Optimum decision making under uncertainty and risk

Presented by: Gautam Mitra

Acknowledgements: Francis Ellison, Cormac Lucas, (late)Ken Darby-Dowman, Enza Messina, Patrick Valente, Christian Valente, Victor Zverovich, Nico Di Domenica, Katharina Schwaiger, Leela Mitra, and others...

Outline

- Background
- Decision making under uncertainty
 - Algebraic representation
 - Computational framework
 - Modelling framework
- Asset and Liability Management (ALM):
 - Introduction
 - An example
- Stochastic and Robust optimisation comes of age
- Why we need high performance solvers?
- Conclusions

Background: < the message >

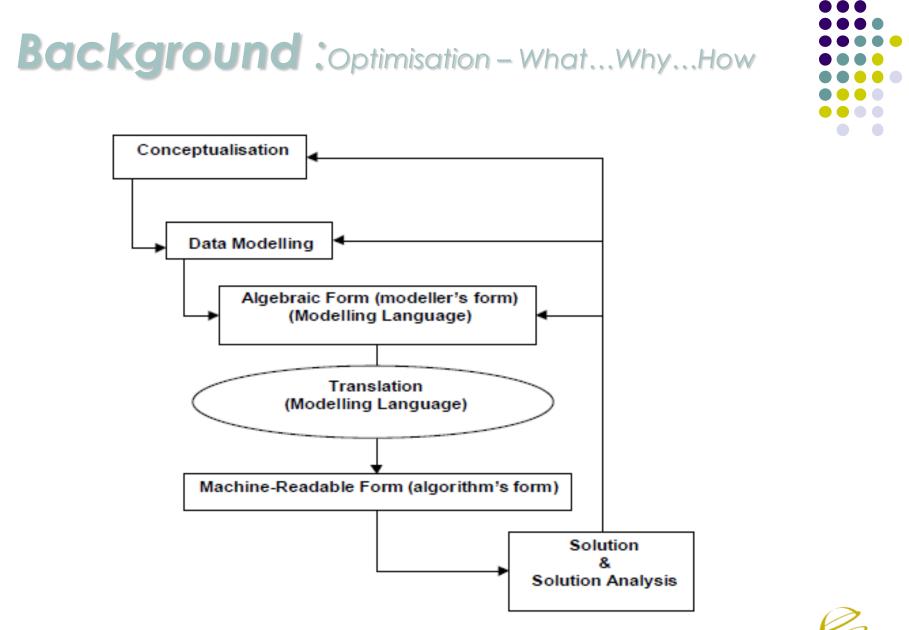
- Linear and integer optimisation have been around since 1960.
- But only after 1980s with spreadsheet optimisation could you show proof of concepts (Business school ... toy models)
- As
 - 1. Modelling systems (AMPL, GAMS, OPL...) supported the creation of complex models
 - 2. Solver systems reached high performance (CPLEX,,)

Construction of Optimisation based Decision Support Systems became a reality.

Background:

- "The time has come," the walrus said "to talk of many things of gold and spice and mica and mice and how to give them wings" – Lewis Carol
- We are able to not only model
 - 1. Optimum decision problems under uncertainty and risk
 - 2. We are also able to process, solve and evaluate them for decision makers...
- We have given SP wings...SP can now fly....!
- Let us see how....!!

Background : Optimisation – What...Why...How


Solution

- Optimum Decision Making
- → Optimisation Model + Solution
- LP: $\max Cx$ subject to Ax = b $x \ge 0$

Background: Leading applications

- Logistics
 - Manufacturing logistics
 - Retail logistics
- Scheduling
 - Transport scheduling (airline, bus, railways)
 - Personnel scheduling
 Energy systems
 Refinery operations scheduling
- Resource allocation
 - Capital budgeting Project planning Financial planning

Outline

- Background
- Decision making under uncertainty
 - Algebraic representation
 - Computational framework
 - Modelling framework
- Asset and Liability Management (ALM):
 - Introduction
 - An example
- Stochastic and Robust optimisation comes of age
- Why we need high performance solvers?
- Conclusions

Decision Making: Role of uncertainty and time

Any planning process which takes into account future outcomes has two monotones has two monotones are:

- a) Uncertainty
- b) Time

Traditional approach accounts for these by net present value (NPV)

In optimisation based approach planning decisions are broken down to:

- a) Robust strategic decision followed by
- b) Rolling contingency plans which respond to different future outcomes.

Stochastic Programming (SP) breaks down the decision making into two parts more or less along these two lines. In SP we make:

- a) First stage decisions
- b) Corrective (recourse) actions (decisions) as future events unfold.

Decision making: optimisation models with uncertainty representation

 $Z = \min cx$ subject to Ax = b $x \ge 0$ where $A \in R^{m \times n}; c, x \in R^{n}; b \in R^{m}$

Notation:

Let (Ω, F, P) denote a probability space, where $\omega \in \Omega$ denotes a particular realisation of the uncertain parameters and $p(\omega)$, the corresponding probability.

Let us denote the realisations of A, b, c for a given $\boldsymbol{\omega}$ as

$$(A,b,c)_{\omega} = \xi_{\omega} \quad or \quad \xi(\omega)$$

Decision making: Alternative models of stochastic programming

- Single stage stochastic programs ... (Markowitz)
- Two stage stochastic programs with recourse
- Multi stage stochastic programs with recourse
- Chance constrained programming problem
- Integrated Chance constrained programming
 problem
- Robust optimisation

The stochastic linear program with recourse (SLPR) is stated as

$$Z = \min cx + E_{\omega}Q(x, \omega)$$

subject to $Ax = b$
 $x \ge 0,$

where

$$Q(x, \omega) = \min f(\omega)y$$

subject to $D(\omega)y = d(\omega) + B(\omega)x$
 $y \ge 0.$

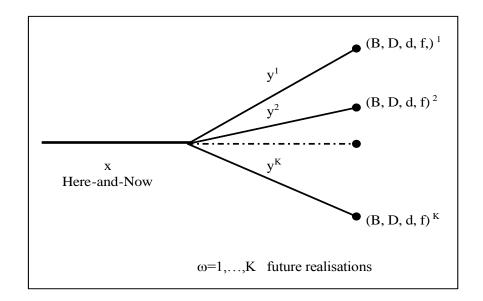
Two stage stochastic linear program

Below is a two-stage staircase problem that is transformed into a two-stage stochastic linear program:

 $\min Z = cx + E^{\omega} [fy^{\omega}]$ subject to Ax = b $-B^{\omega}x + D^{\omega}y^{\omega} = d^{\omega}$ $x, y^{\omega} \ge 0; \quad \omega \in \Omega$

Decision making:

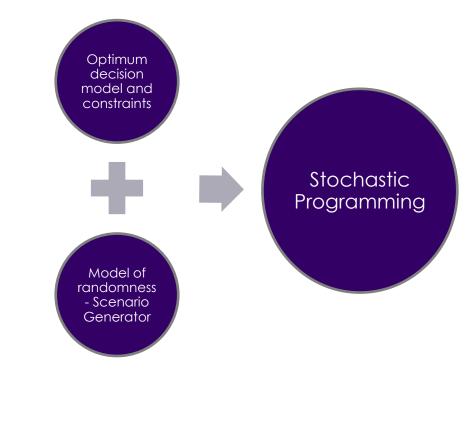
Two stage stochastic programming



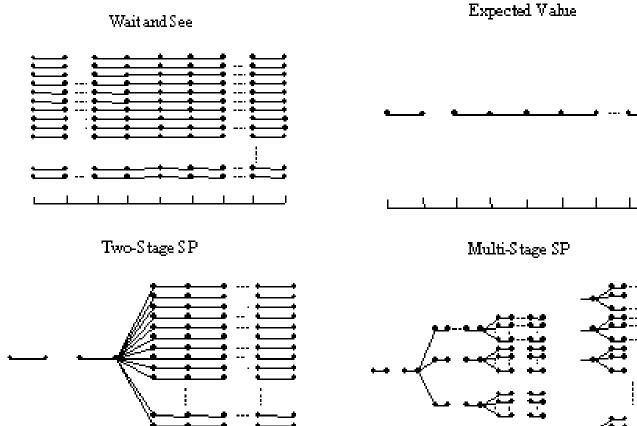
Define Ω as an index set $\Omega = \{1, ..., K\}$, meaning that the parameter ω may take on K different values.

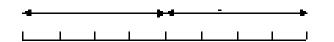
Decision making: Two Stage Stochastic Linear Programming

In this tree x represents the first stage (Here-and-Now) decision vector. $\omega = 1,...,K$ are the possible future realisations (scenarios); the associated probabilities and demands are p, d^{ω} respectively. As future unfolds for a given scenario ω a corrective recourse action is taken; this is represented by the vector y^{ω}.



Decision making : the SP paradigm



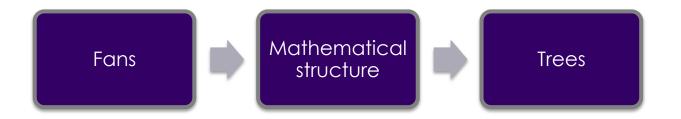

 Stochastic programming seen as a combination of optimisation decision models and models of randomness

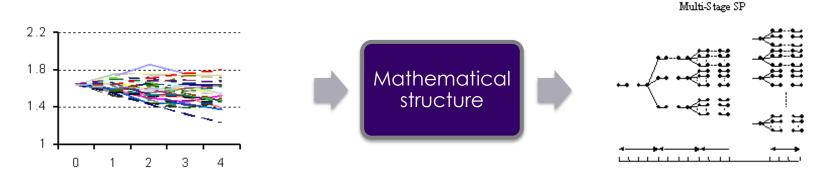
Decision making: Stochastic processes and scenario generation

SYSTEMS

/ H

нст


CARISMA



Decision making: Stochastic processes and scenario generation

 Stochastic processes generate data in form of fans/time series but SP needs trees

Outline

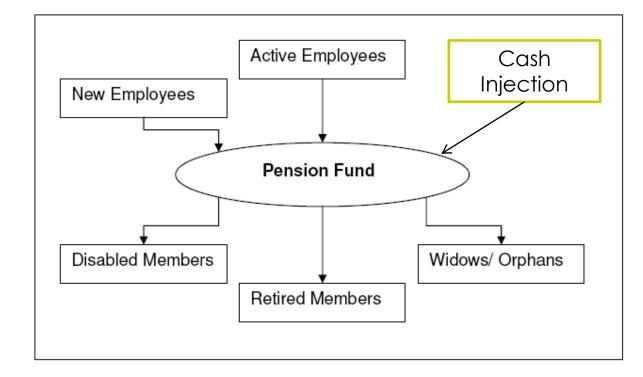
- Background
- Decision making under uncertainty
 - Algebraic representation
 - Computational framework
 - Modelling framework
- Asset and Liability Management (ALM):
 - Introduction
 - An example
- Stochastic and Robust optimisation comes of age
- Why we need high performance solvers?
- Conclusions

- Asset and liability management is the practice of managing risks that arise due to mismatches between the assets and liabilities (assets and debts)
- Asset and Liability management (ALM) is a strategic management tool to manage interest rate risk and liquidity risk faced by banks, other financial services companies and corporations

Introducing ALM

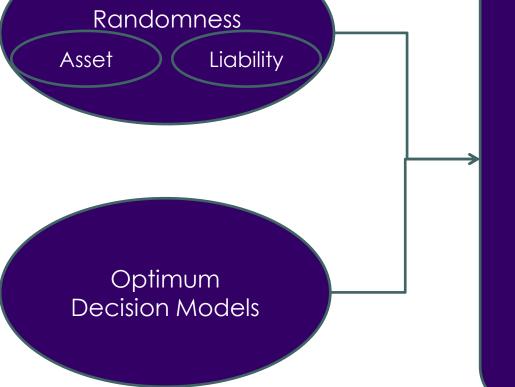
- Application areas:
 - Banks <credit portfolios>
 - Bond issuance <corporate as well as sovereign>
 - University endowments
 - Hedge funds and mutual funds
 - Wealthy individuals
 - Insurance companies and
 - Pension funds

Introducing ALM



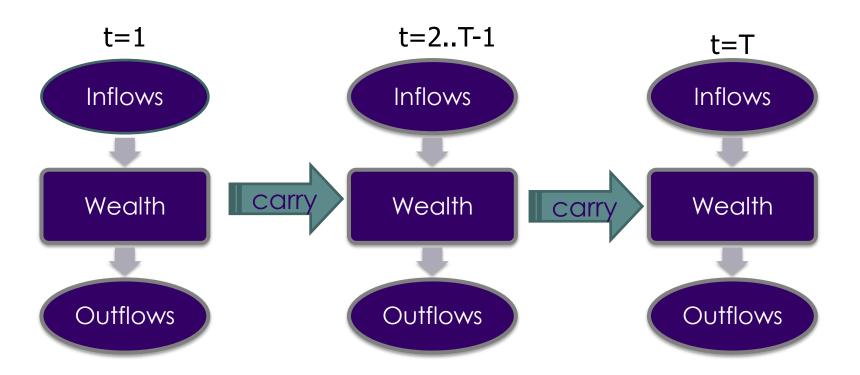
Asset and Liability Management Asset and Liability Management under Uncertainty

ALM example: Pension fund cash flows



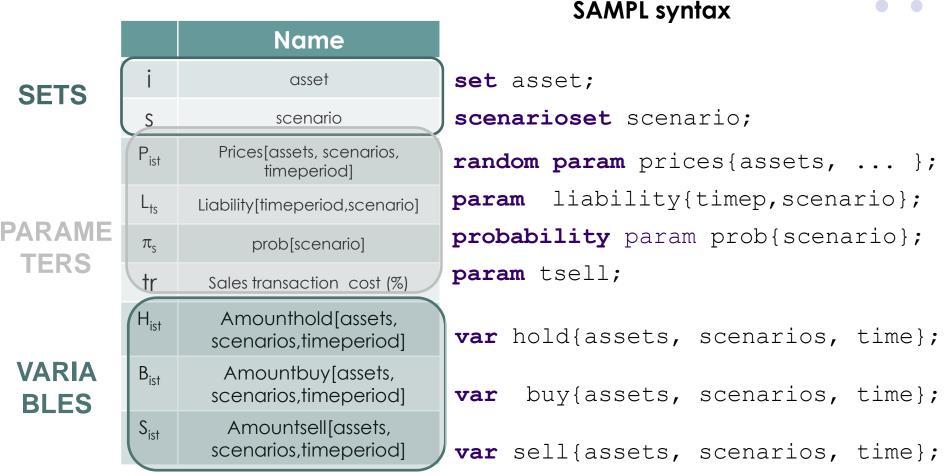
• Investment: portfolio of fixed income and cash

Asset and Liability Management under Uncertainty: •SP •CCP •ICCP

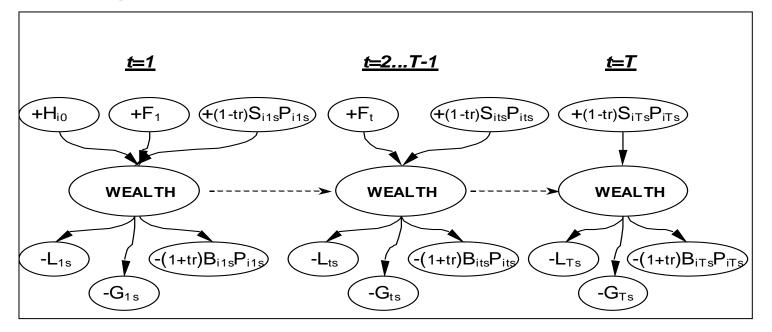


ALM: a stochastic programming model

Surplus Wealth = assets – PV(liabilities) – PV(goals)


	ALM:	Model Components	
	NOTATION	ENTITY	
	i	Assets	i=1n
	S	Scenarios	s=1S
INDEX (SET)	t	Timeperiod	t=1T
	К	RiskGroup	k=1K
	P _{ist}	Prices[assets, scenarios, timeperiod]	
	L _{ts}	Liability[timeperiod,secenario]	
	π_{s}	Probability[scenario]	
PARAMETER	H _{i0}	Initial Holdings[assets, timeperiod=0]	
r ARAMEIER	F _t	Funding[timeperiod]	
	1+tr	Transaction Buy	
	1- tr	Transaction Sell	
	R _k	RiskGroup Holdings	
	H _{ist}	Amounthold[assets, scenarios,timeperiod]	
DECISION VARIABLE	B _{ist}	Amountbuy[assets, scenarios,timeperiod]	
	S _{ist}	Amountsell[assets, scenarios,timeperiod]	

ALM: Model Components



ALM: stochastic programming model...cont..

Surplus Wealth = assets – PV(liabilities) – PV(goals)

subject to fundbalance1{t in 2..T-1,s in scen}:
sum{a in assets} amountbuy[t,a,s]*price[t,a,s]*tbuy
-sum{a in assets} amountsell[t,a,s]*price|
income[t,s]-liabilities[t,s];

SAMPL syntax

Outline

- Background
- Decision making under uncertainty
 - Algebraic representation
 - Computational framework
 - Modelling framework
- Asset and Liability Management (ALM):
 - Introduction
 - An example

• Stochastic and Robust optimisation comes of age

- Why we need high performance solvers?
- Conclusions

SP comes of age: sp software tools

Name	Affiliation	System Name	Туре
JJ Bisshop, et al.	Paragon Decision Tech.	AIMMS	Modelling System
A Meeraus, et al.	GAMS	GAMS	Modelling System
B Kristjansson	Maximal Software	MPL	Modelling System
R Fourer, et al.	Northwestern University	AMPL	Modelling System
MAH Dempster, et al.	Cambridge University	STOCHGEN	Modelling System
E Fragniere, et al.	University of Geneva	SETSTOCH	Modelling System
A King, et al.	IBM/COIN-OR	OSL/SE, SMI	Solver
HI Gassmann, et al.	Dalhousie University	MSLiP	Solver
G Infanger et. Al.	Stanford University	DECIS	Solver
P Kall, et al.	University of Zürich	SLP-IOR	Modelling System / Solver
G Mitra, et al.	Brunel University	AMPLDev SP Edition	Modelling System / Solver
A. Ramos	U P Comillas	MSP & SIP	Modelling System / Solver
A. Gavronsky	Norwegian Univ of Tech	ALM	Modelling System

SP comes of age: modelling paradigms

- Descriptive Models as defined by a set of mathematical relations,
 which simply predicts how a physical, industrial or a social system may behave.
- *Normative Models* constitute the basis for (quantitative) decision making by a superhuman following an entirely rational that is, logically scrupulous set of arguments. Hence quantitative decision problems and idealised decision makers are postulated in order to define these models.
- *Prescriptive Models* involve systematic analysis of problems as carried out by normally intelligent persons who apply intuition and judgement. Two distinctive features of this approach are uncertainty analysis and preference (or value or utility) analysis.
- *Decision Models* are in some sense a derived category as they combine the concept underlying the normative models and prescriptive models.

Role of uncertainty and time

Any planning process which takes into account future outcomes has two important determinants which are:

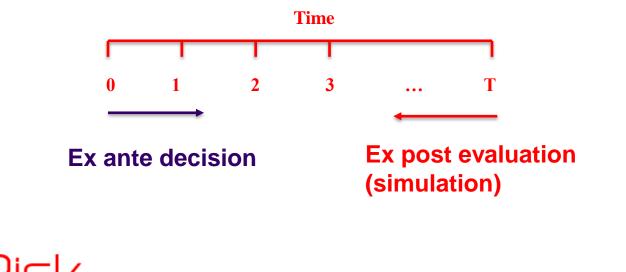
- a) Uncertainty
- b) Time

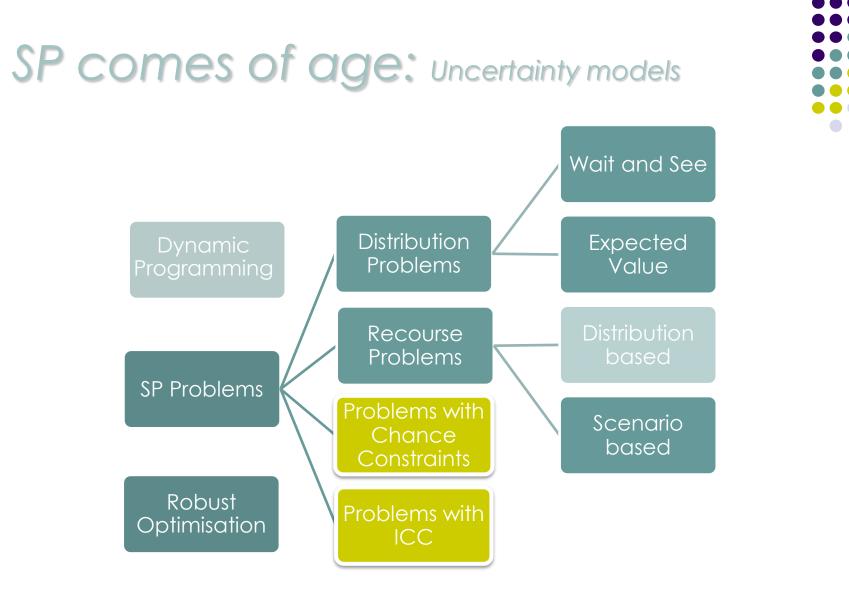
Traditional approach accounts for these by net present value (NPV)

Also planning decisions have been broken down to:

- a) Robust strategic decision followed by
- b) Rolling contingency plans which respond to different future outcomes.

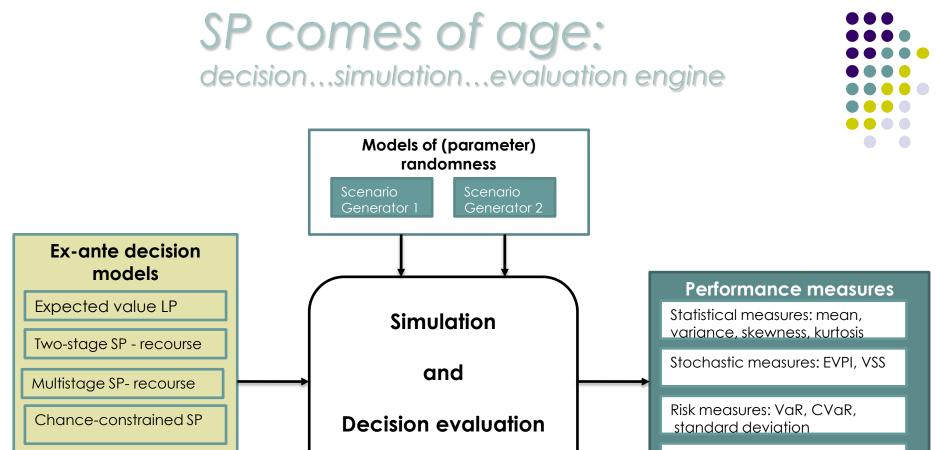
Stochastic Programming (SP) breaks down the decision making into two parts more or less along these two lines. In SP we make:


- a) First stage decisions
- b) Corrective (recourse) actions as future events unfold.


SP comes of age: scope of models

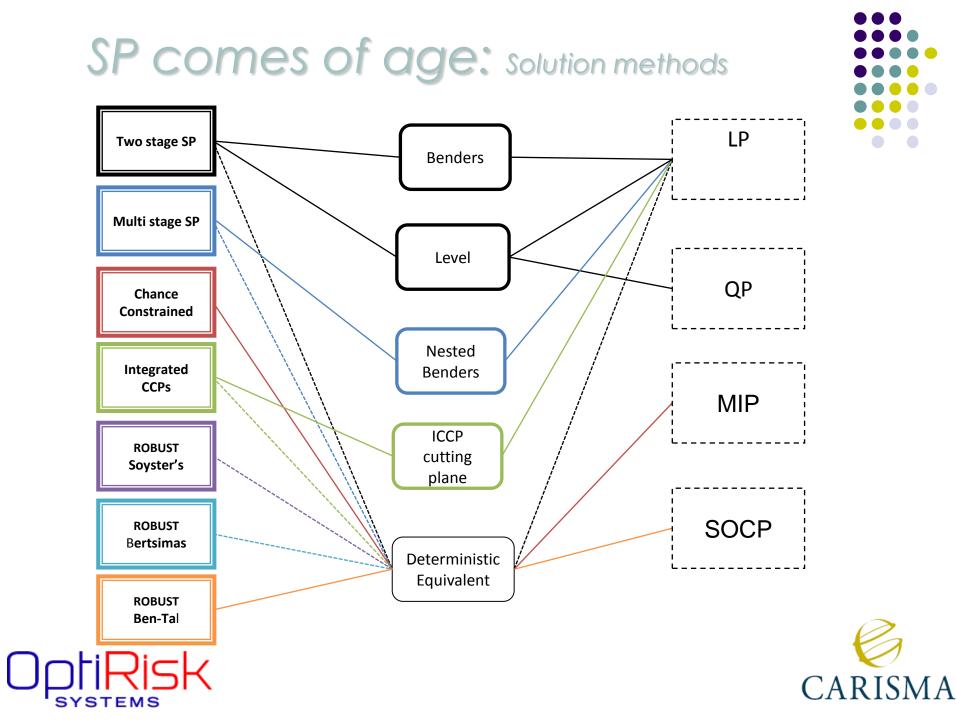
- Data Model
- Decision Model: Constrained optimisation
- Descriptive Model: Simulation and Evaluation

SP comes of age:


inter-related modelling paradigms

- The modelling paradigms revisited
 - Stage 0: Analyse historical data [data model]
 - Stage 1: Create data paths for random parameter values [descriptive models]
 - Stage 2: Make decision using SP or DP [decision models] (data processes and decision processes are inter-twined)
 - Stage 3: Test the decisions using simulation Back testing, stress testing, out of sample [descriptive models]

Performance measures: Solvency ratio, Sharpe ratio, Sortino ratio

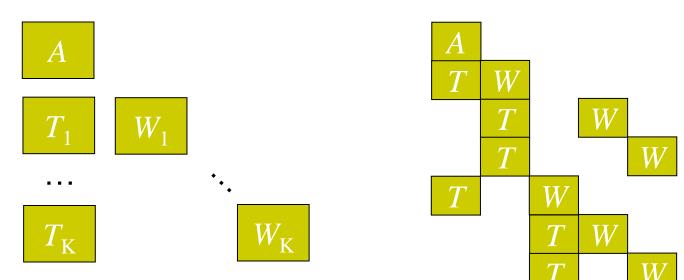


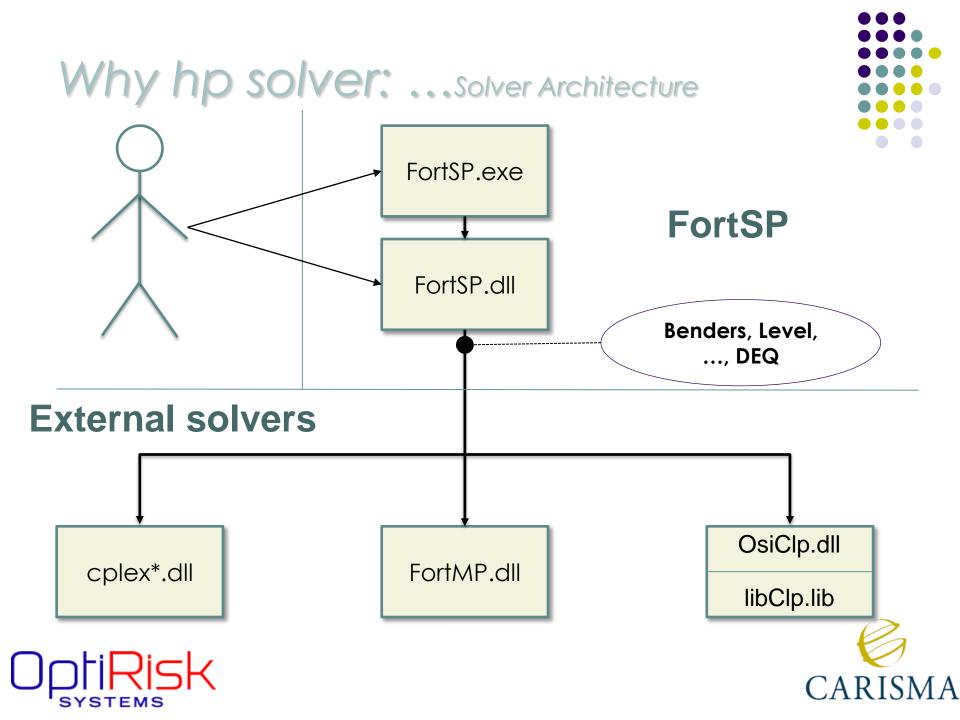
Integrated chance

Robust optimisation

constraints

Outline


- Background
- Decision making under uncertainty
 - Algebraic representation
 - Computational framework
 - Modelling framework
- Asset and Liability Management (ALM):
 - Introduction
 - An example
- Stochastic and Robust optimisation comes of age
- Why we need high performance solvers?
- Conclusions


Why high performance solvers: Problem structure

- Structure of deterministic equivalent makes it suitable for decomposition methods
- IPM can be often more appropriate than Simplex due to large size and high sparsity

Why hp solvers:Test problems

				Deterministic Eq		
Name	А	W	Scen	Matrix	NNZ	Opt
pltexpA2	62×188	104×272	6	$686{ imes}1820$	3703	-9.47935
pitexpA2	02×100	104×272	16	$1726\!\times\!4540$	9233	-9.66234
fum	92×114	238×343	6	$1520{\times}2172$	12139	18416.8
fxm2	92×114	230×343	16	$3900{\times}5602$	31239	18416.8
			8	4409×10193	27424	15535236
stormG2	185×121	$528{ imes}1259$	27	14441×34114	90903	15508982
stormG2	100×121		125	$66185 { imes} 157496$	418321	15512091
			1000	$528185{\times}1259121$	3341696	15802590

				Deterministic Eq		
Name	А	W	Scen	Matrix	NNZ	Opt
			50	$433632 {\times} 195855$	1136153	130007211
			100	867232×391655	2272203	128798834
saphir	32×55	8672×3916	200	$1734432{\times}783255$	4544303	141567536
			500	$4336032{\times}1958055$	11360603	137829930
			1000	8672032×3916055	22721103	133012591

Test problems

				Deterministic Eq		
Name	А	W	Scen	Matrix	NNZ	Opt
AIRL2	2×4	6×8 25		152×204	604	269665
LandS	2×4	$7{\times}12$	3	23×40	92	381.853
			16	1198×3028	7743	423.012
	$14{\times}52$	<52 74×186	32	2382×6004	15231	423.013
			64	4750×11956	30207	423.012
			128	9486×23860	60159	423.012
			256	18958×47668	120063	425.375
4node			512	37902×95284	239871	429.962
4110016			1024	$75790 { imes} 190516$	479487	434.113
			2048	151566×380980	958719	441.738
			4096	303118×761908	1917183	446.856
			8192	606222×1523764	3834111	446.856
			16384	$1212430{\times}3047476$	7667967	446.856
			32768	$2424846{\times}6094900$	15335679	446.856

Why hp solvers: Test results

				CPLEX			Benders			Le	vel	Lin. Damp.	
Name		Se	en	Ti	me	Iter	Tim	e It	$\mathbf{e}\mathbf{r}$	Time	Iter	Time	Iter
14 A O			6	0	.06	14	0.0	4	1	0.03	1	0.03	1
pltexp	A2		16	0	.13	16	0.0	8	4	0.10	4	-	-
6			6	0	.09	17	0.2	9	23	0.35	15	0.36	25
fxm2			16	0	.20	23	0.3	9	22	0.53	18	0.43	23
			8	0	.38	28	0.6	0	23	0.83	22	0.67	25
at a march	n		27	3	.33	27	1.9	3	30	1.65	22	2.13	32
storm	74	1	25	12	.33	57	8.3	8	32	4.99	19	9.75	37
		10	00	189	.53	109	80.2	0 -	41	34.46	18	81.07	41
			(CPLE	EX	I	Bende	rs		Level		Lin. Da	mp.
Name	Sce	en		ime	Iter	Г	lime	Iter		Time	Iter	Time	Iter
	ļ	50		‡	‡	50	1.47	114	3	326.53	74	482.89	116
	10	00		‡	‡	66	1.64	123	4	162.17	71	643.67	121
saphir	20	00	835	5.74	151		‡	‡	11	86.21	96	‡	‡
	50	00		‡	‡	255	3.64	110	17	753.66	62	2548.59	113
	100	00		t	t	443	3.30	116	- 36	578.84	58	4214.99	115

[†] Failed to solve due to insufficient memory

[‡] Failed to solve due to numerical difficulties

Outline

- Background
- Decision making under uncertainty
 - Algebraic representation
 - Computational framework
 - Modelling framework
- Asset and Liability Management (ALM):
 - Introduction
 - An example
- Stochastic and Robust optimisation comes of age
- Why we need high performance solvers?
- Conclusions

Conclusions: Assertions and Commercials

- The models and tools for decision making under uncertainty, optimum risk decisions have matured.
- For more information and to gain SP skills attend OptiRisk Workshops.....!
- The domains of supply chain logistics, energy systems planning and operation ... especially financial planning are ready for SP
- Quants may use
 - SP modelling support for rapid prototyping
 - Special purpose solvers to scale up prototypes

Conclusions: Assertions and Commercials

- A particularly valuable aspect of scenario based SP is the dual paradigm of
 - Ex ante optimisation decisions followed by
 - Ex poste decision evaluation
- OptiRisk is a certified partner of IBM in the UK and in India
- OptiRisk and IBM together are ready for business...!
- We will be waiting for you to call or email...!!

Thank you....

- Thank you for your attention
- Comments and Questions please
- { not difficult or awkward ones...! }

