
DB2 for z/OS Technical Conference

IBM Software Group

© 2003 IBM Corporation

IBM Software Group
IBM Software Group

©2008 IBM Corporation

Native SQL Procedures in DB2 9 for z/OS

Fen-Ling Lin
Senior Technical Member Stuff and  Manager

Query Technology, DB2 for z/OS

IBM Silicon Valley Laboratory

DB2 for z/OS Technical Conference

October 5-6, 2009 

Taipei, Taiwan



DB2 for z/OS Technical Conference

Agenda

� Introduction

– Background and Motivation

– Comparing external vs native SQL procedures

� New Features

– Enhancements

– Versioning

– Deployment

– Debugging

� Performance Technologies

� Best Use of Storage



DB2 for z/OS Technical Conference

What is an SQL procedure ?

� A stored procedure that contains only SQL 
statements.

� May use SQL control statements to write the logic 
part of the program (WHILE, IF, etc)

� SQL Procedural Language or SQL PL



DB2 for z/OS Technical Conference

External and Native SQL procedures

� External SQL procedures (from V5 on)

– Generated C program which runs in a WLM 
environment

� Native SQL procedures (from V9)

– The SQL procedure logic runs in the DBM1 address 
space



DB2 for z/OS Technical Conference

An example of SQL procedure

BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;

DECLARE v_counter INTEGER DEFAULT 0;

DECLARE c1 CURSOR FOR

SELECT salary FROM staff ORDER BY salary;

DECLARE c2 CURSOR WITH RETURN FOR

SELECT name, job, salary

FROM staff

WHERE salary > medianSalary

ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND

SET medianSalary = 0;

SELECT COUNT(*) INTO v_numRecords FROM STAFF;

OPEN c1;

WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;

SET v_counter = v_counter + 1;

END WHILE;

CLOSE c1;

OPEN c2;

END 

CREATE PROCEDURE 

MEDIAN_RESULT_SET

(OUT medianSalary DECIMAL(7,2))

DYNAMIC RESULT SETS 1

routine-body



DB2 for z/OS Technical Conference

An example of SQL procedure

The condition handlers can be used 
to handle errors, warnings, not 
found, or other specified conditions.

Note that instead of host variables 
used in external procedures, SQL 
procedures use declared SQL 
variables and parameters which are 
used without “colon”s..

BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;

DECLARE v_counter INTEGER DEFAULT 0;

DECLARE c1 CURSOR FOR

SELECT salary FROM staff ORDER BY salary;

DECLARE c2 CURSOR WITH RETURN FOR

SELECT name, job, salary

FROM staff

WHERE salary > medianSalary

ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND

SET medianSalary = 0;

SELECT COUNT(*) INTO v_numRecords FROM STAFF;

OPEN c1;

WHILE v_counter < (v_numRecords / 2 + 1) DO

FETCH c1 INTO medianSalary;

SET v_counter = v_counter + 1;

END WHILE;

CLOSE c1;

OPEN c2;

END 



DB2 for z/OS Technical Conference

Values for the native SQL procedures

� Enhanced SQL PL support
– Better Family Compatibility and Standards Compliance
– Enhanced Portability

� Support for the Application Development Lifecycle
– Support for the Versioning of procedures

– Support for the Debugging of the procedures

– Support for the Deployment of procedures

– Security and the management of the source code

� Enhanced Performance
� Enhanced Usability
� Reduced cost of ownership



DB2 for z/OS Technical Conference

Enhanced SQL PL support and Portability

� Richer support for SQL PL

� Easier to program

� More portable

� More family compatible

� More compliance with the standards

Native SQL procedures have enhanced support for the SQL 
Procedural Language, including the nested compound statements 
and more new data types.  You can write complex SQL procedures 
with ease and the SQL procedures are more portable.



DB2 for z/OS Technical Conference

More data types are supported

� BIGINT

� BINARY

� VARBINARY

� DECFLOAT

XML, UDTs, ROWIDs, LOB locators, LOB File 
reference are not supported.

BX’FF00FF01FF’

123456789012345678E0



DB2 for z/OS Technical Conference

More SQL PL constructs are supported

� Nested compound statements

� Multiple general conditions on a handler

� FOR loop

� Extended GOTO

BEGIN

BEGIN

BEGIN

END

END
END

FOR …



DB2 for z/OS Technical Conference

Support for the Application Development 
Lifecycle

Native SQL procedures have been designed with the 
view of the application development life cycle in mind.  

You can create a version of an SQL procedure, debug 
it, replace it or add a new version of the procedure, and 
finally deploy it into production.



DB2 for z/OS Technical Conference

Application life cycle enhancements in V9

� Extended versioning support  (in the DB2 catalog)

� Unified Debugger support

� New syntax for CREATE PROCEDURE

� New syntax for ALTER PROCEDURE

� Deployment (new commands)

� Source code management
– Security enhanced:  source in catalog vs. external tables

– Line feed and comments: aid in debugging

� Application and tools support (DSNTEP2, SPUFI)



DB2 for z/OS Technical Conference

Enhanced productivity, reduced cost of 
ownership, and more security

You will not need a C or C++ compiler to create 
native SQL procedures.  The multiple steps of setup 
and level of complexity in the build process that are 
required by an external SQL procedure, has been 
simplified for a native SQL procedure.

DB2 manages the various aspects of the application 
development lifecycle in a consistent and integrated 
manner providing enhanced security, including the 
source code for the native SQL procedures.



DB2 for z/OS Technical Conference

Comparison of the external and native SQL 
procedures

� Preparation

– External: multi-step, require C compiler

– Native: single-step DDL

� Execution

– External: require WLM environment, load module

– Native: run entirely within the DB2 engine



DB2 for z/OS Technical Conference

SQL PL native procedure creation in V9 (NFM)

CREATE PROCEDURE MEDIAN_RESULT_SET 

(OUT medianSalary DECIMAL(7,2))

. . .

DYNAMIC RESULT SETS 1

BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;

. . .

SELECT COUNT(*) INTO v_numRecords FROM staff;

OPEN c1;

WHILE v_counter < (v_numRecords/2+1)

DO FETCH c1 INTO medianSalary;

SET v_counter = v_counter + 1;

END WHILE;

CLOSE c1;

. . .

END

No FENCED or EXTERNAL 

keyword  =  native 



DB2 for z/OS Technical Conference

Appl pgm

CALL SP1

Appl pgm

CALL SP1

DB2

DBM1

SQL PL native procedure execution in V9

EDM pool

DDF

or

DB2 

directory

SQL PL native logic

SQL

SQL

SP1

SQL PL native logic

SQL

SQL

SP1



DB2 for z/OS Technical Conference

SQL PL native procedure execution

� General performance improvement because of 
savings in API trips between the procedure application 
logic and the DBM1 address space  � single trip for 
the entire routine

� “Active” version concept

� CURRENT ROUTINE VERSION special register



DB2 for z/OS Technical Conference

SQL PL native procedure versioning in V9

CREATE PROCEDURE MEDIAN_RESULT_SET 

(OUT medianSalary DECIMAL(7,2))

VERSION MEDIAN_V1
DYNAMIC RESULT SETS 1

BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;

. . .

SELECT COUNT(*) INTO v_numRecords FROM staff;

OPEN c1;

WHILE v_counter < (v_numRecords/2+1)

DO FETCH c1 INTO medianSalary;

SET v_counter = v_counter + 1;

END WHILE;

CLOSE c1;

. . .

END



DB2 for z/OS Technical Conference

Versioning

� In V9, option VERSION is added in CREATE and ALTER statements for SQL 
PL procedures, so multiple versions can be created/added for the same stored 
procedure (with the same schema name).

� One of the versions is the active version.

� Any version of a stored procedure can be "promoted" to be the active version 
by ALTER.

� By default, the current active version will be the one to run when the stored 
procedure is called, unless CURRENT ROUTINE VERSION special register is 
set.



DB2 for z/OS Technical Conference

Creating a version of an SQL procedure in V9

CREATE PROCEDURE procedure-name

parameter-declaration

,

( )

VERSION V1

VERSION version-id

LANGUAGE SQL

option-list

SQL-routine-body



DB2 for z/OS Technical Conference

Altering V9 procedures

ALTER PROCEDURE procedure-name

native-procedure-alteration

external-procedure-alteration



DB2 for z/OS Technical Conference

Native procedure alterations

REPLACE VERSION

ALTER ACTIVE VERSION

VERSION routine-version-id

option-list

routine-specification

. 

.

.

ACTIVE VERSION

VERSION routine-version-id

1

1



DB2 for z/OS Technical Conference

Native procedure alterations . . . continued

ACTIVATE VERSION routine-version-id

REGENERATE

ACTIVE VERSION

VERSION routine-version-id

DROP VERSION routine-version-id

ADD VERSION routine-version-id routine-specification

. 

.

.



DB2 for z/OS Technical Conference

ALTER examples

ALTER PROCEDURE UPDATE_SALARY 

ALTER VERSION UPSALV1 ASUTIME 5000

ALTER PROCEDURE UPDATE_SALARY 

ALTER ASUTIME 5000 

ALTER PROCEDURE UPDATE_SALARY 

REPLACE ACTIVE VERSION (IN EMPID CHAR(6),

IN RATE DECIMAL(7,2))

MODIFIES SQL DATA

UPDATE EMP SET SALARY=SALARY*RATE    

WHERE EMPNO = EMPID

. . . 



DB2 for z/OS Technical Conference

ALTER examples . . . continued

ALTER PROCEDURE UPDATE_SALARY 

ADD VERSION UPSALV2 (IN EMPID CHAR(6),

IN RATE DECIMAL(7,2))

MODIFIES SQL DATA

UPDATE EMP SET SALARY=SALARY*RATE*(1.2)   

WHERE EMPNO = EMPID 

. . . 

ALTER PROCEDURE UPDATE_SALARY 

ACTIVATE VERSION UPSALV2

ALTER PROCEDURE UPDATE_SALARY 

REGENERATE ACTIVE VERSION



DB2 for z/OS Technical Conference

Calling a native SQL procedure

� Procedure resolution 

– schema (current path)

– procedure name

– number of parameters (no overloading for z/OS)

� Selecting a version to execute

– CURRENT ROUTINE VERSION (special register)

• e.g., useful for quick test after deployment

• no catalog caching

– Active VERSION (specified in the catalog)

• default 

• catalog caching (same as before)



DB2 for z/OS Technical Conference

Impacts on other SQL statements

� COMMENT ON PROCEDURE statement

– Extended to handle multiple versions of a procedure.

� GRANT and REVOKE statements

– Privileges are the same for all versions of a procedure.

� DROP statement

– Drop all versions of a procedure

– To drop a version of a procedure, use ALTER PROCEDURE ... DROP 
VERSION ...

– Extended to restrict the dropping of packages that implement a version 
of a procedure.



DB2 for z/OS Technical Conference

Impacts on SQL commands

� STOP / START PROCEDURE command

– Affect all the versions of SQL procedures that will be stopped / 
started

� DISPLAY PROCEDURE command

– Native SQL procedures are not reflected in the output

– If a native SQL procedure is under the effect of a STOP 
PROCEDURE command, then the procedure name and status will 
be displayed, but the statistics will be 0



DB2 for z/OS Technical Conference

Upward compatibility

� External SQL procedures will continue to work in V9 either in CM or NFM

� External SQL procedures can continue to be created in V9 NFM

– CREATE PROCEDURE ...  FENCED or EXTERNAL keyword required

� Native SQL procedures can be created starting in V9 NFM

– CREATE PROCEDURE ...  (FENCED or EXTERNAL keyword not used)

� Both native and external SQL procedures can be called in V9 in NFM



DB2 for z/OS Technical Conference

FOR

� Executes one or multiple statements for each row of a table

� The cursor is defined with a SELECT statement which describes the 
rows and columns

� Statements within the FOR are executed for each row selected



DB2 for z/OS Technical Conference

FOR . . . syntax

select-statement

label:

FOR

for-loop-name AS

cursor-name CURSOR FOR

WITH HOLD

WITHOUT HOLD

DO SQL-procedure-statement ;

END FOR
label



DB2 for z/OS Technical Conference

FOR example

BEGIN
DECLARE fullname CHAR(40);
FOR v1  AS

c1  CURSOR  FOR
SELECT firstnme, midinit, lastname
FROM employee

DO
SET  fullname = 

lastname  CONCAT  ‘,   ‘
CONCAT  firstnme
CONCAT  ‘ ‘
CONCAT  midinit ;

INSERT INTO TNAMES VALUES   ( fullname ) ;
END FOR ;

END;



DB2 for z/OS Technical Conference

Name resolution  -- external and native SQL PL

CREATE PROCEDURE . . . 
BEGIN; 

DECLARE dept CHAR(3); 
DECLARE x CHAR(3); 
:
DECLARE c1 CURSOR FOR 

SELECT dept INTO x 
FROM emp ;

:
END ;

� Ambiguity arises, since dept is both 
– declared as an SQL variable
– a column in the table emp

� External SQL PL will match this dept to the SQL variable

� Native SQL PL, LUW, iSeries will match this dept to emp.dept



DB2 for z/OS Technical Conference

SQL PL  -- better practice

CREATE PROCEDURE . . . 
STEP1 BEGIN; 

DECLARE dept CHAR(3); 
DECLARE x CHAR(3); 
DECLARE y CHAR(3); 
:
DECLARE c1 CURSOR FOR 

SELECT STEP1.dept, emp.dept INTO x,y
FROM emp ;

:
END STEP1;

It is good practice to qualify names 

if there is a potential for ambiguity



DB2 for z/OS Technical Conference

Compound SQL statements

� A compound statement contains a block of SQL statements and declarations 

for SQL variables, cursors, and condition handlers. 

� In DB2 V8, the body of an SQL procedure could contain 

– a single compound statement (which could contain other SQL statements, 
except for another compound statement), or 

– a single SQL procedure statement other than the compound statement.

� Thus it was not possible to nest compound statements* within an SQL 
procedure. Additionally, this meant that a condition handler could not contain a 

compound statement.



DB2 for z/OS Technical Conference

DB2 V9 supports for nested compound statements

� With the support for nested compound statements for native 

SQL procedures:

– A compound statement can now be used within a condition 
handler.

– Nested compound statements can be used to define different 
scopes for SQL variables, cursors, condition names, and 
condition handlers.



DB2 for z/OS Technical Conference

Compound within condition handlers

� You can now use a compound statement within the declaration 
of a condition handler

BEGIN

DECLARE SQLSTATE CHAR(5);

DECLARE PrvSQLState CHAR(5) DEFAULT '00000';

DECLARE ExceptState INT;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

BEGIN

SET PrvSQLState = . . .

SET ExceptState = . . .

. . .

END;

END

Don’t use
IF (1=1) THEN

…
…

END IF;

PK43524
Stacked

Diagnostics
Area



DB2 for z/OS Technical Conference

Using labels to define scope

� Nested compound statements can be used within an SQL 
procedure to define the scope of 

– SQL variable declarations

– cursors

– condition names

– and condition handlers

� Each compound statement has its own defined scope, and 
can have a label.



DB2 for z/OS Technical Conference

Enhanced GOTO support

OUTERMOST: BEGIN

INNER1: BEGIN

INNERMOST: BEGIN

GOTO OUTERMOST -- (1)

END INNERMOST;

GOTO INNER2  -- (2)

END INNER1;

INNER2: BEGIN

GOTO INNERMOST  -- (3)

: 

END INNER2;

END OUTERMOST



DB2 for z/OS Technical Conference

Deployment

� Deployment of an SQL PL procedure is the step of distributing / 
installing the procedure created on one system to other 
system(s).

� Deployment is useful for customers who want to install an SQL 
PL procedure to a production system after it has been tested well.

� Deployment is different from remote BIND package, because the 
logic of the procedure body (stored as a special section in the 
package) will not be re-bound.  Customers do not need to worry 
about unexpected behavior change after the deployment. 

Site 3 Site 2

Site 1

dev/test



DB2 for z/OS Technical Conference

Deployment prior to V9 new feature

� Prior to V9, customers deploy SQL stored procedures by

– Copying over the load modules of the stored procedures (this ensures that the 
logic of the stored procedure body is not changed after deployment)

– Sending DBRM for the stored procedure over and issuing a BIND PACKAGE

– Issuing CREATE PROCEDURE to define the procedure

� Keeping the stored procedure body logic intact is critical because customers 

need a smooth move from a testing environment to a production environment



DB2 for z/OS Technical Conference

Deployment as V9 new feature

� Deployment of SQL PL procedures in V9 is done via a new BIND PACKAGE option: DEPLOY
� Example: after the following CREATE PROCEDURE statement, which creates procedure 

TEST.MYPROC at the current site (for testing), the BIND PACKAGE command with DEPLOY option 
deploys the stored procedure onto a remote production system.

CREATE PROCEDURE TEST.MYPROC VERSION V1 ...

BEGIN

...

END

BIND PACKAGE(CHICAGO.PRODUCTION) DEPLOY (TEST.MYPROC)

COPYVER(V1)  ACTION(ADD) QUALIFIER(XYZ)



DB2 for z/OS Technical Conference

Enhanced Performance

Native SQL procedures will be executed entirely in the 
DB2 engine, whereas external SQL procedures are 
executed in the WLM environment.  

The native SQL procedures are expected to outperform 
typical external SQL procedures.



DB2 for z/OS Technical Conference

Performance technologies

� Execution within DB2 engine

� SQLPL Compiler Transformation technology

� Global dynamic virtual storage technology 

� zIIP enabled for offloading 



DB2 for z/OS Technical Conference

Best use of storage

� Above the bar storage is utilized

� LOBs handling via locators

� Reuse of storage by overlapping

� Global dynamic virtual storage 



DB2 for z/OS Technical Conference

Summary

– Native SQL procedures have enhanced support for the SQL Procedural Language, including 
the nested compound statements and more new data types.  You can write complex SQL 
procedures with ease and the SQL procedures are more portable.

– Native SQL procedures have been designed with the view of the application development 
lifecycle in mind.  You can create a version of an SQL procedure, debug it, replace it or add a 
new version of the procedure, and finally deploy it into production.

– DB2 manages the various aspects of the application development lifecycle in a consistent and 
integrated manner providing enhanced security, including the source code for the native SQL 
procedures.

– Native SQL procedures will be executed entirely in the DB2 engine, whereas external SQL 
procedures are executed in the WLM  environment.   The native SQL procedures are expected 
to outperform typical external SQL procedures.

– You will not need a C or C++ compiler to create native SQL procedures.   The multiple steps of 
setup and level of complexity in the build process that are required by an external SQL 
procedure,  has been simplified for a native SQL procedure. 


