Rational Systems and Software Engineering **Symposium**

0

Introduction to Rational Engineering Lifecycle Manager

Andy Lapping Technical Systems Specialist, IBM Rational

Parham Vasaiely Systems Engineering Project Manager, Airbus Group

Airbus Group at a Glance

Airbus | Airbus Defence and Space | Airbus Helicopters

Airbus Key Challenges for Engineering Lifecycle Management – A380 Example

- Complex Products
- Safety-critical Systems (Certification)

- Geographically distributed engineering teams
- Complex IT infrastructure
- Extended Enterprise

The vision, challenges and how to reach the goals

- The Vision (one of many...)
 - Improve collaborative aspects within the life cycle
 - Increase productivity of work and quality of products by reducing costs in terms of time during the engineering and management of products
- Challenges to reach our goal:
 - Traceability, Visibility, Control in the product engineering lifecycle
- How to:
- Integration of Software and Systems Engineering with Product Lifecycle Management tools
- Integration of process and change management into the systems engineering lifecycle

Smarter products \rightarrow rising complexity

Project Plans

Requirements

Documents

Electrical & Electronic

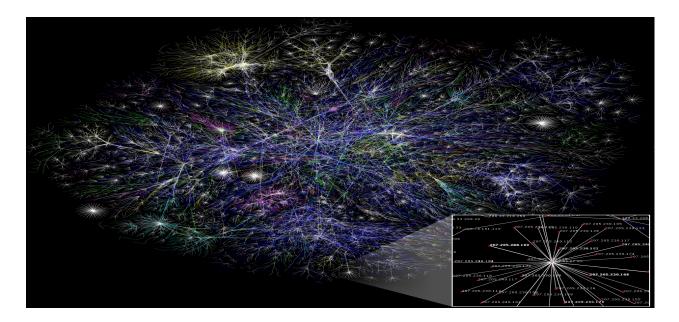
Parts

Tests



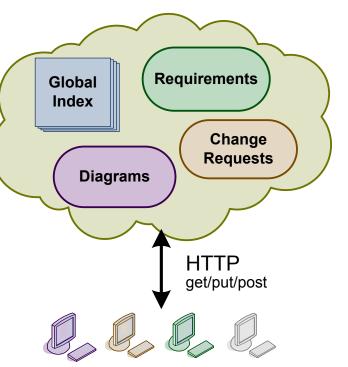
Source Code

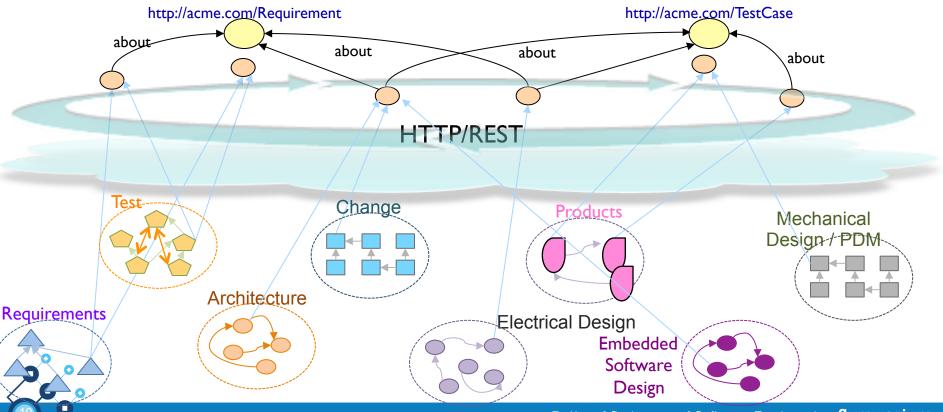
Eng. Environments are highly fragmented The challenge to connect them is increasing exponentially


- Traditionally, each tool came with its own
 - UI Web and desktop presentations of views and tasks
 - Logic Workflow, process, search, query, scale, security and collaboration
 - Storage individual files on workstation or servers: how to ensure availability and traceability?
- Resulting in...
 - Brittle/poor integrations
 - Silos everywhere
 - High cost to maintain and administer
 - Low re-use

The Internet

• A model for a

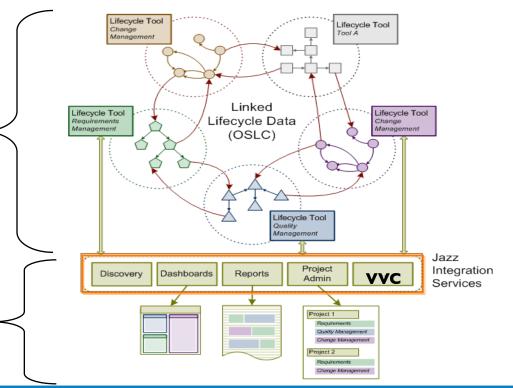

"huge source of data with navigable links"already exists


What does Internet inspiration mean?

- Data specified independently of tools
- All data are resources with URLs
- Multiple tools access data
- References are embedded URLs
- Resources have representations
- Unprecedented extensibility

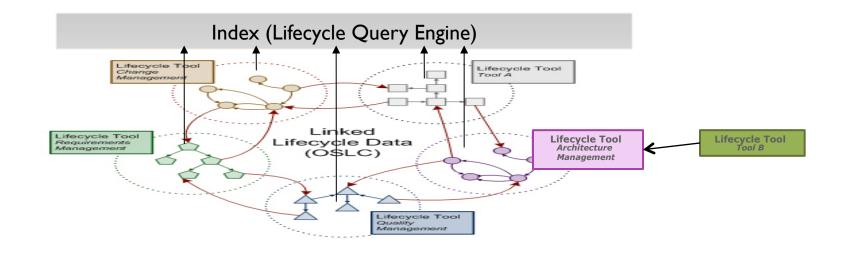
Leveraging the Linked Data concepts of Web Technology...

The Web has proven to be the most scalable, open, and flexible integration technology



The Foundation: Linked Lifecycle Data and OSLC

OSLC = Open Services for Lifecycle Collaboration

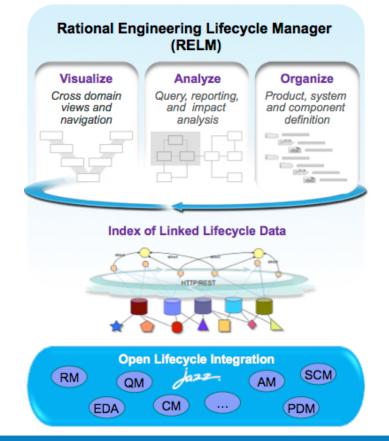


Linked Lifecycle Data (OSLC)

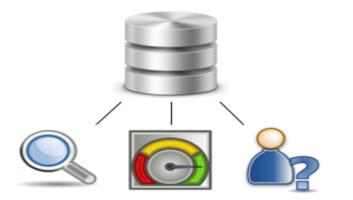
- Supporting a range of integration patterns
- Sharing lifecycle resources
- Jazz Integration Services & Protocols (Jazz Platform)
 - Defining services for common capabilities like administration,
 reporting, dashboards, etc.

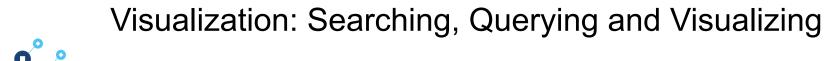
Effective Lifecycle Analysis: Lifecycle Query Engine

An index of Linked Data is created from domain tools that allows for crossdomain *Lifecycle Queries and Analysis*

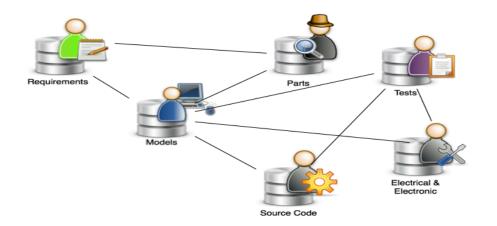

Introducing Rational Engineering Lifecycle Manager

Uses a Linked Data approach that enables a single source of truth with a federated architecture to provide


- Visibility across many sources of data
- **Analysis** answer questions using that contextualized information
- **Organization** information in context


Allows stakeholders to:

- manage growing complexity
- derive knowledge from the available data
- make timely and correct engineering andbusiness decisions


Rational Engineering Lifecycle Manager (RELM)

Rational Engineering Lifecycle Manager (RELM)

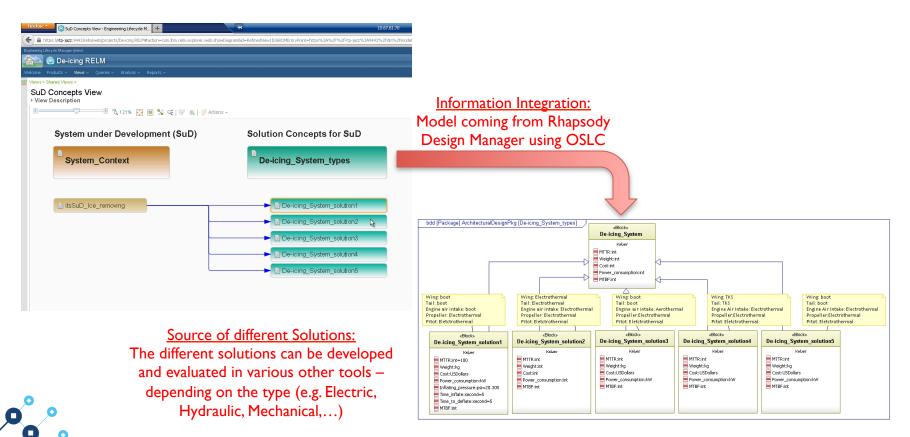
Analysis: Managing Impact of Change

Rational Engineering Lifecycle Manager (RELM)

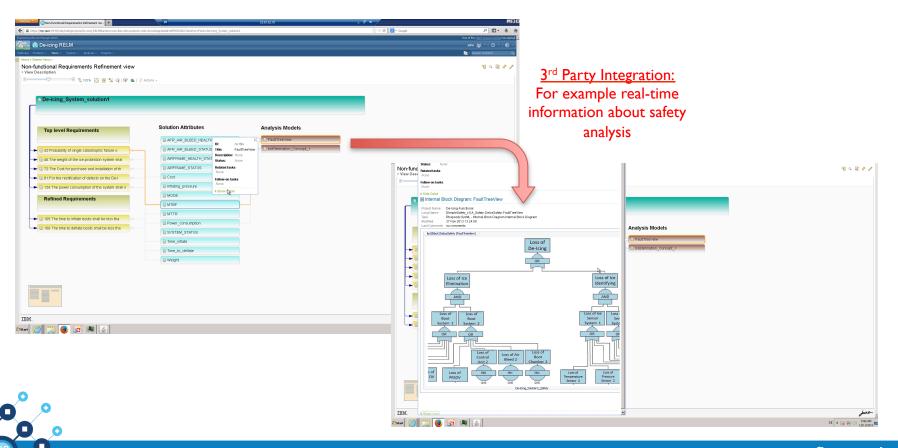
🖃 🚕 Automated Meter Reader Handheld Receiver (:Geography=EU)
🖓 Antenna - Base Configuration 1.0
🗞 Battery Pack - Base Configuration 1.0
\pm 🚕 Display
💿 🚕 Handheld Software
🚕 Housing
🗞 Keypad - Base Configuration 1.0
🗞 Memory - Base Configuration 1.0
🗞 Power Input - Base Configuration 1.0
🗞 Processor - Base Configuration 1.0
🗞 Speaker - Base Configuration 1.0
🗞 USB Port - Base Configuration 1.0
🖓 Wireless Radio - Base Configuration 1.0

Organizing Data: Products, Systems, Sub-systems, Capabilities, Components etc

Demonstration



Airbus RELM Dashboard Prototype: Functional View


A prototype of a RELM dashboard has been created to visualize various information of an aircraft component in context to other available and related engineering information.

S De-icing RELM			One of the <u>Client Access Licers</u> john 🗥 🗸 🛱
Yrodutts v Views v Quaries v Analysis v Reports v			- Search Artifacts
bared Verss - tional View Description → → → へ SS% 💽 🗃 % 🍳 🌿 🕰 🖉 Actions -			ଏ ରେ ଜିନ୍ଦ୍ର ଅନ୍ତର
Functional Requirements	TopLevel_FunctionalView	System_Context	
28. The system shall provide ice condition informat	Apply_Antl_Icing_Measuremen	8	
29: The system shall provide ice thickness informat	Compute_Cycle_Time	itsAir_Data_System	
a0:The system shall be operated (activated and de-	Compute_Required_Anti_Icing	itsElectrical_Power_Gener	
32: The system shall provide status data (on/off) t	Compute_current_lce_Conditi	its Pilot	
a3: The system shall provide operating mode data (f	Compute_forecasted_ice_Cond		
a7: The ice protection system shall be operated und	Display_current_situation	itsPneumatic_System	
a 40: The airframe ice protection system shall be ope	Display_forecasting_lcing	LitsSuD_Ice_removing	
348: The de/anti icing system shall provide ice prot	Get_Flight_Plan		
a9:The de/anti icing system shall provide ice prot	Get_Weather_Forecast		
50: The de/anti icing system shall provide ice prot	Get_current_Altitude		
51: The de/anti icing system shall provide protecti	Get_current_Speed		
52: The ice-protection system shall prevent ice for	Get_envisaged_Altitude		
33: The ice-protection system shall prevent ice for	Get_envisaged_Route		
34: The ice-protection system shall prevent ice for	Get_envisaged_Speed		
55: The ice-protection system shall prevent ice for	Sense_External_Humidity		
57: The De-Icing Control Unit shall control the de-	Sense_External_Pressure		
59:The system shall detect ice condition.	Sense_External_Temperature		
system shall be able to measure the ice thi	Sense_existing_ice_Thicknes		
e ice protection system shall predict the ic	Start_System		

Airbus RELM Interoperability: IBM Tools and Data Integration

Airbus RELM Interoperability: 3rd Party Tools and Data Integration

Thank You.

