
Nigel Hopper
IBM CICS Managed Platform Focus Team Leader
Quality Software Engineering Development Top Gun

•大
型
主
機
開
發
新
世
紀
•拋
下
傳
統
邁
向
敏
捷
AAgile Transformation

•大
型
主
機
開
發
新
世
紀
•拋
下
傳
統
邁
向
敏
捷
•AAgile Transformation

 大型主機開發新世紀

 拋下傳統 邁向敏捷

 Agile Transformation

2

Agenda
• Who am I?

• Introduction

• The journey up to 2011 – a revolutionary change

• Looking at what has happened in the last year
– Impact of adopting RDz/RTC for development
– Further adoption of Agile practices
– Request for Enhancement – Customer requirements
– Portfolio Planning
– Jazz Architecture for the future
– An artifact overview
– Identified some process issues

• Summary

• Questions!

3

Who am I?

• CICS TS for z/OS Team Leader

• Quality Software Engineering Development Top Gun
– QSE Rational Tools Adoption Team

• Lead the migration of process and project management to RTC
– Responsible for maintaining Jazz and implementing further adoption of tooling

• Leading member of the Hursley Jazz
User Group

4

Introduction
• Adoption of Agile principles is worth it for enterprise products

– It is not easy – plan for enterprise adoption to take time and to stage it
– 42% of companies have had Agile adoption fail in one way or another

• CICS is fortunate – we're getting there
– Continuously evolving on this journey since 2005
– Adoption of Agile principles
– Adoption of much better integrated tooling
– Some times evolutionary
– Some times revolutionary

• Would I have done things differently?
– Absolutely!
– But it is only in looking back can we see this

5

CICS

40+

First GA'd when:
- Nixon was president
- Man landed on the moon

One of the top 35 technologies that
shaped the industry*

*According to Computerworld magazine

http://www.ibm.com/ibm100/us/en/icons/cics/

6

CICS Transaction Server code is complex!
• Started out over 40 years ago as a loose collection of programs
• Primarily written in assembler, PL/X and some COBOL

– Now has Java, XML and more!

• Developed on the mainframe for the mainframe – z/OS!
• Eventually converted to domains

– Currently in the region of 70 domains. Grouped in areas such as Application
Services, Business Logic Applications, Base Runtime, CPSM

– 3 APIs
– Multiple tools such as CICS Explorer, CICS Deployment Assistant

7

The CICS process until 2005
• 2 year release cycle
• Upfront commitment for the release
• Waterfall oriented to a cycle of:

– Design
– Development
– Functional Test
– System/Integration Test
– Quality
– Translation/Packaging/Deliver

8

Pre-2005 process issues
• Up front commitment can be very inflexible
• Work sized at – 'what will hopefully fit'
• Large overheads in project management and managing change
• Coordination and scheduling of cross team work – different priorities
• Typical late in release integration test and beta issues
• Defect backlog would hit a peak of 600+ defects
• A lot of post release tidy up – Finishing function, improving quality

9

Why Agile?
• IBM were sufficiently confident of it to make it the corporate direction for

developing software
• “If CICS can do it, anyone can” message

– Little skills or knowledge
– Still a 2 year release cycle
– Who's benefit is this for?

• In 2005 our CICS release became iterative
– Still a 2 year release cycle
– With 4 month iterations

• The intention was:
– Work to be broken down into smaller 'chunks'
– All development, functional testing and defects done in iteration
– System/Integration testing done in following iteration
– Beta every 4 months

10

Initial Agile adoption - Reality
• Still 2 year upfront commitment
• Difficult cultural change
• Difficult to contain work to 4 months
• Tooling fragmented and not Agile 'friendly'

– 10+ day code 'freeze' prior to beta shipping!
– No way of integrating and prioritizing. For example:

• Defects in one tool
• Project tracking several others

• While the Agile term was used, reality was mini-waterfalls

11

Initial Agile adoption – benefits
• Beta shipped every 4 months
• System/integration testing done much earlier
• Defects found and handled much earlier – Peaked at 450
• Changed people's perception of what was possible – Still much skepticism
• Feedback on quality in the release has been high

Agile Profile
defects found early

when they are
cheaper to fix

CICS TS for zOS
First 'Agile' delivery

Waterfall Profile
Defects found later
when they are more

expensive to fix

CICS TS for zOS
Last waterfall delivery Defect

Raise Rate

12

2008/2009 Internal review
• A review of tools and processes was undertaken

• Using a wide variety of tools to manage project,
for example:

– 3 source code management systems
• Completely alien to each other
• Separate builds for two of the SCMs
• Highly integrated build into main SCM

– External database for customer requirements
– Lotus Notes databases/documents for:

• Internal requirements
• Actions
• Risks

• Large disparity in the way many things were
done and tracked

• High learning curve for new starters

13

Mid-2009
• Still a 2 year release cycle
• Still upfront commitment
• 4 month iterations
• 4 month betas
• Multiple tools for project management tracking, designs etc
• Multiple Source Code Management systems with integrated build
• No such things as Epics and stories – LIDs and DCRs
• No Scrums
• Silo'd teams working in different ways
• Diverse complex tooling
• Customer was a through several layers of people
• Very intricate process to follow

14

The Vision

Single non-proprietary environment
for the delivery and service of future releases of

CICS Transaction Server for zOS

Where everyone (business, marketing, development, test, service, build, etc) can focus
and collaborate via one single tool

If we are really to adopt Agile principles, the tooling had to improve

15

Why RTC?
• A little luck was involved!
• Early trials showed great promise
• Hursley just started centrally hosting Jazz servers
• Highly configurable

– We were in control!

• Provided great audit tracking
• Allowed for an end to end integrated development environment

– Requirements, Approvals, Defects, Code, Tracking, Build and so on!

• Clearly a tool designed for Agile development

16

RTC Adoption: Making it happen
• First thing – in June 2009 new release started, 2 month iterations, 4 month betas

• Initial focus on work items, project planning and tracking
– Epics, Stories, Tasks, Defects, Risks, Actions, etc.
– I had a number of key goals

• Use RTC 'out of the box'
• Use industry standard Agile methods/terms
• Use a minimum number of roles – trust people
• Use RTC to implement RTC
• Big bang approach would not work

• Long term focus on migrating source code and service delivery
– Rewrite the build
– Migrate from existing SCM
– Develop and Service product through RTC

• Education – Combination of workshops, mentoring, wiki help

17

RTC Adoption: Work item and process time line
• Work item / process migration

– July 2009 - Created RTC server
• Infrastructure project, plus Main and Sandpit projects

– August – October 2009 – Reviewed processes and configured server – 80-90%
right

– Mid-2009 – migration of Epics (requirements) to RTC
– October 2009 – migration of Defects from CMVC to RTC
– November 2009 – migration of CMVC source code to RTC
– End of 2009 using RTC for all work outside of propriety source/build

environment

18

RTC Adoption: Build and development environment time line

• The build rewrite
– Start of build rewrite – January 2010
– First integration build – September 2010
– First beta shipped from Antz build – October 2010 (limited release) / February

2011
– RTC delivered CICS TS for zOS V4.2 - June 24, 2011

• DTS tooling
– DTS started – June 2010
– DTS ready – March 2011

• Development adoption
– Developer environment ready – April 2011
– Full Source Code Environment switched to RTC – June 2011
– RTC/RDz development environment rolled out – June/July 2011

19

Environment Comparison

Committer ServiceDeveloper

Dev Prod PTF ModOriginal environment

Code
Delivery

Source
Mgmnt

CMVC SPA

Committer

Developer /
Service

Antz

Dev

Prod

PTF

Mod

Jazz

DTS

RTC-RDz

New environment
• Rational Team Concert v3
• Rational Developer for System Z v8
• Our Ant build technology is an

Eclipse plug-in for build control
– Hursley constructed build tool
– Ant is an open source build tool
– We added extensions to support

zOS
• Antz has been shared with RTC and

some aspects have been reused.

RTC/Jazz manages:
• Release/Iterations
• Work items
• Plans
• Source code
• Streams
• Change sets
• Lots more!

20

The issues...
• RTC was not the problem, does what it says on the box

– There was a learning curve, but the basics were simple
– We could not be where we are today without it.

• People issues
– They do not want to change - Why change if it currently works?
– Developers have used the same tool set for 20+ years

• Process issues
– We had some serious holes in our process – still very waterfall
– Need agreement of many senior people
– An Agile process that is clearly defined – somewhat of a contradiction
– Still learning the Agile way

• Understanding the existing build
– 20+ years of integrating a build into a library system!
– Any experience now retired!

21

The benefits...
• Integrated work item and reporting tools

– Transparency of work items, dependencies and status
– Ability to ignore what is green and focus on the issues
– Far greater collaboration across teams
– Far greater notification when things change
– Risks/Actions integrated

• Responsiveness to business needs – aiming for greater value, earlier
– Beta deliveries much earlier
– Ability to adapt to change much easier
– Current release – much more Agile in terms of requirements and prioritisation

• Dashboards – Instant status – Everyone has a much clearer view of project

• Weekly status (Scrum of Scrums) – Practically no prep, meeting time halved

• End of iteration quality checks – 2-4 hours prep to < 30 mins, meeting time halved

22

The benefits... (cont.)
• Mitigate against future development risks – greatly reduced proprietary

development environment
• Common tool set and skills for development and service
• Ability to cut new streams. For Risky development and when beta required
• Build supported by two people. Previous build supported by three.
• Quality has improved

– Defects in RTC – defects part of the backlog
– Pre-2005 defects peaked at 600+ - Waterfall
– 2005-2009 defects focused on much earlier (450 peak) – Agile/Iterative
– 2009-2011 again lower levels of defects (350 peak) – Agile/Iterative+RTC

• Far greater ability to use Agile practices
• Much reduced learning curve for the development environment
• Far less post-release 'churn' – much more in control

23

Mid-2011
• Still a 2 year release cycle
• Still upfront commitment – but flexibility appearing
• 2 month iterations and 4 month betas
• Using Agile terminology - Epics and stories replaced LIDs and DCRs
• Common integrated tooling

– Much easier to learn
– Much better project control and prioritization
– Integrated development environment
– New build and code promotion tooling

• Teams adopt scrums if it suits them
• Teams working in a much more coordinated way
• Customer was still through several layers of people
• Process still a challenge

24

Over the last year...
• Further adoption of Agile practices
• New development environment issues and benefits
• New customer requirements solution
• Portfolio planning with RRC and CLM
• Elaboration using RRC – Still have:

– Designs in a Wiki
– High level test plans in attachments
– Information designs in the information centre

• Process issues to address

25

Further adoption of Agile practices
• Moved to 1 month iterations for most teams – shock to the system!

– Does need a mindset change – chunking work even smaller

• Betas released every 2 months – alternating ISV and Customer betas
• Development team reorganization

– Aim to have a broader set of skills in each team
– Less of a silo approach
– Large learning curve for less well known areas

• Direct access to customer requirements
• Use case definitions (Actor, goal, value)
• Iteration planning now more priority based with team driven commitment

26

The new environment – issues and benefits
• Large number of issues in relation to the new developer build

– Not related to RTC, but the new Antz build
– Seen to be taking up to 5 hours to run – even for a small change
– Some fixes and some education
– Depending on the change can now run in minutes

• Learning curve for mature developers

• After 3 months of RTC/RDz – 90% working as well or better than VM
• New starters are up and running in a much shorter time
• All the development, research, build, delivery, MVS access (JCL etc.) can all

be done in the same RDz/RTC Eclipse environment
• Much greater development and service assistance for each other

27

New customer requirements solution
• developerWorks Request For Enhancement (dW RFE)

– http://www.ibm.com/developerworks/rfe/

• The customer raises the requirement

• Bridge code synchronizes the requirement into an RTC
project on the CICS server

• The RFE is assessed by CICS
– Only status changes and #publish comments are

synchronized back to the RFE

• Company and justification are private in dW RFE

• IBM can make the complete dW RFE private

• Public dW RFEs can be searched and commented on

• Public dW RFEs can also be voted on by other users

• First time we have been able to directly connect
customer requirements to the work being developed

http://www.ibm.com/developerworks/rfe/

28

Portfolio planning using RRC and CLM
• Rational Requirements Composer appears to give us the ability to have an

overview project for all the CICS products
– A place where the visions and themes that were to be developed could be elaborated
– An anchor where all the work for the portfolio would feed from and to

• Brought together a cross section of the CICS team
– Strategy and Planning, Development, Management, Project Management, etc.
– Created a project based on one of the templates
– After a month removed artifact types we were clearly not using

• Adoption of RRC will be staged in a similar manner as RTC was
– March 2012 Strategy and planning writing Visions, Roadmaps and Features
– Most of the adoption will be as we transition from the current release to the next

release

• Migrating all of our designs from Wikis, Word documents, Lotus Notes databases,
etc. to it

– Team pulled together to work on this for the next release

29

RRC / RTC Object Relationships
Vision RRCRoadmap

FeatureUI Sketch*

Storyboard*

UI Screen
Flow*

UI Part*

RFE
Use Case

Specification

Use Case
Diagram*

Fe
at

ur
e

El
ab

or
at

io
n

Clarity!

RTC

Epic

StoryEpic

Task

SVT
Activity

Task

Design Software
Design Externals UI Sketch*

Storyboard*

UI Screen
Flow*

UI Part*

Test
Design

Functional
Test Design

System
Test Design

Performance
Test Design

Information
Design

Epic Design
Elaboration

Portfolio Level RRC

Product Level RRC

Work in Progress!

Relationships

*Optional

Product Le vel R
TC

30

CICS Portfolio Jazz Architecture

RFE
RTC (104)

CICS Portfolio RRC Project

Vision
Themes

Roadmaps

Features

CTS
RTC (104)

Collaborative
Elaboration

Text, Business Process
Diagrams, Story boarding,

High Level Docs, etc.
Approvals

CTG
RTC (306)

Explorer
RTC (104)

Tools
RTC (104)

Ano...
RTC (104)

CICS Portfolio CLM Project

CICS
RQM (804)*

P
or

tfo
lio

 P
la

nn
in

g
P

ro
du

ct
 D

el
iv

er
y

R
eq

ui
re

m
en

ts
S

hi
pp

ed
 P

ro
du

ct
s

CTS RRC CTG SCM

Exp SCM PA SCM
VT SCM
ISM SCM

Ano SCM

Clarity!
Release

Planning

dW
 R

FE

CTS SCM

Exp RRC
CTS RQM* Exp RQM*

*Single RQM at
the moment

Portfolio
Requirements

Marketing Insight
Business Design
Strategic Intent

Innovation Focus

31

RRC artifact types and RTC Work item types
• RRC

– Vision
– Roadmap
– Feature
– Text Document
– Use Case Specification and

Diagram
– UI Screen Flow, Storyboard,

Sketch and Part
– Simple Flow Diagram
– Meeting
– Term (For glossary)

• RTC
– Epic
– Story
– SVT Activity
– Dependency
– Task
– Defect
– Risk
– Action
– Externals Change Request
– Non-project Defect
– Non-project Enhancement

32

Process issues highlighted
• Design clarity – need to revisit some of the key Agile principles

– Agile does not mean ignoring design!
– Not defining use cases prior to some of the development
– Some development started prior to deciding what was needed

• Portfolio planning exercise will help

• Leaner - 1 month iterations a real challenge
– Many more smaller Epics and Stories
– Many more reviews
– Need to turn work around much more quickly
– Fine balance required

• Identified we need to streamline some of our process
• Still need to maintain control – reasons of audit

– Harder to control technical debt

33

Summary
• Moving from Waterfall to Agile development is possible

– It doesn't have to be just 'new projects'
– Does not have to be for all aspects e.g. SCM
– Be careful of falling back into old habits

• Adopting any of the Agile tooling will provide a catalyst for change
– Necessity for some aspects of Agile adoption
– Evangelists and the support of senior management are key
– Re-examines processes in a new way

• Helps to identified holes and errors in team processes

• Be agile in adopting Agile and your tooling products
– Possible to have a staged adoption of both Agile and your tooling
– Expect teething problems – generally not difficult to fix
– Plan ahead - Think ahead to the architectural design and configuration

34

Important... if there is one thing to remember
• Learn from what has gone before!

To quote from the book “Disciplined Agile Delivery” by Scott Ambler and Mark Lines:

"Although people are the primary determinant of success for IT projects, in most situations it isn’t
effective to simply put together a good team of people and let them loose on the problem at hand. If
you do this the teams run several risks, including investing significant time in developing their own
processes and practices, in identifying the wrong processes and practices, in not identifying the right
processes and practices, and in tailoring those processes and practices ineffectively. In other words,
people are not the only determinant of success. The DAD process framework provides coherent, proven
advice that agile teams can leverage and thereby avoid or at least minimise the risks described above. "

35

36

Backup Slides

37

Important...
• Learn from what has gone before
• Do NOT reinvent the wheel
• Adopt and configure what works for you

• Books to consider
– Agile Estimating and Planning by Mike Cohn
– Disciplined Agile Delivery by Scott Ambler and Mark Lines
– Scaling Software Agility by Dean Leffingwell

38

The Agile Scaling Model (ASM)
• Disciplined Agile Delivery (DAD) when one or more scaling factors apply

– Large team size
– Geographic distribution
– Regulatory compliance
– Domain complexity
– Organization distribution
– Technical complexity
– Organizational complexity
– Enterprise discipline

• Basic Disciplined Agile Delivery for the Enterprise
– Risk + Value Driven Lifecycle
– Self organisation within appropriate governance framework
– Full delivery lifecycle

• Agile Development. For example, Scrum, Lean, XP and Agile Modelling
– Value driven lifecycle
– Self organising teams
– Focus on construction

Core Agile
Development

Discplined
Agile

Delivery

Agility
@

Scale

39

The Agile Manifesto

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

40

The 12 Principles behind the Agile Manifesto
1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software
2. Welcome changing requirements, even late in development. Agile processes harness change for the customer's

competitive advantage
3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the

shorter timescale
4. Business people and developers must work together daily throughout the project
5. Build projects around motivated individuals. Give them the environment and support they need, and trust them to

get the job done
6. The most efficient and effective method of conveying information to and within a development team is face-to-

face conversation
7. Working software is the primary measure of progress
8. Agile processes promote sustainable development. The sponsors, developers, and users should be able to

maintain a constant pace indefinitely
9. Continuous attention to technical excellence and good design enhances agility
10. Simplicity--the art of maximizing the amount of work not done--is essential
11. The best architectures, requirements, and designs emerge from self-organizing teams
12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior

accordingly.

41

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

