
VisualAge Pacbase

eBusiness & Pacbench C/S Applications
Graphic Presentation

Version 3.5

Note

Before using this document, read the general information under "Notices"

You may consult or download the complete up-to-date collection of the VisualAge Pacbase
documentation from the VisualAge Pacbase Support Center at:

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

Consult the Catalog section in the Documentation home page to make sure you have the most
recent edition of this document.

1rst Edition (May 2004)
This edition applies to the following licensed program:
VisualAge Pacbase Version 3.5

Comments on publications (including document reference number) should be sent electronically through the
Support Center Web site at:
http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm
or to the following postal address:
IBM Paris Laboratory
Support VisualAge Pacbase
1 place J.B. Clément
93881 Noisy-le-Grand Cedex FRANCE

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1983, 2003. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm
http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

Contents
See Detailed Contents next page.

Chapter 1: Introduction...............................11

Chapter 2: Generating Proxies...................13
Delivered Generic classes (Java)..13
Launching the Generator..15
Generation Results...16

Chapter 3: Development Principles...........25
Visual Representation of Proxies in the Target Environment 25
Use of Properties ..26
Use of Methods...29
Use of Events ..48
Error Management...50

Chapter 4: Developing a Java Client59
Example of an Applet..59
Specificities of a Standalone Application.............................78
Error Management...80
Communication Management ...86
Testing the Generated Application – Packaging90
Application Deployment ..94

Chapter 5: Developing a COM Client.........95
Visual Basic Example of a COM Proxy Use.........................95
Error Management...99
Communication Management .. 100
Application Deployment ... 102

Chapter 6: Index ..103

© Copyright IBM Corp. 1983, 2003 iii

Management of Effective Transactions39 Detailed Contents
Re-initializing instances in the local cache............39
Managing collections of instances..........................39

Chapter 1: Introduction...............................11 Load of the local cache with no server access39
Asynchronous Methods ..40

Chapter 2: Generating Proxies...................13 Principles ..40
Global Methods or Methods Associated with an
Instance ...40 Delivered Generic classes (Java)..13

Online Documentation of Generic Classes 14
Examples...41

Launching the Generator..15 Storing the Proxy Context...42
From the eBusiness Module of Developer workbench15 Externalization of the Management of Requests.........42
From WSAD (or Eclipse) .. 15 User Service...43
From VisualAge for Java .. 15 Java ..43
From the .exe File... 15 COM ..43
From a Java Virtual Machine ... 16 Database Logical Lock...44

Customization of the Columns of a Jtable (Java Only)45
Generation Results...16 Management of Data Element Presence46

Java... 16 Java ..46
Introduction..16 COM ..46
Generated Classes..17 Management of Data Element Check47

COM... 22 Java ..47
Introduction..22 COM ..47
Generated Classes..23 Sub-Schema Management...48
Compilation Results..24
Compiling with Visual C++ Version 5.0 and 6.0...24 Use of Events..48

Java ...48
Event-driven Management of Large Reading48 Chapter 3: Development Principles...........25
Event-driven Management of Instance Reading..49

COM ...49 Visual Representation of Proxies in the Target
Environment ...25 Event-driven Management of Large Reading49

Java Environment .. 25 Event-driven Management of Instance Reading..50
COM Environment .. 26

Error Management ..50
Use of Properties ..26 Introduction ..51

Local Checks ... 26 Local Errors ...51
Check of the Length of the detail Property
Fields.. 27

Server Errors ...54
System Errors ..54

System Errors Received from the Elementary
Component...54

Selecting the Local or Server Sort Criterion on a List
of Instances ... 27

Local Sort ..27 System Errors Received from the
Communications Monitor55 Server Sort...27

Specification of the Local Sort Criterion (Java Only) . 28 System Errors Received from the Services
Manager..55 Table Model (Java Only)... 28

Communication Errors..57 Sub-schema Management .. 29
Use of Methods...29 Chapter 4: Developing a Java Client......... 59

The Different Types of Server Methods....................... 29
Managing Folder Reading.. 30 Example of an Applet ...59

Provisional Large Reading of Dependent Nodes.30 Introduction ..59
Presentation of the End User Interface60 Transferring an Instance Between the rows and

detail Properties ...31 Developing the End User Interface with VisualAge
Java V1 ...61 Large Reading and Transferring an Instance

Between Rows and Detail Properties: Working
Mechanism..31

Implementing the Example and Creating the
Applet ...61

Large Reading of Reference Nodes36 Developing the Customers Window64
Principle of Paging in a Folder's Nodes.................36 Developing the Orders Window69
Selection Criteria Associated with Large Reading
Methods...36

Developing the End User Interface with VisualAge
Java V2 ...70

Limitation of the Scope of Large Reading37 Implementing the Example and Creating the
Applet ...70 Reading of a Root Node or Dependent Instance ..37

Reading of a Reference Node Instance...................37 Developing the Customers Window73
Developing the Orders Window77 Selection Criteria Associated with Instance

Reading ...38
Specificities of a Standalone Application78 Folder Update Management .. 38

Introduction ..78 Local Updates...38
Example ...79 Server Updates...38

iv eBusiness & Pacbench C/S Applications- Graphic Presentation

Error Management...80
Principles... 80

Introduction..80
Programming ...80

Local Errors... 80
Server Errors... 81
System Errors ... 81
Communication Errors ... 81
Example of Error Management 81

Introduction..81
Presentation of the Non-Visual Classes in Use.....81
Presentation of the ErrorManagerExample Visual
Class...83
Code for Displaying the Error Window85

Communication Management ...86
Processing a Request ... 86

Direct Access to the Middleware87
Access via a Gateway..87
Access via a Particular Adapter87
Dynamic Change of the Middleware Access
Parameters ..88

Definition of the Use Context via the Location Editor89
Launching from the eBusiness Module of
Developer workbench...89
Launching from VisualAge for Java.......................89
Launching from the .exe File89
Launching from a Java Virtual Machine................89

Testing the Generated Application – Packaging90
Testing the Generated Application............................... 90

Testing Server Components with the Services Test
Facility ...90
Version Compatibility Check91

Packaging .. 91
Reminder: Prerequisites ...91
Export ..91

Application Deployment ..94

Chapter 5: Developing a COM Client.........95
Visual Basic Example of a COM Proxy Use.........................95

Presentation of the End User Interface......................... 95
Visual Basic Development Example............................. 96

Inserting the COM Proxy in the Visual Basic
Project ..96
Setting of the Proxy in the Application Design
Mode..97
Selecting and Filling the Grid Representing the
rows Attribute ..98
Error Processing...98
Filling of the detail Attribute99

Error Management...99
Communication Management .. 100

Processing a Request ... 100
Definition of the Use Context via the Location Editor101

Launching from the eBusiness Module of
Developer workbenchError! Bookmark not defined.
Launching from the .exe File 101

Application Deployment ... 102

Chapter 6: Index ..103

© Copyright IBM Corp. 1983, 2003 v

NOTICES
References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Subject to IBM's valid intellectual property or
other legally protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to:

Intellectual Property and Licensing
International Business Machines Corporation
North Castle Drive, Armonk, New-York 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of information which has been
exchanged, should contact:
IBM Paris Laboratory
Département SMC
1 place J.B. Clément
93881 Noisy-le-Grand Cedex
France

Such information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

IBM may change this publication, the product described herein, or both.

TRADEMARKS
IBM is a trademark of International Business Machines Corporation, Inc.
AIX, AS/400, CICS, CICS/MVS, CICS/VSE, COBOL/2, DB2, IMS, MQSeries, OS/2, PACBASE,
RACF, RS/6000, SQL/DS, TeamConnection, and VisualAge are trademarks of International
Business Machines Corporation, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States and/or other countries.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.
UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

All other company, product, and service names may be trademarks of their respective
owners.

© Copyright IBM Corp. 1983, 2003 vii

Foreword
In this volume, we assume that you are familiar with the the contents of the
eBusiness & Pacbench C/S Applications: Concepts & Architecture manual.

Since this manual cannot include all the information related to the development
of applications with VisualAge Pacbase, you will also find useful information in
the:

 eBusiness & Pacbench C/S Applications: Proxy Programming Interface
manual,

 Developer workbench online help,
 Pacbench C/S Applications: Business Logic manual,
 eBusiness Tools online help,
 Middleware User’s Guide,
 Documentation associated with WSAD or VisualAge for Java, including

HTML online documentation or the documentation associated with any
other Java tool used.

 or Documentation associated with your COM development
environment.

Typographical conventions in use

The Courier New font is used for any character strings you can enter,
displayed by the product or corresponding to generated codes.

Italics is used for titles of publications or Chapter in cross-references.

The following symbols are used to point out:

 a note, a remark.

 cross-reference to another location in the documentation.

 a helpful hint or tip, a useful piece of information.

 an action to be carried out in a Tool or an Editor.

 that you must proceed with caution (risky or irreversible action, etc.).

Terminology standards
 FVP refers to a Folder View Proxy.
 LVP refers to a Logical View Proxy.
 Folder View Proxy, Elementary Proxy and Logical View Proxy are

usually referred to as Proxy objects and Proxy components.
 For convenience, in the sections that are common to the Java and COM

environments, the term property is used to designate both a Java
property and a COM attribute and the term method is used to designate
both a Java method and a COM action.

© Copyright IBM Corp. 1983, 2003 9

Chapter 1: Introduction 11

Chapter 1: Introduction

This manual intends to guide you in creating graphic applications in a Java or
COM environment, using the server components developed with the VisualAge
Pacbase eBusiness (Developer workbench) or Pacbench C/S module (VisualAge
Pacbase WorkStation).

The generated applications can be executed on a PC but can also be accessed
from a Web browser (Intranet or Internet).

Contents of this manual

This manual contains the following chapters:
 The introduction gives you a brief description of the different steps of a

graphic client development, from the generation of components
extracted from the VA Pac Repository to the graphic construction of
applications.

 The next chapter presents the generation step and details its results,
according to the generation target (Java or COM).

 The next chapter presents the public interface of the generated
components as well as error and communication management.

 The next two chapters provide examples with detailed comments on the
development of standard graphic and Web applications. They also
provide information on how to test and package an application.

 Finally, an index lists the actions/methods, attributes/properties, events
and classes whose names are mentioned in this manual.

Development steps

Developing a graphic application consists in:

 Developing the server components with the VisualAge Pacbase eBusiness
(Developer workbench) or Pacbench C/S module (VisualAge Pacbase
WorkStation).

 For information on the development of server components, refer to
the Developer workbench online help if you use Developer
workbench, or to the Pacbench C/S Applications: Business Logic
manual if you use the VisualAge Pacbase WorkStation.

 Generating Proxies from these server components, using the eBusiness
tools, and then testing these Proxies.

 The generation phase produces classes which will execute services
associated with the server components.

 The generator takes as input the extraction file initially transferred onto the
client development workstation.

 For more details on the generation features, refer to Chapter 2:
Generating Proxies.

 Developing a client application.

 Developing a client application implies integrating Proxies and calling their
services. You can develop the client application with WSAD, the VisualAge
for Java workstation (or any development tool which uses JDK version 1.1
and onwards) or any development tool which uses the COM technology.

 You will find an example with comments on the development of a
standard and web application in Chapter 4: Developing a Java Client
and Chapter 5: Developing a COM Client.

Compatibility of Elementary Components / Proxy Objects

Elementary Components and Proxy objects must be generated with the same
version number, for a difference of version can produce discrepancies showing
inconsistency in the client application.

To avoid possible discrepancies, you must implement a version control by
setting an option in the Elementary Component. This option sends an error
message if a discrepancy between the version numbers is detected when the
Client calls the Elementary Component.

 In Developer workbench, fill in the Version field in the Definition tab of the
Elementary Component.

 If you use VA Pac via its VisualAge Pacbase WorkStation interface, indicate the
NUVERS option. For more details, refer to the Pacbench C/S Applications: Business
Logic manual.

12 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 2: Generating Proxies 13

Chapter 2: Generating Proxies

Delivered Generic classes (Java)
To develop a Client, you will use generated classes and a great deal of generic
classes, which are delivered with the product to avoid the multiplication of
elements at each new generation. Unlike the generated classes documented
further on, generic classes do not depend on the characteristics of the processed
Logical View.

 You must make sure that generic classes are installed on your workstation
before starting developing your application.

Generic classes are delivered in the following packages:

 com.ibm.vap.generic

This package contains:
 The Parent classes of the ProxyLv generated classes:

 ProxyLv
 HierarchicalProxyLv
 DependentProxyLv
 Folder
 ReferenceProxyLv

 The Data generic classes (Parent of selectionCriteria and
DataDescription generated classes)

 The classes of the local cache:
 Node
 HierarchicalNode
 DependentNode
 RootNode
 ReferenceNode

 Exceptions and errors:
 VapException
 LocalException
 ServerException
 CommunicationError
 SystemError

 The layout classes in the form of a list of DataDescription generated
classes (handled by the rows property of Proxy objects).

 The classes describing the properties of the Proxy objects as defined in
VisualAge Pacbase:
 VapProxyProperties
 VapHierarchicalProxyProperties
 VapDependentProxyProperties
 VapFolderProperties
 VapReferenceProxyProperties

 The classes related to the handling of XML streams:
 XMLMapping
 XMLWrapper

 com.ibm.vap.exchange

This package contains the classes handling the Exchange Manager.

Online Documentation of Generic Classes
An HTML-formatted documentation is delivered with the eBusiness or
Pacbench C/S runtime. This documentation presents:

 Generic classes, parent of the ProxyLv and data generated classes
used on execution,

 Errors and exceptions raised by these execution classes,
 The beans associated with VA Pac Data Element-type properties, used

in the Composition Editor for a quick mapping of the data.
In the awt palette, these beans are:

 Pacbase Text Field
 Pacbase Integer Field
 Pacbase Decimal Field
 Pacbase Date Field

Pacbase Time Field

 Pacbase Long Field
 Pacbase Text Choice
 Pacbase Integer Choice
 Pacbase Decimal Choice

Pacbase Date Choice
 Pacbase Time Choice
 Pacbase Long Choice

In the swing palette, these beans are:
 Pacbase Swing Text Field
 Pacbase Swing Integer Field
 Pacbase Swing Decimal Field
 Pacbase Swing Date Field

Pacbase Swing Time Field
 Pacbase Swing Long Field
 Pacbase Swing Text ComboBox
 Pacbase Swing Integer ComboBox
 Pacbase Swing Decimal ComboBox
 Pacbase Swing Date ComboBox
 Pacbase Swing Time ComboBox
 Pacbase Swing Long ComboBox
 Pacbase Swing Date RadioButtonGroup
 Pacbase Swing Decimal RadioButtonGroup
 Pacbase Swing Integer RadioButtonGroup

14 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 2: Generating Proxies 15

Launching the Generator

From the eBusiness Module of Developer workbench
You launch the Proxy Generator from the ‘Applications’ or ‘Folders’ tab of the
workbench.

 For explanations on the Proxy Generator’s interface, refer to the eBusiness
Tools’ online help.

From WSAD (or Eclipse)
To launch the Proxy Generator from WSAD or Eclipse,

 select ‘File’ ‘New’ ‘Other’.
 or right click on a Java project and select ‘New’ ‘Other’.

Then select ‘VisualAge Pacbase eBusiness’ ‘eBusiness Proxy Generator’.

From VisualAge for Java
To launch the Proxy Generator from VisualAge for Java directly, select, in the
‘Workspace’ menu, ‘Tools’ ‘VisualAge Pacbase eBusiness’ ‘Proxy
Generator’. In this case:

 The generation type is forced to Java.
 You must indicate a VisualAge for Java project into which the generated

classes will be imported.

 For explanations on the Proxy Generator’s interface, refer to the eBusiness
Tools’ online help.

If you want to parameterize the launching of the Proxy Generator, select , in the
‘Workspace’ menu, ‘Tools’ ‘VisualAge Pacbase eBusiness’ ‘Proxy
Generator Properties’.

From the .exe File
Execute the vapgen.exe file.

You can parameterize the launching of the Proxy Generator via the following
parameters in order to prepare and speed up the generation process:

-lang<LANGUAGE>: This parameter enables you to select the language
of the generator's graphic interface: fr for French, en for English. The
language of the system is used by default.

-input<INPUT_FILE>: this parameter enables you to indicate the
extraction file which contains the Folders to be generated.

-output<OUTPUT_DIR>: this parameter enables you to indicate the
generation output directory.

-java: with this parameter, you indicate that the generation is for a Java
target.

-com: with this parameter, you indicate that the generation is for a COM
target.

-i18n: this parameter enables you to activate the internationalization
option for the generation.

Moreover, the following parameters are specific to a generation for Java:

-proxy<PROXY_PACKAGE> (only for Proxies originating from entities of
the Pacbench C/S module): this option allows you to specify the Java
package in which the classes corresponding to the Proxy components
will be generated.

-data<DATA_PACKAGE> (only for Proxies originating from entities of
the Pacbench C/S module): this option allows you to specify the Java
package in which the data classes will be generated.

-config<CONFIGURATION_FILE>: this parameter enables you to
indicate the Java configuration file which is to be used.

-classpath<PATH>: this parameter enables you to indicate the path
that will be used for the compilation of the generated Java proxies.

From a Java Virtual Machine
To launch the Proxy Generator from a Java Virtual Machine, execute the
java_vapGen.bat file.

This .bat is an example which you must modify according to the location of
your JDK (Java Developer ToolKit) or JRE (Java Runtime Environment).

You can indicate the generation options indicated above to prepare and speed
up the generation process.

Generation Results
The generated elements always depend on the type of service carried out by the
Elementary Component. They will not be the same depending on whether the
Elementary Component updates or just reads.

The generated file only contains the classes which depend on the characteristics
of the processed Logical View.

Java

Introduction

Once generation is over, the following files are created:
 The VAPLOCAT.INI location file is created in the generation output

directory.
You complete this file by using the Location Editor tool. This tool
enables you to parameterize the location file, thus avoiding syntax
errors which might inhibit the communication between the Client
(Proxy) component and the servers.

 For more information, refer to the online help of the Location
Editor.

 This file must be entered at the gateway start.
 The source files of the generated classes and resources required for

editing them.
 If you checked the Generate beans option, a BeanInfo class is
generated for each execution class (ProxyLv and data). The
BeanInfo class associated with a class (bean) bears the name of this
class, with a BeanInfo suffix at the end.

16 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 2: Generating Proxies 17

For example, when a CustomerProxyLv class (Root Proxy in our example)
is generated, a CustomerProxyLvBeanInfo, is systematically generated.

A BeanInfo class contains editing information (label, icon, etc.) for
the associated execution class. It contains public methods that give
information on the associated bean class, such as the class name,
properties, methods and events available on the bean.

 If you checked the Generate XML schema and data option, an
XMLMapping class and an XMLWrapper class are generated for the
root proxy class (ProxyLv).
For example: CustomerProxyLvXMLMapping and
CustomerProxyLvXMLWrapper.

Generated Classes

The elements generated by the eBusiness or Pacbench C/S module correspond
to classes whose coding consists of a prefix and a hard-coded part assigned by
the generator. The prefix corresponds to the Logical View's name, whose
maximum length is 36 characters.

 If you are not satisfied with the server's prefix, you can change it in the
generator.

 [Prefix]Data Class
 This class represents the description of a Logical View instance. It

contains a set of properties which correspond to the Logical View Data
Elements.

 [Prefix]SelectionCriteria class

 This class represents the description of the selection criteria. It contains
a set of properties which correspond to identifier Data Elements and
extraction parameters associated with the Logical View.

 [Prefix]Buffer Class
 This class represents the description of the contextual information. It

contains a set of properties which correspond to the user buffer Data
Elements.

 [Prefix]DataUpdate class
 This class inherits from the [Prefix]Data class. Compared to its

parent class, it contains two additional properties whose values vary
according to the modifications in progress. These two properties are:
 action : update action which can be Read, Modified, Created or
Deleted. This property is only visible in the list of the
UpdatedFolders property.

 updatedInstancesCount : number of useful server updates
associated with the relevant Folder instance. Its value can be 1 to n.

 [Prefix]UserData class
 This class inherits from the [Prefix]Data class. It contains an

additional property which corresponds to the key Data Element of the
parent instance.

 [Prefix]TableModel class

This class is generated only if you checked the Use Swing option at
generation time. It inherits from the Pacbase TableModel class and
implements the TableModel swing component, used to fill in a swing
table with data. This generated class is used to display the list of
instances of the [Prefix]Data class generated in the swing table.

 [Prefix]UpdateTableModel class

This class is generated only if you checked the Use Swing option at
generation time. It inherits from the Pacbase UpdateTableModel
class and implements the TableModel swing component, used to fill
in a swing table with data. This generated class is used to display the
list of instances of the [Prefix]DataUpdate class generated in the
swing table.

If you checked the Generate EJB Proxies Classes option, the following
classes are generated:

 [Prefix]Session class
 This class represents the Remote Interface of the generated EJB Session.
 [Prefix]SessionBean class

 This class corresponds to the generated EJB Session.
 [Prefix]SessionHome class

 This class is the Home class for the generated EJB Session.

If you checked the Generate XML schema and data option, two classes
and an XML schema are generated:

 [Prefix]ProxyLvXMLMapping class
 This class represents the description of the mapping specific to a Folder

or a Folder View. It inherits from the XMLMapping class.
 [Prefix]ProxyLvXMLWrapper class

 This class offers methods which enable each node to identifiy the
request. It inherits from the XMLWrapper class.

For example, the getCustomerProxyLvHierarchicalDetailXML() method
returns super.getXML(getCustomerProxyLv(), false, true);

 [Folder_Name].xsd XML schema
 This schema corresponds to the complete structure of a Folder or a

Folder View. It is constituted of a structure (ComplexType)
corresponding to the root node, which calls the dependent nodes’
structures (ComplexType), etc. as they are described in the Folder or
the Folder View.

Additionally, according to the Deployment Descriptor type chosen, one of
the following files can be generated:

 [Prefix].xml
 This file is generated if the deployment descriptor type is XML.
 [Prefix].ser

This file is generated if the deployment descriptor type is Serialized. This
type is used for an EJB generation that complies with the EJB 1.0 specification.

18 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 2: Generating Proxies 19

Import

If the Proxy Generator has been launched from VisualAge for Java, you do not
need to perform this step.

However if the Proxy Generator has not been launched from Visualage for Java,
you must specify the project into which the generated classes will be imported.

To do so, proceed as follows:
 From the VisualAge for Java Workbench, select the Import… choice in

the File menu.
 In the SmartGuide – Type of import window, enter the name of

the project into which classes are imported or select, via the Browse
button, a project which has already been created.
 We advise you not to import generated classes in a VisualAge Pacbase
or Java standard project.

 As for the import type, select the Entire Directory (Including
resources) option.
 The Java files option can also be selected. In this case, the icons
specific to the eBusiness module will not be available.

 Click Next to get to the following detail. Select, via the Browse button,
the directory in which classes have been generated.
 Use the directory which was selected for generation in the Output
directoy field, in the generation option detail. In our example, it is
C:\vap\gen\java.

Online Documentation of the Generated Classes

The documentation on the generated classes' public interface is directly
integrated into the code in the form of comments.

You can therefore consult this documentation from the source of the desired
element in the Workbench or a VisualAge browser.

You can also generate this documentation by using the Javadoc Facility
delivered with the JDK.

 Generating Documentation

You can generate documentation associated with a project, a package, a class or
even a method.

To start Javadoc, you have two possibilities:
 From the Workbench or a browser in VisualAge:

 select the desired project, package, class or method.
 open the associated pop-up menu and select the Generate javadoc

choice. The documentation is generated by default in the VisualAge
directory, …\Ide\javadoc Subdirectory.

 From a DOS or OS/2 window, by using the default parameters of the
Proxy components generator, execute the following command:
javadoc -classpath c:\vap\generated\java -d c:\doc -public
com.ibm.vap.generated.data com.ibm.vap.generated.proxies

 Results

The generated documentation only contains information useful to the
developer, for it corresponds exactly to each generated class.

Only the documentation of the public interface elements - properties or
methods –actually generated– is extracted. It is an HTML-formatted
documentation including hypertext links.

For each method, besides the comments, its signature – parameter(s), return
code and exceptions – is extracted as well.

For information only, an example is presented:

 You can refer to the eBusiness & Pacbench C/S Applications: Proxy Programming
Interface manual where properties, methods and events are documented
thematically.

Customizing Classes

All generated classes inherit from generic classes.

Generic classes are loaded upon the installation of the product.

You can implement new functions in the generated Proxy Components. You
have two ways for customizing the generated classes. Do not modify parent
and generated classes.

 By following the inheritance system

You can follow this inheritance system to create new classes allocated to the
new functions to be implemented.

20 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 2: Generating Proxies 21

 Customization of ProxyLv Classes
You can add a behavior common to all Root, Reference or Dependent
Proxy objects.
You just have to create a class inheriting from DependentProxyLv,
FolderProxyLv or ReferenceProxyLv, then implement a new
functionality and modify the parent class of the generated Proxy objects.

 You need to repeat this modification at each generation.

 Customization of Data Classes
You can change the Data, UserData and SelectionCriteria
classes used by a given Proxy.
To do so, you have to define:
 a class inheriting from the DataDescription class, then perform the

required implementation, and modify the newData() and
newData(String[] values) methods of the Proxy.

 a class inheriting from the UserDataDescription class, then
perform the required implementation, and modify the
newUserData() and newUserData(String[] values) methods
of the Proxy.

 a class inheriting from the SelectionCriteria class, then perform
the required implementation, and modify the
newSelectionCriteria() and
newSelectionCriteria(String[] values) methods of the
Proxy.

 The UserData class is generated only if a user service has been
specified for the Proxy.

 By Modifying the Generated Classes' Hierarchy

When launching the generator, you can specify a configuration file. This
configuration file enables you to modify the standard generation for the Java
Proxies. For example, it allows you to modify the hierarchy of the generated
classes by indicating the parent class of each type of generated class. This file
format is the standard format of Java .properties file.

Example of configuration file:

Default Configuration File for the VisualAge Pacbase for
Java proxy generator.

Folder proxy superclass
Folder.superclass = Folder

DependentProxy superclass
DependentProxyLv.superclass = DependentProxyLv

ReferenceProxyLv superclass
ReferenceProxyLv.superclass = ReferenceProxyLv

UserBuffer superclass
UserBuffer.superclass = DataGroup

DataDescription superclass
DataDescription.superclass = DataDescription

DataDescriptionUpdate superclass
DataDescriptionUpdate.superclass = DataDescriptionUpdate

SelectionCriteria superclass
SelectionCriteria.superclass = DataGroup

PacbaseTableModel superclass
PacbaseTableModel.superclass =
com.ibm.vap.beans.swing.PacbaseTableModel

PacbaseUpdateTableModel superclass
PacbaseUpdateTableModel.superclass =
com.ibm.vap.beans.swing.PacbaseUpdateTableModel

Locale language
#Locale.language = fr
Locale country
#Locale.country = FR
Locale variant
#Locale.variant = EURO

Default VapConfigurator class
Configurator.class = com.ibm.vap.generator.VapConfigurator

Default PacbaseUpdateTableModel Status Column header
PacbaseUpdateTableModel.status.header = Status

Default PacbaseUpdateTableModel Update Count Column
header
PacbaseUpdateTableModel.update_count.header = Update Count
Default PacbaseUpdateTableModel LockTimestamp Column
header
PacbaseUpdateTableModel.lock_timestamp.header = Lock
Timestamp

Default DataDescriptionUpdate Read Status Label
PacbaseUpdateTableModel.read.label = Read
Default DataDescriptionUpdate Created Status Label
PacbaseUpdateTableModel.created.label = Created
Default DataDescriptionUpdate Modified Status Label
PacbaseUpdateTableModel.modified.label = Modified
Default DataDescriptionUpdate Deleted Status Label
PacbaseUpdateTableModel.deleted.label = Deleted

COM

Introduction

Once generation is over, the following files are created:
 The VAPLOCAT.INI location file is created in the generation output

directory.
You complete this file by using the Location Editor tool. This tool
enables you to parameterize the location file, thus avoiding syntax
errors which might inhibit the communication between the Client
(Proxy) component and the servers.

22 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 2: Generating Proxies 23

 For more information, refer to the online help of the Location
Editor.

 This file must be entered upon the gateway start.
 The source files of generated classes and resources required for editing

them in the directory <Foldername><Version> (in our example:
VDCLNT2.0).

Generated Classes

The elements generated by the eBusiness or Pacbench C/S module correspond
to classes whose coding consists of a prefix and a hard-coded part assigned by
the generator. The prefix corresponds to the Logical View's name, whose
maximum length is 36 characters.

 [Prefix]Data Class
 This class represents the description of a Logical View instance. It

contains a set of properties which correspond to the Logical View Data
Elements.

 [Prefix]SelectionCriteria class

 This class represents the description of the selection criteria. It contains
a set of properties which correspond to identifier Data Elements and
extraction parameters associated with the Logical View.

 [Prefix]Buffer Class
 This class represents the description of the contextual information. It

contains a set of properties which correspond to the user buffer Data
Elements.

 [Prefix]DataUpdate class
 This class inherits from the [Prefix]Data class. Compared to its

parent class, it contains two additional properties whose values vary
according to the modifications in progress. These two properties are:
 action : update action which can be Read, Modified, Created or
Deleted. This property is only visible in the list of the
UpdatedFolders property.

 updatedInstancesCount : number of useful server updates
associated with the relevant Folder instance. Its value can be 1 to n.

 [Prefix]UserData class
 This class inherits from the [Prefix]Data class. It contains an

additional property which corresponds to the key Data Element of the
parent instance.

If you checked the Generate XML schema and data option, two classes
and an XML schema are generated:

 [Prefix]ProxyLvXMLMapping class
 This class represents the description of the mapping specific to a Folder

or a Folder View. It inherits from the XMLMapping class.
 [Prefix]ProxyLvXMLWrapper class

 This class offers methods which enable each node to identify the
request. It inherits from the XMLWrapper class.

 [Folder_Name].xsd XML schema

 This schema corresponds to the complete structure of a Folder or a
Folder View. It is constituted of a structure (ComplexType)
corresponding to the root node, which calls the dependent nodes’
structures (ComplexType), etc. as they are described in the Folder or
the Folder View.

 For more information, refer to the eBusiness & Pacbench C/S Applications: Proxy
Programming Interface manual.

 A brief description of the public interface is available in online mode. You can
view it if your client workstation enables it.

Compilation Results

If compilation has ended normally, the compiled elements are located in the
<Foldername><version>\Release directory (in our example
VDCLNT2.0\Release).

A report is available in the <Foldername><version>\Resume.txt file.

Once generation and compilation are completed, the Proxy can be immediately
used on the wokstation where the generator is installed.

Compiling with Visual C++ Version 5.0 and 6.0

At the end of the generation, you get pieces of code which you will use to
compile your Proxy.

Two make files are generated:
 C<Foldername>.mak for the C++ static library,
 <Foldername>.mak for the COM component (DLL or OCX)

You can compile each component by lauching, in a DOS window, the
compil_C<Foldername>.bat and compil_<Foldername>.bat files.
These files are processed by the Visual Studio C++ compiler.

24 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 25

Chapter 3: Development Principles
This chapter introduces you to the main concepts of development: presentation
of some methods, properties and events, error management, and
communication management.

 If your Proxy contains only one Elementary Proxy (a Root Proxy), the
properties, methods and events associated with large reading, reference or
dependent nodes are not available.

 For convenience, the term property designates both a Java property and a COM
attribute, and the term method designates both a Java method and a COM
action.

Visual Representation of Proxies in the Target Environment

Java Environment
Once it has been imported in the VisualAge workstation, a Folder View Proxy
can be handled through a graphic bean.

You will find below a presentation of the icons relating to the Proxy objects
provided at the installation.

Icons Types of

Elementary Proxy objects

Root Proxy

Dependent Proxy 0,N

Dependent Proxy 0,1

Dependent Proxy 1,N

Dependent Proxy 1,1

Reference Proxy 0,1

Reference Proxy 1,1

COM Environment
Once the ActiveX Proxy is generated and compiled, it can be graphically
integrated in any client language supporting the COM standard. The Proxy is
graphically represented by the following icon:

Use of Properties
A property corresponds to a piece of information handled by a Proxy object.
This piece of information defines an elementary data item, a list of elementary
data or a list of composite data instances. A property corresponds either to a
constant, a parameter or an action result. According to the context, it is
initialized by the graphic application or the Proxy.

Two kinds of properties are found:
 those standing for technological variables. They enable to adjust the

behavior of the Proxy objects in the target environment.
 Those corresponding to the Logical View data.

 The availability of a property depends on the Proxy type. All the public
interface properties are documented in the eBusiness & Pacbench C/S
Applications: Proxy Programming Interface manual.

Local Checks
The Elementary Proxy automatically performs local checks if an instance is
created or modified via the createInstance or modifyInstance method.
Each Data Element belonging to the Logical View is checked.

The following checks are performed:
 Checks on the value lists defined in the Data Element description
 Checks on the value ranges defined in the Data Element description
 Checks on the presence of the mandatory Data Elements called in a

Logical View. The presence of identifier-type Data Elements or foreign
key-type Data Elements is automatically checked for a reference relation
with a minimum cardinal value of 1.

If local checks detect an error, an error message is set via the Error Manager.

These checks can be selectively triggered for each root or dependent-type node
in the Folder concerned. The property used to activate or deactivate the check
of Data Elements on the server is serverCheckOption.

Whether the message is sent or received, the detection of an empty Data
Element is automatic.

However, the Elementary Proxy does not perform numeric or date checks ;
these are performed by the graphic application.

26 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 27

Check of the Length of the detail Property Fields
For each field of the detail property, the checks performed upon the local
creation or modification of an instance ensure that the length of the value
contained in the property does not exceed the maximum length of the value for
this property.

The length is checked systematically (except if the property does not belong to
the current sub-schema), even if the property has been defined as 'not to be
checked in the client'.

A local error is sent if the length is excessive.

 The length of the fields included in user buffers is not checked. If it is excessive,
the length is truncated to its maximum value.

Selecting the Local or Server Sort Criterion on a List of Instances
The localSort property enables you to specify whether the Proxy sorts the
instances of the rows property according to the local sort (true) or keeps the
instances in the order they were sent by the server (false).

You can change the sort type at any moment.

 This property is not effective in user services.

Local Sort

In standard, the instances of the rows property are sorted according to the local
criterion if the parameter has not been changed after the generation. In this
context, two sort types exist:

 If no sort criterion has been locally defined (see paragraph Specification
of the Local Sort Criterion (Java Only)), the Proxy implicitly sorts the
instances in the increasing order of the identifiers defined on the Logical
View.

 If a local criterion has been locally defined, the Proxy sorts the instances
in the order defined by this criterion.

In all cases, when an instance is created locally, it is inserted according to the
current sort criterion applied in the rows property.

If you change dynamically or cancel the local sort criterion, the instances
contained in the rows property are immediately sorted according to the new
criterion.

Server Sort

The instances of the rows property are sorted according to the server criterion
if the localSort property is set to false. In this context, the instances
contained in the rows property are displayed in the order sent by the server,
without taking the local sort criterion into account.

If collections are managed manually or in the case of a paging in extend mode,
the instances sent by the server are added at the end of the existing collection in
the rows property.

All the locally-created instances are added at the end of the existing collection
in the rows property. In this context, an instance which is not positioned at the
end of a collection but which is deleted and created again locally is transferred
to the end of the collection contained in the rows property.

Specification of the Local Sort Criterion (Java Only)
You can dynamically change the sort criterion used to present instances in the
rows property. To do this, use the dataComparator property of each Proxy:
void setDataComparator(Comparator c).

The required parameter is an instance of the class implementing the following
interface com.ibm.vap.generic.Comparator.

This interface consists of a method representing the following relation:

int compare(Object a, Object b).

This method must return:
 a negative number if a < b
 0 if a = b
 and a positive number if a > b.

For example:
import com.ibm.vap.generic.Comparator ;

public final class CustomerComparator implements Comparator {

public static final int NAME = 0 ;

public static final int COMPANY = 1 ;

public int criteria ;

public int compare(Object a, Object b) {

try {

switch(criteria) {

case NAME:

return ((CustomerData)a).getName().compareTo(

(CustomerData)a).getName());

break;

case COMPANY:

return ((CustomerData)a).getComp().compareTo(

(CustomerData)a).getComp());

break;

 }

} catch (IllegalCastException ice) {

return 0;

 }

 }

}

Table Model (Java Only)
This property is available in read/write mode on all types of nodes, provided
you chose the generation option Use Swing.

28 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 29

This property enables you to insert a JTable in your application (a JTable is a
swing component made up of rows and columns).

By default this property is initialized with a new instance of a generated
TableModel.

Sub-schema Management
The sub-schemas specified in the Logical View's description can be taken into
account when selection, read or update methods are executed, provided
Elementary Components manage the presence of Data Elements (activation of
parameters Presence vectors generation or Data control in the
Definition tab of the Elementary Component in Developer workbench, or
options VECTPRES=YES or CHECKSER=YES in the Va Pac WorkStation).

Each node has two properties:
 subSchema, via which you can assign the desired sub-schema when a

selection, read or update method is executed by the Elementary
Component of the node. The value of this property can be assigned via
the subSchemaList property.

 subSchemaList, via which all the sub-schemas available on a node are
listed. Since a sub-schema cannot be given a name in the VisualAge
Pacbase Repository, each sub-schema is designated by SubSchema<n>
(with n = 01 to 10).

 In a COM environment, the subSchema attribute cannot be accessed directly
but only through the getSubschemaCount and getSubSchemaElementAt
(Int index) actions.

Use of Methods
A method corresponds to a process which can be executed by a Proxy objet. It is
triggered using a connection between an event of the graphic application and
the code of a method available in a Proxy.

 The availability of a method depends on the Proxy type. All the methods of the
public interface are documented in the eBusiness & Pacbench C/S Applications:
Proxy Programming Interface manual.

The Different Types of Server Methods
The server methods execute procedures implemented in one or more
Elementary Components associated with the Folder. These methods send a
request to the Elementary Components which send back a result on the
workstation. The queries and responses generally contain technical parameters,
Logical View instances associated with one or more nodes and contextual data
defined in a user buffer.

You must distinguish two types of server methods
 Those which systematically access the server:

 selectInstances
 readInstance: This method retrieves only one instance.

 readInstances: This method retrieves more than one instance,
according to specificied selection keys.

 readInstanceAndLock
 readInstanceWithFirstChildren

(Java) or readWithFirstChildren (COM)
 readInstanceWithAllChildren (Java)

or readWithAllChildren (COM)
 readInstanceWithFirstChildrenAndLock (Java)

or readWithFirstChildrenAndLock (COM)
 readInstanceWithAllChildrenAndLock

(Java) or readWithAllChildrenAndLock (COM)
 readAllChildrenFromDetail.
 readAllChildrenFrom (Java) or readWithAllChildrenFrom

(COM):
 Those which do not systematically access the server:

 readNextPage: The server is accessed except if the event
(noPageAfter for Java or NO_PAGE_AFTER for COM) indicating
there is no page after the current page was sent back during the
previous selection

 readPreviousPage: The server is accessed except if the event
(noPageBefore for Java or NO_PAGE_AFTER for COM) indicating
there is no page after the current page was sent back during the
previous selection.

 readFirstChildrenFromDetail: the server is accessed, except if
the property controlling the maximum number of requested instances
(maximumNumberOfRequestedInstances for Java or
maxNumberOfRequestedInstances for COM) of the Dependent
Proxy objects are set to 0 and if their globalSelection properties
are set to false.

 checkExistenceOfDependentInstances for Java or
checkExistenceOfDependencies for COM: The server is
accessed except if the existence of dependent instances can be checked
locally.

 updateFolder: The server is only accessed if there is at least one
instance of the node concerned, modified in its updatedFolders
property.

Managing Folder Reading
Large reading of a Folder root enables to read from a client component all the
instances of the Folder's root node existing in the database. The methods
concerned are selectInstances and readNextPage.

Provisional Large Reading of Dependent Nodes

In the context of client/server architectures, a graphic application handling a
Folder strives to anticipate data reading to minimize exchanges with the
servers.

In a hierarchical network, various provisional reading methods are possible:
 The 'allChildren' type method reads all the dependent instances of

the instance selected in the detail property of the parent Elementary
Proxy.

30 eBusiness & Pacbench C/S Applications- Graphic Presentation

 The ‘firstChildren’ type method only reads the instances which are
immediately dependent of the selected instance in the detail property
of the parent Elementary Proxy.

The first provisional large reading method is available on the Root Proxy only.

The second provisional large reading method is available on the Root Proxy or
on the Dependent Proxy which themselves hold Dependent Proxy objects.

Transferring an Instance Between the rows and detail Properties

The transfer of an instance between the rows and the detail properties
enables the detail property to be loaded with an instance initially retrieved
by a large reading method.

This transfer is only available for Root and Dependent Proxy. It corresponds to
a local reading method which also loads all the local instances of Dependent
Proxy known by the Folder View Proxy. The transfer is made using the
method getDetailFromDataDescription for Java or
getDetailFromData for COM.

Large Reading and Transferring an Instance Between Rows and Detail
Properties: Working Mechanism

This example illustrates the loading of the detail property with an instance
previously retrieved in the rows property by a large reading method on a root
or dependent node, and the principle of the provisional large reading of
dependent nodes.

It is based on a Folder View Proxy, which consists on three Elementary Proxy
objects:

Customer (Root)

Orders
(Dependent)

Order lines
(Dependent)

The schemas below introduce the working mechanism based on this principle.

 The method codes used in this example correspond to the Java codes but the
same principle applies to the COM environment.

Chapter 3: Development Principles 31

Customers

Orders

Order
lines

rows : empty
detail : empty

rows : empty
detail : empty

rows : empty
detail : empty

selectInstances

Customers

Orders

Order
lines

rows : List
detail: Customer A

rows : list
detail : empty

rows : empty
detail: empty

rows : empty
detail : empty

rows : empty
detail : empty

rows : empty
detail : empty

Customers

Orders

Order
lines

getDetailFromDataDescription (DataDescription)

The detail property of the customer node now contains Customer A. There
are three solutions to read Customer A's dependent instances (i.e. his associated
orders).

32 eBusiness & Pacbench C/S Applications- Graphic Presentation

SOLUTION 1

Customer

Orders

Order
lines

rows: empty
detail: empty

rows : empty
detail : empty

rows : Orders for A
detail: empty

rows : empty
detail : empty

rows: list
detail: Customer A

rows : list
detail : Customer A

readFirstChildrenFromDetail

Customers

Orders

Order
lines

The readFirstChildrenFromDetail method on the Customers Root Proxy
not only reads the rows property of Order Lines Dependent Proxy for
Customer A, but it also reads the rows property of other possible Elementary
Proxy objects directly dependent of the Root Proxy.

In this context, the getDetailFromDataDescription
(DataDescription) method on the Orders Dependent Proxy initiates:

Customers

Orders

Order
lines

rows : empty
detail : empty

rows : List
detail : Customer A

rows : Orders for A
detail : Order for customer 1

Then, to read the order lines of the Order 1 of Customer A, use the
readFirstChildrenFromDetail method on Orders or readNextPage
method on Order Lines.

Chapter 3: Development Principles 33

SOLUTION 2

Customers

Orders

Order
lines

rows : empty
detail : empty

rows : empty
detail : empty

rows : Orders for A
detail : empty

rows : empty
detail : empty

rows : list
detail : Customer A

rows : list
detail : Customer A

readNextPage

Customers

Orders

Order
lines

The readNextPage method on the Orders Dependent Proxy loads its rows
property. The instances of other possible Elementary Proxy object, which are
directly dependent of the Root Proxy, are not read.

In this context, the getDetailFromDataDescription
(DataDescription) method on the Orders Dependent Proxy initiates the
same result as in solution 1.

To read subsequently the order lines of the Order 1 of Customer A, proceed as
in solution 1.

34 eBusiness & Pacbench C/S Applications- Graphic Presentation

 SOLUTION 3

Customers

Orders

Order
lines

rows : List of order
lines in all orders
for customer A

detail: empty

rows: empty
detail: empty

rows: Orders for A

detail: empty
rows: empty
detail: empty

rows: list
detail: Customer A

rows: list
Detail: Customer A

readAllChildrenFromDetail

Customers

Orders

Order
lines

The readAllChildrenFromDetail method on the Customers Root Proxy
reads not only all the orders for A but also all the other possible instances
dependent of A whatever their hierarchical level can be. In our example, all the
order lines for all the orders of A are therefore read.

In this context, the getDetailFromDataDescription
(DataDescription) method on the Orders Dependent Proxy initiates:

Customers

Orders

Order
lines

rows : Orders for A
detail : Order 1

rows : list
detail : Customer A

rows : List of order lines
in order 1
for customer A

detail : empty

The getDetailFromDataDescription (DataDescription) method
automatically loads the rows property of the Order lines Dependent Proxy
with the order lines contained in Order 1 for Customer A. These order
lines have been previously transferred to the workstation using the
readAllChildrenFromDetail method.

Chapter 3: Development Principles 35

Large Reading of Reference Nodes

The reading of a reference node is considered as aid on criteria. It shows the
end user a list of information which can be referred to for a dependent node.

The information presented to the end user is both necessary and sufficient to
assist him in making a choice.

To optimize the volume of characters sent for this type of service, the Logical
Views have a « aid on criteria »-type subschema used to select the concerned
Data Elements at the server level.

The large reading of reference nodes is executed on request and cannot be
involved in provisional large reading. The methods concerned are
selectInstances and readNextPage.

Principle of Paging in a Folder's Nodes

Two types of paging are offered on a Folder's nodes:
 The first, called non-extend paging, is used to paginate forwards and

backwards on a predefined collection through specific methods. Each
method executes a read request to the server and its result overwrites
that of the previous read. This type of paging is available only on root or
reference nodes.

 The second type of paging, called extend paging, is used to gradually
retrieve the instances of a defined collection as read requests for
following pages are made. In this context, the backwards paging
function disappears and is performed locally by the scroll box of the
graphic control which presents the list of instances. This type of paging
is available to all the nodes of a Folder.

Selection Criteria Associated with Large Reading Methods

The selection criteria associated with large reading methods are elementary or
composite properties associated with each node of a Folder. They are split into
two types:

 Functional selection criteria corresponding to the identifier and to
elements required for defining extraction methods for the Logical View
associated with the node. These criteria are the following ones:
 selectionCriteria which defines identifier Data Elements and

parameters by value.
 extractMethodCode which defines the code for the extraction

method desired.
 extractMethodCodes for Java contains the list of the available

extraction methods.
 In the COM target, the getExtractMethodCodesCount and
getExtractMethodCodesElementAt(Int i) actions enable
you to access the list of the available extraction methods.

 Organic selection criteria corresponding to information used to control
the volume of instances selected for each node.

 globalSelection is a Boolean property which, when set to true, is
used to retrieve all instances of the node via a selection request.

36 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 37

 maximumNumberOfRequestedInstances (Java) or
maxNumberOfRequestedInstances (COM) is a numerical
property which specifies, when the globalSelection property is
set to false, the number of instances to be read for a node via a
selection request. This property can hold the value 0. In this case, the
concerned part of the tree structure is not read during a provisional
large reading.

Limitation of the Scope of Large Reading

During a large reading using selection criteria, only the instances corresponding
to these criteria are read.

However, in the case of a large reading ordered by an allChildren
provisional reading type, the globalSelection property is considered to be
set to true on each node.

Reading of a Root Node or Dependent Instance

The reading of a dependent or root node instance enables you to retrieve an
instance of the node without previously making a large selection of a collection
of instances for this node. It directly loads the node's detail property.

This type of reading is considered as a collection selection and therefore cancels
the previous selection even if it was the result of a large reading method. The
loading of the detail property therefore initializes the rows property.

The methods which implement this selection function are used to:
 Retrieve the instance without its dependencies (readInstance).
 Retrieve the instance with its first level dependencies

(readInstanceWithFirstChildren) for Java or
readWithFirstChildren for COM.

 Retrieve the instance with all its
dependencies(readInstanceWithAllChildren) for Java or
readWithAllChildren for COM.

Reading of a Reference Node Instance

The reading of a reference node instance cannot activate the provisional large
reading process. It is used to retrieve the entire description of the instance of the
node called in its detail property.

Only the readInstance method is therefore available on a reference node.

Update methods are not available for reference nodes. Their rows and detail
properties are independent. The result of the readInstance method does not
therefore initialize the rows property.

The rows property is used to display sufficient information to assign one of the
reference node instances to the referencing node instance.

 In the COM environment, the rows attribute cannot be accessed directly
but only through the actions getRowsCount() and
getRowsElementAt(Int i).

The detail property is used to view the entire description of a referenced
instance.

The structure of these two properties can thus be different.

Selection Criteria Associated with Instance Reading

The identifier of the node instance to be read is specified in the functional
selection criteria associated with the node.

For dependent nodes, the identifier of the node corresponds to the identifier of
the Logical View associated with the node, discarded from the Data Elements
which are the identifiers of Logical Views higher in the hierarchy. These
hierarchical identifiers are automatically initialized by the Folder View Proxy
according to the navigation in the Folder.

Folder Update Management

Local Updates

Local update services are available on each root or dependent node in the
Folder.

 Create a node instance
 Modify a node instance
 Delete a node instance

However, there are certain rules specific to Folder management:
 The creation of a dependent node instance is only authorized if the

hierarchy of the instances contained in the detail properties of higher
nodes exists.

 Deleting a node instance initiates the recursive deletion of local
instances of dependent nodes.

To allow the developer to manage messages which can warn users of the
impact of a cascade deletion, a method which checks the existence of dependent
instances is available on root or dependent nodes.

This method (checkExistenceOfDependentInstances for Java or
checkExistenceOfDependencies for COM) sends a Boolean result which is
either true or false. If no dependency is found in the Folder's local cache and the
instance concerned is not created locally, this method sends a check request to
the server.

To enable a user to undo local updates on a Folder instance, an
undoAllLocalFolderUpdates method can be used to discard all local
updates on all Folder nodes applied since the last server update method. This
method is only available on the Folder's root node. Another method
undoLocalFolderUpdates can be used to eliminate all updates associated
with the Folder's Root node you have parameterized.

Server Updates

Only the Root Proxy provides server update methods.

Server updates correspond to methods which enable a client component to send
all local updates made since the last server update method.

These updates concern all the modified dependent instances. They can concern
several Folder instances.

38 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 39

When a server update method sends back errors, the Folder remains with the
« Modified Locally » status; new collection selections can be made only by
correcting the errors and sending back the updates, or by using the
undoAllLocalFolderUpdates method or the undoLocalFolderUpdates
method.

Before the request is sent to the server, the server update methods check the
Folder integrity for locally created instances. For each locally created instance of
the node, this method checks the minimum cardinal values of each link and
sends an error if the number of dependent instances does not respect the
properties of the associated links.

A server update method can be accompanied by a request to refresh the
updated instances if some of their Data Elements, such as the identifiers, are
calculated by the server. This refreshment request is made using the
refreshOption property.

Management of Effective Transactions

The management of effective transactions is automatically carried out by the
local cache.

It consists in calculating the resulting update of various local updates made on
the same instance of the Folder's node. It controls the creation of duplicate
instances. If several local updates have been made on the same instance of the
node, only the last one will be sent to the server.

Re-initializing instances in the local cache

The resetCollection method is used to remove all the instances from the
cache of a Folder View Proxy before initializing a new collection of instances.
This method can be executed by all types of nodes in a Folder View Proxy
containing a rows property.

 The rows attribute cannot be accessed directly but only through the methods
getRowsCount() and getRowsElementAt(Int i).

Managing collections of instances

The management of collections of instances can be carried out automatically, or
manually by positioning the manualCollectionReset Boolean property
which is available for all types of nodes in a Folder View Proxy. The manual
management mode is used to create heterogeneous collections through a series
of selection and paging methods.

Load of the local cache with no server access

The initializeInstance method allows to store, in the local cache, a
Logical View instance that has not been either read by the server or created
locally. It allows the update of the Logical View instance though it has not been
previously read from the server. This method is available for all types of nodes
and is valid when the Logical View instance does not exist locally.

Asynchronous Methods

Principles

The asynchronous programming is used to dissociate the method used to send
a request from the method used to retrieve its response. You can use this type of
programming whether you use an asynchronous communication protocol or
not.

You can use the Proxy components in asynchronous mode independently of the
middleware used. As for the Proxy, you can work with an asynchronous mode,
by using a location whose middleware is synchronous, and the other way round.

In this context, the end user will be more efficient as he can send a request in
advance, and retrieve the response when he needs it. This method allows you to
optimize your working time.

Furthermore, the communication protocols are used to make the requests or the
responses in the local messages threads more secure by allowing the message to
be conveyed, whichever the network situation is.

The communication mode is defined by the Asynchronous Boolean property
at the Folder level.

The getLastReplyContext method enables you to retrieve the sending
context of the request (serverActionContext).

 In Java, you can also use
com.ibm.vap.generic.AsynchronousRequestException to retrieve the
sending context of the request.

If no error has been detected and if the response has been processed,
getReply(context) returns true.

Global Methods or Methods Associated with an Instance

Some server methods, labeled as global methods, are independent of any
selection, whereas others depend on any instance included in the local cache. In
asynchronous mode, global methods store the response identifiers in a
collection and each executed request adds its identifier to this collection. The
methods associated with a Logical View instance store their response identifiers
in a collection associated with the concerned instance. The collections of
response identifiers associated with the global methods are lost when the
application using the Proxy is closed. A collection of response identifiers
associated with an instance contained in the local cache is lost when this
instance is locally deleted or after a change of collection.

 global methods

The responses associated with the following methods can be executed
independently of the current collection:

 executeUserService()
 readInstance() (ROOT)
 readInstances() (ROOT)
 readInstanceWithFirstChildren() (ROOT)
 readInstanceWithAllChildren() (ROOT)

40 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 41

 readInstanceAndLock() (ROOT)
 readInstanceWithFirstChildrenAndLock() (ROOT)
 readInstanceWithAllChildrenAndLock() (ROOT)
 readNextPage() (ROOT)
 selectInstances()
 lock()
 unlock()
 readPreviousPage()

 Methods associated with an instance

The following methods depend either on the detail instance, or on the
instance passed as a parameter, or on the detail parent instance for
dependent nodes:

 checkExistenceOfDependentInstances()
 readAllChildren(data)
 readFirstChildren(data)
 readAllChildrenFromCurrentInstance()
 readAllChildrenFrom()(DEP)

 readFirstChildrenFromCurrentInstance()
 readFirstChildrenFrom() (DEP)
 readInstance()(DEP)
 readInstances() (DEP if maximum cardinality is ‘n’)
 readInstanceWithFirstChildren() (DEP)
 readInstanceWithAllChildren() (DEP)
 readInstanceAndLock() (DEP)
 readInstanceWithFirstChildrenAndLock() (DEP)
 readInstanceWithAllChildrenAndLock() (DEP)

Examples

There are two ways to use asynchronous methods:

 Polling

This system consists in 'watching for' a response in the thread with no risk of
blocking the application while waiting for the information display. The
response code is stored in a thread, which is different from the one in the main
application, but it points on the Root Proxy. We also assume that it knows a
context associated with an asynchronous method.

while (!myFolder().getReply(context)) {

wait(1000);

}

 Background job access

The following example describes how to store information on the dependent
instances before the end user explicitly requests it, and with no risk to block the
application.

 When the user chooses a collection of radical instances:

myFolder.setAsynchronous(false);

myFolder.selectInstances();

 As its result is required for the continuation of the operation, the
selectInstances method is used with a synchronous mode.

 Then, rows will be browsed so as to find all the dependent instances of
each instance read by the selectInstances method.
You need first to switch to the asynchronous mode:
myFolder.setAsynchronous(true);

Enumeration rows = myFolder.rows.elements();

Vector contexts = new Vector();

while (rows.hasMoreElements()) {

Data currentData = (Data)rows.nextElement();

try {

myFolder.readAllChildren(currentData);

} catch (VapException ve) {

} catch (AsynchronousRequestException are) {

contexts.addElement(are.getContext();

}

}

myFolder.setAsynchronous(false);

 Then, when the user wants to work in a data:
try {

int index = myFolder.rows().indexOf(data);

myFolder.getReply(contexts.elementAt(index));

} catch (VapException) {} //Everyting is OK //

myFolder.getDetailFromDataDescription(data);

This way, the dependent instances are immediately displayed in the selection
tree. Note that the methods' responses are processed at the last moment, but
this is not compulsory.

Storing the Proxy Context
You can store the reading context of a Proxy.

Using the getProxyContext method on the root node will store the current
keys on each node, the next and previous keys, the selection criteria, the current
detail and the local updates.

Using the initFromProxyContext method and giving a previously-stored
context will restore all the reading keys of your Proxy. You will then be able to
read from where you stopped before storing the context.

Externalization of the Management of Requests
You can manage the services requests in a specific object which is an instance of
the MainRequest class. You can then post services requests which are sent by
different Proxies before sending only one request to the server.

Proxies then share the same execution context.

42 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 43

You initialize the request on any root Proxy with the createRequest method
and you indicate which root Proxies participate in the request with the
setRequest method. The request is sent to the server via the sendRequest
method.

The Proxies which participate in the request must belong to the same eBusiness
Application as the Proxy which creates the request.

User Service

Java

Each root or dependent type node contains the following elements to
implement a user service:

 A property used to obtain the list of user services available on this node
plus nil. This property is userServiceCodes.

 A property used to initialize the user service code to be executed. This
property is userServiceCode.

 A property used to locally store Logical View instances to be processed
for the next user service. This property is userServiceInputRows.

 A property used to present various Logical View instances sent back by
a user service. This property is userServiceOutputRows.

 A property which presents the Logical View instances which are
candidates for the execution of the next user service. This property is
userDetail.

 Local methods used to memorize each Logical View instance to be
sent to the server to execute a user service. These methods are
createUserInstance, modifyUserInstance and
deleteUserInstance.

The root node of the Folder also has the following elements:
 A method used to execute all the user services parameterized on each

Folder node. This method is executeUserServices.
 A method used to delete all the local instances stored for all the Folder

nodes. This method is resetUserServiceInputInstances.
 A method used to delete the current instance stored locally. This

method is resetUserServiceCodes.

This principle means that 1 to n user services can be executed, in the same
request, distributed on the different nodes. The execution sequence of these
services corresponds to the hierarchical order of nodes, browsing the tree from
top to bottom and from left to right.

COM

Each root or dependent type node contains the following elements to
implement a user service:

 Two actions enable you to obtain the list of available user services on
the node. These actions are getUserServiceCodesCount() and
getUserServiceCodesElementAt(Int i).

 Two actions enable you to locally store Logical View instances to be
processed for the next user service. These actions are
getUserInputRowsCount() and
getUserInputRowsElementAt(Int i).

 Two actions enable you to present various Logical View instances sent
by a user service. These actions are getUserOutputRowsCount() and
getUserOutputRowsElementAt(Int i).

 An attribute which presents the Logical View instances which are
candidates for the execution of the next user service. This attribute is
userDetail.

 Local actions used to memorize each Logical View instance to be
sent to the server for the execution of a user service. These
actions are createUserInstance, modifyUserInstance and
deleteUserInstance.

The root node of the Folder also has the following elements:
 An action used to execute all the user services on each Folder node. This

action is executeUserServices.
 An action used to delete all the local instances stored for all the Folder

nodes. This action is resetUserRows.
 An action used to delete the current instance stored locally. This action

is resetUserServiceCodes.

This principle means that 1 to n user services can be executed, in the same
request, distributed on the different nodes. The execution sequence of these
services corresponds to the hierarchical order of nodes, browsing the tree from
top to bottom and from left to right.

Database Logical Lock
The upload-download mechanisms associated with a Folder increase the
elapsed time between reading the initial Folder image and displaying the result
of an update.

In this context, with no lock mechanism, two users can modify the same Folder
instance. The result of accumulated updates are therefore difficult to manage.

To enable the user to use a Folder in an exclusive appropriation mode, two
types of locks for a node instance are available:

 The optimistic lock which works on the principle of verifying the
change of a TimeStamp before executing the update procedure.

 The pessimistic lock which uses an entity for exclusive update by
recording a specific resource. In this case, the Folder update procedure
is carried out before freeing up the exclusive resource.

The server lock procedure is triggered by the explicit execution of a specific
method available on the Root Proxy. This method is lock.

The server unlock procedure is triggered automatically with the execution of a
server update method or explicitly by the execution of a specific method
available on the Root Proxy. This specific method is unLock.

The developer is responsible for writing the lock processing in the root
Elementary Component.

44 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 45

This processing receives the identifier of the Logical View instance to be locked
as well as the request type (lock or unlock) to be executed.

In return, it must set a status used to grant or refuse the lock and the
TimeStamp or the name of the resource used.

If the lock is refused, the Root Proxy sends an event whereby all subsequently
executed local or server update methods are disabled for the specified instance
of the Folder.This event is lockFailed for Java and LOCK_FAILED for COM.
In this case, the Folder changes to the « Read only » status.

The concept of the logical lock is defined in the Folder entity or in the
Elementary Component for a single-view development.

When the logical lock method is active on a Folder, all read requests for the
detail property of the Root Proxy can be accompanied by a logical lock
request on the server.

Customization of the Columns of a Jtable (Java Only)
A JTable is a swing component available from VisualAge Java version 2.0
onwards.

If you insert this component as is, it will display, when the application is
executed, all the columns which correspond to all the Data Elements of the
Logical View, with the clear names defined in the Logical View.

To select the columns to be displayed, to change their heading or to create a
new column which will display data locally computed, you must customize the
JTable.

To do so, you must first create a new public class which inherits either from the
generated TableModel (this is useful to retrieve part of its implementation) or
directly from PacbaseTableModel (com.ibm.vap.beans.swing package).

Then you simply have to customize the following methods:
 public Int getColumnCount() : retrieves the number of columns

to be displayed.
 public String getColumnName(int col) retrieves the heading

of the col column (starting with column 0).
 public Object getValueAt(int row, int column) : retrieves

the object (generally String) to be displayed on row row, column
column.

The following example inherits from a generated TableModel. It reduces the
number of columns to be displayed from 7 to 3. The first two columns represent
two standard Data Elements (Client's Id and name). The third Data Element
represents the client's address, i.e. the concatenation of the street, zip code and
town.

package test.swing;

import com.ibm.vap.generated.reuse.CustomerData;

public class NewCustomerTableModel extends

com.ibm.vap.generated.reuse.CustomerTableModel {

public int getColumnCount (){

 return 3;

}

public String getColumnName (int i){

 if (i == 0) return "Id";

 if (i == 1) return "Name";

 if (i == 2) return "Address";

 return "";

}

public Object getValueAt(int row, int column){

 try {

 CustomerData data = (CustomerData) getRows().elementAt(row);

 if (column == 0) return data.getCusId();

 if (column == 1) return data.getCusNam();

 if (column == 2) {

 String result = "" +

 data.getStreet() +"." +

 data getZipcod() + "-"+

 data.getTown();

 return result;

 }

 } catch (Throwable t) {}

 return null;

}

}

Management of Data Element Presence

Java

The two following methods enable you to manage the presence of the Logical
View's Data Elements at the Proxy level.

The is<delco>Present method enables you to test the presence or absence
of the delco Data Element. It is generated for all DataDescription and
UserDataDescription classes.

The setNull<delco>Present(boolean aBoolean) method enables you
to specify the presence or absence of the delco Data Element before a local
update method. It is generated for all DataDescription and
UserDataDescription classes.

By default, all the Data Elements are considered to be absent, except if a default
value has been indicated in the VisualAge Pacbase description.

COM

The two following methods enable you to manage the presence of the Logical
View's Data Elements at the Proxy level.

46 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 47

The is<delco>Present action enables you to test the presence or absence of
the delco Data element. It is generated for all DataDescription and
UserDataDescription classes.

The set<delco>Present(aBoolean) action enables you to specify the
presence or absence of the delco Data element. It is generated for all
DataDescription and UserDataDescription classes.

By default, all the Data Elements are considered to be absent, except if a default
value and/or a list of values have been indicated in the VisualAge Pacbase
description.

Management of Data Element Check

Java

The three following actions enable you to manage the check of the Logical
View's Data Elements at the Proxy level.

The get<delco>Index method indicates the index of the delco Data element
in the DataDescription class. This index is used in the activation of the
server check on the delco Data element.

The setCheck(int index, boolean aBoolean) method enables you to
activate or inhibit the server checks on a Data Element (pointed by the index)
before any local update method. It is generated for all the DataDescription
classes of the root or dependent nodes whose Elementary Components include
the Presence vectors generation parameter in Developer workbench or
the NULLMNGT=YES and CHECKSER=YES options in the VA Pac WorkStation.

By default, all the Data Elements are to be checked (if the
serverCheckOption property is set to true).

COM

The following two actions enable you to manage the check of the Logical View's
Data Elements at the Proxy level.

The setCheck<fieldIndex,aBoolean> action enables you to activate or
inhibit the server checks on a Data Element before any local update action.

The getCheck<fieldIndex> action enables you to test whether the server
checks are activated on a Data Element.

Both these actions are generated for all the DataDescription classes of the
root or dependent nodes whose Elementary Components include the
Presence vectors generation parameter in Developer workbench or the
NULLMNGT=YES and CHECKSER=YES options in the VA Pac WorkStation.

By default, all the Data Elements are to be checked (if the
serverCheckOption atttribute is set to true).

Sub-Schema Management
The server selection or read methods take into account the sub-schema present
in the subSchema property and return the values of the Data Elements
belonging to the sub-schema. If a selection method is followed by a paging
method, the sub-schema taken into account is that associated with the selection
method.

The local creation methods do not refer to any sub-schema.

The local modification/deletion methods refer to the sub-schema associated
with the instance, that is:

 if the modification/deletion is performed on an instance which was
created locally, the sub-schema is empty.

 if the modification/deletion is performed on a read instance, the sub-
schema is that associated with the selection of this instance.

Moreover the following methods are specific to the sub-schema management.

The resetSubSchema method enables you to reset the subSchema property,
that is to select no sub-schema.

The completeInstance method enables you to retrieve the values of the Data
Elements which do not belong to the sub-schema, by calling the Elementary
Component associated with the Logical View.

The belongsToSubSchema method enables you to know whether the Data
Element passed as a parameter belongs to the sub-schema associated with the
detail attribute.

Use of Events

Java
The events sent by an Elementary Proxy are used to trigger application
methods belonging to the graphic application. This processing is performed by
connecting a Proxy event to one or more methods in the graphic application.
The conditional execution of methods is facilitated by the fact that an event is
always accompanied by its opposite event; both events cannot be sent at the
same time.

 The availability of an event depends on the type of Proxy. All the Public
Interface events are documented in the eBusiness &Pacbench C/S Applications:
Proxy Programming Interface manual.

Event-driven Management of Large Reading

Event-driven management of large reading provides the developer with
information on the state of the collection of instances contained in a node. Each
available paging action offers its own event-driven paging system.

The paging action in non-extend mode can send the following four events:

 noPageBefore: This event is sent by a root or reference node at the end of
the execution of a collection selection or paging action when it does not
return any error and when the read page is the first in the current collection.

48 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 49

 pageBefore: This event is sent by a root or reference node at the end of the
execution of a collection selection or paging action when it does not return
any error and when the read page is not the first in the current collection.

 noPageAfter: This event is sent by a root or reference node at the end of
the execution of a collection selection or paging action when it does not
return any error and when the read page is the last in the current collection.

 pageAfter: This event is sent by a root or reference node at the end of the
execution of a collection selection or paging action when it does not return
any error and when the read page is not the last in the current collection.

The paging method in extend mode can send the following two events:

 pageAfter: This event is sent by any type of node at the end of the
execution of a collection selection or forwards paging action when it does
not return any error and when the number of instances contained in the
node is not the total number of instances contained in the database.

 noPageAfter: This event is sent by any type of node at the end of the
execution of a collection selection or forwards paging action when it does
not return any error and when the number of instances contained in the
node is the total number of instances contained in the database when the
request is made.

Event-driven Management of Instance Reading

A Logical View can be mapped on one or more physical storage entities. In this
context, the event-driven management of a Logical View instance reading can
send the following event:

 notFound when the instance searched for is not found in the database. This
event can be sent when the Logical View is mapped on one or more tables.

COM
The events sent by an Elementary Proxy are used to trigger application actions
belonging to the graphic application. This processing is performed by
connecting a Proxy event to one or more actions in the graphic application. The
conditional execution of actions is facilitated by the fact that an event is always
accompanied by its opposite event ; both events cannot be sent at the same
time. After being sent, the event is stored in a stack. Therefore, the graphic
application must access the stack regularly using the
getServerEventsCount and popServerEvent methods.

 The availability of an event depends on the type of Proxy. All the Public
Interface events are documented in the eBusiness & Pacbench C/S Applications:
Proxy Programming Interface manual.

Event-driven Management of Large Reading

Event-driven management of large reading provides the developer with
information on the state of the collection of instances contained in a node. Each
available paging action offers its own event-driven paging system.

The paging action in non-extend mode can send the following four events:

 NO_PAGE_BEFORE: This event is sent by a root or reference node at the end
of the execution of a collection selection or paging action when it does not
return any error and when the read page is the first in the current collection.

 PAGE_BEFORE: This event is sent by a root or reference node at the end of
the execution of a collection selection or paging action when it does not
return any error and when the read page is not the first in the current
collection.

 NO_PAGE_AFTER: This event is sent by a root or reference node at the end of
the execution of a collection selection or paging action when it does not
return any error and when the read page is the last in the current collection.

 PAGE_AFTER: This event is sent by a root or reference node at the end of the
execution of a collection selection or paging action when it does not return
any error and when the read page is not the last in the current collection.

The paging action in extend mode can send the following two events:

 PAGE_AFTER: This event is sent by any type of node at the end of the
execution of a collection selection or forwards paging action when it does
not return any error and when the number of instances contained in the
node is not the total number of instances contained in the database.

 NO_PAGE_AFTER: This event is sent by any type of node at the end of the
execution of a collection selection or forwards paging action when it does
not return any error and when the number of instances contained in the
node is the total number of instances contained in the database when the
request is made.

Event-driven Management of Instance Reading

A Logical View can be mapped on one or more physical storage entities. In this
context, the event-driven management of a Logical View instance reading can
send the following event:

 NOT_FOUND when the instance searched for is not found in the database.
This event can be sent when the Logical View is mapped on one or more
tables.

Error Management
There is no error message displayed during the extraction and generation
phases.

To be extracted, an Elementary Component must have been compiled correctly,
because:

 the GVC command in the GPRT procedure extracts the required data
without displaying any error messages, even if the Elementary
Component does not contain any Logical View,

50 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 51

 The generator does not control the input file.

However, some error messages can be displayed during the development, test
and execution phases of the application. These messages result from local,
server or communication errors.

Introduction
There are four types of errors:

 Local errors, sent by the Client Component, which correspond to
manipulation or input errors in the Client Component.

 Server errors, sent by the Elementary Component, which are data access
errors and user errors set in the server.

 System errors, sent by the Elementary Component, which corresponds to a
discrepancy between the Proxy and the Elementary Components,

 Communication errors.

You will find below the list of the local and communication errors which might
occur, as well as the structure of the error key for the server and system errors.

 The error management specific to the Java environment is documented in
Chapter 4: Developing a Java Client, subchapter Error Management, and the error
management specific to the COM environment is documented in Chapter 5:
Developing a COM Client, subchapter Error Management.

Local Errors
Local errors are listed below:

 ASYNCHRONOUS_VIOLATION
This error occurs when a lock, unlock or existence check of dependent
instances in asynchronous mode is requested.

 CARDINALITY_VIOLATION
This error occurs if the cardinalities are not respected when an update
method is activated.

 CREATION_CONTEXT_INVALID
This error occurs when trying to save a Proxy context while a request
exists on that Proxy.

 CURRENT_INSTANCE_MISSING
This error occurs when a method is applied to the detail property
whereas the latter does not contain any instance.

 CURRENT_USER_INSTANCE_MISSING
This error occurs when a user method is applied to the userDetail
property whereas this property does not contain any instance.

 FOLDER_USER_CONTEXT_LENGTH_ERROR
This error occurs when the length of the value of a Data Element which
belongs to the user buffer exceeds the authorized length for this Data
Element.

 INSTANCE_ALREADY_LOCKED
This error occurs when a lock action is requested on an instance, which
has already been locked on the server.

 INSTANCE_NOT_LOCKED
This error occurs when an unlock action is requested on an unlocked
instance on the server.

 INVALID_CHANGE
This error occurs when the instance to be modified does not exist in the
local cache.

 INVALID_CREATION
This error occurs when an instance is created though it already exists in
the local cache.

 INVALID_DELETION
This error occurs when the instance to be deleted does not exit in the
local cache.

 INVALID_INITIALIZATION
This error occurs when there is an attempt to initialize an instance
which is already known by the local cache, whatever the instance status
may be (READ, CREATED, MODIFIED ; DELETED).

 INVALID_INSTANCE
This error occurs when a primary key of the current instance is not
valid.

 LENGTH_ERROR
This error occurs when the length of the value of a Data Element which
belongs to the current instance exceeds the authorized length for this
Data Element.

 LOCK_SERVICE_ALREADY_REQUESTED
This error occurs when trying to lock a record which is already locked
in a request.

 NO_SERVER_RESPONSE_REQUESTED
This error occurs when the user action has been sent to the server
because no response is expected.

 PARENT_INSTANCE_MISSING
This error occurs when a dependent node instance is selected though
the parent instance does not exist.

 READ_SERVICE_ALREADY_REQUESTED
This error occurs when trying to do a read action which is already in the
current request.

 REFERENCE_USER_CONTEXT_LENGTH_ERROR
This error occurs when the length of the value of a Data Element
belonging to the user buffer associated with a reference node exceeds
the authorized length for this Data Element.

 REFERING_INSTANCE_MISSING
This error occurs when the transferReference method does not
find any instance in the detail of the refering node.

52 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 53

 REQUEST_ALREADY_EXISTS
This error occurs when trying to create an external request while one
already exists.

 REQUEST_BAD_APPLICATION
This error occurs when a node is trying to link to a request which does
not belong to the same C/S Application.

 REQUEST_BAD_USER_BUFFER
This error occurs when trying to link to a request whose buffer is
different.

 REQUEST_NOT_ACTIVE
This error occurs when trying to act on an inactive request.

 REQUEST_TOO_LARGE
This error occurs when trying to add a service to a request which is
already full (9999 services).

 SERVER_UPDATE_REQUIRED
This error occurs when a method is applied to an instance whereas the
parent instance created locally does not exist in the database yet. A
server update is previously required for the parent instance.

 SUBSCHEMA_ERROR
This error occurs when a Data Element belonging to the current instance
is updated whereas it was not filled in for this instance on a server
access parameterized with a sub-schema.

 UNKNOWN_CONTEXT
This error occurs when the context is not known.

 UNKNOWN_INSTANCE
This error occurs when the selected instance is not known by the local
cache.

 UPDATE_CURRENTLY_POSTED
This error occurs when trying to locally update a record which is
already posted in a request.

 UNLOCK_SERVICE_ALREADY_REQUESTED
This error occurs when trying to unlock a record whose unlocking has
been already requested.

 VALUE_ERROR
This error occurs when the contents of a Data Element belonging to the
current instance are not valid.

 VALUE_REQUIRED
This error occurs when the contents of a Data Element belonging to the
current instance are considered to be absent whereas they are required.

Server Errors
You must know the error key if you wish to display customized labels in the
Client component.

 For details on how the access keys to the local labels of server errors are
obtained, refer to the eBusiness & Pacbench C/S Applications: Proxy Programming
Interface manual.

Col 1-3 Col 4-9 Col 10-13 Col 14-19 Col 20 Col 21 Col 22-25
lib ser seg E DUPL Invalid creation
lib ser seg E NFND Invalid deletion/modification
lib ser E Error

code
User error

lib ser vie dte 2 E Required Data Element
lib ser vie dte 5 E Value error
lib ser LOCKED E Already locked instance
lib ser NTLOCK E Instance not locked

Legend:

lib = library code vie = Logical View code ser = server code

dte = Data Element code seg = physical access segment code

E = Exception (Server error)

System Errors
You must know the error key if you wish to display customized labels in the
Client component.

 For details on how the access keys to the local labels of system errors are
obtained, refer to the eBusiness & Pacbench C/S Applications: Proxy Programming
Interface manual.

 System Errors Received from the Elementary Component

Col 1-3 Col 4-9 Col 10-13 Col 14-19 Col 20 Col 21 Col 22-25

 MISPCV S Components out of phase
lib ser LKABSC S No timestamp set on Lock
lib ser vie ACCESS S Data access error
lib ser LTH S View length error
lib ser SERV S Unknown Service
lib ser STRU S View structure error
lib ser VERS S Version error
lib ser VIEW S Unknown View

Legend:

lib = library code vie = Logical View code ser = server code

dte = Data Element code seg = physical access segment code

[S] = system error

54 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 55

The type of error Unknown service is displayed when the service requested
by the Proxy is not recognized by the Elementary Component.

The type of error View length error is displayed when the format of a
Logical View associated with the Proxy changes and when this Proxy cannot be
regenerated.

To solve this problem, you must regenerate the Proxy.

The type of error Components out of phase occurs when the Client and
Elementary Components are out of phase.

To solve this problem, you must regenerate the Proxy.

System Errors Received from the Communications Monitor

Col 1-3 Col 4-9 Col 10-13 Col 21

lib mon LSRV S Erroneous length of the message received
lib mon NPSA S Erroneous structure of the parameters of the next service
lib mon PCOD S Erroneous structure of the "service code" parameter
lib mon PCVS S Erroneous structure of a service request from the client
lib mon PCVF S Erroneous structure of the message from the client
lib mon PNOD S Unknown Folder code
lib mon PNUM S Erroneous structure of the "service number" parameter
lib mon TAND S Tandem/Pathway error
lib mon WF00 S Erroneous access to the work file or to the database (open/close)

Legend lib = library code mon = Communications Monitor code S = System error

System Errors Received from the Services Manager

Most of these errors are internal errors that you can solve only by contacting the
VisualAge Pacbase support.

Col 1-3 Col 4-9 Col 10-13 Col 21

lib serv BUF1 S Erroneous structure of user buffer
lib serv CHK1 S Missing "Check Option" parameter
lib serv CHK2 S Erroneous length of the "Check Option" parameter
lib serv CP01 S Erroneous structure of a "Selection Criteria" field from the

Elementary Component
lib serv CP02 S Erroneous structure of a field of a Logical View instance from the

Elementary Component
lib serv DANA S Erroneous structure of the erroneous field code in the user error

message
lib serv DOS1 S Missing "Folder name" parameter
lib serv DOS2 S Erroneous length of the "Folder name" parameter
lib serv ERK1 S Erroneous structure of the user error message key
lib serv ERKY S Erroneous structure of the "Selt Message" key from the Elementary

Component
lib serv ERL1 S Erroneous structure of the user error message label
lib serv ERLA S Erroneous structure of the "Selt Message" label from the

Elementary Component
lib serv EXT1 S Erroneous structure of the "extraction method" parameter
lib serv EXT2 S Unknown extraction method in the Folder

Col 1-3 Col 4-9 Col 10-13 Col 21
lib serv FRRE S Erroneous read access to the work file before update
lib serv FRRD S Erroneous read access to the work file
lib serv FRW2 S Erroneous writing of the last record of the work file
lib serv FRWR S Erroneous write access to the work file
lib serv FRRW S Erroneous update access to the work file
lib serv LCK1 S Missing "Lock Timestamp" parameter
lib serv LCK2 S Erroneous length of the "Lock Timestamp" parameter
lib serv LNG1 S Erroneous conversion of service length on a multi-messages

request
lib serv LNG2 S Erroneous conversion of service length on a single-message request
lib serv LTH S Erroneous "length" parameter in the elementary Elementary

Component
lib serv NOCP S Erroneous structure of the "number of occurrences" parameter
lib serv NOC1 S Erroneous length of the " number of occurrences" parameter
lib serv NOC2 S Erroneous conversion of the "number of occurrences" parameter "
lib serv NOD1 S Missing "node name" parameter
lib serv NOD2 S Erroneous length of the "node name" parameter
lib serv NOD3 S Unknown node name in the Folder
lib serv NOS1 S Erroneous structure of the "service number" parameter
lib serv NOS2 S Erroneous conversion of the "service number" parameter
lib serv NUVE S Erroneous "version number" parameter in the elementary

Elementary Component
lib serv OCNB S Erroneous structure, in the user error message, of the field code

which bears the error
lib serv PC01 S Erroneous conversion of the "Selection Criteria" parameter
lib serv PC02 S Erroneous conversion of a field of the user buffer
lib serv PC03 S Erroneous conversion of a field of a Logical View instance from the

client
lib serv PC05 S Erroneous conversion of a "Selection Criteria" field from the client
lib serv PC06 S Erroneous conversion of a field of a Logical View instance to be

updated
lib serv PCV1 S Erroneous structure of the "Selection Criteria" parameter
lib serv PCV3 S Erroneous structure of a field of a Logical View instance from the

client
lib serv PCV4 S Erroneous structure of a "Selection Criteria" field from the client
lib serv PCV5 S Erroneous structure of the action code of a Logical View instance to

be updated
lib serv PCV6 S Erroneous structure of a field of a Logical View instance to be

updated from the client
lib serv PCV7 S Erroneous structure of the presence indicator of a field of a Logical

View instance to be updated
lib serv PCVF S Erroneous structure of the message from the client
lib serv PCVS S Erroneous structure of a service request from the client
lib serv PILO S Erroneous access to the main record of the work file
lib serv RFH1 S Missing "Refresh Option" parameter
lib serv RFH2 S Erroneous length of the "Refresh Option" parameter
lib serv SCH1 S Erroneous structure of the "sub-schema code" parameter
lib serv SCH2 S Unknown sub-schema code in the Folder
lib serv SERV S Erroneous "operation code" parameter in the elementary

Elementary Component
lib serv SRV1 S Service not found in the work file

56 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 3: Development Principles 57

Col 1-3 Col 4-9 Col 10-13 Col 21
lib serv SRV2 S Unknown service code in the Folder
lib serv SRV3 S Erroneous structure of the “service code” parameter
lib serv STRU S Erroneous "structure" parameter in the elementary Elementary

Component
lib ges TAND S Tandem/Pathway error
lib serv TYNO S Unauthorized service on the node
lib serv USR1 S Missing "User service" parameter
lib serv USR2 S Erroneous length of the "user service" parameter
lib serv USR3 S Unknown user service in the Folder
lib serv VER2 S Erroneous length of the "version number" parameter
lib serv VIEW S Erroneous "Logical View code" parameter in the elementary

Elementary Component
lib serv WF00 S Erroneous access to the work file

Legend lib = library code serv = Services Manager code S = system error

Communication Errors
If a communication error message is displayed, inform the person in charge of
the communication because the line may be blocked or defective, or a Server
may be busy, etc.

Three communication error messages are likely to be displayed:

 Open server error

 Call server error

 Close server error

Chapter 4: Developing a Java Client 59

Chapter 4: Developing a Java Client
Once you have generated and imported the Proxy objects, you just need to
integrate them into the graphic application.

This chapter gives you a detailed description of a client development (applet
and standalone) in VisualAge for Java, including the following steps: insertion
of Proxy objects with programming links involving methods, properties and
events. This chapter also presents error management, communication
management, as well as the test and deployment of the application.

Example of an Applet

Introduction
This example describes a VisualAge Java applet, i.e. a program meant to be
used in a browser.

This applet is developed first with VisualAge Java version 1 and then with
VisualAge Java version 2 to illustrate the specificities of both versions.

 To facilitate the development and reusability of clients implemented with
VisualAge, we advise you to use a project for each functional application. The
project must contain one or more graphic class packages and a generated class
package.

The Proxy components inserted in the applet have been generated with the
Generate Beans option and:

 The Use IBM Enterprise Access Builder classes option for
version 1.

 The Use Swing option for version 2.

In the example, three Elementary Proxies of the FVP are used:
 The Root Proxy corresponding to the Customers node which manages

the customers in the information system described by the Folder.
 The Dependent Proxy corresponding to the Orders node which

manages the orders in the information system described by the Folder.
 The Dependent Proxy corresponding to the Order lines node which

manages the order lines in the information system described by the
Folder.

Presentation of the End User Interface
The graphic user interface consists of the applet itself and two windows.

 The applet

The applet does not have any function in the user application. It is the starting
point and enables the application to be accessed via the web.

 The Customers Window

This window opens automatically at the applet start. It contains the following
functionalities:

 The Select button is used to display a list of customers.
 The Read all button is used to submit a reading request of the

selected customer 's orders from this window.
 As a lock option has been specified in the Folder, the user must click on

the Lock button to lock the instance selected in the list before starting
any updating process.

 The Update button is used to update the database.
 The Orders... button is used to display the Orders Frame window.
 The Modify button is used to modify customers in the detail after

locking the instance.
 When a customer is selected in the list, the user must click on Lock to

appropriate this customer for a short time. Then, he can enter
modifications and click on Modify.

60 eBusiness & Pacbench C/S Applications- Graphic Presentation

 The Orders Window

The Orders window opens when the user clicks on the Orders... button in
the Customers window.

For each customer selected in the detail of the Customers window, this
window allows you to:

 view this customer's list of orders.
 select an order in the list and display it in the detail.
 create, modify, delete orders.

Developing the End User Interface with VisualAge Java V1
Developing the graphic user interface consists in programming the applet and
in building the Customers and Orders windows.

You will not find here detailed information on how to use VisualAge tools and
functions. If you are not familiar with them, refer to the appropriate
documentation.

We try as much as possible to describe the development steps sequentially, but
we sometimes need to organize the description of the windows programming
into different consistent groups of functionalities.

At the end of each programming step, the Composition Editor is shown as it
should apppear on your screen, sometimes the connections previously
developed are hidden so that you can see the newly created ones.

Implementing the Example and Creating the Applet
 In a project, create a vap.sample package meant to contain the

application components.
 In this package, create a SampleApplet applet. In the SmartGuide –
Create Applet window, check the Design the applet
visually option, so that the classes browser opens directly on the
Visual Composition tab.

Chapter 4: Developing a Java Client 61

 Displaying the Text

In the Visual Composition Editor, execute the following operations:
 Resize the applet.
 Place a Label bean (Data Entry category) in the applet. Enter
VisualAge Pacbase SampleApplet started in the
Properties window of the bean, in the text field.

 Integrating the Root Proxy

To place the Root Proxy on the Free Form Surface, execute the following
operations:

 In the Options menu, select the Add Bean choice.
 In the Add Bean window, which is opening, you must enter
com.ibm.vap.generated.proxies.CustomerProxyLv in the
appropriate field (you can use the Browse…. Button).
The class name (CustomerProxyLv in our example) must be preceded
by the package name selected for the generation. In our example, the
package name is com.ibm.vap.generated.proxies.

 Defining the Communication with the Gateway

 For more information on this subject, refer to subchapter Communication
Management.

In this example, we assume that the Folder View Proxy communicates with its
host, that is to say, with the HTTP server where the applet is stored. To enable
the communication, follow these steps:

 Open the pop-up menu from the Free Form Surface.
 Select Tear-Off Property, then codeBase (URL).
 Click on the Free Form Surface. A variable bean named codeBase1 is

displayed.
 Open the pop-up menu of the codeBase1 bean, select Connect, and

then All Features…..
 In the Start connection from window, select the host property. A

dotted link is displayed.
 Click the Root Proxy. The pop-up menu is displayed.
 Select All Features…. . The Connect property named: window

opens.
 Display all the properties available for the Root Proxy by checking the
Show expert features box.

 Select the Host property, then click on OK.

The host property of codeBase1 is now connected to the Host property of
the Root Proxy.

 These connections are equivalent to the following code line in the applet:
getCustomerProxyLv1().setHost(getCodeBase().getHost());

62 eBusiness & Pacbench C/S Applications- Graphic Presentation

Now, you can test your applet. The Applet Viewer window opens:

 Programming the Opening of the CustomersFrame Window from the
Applet

This phase consists of two parts ; both must be done after the operations
described in the Creating the Window and Integrating the FVP in the Composition
Editor and Promoting the Root Proxy paragraphs:

 Calling the Root Proxy in the applet
 In the applet's Composition Editor, place a constant bean of
CustomersFrame type on the Free Form Surface.

 Connect the this property of the Root Proxy to the
customerProxyLv1This property of the CustomersFrame bean.

 Programming the opening of the window from the applet.
Now we want the CustomersFrame window to open immediately
after the applet starts.
To do so, connect the componentShown event of the applet to the show
method of the CustomersFrame bean.

 Result in the Composition Editor

The applet is now completed.

The Composition Editor should look like this at this stage:

Chapter 4: Developing a Java Client 63

Developing the Customers Window

Mapping Rows and Detail

Once the Root Proxy has been inserted and promoted, this phase describes the
mapping of its rows and detail properties.

 Creating the Window and Integrating the FVP in the Composition Editor

Creating a window for the management of customers consists in creating the
corresponding class in the Workbench.

 In the Workbench, create a CustomersFrame class in the vap.sample
package.

 In the SmartGuide –Create Class or Interface window which
opens then:
 Enter java.awt.Frame in the Superclass field. You specify this

way that the CustomersFrame class inherits from the
java.awt.Frame class.

 Check the Design the class visually option so that the class
browser directly opens on the Visual Composition tab.

 To integrate the Folder View Proxy in the Visual Composition Editor,
execute the steps detailed in the Creating the Window and Integrating the
FVP in the Composition Editor paragraph. But this time, you must select
the Variable option in the Bean Type field of the Add Bean
window.
 The Root Proxy placed here is a Proxy of a variable type because it
must represent the same Proxy instance as the one called in the applet.

 Promoting the Root Proxy

Now the purpose is to ensure the permanent identity of this variable Proxy and
the constant Proxy instantiated in the applet. To do so, the variable Proxy must
be public outside the CustomersFrame class, so that a property connection –
property between the constant and variable Proxy objects can be performed in
the applet.

Proceed as follows:
 From the Proxy's pop-up menu, choose Promote Bean feature.
 In the Property column, choose this and click Promote.

The CustomersFrame class now hasa readable/writeable property
named customerProxyLv1This and typed Root Proxy.

 Save the window (File menu, Save Bean or CTRL-F2 choice).

 Mapping the Rows Property

 This mapping uses an EAB container; so it is possible only if you checked the
Use the IBM Enterprise Access Builder classes for the generation.

This step consists in the following operations:
 In the CustomersFrame bean, place a Multi Column List Box

bean, located in the Access Enterprise category. Resize the bean.

64 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 65

 You have now to map, in the container, the columns corresponding to
the Data Elements associated with the root node.
Open the Properties window of the container. From the columns
field of this window, add a column for each Data Element of the Logical
View, in the order they are called in the Repository. You can map as
many columns as properties held by the Proxy DataDescription or
the first ones only.
 The columns to be mapped correspond to the values returned by the
getAttributeStrings() method of the DataDescription.

 Once the columns have been created, connect the IRows property of the
Proxy to the elements property of the container.
 IRows is identical to Rows but it returns an instance of the IVector
class, which, contrary to the DataDescriptionVector class
returned by Rows, is compatible with the elements property of the
Multi Column List Box bean.
This operation is equivalent to the mapping of the Rows property of
the Proxy.

 Mapping the Detail Property

This step requires the following operations:
 From the Root Proxy, tear-off the detail property.
 Insert a label bean for each property to be mapped.
 You must now map an input field for each property to be displayed.

To do this, use the Pacbase Text Field, Pacbase Integer
Field, Pacbase Decimal Field, Pacbase Date Field and
Pacbase Time Field beans provided by the eBusiness or Pacbench
C/S module when the runtime is imported.
These beans are located in the VisualAge Pacbase category, in the
palette.
Yo can also insert these beans by selecting the Add bean choice in the
Options menu; enter the full name of the package followed by the
bean name. For example: com.ibm.vap.beans.PacbaseDateField.

 For more details on these beans, refer to the online
documentation of the generic classes.

 Insert the type of bean required for each property to be mapped.
 Then, for each mapped field, connect the property of the detail bean

to its corresponding String, Int, Decimal, Date or Time property.
In our example, for the input field corresponding to the customer
number, you must connect the Customer Number property of the
detail bean to the Int property of the field.

 Result in the Composition Editor

After all these steps, the Composition Editor should look like this:

Selection of an Instance in Rows and Transfer in Detail

Now the purpose is to program the transfer of the instance selected by the user,
from the container into the detail property of the Proxy.

To do this, proceed as follows:
 Connect the itemStateChanged event of the MultiColumnListBox to

the Root Proxy's Get Detail From DataDescription method.
 The link appears as a dotted line because the Get Detail From
DataDescription method requires a parameter.

 To define this parameter, connect the selectedObject property of the
MultiColumnListBox to the data-type parameter of the link
(customerData in our example). This parameter is available when the
cursor is placed in the middle of the connection line.

66 eBusiness & Pacbench C/S Applications- Graphic Presentation

The Composition Editor should look like this:

Activation of the Proxy's Methods and Navigation towards the Orders
Window

 Activation of the Proxy's Methods

For each method you wish programming, place a push-button in the window.
You can modify the label in the Properties window of the button.

To activate a method, connect the actionPerformed event of a given button
to the appropriate method of the Proxy. If this method is not available, check
the Show expert features option.

For example:
 To program the activation of the Update button, you must connect its
actionPerformed event to the Update Folder method of the
Proxy.

 To program the activation of the Read all button, you must connect
its actionPerformed event to the Read All Children From
Detail method of the Proxy.

Chapter 4: Developing a Java Client 67

After these steps, the Composition Editor should look like this:

 Navigation management

This step must be executed after promoting the Orders Dependent Proxy.
 On the Free Form Surface, place an OrdersFrame constant bean.
 Connect the Order Proxy of the Root Proxy to the
orderProxyLv1This property of the OrdersFrame bean. This
connection ensures the link of the two Proxy objects between the two
windows.

 Place an Orders... button in the CustomersFrame bean.
 Connect the actionPerformed event of the button to the show

method of the OrdersFrame bean.

At the end of this step, the Composition Editor should look like this:

68 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 69

For better readibility, the links between the other buttons and the Root Proxy are hidden.

Developing the Orders Window

This window gives information on the orders. It opens when the user clicks on
the Orders… button in the Customers window.

The container automatically displays the orders of the selected client in the
Customers window if the user clicks Read all before clicking Orders….

The development of this window using the OrderProxyLv Dependent Proxy
consists of the stages described below.

Creating the Orders Window

In the Workbench, create an OrdersFrame class which inherits from
java.awt.Frame in the vap.sample package, as you did when you created
the Customers window.

Integrating and Promoting the Dependent Proxy

In the Visual Composition tab, place an OrderProxyLv variable bean on the
Free Form Surface.

 For more details on the proxy integration, refer to paragraph Developing the
Customers Window.

Now we have to promote this variable Proxy so that it can be public from the
outside.

To do this, proceed as follow:
 From the Proxy's pop-up menu, choose Promote Bean feature.
 In the Property column, choose this and click on Promote.

 The OrdersFrame class has a public property now, in a read/write
mode, named OrderProxyLv1This and typed Dependent Proxy.

 Save the window (File menu, Save Bean or CTRL-F2 choice).

Mapping the Dependent Proxy's Rows and Detail

The operations to be executed here are identical to those required for the
mapping of the rows and detail properties of the Root Proxy.

The same EAB container is used for the mapping of rows.

 For more details, refer to paragraph Developing the Customers Window.

Selection of an Instance in Rows and Transfer in Detail

The operations to be executed here are identical to those required for the rows
and detail properties of the Root Proxy.

 For more details, refer to paragraph Developing the Customers Window.

Activation of the Dependent Proxy's Methods

Use the same principles as those described in paragraph Developing the
Customers Window.

Result in the Composition Editor

After all these steps, the Composition Editor should look like this:

Developing the End User Interface with VisualAge Java V2
This section details the development, with VisualAge Java V2, of the
application whose end-user interface is presented in section Presentation of the
End User Interface.

The Proxy components inserted in the application have been generated with the
Generate Beans et Use Swing options. All the components inserted here
are Swing beans.

We develop the application from scratch, without using the application
developed with VisualAge Java V1.

 If you have already developed an application with VisualAge Java V1, you can
save it and resume its development with VisualAge Java V2. However if you
want to insert Swing components, you must re-generate the Proxy components
with the Use Swing option to ensure a correct communication between the
Proxy components and the Swing beans.

 VisualAge Java V2 does not recognize EAB containers, which are components
specific to VisualAge Java V1. If the application developed with the Version 1
includes such components, you must replace them with other components
(swing JTable component for example).

Implementing the Example and Creating the Applet
 In a project, create an example.swing package meant to contain the

application components.

70 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 71

 In this package, create a SwingApplet applet. In the SmartGuide –
Create Applet window, select JApplet in the SuperClass field,
via the Browse button, and check the Compose the applet
visually option, so that the class browser opens directly on the
Visual Composition tab.

 Displaying the Text

In the Visual Composition Editor, execute the following operations:
 Resize the applet.
 Place a JLabel bean in the applet. Enter VisualAge Pacbase
SwingSampleApplet started in the Properties window of the
bean, in the text field.

 Integrating the Root Proxy

To place the Root Proxy on the Free Form Surface, execute the following
operations:

 Click the Choose Bean icon located above the palette.
 Select the type of bean Class.
 With the Browse button, select class name CustomerProxyLv.

 Defining the Communication with the Gateway

 For more information on this subject, refer to subchapter Communication
Management.

In this example, we assume that the Folder View Proxy communicates with its
host, that is to say with the HTTP server where the applet is stored. To enable
this communication, follow these steps:

 Open the pop-up menu in the Free Form Surface.
 Select Tear-Off Property, then codeBase (URL).
 Click in the Free Form Surface. A variable bean named codeBase1 is

displayed.
 Open the pop-up menu of the codeBase1 bean, select Connect, and

then Connectable Features….
 In the Start connection from window, select the host property. A

dotted link is displayed.
 Click on the Root Proxy. The pop-up menu is displayed.
 Select Connectable Features…. The End Connection to window

opens.
 Display all the properties available for the Root Proxy by checking Show
expert features.

 Select the Host property, then click OK.

The host property of codeBase1 is now connected to the Host property of
the Root Proxy.

 These connections are equivalent to the following code line in the applet:
getCustomerProxyLv1().setHost(getCodeBase().getHost());

Now you can test your applet. The Applet Viewer window opens:

 Programming the opening of the CustomersFrame Window from the
applet

This step consists of two parts. Both must be done once the operations
described in paragraphs Creating the Window and Integrating the FVP in the
Composition Editor and Promoting the Root Proxy have been executed :

 Call of the Root Proxy in the applet
 In the applet's Composition Editor, place a constant bean with the
CustomersFrame type on the Free Form Surface.
To do so, select the Choose Bean icon located above the palette,
select the Class type of bean and select, with the Browse button, the
CustomersFrame class.

 Connect the this property of the Root Proxy to the
customerProxyLv1This property of the CustomersFrame bean.

 Programming the opening of the window from the applet
Now we want the CustomersFrame window to open immediately
after the applet starts.
To do so, connect the componentShown event of the applet to the show
method of the CustomersFrame bean.

 Result in the Composition Editor

The applet is now completed.

72 eBusiness & Pacbench C/S Applications- Graphic Presentation

The Composition Editor should look like this as this stage:

Developing the Customers Window

Mapping Rows and Detail

Once the Root Proxy has been inserted and promoted, this phase describes the
mapping of its rows and detail properties.

 Creating the Window and Integrating the FVP in the Composition Editor

To create a window for the management of customers consists in creating the
corresponding class in the Workbench.

 In the Workbench, create a CustomersFrame class in the
example.swing package.

 In the SmartGuide –Create Class or Interface window which
opens then:
 select JFrame, with the Browse button, in the Superclass field:

you specify this way that the CustomersFrame class inherits from
the com.sun.java.swing.JFrame class.

 Check the option Compose the class visually so that the class
browser opens directly on the Visual Composition tab.

 To insert the Folder View Proxy in the Visual Composition Editor:
 Click on the Choose Bean icon located above the palette.
 Select the Variable type of bean.
 With the Browse button, select the CustomerProxyLv class.

 The Root Proxy inserted here is of a variable type because it must
represent the same Proxy instance as the one called in the applet.

Chapter 4: Developing a Java Client 73

 Promoting the Root Proxy

Now the purpose is to ensure the permanent identity of this variable Proxy and
the constant Proxy instantiated in the applet. To do so, the variable Proxy must
be public outside the CustomersFrame class, so that a property – property
connection between the constant Proxy and the variable Proxy can be
performed in the applet.

Proceed as follows:
 Open the Proxy's pop-up menu. Select Promote Bean feature.
 In the Property column, choose this then click >>.

The CustomersFrame class now has a readable/writeable public
property named customerProxyLv1This and typed Root Proxy.

 Save the window (Bean menu, Save Bean choice).

 Mapping the Rows Property

In the CustomersFrame bean, place a JTable bean and resize it.

To see the columns of the JTable, you must run the JFrame. The columns of the
JTable are initialized with the Data Elements of the Logical View and the lines
represent the instances included in Rows. The content of the JTable is refreshed
each time Rows is updated (selections, creations…).

Two mappings are possible:
 If you want to display all the columns which correspond to all the Data

Elements of the Logical View with the clear names defined in the Proxy,
you simply have to connect the Table model property of the Proxy to
the model property of the JTable.

 However if you want to select the columns to be displayed, modify their
heading or create a new column to display data locally computed, you
must cusomize the JTable.
To do so, you must create a new TableModel class and customize its
methods.
This new class must be public and must inherit:
 either from CustomerTableModel, located in the
com.ibm.vap.generated.reuse package. This way, this method
automatically inherits all the existing methods of
CustomerTableModel and you will have to modify only the
methods that do not suit your application.

 or directly from PacbaseTableModel, located in the
com.imb.vap.beans.swing package. In this case, you will have to
re-write all the methods you want to use since they are not retreived
automatically.

To create the new class, select the Add Class choice in the pop-up
menu of the package (com.ibm.vap.generated.reuse or
com.ibm.vap.beans.swing). Name it (NewCustomerTableModel
for example) and, in the Superclass field, select the class
(CustomerTableModel or PacbaseTableModel) from which the
new class will inherit.

74 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 75

You must then customize the methods of this new class by inserting
code directly in the source part. In our example, we chose to make the
new NewCustomerTableModel class inherit from the
CustomerTableModel class.
The public int getColumnCount() method must be customized
to limit the number of columns to 3 in the JTable, whereas the Logical
View constains 7 Data Elements.

public class NewCustomerTableModel extends
com.ibm.vap.generated.reuse.CustomerTableModel

{public int getColumnCount (){ return 3;}

}

 The other methods via which the columns of the JTable can be customized are
documented in Chapter 3: Development Principles, Use of Methods, Customization of
the Columns of a Jtable (Java Only).

In the Composition Editor, you simply have to:
 Place an instance of the new TableModel,
 Connect this instance, via its this property, to the TableModel

property of the Proxy,
 Connect this instance, via its this property, to the model property of

the JTable.

 Mapping the Detail Property

This step requires the following operations:
 From the Root Proxy, tear-off the detail property.
 Insert a JLabel bean for each property to be mapped.
 you must now map an input field for each property to be displayed.

To do so, use the beans Pacbase Swing Text Field and Pacbase
Swing Integer Field provided by the eBusiness or Pacbench C/S
module when the runtime is imported.
You can also insert these beans by clicking on the Choose Beans icon
located above the palette. Select the type Class or Variable. Then
select, with the Browse button, the name of the bean: for example:
PacbaseJTextField.

 For more details on these beans, refer to the online
documentation of the generic classes.

 Insert the type of bean required for each property to be mapped.
 then, for each mapped field, connect the property of the detail bean to

the corresponding String or Int type property.
In our example, for the input field which corresponds to the customer
number, you must connect the Customer Number property of the
detail bean to the Int property of the field.

 Result in the Composition Editor

After all these steps, the Composition Editor should look like this:

We chose here to customize the JTable. This is the reason why a NewCustomerTableModel1 bean is inserted.

Selection of an Instance in Rows and Transfer in Detail

Now the purpose is to program the transfer of the instance selected by the user
from the table into the detail property of the Proxy.

To do so, proceed as follows:
 Connect the keyEvents and mouseEvents events of the JTable to the
Get Detail From DataDescription method of the Root Proxy.

 Two links appear in dotted lines since the Get Detail From
DataDescription method requires a parameter.

 Make a Tear-Off of the Rows property of the Root Proxy. You obtain a
variable bean named rows1.

 Select the dotted links one at a time. To specify the parameter required
by the Get Detail From DataDescription method, connect the
data-type parameter of the link (here customerData) to the
elementAt(int) method of rows1.

 Then connect the SelectedRow property of the JTable to the Arg1
parameter of the link created in the preceding step. This parameter is
available when the cursor is placed in the middle of the connection link.

76 eBusiness & Pacbench C/S Applications- Graphic Presentation

The Composition Editor should look like this:

To avoid complexity, we display here the connection of only one of the two events sent by the JTable.

Activation of the Proxy's Methods and Navigation towards the Orders
Window

 Activation of the Proxy's Methods

Methods are activated in the same way as in the Root Proxy of the VisualAge
Java V1 example.

 For more details, refer to Developing the End User Interface with VisualAge Java V1,
Activation of the Proxy's Methods and Navigation towards the Orders Window.

 Navigation Management

Navigation is managed in the same way as in the Root Proxy of the VisualAge
Java V1 example.

 For more details, refer to Developing the End User Interface with VisualAge Java V1,
Activation of the Proxy's Methods and Navigation towards the Orders Window

Developing the Orders Window

The Orders window is identical to that developed in the VisualAge Java V1
example.

 For more details, refer Developing the End User Interface with VisualAge Java V1,
Developing the Orders Window.

Chapter 4: Developing a Java Client 77

Creating the Orders Window

In the Workbench, create an OrdersFrame class which inherits from JFrame
in the example.swing package, as you did when you created the Customers
window.

 For more details, refer, in this section, to paragraph Developing the Customers
Window, Creating the Window and Integrating the FVP in the Composition Editor.

Integrating and Promoting the Dependent Proxy

In the Visual Composition tab, place an OrderProxyLv variable bean on the
Free Form Surface.

 For more details on the integration of the Proxy, refer, in this section, to
paragraph Developing the Customers Window, Creating the Window and Integrating
the FVP in the Composition Editor.

You must then promote this variable Proxy so that it can be public from the
outside.

To do so, proceed as follows:
 From the Proxy's pop-up menu, choose Promote Bean feature.
 In the Property column, choose this and click on >>.

The OrdersFrame class has a public property now, in read/write mode,
named OrderProxyLv1This and typed Dependent Proxy.

 Save the window (Bean menu, Save Bean choice).

Mapping the Dependent Proxy's rows and detail

The operations to be executed are identical to those required for the Root Proxy.

 For more details, refer, in this section, to Developing the Customers Window.

Selection of an Instance in rows and Transfer in detail

The operations to be executed are identical to those required for the rows and
detail properties of the Root Proxy.

 For more details, refer, in this section, to Developing the Customers Window.

Activation of the Proxy's Methods

Use the same principles as those described in Developing the End User Interface
with VisualAge Java V1, Developing the Customers Window, Activation of the Proxy's
Methods and Navigation towards the Orders Window.

Specificities of a Standalone Application

Introduction
This subchapter puts the emphasis on the differences between the development
of an applet and the development of a standalone application.

 A standalone application, unlike an applet application, is not meant to be
executed by a Web browser.

78 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 79

The main differences between the two types of applications are the following
ones:

 For the development of a standalone application, the base class in use has
a Frame type (for awt) or a JFrame type (for swing). This class inherits
from java.awt.Frame (for awt) or com.sun.java.swing.JFrame
(for swing) whereas an applet inherits from java.applet.Applet
(for awt) or from java.applet.JApplet (for swing).

 As for the development of a standalone application, the instantiation of
the Root Proxy is conditioned by the use of the setLocationsFile
method, and not by the use of the Host and Port properties. This
method is used to position the VAPLOCAT.INI locations file so that the
application can directly get to the middleware without passing through
the gateway.

Example
This example shows you how to transform an applet previously developed in
this subchapter into a standalone application. In the example, the
CustomersFrame and OrdersFrame windows are re-used. Now, the
CustomersFrame window is the starting point of the application.

 For the windows developed with the Swing option of VisualAge Java V2, you
simply have to replace the awt classes present in the code by the corresponding
Swing classes.

No changes are required in the Composition Editor. You just have to insert
specific code in the main method of the CustomersFrame class. The main
method is the starting point of a standalone application.

The specific code is presented below, between the //begin and //end
comment lines.

/**
 * main entrypoint - starts the part when it is run as an application
 * @param args java.lang.String[]
 */
public static void main(java.lang.String[] args) {

try {
vap.sample.CustomersFrame aCustomersFrame = new vap.sample.CustomersFrame();
try {

Class aCloserClass = Class.forName(« uvm.abt.edit.WindowCloser »);
Class parmTypes[] = { java.awt.Window.class };
Object parms[] = { aCustomersFrame };
java.lang.reflect.Constructor aCtor = aCloserClass.getConstructor(parmTypes);
aCtor.newInstance(parms);

} catch (java.lang.Throwable exc) {};
//begin
aCustomersFrame.setCustomerProxyLv1(new
com.ibm.vap.generated.proxies.CustomerProxyLv());
aCustomersFrame.getCustomerProxyLv1().setLocationsFile(« d:\\user\\vapb\\vaplocat.ini
 »);
//end
aCustomersFrame.setVisible(true);
catch (Throwable exception) {
System.err.println(« Exception occurred in main() of java.awt.Frame »);

}
}

The first instruction specifies the creation of a new Root Proxy. The former
Proxy has already been instantiated in the applet and it cannot be re-used here
as a constant bean.

The next instruction positions the locations file.

Error Management

Principles

Introduction

The management of the errors associated with the handling of VisualAge
Pacbase Proxies is based on the ‘raise of exceptions’ principle specific to the
Java language.

The Proxy objects can raise four types of errors from the eBusiness or Pacbench
C/S module and also the whole set of Java errors.

For the management of the eBusiness or Pacbench C/S errors, the user is
provided with four generic classes whose methods enable to convey the errors
raised by the Proxy objects. Each class corresponds to a type of errors:

 Local errors
 Server errors
 System errors
 and Communication errors

All these classes inherit from java.lang.Throwable and are stored in the
com.ibm.vap.generic package.

 See also Chapter 3: Development Principles, subchapter Error Management for the
list of the possible local and communication errors, as well as the structure of
the error key for the server and system errors.

Programming

Exceptions must be intercepted by the programming in the Client component.

Programming errors requires writing in Java on the one hand, and on the other
hand, creating the window used to display these errors.

 An example of error management is provided in section Example of Error
Management.

 For more information on the exceptions that can be possibly raised by the
Proxies, refer to the eBusiness & Pacbench C/S Applications: Proxy Programming
Interface manual or, in your VisualAge station, the corresponding method
signature.

Local Errors
Local errors produce the com.ibm.vap.generic.LocalException
exception. This exception contains a property of int type that enables the error
identification.

 The errors which are responsible for this exception are listed in section Local
Errors (Chapter 3: Development Principles). They are also described in the HTML
documentation associated with the generic classes: Package
com.ibm.vap.generic.

80 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 81

 These error messages correspond to constants of the
com.ibm.vap.generic.LocalException class and represent types of
errors. Prefixed with LOCAL_, each constant makes up an error key. This error
key allows to identify the associated label in the local error labels file
vaperror.properties.

Server Errors
Server errors produce the com.ibm.vap.generic.ServerException
exception.

This exception is raised upon the receiving of a logical error message detected
by the server. The exception holds the key and associated message.

 The structure of the error key for the server errors are listed in section Server
Errors (Chapter 3: Development Principles).

System Errors
System errors (physical errors) produce a
com.ibm.vap.generic.SystemError error. This type of error represents
an internal and irretrievable error.

 The structure of the error key for the system errors are listed in section System
Errors (Chapter 3: Development Principles).

Communication Errors
Communication errors with the Server produce the
com.ibm.vap.generic.CommunicationError error. Like any Java error,
VisualAge Pacbase communication error returns no key. To know the cause of
the error, you must retrieve the message associated with the error
(getMessage() method of the class).

 Communication errors are listed in section Communication Errors (Chapter 3:
Development Principles).

Example of Error Management

Introduction

The Java code of this example is provided with the Java version of the eBusiness
or Pacbench C/S module. It shows a method allowing to manage all the types of
errors that are likely to be raised by the Proxies. To do so, three classes have
been defined:

 StandardErrorMessageFactory: class allowing to create a vector of
StandardErrorMessage from the exception raised

 StandardErrorMessage: class unifying the characteristics of the
various types of errors

 ErrorManagerExample: graphic class used to display the errors

Presentation of the Non-Visual Classes in Use

 StandardErrorMessageFactory class

This class provides the public static java.util.Vector
getStandardErrorMessages (Throwable th) method allowing to create
a vector of StandardErrorMessage from a given exception whatever its type
may be.

 StandardErrorMessage class

Each StandardErrorMessage object has a number of properties that are
initialized or not according to the error type (local, server, system,
communication error, etc.) :

 the hierarchical Proxy associated with the error if the error is related to
a particular instance of Logical View.

 the error key (for local, server or system errors):
It is a character string returned by the server, in the case of a server or
system error.
In the case of a local error, it is a character string corresponding to the
name of the constant associated with the error type and defined in the
LocalException class, prefixed with LOCAL_.
 For the list of all local error types, refer to Chapter 3: Development

Principles, Local Errors.
 To know the error keys corresponding to the server or system

errors, refer respectively to Chapter 3: Development Principles, Server
Errors and System Errors.

 the local label of the error:
 in the case of a local, server, or system error, the error key is

interpreted by the Client component to get the local label. In the
vaperror.properties file, a correspondence table allows to
determine this label from a given error key.

 For information on the vaperror.properties file, refer to
the eBusiness & Pacbench C/S Applications: Proxy Programming
Interface manual.

 for the other error types, the local label corresponds directly to the
message associated with the Java exception.

 the server label of the error, for the server and system errors,
if a error label server has been coded using the Business Logic function.

 the boolean property Restorable. This property is true:
 when a Proxy is associated with the error.
 when it is possible to display again the instance that caused the error

in the detail of the window calling the Proxy.

 For additional details on error management, refer to the Developer's
Documentation / eBusiness Applications Series: Proxy Programming Interface.

82 eBusiness & Pacbench C/S Applications- Graphic Presentation

Presentation of the ErrorManagerExample Visual Class

Graphic Interface

Class Functionalities

This class is used to display a list of error messages corresponding to instances
of the StandardErrorMessage class.

All the graphic controls used by this window are proportional to its size.

Chapter 4: Developing a Java Client 83

The window's functionalities are the following:

 The instances of StandardErrorMessage inferred by the
StandardErrorMessageFactory class are transferred to this window
in a vector using the addStandardErrorMessages(Vector) method. As
long as the window is not closed, the transferred messages are added to the
messages already displayed. The messages displayed can be deleted using
the resetCurrentStandardErrorMessages() method.

 The properties of StandardErrorMessage instances that can be viewed
are defined in the visibleColumns property of the
ErrorManagerExample window. This property corresponds to a table of
int whose values can be the following:

 1 to display the error message key
 2 to display the local label of the error message
 3 to display the server label of the error message
 4 to display the restoration status of the error
 5 to display the name of the class associated with the hierarchical

Proxy

 Three radio-buttons have been inserted to dynamically select different
presentations for the list of StandardErrorMessage instances:

 Detail is used to display all the properties of each
StandardErrorMessage instance.

 Local label is used to display only the local label of the
StandardErrorMessage instance.

 Initial settings is used to display the properties defined in the
visibleColumns attribute.

 The Restore button is enabled when an instance of
StandardErrorMessage is selected and if the error context can be
restored. When the user clicks on the button, the error context is restored
and the window that manages the Logical View instance that caused the
error is displayed.

To implement this functionality, the ErrorManagerExample window must
know each window managing the detail property of a Proxy node using
the addProxyManagingbyWindow method. This method takes as
parameters the Proxy node (HierarchicalProxyLv) and the error
management window (Jframe).

84 eBusiness & Pacbench C/S Applications- Graphic Presentation

Example

(1)

This example illustrates the principle allowing to record the association of a
hierarchical Proxy and the window that calls it, and inform the error
management window of this association.

The link (1) connects the event this of the Proxy to the method
addProxyManagingbyWindow of the error management window
(ErrorManagerExample). In this context, this method will be executed on the
Proxy instantiation.

The two other links allow to transfer the hierarchical Proxy instance (this
parameter of the Proxy to the hp parameter of the connection) and the window
instance (this parameter of CustomerSimpleFrame to the wi parameter of
the connection).

Code for Displaying the Error Window

The solution proposed is adapted to applications developed in VisualAge Java
with the visual composition editor.

It assumes that the error management window (ErrorManagerExample class)
has been inserted as a class-type or variable-type bean in the visual composition
editor containing the window that calls the error management window.

The exceptions associated with the calling window are handled by inserting in
the method handleException(Throwable) of the window, the following:
private void handleException(Throwable exception) {
java.util.Vector standardErrorMessages =
pacbase.test.swing.ErrorManager.StandardErrorMessageFactory.getStandardErrorMessages(exception);
 if (standardErrorMessages != null) {
 if (standardErrorMessages.size() >= 0) {
 getErrorManagerExemple1().addStandardErrorMessages(standardErrorMessages);
 getErrorManagerExemple1().showStandardErrorMessages();
 }
 }
}

Chapter 4: Developing a Java Client 85

Communication Management
This subchapter contains all the information needed by the developer to
implement the middleware used by the applications generated with the
eBusiness or Pacbench C/S module.

 The information related to the operation of the middleware used by these
applications when they are deployed is documented in the Middleware User’s
Guide.

Processing a Request
Middleware services are executed from a set of specific communication classes
provided upon the installation of the product.

The communication with the Server is executed via the ServerAdapter
interface. There are two ways of implementing this interface:

 MiddlewareAdapter which directly accesses the middleware’s native
DLLs (in C++) which are locally installed. It also allows to parameterize
the communication context (location, userId, password,
clientEncoding...) and its operating mode (traceLevel,
nbMaxConnection, connectionCleaningInterval...).

 GatewayAdapter which uses a Gateway or a Relay via TCP/IP. This
type of implementation is dedicated to applets. The parameters (host,
port, userid, password, clientEncoding…) which define the
communication with VapGateway or vaprelay must be specified.
However the parameters which define the communication with the
application server must be specified in the VapGateway module.

 For more information, refer to the Middleware User’s Guide.

When a ServerAdapter object is instantiated, it systematically creates another
object of the Requester class which implements the technical conditions to
communicate with the Server, e.g. the methods for sending and receiving
messages. There are two ways of implementing the Requester class. These
two implementations are associated, respectively, with the
MiddlewareAdapter and GatewayAdapter classes :

 NativeRequester which directly accesses (via JNI) the C functions of
the middleware DLLs.

 GatewayRequester which implements the messages via vaprelay or
VapGateway.

86 eBusiness & Pacbench C/S Applications- Graphic Presentation

Direct Access to the Middleware

The following diagram shows you the processing of a request:

under CPI-C

under TCP-IP

Middleware Java Virtual
Machine

Resources
ixomsgen.dll

Execution under
...
ixo....dll

Service
interpretation
ixomware.dll

Execution

ixosock.dll

Execution

ixocpic.dll

Interface
Server

MwAdapter.dll
GwAdapter.dll

Workstation

To instantiate a Folder in direct mode, you can use the default builder
CustomerProxyLv()

For example:
myProxy = new CustomerProxyLv() ;
myproxy.setLocationsFile("c:\vap\gen\java\VAPLOCAT.INI") ;

The second instruction specifies which location file must be used. By default,
we search for a VAPLOCAT.INI file located in the current directory.

Access via a Gateway

Two builders can be used to instantiate a Folder via the Gateway:
 CustomerProxyLv(String host)

 For example: new CustomerProxyLv("9.134.5.146")
 CustomerProxyLv(String host, int port)

For example: new CustomerProxyLv("9.134.5.146", 6001)

 If host is equivalent to null, we consider that it is a local middleware.

Access via a Particular Adapter

You access the middleware via a particular adapter by using the
setServerAdapter(ServerAdapter) or
setServerAdapterName(String) property.

For example: proxy.setServerAdapterName(“GwAdapter”)

Chapter 4: Developing a Java Client 87

Dynamic Change of the Middleware Access Parameters

Different methods of the Root Proxy allow dynamic changes of these
parameters:

 void setHost(String host)
 If host is equivalent to null, we consider that it is a local

middleware.
 void setPort(int port)
 void setLocationsFile(String filename) (direct mode)
 void setTraceFile(String filename)
 void setTraceLevel(int traceLevel) (direct mode)

88 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 89

Definition of the Use Context via the Location Editor
The communication management requires the definition of the middleware use
context. This context corresponds to a location.

You define locations, via the Location Editor tool, in a specific file named
vaplocat.ini.

 See the online help available from the Location Editor. See also the Middleware
User’s Guide, chapter Protocols Description & Configuration for the list and the
meaning of the parameters you must specify for each location, depending on
the protocol in use.

There are various ways of launching the Location Editor:

Launching from the eBusiness Module of Developer workbench

You launch the Location Editor from the ‘Applications’ or ‘Folders’ tab of
Developer workbench.

Launching from VisualAge for Java

To launch the Location Editor from VisualAge for Java directly, select, in the
‘Workspace’ menu, ‘Tools’ ‘VisualAge Pacbase eBusiness’ ‘Location
Editor’.

Launching from the .exe File

Execute the vapLocationEditor.exe file.

You can parameterize the launching of the Location Editor via the following
option:

-inputfile<INPUT_FILE>: this parameter enables you to indicate the path
of the file which will initialize the Editor. This file is either an existing
location file or a .gvc file (which contains the extraction of eBusiness
proxies). All the characteristics of the Communication Monitors are present
in this input file.

Instead of initializing the Editor by an input file, you can choose to launch the
Editor in expert mode in order to create and modify Communication Monitors.
In this case, use the –expertmode option.

Launching from a Java Virtual Machine

To launch the Location Editor from a Java Virtual Machine, execute the
java_vapLocationEditorTool.bat file.

This .bat is an example which you must modify according to the location of
your JDK (Java Developer ToolKit) or JRE (Java Runtime Environment).

You can indicate the option indicated above to parameterize the launching of
the Location Editor.

Testing the Generated Application – Packaging

Testing the Generated Application

Testing Server Components with the Services Test Facility

You can test the server-side components of your application without having to
develop the application’s graphic interface. You can do that via the Services
Test Facility.

This Facility enables you to see the proxy’s attributes, test the available methods
and the communication.

You can then identify problems related to:
 The design and implementation of Folders and Elementary

Components,
 Proxies generation,
 Communication and middleware.

 See the online help available from the Services Test Facility.

There are different ways of launching the Services Test Facility:

Launching from the eBusiness Module of Developer Workbench

You launch the Services Test Facility from the ‘eBusiness Applications’ tab of
the workbench.

Launching from WSAD (or Eclipse)

To launch the Services Test Facility from WSAD (or Eclipse), right click on:
 a Java project which contains VisualAge Pacbase proxies,
 or one or more packages which contain VisualAge Pacbase proxies,
 or one or more Java classes which correspond to VisualAge Pacbase

proxies.

Launching from VisualAge for Java

To launch the Services Test Facility from VisualAge for Java directly, select, in
the ‘Workspace’ menu, ‘Tools’ ‘VisualAge Pacbase eBusiness’ ‘Services
Test Facility’.

Launching from the .exe File

Execute the vapServicesTestFacility.exe file.

You can parameterize the launching of the Services Test Facility via the
following options:

-classpath<PATH>: this parameter enables you to indicate the path of
the proxies classes that you want to test.

-folders<PROXY_CLASS_NAME>: this parameter enables you to
indicate the proxies that you want to test.

Launching from a Java Virtual Machine

To launch the Services Test Facility from a Java Virtual Machine, execute the
java_vapServicesTestFacility.bat file.

90 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 91

This .bat is an example which you must modify according to the location of
your JDK (Java Developer ToolKit) or JRE (Java Runtime Environment).

You can indicate the options indicated above to parameterize the launching of
the Services Test Facility.

Version Compatibility Check

If the version control option detects any discrepancy, it means that the
Elementary Component and the Proxy object were not generated with the same
version number. So you must:

 regenerate the Proxy object if you have regenerated only a new version
of the Elementary Component,

 or implement, in VisualAge, the generated graphic application
including the new proxy component if it has not already been done,

 or implement the generated Elementary Component if it has not already
been done.

Packaging
Packaging consists in making a developed and tested application or applet
available for use outside the development environment. To do so, you must
export this applet or application.

Reminder: Prerequisites

In the operating phase, the VAPLOCAT.INI file must be located in the same
directory as the final applications. The developer responsible for the installation
of these applications must make sure of it.

 Applet

For the implementation of a Java applet, the following elements should be
installed on the user's station:

 An HTTP server
 A 1.1 enabled Java Web browser
 The gateway and the relay are installed on the HTTP server station

 Standalone application

For the implementation of a Java standalone application, the Java Runtime
Environment (JRE) should be installed on the user's workstation.

 For more details on the execution environment, refer to the eBusiness & Pacbench
C/S Applications: Concepts & Architecture manual.

Export

What will You Export ?

You must export all the execution classes used by the application which do not
belong to the base classes. The editing classes such as the BeanInfo classes or
the beans used for a quick mapping of VA Pac Data Element-type properties are
optional.

So you must export:

 All the packages of the project which contains the runtime, except the
packages com.ibm.vap.beans and/or com.ibm.vap.beans.swing
(depending on the package used in your application). For those two
packages, export only the classes actually used by your application.

 The project containing the generated Proxy components,
 The applet or application itself, that is to say the whole project

containing the applet or the application or the package(s). In our
example, it is the vap.sample package (for the V1 example) or
example.swing (for the V2 example).

 possibly, the external beans: in the V1 example, we use the
ImulticolumnListbox bean. Therefore, it is necessary to export the
whole package, which is the com.ibm.ivj.javabeans package.

Implementation

 For an applet

Before exporting an applet, you must create a directory in the HTTP server root,
in which will be stored the export result. For example
c:\www\html\codebase. This directory constitutes the Root of Java classes in
the HTTP server.

 You can export the class files directly in the HTTP server tree structure, in
codebase in our example, or in another directory. In this case, copy these
files in the directory before implementing the applet, and respect the
packages' tree structure.

 For a standalone application

In this case, the location of the directory in which the result of export will be
stored does not matter. You just have to declare this directory in the
CLASSPATH variable.

How to export?

 From WSAD

In the File menu, choose Export. The export wizard opens.

 For more information, refer to the WSAD online help.

 From VisualAge for Java

To export, follow these steps:
 In the VisualAge for Java Workbench, select all the elements that you

want to export,
 In the File menu, select the Export choice,
 In the SmartGuide - Type of Export window, select the Class
Files option, and then click on Next,

 In the SmartGuide – Export to files window, enter the output
directory name or select it with the
Browse button, by using the Create package subdirectories
option.

92 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 4: Developing a Java Client 93

 For more information, refer to the online documentation
accessible from the VisualAge for Java workstation online help
(Help menu, Tasks. Choice, then Exporting to the file
system) or from Windows Explorer (open the Tasks
directory, select an HTML file in the Export director, the
overview.htm file being a suggested entry point).

Optimizing the Downloading Time of the .class File

For this option, the JDK should be installed in the execution environment.

Once the export has been executed in the form of .class files, you can
optimize the downloading time of classes by saving all these files into a single
archived file.jar.

In the DOS window, put your cursor in the export output directory, then enter
the following command:

jar cvf sample.jar com vap

where:
 sample.jar is the name of the archived file,
 com and vap represent two directories which contain all the.class

files required for the execution of the final application.

For an applet, the .jar file obtained must be copied in the HTTP server tree
structure.

Writing an HTML File (Applet Only)

Finally, it is necessary to write an HTML file containing the applet to be able to
execute it in a Web browser. This file is used to set some parameters, such as the
applet width and length.

To apply this procedure to our example, you must create, in the
c:\www\html\codebase\vap\sample directory, an index.html file
containing the following text:
<HTML>

<TITLE>

Sample Applet

</TITLE>

<BODY>

<CENTER>

<APPLET code="vap.sample.SampleApplet.class" WIDTH=1000"
HEIGHT=1000

codebase="/codebase"></APPLET>

</CENTER>

</BODY>

</HTML>

or the following text, if you have created a.jar archived file:
<HTML>

<TITLE>

Sample Applet

</TITLE>

<BODY>

<CENTER>

<APPLET code="vap.sample.SampleApplet.class" WIDTH=1000
HEIGHT=1000

archive="/codebase/sample.jar"

codebase="/codebase"></APPLET>

</CENTER>

</BODY>

</HTML>

Application Deployment
 To deploy an application, follow the operations described in the WSAD or

VisualAge for Java documentation.

But you must also install some files specific to the use of the eBusiness or
Pacbench C/S module.

 For an applet:

The end-user workstation must be equipped with a browser.

 For a standalone application:
 If no gateway is used, you must install, on the end-user workstation:

 the middleware package,
 VAPLOCAT.INI,
 VAPRUN.JAR,
 VAPSWING.JAR if the application uses Swing or
VAPAWT.JAR if the application uses AWT.

 If a gateway is used, you must install, on the server where the gateway
is installed:
 GATEWAY.EXE,
 the middleware package,
 VAPLOCAT.INI,
In this case, you must not install any of these files on the end-user
workstation. However, on this workstation, you must install:
 VAPSWING.JAR if the application uses Swing or
 VAPAWT.JAR if the application uses AWT.

94 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 5: Developing a COM Client 95

Chapter 5: Developing a COM Client
Once you have generated and compiled the Proxy objects, you just need to use
them in a client language able to manage ActiveX objects. In the example
described hereafter, the client language used is Visual Basic.

This chapter gives you a detailed description of a client development, including
the following steps: insertion of Proxy objects with programming links
involving actions, attributes and events, error management, communication
management and test of the application.

Visual Basic Example of a COM Proxy Use
This example presents the development of a Visual Basic executable program
using a COM Proxy. This Proxy has ben generated then compiled on a
workstation with Visual Studio 6.0.

In the example, three Elementary Proxies of the FVP are used:
 The Root Proxy corresponding to the Customers node which manages

the customers in the information system described by the Folder.
 The Dependent Proxy corresponding to the Orders node which

manages the orders in the information system described by the Folder.
 The Dependent Proxy corresponding to the Order lines node which

manages the order lines in the information system described by the
Folder.

Presentation of the End User Interface
The graphic user interface consists of two windows:

 The Customers Window

This window opens automatically at the Visual Basic executable program start.
It contains the following functionalities:

 The Select button is used to display a list of customers.

 The Read all button is used to submit a reading request of the
selected customer 's orders from this window.

 As a lock option has been specified in the Folder, the user must click on
the Lock button to lock the instance selected in the list before starting
any updating process.

 The Update button is used to update the database.
 The Orders... button is used to display the Orders Frame window.
 The Modify button is used to modify customers in the detail after

locking the instance.
 When a customer is selected in the list, the user must click on Lock to

appropriate this customer for a short time. Then, he can enter
modifications and click on Modify.

 The Orders Window

The Orders window opens when the user clicks on the Orders... button in
the Customers window.

For each customer selected in the detail of the Customers window, this
window allows you to:

 view this customer's list of orders.
 select an order in the list and display it in the detail.
 create, modify, delete orders.

Visual Basic Development Example
Developing the end user interface includes the construction of the Customers
and Orders windows as well as the interfacing with the COM Proxy.

You will not find here detailed information on how to use Visual Basic and
functions. If you are not familiar with them, refer to the appropriate
documentation.

Inserting the COM Proxy in the Visual Basic Project

To graphically integrate a Proxy to the Visual Basic toolbar, select the Project
menu, then Components. Then in the dialog box that opens up, check the
Proxy to be inserted.

96 eBusiness & Pacbench C/S Applications- Graphic Presentation

 If the Proxy you want is not in the list of objects, you can directly use

the Browse button to find it by specifying the object nameProxyLV.ocx
that is in the generation directory Release.

The selected Proxy is then displayed in the toolbar. You just need to insert it in
your Form.

Setting of the Proxy in the Application Design Mode

Some Proxy attributes such as the location type, the trace level or the trace file,
etc., can be parameterized when the application is designed.

You can view and modify these attributes using the Properties window that
can be accessed via the View menu, Properties window choice. Select the
Proxy you need in the list of objects.

Chapter 5: Developing a COM Client 97

Selecting and Filling the Grid Representing the rows Attribute

You find hereafter an example of code used to fill in a MSFlexGrid-type grid
resulting from a selection action, once the user has clicked on the Select
button.

Private Sub CmdSelect_Click()
 CustomerProxy.selectInstances
 'check if no error has occurred
 processErrors

 ' Put the customer rows in the grid
 For i = 0 To CustomerProxy.getRowsCount - 1
 Set customerDetail = CustomerProxy.getRowsElementAt(i)
 GrdCustomer.AddItem customerDetail.Nuclie & vbTab &
 customerDetail.Nomcli & vbTab &
customerDetail.Raisoc, i + 1
 Set customerDetail = Nothing
 Next i
End Sub

Error Processing

You find below an example that enables you to manage the possible errors sent
by the Proxy. This function can be called after each call of an action that can
send an error.

Sub processErrors()
Dim i As Integer
Dim vap_errors As VapCollection
Dim vap_error As VapError

 Set vap_errors = CustomerProxy.getErrors

98 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 5: Developing a COM Client 99

 i = vap_errors.Count

 While i > 0
 Set vap_error = vap_errors.Item(i - 1)
 MsgBox vap_error.getLabel, vbInformation, "Error has
occurred"
 Set vap_error = Nothing
 i = i - 1
 Wend

 Set vap_errors = Nothing
End Sub

 The objects VapCollection and VapError are provided by the
VapTools.dll utility. They must be referenced in the Visual Basic application.
To do so, select the Project, then References… menus, then check
VapTools.

Filling of the detail Attribute

The example below shows how the detail attribute of the Proxy is filled in
when a line is selected from the grid of the rows attribute.

Private Sub GrdCustomer_Click()
 ' Retrieve the current select row in the detail
 Set customerDetail =
CustomerProxy.getRowsElementAt(GrdCustomer.Row - 1)
 TxtId = customerDetail.Nuclie
 TxtName = customerDetail.Nomcli
 TxtCompany = customerDetail.Raisoc
 CustomerProxy.getDetailFromData customerDetail
 Set customerDetail = Nothing

Error Management
There are four error types:

 local errors,
 server errors,
 system errors,
 communication errors.

 The list of all the errors is available in Chapter 3: Development Principles Error
Management.

In a COM environment, you manage errors via the VAPERROR interface. This
interface contains attributes, actions and events which enable you to manage all
error types.

The VAPERROR interface is available in the VapTools library delivered with the
generator.

 The attributes, actions and events available through the VAPERROR interface are
documented in the eBusiness & Pacbench C/S Applications: Proxy Programming
Interface manual, Error Management chapter.

Communication Management
This subchapter contains all the information needed by the developer to
implement the middleware used by the applications generated with the
eBusiness or Pacbench C/S module.

 The information related to the operation of the middleware used by these
applications when they are deployed is documented in the Middleware User’s
Guide.

Processing a Request
Middleware services are executed from a set of specific communication classes
provided upon the installation of the product.

The communication with the Server is executed via the ServerAdapter
interface. There are two ways of implementing this interface:

 MiddlewareAdapter which directly accesses the middleware’s native
DLLs (in C++) which are locally installed. It also allows to parameterize
the communication context (location, userId, password,
clientEncoding...) and its operating mode (traceLevel,
nbMaxConnection, connectionCleaningInterval...).

 GatewayAdapter which uses a Gateway or a Relay via TCP/IP. This
type of implementation is dedicated to applets. The parameters (host,
port, userid, password, clientEncoding…) which define the
communication with VapGateway or vaprelay must be specified.
However the parameters which define the communication with the
application server must be specified in the VapGateway module.

 For more information, refer to the Middleware User’s Guide.

When a ServerAdapter object is instantiated, it systematically creates another
object of the Requester class which implements the technical conditions to
communicate with the Server, e.g. the methods for sending and receiving
messages. There are two ways of implementing the Requester class. These
two implementations are associated, respectively, with the
MiddlewareAdapter and GatewayAdapter classes :

 NativeRequester which directly accesses (via JNI) the C functions of
the middleware DLLs.

 GatewayRequester which implements the messages via vaprelay or
VapGateway.

100 eBusiness & Pacbench C/S Applications- Graphic Presentation

under CPI-C

under

ixo....dll

Middleware

Resources
ixomsgen.dll

Execution

...

Service interpretation
ixomware.dll

Execution under
TCP-IP
ixocpic.dll

Execution

ixocpic.dll

Client Workstation

Definition of the Use Context via the Location Editor
The communication management requires the definition of the middleware use
context. This context corresponds to a location.

You define locations, via the Location Editor tool, in a specific file named
vaplocat.ini.

 See the online help available from the Location Editor. See also the Middleware
User’s Guide, chapter Protocols Description & Configuration for the list and the
meaning of the parameters you must specify for each location, depending on
the protocol in use.

There are various ways of launching the Location Editor:

Launching from the eBusiness Module of Developer workbench

You launch the Location Editor from the ‘Applications’ or ‘Folders’ tab of
Developer workbench.

Launching from the .exe File

Execute the vapLocationEditor.exe file.

You can parameterize the launching of the Location Editor via the following
option:

Chapter 5: Developing a COM Client 101

-inputfile<INPUT_FILE>: this parameter enables you to indicate the path
of the file which will initialize the Editor. This file is either an existing
location file or a .gvc file (which contains the extraction of eBusiness
proxies). All the characteristics of the Communication Monitors are present
in this input file.

Instead of initializing the Editor by an input file, you can choose to launch the
Editor in expert mode in order to create and modify Communication Monitors.
In this case, use the –expertmode option.

Application Deployment
Deploying a client application using an ActiveX Proxy consists in installing the
runtimes and files required for the operation of the developed client application
on all the workstations, i.e. to make sure that this application can be used
outside its development environment, and on other workstations. So you must
install:

 MFC42.DLL (Microsoft),
 MSVCRT.DLL (standardly installed with Windows NT - Microsoft),
 OLEAUT32.DLL (standardly installed client languages supporting the

COM standard - Microsoft),
 the middleware package,
 VAPLOCAT.INI,
 VAPRUNTIME.DLL (runtime of the generated COM Proxies),
 VAPTOOLS.DLL (utility of the generated COM Proxies).

 To enable the multilingualism function of the Proxies, the error message file
(VapErrorMsg.pro) and the label and authorized values file specific to each
Proxy (_<folder>_Labels.pro) must be stored on the end-user workstation.

102 eBusiness & Pacbench C/S Applications- Graphic Presentation

Chapter 6: Index 103

Chapter 6: Index

 A
Actions/Methods

belongsToSubSchema ..48
checkExistenceOfDependencies ..30, 38
checkExistenceOfDependentInstances30, 38, 41
completeInstance ..48
createInstance..26
createRequest ..43
createUserInstance ...43
createUserServiceInstance ..44
deleteUserInstance ..43, 44
executeUserService ..40
executeUserServices..43, 44
get<delco>Index ..47
getCheck(int index)...47
getCheck<fieldIndex>...47
getDetailFromData..31
getDetailFromDataDescription.....................................31, 33, 35
getProxyContext..42
getRowsCount ..37, 39
getRowsElementAt(Int i) ...37, 39
getUserInputRowsCount ...44
getUserInputRowsElementAt(Int i) ..44
getUserOutputRowsCount ...44
getUserOutputRowsElementAt(Int i)...44
getUserServiceCodesCount ..43
getUserServiceCodesElementAt(Int i)43
initFromProxyContext...42
initializeInstance ..39
is<delco>Present...46, 47
lock..41, 44
modifyInstance...26
modifyUserInstance ...43, 44
readAllChildren(data)..41
readAllChildrenFrom..30, 41
readAllChildrenFromCurrentInstance41
readAllChildrenFromDetail...30, 35
readFirstChildren(data)...41
readFirstChildrenFrom..41
readFirstChildrenFromCurrentInstance.....................................41
readFirstChildrenFromDetail ..30, 33
readInstance ..30, 37, 40, 41
readInstanceAndLock..30, 41
readInstances ...30, 40, 41
readInstanceWithAllChildren30, 37, 40, 41
readInstanceWithAllChildrenAndLock...............................30, 41
readInstanceWithFirstChildren30, 37, 40, 41
readInstanceWithFirstChildrenAndLock30, 41
readNextPage...30, 33, 34, 36, 41
readPreviousPage...30, 41
readWithAllChildren ...30
readWithAllChildrenAndLock ...30
readWithFirstChildren...30
readWithFirstChildrenAndLock ..30
resetCollection...39
resetSubSchema ..48
resetUserRows ...44
resetUserServiceCodes ...43, 44
resetUserServiceInputInstances ...43
selectInstances ...30, 36, 41
sendRequest ...43
set<delco>Present(aBoolean) ...47
setCheck<fieldIndex,aBoolean> ...47
setNull<delco>Present(boolean aBoolean)..............................46
setRequest ..43
undoAllLocalFolderUpdates...38, 39
undoLocalFolderUpdates ...38, 39
unlock ..41
updateFolder ..30

Attributes/Properties

action.. 17, 23
detail ..31, 37, 38, 45, 51, 52
extractMethodCode... 36
extractMethodCodes ... 36
globalSelection .. 30, 36, 37
localSort .. 27
manualCollectionReset.. 39
maximumNumberOfRequestedInstances 30, 37
maxNumberOfRequestedInstances.. 30
refreshOption .. 39
rows ...13, 27, 31, 37
selectionCriteria .. 36
serverCheckOption .. 26
serverCheckOption .. 47
subSchema... 29
subSchema... 48
subSchemaList ... 29
updatedFolders.. 30
UpdatedFolders.. 17, 23
updatedInstancesCount ... 17, 23
userDetail .. 43, 44
userServiceCode... 43
userServiceCodes ... 43
userServiceInputRows ... 43
userServiceOutputRows.. 43

 E
Events

LOCK_FAILED ... 45
lockFailed.. 45
NO_PAGE_AFTER ... 30, 50
NO_PAGE_BEFORE .. 30, 50
noPageAfter .. 30, 49
noPageBefore ... 30, 48
NOT_FOUND.. 50
notFound .. 49
PAGE_AFTER ... 50
PAGE_BEFORE .. 50
pageAfter .. 49
PageBefore... 49

 G
Generated classes

[Prefix]Buffer ... 17, 23
[Prefix]Data ... 17, 23
[Prefix]DataUpdate.. 17, 23
[Prefix]ProxyLvXMLMapping... 18, 23
[Prefix]ProxyLvXMLWrapper ... 18, 23
[Prefix]SelectionCriteria .. 17, 23
[Prefix]Session.. 18
[Prefix]SessionBean .. 18
[Prefix]SessionHome .. 18
[Prefix]TableModel ... 18
[Prefix]UpdateTableModel.. 18
[Prefix]UserData... 17, 23
DataDescription.. 13
selectionCriteria .. 13

Generated XML Schema
[Folder_Name].xsd .. 18, 23

Generic classes
CommunicationError.. 13
DependentNode... 13
DependentProxyLv... 13
Folder .. 13
HierarchicalNode.. 13
HierarchicalProxyLv.. 13
LocalException .. 13
Node ... 13
Pacbase Date Choice .. 14

Pacbase Date Field ...14
Pacbase Date Swing Field ...14
Pacbase Decimal Choice...14
Pacbase Decimal Field ...14
Pacbase Integer Choice ...14
Pacbase Integer Field..14
Pacbase Long Choice ...14
Pacbase Long Field ...14
Pacbase Swing Date ComboBox ...14
Pacbase Swing Date RadioButtonGroup14
Pacbase Swing Decimal ComboBox...14
Pacbase Swing Decimal Field ...14
Pacbase Swing Decimal RadioButtonGroup...........................14
Pacbase Swing Integer ComboBox ...14
Pacbase Swing Integer Field ...14
Pacbase Swing Integer RadioButtonGroup14
Pacbase Swing Long ComboBox ...14
Pacbase Swing Long Field ...14
Pacbase Swing Text ComboBox ..14
Pacbase Swing Text Field...14
Pacbase Swing Time ComboBox ...14
Pacbase Swing Time Field ...14
Pacbase Text Choice ..14
Pacbase Text Field...14
Pacbase Time Choice ...14

Pacbase Time Field... 14
ProxyLv ... 13
ReferenceNode... 13
ReferenceProxyLv... 13
RootNode... 13
ServerException .. 13
SystemError .. 13
VapDependentProxyProperties ... 13
VapException... 13
VapFolderProperties... 13
VapHierarchicalProxyProperties.. 13
VapProxyProperties.. 13
VapReferenceProxyProperties ... 13
XMLMapping ... 14
XMLWrapper ... 14

 M
Methods..See Actions/Methods

 P
Properties... See Attributes/Properties

This index is not an exhaustive list of the public interface elements.

 To obtain the list of elements, refer to the Graphic Presentation: Public Interface of
Generated Components Reference Manual.

104 eBusiness & Pacbench C/S Applications- Graphic Presentation

	Chapter 1: Introduction
	Chapter 2: Generating Proxies
	Delivered Generic classes (Java)
	Online Documentation of Generic Classes

	Launching the Generator
	From the eBusiness Module of Developer workbench
	From WSAD (or Eclipse)
	From VisualAge for Java
	From the .exe File
	From a Java Virtual Machine

	Generation Results
	Java
	Introduction
	Generated Classes
	Import
	Online Documentation of the Generated Classes
	Customizing Classes

	COM
	Introduction
	Generated Classes
	Compilation Results
	Compiling with Visual C++ Version 5.0 and 6.0

	Chapter 3: Development Principles
	Visual Representation of Proxies in the Target Environment
	Java Environment
	COM Environment

	Use of Properties
	Local Checks
	Check of the Length of the detail Property Fields
	Selecting the Local or Server Sort Criterion on a List of Instances
	Local Sort
	Server Sort

	Specification of the Local Sort Criterion (Java Only)
	Table Model (Java Only)
	Sub-schema Management

	Use of Methods
	The Different Types of Server Methods
	Managing Folder Reading
	Provisional Large Reading of Dependent Nodes
	Transferring an Instance Between the rows and detail Properties
	Large Reading and Transferring an Instance Between Rows and Detail Properties: Working Mechanism
	Large Reading of Reference Nodes
	Principle of Paging in a Folder's Nodes
	Selection Criteria Associated with Large Reading Methods
	Limitation of the Scope of Large Reading
	Reading of a Root Node or Dependent Instance
	Reading of a Reference Node Instance
	Selection Criteria Associated with Instance Reading

	Folder Update Management
	Local Updates
	Server Updates
	Management of Effective Transactions
	Re-initializing instances in the local cache
	Managing collections of instances
	Load of the local cache with no server access

	Asynchronous Methods
	Principles
	Global Methods or Methods Associated with an Instance
	Examples

	Storing the Proxy Context
	Externalization of the Management of Requests
	User Service
	Java
	COM

	Database Logical Lock
	Customization of the Columns of a Jtable (Java Only)
	Management of Data Element Presence
	Java
	COM

	Management of Data Element Check
	Java
	COM

	Sub-Schema Management

	Use of Events
	Java
	Event-driven Management of Large Reading
	Event-driven Management of Instance Reading

	COM
	Event-driven Management of Large Reading
	Event-driven Management of Instance Reading

	Error Management
	Introduction
	Local Errors
	Server Errors
	System Errors
	System Errors Received from the Elementary Component
	System Errors Received from the Communications Monitor
	System Errors Received from the Services Manager

	Communication Errors

	Chapter 4: Developing a Java Client
	Example of an Applet
	Introduction
	Presentation of the End User Interface
	Developing the End User Interface with VisualAge Java V1
	Implementing the Example and Creating the Applet
	Developing the Customers Window
	Mapping Rows and Detail
	Selection of an Instance in Rows and Transfer in Detail
	Activation of the Proxy's Methods and Navigation towards the Orders Window

	Developing the Orders Window
	Creating the Orders Window
	Integrating and Promoting the Dependent Proxy
	Mapping the Dependent Proxy's Rows and Detail
	Selection of an Instance in Rows and Transfer in Detail
	Activation of the Dependent Proxy's Methods
	Result in the Composition Editor

	Developing the End User Interface with VisualAge Java V2
	Implementing the Example and Creating the Applet
	Developing the Customers Window
	Mapping Rows and Detail
	Selection of an Instance in Rows and Transfer in Detail
	Activation of the Proxy's Methods and Navigation towards the Orders Window

	Developing the Orders Window
	Creating the Orders Window
	Integrating and Promoting the Dependent Proxy
	Mapping the Dependent Proxy's rows and detail
	Selection of an Instance in rows and Transfer in detail
	Activation of the Proxy's Methods

	Specificities of a Standalone Application
	Introduction
	Example

	Error Management
	Principles
	Introduction
	Programming

	Local Errors
	Server Errors
	System Errors
	Communication Errors
	Example of Error Management
	Introduction
	Presentation of the Non-Visual Classes in Use
	Presentation of the ErrorManagerExample Visual Class
	Graphic Interface
	Class Functionalities

	Code for Displaying the Error Window

	Communication Management
	Processing a Request
	Direct Access to the Middleware
	Access via a Gateway
	Access via a Particular Adapter
	Dynamic Change of the Middleware Access Parameters

	Definition of the Use Context via the Location Editor
	Launching from the eBusiness Module of Developer workbench
	Launching from VisualAge for Java
	Launching from the .exe File
	Launching from a Java Virtual Machine

	Testing the Generated Application – Packaging
	Testing the Generated Application
	Testing Server Components with the Services Test Facility
	Launching from the eBusiness Module of Developer Workbench
	Launching from WSAD (or Eclipse)
	Launching from VisualAge for Java
	Launching from the .exe File
	Launching from a Java Virtual Machine

	Version Compatibility Check

	Packaging
	Reminder: Prerequisites
	Export
	What will You Export ?
	Implementation
	How to export?
	Optimizing the Downloading Time of the .class File
	Writing an HTML File (Applet Only)

	Application Deployment

	Chapter 5: Developing a COM Client
	Visual Basic Example of a COM Proxy Use
	Presentation of the End User Interface
	Visual Basic Development Example
	Inserting the COM Proxy in the Visual Basic Project
	Setting of the Proxy in the Application Design Mode
	Selecting and Filling the Grid Representing the rows Attribute
	Error Processing
	Filling of the detail Attribute

	Error Management
	Communication Management
	Processing a Request
	Definition of the Use Context via the Location Editor
	Launching from the eBusiness Module of Developer workbench
	Launching from the .exe File

	Application Deployment

	Chapter 6: Index

