
VisualAge Pacbase

Structured Code

Version 3.5

���

VisualAge Pacbase

Structured Code

Version 3.5

���

Note

Before using this document, read the general information under “Notices” on page v.

You may consult or download the complete up-to-date collection of the VisualAge Pacbase documentation

from the VisualAge Pacbase Support Center at:

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

Consult the Catalog section in the Documentation home page to make sure you have the most recent edition of

this document.

First Edition (December 2004)

This edition applies to the following licensed programs:

v VisualAge Pacbase Version 3.5

Comments on publications (including document reference number) should be sent electronically through the Support

Center Web site at: http://www.ibm.com/software/awdtools/vapacbase/support.htm or to the following postal

address:

IBM Paris Laboratory

1, place Jean–Baptiste Clément

93881 Noisy-le-Grand, France.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983,2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Notices v

Trademarks vii

Chapter 1. Introduction 1

Purpose of the Manual 1

Description Principles 1

Introduction to Structured Code 2

Managed Entities/Associated Screens 4

Chapter 2. Parameterized Macro-Structures 7

Overview 7

The Program Entity 12

Call of Parameterized Macro-Structures (-CP) 21

X-References to Programs/Screens (-XP/-XO) 26

Chapter 3. Modifying the

Identification/Environment Div. (-B) . . . 31

Chapter 4. Modifying the Working

Storage/Linkage Section 35

Data Structure Calls (-CD) 35

Work Areas Screen (-W) 58

Work Areas Formatted Line 66

Chapter 5. Modifying the Procedure

Division 75

Introduction 75

Procedural Code Screen (-P) 75

Programmer Flags and Variables 104

Titles and Conditions Screen (-TC) 112

Chapter 6. Access Commands 125

On-Line Access Commands 125

On-Line Display Options 127

On-Line Action Codes 127

Generation and/or Printing 128

Chapter 7. Example of a Generated

Program 131

Introduction 131

Environment Division 131

Working-Storage Section: Beginning 132

Working-Storage Section: End 135

Procedure Division 136

Chapter 8. Appendix: Pure Cobol Source

Code (-9) 143

© Copyright IBM Corp. 1983,2004 iii

iv VisualAge Pacbase: Structured Code

Notices

References in this publication to IBM products, programs, or services do not

imply that IBM intends to make these available in all countries in which IBM

operates. Any reference to an IBM product, program, or service is not

intended to state or imply that only that IBM product, program, or service

may be used. Subject to IBM’s valid intellectual property or other legally

protectable rights, any functionally equivalent product, program, or service

may be used instead of the IBM product, program, or service. The evaluation

and verification of operation in conjunction with other products, except those

expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter

in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to the IBM

Director of Licensing, IBM Corporation, North Castle Drive, Armonk NY

10504–1785, U.S.A.

Licensees of this program who wish to have information about it for the

purpose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact IBM Paris

Laboratory, SMC Department, 1 place J.B.Clément, 93881 Noisy-Le-Grand

Cedex. Such information may be available, subject to appropriate terms and

conditions, including in some cases, payment of a fee.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1983,2004 v

vi VisualAge Pacbase: Structured Code

Trademarks

IBM is a trademark of International Business Machines Corporation, Inc. AIX,

AS/400, CICS, CICS/MVS, CICS/VSE, COBOL/2, DB2, IMS, MQSeries, OS/2,

PACBASE, RACF, RS/6000, SQL/DS, TeamConnection, and VisualAge are

trademarks of International Business Machines Corporation, Inc. in the United

States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries

licensed exclusively through X/Open Company Limited.

All other company, product, and service names may be trademarks of their

respective owners.

© Copyright IBM Corp. 1983,2004 vii

viii VisualAge Pacbase: Structured Code

Chapter 1. Introduction

Purpose of the Manual

This manual describes the specifications of the Structured Code function

which may be used independently from the complementary functions: the

Pacbench C/S, the On-Line Systems Development (OLSD) and the Batch

Systems Development (BSD) functions.

Some information concerning these functions is also related to the Structured

Code function. There are instances where the descriptions are entered in this

manual only in order to avoid redundancy.

PREREQUISITES

In order to understand the content of this manual, you should have taken the

VisualAge Pacbase Concepts and Facilities course and have an understanding

of Structured Code concepts.

Also, you are expected to have thoroughly read the following manuals:

. The ’Character Mode User Interface’ guide,

. The ’Data Dictionary’ manual.

Description Principles

In this manual, the entities and screens managed by VisualAge Pacbase are

described in two parts:

v An introductory comment explaining the purpose and the general

characteristics of the entity or screen,

v A detailed description of each screen, including the input fields for on-line

screens data entry into the Database.

For the description of batch input, refer to the ’Developer’s Procedures’

manual.

All on-line fields described in this manual are assigned an order number.

These numbers are displayed on the screen examples which appear before the

input field descriptions and allow for easy identification of a given field.

NOTE: If you use Developer workbench, refer to the on-line Help.

© Copyright IBM Corp. 1983,2004 1

NOTE: If you use the VisualAge Pacbase WorkStation, refer to the

’WorkStation User Interface’ guide which documents the

corresponding windows.

Introduction to Structured Code

The Structured Code allows programmation teams to realize management

programs. Linked with the Specifications Dictionary, it offers the following

possibilities:

v Definition of Programs, using a Definition screen which contains the

general characteristics of a Program (Program name, type, explicit

keywords, etc.),

v Calling Data Structures already described in the Specifications Dictionary.

They can be called as many times as necessary in one or several Programs.

v Description of work areas, either by calling existing Data Structures or

describing Data Structures specific to the Program.

v Description of procedures for a given Program.

v Definition of Macro-Structures, a Macro-Structure being a parameterizable

set of Structured Code lines that can be called in different Programs.

v Calling Macro-Structures in a Program. The same Macro-Structure may be

invoked several times by the same Program.

WRITING PROCEDURAL CODE

Automatic functions generated for a Dialogue give standard solutions to

standard problems, but do not always respond to all of the processing needs.

You can determine, at the development stage of an application, the way in

which you wish to solve the problem. It is recommended to use the standard

solutions provided by automatic functions as often as possible.

However, it is not recommended to try to fit a very complex procedure into

the automatic functions if it is going to complicate the clear structure of the

program. It is very important to completely think through the specifics of the

required procedures when a program is being developed.

If you have special needs, you may complete or partially replace standard

procedures using procedural code.

The Procedural Code (-P) is used to enter detailed specific procedures. Its use

ensures the structuring of procedures, as well as the readability and

convertibility of programs.

ADVANTAGES OF USING THE PROCEDURAL CODE

2 VisualAge Pacbase: Structured Code

The procedural code is a high-level language used by programming teams in

order to develop and implement any business-oriented programs. Procedural

Code, which must be used in conjunction with the Specifications Dictionary,

presents the following advantages:

v Improved conciseness compared to COBOL, due to the simplification of

COBOL commands and syntax;

v Hierarchical organization of procedures, which does not exist in COBOL;

v Structured programming using the following types of structures: BLOCK

(BL), IF THEN (IT), ELSE (EL), DO WHILE (DW), DO UNTIL (DU), CASE

OF (CO), etc.

v Improved portability due to independence from any specific hardware, and

the ability to generate in a COBOL code adapted to each computer system.

CROSS-REFERENCES

Since the Structured Code must be used in conjunction with the Specifications

Dictionary, all the facilities of the Specifications Dictionary function are

available.

Specifically, the user can establish cross-references between Data Elements,

Data Structures and Programs written with the Structured Code function.

These cross-references, which are extremely useful during program

development, become a valuable tool during program maintenance since they

allow the user to immediately evaluate the consequences of any changes

made.

TYPES OF PROGRAMS THAT CAN BE DEVELOPED

Both batch and on-line programs can be written in Structured Code using the

various features offered by parameterized Macro-Structures, i.e, technical

procedures associated with on-line Programs or Database Management

Systems.

The Structured Code function does not allow for the automatic Description of

Screens used in on-line Programs.

It does, however, provide the following:

v The generation of the COBOL source code, ready to be compiled and

adapted to the operating system.

v Improved portability. Input in a single field enables the user to specify to

which operating system a program should be adapted.

v Consistency between the described data and the generated COBOL code.

Both originate from one common source: the Database.

Chapter 1. Introduction 3

v Customizing the automatically generated functions provided via the Batch

or On-Line Systems Development functions.

Managed Entities/Associated Screens

The Structured Code function manages a single entity, the Program entity,

which is defined and described on the following screens:

v Program Definition

v Call of Parameterized Macro-Structures (-CP),

v Call of Data Structures (-CD),

v Beginning Insertions (-B),

v Work Areas (-W),

v Procedural Code (-P).

The Program Definition (-P) screen is used to define the Program code, the

Program name, and its general characteristics.

The Call of P.M.S.’s (-CP) screen is used to include lines described in other

programs. This is done by replacing the parameters indicated with specific

values.

The Data Structures (-CD) screen is used to get the description of I/O fields

from the Program.

The Beginning Insertions (-B) screen is used to modify the ENVIRONMENT

DIVISION statements that are generated automatically as a result of Data

Structure calls.

The Work Areas (-W) screen is used to modify fy the WORKING-STORAGE

and/or LINKAGE SECTIONs, supplementing the descriptions obtained

automatically.

The Procedural Code (-P) screen is used to write sequences of instructions in a

portable, structured, and hierarchical format.

&2NOTE& For information on Batch access lines, refer to the ’Developer’s

Procedures’ manual.

As all entities, programs can be documented by Comment lines, by text

assignment (see the ’Data Dictionary’ manual).

REVERSE ENGINEERED PROGRAMS

Programs that have been ″reverse engineered″ include only the following:

4 VisualAge Pacbase: Structured Code

v Work Area (-W) lines,

v Source Code (-SC) lines (COBOL source code).

It is possible to add Structured Code (-W and -P lines) and Calls of

Marcro-Structures (-CP lines) to these programs, and then regenerate them.

Call of Data Structures (-CD) and Beginning Insertions (-B) lines are ignored.

Chapter 1. Introduction 5

6 VisualAge Pacbase: Structured Code

Chapter 2. Parameterized Macro-Structures

Overview

INTRODUCTION

The purpose of a Parameterized Macro-Structure is to standardize sequences

of procedural code, with possible variations, in order to use them:

v One or more times in one program,

v In several different programs.

DEFINITION

A Parameterized Macro-Structure (P.M.S) is defined on a Program Definition

(P) screen. It is a set of Beginning Insertions (-B), Work Areas (-W) and

Procedural code (-P) lines which produces one or more sequences of

statements which can be used in one or more programs.

A P.M.S. is not a sub-program. A sub-program can only contain consecutive

statements. A P.M.S. can contain non-consecutive statements. It is possible,

however, to call a sub-program from a P.M.S.

A PMS can also be defined from a program imported via the Reverse

Engineering function. It would contain ’-W’, ’-SC’ (Source Code lines from the

″reversed″ program), and ’-P’ lines (if ″reversed″ program’s PROCEDURE

DIVISION has been modified). In this case, this PMS in only taken into

account in ″reversed″ programs (TYPE AND STRUCTURE OF PROGRAM =

’S’).

PRINCIPLES

When a P.M.S. is called into a Program, the request for a description of the

Program (DCP, DCO) and for its generation (GCP, GCO) will produce the

Macro-Structure(s) interspersed within the Program according to the key

(Function/Sub-Function code etc.). Parameters (if any) are resolved.

As a result, P.M.S. instructions are part of the Program.

TYPES OF MACRO-STRUCTURES

Generally speaking, Parameterized Macro-Structures are used to describe

functions that are common to several Programs, or to several procedures of

the same Program.

© Copyright IBM Corp. 1983,2004 7

There are six basic types of Macro-Structures:

v A ’general program outline type’ used to give a Program a standard

structure which takes into account all the Program development standard

followed at the user site. This type of PMS is also used to describe a body

of technical (system-oriented) procedures that are linked to the use of a TP

Monitor or a DBMS;

v A ’technical (system-oriented) functions type’ used to standardize specific

commands, such as the input/output procedures of a DBMS (Read, Modify,

Suppress, etc.);

v A ’complex technical functions type’ used to resolve all the complicated

procedures involved in a DBMS, whether or not in an on-line environment,

such as validation management, the sequential read of a file, the complete

technical procedures for Database update, the particular access path used in

a Database, etc. In general, this type is a combination of elementary

technical functions that the user has to rewrite in order to minimize the

task of connecting elementary P.M.S.’s to one another;

v A ’general function type’ used to resolve certain procedures that are

common to a set of applications, such as date validation, date

transformation, or ″shop″ standards for on-line error message handling. The

user should keep in mind that this type of PMS is independent of the

computer system, the TP Monitor and the DBMS used;

v A ’specific function type’ used to ’harmonize’ the development of

programs that make up a system. For example, to standardize the

presentation of certain reports or screens by using common procedures

defined in a P.M.S.

v A type used to create cross-references; for example, if a P.M.S. calls a

sub-program, you can automatically find out what Programs use that

sub-program.

DIFFERENCE BETWEEN P.M.S.’S AND SUB-PROGRAMS

The user must often decide whether to use a sub-program or P.M.S. to

consolidate all the procedures that are common to several Programs. In order

to find the answer, the user must ask several questions:

. Are the common procedures consecutive?

. Is the position of these procedures defined?

. Is the number of parameters used important?

. Are these procedures executed as a general rule?

8 VisualAge Pacbase: Structured Code

Answers to these questions will help determine which procedures should be

executed in a sub-program and which should be executed in a P.M.S.

v If they are not consecutive ==> P.M.S.

v If the position is already defined ==> P.M.S.

v If the number of parameters is important ==> SP.

v If the procedures are not executed as a general rule ==> SP.

PARAMETERIZING A PROCEDURAL CODE (-P) SCREEN KEY

The System allows the user to parameterize the major part of the Procedural

Code (-P) screen keys (Function code, sub-Function code, and the first two

characters of the LINE NUMBER). As a recommendation, before writing a

Macro-Structure, try to structure the procedure to be written. Try to minimize

the number of parameters in the key, so as to:

. Facilitate usage of the P.M.S.,

. Obtain Programs with a homogenous structure.

. Minimize the resolution time of a P.M.S.

As a general rule, it is not recommended to use a P.M.S. instead of a simple

line or two of Procedural Code. The latter solution may be more efficient with

respect to performance at generation time and also to limit the number of

necessary P.M.S. calls.

DOCUMENTATION OF A P.M.S.

Good documentation of a P.M.S. is important. It gives the user the information

needed to use the P.M.S. properly: what each parameter means, which

functions and/or sub-functions are used, etc.

A P.M.S. can be documented in two different ways:

v In the same way as any program, via the Comments (-GC) screen,

v On the P.M.S.’s X-Reference to Programs (-XP) or to On-Line screens (-XO)

screen.

Note that Comment lines entered on the General Documentation screen will

not appear in sub-reports of a Program Description (DCP, GCP; DCO, GCO)

whereas the cross-reference lines will. This may be the most effective way to

document the meaning of the parameters, however, since the lines will

reappear each time the Macro is called, brevity is advisable.

OVERRIDE OF A P.M.S. LINE

Chapter 2. Parameterized Macro-Structures 9

Given the same key, Procedural Code (-P), Work Areas (-W) and Beginning

Insertions (-B) lines of a Program override PMS lines. It is better to design

Parameterized Macro-Structures so that as few lines as possible will be

overridden by the Programs.

Each overridden P.M.S. line will appear in the Program Description (DCP,

GCP; DCO, GCO) preceded by an asterisk. This can make a Program harder

to read. It is preferable to include as few lines of this type as possible in a

P.M.S.

If there is a Macro-Structure line key with a matching key in another

Macro-Structure called into the same Program, neither of the lines are

considered for processing. These lines will be identified with an asterisk in the

Program Description.

In cases where the identical key appears several times, the maximum number

of comment lines (with an asterisk) that will appear in the Program

Description is ten. These lines will not appear in the generated code.

CONSISTENCY OF PARAMETERS

It happens frequently that one Program calls several P.M.S.’s. The user should

check that the parameters are used consistently. For example, if two different

P.M.S.’s are called into the same Program, and both use a Data Structure code

as a parameter, both P.M.S.’s would ideally have that code in the same

position. This has a twofold advantage of being easier for the programmer,

and of presenting the same type of information in the same order in a

Program.

While this is not always possible, it would be wise to consider the placement

of parameters in existing P.M.S.’s prior to designing a P.M.S.

NOTE:: Any Program already defined in the Database can be used as a

non-Parameterized Macro-Structure.

REMINDERS

The purpose of a Parameterized Macro-Structure (P.M.S.) is to standardize

functions common to several Programs. A called P.M.S. is a complement to the

generation possibilities of the System.

Usually, a P.M.S. appears in a Program Description as if its lines had been

directly entered by a programmer.

PURPOSE OF NON-EXPANDED MACRO-STRUCTURES

10 VisualAge Pacbase: Structured Code

Non-expanded P.M.S.’s are reserved for batch Programs only.

Some P.M.S.’s are called many times in several Programs, and the

programmer considers them as part of his/her own standard environment. In

this case, there is no need to see the actual lines of these P.M.S.’s in the

Program Description.

However, these lines are taken into account when the Program is being

generated.

ADVANTAGES AND DISADVANTAGES

When a P.M.S. is called in a Program, an index, called an ’Expansion Index,’ is

created for each P.M.S. description line.

The system creates these indexes in order to display P.M.S. lines in the

description of the calling Program.

A P.M.S. call in a Program may have the following disadvantages:

v Slow response time during update of the P.M.S. to be expanded for all

users (serialization of updates);

v Disorganization of the Index File (AN) by mass insertion of keys that are

often contiguous;

v Large increase in the number of records in the Index File, thus lengthening

execution time of the batch save, restore and reorganization procedures.

Using non-expanded P.M.S.’s can make improvements in these three areas

provided the user does not need to view the P.M.S. to update it on-line.

Response time is thus improved because non-expanded P.M.S.’s do not create

extra records in the Index File (AN).

However, using non-expanded P.M.S.’s may have the following disadvantages:

v For a non-expanded P.M.S. which is not displayed on-line, writing and

maintaining the Program may be more difficult;

v For a P.M.S. expansion which occurs during a Program extraction for

generation and printing, the execution time of the GPRT utility procedure is

increased.

On the Call of P.M.S.’s screen (-CP), non-expanded P.M.S.’s are indicated with

an ’N’ in the Expansion (’E’) field.

Chapter 2. Parameterized Macro-Structures 11

The Program Entity

The purpose of the Program entity with respect to the Structured Code

function is to define Parameterized Macro-Structures.

GENERAL CHARACTERISTICS

Although the primary focus in this manual is to provide the Structured Code

meaning of the Program entity screens and their fields, Descriptions have

been included in their entirety. This is due to the fact that the Program entity

is also used to write batch programs. This means that the user may easily

convert a suitable Program into a Macro.

NOTE: Macro-Structures do not take Call of Data Structures lines into

account, but Programs do.

The Program entity contains:

v A required Definition screen (P), giving general characteristics (Program

code, keywords, etc.),

v Comment lines entered on the General Documentation screen or

X-reference to Programs / On-line screens, to provide useful and/or

necessary information,

v Several types of description lines:

– Beginning Insertions (-B) lines which enable the user to modify the

IDENTIFICATION DIVISION, and the ENVIRONMENT DIVISION that

is generated, up to and including the ’DATA DIVISION’ and ’FILE

SECTION’ statements.

– Work Areas (-W) lines supplement the DATA DIVISION in the

generated Program,

– Procedural Code (-P) lines customize the PROCEDURE DIVISION in the

generated Program,

– Source Code (-SC) lines (″reversed″ program only).

INPUT SPECIFICATIONS

The program classification code of a non-expanded P.M.S. is ’N’ (instead of

’M’ for a regular P.M.S.) and is entered in the PROGRAM CLASSIFICATION

CODE field on the Definition screen (P) of the P.M.S. (This code has a

documentary value in the sense that it does not affect the generated code).

The TYPE OF COBOL TO GENERATE for a Macro is normally ’N’ so that the

variant is determined by defaulting to the variant selected by the batch or

on-line Program to which the Macro is attached. (This also improves

portability).

12 VisualAge Pacbase: Structured Code

PROGRAM STRUCTURE

Every program is organized as a set of successive processing steps that are

performed either as a loop (in batch) or in an execution (on-line). These

processing steps include:

v getting the data,

v checks,

v updates,

v printings,

v returning the output.

Each one these processing steps consists of a group of homogeneous

sequences of instructions called ″functions.″

The Program is structured by two supplementary principles:

v Linear linking of functions in the logical order of their execution, with each

executing a functional or technological task in the Program. Each function is

identified by a code from 0A to 99.

v Hierarchical structuring of the processing steps in each function. A function

can be broken down into sub-functions, which, in turn, can be further

broken down into sub-functions, and so on.

Functions and sub-functions follow one another in the order of their codes, as

determined by the EBCDIC collating sequence, with letters preceding

numbers, regardless of the sorting sequence in effect for the hardware being

used.

PRINCIPLES OF GENERATING A COBOL PROGRAM

Programs developed under VisualAge Pacbase are generated upon request in

the COBOL variant that corresponds to the hardware and the compiler for

which they are intended.

The IDENTIFICATION DIVISION of the COBOL Program is generated from

the Program Definition line. This line can be modified (’-B’).

The ENVIRONMENT DIVISION and the FILE SECTION are generated from

Data Structure calls in the Program (’-CD’). They can be completed or

modified (’-B’).

The other sections of the DATA DIVISION are generated from Data Structure

calls. They can be completed or modified (’-W’).

Chapter 2. Parameterized Macro-Structures 13

The PROCEDURE DIVISION is generated from Data Structure or Segment

calls and from processing descriptions in Procedural code (’-P’).

Macro-structure call lines are used to call all the other pre-described

Procedural code lines (see the chapter ’Macro-Structures’).

CONSTANTS OF PROGRAMS

In the WORKING-STORAGE SECTION of all Programs, the System generates

a PAC-CONSTANTS field in which the following are defined:

v the generation session number of the Program,

v the code of the Library in which the Program is defined,

v the generation date of the Program (MM/DD/YY if user language = ’E’, or

DD/MM/YY otherwise),

v the code of the Program,

v the code of the user who requested the generation,

v the generation time of the Program,

v the external name of the Program,

v the code of the Database,

v the generation date with century (MM/DD/CCYY if user language = ’E’,

or DD/MM/CCYY otherwise).

These fields can be used in the Program execution report. They are preceded

by the literal ’WORKING’, which can serve as a marker in a dump in the

event of an execution problem.

DEFINITION

A Program is defined on the Program Definition (P) screen. The user enters a

code, a name and the main characteristics of the Program. It is accessed by

entering the following input in the CHOICE field:

CH: P......

14 VisualAge Pacbase: Structured Code

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| PROGRAM CODE PO0001 1 |

| |

| PROGRAM NAME.......................: VENDOR 2EPORTS |

| |

| CODE FOR SEQUENCE OF GENERATION....: PO0001 3 |

| |

| TYPE OF CODE TO GENERATE...........: 0 4 |

| COBOL NUMBERING AND ALIGNMENT OPT..: 5 |

| CONTROL CARDS IN FRONT OF PROGRAM..: B 6 |

| CONTROL CARDS IN BACK OF PROGRAM...: B 7 |

| COBOL PROGRAM-ID...................: PO0001 8 |

| MODE OF PROGRAMMING................: P 9 |

| TYPE AND STRUCTURE OF PROGRAM......: B 10 |

| PROGRAM CLASSIFICATION CODE........: P PRO11AM |

| TYPE OF PRESENCE VALIDATION........: 12 |

| SQL INDICATORS GENERATION WITH ’-’ : 13 |

| |

| EXPLICIT KEYWORDS..: 14 |

| |

| UPDATED BY.........: XXXX ON: 06/10/2001 AT: 18:59:31 LIB: CIV |

| |

| SESSION NUMBER.....: 0059 LIBRARY......: CIV LOCK....: |

| O: C1 CH: Ppo0001 ACTION: |

--

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

1 6 PROGRAM CODE (REQUIRED)

Code identifying the program in the library.

2 30 PROGRAM NAME (REQUIRED IN CREAT)

It must be as explicit as possible since the implicit

keywords are created from this name.

3 6 CODE FOR SEQUENCE OF GENERATION

Default option: PROGRAM CODE in the VisualAge Pacbase

Library.

Programs are sorted on this code in the generated program

stream.

4 1 TYPE OF COBOL TO GENERATE

Specifies the COBOL variant for the generated Program.

The default value at creation is the value of the

GENERATED LANGUAGE field in the Library Definition.

Compatibility of Programs generated with Cobol 85, Cobol

II, Cobol/370, Cobol OS/390 operates according to the

value of the GENERATED LANGUAGE in the Library.

Chapter 2. Parameterized Macro-Structures 15

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’N’ No adaptation to a language variant.

It is used to prevent program generation.

’0’ Adaptation to COBOL IBM MVS/ESA OS/390

’1’ Adaptation to COBOL IBM DOS/VSE

’3’ Adaptation to COBOL: MICROFOCUS, IBM AIX-OS/2-

Windows/NT

’4’ Adaptation to COBOL: BULL Gcos7

’5’ Adaptation to ANSI COBOL: BULL Gcos8

’7’ Adaptation to COBOL: HP-3000

’8’ Adaptation to ANSI COBOL: UNISYS A Series

’C’ Extraction of COBOL Source Code.

(Refer to chapter ’Appendix: Pure COBOL Source Code’ in

the ’Structured Code’ manual).

’F’ Adaptation to COBOL: TANDEM

’I’ Adaptation to COBOL: DEC/VAX VMS

’K’ Adaptation to ANSI COBOL: ICL 2900

’M’ Adaptation to COBOL: BULL Gcos6

’O’ Adaptation to COBOL: IBM AS 400

’R’ Adaptation to COBOL: TUXEDO

’U’ Adaptation to ANSI COBOL: UNISYS 2200 Series

’X’ Adaptation to COBOL IBM MVS/ESA OS/390

’Q’ Adaptation to ACUCOBOL

5 1 COBOL NUMBERING AND ALIGNMENT OPTION

This option can be used to suppress numbering or the

identification of a program or to modify the justification of

the generated program lines.

blank Numbering, justification and identification of program in

accordance with the standard COBOL line (default value).

’1’ Suppression of numbering.

’2’ Suppression of numbering and justification of statements

(columns 8 to 71 inclusive) in column 1.

’3’ Standard numbering and justification, suppression of

program identification.

’4’ Suppression of numbering and program identification.

16 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’5’ Suppression of numbering and of program identification

justification of instructions (columns 8 to 71 inclusive) in

column 1.

6 1 Control cards in front of programs

Enter the one-character code that identifies the job card to

be inserted before the generated program.

Default: Code entered on the Library Definition Screen

7 1 CONTROL CARDS IN BACK OF PROGRAMS

Enter the one-character code that identifies the job card to

be inserted after the generated program.

Default: Code entered on the Library Definition Screen

8 8 COBOL PROGRAM-ID

(Default value at generation: CODE FOR SEQUENCE OF

GENERATION.)

This code identifies the generated program:

.in the IDENTIFICATION DIVISION,

.in a source module library,

.in the library of executable modules.

This code intervenes (totally or partially) in the job control

language lines generated before or after the program.

9 1 MODE OF PROGRAMMING

Structured Code

’P’ Default value when creating a Library. Programming in

Structured Code on ’-P’ lines (Procedural Code).

Cobol generator (in conjunction with the Reverse

Engineering function)

’S’ Specific procedures composed of Source Code (-SC) and

Procedural Code (-P).

With this value, the Type and structure of Program field

must also be ’S’.

’8’ Programming with ’-8’ type of lines.

Used only to maintain applications written with former

VisualAge Pacbase versions.

The value entered on the Definition line of the Library is

channeled down by default to the Definition line of a

Program when it is created.

Chapter 2. Parameterized Macro-Structures 17

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

At the Program level, the programming type can be

modified.

The combination of ’-P’ and ’-8’ lines called in the same

Program, either directly, or via Macro-structures, is rejected.

10 1 TYPE AND STRUCTURE OF PROGRAM

This identifies the structure of the generated Program or the

type of the Program in the Library.

’B’ Structure of a batch Program (default option).

It provides the general structure of an iterative program:

.beginning of the loop (F05),

.end of run (F20),

.end of the loop (F9099. GO TO F05).

’S’ Suppress automatic structure generation

STRUCTURED CODE FUNCTION

This type can be used to describe the TDS ’system

generation’, the IDS II ’schema’, ...

.suppression of COBOL divisions,

.the program is made up of Beginning Insertions

(-B), Work Areas (-W) and Call of Data Structures (-CD)

lines.

COBOL GENERATOR FUNCTION

.the program is made up of ’-W’, -P’, ’-SC’ and ’-CP’ lines.

’T’ On-line Program structure.

Suppression of the loop, i.e:

.no beginning of loop (F05),

.no end of run (F20),

.no end of loop (F9099. GO TO F05).

’C’ C.I.C.S. on-line Program structure.

Suppression of the loop, i.e:

.no beginning of loop (F05),

.no end of run (F20),

.no end of loop (F9099. GO TO F05).

Same as ’T’ but also with:

18 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

.generation, at the beginning of the PROCEDURE

DIVISION, of the line: MOVE CSACDTA TO TCACBAR,

.generation in F9099 of: DFHPC TYPE=RETURN,

.no line numbering in the generated program.

’M’ Parameterized Macro-Structure type. (For documentation

purposes only).

This is used for programs to be inserted into other

programs. This type of program cannot be generated alone.

’F’ Program composed of Call of Data Structures (-CD) and

Pure COBOL Source Code (-9) lines.

This option permits the manipulation of the Pure COBOL

Source Code (-9) lines that invoke the structural description

of the automatically generated D.S.’s, according to the

characteristics assigned to that D.S. on the Call of Data

Structures (-CD) screen.

For more information see chapter ’Appendix: Pure COBOL

Source Code’ in the ’Structured Code’ Manual.

’D’ Program composed of Call of Data Structures (-CD),

Beginning Insertions (-B), Work Areas (-W) and Pure

COBOL Source Code (-9) lines. This option provides the

automatic generation of the IDENTIFICATION,

ENVIRONMENT and DATA DIVISIONS.

The PROCEDURE DIVISION is written entirely on Pure

COBOL Source Code (-9) lines.

’P’ Program composed of Call of Data Structures (-CD),

Beginning Insertions (-B), Work Areas (-W) and Procedural

Code (-P) lines. This option provides the automatic

generation of the IDENTIFICATION, ENVIRONMENT and

DATA DIVISIONS. The PROCEDURE DIVISION is entirely

written in Structured Code.

’Y’ Program written in C LANGUAGE and composed of Work

Areas (-W), Source Code (-SC) and Call of P.M.S.’s (-CP)

lines.

11 1 PROGRAM CLASSIFICATION CODE

This value is used primarily for documentation purposes.

The label corresponding to the selected code will be

displayed on Reports and Screens.

It is also used to select the non-expansion option for

Macro-Structures.

’A’ TP System

Chapter 2. Parameterized Macro-Structures 19

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’D’ Sub-program

’G’ Screen map

’M’ Macro-structure

’N’ Non-expanded Macro-Structure

’P’ Program

’S’ Schema

’T’ On-line Program (Screen)

’U’ Utility

’V’ Sub-schema

12 1 TYPE OF PRESENCE VALIDATION

In validation Programs, the presence of numeric Data

Element will be determined according to this code:

For numeric fields:

blank Field present if not blank (default value).

’0’ Field present if not zero.

For alphabetic and numeric fields:

’L’ Field present if not low-value.

13 1 SQL INDICATORS GENERATION WITH ’-’

Cross-references available for the use of SQL indicators in

Structured Language.

BLANK SQL indicators generated in the format: VXXNNCORUB:

’-’ SQL indicators generated in the format: V-XXNN-CORUB.

14 55 EXPLICIT KEYWORDS

This field allows you to enter additional (explicit)

keywords. By default, keywords are generated from the

instance’s name (implicit keywords).

Keywords must be separated by at least one space.

Keywords have a maximum length of 13 characters which

must be alphanumeric. However, ’=’ and ’*’ are reserved for

special usage and are therefore ignored in keywords.

Keywords are not case-sensitive: uppercase and lower-case

letters are equivalent.

20 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

NOTE: Accented and special characters can be declared as

equivalent to an internal value in order to optimize the

search of instances by keywords (Administrator workbench,

’Window’ menu, ’Parameters browser’ choice, in ’Special

Characters’ tab).

A maximum of ten explicit keywords can be assigned to

one entity. For more details, refer to the ’Character Mode

User Interface’ guide, chapter ’Search for Instances’,

subchapter ’Searching by Keywords’.

Call of Parameterized Macro-Structures (-CP)

The Call of PMS’s (-CP) screen is used to call a previously defined

Macro-Structure into a Program (batch or on-line), and to specify values to

use for resolving parameters (if any).

PARAMETERIZING

Up to 20 parameters can be used in a PMS. A parameter is specified by ’$n’

(n=1,2,...,9,0) for the first 10 parameters; the next 10 (n=A,B,...J) have to appear

on a ″continuation″ line with the same number as the preceding one.

Alphabetical values cannot be used to parameterize the Macro-Structure line

indicatives.

Line indicatives are: Function or Sub-Function codes or line numbers.

The user supplies the replacement values of the respective parameters in the

PARAMETER VALUES field in the form of character strings (with delimiters).

Each occurrence of the parameter in the original PMS is then replaced by the

value entered for this particular Program.

All parameter values (including delimiters) must be written on a maximum of

two lines.

The number of characters used for each parameter value must correspond

directly to the appropriate field length for the entity being parameterized. For

example, if $1 is being used as a Function code, the value must be two

characters.

ENTITY INSTANCES USED AS PARAMETERS

Chapter 2. Parameterized Macro-Structures 21

You can use instances of the Data Element, Data Structure and Segment

entities as parameters.

When such an instance is called via a parameter, no cross-reference is created

if the instance code is declared as a simple character string.

This type of cross-reference is established by specifying that the parameter’s

value is a Data Element, Data Structure or Segment code. This is done by

keying in:

/E=DELCO/ or /D=DD/ or /S=SEGT/

At the time of transformation, the parameter is replaced by DELCO, DD or

SEGT and cross-references are set up.

NON-EXPANDED MACRO-STRUCTURES

An ’N’ in the Expansion (’E’) field indicates a non-expanded PMS.

ENTERING COMMENTS

Comment lines entered on the -CP screen are displayed only from the calling

program.

The number of the line from which the display must begin can be entered

after the Macro-Structure code.

When comments are entered on the -XP screen of the PMS, they are displayed

when the PMS is called on this screen.

Entering comments on the -XP screen makes it easier to enter parameters on

PMS calls.

22 VisualAge Pacbase: Structured Code

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| PROGRAM CALL OF P.M.S............: 1 VRPREP VENDOR RATING PREPARATION |

| |

| 2 3 4 5 6 7 |

| A MACRO LN C : COMMENTS OR PARAMETER VALUES D E |

| AADA30 : |

| AASO30 : CO/SO/ |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| |

| O: C1 CH: -CP |

--

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

1 6 PROGRAM CODE OR SCREEN CODE (REQUIRED)

This field contains the six-character program or on- line

screen code.

2 1 ACTION CODE

’C’ Creation of the line

’M’ Modification of the line

’D’ or ’A’ Deletion of the line

’T’ Transfer of the line

’B’ Beginning of multiple deletion

’G’ Multiple transfer

’?’ Request for HELP documentation

’E’ or ’-’ Inhibit implicit update

’X’ Implicit update without upper/lowercase processing

3 6 MACRO-STRUCTURE CODE (REQUIRED)

Chapter 2. Parameterized Macro-Structures 23

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

A Macro-Structure is a set of Beginning Insertions (-B),

Work Areas (-W’), Procedural Code (-P) or Source Code

(from Reverse Engineering) lines.

It is not a sub-program but a sequence of procedural code

inserted in the programs before generation. During the

insertion, if a line of the Macro-Structure has the same key

as a line of the program, it will not be taken into account

and will be identified in the calling Program by the ’*’

character in the ACTION CODE field.

If lines of two Macro-Structures have the same key, they

will both be ignored during the generation of the calling

Program.

The lines of the Macro-Structure replaced by lines of the

Program with the same key are considered as comments;

they appear (10 maximum) in the Description of the calling

Program.

A non-Parameterized Macro-Structure can contain Data

Structures call lines (not inserted in the Programs).

The call line is associated with the Macro-Structure: the

deletion of the Macro-Structure triggers the deletion of the

call line, the deletion of the Program does not trigger the

deletion of the call lines that concern it.

4 2 LINE NUMBER

PURE NUMERIC FIELD BLANKS EQUIVALENT TO ZERO

’0-99’ This is used to define several documentation lines for one

macro-structure or, when a macro-structure is

parameterized, this can be used to call it into the same

program several times.

5 1 CONTINUATION

* The asterisk creates a continuation line

6 50 PARAMETER VALUES

Call of P.M.S.’s (-CP): If the line contains the ’/’ character,

the values are those of the parameters for a P.M.S.

Otherwise, they are comments on the Macro-Structure call.

X-References to Programs/Screens (-XP/-XO): On lines with

CALL TYPE = ’O’ or ’P’: values of the parameters for a

P.M.S.

On lines with CALL TYPE = ’C’: comments on the

Macro-Structure.

24 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

The values for the parameters must be indicated one after

the other, each one ending with a delimiter. The values are

entered in the sequence of the assigned parameter number.

The maximum number of parameters is 20, but limited to

10 per line. The values indicated on the first line

correspond to the parameters $1 to $0, and those on the

second line correspond to parameters $A to $J.

The parameterization of the placement of the P.M.S. in the

program, such as the (sub-)function code, line number, or

WSS prefix, must be specified on the first line only.

In order to nullify the value of a parameter, the following

technique can be used:

For the first parameter, enter the delimiter in the first

column of this field.

For subsequent parameters, the system will understand two

consecutive delimiter characters to mean ignore the next

sequential parameter.

For example, using ’/’ as the delimiter, /BB/CC/ will

resolve parameters $2 and $3 with BB and CC respectively.

XX//ZZ/ will resolve $1 with XX, and $3 with ZZ.

To specify a blank as a parameter value, enter it between

the delimiters as with any other value.

In order to establish cross-references when a Data Element,

a Data Structure or a Segment is used as a parameter, the

value should be respectively coded:

/E=DELCO/ (DELCO = Data Element code),

or /D=DD/ (DD = Data Structure code),

or /S=SEGT/ (SEGT = Segment code).

The parameter is then replaced by the DELCO, DD or SEGT

value and cross-references to the Data Element, Data

Structure or Segment are established.

7 1 DELIMITER OF PARAMETERIZED VALUES

’/’ This character is used to separate the different parameter

values. Default value.

Chapter 2. Parameterized Macro-Structures 25

X-References to Programs/Screens (-XP/-XO)

The X-References to Programs (-XP) and On-Line Screens (-XO) screens are

used for entering comments the user wants to appear in the sub-reports that

are produced with the Generation and Print Commands ’DCP’, ’GCP’, ’DCO’

and ’GCO’ (GPRT Procedure).

These comments may be assigned by entering ’C’ for the CALL TYPE, a LINE

NUMBER value, and the comment desired.

It is also possible to use these lines to specify parameter values, as on the Call

of P.M.S.’s (-CP) screen.

A line number may be entered after the code of the screen or program that

will begin the display. This line number corresponds to the macro-structure

call.

RECOMMENDATION

Since these lines reappear for each call of the Macro, and since Macros may be

called many times into the same Program, it is suggested that these comments

be brief and contain only essential information, like the meaning of the

parameters.

26 VisualAge Pacbase: Structured Code

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

|

| PROGRAM CROSS-REFERENCES 1 AASO30 SORT INPUT PROCEDURE |

| 2 3 4 5 6 7 > 8 |

| A T PG/SC LN C : COMMENTS OR PARAMETER VALUES D E |

| P VRPREP : CO/SO/ |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| |

| O: C1 CH: Paaso30XP |

--

Chapter 2. Parameterized Macro-Structures 27

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| PROGRAM CROSS-REFERENCES 1 AAPOJ1 SORT INPUT PROCEDURE |

| 2 3 4 5 6 7 8 |

| A T PG/SC LN C : COMMENTS OR PARAMETER VALUES D E |

| O POJB01 : 020/A/ |

| O POJB02 : 050/A/ |

| O POJB03 : 100/A/ |

| O POJC10 : 010/A/ |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| : |

| |

| O: C1 CH: Paapoj1XO |

--

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

1 6 MACRO-STRUCTURE CODE

A Macro-Structure is a set of Beginning Insertions (-B),

Work Areas (-W’), Procedural Code (-P) or Source Code

(from Reverse Engineering) lines.

It is not a sub-program but a sequence of procedural code

inserted in the programs before generation. During the

insertion, if a line of the Macro-Structure has the same key

as a line of the program, it will not be taken into account

and will be identified in the calling Program by the ’*’

character in the ACTION CODE field.

If lines of two Macro-Structures have the same key, they

will both be ignored during the generation of the calling

Program.

The lines of the Macro-Structure replaced by lines of the

Program with the same key are considered as comments;

they appear (10 maximum) in the Description of the calling

Program.

A non-Parameterized Macro-Structure can contain Data

Structures call lines (not inserted in the Programs).

28 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

The call line is associated with the Macro-Structure: the

deletion of the Macro-Structure triggers the deletion of the

call line, the deletion of the Program does not trigger the

deletion of the call lines that concern it.

2 1 ACTION CODE

’C’ Creation of the line

’M’ Modification of the line

’D’ or ’A’ Deletion of the line

’T’ Transfer of the line

’B’ Beginning of multiple deletion

’G’ Multiple transfer

’?’ Request for HELP documentation

’E’ or ’-’ Inhibit implicit update

’X’ Implicit update without upper/lowercase processing

3 1 CALL TYPE

This field contains the type of call used for each line. The

values are as follows:

’C’ Comments on the macro-structure.

’O’ Call of the macro-structure in a screen.

’P’ Call of the macro-structure in a program.

4 6 PROGRAM CODE OR SCREEN CODE

This field contains the six-character program or on- line

screen code.

5 2 LINE NUMBER

PURE NUMERIC FIELD BLANKS EQUIVALENT TO ZERO

’0-99’ This is used to define several documentation lines for one

macro-structure or, when a macro-structure is

parameterized, this can be used to call it into the same

program several times.

6 1 CONTINUATION

* The asterisk creates a continuation line

7 50 PARAMETER VALUES

Call of P.M.S.’s (-CP): If the line contains the ’/’ character,

the values are those of the parameters for a P.M.S.

Otherwise, they are comments on the Macro-Structure call.

Chapter 2. Parameterized Macro-Structures 29

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

X-References to Programs/Screens (-XP/-XO): On lines with

CALL TYPE = ’O’ or ’P’: values of the parameters for a

P.M.S.

On lines with CALL TYPE = ’C’: comments on the

Macro-Structure.

The values for the parameters must be indicated one after

the other, each one ending with a delimiter. The values are

entered in the sequence of the assigned parameter number.

The maximum number of parameters is 20, but limited to

10 per line. The values indicated on the first line

correspond to the parameters $1 to $0, and those on the

second line correspond to parameters $A to $J.

The parameterization of the placement of the P.M.S. in the

program, such as the (sub-)function code, line number, or

WSS prefix, must be specified on the first line only.

In order to nullify the value of a parameter, the following

technique can be used:

For the first parameter, enter the delimiter in the first

column of this field.

For subsequent parameters, the system will understand two

consecutive delimiter characters to mean ignore the next

sequential parameter.

For example, using ’/’ as the delimiter, /BB/CC/ will

resolve parameters $2 and $3 with BB and CC respectively.

XX//ZZ/ will resolve $1 with XX, and $3 with ZZ.

To specify a blank as a parameter value, enter it between

the delimiters as with any other value.

In order to establish cross-references when a Data Element,

a Data Structure or a Segment is used as a parameter, the

value should be respectively coded:

/E=DELCO/ (DELCO = Data Element code),

or /D=DD/ (DD = Data Structure code),

or /S=SEGT/ (SEGT = Segment code).

The parameter is then replaced by the DELCO, DD or SEGT

value and cross-references to the Data Element, Data

Structure or Segment are established.

8 1 DELIMITER OF PARAMETERIZED VALUES

’/’ This character is used to separate the different parameter

values. Default value.

30 VisualAge Pacbase: Structured Code

Chapter 3. Modifying the Identification/Environment Div.

(-B)

You can complete or modify the beginning of the generated Program with the

Beginning Insertions (-B) screen. This applies to the IDENTIFICATION

DIVISION, the ENVIRONMENT DIVISION, and also the ’DATA DIVISION’

and ’FILE SECTION’ statements.

GENERAL CHARACTERISTICS

The use of the Beginning Insertions (-B) screen is exceptional with most

hardware types.

Examples of its usage are:

v For the SELECT clause for relative access files,

v Bull Gcos7 case: COPY SELECT and COPY FD clauses in a TPR TDS.

SUPPRESSION OF GENERATED LINES

If the program includes Beginning Insertions (-B) lines containing the code of

a single section or paragraph, then automatically generated lines for this

section or paragraph will be suppressed.

’-B’ lines are ignored in a ″reversed″ Program.

TRANSFER OF LINES TO ANOTHER ENTITY

Lines from one entity may be copied directly to another entity. At the top of

the screen, an ENTITY TYPE field with a value of ’O’ or ’P’, followed by the

appropriate PROGRAM CODE OR SCREEN CODE, allows the user to take

the lines already entered on a screen and attached to one entity, copy them,

and attach them to another entity. This is not a MOVE. A duplicate set of lines

is created in another entity.

EXAMPLE:

In order to copy entity lines from screen ’SCREE1’ into program ’PGM001’,

’O’ and ’SCREE1’ should be overtyped with:

’P’ and ’PGM001’ respectively.

© Copyright IBM Corp. 1983,2004 31

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| PROGRAM BEGINNING INSERTIONS : P TES001 TEST FOR POJ |

| 1 2 |

| |

| 3 4 5 6 7 |

| A SE PA LIN INSTRUCTION TO BE INSERTED |

| * 60 000 DATA DIVISION |

| * 70 000 SUB SCHEMA SECTION |

| * 80 000 FILE SECTION |

| * 99 99 000 SUPPRESSED |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| O: C1 CH: -B |

--

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

1 1 ENTITY TYPE

This field is used to identify the entity to which these lines

are attached:

’O’ On-line Screen

’P’ Program

The user may keyboard this field in order to copy lines

attached to a Screen into a Program and vice-versa.

2 6 PROGRAM CODE OR SCREEN CODE

This field contains the six-character program or on- line

screen code.

3 1 ACTION CODE

’C’ Creation of the line

’M’ Modification of the line

’D’ or ’A’ Deletion of the line

’T’ Transfer of the line

’B’ Beginning of multiple deletion

32 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’G’ Multiple transfer

’?’ Request for HELP documentation

’E’ or ’-’ Inhibit implicit update

’X’ Implicit update without upper/lowercase processing

4 2 SECTION TO GENERATE

The following section codes may be used in combination

with the values entered in the PARAGRAPH TO

GENERATE field:

blank IDENTIFICATION DIVISION.

’00’ CONFIGURATION SECTION.

’01’ INPUT-OUTPUT SECTION. FILE CONTROL. With

PARAGRAPH TO GENERATE specifying a DATA

STRUCTURE CODE, the INSTRUCTION TO BE INSERTED

lines will appear after the FILE CONTROL statement.

With PARAGRAPH TO GENERATE = blank, the data

entered in the INSTRUCTION TO BE INSERTED field will

override both the INPUT-OUTPUT SECTION and the FILE

CONTROL statements.

’60’ Is reserved for the DATA DIVISION.

’99’ Is reserved for the FILE SECTION.

’$n’ In a macro-structure, the SECTION TO GENERATE can be

parameterized.

’9*’ With PARAGRAPH TO GENERATE = ’ FF’: Rewriting of

FD clause for FF file.

5 2 PARAGRAPH TO GENERATE

The following codes are used to identify the COBOL

statements listed below.

With SECTION TO GENERATE = blank:

’01’ API COBOL comments.

’05’ PAF comments.

’10’ PROGRAM-ID.

’20’ AUTHOR.

’30’ DATE-COMPILED.

’40’ ENVIRONMENT DIVISION.

With SECTION TO GENERATE = ’00’:

’00’ SOURCE-COMPUTER.

Chapter 3. Modifying the Identification/Environment Div. (-B) 33

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’10’ OBJECT-COMPUTER.

’20’ SPECIAL-NAMES.

With SECTION TO GENERATE = ’01’:

’FF’ SELECT FF-FILE

’00’ I-O-CONTROL.

This paragraph is not automatically generated, except in

certain cases; with COBOL variant 6: BULL H66 BCD.

’90’ With SECTION TO GENERATE = ’99’: RECEIVE-
CONTROL (TANDEM).

’99’ FILE SECTION.

’$n’ In a Macro-Structure, the PARAGRAPH TO GENERATE

can be parameterized.

With SECTION TO GENERATE = ’01’:

6 3 LINE NUMBER

PARAMETERIZABLE NUMERIC FIELD

’0-999’ As a recommendation, number the lines starting with 10 by

intervals of 10, thus facilitating future insertion insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the

LINE NUMBER can be parameterized.

7 66 INSTRUCTION TO BE INSERTED

If the INSTRUCTION TO BE INSERTED should be in

Margin A of the COBOL program, begin it in the second

column of this field. If it should be in Margin B, begin it in

the sixth column of this field.

Otherwise, the INSTRUCTION TO BE INSERTED will be

justified in column 7 (continuation/comments) of the

generated COBOL program.

’S’ (or any word beginning with an ’S’) The value ’S’ in the

first column of this field causes the suppression of the

section or paragraph generated.

’$n’ In a macro-structure, this field can be parameterized.

34 VisualAge Pacbase: Structured Code

Chapter 4. Modifying the Working Storage/Linkage Section

Data Structure Calls (-CD)

The purpose of the Call of Data Structures is to identify all Data Structures

used in a Program, specifying their physical characteristics as well as the way

these files are to be used in the Program.

The Call of Data Structures screen is accessed by entering ’-CD’ in the

CHOICE field from any screen within the Program entity’s network.

GENERAL CHARACTERISTICS

Each Data Structure may be described on as many continuation lines as

needed. Certain information must be entered on the first line of the call, as

opposed to being entered on a continuation line, and vice versa.

The system assigns default values to required information areas of the Data

Structure call line. By default, a Data Structure will look like a sequential file

with fixed-length records. The Data Structure Description will contain all of

the Data Structure records, with the Data Elements in internal format, without

the optional Data Elements.

ORGANIZATION

Data Structures are ’organized’ into three basic types:

. Standard Files,

. Database Blocks,

. Work Areas or Linkage Areas.

The descriptions of the latter category may involve specifying Data Structures

and/or Data Elements.

It is preferable to define the WORK or LINKAGE fields on the screen

provided for this purpose (-W). If the Program is a Macro-Structure (P.M.S.),

the ’-W’ is generated in the calling Program, not the ’-CD’.

NOTE: A Data Structure call in the -W screen does not allow for the creation

of continuation lines (which limits the number of Segment selections

to four Segments, for example).

© Copyright IBM Corp. 1983,2004 35

Also, utilization, control breaks, and file matching cannot be specified on -W

lines.

COMPOSITE DATA STRUCTURES

It is possible at the Program level to build a Data Structure with Segments

belonging to different Data Structures.

This is accomplished by assigning the same DATA STRUCTURE CODE IN

THE PROGRAM to different Data Structures, and selecting the desired

Segments from each.

The common part will be made of the code of the Data Structure called on the

first line.

In order to call in a Program Data Structure two or more Segments which

have the same two-character SEGMENT CODE or the same LAST

CHARACTER OF THE REPORT CODE, but are extracted from different Data

Structures in the Library, it is necessary to change the code of one of them in

the Program, in the SELECTION field.

36 VisualAge Pacbase: Structured Code

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| DATA STRUCTURES USED IN PROGRAM : 1 VRPREP VENDOR RATING PREPARATION |

| |

| 2 3 4 5 6 7 9 11 13 14 16 18 19 21 23 25 27|

| 8 10 12 15 17 20 22 24 26 |

| A DP CO : DL EXTERN OARFU BLOCK T B M U RE SE L UNIT C SELECTION F E R L PL|

| CO : CO PMSCO SSFOU 0 R D I 1 |

| : STAT.FLD: 28 ACC. KEY: 29 RECTYPEL 30 |

| OI : OI PMSPOF VSFID 0 R 1 C I 1 |

| : STAT.FLD: ACC. KEY: POKEY RECTYPEL |

| SO : CO SORT SSFTU 0 R D I 1 |

| : STAT.FLD: ACC. KEY: RECTYPEL |

| WO : CO WORK. WSFOU 0 R D I 1 |

| : STAT.FLD: ACC. KEY: RECTYPEL |

| : |

| : STAT.FLD: ACC. KEY: RECTYPEL |

| : |

| : STAT.FLD: ACC. KEY: RECTYPEL |

| : |

| : STAT.FLD: ACC. KEY: RECTYPEL |

| : |

| : STAT.FLD: ACC. KEY: RECTYPEL |

| |

| O: C1 CH: -CD |

--

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

1 6 PROGRAM CODE (REQUIRED)

Code identifying the program in the library.

2 1 ACTION CODE

’C’ Creation of the line

’M’ Modification of the line

’D’ or ’A’ Deletion of the line

’T’ Transfer of the line

’B’ Beginning of multiple deletion

’G’ Multiple transfer

’?’ Request for HELP documentation

’E’ or ’-’ Inhibit implicit update

’X’ Implicit update without upper/lowercase processing

3 2 DATA STRUCTURE CODE IN THE PROGRAM

(REQUIRED)

This code establishes the sequence in which the Data

Structure will be processed in the Program.

Chapter 4. Modifying the Working Storage/Linkage Section 37

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

The first character must be alphabetic but the second one

can be numeric or alphabetic.

It is recommended to keep the same DATA STRUCTURE

CODE IN THE PROGRAM and IN THE LIBRARY when

the Data Structure described in the Library is used only

once in the Program.

4 2 ALPHA. Continuation of D.S. Description

blank First line of a Data Structure description. This line must

contain all information defining the input-output

characteristics, all technical characteristics and the

description of the Data Structure.

Two-letter code indicating a continuation line.

The continuation lines are used to select the records of the

different Data Structures in the Library and to request their

description in a specified position.

5 2 DATA STRUCTURE CODE

This code is made up of two alphanumeric characters. This

is a logical code internal to the Database and therefore

independent of the names used in Database Blocks and

Programs.

6 6 EXTERNAL NAME OF THE FILE

(Default option: DATA STRUCTURE CODE IN THE

PROGRAM.)

(NOTE: In this discussion, the term ’COBOL Variant’ = the

value in the TYPE OF COBOL TO GENERATE field)

FOR the ’Y’ ORGANIZATION:

This field must contain the code of the COBOL COPY

clause which represents the communication area of the

Pacbench C/S Application Component which accesses the

Logical View. For more details, refer to the ’Pacbench C/S

Applications - Business Logic’ Manual.

FOR SQL ORGANIZATIONS:

This field must contain the VisualAge Pacbase code of the

SQL block.

For explanations, refer to the ’Structured Code’

manual, chapter ’Modifying the Procedure Division’,

subchapter ’Procedural Code Screen (-P)’, and to the ’SQL

Databases’ manual, chapter ’SQL Accesses’, Sub-chapter

’Customized SQL Accesses’.

38 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

FOR ALL THE OTHER ORGANIZATIONS:

IBM OS/390 (variant X): DDNAME in 1 to 6 positions.

COBOL II IBM VS2 (Variant X): The ASSIGN clause (for

sequential files, ’S’ organization) with SYSnnn as external

name is generated in the following form:

SYSnnn-UT-....-S-SYSnnn

IBM DOS (COBOL Variant 1), three forms:

.SYSnnn Symbolic unit name.

.xxxnnn Specifies at the same time the symbolic unit name

and the external name of the Data Structure.

.xxxxxx External name. The symbolic unit is generated with

SYSnnn, nnn being incremented by one for each Data

Structure starting with SYS010.

BULL Gcos7 (COBOL Variant 4):

.INTERNAL-FILE-NAME in 1 to 6 position.

BULL Gcos8 (COBOL Variant 5):

.File code (2 characters). UNISYS A Series (COBOL Variant

8):

.nnppp numeric, generate AREA nn, AREASIZE pppp.

CDC (Variants D and E): Indicate output for a printer.

Otherwise, external name in 1 to 6 positions.

BULL MINI 6 (Variant M): 2 alphabetic characters.

TANDEM (Variant F): external name in 1 to 6 positions.

DEC/VMS (COBOL Variant I): external name in 1 to 6

positions.

PHYSICAL CHARACTERISTICS OF FILE

7 1 ORGANIZATION

’S’ Sequential (Default value).

’I’ Indexed sequential (ISP for Gcos8 BCD).

An ISP file with ’LE’-code will be generated in 3 work

areas: LE-FILE, LE-DATA and INVKEY.

LE-DATA will have the external file name as a value which

must be the file code in the preceding $ DATA line. In the

job control lines, the ISP lines give the physical

characteristics of the file.

’V’ VSAM (IBM), UFAS (BULL), etc.

Chapter 4. Modifying the Working Storage/Linkage Section 39

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

Generates the STATUS KEY IS clause and the corresponding

field is declared in the STATUS FIELD: VSAM FILE

INDICATOR field.

The file is considered sequential if the name of the key in

the record is absent; it is considered indexed if the key

name is entered.

’W’ File descriptions are generated in WORKING-STORAGE

before the constant ’WSS-BEGIN’.

A Data Structure thus described will be used like a work

area or processed through a function of a generalized

management system (Database in particular).

’L’ Identical to ’W’ except that the user may choose the

description location (See CODE FOR COBOL

PLACEMENT).

’X’ Data Structure used as a comment, not used for generation.

’G’ Table description.

Generates the communication area with the access module.

See the ’Pactables Access Facility’ manual.

’Y’ Call of the COPY clause which corresponds to the

communication area between the client and the server

(Pacbench C/S Business Components only).

For details, refer to the ’Pacbench C/S Applications -

Business Logic’ Manual.

DATABASES

The values of the following codes are reserved for Database

Descriptions when the Database Description function is not

used. These values are taken into account by application

programs.

’D’ Reserved for the Description of Segments or records of the

different Databases, IMS (DL/1), IDS I, IDS II, (according to

the TYPE OF COBOL TO GENERATE selected), in the

generation of DBD, SYSGEN, schemas or application

Programs (according to the TYPE AND STRUCTURE OF

PROGRAM selected).

’B’ Reserved for the description of records for an IDMS

Database in the sub-schemas or application programs.

’A’ Reserved for an ADABAS file description in the definition

programs or usage programs of the Database.

’T’ Reserved for the description of ’TOTAL’ files in the

definition programs or the usage programs of the Database.

40 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’Q’ Reserved for the description of SQL/DS, DB2/2 or

DB2/6000 Databases (IBM), or

ALLBASE/SQL Databases (HP3000), or

DB2/2 or DB2/600 Databases (MICROFOCUS).

’2’ Generation-Description of a DB2 or VAX/SQL Segment.

Only physical accesses are not generated. The structure of

variable indicators corresponding to the columns of the DB2

or VAX/SQL table is always generated.

’C’ Reserved for the description of an INTEREL RDBC, RFM

Database Structure.

’O’ Reserved for the description of an ORACLE (< V6)

Database Structure.

’P’ Reserved for the description of an ORACLE (V6 and V7)

Database Structure.

’R’ Reserved for the description of an RDMS Database

Structure.

’4’ Reserved for the description of a DB2/400 Database

Structure.

’N’ Reserved for the description of a NONSTOP SQL Database

Structure.

’M’ Reserved for the description of a DATACOM DB Database

Structure.

’9’ Reserved for the description of an INFORMIX, SYBASE,

INGRES/SQL, and SQL SERVER Database Structure.

The use of the System with the different DBMS’s is

documented in specific ’Database Description’ manuals.

8 1 Access mode

’S’ Sequential (default option).

’R’ Random - Direct (indexed sequential organization only).

’D’ Dynamic (VSAM files only - ’V’ organization)

9 1 RECORDING MODE

’C’ For ’P’-type organizations (Oracle V6 and V7) and ’9’-type

organizations (Sybase): Automatic generation of CONNECT

AT Database, DECLARE Database and access SQL AT

Database.

’F’ Fixed (default option).

At generation time, the lengths of the different records are

aligned with the length of the longest record.

Chapter 4. Modifying the Working Storage/Linkage Section 41

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’V’ Variable.

’U’ Undefined.

’S’ Spanned (Reserved for IBM MVS and DOS variants).

10 1 FILE TYPE - INPUT / OUTPUT

’I’ Input file - Default option with the following values of

USAGE OF DATA STRUCTURE: ’C’, ’T’, ’X’, ’M’, ’N’ ’P’.

This value is prohibited with all other USAGEs.

’O’ Output file - Default option with the following values of

USAGE OF DATA STRUCTURE: ’D’, ’S’, ’R’, ’E’, ’I’ and ’J’.

This value is prohibited for all other USAGEs.

’E’ Output file. Generation of an OPEN EXTEND clause (only

with the following values of COBOL TO GENERATE: ’2’,

’4’, ’5’, ’6’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’ ’Q’, ’S’, ’U’, ’W’,

’X’, ’Y’).

’T’ Sort (on Input or Output, depending on the USAGE OF

DATA STRUCTURE value).

’R’ Input-Output (direct access Data Structures only).

11 1 UNIT TYPE

’U’ Magnetic storage with sequential access.

Default value.

’D’ Magnetic memory with selective access.

Direct access device.

’R’ Slow peripherals (Card punch reader, printer).

This parameter is important for the TYPEs OF COBOL TO

GENERATE variant for which the ″ASSIGN″ clause, the FD

level or the WRITE statements depend on the UNIT TYPE.

12 5 NUMER. BLOCK SIZE SPACES AND ZEROES ARE EQUIVALENT

PURE NUMERIC FIELD

(Note: In this discussion the term ’COBOL Variant’ = the

value in the TYPE OF COBOL TO GENERATE field)

0 Default value.

2 The blocking factor can be zero in the following cases:

. IBM OS (COBOL variant 0) except for indexed

organization files.

. IBM MVS. The BLOCK CONTAINS clause is generated for

a VSAM file only if the library is in COBOL II.

42 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

The corresponding COBOL clause (BLOCK CONTAINS) is

not generated in the following cases:

.sort file,

.disk Data Structure (file stored on a disk) if no number is

mentioned,

.file with UNIT TYPE = ’R’ in IBM DOS (COBOL variant 1)

.Block 0 for UNISYS A Series (COBOL Variant 8) and AS

400 (COBOL Variant O).

.Block 0 for IBM VSE COBOL II and file with UNIT TYPE =

’N’.

13 1 BLOCK SIZE UNIT TYPE

’R’ Records (default value).

’C’ Characters.

’N’ The BLOCK CONTAINS clause is not generated.

14 1 NUMER. NUMBER OF CONTROL BREAKS

(BATCH SYSTEMS DEVELOPMENT Function) All spaces

are replaced with zeroes.

For sequentially accessed, sorted files: Enter the number of

Elements (elementary or group) on which there is to be

control break processing for the Data Structure.

’0’ Default.

’1 to 9’ 1 to 9 levels, according to the number of Elements to be

used for control break processing. These Elements are

identified as the SORT KEYs for this Data Structure.

When there is control break processing on one or more Data

Structures, two indicators keep track of the status of the

records being processed:

Note: The term ’nth key Data Element’ includes all key

Data Elements up to and including the nth level.

.dd-IBn = ’1’: the nth key Data Element of the current

record of Data Structure dd contains a new value,

.dd-FBn = ’1’: the nth key Data Element of the current

record of Data Structure dd contains the last occurrence of

the present value.

When these files are synchronized with others, (see FILE

MATCHING LEVEL NUMBER) the control breaks are kept

synchronized via two additional switches:

Chapter 4. Modifying the Working Storage/Linkage Section 43

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

.ITBn = ’1’: a new value in the nth key Data Element has

been detected. This signals beginning processing on all

synchronized D.S’s.

.FTBn = ’1’: the present value of the nth key Data is

occurring for the last time. This signals end processing for

the records in this iteration for all synchronized D.S’s.

For output files (USAGE OF DATA STRUCTURE value ’D’):

A non-zero value will create a duplicate file layout to be

generated in the WORKING-STORAGE area identifiable by

a prefix of ’1-’.

Note however a preferable procedure to accomplish this is

via the Work Areas (-W) Screen.

15 1 NUMER. FILE MATCHING LEVEL NUMBER

BLANKS REPLACED BY ZEROES.

For sequentially accessed files:

Used to establish the synchronization of two or more files.

’0’ Default.

’1 to 9’ Enter the number of Elements (Elementary or Group) on

which file matching is to be synchronized for this Data

Structure. This number identifies the number of the key

fields (identified in the SORT KEY/ field) that are involved

in the synchronization.

For an automatic file matching, the following conditions

must be met:

. The Data Structure control break level must be equal to

the file matching level - 1, except for a transaction Data

Structure, whose control break level must be equal or

superior to the file matching level.

. The Data Element(s) which constitute(s) the sort keys of a

Data Structure must be sorted in ascending order.

. The Data Element(s) which constitute(s) the sort keys of a

Data Structure must have the same length for the same

level.

. These Data Elements must have a display format (if they

are numeric, they must be whole numbers and unsigned).

Switches generated to control the file matching are:

.dd-CFn: which indicates whether a file should be processed

or bypassed in this iteration, (’1’ = process, ’0’ = bypass).

44 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

.dd-OCn: which indicates the status of processing on a

record of a principal file (USAGE OF DATA STRUCTURE =

’P’).

For sequentially accessed files:

’1’ = WRITE to the principal file

’0’ = do not WRITE.

For direct access files:

’1’ = CREATE or REWRITE

’0’ = DELETE

16 1 USAGE OF DATA STRUCTURE

This code defines the role of the Data Structure in the

Program and determines the generated functions.

’C’ Consult

Any input file (Data Structure).

’D’ Direct

Any output file (default).

’T’ Table

A file to be fully stored in memory. The table is generated

according to the number of repetitions indicated on each

Segment Definition. (See OCCURRENCES OF SEGMENT

IN TABLE).

The maximum number of selected Segments per D.S. = 50.

’X’ Table

A file to be partially stored in memory. Only Data Elements

other than FILLER are loaded.

Elementary Data Elements other than FILLER are limited to

10 (in addition to the RECORD TYPE ELEMENT) for the

’00’ Segment and to 29 for each specific non-00 Segment.

’S’ Selected

Output file extracted from another file.

It differs from USAGE value ’D’ since the generated

description in the output area is not detailed. For Data

Elements with an ’OCCURS DEPENDING ON’ clause, the

USAGE OF DATA STRUCTURE must be ’D’.

The following values are specific to the Batch Systems

Development function:

Chapter 4. Modifying the Working Storage/Linkage Section 45

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’P’ Principal

Input file, likely to be updated (by a transaction file - usage

value ’M’ or ’N’).

’R’ Result

Updated principal file in sequential access mode. (When the

Data Structure contains an ’OCCURS DEPENDING ON’

clause, the output/result D.S must be declared as ’D’).

’M’ Transactions to be validated:

Input file to be validated which may update other file(s).

The generated functions range from 30 to 76.

Note: Only one ’M’ or ’N’ Data Structure is allowed per

Program.

’N’ Transactions not to be validated:

Input file which can update other files.

The generated functions are: 30, 33, 39, 70 to 76.

Note: Only one ’M’ or ’N’ D.S. is allowed per Program.

’E’ Transaction file with errors detected:

Output transaction file containing a field identifying records

with errors. The system will generate the field(s) to track

the erroneous Elements, erroneous Segments and user

defined errors using the reserved Data Elements ENPR,

GRPR and ERUT. (The option is selected in the RESERVED

ERROR CODES IN TRANS. FILE field). Selected or not, the

descriptions of these Elements are generated (using the

Data Elements DE-ERR and ER-PRR).

These descriptions precede the descriptions of the Elements.

’I’ Direct printing (or by SYSOUT in IBM MVS)

At the generation level, the lines with STRUCTURE

NUMBER value of ’00’ will be ignored.

’J’ Indirect printing to be processed by a spool Program.

Fields required for identifying the lines, line skips, etc. are

defined in Report STRUCTURE NUMBER value 00.

17 2 RESULTING FILE DATA STRUCTURE CODE

With USAGE OF DATA STRUCTURE value ’P’, indicate the

DATA STRUCTURE CODE IN THE PROGRAM of the

resulting output D.S.

46 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

For an output type USAGE OF DATA STRUCTURE (value

’R’ or ’D’), indicate the DATA STRUCTURE CODE IN THE

PROGRAM of the input principal D.S.

18 2 SOURCE OR ERROR DATA STRUCTURE CODE

For a transaction file (USAGE OF DATA STRUCTURE = ’M’

or ’N’), enter the DATA STRUCTURE CODE IN THE

PROGRAM of the transaction file containing the error fields

(USAGE OF DATA STRUCTURE = ’E’) if one has been

called.

For a transaction file with the error field (USAGE OF DATA

STRUCTURE’), enter the DATA STRUCTURE CODE IN

THE PROGRAM of the corresponding transaction file

(USAGE OF DATA STRUCTURE = ’M’ or ’N’).

For a selected file (USAGE OF DATA STRUCTURE = ’S’),

enter the DATA STRUCTURE CODE IN THE PROGRAM of

the input source with the corresponding Data Structure

code of the selected file on the line where the source file is

being called.

19 1 TRANSACTION CONTROL BREAK LEVEL

ALL SPACES REPLACED BY ZEROS.

Default option: NUMBER OF CONTROL BREAKS

In a transaction file, enter the position within the SORT

KEY/ of the ACTION CODE ELEMENT. For example, if the

SORT KEY/ value is ABCDE and the ACTION CODE

ELEMENT is ’D’, enter ’4’ here.

This element is the minor-most key of the sort key and the

one used to differentiate one type of transaction from

another of the same principal file. Duplicates are detected if

any key elements below this one are found to match.

20 4 PHYSICAL UNIT TYPE

NOTE: The term ’COBOL Variant’ = the value in the TYPE

OF COBOL TO GENERATE field) generates the following

in the SELECT clause of some COBOL variants:

IBM DOS (COBOL Variant 1):

Enter the model type (examples: 2314, 3330, 2400).

MICROFOCUS, COBOL II, IBM VISUAL SET (COBOL

Variant 3)

EXT Generation of the EXTERNAL clause at the file FD level

LS Generation of the LINE SEQUENTIAL clause

Chapter 4. Modifying the Working Storage/Linkage Section 47

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

EXLS Generation of the LINE SEQUENTIAL clause and of the

EXTERNAL clause at the file FD level

ACU COBOL (COBOL Variant Q) :

LS Generation of the LINE SEQUENTIAL clause

Gcos7 (COBOL Variant 4):

’SSF’ Option WITH SSF in the SELECT clause

’OUT’ Option -SYSOUT suffix after the filename in the SELECT

clause (WITH SSF is generated).

Gcos8 ASCII (COBOL Variant 5):

’PT’ Printer.

’CR’ Card reader.

’SSF’ ORGANIZATION IS GFRC SEQUENTIAL SSF CODE SET

IS IS GBCD.

’IBM’ ORGANIZATION IS IBM-OS SEQUENTIAL.

’xxx’ WITH xxx.

’...V’ A ’V’ in the 4th position generates the clause ’VALUE OF

FILE-ID is 3-FF00-IDENT’ (FF is the program Data Structure

code being called).

The field 3-FF00-IDENT must be defined in -W by the user.

BURROUGHS large system (COBOL Variant 8) UNISYS A

Series:

DK or

’blank’ Disk.

’DKS’ Sort Disk (with T opening).

’DKM’ Merge Disk (with T opening).

’RD’ Reader.

’PT’ Printer.

’PO’ File.

’TP’ Tape.

For the 2-character codes, a third character can specify a

particular final disposition:

’..P’ Purge.

’..R’ Release.

’..L’ Lock.

’..S’ Save.

48 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’...V’ A ’V’ in the 4th position generates the clause ’VALUE OF

D.S. NAME IS 3-FF00-IDENT’.

UNISYS 2200 (COBOL Variant U):

’CR’ Card reader.

’CP’ Card punch.

’UN’ Uniservo.

’TP’ Tape.

’PN’ Printer with external name. If the COMPLEMENTARY

PHYSICAL UNIT TAPE field contains input, the

RECORDING clause is also generated.

’PT’ Printer without external name.

’PF’ Printer with external name and:

VALUE OF PRINTER-FORMS 3-FF00-FORMS

LINAGE IS 3-FF00-LINES

TOP IS 3-FF00-TOP

BOTTOM IS 3-FF00-BOTTOM

These 4 data-names are to be declared in Work Areas (-W)

lines with their appropriate values.

AS 400 (COBOL Variant O):

DB Database.

RD Reader.

CP Card Punch.

PT Printer.

TP Tape.

DK or

’blank’ Disk.

21 1 COMPLEMENTARY PHYSICAL UNIT TYPE

NOTE: The term ’COBOL Variant’ = the value in the TYPE

OF COBOL TO GENERATE field.

IBM DOS (COBOL Variant 1):

’R’ Reader.

’P’ Punch.

IBM 3/15D (COBOL Variant 3):

’S’ EBCDIC Tape.

Chapter 4. Modifying the Working Storage/Linkage Section 49

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’C’ ASCII Tape.

BULL Gcos8 ASCII (COBOL Variant 5):

’S’ EBCDIC Set code.

’C’ ASCII Set code.

CDC COBOL 68 (COBOL Variant E):

’S’ Recording mode is EBCDIC.

UNISYS 2200 (variant U):

’S’ Recording followed by lock mode.

BULL Gcos7 (COBOL Variant 4) and Gcos8 (COBOL Variant

6)

’O’ If the value ’O’ is entered in this field, the OPTIONAL

option is not generated.

Otherwise, the OPTIONAL option is generated by default.

DEC VAX VMS (COBOL Variant I)

’A’ File opening with option ALLOWING ALL and sequential

reading with option REGARDLESS.

IBM MVS :

’F’ OPTIONAL parameter generated in the SELECT clause of a

VSAM file.

22 9 SELECTION

This field has three mutually exclusive uses:

1. Composition of the sort key

This is the group of Data Elements making up the sort key

for control break processing. They are identified by the

value entered in the KEY INDICATOR FOR ACCESS OR

SORT field on the Segment Call of Elements (-CE) screen.

The order of sorting these key Data Elements may be

entered here using the values assigned on the Call of

Elements (-CE) screen in the desired order of major to

minor - left to right. If no explicit entry is made here,

Elements coded with value 1 to 9 will be taken as the

default.

The Data specifying the sort order must be entered on first

line of the Data Structure call. (That is on the line where the

CONTINUATION OF D.S. DESCRIPTION field remains

blank.)

50 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

Note: for transaction files, include the ACTION CODE and

RECORD TYPE ELEMENTs as a part of the key. The order

in which these Elements are sorted will determine the

sequence in which the transactions update the principal file,

and the policy for duplicate record detection.

2. Selection of Segments in a Data Structure

Rather than having all of the Segments belonging to a Data

Structure described, the user may select the ones that are

needed, thus avoiding unnecessary description lines and

wasted work area space. This may be significant for tables

(USAGE OF DATA STRUCTURE = ’T’).

This is done by entering an ’*’ in the first column of this

field followed by a maximum of 4 SEGMENT CODES, in

addition to the common part. The Segments may come

from different D.S.’s, but in this case, it is better to call

these Segments into another Segment.

When the user wishes to re-create the file matching key and

select records, he/she must indicate the file matching on

the first Segment Call line, and the selected records on

continuation lines.

When Segments come from different D.S.’s Descriptions, the

common part of the first D.S. called is considered to be the

resulting file common part. The other D.S.’s must not have

a common part.

3. Report selection: To select a particular Report, the third

character in the Report code must be entered in the field. To

select all Reports with the same prefix, you must leave the

field blank.

Generally, continuation lines are created if more than four

Segments or nine Reports are selected.

It is possible to rename a SEGMENT CODE or LAST

CHARACTER OF REPORT CODE: one line per Segment or

Report to be renamed is created. Enter the LAST

CHARACTER OF REPORT CODE as known in the Library,

followed by the desired code for the Program separated an

″=″ sign.

Follow the same procedure to rename the SEGMENT

CODE, but precede the old Segment code with an asterisk.

EXAMPLE:

1=2 Rename report code 1 report code 2

*01=02 Rename segment code 01 segment code 02.

Chapter 4. Modifying the Working Storage/Linkage Section 51

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

23 1 NON-PRINTING DATA STRUCTURE FORMAT

This option is reserved for Data Structures with a USAGE

OF DATA STRUCTURE other than ’I’ or ’J’.

’E’ Input format. (Default option with USAGE OF D.S. = ’M’,

’N’ or ’E’).

’I’ Internal format (Default with USAGE OF D.S. NOT= ’M’,

’N’ or ’E’).

’S’ Output format.

Note: the Elements making up the Segments must not

exceed 999 characters.

24 1 RESERVED ERROR CODES IN TRANS. FILE

Indicates if reserved Data Elements (ENPR, GRPR, ERUT)

contained in the Data Structure Description are to be

described.

blank The Description is not generated.

’V’ The Descriptions are generated for all of these Data

Elements.

’W’ Same as ’V’, but the Data Element ENPR represents the

error vector. (Reserved for USAGE OF D.S. = ’M’, ’N’ or

’E’.)

’E’ Only the ’ENPR’ and ’GRPR’ Descriptions are generated.

’U’ Only the ’ERUT’ Description is generated.

In a transaction file (USAGE OF D.S.= ’M’, ’N’ or E’), these

Data Elements must appear at the beginning of the

Description and are used to carry results of validations to

the update.

.ENPR: n+1 positions for values ’V’ or ’E’ and m+1

positions for value ’W’, where:

n = number of elementary Data Elements in the Data

Structure description.

m = greatest number of elementary Elements in the file :

that is, those in the common part Segment plus the largest

non-00 Segment. The extra position is the identification

error.

It initializes the DE-ERR vector.

.GRPR: 1 position per record + 1 for group error.

It initializes the SE-ERR vector.

52 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

When these Elements are used in a file other than a

transaction-type file, the placement and format is at the

option of the user.

1..9,0 With the Pactables function, it specifies the number of

sub-schemas desired. Refer to the ’Pactables’ Reference

manual.

With an SQL utilization file, it specifies the number of the

sub-schemas desired (selection of a Column in a Table).

25 1 RECORD TYPE / USE WITHIN D.S.

This option is used to select the type of record description

to be used in the COBOL Program to allow different uses of

the Segment Description stored in the Library.

blank Redefined records (Default option). No VALUE clause is

generated.

’1’ A record set without initial values or repetitions of records.

These records are presented with the Segment common part

followed by the different specific parts.

If the Data Structure Description appears in the COBOL

FILE SECTION, the LEVEL NUMBER (COBOL) OF THE

RECORD must be 2. With this value, the specific Segments

are described without redefines, at the COBOL 02 level.

Several Segment Descriptions are grouped together under

the same I/O area.

’2’ A record set with the specific initial values of the Data

Element of the Segment as defined on the Call of Elements

or Data Element Description screen. These values may also

default to blank or zero depending on the format.

This type of description cannot be used for a Data Structure

having a number of repetitions in the common part

Definition. (Use ORGANIZATION = ’W’ or ’L’).

’3’ A record set which incorporates the number of repetitions

specified in OCCURRENCES OF SEGMENT IN TABLE on

the Segment Definition Screen. No VALUE clause will be

generated.

If the description of the Data Structure appears in the

COBOL FILE SECTION, the LEVEL NUMBER (COBOL) OF

THE RECORD must be ’2’.

’4’ A record set which incorporates the number of repetitions

specified in the OCCURRENCES OF SEGMENT IN TABLE

on the Segment Definition Screen.

Chapter 4. Modifying the Working Storage/Linkage Section 53

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

The associated LEVEL NUMBER (COBOL) OF THE

RECORD must be ’3’.

Comment specific to the OLSD function: For a description

type of ’4’ and a COBOL 03 level, the index is not

generated.

A COBOL 02 level is used to access the table made up of

repetitions of the same record (ddssT).

A COBOL 01 level is used to group the whole Data

Structure together - common or specific parts, whether

repeated or not.

A group level field that incorporates all occurrences is

generated.

For Data Structures that do not have a value specified for

the OCCURRENCES OF SEGMENT IN TABLE, use

ORGANIZATION = ’W’ with USAGE OF Data Structure =

’T’.

’6’ To be used only with the GIP interface. The number of

levels are the same as the one of the record type 4.

26 1 LEVEL NUMBER (COBOL) OF THE RECORD

This option, used in conjunction with the RECORD TYPE

/USE WITHIN D.S. field, defines the COBOL level number

for the descriptions of Data Structures, Segments and

Elements.

In the following descriptions, the term ’D.S. Area’ is meant

as the area ’dd00’ (possibly 1-dd00, 2-dd00).

’1’ COBOL 01 level for D.S. Area and Segments. (Default

value).

If the Data Structure Description appears in the COBOL

FILE SECTION, the Segments must be redefined.

If a Data Structure has no common part with a non-

redefined Description, the D.S. Area will only appear when

the RECORD TYPE / USE WITHIN D.S. = blank.

’2’ COBOL 01 level for D.S. Area and Segments at 02 level.

If the RECORD TYPE / USE WITHIN D.S. = blank, both

the DS Area and the Segments will be described at the 02

level. (To define the 01 level, use ORGANIZATION = ’L’

and Work Areas (-W) lines.)

’3’ Reserved for D.S. with an ORGANIZATION = ’W’ or ’L’.

54 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

COBOL 02 level for the D.S. Area and Segments at 03 level

when associated with RECORD TYPE / USE WITHIN D.S.

= 1, 2, or 3.

01 level for the D.S. Area and Segments at 03 level when

associated with RECORD TYPE / USE WITHIN D.S.= 4.

03 level for both the D.S. Area and the Segments when

associated with RECORD TYPE / USE WITHIN D.S. =

blank.

’4’ Reserved for Data Structures with an ’L’ ORGANIZATION

and USAGE OF DATA STRUCTURE = ’D’. The 01 level is

to be defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary

Elements that are not part of a group.

Elementary Elements that are part of a group appear. The

D.S. Area and Segment levels disappear.

’5’ Reserved for Data Structures in ORGANIZATION ’L’ or ’W’

and with a USAGE OF DATA STRUCTURE = ’D’.

COBOL 01 level for group Data Elements or elementary

Elements that are not part of a group.

Elementary Elements that are part of a group appear. The

D.S. Area and Segment levels disappear.

’6’ Reserved for Data Structures with an ’L’ ORGANIZATION

and USAGE OF DATA STRUCTURE = ’D’. The 01 level is

to be defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary

Elements that are not part of a group.

Elementary Elements that are part of a group disappear as

well as D.S. Area and Segment levels.

For standard OLSD Screens only.

’7’ Reserved for Data Structures in ORGANIZATION ’L’ or ’W’

and with a USAGE OF DATA STRUCTURE = ’D’.

COBOL 01 level for group Data Elements or elementary

Elements that are not part of a group.

Elementary Elements that are part of a group disappear as

well as D.S. Area and Segment levels.

For standard OLSD Screens only.

27 2 CODE FOR COBOL PLACEMENT

PSEUDO-NUMERIC FIELD, blanks replaced by zeros.

Chapter 4. Modifying the Working Storage/Linkage Section 55

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

This field concerns only the principal Description of a D.S.

(ddss) and not the Descriptions preceded by a prefix

(1-ddss or 2-ddss).

This field is used to obtain a Description of a D.S. in a

particular area (COMMUNICATION area with DBMS’s or

the LINKAGE SECTION which the user must define by a

Work Areas (-W) line), or at the beginning of the

WORKING-STORAGE SECTION.

This field is reserved for D.S.’s with an ’L’, ’D’ or ’W’

ORGANIZATION, in order to place the I/O area in

WORKING STORAGE.

To have a Data Structure described in WORKING-
STORAGE it is preferable to use the Work Areas (-W) lines.

’00’ The Description of the D.S. is inserted after all the Work

Areas (-W) lines. (Default value).

alphabet. The Description of the D.S. is inserted after all the Work

Areas (-W) lines whose 5-digit line number begins with this

value.

The Description and Work Areas (-W) lines are found at the

beginning of the generated Program WORKING-STORAGE

SECTION. These lines appear both before Data Structures

with ORGANIZATION = ’W’ and before those whose

DATA STRUCTURE CODE IN THE PROGRAM is greater

than this alphabetic code.

(Do not use this field with a Data Structure whose

ORGANIZATION = ’W’.)

alphanum. The Description of the D.S. is inserted after all the Work

Areas (-W) lines whose 5-digit line number begins with this

value. The Work Areas (-W) lines and the Description can

be found in the generated Program, at the end of the

WORKING-STORAGE SECTION among the user areas.

The location is indicated on the first line of the D.S. call

(CONTINUATION OF DS DESCRIPTION field = blank),

and is repeated (by default) on all of its continuation lines.

However, it is possible to attribute different locations to

each record description of D.S. in a Program. This is done

by entering several call lines for this D.S., specifying a

record selection and a location for each one.

Therefore, the Data Structure must have an unpacked

description, whether implicit or explicit.

56 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

WARNING: with ORACLE, you must use numeric values

so that the DECLARE SECTION will be correctly generated

(with data fields and indicators included in it).

28 10 STATUS FIELD - FILE INDICATOR

(Note: In this discussion, the term ’COBOL Variant’ = the

value in the TYPE OF COBOL TO GENERATE field)

Enter the DATA STRUCTURE, SEGMENT and DATA

ELEMENT CODEs in the following format:

ddsseeeeee

(Recommendation: ss = 00).

This field is used in one of three ways:

For VSAM files

.The FILE STATUS IS clause is generated using

1-ddss-eeeeee (declared as a two byte field).

For hardware other than Gcos8 BCD and non-VSAM files

.The NOMINAL, SYMBOLIC or ACTUAL KEY depending

on the COBOL Variant.

The user must define the corresponding work area:

1-ddss-eeeeee.

The positioning of this key as well as the read of the D.S.

must be programmed by using Procedural Code (-P).

For Gcos8 BCD (COBOL Variant 6)

.Identification of the Data Structure.

.The corresponding ’VALUE OF’ clause will be generated

only if it’s filled in.

.The return-code area of the input-output operations

.The corresponding ’FILE STATUS IS’ clause will be

generated only if it’s filled in.

29 6 Indexed Data Structure Access Key

Required for indexed Data Structures: Enter the DATA

ELEMENT CODE of the access key Element.

30 6 CODE OF RECORD TYPE ELEMENT

Enter the code of the Data Element whose values define

different record types of a Data Structure.

Note: Must be in the common part (00 Segment).

Chapter 4. Modifying the Working Storage/Linkage Section 57

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

This code can also be specified on the Segment Definition

Screen for the 00 Segment in the CODE OF RECORD TYPE

ELEMENT field, and is then used as a default value at

generation level.

Work Areas Screen (-W)

The Work Areas (-W) screen completes the WORKING-STORAGE SECTION,

LINKAGE SECTION, and the other supplementary sections that constitute the

Work Areas of the DATA DIVISION.

This screen is used to accomplish the following:

v Call in Data Structures that already exist in the Dictionary;

v Call in Data Elements that already exist in the Dictionary (with or without

a Segment), in the desired format;

v Declare Data Elements that do not exist in the Dictionary;

v Write in Source languages other than COBOL, in free structure Programs

(PROGRAM TYPE = ’S’);

v Name additional COBOL sections.

NOTE: This should be limited to the declaration of clauses that are not

automatically generated by VisualAge Pacbase, such as ’LINKAGE

SECTION’ in a batch Program.

v Generate the indexes used in a table search (with the ’SCH’ OPERATOR).

This is done by associating a TABLE SIZE (OCCURS CLAUSE) value to the

DATA STRUCTURE and SEGMENT CODE in the WORK AREA

DESCRIPTION field.

RECOMMENDATIONS

The Data Structure (-CD) call screen defines resources that are external to the

Program (file, Databases, etc.). WORKING-STORAGE SECTION and

LINKAGE SECTION fields are grouped together in the ’-W’ screen, which

makes it easy to organize them.

Furthermore, it is the ’-W’ lines of a Macro-Structure that are incorporated

into calling Programs, and not Data Structure (-CD) calls. Be sure that the

Macro-Structure ’-W’ keys do not conflict with those of the calling Program or

of other Macro-Structures.

CALLING DATA STRUCTURES

58 VisualAge Pacbase: Structured Code

Data Structures are called by using ’F’-type lines. An input guide is used to

enter the attributes of the Data Structure. (See the TYPE OF LINE or DATA

ELEMENT FORMAT’ field in the Screen Description.)

Chapter 4. Modifying the Working Storage/Linkage Section 59

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| WORK AREAS..........ENTITY TYPE O SA0010 *** REQUEST INPUT *** |

| 1 2 |

| CODE FOR PLACEMENT..: 3 AB |

| 4 5 6 7 8 9 |

| A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION OCCURS |

| * 010 * --> MESSAGE BEFORE PROVOKED ABEND <--- |

| * 100 01 ABEND-MESS. |

| * 120 05 FILLER PIC X(24) VALUE |

| * 130 ’TRANSACTION TERMINATION ’. |

| * 150 05 ABEND-TRANS PIC X(4). |

| * 170 05 FILLER PIC X(11) VALUE |

| * 180 ’ : FILE ’. |

| * 200 05 ABEND-DDNAME PIC X(8). |

| * 220 05 FILLER PIC X VALUE SPACE. |

| * 240 05 ABEND-RMESS PIC X(8). |

| * 260 05 FILLER PIC X(23) VALUE |

| * 270 ’. CALL EXTENSION 345.’. |

| |

| |

| |

| |

| |

| O: C1 CH: -W |

--

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

1 1 ENTITY TYPE

This field is used to identify the entity to which these lines

are attached:

’O’ On-line Screen

’P’ Program

The user may keyboard this field in order to copy lines

attached to a Screen into a Program and vice-versa.

2 6 PROGRAM CODE OR SCREEN CODE (REQUIRED)

This field contains the six-character program or on- line

screen code.

3 2 CODE FOR COBOL PLACEMENT (REQUIRED)

PSEUDO-NUMERIC FIELD

60 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

Valid values for this field are alphabetic characters, (blanks

replaced by zeros), numeric characters, and $n for a

parameterized value in a P.M.S. This value is used to

determine the placement and the sequence in which data

entered on this screen will be generated in the DATA

DIVISION. These characters form the first two digits of a

sequencing number, with the value in the LINE NUMBER

field as the last three.

For Batch programs:

’AA to ZZ’

’0A to 0Z’

A CODE FOR COBOL PLACEMENT smaller than ’00’

causes the data entered on this screen to be generated at the

beginning of the WORKING-STORAGE SECTION.

Relatively to Data Structures called via the Call of Data

Structures (-CD) screen, these data will be generated as

follows:

.before the description of Data Structures with

ORGANIZATION = ’W’ and whose DATA STRUCTURE

CODE IN THE PROGRAM matches this prefix or is greater

than it,

.before the description of Data Structures with

ORGANIZATION = ’L’ or ’D’ and whose CODE FOR

COBOL PLACEMENT (on -CD screen) matches this prefix

or is greater than it.

’00 to 09’

’1A to 19’ ...

’9A to 99’

A CODE FOR COBOL PLACEMENT greater than ’00’

causes the data entered on this screen to be generated in

the WORKING-STORAGE SECTION, after all Data

Structures whose CODE FOR COBOL PLACEMENT (on

-CD screen) is smaller than this prefix.

For On-Line Programs:

’AA to 0Z’ If this value is less than ’00’ (from ’AA’ to ’0Z’), the

description is generated in the WORKING-STORAGE

SECTION.

’00 to 99’ Otherwise, it is generated in the LINKAGE SECTION.

’AA’ This value is used by the system for data generated

automatically.

’00’ This value is used by the system for data generated

automatically.

Other codes may be reserved for special usage depending

upon the TP monitor type chosen for generation.

Chapter 4. Modifying the Working Storage/Linkage Section 61

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’99’ With LINE NUMBER = ’999’: This value is used by the

system for the ’PROCEDURE DIVISION’ statement.

Therefore, you may use it to create a line with a sequencing

number ’99999’, which will replace the generated statement.

’$n’ In a Parameterized Macro-Structure, this value may be

parameterized.

4 1 ACTION CODE

’C’ Creation of the line

’M’ Modification of the line

’D’ or ’A’ Deletion of the line

’T’ Transfer of the line

’B’ Beginning of multiple deletion

’G’ Multiple transfer

’?’ Request for HELP documentation

’E’ or ’-’ Inhibit implicit update

’X’ Implicit update without upper/lowercase processing

5 3 LINE NUMBER

BLANKS REPLACED BY ZEROS

’0-999’ As a recommendation, number the lines starting with 10 by

intervals of 10, thus facilitating future insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the

LINE NUMBER can be parameterized.

6 1 Type of line or Data element format

Type of line values:

blank Data entered in the LEVEL AND SECTION and WORK

AREA DESCRIPTION fields are to be generated as entered.

’-’ Continuation character for a literal.

’*’ Comment. Data entered in the LEVEL AND SECTION and

WORK AREA DESCRIPTION fields contain comments to be

inserted into the generated Program (ANSI COBOL only).

’$’ This value appears in column 7 of the generated COBOL

and the other Elements of the WORKING line appear as it

is.

’A’ Call of an eBusiness Application. This call is fully

documented in the ’COBOL API User’s Guide’.

’F’ Call of a Data Structure.

62 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

When ’F’ is entered, the system responds with a formatted

line which is used to facilitate data entry. The fields are the

same as those used on the Call of Data Structures (-CD)

screen for D.S. with ORGANIZATION = ’W’ or ’L’.

.Data Structure code in the Program.

.Data Structure code in the Library.

.Segment selection (enter the Segment code without an

asterisk).

(A segment code can only be renamed in batch).

.Non-Printing Data Structure format (1 to 8).

.Record type / Use within D.S. (I, E or S).

.Level number (Cobol) of the record (1 to 5).

.Organization.

.Sub-schema number.

Type ’F’ ’-W’ lines are processed as Data Structure call lines

(-CD) only for batch.

If two Type ’F’ ’-W’ lines referring to the same Data

Structure (same Data Structure code in the Program) are

separated, they will nevertheless be generated one after the

other.

Element format values:

’E’ Use of the Input format of a Data Element.

’I’ Use of the Internal format of a Data Element.

’S’ Use of the Output format of a Data Element.

For these format types, the presence of the Data Element in

the Specifications Dictionary is checked. A cross-reference is

established, which prohibits the deletion of the Data

Element whenever the lines in which it is called have not

been deleted themselves.

If the Element does not exist in the Specifications

Dictionary, the System sends a warning.

When a global replacement is required (.C2), the Element is

not checked but the cross-references will still be created.

For these three format types, the entered data-name must

therefore have the following format:

W-DDSS-EEEEEE where:

W = a working-storage prefix,

Chapter 4. Modifying the Working Storage/Linkage Section 63

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

DDSS = a given Data Structure and Segment code,

EEEEEE = a Data Element code which exists in the

Specifications Dictionary.

The corresponding format is automatically attributed by the

System.

For IMS sub-monitors:

’M’ Sub-monitor; enter the code of the sub-monitor in the

LEVEL OR SECTION field.

’C’ Call of a screen into the sub-monitor named above.

Enter the SCREEN CODE of the screen belonging to the

sub-monitor in the LEVEL OR SECTION field, followed by

a space and a ’D’ for Dynamic call or ’S’ for Static.

Example: C OOSCRN D

Note: Enter one SCREEN CODE per ’C’-type line.

7 17 LEVEL OR SECTION

Enter a COBOL Level Number (example: 01, 05,....) or a

section name (example: LINKAGE SECTION).

’$n’ In a macro-structure, this value can be parameterized.

8 48 WORK AREA DESCRIPTION

The user should always use data-names that conform to the

standards recognized by the System.

The structure of these names is ’w-ddss-eeeeee’, where:

. w = Working-storage prefix (alpha or numeric),

. dd = DATA STRUCTURE CODE, including the work area,

. ss = SEGMENT CODE,

. eeeeee = DATA ELEMENT CODE.

If this standard is followed, the Data Element/Program

cross-references will be established automatically.

Values entered in this field appear on the same line in the

generated code, as the value entered in the LEVEL OR

SECTION field.

When used in combination with the TABLE SIZE (OCCURS

CLAUSE) field, the value entered in this field must be

left-justified. The prefix (’w-’) may be omitted, however,

two spaces must then be entered to replace them.

’$n’ In a Macro-Structure, the WORK AREA DESCRIPTION

value can be parameterized.

64 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

NOTES: The period is not automatically generated after

’PICTURE’, enabling the user to enter a COBOL clause (like

VALUE, JUSTIFIED, etc.), which must be entered on the

following line.

The period must be explicitly indicated at the end of a

declaration.

When a Data Element is called into a WORKING

STORAGE or LINKAGE SECTION field, if the Data

Element code exists in the Dictionary, the data name must

be entered in this field. Otherwise, the generated code must

be in the following format:

03 DDSS-DELCO PICTURE X.

9 5 TABLE SIZE (OCCURS CLAUSE)

PURE NUMERIC FIELD

Enter the maximum number of occurrences for the table.

An entry in this field causes the generation of the three

indices: IddssM, IddssL and IddssR.

.IddssM: initialized to the value entered.

.IddssL: initialized to zero.

This index may be used to load the table. It keeps track of

the actual table size.

.IddssR: initialized to zero.

This index may be used for table searches.

The DATA STRUCTURE and SEGMENT CODEs are

entered, prefixed with some work area prefix code in the

standard VA Pac format: ’w-ddss’ or ’w-ddss-eeeeee’. This

value MUST be left-justified in the WORK AREAS

DESCRIPTION field. The prefix may be replaced by spaces.

Note: This can be done on a comment line (’*’ as the TYPE

OF LINE value).

’$n’ In a Macro-Structure, this value may be parameterized.

This field is not taken into account when used in a

formatted line.

Chapter 4. Modifying the Working Storage/Linkage Section 65

Work Areas Formatted Line

When a Data Structure that was previously defined is to be used as a work

file, the user may call this Data Structure into the WORKING-STORAGE (or

LINKAGE) SECTION by requesting a Formatted Line. This is done by

entering ’F’ in the TYPE OF LINE field (a LINE NUMBER value is also

required). The system will respond with a line containing screen labels for

input fields.

INPUT FIELDS

Only the fields that pertain to the formatted line will be described in this

subchapter. The fields that pertain to the Work Areas (-W) screen as a whole

are described in the previous subchapter.

The formatted line fields for the most part are a subset of the fields that

appear on the Call of Data Structures (-CD) screen, and are used in a similar

fashion. The exceptions to this rule are:

v The SEGMENT SELECTION field is used to select Segments within a Data

Structure to be described. On the Call of Data Structures screen, the user

would need to enter an asterisk prior to the SEGMENT CODE. On the

Work Areas screen, no asterisk is to be entered. For on-line Programs, the

common part Segment (00) must be explicitly entered. With batch

Programs, it is implicitly selected (if it exists).

v The SUB-SCHEMA NUMBER field is used with the Pactables function, and

is used to specify which sub-schema is to be described.

v The LINE SEQUENCE field does not have a screen label. Its physical

location on this line is the column directly to the right of the SUB-SCHEMA

NUMBER field. This field is used only for upward compatibility, if needed.

GENERAL INFORMATION

Segments generated as a result of data entered on the formatted line are

named according to the following standard: ddss.

Data elements are named: ddss-eeeeee.

66 VisualAge Pacbase: Structured Code

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| WORK AREAS..........ENTITY TYPE P TES001 TEST FOR POJ |

| |

| |

| CODE FOR PLACEMENT..: BB |

| |

| A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION OCCURS|

| * 020 F DP: XW DL: XW SEL: 02______ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ |

| * 030 F DP: XW DL: XW SEL: 04______ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ |

| 1 2 3 4 5 6 7 8 9 10 11 |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| O: C1 CH: -W |

--

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

1 3 LINE NUMBER

BLANKS REPLACED BY ZEROS

’0-999’ As a recommendation, number the lines starting with 10 by

intervals of 10, thus facilitating future insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the

LINE NUMBER can be parameterized.

2 1 TYPE OF LINE

’F’ When ’F’ is entered, the system responds with a formatted

line which is used to facilitate data entry.

The fields here, for the most part, are the same as those on

the Call of Data Structures (-CD) screen for data structures

with ORGANIZATION = ’W’, ’L’ or ’D’.

.DATA STRUCTURE CODE IN THE PROGRAM.

.DATA STRUCTURE CODE IN THE LIBRARY.

.SEGMENT SELECTION.

.NON-PRINTING DATA STRUCTURE FORMAT.

.RECORD TYPE / USE WITHIN D.S.

Chapter 4. Modifying the Working Storage/Linkage Section 67

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

.LEVEL NUMBER (COBOL) OF THE RECORD.

.ORGANIZATION.

.SUB-SCHEMA NUMBER.

.LINE SEQUENCE. (Note: This field has no label on the

screen).

Type ’F’ ’-W’ lines are processed as Data Structure call lines

(-CD). If two Type ’F’ ’-W’ lines referring to the same D.S.

(same DATA STRUCTURE CODE IN THE PROGRAM) are

separated, they will nevertheless be generated one after the

other.

3 2 DATA STRUCTURE CODE IN THE PROGRAM

This code establishes the sequence in which the Data

Structure will be processed in the Program.

The first character must be alphabetic but the second one

can be numeric or alphabetic.

It is recommended to keep the same DATA STRUCTURE

CODE IN THE PROGRAM and IN THE LIBRARY when

the Data Structure described in the Library is used only

once in the Program.

4 2 DATA STRUCTURE CODE

This code is made up of two alphanumeric characters. This

is a logical code internal to the Database and therefore

independent of the names used in Database Blocks and

Programs.

5 8 SEGMENT SELECTION

Rather than describing all of the Segments belonging to a

Data Structure, the user may select the ones that are

needed, thus avoiding unnecessary description lines and

wasted work area space.

Enter the SEGMENT CODE (up to four are allowed) for the

Segments to be described. Do not enter spaces between

these codes.

6 1 NON-PRINTING DATA STRUCTURE FORMAT

This option is reserved for Data Structures with a USAGE

OF DATA STRUCTURE other than ’I’ or ’J’.

’E’ Input format. (Default option with USAGE OF D.S. = ’M’,

’N’ or ’E’).

’I’ Internal format (Default with USAGE OF D.S. NOT= ’M’,

’N’ or ’E’).

68 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’S’ Output format.

Note: the Elements making up the Segments must not

exceed 999 characters.

7 1 RECORD TYPE / USE WITHIN D.S.

This option is used to select the type of record description

to be used in the COBOL Program to allow different uses of

the Segment Description stored in the Library.

blank Redefined records (Default option). No VALUE clause is

generated.

’1’ A record set without initial values or repetitions of records.

These records are presented with the Segment common part

followed by the different specific parts.

If the Data Structure Description appears in the COBOL

FILE SECTION, the LEVEL NUMBER (COBOL) OF THE

RECORD must be 2. With this value, the specific Segments

are described without redefines, at the COBOL 02 level.

Several Segment Descriptions are grouped together under

the same I/O area.

’2’ A record set with the specific initial values of the Data

Element of the Segment as defined on the Call of Elements

or Data Element Description screen. These values may also

default to blank or zero depending on the format.

This type of description cannot be used for a Data Structure

having a number of repetitions in the common part

Definition. (Use ORGANIZATION = ’W’ or ’L’).

’3’ A record set which incorporates the number of repetitions

specified in OCCURRENCES OF SEGMENT IN TABLE on

the Segment Definition Screen. No VALUE clause will be

generated.

If the description of the Data Structure appears in the

COBOL FILE SECTION, the LEVEL NUMBER (COBOL) OF

THE RECORD must be ’2’.

’4’ A record set which incorporates the number of repetitions

specified in the OCCURRENCES OF SEGMENT IN TABLE

on the Segment Definition Screen.

The associated LEVEL NUMBER (COBOL) OF THE

RECORD must be ’3’.

Comment specific to the OLSD function: For a description

type of ’4’ and a COBOL 03 level, the index is not

generated.

Chapter 4. Modifying the Working Storage/Linkage Section 69

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

A COBOL 02 level is used to access the table made up of

repetitions of the same record (ddssT).

A COBOL 01 level is used to group the whole Data

Structure together - common or specific parts, whether

repeated or not.

A group level field that incorporates all occurrences is

generated.

For Data Structures that do not have a value specified for

the OCCURRENCES OF SEGMENT IN TABLE, use

ORGANIZATION = ’W’ with USAGE OF Data Structure =

’T’.

’6’ To be used only with the GIP interface. The number of

levels are the same as the one of the record type 4.

8 1 LEVEL NUMBER (COBOL) OF THE RECORD

This option, used in conjunction with the RECORD TYPE

/USE WITHIN D.S. field, defines the COBOL level number

for the descriptions of Data Structures, Segments and

Elements.

In the following descriptions, the term ’D.S. Area’ is meant

as the area ’dd00’ (possibly 1-dd00, 2-dd00).

’1’ COBOL 01 level for D.S. Area and Segments. (Default

value).

If the Data Structure Description appears in the COBOL

FILE SECTION, the Segments must be redefined.

If a Data Structure has no common part with a non-

redefined Description, the D.S. Area will only appear when

the RECORD TYPE / USE WITHIN D.S. = blank.

’2’ COBOL 01 level for D.S. Area and Segments at 02 level.

If the RECORD TYPE / USE WITHIN D.S. = blank, both

the DS Area and the Segments will be described at the 02

level. (To define the 01 level, use ORGANIZATION = ’L’

and Work Areas (-W) lines.)

’3’ Reserved for D.S. with an ORGANIZATION = ’W’ or ’L’.

COBOL 02 level for the D.S. Area and Segments at 03 level

when associated with RECORD TYPE / USE WITHIN D.S.

= 1, 2, or 3.

01 level for the D.S. Area and Segments at 03 level when

associated with RECORD TYPE / USE WITHIN D.S.= 4.

70 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

03 level for both the D.S. Area and the Segments when

associated with RECORD TYPE / USE WITHIN D.S. =

blank.

’4’ Reserved for Data Structures with an ’L’ ORGANIZATION

and USAGE OF DATA STRUCTURE = ’D’. The 01 level is

to be defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary

Elements that are not part of a group.

Elementary Elements that are part of a group appear. The

D.S. Area and Segment levels disappear.

’5’ Reserved for Data Structures in ORGANIZATION ’L’ or ’W’

and with a USAGE OF DATA STRUCTURE = ’D’.

COBOL 01 level for group Data Elements or elementary

Elements that are not part of a group.

Elementary Elements that are part of a group appear. The

D.S. Area and Segment levels disappear.

’6’ Reserved for Data Structures with an ’L’ ORGANIZATION

and USAGE OF DATA STRUCTURE = ’D’. The 01 level is

to be defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary

Elements that are not part of a group.

Elementary Elements that are part of a group disappear as

well as D.S. Area and Segment levels.

For standard OLSD Screens only.

’7’ Reserved for Data Structures in ORGANIZATION ’L’ or ’W’

and with a USAGE OF DATA STRUCTURE = ’D’.

COBOL 01 level for group Data Elements or elementary

Elements that are not part of a group.

Elementary Elements that are part of a group disappear as

well as D.S. Area and Segment levels.

For standard OLSD Screens only.

9 1 ORGANIZATION

’G’ Table description (Pactables).

Causes the communication area with the access module to

be generated. See the ’Pactables’ Reference manual.

Chapter 4. Modifying the Working Storage/Linkage Section 71

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’D’ Reserved for the Description of Segments or records of the

different Databases, IMS (DL/1), IDS I, IDS II, (according to

the TYPE OF COBOL TO GENERATE selected), in the

generation of DBD, SYSGEN, schemas or application

Programs (according to the TYPE AND STRUCTURE OF

PROGRAM selected).

’blank’ Defaults to ORGANIZATION of ’L’ or ’W’ depending on

the value of the CODE FOR COBOL PLACEMENT.

’A’ Reserved for an ADABAS file description in the definition

Programs or usage Programs of the Database.

’T’ Reserved for the description of ’TOTAL’ files in the

Definition Programs or the usage Programs of the Database.

’Q’ Reserved for the Description of SQL/DS, DB2/2 or

DB2/6000 Databases (IBM), or ALLBASE/SQL Databases

(HP3000), or DB2/2 or DB2/600 Databases(MICROFOCUS).

’2’ Generation-Description of a DB2 or VAX/SQL Segment.

Only physical accesses are not generated. The structure of

variable indicators corresponding to to the columns of the

DB2 or VAX/SQL table is always generated.

’C’ Reserved for the Description of an INTEREL RDBC, RFM

Database Structure.

’O’ Reserved for the Description of an ORACLE (< V6)

Database Structure.

’P’ Reserved for the Description of an ORACLE (V6 and V7)

Database Structure.

’R’ Reserved for the Description of an RDMS Database

Structure.

’4’ Reserved for the Description of a DB2/400 Database

Structure.

’N’ Reserved for the Description of a NONSTOP SQL Database

Structure.

’M’ Reserved for the Description of a DATACOM DB Database

Structure.

’9’ Reserved for the Description of an INFORMIX, SYBASE,

INGRES/SQL, and SQL SERVER Database Structure.

The use of the System with the different DBMS’s is

documented in specific ’Databases’ manuals.

10 1 SUB-SCHEMA NUMBER

72 VisualAge Pacbase: Structured Code

NUM LEN

VALUE

CLASS AND FILLING MODE DESCRIPTION OF FIELDS

’0 to 9’ Indicates the sub-schema to be selected. (The value ’0’

corresponds to sub-schema 10.)

11 1 LINE SEQUENCE

’*’ This value is used to generate segments from Formatted

Work Areas lines according to a generation method which

should NOT be used currently. The purpose of this

specification is to facilitate the maintenance of programs

generated with this method, i.e., before the sub-release of

VisualAge Pacbase 7.1. This field has no screen label. The

field is directly to the right of the SUB-SCHEMA NUMBER

field.

Chapter 4. Modifying the Working Storage/Linkage Section 73

74 VisualAge Pacbase: Structured Code

Chapter 5. Modifying the Procedure Division

Introduction

ORGANIZATION OF THE CHAPTER

This chapter contains a discussion of the concepts of Procedural code, as well

as the Preview Facility. Since the Procedures Generated (-PG) screen is closely

related to the Procedural Code (-P) screen, these two will be documented in

the same subchapter. The Titles Only (-TO) screen is mentioned in the ’Titles

and Conditions Screen (-TC)’ subchapter.

MODIFICATION OF THE PROCEDURE DIVISION

This Chapter discusses modifications to the PROCEDURE DIVISION of a

program through the use of Procedural Code (-P) lines attached directly to a

batch or on-line Program. The user can also use the VisualAge Pacbase

Preview Facility, which includes the Procedures Generated (-PG) screen, the

Titles and Conditions (-TC) screen and the Titles Only (-TO) screen.

v The Procedures Generated (-PG) screen allows the user to write specific

procedures and, at the same time, view the titles of automatically generated

procedures.

v The Titles and Conditions (-TC) screen allows the user to view the general

structure (titles and conditions of all procedures) of a batch or on-line

Program.

v The Titles Only (-TO) screen lets the user view the hierarchical

organization of program functions.

TRANSFER OF PROCEDURAL CODE (-P) LINES TO ANOTHER ENTITY

Procedural Code (-P) lines may be copied directly to another entity. See

paragraph ’Transfer of lines to another entity in chapter ’Modifying the

Identification / Environment Division’.

Procedural Code Screen (-P)

The Procedural Code (-P) screen is used to write all Program procedures.

These Program procedures are structured into functions and sub-functions,

with each function or sub-function identified as a condition or structure type.

They are hierarchically set up by level. Program procedures are described

using operators followed by operands.

© Copyright IBM Corp. 1983,2004 75

LEVEL OF SUB-FUNCTIONS

Functions are always an 05 level. Sub-functions have a 10 level by default.

However, they can be an 06 level to a 98 level.

Within a given function, a 15-level sub-function is part of the 06- to 14-level

sub-functions which precede it. In other words, a sub-function of a logically

lower level will have a level number that is greater (ex: a 15-level

sub-function is logically dependent on, or inferior to, a 14-level sub-function).

In this way, a sub-function dependent on another sub-function (i.e., a 15-level

sub-function included in a 14-level sub-function), is only executed under the

conditions of execution of the logically higher level sub-function (14-level in

this case).

ELEMENTARY PROCEDURES

An elementary procedure is a series of condition lines.

The ’99’ level is reserved for elementary procedures. It is used to write a

condition without changing the sub-function code. This condition applies until

the next occurrence of a ’99’ level or until the end of the sub-function.

A ’99’ level procedure is limited to 75 lines. A sub-function can contain a

maximum of 98 ’99’ levels.

A sub-function with no title line (N in the OPERATOR field) is assumed to be

an elementary procedure and automatically assigned a ’99’ level.

CONDITION TYPE OR S.F. STRUCTURE

A function can be only an ’IT’ (IF THEN) type if its execution depends on a

condition. Otherwise, it must be a ’BL’ (BLOCK) type. This is indicated in the

CONDITION TYPE OR S.F. STRUCTURE field on the first line of the

procedure.

If the CONDITION TYPE OR S.F. STRUCTURE is not indicated, the default

assumed for any one of these options is selected according to what has been

entered in the CONDITION FOR EXECUTION field. If an execution condition

is entered, the System defaults to the ’IF THEN’ structure; if an execution

condition is not entered, it defaults to the ’BLOCK’ structure.

For the sub-functions and the elementary procedures, the default options are

the same. However, the user can also indicate more complex types of

structures.

76 VisualAge Pacbase: Structured Code

IF THEN (’IT’) & ELSE (’EL’)

The sub-function type ’IT’ (IF THEN) can be followed by an ’EL’ (ELSE) type

sub-function of the same level.

The ’ELSE’ sub-function will be executed if the ’IF THEN’ sub-function

condition has not been met. The ’ELSE’ must directly follow the ’IF THEN’

sub-function.

CASE OF (’CO’)

The name of the variable which conditions the different procedures following

the ’CASE OF’ must be included in the ’CASE OF’ statement.

The ’CASE OF’ structure is followed by sub-functions of the ’IT’ type (IF

THEN) at the next logically lower level. The variable value corresponding to

the condition for execution of the sub-function is specified each time.

The ’IF THEN’ (’IT’) sub-functions that depend on a ’CASE OF’ sub-function

must all be on the same level. They can be broken down into logically lower

level sub-functions.

The last sub-function which depends on the ’CASE OF’ sub-function can be a

’BLOCK’ (’BL’) type sub-function (non-conditioned). This last sub-function

must be on the same level as the ’IF THEN’ sub-functions. It will be executed

when none of the ’IF THEN’ conditions have been met.

If the last sub-function is not a ’BLOCK’ type and none of the ’IF THEN’

conditions are met within the ’CO’ structure type, processing continues with

the first sub-function at a higher logical level than the ’IT’ sub-functions.

 15 CO ddss-eeeeee

 16 IT value1

 16 IT value2

 16 IT value3

 16 BL

LOOPS

There are three types of ’LOOP’ structures:

DO WHILE (’DW’), DO UNTIL (’DU’) and DO (’DO’).

A ’DW’ (’DO WHILE’) sub-function is only executed ’while’ the indicated

condition is true.

Chapter 5. Modifying the Procedure Division 77

A ’DU’ (’DO UNTIL’) sub-function is executed at least once and ’until’ the

indicated condition is met.

A ’DO’ (’DO’) sub-function is executed as many times as indicated in the

condition.

The user must be careful to correctly specify the conditions to be met in the

first two types of sub-functions in order to avoid an infinite loop.

’WARNING’ TYPE ERROR MESSAGE

When a ’WARNING’ type error message is displayed, the character ’W’

appears in the ACTION CODE field. The user can ignore the message by

pressing Enter again.

CONDITION FOR EXECUTION

The construction of the lines of the Procedural Code (-P) screen separates the

CONDITION FOR EXECUTION of a procedure from the procedure itself.

That is, the left part of the screen (the OPERAND FIELD) is used for the

statement and the right part for the CONDITION FOR EXECUTION, if any.

Writing a CONDITION FOR EXECUTION of a function or sub-function

begins on the first line of that function or sub-function and continues onto as

many lines as necessary, up to a limit of 24 lines (23 lines in case of ’Do

Until’).

These lines may or may not include processing statements.

However, they will be executed under the global conditions set.

Note on DATE PROCESSING OPERATORS of the On-Line Systems

Development function:

When the condition is entered on several lines, the continuation lines may not

contain operands. The operands must be entered before the condition

continuation.

In order to facilitate the writing of a condition, the CONDITION TYPE OR

S.F. STRUCTURE field must be used to indicate the ’AN’ (AND) and/or ’OR’

(OR) relationships within these conditions.

Parentheses, if needed, must be indicated.

PROCEDURES - OPERATORS AND OPERANDS

78 VisualAge Pacbase: Structured Code

Procedures written in Procedural Code are written with OPERATORS

followed by OPERANDS.

This makes programs easy to read by isolating the ’verbs’ from the

manipulated data.

OPERATORS are translated into COBOL and take into account the

information provided for the different files and the features of each compiler.

An OPERATOR is indicated only once, even if the OPERANDS continue onto

several lines. The one exception to this rule is the ’*’ (comments) OPERATOR,

which must be repeated on each comment line.

TRANSFER ’GO-TO’ TYPE BRANCHING

The structure of a program must remain linear. Skipping from one function to

another can only be done in sequence.

Branching from one function or sub-function to a preceding function or

sub-function breaks the linear flow and is not permitted.

Thus, the only legitimate TRANSFER ’GO TO’ TYPE branch is one which

branches to the end of the current (sub-)function.

Specific OPERATORS are used for all of the TRANSFER ’GO TO’ TYPE

branches.

Some OPERATORS and types of functions can be used only with the On-Line

Systems Development function (see the OPERATORS field).

NON-STANDARD OPERATORS

The user may specify a paragraph label and a PERFORM instruction for a

user-defined function F80. This is done by using the ’Yaa’ and ’Xaa’

OPERATORs (the ’aa’ to be replaced by the user). When this occurs, the

system will display a warning message at the bottom of the screen to inform

the user that this is a non-standard operator. The letter ’W’ will appear in the

ACTION CODE field. If the user presses the ENTER key, the system will

accept the operator.

FIELD ALIGNMENT

In a release prior to VisualAge Pacbase, the OPERANDS and CONDITION

FOR EXECUTION fields were larger and not completely displayed on-line.

This no longer applies to the current release (see the JUSTIFICATION OF

OPERANDS and the JUSTIFICATION OF CONDITION FIELD fields).

Chapter 5. Modifying the Procedure Division 79

ON-LINE PREVIEW OF THE PROCEDURES

The user can preview a program, via the Procedures Generated (-PG) screen,

to see how Procedural Code is integrated with automatically generated

functions.

USE OF THE PROCEDURES GENERATED (-PG) SCREEN

The Procedures Generated (-PG) screen allows the user to write specific

procedures and visualize simultaneously the titles of generated procedures.

The Procedures Generated (-PG) screen is accessed by entering the following

in the CHOICE field:

CH: PppppppPG

Specific procedures written on the Procedures Generated (-PG) screen are

described according to the same rules which apply to the Procedural Code

(-P) screen.

80 VisualAge Pacbase: Structured Code

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| PROCEDURAL CODE P PO0001 VENDOR REPORTS FUNCTION: 02 |

| 1 2 3 |

| |

| 6 7 8 9 10 11 12 13 |

| A SF LIN OPE OPERANDS 4 LVTY CONDITION 5 |

| AA N GET CURRENT DATE 10BL |

| AA 10 ADT DATOR |

| - -- --- --- -------------------------------- ---- --------------------------|

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| *** END *** |

| O: C1 CH: -P |

--

Chapter 5. Modifying the Procedure Division 81

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| PROCEDURAL CODE P BBINIT GENERAL PROCESSING FUNCTION: 02 |

| 2 3 |

| |

| 6 7 8 9 10 11 12 13 |

| A SF LIN OPE OPERANDS LVTY CONDITION |

| BB N MONITOR INITIALIZATION 10BL |

| BB 100 M PROGE K-S$1-PROGE |

| - -- --- --- -------------------------------- ---- --------------------------|

| CC N DISPLAY FIRST RUN 10IT ICF = ZERO |

| - -- --- --- -------------------------------- ---- --------------------------|

| DD N ACQUIRING DATE OF THE DAY 10BL |

| DD 100 AD8 |

| - -- --- --- -------------------------------- ---- --------------------------|

| |

| |

| |

| |

| |

| |

| |

| |

| THIS SCREEN DISPLAYS GENERATED FUNCTIONS |

| O: C1 CH: -PG |

--

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

1 1 ENTITY TYPE

This field is used to identify the entity to which these lines

are attached:

’O’ On-line Screen

’P’ Program

The user may keyboard this field in order to copy lines

attached to a Screen into a Program and vice-versa.

2 6 PROGRAM CODE OR SCREEN CODE

This field contains the six-character program or on- line

screen code.

3 2 FUNCTION CODE (REQUIRED)

’AA to 99’ This code determines the placement of the Procedural Code

lines in the sequence of functions. This is particularly

important when used with the On-Line and Batch Systems

Development functions in which automatic functions have

pre-determined codes.

’ $n’ In a Macro-Structure, the FUNCTION CODE can be

parameterized.

82 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

4 1 JUSTIFICATION OF OPERANDS

This field has been maintained for a prior release of

VisualAge Pacbase.

If you are using release 7.0 or later, this field is not used.

Used to left-justify the operands. In other words, to display

on the screen the right-hand part of the operands.

’blank’ Left-justification of the operands field.

’ n’ (Any value other than blank):

Right-justification of the operands field.

This option prohibits all updates.

5 1 JUSTIFICATION OF CONDITION FIELD

This field has been maintained for a prior release of

VisualAge Pacbases. If you are using release 7.0 or later,

this field is not used.

Used to left-justify the condition. In other words, to display

on the screen the right-hand part of the CONDITION FOR

EXECUTION.

’blank’ Left-justification of the condition field.

’ n’ (Any value other than blank): Right-justification of the

condition field. This option prohibits all updates.

6 1 ACTION CODE

’C’ Creation of the line

’M’ Modification of the line

’D’ or ’A’ Deletion of the line

’T’ Transfer of the line

’B’ Beginning of multiple deletion

’G’ Multiple transfer

’?’ Request for HELP documentation

’E’ or ’-’ Inhibit implicit update

’X’ Implicit update without upper/lowercase processing

7 2 SUB-FUNCTION CODE

Made up of numeric or alphabetic characters.

This code determines the placement of the Procedural Code

within the function.

Chapter 5. Modifying the Procedure Division 83

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’ $n’ In a macro-structure, the SUB-FUNCTION CODE can be

parameterized.

8 3 LINE NUMBER

PARAMETERIZABLE NUMERIC FIELD

’0-999’ As a recommendation, number the lines starting with 10 by

intervals of 10, thus facilitating future insertion insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the

LINE NUMBER can be parameterized.

PROCEDURE

Procedures are written in the format of an operator

followed by corresponding operands.

Operands may be continued onto several lines. When this

occurs, the OPERATOR is entered once only: on the first

line.

Normally, VisualAge Pacbase manages the punctuation.

This is done according to the hierarchical relationship

between the functions and sub-functions. The user can

customize the punctuation as needed.

$n In a parameterized Macro-Structure, the OPERATOR can be

parameterized.

9 3 OPERATORS

STANDARD PROCESSING OPERATORS

’N’ Title of function or sub-function (required). The title is to be

entered on the first line of a function or sub-function, on a

single line.

Depending on whether or not an entry is made in the

CONDITION FOR EXECUTION field, and whether it is a

function or a sub-function, the system can assign the

default values for LEVEL NUMBER and CONDITION

TYPE OR S.F. STRUCTURE. (These may be modified in the

normal way by the user.)

’*’ Comment line. This operator must be repeated for each line

of comments.

See also the COMMENTS INSERTION OPTION field in the

Library Definition screen.

’M’ MOVE

.The first operand is the source of the MOVE; subsequent

operands are the targets.

’MA’ MOVE ALL

84 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

.The first operand is the source, followed by the target

operands.

’P’ PERFORM

.Branch to the function or sub-function indicated as the first

operand, and return to sequence after executing the

(sub-)function ’EXIT’.

.If a second operand is entered, return to the sequence

following the paragraph indicated. (Example: PERFORM

F23BB THRU F24CC-FN.)

’C’ COMPUTE

.Calculation. The result field must be entered as the first

operand, followed by an equal sign (’=’). The fields to be

computed must be separated by the necessary arithmetic

operators and necessary parentheses.

’A’ ADD

.Addition of the first operand to the following operand(s).

’S’ SUBTRACT

.The first operand is subtracted from the second.

’MP’ MULTIPLY

.Multiplication of the first operand by the second.

’DV’ DIVIDE

.Division of the second operand by the first.

’MES’ DISPLAY

.Display constants or parameters defined in operands.

’ACC’ ACCEPT

.Accept and transfer parameters or constants in the field

defined in the operands.

’CAL’ CALL

.Call of the Program or sub-Program defined in the

operands. The USING clause must be explicitly written out

if it is to be used.

Branch type operators:

’GT’ GO TO

.Branch to the end of the (sub-)function to which the

statement belongs. The level of the (sub-)function must be

indicated by two numeric characters in the OPERAND

field.

Chapter 5. Modifying the Procedure Division 85

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

If the (sub)-function type is ’IT’ and if it used with an ’EL’

type of (sub)-function at the same level, the GT operator,

used at this level, branches to the beginning of the ’EL’

(sub)-function.

’GFT’ Go to the end of the iteration.

When this command is entered from a sub-function with a

hierarchically inferior LEVEL NUMBER, the branch is to the

end of the processing loop for the sub-function with the

controlling level number.

.On-Line Programs: Branch to the end of the category

processing.

.Batch Programs: Branch to the end-of-run function (F20)

and set the end-of-file processing switches.

’GDI’ Go to the beginning of the iteration. When this

When this command is entered from a sub-function with a

hierarchically inferior LEVEL NUMBER, the branch is to the

top of the processing loop for the sub-function with the

controlling level number.

.On-Line Programs: Branch to the next occurrence of the

current category or to the next category.

.Batch Programs: Branch to the top of the iteration loop

(F05).

’GB’ GO TO Ffusf-900

.This operator branches to the paragraph that immediately

precedes the ’EXIT’ for the (sub-) function whose LEVEL

NUMBER is entered in the OPERAND field.

This causes a return to the top of the loop of the

(hierarchically) next higher level. If the (sub)-function type

is ’IT’ and if it used with an ’EL’ type of (sub)-function at

the same level, the GB operator, used at this level, branches

to the end of the ’EL’ (sub)-function.

For all branch type operators, the generated instruction is

always followed by a period (’.’).

’EXA’ Generates the COBOL ’EXAMINE’ command from the field

entered as the Operand, possibly followed by

complementary clauses (TALLYING, etc.); refer to the

COBOL syntax.

Note: for a COBOL II generation, use the INS operator

instead.

86 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’INS’ Generates the COBOL ’INSPECT’ command from the field

entered as the Operand, possibly followed by

complementary clauses (TALLYING, etc.); refer to the

COBOL syntax.

’COB’ Pure COBOL: justified at the B margin of the generated

program.

’COA’ Pure COBOL: justified at the A margin of the generated

program.

’U07’ Pure COBOL: justified on column 7 of the generated

program.

’SUP’ Suppresses the generation of the automatic function or

sub-function with the same code as the line with this

operator.

Note: In the case of the Batch Module, enter the SUP value

on the first line of the sub-function in order to delete it.

’SCH’ Search. Table Search in the table indicated as the first

operand, for the search argument indicated as the second

operand. The search assumes a sorted file and starts at the

beginning of the table.

The code of this table must include the work area prefix, if

it exists (EX : 1-ddss, or 1-ddss-eeeeee if the table’s data

element code differs from the code of the search argument).

The search argument must be coded according to the

System’s standards.

This operator must be used in an elementary structure

whose CONDITION TYPE OR S.F. STRUCTURE = ’BL’.

(This may be implicit).

The search is done using the standard indexes (IddssM,

IddssR and IddssL). If no match is found, IddssR will be

greater than IddssL. See TABLE SIZE (OCCURS CLAUSE)

on the Work Areas (-W) screen.

’SCB’ Search in sorted table. As opposed to the ’SCH’ operator,

the search stops as soon as the table argument is greater

than the search argument.

COBOL II PROCESSING OPERATORS

’CON’ Generates the COBOL ’CONTINUE’ command (no

Operand)

’EVA’ Generates the COBOL ’EVALUATE’ command of the

condition the Operand expresses

’EVT’ Generates the COBOL ’EVALUATE TRUE’ command

(generally, there is no Operand)

Chapter 5. Modifying the Procedure Division 87

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’EVF’ Generates the COBOL ’EVALUATE FALSE’ command

(generally, there is no Operand)

’EEV’ Generates the COBOL ’END-EVALUATE’ command (no

Operand)

’EIF’ Generates the COBOL ’END-IF’ command (no Operand)

’EPE’ Generates the COBOL ’END-PERFORM’ command (no

Operand)

’ESE’ Generates the COBOL ’END-SEARCH’ command (no

Operand)

’INI’ Generates the COBOL ’INITIALIZE’ command from the

field entered as the Operand

’SEA’ Generates the COBOL ’SEARCH’ command from the field

entered as the Operand

’GOB’ Generates the COBOL ’GO-BACK’ command from the field

entered as the Operand

’STR’ Generates the COBOL ’STRING’ command before the

parameters entered in the Operand field

’UNS’ Generates the COBOL ’UNSTRING’ command before the

parameters entered in the Operand field

PACBENCH C/S AND OLSD OPERATORS

OPERATORS FOR END-OF-PROCESSING:

’GF’ Branch to the end of the automatic sub-function where the

line is inserted.

NOTE FOR C/S SCREEN:

Used only in functions F20, F25, F35 and F60.

NOTE FOR BUSINESS COMPONENT:

With ENDV in the OPERANDS field, end of Logical View

processing.

’GFR’ Reception End Processing (branch to ’END-OF-
RECEPTION’ paragraph).

’GFA’ End of display processing (branch to ’END-OF-DISPLAY’

paragraph).

’GDB’ Return to the beginning of current iteration.

NOTE: For all operators for end-of-processing, the

generated instruction is always followed by a period (’.’).

This means that no ’EL’ (ELSE type of conditioning should

be used on a line using an operator for end-of-processing,

as the generated COBOL would then be erroneous.

88 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

CALL OF PROCEDURES (Specific BUSINESS

COMPONENT)

’XT’ Call of an elementary procedure on Logical View or

Segment.

Refer to the ’Pacbench C/S - Business Logic & TUI Clients’

manual, chapter ’Business Component’, subchapter ’Writing

Procedural Code’, section ’Operators used by Pacbench

Client/Server’.

CALL (Specific C/S Screen and SCREEN)

’OTP’ Immediate call of the screen (external name indicated as the

OPERAND). The transfer occurs without delay - processing

of the loop may not have completed.

’OSC’ Call of the screen (code) indicated as the OPERAND.

’OSD’ Call of the screen (code) indicated as the OPERAND

(deferred to the end of reception processing).

OPERATORS FOR ACCESSING SEGMENTS

’XR’ Read of the Segment indicated in the OPERAND.

’XP’ Read of the first record by Dynamic Access. Whatever the

system, this OPERATOR always brings up a record. The

Segment code is indicated in the OPERAND.

’XRN’ Sequential Read of the Segment indicated in the OPERAND

(Dynamic Access).

’XRU’ Read for update of the Segment indicated in the OPERAND

’XW’ Write of the Segment indicated in the OPERAND.

’XRW’ Rewrite of the Segment indicated in the OPERAND.

’XD’ Deletion of the Segment indicated in the OPERAND.

’XUN’ Unlocking of the Segment indicated in the OPERAND

(except for DL1).

NOTE FOR OLSD FUNCTION

By using these operators, the corresponding access function

can be generated. When the indicated Segment is a table or

an SQL view, make sure the Segment is defined in the

screen with either a reception or a display use. The XP and

XRN operators are reserved for Segments defined in a

repetitive category with a display use.

OPERATORS FOR ERROR POSITIONING

’ERU’ Error positioning on the screen.

In the OPERAND field, enter in positions:

Chapter 5. Modifying the Procedure Division 89

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

. 1 to 4: error code (managed by the user)

. 5: blank

. 6: DATA ELEMENT CODE (optional) of the erroneous

Data Element.

The error message corresponding to the error code is

specified on the Error Messages-Help’ screen of the

Dialogue. This message will be displayed on the error

message line (ERMSG), and if the DATA ELEMENT CODE

has been entered, the cursor will be positioned on the Data

Element, and error attributes will apply.

This OPERATOR cannot be used on a repetitive Data

Element.

’ERR’ ’Manual’ Data Element error.

In the OPERAND field, enter in positions:

. 1: error code (alphanumeric character except for ’0’ or ’1’,

which are reserved for the coding of documentary

messages)

. 2: blank

. 3: code (six positions) of the variable Data Element with

which the error code is associated. The cursor is positioned

and the Data Element takes on the attributes defined for the

Data Elements in error. In the case of a repetitive Data

Element, its code is indicated, followed by the sequence

number of the Data Element instance.

The use of error messages with the On-Line Systems

Development function is detailed in the corresponding

Reference Manual.

NON-STANDARD OPERATORS

’Yaa’ Generates a COBOL paragraph label for Function F80.

Followed by a Segment code (ddss) in the OPERAND field,

will generate a ’F80-ddss-aa’ COBOL paragraph label.

’Y’ Operator specific to the Business Component Generation of

the automatic function label where this latter has been

replaced by the insertion of specific code (*R).

’Xaa’ With ’Yaa’, will generate a PERFORM of paragraph

’F80-ddss-aa’.

’ERL’ Specific to the Business Component associated with a

graphic application (Folder or single-view development).

90 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

This operator is used to position an error on a(n)

LOCK/UNLOCK request made by a graphic Client on an

occurrence already locked or not, respectively.

For more details, refer to the ’Pacbench C/S - ’Business

Logic’ manual.

The use of error messages with the Structured Code

function is detailed in the corresponding Reference Manual.

BATCH PROCESSING OPERATORS

These operators cannot be used with the OLSD function.

The OPE, CLO, R, RN, W and RW commands ensure the

opening, closing, read, write and rewrite of files with

sequential or indexed-sequential organizations.

The statements generated are adapted to the specifications

indicated on the Call of Data Structure (-CD) screen, for

D.S.’s entered on the first 23 line and to the appropriate

COBOL variant, as selected.

Thus, a same ’READ’ operator can generate: a READ AT

END, a READ INVALID KEY, a CALL GETSEQ or

GETRAN, or a RETURN AT END.

With the exception of the OPEN and CLOSE of a file, these

operators will call for the intervention of the ’IK’ variable

which will take on a value other than zero if there is an

abnormal execution of the generated instruction (End of

File, Error on Key, etc.).

You must determine the action to take, according to the

value of the ’IK’ variable.

With the following Operators, enter the DATA STRUCTURE

CODE IN THE PROGRAM (2 characters) as the only

OPERAND.

The OPERAND must be on the same line as the

OPERATOR. If it is on a continuation line (’blank’ in

OPERATOR field), it will be generated in the ’INVALID

KEY’ clause.

’OPE’ OPEN

’CLO’ CLOSE

’R’ READ

’RN’ READ NEXT

’DEL’ DELETE

Chapter 5. Modifying the Procedure Division 91

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

With the following operators, enter the SEGMENT CODE as

the Operand. Other options may follow, such as FROM or

AFTER.

’W’ WRITE

’RW’ REWRITE

’SRT’ SORT.

The operands are the parameters following the SORT

command.

’STA’ START

For START, the D.S. CODE IN THE PROGRAM is entered,

followed by the setting of the key:

EXAMPLE: STA FF NOT < FF00-START generates:

MOVE 0 TO IK START FF-FILE KEY IS NOT < FF00-START

INVALID KEY MOVE 1 TO IK.

’E’ User defined Error Message.

The OPERAND field is coded as follows:

Column 1: A User Error Code character.

Note: Avoid values ’0 to 5’ inclusive, as they have

predefined meanings.

Recommendation: Use ’6’ since this is the value used in

standard macros.

Column 2 to 4: Enter a unique identifying number for this

message.

Column 5: Gravity of the error

Column 6: Begin your error message.

Note: The message may be continued in the CONDITION

FOR EXECUTION field.

DATE AND TIME PROCESSING OPERATORS

DATE PROCESSING OPERATORS

’ADT’ Call of the System Date.

The date obtained will have the format YYMMDD in the

’DATOR’ constant and in the Data Element indicated in the

OPERAND field.

For IBM hardware:

92 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

An inversion option may be used to indicate the position of

the day and month in the system date according to the

value entered in the SYSTEM DATE FORMAT INDICATOR

field on the Library Defenition screen.

’ADC’ System date with century: CCYYMMDD (CC = century).

Note: in COBOL II and COBOL 85, if the year is less than

’61’, the century is automatically set to ’20’.

Date formatting.

’AD’ A date may be formatted in different ways.

When the condition is entered on several lines, the

operands must be entered before the condition continuation

lines (either on lines without operand or on comment lines).

The OPERANDS are ’XY DELCO1 DELCO2’, where X and

Y are each replaced by the value of one of the following

codes:

Code: I

Generated format: ’Internal’ - YYMMDD

Code: D

Generated format: ’Display’ - MMDDYY or DDMMYY

according to the value entered in the DATE FORMAT IN

GENERATED PROGRAMS field on the Library Definition

screen.

Code: E

Generated format: ’Extended’ - MM/DD/YY or

DD/MM/YY

according to the value entered in the DATE FORMAT IN

GENERATED PROGRAMS field on the Library Definition

screen.

Code: S

Generated format: ’Internal’ - CCYYMMDD

Code: C

Generated format: ’Display’ - DDMMCCYY or

MMDDCCYY

according to the value entered in the DATE FORMAT IN

GENERATED PROGRAMS field on the Library Definition

screen.

Code: M

Chapter 5. Modifying the Procedure Division 93

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

Generated format: ’Extended’ - DD/MM/CCYY

according to the value entered in the DATE FORMAT IN

GENERATED PROGRAMS field on the Library Definition

screen.

Code: G

Generated format: ’Extended’ - CCYY/MM/DD

EXAMPLE

In order to change an ’I’-formatted date into a ’D’-

formatted date, ’AD’ should be entered in the OPERATOR

field and ’ID DELCO1 DELCO2’ in the OPERAND field:

DELCO1 is the Data Element containing a YY/MM/DD

date format (it is possible to use the DATOR constant) and

DELCO2 is the data element containing the changed date

format: DD/MM/YY or MM/DD/YY.

A SF LIN OPE OPERAND LVTY CONDITION

BB 100 AD ID DELCO1 DELCO2

BATCH FUNCTION: the date processing function is

generated in F9520. You may change this by coding, in an

’O’-type line of the Program’s -GO, the DATPRO = ffss

parameter, where ffss is the specified function-subfunction

code.

’AD0’ Century positioned from DAT-CTY field initialized to ’19’

and it can be modified by the user.

’AD1’ Century set to ’19’ if System year is less than the value in

DAT-CTYT field (Default=’61’),’20’ otherwise

’AD2’ Century set to ’20’ if System year is less than the value in

DAT-CTYT field (Default=’61’), ’19’ otherwise

DATE PROCESSING OPERATORS (OLSD)

’AD6’ Equivalent to ADT + ADI (See below).

Transforms the system date into a 6-character date format

of MMDDYY or DDMMYY depending on the value in the

DATE FORMAT IN GENERATED PROGRAMS field on the

Library Definition screen. The transformed date is moved

into the Data Element indicated in the OPERAND field.

’AD8’ Transforms the system date into an 8-character date with

slashes, MM/DD/YY or DD/MM/YY depending on the

value in the DATE FORMAT IN GENERATED PROGRAMS

field on the Library Definition screen. The transformed date

is moved into the Data Element indicated in the OPERAND

field.

94 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

DATE PROCESSING OPERATORS (BATCH)

’ADI’ Date inversion.

The first two characters are replaced by the last two

characters and vice-versa.

Both OPERANDS must have a length of 6 characters.

The second OPERAND is optional. If absent, the modified

date will be moved back into the first OPERAND.

’ADS’ Reversal of date with century.

Both OPERANDS must have a length of 8 characters. The

second OPERAND is optional. If absent, the modified date

will be moved back into the first OPERAND.

’ADE’ Insertion of slashes in a date.

The first OPERAND must be the field which contains the

original six-character date, and the second must contain an

eight-character field which will receive the reformatted

date.

’ADM’ Insertion of slashes in a date with century.

TIME PROCESSING OPERATORS

’TIM’ Hour display in ’HHMMSS’ format from the EIBTIME field

in CICS; from the TIME field with other hardware.

EXAMPLE:

A SF LIN OPE OPERAND LVTY CONDITION

BB 100 TIM DELCO1

’TIF’ ’HHMMSS’ format changed into ’HH:MM:SS’.

EXAMPLE:

A SF LIN OPE OPERAND LVTY CONDITION

BB 100 TIF DELCO1 DELCO2

COMMUNICATION OPERATORS

NOTE: Non operational with the OLSD Function.

These OPERATORS ensure the liaison between a COBOL

program and the ’Communication Units’ in use:

’ENA’ ENABLE Connecting the Unit.

’DSB’ DISABLE Disconnecting the Unit.

’RE’ RECEIVE Receiving a Message.

’SD’ SEND Sending a Message.

Chapter 5. Modifying the Procedure Division 95

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

DBMS OPERATORS

’B..’ CODASYL OPERATORS

The Codasyl OPERATORS are coded with a ’B’ as the first

character, followed by the two-character codes defined

below:

’RY’ READY

’FH’ FINISH

’FD’ FIND

’G ’ GET

’ER’ ERASE

’DT’ DISCONNECT______FROM______

’CT’ CONNECT______TO______

’MD’ MODIFY

’ST’ STORE

TP MONITOR OPERATORS

These OPERATORS cannot be used for the screen

processing descriptions with the On-Line Systems

Development function.

CICS MACRO LEVEL OPERATORS

’D..’ These OPERATORS are coded with a ’D’ as the first

character, followed by the specific two-character code of the

CICS Macro.

’XX’ DFHXX TYPE =

’BM’ DFHBMS TYPE =

All OPERATORS must be left justified.

The continuation character in column 72 of the generated

program and the justification of the continuation lines is

automatically managed.

CICS COMMAND LEVEL OPERATORS

’EXC’ EXEC CICS operands END-EXEC.

COBOL API and PAF/DAF OPERATORS

’EXS’ Call of a Folder Manager. This OPERATOR is used to write

a service request on a Folder.

For more detailed information, refer to the ’COBOL API

User’s Guide’.

96 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’EXP’ This OPERATOR is used to activate a VA Pac Database

access request via the Pacbase Access Facility (PAF). It

generates PAF or DAF modules.

EXEC PAF (...request...)

END-EXEC.

For more detailed information, refer to the ’PAF’ or ’DAF’

manuals (Pacbase / DSMS Access Facility’).

SQL OPERATORS

SQL operators are documented in the manual dedicated to

’SQL Databases’ in the Developer’s Documentation, chapter

″SQL Accesses″.

SCC CONNECT order or its equivalent.

SDC DISCONNECT order or its equivalent.

SCO COMMIT order.

SRO ROLLBACK order.

SWH WHENEVER order.

The SQL operators should be used with the following

syntax:

- SCC cccccc d

- SDC cccccc d r

- SCO cccccc d

- SRO cccccc d

- SWH instruction

cccccc = VA Pac code of the Block (6 characters long).

d = value 2 if distributed base (ex: Oracle Sybase).

r = value R to select DISCONNECT order with ROLLBACK

order.

Rules:

- d and r indicators can be reversed.

- Each order can be completed on continuation lines (with

no operator). You can specify, for example, the FORCE

option in a COMMIT order for ORACLE.

Generation:

Chapter 5. Modifying the Procedure Division 97

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

- On the Segment Calls (-CS or -CD), if you enter an SQL

organization (ORGANIZATION field) and so a Block code

(EXTERNAL NAME field), this organization has priority on

the Block type indicated on the Block Definition.

- If the block is indicated in the Segment Calls as being

distributed, the orders linked to this block will be generated

″distributed″.

- Unrecognized SQL orders are ignored.

The END-EXEC is automatically generated and, with the

batch generator, it is is always followed by a period.

SQL For batch only, the generated SQL order is standard and

can be modified in the Segment’s -GG screen.

The customization of SQL accesses is documented in the

’SQL Databases’ manual.

In order to take these modifications into account, the

Program -CD must contain a Block code in the EXTERNAL

NAME field and an organization in the ORGANIZATION

FIELD.

The SQL operator should be used with the following

syntax:

OPE I OPERANDS

SQL I FFSS FLSS SO PO (1st format)

SQL I FFSS SO PO (2nd format)

FFSS : file-segment code in the Program

FLSS : file-segment code in the Library

SO : type of the standard order (two characters) or specific

order described in S FLSS GG.

PO : particular order identifier in S FLSS GG.

The 1st format should be used if the code of the program is

different from the one of the library.

The particular order code is optional, it modifies the

description resulting of the standard order.

The implemented SQL organizations are the following:

C (Interel)

M (Datacom)

N (Nonstop)

O and P (Oracle)

98 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

Q (SQL-DS ALLbase)

2 (DB2)

3 (SQL SERVER)

4 (DB2/400)

9 (Informix Ingres and SYBASE)

H (General SQL organization)

For a number of these organizations, the reference of the

Block type is required (H and 9 for exemple).

Restrictions:

- the RDMS orders’ syntax is not implemented (’R’

organization)

- The prefixing rule is not applied. The table name is not

modified, the dot is removed if there is one.

NOTE:

In the case of Program-Macro and Macro-Macro lines with

same indicators, information entered in the S FFSS GG

screen are generated although not needed.

Relational operator:

EXQ EXEC SQL operands END-EXEC.

10 32 OPERANDS

This field contains the OPERANDS required by the

preceding OPERATOR to complete the procedural

instruction.

The first OPERAND must be placed on the same line as the

OPERATOR.

When an OPERATOR calls for several OPERANDS, they

must be indicated one after the other in a continuous

sequence, separated by at least one blank.

The Qualification of Names using ’OF’ is acceptable if the

’OF’ of the first OPERAND is on the same line as the

OPERATOR.

When the first OPERAND is an alphanumeric literal that

does not completely fit on one line, the continuation of the

literal can be indicated between quotes on the following

line. The System ensures continuity for the literal at the

generation level.

STRUCTURE

Chapter 5. Modifying the Procedure Division 99

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

The structure of a function or sub-function is defined by a

LEVEL NUMBER and a CONDITION TYPE OR S.F.

STRUCTURE, with which a condition, variable or a value

can be associated, if necessary.

Structures with levels other than 99 must be defined on the

first line of a (sub-)function, while conditioning can

continue onto several lines.

Default values for level and type are taken from the title

line of the (sub-)function.

Functions are the highest level (05) structures.

11 2 LEVEL NUMBER

PARAMETERIZABLE NUMERIC FIELD

The LEVEL NUMBER is indicated only on the first line of a

Structure.

The CONDITION FOR EXECUTION of a Structure at a

given level applies to all the logically lower level Structures

which follow the initial Structure, until the next logically

higher level Structure is encountered.

’05’ This level is always assigned to functions. It is also the

default level of the first line of a function Structure.

’10’ This is the default level of the first line of a sub-function

Structure.

06 to 98 Possible levels for a sub-function.

’99’ Defines an elementary procedure in a function or

sub-function. (Maximum number of ’99’ levels in a

sub-function = 98).

’$n’ In a Macro-Structure the LEVEL NUMBER can be

parameterized.

12 2 CONDITION TYPE OR S.F. STRUCTURE

On the first line of a function or sub-function, the

CONDITION TYPE OR S.F. STRUCTURE value indicates

the ’Structure type’ processing to be executed.

In a Macro-Structure the CONDITION TYPE OR S.F.

STRUCTURE cannot be parameterized.

A (sub-)function constitutes a block of processing or

structure. It’s also possible to define, within a

(sub-)function, elementary Structures characterized by a ’99’

level.

’BL’ ’Block’ type Structure.

100 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

Default value for all non-conditioned Structures.

’IT’ ’IF THEN’ type structure.

Default value for all conditioned Structures. Executed if the

condition is satisfied.

’EL’ ’ELSE’ type Structure.

Prohibited at the function level.

Executed if the preceding Structure at the same level (which

must be an ’IF THEN’) was not executed. An ’ELSE’

Structure cannot have its own condition.

’CO’ ’CASE OF’ type Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

A ’CO’ Structure is used for procedures that are exclusive of

each other, and that are executed depending on the possible

values of a variable.

In a ’CASE OF’ Structure only the name of the variable is

defined (in the condition field and on a single line). The

possible values of this variable are specified in the

Structures at the next lower, non-elementary, hierarchical

level. In a Dialog screen, nesting of ’CASE OF’ loops is not

authorized within another ’CASE OF’ loop.

’DW’ ’DO WHILE’ Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

This Structure is executed repeatedly, as long as its

condition is satisfied.

’DU’ ’DO UNTIL’ Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

This Structure is executed repeatedly until its condition is

satisfied. Thus, it is executed at least one time.

For the ’DW’ and ’DU’ type Structures, the user must set

up the condition status (incrementation of an index, for

example).

DO ’DO’ Structure (’loop’ Structure).

Cannot be used at an ’05’ function level or the ’99’ level.

Chapter 5. Modifying the Procedure Division 101

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

The ’DO’ Structure is executed in a repetitive way

depending upon the conditioning of three variables: the

first variable being the iteration number where the

processing should start; the second one, the iteration

number where the processing should stop, the third being

the incrementing interval.

All three variables may be either numbers or Data

Elements. The increment variable is optional and its default

value is ’1’. (If indicated, its value must be positive.) Both

iteration variables must be entered on the first line of the

sub-function, separated by a space.

The parameters must be entered in the following order:

starting limit (positive), ending limit and increment interval.

DO calls for 3 parameters, of which the first 2 are required.

All 3 must appear on the first line.

The System automatically generates an index: JfusfR, ’fu’

standing for the FUNCTION CODE, and ’sf’ standing for

the SUB-FUNCTION CODE.

’OR’ Continuation of the condition associated with the preceding

lines by a logical ’OR’.

’AN’ Continuation of the condition associated with the preceding

lines by a logical ’AND’.

NOTE: The parentheses which group the terms of a

condition must be indicated in the text of the condition.

In a Macro-Structure, the type of structure or condition

cannot be parameterized.

’WH’ You can use COBOL commands after an EVA or SEA

command. Each of these commands indicates one

processing to be performed according to the fulfilled

condition. In the example below, processing1 will be

performed when condition1 is fulfilled.

EVA condition

---processing1--- 99WH ---condition1---

---processing2--- 99WH ---condition2---

---processing1--- 99WH ---condition2---

---processing3--- 99WH ---condition3---

ON-LINE SYSTEMS DEVELOPMENT

102 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

The following values, in the CONDITION TYPE OR S.F.

STRUCTURE field, are used for relative positioning with

the On-Line Systems Development function and Pacbench

C/S.

’*A’ Insertion of a sub-function before an automatic sub-function

identified by the data element or the Segment it processes.

’*P’ Insertion of a sub-function after an automatic sub-function

identified by the Data Element or the Segment it processes.

(The CONDITION FOR EXECUTION of the automatic

sub-function applies to the inserted sub-function if the

LEVEL NUMBER of the inserted sub-function is greater

than that of the automatic sub-function.)

’*R’ Replacement of an automatic sub-function identified by the

Data Element or the Segment it processes. (The

CONDITION FOR EXECUTION of the automatic

sub-function does not apply to the replaced sub-function.)

For more information, see chapter ’Use of Structured code’,

subchapter ’Specific Procedures’ in the ’On-Line Systems’

manual.

The two following values are used for the relative

positioning with Pacbench C/S (server components only):

’*C’ Insertion or replacement of the processing on the server or

the Logical View.

’*B’ Insertion in the elementary processing called by PERFORM.

For more information, see Manual ’Business Logic and TUI

clients’, chapter ’Business Component’, subchapter ’Writing

Procedural Code’.

13 28 CONDITION FOR EXECUTION

The CONDITION FOR EXECUTION statement is coded

without using ’IF’, ’AND’, ’OR’, ’GO TO’, or a period (.).

The first line must be associated with an explicit or implicit

LEVEL NUMBER (’05’ for a function; ’06’ to ’98’ for a

sub-function; ’99’ for an elementary procedure within a

function or sub-function). The LEVEL NUMBER need not

be specified on continuation lines.

For a ’CASE OF’ type structure, the name of the variable

(which may have alternative values) must be indicated on

the first line.

For structures dependent on a ’CASE OF’, the CONDITION

FOR EXECUTION indicates the possible value of the ’CO’

variable.

Chapter 5. Modifying the Procedure Division 103

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’$n’ In a Macro-Structure, the CONDITION FOR EXECUTION

can be parameterized.

Programmer Flags and Variables

The purpose of this subchapter is to present the programmer with a list of

flags, variables, counters and indices generated by the System and which are

commonly used in Procedural Code.

The subchapter is divided into two parts, the first pertaining to batch

Programs, the second to on-line Programs.

The chart below lists only those variables recommended for use by

programmers.

BATCH PROGRAM VARIABLES

These symbols are used:

 cc = (report) CATEGORY CODE

 dd = DATA STRUCTURE CODE

 eeeeee = DATA ELEMENT CODE

 r = LAST CHARACTER OF REPORT CODE

 ss = SEGMENT CODE

 st = (report) STRUCTURE NUMBER

 DATA NAME FORMAT MOST COMMON USAGE

ddss-eeeeee

IK X file access error ind.:’1’= error

DATCE X(8) (group) dates with century

CENTUR XX century

DATOR X(6) (group)

DATOA XX year

DATOM XX month

DATOJ XX day

DAT6 X(6) (group)

DAT61 XX

DAT62 XX

104 VisualAge Pacbase: Structured Code

DATA NAME FORMAT MOST COMMON USAGE

DAT63 XX

DAT8 X(8) (group) dates with slashes

DAT81 XX (no century)

DAT8S1 X slash

DAT82 XX

DAT8S2 X slash

DAT83 XX

DAT8E (redefines DAT8)

DAT81E X(4) century/year

DAT82E XX

DAT83E XX

DAT6C X(8) (group)

DAT61C XX

DAT62C XX

DAT63C X(4) century/year

DAT8C X(10) (group) dates with slashes and

DAT81C XX century

DAT82C XX (slashes via filler)

DAT83C X(4) century/year

FTBn X final total break ’1’= yes

FBL 9 current final brk lev: rarely used

IBL 9 current init. brk lev: rarely used

ITBn X initial total break ’1’= yes

dd-FBn X final break indicator: ’1’= yes

dd-IBn X initial break indicator: ’1’= yes

dd-CFn X record to be processed: ’1’= yes

dd-OCn X write file: ’1’ or delete it: ’0’

FT = ALL ’1’

dd-FT X EOF indicator: ’1’= yes

dd-FI X ctl brk: last rec. indic. ’1’= yes

I01 S9(4) which rec. type is being processed

I02 S9(4) which action is being processed

Chapter 5. Modifying the Procedure Division 105

DATA NAME FORMAT MOST COMMON USAGE

I03 S9(4) stores a pointer (rank) to the first element of the specific

part Segment being processed

I04 S9(4) stores a pointer to the last Data Element of the specific

part Segment being processed only in

I06 S9(4) in functions not autom. generated

I50 S9(4) stores the rank of the first Data Element of the common

part

I51 S9(4) stores the number of record types

IddssL S9(4) subscript for loading tables

IddssR S9(4) subscript for searching tables

IddssM S9(4) maximum positions in a table

J00 S9(4) looks-up for the category table

J01 S9(4) looks-up for the 3-D table

J05, J06, J07 S9(4) accumulators

Jddrcc S9(4) report repetitive category

JddrccM S9(4) report repetitive category

IND S9(4) stores the major-most key level of input data structures to

be matched

ddIND S9(4) stores the current value off the key of the record on data

structure dd

5-dd00-RECCNT S(9)9 record counter

ID-ER X error rec. type or action; ’0’= ok

ER-ss-eeeeee X 0-5: (in)valid pres/abs/cont/class

DEL-ER X performed validations

ER-PR(n)

TR-ER X any errors on transaction: ’1’= no

SEG-ER X

GR-ER X errors on group of transactions to

LE-FIENR X(4) hold the VA Pac code of the Segment currently being

processed

UT-ERUT errors detected by user valid.’s

UT-UPR(n) X user error messages

Trst-eeeeee totaling

Grst-eeeeee grand totals

5-dd00-rLCM S999 report line count maximum

106 VisualAge Pacbase: Structured Code

DATA NAME FORMAT MOST COMMON USAGE

5-dd00-rLC S999 report line count

5-dd00-rPC S9(7) page count

LSKP 99 line skips (user spooling)

NUPOL X laser printer

CATX XX category of report being printed

6-dd00

6-dd00-r rarely used

1-ddss read area - control break files

1-ddss-eeeeee

2-ddss update area

2-ddss-eeeeee

1-dd-TABLE USAGE OF D.S. = ’T’ (Table)

1-ddssT (group)

1-ddss(n)

1-ddss-eeeeee(n) For instance 1-ddss-eeeeee(IddssR)

ON-LINE PROGRAM VARIABLES

These symbols are used:

 dd = DATA STRUCTURE CODE

 ss = SEGMENT CODE

 eeeeee = DATA ELEMENT CODE

 scrn = SCREEN CODE

 DATA NAME FORMAT MOST COMMON USAGE

IK X File access error indicator ’0’ = successful access;’1’= error

(set after every file access)

OPER X Internal Operation Code Useful to specify conditions for

Update, Scrolling, etc. (e.g. F06)

OPERD X Deferred Operation Code; used by OSD operator

CATX X Identifies category being executed Useful to condition

logic in loops (e.g. F21, F31, F66, etc.)

CATM X Internal Transaction code governs file access for update

Useful when update rules are complex (e.g. F16)

ICATR 99 Number of line item currently being processed

SCR-ER X Error on screen: ’1’ - no error; ’4’ - error

Chapter 5. Modifying the Procedure Division 107

DATA NAME FORMAT MOST COMMON USAGE

FT X ’End-of-file’ on read for display in repetitive category

(either control break or true eof) Useful to condition

structured code for Repetitive display (e.g., CATX = ’R’

and FT = ’0’ and ICATR not > IRR is the best way to

condition line item display logic in F66)

ICF X Governs execution of Reception Functions (F05 through

F40); ’0’ in ICF generally implies first time processing for

screen

OCF X Governs execution of Display Functions (F50 through

F8Z)

SESSI X(5) Session number of generated prog.

LIBRA X(3) Library code

USERCO X(8) User code

DATGN X(8) Date of generated program (MM/DD/YY if if user

language = E, or DD/MM/YY otherwise)

PROGR X(8) Program code in Library

TIMGN X(8) Time of generated program

COBASE X(4) Database code

DATGNC X(10) Date of generated program with century

(MM/DD/CCYY if user language = E, or

DD/MM/CCYY otherwise)

CAT-ER X Error in current category: ’ ’ - no error; ’E’ - error Useful

for conditioning Reception Functions after edits (e.g., F21,

F31, F36, etc.)

CURPOS Cursor pos. on screen in reception

CPOSL S9(4) Line number of cursor Useful for setting transfers on

cursor positioning (e.g., F06)

CPOSC S9(4) Column number of cursor

CPOSN S9(4) Absolute position of cursor in msg

IRR 99 No. of reps in the rep category

INT 999 No. of input fields in screen

IER 99 No. of screen-related error msg

DEL-ER X Error in current data element ’1’ - no error; < ’1’ - error

DATCE X(8) (Group) Dates with century

CENTUR XX (century)

DATOR X(6) (group)

DATOA XX year

108 VisualAge Pacbase: Structured Code

DATA NAME FORMAT MOST COMMON USAGE

DATOM XX month

DATOJ XX day

DATSEP X Separator used in date

DAT6 X(6) (group) - fields for formatting

DAT61 the date - generated if the

DAT619 99 OPERATOR ’AD_’ is used, or if

DAT62 a variable data element has a

DAT629 99 date format.

DAT63 XX

DAT7

DAT71 XX

DAT72 XX

DAT73 XX

DAT8

DAT81 XX

DAT8S1 X slash

DAT82 X

DAT8S2 X slash

DAT83 XX

DATCTY XX field for loading the century

DAT6C X(8) fields for loading the non-for-

DAT61C XX matted date with the century.

DAT62C XX

DAT63C XX

DAT64C XX

DAT7C

DAT71C XX

DAT72C XX

DAT73C XX

DAT74C XX

DAT8C

DAT81C XX

DAT8S1C X slash

Chapter 5. Modifying the Procedure Division 109

DATA NAME FORMAT MOST COMMON USAGE

DAT82C XX (slashes via filler)

DAT8S2C X slash

DAT83C XX

DAT84C XX

DAT8G X(8) Gregorian format date: CCYY/MM/DD

TIMCO TIME; field for loading the time

TIMCOG

TIMCOH XX

TIMCOM XX

TIMCOS XX

TIMCOC XX

TIMDAY field for loading formatted time

TIMHOU XX

TIMS1 X

TIMMIN XX

TIMS2 X

TIMSEC XX

TIMCIC 9(7)

TIMCI1 TIMCIG

TIMCIH

TIMCIM

TIMCIS

DATCIC

DATQTM

DATQUD

DATQUY

XX XX

XX 9(7)

999 99

REDEFINES TIMCIC REDEFINES DATCIC

 DATA NAME FORMAT MOST COMMON USAGE

ddss-CF X Segment configuration flag 0 - record not found; 1 -

successful read. To check the status of a read, ddss-CF is

preferred to IK (e.g., F25, F26, F60, F61, F66)

G-ddss Pactables table description

G-ddss-eeeeee Pactables fields

K-scrn Fields common to dialogue

K-Ascrn-eeeeee -screen top fields

K-Rscrn-eeeeee -repetitive group fields

110 VisualAge Pacbase: Structured Code

DATA NAME FORMAT MOST COMMON USAGE

K-Rscrn-LINE(1) Key of the first line item kept in common area for

scrolling

K-Rscrn-LINE(2 Key of the record following the last line item on the

screen kept in common area for scrolling

K-Zscrn-eeeeee -screen bottom fields

T-scrn-eeeeee (″OFF″ option only) With modify data tags off, a copy of

each input field is stored in the common area. F8135

ensures consistency with the input map.

I-scrn Group field for input fields

I-scrn-eeeeee Input field label useful for Validation Transfer (e.g.,

F21-F24, F31)

E-scrn-eeeeee alpha Input field label for numeric fields after formatting

J-scrn-LINE Group input field containing entire Repetitive group An

occurrence of this field can be moved into I-scrn-LINE for

manual processing of a specific line item.

Z-scrn-eeeeee reception - attributes

O-scrn group field for output fields

X-scrn-eeeeee Cursor positioning field. This field is set in F70; any

override must be made later (e.g., F71)

Y-scrn-eeeeee Attribute byte. This field is set in F70; any override must

be made later (e.g., F71). Manually setting attributes may

also be accomplished by setting the field A-scrn-eeeeee in

Display Pre- paration (e.g., F68 or F69) and letting F70 fill

Y-scrn-eeeeee (which is the actual attr. byte)

O-scrn-eeeeee Output field label Useful for Transfer for Display (e.g.,

F66)

F-scrn-eeeeee to test for class (numeric)

9-scrn-eeeeee numeric fields

DE-ERR validation table fields

DE-ER (n) X

ER-scrn-eeeeee Data element error code variable used by the ERR

operator; for details, see OLSD ref. manual, Documentary

and Error Messages, sub-chapter Manual Explicit Error

ddss-FST X non-chained segs:’1’= first access ’0’= next read

5-ddss-LTH S9(4) Segment length

5-dd00-LTH S9(4) Length of longest segment in file

I-PFKEY XX Attention Identifier variable

Chapter 5. Modifying the Procedure Division 111

DATA NAME FORMAT MOST COMMON USAGE

A-scrn-eeeeee(1) For attribute byte processing before F70 (e.g., F68 or F69),

move an N, B, or D to this field for normal, bright, or

dark

A-scrn-eeeeee(4) For cursor position processing before F70 (e.g., F68 or

F69) move a Y to this field to set the cursor to the field

manually

PROGR X(8) Program code

K-Sscrn-PROGR X(8) External name of the program we just came from. Can be

used to check first time processing (e.g., K-Sscrn-PROGR

= PROGR is used before F01; but after F01, ICF = 0 is the

simpler check)

5-Sscrn-PROGR X(8) This field contains the name of the program to branch to

PROGE X(8) External name of the program

PRDOC X(8) Help program external name

Titles and Conditions Screen (-TC)

Programmers who begin using the System may have some difficulty

mastering its generation possibilities.

It is not always easy to know beforehand which procedures of a batch or

on-line Program will be generated.

Here, programming is done in two steps:

1. Call of automatically generated procedures,

2. Customizing the generated Program with structured code.

The first step is performed through data access in batch or on-line Programs:

1. Program Call of Data Structures screen (CH: P......CD),

2. On-Line Call of Segments screen (CH: O......CS),

3. On-Line Call of Data Elements screen (CH: O......CE).

Depending on the kind of data that is entered on the call lines of these

screens, the system either will or will not generate certain automatic

(sub-)functions.

EXAMPLES:

1. In a batch program, ’M’ entered in the USAGE OF DATA STRUCTURES

field on a Call of Data Structures (-CD) screen causes the generation of

validation functions.

112 VisualAge Pacbase: Structured Code

2. In an on-line program, ’E’ entered in the USE IN RECEPTION field on an

On-Line Call of Segments (-CS) screen will generate the Segment access for

validation with the setting of an error code.

The second step in programming is characterized by the use of the Structured

Code function which allows you to complete automatically generated

procedures with additional lines unique to the Program:

1. Call of P.M.S.’s screens for user-standard procedures.

CH: P......CP, O......CP.

2. Direct input of Procedural Code

CH: P......P, O......P.

A Program is then made up of automatically generated procedures and

structured code.

GENERAL INFORMATION

Titles and Conditions (-TC) screen lines display the titles and conditions of all

procedures of a batch or on-line Program, whether automatically generated or

specified with procedural code.

Using this screen, the user can examine the general structure of a generated

program and detect possible errors related to the uses of the Program’s

different parts.

ACCESSING THE TITLES AND CONDITIONS SCREEN

For batch Programs, enter the following in the CHOICE field:

CH: PppppppTCfusf<nn or Ppppppp<nnTCfusf

For on-line Programs, enter the following in the CHOICE field:

CH: OooooooTCfusf<nn or Ooooooo<nnTCfusf

where:

 pppppp = PROGRAM CODE

 oooooo = SCREEN CODE

 fu = FUNCTION CODE (default:’ ’)

 sf = SUB-FUNCTION CODE (default:’ ’)

 nn = LEVEL NUMBER (default: 05)

EXAMPLE:

In order to obtain the complete list of titles and conditions for Program

PGM001, the following should be entered in the CHOICE field:

Chapter 5. Modifying the Procedure Division 113

CH: P PGM001 TC

In order to focus on a specific part of the Program, for instance starting with

function F29, sub-function BB, and view the titles and conditions listed to the

15 level inclusive, the following should be entered in the CHOICE field:

CH: P PGM001 TC29BB<15 or CH: P PGM001 <15TC29BB

ORIGIN OF GENERATED LINES

The lines displayed on this screen originate from the following three sources:

1. VisualAge Pacbase automatic generation:

Displayed lines come from the Program Call of Data Structures (-CD)

screen for batch Programs, or On-Line Call of Segments (-CS) screen and

On-Line Call of Data Elements (-CE) screen for on-line Programs, both

having been previously entered by the user.

They are identified by a period (’.’) in the ACTION CODE field of each

line.

2. Macro-structure calls:

Displayed lines come from the Call of P.M.S.’s (-CP) lines (of Programs

and Screens).

They are identified by an asterisk (’*’) in the ACTION CODE field of each

line.

3. Procedural Code (-P) lines attached directly to the Program or to the

Screen:

These lines are identified by a ’blank’ in the ACTION CODE field for each

line.

UPDATE POSSIBILITIES

The Titles and Conditions (-TC) screen displays functions or sub-functions

titles with their conditions for execution. Therefore, updating affects a whole

function or sub-function.

v FOR GENERATED PROCEDURES AND MACRO-STRUCTURES :

The only updating possibility is the suppression of a function or

sub-function generation. This is done with the ’S’ OPERATOR (counterpart

to the ’SUP’ OPERATOR in Procedural Code (-P) lines).

These procedures are identified with a (’.’) or an (’*’) in the ACTION CODE

field. This code must be deleted if the update is to be taken into account.

v SPECIFIC PROCEDURES :

The user may create, modify or delete the title of a function or sub-function

written in procedural code.

114 VisualAge Pacbase: Structured Code

The user may also modify the LEVEL NUMBER, CONDITION TYPE OR

S.F. STRUCTURE and CONDITION FOR EXECUTION of a function or

sub-function. The corresponding ACTION CODES are : ’C’, ’M’, ’D’ or

blank.

Each update is automatically channeled down to the corresponding

Procedural Code (-P) screen.

RETURN TO A DISPLAYED (SUB-)FUNCTION

The user may return to the Procedural Code (-P) screen corresponding to a

displayed line. In order to do this, the user places the cursor on the desired

line and presses the relevant PFkey (standard: PF10).

The user can also branch to the ’-PG’ screen from the line where the cursor is

positioned by using the appropriate PFkey (standard: PF9).

Finally, the user can request that the same screen be displayed from the line

where the cursor is positioned by using the appropriate PFkey (standard: PF8,

except under IMS).

UPDATE OPERATORS ALLOWED IN THIS SCREEN

 N Note (title).

 S Suppression (equivalent to ’SUP’).

 Blank Continuation of conditioning of a (sub-)function.

Any other operator will be refused.

PREREQUISITE

The Program or Screen must have been previously defined.

NOTE TO ON-LINE SYSTEMS DEVELOPMENT FUNCTION USERS

Differences may appear between the Titles and Conditions (-TC) screen lines

display and the actual generated Program:

FUNCTION F80

On the Titles and Conditions (-TC) screen, the sequence order of the

sub-functions depends on the SEGMENT CODE IN THE PROGRAM, whereas

in the generated Program, sub-functions are ordered according to the

SEGMENT CODE IN THE LIBRARY. For a Segment called in on a Call of

Segments (-CS) screen, which does not have a ’U’-type ORGANIZATION and

is not used in display or reception, display is simulated on the Titles and

Conditions (-TC) screen.

Chapter 5. Modifying the Procedure Division 115

FUNCTION F81

Numeric and date validations are always considered to be generated,

therefore sub-functions F8110 and F8120 are always displayed on the Titles

and Conditions (-TC) screens. However, Sub-function F8110 is generated only

if unprotected numeric Data Elements are called. Sub-function F8120 is

generated only if unprotected date-type Data Elements are called.

SPECIAL PFKEYS

PF8:

Reset screen display starting from the line where the cursor is positioned (not

available with the IMS version).

PF9:

From the Titles and Conditions (-TC) screen, branch to the Procedures

Generated (-PG) screen and vice-versa, starting from the line where the cursor

is positioned.

THE ’TITLES ONLY (-TO)’ SCREEN

The Preview Facility includes the Titles Only (-TO) screen. This screen

displays the list of program function titles only and illustrates their

hierarchical organization.

The screen is accessed in the same manner as the Titles and Conditions (-TC)

screen (substitute ’TO’ for ’TC’); see Paragraph ″ACCESSING THE TITLES

AND CONDITIONS SCREEN″ above.

The advantage of this screen is that the level numbers of the program

functions are indented, showing the user a different view from the Titles and

Conditions (-TC) screen. However, this screen cannot be used for updates.

(The Titles Only (-TO) screen image can be found at the end of this

sub-chapter).

116 VisualAge Pacbase: Structured Code

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| TITLES AND CONDITIONS BBINIT GENERAL PROCESSING |

| 1 |

| |

| 2 3 4 5 6 7 8 9 10 |

| A FUSF LIN O OPERANDS LVTY CONDITION |

| . 05 N READ SEQ.FILES NO CONTROL BREAK 05BL |

| . 20 N END OF RUN 05IT FT = ALL ’1’ |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| *** END *** |

| O: C1 CH: -TC |

--

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

1 6 PROGRAM CODE OR SCREEN CODE

This field contains the six-character program or on- line

screen code.

2 1 ACTION CODE

’C’ Creation of the line

’M’ Modification of the line

’D’ or ’A’ Deletion of the line

’T’ Transfer of the line

’B’ Beginning of multiple deletion

’G’ Multiple transfer

’?’ Request for HELP documentation

’E’ or ’-’ Inhibit implicit update

’X’ Implicit update without upper/lowercase processing

3 2 FUNCTION CODE

Chapter 5. Modifying the Procedure Division 117

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’AA to 99’ This code determines the placement of the Procedural Code

lines in the sequence of functions. This is particularly

important when used with the On-Line and Batch Systems

Development functions in which automatic functions have

pre-determined codes.

’ $n’ In a Macro-Structure, the FUNCTION CODE can be

parameterized.

4 2 SUB-FUNCTION CODE

Made up of numeric or alphabetic characters.

This code determines the placement of the Procedural Code

within the function.

’ $n’ In a macro-structure, the SUB-FUNCTION CODE can be

parameterized.

5 3 LINE NUMBER

PARAMETERIZABLE NUMERIC FIELD

’0-999’ As a recommendation, number the lines starting with 10 by

intervals of 10, thus facilitating future insertion insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the

LINE NUMBER can be parameterized.

6 1 OPERATOR

The following OPERATORS are the only ones allowed on

this screen:

’N’ Title of the function or the sub-function.

’S’ Equivalent of ’SUP’ in the Procedural Code (-P) lines.

Used to suppress a function or sub-function.

’blank’ Continuation lines of the CONDITION FOR EXECUTION.

7 32 OPERANDS

The title of the corresponding function or sub-function is

displayed in this field.

8 2 LEVEL NUMBER

PARAMETERIZABLE NUMERIC FIELD

The LEVEL NUMBER is indicated only on the first line of a

Structure.

The CONDITION FOR EXECUTION of a Structure at a

given level applies to all the logically lower level Structures

which follow the initial Structure, until the next logically

higher level Structure is encountered.

118 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’05’ This level is always assigned to functions. It is also the

default level of the first line of a function Structure.

’10’ This is the default level of the first line of a sub-function

Structure.

06 to 98 Possible levels for a sub-function.

’99’ Defines an elementary procedure in a function or

sub-function. (Maximum number of ’99’ levels in a

sub-function = 98).

’$n’ In a Macro-Structure the LEVEL NUMBER can be

parameterized.

9 2 CONDITION TYPE OR S.F. STRUCTURE

On the first line of a function or sub-function, the

CONDITION TYPE OR S.F. STRUCTURE value indicates

the ’Structure type’ processing to be executed.

In a Macro-Structure the CONDITION TYPE OR S.F.

STRUCTURE cannot be parameterized.

A (sub-)function constitutes a block of processing or

structure. It’s also possible to define, within a

(sub-)function, elementary Structures characterized by a ’99’

level.

’BL’ ’Block’ type Structure.

Default value for all non-conditioned Structures.

’IT’ ’IF THEN’ type structure.

Default value for all conditioned Structures. Executed if the

condition is satisfied.

’EL’ ’ELSE’ type Structure.

Prohibited at the function level.

Executed if the preceding Structure at the same level (which

must be an ’IF THEN’) was not executed. An ’ELSE’

Structure cannot have its own condition.

’CO’ ’CASE OF’ type Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

A ’CO’ Structure is used for procedures that are exclusive of

each other, and that are executed depending on the possible

values of a variable.

Chapter 5. Modifying the Procedure Division 119

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

In a ’CASE OF’ Structure only the name of the variable is

defined (in the condition field and on a single line). The

possible values of this variable are specified in the

Structures at the next lower, non-elementary, hierarchical

level. In a Dialog screen, nesting of ’CASE OF’ loops is not

authorized within another ’CASE OF’ loop.

’DW’ ’DO WHILE’ Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

This Structure is executed repeatedly, as long as its

condition is satisfied.

’DU’ ’DO UNTIL’ Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

This Structure is executed repeatedly until its condition is

satisfied. Thus, it is executed at least one time.

For the ’DW’ and ’DU’ type Structures, the user must set

up the condition status (incrementation of an index, for

example).

DO ’DO’ Structure (’loop’ Structure).

Cannot be used at an ’05’ function level or the ’99’ level.

The ’DO’ Structure is executed in a repetitive way

depending upon the conditioning of three variables: the

first variable being the iteration number where the

processing should start; the second one, the iteration

number where the processing should stop, the third being

the incrementing interval.

All three variables may be either numbers or Data

Elements. The increment variable is optional and its default

value is ’1’. (If indicated, its value must be positive.) Both

iteration variables must be entered on the first line of the

sub-function, separated by a space.

The parameters must be entered in the following order:

starting limit (positive), ending limit and increment interval.

DO calls for 3 parameters, of which the first 2 are required.

All 3 must appear on the first line.

The System automatically generates an index: JfusfR, ’fu’

standing for the FUNCTION CODE, and ’sf’ standing for

the SUB-FUNCTION CODE.

’OR’ Continuation of the condition associated with the preceding

lines by a logical ’OR’.

120 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’AN’ Continuation of the condition associated with the preceding

lines by a logical ’AND’.

NOTE: The parentheses which group the terms of a

condition must be indicated in the text of the condition.

In a Macro-Structure, the type of structure or condition

cannot be parameterized.

’WH’ You can use COBOL commands after an EVA or SEA

command. Each of these commands indicates one

processing to be performed according to the fulfilled

condition. In the example below, processing1 will be

performed when condition1 is fulfilled.

EVA condition

---processing1--- 99WH ---condition1---

---processing2--- 99WH ---condition2---

---processing1--- 99WH ---condition2---

---processing3--- 99WH ---condition3---

ON-LINE SYSTEMS DEVELOPMENT

The following values, in the CONDITION TYPE OR S.F.

STRUCTURE field, are used for relative positioning with

the On-Line Systems Development function and Pacbench

C/S.

’*A’ Insertion of a sub-function before an automatic sub-function

identified by the data element or the Segment it processes.

’*P’ Insertion of a sub-function after an automatic sub-function

identified by the Data Element or the Segment it processes.

(The CONDITION FOR EXECUTION of the automatic

sub-function applies to the inserted sub-function if the

LEVEL NUMBER of the inserted sub-function is greater

than that of the automatic sub-function.)

’*R’ Replacement of an automatic sub-function identified by the

Data Element or the Segment it processes. (The

CONDITION FOR EXECUTION of the automatic

sub-function does not apply to the replaced sub-function.)

For more information, see chapter ’Use of Structured code’,

subchapter ’Specific Procedures’ in the ’On-Line Systems’

manual.

The two following values are used for the relative

positioning with Pacbench C/S (server components only):

Chapter 5. Modifying the Procedure Division 121

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’*C’ Insertion or replacement of the processing on the server or

the Logical View.

’*B’ Insertion in the elementary processing called by PERFORM.

For more information, see Manual ’Business Logic and TUI

clients’, chapter ’Business Component’, subchapter ’Writing

Procedural Code’.

10 28 CONDITION FOR EXECUTION

The CONDITION FOR EXECUTION statement is coded

without using ’IF’, ’AND’, ’OR’, ’GO TO’, or a period (.).

The first line must be associated with an explicit or implicit

LEVEL NUMBER (’05’ for a function; ’06’ to ’98’ for a

sub-function; ’99’ for an elementary procedure within a

function or sub-function). The LEVEL NUMBER need not

be specified on continuation lines.

For a ’CASE OF’ type structure, the name of the variable

(which may have alternative values) must be indicated on

the first line.

For structures dependent on a ’CASE OF’, the CONDITION

FOR EXECUTION indicates the possible value of the ’CO’

variable.

’$n’ In a Macro-Structure, the CONDITION FOR EXECUTION

can be parameterized.

122 VisualAge Pacbase: Structured Code

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| TITLES ONLY BBINIT GENERAL PROCESSING |

| . FUSF . TITLE . LEVEL . TY .SOURCE.LIBR |

| ...|

| . 05 . READ SEQ.FILES NO CONTROL BREAK . 05 . BL . . |

| . 20 . END OF RUN . 05 . IT . . |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| *** END *** |

| O: C1 CH: -TO |

--

Chapter 5. Modifying the Procedure Division 123

124 VisualAge Pacbase: Structured Code

Chapter 6. Access Commands

On-Line Access Commands

LIST OF PROGRAMS

CHOICE SCREEN UPD

------ ------ ---

LCPaaaaaa List of Programs by code NO

 (starting with Program ’aaaaaa’).

LNPaaaaaa List of Programs by name NO

 (starting with program ’aaaaaa’).

LTPnPaaaaaa List of Programs of type ’n’ NO

 (starting with program ’aaaaaa’).

LEPeeeeeeee List of Programs by external name NO

 (starting with external name ’eeeeeeee’).

DESCRIPTION OF PROGRAM ’aaaaaa’

CHOICE SCREEN UPD

------ ------ ---

Paaaaaa Definition of Program ’aaaaaa’. YES

PaaaaaaGCbbb Comments for Program ’aaaaaa’ YES

 (starting with line ’bbb’).

PaaaaaaGObbb Generation option of Program ’aaaaaa’ YES

 (starting with line ’bbb’).

PaaaaaaXVbbbbbb X-references of Program ’aaaaaa’ to NO

 Documents (starting with Document

 ’bbbbbb’).

PaaaaaaATbbbbbb Text assigned to Program ’aaaaaa’ NO

 (starting with text ’bbbbbb’).

PaaaaaaX X-references of Program ’aaaaaa’. NO

PaaaaaaXPbbbbbb X-references of Program ’aaaaaa’ to NO

 programs (starting with Program ’bbbbbb’)

PaaaaaaXObbbbbb X-references of Program ’aaaaaa’ to NO

 screens (starting with Screen ’bbbbbb’).

PaaaaaaXQrrrrrr List of occurrences linked to Program NO

 ’aaaaaa’ through User Relationship

 ’rrrrrr’.

PaaaaaaCR Occurrences linked to Program YES

 ’aaaaaa’ through User Relationship

PaaaaaaCDbb Call of Data Structures of Program YES

 ’aaaaaa’ (starting with Data Structure

 ’bb’).

© Copyright IBM Corp. 1983,2004 125

PaaaaaaCPbbbbbb Call of Parameterized Macro- YES

 Structure

 of Program ’aaaaaa’ (starting

 with P.M.S. ’bbbbbb’).

PaaaaaaBbbccddd Beginning Insertions Modifications YES

 of Program ’aaaaaa’ (starting with

 section ’bb’, paragraph ’cc’,

 line ’ddd’).

PaaaaaaWbbccc Description of Work Areas of Program YES

 ’aaaaaa’ (starting with Work Area ’bb’

 line ’ccc’).

PaaaaaaPfusfnnn Description of Procedural Code of YES

 Program ’aaaaaa’ (starting with

 function ’fu’, sub-function ’sf’,

 line number ’nnn’).

PaaaaaaPGfusfnnn View of Procedures Generated of YES

 Program ’aaaaaa’ (starting with

 function ’fu’, sub-function ’sf’,

 line number ’nnn’), with display

 of generated procedure titles.

Paaaaaa9bbbbbb Description of Pure COBOL Source YES

 Code of Program ’aaaaaa’ (starting

 with -9 line ’bbbbbb’).

PaaaaaaTCfusf View of Titles and Conditions of YES

 automatic and specific procedures

 of Program ’aaaaaa’ (starting with

 function ’fu’, sub-function ’sf’).

PaaaaaaTCfusf<nn View of Titles and Conditions of YES

or automatic and specific procedures

Paaaaaa<nnTCfusf of Program ’aaaaaa’ up to level ’nn’

 (starting with function ’fu’,

 sub-function ’sf’).

PaaaaaaTOfusf View of Titles Only of automatic and NO

 specific procedures of Program ’aaaaaa’

 (starting with function ’fu’, sub-

 function ’sf’).

PaaaaaaTOfusf<nn View of Titles Only of automatic and NO

or specific procedures of Program ’aaaaaa’

Paaaaaa<nnTOfusf up to level ’nn’ (starting with function

 ’fu’, sub-function ’sf’).

PaaaaaaSCfusfnnn Description of Source Code of YES

 ’reversed’ Program ’aaaaaa’

 (starting with function ’fu’,

 sub-function ’sf’, line number ’nnn’).

PaaaaaaSTRfusf Program Structure of ’reversed’ YES

 Program ’aaaaaa’ (starting with

 function ’fu’, sub-function ’sf’).

NOTE: After the first choice of type ’Paaaaaa’, ’Paaaaaa’ can be replaced with

’-’.

126 VisualAge Pacbase: Structured Code

All notations between parentheses are optional.

On-Line Display Options

PxxxxxxCP

C1: Displays the call lines of Macro-Structures.

C2: Displays the number of the session in which the line was updated.

PxxxxxxB, -W, -P, -8.

C1: Displays the input format.

C2: Displays information concerning the origin of the lines.

The Macro-Structure code will appear in the source area for the Program lines

obtained by a Macro-Structure call.

For lines that belong to the Library in which you are working, the LIB field

indicates the number of the session in which the line was updated. For lines

that belong to other Libraries, it indicates their code.

The ’C2’ option cannot be used for updating.

C3: Available only on -W screens. Displays the selected format (I-E-S) of the

Data Element.

The ’C3’ option cannot be used for updating.

On-Line Action Codes

On the Program Definition screen:

’C’= Create.

’M’= Modify.

’D’= Delete (possible only if there’s no description line).

’?’= Request for documentation (’HELP’ function).

On Description screens:

’C’= Create the line.

Chapter 6. Access Commands 127

’M’= Modify the line.

’D’= Delete the line.

’X’= Create or modify the line. When a line contains fields which are

automatically transformed into uppercase, for example Pure COBOL Source

Code (-9) lines, this transformation is inhibited.

’B’= Multiple deletion beginning with this line,

’R’= Repeat the line.

’I’= Insert lines.

’T’= Transfer the line (enter target line number in the LINE NUMBER field),

’G’= Group transfer of lines (enter target line number in the LINE NUMBER

fields), beginning with this line,

’L’= With action codes ’B’ or ’G’ above: last line to be deleted or transferred,

’?’= Request for documentation (HELP function).

For more details on these Action Codes, refer to the ’Character Mode User

Interface’ guide.

Generation and/or Printing

Programs can be generated and printed by entering certain commands, either

on-line, on the Generation and Print Commands (GP) screen (used for

documentation and generation requests), or in batch mode (see the

’Developer’s Procedures’ manual).

These commands are listed below:

v LCP

List of all Programs by code.

C1: without keywords,

C2: with keywords.

v LNP

List of all Programs by name.

v LEP

128 VisualAge Pacbase: Structured Code

List of all Programs by external name.

v LKP

List of Programs by keywords. The user may limit the keywords to explicit or

implicit only. The keywords are specified on a continuation line (see the The

’Character Mode User Interface’ guide).

v LTP

List of all Programs by type.

v DCP

Description information for the Program whose code is entered in the ENTITY

CODE field; if no code has been entered, the Description information for all

Programs will be provided.

C1: without assigned text,

C2: with the assigned text.

v DSP

Description information for the reversed Program whose code is entered in

the ENTITY CODE field.

v GCP

Generation and description of a Program whose code must be indicated.

v GSP

Generation and description of the reversed Program (with SC lines).

v FLP

Specify the flow of the programs. The user may specificy the environment

(PEI), control card options, and parameters (as needed).

C1 option only.

v FSP

Specify the flow of the reversed Programs.

Chapter 6. Access Commands 129

130 VisualAge Pacbase: Structured Code

Chapter 7. Example of a Generated Program

Introduction

This chapter is designed to provide examples of how certain input will affect

the automatically generated Program.

Only those portions of the Program that can be modified by Structured Code

will be described in this chapter.

The displayed examples are not from the same Program. They are simply

examples.

A batch Program structure was used; however the principle is the same for

on-line programs.

Environment Division

The ENVIRONMENT DIVISION may be adapted as needed, via the

Beginning Insertions (-B) screen entries.

The example below illustrates how the Beginning Insertions lines may be used

to modify the INPUT-OUTPUT SECTION. The user entered the following

lines in order to code the SELECT statements for ESDS and RRDS VSAM files.

--

! A SE PA LIN INSTRUCTION TO BE INSERTED !

! 01 DD 090 * ENTRY-SEQUENCED DATA SET EXAMPLE !

! 01 DD 100 SELECT DD-FILE !

! 01 DD 120 ASSIGN TO ESMSTR !

! 01 DD 140 ORGANIZATION IS SEQUENTIAL !

! 01 DD 160 ACCESS MODE IS SEQUENTIAL !

! 01 DD 180 FILE STATUS IS DD00-STATUS. !

! 01 EE 090 * RELATIVE RECORD DATA SET EXAMPLE !

! 01 EE 100 SELECT EE-FILE !

! 01 EE 120 ASSIGN TO RRMSTR !

! 01 EE 140 ORGANIZATION IS RELATIVE !

! 01 EE 160 ACCESS MODE IS DYNAMIC !

! 01 EE 170 RELATIVE KEY IS WS00-RRN !

! 01 EE 180 FILE STATUS IS EE00-STATUS. !

! !

!O: C1 CH: -B !

--

The Call of Data Structures (-CD) lines are coded as follows:

© Copyright IBM Corp. 1983,2004 131

--

! DP DL EXTERN OARFU U SELECTION !

! DD BL ESMSTR VSFID C *10 !

! STAT.FLD: DD00STATUS !

! EE BL RRMSTR VSFID C *20 !

! STAT.FLD: EE00STATUS !

! !

!O: C1 CH: -CD !

--

NOTE: For more input entered for the RELATIVE KEY IS statement on the

RRDS file, see subchapter ″WORKING-STORAGE SECTION″.

The excerpt of COBOL that is generated as a result of these lines follows.

 ENVIRONMENT DIVISION. BLPROG

 CONFIGURATION SECTION. BLPROG

 SOURCE-COMPUTER. IBM-370. BLPROG

 OBJECT-COMPUTER. IBM-370. BLPROG

 INPUT-OUTPUT SECTION. BLPROG

 FILE-CONTROL. BLPROG

 * ENTRY-SEQUENCED DATA SET EXAMPLE D01DD

 SELECT DD-FILE D01DD

 ASSIGN TO ESMSTR D01DD

 ORGANIZATION IS SEQUENTIAL D01DD

 ACCESS MODE IS SEQUENTIAL D01DD

 FILE STATUS IS DD00-STATUS. D01DD

 * RELATIVE RECORD DATA SET EXAMPLE D01EE

 SELECT EE-FILE D01EE

 ASSIGN TO RRMSTR D01EE

 ORGANIZATION IS RELATIVE D01EE

 ACCESS MODE IS DYNAMIC D01EE

 RELATIVE KEY IS WS00-RRN D01EE

 FILE STATUS IS EE00-STATUS. D01EE

 DATA DIVISION. BLPROG

 FILE SECTION. BLPROG

Working-Storage Section: Beginning

The WORKING-STORAGE SECTION and other sections belonging to the end

of the DATA DIVISION may be supplemented via the Work Areas (-W)

screen. The example shows the implementation of this feature using the

Formatted Line for a Work Areas screen with an alphabetic CODE FOR

COBOL PLACEMENT.

The CODE FOR COBOL PLACEMENT, when alphabetic, causes the data to be

placed in the beginning of the WORKING-STORAGE SECTION, with this

code and the LINE NUMBER producing a sequencing number.

The Work Areas (-W) screen appeared as follows:

132 VisualAge Pacbase: Structured Code

--

!CODE FOR PLACEMENT..: BB !

!A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION !

!* 020 F PC: XW LC: XW SEL: 02____ PICT: I DESC: 2 LEV: 1 !

! 110 F DP: WK DL: BB SEL: ______ PICT: I DESC: 2 LEV: 1 !

! 120 F DP: WA DL: WA SEL: 00____ PICT: I DESC: 2 LEV: 1 !

--

NOTE: The formatted line that appears as line 020 in this example comes

from a Macro-Structure. (Notice the asterisk in the ACTION CODE

field for this line.) The field labels that appear on the screen for this

Macro (’PC:’ and ’LC:’) result from an older version of this line, and

are exactly the same as those fields labeled ’DP:’ and ’DL:’.

In the generated COBOL, the WORKING-STORAGE SECTION will begin

with the Description of Segment XW02, followed by the Descriptions of all the

Segments that belong to Data Struc- ture WK. Segment WA00 follows.

Another Work Areas (-W) screen was entered for this example, to illustrate

setting up a search field for an RRDS file. In this example, the user did not

use a formatted line. The CODE FOR COBOL PLACEMENT used was higher

than the code used for the screen with the formatted lines above, thus the

COBOL corresponding to this entry follows those lines.

This Work Areas (-W) screen appeared as follows:

--

!CODE FOR PLACEMENT..: CC !

!A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION !

! 020 * RELATIVE RECORD DATA SET SEARCH FIELD !

! 040 01 WS00-RRN PIC 99 VALUE ZEROS. !

--

The System-generated ’WSS-BEGIN’ will be generated after these

supplementary lines.

 WORKING-STORAGE SECTION. FL10UP

 *PC: XW LC: XW SEL: 02______ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ 7BB020

 01 XW02. FL10UP

 10 XW02-XDATE. FL10UP

 11 XW02-XDAT1. FL10UP

 12 XW02-XDAT19 PICTURE 99 FL10UP

 VALUE ZERO. FL10UP

 11 XW02-XDAT2. FL10UP

 12 XW02-XDAT29 PICTURE 99 FL10UP

 VALUE ZERO. FL10UP

 11 XW02-XDAT3. FL10UP

 12 XW02-XDAT39 PICTURE 99 FL10UP

 VALUE ZERO. FL10UP

 10 XW02-XLEAPY PICTURE 99 FL10UP

 VALUE ZERO. FL10UP

 *DP: WK DL: BB SEL: ________ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ 7BB110

Chapter 7. Example of a Generated Program 133

01 WK00. FL10UP

 10 WK00-FLTKEY. FL10UP

 11 WK00-LIBKEY PICTURE X FL10UP

 VALUE SPACE. FL10UP

 11 WK00-FLM PICTURE 999 FL10UP

 VALUE ZERO. FL10UP

 11 WK00-FLDDEP PICTURE X(6) FL10UP

 VALUE SPACE. FL10UP

 11 WK00-PSNAME PICTURE X(4) FL10UP

 VALUE SPACE. FL10UP

 11 WK00-PANFI PICTURE X FL10UP

 VALUE SPACE. FL10UP

 01 WK10. FL10UP

 10 WK10-FLDCAN PICTURE X(6) FL10UP

 VALUE SPACE. FL10UP

 10 WK10-FLCADE PICTURE XXX FL10UP

 VALUE SPACE. FL10UP

 10 WK10-FLCAAR PICTURE XXX FL10UP

 VALUE SPACE. FL10UP

 10 WK10-FLTDEP PICTURE 9(4) FL10UP

 VALUE ZERO. FL10UP

 10 WK10-FLTARR PICTURE 9(4) FL10UP

 VALUE ZERO. FL10UP

 10 WK10-ACMSER PICTURE 9(6) FL10UP

 VALUE ZERO. FL10UP

 10 WK10-FLCFS PICTURE X FL10UP

 VALUE SPACE. FL10UP

 10 WK10-FLQSTP PICTURE 9 FL10UP

 VALUE ZERO. FL10UP

 10 WK10-FLQRFC PICTURE 9(3) FL10UP

 VALUE ZERO. FL10UP

 10 WK10-FLQRCC PICTURE 9(3) FL10UP

 VALUE ZERO. FL10UP

 10 WK10-FILLER PICTURE X(31) FL10UP

 VALUE SPACE. FL10UP

 01 WK20. FL10UP

 10 WK20-PANTTL PICTURE XXX FL10UP

 VALUE SPACE. FL10UP

 10 WK20-PANL PICTURE X(12) FL10UP

 VALUE SPACE. FL10UP

 10 WK20-PAMPHH PICTURE 9(10) FL10UP

 VALUE ZERO. FL10UP

 10 WK20-PAMPHW PICTURE 9(10) FL10UP

 VALUE ZERO. FL10UP

 10 WK20-RECCLA PICTURE X FL10UP

 VALUE SPACE. FL10UP

 10 WK20-RECSMK PICTURE X FL10UP

 VALUE SPACE. FL10UP

 10 WK20-REDCAN PICTURE X(6) FL10UP

 VALUE SPACE. FL10UP

 10 WK20-FILLER PICTURE X(22) FL10UP

 VALUE SPACE. FL10UP

 *DP: WA DL: WA SEL: 00______ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ 7BB120

 01 WA00. FL10UP

 10 WA00-1TSTD. FL10UP

134 VisualAge Pacbase: Structured Code

11 WA00-1HSTD PICTURE 99 FL10UP

 VALUE ZERO. FL10UP

 11 WA00-1RRCOL PICTURE X FL10UP

 VALUE SPACE. FL10UP

 11 WA00-1MSTD PICTURE 99 FL10UP

 VALUE ZERO. FL10UP

 11 WA00-1AMPM PICTURE X FL10UP

 VALUE SPACE. FL10UP

 10 WA00-1TMIL. FL10UP

 11 WA00-1HMIL PICTURE 99 FL10UP

 VALUE ZERO. FL10UP

 11 WA00-1MMIL PICTURE 99 FL10UP

 VALUE ZERO. FL10UP

 10 WA00-1FCCTR PICTURE 999 FL10UP

 VALUE ZERO. FL10UP

 10 WA00-1CCCTR PICTURE 999 FL10UP

 VALUE ZERO. FL10UP

 *RELATIVE RECORD DATA SET SEARCH FIELD 7CC020

 01 WS00-RRN PIC 99 VALUE ZEROS. 7CC040

 01 WSS-BEGIN. FL10UP

 05 FILLER PICTURE X(7) VALUE ’WORKING’. FL10UP

 05 BLANC PICTURE X VALUE SPACE. FL10UP

 05 IK PICTURE X. FL10UP

Working-Storage Section: End

When the CODE FOR COBOL PLACEMENT is numeric, the data description

is placed after those with alphabetic codes, and after most Data Structures

Descriptions which come from the Call of Data Structures (-CD) or On-line

Screen Call of Elements (-CE) or Call of Segments (-CS) screens.

The lines entered on the screen used for this example are generated just before

the PROCEDURE DIVISION statement.

The Work Areas (-W) screen was coded as follows:

--

!CODE FOR PLACEMENT..: 90 !

! LIN T LEVEL OR SECTION WORK AREA DESCRIPTION !

! 000 F DP: WB DL: WG SEL: 01______ PICT: I DESC: 4 LEV: 3!

--

 *DP: WB DL: WG SEL: 01______ PICT: I DESC: 4 LEV: 3 ORG: _ SS: _ 790000

 01 WB00. PJJPS1

 02 WB01T. PJJPS1

 03 WB01. PJJPS1

 10 WB01-FILLER PICTURE X(18). PJJPS1

 10 WB01-FILLER PICTURE X(4). PJJPS1

 10 WB01-TABCPT PICTURE X(44). PJJPS1

 PROCEDURE DIVISION.

Chapter 7. Example of a Generated Program 135

Procedure Division

The user may modify the PROCEDURE DIVISION in any number of ways.

The lines that are generated may be overridden, supplemented, or suppressed.

New functions may be created for a Program by calling in Macros or by

attaching Procedural Code (-P) lines directly to the Program. Lines of the

Macro may be overridden, supplemented or suppressed.

The Procedural Code lines below illustrate different types of modifications

that the user may make to the PROCEDURE DIVISION.

MODIFYING AUTOMATICALLY GENERATED FUNCTIONS

The Procedural Code (-P) lines below illustrate the overriding of the

generation of the OPEN of the TR-FILE that would normally have occurred in

Function F01.

--

! FUNCTION: 01 !

!A SF LIN OPE OPERANDS LVTY CONDITION !

!* TR N INITIALIZATION OF FILE TR 10BL !

!* TR M ’1’ TR-FT !

--

Although the source of the lines above is a Macro which was called into the

Program, the lines themselves are generated exactly as those lines that are

attached directly would be.

Without these lines, the OPEN of the TR file would look just like that of the

EM file.

Specific lines in certain automatically generated functions may be suppressed.

The lines below illustrate suppressing the CLOSE of the TR-FILE that would

normally occur in F20.

--

! FUNCTION: 20 !

!A SF LIN OPE OPERANDS LVTY CONDITION !

!* TR SUP !

--

The next excerpt shows the supplementation of Function F76. Here, the lines

identified with an asterisk in the ACTION CODE field come from a Macro.

The user has supplemented the lines of the Macro using Procedural Code (-P)

lines attached directly to the Program. They are interspersed with lines of the

Macro. This is controlled by the key : FUNCTION CODE, SUB-FUNCTION

CODE, and LINE NUMBER. The example with F76AL shows that the user

can override lines of a Macro with Procedural code lines of the same key:

136 VisualAge Pacbase: Structured Code

--

! FUNCTION: 76 !

!A SF LIN OPE OPERANDS LVTY CONDITION !

!* AL N SEARCH 15DW I06 NOT > 27 !

! AL 10 M 6 EM00-ERTYP 99IT UT-PR (I06) NOT = 0 !

!* AL 10 M 6 EM00-ERTYP 99IT UT-UPR (I06) NOT = 0!

!* AL 20 M I06 EM00-ERCOD9 !

!* AL 30 P F76AU !

!* AL 40 A 1 I06 !

--

In F76AT, lines have been added to those of the Macro.

--

! FUNCTION: 76 !

!A SF LIN OPE OPERANDS LVTY CONDITION !

!* AT N PRINT GOOD TRANS.. 10IT XW01-XERRCT = ZERO !

! AT 2 P F92 99IT 1-MB00-STRUCT = ’P’ !

! AT 5 GT 10 99IT XW01-XERRCT NOT = 0 !

!* AT 10 M SPACE EM00 !

!* AT 20 P F8RBB F8R-FN 99IT XW01-XIPRIN = ’1’ !

!* AT 30 GT 10 99BL !

--

Note that the generated code contains lines that are generated automatically

by the System as well as these lines.

CREATING NEW FUNCTIONS

New functions may be added to the generated skeleton simply by using a

FUNCTION CODE that is not generated. The lines will be placed within the

Program according to the value of the FUNCTION CODE. Our example uses

Function F93.

 N01. NOTE *************************************. FL10UP

 * * FL10UP

 * INITIALIZATIONS * FL10UP

 * * FL10UP

 *************************************. FL10UP

 F01. EXIT. FL10UP

 N01BB. NOTE *INITIALIZATION OF FILE BB-FILE *. FL10UP

 F01BB. OPEN I-O BB-FILE. FL10UP

 F01BB-FN. EXIT. FL10UP

 N01EM. NOTE *INITIALIZATION OF FILE EM-FILE *. FL10UP

 F01EM. OPEN INPUT EM-FILE. FL10UP

 F01EM-FN. EXIT. FL10UP

 N01MB. NOTE *INITIALIZATION OF FILE MB-FILE *. FL10UP

 F01MB-10. RETURN MB-FILE AT END FL10UP

 MOVE 1 TO MB-FI. FL10UP

 F01MB-FN. EXIT. FL10UP

 N01TR. NOTE *INITIALIZATION OF FILE TR *. P000

 F01TR. P000

 MOVE ’1’ TO TR-FT. P010

 F01TR-FN. EXIT. P010

Chapter 7. Example of a Generated Program 137

N01XE. NOTE *INITIALIZATION OF FILE XE-FILE *. FL10UP

 F01XE. OPEN OUTPUT XE-FILE. FL10UP

 F01XE-FN. EXIT. FL10UP

 F01-FN. EXIT. FL10UP

 .

 .

 .

 .

 N20. NOTE *************************************. FL10UP

 * * FL10UP

 * END OF RUN * FL10UP

 * * FL10UP

 *************************************. FL10UP

 F20. IF FT = ALL ’1’ FL10UP

 NEXT SENTENCE ELSE GO TO F20-FN. FL10UP

 F20BB. CLOSE BB-FILE. FL10UP

 F20BB-FN. EXIT. FL10UP

 F20EM. CLOSE EM-FILE. FL10UP

 F20EM-FN. EXIT. FL10UP

 F20XE. CLOSE XE-FILE. FL10UP

 F20XE-FN. EXIT. FL10UP

 .

 .

 .

 .

 N76. NOTE *************************************. FL10UP

 * * FL10UP

 * STORE ERRORS, RETRIEVE INIT. STATE* FL10UP

 * * FL10UP

 *************************************. FL10UP

 N76-A. NOTE * STORE ERRORS *. FL10UP

 F76-A. IF ID-ER NOT = ’0’ MOVE ID-ER TO TR-ER FL10UP

 GO TO F76-C. MOVE SE-ER (I01) TO SEG-ER. FL10UP

 IF SEG-ER < ’0’ OR SEG-ER > ’1’ FL10UP

 MOVE SEG-ER TO TR-ER GO TO F76-C. FL10UP

 MOVE 1 TO I06. FL10UP

 F76-B. MOVE DE-ER (I06) TO DEL-ER. FL10UP

 IF DEL-ER = ’1’ OR DEL-ER = ’0’ GO TO F76-B1. FL10UP

 MOVE 4 TO TR-ER GO TO F76-C. FL10UP

 F76-B1. IF I06 = I50 MOVE I03 TO I06 GO TO F76-B. FL10UP

 IF I06 < I04 ADD 1 TO I06 GO TO F76-B. FL10UP

 F76-C. IF TR-ER NOT = ’1’ MOVE ’1’ TO GR-ER. FL10UP

 N76AB. NOTE *INITIALIZATIONS *. P000

 F76AB. P000

 MOVE SPACE TO EM00 P010

 MOVE ZERO TO XW01-XERRCT P020

 MOVE ’0’ TO XW01-XIPRIN P030

 MOVE 1-MB00 TO XW01-XTRAIM. P040

 F76AB-FN. EXIT. P040

 N76AC. NOTE *IDENTIFICATION ERROR *. P000

 F76AC. IF ID-ER NOT = ZERO P000

 NEXT SENTENCE ELSE GO TO F76AC-FN. P000

 MOVE ’1’ TO EM00-ERTYP P010

 MOVE ID-ER TO EM00-ERCOD P020

 PERFORM F76AU THRU F76AU-FN. P030

138 VisualAge Pacbase: Structured Code

F76AC-900. GO TO F76AD-FN. P030

 F76AC-FN. EXIT. P030

 N76AD. NOTE *ELEMENT/RECORD ERROR *. P000

 F76AD. EXIT. P000

 N76AE. NOTE *RECORD ERROR *. P000

 F76AE. P000

 MOVE SE-ER (I01) TO EM00-ERCOD. P010

 IF EM00-ERCOD NOT = ’0 ’ P020

 AND EM00-ERCOD NOT = ’1 ’ P030

 MOVE ’0’ TO EM00-ERTYP P020

 PERFORM F76AU THRU F76AU-FN. P030

 F76AE-FN. EXIT. P030

 N76AF. NOTE *ERROR IN COMMON PART OF SEGMENT *. P000

 F76AF. P000

 MOVE 1 TO I06. P010

 N76AG. NOTE *SEARCH *. P000

 F76AG. IF I06 NOT > I50 P000

 NEXT SENTENCE ELSE GO TO F76AG-FN. P000

 MOVE DE-ER (I06) TO EM00-ERTYP. P010

 IF EM00-ERTYP NOT = ZERO P020

 AND EM00-ERTYP NOT = ’1’ P030

 MOVE I06 TO EM00-ERCOD9 P020

 PERFORM F76AU THRU F76AU-FN. P030

 ADD 1 TO I06. P040

 F76AG-900. GO TO F76AG. P040

 F76AG-FN. EXIT. P040

 F76AF-FN. EXIT. P040

 N76AH. NOTE *ERROR IN SPECIFIC PART OF SEGM. *. P000

 F76AH. P000

 MOVE I03 TO I06. P010

 N76AI. NOTE *SEARCH *. P000

 F76AI. IF I06 NOT > I04 P000

 NEXT SENTENCE ELSE GO TO F76AI-FN. P000

 MOVE DE-ER (I06) TO EM00-ERTYP. P010

 IF EM00-ERTYP NOT = ZERO P020

 AND EM00-ERTYP NOT = ’1’ P030

 COMPUTE EM00-ERCOD9 = I06 - I03 + 1 P020

 PERFORM F76AU THRU F76AU-FN. P030

 ADD 1 TO I06. P040

 F76AI-900. GO TO F76AI. P040

 F76AI-FN. EXIT. P040

 F76AH-FN. EXIT. P040

 F76AD-FN. EXIT. P040

 N76AK. NOTE *USER ERRORS *. P000

 F76AK. P000

 MOVE 1 TO I06. P010

 N76AL. NOTE *SEARCH *. P000

 F76AL. IF I06 NOT > 27 P000

 NEXT SENTENCE ELSE GO TO F76AL-FN. P000

 IF UT-PR (I06) NOT = ZERO P010

 MOVE 6 TO EM00-ERTYP P010

 MOVE I06 TO EM00-ERCOD9 P020

 PERFORM F76AU THRU F76AU-FN. P030

 ADD 1 TO I06. P040

 F76AL-900. GO TO F76AL. P040

Chapter 7. Example of a Generated Program 139

F76AL-FN. EXIT. P040

 F76AK-FN. EXIT. P040

 N76AR. NOTE *TRANSACTION ERROR (GROUP) *. P000

 F76AR. IF FTB7 = 1 P000

 NEXT SENTENCE ELSE GO TO F76AR-FN. P000

 MOVE 1 TO I06. P010

 N76AS. NOTE *SEARCH *. P000

 F76AS. IF I06 NOT > I51 P000

 NEXT SENTENCE ELSE GO TO F76AS-FN. P000

 IF SE-ER (I06) = ’2’ P010

 MOVE SE-ER (I06) TO XW01-XERRN1 P010

 MOVE I06 TO XW01-XERRN2 P020

 MOVE XW01-XERRNU TO EM00-ERCOD P030

 MOVE ’0’ TO EM00-ERTYP P040

 PERFORM F76AU THRU F76AU-FN. P050

 ADD 1 TO I06. P060

 F76AS-900. GO TO F76AS. P060

 F76AS-FN. EXIT. P060

 F76AR-FN. EXIT. P060

 N76AT. NOTE *PRINT GOOD TRANSACTIONS *. P000

 F76AT. IF XW01-XERRCT = ZERO P000

 NEXT SENTENCE ELSE GO TO F76AT-FN. P000

 IF 1-MB00-STRUCT = ’P’ P002

 PERFORM F92 THRU F92-FN. P002

 IF XW01-XERRCT NOT = ZERO P005

 GO TO F76AT-FN. P005

 MOVE SPACE TO EM00. P010

 IF XW01-XIPRIN = ’1’ P020

 PERFORM FBRBB THRU FBR-FN. P020

 GO TO F76AT-FN. P030

 N76AU. NOTE *PRINT BAD TRANSACTIONS *. P000

 F76AU. P000

 MOVE ’A’ TO EM00-ENTYP P010

 ADD 1 TO XW01-XERRCT. P020

 N76AW. NOTE *READ ERROR MESSAGE FILE *. P000

 F76AW. P000

 MOVE LE-FIENR TO EM00-PROGR P005

 MOVE LIBRA TO EM00-LIBRA P010

 MOVE 0 TO EM00-LINUM P015

 MOVE 0 TO IK P020

 READ EM-FILE P020

 INVALID KEY MOVE 1 TO IK P020

 MOVE ’UNKNOWN MESSAGE’ TO EM00-ERMSG P030

 DISPLAY ’ UNKNOWN MESSAGE, KEY IS ’ P040

 EM00-EMKEY. P050

 F76AW-FN. EXIT. P050

 N76AX. NOTE *STORE ERROR *. P000

 F76AX. P000

 MOVE 4 TO TR-ER. P010

 F76AX-FN. EXIT. P010

 N76AZ. NOTE *PERFORM THE PRINT ROUTINE *. P000

 F76AZ. P000

 PERFORM FBRBB THRU FBR-FN. P010

 F76AZ-FN. EXIT. P010

 F76AU-FN. EXIT. P010

140 VisualAge Pacbase: Structured Code

F76AT-FN. EXIT. P010

 F76-FN. EXIT. P010

 .

 .

 .

 .

 N93DA. NOTE *DATE VALIDATION *. P000

 F93DA. P000

 MOVE 1 TO DEL-ER. P010

 IF XW02-XDATE NOT NUMERIC P020

 MOVE 4 TO DEL-ER P020

 GO TO F93DA-FN. P030

 IF XW02-XDAT1 > ’12’ P040

 OR XW02-XDAT1 = ’00’ P050

 OR XW02-XDAT2 > ’31’ P060

 OR XW02-XDAT2 = ’00’ P070

 MOVE 5 TO DEL-ER P040

 GO TO F93DA-FN. P050

 IF XW02-XDAT2 > ’30’ P080

 AND (XW02-XDAT1 = ’04’ P090

 OR XW02-XDAT1 = ’06’ P100

 OR XW02-XDAT1 = ’09’ P110

 OR XW02-XDAT1 = ’11’) P120

 MOVE 5 TO DEL-ER P080

 GO TO F93DA-FN. P090

 IF XW02-XDAT1 NOT = ’02’ P130

 GO TO F93DA-FN. P130

 IF XW02-XDAT2 > ’29’ P140

 MOVE 5 TO DEL-ER P140

 GO TO F93DA-FN. P150

 IF XW02-XDAT3 = ’00’ P160

 MOVE 1 TO XW02-XLEAPY P160

 ELSE P170

 COMPUTE XW02-XLEAPY = XW02-XDAT39 - P170

 (XW02-XDAT39 / 4) * 4. P180

 IF XW02-XLEAPY NOT = ZERO P190

 AND XW02-XDAT2 > ’28’ P200

 MOVE 5 TO DEL-ER P190

 GO TO F93DA-FN. P200

 F93DA-FN. EXIT. P200

Chapter 7. Example of a Generated Program 141

142 VisualAge Pacbase: Structured Code

Chapter 8. Appendix: Pure Cobol Source Code (-9)

The Pure COBOL Source Code (-9) screen contains COBOL source code

statements.

It is used for the following:

v To use data descriptions generated by the System in COBOL programs,

v To use library and documentation components to manage existing COBOL

source code.

DATA GENERATION

It is possible to generate the first three Divisions of a COBOL program (using

the System’s functions) and to write the PROCEDURE DIVISION exclusively

with Pure COBOL Source Code (-9) lines.

This kind of program is defined with a ’D’ value in the TYPE AND

STRUCTURE OF PROGRAM field and the appropriate variant in the TYPE

OF COBOL TO GENERATE field.

The program will be made up of Call of Data Structures (-CD) lines, of

Beginning Insertions (-B) lines, of Work Areas (-W) lines and of Pure COBOL

Source Code (-9) lines for the PROCEDURE DIVISION.

It is also possible to generate the data description only, and to write the rest of

the Program using Pure COBOL Source Code (-9) lines.

The Program would then have an ’F’ in the TYPE AND STRUCTURE OF

PROGRAM field and a corresponding variant in the TYPE OF COBOL TO

GENERATE field.

This Program will be made up of Call of Data Structures(-CD) lines and Pure

COBOL Source Code (-9) lines. The positioning of the generated descriptions

in the Program is determined by a Pure COBOL Source Code (-9) line for each

Call of Data Structures (-CD) line. This Pure COBOL Source Code (-9) line

must have an ’F’ value in COBOL column ’7’, followed by a blank, and the

DATA STRUCTURE CODE IN THE PROGRAM. The generated descriptions

begin on the first ’01’ level and do not include the COBOL ’FD’ clause.

PURE COBOL SOURCE

© Copyright IBM Corp. 1983,2004 143

It is possible to manage pure COBOL Source Code (-9) in the System

Database. It can be extracted by generating the Program with the ’C’ variant

in the TYPE OF COBOL TO GENERATE field.

There can be two versions of a Program:

COBOL (Pure COBOL Source Code (-9) lines); and VA Pac (Call of Data

Structures (-CD), Call of a P.M.S.’s (-CP), Beginning Insertions (-B), Work

Areas (-W), and Procedural Code (-P) lines).

If the variant is ’C’ in the TYPE OF COBOL TO GENERATE field, the Pure

COBOL Source Code (-9) lines will be generated and the programming lines

will be ignored.

If the value in the TYPE OF COBOL TO GENERATE field specifies a COBOL

variant, the program will be generated with programming lines, and the Pure

COBOL Source Code (-9) lines will be ignored.

If the user wishes to see the information found in the ’CONSTANTS’ area of a

generated Program in the Pure COBOL Source program, he/she must use the

Pure COBOL Source Code (-9) lines to code this information, being sure to use

line numbers in the WORKING-STORAGE SECTION to ensure that this

information is properly placed.

The -9 line must be coded in the following way:

01 PACBASE-CONSTANTS PIC X(20) VALUE ’20 characters..’

col 12 35 48

For example:

01 PACBASE-CONSTANTS PIC X(20) VALUE ’XXXXXXXXXXXXXXXXXXXX’

The result will have the following structure:

AAA9999V000 DDDDDDDD, where:

v (AAA) is the application code,

v (9999V) is the number of the session during which the program was

extracted,

v (DDDDDDDD) the date of the extraction.

If the user wishes to see more information (e.g. Database code, user code...),

he must code the -9 line in the following way:

col 12 35

144 VisualAge Pacbase: Structured Code

01 PACBASE-CONSTANTS PIC X(60) VALUE

- ’PACBASE-C20

 ’DATGNC ’.

The result will be composed of the following concatenated elements:

v Session number (5 char.),

v Application code (3 char.),

v Generation date (8 char.),

v System Program code (6 char.),

v User code (8 char.),

v Time of Program generation (8 char.),

v COBOL Program-Id (8 char.),

v Database code (4 char.),

v Date of Program generation with century (10 char.).
OPERATION FIELD

C1: default value.

C2: source and complementary input field display.

Chapter 8. Appendix: Pure Cobol Source Code (-9) 145

--

| PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 |

| |

| PURE COBOL PROCEDURE LTVAL1 FIRST TEST PROGRAM |

| 1 |

| |

| 2 3 4 6 5 |

| A LINE C COMPL. COBOL INSTRUCTION : SOURCE LIBR. |

| 006000 * PJJPS1 DUPLICATE RECORD VALIDATION 0318 |

| 006001 PJJPS1 F36. 0318 |

| 006002 PJJPS1 IF CATX = ’HA’ 0318 |

| 006003 PJJPS1 MOVE ’1’ TO W-WW00-REC 0318 |

| 006004 PJJPS1 ELSE MOVE ZERO TO W-WW00-REC. 0318 |

| 006005 PJJPS1 F36-FN. 0318 |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| *** END *** |

| O: C2 CH: -9 |

--

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

1 6 PROGRAM CODE

Code identifying the program in the library.

2 1 ACTION CODE

’C’ Creation of the line

’M’ Modification of the line

’D’ or ’A’ Deletion of the line

’T’ Transfer of the line

’B’ Beginning of multiple deletion

’G’ Multiple transfer

’?’ Request for HELP documentation

’E’ or ’-’ Inhibit implicit update

’X’ Implicit update without upper/lowercase processing

3 6 NUMER. COBOL LINE NUMBER

FALSE NUMERIC FIELD

146 VisualAge Pacbase: Structured Code

NUM LEN

CLASS

VALUE DESCRIPTION OF FIELDS AND FILLING MODE

’0-999999’ The line number can be entered for each COBOL instruction

and renumbered after an update. It is advisable to use a

line increment of 100 in COBOL.

’nn00 -’

’nn99’

In a macro-structure, the COBOL line number can be

parameterized on the four leftmost digits by two-digit

groups.

4 1 CONTINUATION (COBOL COLUMN 7)

’-’ Continuation of a literal (normal COBOL use).

’*’ Comment line (ANSI COBOL only).

5 65 COBOL INSTRUCTION

First part of the COBOL line. The end of the line (column

66 to 72) is displayed with the C2 OPERATION (O: C2).

6 6 END OF COBOL LINE

This field is displayed as a complementary field which is

viewed only with the C2 OPERATION (O: C2).

(1) This field is used to complete a COBOL line up to 72

positions.

(2) It also corresponds to the Identification area on a

COBOL coding form (columns 73 to 80) for a Program

identification entry. This entry appears on the far right side

of a VisualAge Pacbase generated program.

Chapter 8. Appendix: Pure Cobol Source Code (-9) 147

148 VisualAge Pacbase: Structured Code

����

Part Number: DDSTR000351A - 6803

Printed in USA

	Contents
	Notices
	Trademarks
	Chapter 1. Introduction
	Purpose of the Manual
	Description Principles
	Introduction to Structured Code
	Managed Entities/Associated Screens

	Chapter 2. Parameterized Macro-Structures
	Overview
	The Program Entity
	Call of Parameterized Macro-Structures (-CP)
	X-References to Programs/Screens (-XP/-XO)

	Chapter 3. Modifying the Identification/Environment Div. (-B)
	Chapter 4. Modifying the Working Storage/Linkage Section
	Data Structure Calls (-CD)
	Work Areas Screen (-W)
	Work Areas Formatted Line

	Chapter 5. Modifying the Procedure Division
	Introduction
	Procedural Code Screen (-P)
	Programmer Flags and Variables
	Titles and Conditions Screen (-TC)

	Chapter 6. Access Commands
	On-Line Access Commands
	On-Line Display Options
	On-Line Action Codes
	Generation and/or Printing

	Chapter 7. Example of a Generated Program
	Introduction
	Environment Division
	Working-Storage Section: Beginning
	Working-Storage Section: End
	Procedure Division

	Chapter 8. Appendix: Pure Cobol Source Code (-9)

