
© 2013 IBM Corporation

Mobile Messaging

Andrew Schofield
IBM Software Group

Mobile Messaging

© 2013 IBM Corporation

Why messaging for mobile?

 The HTTP standard revolutionized how we consume data

– A single simple model: Send a request, read the response

– Available via any tablet, laptop, phone, PC etc.

 Mobile and M2M applications have additional challenges

– HTTP remains ideal for requesting data from a known source

• e.g. a mobile user requesting info

– But we also need support for transactions and an
event-oriented paradigm:

• Reliably and securely completing mobile business
transactions over unreliable networks

• Pushing information over unreliable networks

• Transmitting information one to many

• Listening for events whenever they happen

• Distributing minimal packets of data in huge volumes

Mobile Messaging

© 2013 IBM Corporation

Additional communication challenges in the mobile environment

Volume (cost) of data being transmitted

Power (battery) consumption

Responsiveness (near real-time delivery)

Reliable delivery over fragile connections

Scalability

Mobile Messaging

© 2013 IBM Corporation

Make it easier for mobile app developers to access enterprise data

Internet

APP

APP

Service

ServiceDB APP DB

APP

DB

ESB and MQ messaging
• Universal Enterprise Messaging
• Provide access to enterprise apps and
data already connected by MQ

• Pub/sub model to enable dynamic
distribution of notifications

Apple iOS
Messaging for
native iOS apps

JavaScript
Messaging for
Hybrid apps

Android
Messaging for
native Android
apps

MQTT
• Reliable messaging
protocol

• Access to enterprise
• Reliable delivery
• Conserve device power
• Reduce network traffic

 Worklight
developers

 Developer
experience
augmented with
mobile
messaging

Clients for Mobile and
M2M Messaging
•Including Simple Javascript
Messaging API

IBM MessageSight
• Edge-of-network Messaging
Appliance

• Highly-scalable MQTT and
WebSockets support

Mobile Messaging

© 2013 IBM Corporation

MQTT: Key Features

ReliableReliableReliableReliable

OpenOpenOpenOpen

SimpleSimpleSimpleSimple

LeanLeanLeanLean
• Open published spec designed for the

world of “devices”
• MQTT client code (C and Java) donated

to the Eclipse "Paho" M2M project
• Standardization underway at OASIS

• Simple / minimal pub/sub messaging
semantics
• Asynchronous (“push”) delivery
• Simple set of verbs -- connect, publish,

subscribe and disconnect.

• Minimized on-the-wire format
• Smallest possible packet size is 2 bytes
• No application message headers

• Reduced complexity/footprint
• Clients: C=50Kb; Java=100Kb

• Three qualities of service:
0 – at most once delivery
1 – assured delivery but may be duplicated
2 – once and once only delivery

• In-built constructs to support loss of
contact between client and server.
• “Last will and testament” to publish a

message if the client goes offline.
• Stateful “roll-forward” semantics and

“durable” subscriptions.

Mobile Messaging

© 2013 IBM Corporation

Programming example – MQTT in JavaScript

/* Sample connect function */

function connect(form) {

 try {

 client = new Messaging.Client(form.host.value, Number(form.port.value), form.clientId.value);

 } catch (exception) {

 alert("Exception: “ + exception);

 }

 client.onConnect = onConnect;

 client.onMessageArrived = onMessageArrived;

 client.onConnectionLost = connectionLostCallback;

 client.connect();

}

/* Sample send function */

function send(form) {

 message = new Messaging.Message(form.textMessage.value);

 message.destinationName = form.topicName.value;

 client.send(message);

}

/* Sample subscribe */

function subscribe(form) {

 client.subscribe(form.subscribeTopicName.value);

}

Mobile Messaging

© 2013 IBM Corporation

Mobile message exchange patterns – beyond simple request/response

MQTT

Reliable
asynchronous
transactions

User submits a transaction. One or
more responses may come back over
time.

MQTT provides reliability and store/forward of
requests and responses if needed – reducing the
amount of application code

Continuous
update of real-
time information

Server-side data is “streamed” to the
device and used to update the UI. In
most cases this is only required when
the app is in the foreground

Small MQTT header size reduces battery
consumption and network traffic.
One->many publish/subscribe reduces load on
application

Notification Sending alert or other informational
message to the device. The app may
or may not be running at the time.

Avoidance of polling reduces battery
consumption and network traffic.
Store/forward of important notifications if
app/device is not contactable

Collection of
data from device

Data sent to the server coming either
from User Interface, of from onboard
sensors or from devices attached to
the phone

Small MQTT header size reduces battery
consumption and network traffic.
Store/forward of messages.

Internet

APP

APP

Service

ServiceDB APP DB

APP

DB

Mobile Messaging

© 2013 IBM Corporation

Pipeline – the need for scalable communications

Central
Systems

Monitoring
 - temp, pressure...

Control
 - valves…

4000 devices integrated, need to add 8000 more BUT:
• Satellite network saturated due to polling of device
• VALMET system CPU at 100%
• Other applications needed access to data ("SCADA prison")

Proprietary polling protocol

Billing

Maintenance

SCADA

low-bandwidth,

expensive comms

Mobile Messaging

© 2013 IBM Corporation

Central
Systems

Billing

Maintenance

SCADA

low-bandwidth,

expensive comms

• Scalability for whole pipeline!
• Network traffic much lower - events pushed to/from devices and report by exception
• Network cost reduced
• Lower CPU utilization
• Broken out of the SCADA prison – data accessible to other applications

pub sub

transformation

Enterprise MessagingMQTT

20 Field
Devices to 1
Concentrator

Enter MQTT

Mobile Messaging

© 2013 IBM Corporation

Mobile use case: Connected car

Smartcar

vibration detected,
details published

Unlock
my car

schedules
appointment

with car owner

Find
my car

predicts part
failure

Mobile Messaging

© 2013 IBM Corporation

Mobile use case: Connected city

Mobile Messaging

© 2013 IBM Corporation

Introducing IBM MessageSight

Mobile Messaging

© 2013 IBM Corporation

Introducing the IBM MessageSight appliance

• Extends the IBM Messaging family with a secure, easy to deploy appliance-based
messaging server

• Optimized to address the massive scale
requirements of machine to machine
(m2m) and mobile use cases

• Exploits hardware acceleration for
performance

• Designed to sit at the edge of the
enterprise

• Can extend your existing messaging infrastructure or be used standalone

• Complements WebSphere MQ - provides an offload/accelerator for edge of enterprise
scenarios

Mobile Messaging

© 2013 IBM Corporation

Demo: Real-time analytics with InfoSphere Streams

Mobile Messaging

© 2013 IBM Corporation

“Emergency in Vegas”

 1000s of cars circulate in Las Vegas
and subscribe to a “Smart Car”
notification service

 Cars update the notification service in
real time

 Based on events, they can also be
warned or notified

Mobile Messaging

© 2013 IBM Corporation

High-level architecture of the demo

IBM MessageSight

HTML5 Web UI
Using WebSocket Client

Cars: Embedded MQTT applications
In the dash board

MQTT

MQTT over
Websockets

MQTT
adapter

MQ
Connectivity

Existing Mainframe
Emergency Notification System

Tablet
With Worklight App.

Geospatial Analytics

InfoSphere Streams

Mobile Messaging

© 2013 IBM Corporation

Video

Mobile Messaging

© 2013 IBM Corporation

Mobile Messaging

