
Model-Based Testing of Complex

Hybrid Aerospace Systems

Philipp Helle

EADS Innovation Works

philipp.helle@eads.net

Dr. Udo Brockmeyer

BTC Embedded Systems AG

udo.brockmeyer@btc-es.de

Please note the following

IBM’s statements regarding its plans, directions, and intent are subject to

change or withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our

general product direction and it should not be relied on in making a purchasing

decision.

The information mentioned regarding potential future products is not a

commitment, promise, or legal obligation to deliver any material, code or

functionality. Information about potential future products may not be

incorporated into any contract. The development, release, and timing of any

future features or functionality described for our products remains at our sole

discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or

performance that any user will experience will vary depending upon many

factors, including considerations such as the amount of multiprogramming in

the user’s job stream, the I/O configuration, the storage configuration, and the

workload processed. Therefore, no assurance can be given that an individual

user will achieve results similar to those stated here.

EADS at a glance

Model-based Testing Company established in

1999

BTC-ES Headquarter in Oldenburg (D)

Subsidiaries in Munich and Berlin (D)

BTC Japan Co., Ltd.

Tokyo ♦

Munich ♦

♦ Oldenburg

Berlin ♦

Mission Statement:

 Our mission is to enable customers to increase product quality in a shortened

design phase by introducing automatic test and verification technology to the

model-based systems & software development process.

Main Customer Domains:

 Automotive, Aerospace

BTC Embedded Systems

Agenda

• EADS background and motivation

• Model-based Testing concept and artefacts

• Model-based Testing with Rational Rhapsody, Rhapsody ATG and

Rhapsody TestConductor

• Example and Early Results

• Conclusion

Agenda

• EADS background and motivation

• Model-based Testing concept and artefacts

• Model-based Testing with Rational Rhapsody, Rhapsody ATG and

Rhapsody TestConductor

• Example and Early Results

• Conclusion

Systems Engineering at EADS

• EADS is typically doing

systems specification and

systems integration

 Duration and cost of system

development efforts has

experienced rapid exponential

growth over time

 The system design of a product

is a key driver for its lifecycle

cost.

Wrong / not optimal decisions in

early phases are very costly to

fix in later phases

Integration &
assembly

Assembly &
systems V&V

A/C
VV&C

Components

development

Detailed
definition

Preliminary
design

Concepts
definition

Expectations

and Value

Models

SCADE

MATLAB/Simulink

Operational use
Learning from In-service data

Model-based Systems Engineering for early Virtual aircraft

Functional and Physical View

Model-based specification

Specification modelling Model usage Requirements analysis

Textual requirements

Test scenarios

Integrated simulation

Structure description

Algorithm description

Behaviour description Hierarchy and context

description

Traceability description

Off
evPowerOn

On

POST

Normal_mode

evPOST_finished

evPowerOn

evPowerOff
evPOST_finished

evPowerOff

States & Modes

Functions description

Traceability for coverage and impact analysis

Document generation

• Development and testing are often enough separated in systems engineering resulting

in an unnecessary high effort for testing while it is already seen as inseparable in

software engineering

• An MBSE approach including model based testing allows early validation of

requirements and verification of the system design by testing throughout the design

phase and facilitates error tracing and impact assessment later on.

• The usage of the OMG UML Testing Profile in conjunction with SysML allows reusing

the artefacts from the engineering stage at the testing stage of the development cycle

and thereby enables testing based on the system specification model

Model-based testing

Development Test

time
Delivery date

time
Delivery date

Development

Test

AS IS TO BE

Need for an integrated MBSE approach

Agenda

• EADS background and motivation

• Model-based Testing concept and artefacts

• Model-based Testing with Rational Rhapsody, Rhapsody ATG and

Rhapsody TestConductor

• Example and Early Results

• Conclusion

Systems

Development

Process

Systems

Development

Process

From model-based specification to

model-based testing

Development process

Component

Implementation

Specification

test

Specification

test

Requirements

validation

Requirements

validation
Virtual (Integration) Test

Requirements

Hardware-in-the-loop

test environment

Hardware-in-the-loop

test environment

Test scenarios Test scenarios

Specification

Early virtual tests by

specification simulation

Early virtual tests by

specification simulation

Hardware Test

Test management,

Test case sequencing

Test management,

Test case sequencing

Supplier responsibility

Textual requirements

Specification

model

Executable

specification

model

generate

Real hardware

Artefacts and relations

Test

scenarios
Test

scenarios
Test

scenarios
Test

scenarios
Test

scenarios
Test

scenarios

Test

model

auto generate

model

stimulate

auto generate

• Seamless traceability from the initial requirements through the system and subsystem

functions to test cases and test results

• Test scenarios can be automatically generated from the specification model based on

an in-depth automatic white-box model analysis

• Test plans are developed in the context of the SuT, the resources available and the

coverage that can be delivered

• Tests are created earlier in the development process, automatically executed, used

for specification testing as well as system testing and reused when the design

evolves

Better impact analysis

Better test management

Overall test effort reduction

Higher test coverage

Benefits of model-based testing

Agenda

• EADS background and motivation

• Model-based Testing concept and artefacts

• Model-based Testing with Rational Rhapsody, Rhapsody ATG and

Rhapsody TestConductor

• Example and Early Results

• Conclusion

Tools:

 DOORS (IBM)

– Requirements Management

 Rhapsody Gateway (IBM/Geensoft)

– Requirements Traceability

 Rhapsody (IBM)

– Specification modelling

– Model Integration

– Simulation Execution

 ATG (IBM/BTC-ES)

– Automatic Test Case/Scenario

generation

 TestConductor (IBM/BTC-ES)

– Automatic test execution

– Coverage report generation

 MATLAB/Simulink (MathWorks)

– Physical Behaviour

– Environment Simulation

DOORS Gateway/Reqtify

Integrated simulation

Rhapsody

MATLAB/Simulink

Traceability

Code generation

TestConductor

Test Execution

Test Case

Generation

ATG

EADS Model-based Tool chain

Rhapsody ATG and Rhapsody TestConductor

• IBM® Rational® Rhapsody® Automatic Test

Generation (ATG) Add On:

• Model-based test case generation using UML/SysML test

models

• Model coverage, statement coverage, MC/DC

• Incremental creation of test suites

• IBM® Rational® Rhapsody® TestConductor Add

On:

• Model-based test case specification and exeution using

the UML Testing Profile

• Test can be defined graphically using UML sequence

diagrams, flowcharts, statecharts or code

• Error analysis using color coded sequence diagrams

 Model based

development using a

specification model (left

branch)

 creating tests directly

from a mostly textual test

plan (right branch)

 Development benefits

from modelling but tests

are mostly manually

developed and

maintained outside of

models

Test Models and Automatic Test Generation (ATG)

Test Models and Automatic Test Generation (ATG)

 Model based

development and model

based testing

 Automatically generate

tests from test model

using ATG

 Test maintenance

means maintaining test

models

Test Models and Automatic Test Generation (ATG)

 Test models capture

test objectives and test

strategies

 ATG generates test

cases

 ATG test cases are

tailored to the concrete

test environment, e.g.

TestConductor

 Tests are executed and

results are analyzed

Agenda

• EADS background and motivation

• Model-based Testing concept and artefacts

• Model-based Testing with Rational Rhapsody, Rhapsody ATG and

Rhapsody TestConductor

• Example and Early Results

• Conclusion

Functional model

Descriptive

5 functions

4 functional links

Logical model

Executable

4 logical block classes

9 logical block instances

14 logical links

Technical model

Executable

6 technical block classes

18 technical block instances

36 technical links

ATG

17 Test cases

94% model element coverage (93/98)

50% MC/DC coverage (18/36)

100% statement coverage (69/69)

ATG

30 Test cases

95% model element coverage (108/113)

41% MC/DC coverage (57/136)

99% statement coverage (332/335)

Generic example model and application results

Sense_speed

Control

speed:Speed_data

command:Command

status:Status
Actuate

Sense_temperature

temperature:Temperature_data

Determ ine_status

Functional model

SuD_Logical
«Block,LogicalBlock»

itsActuate_Function_Front_Left:Actuate_Function1

iStatus

status

iCommandcommand

itsControl_Function_Left:Control_Function1

iTemperaturetemperature iSpeedspeed2

iCommandcommand2

Command

iStatus

status1

iStatus

status2

Status

iCommand

command1

iSpeedspeed1

itsSpeed_Sense_Function_Left:Speed_Sense_Function1

iSpeedspeed_2iSpeedspeed_1

Speed_data

itsActuate_Function_Back_Left:Actuate_Function1

iStatus

status

Status

iCommand

command

Command

itsActuate_Function_Back_Right:Actuate_Function1

iStatus

status

iCommand

command

itsActuate_Function_Front_Right:Actuate_Function1

iStatus

status

iCommandcommand

itsControl_Function_Right:Control_Function1

iTemperaturetemperatureiSpeedspeed2

Speed_data

iCommandcommand2

Command

iStatus

status1

Status

iStatus

status2

Status

iCommand

command1

Command

iSpeedspeed1

itsSpeed_Sense_Function_Right:Speed_Sense_Function1

iSpeedspeed_2

Speed_data

iSpeed
speed_1

Speed_data

itsTemperature_Sense_Function:Temperature_Sense_Function1

iTemperature

temperature_2

Temperature_data

iTemperature

temperature_1

Temperature_data

Command
Status

Speed_data

Status

Command

Speed_data

Command

Status

Status

Command

Speed_data

Speed_data

Temperature_data

Temperature_data

Logical model

SuD_Technical
«Block,SuD_Implementat ion»

itsRDC4:RDC1

Dev iceStatus1:RhpBoolean

DiscIn4:RhpBoolean

DiscIn3:RhpBoolean

DiscIn2:RhpReal DiscIn1:RhpInteger

DiscOut2:RhpBoolean

DiscOut1:RhpBoolean

iAFDXOutiAFDXIn

AFDX1

itsRDC1:RDC1

Dev iceStatus1:RhpBoolean

DiscIn4:RhpBoolean

DiscIn3:RhpBoolean

DiscIn1:RhpInteger

DiscOut2:RhpBoolean

DiscOut1:RhpBoolean

iAFDXOut iAFDXIn

AFDX1

itsRDC2:RDC1

Dev iceStatus1:RhpBoolean

DiscIn4:RhpBoolean

DiscIn3:RhpBoolean

DiscIn2:RhpRealDiscIn1:RhpInteger

DiscOut2:RhpBoolean

DiscOut1:RhpBoolean

iAFDXOutiAFDXIn

AFDX1

itsRDC3:RDC1

Dev iceStatus1:RhpBoolean

DiscIn4:RhpBoolean

DiscIn3:RhpBoolean

DiscIn1:RhpInteger

DiscOut2:RhpBoolean

DiscOut1:RhpBoolean

iAFDXOut iAFDXIn

AFDX1

itsSwitch1:Switch1

iAFDXIn iAFDXOut

AFDX4

iAFDXIniAFDXOut

AFDX2

iAFDXOut

iAFDXIn

AFDX1

itsSwitch2:Switch1

iAFDXIn

iAFDXOut

AFDX4

iAFDXOut

iAFDXIn

AFDX3

iAFDXIn iAFDXOut

AFDX2

iAFDXOutiAFDXIn

AFDX1

itsSwitch3:Switch1

iAFDXIn

iAFDXOut

AFDX4

iAFDXIniAFDXOut

AFDX2

iAFDXOut iAFDXIn

AFDX1

itsSwitch4:Switch1

iAFDXIniAFDXOut

AFDX4

iAFDXOut

iAFDXIn

AFDX3

iAFDXIn iAFDXOut

AFDX2

iAFDXOut

iAFDXIn

AFDX1

itsSpeed_Sensor_Left:Speed_Sensor1

Dev iceStatus:RhpBoolean

DiscOut1:RhpInteger
itsSpeed_Sensor_Right:Speed_Sensor1

Dev iceStatus:RhpBoolean

DiscOut1:RhpInteger

itsActuator_Front_Left:Actuator1

DiscOut2:RhpBoolean

DiscOut1:RhpBoolean

DiscIn2:RhpBoolean

DiscIn1:RhpBoolean

itsActuator_Back_Left:Actuator1

DiscOut2:RhpBoolean

DiscOut1:RhpBoolean

DiscIn2:RhpBoolean

DiscIn1:RhpBoolean

itsActuator_Front_Right:Actuator1

DiscOut2:RhpBoolean

DiscOut1:RhpBoolean

DiscIn2:RhpBoolean

DiscIn1:RhpBoolean

itsActuator_Back_Right:Actuator1

DiscOut2:RhpBoolean

DiscOut1:RhpBoolean

DiscIn2:RhpBoolean

DiscIn1:RhpBoolean

itsComputer_Left:Computer1

iAFDXIn

iAFDXOut

AFDX1
itsComputer_Right:Computer1

iAFDXIn

iAFDXOut

AFDX1

itsSpeed_Temperature_Sensor_Left:Speed_Temperature_Sensor1

Dev iceStatus:RhpBoolean DiscOut2:RhpInteger DiscOut1:RhpReal

itsSpeed_Temperature_Sensor_Right:Speed_Temperature_Sensor1

Dev iceStatus:RhpBooleanDiscOut2:RhpIntegerDiscOut1:RhpReal

Technical model

ATG Test scenario examples – logical model

TCon_SuD_Logic
al:TCon_SuD_Lo

gical

«TestContext»

>> 100 ms

>> 900 ms

>> 1000 ms

>> 2000 ms

TCon_SuD_Logic
al:TCon_SuD_Lo

gical

«TestContext»

>> 100 ms

>> 900 ms

>> 1000 ms

>> 2000 ms

>> 100 ms

>> 900 ms

>> 1000 ms

>> 2000 ms

TCon_SuD_Logic
al.itsDummyDrive
r_of_SuD_Logical
:DummyDriver_of

_SuD_Logicalrelay_evSensingLoss(block = 0)

TCon_SuD_Logic
al.itsSuD_Logical:

SuD_Logical

«SUT»

relay_evSensingLoss(block = 0)

relay_chSpeed(block = 0, value = 499)

relay_chTemperature(value = 29.000000)

relay_evSensingLoss(block = 1)

relay_chSpeed(block = 1, value = 500)

relay_evActuationFailure(block = 0)

relay_evSensingLoss(block = 2)

TCon_SuD_Logic
al.itsSuD_Logical:

SuD_Logical

«SUT»

relay_chSpeed(block = 0, value = 499)

relay_chTemperature(value = 29.000000)

relay_evSensingLoss(block = 1)

relay_chSpeed(block = 1, value = 500)

relay_evActuationFailure(block = 0)

relay_evSensingLoss(block = 2)

TCon_SuD_Logic
al:TCon_SuD_Lo

gical

«TestContext»

>> 100 ms

>> 1900 ms

>> 1000 ms

>> 1000 ms

TCon_SuD_Logic
al:TCon_SuD_Lo

gical

«TestContext»

>> 100 ms

>> 1900 ms

>> 1000 ms

>> 1000 ms

>> 100 ms

>> 1900 ms

>> 1000 ms

>> 1000 ms

TCon_SuD_Logic
al.itsDummyDrive
r_of_SuD_Logical
:DummyDriver_of

_SuD_Logicalrelay_chTemperature(value = 29.000000)

TCon_SuD_Logic
al.itsSuD_Logical:

SuD_Logical

«SUT»

relay_chTemperature(value = 29.000000)

relay_chSpeed(block = 1, value = 501)

relay_chTemperature(value = 29.000000)

relay_evActuationFailure(block = 1)

relay_chTemperature(value = 29.000000)

relay_chSpeed(block = 1, value = 499)

relay_chTemperature(value = 29.000000)

relay_evActuationFailure(block = 2)

relay_chSpeed(block = 1, value = 501)

TCon_SuD_Logic
al.itsSuD_Logical:

SuD_Logical

«SUT»

relay_chSpeed(block = 1, value = 501)

relay_chTemperature(value = 29.000000)

relay_evActuationFailure(block = 1)

relay_chTemperature(value = 29.000000)

relay_chSpeed(block = 1, value = 499)

relay_chTemperature(value = 29.000000)

relay_evActuationFailure(block = 2)

relay_chSpeed(block = 1, value = 501)

ATG Test scenario examples – technical model

TCon_SuD_Tech
nical:TCon_SuD_

Technical

«TestContext»

>> 500 ms

>> 2000 ms

TCon_SuD_Tech
nical:TCon_SuD_

Technical

«TestContext»

>> 500 ms

>> 2000 ms

>> 500 ms

>> 2000 ms

TCon_SuD_Tech
nical.itsDummyDri
ver_of_SuD_Tec
hnical:DummyDri
ver_of_SuD_Tec

hnical
relay_chSpeed(block = 1, value = 501)

TCon_SuD_Tech
nical.itsSuD_Tech
nical:SuD_Techni

cal

«SUT»

relay_chSpeed(block = 1, value = 501)

relay_evSensingLoss(block = 1)

relay_chTemperature(block = 1, value = 31.000000)

relay_chSpeed(block = 0, value = 499)

relay_evSensingLoss(block = 0)

TCon_SuD_Tech
nical.itsSuD_Tech
nical:SuD_Techni

cal

«SUT»

relay_evSensingLoss(block = 1)

relay_chTemperature(block = 1, value = 31.000000)

relay_chSpeed(block = 0, value = 499)

relay_evSensingLoss(block = 0)

TCon_SuD_Tech
nical:TCon_SuD_

Technical

«TestContext»

>> 1000 ms

>> 500 ms

>> 2500 ms

TCon_SuD_Tech
nical:TCon_SuD_

Technical

«TestContext»

>> 1000 ms

>> 500 ms

>> 2500 ms

>> 1000 ms

>> 500 ms

>> 2500 ms

TCon_SuD_Tech
nical.itsDummyDri
ver_of_SuD_Tec
hnical:DummyDri
ver_of_SuD_Tec

hnical

relay_evSensingLoss(block = 0)

TCon_SuD_Tech
nical.itsSuD_Tech
nical:SuD_Techni

cal

«SUT»

relay_chSpeed(block = 0, value = 501)

relay_chTemperature(block = 1, value = 31.000000)

relay_evFailure(block = 0)

relay_chTemperature(block = 0, value = 29.000000)

relay_chSpeed(block = 2, value = 499)

TCon_SuD_Tech
nical.itsSuD_Tech
nical:SuD_Techni

cal

«SUT»

relay_evSensingLoss(block = 0)

relay_chSpeed(block = 0, value = 501)

relay_chTemperature(block = 1, value = 31.000000)

relay_evFailure(block = 0)

relay_chTemperature(block = 0, value = 29.000000)

relay_chSpeed(block = 2, value = 499)

ATG screenshot - coverage

ATG screenshot – interface definition

Agenda

• EADS background and motivation

• Model-based Testing concept and artefacts

• Model-based Testing with Rational Rhapsody, Rhapsody ATG and

Rhapsody TestConductor

• Example and Early Results

• Conclusion

Conclusion

• ATG…

• works on a SysML specification model

• achieves a high coverage even for complex models

• does not have confining modelling restrictions as model checking based

test case generators do

• Helps improving testing performance

• Model-based Testing…

• Supports in doing a better impact analysis

• Leads to higher test coverage, resulting in higher product quality

• Improves test management

• Reduces overall test efforts

MBAT - Combined Model-based static Analysis and

dynamic Testing of Embedded Systems

The research leading to these results has received funding from

the ARTEMIS Joint Undertaking under grant agreement no

269335 (ARTEMIS project MBAT) and from the German BMBF.

EADS and BTC-ES are partners in the European

MBAT research project

Acknowledgements and disclaimers

© Copyright IBM Corporation 2013. All rights reserved.

– U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM, the IBM logo, ibm.com, Rational, the Rational logo, Telelogic, the Telelogic logo, Green Hat, the Green Hat logo, and other IBM products

and services are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or

both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may

also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at www.ibm.com/legal/copytrade.shtml

If you have mentioned trademarks that are not from IBM, please update and add the following lines:

[Insert any special third-party trademark names/attributions here]

Other company, product, or service names may be trademarks or service marks of others.

Availability: References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries

in which IBM operates.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided

for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any

participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided

AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise

related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating

any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license

agreement governing the use of IBM software.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may

have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these materials is

intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales, revenue

growth or other results.

http://www.ibm.com/legal/copytrade.shtml

© Copyright IBM Corporation 2013. All rights reserved. The information
contained in these materials is provided for informational purposes only, and is
provided AS IS without warranty of any kind, express or implied. IBM shall not be
responsible for any damages arising out of the use of, or otherwise related to,
these materials. Nothing contained in these materials is intended to, nor shall
have the effect of, creating any warranties or representations from IBM or its
suppliers or licensors, or altering the terms and conditions of the applicable license
agreement governing the use of IBM software. References in these materials to
IBM products, programs, or services do not imply that they will be available in all
countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion
based on market opportunities or other factors, and are not intended to be a
commitment to future product or feature availability in any way. IBM, the IBM logo,
Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products
and services are trademarks of the International Business Machines Corporation,
in the United States, other countries or both. Other company, product, or service
names may be trademarks or service marks of others.

