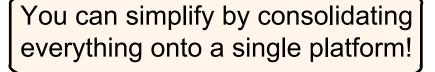
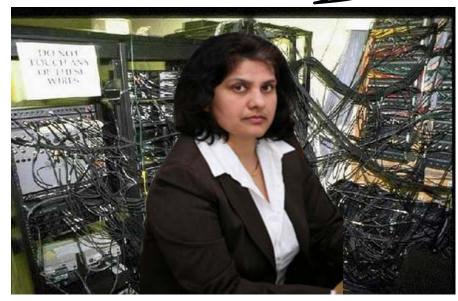

## zEnterprise – The Ideal Platform For Smarter Computing

Consolidating Server Infrastructure


### Address Sprawl With zEnterprise Multi-Architecture Environment

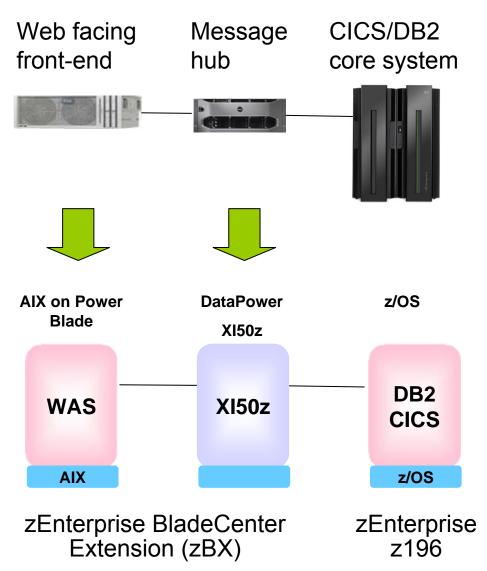



Consolidate with zEnterprise!

### Simplifying Hardware Infrastructure Dramatically Reduces The Cost Per Workload

Our front end infrastructure is too complex...

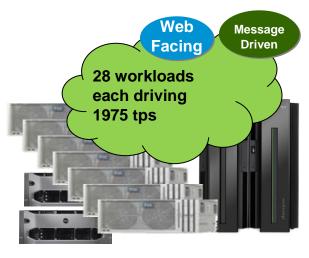





CIO

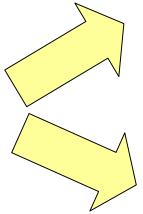


**IBM** 


### Collapse Web Front End Workloads On To zEnterprise Platform



- Run as ensemble of virtual servers
- Unified management of virtual machines
- Manage ensemble as a single workload with service goals
- Dynamic adjustment of CPU resources drives 10% higher utilization
- Assign best fit to Power blade and XI50z for lowest cost per workload
- Embedded pre-configured data network


## Web Front Ends Cost 58% Less On zEnterprise

28 front end WebSphere applications



### **Competitive App Server**

57 SPARC T3-1B blades in SUN racks
2 HP DL380 servers (for ESB)
936 cores total



# WebSphere App Server 28 POWER7 blades 2 DataPower XI50z in zBX 240 cores total



Deploy on new SPARC T3 hardware





Power Blades in zBX

\$4.9M

3yr TCA
HW+SW

## Web Front Ends Cost 58% Less On zEnterprise

Competitive App Server 57 SPARC T3-1B blades in SUN racks 2 HP DL380 servers (for ESB) 936 cores total

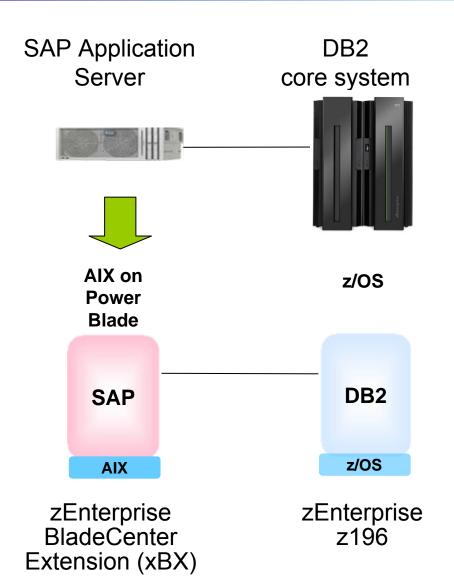


Deploy on new SPARC T3 hardware

\$11.7M 3yr TCA HW+SW

WebSphere App Server 28 POWER7 blades 2 DataPower XI50z in zBX 224 cores total




Power Blades in zBX

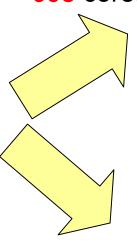
\$4.9M 3yr TCA HW+SW

### Why?

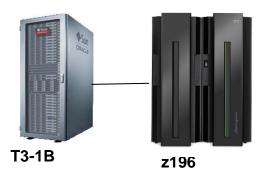
- WAS on PS701 delivers 1.84x processing capacity
  - Competitive Application Server cannot effectively utilize the threads available in T3 blade
- DataPower better price/performance
- Need to over provision SPARC T3 since no zManager

## Collapse SAP Front End Applications On To zEnterprise Platform




- Run as ensemble of virtual servers
- Unified management of virtual machines
- Manage ensemble as a single workload with service goals
- Dynamic adjustment of CPU resources drives 10% higher utilization
- Assign best fit to Power blade for lowest cost per workload
- Embedded pre-configured data network

### SAP Applications Cost 20% Less On **z**Enterprise


20 front end SAP applications



**38** SPARC T3-1B blades in SUN rack 608 cores total



23 POWER7 blades in zBX 184 cores total



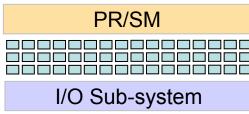
**Deploy on new SPARC T3** hardware

\$1.2M 3yr TCA HW+SW



zBX

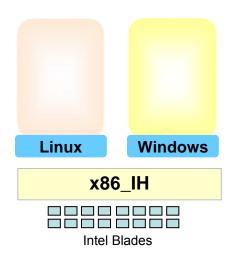
z196


**Power Blades** in zBX

**\$0.97M** 3yr TCA

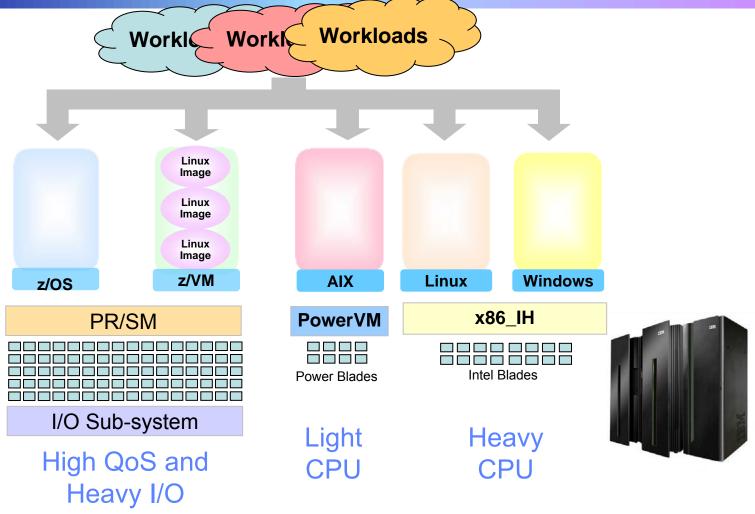
HW+SW

## zEnterprise - Environments Optimized For Different Workloads



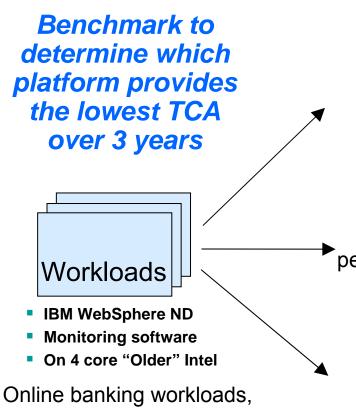



- Scale up to 80 cores in a frame (z/OS clusters with sysplex)
- Dedicated I/O Sub System
- Superior qualities of service




- Scales to 8 cores per blade
- 4 fast processing threads per core
- Floating point accelerators




- Scales to 16 cores per blade
- 2 Fast processing threads per core
- Commodity I/O
- Modest qualities of service

## Workload Characteristics Influence The Optimal Deployment Decision



Deploy or consolidate workloads on the environment best suited for each workload to yield lowest cost

### **Deploying Workloads With Heavy I/O** Requirements



1 workloads per Intel blade



Virtualized on Intel 16 core HX5 Blade **\$380,046** per workload

1 workloads per POWER7 blade



PowerVM on PS701 8 core POWER7 Blade **\$204,036** per workload

each driving 22 transactions per second, with 1 MB I/O per transaction

40 workloads per 32-way z/VM



large scale pool

z/VM on zEnterprise CPC 32 IFI s

**\$84,985** per workload

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer workload profiles/characteristics. Prices will vary by country.

### **Deploying Large CPU Intensive Workloads**

Benchmark to determine which platform provides the lowest TCA over 3 years Workloads IBM WebSphere ND **Monitoring software** On 8 core Nehalem servers

2 workloads per Intel blade



Scale to 16 cores

Virtualized on Intel 16 core HX5 Blade **\$190,023** per workload

1 workloads per POWER7 blade



PowerVM on PS701 8 core POWER7 Blade **\$204,036** per workload

Online banking workloads, each driving 460 transactions per second with light I/O

10 workloads per 32-way z/VM



z/VM on zEnterprise CPC 32 IFLs **\$339,939** per workload

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer workload profiles/characteristics. Prices will vary by country.

## Deploying Workloads With Light CPU Requirements

Benchmark to determine which platform provides the lowest TCA over 3 years

47 workloads per Intel blade



Virtualized on Intel 16 core HX5 Blade \$8,086 per workload



28 workloads per POWER7 blade



Fast low cost threads

PowerVM on PS701 8 core POWER7 Blade \$7,287 per workload

- IBM WebSphere ND
- Monitoring software
- On 4 core "Older" Intel

Online banking workloads, each driving **22** transactions per second with light I/O

155 workloads per 32-way z/VM

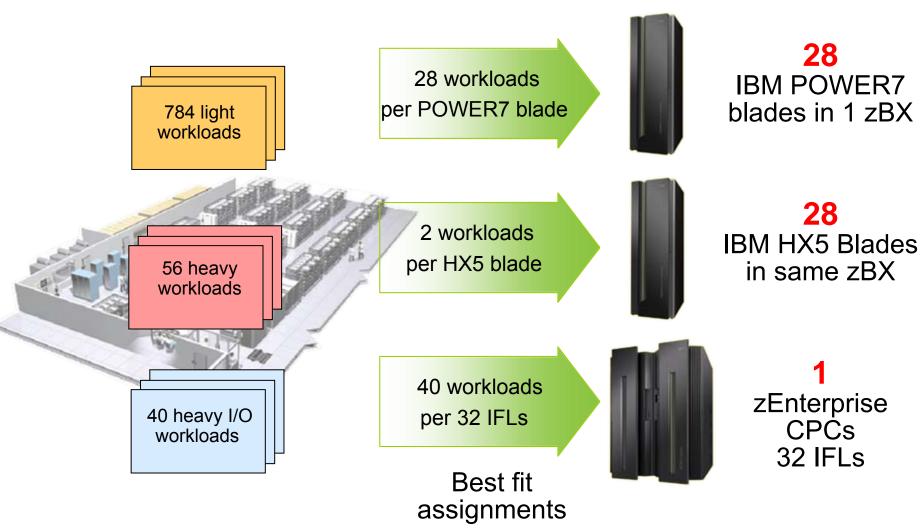


z/VM on zEnterprise CPC 32 IFLs \$21,932 per workload

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer workload profiles/characteristics. Prices will vary by country.

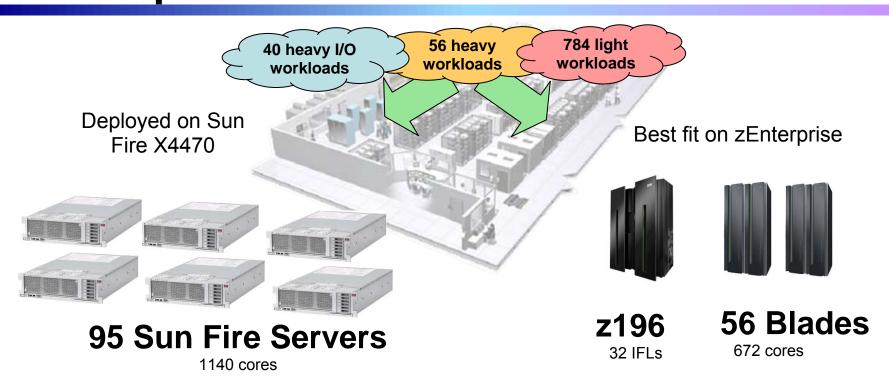
# Case Study – Consolidate 880 Standalone Workloads On zEnterprise

- Distributed workload profile is a mix of
  - 784 light weight
  - 56 heavy weight (cpu intensive)
  - 40 heavy I/O
- What is the most cost effective way to consolidate/deploy all these workloads?


### Sun Fire X4470



### **z**Enterprise




## What Does It Cost To Deploy 880 Workloads On zEnterprise?



Server configurations are based on consolidation ratios derived from IBM internal studies. Projected Sun Fire X4470 2.0GHz 2ch/16co from x3550 2.66GHz 2ch/12co measurements. Prices are in US currency, prices will vary by country

## Standalone Workloads Cost 48% Less On zEnterprise



**\$37.8** TCA (3 years)

**\$19.8M** TCA (3 years)

# Deploying the hybrid and standalone workloads on zEnterprise saves a lot!



03 - Consolidating Server Infrastructure V1.1

### **Compare Server Cost Of Acquisition**

40 heavy I/O workloads

56 heavy workloads

784 light workloads

28 WAS workloads

Best fit on zEnterprise

20 SAP workloads

Deployed on Sun Fire X4470 + T3-1B Blades + DL380



95 Sun Fire

1,140 cores

192 Servers 2,684 cores

**\$40.7** TCA (3 years)



95 T3-1B

1,520 cores



2 DL380

24 cores



**z196** 

109 Blades

1,096 cores

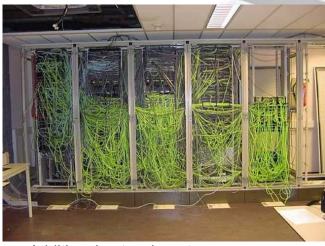
110 Servers 1,128 cores

**\$25.7M** TCA (3 years)

Server configurations are based on consolidation ratios derived from IBM internal studies. Prices are in US currency, prices will vary by country

### **Compare Network Cost of Acquisition**

40 heavy I/O workloads


56 heavy workloads

784 light workloads

28 WAS workloads

20 SAP workloads

Deployed on Sun Fire X4470 + T3-1B Blades + DL380



Additional network parts 23 switches 506 cables 420 adapters

949 total network parts

\$0.35M

Best fit on zEnterprise





Additional network parts

1 switch

10 cables

10 adapters

21 total network parts

\$0.03M

### **Compare Power Consumption**

40 heavy I/O workloads

56 heavy workloads

784 light workloads

**28 WAS** workloads

Best fit on zEnterprise

**20 SAP** workloads

Deployed on Sun Fire X4470 + T3-1B Blades + DL380







192 Servers **2,684 Cores** 128.6 kW



3 years @ \$0.10 per kWh





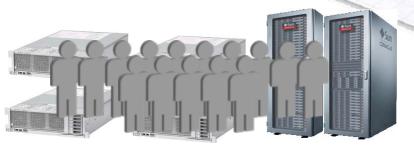


\$0.21M 3 years @ \$0.10 per kWh

Server configurations are based on consolidation ratios derived from IBM internal studies. Prices are in US currency, prices will vary by country

### **Compare Server Infrastructure Labor Costs**

40 heavy I/O workloads


56 heavy workloads

784 light workloads

28 WAS workloads

20 SAP workloads

Deployed on Sun Fire X4470 + T3-1B Blades + DL380



36,880 labor hours/yr **17.73** administrators



\$8.49M

3 years @ \$159,000/yr

Best fit on zEnterprise

26,529 labor hours/yr **12.76** administrators

\$6.11M

3 years @ \$159,000/yr

**28% less** 

Server configurations are based on consolidation ratios derived from IBM internal studies. Prices are in US currency, prices will vary by country

## **Compare Total Cost Of Ownership**

40 heavy I/O workloads

56 heavy workloads

784 light workloads

**28 WAS** workloads

**20 SAP** workloads

Deployed on Sun Fire X4470 + T3-1B Blades + DL380





Best fit on zEnterprise





192 Servers **2,684 Cores** 



110 Servers **1,128 Cores** 

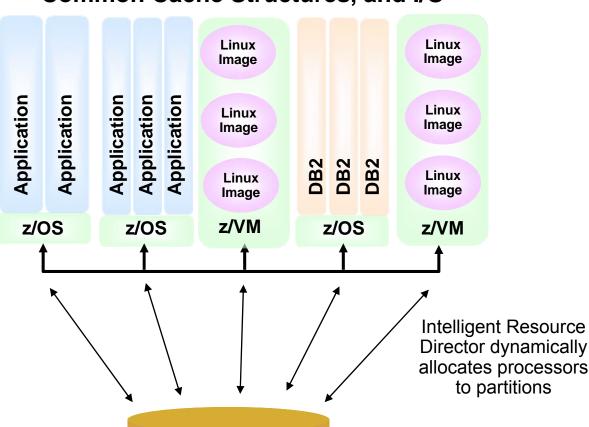
**\$26.15M** TCO (3 years)

Server configurations are based on consolidation ratios derived from IBM internal studies. Prices are in US currency, prices will vary by country

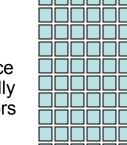


## Linux On z196 Achieves Lowest TCA For Heavy Processing And I/O Workloads

- Larger scale of shared processor pools (32 cores vs. 16 cores)
- Statistical benefit of sharing a larger pool of processors
- Software priced per core
- Cost benefit of Enterprise Linux Server Solution Edition pricing
- Dedicated I/O Sub-system offloads I/O processing
- Greater I/O bandwidth
- Virtualization of I/O processing resources
- Rock solid security


## **z196 Is Designed For Large Scale Virtualization And Consolidation**

**Logical Partitions Share Processors, Common Cache Structures, and I/O** 


I/O Subsystem offloads I/O processing

Internal
networking via
secure high
speed
HiperSockets

Shared access to all disk data and to external networks



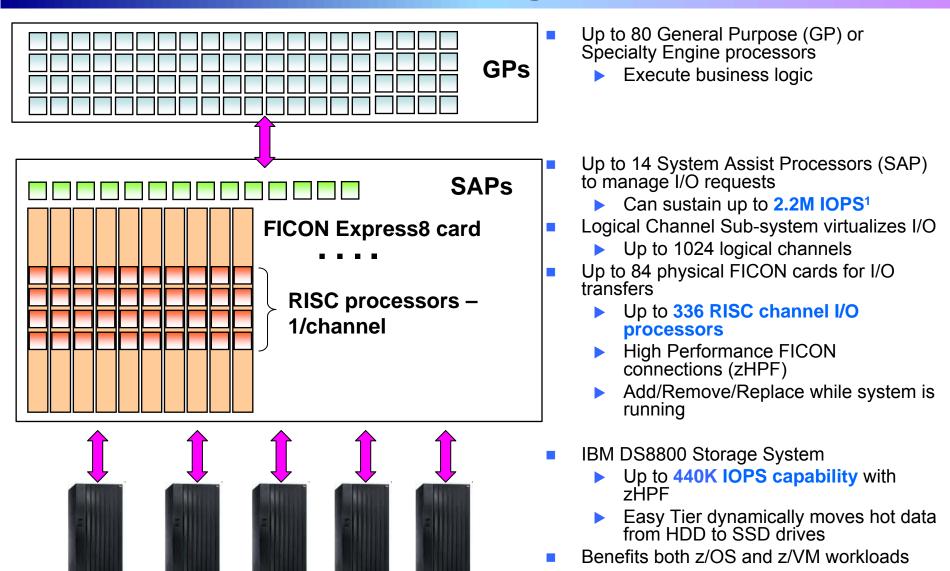
All Data



z/VM supports 1000's of virtualized images Linux on System z and z/VM can run on up to 80 IFL Processors

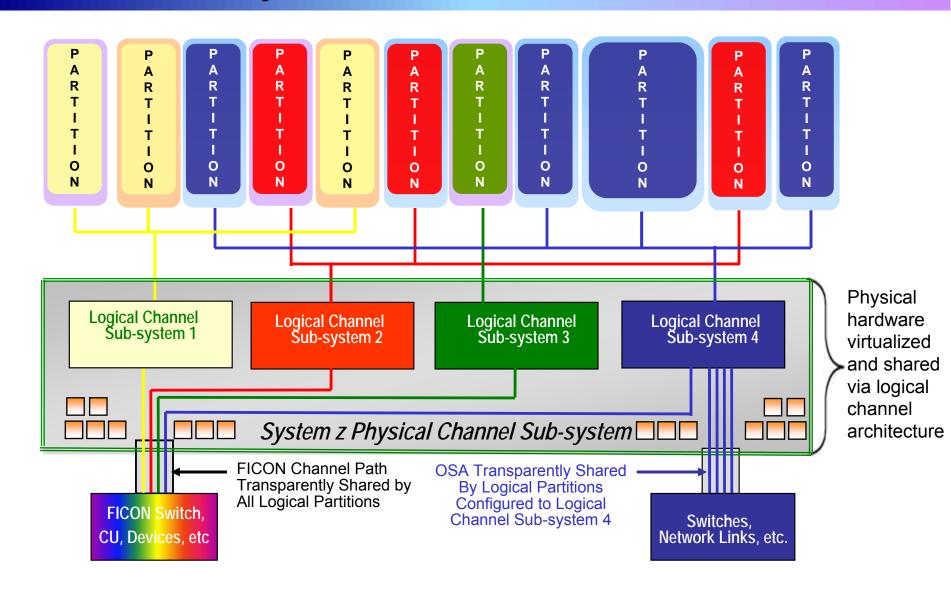
## z/VM On System z – Optimized For Large Scale Virtualization

- Large scale virtualization yields pooling benefits
  - Shared processor pool
  - Lower headroom requirement to accommodate variations in workload demand
- On System z, up to 32 IFL processor cores can be supported by a single z/VM LPAR
  - Large scale virtualization platform can support hundreds of virtual machines
- zBX blades are limited to 8-16 cores (currently)


## System z Solution Editions For Linux Saves Lots Of \$

Transforming the economics of large scale integration at a special packaged price!

- System z Solution Edition for Enterprise Linux
  - Integrated Facility for Linux (IFL) processors, memory and z/VM added to an existing mainframe
  - Hardware and software maintenance for three or five years
- Enterprise Linux Server
  - Standalone System zEnterprise server with IFLs, memory, I/O connectivity, and z/VM
  - Hardware and software maintenance for three or five years
- Linux on System z available from distribution partners
  - Novell SUSE and Red Hat




### z196 – Optimized For High I/O Bandwidth



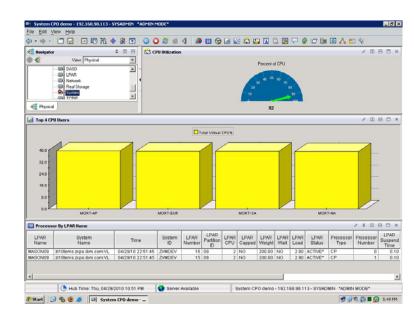

<sup>1</sup>Recommend 70% max SAP Utilization – 1.5M IOPS

## Physical I/O Adapters And Channels Are Virtualized And Shared By The Consolidated Workloads



### z/VM Security For Virtualization

- Operates without interference/harm from guest virtual machines
- Virtual machines cannot circumvent system security features
- Protects virtual machines from each other
- Ensures that a user only has access to resources specifically permitted
- Tracks who is accessing all system resources
- LPAR certified Common Criteria EAL5
- z/VM certified at Common Criteria EAL4+
- HiperSockets for highly secure internal networking
- Access to System z Crypto features
  - CPACF, CryptoExpress3

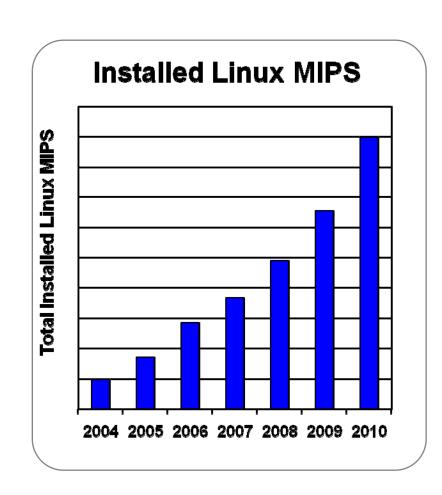



## Linux On System z Workloads Inherit System z Qualities Of Service

- Reliability, availability, serviceability characteristics of System z
- Site failover for disaster recovery
- Capacity on demand upgrades
- Add physical processors to Linux environment without disruption

## DEMO: Dynamically Add New Processor To z/VM LPAR To Handle Increased Risk Analysis Workload

- A customer has in-house Risk Analysis program running on Linux on System z
- Increased workload to all 4 Linux guests is causing z/VM LPAR utilization of 90%+
- Customer determines this is a long term trend - additional physical capacity needed
- 4. New capacity made available to LPAR as new Logical CPU, available for work
  - Without disruption in service




VMware can't recognize and take advantage of additional physical processors without bringing down and rebooting the system

Note: Assumes available processors on installed books

## Client Adoption Drives Linux Success Installed Linux MIPS At 45% CAGR<sup>1</sup>

- The momentum continues:
  - Shipped IFL MIPS increased 84% from YE08 to YE10
- Linux is 18% of the System z customer install base (MIPS)
- Over 80% of the top 100 System z clients are running Linux on the mainframe
- More than 3,100 applications available for Linux on System z



## Blue Cross Blue Shield Of Minnesota Saves Up To 50% By Reducing Their Hardware Footprint

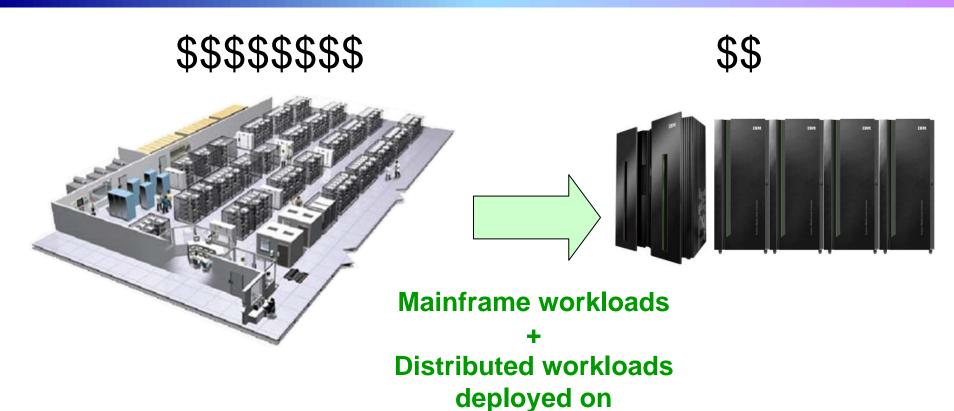


- Lead time for server provisioning reduced to 99%
- IT deploys new Linux Virtual Servers for test and dev within 20 mins
- Not a single incidence of unplanned downtime or underperformance
- With Linux on IBM System z, BCBSM can achieve near-continuous availability by reducing the need for planned downtime

#### **Business Problem:**

The Microsoft Windows and Intel processor-based server landscape at Blue Cross and Blue Shield of Minnesota (BCBSM) was inflexible and costly to operate and maintain.




- IBM consolidated 140 HP Intel-architecture servers to a single IBM System z with six Integrated Facility for Linux (IFL) engines.
- Key applications now run in SUSE Linux Enterprise virtual servers, while IBM DB2 databases run on z/OS on the same physical machine





- "Even without factoring in the maintenance and support costs—which would be considerable for a large estate of physical servers—we found that running a virtualized Linux environment on System z would be somewhere between 30 and 50 percent less expensive than a distributed architecture."
  - Ted Mansk, Director of Infrastructure Engineering and Databases at BCBSM

# Consolidating Hardware Infrastructure With zEnterprise Results In Big Savings



zEnterprise with

**Best Fit for Cost**