
December 2009

Systems engineering best practices
White paper

Systems engineering—the foundation
for success in complex systems
development.
Hans-Peter Hoffmann, chief systems methodologist,
Rational software, IBM Software Group

Chris Sibbald, product manager, Rational software,
IBM Software Group

Jonathon Chard, systems marketing manager,
Rational software, IBM Software Group

Contents

Systems engineering—the foundation for
success in complex systems development.
Page 2

2	 Executive summary

2	 The shortcomings of tradi-

tional systems engineering

approaches

4	 Optimizing systems engineer-

ing: a look at key approaches

10	 The advantages of a model-

driven paradigm

11	 IBM Rational solutions for best

practice systems engineering

Executive summary

Delivering complex systems requires that you develop optimal designs on time,
within budget and with the right level of quality. But even the best detailed
design cannot compensate for poor system architecture. Systems engineering isn’t
just a technical activity in the product lifecycle—it determines the commercial
viability of the entire project. It’s also a demanding activity that takes place when
there are many degrees of freedom. How do you ensure that you have assessed
all the options—and picked the best? This white paper looks at a number of key
techniques to optimize the systems engineering process and help ensure project
success. It examines the business benefits the techniques can provide and looks at
IBM Rational® solutions that are available to support the techniques.

The shortcomings of traditional systems engineering approaches

Systems engineering—which is about clearly specifying functionality, where that
functionality resides in the system, and therefore what interfaces are required—is
by definition a complex activity that involves an array of players and a multitude of
considerations. As if the pressure of efficiently and accurately developing systems
in the face of tight budgets isn’t enough, competitive considerations are forcing
companies to develop increasingly sophisticated systems faster.

Customers expect that the products they purchase will provide innovative
functionality that can adapt to specific needs and interact with users and other
products and systems in new ways. In these new, smarter products and systems,
software is intricately combined with microelectronics, sensors and mechan-
ical technologies, and often other systems. The behavior of these intelligent,
instrumented and interconnected systems not only results from the interac-
tions of many components, but some of the components are outside the control of
any one development organization as well. For example, consider a stolen vehicle
tracking system where a unit on the car might interact with a global positioning
system, a mobile phone system, and the vehicle security and power-train systems.

Systems engineering—the foundation for
success in complex systems development.
Page 3

Highlights
In this type of richly functional system, multiple development organizations are
involved, and bringing together the organizations and functional components to
create the system of systems presents enormous technical challenges.

In most organizations, multiple siloed teams contribute to the systems engineer-
ing process, often using inconsistent processes and separate tools. Product quality
is often compromised by the resulting integration problems. Project risk is high
as a result of this situation and only increases further as other organizations or a
consortium gets involved.

Document-centric approaches to systems engineering frequently add to the
challenges. They typically use requirements documents and interface control
documents which, when suitably structured, can capture traceability and
formalize interface specifications. On their own, however, they can be an inef-
ficient way of analyzing and understanding system architecture and behavior:
while text is the preferred medium of exchange for contractual purposes, it is
not well suited to describing complex functional concepts and fails to provide
abstractions to support stakeholder and developer understanding of the system
under development.

Multiple, siloed teams contributing

to systems engineering processes

can lead to product integration chal-

lenges and higher project risks.

Systems engineering—the foundation for
success in complex systems development.
Page 4

Highlights
Optimizing systems engineering: a look at key approaches

To be sure, systems can have widely different scales and needs for critical
availability, performance and timing capabilities whether they are embedded
systems, such as pacemakers; complex systems, such as aircraft; or distributed
systems, such as telecommunications networks. In the end, however, most
organizations have similar goals when it comes to systems engineering, which
include creating systems that are:

Predictable•	 —perform consistently to specifications and do not confront
stakeholders with surprises.
Competitive•	 —deliver the right functionality and performance for the
right price.
Profitable•	 —deliver optimum return on investment.
Compliant•	 —comply with relevant industry or government regulations.

Of course, every organization or team will also have its own specific busi-
ness goals and objectives, and the overall challenge is to select the appropriate
best practices to achieve these goals, implement processes and tools, assess
progress and implement changes, and stay on track. What follows are rec-
ommendations that IBM believes are key to getting the systems engineering
process right and underpinning success.

Model-driven paradigm

Model-based systems engineering has emerged as one of the best ways to increase
productivity and quality. Models can capture both the structure of the system
(architecture) and behavior, and model-based systems engineering helps address
complexity by raising the level of abstraction, enabling teams to view systems
models from many perspectives and different levels of detail while ensuring
that the system is consistent.

Model-based systems engineering

has emerged as one of the best ways

to increase productivity and quality.

The ultimate goal with any systems

engineering project is to create sys-

tems that are predictable, competi-

tive, profitable and compliant.

Systems engineering—the foundation for
success in complex systems development.
Page 5

Highlights
The Systems Modeling Language (SysML), which is a dialect of the Unified
Modeling Language (UML), is becoming an accepted standard for modeling in
the systems engineering domain. The formal nature of languages such as SysML
and UML helps improve quality by reducing ambiguity. In fact, models can now
show the dynamic behavior of systems, including how they transition between
modes and how the system behaves overall. Formal languages can also support
automation capabilities, including the execution of models to verify system
behavior. Moreover, rather than requiring a separate activity, design documenta-
tion can now be produced as an automated output of modeling activities. Com-
bining these activities helps reduce errors and inconsistencies associated with
aggregating and transcribing information while also saving time.

Model execution

Historically, the primary use of modeling in systems engineering has been to
capture designs graphically, and it stopped there. The use of a formalized model-
ing language, however, opens up the possibility for tools to support the execution
of models. In other words, it’s the difference between just drawing pictures and
making pictures live. By automating this process, requirements can be verified as
complete and correct, helping to improve the quality of the delivered system.

Use a best practices workflow

Adapting the model-driven paradigm to systems engineering creates the oppor-
tunity to streamline and improve project workflows. Ultimately, the key objec-
tives of a model-based systems engineering approach should include:

Identifying and deriving the required system functions.•	
Identifying the associated system modes and states.•	
Designing a subsystem structure with responsibilities that satisfy the system •	
functions as well as modes and states.

Using a formalized modeling lan-

guage makes it possible for tools

to execute the models—so you can

make pictures “live.”

Using SysML for modeling helps

improve quality by reducing ambi-

guity and supporting reviews of

the dynamic behavior of systems

as well as automation capabilities.

Systems engineering—the foundation for
success in complex systems development.
Page 6

Highlights
These objectives imply a top-down approach and a high level of abstraction.
The focus is on identifying and allocating needed functionality and state-based
behavior rather than on the details of functional behavior. IBM has identified
several best practices that are key to effective model-based systems engineering.
With the help of the best practices, you can define preconditions and postcondi-
tions and reuse them, mapping to individual workflows.

Requirements analysis•	 —Translate stakeholder requirements into systems
requirements and establish traceability links. Use cases are then employed
as a means of grouping functional requirements into functionally related
sets that will be used to prioritize the order of analysis and design synthe-
sis iterations. Traceability links are then established from the use cases back
to functional requirements.
System functional analysis•	 —Translate each use case into a model that
describes the requirements graphically. Model execution is then used to verify
the completeness and correctness of the requirements. This may result in system
requirements being modified and new system requirements being derived.
Traceability links are then created between the verified model artifacts and
the system requirements.

IBM has identified several best prac-

tices that are key to effective model-

based systems engineering.

Systems engineering—the foundation for
success in complex systems development.
Page 7

Highlights
Design synthesis•	 —At this point, the functional requirements are known to
be complete and correct, so the team can consider how to best realize those
requirements. Design synthesis takes place in three phases:

Architectural analysis, which is achieved through trade studies, also taking ––
into account customer constraints and nonfunctional requirements.
Architectural design, which is where functional and nonfunctional ––
requirements are realized by the architecture. Because traceability exists
from stakeholder requirements through architectural model artifacts, full
impact analysis can be performed when a requirement is changed. The
process handles both functional and nonfunctional requirements; there-
fore, traceability is maintained for both requirement types.
Detailed architectural design, which is where the ports and interfaces and ––
state-based behaviors are specified for system blocks at the lowest level of
architectural decomposition. The completeness and correctness of the system
model can then be established by executing the complete architecture.

Software analysis and design•	 —While outside the scope of this paper,
software analysis and design also benefit from a model-based approach.
Because UML is the de facto standard for analysis and design, model-based
systems engineering can support a clearly defined (and automated) handoff
between the two activities, thus reducing errors and improving efficiency.
The key artifact of the handoff from systems engineering to the subsequent
system development is the baselined executable model, which is the reposi-
tory from which specification documents such as hardware and software
requirements specifications and interface control documents are generated.
The scope and content of the handoff is dependent on the characteristics of
both the project and the organization.

Design synthesis takes place in

three phases: architectural analysis,

architectural design and detailed

architectural design.

Software analysis and design also

benefit from a model-based systems

engineering approach by support-

ing a clear handoff between the

two activities

Systems engineering—the foundation for
success in complex systems development.
Page 8

Highlights
Collaboration

Given the scope of systems that companies are creating today, collaboration has
become increasingly challenging. Teams are often widely dispersed across cities
and countries and even companies in vertical development silos. As a result, coor-
dinating workflows and providing tool support are critical to project success.

Simply adopting tools to support the SysML language is not enough; to collab-
orate effectively, you need to standardize and document both the usage of the
tooling infrastructure and the use of languages and notations. Systems engi-
neering is implicitly cross-discipline, and therefore any use of language must
be kept domain independent. Furthermore, systems engineering is a complex
activity, so minimizing the number of language constructs used in the work-
flow is essential to limit that complexity. Adopting standards and guidelines
for the use of languages and the construction of models can therefore help
improve collaboration and efficiency.

Use tools to support the approach

The use of formalized modeling language and the execution of models is only part
of the equation for effective systems design: Tools for requirements management
and traceability, system and software development, change and configuration
management, and documentation are also essential to managing complex systems
engineering across multiple teams. The right mix of tools can deliver capabilities
and benefits beyond simply enabling you to execute.

Efficiency and accuracy in constructing models•	 —Tools can be dedicated
to SysML/UML notation and help ensure quality by providing facilities for the
static checking of models, for example.
A single point of reference repository of design information•	 —Providing
a way for distributed teams to work from a “single version of the truth” can
help improve collaboration and reduce versioning/configuration issues.

For dispersed teams to collaborate

effectively, it is important to standard-

ize and document both the usage

of the tooling infrastructure and the

use of languages and notations.

To manage complex systems engi-

neering among multiple teams, it is

also important to choose the right

tools for requirements management

and traceability, system and soft-

ware development, change and

configuration management, and

documentation.

Systems engineering—the foundation for
success in complex systems development.
Page 9

Traceability•	 —Tools can help ensure that all requirements have been consid-
ered (coverage analysis) and simplify change management (impact analysis)
by supporting the linkage of models to requirements.
An automated documentation process•	 — Through automation, the
right tools can help improve efficiency, accuracy and timeliness of project
documentation for contractual obligations, compliance, design reviews and
project management.

Measure and improve decision making

Although it is more of an evolving capability and benefit, the model-driven
approach outlined in this paper has opened up the possibility of improved
measurement throughout a project. Although the metrics and methodology are
still being defined, the model-driven paradigm is poised to reduce development
time and improve efficiency and quality by helping teams identify and address
questions or issues at the right level—before proceeding to the next step. As a
result, organizations that adopt the model-driven paradigm will continue to see
new advantages down the road.

The model-driven approach outlined

in this paper has opened up the

possibility of improved measure-

ment throughout a project, helping

to support better decision making.

Highlights

Systems engineering—the foundation for
success in complex systems development.
Page 10

Highlights
The advantages of a model-driven paradigm

Model-driven systems engineering with model execution can potentially lead to
significant project improvements. Until now, modeling in systems engineering
has meant capturing static graphical models of systems—effectively just drawing
pictures. Through model execution, the IBM model-driven paradigm for systems
engineering enables teams to verify the completeness and correctness of both
systems requirements and the chosen architecture in which each change request
represents a unit of capability that is added to the system. With the right tools,
automated linkage of each modified or new change request to the model artifacts
can help simplify the development and subsequent maintenance of the system.
Furthermore, the linkage of modeling and requirements facilitates traceability
from stakeholder needs to detailed design—a capability that is essential to ensur-
ing that development is aligned to stakeholder needs. It also facilitates effective
change management processes based on impact analysis.

An executable, model-driven paradigm changes the definition of test and veri-
fication in the systems development cycle—moving it from the right-hand side
to the left-hand side of the V development cycle. The shift helps improve risk
management in projects by moving the testing to an earlier phase of the proj-
ect. Moreover, the verification tests performed during systems functional analy-
sis and architectural design synthesis can lead to a paradigm shift in testing
because model-based tests can form the basis of testing from the bottom-up
system integration phases, including, for example, component verification,
integration and system acceptance tests. Potential benefits include improved
test planning along with reduced testing time.

Overall, the use of formal notation in the model-driven paradigm helps substan-
tially reduce ambiguity and misunderstandings in models. It also supports model
execution, helping organizations turn the “test early, test often” adage into reality.
Finally, it provides a framework for comparing different approaches and perform-
ing trade studies to identify which approaches are optimal.

The IBM model-driven paradigm for

systems engineering enables teams

to verify the completeness and cor-

rectness of models through model

execution.

The model-based paradigm helps

substantially reduce ambiguity in

models, helps turn the “test early,

test often” adage into reality and

provides a framework for compar-

ing different approaches.

Systems engineering—the foundation for
success in complex systems development.
Page 11

Highlights
IBM Rational solutions for best practice systems engineering

IBM provides a comprehensive, model-based systems engineering solution con-
sisting of process, tools and services built around the IBM systems engineering
practices. IBM systems engineering practices include descriptions of the tasks,
work products and workflows needed to effectively define and verify system
requirements and architecture and to perform trade studies. Integrated tool
support, in the form of tool utilities, templates and tool guidance for IBM
Rational tools, automates various aspects of the process to help drive efficiency.
IBM systems engineering practices include out-of-the-box support for IBM
Rational DOORS®, IBM Rational Rhapsody®, IBM Rational Change and IBM
Rational Synergy software.

Because no single process or toolset will satisfy the needs of all project teams, IBM
systems engineering practices also include built-in guidance on how to tailor and
deploy the process and tools and continually improve the process. Tailoring and
deployment is managed using IBM Rational Method Composer software—a tool
based on the Object Management Group (OMG) Software Process Engineering
Meta-Model (SPEM) version 2.0 specification—for defining, tailoring, managing
and communicating the process and best practices. Rational Method Composer
software provides simple, form-based editors for changing, adding or deleting
tasks, roles and work products and tailoring workflows to address the needs of
the team. The resulting tailored process can be easily published to a Web site
and exposed directly within development tools to provide practitioners with the
context-sensitive process, tool, workflow, role and work product guidance they
need—when and where they need it.

Because no single process or toolset

will satisfy the needs of all project

teams, IBM systems engineering prac

tices include built-in guidance on

how to tailor and deploy the process

and tools and continually improve

the process.

IBM provides a comprehensive,

model-based systems engineering

solution consisting of process,

tools and services.

For more information

To learn more about model-based systems engineering and IBM systems
engineering practices, contact your IBM sales representative or IBM Business
Partner, or visit:

ibm.com/software/rational/offerings/ppm/process.html

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
December 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, and Rational are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first occur-
rence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time
this information was published. Such trademarks
may also be registered or common law trademarks
in other countries. A current list of IBM trademarks is
available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness and
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and
strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this documentation is intended
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

RAW14193-USEN-00

http://ibm.com/legal/copytrade.shtml
http://ibm.com/software/rational/offerings/ppm/process.html

