
IBM Software

Rational

December 2009

The path to a secure application
A source code security review checklist

2 The path to a secure application

Contents

2 I. Introduction

2 II. Cost concerns drive companies to secure
development

3 III. The path to secure code development practices

4 III. Steps to secure code

11 IV. Applying the source code security review
checklist

13 V. Appendix: Source code security review checklist

I. Introduction
The ongoing epidemic of data breach notifications forced by
today’s data breach disclosure laws has painfully highlighted
the insecurity of many of today’s applications. How can organ-
izations ensure that their applications are secure, avoid the
cost and public relations fallout, and stock price downturn
from issuing numerous security patches? How do you avoid
explaining to consumers and regulators that code defects
allowed attackers to steal people’s sensitive and perhaps regu-
lated information?

The path to creating a secure application begins by rigorously
testing source code for all vulnerabilities and ensuring that use
of the application does not compromise or allow others to
compromise data privacy and integrity.

For companies using custom-built, outsourced, or open source
applications in-house, ensuring that all current and legacy
code is secure, however, will be no small challenge. Detecting
and eradicating security vulnerabilities have historically been
extremely difficult. Many organizations relied on manual code

It is known that by detecting and correcting
vulnerabilities early in the software devel-
opment lifecycle, organizations can substan-
tially reduce both risk and costs.

review, which is costly and labor-intensive, as well as ethical
hacking, which examines a subset of potential application vul-
nerabilities in an application.

While both of these approaches are beneficial, companies
can use automatic software vulnerability scanning tools to
approach secure code development in a more systematic, auto-
mated, and successful manner. These automatic vulnerability
scanning tools greatly improve the speed and accuracy of code
review, and can be integrated seamlessly into the development
life cycle. In fact, the best tools can pinpoint vulnerabilities at
the precise line of code and provide detailed information
about the type of flaw, the risk it poses, and how to fix it.

II. Cost concerns drive companies to
secure code development
The imperative for creating secure code has never been
greater given the rapid rise in new technologies, including
Web services and Rich Internet Applications, and the need to
ensure the integrity of existing, legacy, and mid-development
applications in a network-oriented world. Companies continue
to integrate their systems with business partners to speed the
exchange of information. In these conditions, companies must
ensure that code is secure to protect data privacy, preserve
customer loyalty, safeguard sensitive information, and main-
tain operational integrity.

IBM Software 3

One software flaw can lead to a data breach. One of the worst
educational data breaches ever disclosed was the 2006 attack
of the University of California, Los Angeles’ (UCLA) database
containing personal information of 800,000 people. In news
accounts, Jim Davis, UCLA’s associate vice chancellor of infor-
mation technology (IT), revealed that the attacker had
exploited a single software flaw to gain access. Furthermore,
the attacker covered his or her attacks well, because the
exploits might have begun up to a year before UCLA detected
them. The inadvertent disclosure of a company’s sensitive
information or private and regulated information can lead to
fines, lower stock prices, and damage to company’s reputation.

Numerous studies have found that catching and fixing code
flaws earlier in the software development life-cycle costs sig-
nificantly less. Research the cost of just one bug that ends up
in released code that leads to a data breach and it is readily
noticeable the compounding cost of missing that single
vulnerability. Studies support this concern. A survey of
31 companies that suffered data breaches found the average
breach cost $4.8 million, related to IT clean-up, legal fees,
notifications, customer loss, credit monitoring services for
affected consumers, and the increased customer service load.
The survey, by the Ponemon Institute ©, also discovered cus-
tomer turnover related to the data breach averaged two per-
cent, but was as high as seven percent in some cases.1

III. The path to secure code development
practices
What is the best way to ensure that code is secure? The path
to effective secure software development requires source code
review processes to accomplish three things:

● Create consistency: When developing code, developers
must create consistent processes, policies, and a culture of
improved security.

● Provide the whole security picture: When it comes to
dangerous vulnerabilities, large-scale design flaws typically
exceed individual coding errors. Fixing individual vulnerabil-
ities have little effect if data is not encrypted, authentication
is weak, or open backdoors exist in an application.

● Prioritize remediation: When reviewing existing code,
developers must identify all vulnerabilities in the code and
remediate the greatest risks first.

A. The secure development path: Where to look for
vulnerabilities
Ensuring code is secure requires examining all of the places
that vulnerabilities might exist. Even when using automated
tools, developers must understand that the path to creating a
secure application might involve reviewing implementation
and design practices, including external code and code-reuse
practices, which they might not initially consider as vulnera-
ble. Therefore, companies must be diligent with secure code
development, and ensure that they analyze the myriad places
where software vulnerabilities can exist.

To effectively measure the risk posed by any given application,
security analysts or developers must watch for two types of
errors:

● Implementation errors:
These quality-style defects in code are fairly atomic, and
typically stand alone when identified, and remediation is
applied. Implementation errors are caused by bad program-
ming practices. Examples include buffer overflows, which
result from mismanagement of memory and race conditions,
which result from call-timing mismatches.

● Design errors:
These errors include the failure to use or adequately imple-
ment security-related functions. For example, authentica-
tion, encryption, the use of insecure external code types, and
validation of data input and application output.

4 The path to a secure application

While implementation errors are the most common, it is
actually design flaws that pose the greatest risk in today’s
Web-enabled applications. Is there access control? Is encryp-
tion present and is it strong enough? Is database access done
securely and according to policy? These design-level security
issues must be reviewed and addressed during secure applica-
tion development.

B. The secure development path: How to look for
vulnerabilities
The process for spotting errors is not simply to better define
the need for security in the development process, but to look
at all the places in the code where design flaws might, or do,
exist. These places are typically far more extensive than even
advanced developers realize. Properly analyzing source code
might take testers to places they do not expect.

Ensuring that new and existing code is securely developed
requires processes and procedures for hunting vulnerabilities,
and tools to help. Which tools are most effective for building
secure software?

Commonly used approaches include manual code reviews and
ethical hacking. While these approaches are both useful, nei-
ther is sufficient to cope with the breadth of existing and
potential design errors, and therefore cannot ensure that the
code is secure. For example, manual code review is very time-
consuming and expensive. Spotting which lines of code con-
tain flaws or might lead to operational errors, is extremely
difficult. Ethical hacking can discern only a small subset of
errors an application might contain. While this approach is
useful for highlighting such errors, it provides an incomplete
picture of the overall application security.

Given the breadth of existing design errors, or potential
errors, experts say companies must employ automated soft-
ware vulnerability detection tools to spot all potential flaws.
They agree the most effective approach for companies

developing their own software is to integrate source code
vulnerability scanners into the application development, inte-
gration, and test processes. Only advanced source code vulner-
ability testing tools and the related software development
life-cycle practices can efficiently and effectively ensure that
code is secure.

III. Steps to secure code: What to examine
The most efficient and effective technique for creating secure
source code is to evaluate existing applications as well as code
under development against five classes of code vulnerabilities:

1. Security-related functions
2. Input/Output validation and encoding errors
3. Error handling and logging vulnerabilities
4. Insecure components
5. Coding errors

Following security-related issues through the source code of
an application dramatically reduces the vulnerability of the
application and the critical data it processes and protects.

More detailed information about each class of error follows:

1. Security-related functions
Applications are the sum of many discrete features, which
often seem harmless. Yet an incautious combination of these
features, or lack of resulting documentation about how these
features are implemented, can easily create a security risk and
lead to breaches of privacy, confidentiality, or system integrity.

This risk is compounded by the widespread use of higher-level
programming languages, and in particular prebuilt modules
and precompiled libraries. With these tools, developers can
rapidly deploy full-featured applications with access to a num-
ber of services and data sources. The tools also help prevent
many security problems, for example, by abstracting memory
management and resource control issues away from developers
using high-level interfaces.

5IBM Software

These tools do not demand a more detailed understanding of
how to tap services and data in a secure manner, or whether
doing so might conflict with an organization’s already existing
business processes or infrastructure security. As a result,
implementing these libraries or modules in an insecure way is
actually responsible for the majority of security problems in
today’s applications. Furthermore, these kinds of security
design errors are often much more dangerous than previous
types of coding problems, because today’s applications often
interface with both an organization’s back office, as well
as the Internet, creating a potential conduit for the loss of
sensitive data.

A comprehensive determination of the security state of an
application must include an analysis for the following critical
design flaws:

a. Weak or nonstandard cryptography
One of the fundamental components of application security is
encrypting data. Private or sensitive data gets scrambled to
protect it. If attackers can break encryption algorithms, they
can steal sensitive data. The use of weak random number gen-
erators and nonstandard cryptographic algorithms are
two widespread encryption vulnerabilities that lead to attack-
ers stealing sensitive data.

For encryption to be effective, the underlying cryptography
must be based on randomness sufficient to ensure that an
attacker cannot easily guess or reproduce the keys used to
enable data sharing. Weak random numbers are insufficiently
random. When the resulting less-random numbers are used as
key seeds, this encryption algorithm exposes the encrypted
data to sequence number prediction and session spoofing.
Developers must avoid weak random number generators.

Nonexistent Encryption

When assessing code security, pay special attention to
presence and correct encryption implementation as well
as its inappropriate absence. Failing to encrypt sensitive
information has led to numerous data breaches. For
example, look at the United States Department of
Veterans Affairs (VA) incident that was reported in
May 2006. One of the VA applications stored the social
security numbers and home addresses of all retired veter-
ans. An employee’s laptop containing this information was
stolen, putting at risk information on 38.6 million veterans
Having a code review can help find all the sensitive infor-
mation stored in an insecure manner, and likely result in
the question of why this data was even available on a lap-
top. Why not make secure calls to a centralized database,
which is protected by rigorous access controls and moni-
toring? The probable answer is that creating a laptop-
based application that stored information in an insecure
format was simpler.

Beware of nonstandard cryptographic algorithms.
Cryptographic algorithms scramble data and only a handful of
truly secure algorithms exist, which have been thoroughly
evaluated by cryptography experts. Even for these experts,
producing a truly secure and acceptable algorithm is extremely
difficult, which accounts for the continuing use of triple DES,
Blowfish, and other well-worn algorithms. Even these algo-
rithms are sometimes later found to be breakable. Regardless,
defer to the experts’ recommendations. Other algorithms are
or at least might be of insufficient strength to stop an attacker
from decoding encrypted data.

6 The path to a secure application

b. Nonsecure network communications
Using legitimate methods to send or receive data, but not doc-
umenting or protecting these processes, might expose critical
data while in transit, allowing someone to easily intercept and
read it. Developers must employ secure network communica-
tion protocols, such as Secure Sockets Layer (SSL), whenever
possible, and thoroughly document these processes.

c. Application configuration vulnerabilities
Developers must ensure that the configurations files or
options controlling their applications are also secured.
Otherwise, an attacker might be able to access these unpro-
tected files or options, manipulate them, and adjust software
properties or access controls to access sensitive data.

d. Access control vulnerabilities
Without access controls, attackers with network access,
including malicious insiders can easily tap into confidential
data and resources. Organizations must implement a strong
technique for identifying users, map identified users to data,
and ensure that users can access only appropriate data.

The related vulnerability is when an application grants greater
than necessary access rights, to either a user, or an application.
Depending on the level of access granted, a user might be able
to access confidential information, or even take control of the
system. Therefore, for any application handling sensitive data
ensure that the principle of least privilege reigns: Grant only
the minimum level of access needed for a user or application
to function. This approach involves identifying the different
permissions that an application or user of that application
needs to perform their actions and restricting all appropriate
modules and objects to these privileges.

When evaluating access controls, also watch for these other
security vulnerabilities:

● Unprotected database and file system use: You must
ensure that application security tools carefully review calls to
databases and file systems within the application source
code. Otherwise, attackers can manipulate these calls to
expose sensitive data.

● Dynamic code vulnerabilities: Does the application load
dynamic code? Attackers can insert malicious commands
into applications that load dynamic code. You must ensure
that the applications are first examined to see if this poten-
tial exists.

● External code loading: Attackers can change, expose, or
destroy data by manipulating improperly validated system-
level calls.

● Data storage vulnerabilities: Why attack an application if
data is left unsecured? Attackers might be able to access
servers to steal sensitive data if it is not stored securely.

● Authentication errors: By using legitimate user credentials,
or tricking a system into thinking legitimate credentials are
being used, an attacker can steal or manipulate data. In the
data breach incident at ChoicePoint, Inc © for example,
attackers were able to acquire actual user credentials, which
helped disguise malevolent activities.

Access control exploit: Forced browsing

When reviewing code, pay close attention to forced
browsing. Here is how forced browsing works: Attackers
issue a request directly to a Web page that they might not
be authorized to access. If improper access controls are
in place, they might be able to access the Web page, or
the back-end resources, and possibly steal or corrupt
those resources.
To prevent such attacks, developers must ensure that no
Web page containing sensitive information is cached
either on servers, or users’ local personal computers. All
such data is restricted to requests that are accompanied
by an active and authenticated session token, and associ-
ated with a user who has the required permissions to
access that page or information.

7IBM Software

2. Input/Output validation and encoding errors
Most applications require input to be dynamic. User responses
and selections in an application drive and tailor their experi-
ence with the application. Every input has the potential to
introduce vulnerability and must be validated to ensure that its
form or size does not cause the application to behave unpre-
dictably. All sources of input and especially those provided
through user interactions must be checked at some point after
they enter the system, and before they reach the place where
they are used. Developers must ensure that all inputs are vali-
dated, and that they reconcile with expectations, or else an
application must prevent the malformed input from proceed-
ing through the application.

To better understand when and where to utilize input/output
validation, and where it is especially needed, it helps to under-
stand some of the leading, related attacks, and how to stop
them:

a. SQL injection vulnerabilities
One very common input validation vulnerability is an SQL
injection. Attackers have used this technique to steal large
amounts of credit card information from databases. As the
name suggests, attackers make inappropriate SQL queries to a
database to illicitly access data or cause unstable database
behavior. The most effective method of stopping SQL injec-
tion attacks is to use only stored procedures or parameterized
database calls that do not allow the injection of code. This
simple technique stops SQL injection attacks.

b. Cross-site scripting vulnerabilities
Cross-site scripting (XSS) attacks refer to the use of insuffi-
ciently protected output mechanisms in applications. Attackers
can use these mechanisms to cause unsuspecting users to run
or access malicious code.

XSS attacks can generally fall into two categories:

● Stored attacks: Injected code is permanently stored on the
target server database, message forum, or visitor log.

● Reflected attacks: Injected code reaches a victim, perhaps
through an e-mail message, or by living on another server.
After a user is tricked into clicking a link or submitting a
form, the injected code travels to the vulnerable Web server,
which reflects the attack back to the user’s browser. The
browser then runs the code because the code comes from a
trusted server.

The most severe XSS attacks result in disclosure of a
user’s session cookie, which allows an attacker to hijack the
user’s session and take over their account. Other damaging
attacks include the disclosure of end-user files, installation of
Trojan horse applications, redirecting a user to some other
page or site that contains a phishing attack and modifying
content. To defend against scripting attacks, protect all
user-supplied output to the client and log files with HTML
Entity Encoding. This encoding organizes all nonalphanu-
meric characters into a special character sequence that cannot
be interpreted by HTML-enabled viewers.

Using XSS to launch attacks at other sites

Cross-site scripting attacks are a particular risk for
consumer-focused online sites, and in particular social
networking sites, where the medium of communication
skews heavily to cutting-edge multimedia, and a modicum
of security.
For example, take a worm that targeted MySpace.com©
in 2006. Dubbed amazingly virulent by one security ana-
lyst, the cross-site scripting attack exploited an Apple©
QuickTime vulnerability (though Apple did not initially
regard it as such) to inject JavaScript™ from an external
source without warning into a user’s profile, ultimately
stealing a user’s MySpace log-in credentials and launch-
ing spam attacks through MySpace. Vulnerability in a mul-
timedia player helped facilitate a widespread attack.

8 The path to a secure application

c. Operating system (OS) injection vulnerabilities
Applications sometimes require access to operating system-
level commands. Be careful when such access also involves
user input because similar to SQL injections, attackers can use
malformed inputs to affect OS behavior, leading to potential
data breaches or the compromise of an entire system.

d. Custom cookie or hidden field manipulation
Cookies are a useful and popular means to maintain user
information during and across sessions. The creation of cus-
tom cookies with custom names and values is a dangerous
practice, often leading developers to rely too heavily on these
unsafe cookies because attackers can easily modify cookies.
Unless developers validate cookies, they can create an oppor-
tunity for attackers to create SQL injections or successful
cross-site scripting attacks.

3. Error handling and logging vulnerabilities
Does your application fail gracefully? Error handling and
logging are especially difficult for developers: Who can pre-
dict all the ways in which an application might fail, or the
repercussions?

Web 2.0: Exposing insecurity to the Web

The Web-centric nature of business today is providing
Web-enabled access to more data than ever before.
Technologies such as Ajax facilitate easier access to infor-
mation for software developers, and can make the end
user experience much more positive. Still, these technolo-
gies do little to address security. Organizations must
be especially vigilant about code quality and security vul-
nerabilities as they adopt new tools and development
techniques.
One Web 2.0 innovation, for example, is the mashup,
which mixes content from a host server with publicly
available feeds. Yet with new capabilities comes the
potential for new forms of cross-site abuse. When
Web 2.0 mashups are not done securely huge gaps
leave room for new forms of phishing and other attacks.

Tracing application error handling and logging, however, is of
paramount importance because so many attacks today succeed
by feeding bad data to an application, and exploiting the
resulting application misbehavior.

When grading an application on its error handling, first evalu-
ate these two aspects:

a. Insecure error handling
Poor error handling can provide attackers with crucial infor-
mation for launching attacks. For example, indiscrete error
routines can provide valuable insights into how an application
processes inputs, especially if the error routine is custom-
writing to detail-specific errors and data elements. Developers
must limit the amount of detail they reveal to application
users. Avoid having any applications that integrate with a Web
server displaying errors to the server. An outside attacker
might be able to use the resulting information to gain access
to systems.

b. Insecure or inadequate logging
Log files might be essential for tracking application behavior,
but they are also a rich resource for attackers. Do not make
log files accessible. Consider logging application behavior for
applications trafficking in sensitive data, to ensure that attack-
ers cannot hide their tracks.

4. Insecure components
Vulnerable code might become part of an application, either
through malice, or inadvertent poor code-writing practices.
For example, an attacker can insert malicious code into an
application to circumvent existing security measures.
Unfortunately, malicious code often looks identical to
nonmalicious code. Both types of code can provide access to
networks and data, and both typically function like other parts
of an application.

9IBM Software

As a result, automatically identifying malicious code is
extremely difficult if developers are assessing only for
functionality. Rather, developers must focus on location.
Start by identifying specific types of functionality (such as
network communications, timed events, and privilege changes)
and then map each with the application module in which it
operates. Watch for mismatches, such as a graphic library
conducting outbound network operations, or hard-coded
timed events in a largely real-time application. Such mis-
matches are warnings for malicious intent.

Today’s application development practices are heavily compo-
nentized. While this componentization helps create secure
applications more quickly, two types of component use pose
significant risk of vulnerability:

a. Unsafe Java Native Interface methods
If developers employ unsafe Java™ Native Interface (JNI™)
methods in their code, attackers might be able to easily access
critical resources, such as system or environment memory.

What are JNI methods? Higher-level languages that provide
interfaces to verify any access to resources. By contrast, JNI is
a more basic means of accessing these resources, which side-
step such interfaces, resulting in improved performance.
Because the code is written without the interface-level checks,
the risk of miscoding is extremely high. In general, avoid using

Suspicious behavior

Signs an application might contain malicious code

Sign Suggests

Raw socket access Possible backdoors

Timer or get time function Trigger

Privilege changes Unauthorized access levels

any JNI methods, except in exceptional cases where perform-
ance concerns are paramount. Always locate and thoroughly
test any JNI methods that are used. Also, be aware of the
potential that JNI libraries have built-in errors, and especially
when programming in C or C++, which are already more sus-
ceptible to buffer overflow or race-condition problems.

b. Unsupported methods
Developers sometimes take shortcuts, relying on unsupported
methods or calls when building applications. Using undocu-
mented functions or routines can produce hidden insecurities,
allowing attackers to exploit an application. For any software
project, ensure all contracts specify that only supported meth-
ods are used. For existing applications, find any unsupported
methods and remove and implement them with supported
ones.

5. Coding errors
Coding errors, also known as implementation errors, might be
caused by developers with insufficient training, compressed
project schedules, improper project requirements prioritiza-
tion, or by reusing code of questionable or unknown quality.

When coding errors exist in applications, they might cause
such unexpected behaviors as yielding control of a system or
process to an attacker, to shutting down an application.
Because of the security risks inherent to coding errors, these
errors must be removed from code, whether it is in develop-
ment or already in production.

When evaluating code, be aware of these coding-related
vulnerabilities:

a. Buffer overflow vulnerabilities
Buffer overflows occur when more data is copied into a buffer
than the buffer can hold. Even though buffer overflows have
been well understood for more than 20 years, they are still
quite a common problem, and pose an extremely high risk.

10 The path to a secure application

Attackers can use this type of memory mismanagement to load
and run exploit code in computer memory, which effectively
allows an attacker to gain full control of a system.

In structured languages, such as C and C++, literally hundreds
of calls and call combinations exist in which it is possible to
misallocate memory, or insufficiently understand the range of
application behavior. This complexity creates ideal conditions
for buffer overflow attacks.

In higher-level languages, such as Java, JavaServer™ Pages
(JSP™), C#, .Net, vulnerabilities are much less prevalent,
because the language and runtime interpretation handle all
lower-level memory management, protected from any influ-
ence by the programmer. Even in these higher-level lan-
guages, certain, and sometimes undocumented, calls might
exist that create a buffer overflow vulnerability unbeknownst
to the programmer. Be especially alert for buffer overflows in
all higher-level languages.

b. Format string vulnerabilities
Format string vulnerabilities illustrate the relationship
between implementation errors, and the overall quality of a
code base. Many regard format string vulnerabilities as a type
of buffer overflow, but this comparison is not exactly true.
While a format string vulnerability might produce an over-
flowed buffer, the vulnerability can also lead to information
exposure, without an overflow.

When building code, incomplete use of some calls can lead to
format string vulnerabilities. Good coding practices dictate
consistent use of certain arguments, such as field specifiers. If
developers build code using incomplete calls instead, such calls
are insufficiently bounded, which allows attackers to oppor-
tunistically embed additional data, arguments, or requests for
information in those calls. Review all code for any incomplete
calls and address them.

c. Denial-of-service errors
Any application that provides access to critical data or services
can only serve that purpose when it is running. Denial-of-
service (DoS) attacks compromise applications and affect the
delivery of critical data or services.

A DoS vulnerability refers to implementation errors that cause
either consumption of scarce, limited, or nonrenewable
resources, or the destruction or alteration of configuration
information. To avoid these failure conditions, developers
must design their applications to run, even in worst-case
scenarios.

d. Privilege escalation vulnerabilities
In many cases, the ultimate goal of an attack is privilege esca-
lation. A user with insufficient credentials gains privileged
access, allowing the attacker to access confidential data and
resources, and even take control of and destroy an entire sys-
tem, all while being classified as a trusted user.

An attacker typically elevates his or her privileges by exploit-
ing sections of programs in which an application grants or
receives higher-level privileges. Applications sometimes need
to create processes as different users, or with different access
levels. The burden of proof falls on developers to ensure that
the privilege escalation process cannot be exploited by rogue
programs. Similarly, the deescalation process must also be
thoroughly tested.

For example, when a lower priority process returns control to
another program with higher level privileges, the application
must consistently check for valid return codes, error condi-
tions, and privilege-lowering operations triggered by errors. If
any of these operations fail, the programs can be left running
at a different level or privilege than was intended or necessary.

11IBM Software

e. Race conditions
Two processes might share control or data. Race conditions is
the term applied to compromising this sharing, which typically
results from synchronization errors, when the potential exists
for process conflicts, and a resulting vulnerability. A typical
exploit interrupts a pair of sequential calls that are meant to be
performed automatically without interruption by another
thread or process on the machine with a third process.

One example is the combined checking of access rights to a
file, followed by a subsequent call to write or read that file. By
interrupting the process between the two calls, an attacker can
rewrite or modify the file because this behavior is expected.
The attacker can place inappropriate information into a file,
or perhaps access an inappropriate file.

Common denials-of-service errors

Application shutdown DoS: How does the application shut
down? Some application writers, when implementing ter-
mination functionality for an application, do so too
broadly. For example, if an application closes itself auto-
matically because of input errors by using a system exit
function, an attacker can cause a similar set of events that
unnaturally and unnecessarily cause the application to
stop.
Database connections not closed DoS: How cleanly does the
application connect to databases? To grant a process
access to data, the application and data source must first
form a connection. If this process is improperly coded, the
queue of requests for collection might become cluttered,
then overload from failed database connection attempts.

IV. Applying the source code review
checklist
A. Applications guilty until proven innocent
The five broad types of code vulnerabilities described
previously all represent the likeliest and most dangerous risks
contained in current and legacy code. Business customers,
software development project managers, and developers must
ensure that all code is reviewed for these five classes of
vulnerabilities.

Given the myriad risks that are posed by these vulnerabilities,
and their likely presence in many applications, project teams
must treat every application they commission, create, or
reassess, with security skepticism. This attitude represents a
marked shift away from the traditional development approach,
which is to analyze an application based on its speed, feature
set, or ease of use.

Now, development teams treat every existing and underdevel-
opment application as a security risk, until it is proven other-
wise. Teams have to react that way because of the risk such
vulnerabilities pose to the business. Indeed, as an Institute of
Electrical and Electronics Engineers (IEEE) working group
investigating the new role of security in the software develop-
ment life cycle found, applications now “can have a far greater
effect on consumer approval, business stability and profitabil-
ity in the long run.”2

As a result, the IEEE group recommends that “project teams
traditionally focused entirely on responding to customer
requests must now learn to communicate security risk upfront
to sponsors, so the appropriate budget and project needs will
be justified.” While such changes might be unpopular, today’s
security threats and mandate to protect sensitive and personal
information demands a dedicated focus on security by all proj-
ect team members.

12 The path to a secure application

B. Pursuing source code vulnerability testing
Source code vulnerability testing tools alone do not make soft-
ware secure. Such tools help developers and code reviewers
assess applications, even those with many millions of lines of
code, to identify the most potentially damaging vulnerabilities.
With this testing development and remediation teams can pri-
oritize their efforts, and take a risk-based approach to improv-
ing the code base, starting with the most critical problems
first.

Creating secure applications demands that organizations
make secure code and schedule ongoing vulnerability testing.
Make secure code an exit requirement for any application,
before allowing the code to be released. The swift upsurge
of targeted threats should make requiring mandatory applica-
tion security vulnerability testing a primary focus within all
enterprises.

This work is exacting and complicated by the fact that com-
plex applications might contain extremely complex and diffi-
cult to identify coding errors and vulnerabilities. Code review
teams demand the need for sophisticated code analysis.
Indeed, the technical nature and well-understood roots of
implementation and coding errors leads many companies to
make code reviews their logical starting point for improving
overall application security.

C. Selecting the right tool
When selecting an automated source code vulnerability testing
tool to use throughout the software development life cycle,
organizations must first assess their existing code development
resources. These resources include in-house security expertise,
technologies, and service partners, as well as their software
development life-cycle project-improvement objectives. These
objectives might involve decreasing the number of security

patches released, reducing the potential for costly data
breaches, lowering software development life-cycle costs,
more stringent meeting regulations, and ensuring a competi-
tive advantage. Companies must determine that the tool they
select works best with their existing code resources, and helps
the organization meet its software development life-cycle proj-
ect objectives. They must also ensure that the tool they select
covers the entire breadth of the coding errors and design flaws
that must be identified and eliminated to create a secure
application.

The numerous and well-publicized data breaches to date,
many the result of code flaws, highlight how important eradi-
cating vulnerabilities are in preventing the inadvertent or
malicious disclosure of sensitive or regulated information.
Even for organizations not currently subject to such regula-
tions, the rapid growth in more connected tools, technologies,
and programming languages, including Web 2.0 applications
makes any organization using such technology vulnerable.
Given the substantial costs in money and reputation that
result from a data breach, companies are increasingly con-
cerned with finding the most efficient and effective path to
ensuring source code security, developing secure applications,
and eliminating bugs as early as possible in the development
process, and well before code is shipped.

Companies that can efficiently and effectively integrate source
code vulnerability testing into their software development life-
cycle practices can avoid the negative impact of security flaws.
These improved practices result in substantial savings inter-
nally as well as for the customers, partners, and other stake-
holders that rely on their software. This savings is the true
sign of an effective source code security program.

13IBM Software

V. APPENDIX: Source code security review checklist
Verifying that applications are secure begins by watching for these vulnerabilities to mitigate the risks they pose to application
and data integrity:

Category Vulnerability Risk

Security-related functions Weak or nonstandard cryptography

Nonsecure network communications

Application configuration vulnerabilities

Access control vulnerabilities

Unprotected database and file system use

Dynamic code vulnerabilities

Local code loading

Data storage vulnerability

Authentication errors

Attackers can break algorithms to steal sensitive data

Legitimate methods of sending information are not
documented or protected, exposing critical data

Access to unprotected configuration files or options
allows manipulation of software properties or data

Unauthorized access to confidential data and resources

Hijacking and manipulating calls to databases and file
systems exposes data

Successfully inserting malicious commands into
applications that load dynamic code without proper
validation

Manipulating these system-level calls allows data
manipulation, exposure, or destruction

Data stored insecurely can easily be stolen

Attackers use legitimate users’ credentials to steal or
manipulate data

Input/Output validation and
encoding errors

SQL injection vulnerabilities

Cross-site scripting vulnerabilities

OS injection vulnerabilities

Sending SQL commands directly to databases to steal
or manipulate data

Users unknowingly have sessions hijacked, download
Trojans, or fall for phishing scams

Attackers modify or misuse operating system com-
mands to control data and resources

Custom cookie or hidden field manipulation Creates a level of trust attackers can manipulate to
launch attacks, such as SQL injection or cross-site
scripting

14 The path to a secure application

Category Vulnerability Risk

Error handling and logging
vulnerabilities

Insecure components

Insecure error handling

Insecure or inadequate logging

Malicious code

Unsafe local methods

Unsupported methods

Furnishes attackers with information they can use for
attacks

Accessible log files divulge information useful for
attacks, while inadequate logging allows attacker to
hide tracks

Seemingly legitimate code inserted into software can
allow attackers to circumvent security measures

Unchecked use of local methods provides entry for
attackers to access critical resources such as system
or environment memory

Undocumented functions or routines are a hidden
source of insecurity for potential exploitation

Coding errors Buffer overflow vulnerabilities

Format string vulnerabilities

Denial-of-service errors

Privilege escalation vulnerabilities

Race conditions

Unsafe local method use

Attackers can hijack system resources.

Leads to buffer overflows or data exposure

Prevents software from functioning

Attackers can access confidential data and resources

Circumventing an application process to manipulate
operations

Might sacrifice security for performance, allowing
unsafe access to system or environment memory

Unsupported method Legitimate operations might unknowingly invoke calls to
vulnerable code

Notes

Please Recycle

For more information
To learn more about the IBM Rational® AppScan® Source
Edition, please contact your IBM marketing representative or
IBM Business Partner, or visit the following Web site:
ibm.com/software/rational/products/appscan/source/

About the authors
Ryan Berg is a Senior Security Architect at IBM. Ryan is a
popular speaker, instructor, and author in the fields of security,
risk management, and secure development processes. He holds
patents and has patents pending in multilanguage security
assessment, kernel-level security, intermediary security assess-
ment language, and secure remote communication protocols.

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A

Produced in the United States of America
December 2009
All Rights Reserved

IBM, the IBM logo, ibm.com Rational and Rational AppScan are
trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in
this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at
the time this information was published. Such trademarks may also be
registered or common law trademarks in other countries. A current list of
IBM trademarks is available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other product, company or service names may be trademarks or service
marks of others.

1 Ponemon Institute, “2006 Annual Study: Cost of a Data Breach,”
October 2006.

2 Biscick-Lockwood, Bar, “The Benefits of Adopting IEEE P1074-2005,”
April 2, 2006.

RAW14198-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/software/rational/products/appscan/source/
http://ibm.com/software/rational

	Untitled
	IBMSoftwareRational
	December 2009
	The path to a secure application
	A source code security review checklist
	2The path to a secure application
	Contents
	I. Introduction
	It is known that by detecting and correc
	II. Cost concerns drive companies tosecu
	IBMSoftware3
	III. The path to secure code development
	A. The secure development path: Where to
	B. The secure development path: How to l
	III. Steps to secure code: What to exami
	1. Security-related functions
	a. Weak or nonstandard cryptography
	Nonexistent Encryption
	b. Nonsecure network communications
	c. Application configuration vulnerabili
	d. Access control vulnerabilities
	Access control exploit: Forced browsing
	2. Input/Output validation and encoding
	a. SQL injection vulnerabilities
	b. Cross-site scripting vulnerabilities
	Using XSS to launch attacks at other sit
	c. Operating system (OS) injection vulne
	d. Custom cookie or hidden field manipul
	3. Error handling and logging vulnerabil
	Web 2.0: Exposing insecurity to the Web
	a. Insecure error handling
	b. Insecure or inadequate logging
	4. Insecure components
	a. Unsafe Java Native Interface methods
	Suspicious behavior
	b. Unsupported methods
	5. Coding errors
	a. Buffer overflow vulnerabilities
	b. Format string vulnerabilities
	c. Denial-of-service errors
	d. Privilege escalation vulnerabilities
	e. Race conditions
	Common denials-of-service errors
	IV. Applying the source code reviewcheck
	B. Pursuing source code vulnerability te
	C. Selecting the right tool
	V. APPENDIX: Source code security review
	Category
	Category
	For more information
	About the authors

