the error queue, the following occurs:
a. MQSeries or other messaging software delivers it back to the source

side of the kernel.

Chapter 1. About MQSeries Adapter Offering 21

b. If the source adapter called its native adapter’s sendRequestResponse
method, then the kernel retrieves the message from the reply queue
and returns it to the source adapter. If the source adapter called the
sendMsg method, then the kernel puts the message into the source
application’s receive queue.

Transactional capabilities
A transaction is a set of operations that must be executed as an indivisible unit
of work. If all operations that constitute a transaction are successful, the
transaction is committed; that is, all of the operations are performed. If one or
more of the operations that constitute a transaction fail, the transaction is
rolled back; that is, none of the operations are performed. By using MQSeries
Adapter Kernel’s transactional capabilities, a source adapter can perform a
series of operations as a single unit, with the assurance that all operations
succeed if the transaction is committed or that no operations occur if the
transaction is rolled back.

Transactional capabilities can be built into adapters by using the MQSeries
Adapter Builder or by using the begin, rollback, and commit methods on the
EpicNativeAdapter class of the kernel’s Java API. If a transactional method is
called in an illegal context (for instance, calling the commit method without
first having called the begin method, or calling the begin method within the
scope of another transaction), the kernel disregards the call and issues a
warning to trace. See “Chapter 5. Using MQSeries Adapter Kernel APIs” on
page 71 for information on using the API.

Limitations
The following limitations are associated with the kernel’s transactional
capabilities:
v Transactions are not supported with the sendRequestResponse method.
v Nested transactions (that is, transactions that are called within other

transactions) are not supported.
v Transactions are not supported by all communication modes; see

“Appendix A. Communication modes” on page 75 for details.

Tracing
A trace message contains the state of processing a message at a certain point
within the kernel. You can use trace messages to help diagnose problems with
the kernel or with your adapters. The MQSeries Adapter Kernel Problem
Determination Guide discusses using trace with the kernel.

22 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 2. Planning to install the kernel

This chapter lists the prerequisites for and components of the MQSeries
Adapter Kernel.

For latest details, see the MQSeries product family Web site at:
http://www.ibm.com/software/ts/mqseries/

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:

http://www.ibm.com/software/ts/mqseries/platforms/supported.html

Hardware

The following hardware is required for the MQSeries Adapter Kernel:
v An IBM PC machine (or compatible) running Windows NT 4.0, Service

Pack 5, or Windows 2000, Service Pack 1.
v An IBM RS/6000 machine running AIX version 4.3.2 or 4.3.3.
v An HP Series 9000 machine running HP-UX version 11.0.
v A Sun SPARC or UltraSPARC machine running Solaris version 7 or 8.
v An IBM AS/400 or iSeries machine running OS/400 version 4.4 or 4.5.

Note: The installation of MQSeries Adapter Kernel on OS/400 requires a
Windows system to interface with the AS/400 machine. See
“Prerequisites for OS/400 installation” on page 25 for details.

MQSeries Adapter Kernel requires a minimum of approximately 25 MB of
disk space for product code and data.

Ensure that sufficient disk space is available to hold the adapters. Their size is
dependent on the size of the data structures, the complexity of mappings, and
the custom code used. Some examples of different adapter sizes on Windows
systems follow. Your site’s adapters can require more or less disk space. Each
example represents adapter source, compiled adapter code, API source, and
API compiled code in MB or KB.
v Source adapter for adding a sales order: 1.89 MB
v Target adapter for synchronizing a customer record: 389 KB
v Target adapter for synchronizing an inventory record: 161 KB
v Target adapter for synchronizing an item: 249 KB
v Target adapter for synchronizing a sales order: 579 KB

© Copyright IBM Corp. 2000 23

http://www.ibm.com/software/ts/mqseries/
http://www.ibm.com/software/ts/mqseries/platforms/supported.html

In addition, allow a minimum of 20 MB for working space for the kernel and
adapters. Working space requirements can vary based on a number of factors,
such as the number and size of queues and the size of trace files.

Software

This section lists the software that is supported for use with MQSeries
Adapter Kernel. Supported levels are shown. See “Appendix B. Validated
configurations” on page 81. Note that C compilers are required on
development systems but not on production systems. The C compilers listed
here were successfully tested with MQSeries Adapter Kernel; other C
compilers can possibly work correctly with the kernel but are not officially
supported.

For Windows systems:
v Microsoft Windows NT version 4.0, Service Pack 5; or Microsoft Windows

2000, Service Pack 1. To determine the version and service pack of Microsoft
Windows, open Windows Explorer, then click Help > About Windows.

v Microsoft Visual C++ 6.0 Compiler.
v MQSeries version 5.1, CSD 5, including MQSeries Java support.
v Java Development Kit version 1.1.8 or 1.2.2.

For AIX:
v AIX operating system version 4.3.2 or 4.3.3.
v X Window System (X11R5 or higher). This is required for installation but

not at run time.
v IBM C Set++ for AIX version 3.1.3.
v MQSeries version 5.1, CSD 5, including MQSeries Java support.
v Java Development Kit version 1.1.8 or 1.2.2.

For HP-UX:
v HP-UX operating system version 11.0.
v X Window System (X11R5 or higher). This is required for installation but

not at run time.
v HP-UX C/ANSI C Compiler. See the readme.txt file for details.
v MQSeries version 5.1, CSD 5, including MQSeries Java support.
v Java Development Kit version 1.1.8 or 1.2.2.

For Solaris:
v Solaris operating environment version 7 or 8.
v X Window System (X11R5 or higher). This is required for installation but

not at run time.

24 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v Sun Workshop Compilers C/C++. See the readme.txt file for details.
v MQSeries version 5.1, CSD 5, including MQSeries Java support.
v Java Development Kit version 1.1.8 or 1.2.2.

For OS/400:
v OS/400 operating system version 4.4 or 4.5, including the following

programs:
– Java Toolkit and Java Developer Kit version 1.1.8 or higher. The Java

Toolkit and Java Developer Kit are shipped as licensed program number
5769–JV1. See “Prerequisites for OS/400 installation” for additional
details about versions of the Java Developer Kit required for installing
MQSeries Adapter Kernel on an AS/400 system.

– The Host Servers option, which is shipped as licensed program number
5769–SS1, option 12.

– Qshell Interpreter, which is shipped as licensed program number
5769–SS1, option 30.

– TCP/IP, which is shipped as licensed program number 5769–TC1.
– Integrated Language Environment C for AS/400, which is shipped as

program number 5769–CX2.
v MQSeries version 5.1, CSD 4, including MQSeries Java support.

See “Prerequisites for OS/400 installation” for additional requirements for
installing MQSeries Adapter Kernel on OS/400.

The following products are supported with MQSeries Adapter Kernel:
v MQSeries version 5.1, including MQSeries Java support.

Note: If MQSeries is not used, another messaging software product such as
the Java Messaging Service (JMS) must be used.

v MQSeries Integrator version 1.1
v MQSeries Integrator version 2

See “Appendix B. Validated configurations” on page 81 for a list of validated
MQSeries Adapter Kernel, MQSeries, and MQSeries Integrator configurations.

Prerequisites for OS/400 installation

This section describes the prerequisites for installing MQSeries Adapter Kernel
on an AS/400 or iSeries system. See Step 2b on page 33 for detailed
instructions on installing MQSeries Adapter Kernel on an AS/400 system.
Because AS/400 terminals do not natively support Java graphics, a
graphics-enabled workstation such as a Windows system is required to run
the kernel’s Java-based GUI installation program. The workstation can
interface with the AS/400 system in one of the following ways:

Chapter 2. Planning to install the kernel 25

v Through remote AWT, in which all graphics are processed on the AS/400
system and displayed on the workstation. This is described in more detail
in “Using remote AWT”.

v As an attached client, in which the workstation processes and displays the
graphics. This is described in more detail in “Using an attached client” on
page 27.

This section assumes that you are using a Windows system as the
graphics-enabled workstation.

Using remote AWT
When remote AWT is used, Java graphics processing is done on the AS/400
system, and graphics are displayed on a client workstation that is attached to
the AS/400 system. This section describes the requirements that must be met
to install MQSeries Adapter Kernel on an AS/400 system by using remote
AWT.

The following programs must be installed with OS/400:
v Java Toolkit and Java Developer Kit version 1.2.2 or higher. The Java Toolkit

and Java Developer Kit are shipped as licensed program number 5769–JV1.
Remote AWT capabilities on OS/400 are provided by the Java Developer
Kit.

v TCP/IP, which is shipped as licensed program number 5769–TC1. For more
information about TCP/IP, see the AS/400 TCP/IP Fastpath Setup Information
and AS/400 TCP/IP Configuration documents, which are available in the
AS/400 library at http://www.ibm.com/servers/eserver/iseries/library/.

Requirements for the workstation are as follows:
v An IBM PC machine (or compatible) running Windows 95, Windows 98,

Windows NT, or Windows 2000.
v A TCP/IP connection to the AS/400 system.
v JDK 1.2.2 or higher.

To set up and start remote AWT, perform the following steps:
1. Ensure that JDK 1.2.2 or higher is installed on the workstation.
2. Ensure that a TCP/IP connection exists between the AS/400 system and

the workstation.
3. Copy the RAWTGui.jar file from the /QIBM/ProdData/Java400/jdk12

directory on the AS/400 system to a directory on the workstation.
4. On the workstation, change to the directory where you copied the

RAWTGui.jar file and start remote AWT by entering the following
command:
java -jar RAWTGui.jar

26 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

http://www.ibm.com/servers/eserver/iseries/library/

Note: Because of the resource-intensive nature of processing Java graphics on
an AS/400 system, using remote AWT can possibly take much longer
than using an attached client to install MQSeries Adapter Kernel.

For more information on remote AWT, see the AS/400 library at
http://www.ibm.com/servers/eserver/iseries/library/.

Using an attached client
When an attached client is used to install MQSeries Adapter Kernel on an
AS/400 system, Java graphics processing is done on the client workstation,
not on the AS/400 system. This section describes the requirements that must
be met to install MQSeries Adapter Kernel on an AS/400 system by using an
attached client.

The following programs must be installed with OS/400:
v Java Toolkit and Java Developer Kit version 1.1.8 or higher. The Java Toolkit

and Java Developer Kit are shipped as licensed program number 5769–JV1.
v The Host Servers option, which is shipped as licensed program number

5769–SS1, option 12.
v TCP/IP, which is shipped as licensed program number 5769–TC1.

Requirements for the workstation are as follows:
v An IBM PC machine (or compatible) running Windows NT 4.0, Service

Pack 5, or Windows 2000, Service Pack 1.
v A TCP/IP connection to the AS/400 system.
v JDK 1.1.8 or higher.

Components of the kernel

After installation, MQSeries Adapter Kernel resides in its root directory. It
contains subdirectories that in turn can contain other directories. The root and
its subdirectories are listed, along with a summary of the files that are most
relevant to installation and configuration.

root The default name is C:\Program Files\MQAK on Windows systems,
/MQAK on UNIX, and /QIBM/ProdData/mqak on OS/400. It contains the
following:
v All other MQSeries Adapter Kernel directories.
v The aqmsetenv.bat (Windows systems) or aqmsetenv.sh (UNIX) file,

which changes system environment variables after installation, if
desired.

v The readme.txt file.
v The aqmuninstall.bat (Windows systems) or aqmuninstall.sh

(UNIX) file.

Chapter 2. Planning to install the kernel 27

http://www.ibm.com/servers/eserver/iseries/library/

bin Contains the following:
v Class libraries and shared libraries.
v Adapters that are provided as part of the kernel, for

verification use only.
v The aqmversion.bat (Windows systems) or aqmversion.sh

(UNIX and OS/400) file, a script that is run to display the
version number of the kernel.

v The aqmcrtmsg.bat (Windows systems) or aqmcrtmsg.sh
(UNIX and OS/400) file, a script that is run to create an
XML file used to validate the configuration file before it is
put into production.

v The aqmsndmsg.bat (Windows systems) or aqmsndmsg.sh
(UNIX and OS/400) file, a script that is run to validate the
configuration file before it is put into production.

v The aqmstrad.bat (Windows systems) or aqmstrad.sh
(UNIX and OS/400) file, a script that is run to start the
adapter daemon.

v The aqmstrtd.bat (Windows systems) or aqmstrtd.sh
(UNIX and OS/400) file, a script that is run to start the
trace server.

documentation
Contains the product documentation, including the
Information Center.

runtimefiles
Contains kernel run-time files.

samples

Contains samples of adapters and associated configuration
and utility files. You can experiment with and learn from
them.

Note: The kernel is intended to be used with adapters built
by using the MQSeries Adapter Builder. The kernel is
not intended to be used by calls to the kernel APIs
from custom code alone. The adapter samples are
provided only as an aid to understanding how the
kernel functions and in diagnostics.

v Adapter samples.
v The kernel’s setup file, aqmsetup, with values that support

the samples of adapters. See “The setup file” on page 47 for
a discussion of this file.

28 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v The kernel’s configuration file, aqmconfig.xml, with values
that support the samples of adapters, including sample
trace values. See “The configuration file” on page 47 for a
discussion of this file.

toolkit
Contains a software development toolkit (SDK) consisting of
the following:
v Header files.
v Library files used during compilation under Windows

systems.

uninstall
Contains files used to uninstall the kernel.

verification
Contains the following files that support verification of the
installation of the kernel:
v The aqmverifyinstall.bat (Windows systems) or

aqmverifyinstall.sh (UNIX and OS/400) file, a script that
is run to verify installation of the kernel on one computer.

v The aqmcreateq.bat (Windows systems) or aqmcreateq.sh
(UNIX and OS/400) file, a script that creates MQSeries
queues for verification. See “Creating MQSeries queues” on
page 69.

v The aqmconfig.xml file. See “The configuration file” on
page 47 for a discussion of this file.

v The aqmsetup file. See “The setup file” on page 47 for a
discussion of this file.

v The aqminstalltest.xml file.

Chapter 2. Planning to install the kernel 29

30 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 3. Installing the kernel

To make the kernel ready to use, perform the following general steps:
Step 1. Read “Chapter 1. About MQSeries Adapter Offering” on page 1.
Step 2. Prepare for installation. See “Preparing for installation” for details.
Step 3. Install the kernel. See “Installing the kernel” on page 32 for details.
Step 4. Verify the installation. See “Verifying the installation” on page 38 for

details.
Step 5. Configure the kernel. See “Configuring the kernel” on page 46 for

details.
Step 6. Configure messaging software and optional software. See

“Configuring MQSeries and MQSeries Integrator” on page 64 for
details.

Step 7. Build your adapters by using MQSeries Adapter Builder, then test
and deploy them.

Step 8. Start the kernel. See “Starting the kernel” on page 65 for details.

Preparing for installation

You must have administrator or root authority to install MQSeries Adapter
Kernel. You must have permission to create and access files in the location
where you install MQSeries Adapter Kernel and the location where you put
the two kernel configuration files. You must have the current directory in your
path. Ensure that all user IDs that run the kernel have read, write, and
execute permission.

You must have authority to perform MQSeries operations such as creating
queue managers and creating and accessing queues. These operations are
performed in different ways on different platforms. Refer to the MQSeries
Administration Guide for your platform for more information.

The user identifier that starts the kernel’s processes must be in the mqm
group. There are two kinds of kernel processes:
v Adapter daemon, one for each target application served by the computer
v Trace server (optional)

Note that the source adapter is run in the source application’s process. Any
daemon or server that contains the source adapter needs to be started.

© Copyright IBM Corp. 2000 31

You must install and configure the kernel to run the adapters that you have
built. However, you do not have to install the kernel to install the MQSeries
Adapter Builder or to use it to build your adapters.

Installing the kernel

To install MQSeries Adapter Kernel on a Windows system (Windows NT or
Windows 2000), on a UNIX platform (AIX, HP-UX, or Solaris), or on OS/400,
perform the following steps:
__ Step 1. Read the readme.txt file on the CD-ROM or local area network.

It possibly contains important information that became available
after this book was completed. It is located in the root
installation directory.

__ Step 2. Visit the MQSeries Web site at
http://www.ibm.com/software/ts/mqseries/. It possibly
contains important information that became available after this
book was published, possibly including a new edition of this
book.

__ Step 3. If you are upgrading from a previous version of MQSeries
Adapter Kernel, see “Upgrading the kernel” on page 43 for
instructions.

__ Step 4. Ensure that the hardware and software prerequisites are met. See
“Hardware” on page 23 and “Software” on page 24 for details.
MQSeries must be installed and running before you can verify
installation of MQSeries Adapter Kernel. Ensure that MQSeries
Java support is installed and configured.

__ Step 5. Ensure that you have prepared for installation, for example, that
you are authorized to install and verify the kernel. See
“Preparing for installation” on page 31.

__ Step 6. Ensure that JDK 1.1.8 or higher is installed on the machine on
which MQSeries Adapter Kernel is to be installed. The
installation program checks the version of the JDK before
beginning installation. If the JDK or JRE is version 1.1.6 or lower,
the installation program fails. If JDK 1.1.6 or JRE 1.1.6 is installed
on the machine, uninstall it and install JDK 1.1.8 or higher before
proceeding.

__ Step 7. To start the installation program, perform the following operating
system-specific steps:
On Windows systems:

a. Start the installation program as follows:
v If you are installing from a local area network, change to

the directory that contains the MQSeries Adapter Kernel
installation files and run the install.bat file.

32 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

http://www.ibm.com/software/ts/mqseries/

v If you are installing from CD-ROM, insert the MQSeries
Adapter Kernel CD-ROM into the CD-ROM drive. If
autorun is enabled, the installation program starts
automatically; if autorun is not enabled, run the
install.bat file in the root directory of the CD-ROM to
start the installation program.

Note: On Windows systems, you do not have to copy the
install.bat file to another location before you run it.
During the installation process, you are asked to
choose where to install MQSeries Adapter Kernel.

b. Follow the prompts provided by the installation program.
Note that if you choose to install MQSeries Adapter Kernel in
a location other than the default (on Windows systems,
C:\Program Files\MQAK), you must specify the installation
directory as a fully qualified path name, not as a relative path
name.

On UNIX:

a. Start the installation program as follows:
v If you are installing from a local area network, change to

the directory that contains the MQSeries Adapter Kernel
installation files and run the install.sh script.

v If you are installing from CD-ROM, insert the MQSeries
Adapter Kernel CD-ROM into the CD-ROM drive and, if
necessary, mount the CD-ROM drive according to your
operating system documentation. Run the install.sh script
in the root directory of the CD-ROM.

b. Follow the prompts provided by the installation program.
Note that if you choose to install MQSeries Adapter Kernel in
a location other than the default (on UNIX, /MQAK), you must
specify the installation directory as a fully qualified path
name, not as a relative path name.

On OS/400:

a. Ensure that all prerequisites listed in “Hardware” on page 23,
“OS/400 software prerequisites” on page 25, and
“Prerequisites for OS/400 installation” on page 25 are met.
Note that installing MQSeries Adapter Kernel on OS/400 uses
an InstallShield-based program that requires the use of a
workstation interfacing with the AS/400 system; see
“Prerequisites for OS/400 installation” on page 25 for details.

b. Depending on whether you are using remote AWT or an
attached client workstation to perform the installation,
perform the following steps:

Chapter 3. Installing the kernel 33

v If you are using remote AWT to perform the installation,
perform the following steps:
1) Ensure that remote AWT is set up and running. See

“Using remote AWT” on page 26 for details.
2) Ensure that the installAS400.jar file is accessible to

the AS/400 system. The file must be either in the
integrated file system (IFS) or on a device attached to
the AS/400 system. If the file is on an attached device,
use the Create Link (CRTLINK) command to create a
symbolic link to the file.

3) To improve the performance of the installation process,
run the Create Java Program (CRTJVAPGM) command
against the installAS400.jar file.

4) Run the Run Java (RUNJVA) command as follows,
where n.n.n.n represents the TCP/IP address of the
workstation that is running remote AWT:
RUNJVA CLASS(run)
CLASSPATH('/installAS400.jar')
PROP((os400.class.path.rawt 1) (RmtAwtServer 'n.n.n.n')
(java.version 1.2))

v If you are using an attached client workstation to perform
the installation, perform the following steps:
1) Ensure that the requirements specified in “Using an

attached client” on page 27 are met.
2) Ensure that the Host Servers option is installed and

running on the AS/400 machine. You can start Host
Servers by using the Start Host Servers
(STRHOSTSVR) command at a Control Language (CL)
prompt.

3) Ensure that TCP/IP is installed and running on the
AS/400 machine. You can start TCP/IP by using the
Start TCP/IP (STRTCP) command at a CL prompt.

4) On the workstation, open a command prompt and
change to the AS400 directory of the MQSeries Adapter
Kernel installation media (either local area network or
CD-ROM).

5) If the workstation is running JDK 1.1.8, enter the
following command:
jre -cp installAS400.jar; run -os400

If the workstation is running JDK 1.2.2 or higher, enter
the following command:
java -classpath installAS400.jar; run -os400

34 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

c. The installation program begins and displays the Signon to
AS/400 panel. Enter the TCP/IP address of the AS/400
machine in the System: field and your user ID and password
in the corresponding fields. Ignore the Default User
checkbox. Click Next.

d. Follow the prompts provided by the installation program.
Depending on the speed of your network and machines, the
installation process can take up to one hour to complete. A
progress bar displayed on the workstation indicates the status
of the installation.
Note that on OS/400, MQSeries Adapter Kernel is always
installed in the /QIBM/ProdData/mqak directory in the root of
the integrated file system (IFS).

e. Set the CLASSPATH, PATH, and QIBM_MULTI_THREADED
environment variables, as follows:
v Add the /QIBM/ProdData/mqak/bin directory to the

CLASSPATH environment variable.
v Add the /QIBM/ProdData/mqak/bin directory to the PATH

environment variable.
v Set the QIBM_MULTI_THREADED environment variable to

Y.
f. Add the library MQAK to the QSYS.LIB library list.

__ Step 8. Kernel installation is complete. As installed, the kernel is
configured to support verification, not to support production at
your particular site. Verify the installation by performing the steps
listed in “Verifying the installation” on page 38. After you have
verified the installation, return to the next step in this installation
procedure to set environment variables and move several
configuration files to support production at your site.

__ Step 9. Decide where you want to put two configuration files, aqmsetup
and aqmconfig.xml, that are used in production. For more
information on these files, see “Configuring the kernel” on
page 46.
CAUTION:
If you do not create your own configuration files but instead use
the configuration files that are provided in the samples directory
for production, installing a new version of the kernel overwrites
them and destroys your production configuration.

__ Step 10. Create a directory for the two configuration files. They do not
need to be located in the same directory, but this is
recommended for simplicity. If you locate them outside the
directory where you installed MQSeries Adapter Kernel, this
leaves fewer directories if the kernel is uninstalled at a later time.

Chapter 3. Installing the kernel 35

The uninstall process leaves directories that contain anything
other than the original MQSeries Adapter Kernel files.

__ Step 11. Copy the aqmsetup and aqmconfig.xml files from the samples
directory to your desired location. You can put them on a
network drive or other central location that is accessible by many
computers to make updating them and backing them up easier.
If you rename the aqmconfig.xml file, the kernel does not operate
correctly. You can rename the aqmsetup file, provided that you set
an environment variable to point correctly to it in a subsequent
step.

__ Step 12. Using a text editor, edit the aqmsetup file to point to the desired
directory of the aqmconfig.xml file. Use a fully qualified path
name (not a relative path name) as the location of the directory.
Do not include the file name itself in the path. An example
follows:
Location of configuration file aqmconfig.xml.
AQMCONFIG=C:\Program Files\MQAK\Data\

Even if your desired location for the aqmconfig.xml file is the
same directory where the aqmsetup file resides, you must enter
the fully qualified path name here. Save and close the aqmsetup
file.

__ Step 13. Set the AQMSETUPFILE environment variable to point to the
location of the aqmsetup file (for instance, C:\Program
Files\MQAK\Data\aqmsetup on Windows systems,
/MQAK/data/aqmsetup on UNIX, or /home/username/aqmsetup on
OS/400). Note that on OS/400, the aqmsetup file must always be
located in the current user’s home IFS directory (that is,
/home/username).

If the kernel is installed on a network drive, perform this step for
each computer that accesses it.

__ Step 14. If you are using AIX and plan to use native C-language source
adapters that are called from a C program, set the
AIXTHREAD_SCOPE environment variable to the value S. To set
this environment variable in the Bourne shell or Korn shell, enter
the following command:
export AIXTHREAD_SCOPE=S

To set this environment variable in the C shell, enter the
following command:
setenv AIXTHREAD_SCOPE S

36 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

To have the AIXTHREAD_SCOPE variable set automatically
when you log in to AIX, add this command to your .profile file
(if you use Bourne shell or Korn shell) or .cshrc file (if you use
C shell).

See Step 20 on page 18 for additional information about
scheduling policies.

__ Step 15. If necessary, set the THREADS_FLAG environment variable. You
must set this variable only if all of the following conditions are
true:
v Solaris is the operating system being used.
v The version of the Java Development Kit (JDK) being used is

1.2.2.
v MQSeries is being used to transport messages.
v Your source and target adapters are written in C.

If all of these conditions are true, set the THREADS_FLAG
environment variable to native. To set this environment variable
in the Bourne shell or Korn shell, enter the following command:
export THREADS_FLAG=native

To set this environment variable in the C shell, enter the
following command:
setenv THREADS_FLAG native

To have the THREADS_FLAG variable set automatically when
you log in to Solaris, add this command to your .profile file (if
you use Bourne shell or Korn shell) or .cshrc file (if you use C
shell).

__ Step 16. Prepare for production. See “Preparing for production” on
page 45.

__ Step 17. Edit the configuration file. See “Configuring the kernel” on
page 46.

__ Step 18. Configure MQSeries and optional software. See “Configuring
MQSeries and MQSeries Integrator” on page 64.

__ Step 19. For production systems, take into account “Performance
recommendations” on page 64.

__ Step 20. Start the kernel. See “Starting the kernel” on page 65.
__ Step 21. Set up a kernel maintenance plan. See “Maintaining the kernel”

on page 67.

Install the kernel on other computers as required.

Chapter 3. Installing the kernel 37

Verifying the installation

After you install the kernel, verify that it was installed correctly by running a
verification script. It sends a test message from a source application by using
a source adapter, then by using the kernel to MQSeries. It then uses the kernel
to receive the message from MQSeries and then invoke a target adapter. All of
these processes are run on a single computer.

In this verification, the source application is an MQSeries queue named
TEST1. The target application is another MQSeries queue named TEST2.

The verification performs the following tasks:
v Verifies that the kernel, with the supplied source adapter and the target

adapter, marshaled and routed the test message correctly, using MQSeries
as the messaging software, end-to-end within the computer.

v Verifies the aqmconfig.xml and aqmsetup files that are provided at
installation. They determine the kernel configuration. See “Configuring the
kernel” on page 46 for information on these files.

You can validate the configuration file before putting it into production. See
“Validating the configuration file” on page 60.

The installation verification scripts that are provided with MQSeries Adapter
Kernel assume that MQSeries is installed and configured on the machine
where the scripts are to be run. If you are using messaging software other
than MQSeries, you can edit the installation verification scripts to support
your messaging software as follows:
1. Change to the kernel installation’s verification directory.
2. Open the aqmconfig.xml file in a text editor and change the line

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr> to
<epicmqppqueuemgr>queue_manager_name</epicmqppqueuemgr>, where
queue_manager_name is the name of your queue manager.

3. Edit the aqmverifyinstall file as follows:
v If you are performing installation verification on a Windows system,

open the aqmverifyinstall.bat file in a text editor and change the line
aqmcreateq TEST2 to aqmcreateq TEST2 queue_manager_name, where
queue_manager_name is the name of your queue manager.

v If you are performing installation verification on UNIX or OS/400, open
the aqmverifyinstall.sh file in a text editor and change the line
aqmcreateq.sh TEST2 to aqmcreateq.sh TEST2 queue_manager_name,
where queue_manager_name is the name of your queue manager.

This verification uses some components, such as a target adapter,
com.ibm.epic.adapters.eak.test.InstallVerificationTest, that are not part
of the kernel. They are supplied with the kernel only for the purpose of
verifying installation.

38 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

When verification is complete, the verification adapter daemon is stopped.

Tracing is not enabled during verification.

Verification procedure
__ Step 1. Verification creates and uses three MQSeries queues. If these

queues have messages in them before you perform verification,
verification fails. Clear the messages in the following queues:
v TEST2AIQ
v TEST2AEQ
v TEST2RPL

__ Step 2. Check that you have prepared for installation, for example, that
you are authorized to install and verify the kernel. See “Preparing
for installation” on page 31.

__ Step 3. Start the verification as follows:
v On Windows systems, double-click the aqmverifyinstall.bat

file in the verification directory. Alternately, open a command
prompt window, change to the verification directory, and run
aqmverifyinstall.bat.

v On UNIX, open a terminal, change to the verification
directory, and run the aqmverifyinstall.sh file.

v On OS/400, perform the following steps:
a. Start a qsh session by using the STRQSH command
b. Copy the /QIBM/ProdData/mqak/verification/aqmsetup file

to your home directory (/home/username).
c. Change to the /QIBM/ProdData/mqak/verification directory.
d. Run the aqmverifyinstall.sh file.

The aqmverifyinstall file contains comments about how it
functions.

__ Step 4. The message Installation Verification Test completed
successfully indicates success. Close the verification window, if
necessary.

__ Step 5. In case of failure, examine the verification window and the log
file, EpicSystemExceptionFilennnnnnnn.log, to determine the error.

__ Step 6. See “Common verification problems” on page 40 for common
problems that can be encountered during verification and for
potential responses.

__ Step 7. If desired, perform optional verification. See “Optional
verification” on page 42 for details.

__ Step 8. Return to the installation procedure and configure the kernel to
support operation in your particular site. Go to Step 9 on page 35.

Chapter 3. Installing the kernel 39

Common verification problems
This section lists common problems that can be found during verification,
along with potential solutions. Important information in the exception
messages is highlighted in bold.

Problem: The aqmsetup file was not found.
Response: Make sure the AQMSETUPFILE environment variable is set
to the location of the aqmsetup file in the verification directory.
Exception message:
com.ibm.epic.adapters.eak.nativeadapter.EpicNativeAdapter::main: caught
throwable with message <AQM0002: com.ibm.epic.adapters.eak.common.
AdapterDirectory::getProperties():
Received exception <com.ibm.epic.adapters.eak.common.AdapterException>
Message information: <AQM0002: com.ibm.epic.adapters.eak.common.
AdapterCfg::readConfig(String):
Received exception <java.io.FileNotFoundException> Message information:
<C:\aqmsetup> Additional program information <>.>
Additional program information <Error Reading Configuration File
[File or Keys in file may not exist]>.>

Problem: The aqmconfig.xml file was not found.
Response: Edit the aqmsetup file in the verification directory and
make sure the AQMCONFIG= entry points to the verification directory.
Use a fully qualified path name. Also ensure the aqmconfig.xml file is
in the verification directory.
Exception message:
com.ibm.epic.adapters.eak.common.AdapterException: MessageID <AQM0002>
<AQM0002: com.ibm.epic.adapters.eak.common.AdapterDirectory::
getProperties(): Received exception
<java.io.FileNotFoundException> Message information:
<AQMCONFIG.xml> Additional program information <>.>

Problem: The queue on which to put the message did not exist.
Response: Use MQSeries to ensure that the queue named in the
exception message (TEST2AIQ when installation is being verified)
exists and can accept messages. See “Creating MQSeries queues” on
page 69.
Exception message:
com.ibm.epic.adapters.eak.nativeadapter.EpicNativeAdapter::main: caught
throwable with message
<AQM0107: com.ibm.epic.adapters.eak.nativeadapter.LMSMQbase::
createMQOutputQueue(String):
Received MQException creating queue, QManager name <DEFAULT>
Queue name <TEST2AIQ>:
completion code <2> reason code <2085>.>

40 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Problem: The target adapter was not found.
Response: Ensure that the target adapter specified in the message
exists: com.ibm.epic.adapters.eak.test.InstallVerificationTest. The
CLASSPATH environment variable must include the kernel’s bin
directory.
Exception message:
com.ibm.epic.adapters.eak.adapterdaemon.EpicAdapterWorker::sendException
(Throwable, String):Thread-2:
Message <<TEST2> <2000.05.18.09.41.43.781> <<Processing Messages.>
<com.ibm.epic.adapters.eak.common.AdapterException: MessageID <AQM0002>
<AQM0002: com.ibm.epic.adapters.eak.adapterdaemon.EpicAdapterWorker:
:instantiateClass(String, Class[], Object[]): Received exception
<java.lang.ClassNotFoundException> Message information:
<com.ibm.epic.adapters.eak.test.InstallVerificationTest>
Additional program information <[Cannot obtain Class for class name
<com.ibm.epic.adapters.eak.test.InstallVerificationTest>]>.>>>>

Problem: An adapter was not found to load for delivery of the
message. The destination logical identifier does not have an entry in the
aqmconfig.xml file for the body type and body category specified in the
message on the queue.
Response: During verification, the most likely cause of this exception
message is the existence of messages on a queue named TEST2AIQ
prior to verification. Clear all messages from the TEST2AIQ queue and
retry verification. The only entry for a command class name for
application TEST2 in the aqmconfig.xml file in the verification
directory is for a body type of TESTBOD and a body category of OAG.
Exception message:
com.ibm.epic.adapters.eak.adapterdaemon.EpicAdapterWorker::sendException
(Throwable, String):Thread-2: Message <<TEST2> <2000.05.18.10.28.43.105>
<<Processing Messages.> <com.ibm.epic.adapters.eak.common.
AdapterException:
MessageID <AQM0401> <AQM0401: com.ibm.epic.adapters.eak.
adapterdaemon.EpicAdapterWorker::processMessage(EpicMessage):
Cannot obtain Command class name to load for a received message.>>>>

Problem: The verification queue manager was not started.
Response: Ensure that the default MQSeries queue manager was
started successfully.
Exception message:
com.ibm.epic.adapters.eak.common.AdapterException: Message ID <AQM0104>
<AQM0104: com.ibm.epic.adapters.eak.nativeAdapter.queueCollection::
constructor(String,String,boolean,String,String,int):

Chapter 3. Installing the kernel 41

Received MQException creating QManager connection for
QManager name <QMGRNAME>
MQ Message information: completion code <2> reason code <2059>.>

Problem: A general MQSeries error occurred.
Response: Ensure that MQSeries is installed and configured correctly
and is running on the machine. Examine the MQException reason code
and use the MQSeries Messages document to determine the cause of the
reason code.
Exception message:
Received MQException "ACTION ATTEMPTED." Message information:
completion code <completion_code> reason code <reason_code>

Optional verification
After you verify that the kernel was installed correctly on the first computer,
you can optionally perform the following steps:
1. Verify that the kernel is installed correctly on a second computer, using the

same verification.
2. Verify that you can send a test message from a source adapter on one

computer to a target adapter on another computer. Manually configure
and perform this verification. If you choose to develop this verification by
modifying the original verification files that are provided with the kernel,
retain a copy of the original verification files for backup purposes.

Removing the kernel

There are several ways to remove the kernel.
v On Windows systems, use one of the following methods:

– From the Start menu, click Programs > IBM MQSeries Adapter Kernel
> Uninstall MQSeries Adapter Kernel.

– Use the Add/Remove Programs utility in the Control Panel.
– Double-click the aqmuninstall.bat file in the kernel’s root directory.

v On UNIX, change to the kernel’s root directory and enter the following
command:
aqmuninstall.sh

v On OS/400, you can use either remote AWT directly on the AS/400 system
or an attached client to uninstall the kernel.
– If you are using remote AWT to perform the installation, perform the

following steps:
1. Ensure that remote AWT is set up and running. See “Using remote

AWT” on page 26 for details.

42 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

2. To improve the performance of the uninstallation process, run the
Create Java Program (CRTJVAPGM) command against the
/QIBM/ProdData/mqak/uninstall/uninstall.jar file.

3. Run the Run Java (RUNJVA) command as follows, where n.n.n.n
represents the TCP/IP address of the workstation that is running
remote AWT:
RUNJVA CLASS(run)
CLASSPATH('/QIBM/ProdData/mqak/uninstall/uninstall.jar')
PROP((os400.class.path.rawt 1) (RmtAwtServer 'n.n.n.n')
(java.version 1.2))

– If you are using an attached client workstation to perform the
installation, perform the following steps:
1. Ensure that the requirements specified in “Using an attached client”

on page 27 are met.
2. Ensure that the Host Servers option is installed and running on the

AS/400 machine. You can start Host Servers by using the Start Host
Servers (STRHOSTSVR) command at a Control Language (CL)
prompt.

3. Ensure that TCP/IP is installed and running on the AS/400 machine.
You can start TCP/IP by using the Start TCP/IP (STRTCP) command
at a CL prompt.

4. Copy the uninstall.jar and uninstall.dat files from the
/QIBM/ProdData/mqak/uninstall directory on the AS/400 system to a
directory on the client workstation.

5. If the workstation is running JDK 1.1.8, enter the following
command:
jre -cp uninstall.jar; run -os400

If the workstation is running JDK 1.2.2 or higher, enter the following
command:
java -classpath uninstall.jar; run -os400

The uninstall process does not remove any files or directories created after the
kernel was installed. This includes all log files and data files copied by the
user.

Upgrading the kernel

If you have installed MQSeries Adapter Kernel version 1.0, either with or
without the Corrective Service Diskette (CSD), perform the following steps
before installing MQSeries Adapter Kernel version 1.1:
__ Step 1. Back up the aqmsetup and aqmconfig.properties files to a location

outside of the MQSeries Adapter Kernel installation directory.

Chapter 3. Installing the kernel 43

__ Step 2. If the MQSeries Adapter Kernel version 1.0 CSD is installed,
uninstall it as follows:
v On Windows NT, use one of the following methods:

– From the Windows NT Start menu, click Programs >
MQSeries Adapter Kernel > Remove CSD.

– Use the Add/Remove Programs utility in the Control Panel.
– Double-click the aqmuninstallCSD.bat file in the kernel’s root

directory.
– Open a command prompt, change to the kernel’s root

directory, and enter the following command:
java uninstallCSD

v On AIX, change to the kernel’s root directory and enter one of
the following commands:
aqmuninstallCSD.sh

java uninstallCSD

__ Step 3. Uninstall MQSeries Adapter Kernel version 1.0 as follows:
v On Windows NT, use one of the following methods:

– From the Windows NT Start menu, click Programs >
MQSeries Adapter Kernel > Uninstall MQSeries Adapter
Kernel.

– Use the Add/Remove Programs utility in the Control Panel.
– Double-click the aqmuninstall.bat file in the kernel’s root

directory.
– Open a command prompt, change to the kernel’s root

directory, and enter the following command:
java uninstall

v On AIX, change to the kernel’s root directory and enter one of
the following commands:
aqmuninstall.sh

java uninstall

__ Step 4. Install MQSeries Adapter Kernel version 1.1. See “Installing the
kernel” on page 32 for details.

__ Step 5. Restore the aqmsetup and aqmconfig.properties files to their
previous locations in the MQSeries Adapter Kernel installation
directory. Convert the aqmconfig.properties file to an
aqmconfig.xml file. For more information on the aqmconfig.xml
file, see “The configuration file” on page 47.

44 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 4. Using the kernel

This chapter contains the following information about using the kernel:
v “Preparing for production”
v “Configuring the kernel” on page 46
v “Configuring MQSeries and MQSeries Integrator” on page 64
v “Starting the kernel” on page 65
v “Stopping the kernel” on page 66
v “Maintaining the kernel” on page 67
v “Diagnosing problems” on page 67

Preparing for production

Before putting the kernel into production, perform the following tasks:
1. Design the overall system architecture, including MQSeries Adapter

Offering, MQSeries or other messaging software, and optionally MQSeries
Integrator, based on your site’s requirements and conditions. Typically, the
architecture is unique to each site.

2. Build the source adapters and target adapters by using MQSeries Adapter
Builder, then test and deploy them.

3. Develop application-specific interfaces outside of MQSeries Adapter
Offering for the following purposes:
v To enable the source adapter to acquire the application data from the

source application
v To enable the target application to acquire the message data from the

target adapter

The exact nature of the application-specific interface depends on the
characteristics of the source application and of the target application. Some
examples of application-specific interfaces include:
v API calls and user exits
v File reads and writes
v Database triggers
v Message queues

4. Configure the kernel to support the run-time flow: sending, routing,
tracing, and delivering messages. See “Configuring the kernel” on page 46
for information on configuring the kernel.

© Copyright IBM Corp. 2000 45

5. Configure MQSeries or other messaging software and, optionally,
MQSeries Integrator to support your overall system architecture. See
“Configuring MQSeries and MQSeries Integrator” on page 64.

6. If required, develop Java logon classes to support message delivery. They
are specific to each target application. They are needed only if the target
adapter requires information for logging on and connecting to the
application.

7. Test the whole system—that is, MQSeries Adapter Kernel with your source
adapters and target adapters, your application-specific interfaces, and your
custom code—before putting the system into production.

8. Deploy the system in the production environment.
9. Turn on the kernel by starting one or more adapter daemons and,

optionally, trace servers, based on your unique topology. Ensure that the
source application is started. If the source adapter is run in the source
application’s process, the source adapter is automatically started with the
source application; no extra steps are needed to start the source adapter.
Any daemon or server that contains the source adapter needs to be
started. See “Starting the kernel” on page 65.

Configuring the kernel

Configuration of the kernel is determined by several customizable files. By
using a standard text editor, edit the files to configure the kernel for your site.
The following files are involved in configuring the kernel:
v The aqmsetenv.bat (Windows systems) or aqmsetenv.sh (UNIX) file, which

sets environment variables. Edit this file to change system environment
variables after installation, if desired. Environment variables set by this file
include PATH, CLASSPATH, and LIBPATH. These variables are set
automatically by the installation program on Windows systems. To set these
variables automatically when you log in to UNIX, add the values specified
in the aqmsetenv.sh file to your .profile file (if you use Bourne shell or
Korn shell) or .cshrc file (if you use C shell).
For information on setting the appropriate environment variables on
OS/400, see ″Setting system environment variables on OS/400″ on page 35.

v The aqmsetup file, which provides several initial setup values for the kernel.
See “The setup file” on page 47 for more information.

v The aqmconfig.xml file, which configures the kernel. See “The configuration
file” on page 47 for additional information. This file contains most of the
values that configure the kernel.

v The aqmcreateq.bat (Windows systems) or aqmcreateq.sh (UNIX and
OS/400) file, which is a script that creates MQSeries queues. See “Creating
MQSeries queues” on page 69.

All of these files include comments that can help you edit them.

46 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

It is recommended that you back up these files. For additional information,
see “Maintaining the kernel” on page 67.

The setup file
The setup file, aqmsetup, controls several of the kernel’s initial settings,
including the following:
v The location of the configuration file. See “The configuration file”.
v The location of XML DTDs, if not in the current directory.
v Java JNI environment variables for the C interface, for changing the amount

of memory used. This applies when a C executable module starts a process
and a Java virtual machine is instantiated by that process. Memory use can
be controlled in this case by uncommenting and modifying the following
lines in the aqmsetup file:
#AQM_JNI_NATIVESTACKSIZE=1048576
#AQM_JNI_JAVASTACKSIZE=4194304
#AQM_JNI_MINHEAPSIZE=16777216
#AQM_JNI_MAXHEAPSIZE=268435426

All sizes are in bytes.

A sample aqmsetup file is provided in “Appendix E. Sample of the setup file”
on page 95 and is also included in the samples directory of the MQSeries
Adapter Kernel installation.

If necessary, edit the setup file when MQSeries Adapter Kernel is first
installed. After installation, edit the file only if the kernel encounters a Java
out-of-memory problem, as discussed in the previous list.

The configuration file
This section discusses the aqmconfig.xml file, which determines the kernel’s
configuration. “Syntax and organization of the configuration file” on page 48
provides information on the syntax and organization of the configuration file.
“Editing the configuration file” on page 59 provides best-practice suggestions
for editing the configuration file.

Configuration of MQSeries Adapter Kernel is determined by an XML file
named aqmconfig.xml. A sample configuration file is included in
“Appendix D. Sample of the configuration file” on page 89 and is also
included in the samples directory of the MQSeries Adapter Kernel installation.

The values specified in the configuration file control the following elements of
the kernel:
v Source logical identifiers
v Destination logical identifiers
v Adapter daemons and workers
v Trace clients

Chapter 4. Using the kernel 47

v Trace servers
v Marshaling and routing of messages, determined by the following

specifications:
– The names of receive queues, error queues, and reply queues
– A default destination or default list of destinations to which messages

are to be sent
– The name of the queue manager that gets or sends the message
– The receive timeout for reply messages
– The target adapter class on the target side of the kernel that processes

each message
– The minimum number of workers
– Enabling and disabling trace, and control of trace level
– Enabling and disabling audit logging
– The logon class to instantiate on the target side of the kernel

v Communication mode

An understanding of the run-time flow is important for editing the
configuration file. See “Run-time flow” on page 12 for more information.

Syntax and organization of the configuration file
Because the configuration of MQSeries Adapter Kernel is based on the
Lightweight Directory Access Protocol (LDAP), the structure of the
configuration file mirrors LDAP. The top-level XML element, Epic, represents
the top level of the LDAP directory, and subordinate LDAP objects are
represented by XML elements nested within the top-level element. Some of
the XML elements have required attributes that represent LDAP information.
Values are added to the configuration either as the contents of elements or as
attributes of elements. An example of a configuration value assigned as the
content of an element is <epictracelevel>-1</epictracelevel>, which assigns
the value -1 (all possible messages) to the epictracelevel element. An
example of a configuration value assigned as an attribute of an element is
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">,
which assigns the com.ibm.logging.ConsoleHandler class to be used as the
trace handler.

The following is a list and description of the high-level elements used in the
configuration file. “XML elements used in the configuration file” on page 51
lists and describes the full set of elements used in the configuration file. See
the sample configuration file for examples of how the different elements are
used in context.
v Epic—The required top-level element for the aqmconfig.xml file.
v ePICApplications—The required child of the Epic element.

48 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v ePICApplication—The required child of the ePICApplications element. It
lists and defines the applications to be serviced by the kernel; one fully
defined ePICApplication element (including child elements) is required for
each application.

v AdapterRouting—An optional child of the ePICApplication element. It
defines the queue manager and related information.

v ePICBodyCategory—The required child of the AdapterRouting element. It
sets the body category for messages to be routed by the kernel.

v ePICBodyType—The required child of the ePICBodyCategory element. It sets
the body type of messages to be routed by the kernel. It contains definitions
for items such as message destinations, communication modes for receiving
messages, and message formatters.

v ePICAdapterDaemonExtensions—An optional child of the ePICApplication
element representing an adapter daemon application. It contains
information related to adapter daemons, including application identifiers
and number of adapter workers.

v ePICTraceExtensions—An optional child of the ePICApplication element
representing a trace client application or trace server element. It defines
information related to tracing.

Figure 3 on page 50 shows the high-level structure of the configuration file.
This is not a working example of a configuration file; it is simply meant to
demonstrate the relationships and dependencies among the high-level
elements. See “Appendix D. Sample of the configuration file” on page 89 for a
complete example.

Chapter 4. Using the kernel 49

<?xml version="1.0" encoding="UTF-8"?>
<Epic o="ePIC">
<ePICApplications o="ePICApplications">
<!-- The following <ePICApplication> tag configures the kernel to work with
an application named APP1. -->
<ePICApplication epicappid="APP1">
<!-- Tags here specify logging and trace information for the APP1
application. -->
<AdapterRouting cn="epicadapterrouting">

<!-- Tags here specify the queue manager and its attributes. -->
<ePICBodyCategory epicbodycategory="DEFAULT">
<ePICBodyType epicbodytype="DEFAULT">
<!-- Tags here specify the details of transporting and processing messages
from APP1. -->

</epicBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>
<!-- The following <ePICApplication> tag starts an adapter daemon for the
APP1 application. -->
<ePICApplication epicappid="APP1Daemon">
<!-- Specifications for the APP1Daemon adapter daemon, which works with
the APP1 application. -->
<ePICAdapterDaemonExtensions cn="epicappextensions">
<epicdepappid>APP1</epicdepappid>
<epicminworkers>1</epicminworkers>

</ePICAdapterDaemonExtensions>
</ePICApplication>
<!-- The following <ePICApplication> tag configures the kernel to work with
an application named APP2. -->
<ePICApplication epicappid="APP2">
<!-- Tags here specify logging and trace information for the APP2
application. -->
<AdapterRouting cn="epicadapterrouting">
<!-- Tags here specify the queue manager and its attributes. -->
<ePICBodyCategory epicbodycategory="DEFAULT">
<ePICBodyType epicbodytype="DEFAULT">
<!-- Tags here specify the details of transporting and processing messages
from APP2. -->

</epicBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>
<!-- The following <ePICApplication> tag configures a trace client named
TraceClient. -->
<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">
<!-- Tags here specify attributes of the trace client. -->

</ePICTraceExtensions>
</ePICApplication>

</ePICApplications>
</Epic>

Figure 3. High-level structure of the configuration file

50 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

The following is a list and description of the full set of elements used in the
configuration file. If an element is noted as having a default value, the kernel
uses that value if an element of the configuration requires a value that is not
explicitly specified.

XML elements used in the configuration file

Epic Top-level element for the configuration file.

Child elements:
v context

v ePICApplications (required)

Attributes: o="ePIC" (required)

context
Specifies the root of the JNDI file system context (FSContext) when
JMS objects are used. The default is the current directory. Required if
JMS is used. See “Using JMS object storage” on page 78 for
information about using JMS objects with MQSeries Adapter Kernel.

Child elements: None

Attributes: None

ePICApplications
Contains information about the applications serviced by the kernel.

Child elements: ePICApplication (required)

Attributes: o="ePICApplications" (required)

ePICApplication
Specifies information about an application serviced by the kernel.

Child elements:
v epiclogging

v epictrace

v epictracelevel

v epictraceclientid

v epiclogoninfoclassname

v AdapterRouting

v ePICTraceExtensions

v ePICAdapterDaemonExtensions

Attributes: epicappid="application_ID", where application_ID is a
valid application identifier (required)

Chapter 4. Using the kernel 51

epiclogging
Determines whether to audit logging. Audit logging requires the
WebSphere Business-to-Business Integrator product. The default is
false.

Child elements: None

Attributes: None

epictrace
Determines whether to use tracing. The default is false.

Child elements: None

Attributes: None

epictracelevel
Sets the level of tracing, using the constants specified by the
com.ibm.logging.IRecordType class. The default is 0 (no messages).
See the Problem Determination Guide for details about tracing and for a
full listing of valid trace levels.

Child elements: None

Attributes: None

epictraceclientid
Specifies the name of the trace client application. The default is
TraceClient.

Child elements: None

Attributes: None

epiclogoninfoclassname
Specifies the name of the logon class used to connect to an
application. The default is
com.ibm.epic.adapters.eak.adapterdaemon.EpicLogonDefault.

Child elements: None

Attributes: None

AdapterRouting
Contains information about message types and the routing of
messages.

Child elements:
v epicmqppqueuemgr

v epicuseremotequeuemanagertosend

v epicmqppqueuemgrhostname

v epicmqppqueuemgrportnumber

v epicmqppqueuemgrchannelname

52 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v epicjmsconnectionfactoryname

v ePICBodyCategory (required)

Attributes: cn="epicadapterrouting" (required)

epicmqppqueuemgr
If MQSeries is being used as the transport mechanism, specifies the
name of the queue manager to be used. If not specified or if specified
as DEFAULT, the default queue manager is used.

Child elements: None

Attributes: None

epicuseremotequeuemanagertosend
If MQSeries is being used as the transport mechanism, determines
whether to use a remote queue manager to send messages. The
default is false.

Child elements: None

Attributes: None

epicmqppqueuemgrhostname
If MQSeries is being used as the transport mechanism, specifies the
TCP/IP hostname of the machine on which the queue manager
resides. Required if MQSeries Client is being used.

Child elements: None

Attributes: None

epicmqppqueuemgrportnumber
If MQSeries is being used as the transport mechanism, specifies the
port number of the queue manager server process. The default is 1414
(the MQSeries default). Used only if MQSeries Client is being used.

Child elements: None

Attributes: None

epicmqppqueuemgrchannelname
If MQSeries is being used as the transport mechanism, specifies the
channel name of the queue manager server. Required if MQSeries
Client is being used.

Child elements: None

Attributes: None

epicjmsconnectionfactoryname
If JMS is being used as the transport mechanism, specifies the JMS
Connection factory name. The value must be specified as
attribute=object, where attribute is the LDAP attribute and object is

Chapter 4. Using the kernel 53

the JMS Connection object. The object is expected to be stored under
the AdapterRouting element. For instance, for a JMS connection object
named QCFTEST1 with an LDAP attribute of cn, the value specified by
this element is cn=QCFTEST1.

Child elements: None

Attributes: None

ePICBodyCategory
Specifies the body category of messages being sent.

Child elements: ePICBodyType (required)

Attributes: epicbodycategory=body_category, where body_category
specifies the body category of messages being sent (required)

ePICBodyType
Specifies the body type of messages being sent.

Child elements:
v epiccommandclassname

v epicdestids

v epicreceivemode

v epicmessageformatter

v epicreceivetimeout

v epicreceivemqppqueue

v epicerrormqppqueue

v epicreplymqppqueue

v epicjmsreceivequeuename

v epicjmserrorqueuename

v epicjmsreplyqueuename

v epicreceivefiledir

v epiccommitfiledir

v epicerrorfiledir

Attributes: epicbodytype=body_type, where body_type specifies the
body type of messages being sent (required)

epiccommandclassname
Specifies the name of a target adapter or command that is invoked to
process messages. Required if an adapter daemon is being used to
receive messages.

Child elements: None

Attributes: None

54 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

epicdestids
Specifies the identifiers of one or more applications to be used as
message destinations. Required if the application is sending messages
and the destination logical ID is set to NONE.

Child elements: None

Attributes: None

epicreceivemode
Specifies the communication mode to be used. See “Appendix A.
Communication modes” on page 75 for a listing and explanation of
valid communication modes. Required if the application is receiving
messages.

Child elements: None

Attributes: None

epicmessageformatter
Specifies the message formatter to use, dependent on the value of
epicreceivemode and on the transport method used. See Table 3 on
page 76 and Table 4 on page 77 for details on message formatters and
transport methods.

Child elements: None

Attributes: None

epicreceivetimeout
Specifies, in milliseconds, the length of time the receiver waits for
messages before it times out. The default is 0. A value of -1 specifies
no timeout (wait indefinitely).

Child elements: None

Attributes: None

epicreceivemqppqueue
Specifies the name of the queue from which to receive messages.
Required when the epicreceivemode element specifies an MQSeries
transport mode. See “Appendix A. Communication modes” on page 75
for a list of MQSeries transport modes.

Child elements: None

Attributes: None

epicerrormqppqueue
Specifies the name of the queue on which to put error messages.
Required if error-message queueing is being used and the

Chapter 4. Using the kernel 55

epicreceivemode element specifies an MQSeries transport mode. See
“Appendix A. Communication modes” on page 75 for a list of
MQSeries transport modes.

Child elements: None

Attributes: None

epicreplymqppqueue
Specifies the name of the queue from which to receive reply messages.
Required if reply requests are being used and the epicreceivemode
element specifies an MQSeries transport mode. See “Appendix A.
Communication modes” on page 75 for a list of MQSeries transport
modes.

Child elements: None

Attributes: None

epicjmsreceivequeuename
Specifies the name of the queue from which to receive messages.
Required for communication mode JMS. The object is expected to be
stored under the ePICBodyType element. The value must be specified
as attribute=object, where attribute is the LDAP attribute and object
is the name of the JMS queue object. For instance, for a JMS object
named TEST1AIQ with an LDAP attribute of cn, the value specified by
this element is cn=TEST1AIQ.

Child elements: None

Attributes: None

epicjmserrorqueuename
Specifies the name of the queue on which to put error messages.
Required if error-message queueing is being used with
communication mode JMS. The object is expected to be stored under
the ePICBodyType element. The value must be specified as
attribute=object, where attribute is the LDAP attribute and object is
the name of the JMS queue object. For instance, for a JMS object
named TEST1AEQ with an LDAP attribute of cn, the value specified by
this element is cn=TEST1AEQ.

Child elements: None

Attributes: None

epicjmsreplyqueuename
Specifies the name of the queue from which to receive reply messages.
Required if reply requests are being used with communication mode
JMS. The object is expected to be stored under the ePICBodyType
element. The value must be specified as attribute=object, where
attribute is the LDAP attribute and object is the name of the JMS queue

56 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

object. For instance, for a JMS object named TEST1RPL with an LDAP
attribute of cn, the value specified by this element is cn=TEST1RPL.

Child elements: None

Attributes: None

epicreceivefiledir
Specifies the name of the directory from which to receive messages.
Required for communication mode FILE.

Child elements: None

Attributes: None

epiccommitfiledir
Specifies the name of the directory in which to hold received
messages until they are committed. Required for communication
mode FILE when messages are being received.

Child elements: None

Attributes: None

epicerrorfiledir
Specifies the name of the directory into which to put error messages.
Required if error-message queueing is being used with
communication mode FILE.

Child elements: None

Attributes: None

ePICAdapterDaemonExtensions
Contains information about adapter daemon extensions.

Child elements:
v epicdepappid

v epicminworkers

Attributes: cn="epicappextensions" (required)

ePICTraceExtensions
Contains information about trace extensions. See the Problem
Determination Guide for a full discussion of this element and its
children.

Child elements:
v epicdepappid

v epictracesyncoperation

v epictracemessagefile

v epictracehandler

Chapter 4. Using the kernel 57

v ePICTraceHandler

Attributes: cn="epicappextensions" (required)

epicdepappid
Specifies the identifier of the application the adapter daemon is
servicing. Defaults to the application ID with which the adapter
daemon was started.

Child elements: None

Attributes: None

epicminworkers
Specifies the number of adapter workers started by the adapter
daemon. The default is 1.

Child elements: None

Attributes: None

Adding adapter information to the configuration
When a new adapter is added to the kernel configuration, several
specifications, at a minimum, must be added to the configuration file. For an
example of a minimum configuration file, see the aqmconfig.minimum.xml file.
This file is included in “Appendix D. Sample of the configuration file” on
page 89 and is also included in the samples directory of the MQSeries Adapter
Kernel installation.

The following specifications represent the minimum amount of information
that must be added to the configuration when a new adapter is added:
v Source adapter (sending messages):

– The identifier of the application under which the source adapter is
running.

– The default queue manager. If MQSeries is used as the transport
mechanism and is installed and running on the same machine as the
source adapter, you do not need to specifically configure the queue
manager.

– Destination logical identifiers for messages. If all messages go to the
same destination, then use a body category of DEFAULT and a body
type of DEFAULT.

– A receive queue for each destination logical identifier to which the
source adapter is sending messages.

v Target adapter (receiving messages):
– The identifier of the application under which the target adapter is

running.

58 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

– The default queue manager. If MQSeries is used as the transport
mechanism and is installed and running on the same machine as the
source adapter, you do not need to specifically configure the queue
manager.

– The receive mode for MQSeries. Typically this is the same for all
messages; if so, use a body category of DEFAULT and a body type of
DEFAULT.

– The receive queue. If this is the same for all messages, then use a body
category of DEFAULT and a body type of DEFAULT.

– The error queue, in case an error occurs when the target adapter
processes the message. Typically this is the same for all messages; if so,
use a body category of DEFAULT and a body type of DEFAULT.

– The target adapter class name to invoke when a message is received.
This is specific to body category and body type.

– Receive timeout value. This is highly recommended to prevent high CPU
usage. Typically this is the same for all messages; if so, use a body
category of DEFAULT and a body type of DEFAULT.

For additional target adapters, the same information can be sufficient if the
same receive queue is being used. If this is the case, the only information
that needs to be specified differently is the target adapter class name to
invoke for the specific body category and body type.

v Trace specifications:
– Whether trace is on or off.
– The trace level.
– Additional trace specifications, including trace destination, for source

adapters and target adapters. By default, trace is displayed in the
command prompt window or terminal where the kernel was started.

Editing the configuration file
Use a text editor or a dedicated XML editor to edit the configuration file. A
DTD file named aqmconfig.dtd is provided in the samples directory of the
kernel installation for users of XML editors. An XML editor called Xeena can
be downloaded from the IBM alphaWorks Web site at
http://www.alphaworks.ibm.com/. The following recommendations apply to
editing the configuration file:
v Before you begin editing the configuration file, gather all pertinent

information about your desired configuration. This includes the names of
applications and queues that are involved in the configuration, the types of
messages being exchanged, the communication mode or modes being used,
and information about trace programs and other extensions.

Chapter 4. Using the kernel 59

http://www.alphaworks.ibm.com/

v Copy the sample aqmconfig.xml file from the samples directory to your
desired location. This needs to be done during installation of the kernel; see
“Installing the kernel” on page 32 for details. Do not rename the copy of the
configuration file. Edit the copy.

v Use comments to identify different sections of the configuration file and to
document the specific values used in your configuration (for instance,
application identifiers, message queue names, and timeout values). In XML,
comments start with the characters <!-- and end with the characters -->.
Comments can span multiple lines, as in the following example:
<!--

Comment text
-->

Note that XML does not permit comments inside other comments.
v Organize the configuration file according to the application identifiers. Keep

the entries for each application identifier together.
v If you are not using a dedicated XML editor, use a text editor that preserves

the line endings and does not split lines when the file is saved. Examples of
this kind of text editor are Notepad on Windows systems and vi or Emacs
on UNIX.

v Remember that XML is case sensitive; be extremely careful to use the
correct case for all tag (element) names and attributes. Using an incorrect
case in the tagging can invalidate the configuration file. Using a dedicated
XML editor can help prevent case errors.

v If you want to use default values for body category and body type and the
values are not already defaulted, you must configure the value DEFAULT
for each in the configuration file. If you do not, the kernel does not use any
default values.

v Validate the configuration file before putting it into production. See
“Validating the configuration file”.

v The changes to the configuration file take effect the next time a process
starts. If a process is running when the configuration file is changed, the
process must be stopped and then restarted for the changes to take effect.
Be extremely careful if you edit the configuration file that is currently in
production.

v Back up the configuration file each time you edit it.

Validating the configuration file
After the configuration file is edited and before it is put into production, it is
recommended that you validate it. To validate the configuration file, perform
the following general steps:
1. Create a configuration file validation directory within which to validate

and set up the test.
2. Create a validation XML message.

60 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

3. Set up message queues to support the validation test.
4. Set up and then execute a configuration file validation test that sends a

message and that receives a message.
5. Examine the results of the test to determine if the configuration file is

correct.

The utility that helps to create a validation XML message and the
configuration file validation test are both provided as part of the kernel.

The configuration file validation test invokes the sendMsg method and sends a
validation XML message from a native adapter on the source side of the
kernel to an adapter daemon on the target side of the kernel. A source adapter
and a target adapter are not required. However, if a target adapter is in place,
you can also test sending the message to the target application.

The procedure follows.

Note: Several scripts are provided as a convenience for use in the procedure.
If desired, copy the scripts and then edit the copies to make your own
versions. If you are using OS/400, note that the UNIX versions of the
scripts can be run in a qsh session. You can start a qsh session by
entering the Start QSH (STRQSH) command at a Control Language
(CL) prompt.

__ Step 1. Open a command prompt window.
__ Step 2. Create a configuration file validation directory. Copy the

configuration file and the setup file into it.
__ Step 3. Change to the validation directory.
__ Step 4. Enter the following command to create the validation XML

message:
v aqmcrtmsg.bat (Windows systems)
v aqmcrtmsg.sh (UNIX and OS/400)

__ Step 5. A list of options is displayed. Select an option and press Enter.
Enter a value for each. The order in which values are entered is
not important. Examples of options are set sourcelogicalid, set
msgtype, and set bodycategory. You must enter values for
options 20, 21, 22, and 23. You can use options 24 or 241 to
provide message body data. Other values are not required.

__ Step 6. Enter option 1 to create the validation XML file. The validation
XML file is created in the current directory and is named
EpicMessagenn.xml, where nn is the number of the XML file.

__ Step 7. Enter option 0 to exit from the validation utility.
__ Step 8. Set up the appropriate message queues to support the validation.

Chapter 4. Using the kernel 61

__ Step 9. Set the AQMSETUPFILE environment variable to point to the
setup file in the validation directory temporarily:
v At a command prompt on Windows systems, enter the

following:
set AQMSETUPFILE=E:\runtimefiles\aqmsetup

where E:\ represents the correct drive and runtimefiles is the
validation directory.

v On UNIX and OS/400, enter the following command. The
command example assumes that you are using Korn shell; if
you are using a different shell, change the command
accordingly.
export AQMSETUPFILE=root_directory/runtimefiles/aqmsetup

where root_directory is the kernel’s installation directory and
runtimefiles is the validation directory. On OS/400, the
aqmsetup file must always be located in your IFS home
directory (/home/username).

If necessary, edit the setup file in the validation directory to point
to the configuration file that is being validated.

__ Step 10. Choose which of the following to test:
v Only the source side of the kernel.
v Whether the message can be routed all the way to the target

application. This test requires a target adapter to be in place
already.

v Tracing.

First test the source side, then test the target side. Turn off the
adapter daemon to test only the source side. Turn on the adapter
daemon to test the target side as well. If a target adapter is not in
place already, you can still test whether the adapter daemon
processes the message up to the point when it attempts to invoke
the command for the appropriate target adapter. It is
recommended that you enable tracing, especially if a target
adapter is not already in place.

__ Step 11. Execute the validation test. From any directory, enter the
following command:
v On Windows systems:

aqmsndmsg.bat -a source_logical_identifier -f XML_message_file

v On UNIX and OS/400:
aqmsndmsg.sh -a source_logical_identifier -f XML_message_file

where:

62 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

source_logical_identifier
indicates the source logical identifier. This value must
match the source logical identifier value entered for
option 20 in Step 5 on page 61.

XML_message_file
indicates the XML message file.

Note: A list of all options for this test can be displayed by
entering the following command:

On Windows systems:
aqmsndmsg.bat -?

On UNIX and OS/400:
aqmsndmsg.sh -?

Note that the -? works only on Korn shell; if you use
another UNIX shell (such as Bourne shell or C shell),
escape the question mark by using a backslash (that is,
-\?).

__ Step 12. Examine the results. The validation message contains the correct
body category, body type, and data.
v If you are testing only the source side of the kernel (that is, if

the adapter daemon has not been started), examine the queue
to which the message was to be routed.
– If you see your validation message on that queue, those

entries in the configuration file are validated.
– If you do not see your validation message on that queue,

check the exception file. If tracing is enabled, check the trace
messages.

v If you are testing the target side of the kernel and a target
adapter is in place, check the target application.
– If your validation message is received by the target

application, those entries in the configuration file are
validated.

– If your validation message is not received by the target
application, check the exception file. If tracing is enabled,
check the trace messages.

v If you are testing the target side of the kernel and no target
adapter is in place, check the error queue for the validation
message and the exception file for an exception message. If
tracing is enabled, check the trace messages.

Chapter 4. Using the kernel 63

– If you see your validation message on the error queue and
an exception message, those entries in the configuration file
are validated.

– If you do not see your validation message on the error
queue, check the exception file. If tracing is enabled, check
the trace messages.

__ Step 13. If necessary, modify the configuration file and validate it again.

Configuring MQSeries and MQSeries Integrator

Configure MQSeries and optional software such as MQSeries Integrator to
support the kernel as follows.

In MQSeries:
v Several queues are used for verifying the installation. If you use these

queues for your test or production environments, you must clear them to
verify installation. See “Verification procedure” on page 39 for the queues
used for verifying installation.

v Set up queues to support transport of messages according to the routing
scheme that you have designed.

v When creating queues, set the MAX_QUEUE_DEPTH environment variable
to the maximum queue depth allowed.

In MQSeries Integrator, set up input and output queues in rules (version 1.1)
or in messageflows (version 2) that correspond to the queues that are
configured in the configuration file.

Performance recommendations

The following performance recommendations apply specifically to MQSeries
Adapter Kernel:
v When XML DTDs are parsed, ensure that the DTD files reside in the same

directory as the process that parses them. This reduces the effort required
by the process to find the DTDs.

v When large messages are being sent and received, using message type
RFH2 results in better performance than using message type XML.

See the MQSeries documentation for general recommendations for improving
performance.

64 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Starting the kernel

To start the kernel, start the following items:
v Adapter daemon for each target application
v Trace server (optional)

Note that if the source adapter is run in the source application’s process, the
source adapter is automatically started with the source application; no extra
steps are needed to start the source adapter. Any daemon or server that
contains source adapters needs to be started. You do not start source adapters
directly.

Start each adapter daemon and trace server by performing the following
steps:

Note: Several scripts are provided as a convenience for use in the procedure.
If desired, copy the scripts and then edit the copies to make your own
versions. If you are using OS/400, note that the UNIX versions of the
scripts can be run in a qsh session. You can start a qsh session by
entering the Start QSH (STRQSH) command at a Control Language
(CL) prompt.

__ Step 1. Start MQSeries or other messaging software and optional software
such as MQSeries Integrator.

__ Step 2. Start associated other software that your site requires—for
example, applications (outside the kernel) to read trace messages
from queues.

__ Step 3. Open a command prompt. For each adapter daemon, enter the
following command:
v On Windows systems:

aqmstrad.bat -a application_identifier [-bc body_category
-bt body_type] [-noretry]

v On UNIX and OS/400:
aqmstrad.sh -a application_identifier [-bc body_category
-bt body_type] [-noretry]

where:

-a application_identifier
Identifies the destination logical identifier that the adapter
daemon serves.

-bc body_category
Specifies the body category that the adapter daemon
worker uses for determining the communication mode and
related information for receiving messages. If no value is
provided, the adapter daemon processes using the value
DEFAULT.

Chapter 4. Using the kernel 65

-bt body_type
Specifies the body type that the adapter daemon worker
uses for determining the communication mode and related
information for receiving messages. If no value is provided,
the adapter daemon processes using the value DEFAULT.

-noretry
Specifies that the worker stops automatically when there
are no more messages. If -noretry is not specified, then the
worker continually polls the queue for messages and the
adapter daemon must be stopped manually.

Note: If you need to modify Java startup parameters, edit the
aqmstrad.bat (Windows systems) or aqmstrad.sh (UNIX
and OS/400) file. See the comments inside the file for
details.

__ Step 4. For each trace server, enter the following command:
v On Windows systems:

aqmstrtd.bat -how -a source_application_identifier

v On UNIX and OS/400:
aqmstrtd.sh -how -a source_application_identifier

where:

-how
Indicates how the trace messages are to be received.
Possible values include the following:
– socket

– ena, that is, native adapter

-a source_application_identifier
Source application identifier. If no value is provided, the
default value TraceServer in the configuration file is used.

See the Problem Determination Guide for more information about
trace servers.

__ Step 5. After an adapter daemon or trace server is started, a process
window remains open until you stop the adapter daemon. The
process window can display exceptions. See “Exception messages”
on page 68.

Stopping the kernel
To stop the kernel, stop each of the adapter daemons and trace servers. There
are several ways to stop them:
v When you start the adapter daemon, set the parameter -noretry. See

“Starting the kernel” on page 65.

66 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v Go to the command prompt (Windows systems) or terminal (UNIX) from
which the adapter daemon or trace server was started and enter Ctrl-C.
Perform this step for each adapter daemon or trace server.

v On Windows systems, you can use the Task Manager to end the process.
v On UNIX, you can use the ps command to determine the number of the

process, then use the kill command to end the process.

Maintaining the kernel

Set up a kernel maintenance plan. It is recommended that you periodically
back up the following items.
v The configuration as specified in the following files:

– aqmconfig.xml

– aqmsetup

v Adapters that you have built and their associated files

Backing up or periodically deleting the contents of trace and other files used
by the kernel to support its own processing is not required. Back up these
files if desired. If trace messages are being routed to a single file instead of to
multiple files, the single trace file can become very large. If the tracing level is
set to capture a high level of detail (for instance, all trace messages or
information messages), consider deleting the trace files periodically.

Diagnosing problems

You can use exception messages, trace messages, and the MQSeries error
queue to help diagnose problems. The MQSeries Adapter Kernel produces
exception messages and, if trace is enabled, trace messages. See the Problem
Determination Guide for information on how to diagnose problems in an
MQSeries Adapter Kernel environment.

To understand exception messages and trace messages, you must understand
how the kernel works. The kernel uses an error queue to handle some errors.
See “How the kernel works” on page 8.

You can identify the message that caused exception messages and trace
messages by the combination of the unique message identifier and unique
transaction identifier.

There is no identifier that enables you to definitively identify the same
message in both the error queue and the kernel. However, you can manually
correlate a message on the error queue with the corresponding exception
message, trace message, or both. You can compare one or more of the
following:

Chapter 4. Using the kernel 67

v Approximate time stamp
v Queue for the source logical identifier
v Queue for the destination logical identifier
v Body category
v Body type
v Unique message identifier
v Unique transaction identifier

If they match, then you probably have correlated the message on the error
queue with the corresponding exception message or trace message.

Version number
Run aqmversion.bat (Windows systems) or aqmversion.sh (UNIX and
OS/400) in the bin directory to display the version number of the kernel.

Exception messages

The kernel produces the following types of exception messages:
v The native adapter on the source side of the kernel throws exceptions to the

source adapter. See the MQSeries Adapter Builder documentation for how
the source adapter handles these exceptions.

v The native adapter on the target side of the kernel throws exceptions to the
worker that manages the native adapter.

v The worker writes exceptions to the EpicSystemExceptionFilennnnnnnn.log
file, which resides in the same directory as the worker.

v The adapter daemon writes exception messages to an exception file called
EpicSystemExceptionFilennnnnnnn.log that resides in the same directory as
the adapter daemon. Because the adapter daemon and its workers reside in
the same directory, they all write to the same exception file. The adapter
daemon also writes exception messages to the console (that is, the
command prompt window or the terminal that was used to start it, if it
was started from a window).

The kernel’s trace exception messages are different from MQSeries exception
messages. The following is an example of an exception message from the
kernel:
2000.10.26 19:38:20.929 com.ibm.epic.adapters.eak.nativeadapter.LMSMQ
Thread Name=main receiveRequest(ENAService) ePIC TEST2
TYPE_ERROR_EXC AQM5004: Received exception <com.ibm.epic.adapters.eak.common.
AdapterException> Message information: <AQM0114: com.ibm.epic.adapters.eak.
nativeadapter.MQNMRFH2Formatter::convertMessage(MQMessage): Expecting a message
with an MQHRF2 format and received a message with format <MQSTR >.>
for <unmarshall Message()> having invalid data <(null)>

68 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

The values in an exception message depend on the nature of the message,
possibly including the following items:
v Time stamp
v Source logical identifier
v Destination logical identifier
v Body category
v Body type
v Unique message identifier
v Unique transaction identifier
v Exception information

See “Common verification problems” on page 40 for common problems that
you can encounter during verification of installation and for potential
responses.

For control of Java memory utilization, see “Starting the kernel” on page 65.

Trace messages

The kernel can be configured to produce trace messages. For information on
tracing, see the Problem Determination Guide.

Utilities

Creating MQSeries queues
You can use batch files or shell scripts to automate the creation of MQSeries
queues. Run aqmcreateq.bat (Windows systems) or aqmcreateq.sh (UNIX and
OS/400), using the application name as a parameter. These files create the
following queues for each application:
v Receive queue, called application_nameAIQ.
v Error queue, called application_nameAEQ.
v Reply queue, called application_ nameRPL.

Chapter 4. Using the kernel 69

70 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 5. Using MQSeries Adapter Kernel APIs

The kernel includes APIs that are used for functions such as sending and
receiving messages, creating and parsing XML, and managing the kernel
configuration. These APIs are used by adapters created by using the MQSeries
Adapter Builder. The MQSeries Adapter Kernel Information Center includes
associated online API documentation in Javadoc HTML format.

The kernel is intended to be used with adapters built by the user by using the
MQSeries Adapter Builder. The kernel is not intended to be used by calls to
the kernel APIs from custom code alone. The online API documentation is
provided only as an aid to understanding how the kernel functions and an
aid to diagnostics.

The kernel online API documentation is located in the documentation
directory.

© Copyright IBM Corp. 2000 71

72 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 6. Obtaining additional information

There are several sources of information that can be useful when you are
using MQSeries Adapter Offering. For additional information on MQSeries
Adapter Kernel, see the Problem Determination Guide document, available from
the MQSeries Adapter Kernel Information Center that is installed with the
product. The Problem Determination Guide provides information on solving
specific problems that can arise when using the kernel. For information on
MQSeries Adapter Builder, see that product’s Information Center and online
help system.

Available on the Internet

The MQSeries product family Web site is at
http://www.ibm.com/software/ts/mqseries/. By following links from this
Web site, you can:
v Obtain latest information about the MQSeries product family, including

MQSeries Adapter Offering.
v Access MQSeries books in HTML and PDF formats, possibly including a

more recent edition of this book. The direct link to the MQSeries library
page is http://www.ibm.com/software/ts/mqseries/library/manualsa/.

v Download MQSeries SupportPacs.

For information on using MQSeries on OS/400, see the OS/400 library at
http://www.ibm.com/servers/eserver/iseries/library/. Also see the
OS/400–specific books available from the MQSeries library Web site at
http://www.ibm.com/software/ts/mqseries/library/manualsa/.

References

The following reference material discusses topics covered in this document:
v The Open Applications Group Web site at

http://www.openapplications.org/
v The Extensible Markup Language (XML) 1.0 W3C Recommendation at

http://www.w3.org/TR/1998/Rec-xml-19980210

These are not IBM Web sites.

© Copyright IBM Corp. 2000 73

http://www.ibm.com/software/ts/mqseries/
http://www.ibm.com/software/ts/mqseries/library/manualsa/
http://www.ibm.com/servers/eserver/iseries/library/
http://www.ibm.com/software/ts/mqseries/library/manualsa/
http://www.openapplications.org/
http://www.w3.org/TR/1998/Rec-xml-19980210

74 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix A. Communication modes

This appendix provides information on the communication modes supported
by MQSeries Adapter Kernel and on the Java classes that are used to support
them. Some of the communication modes are provided as convenience modes
with default formatters. See Table 3 on page 76 for the default formatters that
are used with the convenience modes.

The following communication modes are supported:

MQPP The kernel transports messages by using MQSeries base
services. This is a convenience mode.

MQRFH1 The kernel transports messages by using MQSeries and
brokers messages by using MQSeries Integrator version 1.1.
This is a convenience mode.

MQRFH2 The kernel transports messages by using MQSeries and
brokers messages by using MQSeries Integrator version 2.
This is a convenience mode.

MQBD The kernel transports messages by using MQSeries base
services but sends and receives body data only. This is a
convenience mode. The following characteristics are unique to
this mode:
v It can send only body data, not message header values.
v It can receive messages that contain only body data. It uses

the following default message header values for received
messages:
– SourceLogicalApplicationID—The value in the

ENAService object used in the receive method call.
– BodyCategory—The value in the ENAService object used

in the receive method call.
– BodyType—The value in the ENAService object used in the

receive method call.
– Acknowledgment—If the received MQMessage is an

MQSeries REQUEST, then Acknowledgment is set to 1.
– BodyData—The message data received from MQSeries.

All other header values use the normal defaults.

MQ The kernel transports messages by using MQSeries base
services.

© Copyright IBM Corp. 2000 75

JMS The kernel transports messages by using the Java Messaging
Service (JMS). See “Using JMS object storage” on page 78 for
information on using JMS objects with MQSeries Adapter
Kernel.

FILE The kernel puts messages into a file and gets them from a file.
This mode is provided for diagnostic purposes only.

Table 2 lists the communication modes and the Java classes that support them.
All Java classes are from the Java package
com.ibm.epic.adapters.eak.nativeadapter. Note that any Java class that
supports the logical message service (LMS) can be specified as a
communication mode; in this case, the class itself is used to support
communication.

Table 2. Communication modes and supporting Java classes

Communication mode Java class Notes

MQPP LMSMQBindingMQPP Requires installation of
MQSeries

MQRFH1 LMSMQBindingMQRFH1 Requires installation of
MQSeries

MQRFH2 LMSMQBindingMQRFH2 Requires installation of
MQSeries

MQBD LMSMQMQBD Requires installation of
MQSeries

MQ LMSMQBinding Requires installation of
MQSeries

JMS LMSJMS Requires installation of JMS

FILE LMSFile None

Table 3 lists the communication modes and their associated formatter
interfaces. Table 4 on page 77 cross-references formatter interfaces, formatter
classnames, and their uses. All formatters are from the Java package
com.ibm.epic.adapters.eak.nativeadapter. Note that any formatter class can
be specified for the communication mode; in this case, the specified formatter
class is used as the formatter.

Table 3. Communication modes and formatter interfaces

Communication mode Formatter interface Default formatter

MQPP MQFormatterInterface MQNMXMLFormatter

MQRFH1 MQFormatterInterface MQNMRFH1Formatter

MQRFH2 MQFormatterInterface MQNMRFH2Formatter

76 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Table 3. Communication modes and formatter interfaces (continued)

Communication mode Formatter interface Default formatter

MQBD MQFormatterInterface MQNMBDFormatter

MQ MQFormatterInterface MQNMXMLFormatter

JMS JMSFormatterInterface JMSNMRFH2Formatter

FILE StringFormatterInterface NMXMLFormatter

Table 4. Formatter interfaces, formatter classnames, and purposes

Formatter interface Formatter classname Purpose

MQFormatterInterface MQNMXMLFormatter EpicMessage as XML

MQNMRFH1Formatter EpicMessage as RFH1

MQNMRFH2Formatter EpicMessage as RFH2

MQNMDBFormatter Body data only

JMSFormatterInterface JMSNMXMLFormatter EpicMessage as XML

JMSNMRFH2Formatter EpicMessage as RFH2

JMSBodyDataFormatter Body data only

StringFormatterInterface NMXMLFormatter EpicMessage as XML

Table 5 lists the supported LMS classes and their degree of transactional
support. See “Transactional capabilities” on page 22 for information about
using transactions with MQSeries Adapter Kernel.

Table 5. LMS classes and transactional support

LMS class Transactional support

LMSMQBindingMQPP Single phase

LMSMQBindingMQRFH1 Single phase

LMSMQBindingMQRFH2 Single phase

LMSMQMQBD Single phase

LMSMQBinding Single phase

LMSJMS Single phase

LMSFILE No support

Appendix A. Communication modes 77

Using JMS object storage

The names of JMS objects are stored by using the FSContext file
implementation of JNDI, which comes as part of the MQSeries JMS
SupportPac. The context (directory structure) that the kernel uses for
FSContext follows the LDAP hierarchy by using the distinguishing attribute
with the associated value for the directory name. For example, for the LDAP
hierarchy o=ePIC, o=ePICApplications, epicappid=TEST1, the directory
structure is o-ePIC/o-ePICApplications/epicappid-TEST1.

To create the context and objects, use the JMS Admin tool that is provided
with the JMS installation. The basic steps are defining a context, then
changing the context. Changing the context moves you into the context.
Create the JMS objects in the appropriate places. Following are example
commands for creating the context structure and JMS objects. In this example,
the application ID is TEST1.
#
This is a script to use with the JMS administration (JMSAdmin) tool
This tool requires the JMSAdmin.config to be set to either use of
FSCONTEXT or LDAP. This script will work with either.
#
#
Example usage: MQSeries root\java\bin\jmsadmin.bat < aqmjmscreatesample.scp
#
This script will create contexts for testing using the file system provider
=UP means return to the parent context
=INIT means return to root context. In this example one directory level
above o-ePIC
Always required.
define ctx(o-ePIC)
change ctx(o-ePIC)
Always required.
define ctx(o-ePICApplications)
change ctx(o-ePICApplications)
Application id is TEST1, requires a context.
define ctx(epicappid-TEST1)
change ctx(epicappid-TEST1)
Always required.
define ctx(cn-epicadapterrouting)
change ctx(cn-epicadapterrouting)

This will hold the JMS QueueConnectionFactory object
define ctx(cn-QCFTEST1)
change ctx(cn-QCFTEST1)

Create the JMS QueueConnectionFactory object whose name is QCFTEST1
Using MQSeries in server (bindings) mode.
define qcf(QCFTEST1) qmgr(yourQManagerName) tran(BIND)

change ctx(=UP)

BodyCategory is DEFAULT

78 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

define ctx(epicbodycategory-DEFAULT)
change ctx(epicbodycategory-DEFAULT)

BodyType is DEFAULT
define ctx(epicbodytype-DEFAULT)
change ctx(epicbodytype-DEFAULT)

This will hold the JMS Queue object whose name is TEST1AIQ
define ctx(cn-TEST1AIQ)
change ctx(cn-TEST1AIQ)

Create the JMS Queue object whose name is TEST1AIQ
q(JMS Q Object Name) queue(MQSeries Queue name)
define q(TEST1AIQ) queue(TEST1AIQ)

Can move up and define other contexts and JMS objects.

Quit the administration tool.
end

Appendix A. Communication modes 79

80 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix B. Validated configurations

There are many potential configurations and combinations of MQSeries,
MQSeries Adapter Offering, and MQSeries Integrator. Each of these members
of the MQSeries product family is rich in features and configurations. Further,
you can combine functionalities in MQSeries, MQSeries Adapter Offering, and
MQSeries Integrator. Some functionality in one member of the MQSeries
product family can partially overlap with functionality provided by other
members of the family. You must determine how to use and combine the
different message routing and delivery functionalities in MQSeries, MQSeries
Adapter Offering, and MQSeries Integrator.

The following configurations of MQSeries, MQSeries Adapter Offering, and
MQSeries Integrator have been validated as of the time of publication. Refer
to the MQSeries Web site for the latest validated configurations.

MQSeries Adapter Kernel:

v Sending a message with acknowledgment requested and without
acknowledgment requested.

v Using the MQPP communication mode (MQSeries). See
“Appendix A. Communication modes” on page 75.

v Message routing and delivery:
– Sending a message from one source adapter to one target

adapter
– Sending a message from one source adapter to multiple target

adapters
– Multithreaded message delivery, that is, multiple workers
– With destination logical identifier set to NONE in the message,

so that the kernel’s configuration file is used to determine the
destination logical identifier based on body category, body type,
and source logical identifier

– Push model of delivery
– Tracing enabled

Note: See “Appendix C. Message headers” on page 83. It contains
the MQSeries Adapter Kernel message header fields that the
kernel populates and processes.

v With the prerequisites shown in “Hardware” on page 23 and
“Software” on page 24.

v Using the configuration file, not LDAP, to contain the configuration.

© Copyright IBM Corp. 2000 81

MQSeries:

v Not using MQSeries clusters.

Note: See “Appendix C. Message headers” on page 83. It contains
the MQSeries Adapter Kernel message header fields that the
kernel populates and processes.

MQSeries Integrator:

v MQSeries Adapter Kernel and MQSeries can route and deliver the
message to MQSeries Integrator. See MQSeries Integrator
information to determine its capabilities to broker these messages.

v Sending messages from the source side of the kernel, through
MQSeries and MQSeries Integrator version 2, and routing directly
to the target side of the kernel. Within MQSeries Integrator, the
message flow is configured to route statically. All messages arriving
on the MQInput node of the flow are routed directly to a specific
MQOutput queue.

Note: See “Appendix C. Message headers” on page 83. It contains
the MQSeries Adapter Kernel message header fields that the
kernel populates and processes.

82 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix C. Message headers

MQSeries Adapter Offering uses several message headers. See “Message and
message format” on page 10 for which headers are used under which
circumstances.

This appendix lists and describes the message header fields.

MQSeries message descriptor header

Content of fields is determined by MQSeries. MQSeries Adapter Offering puts
messages onto queues as determined by message control values. See “Message
control values” on page 14 for details.

Table 6. MQSeries header

Section or field Meaning or usage

Revision Fixed.

UniqueID Each message has a unique identifier.

TransactionID A message and its reply share the same
transaction identifier.

MessageType Reserved use.

SourceLogicalID Logical identifier of the source application.

DestinationLogicalID Logical identifier of the target application.

RespondToLogicalID A logical identifier to which the reply message is
to be sent.

CorrelationID Reserved use.

GroupStatus Reserved use.

ProcessingCategory Reserved use.

QosPolicy Reserved use.

DeliveryCategory Reserved use.

AckRequested Determines whether the source application
requests a reply or not.

PublicationTopic Reserved use.

SessionID Reserved use.

EncryptionStatus Reserved use.

TimeStampCreated Time and date when the message was created.

© Copyright IBM Corp. 2000 83

Table 6. MQSeries header (continued)

TimeStampExpired Time and date after which the message is no
longer meaningful.

Size Reserved use.

BodyCategory Represents the message’s application type, for
example, OAG or RosettaNet.

BodyType Represents the specific purpose of the message,
for example, add sales order or synchronize
inventory.

BodySecondaryType Reserved.

UserArea General area for user data.

BodyData Message body data.

MQSeries without MQSeries Integrator

The kernel header values and the body data are put into an XML document.
The following is an example of the DTD that describes the XML document:
<!ELEMENT EPICHEADER (HEADER, EPICBODY,USERAREA*)>
<!ELEMENT HEADER (#PCDATA)>
<!ATTLIST HEADER Revision CDATA #FIXED "001">
<!ATTLIST HEADER UniqueID CDATA #REQUIRED>
<!ATTLIST HEADER TransactionID CDATA #REQUIRED>
<!ATTLIST HEADER MessageType CDATA #REQUIRED>
<!ATTLIST HEADER SourceLogicalID CDATA #REQUIRED>
<!ATTLIST HEADER DestinationLogicalID CDATA #REQUIRED>
<!ATTLIST HEADER RespondToLogicalID CDATA #IMPLIED>
<!ATTLIST HEADER CorrelationID CDATA #IMPLIED>
<!ATTLIST HEADER GroupStatus CDATA #IMPLIED>
<!ATTLIST HEADER ProcessingCategory CDATA #IMPLIED>
<!ATTLIST HEADER QosPolicy CDATA #IMPLIED>
<!ATTLIST HEADER DeliveryCategory CDATA #IMPLIED>
<!ATTLIST HEADER AckRequested CDATA #IMPLIED>
<!ATTLIST HEADER PublicationTopic CDATA #IMPLIED>
<!ATTLIST HEADER SessionID CDATA #IMPLIED>
<!ATTLIST HEADER EncryptionStatus CDATA #IMPLIED>
<!ATTLIST HEADER TimeStampCreated CDATA #REQUIRED>
<!ATTLIST HEADER TimeStampExpired CDATA #REQUIRED>
<!ATTLIST HEADER Size CDATA #IMPLIED>
<!ELEMENT EPICBODY (#PCDATA)> <!-- The data will be escaped -->
<!ATTLIST EPICBODY Size CDATA #IMPLIED>
<!ATTLIST EPICBODY BodyType CDATA #REQUIRED>
<!ATTLIST EPICBODY BodyCategory CDATA #REQUIRED>
<!ATTLIST EPICBODY BodySecondaryType CDATA #IMPLIED>
<!ELEMENT USERAREA (#PCDATA) >

84 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

MQSeries Integrator version 1 header

MQSeries Integrator version 1 header, RFH1, consists of the following items:
1. Fixed portion
2. Neon header
3. Data section, which contains the kernel header and message body data

Table 7. MQSeries Integrator version 1 header — RFH1

Section or field Meaning or usage

Fixed portion Used as specified in MQSeries Integrator version
1.1.

Neon header Follows Neon header format.

OPT_APP_GRP SourceLogicalId value. Taken from the kernel
header.

OPT_MSG_TYPE BodyCategory+BodyType. Derived from the kernel
header.

Example: If the BodyCategory is OAG and the
BodyType is SyncItem, then the value is
OAG+SyncItem.

Data section Consists of the kernel header values followed by
the message body data.

Kernel header Kernel header is enclosed within the tags
<EPICHEADER>header</EPICHEADER>.

Kernel header values are in XML syntax. Only
attributes with values are present. The actual data
is not on separate lines. Example of the format of
a value: <MessageType>value</MessageType>.

MessageType Reserved use.

SourceLogicalID Logical identifier of the source application.

DestinationLogicalID Logical identifier of the target application.

RespondToLogicalID Logical identifier to which the reply message is to
be sent.

TimeStampCreated Time and date when the message was created.

TimeStampExpired Time and date after which the message is no
longer meaningful.

TransactionID A message and its reply share the same
transaction identifier.

UniqueID Each message has a unique identifier.

AckRequested Determines whether the source application
requests a reply.

Appendix C. Message headers 85

Table 7. MQSeries Integrator version 1 header — RFH1 (continued)

ProcessingCategory Reserved.

BodyCategory Represents the message’s application type, for
example, OAG or RosettaNet.

BodyType Represents the specific purpose of the message,
for example, add sales order or synchronize
inventory.

BodySecondaryType Reserved.

UserArea User integration specific application data.

MsgHeaderVersion Kernel header version (reserved).

CorrelationID User integration specific.

GroupStatus User integration specific.

QosPolicy Reserved.

DeliveryCategory Reserved.

PublicationTopic Reserved.

SessionID Reserved.

EncryptionStatus Reserved.

Message body data Message body data.

MQSeries Integrator version 2 header

MQSeries Integrator version 2 header, RFH2, consists of the following items:
1. Fixed portion
2. <mcd> folder — message content descriptor
3. <usr> folder — application (user) defined properties
4. Data section, which contains the kernel header and message body data

Table 8. MQSeries Integrator version 2 header — RFH2

Section or field Meaning or usage

Fixed portion Used as specified in MQSeries Integrator version
2.

<mcd> XML if message is XML. Follow MQSeries
Integrator version 2 rules.

set Not used by the kernel.

type Not used by the kernel.

format XML if message is XML. Follow MQSeries
Integrator version 2 rules.

86 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Table 8. MQSeries Integrator version 2 header — RFH2 (continued)

<usr> folder — application (user)
defined properties

Consists of the kernel header values.

Kernel header Only attributes with values are present. The actual
data is not on separate lines.

SourceLogicalID Logical identifier of the source application.

DestinationLogicalID Logical identifier of the target application.

MessageType Reserved use.

RespondToLogicalID A logical identifier to which the reply message is
to be sent.

TimeStampCreated Time and date when the message was created.

TimeStampExpired Time and date after which the message is no
longer meaningful.

TransactionID A message and its reply share the same
transaction identifier.

UniqueID Each message has a unique identifier.

ProcessingCategory Reserved.

BodyCategory Represents the message’s application type, for
example, OAG or RosettaNet.

BodyType Represents the specific purpose of the message,
for example, add sales order or synchronize
inventory.

BodySecondaryType Reserved.

AckRequested Determines whether the source application
requests a reply.

UserArea User integration specific application data.

MsgHeaderVersion Kernel header version (reserved).

CorrelationID User integration specific.

GroupStatus User integration specific.

QosPolicy Reserved.

DeliveryCategory Reserved.

PublicationTopic Reserved.

SessionID Reserved.

EncryptionStatus Reserved.

Data section Message body data.

Appendix C. Message headers 87

88 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix D. Sample of the configuration file

This section lists the version of the aqmconfig.xml file that was current at the
time of this publication. “Sample of a minimum configuration file” on page 93
lists the version of the aqmconfig.minimum.xml file that was current at the time
of this publication. See the aqmconfig.xml and aqmconfig.minimum.xml files in
the kernel installation’s samples directory for the most recent version; the
examples listed here are possibly out of date.

See “The configuration file” on page 47 for information on interpreting and
editing the configuration file.

Several application identifiers are included in this example configuration file.
A set of entries is listed under each application identifier. The sample
configuration file contains the following application identifiers:
v TEST1
v TEST1Daemon
v TEST2
v TEST3
v TraceClient
v TraceServer
<?xml version="1.0" encoding="UTF-8"?>
<!-- aqmconfig.xml 1.00 00/10/30 -->
<!-- Used for MQSeries Adapter Kernel -->
<!-- Sample AQM Configuration. -->
<!-- -->
<!-- Copyright (c) 2000 International Business Machines. All Rights Reserved. -->
<!-- -->
<!-- This configuration file is as an example only. -->
<!-- -->
<!-- IBM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS -->
<!-- SAMPLE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE -->
<!-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR -->
<!-- PURPOSE, OR NON-INFRINGEMENT. -->
<!-- -->
<!-- CopyrightVersion 1.0 -->
<!-- -->

<Epic o="ePIC">
<!-- If getObject is called this indicates the top level directory -->
<!-- where the JNDI file system context will retrieve objects from -->
<!-- This defaults to the current directory if this key is not present -->
<!-- All applications share this context root. -->
<context>file:///epic/configContext</context>
<!-- Example using a drive letter 'c' -->
<!--
<context>file://c:/E/runtimefiles</context>
-->
<ePICApplications o="ePICApplications">

<!-- The following is for sample Test Application ID: TEST1 with a -->
<!-- sample AdapterDaemon named TEST1Daemon -->
<ePICApplication epicappid="TEST1">

<!-- Audit Logging on/off. Requires WSB2BI product. -->
<!-- If no entry defaults to false. -->

<epiclogging>false</epiclogging>
<!-- Tracing on/off. If no entry defaults to false. -->

<epictrace>false</epictrace>
<!-- Trace levels - Uses the jlog com.ibm.logging.IRecordType constants, -->
<!-- common constants: -->

© Copyright IBM Corp. 2000 89

<!-- 0=TYPE_NONE (No messages), 1=TYPE_INFO, 512=TYPE_ERROR_EXC (Exceptions), -->
<!-- 513=TYPE_INFO | TYPE_ERROR_EXC, -1=TYPE_ALL (All possible messages). -->
<!-- No entry defaults to TYPE_NONE -->

<epictracelevel>-1</epictracelevel>
<!-- Name of the Trace application id. Will be used for -->
<!-- trace configuration information. Defaults to TraceClient -->

<epictraceclientid>TraceClient</epictraceclientid>
<!-- When processing messages into the application. -->
<!-- LogonInfo class name used for connecting to an application. -->

<!-- Will be used by the AdapterDaemon. If no entry will default -->
<!-- to com.ibm.epic.adapters.eak.adapterdaemon.EpicLogonDefault. -->
<epiclogoninfoclassname>com.ibm.epic.adapters.eak.adapterdaemon.EpicLogonDefault
</epiclogoninfoclassname>

<AdapterRouting cn="epicadapterrouting">
<!-- MQSeries Q Manager for this application use, no entry -->
<!-- uses the default Q Manager. A value of DEFAULT means -->
<!-- use the default Q Manager. -->
<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<!-- Use the remote Q Manager for sending messages. Remote queue -->
<!-- definitions are not required. true - use remote Q Manager, -->
<!-- false - do not use remote Q Manager. No entry defaults to false -->
<epicuseremotequeuemanagertosend>false</epicuseremotequeuemanagertosend>
<!-- MQSeries Client hostname for where the MQSeries server -->
<!-- resides for TEST1. Required if using MQSeries Client -->
<!--
<epicmqppqueuemgrhostname>localhost</epicmqppqueuemgrhostname>

-->
<!-- MQSeries Client port to use for where the MQSeries server -->
<!-- resides for TEST1. No entry defaults to MQSeries default -->
<!--
<epicmqppqueuemgrportnumber>1414</epicmqppqueuemgrportnumber>

-->
<!-- MQSeries Client channel name to use for the MQSeries server, required -->
<!--
<epicmqppqueuemgrchannelname>xyz</epicmqppqueuemgrchannelname>

-->
<!-- JMS example for TEST1. Refers to the JMS Connection factory name. -->
<!-- Requires the attribute describing the object plus the attributes value. -->
<!-- For JMS the attribute is 'cn'. -->
<!--
<epicjmsconnectionfactoryname>cn=QCFTEST1</epicjmsconnectionfactoryname>

-->
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<!-- Contains the Command selection criteria when processing -->
<!-- a message into an application. Will be used by the -->
<!-- AdapterDaemon - Command to invoke. -->

<epiccommandclassname>com.ibm.epic.adapters.eak.samples.SampleCAdapterWrapper
</epiccommandclassname>

<!-- Default destinations to send messages to. -->
<!-- Single destination. -->

<epicdestids>TEST2</epicdestids>
<!-- Multiple destinations. -->

<!--
<epicdestids>

<Value>TEST2</Value>
<Value>TEST3</Value>

</epicdestids>
-->
<!-- Receive transport communication mode this application -->
<!-- wants for receiving messages. -->
<!-- For MQSeries normal mode use MQPP. -->
<!-- For MQSeries using an RFH1 header format use MQRFH1, when using

MQSeries Integrator V1 -->
<!-- For MQSeries using an RFH2 header format use MQRFH2, when using

MQSeries Integrator V2 -->
<!-- For file normal mode use FILE. -->
<epicreceivemode>MQPP</epicreceivemode>
<!-- How to format the message for the receive mode. -->
<!-- Entry is the class name of the formatter which -->
<!-- must be for the receive mode -->
<!-- Receive modes MQPP, MQRFH1, MQRFH2, FILE have -->
<!-- default receive modes -->
<epicmessageformatter>com.ibm.epic.adapters.eak.nativeadapter.MQNMBDFormatter
</epicmessageformatter>

<!-- JMS formatter for mode for MQSeries provider implementation -->
<!--

<epicmessageformatter>com.ibm.epic.adapters.eak.nativeadapter.JMSNMRFH2Formatter
</epicmessageformatter>

-->
<!-- Recieve Time out in milliseconds ie. 1000 = 1 second, -->
<!-- -1 means never ending. No entry defaults to 0 -->
<!-- milliseconds. Used when receiving messages. -->

<epicreceivetimeout>30000</epicreceivetimeout>
<!-- MQSeries queue for this application to receive messages -->

90 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

<!-- from for receive modes MQPP, MQRFH1, MQRFH2 -->
<epicreceivemqppqueue>TEST1AIQ</epicreceivemqppqueue>

<!-- MQSeries queue required by the AdapterWorker when -->
<!-- errors encountered processing a message -->
<!-- for receive modes MQPP, MQRFH1, MQRFH2 -->

<epicerrormqppqueue>TEST1AEQ</epicerrormqppqueue>
<!-- MQSeries reply queue required for synchronous request/replies -->
<!-- for receive modes MQPP, MQRFH1, MQRFH2 -->

<epicreplymqppqueue>TEST1RPL</epicreplymqppqueue>
<!-- JMS recieve mode, refers to the JMS queue object name for -->
<!-- this application to receive messages from. -->

<!-- Requires the attribute describing the object plus the attributes value. -->
<!-- For JMS the attribute is 'cn'. -->
<epicjmsreceivequeuename>cn=TEST1AIQ</epicjmsreceivequeuename>

<!-- JMS recieve mode, refers to the JMS queue object name for -->
<!-- errors required by the AdapterWorker when errors -->
<!-- encountered processing a message. -->

<!-- Requires the attribute describing the object plus the attributes value. -->
<!-- For JMS the attribute is 'cn'. -->
<epicjmserrorqueuename>cn=TEST1AEQ</epicjmserrorqueuename>

<!-- JMS recieve mode, refers to the JMS queue object name for -->
<!-- the reply queue, required for synchronous request/replies -->

<!-- Requires the attribute describing the object plus the attributes value. -->
<!-- For JMS the attribute is 'cn'. -->
<epicjmsreplyqueuename>cn=TEST1RPL</epicjmsreplyqueuename>

<!-- In FILE receive mode, directory for this application to receive messages from -->
<epicreceivefiledir>./TEST1AID</epicreceivefiledir>

<!-- In FILE receive mode, interim directory for this application to -->
<!-- hold received messages until committed. -->

<epiccommitfiledir>./TEST1ACD</epiccommitfiledir>
<!-- In FILE receive mode, directory for this application to put error messages -->
<!-- File receive mode, directory required by the AdapterWorker when -->
<!-- errors encountered processing a message -->

<epicerrorfiledir>./TEST1AED</epicerrorfiledir>
</ePICBodyType>

</ePICBodyCategory>
</AdapterRouting>

</ePICApplication>
<!-- The following is for sample AdapterDaemon 'TEST1Daemon' -->
<!-- for the 'TEST1' application -->
<ePICApplication epicappid="TEST1Daemon">

<epictrace>false</epictrace>
<epictracelevel>-1</epictracelevel>
<ePICAdapterDaemonExtensions cn="epicappextensions">

<!-- Dependency appid, if no entry then will default -->
<!-- to the application id of the daemon. -->

<epicdepappid>TEST1</epicdepappid>
<!-- Minimum number of workers. If no entry defaults to 1. -->

<epicminworkers>1</epicminworkers>
</ePICAdapterDaemonExtensions>

</ePICApplication>
<!-- The following is for Test Application ID: TEST2 -->
<!-- Refer to TEST1 for explanations and possible additional entries. -->
<ePICApplication epicappid="TEST2">

<epictrace>true</epictrace>
<epictracelevel>512</epictracelevel>
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epiccommandclassname>com.ibm.epic.adapters.eak.test.InstallVerificationTest
</epiccommandclassname>
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TEST2AIQ</epicreceivemqppqueue>
<epicerrormqppqueue>TEST2AEQ</epicerrormqppqueue>
<epicreplymqppqueue>TEST2RPL</epicreplymqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>
<!-- The following is for Test Application ID: TEST3 -->
<!-- Refer to TEST1 for explanations and possible additional entries. -->
<ePICApplication epicappid="TEST3">

<AdapterRouting cn="epicadapterrouting">
<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epicdestids>TEST1</epicdestids>
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TEST3AIQ</epicreceivemqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>

<!-- The following is for sample Trace Client Application ID: TraceClient -->

Appendix D. Sample of the configuration file 91

<!-- Contains the TraceClient configuration information for doing tracing. -->
<!-- This is the application id value in the 'epictraceclientid' element -->
<!-- configured for the application wanting to do tracing -->

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

<!-- Dependency Trace Server application id used for SocketHandler -->
<!-- and ENAHandler (uses MQSeries), defaults to TraceServer -->

<epicdepappid>TraceServer</epicdepappid>
<!-- Write messages synchronously (true) or asynchronously (false), -->
<!-- defaults to false (write messages asynchronously). This is -->
<!-- used when giving the messages to the handlers. -->
<epictracesyncoperation>false</epictracesyncoperation>

<!-- Default Trace message file to use if none passed in to the -->
<!-- writeTrace method call. Defaults to this file if not indicated -->

<epictracemessagefile>com.ibm.epic.trace.client.TraceMessage</epictracemessagefile>
<!-- Handlers to load. Handlers do the actual processing of the -->
<!-- Trace message. If the default trace client id 'TraceClient' -->
<!-- is used then the handler defaults to the -->
<!-- com.ibm.logging.ConsoleHandler. If the default trace client -->
<!-- id 'TraceClient' is not used, the handler has to be specified. -->
<!-- A Single Trace Handler -->

<epictracehandler>com.ibm.logging.ConsoleHandler</epictracehandler>
<!-- Multiple Trace Handlers -->
<!--

<epictracehandler>
<Value>com.ibm.logging.ConsoleHandler</Value>
<Value>com.ibm.logging.SocketHandler</Value>

</epictracehandler>
-->

<!-- Handler definitions. Available definitions depend on the -->
<!-- handler. Formatters are used for formatting the trace message.-->
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">

<!-- ConsoleHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.EpicTraceFormatter</epictraceformatter>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.FileHandler">

<!-- FileHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.EpicTraceFormatter</epictraceformatter>
<!-- Trace filename to use, defaults to trc.log in the current directory. -->
<epictracefilename>trc.log</epictracefilename>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.epic.trace.client.ENAHandler">

<!-- ENAHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.EpicXMLFormatter</epictraceformatter>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.SocketHandler">

<!-- SocketHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.EpicXMLFormatter</epictraceformatter>

</ePICTraceHandler>
</ePICTraceExtensions>

</ePICApplication>
<!-- The following is for sample Trace Server Application ID: TraceServer -->
<!-- Contains the TraceServer configuration information. -->
<!-- This is the application id pointed to by the trace client -->
<!-- epicdepappid value. Definitions are similar to TraceClient example. -->

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TraceServerAIQ</epicreceivemqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

<!-- Write messages synchronously/asynchronously (true/false (default)). -->
<epictracesyncoperation>false</epictracesyncoperation>

<!-- Trace message file. Defaults to this file if not indicated -->
<epictracemessagefile>com.ibm.epic.trace.server.TraceServerMessage</epictracemessagefile>
<!-- Handlers to load, for multiple handlers see TraceClient example. -->
<!-- If the default trace server id 'TraceServer' is used then the handler -->
<!-- defaults to the com.ibm.logging.MultiFileHandler. -->
<!-- Note: Do not use SocketHandler or ENAHandler for the trace server. -->
<epictracehandler>com.ibm.logging.MultiFileHandler</epictracehandler>

<!-- Handler definitions for com.ibm.logging.SocketHandler -->
<!-- Formatter to use, defaults to this formatter if none provided.-->

<ePICTraceHandler epictracehandler="com.ibm.logging.SocketHandler">
<!-- Entries when using socket handler from the TraceClient and -->
<!-- starting the Trace Server in socket receive mode. -->
<!-- SocketHandler host machine, defaults to localhost -->

<epictracesocketserverhost>localhost</epictracesocketserverhost>
<!-- SocketHandler port number, defaults to 8181 -->

<epictraceportnumber>8181</epictraceportnumber>
</ePICTraceHandler>

92 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

<!-- Formatter to use, defaults to this formatter if none provided.-->
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">

<!-- ConsoleHandler formatter to use, defaults to this formatter if none provided.-->
<epictraceformatter>com.ibm.epic.trace.client.ReFormatter</epictraceformatter>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.MultiFileHandler">

<!-- MultiFileHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.ReFormatter</epictraceformatter>

<!-- MultiFileHandler trace base filename to use, defaults to trc.log in the -->
<!-- current directory. The actual filename will be for this -->
<!-- example trcx.log, where x is a numeric number starting at -->
<!-- 0 and going up to the number of trace files specified. -->

<epictracefilename>trc.log</epictracefilename>
<!-- MultiFileHandler number of trace files, defaults to 3 -->

<epictracefilenumber>3</epictracefilenumber>
<!-- MultiFileHandler file size in number of bytes, defaults to -->

<epictracefilesize>1000000</epictracefilesize>
</ePICTraceHandler>

</ePICTraceExtensions>
</ePICApplication>

</ePICApplications>
</Epic>

Sample of a minimum configuration file

This section provides an example of a minimum configuration file for use
with MQSeries Adapter Kernel. See “Adding adapter information to the
configuration” on page 58 for information about the minimum configuration
file.
<?xml version="1.0" encoding="UTF-8"?>
<!-- aqmconfig.minimum.xml 1.00 00/11/07 -->
<!-- Used for MQSeries Adapter Kernel -->
<!-- Sample AQM Configuration showing a minimum configuration for the -->
<!-- following conditions: -->
<!-- 1) Going from applicationid TEST1 to TEST2. TEST1 is not receiving -->
<!-- messages. -->
<!-- 2) TEST2 has no special application requirements. -->
<!-- 3) TEST2 is using 1 worker. -->
<!-- 4) Using MQSeries with the default QManager installed on each machine. -->
<!-- and using default format. -->
<!-- 5) No specific body category and body type being used. -->
<!-- 6) Using default tracing to the console. -->
<!-- -->
<!-- -->
<!-- -->
<!-- Copyright (c) 2000 International Business Machines. All Rights Reserved. -->
<!-- -->
<!-- This configuration file is as an example only. -->
<!-- -->
<!-- IBM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS -->
<!-- SAMPLE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE -->
<!-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR -->
<!-- PURPOSE, OR NON-INFRINGEMENT. -->
<!-- -->
<!-- CopyrightVersion 1.0 -->
<!-- -->

<Epic o="ePIC">
<ePICApplications o="ePICApplications">

<!-- The following is for sample Test Application ID: TEST1 -->
<ePICApplication epicappid="TEST1">

<!-- Tracing on/off. If no entry defaults to false. -->
<epictrace>false</epictrace>

<!-- Trace levels - 512=TYPE_ERROR_EXC (Exceptions),-1=TYPE_ALL (All possible messages). -->
<epictracelevel>0</epictracelevel>
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<!-- Default destinations to send messages to. -->

<epicdestids>TEST2</epicdestids>
</ePICBodyType>

</ePICBodyCategory>
</AdapterRouting>

</ePICApplication>
<!-- The following is for Test Application ID: TEST2 -->
<ePICApplication epicappid="TEST2">

<epictrace>false</epictrace>
<epictracelevel>512</epictracelevel>

Appendix D. Sample of the configuration file 93

<AdapterRouting cn="epicadapterrouting">
<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<!-- AdapterDaemon - Command to invoke. -->

<epiccommandclassname>com.ibm.epic.adapters.eak.samples.SampleCAdapterWrapper
</epiccommandclassname>
<epicreceivemode>MQ</epicreceivemode>

<!-- Recieve Time out in milliseconds ie. 1000 = 1 second, -->
<!-- -1 means never ending. No entry defaults to 0. -->
<!-- milliseconds. Used when receiving messages. -->

<epicreceivetimeout>30000</epicreceivetimeout>
<epicreceivemqppqueue>TEST2AIQ</epicreceivemqppqueue>
<epicerrormqppqueue>TEST2AEQ</epicerrormqppqueue>
<epicreplymqppqueue>TEST2RPL</epicreplymqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>

</ePICApplications>
</Epic>

94 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix E. Sample of the setup file

The following is an example of the aqmsetup file, which defines several of the
kernel’s initial configuration values, including several environment variables.
See “The setup file” on page 47 for additional information about this file. The
aqmsetup file is located in the samples directory of the kernel’s root installation
directory.
#
aqmsetup 1.00 00/08/03
Sample AQM Adapter runtime parameter configuration file entries.
#
Copyright (c) 2000 International Business Machines. All Rights Reserved.
#
This configuration file is as an example only.
#
IBM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS
SAMPLE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.
#
CopyrightVersion 1.0
#
#
Pound (#) signs are comments.
#
##
#
Use WebSphere Business-to-Business Integrator product 5799-RNK LDAP Directory
Services or configuration file. No entry defaults to true (use configuration
file). To use the WebSphere BtoB Integrator directory service set the value
to false. Refer to the WebSphere BtoB Integrator documentation for
specifics on using the directory service.
#AdapterDirectoryUseFileFlag=true
When using WebSphere Business-to-Business Integrator product 5799-RNK LDAP
Directory Services this additional entry is required. Refer to the
WebSphere BtoB Integrator documentation for specifics on using the
directory service.
#DirectoryServices=G:/mqak1.0.1/bld/TestSetup/DirectoryServices.properties
Location of configuration file aqmconfig.xml when not using
the WebSphere Business-to-Business Integrator product 5799-RNK LDAP Directory
Services.
No entry defaults to current directory.
#AQMConfig=G:/mqak1.0.1/bld/TestSetup
#
##
##
XML DTD Catalogs and Directories - where to locate DTD's if not
in the current directory.
Format: XML_DTD_DIRECTORY_x=ddd where x is a numeric suffix to
be incremented for each key and ddd is the directory.

© Copyright IBM Corp. 2000 95

The numeric suffix's must start with 1 and be contiguous.
##
XML_DTD_DIRECTORY_1=G:/Code-Drop3/runtimefiles/oag
#XML_DTD_DIRECTORY_2=ChangeToDestDir/runtimefiles
#
##
Java JNI Environment Variables for C Interface for increasing
the amount of memory used. This applies to when a C module
is instantiating a JVM. When a C Interface is being called
from within JAVA the JVM is already established.
##
The JDK version number being used. 0x00010001 (version 1.1
equates to 65537, no entry defaults to version 1.1
Version 1.2 is not supported.
#AQM_JNI_VERSION=65537
The stack memory is used for holding local function, function
parameters, local variable references.
Native stack is used for non-Java calls from within Java such
as to C code. Stack size in bytes to use.
Default is 128 kilobytes on NT.
#AQM_JNI_NATIVESTACKSIZE=1048576
Java stack is for Java method calls and local variables.
Stack size in bytes to use.
Default is 400 kilobytes on NT.
#AQM_JNI_JAVASTACKSIZE=4194304
The heap memory is used for storing instantiated Java objects
Minimum heap size in bytes to start with.
Default is 1 megabyte on NT.
#AQM_JNI_MINHEAPSIZE=16777216
Maximum heap size in bytes which can be used.
Default is 16 megabytes on NT.
#AQM_JNI_MAXHEAPSIZE=268435426
#
##
Designate end of configuration file
##
*ENDCFG

96 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Notices

This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the information. IBM may make

© Copyright IBM Corp. 2000 97

improvements and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

98 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX OS/400
AS/400 RISC System/6000
IBM RS/6000
MQSeries WebSphere

Lotus and LotusScript are trademarks of Lotus Development Corporation in
the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 99

100 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Glossary

The glossary contains key terms and their meanings as used in MQSeries Adapter Kernel
documentation.

If a particular concept or term appears in one section only, it is possibly not included in the
glossary. It can, however, possibly be found in the “Index” on page 105.

The glossary does not include terms for other IBM products such as MQSeries.

adapter. The output of MQSeries Adapter
Builder. Typically, the user builds each adapter to
be specific to one message type that is sent from or
to an application. Thus, the adapters themselves
are not part of MQSeries Adapter Offering. An
adapter consists of C source code that compiles
to a shared library. When the adapters and
MQSeries Adapter Kernel run together, they
perform the run-time functionality of MQSeries
Adapter Offering. Depending on how it was
modeled by the user in MQSeries Adapter
Builder, the adapter can contain a wide variety of
functionalities such as controlflow, dataflow,
sequential navigation, conditional branching
including decision and iteration, data typing,
storing data context, transformation of data
elements, logical operations and custom code.
You can reuse adapters that you have created.

See “message type” on page 103, “source
application” on page 104, and “target
application” on page 104.

adapter daemon. Executable software that is
part of the kernel. The adapter daemon is used
only in the push delivery model. Its purpose is
to instantiate the workers. After it is started, the
adapter daemon remains active. For each target
application, there can be one or more adapter
daemons.

In some cases, the adapter daemon performs the
role of a target application. It performs the
required functionality, for example, using a target
adapter to send an e-mail message or to write a
record to a file.

aqmconfig.xml file. See “configuration file” on
page 102.

aqmsetup file. See “setup file” on page 103.

application logical identifier. An identifier that
represents the application with which an adapter
(either a source adapter or a target adapter) is
associated. See “source logical identifier” on
page 104 and “target logical identifier” on
page 104.

application-neutral format. See “integration
formatted message” on page 102.

application-specific interface. An interface that
is developed outside of MQSeries Adapter
Offering for one of the following purposes:

v To enable the source adapter to acquire a
message from the source application.

v To enable the target application to acquire a
message from the target adapter.

BOD. Business Object Document. A
representation of a standard business process
that flows within an organization or between
organizations. Examples are add purchase order,
show product availability, and add sales order.
BODs are defined by the OAG using XML. See
“OAG” on page 103 and “XML” on page 104.

BODs can be used by MQSeries Adapter Offering
to define message bodies in its integration
formatted messages.

body category. Data contained in a message
that represents the message’s application type,

© Copyright IBM Corp. 2000 101

for example, OAG or RosettaNet. It belongs to
the set of message control values. See “message
control values” on page 103.

Body category also helps specify the message
type. See “message type” on page 103.

body type. Data contained in a message that
represents the specific purpose of the message,
for example, add sales order or synchronize
inventory. It belongs to the set of message control
values. See “message control values” on
page 103.

Body type also helps specify the message type.
See “message type” on page 103.

configuration file. The aqmconfig.xml file,
which contains most of the kernel’s configuration
values. See “The configuration file” on page 47
for details.

communications message. Any communications
transport-specific information plus the message
holder object, converted into a messaging format
specific to the communications transport being
used.

communication mode. The mode used by the
kernel to transport the message and to perform
broker services.

destination logical identifier. A value that
represents the target application. It is used, along
with other message control values, by the kernel
to route messages and to marshal messages. See
“message control values” on page 103.

delivery models. There are two models by
which the kernel interfaces to the target
application. These two models are:

push The kernel is responsible for initiating
and managing delivery of the message
to the target application. This model
typically does not require changing the
target application to support MQSeries
Adapter Offering.

pull The target application is responsible for
managing the delivery of the message.
This model requires changing the target
application to support MQSeries

Adapter Offering. The target application
must manage the kernel’s interface to
the target application.

dependency application identifier. The name
of the application that the worker services. The
worker gets the dependency application
identifier from the configuration file based on the
adapter daemon’s name.

DTD. Document Type Definition. In XML,
usually a file (or several files used together) that
contains a formal definition of a particular type
of document. It specifies the names that can be
used for elements within the DTD, where
elements are allowed to occur within the DTD,
and how the elements fit together. In MQSeries
Adapter Offering, you can use DTDs to define
message bodies. See “XML” on page 104 and
“integration formatted message”.

error queue. In the terminology of MQSeries
Adapter Offering, a message queue that is used
when a message that is obtained from a receive
queue cannot be processed.

integration formatted message. A message
consisting of application data in an
application-neutral format for integration. An
example is an XML document that the source
adapter transforms from the source application’s
format to XML.

kernel. Synonymous with MQSeries Adapter
Kernel.

logon class. A Java class that is specific to each
target application and that can be used to help
deliver the message to the target application. The
logon class is required only when the target
adapter must log on to the target application
before delivering the message. Each logon class
is written by the user. The worker instantiates
the logon class. The logon class looks in the
configuration file to find the values that the
target adapter needs to support the application
specific interface to the target application.
Typically, those values are logon parameters.
Thus, the values are made available to the target
adapter.

102 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

A dummy logon class that does nothing is
provided with the kernel.

message. In MQSeries, including MQSeries
Adapter Offering, a collection of data that is sent
by one program and intended for another
program.

message control values. A collective term for a
set of values in the messages (body and headers)
and in the configuration file that kernel uses to
control the marshaling and routing of messages,
and that each adapter uses to control, in part,
how it performs its functionality.

message holder object. A container for
metadata used by the kernel to encapsulate an
integration message and other control data.

message type. A message that is specified by a
unique combination of body category and body
type. See “body category” on page 101 and
“body type” on page 102.

MQSeries Adapter Builder. Software that
enables a user to build an adapter for virtually
any application by using a graphical user
interface (GUI).

MQSeries Adapter Kernel. A set of APIs and
several executable programs, in C and Java, and
several configuration files. The kernel works with
and supports adapters. See “adapter” on
page 101. In addition to directly supporting
adapters, the kernel performs related functions,
among the most important: routing of messages
and infrastructure services such as message
construction, tracing, and interfacing with
MQSeries or other messaging software.

MQSeries Adapter Offering. A set of
application integration products that consists of
MQSeries Adapter Builder and MQSeries
Adapter Kernel.

MQSeries Adapter Kernel native adapter.
Synonymous with native adapter.

native adapter. Software used for sending and
receiving message holder objects.

OAG. Open Applications Group. A nonprofit
industry consortium comprising many prominent
stakeholders in the business software component
interoperability arena. The OAG defines Business
Object Documents (BODs).

pull model of delivery. See “delivery models”
on page 102.

push model of delivery. See “delivery models”
on page 102.

receive queue. In the terminology of MQSeries
Adapter Offering, a message queue that is used
as the main input queue, to receive messages.
There can be multiple receive queues per target
application, but only one receive queue for each
combination of application identifier, body
category and body type.

reply queue. A message queue that is used to
receive replies. It is used with the kernel’s
sendRequestResponse method.

respond to logical identifier. The logical
identifier of the application to which replies are
to be sent when a reply is requested. It defaults
to the source logical identifier in the message.

setup file. A file that contains several of the
kernel’s initial settings. The default name of the
file is aqmsetup.

source adapter. An adapter that performs the
following tasks:

v Accepts or otherwise acquires structured data
from a source application (typically by using
an application-specific interface that is
developed outside the adapter).

v Processes the structured data according to how
the adapter had been modeled.

v Transforms the structured data into an
integration message format.

v by using the kernel, puts the message onto a
message queue, for delivery to one or more
target adapters and thence to the target
application.

For each message type, there is one source
adapter. Typically, a source application can send

Glossary 103

multiple message types; therefore, in most cases,
a source application is supported by multiple
source adapters.

See “adapter” on page 101.

source application. A program that is required
to send data over a computer network to a
program (known as the target application) that
typically resides on another computer.

source logical identifier. A value that
represents the source application. It is used,
along with other message control values, by the
kernel to route messages and to marshal
messages. See “message control values” on
page 103, “application logical identifier” on
page 101, and “target logical identifier”.

source side of the kernel. The part of the
kernel functionality that begins when the
message is received from the source adapter and
that ends when the message is put onto a
message queue.

target adapter. An adapter that performs the
following tasks:

v Receives a message (from the kernel and
MQSeries or other messaging software) that
had been sent by a source adapter.

v Processes the integration formatted message
according to how the adapter had been
modeled.

v Transforms the integration formatted message
into an application-specific formatted message
that the target application can receive.

v Sends the message to the target application by
using an application-specific interface.

v Lets the worker know when it has completed
sending the message to the target application,
to enable the worker to send an
acknowledgment.

If the target application can receive the
integration formatted message, then a target
adapter is possibly not required.

For each message type, there is one target
adapter. Typically, a target application can accept
multiple message types; in most cases, therefore,

a target application is supported by multiple
target adapters.See “adapter” on page 101.

target application. A program that is required
to receive data over a computer network from a
program (known as the source application) that
typically resides on another computer.

target logical identifier. A value that represents
the target application associated with a target
adapter. See “target logical identifier” and
“application logical identifier” on page 101.

target side of the kernel. The part of the kernel
functionality that begins when the message is
gotten from a message queue and that ends
when the message is sent to the target adapter.

trace client. A component of the kernel that
writes trace messages.

trace messages. Messages that contain the state
of processing a message at a certain point within
the kernel. You can use trace messages to help
diagnose problems with the kernel or with your
adapters.

See “tracing”.

tracing. A collection of processes that the kernel
uses to write trace messages. See “trace
messages”.

transaction. A set of operations that must be
executed as an indivisible unit of work. If all
operations that comprise a transaction are
successful, the transaction is committed; that is,
all of the operations are performed. If one or
more of the operations that comprise a
transaction fail, the transaction is rolled back;
that is, none of the operations are performed.

worker. Software that is part of the kernel. The
worker is used only in the push delivery model.
The adapter daemon starts and creates the
workers. Each worker manages one native
adapter. The worker delivers each message to the
appropriate target adapter.

XML. Extensible Markup Language. A W3C
standard for the representation of data.

104 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Index

A
adapter

examples 2
functionality 2
types 2

adapter daemon
about 9
name 17
started 17

adapter worker
about 9

AIX
software prerequisites 24

application-specific interface
about 4
examples 4

aqmconfig.xml file
editing 47
location 35
name 36
sample 89

aqmcreateq file 46
using 69

aqmcrtmsg file
using 61

aqmsetenv file 46
aqmsetup file

editing 47
environment variable 36
location 35
name 36

aqmsndmsg file
using 62

aqmstrad file
using 65

aqmstrtd file
using 66

aqmverifyinstall file
using 39

aqmversion file
using 68

authority
prerequisite 31

B
BOD

about 11
example 11

Business Object Documents 11

C
communication mode

during run time flow 15
list 15

communications message
definition 11

configuration
receive timeout period 17
trace level 15

configuration component
about 10

configuration file
editing 47

D
data mediation

high level 7
data transformation

high level 7
default values

body category 15
body type 15

dependency application identifier
about 18

disk space requirements 23
DTD

about 10

E
environment variables

AIXTHREAD_SCOPE 36
at installation 36
setting on OS/400 35
temporarily setting for

validation 62
THREADS_FLAG 37

environment variables file 46
Epic

meaning xi
Epic.Message.createReplyMsg 20
exception file

EpicSystemExceptionFile.log 20

F
file

list 27
locations 27

H
hardware prerequisites 23
HP-UX

software prerequisites 24

I
Information Center

MQSeries Adapter Kernel 73
installation 32

procedures 31
integration message

definition 10

J
Java

out of memory condition 21
startup parameters 66

Java logon classes 46

K
kernel

delivery models 6
intended use 28
marshaling 5
routing 5
sides of 4

L
logical message service

during run time flow 16

M
maintenance plan 67
MAX_QUEUE_DEPTH

setting 64
memory utilization

C language 47
Java 47

message
about 10
acknowledgment 7, 15
application-neutral 10
body 10
Confirm BOD message 14
message control values 5, 12
object 15

message control values
details 14

message delivery
multithreaded 9

© Copyright IBM Corp. 2000 105

message delivery (continued)
singlethreaded 9

message headers 83
message holder

about 8
message holder object

definition 11
message types

adapter 3
datagram 7
reply 7
request 7

methods
relation to queues 7
sendMsg 5, 15, 17, 20
sendRequestResponse 5, 15, 17
sendResponse 5
target adapter 19

MQSeries
commit control 19
queue 7
role 7
validated configurations 81

MQSeries Adapter Builder
about 14

MQSeries Adapter Kernel
Information Center 73

MQSeries Adapter Offering
benefits 1
components 2
service offerings 2
sources of information 73
tiers 3

MQSeries Integrator
relationship with communication

mode 16
role of 7
validated configurations 81

N
native adapter

about 9

O
one-phase commit 22
Open Applications Group

about 11
OS/400

installation prerequisites 25
setting environment

variables 35
software prerequisites 25

P
prerequisites

hardware 23

prerequisites (continued)
software 24

procedures
high level ix

Q
queue

error 7
obtaining for reply messages 20
receive 7
reply 7

queueing
commit 7

R
receive queue

target side of kernel 19
routing

complex 7
determined by 12
message control values 12
simple 12
stages 12

run-time flow
detailed 12
overview 4

S
scheduling policies 36
scheduling policy

threads 18
SDK

definition 29
setup file

editing 47
software prerequisites 24

AIX 24
HP-UX 24
OS/400 25
Solaris 24
Windows 24

Solaris
software prerequisites 24

source adapter
about 8
functionality 4

source application
format 4

T
target adapter

about 10
command 19
Epic.Message.createReplyMsg 20
functionality 6

threads
scheduling policy 18

trace
during run time flow 15
trace enabled 15

tracing
about 22
starting 66

tracing component
about 10

transactional capabilities 22

V
validating configuration file

XML message 61
verification problems

aqmconfig.xml file 40
aqmsetup file 40
environment variable 40
MQSeries error 42
queue manager 41
queues 40
target adapter 41

W
Web sites

MQSeries 23
MQSeries product family 73
MQSeries SupportPacs ix
Open Applications Group 73
publications ix
related information ix
XML 73

Windows
software prerequisites 24

worker
flags 21
instantiation 18
minimum number 18

X
XML

about 10

106 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

IBMR

Printed in U.S.A.

GC34-5855-04

	Contents
	Figures
	Tables
	Welcome to the MQSeries Adapter Kernel QuickBeginnings
	Who should use this information
	Related information

	Conventions
	Summary of changes
	Chapter 1. About MQSeries Adapter Offering
	Build time and run time
	About the kernel
	Role of MQSeries or other messaging software
	Role of MQSeries Integrator

	How the kernel works
	Components of the kernel run time
	Message and message format
	Routing and delivery
	Run-time flow
	Transactional capabilities
	Limitations

	Tracing

	Chapter 2. Planning to install the kernel
	Hardware
	Software
	Prerequisites for OS/400 installation
	Using remote AWT
	Using an attached client

	Components of the kernel

	Chapter 3. Installing the kernel
	Preparing for installation
	Installing the kernel
	Verifying the installation
	Verification procedure
	Common verification problems
	Optional verification

	Removing the kernel
	Upgrading the kernel

	Chapter 4. Using the kernel
	Preparing for production
	Configuring the kernel
	The setup file
	The configuration file
	Syntax and organization of the configuration file
	Adding adapter information to the configuration
	Editing the configuration file
	Validating the configuration file

	Configuring MQSeries and MQSeries Integrator
	Performance recommendations
	Starting the kernel
	Stopping the kernel

	Maintaining the kernel
	Diagnosing problems
	Version number

	Exception messages
	Trace messages
	Utilities
	Creating MQSeries queues

	Chapter 5. Using MQSeries Adapter Kernel APIs
	Chapter 6. Obtaining additional information
	Available on the Internet
	References

	Appendix A. Communication modes
	Using JMS object storage

	Appendix B. Validated configurations
	Appendix C. Message headers
	MQSeries message descriptor header
	MQSeries without MQSeries Integrator
	MQSeries Integrator version 1 header
	MQSeries Integrator version 2 header

	Appendix D. Sample of the configuration file
	Sample of a minimum configuration file

	Appendix E. Sample of the setup file
	Notices
	Trademarks

	Glossary
	Index

