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Mission Statement: 
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Systems Engineering at EADS 

• EADS is typically doing 

systems  specification and 

systems integration 

 

 Duration and cost of system 

development efforts has 

experienced rapid exponential 

growth over time 

 

 The system design of a product 

is a key driver for its lifecycle 

cost.  

Wrong / not optimal decisions in 

early phases are very costly to 

fix in later phases 
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Model-based specification 

Specification modelling Model usage Requirements analysis 

Textual requirements 

Test scenarios 
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• Development and testing are often enough separated in systems engineering resulting 

in an unnecessary high effort for testing while it is already seen as inseparable in 

software engineering 

• An MBSE approach including model based testing allows early validation of 

requirements and verification of the system design by testing throughout the design 

phase and facilitates error tracing and impact assessment later on. 

• The usage of the OMG UML Testing Profile in conjunction with SysML allows reusing 

the artefacts from the engineering stage at the testing stage of the development cycle 

and thereby enables testing based on the system specification model 

Model-based testing 

Development Test 

time 
Delivery date 

time 
Delivery date 

Development 

 

Test 

AS IS TO BE 

Need for an integrated MBSE approach 
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Development 
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From model-based specification to 
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• Seamless traceability from the initial requirements through the system and subsystem 

functions to test cases and test results 

 

 

• Test scenarios can be automatically generated from the specification model based on 

an in-depth automatic white-box model analysis 
 

 

• Test plans are developed in the context of the SuT, the resources available and the 

coverage that can be delivered 

 

 

• Tests are created earlier in the development process, automatically executed, used 

for specification testing as well as system testing and reused when the design 

evolves 

Better impact analysis 

Better test management 

Overall test effort reduction 

Higher test coverage 

Benefits of model-based testing 
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Tools: 

 DOORS (IBM) 

– Requirements Management  

 Rhapsody Gateway (IBM/Geensoft) 

– Requirements Traceability 

 Rhapsody (IBM) 

– Specification modelling 

– Model Integration 

– Simulation Execution 

 ATG (IBM/BTC-ES) 

– Automatic Test Case/Scenario 

generation 

 TestConductor (IBM/BTC-ES) 

– Automatic test execution 

– Coverage report generation 

 MATLAB/Simulink (MathWorks) 

– Physical Behaviour 

– Environment Simulation 

DOORS Gateway/Reqtify 

Integrated simulation 

Rhapsody 

MATLAB/Simulink 

Traceability 

Code generation 

TestConductor 

Test Execution 

Test Case 

Generation 

ATG 

EADS Model-based Tool chain 



Rhapsody ATG and Rhapsody TestConductor 

• IBM® Rational® Rhapsody® Automatic Test 

Generation (ATG) Add On: 

 

• Model-based test case generation using UML/SysML test 

models 

• Model coverage, statement coverage, MC/DC 

• Incremental creation of test suites 

 

 

• IBM® Rational® Rhapsody® TestConductor Add 

On:    

 

• Model-based test case specification and exeution using 

the UML Testing Profile 

• Test can be defined graphically using UML sequence 

diagrams, flowcharts, statecharts or code 

• Error analysis using color coded sequence diagrams 



 Model based 

development using a 

specification model (left 

branch) 

 creating tests directly 

from a mostly textual test 

plan (right branch) 

 Development benefits 

from modelling but tests 

are mostly manually 

developed and 

maintained outside of 

models 

 

 

Test Models and Automatic Test Generation (ATG) 



Test Models and Automatic Test Generation (ATG) 

 Model based 

development and model 

based testing 

 Automatically generate 

tests from test model 

using ATG 

 Test maintenance 

means maintaining test 

models 

 

 



Test Models and Automatic Test Generation (ATG) 

 Test models capture 

test objectives and test 

strategies 

 ATG generates test 

cases 

 ATG test cases are 

tailored to the concrete 

test environment, e.g. 

TestConductor 

 Tests are executed and 

results are analyzed 

 

 



Agenda 

• EADS background and motivation 

• Model-based Testing concept and artefacts 

• Model-based Testing with Rational Rhapsody, Rhapsody ATG and 

Rhapsody TestConductor 

• Example and Early Results 

• Conclusion 

 



Functional model 

Descriptive 

5 functions 

4 functional links 

Logical model 

Executable 

4 logical block classes 

9 logical block instances 

14 logical links 

 

Technical model 

Executable 

6 technical block classes 

18 technical block instances 

36 technical links 

 

ATG 

17 Test cases 

94% model element coverage (93/98) 

50% MC/DC coverage (18/36) 

100% statement coverage (69/69) 

ATG 

30 Test cases 

95% model element coverage (108/113) 

41% MC/DC coverage (57/136) 

99% statement coverage (332/335) 

Generic example model and application results 
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ATG Test scenario examples – logical model 
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ATG Test scenario examples – technical model 
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ATG screenshot - coverage 



ATG screenshot – interface definition 
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Conclusion 

• ATG… 

• works on a SysML specification model  

• achieves a high coverage even for complex models 

• does not have confining modelling restrictions as model checking based 

test case generators do 

• Helps improving testing performance 

 

• Model-based Testing… 

• Supports in doing a better impact analysis 

• Leads to higher test coverage, resulting in higher product quality 

• Improves test management 

• Reduces overall test efforts 

 

 

 

 



MBAT - Combined Model-based static Analysis and 

dynamic Testing of Embedded Systems 
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