

## Leveraging Cloud: A Case Study Tivoli's IT Transformation

**IBM Software** 

# Pulse Comes to You

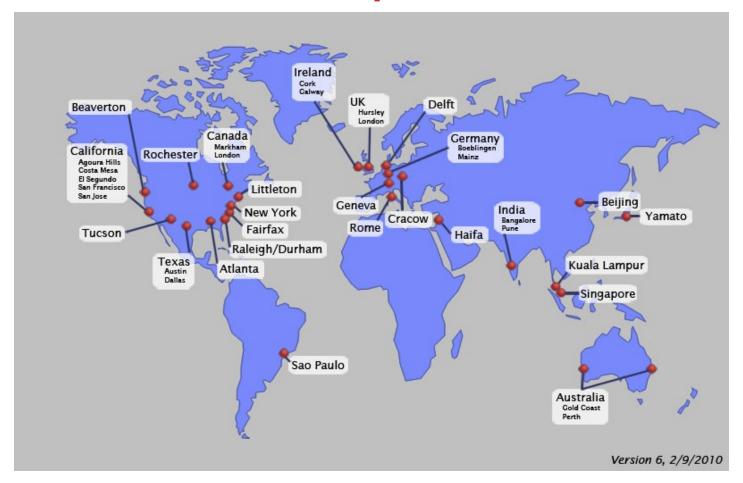
**Optimizing the World's Infrastructure** 

[27<sup>th</sup> May - London]



## **Agenda**

- Introduction
- Approach
- Lessons learned
- Implementation detail
- 2010 strategy




## Introduction

**IBM Software** 

# PCTY2010 Pulse Comes to You

## **Tivoli Test and Development**





Geographically dispersed team of ~4000 team members





## Tivoli's approach to delivering IT needed to become smarter... about delivery 'services'



IT footprint expanded to 38 labs through growth and acquisitions, creating inefficiencies, increased capital & operational expense

The growing complexity of our IT systems demanded that sprawling processes become standardized services that are efficient, secure and easy to access

A Service Management System to provide <u>visibility</u>, <u>control and automation</u> across IT and business services to ensure consistent delivery

New model consumption and delivery for IT services



### Key business challenges

- Reduce capital expense and maximize existing investment
  - Underutilized hardware: average of 5-9% utilization per server
  - Duplication in the capital request and procurement process
- Standardize & Automate end-user services and mitigate schedule risk
  - Provide predictable, rapid access to reserve, provision and deploy servers
  - Development and IT labs had a variety of tooling from homegrown to matured implementations
  - Teams heavily leveraging hypervisor mgmt tools, images were everywhere!!
  - Infrastructure and virtualization strategies not unified

 Learn how to more to effectively manage resources and IT services in the cloud with Tivoli Service Management

- Our teams needed educating on Tivoli's solution capability
- Development, Test teams saw the face of IT as a 'ticket system'

### We had lots of questions.....

- Where do we start
- How do we get from point A to B to C….?
- What business process changes will we need to plan for?
- How do we approach ROI measurements?
- What does cloud mean for our business?
- How do we mirror what IBM do for customers so we can use our efforts to help drive client value?



## Approach

**IBM Software** 

# PCTY2010 Pulse Comes to You

### Our approach to delivery





- Consolidate underutilized IT resources into larger, denser, scalable clusters
- Pool resources
- Manage and control pooled resources

- Reserve resources for applications through standardized images
- Provision and de-provision resources based on reservations
- Manage workloads with advanced scheduling, integrated security and information virtualization

Orchestrate

#### Automate

Virtualize TSAM

#### Consolidate

Lab Consolidation Plan

#### Centralize

#### Infrastructure Anchor Sites

- Establish an enterprise data center strategy that aligns with the business needs, continuity requirements and geopolitical considerations
- Implement strategy to all locations and geographies including site relocation, consolidation, and new construction

#### Implement vCells

- Define virtual resources to separate physical IT resources from its use to deliver services
- Establish single management
   system for virtual resources
- Integrate security and workload management
- Schedule and control virtual resources based on application requirements and SLAs

#### Leverage ISM Stack

- Optimize workloads to maximize performance and efficiency
- Prioritize workloads to attain SLAs
- Move workloads to appropriate virtualized infrastructures to reduce costs
- Define policies for workload management
- Schedule and orchestrate workloads based on policies



#### Tivoli's private cloud

"Ability to shapshot and share images" Tivoli. software Cloud Service Management "Service locally, manage globally" Cloud Administrators Monitoring Mgmt Services "Standardized process" "Self service provisioning" **Americas** Developers Testers (Europe) Service Catalog **Developers** Virtualized Infrastructure Testers (AP) Service Catalog Virtualized Infrastructure Capacity reservation" Europe Service Catalog " Users access from any Virtualized Infrastructure geography" **Developers** Testers (Americas)





## **Lessons Learnt**

**IBM Software** 

# PCTY2010 Pulse Comes to You

#### Lessons learnt – Cloud transformation

- Architecture is key
  - Delivering a cloud solution requires integration of multiple products with existing and new business processes and the consumability of that solution is the critical factor in success

- Use cases must be clearly identified
  - Cloud infrastructures have multiple dimensions with a broad set of roles
  - Validate that you are addressing everyone's needs and not just a particular role
  - Not everything can be tested/developed in a cloud environment\*

• Implementation should be phased

- Establishing a cloud is a true transformation of both IT and Development business processes
- The alignment of IT and Development operational strategies is key
- Return on Investment
  - Engage early and often on the topic of ROI Trust but Verify!!!

## **Lessons learnt – Business process transformation**

- Financial Processes (Smarter investment strategy)
  - Appointed single capital approver operating across Tivoli pillars
  - Virtualization is default and physical machines require exception approval

- Development Processes (Efficiency)
  - Education on self-service provisioning technologies
  - Understanding what workloads to transition
  - Think about images rather than physical machines
  - Think about capacity at planning stages of a project

- Cloud Service Provider Processes
  - Went from ticket based system to self service
  - Full ISM education program worked into schedule
  - Move homegrown and use of Hypervisor Mgmt tools into IBM service management





# Lessons learnt – Not all testing/development can be done in a cloud

- Test objectives that are best suited for the Cloud are those focused on functionality:
  - Agile development methodologies work exceptionally well
  - Unit, functional and build verification testing
  - Testing of integration/interoperability points between software products
  - Install, upgrade, and migration testing
  - Globalization, security, time-to-value, and serviceability testing

\_

- Physical machines are still needed:
  - Many of our clients still use physical machines
  - For large customer simulations (high load, long duration)
  - For performance, scalability, and capacity planning studies
  - In support of "persistent test configurations" which don't benefit from the flexibility of virtualization

It's important to understand that not all testing can be achieved with virtualization



## **User experiences**

#### Developer & IT Specialist Efficiency

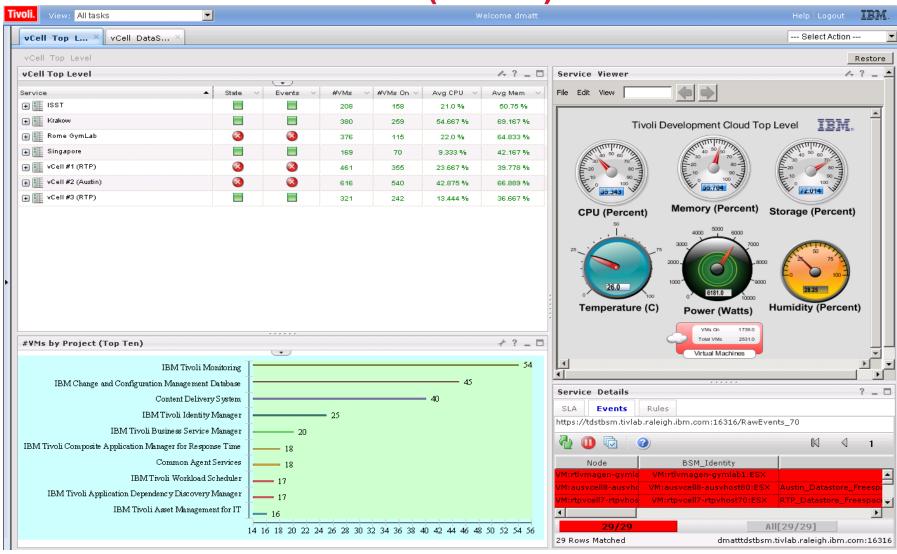
- "When using the cloud service for a complex SVT scenario of 7 machines, the total lifecycle took 2.5 hours. In our own lab we'd have had to find the machines, install & configure the OS, patch the OS, potentially network. (assuming person availability, hardware capacity & parallel bootloads), this represents an improvement of ~70% on the time it would have taken us."
- The ISM stack gives me single point visibility into the cloud storage and utilization allowing me to focus on increasing our service with additional offerings

#### Process Optimization

- "It is certainly easier, quicker and more logical than any capital ordering process!"
- "For standard specification machines i no longer need to raise an IT ticket"

#### Dynamic Infrastructure

- "I can request a machine and within a couple hours it will be available. That is really nice and makes it
  easier to give up the machine when testing is done
- "A great thing about the cloud is that you can request for more memory and disk space when you need to expand the system."

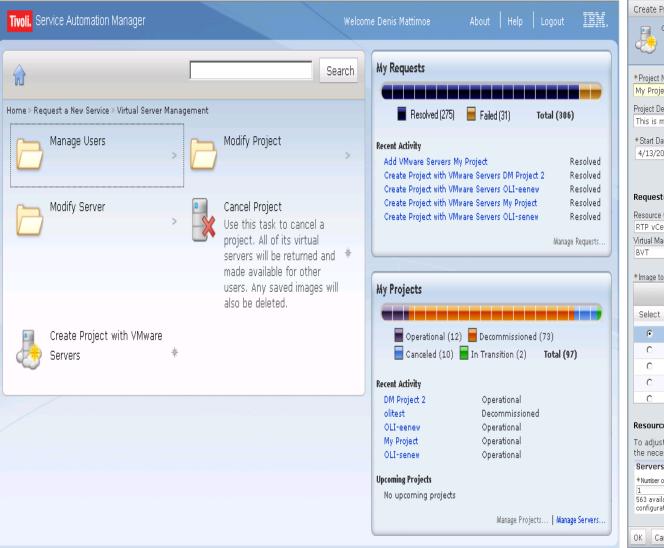


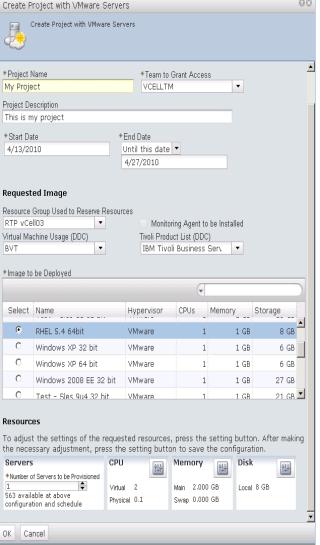

## Implementation Detail

**IBM Software** 

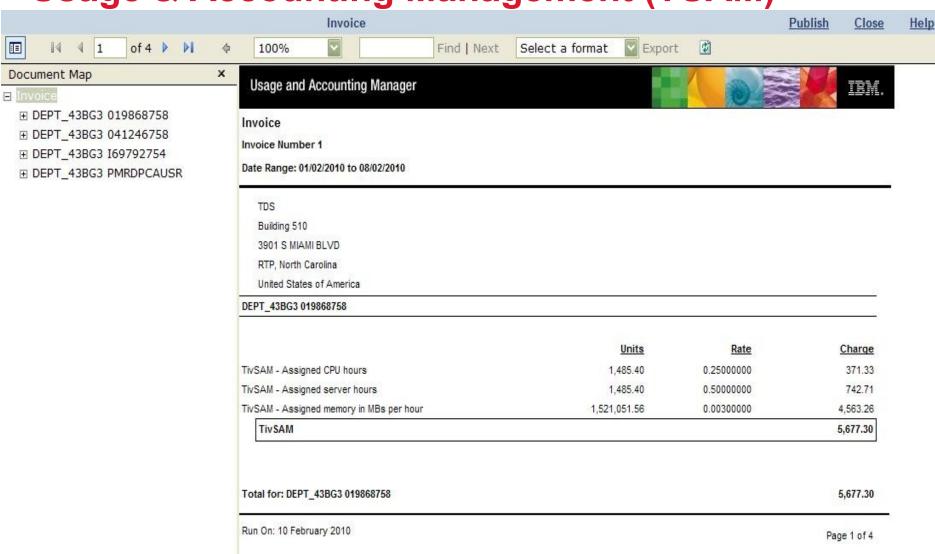


## **Executive Dashboard - (TBSM)**





## Operational Dashboard - (TBSM)






Standardized Cloud Service Interface - (TSAM)

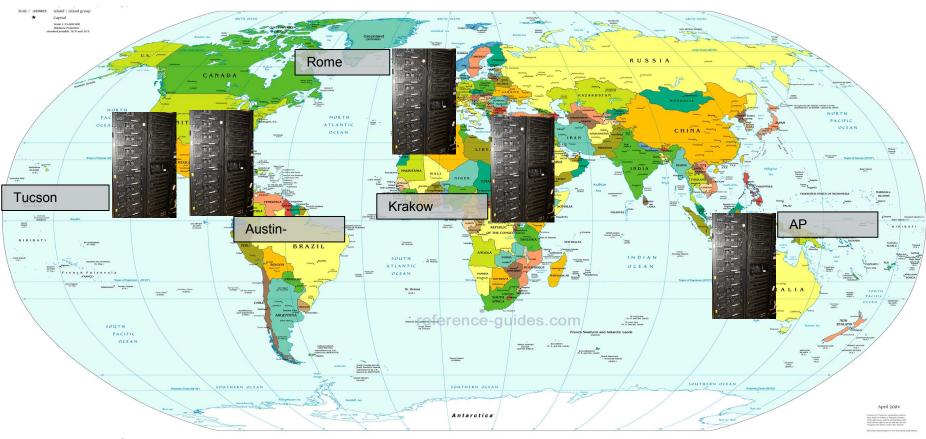




## **Usage & Accounting Management (TUAM)**






## 2010, The journey continues

**IBM Software** 





## 2010 Consolidation & Virtualization



- Physical footprint reduction target 1500
- Current capacity 1800 VMs across RTP, Rome, Austin
- Krakow, Tucson, Rome and China cells launched By YE2010 will have 5000 VMs
- · Continued consolidation of IT from 8 labs





## 2010 Automation & optimization



- TSAM 7.2 deployed and used as the standardised interface for accessing cloud services
- zVM linux on LPAR offering
- Standardized implementations of ITNM, TADDM, TAM-IT at key anchor sites
- TUAM rolled into production to provide on demand usage reports
- Federated image library &TPMxImages to convert image formats
- Saas Pilot Rational Team Concert

### Tivoli's IT has become smarter... about delivering

#### Consolidate & Virtualize

- During 2009, avoided over 40% capital and 15% in expense through consolidation and virtualization
- Single Development, Test & IT infrastructure strategy
- Seven sites had IT consolidated, further eight in plan for 2010
- Virtualised infrastructure running an average of 60% utilization from an original average of 5-9% utilization per server
- 1055 servers have been relocated, 280 'scrapped', and 174 virtualized

#### Standardize & Automate

- Process for accessing provisioning and scheduling services with TSAM
- Process for managing IT services with ISM
- With automation reduced time to provision a server from 12 hrs to ~15mins
- Rapid deployment of image based configurations, reduction in debugging phases

#### Optimization

- IT staff have bandwidth to focus on continued service improvements
- Over 1800 users, growing daily!
- 2200 VMs in use and growing as more servers are virtualized

