

Developer Productivity Study – EGL vs. .NET
Comparing IBM® Developer Tools to

Microsoft® Developer Tools

Prepared by:
Branham Group Inc.

100 Constellation Crescent, Suite 915
Ottawa, ON K2G 7E6

Tel: (613) 745-2282
Fax: (613) 745-4990

www.branhamgroup.com

March 2008

Developer Productivity Study – March 2008

BRANHAM GROUP INC. ii of 45

Important Notice

This document is copyrighted © by Branham Group, Inc. and is protected by Canadian and international
copyright laws. This document was developed based on information and sources deemed to be reliable.
While efforts were made by the Branham Group Inc. to verify the completeness and accuracy of the
information contained in this documentation, this documentation is provided "as is" without any warranty
whatsoever and to the maximum extent permitted, Branham Group Inc. disclaims all implied warranties,
including without limitation the implied warranties of merchantability, non-infringement and fitness for a
particular purpose, with respect to the same. Branham Group shall not be responsible for any liability or
damages, including without limitation, direct, indirect, consequential or incidental damages, arising out of
the use of, or otherwise related to, this documentation or any other documentation.

Trademarks
 IBM, DB2, Rational, WebSphere, System z, System i, z/OS, and i5/OS are either registered trademarks or trademarks of IBM

Corporation in the United States, other countries, or both.
 Microsoft, Windows, BizTalk, SharePoint, Visual Studio, and Visio are either registered trademarks or trademarks of Microsoft

Corporation in the United States, other countries, or both.
 Other company, product or service names may be registered trademarks, trademarks, or service marks of others.

Developer Productivity Study – March 2008

BRANHAM GROUP INC. iii of 45

Table of Contents

1.0 Disclosure ...1
1.1 About Branham Group Inc. ...1
1.2 Commissioned Research..1

2.0 Executive Summary ...2
2.1 Overview ...2
2.2 Goals of this Study..2
2.3 The Tools Compared ..3
2.4 Productivity Study Results ..3

3.0 Introduction...5
3.1 Ground Rules Revisited..5
3.2 Introducing – On Demand Insurance Company ...5
3.3 The Applications and the Tools Used ...6

4.0 The Tools Productivity Methodology ...8
4.1 The Environment Methodology...8
4.2 The Measurement Methodology ...8

5.0 The Productivity Results ...9
5.1 Summary of Productivity Times ..9
5.2 Summary of Requirements Met ..9
5.3 Productivity Detail for each Application ..10

6.0 Conclusions ..17
6.1 Productivity ...17
6.2 Quality ...17
6.3 Requirements..18
6.4 The Value of EGL ...18

7.0 Appendix ...20
7.1 Application Requirements...21
7.2 Application Prototypes ..30
7.3 Detailed Steps to build the IBM Applications..40
7.4 Detailed Steps to build the Microsoft Applications..42
7.5 Glossary..45

Developer Productivity Study

BRANHAM GROUP INC. 1 of 45

1.0 Disclosure

1.1 About Branham Group Inc.
Branham Group provides "Go to Market" direction to global Information Technology products and services
companies.

Since its inception in 1990, the widespread vision of Branham’s professional team has taken the company
to all corners of the globe to assist valued clients. Branham’s clients are based primarily in the United
States, with a large percentage in Canada and Europe. Recently the company’s international reach has
touched Latin American countries and companies in the Asia Pacific markets.

Branham Group acts as an information channel for the future of business in a wired world, helping clients
understand and leverage emerging and emergent technologies.

As enterprises expand worldwide in search of new opportunities, the need for global and local business
intelligence increases. All of Branham's analysis, strategies and recommendations are based on its own
primary research that covers the global market. Branham uncovers and documents the latest in IT
developments, following user trends and next generation IT leaders.

Over the last decade, Branham has assisted world leaders in software, hardware and services. Through
its vast understanding of the IT Market, Branham has been able to deliver meaningful insight to its clients
in the areas of planning, marketing, and partnering.

1.2 Commissioned Research
IBM® commissioned Branham Group Inc. to perform an objective study evaluating the development
productivity differences required to build a useful working application, using tools that support IBM’s
Enterprise Generation Language (EGL) and Microsoft®’s .NET. The application, in its completed form
allows customers to apply for a homeowner insurance policy as well as view existing insurance quotes.

This study leverages parameters from the original Branham Group Productivity Study that was completed
in 2005 (also commissioned by IBM) and compared developer productivity differences between J2EE and
.NET (freely available at http://www.branhamgroup.com/tools_study). Over the course of this study (EGL
vs. .NET), IBM and Microsoft applications were reviewed, designed, built, recorded and carefully timed.
Where necessary, Branham Group updated the Microsoft developed applications to address updated
procedures within the Microsoft development environment (as compared to the 2005 study). For the IBM
EGL applications, IBM developers first designed and created the necessary components, and Branham
Group verified that the design and approach was considered best practice and re-built and timed each
component, respectively. Branham Group used both IBM and Microsoft certified developers to review the
design of the components as well as build them.

Branham Group wholly supports the integrity and the methodology of how this study was conducted as
well as the accuracy of the results and the conclusions. Branham Group and IBM have made every
attempt to provide a fair, honest, and unbiased research study of developer productivity through a real
world working application.

Developer Productivity Study

BRANHAM GROUP INC. 2 of 45

2.0 Executive Summary

2.1 Overview
This paper focuses on comparing various productivity efficiencies and techniques between the IBM EGL
and Microsoft .NET programming environments. Direct measurements are made between equivalent tools
from both environments that accomplish specific tasks in building a fully functional web based application.

Using several of the parameters from the original Branham Group Productivity Study that was completed
in 2005 as the basis for this research, this new study looks at the effort required to complete the first two
applications, plus one additional application, using EGL and .NET. Specifically, this study looks at the
development of a browser based UI, web based processing, creation of a Web Service from scratch, and
a new requirement to retrieve existing customer data from a z/OS located VSAM file (i.e. rather than
duplicating customer data to a local database via batch process as done in the previous study). Virtual
Storage Access Method (VSAM) is a mainframe z/OS access method that allows the organization of data
into files for access via index, relative record numbers or sequential order. The introduction of z/OS
enterprise data into the mix increased development complexity but provides a more realistic scenario for
enterprise IT environments.

Ultimately, Microsoft tools were not able to directly address the third application (the retrieval of customer
information from the VSAM file) without the use of third party tools. Rather than stifle the productivity
comparison for the first two applications, which Microsoft is capable of completing, a local database was
used as the data source for the first two applications similar to the original study. This allowed Branham
Group to complete the development of the web application and Web Service using both the IBM and
Microsoft tools.

2.2 Goals of this Study
This paper reflects on the results of an intensive study that takes an objective look at the productivity
differences between specific IBM and Microsoft tools to build a “real world” multi-tier web-based
application. The specific goals of this study included:

1. Define an objective methodology that would allow a fair “apples to apples” comparison of different
development techniques using IBM and Microsoft tools.

2. Build all the application components necessary to create a working application.

3. Provide an objective measurement methodology to measure the productivity differences between IBM
tooling and Microsoft tooling when building the application components.

4. Document the productivity measurement differences as well as any issues that were observed
between IBM and Microsoft tools in the course of the study.

In summary:

Which development environment is more productive for
constructing robust, enterprise-level, server side applications?

IBM or Microsoft

Developer Productivity Study

BRANHAM GROUP INC. 3 of 45

2.3 The Tools Compared
In order to build the web-based application based on the specified requirements, the following IBM and
Microsoft tools were used. This list does not include additional support software that was required, such
as IBM DB2 or Microsoft SQL Server. In all cases, only the latest supported developer tools, from both
IBM and Microsoft, were used. Beta or “early” versions of developer tools were not allowed within the
scope of this productivity study.

Table 1 - Tools used in the Productivity Study

IBM Tools Microsoft Tools1

 Rational® Application Developer V7.0.0.3
 Rational Business Developer Extension

V7.0

 Visual Studio® .NET 2005 Service Pack 1

2.4 Productivity Study Results
In an effort to provide additional granularity with respect to measurable levels of productivity, the
application testing was divided into smaller steps. A detailed description of this breakdown is documented
in the Appendix, Section 7.3 (IBM) and Section 7.4 (Microsoft).

Summary of Results
Compared to the previous 2005 study, Microsoft related times decreased significantly for the application
parts that were created. This is attributable to hardware advances and code optimization, as well as
changes in development practices. Specifically, instead of creating the necessary HTML templates and
CSS files from scratch within the development tools (as done previously), these were supplied by a
fictitious design firm and simply imported into the tools, typifying more current web application
development practices. While there is a significant decrease in Microsoft related times compared to the
previous study, these fundamental changes eliminate any ability to draw conclusions or comparisons to
the J2EE related development times from the previous study. Key findings from this year’s study as they
relate to EGL and .NET development productivity include the following:

1. The timings for the creation of web based applications and Web Services through EGL or .NET were
essentially equivalent for the applications that were built. There were no significant measured
productivity differences. There were a couple of interesting observations made however, which may
have an effect on productivity on a larger scale. First, Microsoft still requires the manual creation of
scaffolding for the testing of its Web Services, adding time and complexity. Second, while the overall
times for IBM EGL and Microsoft .NET were similar when building the web application, given IBM
EGL’s use of a MVC architecture, the bulk of the logic (model of MVC) was completed in the initial test
case. This resulted in the individual pages (view of MVC) taking significantly less time to complete
compared to Microsoft, culminating in similar development times overall. If the web application was
significantly larger in scope, this reduced development time could have resulted in a more favorable
productivity measurement compared to Microsoft .NET.

2. In general, as the application requirements became more complex and required access to existing
enterprise assets, the Microsoft development environment would have required more tools (third
party) than the IBM development environment. An increase in tools can typically be equated to an
increase in complexity in development particularly when these tools are not integrated. Similarly,
increased complexity in tools is not conducive to ensuring high quality applications.

3. The Rational Business Developer Extension and EGL allowed developers to create both Java and
COBOL applications through a single high-level language, a single development environment, and a

1 The Microsoft environment includes the .NET framework V2.0 with Service Pack 1

Developer Productivity Study

BRANHAM GROUP INC. 4 of 45

single debugging environment without a need to know a single line of Java or COBOL to complete the
applications.

Table 2 – Summary of the Productivity Study

Application IBM Productivity
Difference Microsoft

1. Web Application for the homeowner policy quote 63 1.0X 66

2. Web Service built from scratch 10 1.0X 10

3. COBOL/CICS server program to manipulate
VSAM data file NM N/A Unsupported

NOTE(s):
• All times noted are in minutes
• NM = Not Measured
• N/A = Not Applicable
• Unsupported = Unable to build the required functionality through Microsoft tools only.
• Since Application #3 could not be built using Microsoft tools because of product functionality limitations, the testing for the same

application using the IBM tools was not completed

Conclusion:

For simple web application development, IBM EGL productivity is
similar, if not better than, Microsoft Visual Studio 2005 .NET.
Additionally, IBM EGL provides higher productivity for cross-

platform, enterprise-level application development through a single
IDE and language.

Developer Productivity Study

BRANHAM GROUP INC. 5 of 45

3.0 Introduction

In 2005, Branham Group completed an exhaustive study comparing the productivity of IBM (J2EE) and
Microsoft (.NET) development tools for building real world web applications. This particular study revisits
the original productivity study from a new IBM perspective; the EGL development language and
associated development environment. Specifically, this study compares the productivity of IBM EGL
development versus that using Microsoft Visual Studio 2005 .NET.

IBM’s Enterprise Generation Language (EGL) is a high-level language that provides an additional layer of
abstraction from lower level programming languages and architectures. Specifically, EGL is a language
that is not tied to a specific technology. It provides platform neutrality allowing a deployed application to be
generated for a number of target environments. Developers are not required to learn multiple languages,
but instead use the neutral language and transform it into the language that best suites the selected target
environment (COBOL, Java). Code generation predictively reduces the cost and time needed to become
proficient in designing and implementing applications in multiple languages and environments.

Given the passage of time since the 2005 study, the release of new versions of the Microsoft development
tools, changes in development technologies, and changes in real world web based application
development practices, the Microsoft tools were retested in this study to provide a true, accurate, and
current comparison to EGL. By way of retesting the latest Microsoft tools, this process also eliminates any
indiscretions related to improvements in hardware and other performance optimizations, ensuring a fair
comparison between both environments.

It should be noted however, that while the Microsoft development tools were retested, the IBM Java tools
used in the original study were not. The point of this study is to only consider the productivity differences
and similarities between the respective IBM EGL and Microsoft .NET development tools.

3.1 Ground Rules Revisited
In the original 2005 productivity study there were specific ground rules that were followed. These same
ground rules apply to this study and consist of the following:

1. Tools must be generally available from IBM and Microsoft at the time of the study and supported as
current products. No beta or early release products were allowed in this comparison.

2. No third party tools or solutions were allowed. Only IBM and Microsoft supported tools.

3. Productivity is measured by the time it takes to complete a working and tested component.

4. No un-documented features or procedures were used. For the building of all components, fully
documented “best programming practices” were used.

5. Try to mitigate developer skill factor or experience differences with respect to component timings by
allowing developers to achieve their peak productivity efficiency. Developers ‘practiced’ building the
application components multiple times to achieve peak productivity efficiency, only then was the time
to build components officially recorded.

3.2 Introducing – On Demand Insurance Company
On Demand Insurance Company’s (ODIC) core business has always been homeowners insurance. Over
the past several years, the company has grown via acquisition, acquiring various additional lines of
business such as auto and life insurance, including the problems associated with integrating these
acquired data systems.

In the past, ODIC has used paper centric processes for its homeowner policies. The company is trying to
streamline its homeowner’s policy processes through automation. Where it has already been successful
implementing the application process for auto and life on its internet portal site, ODIC now wishes to build
a proof of concept for a homeowner’s policy on the internet. The company starts by sending mail to
existing preferred customers (of either auto or life policies) to invite them to look into a home policy at a

Developer Productivity Study

BRANHAM GROUP INC. 6 of 45

special web site (non-portal). If the trial period is successful, the company plans to move its non-portal
application to the main portal site and open the program to the general public.

3.3 The Applications and the Tools Used
ODIC management initially wants to test what the demand from customers will be for a web site that will
allow them to apply for a homeowner policy. The company decided to “test the waters” by developing a
simple web application that will ask a few questions about the customers home and will return an “informal
quote” of how much a homeowners policy will cost. ODIC decided that if it sees a high demand for this
informal quote, it will then invest in a more formal quote process.

Table 3 provides a description of the particular applications built for this productivity study.

Table 3 – Description of the Applications

Name of Application Description of Application

1. Web Application for the
homeowner policy quote

The web user interface and application used to apply for an
informal insurance quote for home insurance.

2. Web Service built from
scratch

This web service encapsulates a credit score check for
customers requesting quotes, which is used in a risk
assessment calculation. This web service is built from scratch.

3. COBOL/CICS server program
to manipulate VSAM data file

This server side application provides the necessary facilities to
retrieve customer data directly from the mainframe Virtual
Storage Access Method (VSAM) data file.

NOTE: While IBM EGL can be used to generate the necessary COBOL/CICS application, timings for this particular application
were not performed due to the fact that Microsoft tools cannot complete these steps.

The first application provides a web based user interface allowing a customer to request a formal quote.
Based on customer information held within an existing mainframe VSAM file and additional information
submitted by the customer, a risk factor is calculated allowing an informal quote to be returned to the user.
Similarly, the second application uses the customer information from the VSAM file to perform a credit
check for that customer. The third application provides the necessary server program to retrieve this
customer information.

It should be noted however, that ideally, Application 3 should be created first, so that Application 1 and 2
can use the retrieved data to complete their tasks. The issue however, is that Microsoft tools alone cannot
create the necessary COBOL/CICS code to create this particular application. In this case, this caveat
would have stifled the creation of Application 1 and 2 using only Microsoft tools. As such, for Application 1
and 2 in this study, the customer data was duplicated to a local data source that was accessible to both
IBM and Microsoft tools to allow the completion of these applications. In the case of the IBM tools, the
data source made available by Application 3 could just as easily have been used in lieu of the local
database with comparable effort. While the introduction of z/OS (or i5/OS) enterprise data into the mix
increases development complexity, it does provide a realistic scenario given the amount of data that exists
within these assets.

Note: This particular Application 3 caveat was also circumvented in the initial 2005 productivity study by
using a batch process (created with non-Microsoft tools) that downloaded the VSAM customer information
to a local database on an hourly basis and was described as “beyond the scope” of the study.

Finally, Table 4, on the following page, provides a list of the corresponding vendor tools that were used to
create each of the applications.

Developer Productivity Study

BRANHAM GROUP INC. 7 of 45

Table 4 – Applications and Tools used

Name of Application IBM Tools Used Microsoft Tools Used

1. Web Application for the
homeowner policy quote

 Rational Application Developer
V 7.0.0.3

 Rational Business Developer
Extension V7.0

 Visual Studio .NET Enterprise
Architect 2005 SP1

2. Web Service built from
scratch

 Rational Application Developer
V 7.0.0.3

 Rational Business Developer
Extension V7.0

 Visual Studio .NET Enterprise
Architect 2005 SP1

3. COBOL/CICS server
program to manipulate
VSAM data file

 Rational Application Developer
V 7.0.0.3

 Rational Business Developer
Extension V7.0

 Not Supported

NOTE: While IBM EGL can be used to generate the necessary COBOL/CICS application, timings for this particular application were
not performed due to the fact that Microsoft tools cannot complete these steps.

Developer Productivity Study

BRANHAM GROUP INC. 8 of 45

4.0 The Tools Productivity Methodology

4.1 The Environment Methodology2
In order to achieve an identical and repeatable operating environment for the EGL and .NET productivity
testing, both the IBM and Microsoft developers used identical hardware with identical processor speeds
and memory. The developer environment was further controlled with identical VMWare images that were
installed on the hardware. These VMWare images were “cloned” such that an exact operating
environment (Microsoft Windows XP Professional 2002 SP-2) existed for both the EGL and .NET
development environments. Other than the development tools themselves, this eliminated any differences
between the software environments since both were using a duplicated environment.

4.2 The Measurement Methodology
Based on the foundation of the original Productivity Study that was completed in 2005, this version of the
study leverages many of those same core application development requirements. Section 7.1 of the
Appendix documents in detail all the functionality that the entire Insurance application needs to achieve.
Section 7.2 of the Appendix also includes the prototypes of each web page as they should look in their
final form.

The application code for the components from the 2005 study also existed for the .NET environment.
However, given the evolving and updated tool set, Branham Group made modifications to update and
address the changing Microsoft related development processes. Simultaneously, IBM developers
designed and built the necessary components using the EGL development language. Each component
was then independently reviewed by Branham Group to assure that it was considered best practice in the
development community, that the approach was well documented and understood, and that it remained in
line with the final requirements and expected results of ODIC.

Although developers were picked that had extensive experience with each of the IBM and Microsoft tools,
to eliminate bias based on experience levels, each developer built each of the components multiple times
such that they became proficient and achieved an optimal level of productivity. Once the optimal level of
productivity was reached, each component was timed in order to document the productivity measurement.

2 Proper licensing was obtained and was in place for both IBM and the Branham Group for the usage of VMWare, all the IBM
products, and all the Microsoft products.

Developer Productivity Study

BRANHAM GROUP INC. 9 of 45

5.0 The Productivity Results

5.1 Summary of Productivity Times

The productivity results were measured multiple times for both the EGL and .NET environments using
different developers. Each developer practiced building each application to give them “expert status” on
each tool before recording their final times. Table 5 represents the average time to complete each
application.

Table 5 – Summary of the Productivity Study

Application IBM Productivity
Difference Microsoft

1. Web Application for the homeowner policy quote 63 1.0X 66

2. Web Service built from scratch 10 1.0X 10

3. COBOL/CICS server program to manipulate
VSAM data file NM N/A Unsupported*

NOTE(s):
• All times noted are in minutes
• NM = Not Measured
• N/A = Not Applicable
• Unsupported = Unable to build the required functionality through Microsoft tools only.
• While IBM EGL can be used to generate the necessary COBOL/CICS application, timings for this particular application were not

performed due to the fact that Microsoft tools cannot complete these steps.

Conclusion:

5.2 Summary of Requirements Met
In addition to the productivity times recorded, it is also important to note if the basic requirements outlined
by On-Demand Insurance Company, were met for each of the applications. A detailed description of
application requirements is available in the Appendix (section 7.1 and 7.2). While both vendors provide
the facilities to create the first two applications, Microsoft tools cannot address the requirements of
Application #3. This is summarized in Table 6 below:

Table 6 – Summary of the Requirements that were met

Application IBM Microsoft

1. Web Application for the homeowner policy quote Yes Yes

2. Web Service built from scratch Yes Yes

3. COBOL/CICS server program to manipulate VSAM data file Yes No

For simple web application development, IBM EGL productivity is
similar, if not better than, Microsoft Visual Studio 2005 .NET.

Developer Productivity Study

BRANHAM GROUP INC. 10 of 45

Requirements that Microsoft tools did not meet:

3. COBOL/CICS server program to manipulate VSAM data file

Major Concern(s):

Microsoft does not provide tools for creation of COBOL/CICS server programs. While it is not possible for
Microsoft tools to create the necessary COBOL/CICS server program to manipulate customer data from a
VSAM file, if the necessary program was built using additional tools, then the process could likely be
completed. For example, if the COBOL/CICS server program was created and exposed through Web
Services, Microsoft tools could use this Web Service to complete the task. This however, defies the
ground rule that no third party tools or solutions are allowed as part of this study.

Conclusion:

5.3 Productivity Detail for each Application
This section takes a detailed look at each of the three applications. The following is covered for each
application, taking into consideration that the third application was not actually built:

a. Summary of productivity and requirements
b. How it was/could be built with IBM tools
c. How it was/could be built with Microsoft tools
d. Lessons learned and issues encountered
e. Bottom line points

1. Web Application for the homeowner policy quote

Brief Description:

This is a web-based application that a customer uses to apply for an informal insurance quote for
homeowner’s insurance. For each quote, the user supplies information regarding the property they wish to
insure, and the application generates a risk factor. The informal quote process uses this risk factor to
provide an immediate quote to the customers. The layout of the pages and the detailed requirements,
including the look and feel prototypes, are available in section 7.2 of the Appendix.

One modification between this and the previous version of the study, is that developers were no longer
required to create the HTML based templates themselves. It is now common practice to have a design
firm or department create the basic layout and supply the developers with the necessary templates,
images, and cascading styles sheets. This allowed the developers to simply import the graphics and
templates into the corresponding development tools. As compared with the previous study, this practice
can also account for the significant drop in development times.

Table 7 below summarizes the average results of the multiple timings conducted by the different
developers.

IBM tools can fulfill real world cross platform heterogeneous
enterprise-level application requirements better than Microsoft.

Developer Productivity Study

BRANHAM GROUP INC. 11 of 45

Table 7 - Summary of Productivity and Requirements

Description IBM Microsoft Difference

Average Time in minutes to build entire working application 63 66 1.0X

Did it meet the application requirements yes yes N/A

How it was built with IBM tools
(see Appendix 7.3 for the detailed steps)

Tools used included:
 IBM Rational Application Developer with Rational Business Developer Extension
 Templates

Developers accomplished this task using IBM Rational Application Developer with the Rational Business
Developer extension. First, an EGL Web Project was created and all the necessary the necessary data
access EGL was written. This allowed read and write access to the associated database objects. The
second step was creating each of the individual pages and their navigation. In each case, the individual
page (JSP) was created using the provided JSP template (to comply with the look and feel requirements).
The required components for the individual page were created by dragging and dropping the widgets from
the pallet of available parts. These widgets were connected to EGL data access functionality created
earlier, again using drag and drop.

How it was built with Microsoft tools
(see Appendix 7.4 for the detailed steps)

Tools used included:
 Visual Studio .NET 2005
 ASP.NET
 .NET Framework 2.0
 Data bound controls calling ADO.NET
 Forms Authentication

Developers accomplished this task using the Visual Studio .NET 2005 product. First, an ASP.NET Web
Application project was created in Visual Studio .NET. The common UI layout and image files were
imported and ASP.NET User Controls were created to encapsulate the UI layout.

Once the style was finalized, Web form controls were drag and dropped into the content cells, and
validation controls were added and properties set. Additionally, event handling code was written to handle
event logic as well as the various insurance parameters that were stored in the sessions in order to
calculate the risk factor.

Lessons Learned and Issues Encountered

Microsoft has traditionally been a leader in developer productivity for building web applications like this
one. The ability to drag and drop web forms on to a web page makes this a fairly easy and productive
task. The ability to create the build instructions as part of VS.NET makes it easier to build the solution with
minimal compiler knowledge. Further, with the introduction of Master pages, Microsoft has closed the
gaps to IBM templates.

While the overall timings are very comparable between these two development environments, there were
some interesting differences in times at the page level. Specifically, IBM EGL required more initial setup
and configuration of the application before the creation of the individual pages than Microsoft. However,
once the necessary libraries were created, the time required to create the individual IBM pages was
significantly less than Microsoft. Given this finding, it begs the question, given a requirement to create

Developer Productivity Study

BRANHAM GROUP INC. 12 of 45

even more pages, would IBM EGL have provided more positive results in productivity compared to the
Microsoft product?

IBM

1. The re-usable templates made this a very nice productivity feature. Comparatively, overall developer
productivity would likely have been significantly higher for a much larger application with significantly
more pages.

2. Binding JSF and EGL components made for a very productive and error free programming
environment.

3. Validation rules can be associated to a data item. Every time that item is used in a particular context
the validation is automatically applied and enforced. This can significantly reduce repetitive and error-
prone coding.

4. For users familiar with EGL, the application was easily written without intimate knowledge of Java or
JSP programming.

Microsoft

1. Overall, this was a straightforward web application to build and something that Visual Studio .NET
does well. Microsoft has increased its capabilities with respect to building data bound web forms. With
the introduction of master pages, the common look and feel was able to be implemented with ease.

2. One issue came up, which depending on the nature of the application requirements, could have had a
very negative effect on the productivity times. Although the issue did not greatly impact this study,
developers should be aware of it.

Issue 1: ODIC naming convention issue.

A curious bug arose when making use of the DataSet. When a dataset was added and named ODIC it
worked as expected. Tables were added along with specialize queries and all compiled well.
However, when used in a page, it would generate a peculiar error:

Warning 1: The type 'ODIC' in 'c:\Users\AppData\Local\Temp\Temporary ASP.NET
Files\odic\ef03441c\53cc7fc3\App_Web_xv2upsqc.0.cs' conflicts with the imported type 'ODIC' in
'c:\Users\AppData\Local\Temp\Temporary ASP.NET
Files\odic\ef03441c\53cc7fc3\App_Code.sinhm2g1.dll'. Using the one in
'c:\Users\AppData\Local\Temp\Temporary ASP.NET
Files\odic\ef03441c\53cc7fc3\App_Web_xv2upsqc.0.cs'. c:\Users\AppData\Local\Temp\Temporary
ASP.NET Files\odic\ef03441c\53cc7fc3\App_Web_xv2upsqc.0.cs 163

This is coincidently caused by having a masterpage (ODIC.master) the same name as the dataset.
Had the specific Microsoft recommended naming practice been followed, the dataset should have
been named ODICDataSet and this problem would have never occurred.

Bottom Line Points

1. The introduction of Microsoft master pages provides a method for implementing page templates,
increasing productivity compared to its previous incarnation.

2. The margin of difference in productivity timings was very small, illustrating that EGL can provide
similar productivity for these types of web based applications.

3. While the initial test case for IBM EGL did take a little longer than Microsoft Visual Studio, this initial
time significantly reduced the times for building the individual pages. While the overall timings were
similar for the two vendors, given the reduced time for individual page construction by IBM vs
Microsoft, the creation of a larger application could have illustrated more favorable results for IBM
EGL as the number of pages increased.

Developer Productivity Study

BRANHAM GROUP INC. 13 of 45

2. Build Web Service from Scratch
Brief Description:

This Web Service performs a credit report check of the applicant using a Web Service from one of the
“big” three credit agencies. This web service will eventually be used within a workflow (beyond the scope
of this study) to further refine the customer Risk Factor for a formal quote request. This Web Service was
created from scratch.

Table 8 summarizes the final results of multiple timings by different developers.

Table 8 - Summary of Productivity and Requirements

Description IBM Microsoft Difference

Average Time in minutes to build entire working application 10 10 1.0X

Did it meet the application requirements yes yes N/A

How it was built with IBM tools
(see Appendix 7.3 for the detailed steps)

Tools used included:
 IBM Rational Application Developer with Rational Business Developer Extension

In this application, developers created a web service built from EGL code written from scratch. Once this
EGL code was written to perform the business logic, the EGL Deployment Descriptor was modified, the
Web Service wrapper generated and the application deployed as a Web Service. Tests were run on the
built in (the server is built into the Rational tool) WebSphere Application Server; also known as the Unit
Test Environment (UTE).

How it was built with Microsoft tools
(see Appendix 7.4 for the detailed steps)

Tools used included:
 Visual Studio.NET
 .NET Framework 2.0

First, a new ASP.NET web service project was created, generating a “Hello World” skeleton example
within Visual Studio .NET. Manual coding was then required to write the Web Service methods that
provided the functionality required, and needed to work with the provided classes - Person, CreditReport,
CreditScore and Address. It was required to instantiate these classes within a Web Service method and
call the appropriate methods. The Credit Report Web Service uses complex data types, which contain a
number of private fields. Visual Studio .NET 2005 does not automatically generate property fields
corresponding to private fields so these private fields were manually mapped for each class property. For
testing a web service, Microsoft Visual Studio 2005 .NET provides an HTTP test page but no SOAP
tester. The HTTP based test page provided cannot test complex data types. Thus, it was necessary to
build a rudimentary test scaffold to test the web service.

Lessons Learned and Issues Encountered

IBM

1. Deployment of EGL as a Web Service required only the modification of the EGL Deployment
Descriptor and the generation of the Web Service wrapper. This was a simple process.

2. The Rational Application Developer environment provided a fully functional built in Unit Test
Environment.

Developer Productivity Study

BRANHAM GROUP INC. 14 of 45

Microsoft

1. Although there was a “hello world” sample skeleton to get started, there were not any wizards to help
build the classes. The various web service methods had to be hand coded.

2. In Microsoft, property fields are used to access data (as opposed to getters and setters in Java).
Visual Studio .NET does not automatically generate these property fields so manual mapping for
every private field to the property fields was required.

3. There is no functional SOAP tester available, so developers are required to create a custom one.

Bottom Line Points

1. The IBM development environment is highly productive for creating web services from scratch for
either primitive or complex data types. Minimal effort was required for Web Service deployment.

2. The Microsoft development environment relies on a sample skeleton code to get started as well as
manual hand coding to build the complex data type web service. While an HTTP test of the web
service can be run with a browser, for full SOAP testing, developers must build their own test form.
For more complicated or a larger number of web services, this would become more time consuming.

3. COBOL/CICS server program to manipulate VSAM data file
Brief Description:

In order to calculate risk factors for generating quotes, customer data must be retrieved from a z/OS
VSAM file. In the 2005 study, customer data was downloaded to a separate ODIC database using an
hourly batch process. Instead of duplicating this information, ODIC would like to retrieve the data directly
from the VSAM file. This is more realistic since most of the datasets and legacy code called by the server
program will typically be located within z/OS under CICS.

Table 9 - Summary of Productivity and Requirements

Description IBM Microsoft Difference

Average Time in minutes to build entire working application NM Unsupported N/A

Did it meet the application requirements yes no N/A

NM = Not Measured
N/A = Not Applicable
Note: While IBM EGL can be used to generate the necessary COBOL/CICS application, timings for this particular application were
not performed due to the fact that Microsoft tools cannot complete these steps.

How it could be built with IBM tools

Tools used would include:
 IBM Rational Application Developer with Rational Business Developer Extension

Given the inability to create this application using Microsoft tools only, this particular application was not
built, but rather left as a written exercise. As such, the following provides some details with regard to the
process required to create this application using IBM tools.

While it is possible to create all components under the initial Web project, the EGL server component is
created in a separate EGL project to provide a clear separation between the server portion of the
application from the client side.

Note: It is good practice to code an application from "back to front". Specifically, the "back" of an
application, its data access and working areas, are completed first, moving to the programmatic logic, and
finally the user interface areas. Using this “back to front” practice, before the new JSF and EGL
components built in Application 1 in the EGL Web project can be created, the EGL components created
for the server side (this application scenario) need to be visible to pass the data. Since the Microsoft tools

Developer Productivity Study

BRANHAM GROUP INC. 15 of 45

themselves could not create the components for this application, this “back to front” practice was not
followed in order to allow Applications 1 and 2 to be completed by Microsoft (using the local data source).

After creating the new EGL project, the preferences for the data connections are set and the EGL parts
created. For example, a linkage part defines how the generated Java client code should invoke a called
EGL program, such as using a J2C connector to put all parameters in the CICS commarea. The
application is tested using the EGL debugger, at which point no Java or COBOL code has yet been
generated for the EGL server program. Once the program has been thoroughly tested and debugged, the
appropriate build descriptors are created and the COBOL/CICS code generated, submitting the
mainframe components to create the executables. During the COBOL program generation, EGL by
default also produces a build plan as an input to the step that prepares the generated output for run time.

Further, this is only one way that the application could be built. Instead of building the web based
component of the application to invoke the EGL services directly, the generated COBOL/CICS server
program can be generated and implemented as a Web Service including the associated WSDL files.
While this does provide additional flexibility and value, it also increases the overhead typically associated
with Web Services. For performance reasons, the use of an EGL service is preferred.

It should also be noted that this capability is not limited to the System z platform. For example,
organizations with customer data stored in a System i i5/OS logical file, instead of a z/OS VSAM file can
just as easily utilize these existing facilities in a similar manner.

How it could be built with Microsoft tools

In short, Microsoft tools do not provide the facilities to create the necessary COBOL/CICS server
programs to manipulate the VSAM files containing the customer data. Out of the box, Microsoft Visual
Studio .NET 2005 does not provide CICS integration. In essence, in the case of manipulating VSAM files,
it is impossible to remain true to the ground rule of only using solutions from a single vendor (i.e.
Microsoft). At a minimum, mainframe development tools are required to develop the necessary
components. These might include TSO/E, ISPF, SDF2, etc. In order to provide integration with CICS, the
destination system would have to implement a Web-Service, a COM+ interface, or use Microsoft Host
Integration Server 2006 to make a CICS client available to a.NET component.

A Host Integration Server license is part of a BizTalk license, which is Microsoft’s SOA solution for
integrating .NET to legacy systems. BizTalk 2006 R2 licenses cost between $500 and $35K per
processor. This can add significant costs for those organizations looking to purchase BizTalk server
licenses for the operational environment.

Lessons Learned and Issues Encountered

IBM

1. IBM can meet all the requirements allowing developers to create, test and debug the mainframe
related COBOL/CICS server program through the same interface used for the JSF components.
Ultimately, all the developed components can be tested together through a single development and
testing environment.

2. Development and testing of mainframe code can be performed locally on the workstation without a
requirement to deploy.

Microsoft

Although this application cannot currently be built solely using Microsoft tools, it is possible to create the
necessary components through additional tools. Depending on how the components are to be
implemented, this can dramatically effect the associated costs. While the implementation of a
COBOL/CICS Web Service will theoretically allow the direct connection, additional overhead will be
added. Alternatively, additional costs would be associated with additional Microsoft licenses.

Developer Productivity Study

BRANHAM GROUP INC. 16 of 45

Bottom Line Points

1. IBM Rational Application Developer provides developers with a single environment for creating not
only the user facing and server side Java code, but also the necessary code to capitalize on existing
enterprise assets residing on the System z platform.

2. IBM Rational Application Developer provides a testing environment that allows all the separate
components to be tested together. This allows developers to see the call statements and both sides of
execution in the debugger. It provides VSAM remote access from the remote workstation allowing it to
be accessed by the debugger. In this way, the entire application can be tested before any Java or
COBOL code is generated. Specifically, developers are not required to regenerate the Java or
COBOL code every time editing of the EGL source occurs.

3. The Microsoft approach was rated as “unsupported” since it could not be completed solely with
Microsoft related tools. While there are approaches that could be taken to implement a solution using
Microsoft technology – such as in the 2005 study that used a batch process to duplicate the customer
data to the ODIC database – this would also require additional third party tools and potentially
additional developer resources and cost.

Developer Productivity Study

BRANHAM GROUP INC. 17 of 45

6.0 Conclusions

6.1 Productivity
As with the original 2005 productivity study, this study was also completed with four goals in mind.

1. Define an objective methodology that would allow an “apples to apples” comparison of different
development techniques using IBM and Microsoft tools.

2. Build all the application components necessary to create a working application.

3. Provide an objective measurement methodology to measure the productivity differences between
IBM tooling and Microsoft tooling when building the application components.

4. Document the productivity measurement differences as well as any issues that were observed
between IBM and Microsoft tools in the course of the study.

After extensive work, the results of this study strongly indicate that even for the most basic web
application development (Application 1 and 2), EGL and the IBM development tools are on par with, or
potentially more productive than, Microsoft tools. Even with the significant advancements between
versions of the Microsoft Visual Studio releases, EGL remains competitive as a development language for
web based applications.

However, where EGL and the IBM development tools really shine in comparison to Microsoft and
potentially other third party development tools is cross-platform enterprise-level application development
(Application 3). Through a single language and development environment, developers can create all the
necessary components for all tiers of the application, without a requirement to know the individual
underlying run-time technologies. The ability to generate Java, COBOL, CICS, IMS DB/DC and more, and
deploy on standard Java application servers, System z, and System i can significantly increase
productivity levels.

Although not tested extensively within the scope of this project, IBM Rational Business Developer also
offers additional productivity gains through end-to-end debugging of all application parts. Specifically, IBM
Rational Business Developer incorporates the testing of what would eventually become the outmost web
pages, COBOL code, and the CICS invocation simultaneously. The EGL debugger allows developers to
debug their code without a requirement that they first generate output. This can provide significant
productivity improvements over separate unit testing and integration of application parts created by
different developers in separate development environments.

In short, IBM and EGL support the ability to build robust enterprise-level cross platform applications in an
ever changing on demand environment. In a z/OS environment, it is possible to deploy the server program
(the third tier in the Web application) using CICS. This is more realistic since most of the datasets and
legacy code called by a server program can typically be located within z/OS under CICS.

6.2 Quality
Although measuring the quality of the application is always a difficult subject, the following observations
were made.

1. The IBM development environment had the debugging and test harnesses embedded into the
development tools. This was not always the case for the Microsoft development environment. Even
the “simple” application of constructing a web service did not provide a built in SOAP test
environment. Microsoft developers are required to construct their own SOAP test environment.

2. In general, as the application requirements became more complex and required access to existing
enterprise assets, the Microsoft development environment would have required more tools (third
party) than the IBM development environment. An increase in tools can typically be equated to an
increase in complexity in development particularly when these tools are not integrated. Similarly,
increased complexity in tools is not conducive to ensuring high quality applications.

Developer Productivity Study

BRANHAM GROUP INC. 18 of 45

6.3 Requirements
The requirements for the application components were developed before they were built. To make this
application as realistic as possible, in addition to the viewing of many existing on-line Insurance
application sites, individuals within the Insurance industry were consulted. The requirements for the
application were created starting with use cases, and eventually the detailed requirements were created,
which are available in Appendix 7.1. These requirements outline a “realistic” insurance application as
defined by the Insurance consultants and the researched on-line Insurance sites.

The IBM development environment was able to meet all of the application requirements while the
Microsoft environment fell very short where access of existing enterprise assets (VSAM files) was a
requirement.

This highlights the fact that the Microsoft development environment is very easy to use to build basic, and
some level of advanced web applications, but cannot provide heterogeneous platform support found in
larger more demanding enterprise environments.

This study indicates that the IBM development environment has the ability to build demanding and robust
enterprise-level web based and business applications for multiple platforms, while reducing the amount of
manual coding required, ultimately reducing the requirement to engage highly experienced developers to
perform all the tasks.

6.4 The Value of EGL
Through the IBM Rational developer workbench and EGL tools, IBM provides a single development
environment for developing applications that span distributed heterogeneous environments. The addition
of EGL through the Business Developer extension provides developers with a significant tool that can
increase productivity while simultaneously expanding capabilities. With a single high level language,
developers can create Java/J2EE applications deployed to the web, GUI and Java batch applications
running in a networked computing environment, and COBOL, CICS, and IMS DB/DC applications
deployed to System z and System i platforms, without a requirement to know the details of the underlying
run-time technologies.

EGL is continuously being enhanced with new language constructs, integration with new technologies
(such as JSF), and new code generation drivers for new runtime platforms. Through the same high-level
language, developers can generate code for these new platforms with minimal training. While this study
used the retrieval of customer data from a VSAM file, EGL provides support for additional data sources.
Developers are not required to be proficient in SQL data manipulation language, JDBC, or other SQL
access programming technologies. Using a small set of polymorphic verbs, developers can write full
function services accessing DB2, IDS, Oracle, Microsoft SQL Server, Derby, i5/OS integrated relational
database and i5/OS logical files, VSAM, and IMS/DB (DL/I).

Using a single development platform, developers can build a solution that is best suited to their IT
infrastructure. Similarly, costs associated with migration from one platform to another are significantly
reduced as the same EGL can be used to generate code for the new platform. For example, generated
COBOL is supported on z/OS and i5/OS while Java (as would be expected) is supported on z/OS, i5/OS,
AIX, HP-UX, Sun Solaris, Microsoft Windows (2000, 2003, XP) and Linux. Developers can code in
response to current platform requirements, and migrate in the future without worrying about migration
details.

While code generators do make it easier and quicker than hand-coding, they often require a special
runtime which makes it difficult to achieve the security, scalability, and reliability offered by native servers.
Applications generated with EGL can deploy as native Java, CICS, i5/OS, or IMS programs, exactly as if
they were hand-written. Specifically, while a web application can be built without knowing a line of Java,
the EGL generates Java code that can run on a standard implementation of Apache Tomcat as the
application server. While the use of runtime libraries may be misleading to this fact, this is simply
commonly used code that would not make sense to repeat as generated code in each and every program;
a common software engineering practice already in use by developers hand-coding applications.

Through EGL, IBM still provides customers with choice of implementation. There are multiple ways in
which web based applications can be implemented, allowing developers to use the method best suited to

Developer Productivity Study

BRANHAM GROUP INC. 19 of 45

their particular requirements. In our example, the COBOL/CICS server program could have been
implemented as a standards based Web Service, providing additional flexibility and access beyond the
scope of our requirements.

Admittedly, EGL may not be suited for all development requirements. Specifically, it does not provide low-
level APIs to operating systems and subsystems, and as such is not suited for systems development.
However, EGL is particularly suited for transactional business services and applications development.
This includes the creation and consumption of service oriented architectural services, web applications,
reports (through integration with open source reporting engines such as BIRT), traditional text UI
applications (green screen interfaces), and GUI applications.

Without writing a single line of Java or COBOL code, developers implemented an application that used
JSF. Even if this simple application were more sophisticated and complex, the process to code, test,
debug, and deploy would be very similar. When coding in EGL, the developers didn’t need to deal with all
the plumbing and configuration “sit-ups”. EGL provides an easy way for programmers to move into the
J2EE world (or mainframe world) without knowing all of the skills that are necessary for these complex
implementations.

Developer Productivity Study

BRANHAM GROUP INC. 20 of 45

7.0 Appendix

This Appendix contains the details of the Insurance application that was built for the purpose of the
tools comparison study. It is organized as follows:

7.1 Application Requirements
This section contains the detailed application requirements.

7.2 Application Prototypes
This section includes the graphic user layout (prototypes) of the web customer applications to
help guide the developer on what the application must look like when development is
completed.

7.3 Detailed steps to build the IBM Applications
This section contains the step-by-step procedures that were timed for each of the IBM
applications.

7.4 Detailed steps to build the Microsoft applications
This section contains the step-by-step procedures that were timed for each of the Microsoft
applications.

7.5 Glossary

Developer Productivity Study

BRANHAM GROUP INC. 21 of 45

7.1 Application Requirements

This section contains the requirements information that the IBM and Microsoft development teams
used to build the required Insurance applications. The requirements are organized as follows:

 Vision Statement

 Use Case Model

 Architecture Diagram

 Database Schema

 Documented Features

Vision Statement

The ODIC web application provides preferred customers with three essential features. They can
view general insurance information, request an informal homeowner insurance policy quote
(please see Glossary for further information), and they can view all of the quotes that they have
requested previously as well as details about those previous quotes.

Use Case Model

On Demand
Insurance
Customer

View Insurance
Information

Login/Logout

Request Informal
Quote

View
Informal
Quotes

View Informal
Quote Details

Developer Productivity Study

BRANHAM GROUP INC. 22 of 45

Architecture Diagram

Note: All the customer input from the web application is stored in the “Quote Table”. ODIC DB is SQL Server for Microsoft Test
Cases - SQL Server 2005 Enterprise Edition SP2. ODIC DB is DB2 for IBM Test Cases - DB2 UDB Workgroup Edition V 9.1.

On Demand
 Insurance

Web Application
Customers

 Quote
Table

ODIC Database

 heatSource
Table

Material
Table

Customer
VSAM File

dwellingType
Table

Developer Productivity Study

BRANHAM GROUP INC. 23 of 45

Database Schema

Features and Use Cases

Feature 1: Application startup

Preferred customers - henceforth referred to as customer(s) - can access the web application by
entering the URL provided to them in the promotional letter sent by ODIC.

Use Case 1.0 Basic Flow:

The customer enters the URL in the browser and the system displays the Login page.

Feature 2: Authentication

Customers supply their userid and password at the Login page and are authenticated by the
system. The Login page is the initial page presented to the customer.

Use Case 2.0 Basic Flow:

The customer is prompted for userid and password and inputs them. The system validates that
information and then presents the Main page. The system stores pertinent information about the
customer (customer ID, name) in session scope.

Description: On Demand Insurance

Database: DB/2 Rev: 1.1
Filename: ODIC Schema Company: ODIC

ODIC

customerId(PK)
firstName
middleInitial
lastName
emailAddress
streetAddress
city
state
zip
phoneNumber
userId
password
formalQuoteInSystem
preferredCustomer
creditCardType
creditCardNumber
creditCardExpireDate

odic.customer

heatSourceId(PK)
riskValue
description

odic.heatSource

dwellingTypeId(PK)
description

odic.dwellingType

materialId(PK)
riskValue
description

odic.material

quoteId(PK)
customerId(FK)
address
city
state
county
zip
yearBuilt
dwellingType
currentHomeValue
heatingSource
fireStationWithinFiveMiles
fireHydrantProximity
exteriorMaterials
protectionAmount
deductibleAmount
personalLiabilityAmount
quoteDate
riskFactor
yearlyPremium
formalOrInformalQuote

odic.quote

Developer Productivity Study

BRANHAM GROUP INC. 24 of 45

Use Case 2.1 Alternate Flow:

The customer only supplies one of the two required parameters. The system provides a message
indicating the missing parameter and redisplays the Login page.

Use Case 2.2 Alternate Flow:

The customer supplies a userid that is not in the database. The system provides a message
indicating that and redisplays the Login page.

Use Case 2.3 Alternate Flow:

The customer supplies a password that does not match the provided valid userid. The system
provides a message indicating that and redisplays the Login page.

Feature 3: Application termination

Customers can exit the system.

Use Case 3.0 Basic Flow:

Customer selects the Logout link from any page where it is displayed and the system logs the
customer out and displays the Login page. The Logout link is displayed on all pages except the
Login page.

Feature 4: View insurance information

Customers can view general insurance information by selecting the Insurance Info link on any
page after logging on.

Use Case 4.0 Basic Flow:

From any page after logging on the customer selects the Insurance Info link and the system
displays that page.

Feature 5: Request informal quote

Customers can request an informal homeowner insurance policy quote from any page after
logging on. This request will return an immediate response to the customer based on the
information that the customer provides, insurance data, and a risk factor calculation.

Use Case 5.0 Basic Flow:

From any page following logging on, the customer selects the Homeowner Quote link and the
system displays that page. The customer then provides information regarding the home and
insurance coverage needed. This information is gathered from several pages. The last page will
contain a Request Quote button that will allow the customer to submit the request. Each page
preceding the page with the Request Quote button will contain a Continue button, which allows the
customer to proceed to the next page in the process.

The customer provides the following information:
 Dwelling protection amount (e.g. 250,000)
 Deductible amount (100, 250, 500, 1000, 2000)
 Personal liability amount (100,000, 300,000, 500,000, 1,000,000)
 Dwelling type (Single family, duplex, apartment, condominium, townhouse, mobile home)
 Location (Address, city, state, county, zip)
 Heating source (Oil, natural gas, electric, wood stove)

Developer Productivity Study

BRANHAM GROUP INC. 25 of 45

 Year dwelling built
 Current home value
 Exterior materials (Brick, wood frame, vinyl or aluminum, hardy plank, stucco, log, cinder

block, stone)
 Fire station within five miles (yes, no)
 Fire hydrant proximity (In feet)

Use Case 5.0.1 Request Informal Quote:

Immediately following Use Case 5.0, the system calculates a risk factor (see algorithm below).

Use Case 5.0.2 Risk Factor Acceptable – Less Than 41:

The system evaluates the risk factor calculated in Use Case 5.0.1 and it is less than 41. The risk
factor is acceptable. The system calculates the premium and displays the following information on
the Results page:
 Message stating that ODIC would be happy to provide homeowner insurance to this customer.

System displays a telephone number for the customer to pursue the matter further.
 Dwelling protection amount (e.g. 250,000)
 Deductible amount (100, 250, 500, 1000, 2000)
 Personal liability amount (100,000, 300,000, 500,000, 1,000,000)
 Yearly insurance premium

The system stores all of the data gathered and calculated as part of this quote in the quote table.
The system provides an Another Quote button for the customer to request another quote.

Use Case 5.0.3 Risk Factor Not Acceptable – Greater Than or Equal to 41:

The system evaluates the risk factor calculated in Use Case 5.0.1, and it is greater than or equal
to 41. The risk factor is not acceptable. The system displays the following information on the
results page:

 Message stating that ODIC cannot offer a quote based on the information provided.

The system does not store any data related to this quote in the quote table. The system provides
an Another Quote button for the customer to request another quote.

Use Case 5.1 Alternate Flow:

On any page within Use Case 5.0 the customer may select the Logout link. The system logs the
customer out and displays the login page.

Use Case 5.2 Alternate Flow:

On any page within Use Case 5.0 the customer may select the Insurance Info link, the
Homeowner Quote link, or the View Quotes link from the navigation area and the system displays
the appropriate page.

Risk Factor and Premium Algorithm:

This algorithm determines the risk factor as well as the yearly premium amount to be offered to a
customer.

Developer Productivity Study

BRANHAM GROUP INC. 26 of 45

Risk will be determined by five factors – age of home, fire hydrant proximity, heat source, fire
station proximity, and exterior materials used. Each of the values within each of these factors will
have a weight associated with it as follows:

Home Age in Years

0-5 add 1
6-10 add 5
11-20 add 8
> 20 add 10

Fire Hydrant within 1000 Feet

Yes add 0
No add 2

Heat Source

Natural gas add 10
Electric add 12
Oil add 14
Wood stove add 16

Fire Station within Five Miles

Yes add 0
No add 2

Material House was built with

Mostly brick add 10
Mostly stone add 10
Hardy plank add 10
Stucco add 12
Cinder block add 12
Vinyl or aluminum add 14
Mostly wood frame add 16
Log add 16

The calculation begins by assigning zero to the riskFactor (RF). Then, each of the values that the
customer provides are compared with the five categories above and the “add” amounts are added
to RF. The first part of the algorithm is complete and the risk factor number is known. Next, this
number is used to calculate the premium.

RF is then divided by 20,000 to get the adjustedMultiplier (AM).

The protection amount that the customer desires is then multiplied by the AM. The liability amount
that the customer desires is also multiplied by the AM. These two products are then added
together to get the preliminaryPremium (PP).

PP is for the lowest deductible ($100), so it needs to be adjusted for the actual deductible that the
customer has requested.

For each level of deductible higher, decrease the PP by .025.

Deductibles can only be one of the following amounts -100, 250, 500, 1000, 2000.

Developer Productivity Study

BRANHAM GROUP INC. 27 of 45

Example 1 – Lowest Risk Factor Use Case

Category Value Points

Protection $250,000 N/A

Liability $300,000 N/A

Deductible $500 N/A

Age of Home 1 Year 1

Fire Hydrant Yes 0

Heat Source Natural Gas 10

Fire Station Yes 0

Materials Mostly Brick 10

 RF = 21

Calculation for Example 1 – Lowest Risk Factor Use Case

AM = 0.00105, (21/20,000)
250,000 * AM = 262.50
300,000 * AM = 315.00
PP = 577.50, (262.50 + 315.00)
Deductible ($500) is two units above the base, so

deductibleAdjustment (DA) is (.025)(2)(577.50) = 28.87
Actual Premium (AP) = 577.50 - DA
AP = $548.62

Example 2 – Highest Risk Factor Use Case

Category Value Points

Protection $250,000 N/A

Liability $300,000 N/A

Deductible $500 N/A

Age of Home > 20 Years 10

Fire Hydrant No 2

Heat Source Wood Stove 16

Fire Station No 2

Materials Log 16

 RF = 46

Developer Productivity Study

BRANHAM GROUP INC. 28 of 45

Calculation for Example 2 – Highest Risk Factor Use Case

AM = 0.0023, (46/20,000)
250,000 * AM = 575.00
300,000 * AM = 690.00
PP = 1265.00, (575.00 + 690.00)
Deductible ($500) is two units above the base, so

deductibleAdjustment (DA) is (.025)(2)(1265.00) = 63.25
Actual Premium (AP) = 1265.00 - DA
AP = $1201.75

Feature 6: View quote information

Customers can view all of the quotes that they have previously requested in a line item display
and also view further details about each of the quotes.

Use Case 6.0 Basic Flow:

From any page following logging on, the customer selects the View Quotes link and the system
displays a list of all of the quotes that the customer has previously requested. The customer then
selects one of the line items to see more details about that particular quote. The system displays
the rest of that quote’s details.

Use Case 6.1 Alternate Flow:

From any page following logging on, the customer selects the View Quotes link and the system
displays a list of all of the quotes that the customer has previously requested. The customer then
selects one of the line items to see more details about that particular quote. The system displays
the rest of that quote’s details. The customer clicks on the Back to Quotes button. The system
displays the page with the quote line items on them. This cycle can repeat indefinitely.

Use Case 6.3 Alternate Flow:

At any point within Use Case 6 the customer can select the Logout link. The system logs the
customer out and displays the login page.

Use Case 6.4 Alternate Flow:

At any point within Use Case 6.0 the customer may select the View Insurance Info link, the
Homeowner Quote link, or the View Quotes link from the navigation area and the system displays
the appropriate page.

Non Functional Requirements

NF Requirement 1: Credential Storage

Userid and password used for authentication are stored in the ODIC relational database. Checking
customer provided values against entries in the database performs authentication.

NF Requirement 2: Customer Data Access

ODIC customer information used to calculate the Risk Factor for an informal quote is stored within
a VSAM file that is also used as input to other applications outside the scope of the productivity
study.

Developer Productivity Study

BRANHAM GROUP INC. 29 of 45

The following describes the fields from the VSAM file and the associated information.

VSAM File Field Description
Number Customer id
Name First name, middle initial, last name
Address Address, city, state, zip
Phone Phone number
Date Date of formal risk factor calculation
Amount Premium for formal risk factor
Comment Formal risk factor value

Developer Productivity Study

BRANHAM GROUP INC. 30 of 48

7.2 Application Prototypes
The follow provides the screens of an application prototype that was designed before development began. Of the applications built, Application
1, the Homeowner Policy Quote, was an end user web application and needed to be defined in detail; page by page.

Homeowner Policy Quote Application
This flow diagram illustrates the flow of the individual On Demand Insurance web application pages. This was designed using the IBM Rational
Application Developer tool. The flow is the same for both the IBM and Microsoft environments.

Informal Quote

The next nine pages are the prototype pages that were designed before any coding began. They detail the requirements as to what the
customer will see as they step through each part of the application. The prototype pages were originally designed using the IBM Rational
Application Developer. Both the IBM and Microsoft developer teams had to build their applications to this prototype.

Developer Productivity Study

BRANHAM GROUP INC. 31 of 45

1. Login Page

Developer Productivity Study

BRANHAM GROUP INC. 32 of 45

2. Main page - Personalized greeting for customer

Developer Productivity Study

BRANHAM GROUP INC. 33 of 45

3. GetQuote page

Developer Productivity Study

BRANHAM GROUP INC. 34 of 45

4. Insurance page

Developer Productivity Study

BRANHAM GROUP INC. 35 of 45

5. Dwelling page

Developer Productivity Study

BRANHAM GROUP INC. 36 of 45

6. Results page - success

Developer Productivity Study

BRANHAM GROUP INC. 37 of 45

7. Results page - rejection

Developer Productivity Study

BRANHAM GROUP INC. 38 of 45

8. View quote page

Developer Productivity Study

BRANHAM GROUP INC. 39 of 45

9. View quote detail page

Developer Productivity Study

BRANHAM GROUP INC. 40 of 45

7.3 Detailed Steps to build the IBM Applications

The following tables represent both of the applications that developers built within the IBM
development environment. The individual line items within each table document the steps used for
each of these two applications and provide a reference for each timed step.

IBM Application 1 – Building the Web App for the homeowner policy quote

Test Case Object being Created Detailed Steps to Create the Object

1. Create Dynamic Web Project

2. Setup database connection

3. Modify data definitions

4. Modify Dwelling EGL

5. Modify Heat Source EGL

6. Modify Material EGL

7. Modify Customer EGL

8. Modify Quote EGL

9. Generate EGL Source

10. Redirect Configuration

11. Import Page template

12. Create login status code

Test Case 1A Application Setup

13. Create common EGL functions

14. Create JSP file from template Test Case 1B Login Page

15. Create business logic

16. Build main page from two templates

17. Layout html correctly

Test Case 1C Main Page

18. Place text in right table

19. Create page from template and third template Test Case 1D GetQuote Page

20. Create business logic

21. Create page from template and third template Test Case 1E Insurance Page

22. Create business logic

23. Create page from template and third template Test Case 1F Dwelling Page

24. Create business logic

25. Rejection

26. Success

Test Case 1G Results Page

27. Create Success business logic

Developer Productivity Study

BRANHAM GROUP INC. 41 of 45

IBM Application 1 – Building the Web App for the homeowner policy quote

Test Case Object being Created Detailed Steps to Create the Object

28. Create page from template and third template Test Case 1H ViewQuotes Page

29. Create business logic

30. Create page from template and third template Test Case 1I ViewQuoteDetails Page

31. Add business logic and navigation

IBM Application 2 - Building a Web Service from scratch

Test Case Object being Created Detailed Steps to Create the object

1. Workspace configuration

2. Creation of Dynamic Web Project

3. Creation of Package Structure

4. Import of package

Test Case 2A Creation of
Implementation Code
for Web Service

5. Creation of Classes

Generation of Services 6. Creating Web Service Test Case 2B

Starting of Server 7. Selecting properties on Web Service

Test Case 2C Testing Web Service 8. Start Web Service Explorer

Developer Productivity Study

BRANHAM GROUP INC.

 42 of
48

7.4 Detailed Steps to build the Microsoft Applications

The following tables represent both of the applications that developers built within the Microsoft .NET
development environment. The individual line items within each table document the steps used for
each of these two applications and provide a reference for each timed step.

Microsoft Application 1 – Building the Web Application for the homeowner
policy quote

Test Case Object being Created Detailed Steps to Create the object

1. Create ODIC database, run sql scripts to create
schema and load data

2. Create the ODIC_login id that the app will use for
logging into SQL Server

3. Add Connection to Server Explorer

4. Create ASP .NET Web Application project in VS .NET

5. Create project structure

6. Create DataLayer

7. Create SessionHelper Class

8. Create Business Rule Helper

9. Import layout.htm, the common UI layout (provided by
a fictitious graphics design team)

10. Import image files (provided by a fictitious graphics
design team)

11. Create ASP .NET User Controls to encapsulate the
UI layout

12. Create Login Status Line

13. Create a stylesheet with the various styles used in the
application (import CSS provided by a fictitious
graphics design team)

Test Case 1A Application Setup

14. Create MasterPage

15. Add new ASP .NET web form titled login.aspx to
project using ODIC.master page

16. Drag and drop Web form controls into the content
cell. This step lays out UI elements specific to the
page (labels, textboxes, button).

17. Write event handling logic for the click event of the
Login button

18. Edit web.config to enable Forms authentication

Test Case 1B Login Page

19. Create Secure Pages area

Developer Productivity Study

BRANHAM GROUP INC. 43 of 45

Microsoft Application 1 – Building the Web Application for the homeowner
policy quote

Test Case Object being Created Detailed Steps to Create the object

20. Add new ASP .NET web form titled main.aspx to
project and use ODIC master Page

Test Case 1C Main Page

21. Drag Quote image to the page

22. Add new ASP .NET web form titled getQuote.aspx to
project using ODIC masterpage and place in
SecurePages area

23. Drag and drop Web form controls into the content
cell. This step lays out UI elements specific to the
page (labels, textboxes, dropdown list and a button)

24. Populate Drop Down List

Test Case 1D GetQuote Page

25. Write event handling code

26. Add new ASP .NET web form titled insurance.aspx to
project using ODIC masterpage and store in
SecurePages section

27. Drag and drop Web form controls into the content cell

28. Populate Drop Down Lists

Test Case 1E Insurance Page

29. Write event handling code

30. Add new ASP .NET web form titled dwelling.aspx to
project using ODIC master page and SecurePages

31. Drag and drop Web form controls into the content cell

32. Populate Drop Down Lists

Test Case 1F Dwelling Page

33. Write event handling code

34. Add new ASP .NET web form titled results.aspx to
project using ODIC template and Secure Pages

35. In PageLoad event: Calculate risk

36. Create NoQuote.aspx page

37. Create QuoteResult.aspx page

Test Case 1G Results Page

38. Add Link Button to NoQuote.aspx

39. Add new ASP .NET web form titled viewQuotes.aspx
to project, ODIC master page and SecurePages

40. Drag and drop a DataGrid control into the content
area. Bind the DataGrid to the dataset.

Test Case 1H ViewQuotes Page

41. Set background, alignment, forecolor and other
properties for the DataGrid as well as for the Grid’s
individual columns. Note Currency columns use
{0:c2} format and date columns use {0:d}

Developer Productivity Study

BRANHAM GROUP INC. 44 of 45

Microsoft Application 1 – Building the Web Application for the homeowner
policy quote

Test Case Object being Created Detailed Steps to Create the object

42. Add new ASP .NET web form titled
viewQuoteDetails.aspx to project using ODIC
masterpage and SecurePages.

43. Set up table with header and footer information. Add
Link button (Back To Quotes, viewQuote.aspx).

Test Case 1I ViewQuoteDetails Page

44. Create a DataView control, bind it to the DataSource
using the query param of quote ID. Set alignment,
forecolor and other properties for the labels. Order
fields.

Microsoft Application 2 - Building a Web Service from scratch

Test Case Object being Created Detailed Steps to Create the object

1. Create WebService Project

2. Create Business Objects (Person, Address,
CreditReport)

Develop a Web Service
from scratch

3. Create Service methods:
a. GetData (private)
b. GetCreditReport (webmethod)
c. GetScore (webmethod)
d. GetAddress (webmethod)

4. Add New Project (ASP.NET). Add reference to
WebService.

5. Add PropertyHelper class

6. Add table and enter labels and text boxes

Test Case 2A

Create Test Harness

7. Add and bind 3 buttons to call each of the functions in
the webservice. Output the response objects to the
response label.

Developer Productivity Study

BRANHAM GROUP INC. 45 of 45

7.5 Glossary

ODIC – On Demand Insurance Company (a fictitious company outlined for the purpose of this study).

HO Policy – Homeowner Policy.

Basic Customer – Constitutes an On Demand Insurance Company customer with less than two
policies through the organization (Auto, Life, Homeowner).

Formal Quote – A formal quote has the same risk factor calculation as the informal quote, but has the
exception that the result is not shown to the customer. Instead, the formal quote risk factor is passed
to a workflow for further processing (beyond the scope of this study). A formal quote is asynchronous;
customer receives a message stating that their information has been received and that On Demand
Insurance Company will respond within 24 hours.

Informal Quote – This type of quote provides an automated response to customer requests and
contains a price quotation for homeowner’s insurance. This determination is provided by a risk factor
calculation utilizing specific information provided by the customer such as the level of insurance
desired and the type of dwelling to be insured. Based on the calculation, the application determines
whether or not On Demand Insurance Company will grant the insurance policy, and if so, what the
projected yearly costs will be. An informal quote has the following characteristics:
 Synchronous – Customer gets an immediate quote response.

Preferred Customer – Constitutes an On Demand Insurance Company customer that holds two or
more insurance policies with the organization (Auto, Life, Homeowner).

Risk Factor – A number calculated in the business logic for Use Case 5. This number is used to
determine whether or not a quote will be extended to the customer and is integral to the calculation of
the premium amount. A quote will be offered to a customer if the risk factor is 40 or lower.

