
DDOVC000255A

��������	
�����	
���

���	���
���	����	��	�
��	���
����	
�
�����	

��������	
	������������	
	������������

DDOVC000255A

2 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

5th Edition (December 1999)

This edition applies to the following licensed program:

� VisualAge Pacbase Version 2.5

Comments on publications (including document reference number) should be sent electronically through the Support Center Web site at:
http://www.ibm.com/software/ad/vapacbase/support.htm
or to the following postal address:
IBM Paris Laboratory
VisualAge Pacbase Support
30, rue du Château des Rentiers
75640 PARIS Cedex 13
FRANCE

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

�� Copyright International Business Machines Corporation 1983, 1999. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to restrictions set forth in GSA ADP
Schedule Contract with IBM Corp.

Before using this document, read the general information under "Notices" on the next page.

According to your license agreement, you may consult or download the complete up-to-date collection of the VisualAge Pacbase documentation
from the VisualAge Pacbase Support Center at:

http://www.ibm.com/software/ad/vapacbase/support.htm

Consult the Catalog section in the Documentation home page to make sure you have the most recent edition of this document.

Note

3

DDOVC000255A

NOTICES

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM's valid intellectual property or other legally protectable rights, any
functionally equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

Intellectual Property and Licensing
International Business Machines Corporation
North Castle Drive, Armonk, New-York 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of information which has been exchanged, should contact:

IBM Paris Laboratory
SMC Department
30, rue du Château des Rentiers
75640 PARIS Cedex 13
FRANCE

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM may change this publication, the product described herein, or both.

TRADEMARKS

IBM is a trademark of International Business Machines Corporation, Inc.
AIX, AS/400, CICS, CICS/MVS, CICS/VSE, COBOL/2, DB2, IMS, MQSeries, OS/2, PACBASE,
RACF, RS/6000, SQL/DS, TeamConnection, and VisualAge are trademarks of International Business
Machines Corporation, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States and/or other countries.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States and/or other countries.
UNIX is a registered trademark in the United States and/or other countries licensed exclusively
through X/Open Company Limited.

All other company, product, and service names may be trademarks of their respective owners.

4 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

Table of Contents 5

DDOVC000255A

Table of Contents

1. Introduction.. 11

1.1. Pacbench C/S Functionalities.. 11

1.2. Independence between Server and Client... 12

2. Principles of the Pacbench C/S Function ... 13

2.1. The Logical View Concept... 13

2.2. Services Associated with a Business Component..................................... 13
2.2.1. Check and Update .. 13
2.2.2. Selection ... 14
2.2.3. User Service.. 14
2.2.4. Logical Lock (graphic applications)... 14
2.2.5. Call of a Business Component by another Business Component 15
2.2.6. Description of a C/S query .. 15

2.2.6.1. User Buffer 15
2.2.6.2. Server Buffer 15

2.2.7. Initialization / Termination Business Component .. 16

2.3. Data Representation (graphic applications).. 17
2.3.1. Data Automatic Navigation.. 17

2.3.1.1. Functional and Technical Contexts 17
2.3.1.2. Folder-Based Development 18
2.3.1.3. Representation in the Metamodel 19

2.3.1.3.1. The Folder Entity 19
2.3.1.3.2. The Folder View Entity 20

2.3.2. Particular Case : Single-View Development ... 20

2.4. Proxy Objects Generated for the Graphic Client 21
2.4.1. Introduction ... 21
2.4.2. Visual Programming and Public Interface... 22

2.4.2.1. Implementation of Generic Classes 22
2.4.2.2. Parameterization of the Generated Classes Names (VisualAge for

Smalltalk) 22
2.4.3. Proxy Objects.. 23

2.4.3.1. Particular Case : Single-View Development 24

2.5. Graphic Client Development Facilities... 24
2.5.1. Local Cache .. 24
2.5.2. The Management of Collections ... 25
2.5.3. The Exchange Manager.. 25
2.5.4. The VisualAge for Smalltalk Quick Form .. 26
2.5.5. VisualAge for Smalltalk Error Manager... 26

3. Software Architecture of Generated Applications 27

3.1. Graphic Applications ... 27
3.1.1. General Schema ... 27
3.1.2. Single-View Development ... 28
3.1.3. The Communications Monitor ... 29
3.1.4. The Services Manager .. 30
3.1.5. The Error Message Server.. 30
3.1.6. Communication Achitecture .. 31

3.1.6.1. Middleware and Communication Protocols 31
3.1.6.2. Customized Middleware 31

3.1.6.2.1. Local User Buffer (VisualAge for Smalltalk) 31

6 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

3.1.6.3. Particular Case : WEB Applications 32
3.1.6.3.1. Smalltalk Applications 32
3.1.6.3.2. Java Applets (Intranet / Internet) 33

3.2. TUI Applications .. 35
3.2.1. Monitors .. 35

3.2.1.1. Introduction 35
3.2.1.2. The Client Monitor Component 35
3.2.1.3. The Server Monitor Component 35

3.2.2. Options without Monitors... 36
3.2.2.1. Client Processing 36
3.2.2.2. Business Component Processing 36

4. Development Environments ... 37

4.1. Remote Components .. 37

4.2. Local Components .. 38
4.2.1. VisualAge for Smalltalk Workstation ... 38

4.2.1.1. Standard Applications 38
4.2.1.1.1. Windows 95 or NT 38
4.2.1.1.2. OS/2 39

4.2.1.2. WEB Smalltalk Specifics 39
4.2.2. VisualAge for Java Workstation .. 40

4.2.2.1. Windows NT and 95 40
4.2.2.2. OS/2 40

4.2.3. COM Environments... 41

5. Execution Environments .. 43

5.1. Remote Components .. 43

5.2. Local Components .. 44
5.2.1. End User Workstation ... 44

5.2.1.1. Windows 95 and NT 44
5.2.1.2. OS/2 44

5.2.2. COM Environments... 44

5.3. Middle Components for the Web ... 45
5.3.1. Smalltalk Applications ... 45
5.3.2. Java Applications .. 45

6. Physical Architecture According to Environment Types 47

6.1. TUXEDO ... 47
6.1.1. Database Management... 47
6.1.2. Graphic Application ... 47

6.1.2.1. Functions of the Communications Monitor 47
6.1.2.2. Management of COMMIT/ROLLBACK 49

6.1.3. TUI Application.. 50
6.1.3.1. Architecture 50
6.1.3.2. Management of COMMIT/ROLLBACK 51

6.2. CICS.. 52
6.2.1. Database Management... 52
6.2.2. Graphic Application ... 52

6.2.2.1. CICS/ECI 52
6.2.2.1.1. Functions of the CICS/ECI Communications Monitor 52
6.2.2.1.2. Management of COMMIT/ROLLBACK 52

6.2.2.2. CICS/CPI-C 53
6.2.2.2.1. Functions of the CICS/CPI-C Communications Monitor 53
6.2.2.2.2. Management of COMMIT/ROLLBACK 53

6.2.2.3. CICS/MQSERIES 54
6.2.2.3.1. Functions of the CICS/MQSERIES Communications Monitor 54
6.2.2.3.2. Management of COMMIT/ROLLBACK 54

Table of Contents 7

DDOVC000255A

6.2.2.4. CICS/SOCKET 55
6.2.2.4.1. Functions of the CICS/ SOCKET Communications Monitor 55
6.2.2.4.2. Management of COMMIT/ROLLBACK 55

6.2.3. TUI Application.. 56
6.2.3.1. Architecture 56
6.2.3.2. Management of COMMIT/ROLLBACK 56

6.3. GCOS7.. 57
6.3.1. Database Management... 57
6.3.2. Graphic Application ... 57

6.3.2.1. Functions of the XCP2/CPI-C Communications Monitor 57
6.3.2.2. Management of COMMIT/ROLLBACK 57

6.4. GCOS8.. 58
6.4.1. Database Management... 58
6.4.2. Graphic Application ... 58

6.4.2.1. Functions of the XCP2/CPI-C Communications Monitor 58
6.4.2.2. Management of COMMIT/ROLLBACK 58

6.5. MICROFOCUS UNIX, OS/2 or WINDOWS/NT ... 59
6.5.1. Database Management... 59
6.5.2. Graphic Application ... 59

6.5.2.1. Microfocus /Sockets 59
6.5.2.1.1. Functions of the Microfocus /Sockets Communications Monitor 59
6.5.2.1.2. Management of COMMIT/ROLLBACK 59

6.5.2.2. Microfocus / MQSERIES 60
6.5.2.2.1. Functions of the Microfocus / MQSERIES Communications Monitor 60
6.5.2.2.2. Management of COMMIT/ROLLBACK 60

6.5.3. TUI Application.. 61
6.5.3.1. Architecture 61
6.5.3.2. Management of COMMIT/ROLLBACK 61

6.6. IMS.. 62
6.6.1. Database Management... 62
6.6.2. Graphic Application ... 62

6.6.2.1. IMS CPI-C 62
6.6.2.1.1. Functions of the IMS CPI-C Communications Monitor 62
6.6.2.1.2. Management of COMMIT/ROLLBACK 62

6.6.2.2. IMS / MQSERIES 63
6.6.2.2.1. Functions of the IMS / MQSERIES Communications Monitor 63
6.6.2.2.2. Management of COMMIT/ROLLBACK 63

6.6.3. TUI Application.. 64
6.6.3.1. Architecture 64
6.6.3.2. Management of COMMIT/ROLLBACK 64

6.7. UNISYS 2200 .. 65
6.7.1. Database Management... 65
6.7.2. Graphical Application .. 65

6.7.2.1. Functions of the Unisys 2200 / TCIS Communications Monitor 65
6.7.2.2. Management of COMMIT/ROLLBACK 65

6.8. TANDEM ... 66
6.8.1. Database Management... 66
6.8.2. Graphical Application .. 66

6.8.2.1. TANDEM PATHWAY 66
6.8.2.1.1. Functions of the Tandem Pathway / Socket Communications Monitor 66
6.8.2.1.2. Management of COMMIT/ROLLBACK 67

6.8.2.2. TANDEM NonStop TUXEDO NON XA 67
6.8.2.2.1. Functions of the Communications Monitor 67
6.8.2.2.2. Management of COMMIT/ROLLBACK 68

Introduction 9

DDOVC000255A

Foreword
The Pacbench C/S function of VisualAge Pacbase allows you to develop the
components of a Client/Server application :

� The Server component – with a wide range of target environments.
� The term Server component is a global term used to designate

the various software elements1 at work in a VisualAge Pacbase
Server component.

� The Client component – graphic (for both VisualAge for Java and
Smalltalk environments, and COM2 standard environments) and TUI
(Textual User Interface, also referred to as character-mode or dumb
client) on a wide range of target environments.

The Middleware component – which ensures the communication between
Client and Server, uses standard communication protocols3 totally encapsulated.

Pacbench C/S Documentation

� The User’s Guide, in three volumes :

� The present volume (Volume I) describes the main principles of the
VisualAge Pacbase Pacbench Client/Server Function and the software
architecture of the generated applications. It also presents the
development and execution environments available as well as the
physical architectures according to the different types of environments.

Whatever your responsibilit y in a project with Pacbench C/S, it is
recommended to read this volume [REF : DDOVC_].

� Volume II : Business Logic is dedicated to the development of the Server
component [REF : DDOAU_].

� Volume III : Graphic clients is dedicated to the development of the
graphic Client component [REF : DDOVA_].

� The Business Logic – TUI Clients Reference Manual [REF : DDOA_].

� The Graphic Clients – Public Interface of Generated Components
Reference Manual [REF : DDOVI_].

Typographical conventions in use

The following symbols are used :
� points out a note, remark.
� refers to further information in another part of the

documentation ; the titles of the manuals and chapters are in
italics.

hint or useful piece of information

recommends to proceed with caution to perform operations
properly (limits for use, risky or irreversible action).

� Simple-mode development is not documented in this edition any more.

1 These elements are presented in section 3.1.1,
2 Component Object Model
3 See subchapter 5.1.

10 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

Introduction 11

DDOVC000255A

1. Introduction
VisualAge Pacbase is the IBM Application Development tool. It covers the
whole application life cycle: design, development, maintenance and legacy
applications re-engineering. This tool is made up of a series of products, all
integrated in a unique Repository.

The global consistency of Clients and Servers is entirely ensured by the
VisualAge Pacbase Information Model .

1.1. Pacbench C/S Functionalities
Pacbench C/S features four functionalities:

� The Business Logic functionality

It is dedicated to the development of the Server component in the
VisualAge Pacbase environment.
� Documented in the Pacbench C/S User’s Guide, Vol. II :

Business Logic.

� The GUI functionality

It is dedicated to the development of the graphic Client component in the
VisualAge for Java4 or for Smalltalk workstation, or in an environment
adapted to the COM standard.
� VisualAge for Java or Smalltalk allow to develop standard

graphic Client components and also applications accessed from
the Web (Intranet or Internet).

There are two parts in this development :
� Use of an object called Proxy directly generated from the

specifications of the Server component.
The Proxy object remotely commands – from the Client component –
the services provided by the Server component.
� The principles of Proxy objects are documented in detail in

the Pacbench C/S User’s Guide, Vol. III : Graphic Clients
and in the Graphic Clients : Public Interface of Generated
Components Reference Manual.

� Development of the graphical interface and specific local processing
regarding the graphic Client.
� Refer to the documentation of VisualAge for Java or

Smalltalk or to the documentation of development tools
adapted to the COM standard.

� The TUI Client functionality

It is dedicated to the development of the TUI Client component in the
VisualAge Pacbase environment.
� Refer to the Business Logic - TUI Clients Reference Manual.

4 You can also use the Java Development Kit, version 1.1 or higher, or other tools of the same functional level.

12 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

� VisualAge for Java or Smalltalk <> VisualAge Pacbase bridge
functionality

This functionality enables you to use a unique reference Database, the
VisualAge Pacbase Repository, in order to store – via a backup – the
references of objects proceeding from VisualAge for Java or Smalltalk.
These objects can thus benefit from the management, cross-referencing
and security functions of the Repository.
� The VisualAge for Smalltalk bridge also allows you to save and

retrieve source code.
� Refer to the Pacbench C/S User’s Guide, Vol. III : Graphic

Clients.

1.2. Independence between Server and Client
Servers can be accessed by TUI Clients as well as by graphic Clients.

This independence of Server from Client components allows for a smooth
evolution towards graphical interfaces and does not jeopardize the global
architecture of the system in use.

In this context, the Pacbench C/S function offers the possibility of developing
applications where graphic Clients (standard GUI or WEB, COM) and TUI
Clients (IBM 3270, BULL Questar...) can coexist.

Servers are then developed independently of Clients, knowing that some
specific rules apply when developing for a graphic Client.

� These rules are clearly stated, under the generic mention ‘Graphic Applications’
in the Pacbench C/S User’s Guide, Vol. II: Business logic.

Principles of the Pacbench C/S Function 13

DDOVC000255A

2. Principles of the Pacbench C/S Function

2.1. The Logical View Concept
The Logical View is a specific entity of the VisualAge Pacbase Information
Model.

It is used to define an information concept in your company's data system. It is
reusable as it can be used by several applications.

A Logical View is made up of a collection of elementary data. Its description is
independent of the storage medium chosen to store its instances.

To be used in a Client/Server application, a Logical View must be called in a
Business Component. This Business Component makes the link between the
structure of the storage entities (Segments) and the structure of the Logical
View.

A Logical View has an iterative capacity. This capacity is the maximum number
of instances that can be processed by a Business Component in one execution.

� The specifics of a Logical View are documented in the Pacbench C/S User’s
Guide, Vol. II: Business Logic, Chapter Logical View.

2.2. Services Associated with a Business Component
When a Business Component calls a Logical View, several data access
services are automatically generated according to the information defined in the
call of Segments description.

Specific processing can also be defined for each Logical View.

2.2.1. Check and Update

A check processes all the intrinsic and correspondence checks indicated in the
VisualAge Pacbase Repository. In case of error, it sends an error message to the
Client.

An update allows to create, modify or delete a Logical View instance in the
Database. The action code associated with the update can be implicit or explicit.
In case of error, an error message is sent to the Client.

� These services are documented in the Pacbench C/S User’s Guide, Vol. II:
Business Logic, Chapter Business Components, Subchapter Check / Update
Services.

14 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

2.2.2. Selection

This service allows to retrieve on the Client workstation a collection of Logical
View instances. This retrieval is based on:

� Standard selection criteria:

The selection service returns the number of instances requested. If the
number of instances returned is lower than the number of instances of the
selected collection, it returns the identifier of the first instance to be
displayed in the next selection page.

This service also allows to select one Logical View instance only.
� This service is documented in the Pacbench C/S User’ s Guide,

Vol. II: Business Logic, Chapter Business Components,
Subchapter Selection Service.

� Customized selection criteria:

You can add / replace specific clauses in a standard generated SQL
access or create a new physical access.

Also, using the customized selection criteria, implemented by extraction
methods, you can retrieve a collection of instances of a Logical View.
� For more information, refer to the Pacbench C/S User’s Guide,

Vol. II: Business Logic, Chapter Business Components,
Subchapter Inserting Specific code, section Insertion Relative to
the ‘Physical Accesses’ Level.

2.2.3. User Ser vice

A User Service is a consistent processing unit executed upon the Client’s
request. Each User Service must therefore be identified by a code which will
necessarily belong to the Client public interface5. For each Logical View called
in a Business Component, the developer can define his/her own processing in an
insert point reserved for that purpose. Its coding follows the standard rules of
the VisualAge Pacbase structured code.

� This type of service is documented in the Pacbench C/S User’s Guide, Vol. II:
Business Logic, Chapter Business Components, Subchapter Other Services.

2.2.4. Logical Lock (graphi c applications)

A logical lock allows – upon the Client’s request – to reserve for one user the
update of a coherent set of data.

� This type of service is documented in the Pacbench C/S User’s Guide, Vol. II:
Business Logic, Chapter Business Component, Subchapter Other Services.

5 Notion presented in section 2.4.2.

Principles of the Pacbench C/S Function 15

DDOVC000255A

2.2.5. Call of a Business Component by another Business
Component

This service allows a Business Component to delegate the execution of a
service to another Business Component. This allows Business Components to
be specialized and reused as much as possible.

� This type of service is documented in the Pacbench C/S User’s Guide, Vol. II:
Business Logic, Chapter Business Component, Subchapter Other Services,
section Call of a Business Component by another Business Component.

2.2.6. Description of a C/S query

Generally, a logical message between a Client component and a Business
Component corresponds to a query sent by the client (or to the response of the
server).

A C/S query thus corresponds to a message exchanged between a Client
component and a Business Component.

A query includes 1 to n service requests.

A service request triggers the execution of either a series of standard services or
a specific procedure.

The possible combinations of standard services included in a message are the
following:

� Check (only TUI),

� Read (only TUI),

� Check and update,

� Check, update and selection,

� Check and selection,

� Selection,

� Logical Lock,

� User Service.
� A message can convey one and only one User Service request.

A Business Component can send a query to another Business Component to
execute one of the services mentioned above.

2.2.6.1. User Buffer

A message can also include contextual data related to the execution of the called
service. The definition of this data structure and the processing of its contents
are the developer's responsibility. This data must be defined in a structure called
a user buffer.

The corresponding data structure is included in each message exchanged
between all the Dialogue’s Business Components and the Client components.

� For more details, see the Pacbench C/S User’s Guide, Vol. II: Business Logic.

2.2.6.2. Server Buffer

It is sometimes necessary and sufficient to share data exclusively between the
Business Components, whether they are called by the same Services Manager
or called between themselves via the call of second-level Business Component.

16 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

For example:
� Computed data (logical identifiers)
� Common data such as the authorization levels related to a user's profile, list

of users' profiles, data related to security
� Indicators (error indicators more precise than the generated indicators,

indicator of the real update, transactions counter…)
� List of root node instances to be sent to all the servers which process

dependent instances
� etc.

With the User Buffer, you can define a memory area shared between the
Business Components which participate in the execution of a request.

2.2.7. Initialization / Termination Business Component

An Initialization/Termination Business Component (I/T Component) is used
to implement specific procedures before and after the execution of a request
associated with a Folder.

� This functionality is then only available for graphic applications using the
development of a Folder.

An I/T Component is called by the Services Manager before the first call of the
Business Component associated with the request to be processed and after the
last executed Business Component.

An I/T Component is available either for an Initialization or for a Termination
process.

For an initialization process, the only data that can be processed in input is that
sent by the Client component via the User Buffer.

An I/T Component meet various application needs:

� The specific procedures are associated with more than one Business
Components managed by the Folder,
For example, the application must modify data in a node following the update of
data in another node. This is the case when command lines are added on an
existing command; the total amount of the command must be modified
(termination process).

� The specific procedures are inserted directly in the I/T Component, by
an algorithm on data managed via the Server or User Buffer.
For example, the application must check the global validity of data – at the Folder
level – regarding the cumulated controls carried out by all the Business
Components (termination process) of the Folder.

� The specific procedures are implemented via the call of a Business
Component – external to the Folder – managing a Logical View, also
external to the Folder.
You can thus ask for external memory (initialization process) and ask for the
deallocation of this memory (termination process). The I/T Component also
allows you to manage the authorization controls on the Folder (initialization
process).

An I/T Component is used to execute services associated with all the Business
Components of a Folder.

� The implementation of an I/T Component is documented in the Pacbench C/S
User’s Guide, Vol. II : Business Logic.

Principles of the Pacbench C/S Function 17

DDOVC000255A

2.3. Data Representati on (graphic applications)

2.3.1. Data Automatic N avigation

2.3.1.1. Functional and Technical Contexts

�� Functional Context

As a general rule, business activity is modeled by a set of information concepts
undergoing transformations.

In VisualAge Pacbase, an information concept is represented by a Logical View
which is managed by a Business Component. A Logical View constitutes an
homogenous aggregate of elementary data.

These transformations are distributed among the company's different functional
processes.

Each transformation, or business act, is made up of a set of processing actions
which modify the Information System’s contents from one stable state to
another.

Also, different business acts can modify one consistent set of data.

In this case, it is interesting that functional relations between the diff erent
information concepts in this data set be automatically managed via their
grouping in a logical envelop.

� If the possible transformations affect only one information concept, it is not
necessary (even though it is possible) to use a logical envelop because there is
no interaction to manage. In that particular case, this type of development is
referred to as single-view development. For more details, see paragraph 2.3.2.

However, both options can be managed in one same application.

�� Technical Context

In order to handle the processing load resulting from the business acts
simultaneously submitted by a large number of end users, computer
manufacturers developed the concept of transactional monitors. These systems
are designed to handle a maximum number of processing requests in a
minimum amount of time.

In most cases, the transactional resources used by different users are identical
and the only way to attain an effi cient transactional flow is to monopolize the
processing resources required for the shortest possible length of time.

18 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

Transactional monitors use a standard resource sharing unit which corresponds
to the time taken between the reception of a message, its processing and the
sending of the response.

Constraints inherent to this sharing principle require that data needed to reach
another stable state, be transmitted altogether to the transactional monitor.

2.3.1.2. Folder-Based Development

According to the logic of high-performance Client/Server architectures,
consistent information concepts must therefore be defined, so that they can be
easily manipulated through their different graphic representations. Also, a
business act must be implemented in order to modify the instances of related
information concepts and to send the server the queries for a transition to a
stable state in only one message. Within VisualAge Pacbase, this action is
modeled by the Folder concept.

From a methodological point of view, one may consider that a Folder is derived
from a LDM (Logical Data Model) type of entity. The transition consists first in
associating a Folder with a set of Segments, linked by a network of relations in
a LDM. Then each one of these Segments is associated with a server (a
Business Component), which implements the actions allowed on this Segment.
As a result, the number of root-Segments defined in a LDM is identical to the
number of Folders derived from this LDM.

In this context, requisite information – described by the Folder – is easily made
available to the Client workstation where the business act can be dealt with as a
whole. Once the business act is completed on the Client workstation, the
resulting Folder image is sent back to the Server component.

In addition to reconciling functional description constraints and performance
concerns, it can be seen that this type of ‘download/upload’ mechanism
improves overall system performance by reducing the number of server calls,
which in turn increases the availability of the transactional monitor.

A folder–based application benefits from the following advantages:

� The VisualAge Pacbase Repository represents and manages the
functional integrity of a set of Logical Views for each business act.

� Selection and update of a set of instances associated with several Logical
Views are automatically performed in just one exchange.

Principles of the Pacbench C/S Function 19

DDOVC000255A

2.3.1.3. Representation in the Metamodel

2.3.1.3.1. The Folder Entity

The Folder entity allows to describe a set of elementary data aggregates, i.e.
Logical Views, and the functional relationships between them, thus defining a
complex information concept – equipped with access and processing services.
Dependencies between the different Logical Views and data integrity are
managed in standard via the Folder.

For example, if in a company, an order makes sense only if it is linked to a
client, the dependence between both concepts of information is defined in a
Folder; each concept constitutes a consistent set of data which allows for their
manipulation through their diff erent graphic representations.

Functional relationships define the behavior of instances contained in two
linked data aggregates. They are of two types:

� The hierarchical relationships, where an instance of a child aggregate
depends on one and only one instance of the parent aggregate.

� Referencing relationships, where an aggregate instance references one
and only one instance of the referenced aggregate or none.

Each aggregate in a Folder is called a node. There are three types of nodes:

� The root node, only one per Folder, is the parent of all the depending
nodes. This aggregate does not depend on any other aggregate.

� The depending node, which is linked to a root node or a depending node
by a hierarchical relationship.

� The reference node, which is linked to a root node or a depending node
by a referencing relationship.

A node corresponds to a Logical View managed by a Business Component.

� Implementing a folder-based development is documented in the Pacbench C/S
User’s Guide, Vol. II : Business Logic, Chapter Folder and Folder Views,
Subchapter Folder.

The generation of a Folder occurrence produces a Services Manager capable of
interpreting and formatting all of the services associated with the Folder before
calling the relevant Business Component.

� For more details on the Services Manager, refer to section 3.1.4.

 If the description domain of a Folder is limited enough to be used in full i n a
given application, an additional generation at the Folder level allows to obtain
directly the whole set of classes used to manage the Folder in a graphic
application.

20 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

2.3.1.3.2.The Folder View Entity

Considering the fact that an application’s functionality does not necessarily
cover the wide scope of a Folder definition, each business act must be able to
work on a partial view of a Folder which guarantees the integrity of the
transformation of its instances.

This view is represented by the Folder View entity.

� A Folder view represents all or part of the Folder and must then contain
the Folder root.

The consistency of a Folder View description in relation to that of its
related Folder is automatically controlled by the VisualAge Pacbase
WorkStation.

� A Folder can contain several Folder Views. Each view corresponds to a
consistent representation of some of the Folder nodes, according to the
data required to implement a business act.

� An application can use several Folder Views proceeding from different
Folders.

� For complete information on how to specify Folder Views, refer to the
Pacbench C/S User’s Guide, Vol. II : Business Logic, Chapter Folder and
Folder Views, Subchapter Folder Views.

The generation of a Folder View creates in the Client component an object
called Folder View Proxy which allows a VisualAge Pacbase GUI application
to read, modify and transform the Folder’s instances.

� The Folder View Proxy is documented in paragraph 2.4.3.

Specifying Folder Views is not a requisite. Indeed, the description domain of a
Folder may be limited enough to be used in full in a given application. In this
case, an additional generation at the Folder level allows to obtain directly the
whole set of classes used to manage the Folder in a graphic application.

2.3.2. Particular Case : Sing le-View Development

The single-view development is particularly interesting when an elementary
data concept – a Logical View – can be independently managed by the Client
component.

In this case, data representation is modeled via the Logical View only managed
in a Business Component, without specifying a Folder or Folder Views.

The generation of this Business Component produces two sources:

� a Services Manager
� a Folder View Proxy

� For more details on the Services Manager, see section 3.1.4. The [single-view]
Folder View Proxy is presented in paragraph 2.4.3.1.

Principles of the Pacbench C/S Function 21

DDOVC000255A

2.4. Proxy Objects Generated for the Graphic Client

2.4.1. Introduction

Some objects can be proposed by the development tool, such as window, push-
button, entry box, etc. However, to satisfy specific functions such as the taking
into account of a Communication protocol or the encapsulation of specific
management functions, you must develop the corresponding objects yourself.

One of the goals of Pacbench C/S is to carry out a large part of this
development in an automatic and transparent way.

Since the Business Logic generator produces Business Components with the
same generic behavior, it is possible to transpose this generic behavior into
classes whose objects – called Proxy – are used to execute the services of
associated Business Components.

In the Client development workstation, a generator controlled by a user
interface takes as input the output file resulting from the extraction of the Folder
View or the Business Component specified in VisualAge Pacbase.

The generated objects are the following :

� Folder View Proxy

� Elementary Proxies

Elementary Proxies do not exist autonomously and are necessarily
associated with the Folder View Proxy.

� Proxy objects generation is documented in detail in the Pacbench C/S User’s
Guide, Vol. III : Graphic Clients.

These objects define - in a given environment - an object which is
representative of another object in a remote environment. The object of the
remote environment corresponds with the Business Component and with the
Logical View it manages.

22 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

2.4.2. Visual Programming and Public Interface

In general, the principle for building a GUI application is based on calling
different objects (visual or non visual) and on establishing connections between
the characteristics of these objects. These characteristics constitute the Public
Interface of these objects. The generated Proxy objects, like all the objects
proposed by the Client development tool, come therefore with a public
interface.

This public interface is made of :

� a set of properties (attributes for Smalltalk and COM) which are used to
transfer the execution parameters of a service and to represent the Logical
View instances in the form of a list or a detail,

� a set of methods (actions for Smalltalk and COM) which correspond to
the different services that the Business Component associated with the
Proxy can execute,

� a set of events (plus errors and exceptions for Java) which characterize
the result of the requested execution of a server or local service.

� The public interface of the generated components is documented in thematic
order in the Graphic Clients: Public Interface of Generated Components
Reference Manual.

In the VisualAge workstation, the Proxy object corresponds to a non-visual
bean or part. When building your application, you place this object on the Free
Form Surface.

2.4.2.1. Implementation of Generic Classes

All variable classes inherit from an abstract class, reserved for the developer,
which itself inherits from another abstract class containing all the common and
invariant methods of variable classes.

Such classes, called generic classes, are installed with the product.

Generic classes are used to avoid the multiplication of classes at each new
generation of Proxy objects. They improve applications' memory management
and enable developers to add generic behavior in these objects.

� This functionality is not available for COM targets.

2.4.2.2. Parameterization of the Generated Classes Names (VisualAge for
Smalltalk)

In order to conform the coding of the generated classes to the naming standards
chosen by a company, a system of class codes parameterization is implemented
in the VisualAge Pacbase Repository.

Principles of the Pacbench C/S Function 23

DDOVC000255A

2.4.3. Proxy Objects

A Folder View Proxy is the result of a Folder View generation. A Folder View
being described by nodes (Business Component/Logical View pairs), the
generation of the Folder View produces a set of classes corresponding to all the
nodes which make up the Folder View.

The objects of these classes are Elementary Proxy objects. There are three
types of Elementary Proxy objects:

� The Root Proxy, corresponding with the root node

� The Depending Proxy, corresponding with the depending node

� The Reference Proxy, corresponding with the reference node

Once incorporated into your client application, the Folder View Proxy is used to
handle the Elementary Proxy objects it contains. It also manages automatically
their functional interactions.

The Root Proxy is an Elementary Proxy which has its own specific
characteristics; only the Root Proxy can execute server update actions and
ensure error handling.

Each Elementary Proxy object is associated with one Business Component, for
one Logical View.

The public interface of an Elementary Proxy object depends on the
characteristics of the Logical View associated with the node, on the Business
Component which manages it and on the type of node.

Elementary Proxy objects are thus used to execute the services of the Business
Component associated with them ; the Business Component enables the graphic
Client to send queries which are service requests to the corresponding remote
server. These requests are automatically generated.

These services include:

� The structuring of data

� The encapsulation of the implementation of the Business Component
services

� Temporary storage of data to be sent to the Business Component

� Error handling

� Event-driven translation of the Business Component return codes

� Communication

� Local data integrity check in relation to the check defined in the
Repository

� Automatic control of version consistency between Client and Server
Components

� For VisualAge for Smalltalk : the management of data representation
with the Quick Form function.

24 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

2.4.3.1. Particular Case : Single-View Development

In the case of a single-view development, a Folder View Proxy is also
generated, from the Business component. It is composed of one Elementary
Proxy : the Root Proxy.

� For the VisualAge for Java or Smalltalk <> VisualAge Pacbase bridge
functionality, this particular Folder View Proxy is considered as a Logical View
Proxy.

2.5. Graphic Client Development Facilities
� All the subjects introduced in this subchapter are documented in detail in the

Pacbench C/S User’s Guide, Vol. III : Graphic Clients.

2.5.1. Local Cache

The local cache automatically manages :

� the consistency and synchronization of a Folder node instances :
� loading of parent identifiers of depending instances according to the

navigation defined between the Folder nodes.
� loading of the referencing Data Elements of a root or depending node

on the transfer request of a reference node instance.
� checking of the existence of parent depending instances when creating

a depending instance.
� checking of the cardinalities of each link used by a sub-schema before

sending a server update.
� management of the different status associated with a Folder instance

(read, read only, modified, server error) and of the induced rules.
� refreshing of the local image (VisualAge for Smalltalk) with or

without local updates.
� management of each node’s status and memorization of the

information required to execute paging operations.

� the impact of local updates on the presentation by list attribute:

An automatic loading of the list of instances of a root or depending node
in a Folder (represented by the rows or userRows attribute) will be
carried out as soon as a local update of this node is performed (stored in
the attribute detail or userDetail attribute).

Each instance created locally in a Folder is placed in the rows attribute at
the level which respects the ascending sort of instances on their
identifiers.

The same rules apply on the corresponding attributes associated with
User Services.

� calculation of the effective update transactions to be transmitted to the
Server component:

The management of effective transactions consists in calculating the
resulting update of various local updates made on the same instance of
the Folder’s node.

It checks the creation of duplicate instances.

Principles of the Pacbench C/S Function 25

DDOVC000255A

2.5.2. The Management of Collections

When executed, a selection or read action sends a collection of instances to the
local cache.

This collection of instances is managed in the local cache according to two
different modes:

� in automatic mode (default), the current collection of the local cache is
replaced by the new collection sent following a new execution of a
selection or read action,

� in manual mode, the current collection of the local cache is completed by
the new instances sent following the execution of a series of selection or
read actions6. So this collection cumulates new instances after each new
execution, and then constitutes an heterogeneous collection. To determine
the beginning of a new collection, you must then explicitly clear7 the
cache's current collection.

You can select the appropriate management mode for each Elementary Proxy of
the Folder View Proxy.

� Toggling from one management mode to another does not modify the cache's
current collection.

If you select the manual mode:

� the root and reference nodes parameterized to operate in non-extend
paging operate in extend paging,

� the paging actions are synchronized with the last selection action sent by
the node,

� the 'collection change' event is sent following the execution of the action
which clears the current collection.

2.5.3. The Exc hange Manager

The Exchange Manager automatically optimizes the volume of the
information flow exchanged between a Client component and a Server
component.

According to the maximum size of the communication buffer specified for the
Folder, it transforms a query object into one or more message objects carried
out via the middleware. Reciprocally, it transforms one or more message objects
associated with a server response into a response object.

The calculation of the number of messages required for the transfer of a query
or a response is automatic.

The protocol used is adapted to the transactional-type exchanges. A work file8

used by the Services Manager9 allows to store temporarily the information
required for the constitution of a query or its response when it uses several
messages.

6 If the Business Component sends an instance which is already present in the current collection, this instance is refreshed if

the instance of the current collection has not been modified locally.
7 The action which clears the current collection is also available in the automatic mode to reset a list.
8 Documented in section 3.1.3.
9 Documented in section 3.1.4.

26 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

2.5.4. The VisualAge for Smalltalk Quick Form

�� Automatic creation of containers with one column per Data Element of the
Logical View via a Quick-Form on the rows attribute of a Proxy. The title
of the column corresponds to the Data Element’s short label in VisualAge
Pacbase.

�� Graphic representation of the Data Elements can be defined in the VisualAge
Pacbase Repository. In this case, it is automatically managed by the Quick-
Form function.

�� For a Data Element, when a graphic representation has been associated in the
VisualAge Pacbase Repository with its value list and then when the
presentation of this Data Element is managed by the Quick-Form tool, this
list of values is automatically managed.

2.5.5. VisualAge for Smalltalk Error Manager

A class dedicated to error management is generated independently of the Folder
View Proxy. This class is supplied with an action which, from a row in the
required error messages, sets the Folder’s node to restore the Logical View
instance which caused the error, and then to send the corresponding event
(errorContextRestored).

An error is defined by three characteristics :

� its key,

� a gravity code,

� the message itself.

Software Architecture of Generated Applications 27

DDOVC000255A

3. Software Architecture of Generated Applications
The various elements present in the following charts are detailed hereafter.

3.1. Graphic Applicati ons

3.1.1. General Sc hema

Com munications
Monitor

Graphic Application

Folder
View Proxy

Error Mess age
Serv er

CLIENT W ORKSTATION REMOTE SERVER

E X E C U T IO N E N V IR O N M E N T

Bus ines s Component

Bus ines s Component

M id dlewa re

 Work f ile

S e rvice s
Ma n a g e r

Loc ations
f ile

Bus ines s Component

 Middle w are
 Functions

28 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

3.1.2. Single-View Development

Communications
monitor

Graphic
Application

Folder
View Proxy

Error Message
Server

CLIENT WORKSTATION REMOTESERVER

E X E CU T I ON E N V IR ON ME N T

Business Component

Middleware

Work file

Services
Manager

Middleware
Functions

Locations
fi le

Software Architecture of Generated Applications 29

DDOVC000255A

3.1.3. The Communications Monitor

The Communications Monitor handles the following functions:

� the definition of communication functions (message sending and
receiving) according to the target environment.

� Multi-environments management:
A Pacbench C/S application can be executed on different
environments. In this case, a monitor being specific to an execution
environment (generation variant and communication type) there will
be as many Communications Monitors as environments.
Moreover, several communication protocols can be used for the same
environment (example: CICS ECI and CICS CPIC).

� Checking each message received.

� Controlling the sending/receiving of the query.
� According to the size allowed for the physical message, several

physical messages may need to be issued in order to obtain the
complete logical message. A work file must therefore be
available for a temporary storage of the current query.

� Once the query is completely received, sequential processing of services
which compose it by successive calls to the corresponding Services
Manager.

� Transactional management (COMMIT/ROLLBACK)

The Communications Monitor uses the COMMIT and ROLLBACK services
of a Database or a transactional monitor depending on its generation
variant.

The transactional management is always of the LUW Server type
(Logical Unit of Work). Accordingly, the Server component takes in
charge the Database integrity.

A query is processed as a whole.
The server part executes – before return to the client – a COMMIT or a
ROLLBACK according to the error context (protocol error or application
error) established at the end of the query processing. In case of error,
query processing is ended and an error message is sent back.

Thus, all the resources monopolized by a query processing are made
available once the response has been sent.

� For more information on the specifics of a Communications Monitor, refer to
the Pacbench C/S User's Guide, Vol. II : Business Logic, Chapter
Communications Monitor (graphic application).

30 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

3.1.4. The Services Manager

For each query sent via the Communications Monitor, the Services Manager
processes the service requests and sends back the response to the
Communications Monitor.

� A query targets one and only one Services Manager and includes 1 to n service
requests.

The Service Manager processes a query :

� by interpreting the contents of the service into 1 or n elementary requests
addressed to the corresponding Business Components.
� A service is processed by a Business Component which can, in

turn, call another Business Component.

� by transmitting whenever relevant the corresponding user buffer to the
called Business Component and by updating its contents after the call
from the Business Component if the user buffer has been sent by the
Client.

There are as many Services Managers as there are Folders specified for the
application (or as Business Components in case of single-view development).

The Services Manager is a purely technical component, in which it is not
possible to insert specific code.

3.1.5. The Error Message Server

The error message server generates the messages associated with the errors
detected by the Business Components. These messages are stored in a dedicated
and generated file.

� The management of these errors is documented in the Pacbench C/S User’s
Guide – Vol. II : Business Logic, Chapter Error handling.

� Error handling on the Client side is documented in the Pacbench C/S User’s
Guide, Vol. III : Graphic Clients.

Software Architecture of Generated Applications 31

DDOVC000255A

3.1.6. Communication Achitecture

3.1.6.1. Middle ware and Communicatio n Protocols

The middleware functions used by a Proxy object manage the exchanges
between the Client and Server components of an application by using leading
communication protocols on the market place10.

The implementation of the selected communication protocol is totally
encapsulated. Moreover, the middleware functions are independent of the
protocol. Therefore, a change in the communication protocol, for the same type
of LUW, does not imply regenerating the Client components.

At the Client component level, the selection of the communication protocol
consists in associating a physical location (environment where the Server
component is executed) with a logical one. This association is performed via the
parameterization of the locations file (VAPLOCAT.INI) or via a graphical utility
supplied for the COM target.

� For a complete information, see the Pacbench C/S User’s Guide, Vol. III :
Graphic Clients.

3.1.6.2. Customized Middl eware

The use of a customized middleware consists in replacing the Pacbench C/S
midddleware by a specific one.

This operation is only possible in a VisualAge for Java or Smalltalk
development context.

Usually, this operation consists in using inheritance mechanisms to modify the
basic actions associated with the calls of remote servers.

The classes that manage server calls are generic. They are installed with the
product and are independent of the variable classes associated with each Proxy
object.

These generic classes enable server call actions to be modified once only so that
all the Proxy objects can use the new middleware.

These modifications are permanent; they are not overwritten when importing
new proxy objects or when re-installing generic classes.

� The customization of the middleware is documented in the Pacbench C/S
User’s Guide, Vol. III : Graphic Clients.

3.1.6.2.1. Local User Buffer (VisualAge for Smalltalk)

This buffer is used to manage – via the Proxy – data from the VisualAge for
Smalltalk client. The data can be used by a customized middleware.

For a given Business Component, only one local user buffer can be defined ; all
the generated proxies managed by a Business Component thus contain the same
instance of the local user buffer associated with the same Smalltalk class.

If data in this buffer is independent of Proxy objects, you can reuse it for all the
Business Components of an application, even for all the applications of the site.

� For more information on how to use a local user buffer, refer to the Pacbench
C/S User’s Guide, Vol. III : Graphic Clients.

10 Refer to subchapter 5.1.

32 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

3.1.6.3. Particular Case : WEB Applications

In case of WEB applications, the middleware is not installed on the client
workstation.

3.1.6.3.1. Smalltalk Applications

REMOTE
SERVER

CLIENT
W ORKSTA TION

EXECUTIO N ENVIRO NM ENT

 HT T P Se rv e r

M iddle w are

 Middleware Functions

W EB Application

TCP /IP

PROXY

� The architecture of the WEB Application and Server components depends on the
selected development mode (standard, single-view), refer to the above
schemas).

� For more details, refer to the Pacbench C/S User’s Guide, Vol. III : Graphic
Clients.

Software Architecture of Generated Applications 33

DDOVC000255A

3.1.6.3.2. Java Applets (Intranet / Internet)

The implementation to be carried out calls on a Gateway (Intranet) or on both
a Relay and a Gateway (Internet).

� Access to the Server component via a Gateway

REMOTE
SERVER

CLIENT
W ORKSTATION

EXECUTIO N ENVIRO NM ENT

 Windows/N T H T T P Se rv e r

M idd lew are
Gatewa y

Folder
Vie w Proxy

APPLET

TCP /IP

The Gateway is a C++ executable program supplied for Windows/NT. It is
shared by all the applets downloaded from the same HTTP server, and must
then be run permanently.

� The Applet component remains unchanged compared to the graphic application
component of the general schema. The architecture of the Server component
depends on the selected development mode (standard or single-view, see the
above schemas).

� For more details, refer to the Pacbench C/S User’s Guide, Vol. III : Graphic
Clients.

34 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

� Access to the Server component via a relay and a Gateway (for Internet)

REMOTE
SERVER

CLIENT
W ORKSTATION

EXECUTIO N ENVIRO NNEM ENT

 Windows/N T H T TP Se rv e r

M id dlew are
Gateway

Folde r
Vie w Proxy

APPLET

TCP /IP

This solution – required for the Internet applications – enables to lighten the
HTTP server’s load by undertaking the access to the middleware, the
management of the servers and contexts of each connected client.

The relay is an executable program (relay.exe) compiled for Windows/NT
and which enables to relay the queries reaching the HTTP server to another
computer hosting the Gateway and the middleware.

� The Applet component remains unchanged compared to the graphic application
component of the general schema. The architecture of the Server component
depends on the selected development mode (standard or single-view).

� For more details, refer to the Pacbench C/S User’s Guide, Vol. III : Graphic
Clients.

Software Architecture of Generated Applications 35

DDOVC000255A

3.2. TUI Applications
This subchapter introduces the main principles of a TUI application. However, a
more specific presentation of the TUI client can be found in the Pacbench C/S
User’s Guide, Vol. II : Business Logic, Chapter TUI Clients Development.

� Complete documentation on the development of TUI Client is found in the
Pacbench C/S : Business Logic & TUI Clients Reference Manual.

3.2.1. Monitors

3.2.1.1. Introduction

It can be useful to group common information and processing (communications
management, compacting, trace, COMMIT/ROLLBACK, site-specific features) in
technical components, i.e. the Monitors.

For some platforms, e.g. Microfocus and Tuxedo, it is a requirement.

3.2.1.2. The Client Monitor Component

This ensures the link between the Clients, and either calls a monitor which
manages communications between an application's Business Components, or
directly calls the Business Component in question.

Information is exchanged between the Monitor and the Clients through a
communication area which includes the following data:

� Technological data specific to the Clients,

� Data required for the call and the Business Component's answer, such as:
� the name of the service to call,
� the name of the Server monitor (this name is defined in the Dialog

which includes the services),
� the code of the Logical View processed by the Client,
� the branching function which returns control to the proper Client

function.

3.2.1.3. The Server Monitor Component

It calls the appropriate service and passes control either to the Client monitor or
directly to the Client.

The main processing generated in the Server monitor is the:

� Reception of the logical message

� Service call

� Formatting of the message before the return to the Client.

This processing mainly depends on the communication mode used.

36 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

3.2.2. Options without Monitors

3.2.2.1. Client Processing

Each Client directly calls a Server monitor or a Business Component.

In an architecture without monitor, the call processing is directly coded in each
Client component.

Each Client manages the sending of its data to the service, according to the
communication mode in use. The return to the Client is performed just after the
call function and the processing is performed in sequence.

You can always add specific processing by inserting code before or after the
service call.

3.2.2.2. Business Component Processing

Each Business Component is directly called by the Client or by the Client
monitor.

The structure of the service does not depend on the presence or absence of a
monitor. But you must enter the processing specific to the communications
technology or the security system in use in each Business Component.

Processing specific to Database management is coded in each service.

Initialization processing:

Database connection or opening is optionally coded at the beginning of the
Business Component processing.

Management of COMMIT and ROLLBACK:

An indicator allows you to condition the execution of these commands. This
function will be executed via a PERFORM; you will be able to modify its
contents and its call via a user procedure in an *R-type function. It is standardly
executed at the end of the Logical View processing before the return to the
Client.

Development Environments 37

DDOVC000255A

4. Development Environments
The aim of this chapter is to define the technical environment required for the
proper operation of Pacbench C/S in terms of both hardware and software.

� This chapter does not give information on the middleware. In test phase, it is
recommended to use the middleware which will be used during execution. For
more details, refer to Chapter Execution Environments, Subchapters 5.2 and 5.3.

4.1. Remote Compone nts
The Business Logic and TUI Clients functionalities of the Pacbench C/S are
operational on a wide range of IBM and non-IBM platforms:

� IBM (MVS-CICS, MVS-IMS, VSE-CICS, AIX, OS/2)

� Bull (Escala, DPX20, GCOS7, GCOS8)

� Digital Equipment UNIX

� Hewlett-Packard HP/UX

� Sun Solaris

� Tandem Integrity-IRIX

� Unisys 2200 Series

� Microsoft Windows NT

� Configuration information is supplied in the VisualAge Pacbase 2.5 Operations
Manual, Vol. I – Environment and Installation specific to each platform.

38 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

4.2. Local Components
� When software release numbers are specified, the Graphic Clients functionality

operate on more recent releases only if they strictly ensure upward
compatibility.

� For more details on the parameterization of external software, refer to the
Pacbench C/S User's Guide, Vol. III : Graphic Clients.

4.2.1. VisualAge for Smalltalk Workstation

4.2.1.1. Standard Applications

4.2.1.1.1. Windows 95 or NT

� Hardware

Subject to changes, the recommended minimum hardware configuration is :

� Intel Pentium or compatible processor

� 32 Mb. 48 Mb of RAM recommended for simultaneous use of a Database
manager or communication services.

� VGA graphic monitor

� CD-ROM drive

� network adapter

� Initial disk space : 50 Mb

� Software

� Windows 95, NT 3.51 or NT 4.0

� Communication software adapted to selected middleware (see the
Pacbench C/S User’s Guide, Vol. III: Graphic Clients).

Development Environments 39

DDOVC000255A

4.2.1.1.2.OS/2

� Hardware

Subject to changes, the recommended minimum hardware configuration is:

� Intel Pentium or compatible processor

� 32 Mb, 48 Mb of RAM recommended for simultaneous use of a Database
manager or communications services

� VGA graphics monitor

� CD-ROM drive

� Network adapter

� Initial disk space: 50Mb

� Software

� OS/2 WARP Version 3.0 or 4.

� Communication software adapted to selected middleware (see the
Pacbench C/S User’s Guide, Vol. III : Graphic clients.

4.2.1.2. WEB Smalltalk Specifics

In addition to the prerequisite of standard applications, the development of a
WEB application requires WEB Connection (a VisualAge feature).

40 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

4.2.2. VisualAge for Java Workstation

The environments described below concern the VisualAge for Java
development workstation. However, the proxy objects and the Pacbench C/S
generator can be used in any Java environment supporting the JDK 1.1.

4.2.2.1. Windows NT and 95

� Hardware

Subject to changes, the recommended minimum hardware configuration is:

� Intel Pentium or compatible processor

� 48 Mb, 64 or 96 Mb of RAM recommended for simultaneous use of a
Database manager or services communication + 200 Mb available for
VisualAge for Java and Pacbench C/S

� VGA graphic monitor

� CD-ROM drive

� network adapter

� Initial space disk : 50 Mb

� Software

� Windows 95 or NT 4.0

� The communication software adapted to selected middleware (see the
Pacbench C/S User’s Guide, Vol. III : Graphic Clients).

� TCP/IP

4.2.2.2. OS/2

� Hardware

Subject to changes, the recommended minimum hardware configuration is:

� Intel Pentium or compatible processor

� 48 Mb, 64 or 96 Mb of RAM recommended for simultaneous use of a
Database manager or services communication.

� VGA graphic monitor

� CD-ROM drive

� Network adapter

� Initial space disk : 50Mb

� Software

� OS/2 Warp version 4.

� The communication software adapted to the selected middleware (see the
Pacbench C/S User’s Guide, Vol. III : Graphic Clients).

� TCP/IP

Development Environments 41

DDOVC000255A

4.2.3. COM Environments

� Hardware

Subject to changes, the recommended minimum hardware configuration is:

� Intel Pentium or compatible processor

� 24 Mb, 32 Mb of RAM recommended for simultaneous use of a Database
manager or communication services.

� VGA graphic monitor

� CD-ROM drive

� Network adapter

� Initial space disk : 50 MB

� Software

� Windows 95 or NT 5.

� Visual C++ 4.2 or higher

� The communication software adapted to the selected middleware (see the
Pacbench C/S User’s Guide, Vol. III : Graphic Clients).

Execution Environments 43

DDOVC000255A

5. Execution Environments
The aim of this chapter is to define the technical environment required for the
proper operation of generated applications in terms of both hardware and
software.

5.1. Remote Components

Vendors Server Platforms Communication Types Databases

IBM MVS/CICS ECI

CPI-C/APPC LU6.2

MQ SERIES

TCP-IP Socket

MVS/IMS CPI-C/APPC LU6.2

MQ SERIES
VSE/CICS ECI

CPI-C/APPC LU6.2

AIX TUXEDO XATMI

CICS6000/ECI

TCP-IP Socket

MQ SERIES

OS/2 ECI

CPI-C/APPC LU6.2

MQ SERIES

OS/400

BULL GCOS7/TDS TUXEDO between Client & UNIX

TUXEDO/HOST-Connect and
CPI-C /XCP2 between UNIX &
GCOS7

GCOS8/TP8 ou
DM4-TP

TUXEDO between Client & UNIX

TUXEDO/HOST-Connect and
CPI-C /XCP2 between UNIX &
GCOS8

ESCALA ou DPX20 MQ SERIES

TCP-IP Socket

TUXEDO XATMI

GCOS6

DIGITAL
EQUIPMENT

DIGITAL UNIX TUXEDO XATMI

TCP-IP Socket

VMS

Open VMS Alpha TCP-IP Socket

HEWLETT-
PACKARD

HP-UX MQ SERIES

TUXEDO XATMI

TCP-IP Socket

MPE

ICL VME

MICROSOFT Windows/NT ECI

TCP-IP Socket

TUXEDO XATMI

MQ Series

SUN Solaris TUXEDO XATMI

TCP-IP Socket

ADABAS

ALLBASE/SQL

AS/400 Phys. File

DB2 family

DDL Tandem

DL/1

DM4 TP

DMS

DMS II

IDMS

IDS2

INFORMIX

INGRES

INTEREL/RDBC

INTEREL/RFM

MS SQLServer

NON-STOP SQL

ORACLE

RDMS

SQL/400

SQL/DS

SYBASE

44 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

Vendors Server Platforms Commu nicatio n Types Databases

TANDEM Integrity-IRIX TUXEDO XATMI

TCP-IP Socket

Guardian Non Stop TUXEDO

Pathway TCP-IP Socket

UNISYS 2200 Serie TCIS

A Serie

5.2. Local Components

5.2.1. End User Workstation

5.2.1.1. Windo ws 95 and NT

� Hardware

Subject to changes, the recommended minimum hardware configuration is:

� Intel Pentium or compatible processor

� 486/33 MHz PC capable of supporting Microsoft Windows 95 or NT

� 16 Mb of RAM

� VGA graphic monitor

� Network adapter

� Software

� Microsoft Windows 95 or NT 4.0

� The communication software adapted to the selected middleware (see the
Pacbench C/S User’s Guide, Vol. II I : Graphic Clients).

5.2.1.2. OS/2

� Hardware

Subject to changes, the recommended minimum hardware configuration is:

� 486/33 MHz PC capable of supporting OS/2 2.11

� 16 Mb of RAM

� VGA graphic monitor

� Network adapter

� Software

� OS/2 Version 3 or Version 4

� The communication software adapted to the selected middleware (see the
Pacbench C/S User’s Guide, Vol. II I : Graphic Clients).

5.2.2. COM Environments

The applications based on the use of a COM proxy can be executed on all the
environments which can access COM servers.

Execution Environments 45

DDOVC000255A

5.3. Middle Components for the Web
For Web applications, the middleware is not installed on the client workstation.

� For more details, see paragraph 3.1.6.3.

5.3.1. Smalltalk Applications

In addition to the standard applications prerequisites, the execution of a
Smalltalk Web application requires an HTTP server supporting CGI11 1.1, in a
Windows version (3.1, 95 or NT), OS/2 or AIX. This server must host the "CGI

Link " abtcgil program delivered with the Web Connection feature of
Smalltalk.

The end user workstation must be equipped with a browser (Netscape
Communicator 4.0x or Internet Explorer 4.0).

5.3.2. Java Applications

In addition to the standard applications prerequisites, the execution of a
Smalltalk Web application requires an HTTP server running on a Windows/NT
or AIX 4.1 environment.

The end user workstation must be equipped with a browser supporting the JDK
version 1.1 (Netscape Communicator 4.0x or Internet Explorer 4.0).

11 Common Gateway Interface

Physical Architecture According to Environment Types 47

DDOVC000255A

6. Physical Architecture According to Environment Types

6.1. TUXEDO

6.1.1. Database Management

DBMS automatically supported by TUXEDO Business Components and TUI
Client Components are the following :

� Microfocus indexed files,

� Oracle V6 and V7,

� Sybase V10.0.1 and higher (ANSI-mode).

6.1.2. Graphic Application

6.1.2.1. Functions of the Communications Monitor

� TUXEDO-XA

The message which identifies the service to be executed is received by a
Communications Monitor. This monitor initializes the service and calls the
appropriate Business Component. Once the service has been executed, the
Communications Monitor ends the service and sends the answer to the Proxy.

Client Component Server Component

Business
Component

TPSVCSTART
/
/

TPRETURN

Communications
Monitor
 TPSVCSTART

/
/

 CALL Services
Manager using
communication area.

/
/

 TPRETURN

Proxy
 /
 /
Call Monitor
using
communication
area
 /
 /

API

 DBMS

Services
Manager

TPCALL
Business
Component using
communication
area

48 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

� TUXEDO-XA (TUXEDO 6.2. onwards)

With Tuxedo 6.2, you can use the functions mechanisms. A function is an entry
point for a program written in C or in COBOL. Therefore, Business
Components are not directly activated.

The use of functions has two advantages :

� there is only one program structure for the Business Components,
whatever the type of client calling it or the type of Database.

The buffer used can be unified (CARRRAY). The structure of these
Business Components is that of a sub-program; there is thus no more
TUXEDO order of message receiving (TPSVCSTART) or sending
(TPRETURN).

� Business Components can be called either by CALL (required for the
Business Components using the non XA Database, because in this mode
the notion of global transaction allowing to take into account the updates
executed by several different services does not exist) or by TPCALL (in
this case, the function is systematically activated and the Business
Component is called by CALL).

In this architecture, the Services Manager and the Communications Monitor are
found on the same TUXEDO server and constitute one same service (Services
Manager is a sub-program of the Communications Monitor). However,
Business Components must be found on one or more different servers.

Client Component Server Component

Business
Component

Division procedure
using
communication
area

/
/

GOBACK

Communications
Monitor
 TPSVCSTART

/
/

 CALL Services
Manager using
communication area.

/
/

 TPRETURN

Proxy
 /
 /
Call Monitor
using
communication
area
 /
 /

API

 DBMS

Services
Manager

TPCALL
Business
Component using
communication
area

Physical Architecture According to Environment Types 49

DDOVC000255A

� TUXEDO NON XA

In this architecture, only one TUXEDO service can exist. Indeed, since a global
transaction is not possible, Business Components cannot be distinct services.
The only thing to do to validate the updates made by several Business
Components is to group them on the same TUXEDO server and service as the
Communications Monitor and Services Manager.

Client Component Server Component

Business
Component

Division procedure
using
communication
area

/
/

GOBACK

Communications
Monitor
 TPSVCSTART

/
/

CALL Services
Manager using
communication area.

/
/

TPRETURN

Proxy
 /
 /
Call Monitor
using
communication
area
 /
 /

API

 DBMS

Services
Manager

CALL Business
Component using
communication
area

6.1.2.2. Management of COMMIT/ROLLBACK

The Server component manages the Database integrity. The Database COMMIT

or ROLLBACK command is executed by the Communications Monitor according
to the contents of the TECH-COMMIT field (C or R). This field belongs to the
communication area which passes information between the components of the
Server part. It is initialized by the Business Component, depending on the
progress of the called service.

After the execution of a ROLLBACK, the Communications Monitor sends back a
message containing the reasons why the Proxy failed to complete the service
successfully.

50 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.1.3. TUI Application

� For more information on the Working Storage Section areas and the
complete structure of the Client component, refer to the Dialogue Microfocus
Reference Manual [REF : DD OPC 000 021 A].

6.1.3.1. Architecture

� TUXEDO-XA

In the TUXEDO environment, the Client component is constituted of a Client
monitor and Client functions such as menu, display, list, detail, etc. The notion
of Communications Monitor does not exist and the Business Component is
directly called par the Client monitor which initializes and ends the TUXEDO
service.

CLIENT COMPONENT

VO0010 Client Program

 TPBEGIN
/
/

 TPCALL SVLV01 using
 communication area

if NOT TPOK
or TPESVCFAIL
then TPABORT
else TPCOMMIT

SERVER COMPONENT

Client Monitor

 TPINITIALISE ...
/

 CALL Menu using ...
/

 CALL VO0010 using ...
/
/

 TPTERM ...

SVLV01
Business
Component

 TPSVCSTART
/
/
/
/
/

 TPRETURN

 DBMS

� TUXEDO XA (TUXEDO version 6.2. onwards)

In this architecture, the Communications Monitor and the Business Component
necessarily belong to different TUXEDO servers (it is not possible to call a
service in a same server).

SERVER COMPONENT CLIENT COMPONENT

VO0010 Client program

 TPBEGIN
/
/

 TPCALL SVLV01 using
 ZCOM

If NOT TPOK
or TPESVCFAIL
then TPABORT
else TPCOMMIT

Client Monitor

 TPINITIALISE ...
/

 CALL Menu using ...
/

 CALL VO0010 using ...
/
/

 TPTERM ...

SVLV01
Business
Component

 Division
procedure using
communication
area

 DBMS

Physical Architecture According to Environment Types 51

DDOVC000255A

� TUXEDO NON XA

SERVER COMPONENT
CLIENT COMPONENT

VO0010 Client Program

 TPBEGIN
/
/

 TPCALL SVLV01 using
 Communication area

if NOT TPOK
or TPESVCFAIL
then TPABORT
else TPCOMMIT

Client Monitor

 TPINITIALISE ...
/

 CALL Menu using ...
/

 CALL VO0010 using ...
/
/

 TPTERM ...

 DBMS

Communications
Monitor

 TPSVCSTART
/
/

 CALL Business
Component using
communication area.

/
/

 TPRETURN

Business
Component

Division Procedure
using communication
area

/
/

GOBACK

6.1.3.2. Management of COMMIT/ROLLBACK

In case of blocking error (exception on a Database access or structure
incompatibility between the Client and the Server components), the Business
Component sets the TPESVCFAIL TUXEDO variable which is interpreted by
the client monitor to execute a ROLLBACK on the Database. Otherwise, the client
monitor executes a COMMIT on the Database.

52 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.2. CICS

6.2.1. Database Management

DBMS automatically supported by CICS Business Components and TUI Client
Components are the following :

� DB2,

� Oracle V6 and V7,

� SQL/DS.

6.2.2. Graphic Application

6.2.2.1. CICS/ECI

6.2.2.1.1. Functions of the CICS/ECI Communications Monitor

In ECI mode, a Server call by the Client is considered as a LINK -type call.

In this case, the role of the Communications Monitor is to receive the message
and to branch to the Services Manager which, in turn, calls the Business
Component to be executed.

Client Component Server Component

SVVMSV Communications
Monitor
 Division procedure using
communication area.

/
/

 Exec Link Services Manager
 commarea (communication
area)

/
/

 Exec Return

SVLV01 Business
Component
DFHCOMMAREA
01 comm. area
Division procedure
 /

/
Exec Return

Proxy LV01
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
LINK SVLV01
 commarea (server
communication
area)
/
/

6.2.2.1.2. Management of COMMIT/ROLLBACK

In Non Extend mode, each error detected by the Business Component sets the
TECH-COMMIT field to R. This value is then interpreted by the Communications
Monitor to execute a ROLLBACK on the Database.

Otherwise, an implicit COMMIT is executed on the Database when the monitor
passes control to CICS on the RETURN instruction.

In all cases, the communication area is sent back to the Proxy.

Physical Architecture According to Environment Types 53

DDOVC000255A

6.2.2.2. CICS/CPI-C

6.2.2.2.1. Functions of the CICS/CPI-C Communications Monitor

With the CPI-C LU62 communication protocol, the exchange of information
between the Client and the Server components is based on the message mode.

The reception and sending of messages executed in the Communications
Monitor are based on the implicit CPI-C mode which consists in using the
standard communication verbs RECEIVE and SEND.

When the message is received, the communication area is initialized in the
WORKING-STORAGE SECTION then transferred to the Business Component via
a LINK (or CALL) type call.

Client Component Server Component

SVVMSV Communications
Monitor
 Division procedure using
communication area.
 Exec Receive into
(communication area

/
 Exec Link Services Manager
 commarea(communication
area)

/
 Exec Send
from(communication area)

/

SVLV01 Business
Component
DFHCOMMAREA
01 communication
area.
 Division procedure.
 /

/

LV01 Proxy
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
LINK SVLV01
 commarea (server
communication
area)
/
/

6.2.2.2.2. Management of COMMIT/ROLLBACK

With the LU62 CPI-C communication protocol, the management of the
COMMIT/ROLLBACK operates according to the same principles as those of the
CICS ECI protocol.

54 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.2.2.3. CICS/MQSERIES

6.2.2.3.1. Functions of the CICS/MQSERIES Communications
Monitor

With the MQSERIES protocol, the exchange of information between the Client
and Server components is based on the message mode.

The Communications Monitor receives and sends the messages by calling
MQSERIES routines.

When the message is received, the communication area is initialized in the
WORKING-STORAGE SECTION and then transferred to the Business Component
via the Services Manager, via a LINK (or CALL) type call.

Client Component Server Component

SVVMSV Communications
Monitor
Division Procedure using
communication area.
 CALL WS-MQGET using
communication areas

/
 Exec Link Services Manager
 commarea(communication
area)

/
 CALL WS-MQPUT using
communication areas

/

SVLV01 Business
Component
DFHCOMMAREA
01 comm. area
Division Procedure.
 /

/

Proxy LV01
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
LINK SVLV01
 commarea (server
communication
area)
/
/

6.2.2.3.2. Management of COMMIT/ROLLBACK

With the MQSERIES communication protocol, the COMMIT/ROLLBACK

management operates according to the same principles as those of the CICS

ECI protocol.

Physical Architecture According to Environment Types 55

DDOVC000255A

6.2.2.4. CICS/SOCKET

6.2.2.4.1. Functions of the CICS/ SOCKET Communications
Monitor

With the SOCKET communication protocol, the exchange of information
between the Client and the Server components is based on the message mode.

The Communications Monitor receives and sends the messages by calling
SOCKET routines.

When the message is received, the communication area is initialized in the
WORKING-STORAGE SECTION then transferred to the Business Component via
a LINK (or CALL) type call.

VisualAge Client
Component

Server Component

SVVMSV Communication
Monitor
 Procedure Division

 EXEC CICS RETRIEVE

 CALL 'EZASOKET'
/

 Exec Link Services Manager
 commarea(communication
area)

/
 CALL 'EZASOKET' using
communication areas

/

SVLV01 Business
Component
DFHCOMMAREA
01 comm. area
Procedure Division.
 /

/

LV01 Proxy
 /
 /
Call SVVMSV
Communication
area
 /
 /

RDBMS

API

Services Manager
/
/
LINK SVLV01
 commarea (server
communication
area)
/
/

6.2.2.4.2. Management of COMMIT/ROLLBACK

With the SOCKET communication protocol, the COMMIT/ROLLBACK

management operates according to the same principles as those of the CICS

ECI protocol.

56 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.2.3. TUI Application

� For more information on the Working Storage Section areas and the
complete structure of the Client component, refer to the CICS OLSD Reference
Manual [REF : DD OCI 000 151 A].

6.2.3.1. Architecture

The different components of a TUI application are executed in the same CICS.
The Client component includes a monitor and several programs which manage
the display on dumb terminals. The server part includes a Communications
Monitor and Business Components. The program calls have a LINK (or CALL)
type.

Client Component

Client Monitor
/

If...
Exec Read TS Queue (TS
key)
 into(comm area)
Exec Link VO0010
 Commarea (comm. area)
Exec Write TS Queue (TS
key)
from(comm. area)

/
/

Si ...
Exec Link SVVMSV
 Commarea (TS)

VO0010 Client Pgm
Division procedure
using comm. area

/
IF...
 THEN Exec Abend

/
/

IF ...
THEN Exec Return
 Transid
 /
 /

Server Component

SVVMSV
Communications
Monitor
Division procedure
 using (TS key)

/
Exec Read TS Queue (TS
key)
 into (comm. area)

Exec Link SVLV01
 Commarea (COMMA)

/
/

Exec Write TS Queue
(TS key)
 from(comm area.)

SVLV01 Business
Component
DFHCOMMAREA
01 comm. area
Division procedure.
 /
 /
 /
 /
 /
Exec Return

 DBMS

Transaction storage

6.2.3.2. Management of COMMIT/ROLLBACK

The application runs in implicit COMMIT. There is no particular synchronization
level. If the Business Component detects a blocking error, the execution of an
EXEC CICS ABEND order is triggered by the server (invalidates the execution
of the COMMIT). If no error is detected, the client ends with a RETURN TRANSID

order (validates the execution of the COMMIT).

Physical Architecture According to Environment Types 57

DDOVC000255A

6.3. GCOS7

6.3.1. Database Management

DBMS automatically supported by GCOS7 Business Components are the
following :

� UFAS indexed files,

� Oracle V6 and V7.

6.3.2. Graphic Application

6.3.2.1. Functions of the XCP2/CPI-C Communications Monitor

With the LU62 CPI-C communication protocol the exchange of information
between the Client and Server Components is based on the message mode.

The receiving and sending of messages executed in the Communications
Monitor are based on the CPI-C mode which consists in using the "CMRCV"
module to receive the message and the "CMSEND" module to send it.

When the message is received, the communication area is initialized in the
WORKING-STORAGE SECTION and then transferred to the Business Component
via the Services Manager, via a CALL type call.

Client Component Server Component

SVVMSV Communications
Monitor
Procedure Division using
communication area.
 CALL "CMRCV" using
communication area

/
CALL Services Manager using
communication area

/
 CALL "CMSEND" using
communication area

/

SVLV01 Business
Component
Division Procedure
using commnication
area

/
/.

GOBACK

Proxy LV01
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
CALL SVLV01
using server
communication
area

/

6.3.2.2. Management of COMMIT/ROLLBACK

Each error detected by the Business Component sets the TECH-COMMIT variable
to R. This value is then interpreted by the Communications Monitor to execute a
ROLLBACK on the Database.

The COMMIT and ROLLBACK orders are executed by SQL commands which
depend on the type of DBMS accessed by the Business Components.

58 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.4. GCOS8

6.4.1. Database Management

DBMS automatically supported by GCOS8 Business Components are the
following :

� UFAS indexed files,

� SQL INTEREL Databases.

6.4.2. Graphic Application

6.4.2.1. Functions of the XCP2/CPI-C Communications Monitor

With the LU62 CPI-C communication protocol, the exchange of information
between the Client and Server Components is based on the message mode.

The reception and sending of messages executed in the Communications
Monitor are based on the CPI-C mode which consists in using the "CMRCV"
module to receive a message and the "CMSEND" module to send it.

When the message is received, the communication area is initialized in the
WORKING-STORAGE SECTION and then transferred to the Business
Component via the Service Manager via a CALL".ILINK" type call.

Client Component Server Component

SVVMSV Communications
Monitor
 Division Procedure using
communication area.
 CALL "CMRCV" using
communication area

/
 MOVE Services Manager TO
NEXT TPR
 CALL".ILINK" using
communication area

/
 CALL "CMSEND" using
communication area

/

SVLV01 Business
Component
Division Procedure
using commnication
area

/
/.

GOBACK

Proxy LV01
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
MOVE "SVLV01"
TO NEXT TPR

CALL".ILINK"
 using server
communication
area

6.4.2.2. Management of COMMIT/ROLLBACK

Each error detected by the Business Component sets the TECH-COMMIT variable
to R. This value is then interpreted by the Communications Monitor to execute a
ROLLBACK on the Database.

The COMMIT and ROLLBACK orders are executed by SQL commands which
depend on the type of DBMS accessed by the Business Components.

Physical Architecture According to Environment Types 59

DDOVC000255A

6.5. MICROFOCUS UNIX, OS/2 or WINDOWS/NT

6.5.1. Database Management

DBMS automatically supported by Microfocus Business Components and TUI
Client Components are the following :

� Microfocus indexed files,

� Oracle V6 and V7,

� Sybase V10.0.1 and higher (ANSI-mode),

� DB2/2,

� SQL Informix (except for OS/2).

6.5.2. Graphic Application

6.5.2.1. Microfocus /Sockets

6.5.2.1.1. Functions of the Microfocus /Sockets Communications
Monitor

For the TCP-IP Socket protocol, the Communications Monitor does not
integrate specific communication verbs. The exchange principle is based on the
writing of a message in a socket on the host machine. A Server associated with
this socket is then executed. This Server translates the message, calls the
Communications Monitor, via the Services Manager, and sends the message by
reference.

Client Component Server Component

SVVMSV Communications
Monitor
 Division Procedure using
communication area.

/
/

CALL Services Manager using
communication area

/
 GOBACK

SVLV01 Business
Component
Division Procedure
using commnication
area

/
/.

GOBACK

Proxy LV01
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
CALL SVLV01
using server
communication
area

/

6.5.2.1.2. Management of COMMIT/ROLLBACK

Each error detected by the Business Component sets the TECH-COMMIT variable
to R. This value is then interpreted by the Communications Monitor to execute a
ROLLBACK on the Database.

The COMMIT and ROLLBACK orders are executed by SQL commands which
depend on the type of DBMS accessed by the Business Components.

60 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.5.2.2. Microfocus / MQSERIES

6.5.2.2.1. Functions of the Microfocus / MQSERIES Communications
Monitor

With the MQSERIES protocol, the exchange of information between the Client
and Server components is based on the message mode.

The Communications Monitor receives and sends the messages by calling
MQSERIES routines.

When the message is received, the communication area is initialized in the
WORKING-STORAGE SECTION and then transferred to the Business Component
via the Services Manager, via a LINK (or CALL) type call.

Client Component Server Component

SVVMSV Communications
Monitor
Division procedure

/
 CALL "MQGET" using
communication areas

 CALL Services Manager
using communication area

CALL "MQPUT" using
communication areas

/
 GOBACK

SVLV01 Business
Component
Division procedure
using commnication
area

/
/.

GOBACK

Proxy LV01
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
CALL SVLV01
using server
communication
area

/

6.5.2.2.2. Management of COMMIT/ROLLBACK

Each error detected by the Business Component sets the TECH-COMMIT variable
to R. This value is then interpreted by the Communications Monitor to execute a
ROLLBACK on the Database.

The COMMIT and ROLLBACK orders are executed by SQL commands which
depend on the type of DBMS accessed by the Business Components.

Physical Architecture According to Environment Types 61

DDOVC000255A

6.5.3. TUI Application

� For more information on the Working Storage Section areas and the
complete structure of the Business Component, refer to the Microfocus
Dialogue Reference Manual [REF : DD OPC 000 021 A].

6.5.3.1. Architecture

The different components of a TUI application are executed in the same station.
The Client part includes a monitor and several programs which manage the
dumb terminals display. The Server part includes a Communications Monitor
and Business Components. The program calls have a dynamic CALL type.

Client Component

Client Monitor
/
/
/

If ...
Call VO0010 using
communication area

/
If ...
Call SVVMSV using COMMA

/
/
/

VO0010 Client Pgm
Division procedure
 using communication
area.

/
/
/

Goback

Server Component

SVVMSV
Communications Monitor
Division procedure
 using communication
area.

/
/

Call SVLV01
 using COMMA

/
/
/

Goback

SVLV01 Business
Component
Division procedure
 using communication
area.
 /
 /
If Tech-Commit = C
 then
 Exec SQL Commit
 /
 /
Goback

 DBMS

6.5.3.2. Management of COMMIT/ROLLBACK

The TECH-COMMIT variable which conditions the execution of the SQL
COMMIT is set to C by the generator for this particular environment (which
supposes the default execution of the COMMIT in the Business Component). If
the Business Component detects a blocking error (Database access error,
incorrect contents of the technical area, ...) the COMMIT is not executed.

62 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.6. IMS

6.6.1. Database Management

DBMS automatically supported by IMS Business Components and TUI Client
Components is SQL DB2.

For the Business Components only, the DL/1 Databases are also automatically
supported.

6.6.2. Graphic Application

6.6.2.1. IMS CPI-C

6.6.2.1.1. Functions of the IMS CPI-C Communications Monitor

With the LU62 CPI-C communication protocol, the exchange of information
between the Client and the Server Components is based on the message mode.

The reception and sending of messages executed in the Communications
Monitor are based on the implicit CPI-C mode which consists in using the
GETUNIT and INSERT standard communication verbs.

When the message is received, the communication area is initialized in the
WORKING-STORAGE SECTION and then transferred to the Business
Component, via the Services Manager, via a CALL type call.

Client Component Server Component

SVVMSV Communications
Monitor
Division procedure
 F01.
Receiving of the message
 If end of message receiving
 Goback.

/
 Call Services Manager using
communication area.

/
 Sending of the message
 GO TO F01.

SVLV01 Business
Component
Division procedure
 using commnication
area

/
/.

GOBACK

LV01 Proxy
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
CALL SVLV01
 using server
communication
area

/

6.6.2.1.2. Management of COMMIT/ROLLBACK

With the LU62 CPI-C communication protocol, the COMMIT/ROLLBACK

management operates according to the same principles as those of the CICS

ECI protocol.

Physical Architecture According to Environment Types 63

DDOVC000255A

6.6.2.2. IMS / MQSERIES

6.6.2.2.1. Functions of the IMS / MQSERIES Communications
Monitor

With the MQSERIES communication protocol, the exchange of information
between the Client and Server Components is based on the message mode.

The Communications Monitor receives and sends the messages by calling
MQSERIES routines.

When the message is received, the communication area is initialized in the
LINKAGE SECTION and then transferred to the Business Component, via the
Services Manager, via a CALL type call.

Client Component Server Component

SVVMSV Communications
Monitor
Division procedure

/
 CALL "MQGET" using
communication areas

 CALL Services Manager
using communication area

CALL "MQPUT" using
communication areas

/
 GOBACK

SVLV01 Business
Component
Division procedure
 using commnication
area

/
/.

GOBACK

LV01 Proxy
 /
 /
Call SVVMSV
communication
area
 /
 /

 DBMS

API

Services Manager
/
/
CALL SVLV01
 using server
communication
area

/

6.6.2.2.2. Management of COMMIT/ROLLBACK

Each error detected by the Business Component set the TECH-COMMIT variable
to R. This value is then interpreted by the Communications Monitor to execute a
ROLLBACK on the Database.

The COMMIT and ROLLBACK commands are executed by IMS orders.

64 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.6.3. TUI Application

� For more information on the Working Storage Section area and the
complete structure of the Client component, refer to the IMS Dialogue
Reference Manual [REF : DD OIM 000 021 A].

6.6.3.1. Architecture

The different components of a TUI application are executed in the same IMS.
The Client component includes a monitor and several programs which manage
the display on dumb terminals. The Server component includes a
Communications Monitor and Business Components. The program calls are of
the CALL type.

Client Component

Client Monitor
/
/
/

If...
Call VO0010 using
communication area

/
If ...
Call SVVMSV using ACOM

/
/
/

VO0010 Client pgm
Division procedure
using communication
area /

/
/

Goback

 Server Component

SVVMSV
Communications
Monitor
Division procedure using
communication area.

/
/

Call SVLV01 using
communication area

/
/

Goback

SVLV01 Business
Component
Division procedure using
communication area.
 /
 /
 /
 /
 /
Goback

 DBMS

6.6.3.2. Management of COMMIT/ROLLBACK

The application runs in implicit COMMIT.

If the Business Component detects a blocking error, no ROLLBACK type
processing is supplied in standard.

Physical Architecture According to Environment Types 65

DDOVC000255A

6.7. UNISYS 2200

6.7.1. Database Management

DBMS automatically supported by Unisys 2000 Business Components are the
following :

� RDMS/SQL

� SFS indexed files.

6.7.2. Graphical Application

6.7.2.1. Functions of the Unisys 2200 / TCIS Communications Monitor

The receiving and sending of messages executed in the Communications
Monitor are based on the TCIS mode which consists in using the standard
MCB$ENT module for the receiving (P-TRINIT) and (P-SENDD) sending
functions.

When the message is received, the communication area is initialized in the
WORKING-STORAGE SECTION then transferred to the Business Component via
a CALL type call.

VisualAge Client
Component

Server Component

SVVMSV Communications
Monitor
 Procedure Division
CALL 'MCB$ENT' using
parameters, communication
area

/
 CALL Services Manager
using communication area

/
 CALL 'MCB$ENT' using
parameters, communication
area
STOP RUN

SVLV01 Business
Component
Procedure Division
 using commnication
area

/
/.

LV01 Proxy
 /
 /
Call SVVMSV
communication
area
 /
 /

RDBMS

API

Services Manager
/
/
CALL SVLV01
 using server's
communication
area

/

6.7.2.2. Management of COMMIT/ROLLBACK

Each error detected by the Business Component sets the TECH-COMMIT variable
to R. This value is then interpreted by the Communications Monitor to execute a
ROLLBACK on the Database.

The COMMIT and ROLLBACK orders are executed by SQL commands which
depend on the type of DBMS accessed by the Business Components.

66 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.8. TANDEM

6.8.1. Database Management

DBMS automatically supported by Tandem Business Components are the
following :

� Non Stop SQL

� Indexed files

6.8.2. Graphical Application

6.8.2.1. TANDEM PATHWAY

6.8.2.1.1.Functions of the Tandem Pathway / Socket
Communications Monitor

For the TCP-IP Socket protocol, the Communications Monitor does not
integrate specific communication verbs. The exchange principle is based on the
writing of a message in a "Message" file. A Server associated with this socket is
then executed. This Server translates the message, calls the Communications
Monitor, via the Services Manager, and sends the message in the "Message"
file.

VisualAge Client
Component

Server Component

SVVMSV Communications
Monitor
 Procedure Division
Read message-in

/
/

 CALL Services Manager
using communication area

/
 Write message-out
STOP RUN

SVLV01 Business
Component
Procedure Division
 using commnication
area

/
/.

EXIT PROGRAM

LV01 Proxy
 /
 /
Call SVVMSV
communication
area
 /
 /

RDBMS

API

Services Manager
/
/
CALL SVLV01
 using server
communication
area

/

Physical Architecture According to Environment Types 67

DDOVC000255A

If you specified the option CALLTYPE=PATHSEND, the architecture is the
following:

VisualAge Client
Component

Server Component

SVVMSV Communications
Monitor
 Procedure Division
Read message-in

/
/

ENTER
"SERVERCLASS_SEND_"
Services Manager using
communication area

/
 Write message-out
STOP RUN

SVLV01 Business
Component
Procedure Division
Read message-in

/
/.

EXIT PROGRAM

LV01 Proxy
 /
 /
Call SVVMSV
communication
area
 /
 /

RDBMS

API

Services Manager
Read message-in
/
ENTER
"SERVERCLASS_
SEND_" SVLV01
 using server
communication
area

/

6.8.2.1.2.Management of COMMIT/ROLLBACK

The COMMIT and ROLLBACK are managed by the Communications Monitor.

6.8.2.2. TANDEM NonStop TUXEDO NON XA

6.8.2.2.1.Functions of the Communications Monitor

In this architecture, only one TUXEDO service can exist. Indeed, since a global
transaction is not possible, Business Components cannot be distinct services.
The only thing to do to validate the updates made by several Business
Components is to group them on the same TUXEDO server and service as the
Communications Monitor and Services Manager.

Client Component Server Component

Business
Component

Division procedure
using
communication
area

/
/

GOBACK

Communications
Monitor
 TPSVCSTART

/
/

CALL Services
Manager using
communication area.

/
/

TPRETURN

Proxy
 /
 /
Call Monitor
using
communication
area
 /
 /

API

 DBMS

Services
Manager

CALL Business
Component using
communication
area

68 Pacbench C/S * Concepts - Architectures - Environments

DDOVC000255A

6.8.2.2.2.Management of COMMIT/ROLLBACK

The Server component manages the Database integrity. The Database COMMIT

or ROLLBACK command is executed by the Communications Monitor according
to the contents of the TECH-COMMIT field (C or R). This field belongs to the
communication area which passes information between the components of the
Server part. It is initialized by the Business Component, depending on the
progress of the called service.

After the execution of a ROLLBACK, the Communications Monitor sends back a
message containing the reasons why the Proxy failed to complete the service
successfully.

	Table of Contents
	Foreword
	1. Introduction
	1.1. Pacbench C/S Functionalities
	1.2. Independence between Server and Client

	2. Principles of the Pacbench C/S Function
	2.1. The Logical View Concept
	2.2. Services Associated with a Business Component
	2.2.1. Check and Update
	2.2.2. Selection
	2.2.3. User Service
	2.2.4. Logical Lock (graphic applications)
	2.2.5. Call of a Business Component by another Business
	2.2.6. Description of a C/S query
	2.2.6.1. User Buffer
	2.2.6.2. Server Buffer

	2.2.7. Initialization / Termination Business Component

	2.3. Data Representation (graphic applications)
	2.3.1. Data Automatic Navigation
	2.3.1.1. Functional and Technical Contexts
	2.3.1.2. Folder-Based Development
	2.3.1.3. Representation in the Metamodel
	2.3.1.3.1. The Folder Entity
	2.3.1.3.2.The Folder View Entity

	2.3.2. Particular Case : Single-View Development

	2.4. Proxy Objects Generated for the Graphic Client
	2.4.1. Introduction
	2.4.2. Visual Programming and Public Interface
	2.4.2.1. Implementation of Generic Classes
	2.4.2.2. Parameterization of the Generated Classes Names (VisualAge for

	2.4.3. Proxy Objects
	2.4.3.1. Particular Case : Single-View Development

	2.5. Graphic Client Development Facilities
	2.5.1. Local Cache
	2.5.2. The Management of Collections
	2.5.3. The Exchange Manager
	2.5.4. The VisualAge for Smalltalk Quick Form
	2.5.5. VisualAge for Smalltalk Error Manager

	3. Software Architecture of Generated Applications
	3.1. Graphic Applications
	3.1.1. General Schema
	3.1.2. Single-View Development
	3.1.3. The Communications Monitor
	3.1.4. The Services Manager
	3.1.5. The Error Message Server
	3.1.6. Communication Achitecture
	3.1.6.1. Middleware and Communication Protocols
	3.1.6.2. Customized Middleware
	3.1.6.2.1. Local User Buffer (VisualAge for Smalltalk)

	3.1.6.3. Particular Case : WEB Applications
	3.1.6.3.1. Smalltalk Applications
	3.1.6.3.2. Java Applets (Intranet / Internet)

	3.2. TUI Applications
	3.2.1. Monitors
	3.2.1.1. Introduction
	3.2.1.2. The Client Monitor Component
	3.2.1.3. The Server Monitor Component

	3.2.2. Options without Monitors
	3.2.2.1. Client Processing
	3.2.2.2. Business Component Processing

	4. Development Environments
	4.1. Remote Components
	4.2. Local Components
	4.2.1. VisualAge for Smalltalk Workstation
	4.2.1.1. Standard Applications
	4.2.1.1.1. Windows 95 or NT
	4.2.1.1.2.OS/2

	4.2.1.2. WEB Smalltalk Specifics

	4.2.2. VisualAge for Java Workstation
	4.2.2.1. Windows NT and 95
	4.2.2.2. OS/2

	4.2.3. COM Environments

	5. Execution Environments
	5.1. Remote Components
	5.2. Local Components
	5.2.1. End User Workstation
	5.2.1.1. Windows 95 and NT
	5.2.1.2. OS/2

	5.2.2. COM Environments

	5.3. Middle Components for the Web
	5.3.1. Smalltalk Applications
	5.3.2. Java Applications

	6. Physical Architecture According to Environment Types
	6.1. TUXEDO
	6.1.1. Database Management
	6.1.2. Graphic Application
	6.1.2.1. Functions of the Communications Monitor
	6.1.2.2. Management of COMMIT/ROLLBACK

	6.1.3. TUI Application
	6.1.3.1. Architecture
	6.1.3.2. Management of COMMIT/ROLLBACK

	6.2. CICS
	6.2.1. Database Management
	6.2.2. Graphic Application
	6.2.2.1. CICS/ECI
	6.2.2.1.1. Functions of the CICS/ECI Communications Monitor
	6.2.2.1.2. Management of COMMIT/ROLLBACK

	6.2.2.2. CICS/CPI-C
	6.2.2.2.1. Functions of the CICS/CPI-C Communications Monitor
	6.2.2.2.2. Management of COMMIT/ROLLBACK

	6.2.2.3. CICS/MQSERIES
	6.2.2.3.1. Functions of the CICS/MQSERIES Communications
	6.2.2.3.2. Management of COMMIT/ROLLBACK

	6.2.2.4. CICS/SOCKET
	6.2.2.4.1. Functions of the CICS/ SOCKET Communications
	6.2.2.4.2. Management of COMMIT/ROLLBACK

	6.2.3. TUI Application
	6.2.3.1. Architecture
	6.2.3.2. Management of COMMIT/ROLLBACK

	6.3. GCOS7
	6.3.1. Database Management
	6.3.2. Graphic Application
	6.3.2.1. Functions of the XCP2/CPI-C Communications Monitor
	6.3.2.2. Management of COMMIT/ROLLBACK

	6.4. GCOS8
	6.4.1. Database Management
	6.4.2. Graphic Application
	6.4.2.1. Functions of the XCP2/CPI-C Communications Monitor
	6.4.2.2. Management of COMMIT/ROLLBACK

	6.5. MICROFOCUS UNIX, OS/2 or WINDOWS/NT
	6.5.1. Database Management
	6.5.2. Graphic Application
	6.5.2.1. Microfocus /Sockets
	6.5.2.1.1. Functions of the Microfocus /Sockets Communications
	6.5.2.1.2. Management of COMMIT/ROLLBACK

	6.5.2.2. Microfocus / MQSERIES
	6.5.2.2.1. Functions of the Microfocus / MQSERIES Communications
	6.5.2.2.2. Management of COMMIT/ROLLBACK

	6.5.3. TUI Application
	6.5.3.1. Architecture
	6.5.3.2. Management of COMMIT/ROLLBACK

	6.6. IMS
	6.6.1. Database Management
	6.6.2. Graphic Application
	6.6.2.1. IMS CPI-C
	6.6.2.1.1. Functions of the IMS CPI-C Communications Monitor
	6.6.2.1.2. Management of COMMIT/ROLLBACK

	6.6.2.2. IMS / MQSERIES
	6.6.2.2.1. Functions of the IMS / MQSERIES Communications
	6.6.2.2.2. Management of COMMIT/ROLLBACK

	6.6.3. TUI Application
	6.6.3.1. Architecture
	6.6.3.2. Management of COMMIT/ROLLBACK

	6.7. UNISYS 2200
	6.7.1. Database Management
	6.7.2. Graphical Application
	6.7.2.1. Functions of the Unisys 2200 / TCIS Communications Monitor
	6.7.2.2. Management of COMMIT/ROLLBACK

	6.8. TANDEM
	6.8.1. Database Management
	6.8.2. Graphical Application
	6.8.2.1. TANDEM PATHWAY
	6.8.2.1.1.Functions of the Tandem Pathway / Socket
	6.8.2.1.2.Management of COMMIT/ROLLBACK

	6.8.2.2. TANDEM NonStop TUXEDO NON XA
	6.8.2.2.1.Functions of the Communications Monitor
	6.8.2.2.2.Management of COMMIT/ROLLBACK

